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ABSTRACT OF THE DISSERTATION 

Siderophore Pathways and Non-traditional Antibiotic Strategies in Multi-drug Resistant 

Acinetobacter baumannii  

by 

Tabbetha J. Bohac 

Doctor of Philosophy in Chemistry 

Washington University in St. Louis, 2019 

Professor Timothy A. Wencewicz, Chair 

The rise of antibiotic resistance is driving exploration of non-canonical antibiotic 

approaches, including neutralization of virulence factors. Multi-drug resistant (MDR) Gram-

negative pathogens, including Acinetobacter baumannii, are of particular concern because of the 

small number of clinically useful antibiotics available for use. Here we both expand upon the 

existing knowledge of two of the siderophores of A. baumannii, acinetobactin and fimsbactin, and 

utilize this knowledge to synthesize novel compounds for the inhibition of pathogenic A. 

baumannii in whole cell assays.  

Furthering the current knowledge of the natural siderophore systems of A. baumannii, we 

were able to investigate the interaction of acinetobactin with transport proteins, as well as examine 

the role of the fimsbactin siderophores in iron acquisition. Specifically, we report a crystal 

structure of siderophore binding protein BauB bound to holo-acinetobactin along with fluorscence 

quenching assays of acinetobactin and preacinetobactin analogs to BauB. Additionally, we isolate 

fimsbactin from A. baumannii and show the importance of balance between concentrations of 

siderophores. Further, we explore the cooperative relationship between siderophores fimsbactin A 

and fimsbactin F.  



xvi 
 

With this fundamental knowledge in hand, we report a new method for blocking iron 

acquisition in MDR A. baumannii as an antivirulence strategy using rigid oxazole analogs of the 

known siderophore pre-acinetobactin. In addition, we report the synthesis fimsbactin mimics and 

confirm utilization of siderophore uptake pathways in model A. baumannii systems. Moreover, the 

fully functional fimsbactin mimics possess a synthetic handle for the coupling of antibiotics 

allowing for simple incorporation into studies aimed at Trojan horse antibiotic delivery 

mechanisms.  
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Chapter 1: Introduction – Siderophores of 
Acinetobacter baumannii 
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1.1 Preface  
This chapter was written by T. Bohac. Section 1.4 was adapted in part from [Bohac, T. J., 

Fang, L., Giblin, D. E. & Wencewicz, T. A. ACS Chemical Biology, Manuscript accepted]. TJB 

isolated Fimsbactin A, performed characterization, BauB fluorescent quenching binding studies 

and BauB displacement assays. LF performed all growth curves. DEG performed all DFT 

calculations. TAW served as principal investigator and oversaw experimental design. 

1.2 Multi-Drug Resistant (MDR) Pathogens  
The Center for Disease Control (CDC) and World Health Organization (WHO) have 

identified MDR pathogens as a serious threat to the health and well-being of the nation and the 

World.1 If not addressed, this threat is predicted to grow, as deaths due to antimicrobial resistance 

are projected to surpass cancer as the leading cause of death world wide by 2050 and account for 

the loss of 10 million lives per year.2 In addition to the physical and emotional costs associate with 

the loss of lives, by 2050, the total loss in global GDP due to antimicrobial resistance is projected 

to be greater than $100 trillion.2 Even though MDR is projected to have a devastating impact 

worldwide, many pharmaceutical companies are pulling out of antibiotic research and shutting 

down whole research divisions due to the lack of profitability in antibiotics. Furthermore, due to 

the rapid evolution of resistance mechanisms, resistant strains are rendering antibiotics ineffective 

over shorter periods of time, limiting the profit window. Thus, the burden of research has fallen to 

academic and non-profit institutions to develop solutions to combat antibiotic resistance through 

the identification of novel antimicrobial compounds with novel mechanisms of action. This goal 

serves as the motivation for the work described in this dissertation, which seeks to expand the 

fundamental knowledge of how pathogenic bacteria function and then utilize this knowledge to 

synthesize novel potential therapeutic applications to combat the rise in antibiotic resistance.  
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While resistance amongst pathogenic bacteria seems to be growing globally, there are a 

handful of pathogens that are multidrug resistant; that is resistant to three or more current antibiotic 

classes (MDR). These pathogens make up the “ESKAPE” pathogens as they escape from treatment 

with traditional antibiotics; these pathogens include Enterococcus faecium, Staphylococcus 

aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa , 

and Enterobacter species.3 Over 63% of A. baumannii infections (over 7000 annually) are MDR 

and cause 500 deaths annually in the United States alone.1 Due to its highly resistant nature of this 

Gram-negative bacteria, A. baumannii will be the focus for the work in this dissertation. 

1.3 Iron Acquisition Pathways  
 Iron is of vital importance for almost all forms of life. The unique chemistry of iron, 

specifically in the single electron interconversion of ferrous and ferric iron, is instrumental in a 

plethora of biological processes including, but not limited to, nitrogen fixation, DNA biosynthesis 

and oxygen transport.4 Thus, iron is essential for the proliferation of cell growth, which is 

especially true in the case of an infection where a pathogenic bacteria is attempting to survive, 

grow, and spread within a host environment. In the instance of an infection, one of the host’s first 

line of defense is to sequester nutrients, such as iron, away from the pathogen through a process 

called nutritional immunity, in hopes to starve out the pathogen.5 This effect is observed in a 

marked decrease in the concentration of iron in the human serum during times of infection, 

reaching levels on the order of 10-24 M.6 In order for pathogenic bacteria to survive in host 

environments, bacteria have evolved numerous acquisition methods for obtaining iron. These 

methods are highlighted in this section. 

Iron Acquisition from Heme  
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 About 75% of total iron in mammals is bound to heme, thus making heme an attractive 

target for bacteria from which to acquire iron.7 To access heme iron, pathogenic bacteria produce 

small heme-binding proteins called hemophores that are then secreted from the bacteria, where it 

can then bind heme. Upon successful binding of heme, the hemophore-heme complex is then 

transferred to specific heme-binding receptor proteins. These proteins differ in Gram-positive and 

Gram-negative pathogens. Near iron transporter (NEAT) proteins are located on the cell wall of 

Gram-positive pathogens and are responsible for the transfer of heme through the peptidoglycan 

and cytoplasmic membrane into the cytosol.7 However, since this dissertation is focused on the 

Gram-negative pathogenic bacteria A. baumannii¸ we will focus this section on the iron acquisition 

from heme by Gram-negative bacteria - specifically heme acquisition system A (HasA)-type 

hemophores. The HasA/HasR from S. marcescens is the most well studied hemophore system of 

Gram-negative pathogens and, thus, serves as a good model for iron acquisition from heme 

pathways.4  

 HasA-type hemophores possess the ability to bind heme from a plethora of hemoproteins 

such as myoglobin, hemoglobin and hemopexin.8 The iron acquisition pathway from heme in 

Gram-negative bacteria is depicted in Figure 1.1. Upon the binding of heme, HasA-type 

hemophores then complexes with HasR, a TonB-dependent outer membrane receptor transport 

protein, and transfers the heme into the periplasm.9,10 To facilitate transport and acquisition of 

heme from the periplam to the cytosol, substrate binding proteins (SBP) aid in trafficking the 

substrates, in this case heme, to the inner membrane. Most of the common substrate binding 

proteins that facilitate the transport of heme are characterized as cluster A, class III SBPs.11 The 

SBP then docks to inner membrane ABC transporter proteins which facilitate the transport of the 

heme-iron into the cytosol. Once in the cytosol, the heme-iron complex then binds a heme 
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oxygenase enzyme, in most cases, a nicotinamide adenine dinucleotide phosphate hydrogen 

(NADPH)-dependent oxygenase. These enzymes oxidize the heme ring and release iron which is 

then utilized by the bacteria.4 The heme is then degraded or effluxed out of the cell by enzymes to 

prevent toxicity to the bacteria.7  

Transferrin and Lactoferrin Iron Acquisition 

 Some pathogenic bacteria may utilize iron from host glycoproteins, transferrin and 

lactoferrin. One difference being iron acquisition from host glycoproteins, the large size of 

glycoproteins prohibits their transfer across the outer membrane, and thus iron must be removed 

directly from the glycoprotein in the extracellular space. The acquisition pathway is depicted in 

Figure 1.2. The pathway commences with the Fur-regulated bipartite system of Ton-B-dependent 

outer member receptor protein TbpA (transferrin)/LbpA (lactoferrin) and surface-associated 

lipoprotein TbpB (transferrin)/LbpB (lactoferrin).13,14 While TbpA/LbpA and TbpB/LbpB can 

both bind holo proteins, it is thought that TbpA/LbpA are also able to bind the apo forms of 

transferrin/lactoferrin. Therefore, it is hypothesized that a TbpB/LbpB-holo-hTf-TbpA/LbpA 

complex is formed and responsible for the transport of free iron across the outer member, although 

there currently is no fully elucidated mechanism.4,14 Once the free iron reaches the periplasm, a 

periplasmic binding protein (PBP) specifically ferric-binding protein FbpA is responsible for the 

facilitating of iron(III) across the periplasmic space.15 FbpA then delivers the iron(III) to ABC 

transporter, FbpBC, which shuttles the free iron to the cytoplasm for use by the pathogenic 

bacteria.  

Free Inorganic Iron Transport  

 Many pathogenic bacteria are capable of transporting ferrous iron through a TonB-

independent manner using a ferrous iron transport system, Feo.16 The Feo system possesses a 
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feoABC operon, comprised of three genes.4 Once to the periplasm, free elemental iron can be 

actively transported into the cytoplasm for use by the bacteria. To help facilitate this process, it 

has been seen that bacteria can secrete reductase enzymes into the extracellular space with the role 

of converting ferric iron into ferrous which can then be transported.4  

Siderophores  

 An additional mechanism for iron acquisition by pathogenic bacteria, and the focus of this 

dissertation, is the utilization of small iron-chelating secondary metabolites called siderophores, 

greek for “iron-carrier”. While there are over 500 siderophores known and characterized, with a 

plethora more yet to be discovered, all siderophores can be classified into four distrinct broad 

classes based upon their iron-binding moieties: catechols, hydroxamic acids, α-hydroxy carboxylic 

acids and mixed ligands siderophores (Figure 1.3). Catechol siderophores are produced in both 

cyclic and linear variants, such as enterobactin, protochelin and vanchrobactin. This class of 

siderophores has a high iron affinity, as two negatively charged oxygen atoms that can delocalize 

electron density throughout the aromatic ring. Enterobactin is a well-studied cyclic trimer and one 

of the strongest known iron chelators, with an extremely high iron affinity of up to 10-52. 17 

Hydroxamate bidentate chelating groups can exist in keto or iminol forms. When there in an 

increased electron density on the carbonyl carbon, in the iminol form, there tends to be a larger 

iron affinity, this form is stabilized with addition of electron donating groups on the nitrogen.4 

Siderophores comprising this class include Desferrioxamine E, Desferrioxamine B and 

Cepabactin. While α-hydroxycarboxylic acid groups are normally found in our mixed ligand 

siderophore class, there are a few siderophores, such as achromobactin and staphyloferrin, which 

bind iron solely utilizing α-hydroxycarboxylic acid groups. Interestingly, these groups can be 

photoreactive upon coordination to iron (III).19,20,21  The vast majority of siderophores comprise 
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the fourth class of mixed-ligand siderophores which possess numerous different variations of the 

three aforementioned binding moieties. This class includes acinetobactin and amychelin, as well 

as many others. 

 Siderophores are biosynthesized via either a multimodular enzyme assembly line call 

nonribosomal peptide synthetase (NRPSs) or independent of the multimodular NRPS system 

deemed NRPS-independent siderophore (NIS) synthesis. NRPSs synthesize siderophores in a 

modular fashion, as each domain facilitates the step for the growing peptide chain with addition of 

proteinogenic and non-proteinogenic amino acids. These domains include, but are not limited to, 

activation, adenylation, thioesterase, aceyl carrier proteins, condensation, cyclization, dehydration. 

Examples of NRPS synthesized siderophores include enterobactin and vibriobactin. NRPSs are 

also responsible for the synthesis of other small molecules, such as peptide-based antibiotics like 

penicillin and vancomycin.21 Alternatively, NIS enzymes catalyze the synthesis of nonpeptidic 

siderophores through the addition of alcohols, carboxylic acids and amines via the formation of 

ester and amine bonds; this process allow for vast versatility.22 Most α-hydroxycarboxylic acid 

siderophores are synthesized in a NIS manner, including staphyloferrin and aerobactin. Further, 

there are hybrid siderophores, such as petrobactin, which are synthesized using both NRPS and 

NIS assembly. Later in this chapter, we will discuss in depth the biosynthesis of the siderophores 

of interest for this dissertation.   

 While the exact mechanism of siderophore transport and iron acquisition is siderophore 

dependent and not fully elucidated, here we will provide a generalized overview of this process. 

Once the siderophore is biosynthesized, it is then effluxed outside of the bacteria to the 

extracellular space where it may then bind iron. In Gram-negative pathogens, the siderophore-iron 

complex is then transported across the outer membrane into the periplasm via a TonB-dependent 
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protein. Once in the periplasm, periplasmic binding proteins aid in trafficking of the siderophore-

iron complex. Some siderophores, like enterobactin, may be reduced in the periplasm, releasing 

the iron which can then be shuttled across the inner membrane. Other siderophores, like 

acinetobactin, are shuttled from the periplasmic binding protein to the ABC transport proteins of 

the inner membrane. Once in the cytoplasm, a reductase enzyme can reduce the iron, and the 

siderophore may be recycled and efluxed back into the extracellular space, where the cycle can 

continue. (Figure 1.4).  

 Many pathogenic bacteria synthesize multiple siderophores and while the exact benefit of 

this structure remains unclear, it is hypothesized that a siderophore cocktail provides unique 

advantages for the natural producer. A. baumannii, the pathogen of interest for this dissertation, is 

one such pathogen that synthesizes multiple siderophores; these siderophores will be further 

discussed in the following section.  

1.4 Siderophores of A. baumannii 
At least three unique structural families of siderophores (acinetobactin23, fimsbactin24, and 

baumannoferrin/acinetoferrin25,26) have been detected from clinical isolates of A. baumannii and 

A. haemolyticus, Figure 1.5. In this section, the biosynthesis (Figure 1.6) and chemical synthesis 

of each of these siderophore families will be presented.  

Acinetobactin  

Acinetobactin (Acb) is the most studied A. baumannii siderophore and is highly conserved 

in all clinical isolates.27 Acinetobactins were the first A. baumannii siderophore class to be isolated 

in 1994 and are the most studied class of A. baumannii siderophores.28 Acinetobactin is a 

nonribosomal peptide (NRP) siderophore that is produced in a pre-acinetobactin (PreAcb) form 
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featuring hydroxamate and imidazole metal binding motifs derived from L-histidine, along with a 

phenolate-oxazoline metal chelating group derived from the condensation of 2,3-

dihydroxybenzoic acid (2,3-DHB) and L-Thr.29,30 The nonribosomal peptide synthetase (NRPS) 

biosynthetic assembly of PreAcb starts with activation of 2,3-DHB and L-Thr as acyl adenylates 

by adenylation domains A1 (BasE) and A2 (BasA), respectively, followed by formation of the aryl 

acyl carrier protein ArCP (BasF) and peptidyl carrier protein PCP (BasB) thioesters, respectively 

(Figure 1.7). Acylation of the α-amino group of the L-Thr-PCP thioester by the 2,3-DHB-ArCP-

thioester carbonyl is mediated by the condensation C domain (BasB), followed by dehydrative 

cyclization to the phenolate oxazoline-PCP thioester catalyzed by the cyclization domain Cy 

(BasD). Nucleophilic attack of N-hydroxyhistamine on the phenolate oxazoline-PCP thioester 

carbonyl releases the mature PreAcb scaffold from the NRPS assembly line. PreAcb spontaneously 

isomerizes to the isoxazolidinone Acb via nucleophilic attack of the hydroxamate oxygen on the 

oxazoline-C5’ to undergo 5-exo-tet cyclization with clean stereochemical inversion.31 Formation 

of the isoxazolidinone heterocycle masks the hydroxamate metal chelating motif leaving the di-

catechol of the 2,3-DHB fragment and the imidazole as the free metal binding groups.32 Both 

PreAcb and Acb form stable 2:1 ferric complexes, PreAcb2Fe and Acb2Fe, respectively, and 

stimulate A. baumannii growth under iron limiting conditions.33 Isomerization of PreAcb is slow 

under acidic conditions and chelation of iron(III) prevents isomerization, which has led to 

speculation that both PreAcb and Acb have a natural role in iron scavenging under acidic infection 

conditions.31  

The first total synthesis of acinetobactin was completed in 2010 by Takeuchi and 

coworkers.34 The 9 total step synthesis is shown in Figure 1.8. Briefly, histamine dihydrochloride 

is treated with sodium nitrate, followed by substitution with thionyl chloride, to provide the 
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cholorethyl imidazole hydrochloride salt. SN2 reaction with N-boc-O-benzyloxyamine affords the 

corresponding N-boc-O-benzyloxy imidazole, which upon treatment with TFA yields the free 

amine. At the same time, 2,3 dihydroxybenzaldehyde was converted to the corresponding nitrile 

through treatment with ammonium hydroxide, sodium formate and formic acid. To the nitrile, 

acetyl chloride in methanol is added, followed by addition of sodium bicarbonate, to provide the 

imidate. The imidate is then cyclized with L-threonine benzyl ester to afford the desired oxazoline 

benzyl ester which yields the free acid upon hydrogenolysis. With the free acid and amine in hand, 

EDC/HOBt mediated coupling in the presence of facilitating base provides the title compound 

benzyl protected. Final hydrogenolysis yields pre-acinetobactin, which can then spontaneously 

isomerize to acinetobactin.  

Fimsbactin 

The fimsbactin siderophores, fimsbactin A–F (Figure 1.9) were discovered in 2013 and 

are also derived from an NRPS assembly line resembling the acinetobactin NRPS system, with 

double heterocyclization domains and a nonmodular gradient organization of condensation 

domains lacking a type I thioesterase terminating domain.34, 35 Fimsbactin A (Fim) was the primary 

siderophore in the mixture isolated from A. baylyi ADP1, accounting for >85% of the total mass. 

Fimsbactins B and C are derived from the incorporation of L-Thr instead of L-Ser into the 

siderophore backbone while fimsbactin D–F are shunt biosynthetic products lacking the 

cadaverine N-hydroxy group, the entire N-acetyl-N-hydroxy-cadaverine moiety, or seryl-O-2,3-

DHB ester, respectively. The NRPS phase of Fim biosynthesis is proposed to start with activation 

of 2,3-DHB and L-Ser as acyl adenylates by adenylation domains A1 (FbsH) and A3 (FbsF), 

respectively, followed by formation of the ArCP (FbsE) and PCP1 (FbsE) thioesters, respectively 

(Figure 1.7).24 Acylation of the α-amino group of the L-Ser-PCP1 thioester by the 2,3-DHB-ArCP-
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thioester carbonyl is presumably mediated by the condensation C domain (FbsF), followed by 

dehydrative cyclization to the phenolate oxazoline-PCP1 thioester catalyzed by the Cy domain 

(FbsE). A second equivalent of L-Ser is activated by the A3 domain (FbsF) and loaded to PCP2 

(FbsF) as a phosphopantetheinyl thioester. Nucleophilic attack of the α-amino group of the L-Ser-

PCP2 thioester on the phenolate oxazoline-PCP1 thioester carbonyl provides the intermediate N-

acyl-Ser-PCP2 thioester intermediate. Trans-thioesterification from PCP2 (FbsF) to PCP3 (FbsG) 

and acylation of the Ser free hydroxyl by 2,3-DHB, presumably with catalysis by the C2 domain 

(FbsG) provides the penultimate PCP3-thioester. The C3 domain is predicted to mediate cleavage 

of mature Fim from the NRPS via nucleophilic attack of the PCP3-thioester carbonyl by the 

primary amine of N-acetyl-N-hydroxy cadaverine. Premature cleavage from the FbsG NRPS 

module prior to Ser acylation by 2,3-DHB or post-NRPS hydrolysis of fimsbactin A would result 

in production of fimsbactin F. The remaining fimsbactin analogs can be accounted for by 

incorporation of L-Thr instead of L-Ser (fimsbactin B and C, respectively), lack of cadaverine 

oxidation (fimsbactin D), and competing hydrolysis of the penultimate PCP3 thioester (fimsbactin 

E). 

In 2015, the Kim group successfully synthesized Fimsbactin B, D and F.36 While they 

proposed and executed a complete total synthesis of Fimsbactin A (the predicted >90% metabolite 

of the Fimsbactins)25, they failed to isolated pure Fimsbactin A due to epimerization at the final 

step. Their complete synthesis is depicted in Figure 1.10. Briefly, the synthesis of part A 

commences with an SN2 substitution reaction of N-Boc-O-benzylamine and 4-chlorobutyronitrile. 

Removal of the Boc-protecting group with TFA followed by N-acetylation installs the 

hydroxamate moiety-benzyl ester protected. Reduction of the terminal nitrile group with 

hydrogenation using Raney-Ni provides the free amine. EDC/HOBt-mediated coupling in the 
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presence of facilitating base of the free amine with N-Boc-O-TBS-L-serine, followed by removal 

of the Boc-protecting group by TFA yields part A.  The synthetic route to part B begins with acid 

catalyzed esterification of 2,3-dihydroxybenzoic acid followed by reflux with 1,2-

bis(bromomethyl)benzene and treatment with acid to provide the o-xylyl-protected 2,3 

dihydroxybenzoic acid. EDC/HOBt-mediated coupling in the presence of facilitating base of the 

free carboxylic acid and L-serine-methyl ester, followed by dehydrative oxazoline formation by 

catalytic MoO2(TMHD)2, yields part B methyl ester. Final hydrolysis with potassium 

trimethylsilanolate affords compound part B. With both precursors in hand, free amine part A is 

coupled with free acid part B using EDC. Removal of TBS-protecting group by HF-pyridine, 

followed by carbodiimide-promoted esterification with an additional equivalent of part B, affords 

o-benzyl-o-xylyl-protected Fimsbactin A. Global deprotection hydrogenolysis provides the title 

compound.   

Baumannoferrin 

Baumannoferrin is the most recently characterized A. baumannii siderophore, with its’ 

discovery reported in 2015.25 While there is currently no synthetic route to synthesizing 

baumannoferrin, it is derived from an NRPS-independent siderophore synthetase (NIS) 

biosynthetic process.25 A related NIS siderophore, acinetoferrin, has been reported from 

environmental strains and the opportunistic human pathogen Acinetobacter haemolyticus.26, 37 

Baumannoferrin is composed of citrate, 1,3-diaminopropane, 2,4-diaminobutyrate, decenoic acid, 

and α-ketoglutarate.25 The lipophilic nature of the baumannoferrin decenoic acid side chain has 

led to the proposal that the siderophore might be membrane associated.38 Baumannoferrin is 

structurally distinct from the NRPS siderophores PreAcb, Acb, and Fim. The structure contains 

one hydroxamate and two α-hydroxy carboxylate metal binding motifs similar to chelating groups 
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found in other NIS-derived, citrate-based siderophores, such as aerobactin produced by human 

pathogens including Klebsiella pneumonia and uropathogenic E. coli (UPEC).39, 40 PreAcb/Acb 

and Fim are structurally related by the hydroxamate, catecholate, and phenolate oxazoline metal 

binding motifs found in common siderophores such as enterobactin41 and vibriobactin42, 

respectively. Biosynthetic operons for baumannoferrin and PreAcb/Acb are present in all genome-

sequenced clinical isolates of A. baumannii deposited in the NCBI database (taxid: 470).27 On the 

contrary, only 4 unique strains (<10% of sequenced A. baumannii strains) contain genes associated 

with fimsbactin biosynthesis and utilization (Figure 1.11). It appears as though human pathogenic 

strains of A. baumannii always retain the capacity for producing at least two siderophores, 

PreAcb/Acb and baumannoferrin, or occasionally three siderophores, if the Fim biosynthetic 

operon is present and functional. Since Fim production is optional for pathogenicity, this raises the 

question as to whether the structural similarity of PreAcb/Acb and Fim is functionally redundant 

or if the siderophore pathways contribute cooperatively to iron and other metal ion acquisition, 

leading to increased pathogen virulence. 

It is common for pathogenic and environmental microbes to produce multiple siderophores 

via the presence of multiple biosynthetic gene clusters (as for PreAcb/Acb, Fim, and 

baumannoferrin in A. baumannii), production of shunt/fragment biosynthetic products (as for 

fimsbactin A–F), precursor-directed biosynthesis (as for fimsbactin incorporation of Thr or Ser), 

and/or biosynthetic tailoring reactions (as for acyl-enterobactins43).44 Additionally, pathogens 

often produce siderophore transport proteins for siderophores produced by neighboring bacteria, 

so called xenosiderophores.45 Pathogenic A. baumannii express the protein FhuD to enable the 

utilization of hydroxamate-based xenosiderophores including desferrioxamine B, an FDA 

approved treatment for human iron overload diseases.46 Potential advantages of utilizing multiple 
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siderophores44, 47 include synergistic effects of siderophore combinations on iron acquisition31, 

evasion of immune proteins such as siderocalin48, suppression of competing microbial growth49, 

50, stimulation of cooperative and synergistic microbial growth51, 52, expansion of metal uptake 

beyond iron53, 54, quorum sensing and cell signaling55, nutritional passivation of necessary but 

potentially toxic metals56, 57, quenching of reactive oxygen species58, 59, and induction of metal-

dependent cellular responses in the host.60, 61  

1.5 Trojan Horse Strategies and Medicinal Applications of 
Siderophores 

The rise of infections caused by multi-drug resistant (MDR) Gram-negative pathogens, 

including MDR Acinetobacter baumannii, is driving the exploration of nontraditional therapeutic 

strategies including antivirulence therapies.62, 63 Blocking virulence pathways such as cellular 

adhesion, protein secretion, biofilm formation, motility, and nutrient acquisition are presumed to 

apply less selective pressure for resistance and might work synergistically with traditional 

antibiotics.64 Targeting nutrient acquisition pathways is an attractive option since a 

disproportionate percentage of the pathogen’s conditionally essential genome is comprised of 

genes associated with nutrient scavenging.65, 66 Fundamental research of siderophores has 

illuminated a few potential antivirulence therapies that nature itself uses to provide a competitive 

advantage. Taking a page from nature, researchers aim to implement these techniques into the 

development of novel potential therapeutics. Herein, we will discuss the use of the Trojan horse 

antibiotic delivery strategy, as well as the synthesis of structural mimics of known siderophores.  

In nature, some pathogenic bacteria synthesize siderophore antibiotic conjugates called 

sideromycins, such as albomycin and salmycins, which are exported into the extracellular space.7 

Sideromycins then function in a Trojan horse manner, as they can then be imported by competing 
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bacteria via innate siderophore uptake pathways used to acquire iron. Once transported into the 

cell, the antibiotic may then be cleaved from the siderophore mimic and can inhibit and kill the 

competing bacteria. This Trojan horse strategy of synthesizing siderophore-antibiotic conjugates 

has been of interest to many research groups, including the Miller group which recently reported 

a synthetic siderophore daptomycin conjugate with potent inhibition (MIC values as low as 0.2 µ) 

against MDR A. baumannii  strains.67 While this strategy has been historically limited 

therapeutically, recently lead compound Cefiderocol of Shionogi, a siderophore cephalosporin 

conjugate, was reported to have proceeded to phase III clinical trials for the treatment of a range 

of MDR Gram-negative pathogens.68 

Another lesson from Nature was discovered by the Henderson group via the isolation of 

small molecule, escherichelin.50 The structure of escherichelin is structurally similar to that of 

known siderophores pyochelin and yersiniabactin, with the largest structural difference being the 

oxidization of the thiozoline ring to a thiozole (Figure 1.12). Interestingly, patients that had a 

higher concentration of escherichelin in their urine were less likely to contract a UTI.50 While the 

exact mechanism of action remains unknown, this phenomenon is hypothesized to be the result of 

asymptomatic bacteria synthesizing small molecules, like escherichelin, as a protective precaution 

to aid in out-competing of detrimental pathogens.  Escherichelin highlights that a subtle structural 

change may result in role reversal of a compound, taking a molecule from being a siderophore and 

growth promoter to an inhibitor.  

Trojan horse strategies and inducing subtle structure changes to afford inhibitory 

properties, while still mimicking the natural system, are just two examples of potential 

antivirulence approaches to combat the rise in antimicrobial resistance. Chapters 2-4 will focus on 

expanding the current knowledge base of two of the siderophore families of A. baumannii, 
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acinetobactin and the Fimsbactin (A and F). Then, this knowledge will be applied towards potential 

therapeutic applications, in Chapters 5-7, as we explore the synthesis of a structural analog of pre-

acinetobactin that functions as an inhibitor and the synthesis of a siderophore-linker system of 

interest to Trojan horse antibiotic delivery. 

1.6 Figures  

 

Figure 1.1: Iron acquisition from Heme. HasA: Heme acquisition system. SBP: Substrate binding 

protein. HasR: HasA outer membrane receptor. OM: Outer membrane. IM: Inner membrane. CP: 

cytoplasm.  



17 
 

Fb
pA

TbpB/LbpB

 

Figure 1.2: Iron Acquisition from Transferrin and Lactoferrin. Tf: transferrin. Lf: lactoferrin. 

TbpA/LbpA: outer membrane receptor protein. TbpB/LbpB: surface-bound lipoprotein. FbpA: 

periplasmic ferric-binding protein. OM: Outer membrane. IM: Inner membrane. CP: cytoplasm. 
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Figure 1.3: Siderophore iron-binding moieties and example siderophores 
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Figure 1.4: Generalized Siderophore Transport Pathway. PBP: periplasmic binding protein. Red: 

reductase enzyme. OM: Outer membrane. IM: Inner membrane. CP: cytoplasm. 

 

Figure 1.5: Structures of A. baumannii siderophores.  
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Figure 1.6. Biosynthetic gene clusters for acinetobactin23, fimsbactin24, and baumannoferrin25 

from A. baumannii ATCC 17978 along with annotated genes. 

 

Figure 1.7: Siderophore biosynthesis in A. baumannii. (a) NRPS assembly lines for acinetobactin 

(top) and fimsbactin A (bottom) share a common precursor, 2,3-DHB, and a common phenolate 

oxazoline motif. (b) DAD at 263 nm (black), EIC at m/z 347 (blue), and EIC at m/z 576 (red) 

chromatograms from LCMS analysis of crude A. baumannii ATCC 17978 supernatant after 

acidification, treatment with XAD-7HP resin, and methanol elution. 
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Figure 1.8: Synthetic route to PreAcb34 

 

 

 

Figure 1.9. Structures and m/z values for [M+H]+ molecular ions of fimsbactin A–F.24, 36 Structural 

differences are highlighted in red. 
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Acinetoferrin/Baumannoferrin Biosynthetic Gene Clusters 
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Figure 1.11. AntiSMASH69 analysis of putative fimsbactin A. baumannii producers identified 

from BLASTp analysis of A. baumannii genomes reveals conservation of acinetobactin and 

baumannoferrin biosynthetic gene clusters (BGCs). The acinetoferrin BGC is the reference in the 

antiSMASH database. Acinetoferrin and baumannoferrin BGCs share homology, so comparison 

for all strains was made to the acinetoferrin BGC.70 
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Figure 1.12: Structures of natural siderophores, pyochelin and yersiniabactin, and natural 

siderophore uptake inhibitor, escherichelin50 
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2.1 Preface  
 This chapter was adapted in part with permission from [Bailey, D. C., Bohac, T. J., Shapiro, 

J. A., Giblin, D. E., Wencewicz, T. A. & Gulick, A. M. ACS Biochemistry 47, 6653-6661 (2018)] 

Copyright ©2018 American Chemical Society. DCB obtained crystal structure and processed 

diffraction data with structure determination and refinement. TJB synthesized pre-acinetobactin 

and acinetobactin analogs and performed BauB fluorescent quenching binding studies. JAS 

expressed and purified BauB and provided initial natural acinetobactin. DEG performed all DFT 

calculations. TAW and AMG served as principal investigators and oversaw experimental design. 

2.2 Abstract  
The critical role that iron plays in many biochemical processes has led to an elaborate battle 

between bacterial pathogens and their hosts to acquire and withhold this critical nutrient. 

Exploitation of iron nutritional immunity is being increasingly appreciated as a potential 

antivirulence therapeutic strategy, especially against problematic multidrug resistant Gram-

negative pathogens such as Acinetobacter baumannii. To facilitate iron uptake and promote 

growth, A. baumannii produces a nonribosomally synthesized peptide siderophore called 

acinetobactin. Acinetobactin is unusual in that it is first biosynthesized in an oxazoline form called 

preacinetobactin that spontaneously isomerizes to the final isoxazolidinone acinetobactin. 

Interestingly, both isomers can bind iron and both support growth of A. baumannii. To address 

how the two isomers chelate their ferric cargo and how the complexes are used by A. baumannii, 

structural studies were carried out with the ferric acinetobactin complex and its periplasmic 

siderophore binding protein BauB. Herein, we present the crystal structure of BauB bound to a 

bis-tridentate (Fe3+L2) siderophore complex. Additionally, we present binding studies that show 

multiple variants of acinetobactin bind BauB with no apparent change in affinity. These results are 
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consistent with the structural model that depicts few direct polar interactions between BauB and 

the acinetobactin backbone. This structural and functional characterization of acinetobactin and its 

requisite binding protein BauB provides insight that could be exploited to target this critical iron 

acquisition system and provide a novel approach to treat infections caused by this important 

multidrug resistant pathogen. 

2.3 Introduction   

In Chapter 1 siderophore biosynthesis and transport was discussed. After export of the 

siderophore from the cell and subsequent extracellular iron binding, the ferric siderophore must 

then transported back into the cell to facilitate nutrient acquisition. In Gram-negative bacteria, 

siderophore uptake is initiated by a siderophore-selective TonB outer membrane receptor.1 Once 

transported into the periplasm, the siderophore is bound by a siderophore binding protein (SBP) 

that mediates the transfer of the siderophore to an ATP-binding cassette (ABC) transporter for 

delivery across the inner membrane and into the cytoplasm.2-4 ABC transporters are 

transmembrane proteins that are involved in the import and export of a wide variety of molecules. 

Their cytoplasmic nucleotide binding domains catalyze ATP hydrolysis to drive conformational 

changes of the transmembrane domain that enable translocation of the ligand. ABC transporters 

involved in ligand import interact with a variety of substrate binding proteins that capture the 

ligand in the periplasm. These transfer partners can be soluble periplasmic proteins tethered either 

to the inner membrane through post-translational lipidation or directly to the ABC transporter.2,5  

SBPs belong to a larger family of binding proteins that play many roles in transport and 

uptake of metals, amino acids, and peptides.6,7 These proteins contain two small α/β domains, each 

with a central β-sheet that is surrounded by α-helices. The ligand binding pocket is located between 
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the two globular domains forming a cradle-like structure. In many members of the family, the 

relative orientation of the two domains is flexible, resulting from a hinge motion that accompanies 

substrate binding. A recently updated analysis identifies seven clusters of substrate binding 

proteins, with the structural motif that spans the two α/β domains forming a distinguishing feature 

between different groups. SBPs belong to Cluster A, in which a central αhelix forms the bridge 

between the two smaller domains.7 This relatively rigid helix limits the hinge motion between the 

α/β domains and ligand-free and ligand-bound structures adopt very similar conformations 

regardless of ligand content.2  

The human pathogen Acinetobacter baumannii produces three siderophores. Two 

siderophores, acinetobactin8,9 and fimsbactin,10 are produced through NRPSs, while a third is the 

NIS-produced baumannoferrin.11 Of 15 representative A. baumannii strains present in the 

Virulence Factors in Pathogenic Bacteria database,12 fimsbactin is present in only a single genome 

(strain ATCC17978). Both acinetobactin 1 and baumanoferrin are present in the other strains. A. 

baumannii SDF, a strain that was isolated from a body lice and which shows many unusual 

features,13 lacks all three siderophore clusters. Acinetobactin production has been identified as 

being an important virulence factor in studies involving both insect and murine infection models.14 

Interestingly, acinetobactin is produced in an oxazoline form known as preacinetobactin 2 that can 

spontaneously isomerize into the mature isoxazolidinone (Figure 2.1). The two forms were found 

to be favored at acidic and basic pH, respectively, which suggests the single siderophore has 

evolved for use in multiple environments.15  

Inhibitors of BasE, an NRPS adenylation domain required for acinetobactin biosynthesis, 

have been identified by rational design and empiric screening; crystal structures of the most potent 

inhibitors bound to BasE have been determined.16,17 While showing promising biochemical 
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activity, the compounds failed to function with whole cells, likely due to poor cell permeability. 

An alternative approach to inhibition of siderophore biosynthesis includes targeting ferric-

siderophore uptake and transport. A variety of acinetobactin analogues have been synthesized that 

illustrate that the functional groups required for iron binding are similarly important in the ability 

to support A. baumannii growth in low iron conditions.18 Additionally, oxidation of the oxazoline 

ring of preacinetobactin to the oxazole results in an analogue that is able to compete in a dose-

dependent manner with the ability of acinetobactin to support of A. baumannii growth in low iron 

conditions.19 To extend these ongoing studies, we describe herein the liganded structure of the 

siderophore binding protein BauB from the acinetobactin uptake system. The binding pocket of 

BauB is populated by a bis-tridentate ferric acinetobactin complex [(Acb)2Fe]− that is stabilized 

by iron(III)-coordinating bonds with catechol oxygen and imidazole nitrogen atoms from 

acinetobactin. This structural model is further supported by functional characterization of 

BauB/acinetobactin binding, including dissociation constants for BauB with apo- and holo- 

acinetobactin, as well as a panel of acinetobactin structural analogues that probe the key 

recognition elements required for binding. 

2.4 Results and Discussion  

Structure Determination of BauB.  

The structure of BauB was determined by molecular replacement using YclQ, the 

siderophore binding protein from petrobactin binding in Bacillus subtilis.20 The model contains 

two chains in the asymmetric unit, each of which contains residues 39−322, with a single 

disordered loop. The two chains do not appear to form a dimeric structure, consistent with the 

monomeric gel filtration results. In chain A, residues 236−238 are disordered, while in chain B, 

residues 236−240 are disordered. Additionally, beyond the C-terminal Gln322 residues, each chain 
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contains density for three residues, Leu323-Glu324-His325, derived from the Histag used for 

purification. In both chains, the N-terminal 17 residues are also disordered, with Glu39 being the 

first observed residue. The two chains superimpose with an RMS displacement of 0.15 Å over 279 

residues (Figure 2.2).  

BauB adopts the classic two domain conformation seen previously with SBPs of the Cluster 

A family of substrate binding proteins.7 The two globular α/β domains are bridged by a central 

helix formed by residues Glu171-Thr192 (Figure 2.3). Use of the DALI structural similarity server 

identified multiple homologues within the substrate binding protein family.21 The closest 

homologues, with sequence identities above 25%, all show RMS displacements of 1.9−3.0 Å over 

Cα positions (Table 2.1, Figure 2.4).  

Active Site Contents and Structure of Acinetobactin2Fe3+ Complex.  

The siderophore binding pocket of BauB shows clear density for the binding of a complex 

between two molecules of acinetobactin and a single ferric ion. Each acinetobactin molecule 

donates both catechol oxygen atoms and one nitrogen atom of the imidazole moiety to form an 

octahedral arrangement around the central ferric ion. The electron density unambiguously 

correlates with the molecular structure of the acinetobactin isomer (provided in the crystallization 

cocktail) and not preacinetobactin (which was not provided). This is consistent with the 

irreversible nature of the preacinetobactin to acinetobactin isomerization (Figure 2.5).  

One molecule of acinetobactin is more deeply buried in the substrate binding pocket, while 

the second is more surface exposed (Figure 2.6). Specifically, for the buried molecule, only the 

2,3-dihydroxybenzoate (DHB) moiety is solvent accessible while the histamine and 

isoxazolidinone groups are positioned below the ferric ion against the surface of BauB. In contrast, 
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the second acinetobactin molecule lies on the surface of the protein, with its peptide backbone 

exposed to solvent. We note that while the density for both molecules is unequivocal in both 

chains, the density is marginally more robust for the buried molecule – suggesting that there is 

perhaps minor flexibility in the binding position of the exposed acinetobactin molecule.  

There are no direct polar interactions between the more buried acinetobactin molecule and 

BauB. The DHB carbonyl oxygen interacts via water molecules with the side chain of Asp83 and 

the main chain amides of Ile104 and Val105. The methyl group from the heterocycle projects into 

a hydrophobic pocket formed byTyr84, Val264, and Tyr301. In contrast, the more exposed 

acinetobactin molecule makes two polar interactions with the protein. The isoxazolidinone 

carbonyl oxygen interacts with the side chain of Arg217 through a water molecule, and a hydrogen 

bond is formed between one catechol oxygen and the side chain of Tyr301. The bound holo-

siderophore is presumed to exist as the monoanion [(Acb)2Fe]−, possibly charge stabilized by a 

cationic Arg217, with four catecholate oxygens balanced by iron(III) and neutral donation of two 

imidazole nitrogens to complete the octahedral metal coordination sphere. Interestingly, in both 

chains, the side chain of Arg282 from a symmetry-related molecule is directed into the binding 

pocket and interacts with one of the catechol oxygens of the buried acinetobactin molecule to 

further stabilize the [(Acb)2Fe]− monoanion. It is also noteworthy that the contribution of the N-

terminal globular domain is largely hydrophobic, while the residues from the C-terminal domain 

are much more polar in nature. In particular, Arg217, Arg261, Tyr301, and potentially His239 all 

reside on the C-terminal domain.  

Conformational flexibility and electrostatics are both important factors contributing to the 

high-affinity association of siderophore binding proteins with substrate metal complexes, as well 

as interfacing with membrane-embedded permeases that gate and drive the influx of substrates to 
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the cytoplasm. Based on the ability of A. baumannii to utilize both isomeric forms of acinetobactin, 

1 and 2, a high degree of substrate plasticity for BauB is anticipated.15 In the homologous SBP 

CeuE from Campylobacter jejuni, the side chains of His227 and Tyr288, the homologue of BauB 

His239 and Tyr301, form direct interactions with the ferric ion in complexes with catecholbased 

tetradentate ligands derived from enterobactin fragments that do not complete the octahedral 

coordination (Figure 2.7).22,23 The conservation of His239 and Tyr301 suggests that BauB is 

poised to capture ferric complexes with alternate siderophore ligands that do not completely 

coordinate the central ion, perhaps endowing A. baumannii with the ability to interact with other 

siderophores that it encounters in the environment. Of note, His239 in BauB is positioned on a 

poorly ordered loop, suggesting an ability to adopt distinct conformations in the presence of 

different ligands (Figure 2.7).  

Siderophore binding proteins with strongly anionic or cationic binding pockets are often 

found to counterbalance the net charge of cognate siderophore-iron complexes (anionic 

staphyloferrin A-Fe, cationic HtsA; anionic staphyloferrin B−Fe, cationic SirA).24,25 The base of 

the Bacillus subtilis FeuA SBP, which has been structurally characterized bound to ferric 

enterobactin, shows a strikingly basic binding pocket with two lysine and two arginine side chains 

directed into the binding pocket.26 The 1:1 tricatecholate enterobactin-Fe complex presumably 

binds as the trianion [EntFe]3−, charge stabilized by protonated Lys and Arg residues lining the 

FeuA siderophore binding pocket. These residues are not conserved in BauB, as has also been 

observed with other catechol binding SBPs.26 In contrast, the base of the pocket in BauB is mostly 

hydrophobic. In particular, Tyr84 and Pro124 in BauB are replaced by lysine residues in FeuA, 

while Leu203 is replaced by an arginine.  
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Like BauB, the siderophore binding pocket of FhuD2 does not exhibit the basic nature of 

FeuA.27,28 However, the pockets of BauB and FhuD2 are quite different in composition with BauB 

being much more hydrophobic. The pocket of FhuD2 is polar, with multiple tyrosine, threonine, 

and tryptophan residues donating hydrogen bonding capabilities to interact with polar 

hydroxamate ligands such as ferrioxamine B. These polar residues are distributed across the 

binding pocket from both the N- and C-terminal globular domains.  

DFT Calculations of the Acinetobactin2Fe3+ Complex.  

We next explored the ligand complexes using density functional theory (DFT) calculations 

to assess the stability of the observed 2:1 complex with other potential isomers. The metal 

coordination mode and ligand/metal stoichiometry observed in the BauB-bound Acb2Fe complex 

is consistent with reported solution-phase fluorescence and optical absorbance spectroscopic 

titrations.15,18,19 The presence of stable metal coordinate bonds through two bidentate catecholates 

is consistent with the broad metal−ligand charge transfer bands at ∼570 nm in the optical 

absorbance spectrum.15,18,19 The cis-[Acb2Fe]−  isomeric form present in the BauB substrate 

binding site represents one of many possible geometric and optical isomeric forms of the metal 

complex invoking metal coordinate bonds with the catecholate and imidazole moieties. The 

distorted octahedron formed at the iron(III) coordination sphere is isomeric with MLa
4Lb

2 

octahedral complexes, where La represents the catecholate oxygens and Lb represents the 

imidazole nitrogens. For MLa
4Lb

2 complexes, two isomers, cis and trans, are possible. The cis- 

[FeO4N2] − orientation is accommodated by the BauB substrate binding pocket; thus, we will refer 

to the holo-siderophore as cis- [Acb2Fe]−  as the apparent BauB substrate.  

The siderophore, anguibactin, produced by the fish pathogen Vibrio anguillarum is 

structurally similar the preacinetobactin (2) isomeric form with the methyloxazoline replaced by a 
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thiazoline heterocycle. Anguibactin has been crystallized as the gallium(III) chelate in a 

Ga2Anguibactin2 stoichimetry.29 The Ga2Anguibactin2 structure is bioctahedral with bridging 

methanols in the Ga coordination sphere. There are many potential stoichiometric, geometric, and 

optical isomers for the acinetobactin-Fe complex, including structures related to the 

Ga2Anguibactin2 structure that may be present in solution. It is likely that BauB selectively 

recognizes the cis-[Acb2Fe]− isomeric form. We modeled this isomeric form and others using DFT 

calculations and found that structures closely related to the cis-[Acb2Fe]− are predicted to be stable 

in the gas phase (Figures 2.8, 2.9). Even if cis-[Acb2Fe]− is not prevalent in solution, it is possible 

that upon BauB binding the coordination mode is shifted to the experimentally observed cis-

[Acb2Fe]−. Such protein-induced shifting of metal coordination mode has been observed for the 

binding of holo-vibrobactin by human siderocalin, where the phenolate-oxazoline bidentate ligand 

coordination mode predominates in solution, while the bidentate catecholate mode is favored in 

the siderocalin substrate binding pocket.30 Binding of apo-siderophores by periplasmic 

siderophore binding proteins and siderocalins has also been observed. In the case of human 

siderocalin, the substrate binding pocket can serve as a template for small dietary catechols to 

preorganize the ligands for iron sequestration as a strategy for nutritional immunity and possibly 

iron acquisition.31 

 Binding Studies of Acinetobactin2Fe3+ to BauB. 

  To investigate the substrate binding specificity of BauB in solution, we performed intrinsic 

Trp fluorescence quenching studies in the presence of apo- and holo-acinetobactin. Both forms of 

the siderophore were bound by BauB with nanomolar affinity, with a slight preference for the holo-

siderophore (apparent Kd = 160 ± 80 nM) over the apo-siderophore (apparent Kd = 300 ± 100 nM) 

(Table 2.2). We probed key structural features of acinetobactin required for molecular recognition 
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by BauB, including the site and degree of hydroxylation on the phenyl ring and the presence of the 

imidazole heterocycle.18  

BauB Binds Both the apo and holo Forms of Acinetobactin.  

We therefore chose to use only apo-siderophore variants for comparison since some 

structural modifications result in loss of iron chelation. We also note that we have obtained 

diffraction quality crystals of BauB from crystals that were grown in the presence of apo-

acinetobactin. We were able to fully resolve the structure, but electron density of the substrate 

binding pocket did not show full occupancy of an acinetobactin molecule. A peak of ambiguous 

electron density was observed in the binding pocket that could fit the central isoxazolidinone ring 

with no density for the flanking DHB and histamine groups. Whether this represents limited 

occupancy or movement of the aromatic groups in the absence of iron is unclear but it is intriguing 

to consider the possibility that the apo-acinetobactin core is bound flexibly with iron binding 

subsequently ordering the histamine and DHB rings.  

All of the siderophores caused dose-dependent fluorescence quenching and curve fitting 

provided apparent Kd values ranging from 160−520 nM, with no statistical significance between 

analogues (Table 2.2, Figure 2.10). It appears that BauB can bind promiscuously to the 

acinetobactin scaffold, which is consistent with related periplasmic siderophore binding proteins.1-

4 Presumably, the outer membrane receptor BauA imparts selectivity for acinetobactin import, 

mitigating the need for a second level of high specificity filtering in the periplasm (Figure 2.11). 

Although compounds 1, 1-Fe, and 3−9 all appear to bind BauB, it is less clear if they share the 

same binding mode or if all binding modes will lead to influx across the cytoplasmic membrane. 

The only strong correlation observed for the acinetobactin analogues is that the ability to form a 

stable complex with iron(III) is required for A. baumannii utilization (Table 2.2).18 
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2.5 Outlook and Conclusions  

We report here the structural and functional analysis of BauB, the SBP from the 

acinetobactin uptake pathway in A. baumannii. Our studies show that BauB adopts the typical 

Class A substrate binding fold, with a central α-helix spanning the smaller N- and C-terminal 

domains. The ligand is bound in a central pocket between the two domains that is contributed by 

mostly hydrophobic residues. The structure of BauB illustrates an unusual [Acb2Fe]− complex, in 

which two acinetobactin molecules each provide two catechol oxygens and an imidazole nitrogen 

to coordinate the central iron. To our knowledge, this is the first observation of a 2:1 complex of 

a natural ligand and iron that has been observed in a crystal structure of a siderophore binding 

protein. These studies continue our ongoing effort to functionally characterize the iron acquisition 

pathways of A. baumannii. The residues of BauB that interact with the ligand include hydrophobic 

residues that are distributed in sequence across the length of the protein and include few direct 

interactions with the ligand. The lack of direct interactions enables multiple analogues of 

acinetobactin to bind BauB with roughly similar affinities and may relate to the ability of bacteria 

to tune their iron acquisition systems to enable utilization of siderophores produced by other 

species. The broad substrate binding capability of BauB presents the opportunity for exploiting the 

acinetobactin transport pathway to develop siderophore-based therapeutics, including 

antivirulence agents that inhibit the acinetobactin pathway and acinetobactin conjugates including 

imaging probes for infection diagnostics and antibiotic conjugates for targeted anti-A. baumannii 

therapeutic agents. As noted, we have collected data on the structure of BauB that was crystallized 

in the presence of acinetobactin in the absence of iron that shows either binding to core of the 

siderophore or incomplete occupancy. Because of the comparable affinities of BauB for the apo- 

and holo- forms, we favor the former scenario, in which the apo-ligand binds to the hydrophobic 
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base of the BauB pocket and the chelating groups adopt a dynamic configuration in the absence of 

iron. This is further supported by the similar affinity of BauB toward the acinetobactin analogues 

that we tested. We have additionally attempted to crystallize BauB with the oxazoline pre-Acb but 

have not yet been able to grow diffraction quality crystals. Continued efforts to crystallize BauB 

with preAcb or additional acinetobactin variants may provide further clues to the features that 

enable binding to BauB. While the histamine and isoxazolidinone are buried in one of the two 

acinetobactin molecules, the DHB moieties are exposed in both molecules within the [Acb2Fe]− 

complex and may provide a locus for attachment of relevant functional groups to achieve these 

alternate purposes. 

2.6 Materials and Methods  
Cloning, Expression, and Purification.  

Multiple protein constructs were designed for use in the structural and functional studies. 

The 969-bp bauB gene from Acinetobacter baumannii (Genbank Accession no. AAT52185) was 

first subcloned into a pET24b expression vector using restriction enzyme-based cloning. 

Expression of the full-length protein resulted in most of the protein purifying as soluble aggregate, 

with a small proportion isolated as a folded protein. The soluble protein migrated on analytical gel 

filtration with an elution volume consistent with a monomer (Figure 2.12). Analysis of the 

fulllength protein construct (1−322) revealed a putative signal peptide (1−22) at the N-terminus 

directing trafficking to the periplasm.32,33  

A second expression construct was designed without the putative signal peptide that 

encoded the mature protein. Following the starting Met residue, the final expression construct 

contained BauB residues 23−322 and a C-terminal 6 × His tag (···LEHHHHHH). Of note, Cys23 

was predicted to be a N-terminal lipidation site34,35 and the presence of Asp at position 24 suggests 
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that, upon cleavage of the signal peptide in the periplasm, the protein is natively retained at the 

periplasmic surface of the cytoplasmic membrane according to the “D+2 Rule”.36,37 

E. coli BL21(DE3) was transformed with the expression plasmid for protein production. 

Cells were grown to an OD600 of 0.6−0.8 at 37 °C (250 rpm) and induced to express BauB with 

the addition of 500 μM IPTG. Following induction, the cells were incubated at 16 °C overnight 

(≈18 h) before being harvested by centrifugation at 6 × 103 g at 4 °C for 15 min. The cell pellet 

was flash frozen in liquid N2 and stored at −80 °C.  

The frozen cell pellet (≈10 g) was resuspended in 100 mL of lysis buffer (50 mM Tris, 300 

mM NaCl, 0.2 mM TCEP, 5% glycerol, 20 mM imidazole, pH 8.0) containing protease inhibitor 

cocktail, DNase (10 μg/mL), and lysozyme (1 mg/ mL) and incubated at 4 °C for 30 min. Cell 

lysis was further ensured by sonication (5 × 30 s cycles). The cell slurry was separated by 

ultracentrifugation at 185 × 103 g for 40 min at 4 °C. The supernatant was further clarified via 

filtration over a 0.45 μm polysulfone membrane. The clarified supernatant was subjected to 

immobilized metal affinity chromatography (IMAC) by passing it over two 5 mL Ni2+-NTA 

columns in series. Bound proteins were eluted by passing lysis buffer plus 300 mM imidazole over 

the columns. To remove imidazole, the protein was dialyzed (12 kDa MWCO) overnight at 4 °C 

in 50 mM Tris, 300 mM NaCl, 0.2 mM TCEP, 0.5 mM EDTA, 5% glycerol, pH 8.0. The dialyzed 

protein sample was concentrated using a centrifugal filter (10 kDa MWCO) before carrying out 

preparative size exclusion chromatography (SEC). Protein was eluted over the SEC column 

(HiLoad 16/60 Superdex 200, GE Healthcare) using a buffer of 50 mM Tris, 150 mM NaCl, 0.2 

mM TCEP, pH 8.0 at 1 mL/min (Figure 2.12). The desired fractions containing pure BauB as 

indicated by SDS-PAGE were combined, concentrated to ≈60 mg/mL using a 10 kDa MWCO 

centrifugal filter, flash frozen in liquid N2, and stored at −80 °C.  
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An N-terminally tagged protein, lacking the signal sequence, was also produced and used 

in binding studies. N-His6-BauB was expressed from a pET28bTEV plasmid in E. coli BL21 

(DE3). Briefly, E. coli BL21 (DE3) transformed with the BauB expression plasmid were grown in 

Terrific Broth at 37 °C in a 3 L baffled flask, in the presence of 50 μM kanamycin to an OD600 of 

∼0.5. The culture flask was cooled to 20 °C, and BauB expression was induced by the addition of 

0.5 mM IPTG (final concentration). Cells were grown overnight (∼12 h) at 20 °C. Cells were 

harvested via centrifugation at 4 °C for 30 min (all remaining steps were carried out at 4 °C). Cells 

were washed with lysis buffer (50 mM potassium phosphate pH 8.0, 500 mM NaCl, 5 mM BME, 

20 mM imidazole, 10% glycerol) and flash frozen in liquid N2 (40 mL total volume). The frozen 

cell pellet was thawed and lysed by two passes through an Emulsiflex C5 (Avestin). The lysate 

was clarified by ultracentrifugation at 50000g for 35 min. The supernatant was passed through 

NiNTA resin and eluted with 300 mM imidazole in lysis buffer. Elution fractions were analyzed 

by SDS-PAGE with visualization by Coomassie blue staining. Fractions containing pure N-His6- 

BauB were combined, dialyzed (50 mM potassium phosphate pH 8.0, 150 mM NaCl, 1 mM DTT, 

5% glycerol), and concentrated via centrifugal filtration. Protein purity was analyzed by SDS-

PAGE with visualization by Coomassie blue staining. Protein identities were confirmed by ESI-

MS. Purified protein was flash frozen in liquid N2 at 180 μM and stored at −80 °C. The final 

protein used in the binding studies contained the His6 tag and TEV cleavage site upstream of C23 

from the BauB sequence.  

Crystallization and X-ray Diffraction Data Collection.  

Two protein crystals were used to collect a complete data set for structure determination. 

Crystallization and X-ray data collection parameters for both data sets are summarized in Table 

2.3. Briefly, BauB was exchanged into a minimal crystallization buffer, and ferric acinetobactin 
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(Acb2Fe) in DMSO was added and incubated on ice for 1 h. Acb was isolated from A. baumannii 

ATCC 17978 and purified by RP-C18 prep HPLC as described previously.15 Acb2Fe was prepared 

by treating Acb with Fe(acac)3 as described previously.15 The sample was briefly centrifuged to 

pellet any precipitate before being crystallized by hanging-drop vapor diffusion. Initial 

crystallization conditions were identified using an in-house 120-condition screen, in which BauB 

formed thin needle/platelike crystals in cocktail conditions containing medium to high molecular 

weight polyethylene glycol (PEG 4K, 8K, or PEG MME 5K) over a relatively wide pH (6.0−9.0) 

range. Crystals were flash frozen in liquid N2 and shipped to synchrotron beamlines for remote 

diffraction data collection.  

Diffraction Data Processing, Structure Determination, and Refinement.  

BauB crystallized in a monoclinic space group P21 with β = 90°. Careful analysis showed 

that each data set was not twinned nor could higher symmetry be imposed on the data. Scaling the 

data in the orthorhombic space group P222 resulted in Rmerge values of 0.25, compared to 0.09 

determined with the monoclinic space group. The structure of ferric Acb bound BauB was initially 

solved by molecular replacement to 1.9 Å resolution employing Data Set 1 (Table 2.3) using the 

protein atoms of YclQ35 (PDB 3GFV, 33% sequence identical) as the search model. Due to the 

thin needle/plate-like morphology of the crystals, it was difficult to achieve a high completeness 

from a single crystal despite collecting images over an oscillation range of 360°. We therefore 

merged the data from the initial crystal with data from a second crystal. To do this, the two 

integrated reflection files from MOSFLM were scaled together with AIMLESS of the CCP4 

software suite. Although this second data set was weaker in overall intensity, the increase in 

completeness was viewed as a reasonable compromise with the resulting poorer merging statistics 

from combining the two data sets. Processing statistics for the individual (Table 2.3) and combined 
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(Table 2.4) data sets are provided. The merged data set was then used to refine the structure of 

BauB complexed with Acb2Fe. All data processing and merging was carried out using iMosflm,38 

molecular replacement employing Phaser,39 automated model building using 

PHENIX.Autobuild,40 manual model building and refinement utilizing Coot,41 and automated 

refinement employing PHENIX.Refine.42 Structure-based alignments were performed with 

PROMALS 3d.43 The atomic coordinates and structure factors for BauB complexed with ferric 

Acb have been deposited in the PDB (6MFL).  

BauB Binding Studies.  

Acinetobactin (1) and analogues (3−9) were prepared as described previously.18 A stock 

solution of N-His6-BauB, thawed on ice, was prepared at 400 nM in assay buffer (25 mM Tris-

HCl, 8 g/L NaCl, 0.2 g/L KCl, pH 7.4). For each experiment, 300 μL of the BauB stock solution 

was transferred to a fluorescence cuvette (HellmaAnalytics High Precision Cell cuvette made of 

Quartz SUPRASIL; light path 10 × 2 mm) in the presence of substrate (compounds 1, 1-Fe, and 

3−9) at variable concentrations ranging from 100−1200 nM. An emission spectrum was taken 

using a PerkinElmer LS 55 Luminescence Spectrometer (slit width 10 nm; scan speed 400 nm/min) 

at 300−400 nm using an excitation wavelength of 280 nm. Fluorescence intensity at 320 nm versus 

substrate concentration (nM) was plotted. The apparent Kd was calculated by nonlinear regression 

using a one binding site model in GraphPad Prism v7.0b (Figure 2.10). All experiments were 

performed in duplicate as independent trials.  

DFT Calculations.  

For starting geometry of the bimetallic complexes, we chose the crystal structure of the 

acinetobactin2FeIII(S = 5/2) complex bound to BauB. Conformer spaces for complexes were 
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explored by Monte Carlo/ MMFF molecular mechanics/dynamics, and first step of optimization 

was performed by using the PM3d semiempirical algorithm (Spartan Linux v10, WaveFunction, 

Inc.). Using either as an input, we employed DFT (density functional theory, Gaussian 09, 

Gaussian Inc.) for calculations by using the PBE0 hybrid functional (PBE1PBE in Gaussian 

parlance) with basis sets Def2-SVP and Def2-TZVP. Minima were optimized at the level 

PBE0/Def2-SVP, and single-point energies were calculated at level PBE0/Def2-TZVP, with 

scaled thermal-energy corrections from scaling factors for B3LYP/6-31G(d,p).44 Solvent-based 

single-point energies were calculated at the same level by using the CPCM polarizable conductor 

calculation model for water and using the Universal Force Field for atomic radii.45 DFT was 

selected for computational efficiency and integrity.46,47 Functional and basis sets were chosen for 

use with the ferric complexes.48-50 
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2.7 Figures and Tables   

 

Figure 2.1. Chemical structures of acinetobactin (1) and pre-acinetobactin (2) from A. 

baumannii. 

 

Figure 2.2. Overlay of two BauB chains (chain A, pink; chain B, green) superimposed with 

RMS displacement of 0.15 Å over 279 residues.  
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Figure 2.3. Ribbon representation of BauB bound to the Acb2•Fe complex. (N-domain, yellow; 

C-domain pink; α helix green). Two views are shown, approximately 90° apart rotated around 

the horizontal axis. The single gap in the protein between residues 235 and 239 is indicated with 

the dashed line. 
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PDB % ID RMS Disp. Residues Aligned Name 
3GFV 36 2.0 276/286 B. subtilis YclQ  
3TEF 32 2.1 274/279 V. cholerae VctP V. cholera 
5AD1 29 2.2 272/290 C. jejuni CeuE 
4JCC 29 1.9 270/284 S. pneumoniae PiuA 
4MX8 26 2.3 272/302 X. cellulosilytica Periplasmic BP 
3MWF 26 3.1 258/292 S. aureus SirA 
3TNY 26 3.2 263/280 B. cereus YfiY 
2WHY 21 3.2 266/283 B. subtilis FeuA 
4FNA 21 3.2 252/278 S. aureus FhuD2 

 

The top hits the search for structural homologs were filtered to remove PDB coordinates for 

identical proteins with multiple ligands. FeuA and FhuD2 were not among the most highly 

homologous but are included for comparison with the discussion in the main text. 

Table 2.1. Structural homologs of BauB   



58 
 

 

Abaum_BauB                   MNWKKKYGGVALIIAAAVTLQACDQKVADTTQASQKLAEPITVKHAL------------G   48 

3MWF SaSirA                     MNKVIKMLVVTLAFLLVLAGCSGNSNKQSSDRKDKETTSIKHAM------------G   45 

3TEF VcVctF      MVLIIVRTLLMRISIKMIPLAYLNHLWKEHMKSRIHCAALGLLAAFAAQAETVTIEHRL------------G   60 

3GFV BsYclQ                   MRSMKKFALLFIALVTAVVISACGNQSTSSKGSDTKKEQITVKHQL------------D   47 

4MX8 XcPBP                  MSRTRPIARASMLAVLALTLAACAPSSAGTADDSAETTPATASYTWDRNTATEEGADPVYE   61 

4JCC SpPiuA                 MKTSLKLYFTALVASFLLLLGACSTNSSTSQTETSSSAPTEVTIKSSL------------D   49 

5AD1 CjCeuE    MKKSLVFAFFAFFLSLILTACNSNSNENNASSTTKTNTATVKVLPISMSDEGDSFLVKDSL------------G   62 

2WHY BsFeuA                   MKKISLTLLILLLALTAAACGSKNESTASKASGTASEKKKKIEYLD------------K   46 

4FNA SaFhuD2                           MKKLLLPLIIMLLVLAACGNQGKKNNKAETKSYKMDD------------G   38 

 

Abaum_BauB     --TTVIDHLPQR-VAVLDM-NE-ADFLDQLNVP--IMGM-PKDY----VP-HFLEKYKKDAQI-QDLGA-IVQ-  106 

3MWF SaSirA    --TTEIKGKPKRVVVTLYQ-GA-TDVAVSLGVKK-PVGA-VESWTQKPKFEEYIKNDL--KDT-KIVGQQEPA-  105 

3TEF VcVctF    --KTTLEQKPQR-VVVIGV-GA-LDAIDSFGIE--PVAV-SKFDG---TP-DYLAKYK-SDKY-PSAGS-LFE-  118 

3GFV BsYclQ    KNGTKVPKNPKK-VVVFDF-GS-LDTLDKLGLDDIVAGL-PKQV----LP-KYLSKFK-DDKY-ADVGS-LKE-  108 

4MX8 XcPBP     ETTVEVPVDPQR-IVVFDM-AA-LDTIGALGGE--IAGA-PLDS----VP-DYLEEYL-ADDA-FNAGT-LFE-  120 

4JCC SpPiuA    -EVVKLSKVPEEKIVTFDL-GA-ADTIRALGFAKNIVGMMPTKTT---VP-TYLKDLV-GTVKKKNVGSMMKEP  108 

5AD1 CjCeuE    -ENKKIPKNPSK-VVILDLLGI-LDTFDALKLNDKVVGV-PAKN----LPKYYLQQQF--KNK-PSVGG-VQQ-  119 

2WHY BsFeuA    --TYEVTVPTDK-IAITGSVESMMEDAKLLDVH--PQGA-ISFSGK--FP-DMFKDIT--DKA-EPTGE-KME-  105 

4FNA SaFhuD2   -KTVDIPKDPKR-IAVVAP-TY-AGGLKKLGAN--IVAV-NQQV---DQS-KVLKDKFKGV---TKIGD-----   93 

 

Abaum_BauB     PNMERIYALKPD-LILMTP-LHVNQYQE-LSKIAPTIHYDINFNNSESNHIGLVKDHM-MTLG-KIFN--KED-  172 

3MWF SaSirA    PNLEEISKLKPD-LIVASKVRNEKVYDQQLSKIAPTVSSTDTV--------FKFKDTT-KLMG-KALG--KEK-  163 

3TEF VcVctF    PDFETIYTQKPD-LIVIGP-RASKSYDE-LSKIAPTIVFAAEA---DQGYWESTQQQW-RNLG-KVFA--IEP-  181 

3GFV BsYclQ    PDFDKVAELDPD-LIIISA-RQSESYKE-FSKIAPTIYLGVDTA----KYMESFKSDA-ETIG-KIFD--KED-  170 

4MX8 XcPBP     ADLIAIEAQQPD-LIVVGG-RSSGLWAD-LNEIAPTIDLSLRG-----SYLDTLEQNT-TFLG-KVLG--AEA-  183 

4JCC SpPiuA    PDLEAIAALEPDDLIIASP-RTQKFVDKFKKEIAPTVLFQASKD----DYWTSTKANIEESLA-SAFGETGTQK  171 

5AD1 CjCeuE    VDFEAINALKPD-LIIISG-RQSKFYDK-LKEIAPTLFVGLDNA----NFLSSFENNV-LSVAKKLYG--LEK-  186 

2WHY BsFeuA    PNIEKILEMKPD-VILASTKFPEKTLQK-ISTAGTTIPVSHISS--------NWKENMMMLLA-QLTG--KEK-  163 

4FNA SaFhuD2   GDVEKVAKEKPD-LIIVYS--TDKDIKK-YQKVAPTVVVDYNKH--------KYLEQQ-EMLG-KIVG--KED-  150 

 

Abaum_BauB     LARQKVSELDE-QVK-QVQAVTA-----NRPERALVVL--HNN-GAFSNFGIQ------S-RYGF-IFNNAFGV  227 

3MWF SaSirA    EAEDLLKKYDD-KVA-AFQKDAKAKYKDAWPLKASVVN--FRA-DHTRIYAG-------G-YAGE-IL-NDLGF  222 

3TEF VcVctF    AVEAKIEQVDA-QFK-SIMQYNQ-----QHKSDAMLVM--SSG-GNLTTFGAN------S-RFSS-VY-KDFGF  236 

3GFV BsYclQ    KVKDELANIDHHSIADDVKKTAE-----KLNKNGLVIM--AND-GKISAFGPK------S-RYGL-IH-DVFGV  225 

4MX8 XcPBP     EAESVLAELEA-GIA-EAKAAVT-----EASGTGLGIM--VSG-GQLSALSPNTGNDPRGARGGL-IY-DVFGV  243 

4JCC SpPiuA    KAKEELAKLDE-SIQ-EVATKNE-----SSDKKALAIL--LNE-GKMAAFGAK------SRFFSF-LY-QTLKF  226 

5AD1 CjCeuE    EALEKISDIKN-EIE-KAKSIV-----DEDKKKALIILLTNSSNNKISAFGPQ------S-RFGI-IH-DVLGI  235 
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2WHY BsFeuA    KAKKIIADYEQ-DLK-ETKTKIN---DKAKDSKALVIR--IRQ-GNIYIYPEQ------V-YFNSTLY-GDLGL  222 

4FNA SaFhuD2   KVKAWKKDWEE-TTA-KDGKEIKKAI--GQDATVSLFD--EFD-KKLYTYGDN------WGRGGEVLY-QAFGL  210 

 

Abaum_BauB     KPASG-----VVDTSLHGQPISSE-FIIKKADPDILYIVDRTAVMEH-RPNINAASVE-NPL--LRQTKAWKNG  290 

3MWF SaSirA    KRNKDLQKQVDNGKD-IIQLTSKE-SIPLMN-ADHIFVVKSDPNAKD-AALVKKTESEWTSSKEWKNLDAVKNN  292 

3TEF VcVctF    SETVPV----SKESS-HGDLISFE-YIREHN-PKTLLVVDRDKVVTK-GETNIRQTFE-NDL--VKATTAYKNG  299 

3GFV BsYclQ    APADQN----IKASTHHGQSVSYE-YISKTN-PDYLFVIDRGTAIGE--TSSTKQVVE-NDY--VKNVNAVKNG  287 

4MX8 XcPBP     QPVLED----IKAA-THGEPISFE-FLLEHD-PQWLWVVDRDAATGAEGAQAAKVVLD-NEI--VNRTTAATED  307 

4JCC SpPiuA    KPTDTK-----FEDSRHGQEVSFESSVKEIN-PDILFVINRTLAIGGDNSSSNDGVLE-NAL--IAETPAAKNG  289 

5AD1 CjCeuE    NAVDEN----IKVGT-HGKSINSE-FILEKNNPDYIFVVDRNVILGN-KERAQQGILD-NAL--VAKTKAAQNK  297 

2WHY BsFeuA    KAPNEVKA---AKAQ-ELLISLLEKLLSEMN-PDHIFVQFSD-DENADKPDALKDLEK-NPI--WKSLKAVKED  284 

4FNA SaFhuD2   KMQPEQQK--LTAKA-GWAEVKQE-EIEKYA-GDYIVSTSEGK--------PTPGYES-TNM--WKNLKATKEG  268 

 

Abaum_BauB     RVI-FVDADAWYTT-AASPTSL--KIVMED-VKKGYQ         322 

3MWF SaSirA    QVSDDLDEITWNLA-GGYKSSS--LKLIDDDLYEKLNNIEKQSK  330 

3TEF VcVctF    HIA-YLDVNAWYIA-ISGVKAT--EQMVAD-MKASVGMQ       333 

3GFV BsYclQ    HVI-YLDSATWYLS-GGGLESMT-QQMIKE-VKDGLEK        320 

4MX8 XcPBP     HVL-YLNPTAWYIVFFGGVEETT-RIMIDD-VLQ-VAAR       340 

4JCC SpPiuA    KKIIQLTPDLWYLS-GGGLESTKKLMMIED-IQKALK         321 

5AD1 CjCeuE    KII-YLDPEYWYLASGNGLESL--KTMILE-IKNAVK         330 

2WHY BsFeuA    HVY-VNSVDPLAQ--GGTAWSKV-VRFLKA-AAEKLTQNKLTQN  317 

4FNA SaFhuD2   HIV-KVDAGTYW---YNDPYTL--DFMRKD-LKEKLIKAAK     302 

 

Figure 2.4. PROMALS3d structure-based alignment of BauB with homologous siderophore 

binding proteins. Sequences are identified by PDB code as described in Table 2.1. Conserved 

sequences are identified in red, while homologous residues are identified in blue. His239 and 

Tyr301 of BauB are highlighted in green. BauB residues in Figure 2.6B are highlighted in 

yellow. Disordered residues are shown in orange. 
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Figure 2.5. Modeling of acinetobactin2Fe structure into the electron density in the BauB 

substrate binding pocket. Stereorepresentation of the final model of ligands bound to BauB. Omit 

map electron density, contoured at 2.5 σ, was calculated with coefficients of the form Fo-Fc 

using the final model from which the ligands were removed and subjected to a round of 

simulated annealing refinement.  
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Figure 2.6. Siderophore binding pocket in BauB. (A) The Acb2Fe ligand is shown with buried 

(green) and exposed (yellow) acinetobactin molecules with a surface representation of BauB. (B) 

Stereorepresentation of the residues that form the binding pocket. 
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Figure 2.7. Overlay of BauB and CeuE. A. Ribbon diagram showing BauB (6MFL, cyan) and 

CeuE (5ADW, pink). B. Stereorepresentation of the siderophore binding pocket of BauB bound 

to [Acb2:Fe]-1 anion superimposed with CeuE bound to bis-(2,3-dihydroxybenzoyl-L-Ser). 

His227 and Tyr288 from CeuE directly coordinate the ferric ion. Tyr301 of BauB interacts with 

a catechol oxygen of the more exposed acinetobactin molecule. The side chain of His239 in 

BauB is adjacent to a disordered loop and no density is present for the side chain.  
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Figure 2.8. Structures of (Acb)2Fe from (A) experimental fitting into the electron density of the 

BauB substrate binding pocket and (B) DFT calculated lowest energy structure for the 

monoanionic [(Acb)2Fe]- metal complex (PBE0/Def2-SVP; PBE0/Def2-TZVP; PBE1PBE = 

PBE0 in Gaussian). (C) Overlay of (Acb)2Fe structures from experimental (grey) and DFT 

(salmon) modeling. 

A. 

B. 

C. 
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Figure 2.9. Structural representations of the experimentally observed cis-[Acb2Fe]- geometric 

and optical isomer. The cis-[Acb2Fe]- structure is isomeric with ML4
aL2

b octahedral metal 

complexes where La is oxygen and Lb is nitrogen represented as [FeO4N2]-. 
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CAS (+/-)1 A. baumannii Growth 
Promotion (+/-)1 

BauB 

Apparent Kd (nM)2 

1, R1 = 2,3-OH; R2 = Im + ++ 300 ± 100 

1-Fe, R1 = 2,3-OH; R2 = Im NA +++ 160 ± 80 

3, R1 = 2,3-OH; R2 =CH2Im + + 320 ± 130 

4, R1 = 2-OH; R2 = Im – – 520 ± 270 

5, R1 = 3-OH; R2 = Im – – 250 ± 70 

6, R1 = 4-OH; R2 = Im – – 250 ± 70 

7, R1 = 2,3-OMe; R2 = Im – – 270 ± 70 

8, R1 = H; R2 = Im – – 520 ± 220 

9, R1 = 2,3-OH; R2 = Me + + 320 ± 130 

1Results from CAS assay and A. baumannii growth promotion were reported previously.27 For the 
CAS assay, + indicates a positive result correlating to Fe binding and a – indicates no apparent Fe 
binding. For the growth promotion of A. baumannii, a +/++/+++ indicates positive promotion of 
growth with more ‘+’ symbols correlating to more relative growth. 2Experiments were performed in 
duplicate as independent trials. Error represents standard deviation from the mean. 3NA = not 
applicable. 

 

Table 2.2. Structure of acinetobactin analogs and associated properties. 
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Figure 2.10. Siderophore-dependent fluorescence quenching of C-His6-BauB. Graphs depict 

intrinsic tryptophan fluorescence quenching (y-axis; excitation = 280 nm; emission = 340 nm) of C-

His6-BauB in the presence of variable siderophore concentrations (x-axis). Apparent Kd values 

were calculated using a single-binding mode curve fitting model in GraphPad Prism version 

7.0b. 
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Figure 2.11. Overview of the acinetobactin pathway in A. baumannii. BarAB is a putative efflux 

pump for cytoplasmic apo-Acb. Once formed, the holo-Acb ferric complex is imported to the 

periplasm by the TonB-dependent outer membrane protein BauA. Presumably, BauA is selective 

for importing various forms of Acb. Periplasmic holo-Acb is delivered to the inner membrane 

permease BauCDE by the SBP BauB (the focus of this work). Once imported to the cytoplasm, 

the holo-Acb ferric complex is likely reduced giving ferrous iron and apo-Acb, which is 

recycled. 
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A     B    C 

                

 

Figure 2.12. BauB purification. (A) Analytical gel filtration of full length BauB showing 

monomeric status in solution. Retention times for β-Amylase (200 kD), Alcohol Dehydrogenase 

(150 kD), Albumin (66 kD), Carbonic Anhydrase (29 kD) and Cytochrome C (12.4 kD) 

standards are indicated. (B) SDS-PAGE gel recombinant C-His6-BauB purified from E. coli 

BL21. Molecular weight markers and mass of protein loaded are labeled. (C) SDS-PAGE 

analysis of Ni-NTA purified N-His6-BauB (~36.1 kDa). 
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Data Set Entry 1 2 

Crystal Identifier BB_41 BB_5 

Protein CHis_BauB-SS (50 mg/mL) + ferric Acb (3 mM)  

Protein Buffer 
10 mM Tris, 30 mM 
NaCl, 0.04 mM TCEP, 
pH 8.0 

50 mM Tris, 150 mM NaCl, 0.2 
mM TCEP, pH 8.0 

Crystallization 
Cocktail 

25% PEG MME 5k, 50 
mM MES pH 6.0 (14 °C) 

34% PEG 4k, 100 mM EPPS 
pH 8.0 (14 °C) 

Cryoprotection  Serial transfer through 8,16,20% ethylene glycol in cocktail 

Beamline SSRL 12-2  APS GM/CA 23ID-D  

Detector Distance 
(mm) 

375 325 

Oscillation Range (°) 360 180 

Oscillation Angle (°) 0.25 0.20 

No. of Images 1,440 900 

Exposure Time (s) 0.5 0.2 

Beam size (w × h, µm) 100 × 100 200 × 100 

Wavelength (Å) 0.9795 1.0332 

 

Data Collection 
  

Resolution range (Å) 68.6 – 1.9 (2.0 – 1.9) 45.6 – 2.0 (2.04 – 2.0) 

Space group P 21 P 21 

Unit cell a, b, c (Å) 
𝜶,𝜷, 𝜸 (°) 

37.6, 137.3, 56.3 
90.0, 90.0, 90.0 

37.9, 136.8, 56.3 
90.0, 90.1, 90.0 

Total Observations 260338  123410 

Unique reflections 39102 38149 

Multiplicity 6.7  3.2 

Completeness (%) 87.3 (90.5) 97.7 (91.1) 

Mean I/sigma(I) 11.8 (6.7) 3.2 (3.0) 

RMERGE 0.09 (0.17) 0.19 (0.58) 

RMEAS 0.11 (0.20) 0.26 (0.80) 

CC1/2 0.99 (0.97) 0.94 (0.42) 

 

Table 2.3. Summary of BauB crystallization and data collection. 
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 BauB-Acb2-Fe3+ 
PDB ID 6MFL 
Data Collection  
Resolution range (Å) 68 – 1.9 (1.94-1.90) 
Space group P 21 
Unit cell a, b, c (Å) 𝛼, 𝛽, 𝛾 (°) 37.8, 137.1, 56.2, 90, 90.0, 90 
Number Crystals 2 
Total Observations 347119 (22375) 
Unique reflections 44580 (2908) 
Multiplicity 7.8 
Completeness (%) 99.2 (99.6) 
Mean I/sigma(I) 11.6 (5.6) 
RMERGE 0.178 (0.570) 
RMEAS 0.204 (0.662) 
CC1/2 0.970 (0.679) 
Structure Refinement 
Reflections used in refinement 44255 
Reflections used for RFREE 2140 
RWORK 16.9 
RFREE 21.4 
Number of non-hydrogen atoms  
     macromolecules 4928 
     Ligands 102 
     Solvent 372 
Wilson B-factor (Å2) 13.8 
Average B-factor (Å2)  
     Chain A (main, side) 14.8, 20.5 
     Chain B (main, side) 13.9, 20.4 
     Acb2Fe 18.0 
     Water 23.3 
     Ethylene glycol 34.7 
RMSD bond lengths (Å) 0.01 
RMSD bond angles (°) 1.12 
Ramachandran analysis  
     favored (%) 97.0 
     allowed (%) 3.0 
     outliers (%) 0.0 
Rotamer outliers (%) 0.8 
MolProbity Clashscore 2.9 

 

Table 2.4. Data collection and refinement statistics 
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3.1 Preface  
 This chapter was adapted in part from [Bohac, T. J., Fang, L., Giblin, D. E. & Wencewicz, 

T. A. ACS Chemical Biology, Manuscript accepted DOI: 10.1021/acschembio.8b01051]. TJB 

isolated Fimsbactin A, performed characterization, BauB fluorescent quenching binding studies 

and BauB displacement assays. LF performed all growth curves. DEG performed all DFT 

calculations. TAW served as principal investigator and oversaw experimental design. 

3.2 Abstract  
Environmental and pathogenic microbes produce siderophores as small iron-binding 

molecules to scavenge iron from natural environments. It is common for microbes to produce 

multiple siderophores to gain a competitive edge in mixed microbial environments. Human 

pathogenic Acinetobacter baumannii produces up to three siderophores: acinetobactin, 

baumannoferrin, and fimsbactin. Production of acinetobactin and baumannoferrin is highly 

conserved amongst clinical isolates, while fimsbactin production appears to be less common. 

Fimsbactin is structurally related to acinetobactin through the presence of catecholate and 

phenolate oxazoline metal binding motifs, and both are derived from non-ribosomal peptide 

assembly lines with similar catalytic domain orientations and identities. Here we report on the 

chemical, biochemical, and microbiological investigation of fimsbactin and acinetobactin alone 

and in combination. We show that fimsbactin forms a 1:1 complex with iron(III) that is 

thermodynamically more stable than the 2:1 acinetobactin ferric complex. Alone, both 

acinetobactin and fimsbactin stimulate A. baumannii growth, but in combination the two 

siderophores appear to compete for uptake and collectively inhibit bacterial growth. We show that 

fimsbactin directly competes with acinetobactin for binding the periplasmic siderophore binding 

protein BauB, suggesting a possible biochemical mechanism for the phenomenon where 
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siderophore build up in the periplasm leads to iron starvation. We propose an updated model for 

siderophore utilization and cooperativity in A. baumannii that frames the molecular, biochemical, 

and cellular interplay of multiple iron acquisition systems in a multi-drug resistant Gram-negative 

human pathogen. 

3.3 Introduction   

We sought to investigate the interplay of two high-affinity A. baumannii siderophore-based 

iron acquisition systems; the PreAcb/Acb and Fim pathways. Here, we show that Acb and Fim 

alone stimulate A. baumannii growth under iron deficient conditions. Both siderophores promote 

growth more efficiently in the holo, iron-bound forms. Surprisingly, we found that apo-Fim is 

antagonistic towards holo-Acb, leading us to hypothesize that Acb and Fim have competing 

transport pathways. We recently reported the x-ray crystal structure of the periplasmic siderophore 

binding protein BauB bound to a stable Acb2Fe complex which provided the template for 

understanding siderophore molecular recognition in A. baumannii.1 In this work, we show that 

both isomers of acinetobactin, PreAcb and Acb, and Fim bind to BauB with nanomolar affinity. 

Intrinsic fluorescence quenching and direct binding via an immobilized BauB-LCMS competition 

experiment validated meaningful BauB binding to apo- and holo-forms of PreAcb, Acb, and Fim. 

The promiscuity of BauB is explained using density functional theory (DFT) calculated structures 

of the PreAcb2Fe and FimFe complexes against the BauBAcb2Fe crystal structure which reveals 

how the three A. baumannii siderophores fulfill the octahedral iron(III) coordination sphere using 

ligands derived from the common 2,3-DHB-Thr/Ser phenolate oxazoline, catechol, and 

imidazole/hydroxamate motifs that display identical stereochemistry about the ferric metal center 

and overlapping electron density in the ligand coordination sphere. Pathway competition between 
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Acb and Fim might explain, in part, why it is rare to find clinical isolates of pathogenic A. 

baumannii harboring biosynthetic operons for both siderophores. 

3.4 Results and Discussion  

Purification of Acb and Fim from A. baumannii ATCC 17978.  

The fimsbactin siderophores were originally isolated from the environmental strain A. 

baylyi ADP1.2 Up to this point, Fim had not been isolated from any pathogenic strains of A. 

baumannii, although comparative genomics predicts the presence of the Fim operon in at least 4 

unique strains of A. baumannii in the NCBI database (Figure 3.1). One of these strains is human 

pathogenic A. baumannii ATCC 17978, a clinical isolate that is predicted to be a producer of Acb, 

Fim, and baumannoferrrin.3 We isolated crude Acb and fimsbactin A–F from A. baumannii ATCC 

17978 grown in iron deficient M9 minimal medium at 37 °C. LC-MS analysis of the crude 

fermentation broths from two separate trials showed the presence of Acb and all of the fimsbactin 

isomers, fimsbactin A–F, with fimsbactin A providing the largest signal in the optical absorbance 

and extracted ion chromatogram (EIC) traces (Figure 3.2-3.6). This validates coproduction of Acb 

and Fim by a human pathogenic strain of A. baumannii. Acb and fimsbactin A were purified via 

RP-C18 prep-HPLC allowing for isolation of both siderophores from a single fermentation. Acb 

was isolated in >95% purity by LCMS at a mass recovery after purification of 31 mg/L averaged 

over two trials. No PreAcb was observed, which is consistent with the instability of PreAcb during 

extended fermentations at physiological pH and previous failed isolation attempts. However, 

PreAcb is readily available in our group through total synthesis.4 Fimsbactin A was isolated as a 

mixture of fimsbactin A (>90%) and fimsbactins B, C, and F (≤10%) according to LCMS and 

NMR analysis. We validated that fimsbactin A is the primary component by HRMS and 

comparison of the 1D (1H, 13C) NMR spectra against the literature reported values (Table 3.1, 
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Figures 3.7-3.9).2 The mass recovery of Fim after purification was 5 mg/L averaged over two 

independent trials. The greater mass production of Acb over Fim is consistent with the 

observations for siderophore production in A. baylyi.2 We were unable to detect any positively 

charged ions corresponding to apo- or holo- baumannoferrin in the A. baumannii ATCC 17978 

supernatants, despite the predicted biosynthetic capacity for this siderophore (Figure 3.1).5 It is 

possible that the baumannoferrins remain membrane associated or have a low ionization potential 

in positive mode electrospray ionization (ESI) due to the anionic carboxylate/hydroxamate metal 

chelating groups, thus, proving to be undetectable by the low-resolution single quadrupole mass 

spectrometer employed in this study.6 We utilized synthetic PreAcb, natural Acb, and natural Fim 

(>90% fimsbactin A) for all studies in this work. 

Iron-Binding properties of fimsbactin A.  

Fimsbactin A is a mixed ligand biscatecholate-monohydroxamate siderophore that is 

structurally related to other NRPS siderophores including heterobactin A7, JBIR-168, 

vibriobactin9, vulnibactin10, fluvibactin11, agrobactin12, parabactin13,14, and protochelin15 (Figure 

3.10). All of these related siderophores are hexadentate metal chelators with three bidentate ligands 

(either catecholates, phenolate oxazolines, and/or hydroxamates) branching from three arms of a 

tetrahedral atom, either nitrogen or carbon, creating a tripodal ferric coordination template. 

Vibriobactin, vulnibactin, fluvibactin, agrobactin, and parabactin are all spermidine-based with a 

tetrahedral nitrogen at the apex of the tripod, while protochelin and heterobactin are lysine-based 

using the α-carbon of L-Lys as the tetrahedral branch point for the three metal chelating ligands. 

Fimsbactin A is most similar to protochelin and heterobactin in that the tetrahedral branching atom 

for the three metal chelating ligands is the α-carbon of L-Ser. Additionally, the 2,3-DHB catechol 
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moiety is attached via ester linkage to the Ser hydroxyl group as opposed to amide linkages in the 

related siderophores.  

The structure of fimsbactin A is unique and resembles a cross between the metal chelating 

groups found in heterobactin A7, produced by Rhodococcus erythropolis, and agrobactin12, from 

plant pathogenic Agrobacterium temufaciencs (Figure 3.10). Fimsbactin A is composed of 

hydroxamate, phenolate oxazoline, and catecholate metal chelating groups derived from N-acetyl-

N-hydroxy-cadaverine, serine-2,3-DHB oxazoline, and 2,3-DHB, respectively.2 Heterobactin A 

contains hydroxamate, phenolate oxazoline, and catecholate ligands derived from cyclized N-

hydroxy-ornithine, 2,5-dihydroxy-5-amino-benzoate and 2,3-DHB, respectively.7 The phenolate 

oxazoline group of heterobactin A is distinct from that found in fimsbactin in that metal 

coordination between the oxazoline nitrogren and phenolate oxygen is not possible in heterobactin 

A. Instead, metal chelation for this ligand arrangement probably occurs through the amide carbonyl 

oxygen and either the phenolate oxygen or the oxazoline nitrogen. Agrobactin contains two 

catecholates from 2,3-DHB and one phenolate oxazoline derived from cyclized L-Thr-2,3-DHB 

methyl oxazolines.12 Both heterobactin A and agrobactin form stable 1:1 complexes with unique 

ligand-to-metal charge transfer bands in the optical absorbance spectra appearing at 560 nm and 

520 nm, respectively, for the ferric holo-siderophores.7,12,16 For comparison, the well known 1:1 

enterobactin tris-catecholate ferric complex has a characteristic ligand-to-metal charge transfer 

band at 498 nm.17 The unique optical absorbance bands arise from metal:ligand charge transfer 

and reflect the unique metal:ligand geometry and speciation of the soluble ferric siderophore 

complexes. We sought to investigate the iron binding properties of fimsbactin A in comparison to 

PreAcb and Acb to better understand metal chelation dynamics of the mixed siderophore system 

in A. baumannii.  
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The ferric holo-siderophore complexes of PreAcb, Acb, and Fim were prepared by 

treatment with Fe(acac)3 using a method reported previously by our group.4,18,19,20 Titration of Fim 

with Fe(acac)3 in MeOH monitored by fluorescence quenching (λexcitation = 330 nm; λemission = 380 

nm) was consistent with the formation of a stable ferric complex of Fim (Figure 3.11). At low iron 

concentrations, the titration curve appears to indicate formation of 2:1 Fim2Fe complexes that 

eventually convert to the 1:1 FimFe complex with added iron. These observations are consistent 

with previous studies of mixed ligand siderophores, including heterobactin A, where iron chelation 

geometry and metal:ligand stoichiometry of holo-siderophores was shown to vary with 

metal/ligand concentrations and pH.16  LCMS analysis of FimFe was also consistent with the 

formation of a 1:1 siderophore:iron complex. Using ESI in positive ion mode, FimFe ionized as 

the [M+H]+ ion with an observed m/z = 627. Both PreAcb and Acb form 2:1 siderophore:iron 

complexes, PreAcb2Fe and Acb2Fe, respectively, that lose iron upon ionization by ESI in positive 

ion mode to give [M+H]+ ions with m/z = 347.4 This difference in ionization modes reflects the 

increased relative stability of a 1:1 siderophore:iron complex, FimFe, compared to 2:1 

siderophore:iron complexes, PreAcb2Fe and Acb2Fe, towards ESI.  

The optical absorbance spectrum of FimFe shows a broad ligand-to-metal charge transfer 

absorbance band at 445 nm (Figure 3.12). PreAcb2Fe and Acb2Fe show ligand-to-metal charge 

transfer absorbance bands at 515 and 570 nm, respectively, in the optical absorbance spectra. The 

red spectral shift for FimFe (λmax = 445 nm) compared to PreAcb2Fe (λmax = 515 nm) and Acb2Fe 

(λmax = 570 nm) implies that there are greater interactions between ferric iron and stronger-field 

ligands in the FimFe complex. We also measured the apparent iron(III) affinity (log KFe) of FimFe 

to be 27.1 ± 0.2 using an EDTA competition assay (Table 3.2; Equations 3.1). The FimFe 

complex appears to be more stable than the PreAcb2Fe (apparent log KFe = 27.4 ± 0.2) and Acb2Fe 
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(apparent log KFe = 26.2 ± 0.1).4 This is consistent with the relative stability of mycobactin (more 

stable; phenolate oxazoline, bis-hydroxamate) and exochelin (less stable;imidazole-containing bis-

hydroxamate) ferric siderophores from Mycobacterium tuberculosis.21 We confirmed that apparent 

KFe for FimFe was greater than Acb2Fe through a competitive iron exchange assay. Treatment of 

Acb2Fe with an equimolar amount of apo-Fim resulted in formation of the FimFe complex. The 

exchange of iron(III) from Acb2Fe to Fim was confirmed by optical absorbance spectroscopy and 

LCMS. The iron exchange was slow, but after 20 hours nearly full exchange was observed, 

suggesting that the 1:1 FimFe was thermodynamically more stable than the 2:1 Acb2Fe complex 

(Figure 3.13). The relevance of iron exchange between siderophores is unknown but could play a 

role in the overall iron acquisition process through a metal shuttle.22 The potential for siderophore 

cooperativity via iron exchange between Fim and PreAcb/Acb involvement is discussed further in 

the following sections of this chapter. Collectively, these observations support 1:1 stoichiometry 

and metal chelation through the phenolate oxazoline ligand for the soluble FimFe complex at pH 

7.4.  

Fimsbactin A stimulates A. baumannii growth under iron-deficient conditions.  

Formation of stable ferric complexes is the first requirement for siderophore-mediated iron 

acquisition.23 The second requirement is import of the holo-siderophore across the bacterial cell 

envelope. To investigate the ability of A. baumannii to utilize FimFe as an iron source, we 

performed kinetic growth recovery assays in M9 minimal medium supplemented with 2,2’-

dipyridyl (DIP). We used the model strain A. baumaunnii ATCC 17978, a natural producer of Fim 

and PreAcb/Acb, and fine tuned DIP concentrations, as previously described4,18,20, to where only 

weak growth is observed unless an iron supplement is added to the medium (Figure 3.14). As a 

positive control we showed that both Acb and Acb2Fe recover the growth of A. baumaunnii ATCC 
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17978 in a dose-dependent manner (Figure 3.14a,c, 3.15, 3.16). As expected from our previous 

work4, Acb2Fe stimulates growth at lower concentrations and to a higher final cell density, as 

measure by optical density at 600 nm (OD600) for liquid cultures incubated at 37 °C up to 48 hours. 

A similar trend was observed for Fim and FimFe, where both promote A. baumannii growth in a 

time- and dose-dependent manner with FimFe, providing faster and more enhanced growth 

recovery (Figure 3.14b,d, 3.15, 3.16). Clearly, pre-loading Acb and Fim with iron(III) is beneficial 

for growth promotion under these growth conditions. Since Acb2Fe and FimFe were both prepared 

as pure ferric complexes with removal of all residual iron, the potent growth stimulating effects 

must be attributed to utilization of the siderophore ferric complexes as an iron source. These results 

show for the first time that FimFe can serve as a true iron source for A. baumannii ATCC 17978 

and support the role of the fimsbactins as natural siderophore substrates.24  

apo-Fim antagonizes the growth promoting effects of [Fe(Acb)2].  

After establishing the individual roles of Fim and PreAcb/Acb as siderophores, we sought 

to probe the more challenging question of why A. baumannii produces multiple siderophores in 

the first place. More specifically, we thought it curious why all pathogenic A. baumannii maintain 

the ability to produce and utilize PreAcb/Acb while <10% produce Fim. We hypothesized that 

siderophore competition, as opposed to cooperativity, might have led to evolutionary selection of 

PreAcb/Acb over Fim. To test for siderophore competition between Acb and Fim, we performed 

checkerboard kinetic growth recovery assays using combinations of Acb, Fim, Acb2Fe, and FimFe 

against A. baumannii ATCC 17978 under the same iron restrictive growth conditions described 

previously (Figure 3.17-3.18). We were surprised to discover that combinations of apo-

siderophores Acb and Fim were growth inhibitory (Figure 3.17a) compared to each apo-

siderophore alone (Figure 3.14). Increasing the concentration of Acb from 3.9 μM to 62.5 μM in 
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the presence of 3.9 μM Fim slightly recovered growth. Increasing the concentration of Fim to 62.5 

μM in the presence of 62.5 μM Acb returned the antagonistic effect on Acb-promoted growth. The 

addition of holo-siderophores recovered A. baumannii growth, but increasing the concentration of 

apo-siderophores could still antagonize growth slightly. Figure 3.17b shows that 15.6 μM Acb2Fe 

can recover A. baumannii growth in the presence of 3.9 μM or 62.5 μM Fim. However, Acb2Fe at 

0.5 μM was not capable of recovering growth in the presence of Fim at 3.9 or 62.5 μM. The 

addition of apo-Acb at 62.5 μM was also slighty antagonistic towards FimFe at 0.5 and 15.6 μM 

in the growth recovery assay (Figure 3.17c), although to a lesser extent than the effect of apo-Fim 

on Acb2Fe (Figure 3.17b). 

 The discovery that Fim and Acb appear to be antagonistic adds to the complexity of 

understanding the delicate balance of metals and siderophores in pathogenic A. baumannii. This 

phenomenon is consistent with our hypothesis that Acb and Fim competition drove natural 

selection of the Acb pathway found in all A. baumannii clinical isolates. In natural environments 

siderophore competition plays a critical role in microbial population dynamics.25,26 Siderophore 

producers often produce siderophore cocktails and express siderophore transport and utilization 

proteins for xenosiderophores in order to gain a competitive advantage.19 Some siderophores are 

inhibitory towards competing bacteria by withholding metals from the extracellular and/or 

intracellular environment.27 Some siderophores are attached to antibiotics, so called sideromycins, 

to deliver a toxic payload into susceptible competitor cells.28 Some siderophores are thought to 

directly compete for uptake at the receptor level through endogenous pathways.20.29 Thus, we 

turned out attention to probing for pathway competition between Acb and Fim in A. baumannii to 

gain further insight on the underlying cause of the antagonistic siderophore relationship. 

Fim, PreAcb, and Acb binding to BauB.  
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Bioinformatic analysis of the fimsbactin biosynthetic operon revealed some potential gaps 

in the uptake pathway, including no dedicated periplasmic siderophore binding protein (SBP) and 

no inner membrane permease. (A more detailed discussion of the PreAcb/Acb and Fim transport 

pathways is provided in a later section.) Outer membrane receptors (OMRs) are often highly 

selective for binding cognate substrates, while SBPs can be broader in terms of binding small 

molecules.19,23,28,30 Thus, we hypothesized that the SBP responsible for binding PreAcb/Acb might 

also bind Fim, which shares structural homology to PreAcb/Acb through the phenolate oxazoline 

and catecholate moieties. We turned our focus towards BauB, the highly conserved periplasmic 

SBP responsible for binding PreAcb/Acb and shuttling the corresponding holo-siderophores to the 

membrane permease, BauCDE, to facilitate import to the cytoplasm. We hypothesized that Fim 

might compete with PreAcb/Acb for BauB binding and inhibit the import of ferric siderophore 

complexes to the cytoplasm. To test this hypothesized, we pursued in vitro reconstitution of BauB 

and evaluated the ability of apo- and holo-forms of PreAcb, Acb, and Fim to compete for binding. 

 The gene encoding for BauB (GenBank AAT52185) contains a N-terminal signal sequence 

(residues 1–22), indicating that BauB is exported from the cytoplasm and localized to the 

periplasm. The full length bauB gene was codon optimized for expression in E. coli, and the 

genetic region encoding for residues 23–322 of BauB was subcloned into a pET28 vector encoding 

for an N-terminal hexahistdine tag and including a TEV protease cleavable site (Figure 3.19). 

After expression in E. coli BL21 (DE3) and purification by Ni-NTA affinity chromatography the 

N-His6-BauB was used in siderophore binding studies with the intact hexahistidine tag (Figure 

3.20). We first confirmed binding of BauB to authentic PreAcb and Acb using an intrinsic 

tryptophan fluorescence quenching assay.1 We observed dose-dependent fluorescence quenching 

for both the apo- and holo-forms of both acinetobactin isomers. The binding of both apo- and holo-
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siderophores by outer membrane siderophore receptors and perisplasmic siderophore binding 

proteins is common.19,31 The apparent Kd values for apo-PreAcb and holo-PreAcb2Fe were 380 ± 

110 nM and 750 ± 160 nM, respectively (Table 3.2). While the apparent Kd for holo-PreAcb2Fe 

appeared to be greater than apo-PreAcb, it is noteworthy that the degree of fluorescence quenching 

was greater for the ferric complex (Figure 3.21). In fact, the degree of BauB fluorescence 

quenching by holo-PreAcb2Fe was greater than all of the siderophores in the study possibly 

indicating a unique binding mode. The apparent Kd values for apo-Acb and holo-Acb2Fe were 300 

± 100 nM and 160 ± 80 nM, respectively (Table 3.2). The apparent trend in binding affinities of 

apo-Kd < holo-Kd for Acb appear to be reversed for the measurements obtained for PreAcb where 

apo-Kd > holo-Kd. Treatment of BauB with apo- and holo-forms of Fim resulted in dose dependent 

fluorescence quenching with curve shapes and apparent Kd values falling within the margin of 

error for those observed for Acb (Table 3.2). The apparent Kd values for apo-Fim and holo-FimFe 

were 360 ± 140 nM and 240 ± 90 nM, respectively. All apparent Kd values were calculated using 

a one-site binding model to fit the binding stoichiometry observed in the BauBAcb2Fe crystal 

structure.1 These results are consistent with our hypothesis that PreAcb, Acb, and Fim compete for 

binding to BauB. We next turned to investigating the nature of this binding competition using a 

siderophore displacement assay with resin-immobilized BauB. 

Fimsbactin A and acinetobactin directly compete for binding to BauB.  

To validate that Fim binding to BauB is authentic we performed a competitive binding 

experiment with Acb2Fe and FimFe using resin-immobilized BauB. Our group previously has 

reported this type of binding assay on the study of ferrioxamine siderophore competition for 

binding FhuD2, the xenosiderophore receptor displayed on the cell surface of pathogenic 

Staphylococcus aureus.32 We started by preparing a resin-immobilized BauB column by saturating 



91 
 

Ni-NTA resin with N-His6-BauB. Column saturation and quantity of immobilized BauB was 

determined by SDS-PAGE analysis of column flowthrough from the protein-loading step. 

Treatment of the BauB resin with a solution of Acb2Fe resulted in a decrease of ion counts in the 

EIC trace for m/z 347, corresponding to the [M+H]+ ion for Acb (this is the dominate ion in the 

MS spectrum of Acb2Fe). Treatment of the BauBAcb2Fe resin with a solution of FimFe recovered 

ion counts for Acb2Fe, indicating that the excess FimFe displaced Acb2Fe from the resin resulting 

in BauBFimFe resin and elution of Acb2Fe (Figure 3.22a). Similarly, treatment of the BauB resin 

with FimFe resulted in a decrease of ion counts in the EIC trace for m/z 627, corresponding to the 

[M+H]+ ion for FimFe (this is the dominate ion in the MS spectrum of FimFe) after washing the 

column with buffer. Treatment of the BauBFimFe resin with a solution of Acb2Fe recovered ion 

counts for FimFe in the elution, indicating that the excess Acb2Fe displaced FimFe from the resin 

resulting in BauBAcb2Fe resin and elution of FimFe (Figure 3.22b). We also found that the BauB 

resin could be cycled between treatment with Acb2Fe and FimFe multiple times with reversible 

siderophore displacement. These competition experiments validate that BauB binds to tightly and 

reversible to both Acb2Fe and FimFe. Since BauB binding is reversible, the delicate balance 

between concentrations of apo-siderophores PreAcb, Acb, Fim, and corresponding holo ferric 

complexes will ultimately determine which siderophore species dominates the BauB binding 

equilibrium. Our results here show that Fim antagonizes A. baumannii growth promotion by 

Acb2Fe, suggesting that occupancy of BauB in the periplasm by Fim might exclude import of 

Acb2Fe to the cytoplasm. This suggests that concentrations of Acb are kept higher than 

concentrations of Fim during growth of A. baumannii ATCC 17978 under iron deficient minimal 

medium conditions to balance siderophore cooperativity and pathway competition allowing for 

efficient iron scavenging. 



92 
 

Structural similarity of FimFe, PreAcb2Fe, and Acb2Fe ferric complexes.  

In order to bind BauB, the molecular volume, stereochemistry, and geometrical orientation 

of ligands around the ferric metal center must be similar for PreAcb2Fe, Acb2Fe, and FimFe. We 

investigated these properties using density functional theory (DFT) calculations to create energy 

minimized structural models of PreAcb2Fe and FimFe using the experimentally observed geometry 

of the Acb2Fe complex recently reported for the BauBAcb2Fe crystal structure (Figure 3.23).1 

We assumed that PreAcb2Fe, Acb2Fe, and FimFe exist as the mono anions in the ferric complexes. 

BauB appears to recognize one enantiomer of the cis-[Acb2Fe]- isomeric form. The DFT-computed 

energy minimized structures of [FimFe]- (Figure 3.23a) and cis-[PreAcb2]- (Figure 3.23b) were 

strikingly similar to the experimentally observed cis-[Acb2Fe]- complexed to BauB (Figure 3.23c). 

An overlay of the three structures revealed how the common phenolate oxazoline fragment aligns 

nicely and the L-Ser stereochemistry enables [FimFe]- to map the hydroxamate and catecholate 

ligands to the same ferric binding sites as the imidazole and catecholate ligands of cis-[Acb2Fe]-, 

respectively. As shown in Figure 3.23e, BauB binds one half of the cis-[Acb2Fe]- complex through 

hydrophobic interactions with one of the Acb ligands while the second Acb ligand remains largely 

solvent exposed. The computed structures of cis-[PreAcb2Fe]- and [FimFe]- would appear to fit 

this same binding mode to BauB and might explain how all three siderophores can compete for 

binding to periplasmic BauB. Since FimFe is the only stable 1:1 complex, this could indicate that 

BauB cannot facilitate transport of 1:1 siderophore:iron complexes across the inner membrane 

through the associated membrane permease BauCDE hinting at a potential shuttling mechanism 

for 2:1 PreAcb/Acb:iron complexes.22,33,34  

A new model for siderophore cooperativity in A. baumannii.  
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Our findings have been largely consistent with the current understanding of PreAcb/Acb 

biosynthesis and utilization in pathogenic A. baumannii (Figure 3.24). PreAcb is the kinetic 

biosynthetic product of the biosynthetic enzymes BasA–J, while Acb is formed via non-enzymatic 

isomerization of PreAcb as the thermodynamic biosynthetic end product.35,36 Both PreAcb and 

Acb can reach the extracellular space, presumably via efflux mediate in part by BarAB.4 The 

TonB-dependent OMR BauA has been shown to be essential for PreAcb/Acb utilization, 

presumably providing import of holo-siderophores to the periplasm.37,38 The periplsamic SBP 

BauB, which might be membrane anchored although this has not been experimentally confirmed1, 

is then thought to shuttle holo-siderophores to the ABC-type membrane permease BauCDE2 where 

import to the cytoplasm is driven by ATP hydrolysis. BauF is a putative flavin-dependent 

oxidoreductase responsible for reduction of the ferric holo-siderophore complexes to release 

ferrous for incorporation into protein scaffolds such as the iron-sulfur cluster generating protein 

SufU.39,40,41 The apo-siderophores, PreAcb and/or Acb, can then reenter the transport cycle. 

Our findings provide new insight into the role of PreAcb, Acb, and Fim in overall 

siderophore-mediated iron acquisition by A. baumannii. The Fim biosynthetic operon contains 

genes encoding for an efflux pump FbsOQ, a TonB-dependent OMR FbsN, and a putative 

reductase FbsP. The reductase FbsP is predicted to be secreted to the perisplasm due to the 

presence of an N-terminal signal sequence, similar to the siderophore-interacting periplasmic 

reductases YqjH and FpvC in E. coli and P. aeruginosa, respectively.40,42 We propose that Fim is 

exported in part by FbsOQ after biosynthesis in the cytoplasm. Extracellular FimFe is presumably 

imported to the periplasm by FbsN where periplasmic reduction by FbsN releases Fim that reenters 

the transport cycle and ferrous iron for direct import to the periplasm via the endogenous ferrous 

transport system FeoABC.43,44 This transport model is analogous to the well-studied utilization 
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pathway for the siderophore pyoverdine in pathogenic P. aeruginosa.45 Furthermore, P. 

aeruginosa balances the use of multiple siderophores for adaptive iron acquisition during infection 

where some siderophores stay in the periplasm (pyoverdine) and some enter the cytoplasm 

(pyochelin).46 Analogously, A. baumannii might utilize Fim as the periplasmic siderophore and 

PreAcb/Acb as the cytoplasmic siderophore. This model suggests that Fim never makes it to the 

cytoplasm, which is consistent with the observation that fimsbactin analogs conjugated to 

antibiotics with periplasmic targets (beta-lactams, daptomycin, vancomycin) show potent, iron-

dependent growth inhibitory activity against A. baumannii while the same siderophores conjugated 

to antibiotics with cytoplasmic targets (fluoroquinolones) show no antibacterial activity.47 One 

unique structural feature of fimsbactin A is the presence of an L-Ser-2,3-DHB ester, which 

resembles a fragment of the L-Ser-2,3-DHB tri-lactone scaffold of enterobactin.48 Similar to 

enterobactin, it is possible that hydrolysis of the L-Ser-2,3-DHB ester in the periplasm may play a 

role in iron release.49 The product of fimsbactin A hydrolysis is fimsbactin F, which is the second 

most concentrated member of the fimsbactin mixture present in A. baumannii ATCC 17978 

supernatants (Figures 3.3-3.6, 3.25).  

If fimsbactins accumulates in the periplasm, this would create a scenario for competition 

between Fim and PreAcb/Acb to bind BauB that is consistent with our current findings. A build 

up of excess Fim in the periplasm could shift the BauB equilibrium towards BauBFim and inhibit 

the import of PreAcb/Acb leading to the growth inhibitory effect that we observed for the 

siderophore combinations. It is also possible that Fim, PreAcb, and Acb compete for iron and form 

mixed siderophore ferric complexes that act as transport inhibitors. A crystal structure of the A. 

baummannii outer membrane siderophore receptor, BauA, bound to a mixed (PreAcb)(Acb)Fe 

ferric complex was recently deposited in the protein data bank (PDB 6H7F). The 
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BauA(PreAcb)(Acb)Fe structure shows complexation of the iron by the PreAcb ligand through 

phenolate oxazoline, hydroxamate, and imidazole filling four of the size coordination sites in the 

octahedral ferric center. The final two coordination sites are apparently filled by the 2,3-DHB 

catecholate of the Acb ligand. The structure suggests that BauA only interacts with the PreAcb 

ligand while the Acb dangles outside of the binding pocket. Our group recently reported a 

competitive inhibitor of siderophore uptake based on an oxidized analog of PreAcb that induces 

an iron-dependent growth inhibitory effect on A. baumannii that is similar to the effect of apo-

Fim.20 The oxidized PreAcb features an aromatic oxazole in place of the PreAcb oxazoline that 

stabilizes the PreAcb structure and prevents isomerization to Acb. The BauA(PreAcb)(Acb)Fe 

structure suggests that apo- and holo- variants of the oxazole PreAcb and/or fimsbactin A might 

also bind to BauA in a similar manner, although this requires experimental validation. 

Our work suggests that competition for periplasmic BauB is possible, but it is not entirely 

clear whether competition for BauA plays a role in the growth inhibitory effect of apo-fimsbactin 

A. We tested the effect of excess apo-Fim on the growth of A. baumannii ATCC 19606T, a strain 

that does not produce the fimsbactins, but does produce PreAcb/Acb and is predicted to produce 

baumannoferrin (Figure 3.26).5,37 Treatment of wild type A. baumannii ATCC 19606T and mutant 

variants s1 (insertional mutant in basD, deficient in PreAcb/Acb biosynthesis), t6 (insertional 

mutation in bauA, deficient in PreAcb/Acb import to periplasm), and t7 (insertional mutation in 

bauD, deficient in PreAcb/Acb import to cytoplasm) with apo-Fim under iron deficient minimal 

medium conditions produced the same growth inhibited phenotype in the kinetic growth studies 

(Figures 3.27-3.28). Addition of holo-FimFe recovered the growth of wild type and mutant A. 

baumannii strains suggesting that FimFe can serve as an iron source in the absence of the dedicated 

Fim utilization proteins FbsOQNP. It is possible that FimFe can be imported through BauA and/or 
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some of the other ~20 TonB-dependent outer membrane receptors50 present in pathogenic strains 

of A. baumannii through direct import or siderophore shuttling with PreAcb/Acb.22,51 These results 

suggest that fimsbactin A bioactivity is independent of BauA and BauD consistent with the 

hypothesis for periplasmic accumulation of toxic levels of Fim. A recent study in Mycobacterium 

tuberculosis showed that a siderophore efflux mutant accumulated toxic concentrations of 

mycobactin siderophores supporting the idea that maintaining the appropriate balance of 

intracellular siderophores is critical to balance metal homeostasis.52 The same appears to be true 

for A. baumannii. Regardless of the underlying cause of apo-fimsbactin toxicity, the growth 

studies with A. baumannii ATCC 19606T confirm that pathway competition between PreAcb, 

Acb, and Fim is important even for non-producers of the fimsbactins, including the majority of A. 

baumannii clinical isolates. 

3.5 Outlook and Conclusions  

Pathogenic bacteria often produce multiple siderophores to enhance iron acquisition, 

expand capacity for metal scavenging, evade the human immune system, and gain a competitive 

edge in mixed microbial environments. All genome sequenced clinical isolates of the MDR Gram-

negative pathogen A. baumannii produce the siderophores PreAcb, Acb, and baumannoferrin. 

PreAcb and Acb both enhance iron acquisition and contribute to pathogen virulence, while the role 

of baumannoferrin has not yet been investigated. A small percentage (<10%) of A. baumannii 

clinical isolates produce a third family of siderophores known as the fimsbactins. We have shown 

that A. baumannii ATCC 17978 produces Acb in greater quantities than Fim and both siderophores 

can be purified from culture supernatants. Here, we show that fimsbactin A, the primary 

component of the fimsbactin siderophore mixture, competes directly with Acb/Acb2Fe for import 

across the A. baumannii cell envelope. The two siderophores compete directly for binding to the 



97 
 

periplasmic siderophore binding protein BauB and possibly to other proteins in the Acb pathway. 

This competition might explain why the majority of A. baumannii clinical isolates have lost the 

ability to produce the fimsbactins but have maintained genes for Acb biosynthesis and expression 

in a highly conserved manner. Due to the structural similarities of Fim, PreAcb, and Acb, sharing 

common NRPS-derived fragments from phenolate oxazolines and catecholates from 2,3-DHB, we 

propose that the fimsbactin scaffold serves as an ideal template for designing new siderophore-

antibiotic conjugates that can outcompete native siderophores for cell entry under infection 

conditions; however, this antibiotic delivery strategy should be reserved for antibiotics with 

periplasmic targets, since our current understanding of the fimsbactin pathway suggests import is 

limited to the periplasm.47,53,54 The inherent growth inhibitory effect of apo-Fim towards A. 

baumannii also presents the opportunity to design competitive inhibitors of siderophore uptake 

that might serve as antivirulence agents to starve the pathogen of iron.20,27 Our findings suggest 

that if concentrations of the fimsbactin are kept low, we hypothesize that Acb and Fim can function 

cooperatively to enhance iron acquisition in A. baumannii; but if the concentration of Fim exceeds 

Acb, the presence of multiple siderophores becomes counter productive. Further studies on the 

effects of natural siderophore combinations are needed to reveal the subtle details of cooperativity 

and competition at the molecular, protein, and cellular level of bacterial iron acquisition. 

3.6 Materials and Methods  
Strains, Materials, and Instrumentation.  

Growth studies were conducted using A. baumannii ATCC 17978 and ATCC 19606T. The 

s1, t6, and t7 mutant strains of A. baumannii ATCC 19606T were obtained from Prof. Luis Actis 

(Miami University).37 Pre-cultures and 96-well plate A. baumannii growth assays were performed 

in filter-sterilized M9 minimal media. M9 minimal media was prepared for all experiments as 
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previously described.4,18,20 Samples for LC-MS were prepared in 0.45 μM PTFE mini-UniPrep 

vials from Agilent. All preparatory HPLC was performed using a Beckman Coulter SYSTEM 

GOLD 127P solvent module and 168 detector with a Phenomenex Luna 10u C18(2) 100A column, 

250 × 21.20 mm, 10 μm with guard column. Prep HPLC was performed with a mobile phase of 5 

mM ammonium acetate in (A) water and (B) acetonitrile, and data were processed using 32 Karat 

software, v7.0. LC-MS was performed on an Agilent 6130 quadrupole LC-MS with G1313 

autosampler, G1315 diode array detector, and 1200 series solvent module. A Phenomenex Gemini 

C18 column, 50 × 2 mm, 5 μm with guard column was used for all LC-MS separations. LC-MS 

mobile phases were 0.1% formic acid in (A) water and (B) acetonitrile, and data were processed 

using G2710 ChemStation software. NMR was performed on a Varian Unity Inova-600 MHz 

instrument with a cold probe. Bacterial growth studies were performed using polystyrene 96-well 

plates with polystyrene lids. OD600 measurements were taken on a Molecular Devices SpectraMax 

Plus 384 plate reader. 

Isolation and purification of Acb and Fim.  

Acinetobactin (Acb) and fimsbactin A (Fim) was isolated and purified from A. baumannii 

ATCC 17978 cultures using a modified literature procedure.4,55 PreAcb was synthesized as 

described previously by our group.4 Briefly, 1 L cultures of A. baumannii ATCC 17978 were 

grown overnight in M9 minimal media. Cells were pelleted and the supernatant was adjusted to 

pH ~6 using citric acid. XAD-7HP resin was added to the supernatant and the mixture was shaken 

gently. The mixture was filtered and the resin was washed with methanol. The methanol washings 

were combined and concentrated via rotary evaporation under reduced pressure. Acb (retention 

time 12 min, 31 mg/L) and Fim (retention time 15 min, 5 mg/L) were purified from the crude 

residue by preparatory HPLC (gradient of 0% B to 95% B over 17 min, then 95% B to 100% B 
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over 8 min). Fim represents a mixture of fimsbactin A (>90%) and fimsbactins B,C,F (≤10%) as 

judged by NMR and LC-MS analysis (Figures 3.3-3.9). The holo-siderophores were prepared by 

mixing PreAcb, Acb, and Fim with excess Fe(acac)3 in methanol following by concentration and 

trituration with Et2O to provide the pure PreAcb2Fe, Acb2Fe, and FimFe complexes.4,18  

A. baumannii Growth Studies.   

Stock solutions of Acb, Fim, Acb2Fe, and FimFe were prepared in M9 media at 250 μM 

(up to 2.5% final DMSO v/v). Each well of a 96-well plate was filled with 50 μL of M9 media. 50 

µL of the 250 µM test compound stock solutions were added to the first row of a 96 well plate. 

Compounds were serially diluted down the plate to 3.9 μM. An inoculum was made by adding 100 

μL of 0.5 McFarland standard (A. baumannii ATCC 17978 or ATCC 19606T-wt, s1, t6, and t7 

mutants) to 4.0 mL of M9 minimal media supplemented with 350 μM 2,2’-dipyridyl (DIP). 

Inoculum (50 μL) was added to each well for a final concentration of 175 μM DIP per well and a 

serial dilution of test compounds at 62.5-1.95 μM. Growth promotion was determined at 37 °C by 

measuring OD600 using a microplate reader (Molecular Devices SpectraMax Plus 384 plate reader). 

Control growth curves were perfomed in M9 media with 175 μM DIP and no test compounds. DIP 

concentrations were optimized prior to each experiment by serial dilution against A. baumannii 

under the growth conditions described in this section.  All experiments were performed in triplicate 

as independent trials. 

For the biological evaluation of combinations of Acb, Fim, and corresponding ferric 

complexes, a 96-well plate was filled with 40 μL of M9 minimal media per well, 5 μL of each of 

the compounds of interest, a final concentration of 175 μM DIP per well and 50 μL of the inoculum. 

To explore the combination of Acb/Fim, the following concentrations were tested in duplicate in 

all possible combinations: 3.9 μM, 15.6 μM, 62.5 μM. For the combination of Acb/FimFe the 
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following concentrations were tested in duplicate in all possible combinations: Acb 3.9 μM, 15.6 

μM, 62.5 μM; FimFe 0.5 μM, 3.9 μM, 15.6 μM. For the combination of Acb2Fe/Fim the following 

concentrations were tested in duplicate in all possible combinations: Acb2Fe 0.5 μM, 3.9 μM, 15.6 

μM; Fim 3.9 μM, 15.6 μM, 62.5 μM. Growth promotion was determined at 37 °C by measuring 

OD600 using a microplate reader (Molecular Devices SpectraMax Plus 384 plate reader). Control 

growth curves were perfomed in M9 media with 175 DIP and no test compounds. All experiments 

were performed in duplicate as independent trials. 

Determination of FimFe Complex Stoichiometry.   

A solution of 570 μM Fim in methanol was prepared. A fluorescence emission spectrum 

was recorded (λexcitation = 330 nm; λemission = 380 nm). To determine stoichiometry of the complex 

between Fim and Fe(III), aliquots of a methanolic solution of Fe(acac)3 were added 0.044 

equivalents at a time via Hamilton syringe and emission spectra were recorded after each addition. 

Peak fluorescence (Abs380nm) was plotted against Fe(III) equivalents to reveal a 1:1 FimFe 

stoichiometry (Figure 3.11). 

Determination of Apparent KFe for FimFe.   

A stock solution of 100 µM FimFe was prepared in 10 mM HEPES buffer (10 mM HEPES, 

600 mM NaCl, 100 mM KCl, pH 7.4) and an optical absorbance spectrum was obtained from λ = 

300–700 nm (Figure 3.12). While continuously monitoring optical absorbance at 500 nm, EDTA 

was added at a final concentration of 120 μM (1.2 equivalents relative to FimFe). The apparent 

iron-binding affinity (KFe) was determined based on the change in optical absorbance at 500 nm 

after 800 min for two independent trials using the equations provided in the supplementary 

information. 
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N-His6-BauB Expression and Purification.   

The bauB gene from Acinetobacter baumannii (Genbank Accession Number AAT52185) 

was codon optimized for expression in E. coli and cloned into a pET28b vector by GenScript 

Biotech Corporation. The bauB gene was then subcloned into a pET28bTEV vector using 

restriction enzyme-based cloning (Figure 3.19).1 BauB was expressed as the N-terminal 

hexahistidine fusion, N-His6-BauB, in E. coli BL21 (DE3). Briefly, E. coli BL21 (DE3) 

transformed with the BauB expression plasmid were grown in 1 L of terrific broth at 37 °C in a 3 

L baffled flask, in the presence of 50 μg/mL kanamycin to an OD600 of ~0.5. The culture flask was 

cooled to 20 °C and BauB expression was induced by the addition of 0.5 mM IPTG (final 

concentration). Cells were grown overnight (~12 h) at 20 °C. Cells were harvested via 

centrifugation at 4 °C for 30 min (all remaining steps were carried out at 4 °C). Cells were washed 

with lysis buffer (50 mM potassium phosphate pH 8.0, 500 mM NaCl, 5 mM BME, 20 mM 

imidazole, 10% glycerol) and flash frozen in liquid N2 (40 mL total volume). The frozen cell pellet 

was thawed and lysed by two passes through an Emulsiflex C5 (Avestin). The lysate was clarified 

by ultra-centfiguation at 50000g for 35 min. The supernatant was passed through Ni-NTA resin 

and eluted with 300 mM imidazole in lysis buffer. Elution fractions were analyzed by SDS-PAGE 

with visualization by Coomassie blue staining. Fractions containing pure N-His6-BauB were 

combined, dialyzed (50 mM potassium phosphate pH 8.0, 150 mM NaCl, 1 mM DTT, 5% 

glycerol), and concentrated via centrifugal filtration. Protein purity was analyzed by SDS-PAGE 

with visualization by Coomassie blue staining (Figure 3.20). Protein mass were confirmed by ESI-

MS. Purified protein was flash frozen in liquid N2 at 180 μM and stored at –80 °C. 

Determination of Apparent Kd Values for BauB.   
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N-His6-BauB was recovered on ice from a –80 °C freezer stock. A 400 nM BauB stock 

solution was prepared in assay buffer (25 mM Tris-HCl, 8 g/L NaCl, 0.2 g/L KCl, pH 7.4). For 

each measurment, 300 μL of the BauB stock solution was transferred to a fluorescence cuvette 

(HellmaAnalytics High Precision Cell cuvette made of Quartz SUPRASIL; light path 10 x 2 mm) 

in the presence of substrate (PreAcb, PreAcb2Fe, Acb, Acb2Fe, Fim, FimFe) at concentrations 

ranging from 100–1200 nM. Emission spectra were recorded at λemission = 300–400 nm using a 

PerkinElmer LS 55 Luminescence Spectrometer (slit width 10 nm; scan speed 400 nm/min) at 

excitation = 280 nm. Fluorescence intensity at 320 nm was plotted versus substrate concentration 

(nM) and apparent Kd was calculated using nonlinear regression and a one binding site model in 

GraphPad Prism v7.0b (Figure 3.21).1 All experiments were performed in duplicate as 

independent trials. 

Siderophore Competition Studies with Immobilized BauB.   

N-His6-BauB was immobilized on Ni-NTA resin following a literature protocol for 

performing siderophore-affinity chromatography.32 Saturation of the Ni-NTA resin (2.3 cm x 1 cm 

resin volume) with BauB was confirmed by SDS-PAGE analysis of the column flowthrough. The 

Ni-NTA-BauB column was washed thoroughly with phosphate buffer (50 mM potassium 

phosphate pH 8.0, 150 mM NaCl, 1 mM BME, 5% glycerol). A solution of Acb2Fe (5 mL, 0.1 

mg/mL) was loaded onto the column and column was rocked gently for 30 min at 4 °C. Column 

flowthrough was collected and the resin was washed with excess phosphate buffer (5 x 5 mL). 

FimFe (5 mL, 0.1 mg/mL) was then loaded and the column was gently rocked for 30 min at 4 °C. 

The flowthrough was collected and the resin was washed with excess phosphate buffer (5 x 5 mL). 

Acb2Fe (5 mL, 0.1 mg/mL) was then added back onto the column and after rocking for 30 min the 

flowthrough was collected. Aliquots of the column loading solutions and elutions were analyzed 
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by LCMS for the presence of Acb2Fe and FimFe. For Acb2Fe, the extracted ion chromatogram 

(EIC) for m/z = 347, corresponding to the [M+H]+ for apo-Acb, was plotted. For FimFe, the EIC 

for m/z = 627 corresponding to the [M+H]+ for holo-FimFe was plotted. 

DFT Calculations.  

 Stable holo-siderophore complexes with ferric iron were calculated using density 

functional theory56,57 (DFT) in a similar manner as described previously.1 We used the crystal 

structure of the Acb2FeIII(S=5/2) complex bound to BauB (PDB 6FML) as starting geometry of 

the PreAcb2Fe and FimFe ferric complexes. Monte Carlo/MMFF molecular mechanics/dynamics 

was used to explore conformer spaces. Initial structure optimization was performed by using the 

PM3d semi-empirical algorithm (Spartan Linux v10, WaveFunction, Inc.). We employed DFT 

(Density Functional Theory, Gaussian 09, Gaussian Inc.) for calculations using the PBE0 hybrid 

functional (PBE1PBE in Gaussian parlance) with basis sets Def2-SVP and Def2-TZVP. Minima 

were optimized at the level PBE0/Def2-SVP and single-point energies were calculated at level 

PBE0/Def2-TZVP, with scaled thermal-energy corrections from B3LYP/6-31G(d,p).58 Solvent-

based single-point energies were calculated at the same level using the CPCM polarizable 

conductor calculation model for water and the Universal Force Field for atomic radii.59 DFT 

functionals and basis sets were chosen for efficiency and compatibility with ferric 

complexes.60,61,62  

  



104 
 

3.7 Figures and Tables   

Fimsbactin Biosynthetic Gene Clusters 
AbPK1 (GenBank: GCA_002753915.1) 

 

AB042 (GenBank: GCA_001941765.1) 

 

D36 (GenBank: GCA_001399655.1) 

 

Strain ATCC 17978 (GenBank: GCA_001593425)

 

ATCC 17978-mmf (GenBank: GCA_001077675.1) 
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Acinetobactin Biosynthetic Gene Clusters 
AbPK1 (GenBank: GCA_002753915.1)

 

AB042 (GenBank: GCA_001941765.1) 

 

D36 (GenBank: GCA_001399655.1) 

 

Strain ATCC 17978 (GenBank: GCA_001593425)

 

ATCC 17978-mmf (GenBank: GCA_001077675.1) 
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Acinetoferrin/Baumannoferrin Biosynthetic Gene Clusters 

 
AbPK1 (GenBank: GCA_002753915.1)

 

AB042 (GenBank: GCA_001941765.1) 

 

D36 (GenBank: GCA_001399655.1) 

 

Strain ATCC 17978 (GenBank: GCA_001593425)

 

ATCC 17978-mmf (GenBank: GCA_001077675.1) 

 

Figure 3.1. AntiSMASH63 analysis of putative fimsbactin A. baumannii producers identified from 

BLASTp analysis of A. baumannii genomes reveals conservation of acinetobactin and 

baumannoferrin biosynthetic gene clusters (BGCs). The acinetoferrin BGC is the reference in the 

antiSMASH database. Acinetoferrin and baumannoferrin BGCs share homology, so comparison 

for all strains was made to the acinetoferrin BGC.64 
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Figure 3.2: Siderophore biosynthesis in A. baumannii. (a) NRPS assembly lines for acinetobactin 

(top) and fimsbactin A (bottom) share a common precursor, 2,3-DHB, and a common phenolate 

oxazoline motif. (b) DAD at 263 nm (black), EIC at m/z 347 (blue), and EIC at m/z 576 (red) 

chromatograms from LCMS analysis of crude A. baumannii ATCC 17978 supernatant after 

acidification, treatment with XAD-7HP resin, and methanol elution. Same as Figure 1.7. 
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Figure 3.3. Diode array optical absorbance detection (DAD) and extracted ion chromatograms 

(EICs) for fimsbactin A–F [M+H]+ ions from LCMS analysis of A. baumannii ATCC 17978 

culture supernatant extractions (Trial #1) using ESI ionization in positive ion mode. The x-axis 

represents retention time (min) for all chromatograms. 
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Figure 3.4. Diode array optical absorbance detection (DAD) and extracted ion chromatograms 

(EICs) for fimsbactin A–F [M+H]+ ions from LCMS analysis of HPLC-purified fimsbactin A from 

A. baumannii ATCC 17978 (Trial #1) using ESI ionization in positive ion mode. The x-axis 

represents retention time (min) for all chromatograms. 
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Figure 3.5. Diode array optical absorbance detection (DAD) and extracted ion chromatograms 

(EICs) for fimsbactin A–F [M+H]+ ions from LCMS analysis of A. baumannii ATCC 17978 

culture supernatant extractions (Trial #2) using ESI ionization in positive ion mode. The x-axis 

represents retention time (min) for all chromatograms. 
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Figure 3.6. Diode array optical absorbance detection (DAD) and extracted ion chromatograms 

(EICs) for fimsbactin A–F [M+H]+ ions from LCMS analysis of HPLC-purified fimsbactin A from 

A. baumannii ATCC 17978 (Trial #2) using ESI ionization in positive ion mode. The x-axis 

represents retention time (min) for all chromatograms. 
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13C – Reported2 13C – Observed 1H – Reported2 1H - Observed 

1 148.2 148.2 
  

2 145.7 145.7 
  

3 119.3 119.5 6.968 (dd) 6.97 (dt) 
4 118.6 118.7 6.74 (t) 6.74 (t) 
5 117.7 117.9 7.08 (dd) 7.07 (dd) 
6 110.1 110.1 

  

7 166.3 163.6 
  

9 69.1 69.3 4.52 (dd) 4.52 (dd)    
4.61 (dd) 4.60 (m) 

10 66.9 67.2 5.06 (dd) 5.06 (dd) 
11 

    

12 169.9 168.9 
  

13 
  

8.72 (dd) 8.74 (d) 
14 51.5 51.7 4.72 (m) 4.72 (m) 
15 64.3 64.5 4.39 (m) 4.39 (dd)    

4.61 (m) 4.60 (m) 
17 168.7 167.9 

  

18 112.8 112.8 
  

19 149.5 149.5 
  

20 146.0 146.0 
  

21 120.7 120.9 6.97 (dd) 6.97 (dt) 
22 118.6 118.8 6.59 (t) 6.59 (t) 
23 119.6 119.8 7.15 (dd) 7.15 (dd) 
24 167.7 166.5 

  

25 
  

8.23 (dt) 8.26 (t) 
26 38.3 38.5 3.10 (m) 3.09 (m) 
27 25.9 26.4 1.38 (m) 1.38 (m) 
28 23.5 23.7 1.49 (m) 1.49 (m) 
29 46.3 46.5 3.45 (t) 3.45 (t) 
31 170.1 170.1 

  

32 20.1 20.3 1.96 (s) 1.96 (s) 
Table 3.1. NMR characterization data for purified fimsbactin A from this work compared with 

previously reported data from the original isolation and characterization of fimsbactin A.2  
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Figure 3.7. High-resolution ESI MS (positive ion mode) of fimsbactin A purified by prep-HPLC 

from A. baumannii ATCC 17978 culture supernatant (Trial #1). Expected [M+H]+ for 

C26H31N4O11 575.1984, found 575.2056. 
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Figure 3.8. 1H-NMR (600 MHz, DMSO-d6) spectrum of purified fimsbactin A purified by prep-

HPLC from A. baumannii ATCC 17978. The x-axis is chemical shift given in parts per million 

(ppm). The y-axis is arbitrary peak intensity. 
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Figure 3.9. 13C-NMR (151 MHz, DMSO-d6) spectrum of purified fimsbactin A purified by prep-

HPLC from A. baumannii ATCC 17978. The x-axis is chemical shift given in parts per million 

(ppm). The y-axis is arbitrary peak intensity. 
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Figure 3.10. Structures and microbial producers of amino acid-based siderophores fimsbactin A2, 

heterobactin A7, and JBIR-168 and spermidine-based siderophores vibriobactin9, vulnibactin10, 

fluvibactin11, agrobactin12, parabactin13,14, and protochelin15. Iron chelating groups are shown in 

blue. The tetrehdral branch point for metal chelating ligands is highlighted by a yellow circle. 
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Figure 3.11. Fimsbactin A forms a 1:1 complex with Fe(III). Graph depicts fluorescence (λexcitation 

= 330 nm; λemission = 380 nm) vs equivalents of FeCl3 showing a titration end point correlating with 

1:1 stoichiometry. Was performed as two independent trials. Error bars represent standard 

deviation from the mean.  
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Figure 3.12. Optical absorbance spectrum of the holo-FimFe complex at 100 μM in phosphate 

buffer (50 mM potassium phosphate pH 8.0, 150 mM NaCl, 1 mM DTT, 5% glycerol). Molar 

exctinction coefficient (ε) of holo-[Fe(Fim)] was determined to be 4255 M-1 cm-1 at 445 nm. The 

inset shows the visible color of the [Fe(Fim)] solution at 100 μM. 
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Siderophore 
Siderophore:Fe(III) 

Stoichiometrya 
Metal:Ligand Charge 
Transfer Band (λabs) 

Apparent 
log KFe

b 
Apparent             

BauB Kd (nM)c 

PreAcb 2:1 515 nm 27.4 ± 0.2 380 ± 110 (750 ± 160) 

Acb 2:1 570 nm 26.2 ± 0.1 300 ± 100 (160 ± 80) 

Fim 1:1 445 nm 27.1 ± 0.2 360 ± 140 (240 ± 90) 

aSiderophore:Fe stoichiometry was measured by titration of siderophores with Fe(acac)3 monitored by 

quenching of intrinsic siderophore fluorescence. bApparent log KFe values for PreAcb2Fe and Acb2Fe are 

literature values.4 cValues in parentheses are for the ferric holo-siderophore complexes. The apparent Kd 

for Acb and Acb2Fe are literature values.1 Data is reported as mean ± standard deviation from the mean 

for at least two independent trials. 

 

Table 3.2. Siderophore iron binding properties and apparent BauB dissociation constants (Kd). 
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Equations 3.1 

As described in the experimental methods section of the main text, an EDTA competition experiment was 

used to measure the apparent KFe for FimFe at pH 7.4. The following equations were used to calculate 

apparent KFe based on the change in optical absorbance observed at 500 nm for FimFe in the presence of 

1.2 equivalents of EDTA. A KFe value of 1025.1 was used for EDTA at pH 7.4 in final calculations.64 

(1)  𝐾 =  
[ୣ]

[ிయశ][]
                            for the following equilibrium;  [Fe3+] + [L] ⇌ [FeL] 

 

(2) 𝐾ிா் =  
[ிா்]

[ிయశ] [ா்]
        for the following equilibrium; [Fe3+] + [EDTA] ⇌ [FeEDTA]  

 

(3) 𝐾ா௫ =  
ಽ

ಷಶವಲ
          for the following equilibrium; [FeEDTA] + [L] ⇌ [FeL] + [EDTA] 

 

(4) 𝐾ா௫ =  
[ி][ா்]

[ிா்][]
 

 

(5) ∆  =  
௦ಷಽି ௦ಷಽశಶವಲ

ఌಽ
 

 

(6)        𝐾 = 𝐾ிா்  ×  
[ி][ா்]

[ிா்][]
 

 

(7) [𝐹𝑒𝐿] =  
௦ಷಽ

ఌಽ
 

 

(8) [𝐸𝐷𝑇𝐴] = [𝐸𝐷𝑇𝐴]் − ∆         where  [EDTA]T = total EDTA added 

 

(9)   [𝐹𝑒𝐸𝐷𝑇𝐴] =  ∆ 

 

(10)     [𝐿] =  ∆ 

 

(11) KFe = apparent KL 
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Figure 3.13. Titration of holo-Acb2Fe with apo-Fim reveals slow exchange of iron leading to 

apparent complete formation of holo-FimFe. Optical absorbance spectra were collected for each 

concentration after 20 min in phosphate buffer (50 mM potassium phosphate pH 8.0, 150 mM 

NaCl, 1 mM DTT, 5% glycerol). The final optical absorbance spectrum with 210 μM apo-Fim 

added was measured after 20 hours. 
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Figure 3.14. Influence of apo- and holo-siderophores on A. baumannii growth. Line graphs 

depict the growth of A. baumannii ATCC 17978 determined by measuring the optical density at 

600 nm (OD600) as a function of time in the presence of (a) Acb or Acb2Fe and (b) Fim or 

FimFe. Bar graphs depict the comparison of OD600 values after 30 hours in the presence of 

variable concentrations of (c) Acb or Acb2Fe and (d) Fim or FimFe. Error bars represent 

standard deviations from the mean for three independent trials. ****p < 0.0001 
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Figure 3.15. Dose dependent growth promotion of A. baumannii ATCC 17978 by (A) apo-

acinetobactin (Acb), (B) holo-acinetobactin (Acb_Fe), (C) apo-fimsbactin (Fim), and (D) holo-

fimsbactin (Fim_Fe). Line graphs depict the growth of A. baumannii ATCC 17978 in M9 minimal 

medium supplemented with 175 μM 2,2′-dipyridyl (DIP) determined by measuring the optical 

density at 600 nm (OD600) as a function of time in the presence of variable siderophore 

concentrations. All experiments were performed in triplicate. Error bars are shown in Figure 3.16. 

Data from these plots were used to create the line and bar graphs shown in Figure 3.14  
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Figure 3.16. Dose dependent growth promotion of A. baumannii ATCC 17978 by (A) apo-

acinetobactin (Acb), (B) holo-acinetobactin (Acb_Fe), (C) apo-fimsbactin (Fim), and (D) holo-

fimsbactin (Fim_Fe). Line graphs depict the growth of A. baumannii ATCC 17978 in M9 minimal 

medium supplemented with 175 μM 2,2′-dipyridyl (DIP) determined by measuring the optical 

density at 600 nm (OD600) as a function of time in the presence of variable siderophore 

concentrations. Error bars represent standard deviations from the mean for three independent trials. 

Line graphs are shown without error bars for clarity in Figure 3.15. Data from these plots were 

used to create the line and bar graphs shown in Figure 3.14. 
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Figure 3.17. Influence of apo- and holo-siderophore combinations on A. baumannii growth. Bar 

graphs depict the comparison of A. baumannii ATCC 17978 growth measured by optical density 

at 600 nm (OD600) values after 30 hours in the presence of variable concentrations of (a) Fim and 

Acb, (b) Fim and Acb2Fe, and (c) FimFe and Acb. Error bars represent standard deviations from 

the mean for two independent trials. **** p < 0.0001; ns = not significant 
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Figure 3.18. Influence of apo- and holo-siderophore combinations on the growth of A. baumannii 

ATCC 17978. Line graphs depict the growth of A. baumannii ATCC 17978 in M9 minimal 

medium supplemented with 175 μM 2,2′-dipyridyl (DIP) determined by measuring the optical 

density at 600 nm (OD600) as a function of time in the presence of variable concentrations of 

siderophore mixtures. For all graphs, siderophore concentration gradients are provide on the x-

axis and y-axis of the checkerboard. The black line graph represents bacterial growth without 

addition of siderophores. The red line graph represents bacterial growth in the presence of variable 

concentrations of (A) apo-Fim and apo-Acb, (B) holo-FimFe and apo-Acb,  (C) apo-Fim and holo-

Acb2Fe or (D) apo-Fim and holo-FimFe. Error bars represent standard deviations from the mean 

for two independent trials. Data from these plots were used to create bar graphs shown in Figure 

3.17 
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N-His6-BauB in pET28bTEV (cleavable N-term His-tag): 

 

Nucleotide: 

AAGGAGATATACCATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCGAAAACCTGTATTTTCAG⇣GGCC
ATATGTGCGACCAAAAAGTTGCGGATACCACCCAGGCGAGCCAAAAACTGGCGGAGCCGATTACCGTTAAGCAC
GCGCTGGGCACCACCGTGATCGACCACCTGCCGCAGCGTGTGGCGGTTCTGGATATGAACGAAGCGGACTTCCTG
GATCAACTGAACGTTCCGATTATGGGCATGCCGAAAGACTACGTGCCGCACTTTCTGGAGAAGTATAAAAAGGAC
GCGCAGATTCAAGATCTGGGTGCGATCGTTCAGCCGAACATGGAACGTATTTATGCGCTGAAACCGGATCTGATC
CTGATGACCCCGCTGCACGTGAACCAGTACCAAGAGCTGAGCAAGATCGCGCCGACCATTCACTATGACATCAACT
TCAACAACAGCGAAAGCAACCACATTGGCCTGGTTAAAGATCACATGATGACCCTGGGTAAAATCTTTAACAAAG
AGGACCTGGCGCGTCAGAAAGTGAGCGAGCTGGATGAACAAGTGAAGCAGGTTCAAGCGGTGACCGCGAACCG
TCCGGAACGTGCGCTGGTTGTGCTGCACAACAACGGTGCGTTCAGCAACTTTGGCATTCAGAGCCGTTACGGTTTC
ATCTTTAACGCGTTCGGCGTTAAGCCGGCGAGCGGTGTGGTTGACACCAGCCTGCACGGTCAACCGATTAGCAGC
GAGTTTATCAAAAAGGCGGACCCGGATATCCTGTATATTGTTGATCGTACCGCGGTGATGGAGCACCGTCCGAAC
ATCAACGCGGCGAGCGTGGAAAACCCGCTGCTGCGTCAGACCAAAGCGTGGAAGAACGGCCGTGTTATTTTCGTT
GATGCGGATGCGTGGTACACCACCGCGGCGAGCCCGACCAGCCTGAAGATCGTTATGGAAGACGTGAAAAAGGG
TTATCAATAAAAGCTT 

 

Amino Acid: 

GSSHHHHHHSSGENLYFQ⇣GHMCDQKVADTTQASQKLAEPITVKHALGTTVIDHLPQRVA 

VLDMNEADFLDQLNVPIMGMPKDYVPHFLEKYKKDAQIQDLGAIVQPNMERIYALKPDLI 

LMTPLHVNQYQELSKIAPTIHYDINFNNSESNHIGLVKDHMMTLGKIFNKEDLARQKVSE 

LDEQVKQVQAVTANRPERALVVLHNNGAFSNFGIQSRYGFIFNAFGVKPASGVVDTSLHG 

QPISSEFIKKADPDILYIVDRTAVMEHRPNINAASVENPLLRQTKAWKNGRVIFVDADAW 

YTTAASPTSLKIVMEDVKKGYQ 

 

Figure 3.19. Nucleotide and amino acid sequence of N-His6-BauB in pET28bTEV (TEV-

cleavable N-term hexahistidine-tag). Start and stop codons are underlined. The TEV cleavage site 

is indicated by an arrow. The 969-bp bauB gene from Acinetobacter baumannii (Genbank 

Accession Number AAT52185) was used as the sequence template for subcloning. 
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Figure 3.20. SDS-PAGE analysis of Ni-NTA purified N-His6-BauB (~36.1 kDa). Gel was stained 

using Coomassie blue dye. This image was also used in the supplementary information for our 

manuscript describing the x-ray crystal structure of BauB.1 
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Figure 3.21. Siderophore-dependent fluorescence quenching of N-His6-BauB. Graphs depict 

intrinsic tryptophan fluorescence quenching (y-axis; excitation = 280 nm; emission = 340 nm) of 400 

nM N-His6-BauB in the presence of variable siderophore concentrations (x-axis). Apparent Kd 

values were calculated using a single-binding mode curve-fitting model in GraphPad Prism version 

7.0b. Error bars represent standard deviations for two independent trials. 
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Figure 3.22. Acb2Fe and FimFe compete for BauB binding. N-His6-BauB was immobilized on 

Ni-NTA resin and loaded with (a) Acb2Fe or (b) FimFe, washed with phosphate buffer, and 

eluted with a competing holo-siderophore. Column elutions were analyzed by LCMS for Acb2Fe 

(m/z = 347) and FimFe (m/z = 627) after each step. Extracted ion chromatograms (EIC) are 

shown for the initially bound holo-siderophore. EICs are representative for two independent 

trials. 
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Figure 3.23. Structural comparison of PreAcb2Fe, Acb2Fe, and FimFe complexes. DFT calculated 

structures of the monoanionic (a) 1:1 [FimFe]- and (b) 2:1 cis-[PreAcb2Fe]- complexes (see 

experimental methods for DFT parameters). (c) Experimentally observed structure of the 

monoanionic cis-[Acb2Fe]- complex bound to the siderophore binding protein BauB (PDB 6MFL). 

(d) Overlay of all three structures highlighting similarity of geometry and placement of ligands 

(ox, oxazoline; cat, catecholate; hx, hydroxamate; im, imidazole) around the ferric iron center. (e) 

Surface view of the siderophore binding pocket of BauB occupied by cis-[Acb2Fe]- (PDB 6MFL). 
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Figure 3.24. Schematic overview of the PreAcb/Acb and Fim iron acquisition pathways in A. 

baumannii. The Fim pathway has not been experimentally characterized and is hypothesized based 

on homology to related pathways in Gram-negative bacteria. Periplasmic BauB is highlighted to 

show interactions with both PreAcb/Acb and Fim connecting the two pathways through 

competition for the periplasmic siderophore-binding protein. 
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Figure 3.25. Structures and m/z values for [M+H]+ molecular ions of fimsbactin A–F.2 Structural 

differences are highlighted in red. 
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Acinetobactin BGCs 
ATCC 19606 (GenBank: GCA_000162295.1) 

 

ATCC 19606 (GenBank: GCA_002811175.1) 

 

Acinetoferrin/Baumannoferrin BGCs 

ATCC 19606 (GenBank: GCA_000162295.1) 

 

ATCC 19606 (GenBank: GCA_002811175.1) 

 

Figure 3.26. Antismash analysis of two deposited genomes of A. baumannii ATCC 19606 turned 

up acinetobactin and acinetoferrin/baumannoferrin as the only siderophore BGCs present in the 

genome. No fimsbactin BGCs were detected. 
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Figure 3.27. Dose dependent influence of apo-Fim and holo-FimFe on A. baumannii ATCC 19606 

growth. Line graphs depict the growth of wild-type A. baumannii ATCC 19606 in M9 minimal 

medium supplemented with 175 μM 2,2′-dipyridyl (DIP) determined by measuring the optical 

density at 600 nm (OD600) as a function of time in the presence of variable siderophore 

concentrations. Error bars represent standard deviations from the mean for three independent trials. 
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Figure 3.28. Dose dependent growth promotion of A. baumannii ATCC 19606 strains by holo-

FimFe. Line graphs depict the growth of wild-type (wt), s1-mutant (insertional mutant in basD, 

deficient in PreAcb/Acb biosynthesis), t6-mutant (insertional mutation in bauA, deficient in 

PreAcb/Acb import to periplasm), and t7-mutant (insertional mutation in bauD, deficient in 

PreAcb/Acb import to cytoplasm) strains of A. baumannii ATCC 19606 in M9 minimal medium 

supplemented with 175 μM 2,2′-dipyridyl (DIP) determined by measuring the optical density at 

600 nm (OD600) as a function of time in the presence of variable siderophore concentration. Error 

bars represent standard deviations from the mean for three independent trials. 
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4.1 Preface  
 This chapter was written by TJB. TJB, LF, DEG and TAW contributed to the work in this 

chapter. TJB isolated Fimsbactin F, performed characterization, BauB fluorescent quenching 

binding studies and metal titration assays. LF performed all growth curves and protein expression 

and purification. DEG performed all DFT calculations. TAW served as principal investigator and 

oversaw experimental design. 

4.2 Abstract  
Exploring the concept of siderophore redundancy in pathogenic bacteria has been one of 

interest in recent decades. Understanding the inter-workings of the relationship of the production 

of siderophores in a “siderophore cocktail”, is an area we sought to help elucidate. Herein, we 

report the production, isolation, characterization and protein interactions of a previously 

underexplored Fimsbactin isomer, Fimsbactin F. We investigate the relationship between 

Fimsbactin F and other two other A. baumannii siderophores, acinetobactin and Fimsbactin A, 

through competition assays. Furthermore, we sought to understand the metal preference and 

selectivity of these siderophores. This was achieved through the titrations of four known A. 

baumannii siderophores (Acb, PreAcb, FimA and FimF) and one synthetic siderophore mimic 

(OxPreAcb) with six metal chloride solutions (iron, copper, nickel, cobalt, zinc and magnesium). 

We observed the ability of these small molecules to bind a wide range of metals and set the stage 

for further explore of the role of PreAcb in zinc homeostasis particularly.   

4.3 Introduction   

 In Chapter 1, and then again in Chapter 3, we introduced the concept of apparent 

siderophore redundancy as a potential evolutionary advantage for bacterial virulence. In this 
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chapter, we sought to further investigate the need or purpose for pathogenic bacteria to synthesize 

and utilize multiple siderophore scaffolds to acquire essential nutrients. Though there is often 

uneven production of each individual siderophore in most siderophore cocktails, many pathogenic 

bacteria produce multiple sideorphores of their own—including E. coli, M. tuberculosis and the 

focus of this dissertation, A. baumannii.1,2,3 Additionally, pathogens like S. aureus can utilize 

xenosiderophores, or siderophores produced by other bacteria, as a means to a gain competitive 

over neighboring colonies. 

 As highlighted numerous times throughout this dissertation, A. baumannii synthesizes a 

siderophore cocktail comprised of three classes of siderophores—acinetobactin, the fimbactins, 

and the baumannoferrins Figure 4.1. In chapter 3, we explored Fimsbactin A and the relationship 

between acinetobactin (Acb) and Fimsbactin A (FimA). We highlighted the importance of balance 

in the relative concentrations of siderophores in the ability to provide a competitive advantage. 

Herein, we aim to explore the apparent siderophore redundancy of the Fimsbactin siderophore 

class. This class is comprised of Fimsbactin isomers A-F, Figure 4.2, which contain multiple iron 

chelating groups including hydroxamates and catechols.4 In particular, we were interested in the 

relationship between FimA and Fim F— a shunt biosynthetic product lacking the seryl-O-2,3-

DHB ester, and we hypothesized that an enzymatic interconversion between FimA and FimF might 

result in a single biologically relevant siderophore entity. The following chapter outlines a series 

of studies aimed at elucidating the apparent siderophore reduncies in pathogenic A. baumannii, 

particularly as it relates to the complete Fimsbactin-iron acquisition pathway.  

4.4 Results and Discussion  

Purification of Acb, FimA and FimF from A. baumannii ATCC 17978.  
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In Chapter 3, the isolation, purification and evaluation of Fimsbactin A was discussed in 

depth. Herein, we highlight the isolation and evaluation of isomer Fimsbactin F. In this regard, we 

isolated crude Acb and Fimsbactins A and F from A. baumannnii ATCC 17978 grown in M9 

minimal media supplement with 2,2’-dipyridyl (DIP). LC-MS analysis of crude supernatant broth, 

seen in Figures 4.3 and 4.4, identified Acb as the most produced siderophore, followed by 

Fimsbactin A and Fimsbactin F, respectively. Preparatory HPLC of the crude mixtures allowed 

for separation, isolation and purification of these three siderophores (Acb: 31 mg/L, FimA: 5 mg/L 

and FimF: 2 mg/L), and the full characterization of Fimsbactin F is highlighted in Figures 4.5-4.9.  

Iron-Binding properties of FimF 

 Similarly to that previously described for acinetobactin and fimsbactin A, we determined 

the iron binding affinity of FimF using a competitive binding assay carried out in the presence of 

EDTA. The iron-binding affinity of FimF was consistent with those previously reported for Acb 

and FimA (LogKFe = 25.9 for FimF compared to 27.4, 26.2 and 27.1 for PreAcb, Acb and FimA, 

respectively), suggesting no significant iron-binding advantage for the production of any one 

siderophore (Table 4.1). In addition to iron binding, we sought to investigate the dose-dependent 

influence of FimF on the whole cell growth of A. baumannii. We observed dose-dependent growth 

promotion of whole cell A. baumannii cultured in the presence of Fimsbactin F, with an enhanced 

effect observed for the holo-variant (Figure 4.10 and 4.11). These findings are consistent with 

previous sideorphores growth studies, which demonstrate increased growth promotion of 

siderophores doped in the metal-bound form.   

Siderophore competition assays 

 Our previous work highlighted the necessity for balance in siderophore combinations, as 

we saw an inhibitory effect on whole cell growth of A. baumannii at high concentrations of FimA, 
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in the presence of both low and high concentrations of Acb. Thus, to explore possible new 

relationships, we conducted checkerboard-combination growth studies with purified FimF in 

combination with Acb or FimA. We first examined the effect that combinations of FimA and FimF 

in both apo- and holo-forms had on the whole cell growth of A. baumannii.  Interestingly, we 

observed an inhibitory effect at high concentrations of FimA that was strikingly similar to the 

observations gathered in our prior work on FimA and Acb cooperativity. Notably, this inhibition 

can be mitigated by the addition of holo-siderophore to the apo-FimA populated environment 

(Figures 4.12 and 4.13). However, in combinations of Acb and FimF, no inhibitory effect was 

observed; instead, higher concentrations of siderophore led to increased growth promotion across 

the board, suggesting a cooperative, as oppose to competitive, relationship between Acb and FimF 

(Figure 4.14 and 4.15).     

Siderophore binding to BauB  

 In addition to metal binding, siderophore competition cocktails, and effects on whole cell 

growth, we were particularly interested in the ability of FimF to bind to periplasmic protein 

BauB—since we previously demonstrated a direct competition between Acb and FimA for BauB 

through fluorescence quenching assays.5 Thus, through intrinsic tryptophan fluorescence 

quenching assays, we identified siderophore-dependent quenching and were able to calculate 

apparent Kd values for BauB binding of both the apo- as well as the holo- siderophores to be 297.4 

nM and 360.3 nM, respectively, using a single-binding mode curve-fitting model in GraphPad 

Prism (Figure 4.16, Table 4.1). These values indicate BauB binding of both FimF and FimF-Fe—

with a higher affinity observed for the iron-bound form. These dissociation constants are consistent 

with the BauB binding affinities observed for other A. baumannii siderophores, suggesting 
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potential competition for the siderophore transport pathway involved in the acquisition of iron 

required for bacterial virulence.   

Fimsbactin A potential cleavage by esterase enzymes  

 Through studies of Trojan horse siderophore-antibiotic conjugates, work by Wencewicz et 

al. suggests Fimsbactin A fails to transverse the inner membrane to reach the cytoplasm of the 

cell.6 In must be noted, however, that the fimsbactin mimic utilized in the studies by Wencewicz 

et al are not able to be hydrolyzed; this ability to be hydrolyzed might be required to enter into the 

cytoplasm. Our studies in this chapter draw a parallel between A. baumannii siderophores Acb and 

FimF—as both siderophores possess similar iron affinities, bind in 2:1 siderophore-iron 

complexes, and behave similarly in combination growth studies. However, in order to help 

elucidate apparent siderophore redundancies, we sought to investigate if FimA can be cleaved by 

an esterase to afford FimF—a molecule that might be able to cross the inner membrane. To test 

this hypothesis, we are currently expressing and purifying FbsM—a thioesterase enzyme encoded 

for in the Fimsbactin gene cluster.4 Additionally, our lab is expressing and purifying BesA—a 

common ferri-bacillibactin esterase which could also potentially hydrolyze the FimA ester to 

afford FimF.7 With these enzymes in hand, future efforts will explore possible cleavage of the 

FimA ester in an in vitro assay coupled to LCMS detection. However, based upon our current 

understanding of the siderophore cocktail cooperativity, our updated working model of the 

transport uptake pathways of the siderophore cocktail of A. baumannii is shown in Figure 4.20.  

According to this working model, Fimsbactin A is biosynthesized in the cytoplasm and 

effluxed out of the cell, where the siderophore can then bind what would otherwise be bio-

unavailable iron.  The holo-siderophore is then imported into the periplasm via outer-membrane 

transport protein FbsN. Once in the periplasm, an esterase enzyme may facilitate the conversion 
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of FimA to FimF, at which time the iron may be reduced by FbsP from Fe(III) to Fe(II) and pass 

into the cytoplasm through inner membrane FeoAB transporters. The now apo-FimF might then 

bind with BauB (as shown to be possible by our fluorescence quenching assays), potentially 

forming a 2:1 complex with PreAcb or Acb and iron, and be transported through inner-membrane 

transport protein BauCDE. Once in the cytoplasm, FimF might then be recycled into FimA through 

FimA biosynthesis, and the cycle would repeat.  

Siderophore metal binding assays 

  While the vast majority of the work with and studies of siderophores have centered on iron 

binding, metal binding specificity and metal affinities may distinguish these seemly redundant 

siderophores as multifunctional collections of multipurpose small molecule metal chelators with 

important implications in metal homeostasis beyond iron.  In this light, aiming to explore metal 

chelation selectivity, we conducted fluorescence titration assays of four siderophores of A. 

baumannii (PreAcb, Acb, FimA and FimF), along  with one synthetic analog and growth inhibitor 

(OxPreAcb—discussed at length in Chapters 5 and 6), with a panel of six metals (iron, copper, 

nickel, cobalt, zinc and magnesium). Across the board, iron promoted quenching was most 

pronounced, indicating a distinct preference for iron binding (or iron is just a better quencher), 

with FimA possessing the highest preference (Figures 4.21-4.27). In addition, we were able to 

observe siderophore-metal binding with copper, nickel and cobalt, as well, which supports the 

potential role of siderophores in maintaining metal homeostasis in pathogenic bacteria. 

Interestingly, we observed a small fluorescence enhancement with addition of magnesium to 

siderophores in solution and a large enhancement upon the addition of zinc; notably, PreAcb-zinc 

binding produced a large fluorescence response, reaching maximum detection limits upon the 

addition of less than 0.2 equivalents of zinc. While we are still working to better understand this 



156 
 

result, we hypothesize unique interactions between zinc and the metal chelating functional groups 

present in the siderophores of A. baumannii are responsible for the unusual increase in fluorescence 

upon metal binding—as other small molecule siderophores, such as pyoverdin, containing 

hydroxmate and catecholate metal binding motifs are known to be of vital importance for optimal 

growth in the presence of zinc in Pseudomonas aerginosa.8  It must be noted, however, that 

fluorescence quenching was observed in the case of zinc titration with siderophore analog 

OxPreAcb. We hypothesize that this structurally rigidified synthetic molecule may allow for 

unique metal binding modes which differs from the natural PreAcb/Acb siderophore systems. 

Current efforts with our collaborator Dr. Daryl Giblin are ongoing to investigate metal preference 

via DFT calculations of these metal complexes.   

4.5 Outlook and Conclusions  

In conclusion, we isolated, purified and characterized a previously under-studied A. 

baumannii siderophore, Fimsbactin F. We demonstrated the ability of FimF to promote growth, as 

well as bind iron, and we determined both siderophore-iron binding stoichiometry and BauB 

binding affinity for the truncated FimA analog (FimF). Current efforts in our laboratory are aimed 

at investigating the relationship between FimA and FimF through purification of esterase and 

thioesterase enzymes to probe the apparent redundancy of fimsbactin production in A. baumannii. 

In addition, in this chapter, we sought to explore the metal preference of A. baumannii siderophores 

(PreAcb, Acb, FimA and FimF) and synthetic inhibitor (OxPreAcb) in an effort to better 

understand the role of siderophore cocktails in bacterial metal homeostasis. We discovered a 

distinct preference for siderophore iron-binding but identified the ability of the screened 

siderophores and siderophore analog to bind other metals such as copper and cobalt. Most notably, 
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there appears to be a unique relationship between PreAcb and zinc which we believe warrants 

further study. .  

4.6 Materials and Methods  
Strains, Materials, and Instrumentation.  

Growth studies were conducted using A. baumannii ATCC 17978 and ATCC 19606T. Pre-

cultures and 96-well plate A. baumannii growth assays were performed in filter-sterilized M9 

minimal media. M9 minimal media was prepared for all experiments as previously described.9,10,11 

Samples for LC-MS were prepared in 0.45 μM PTFE mini-UniPrep vials from Agilent. All 

preparatory HPLC was performed using a Beckman Coulter SYSTEM GOLD 127P solvent 

module and 168 detector with a Phenomenex Luna 10u C18(2) 100A column, 250 × 21.20 mm, 

10 μm with guard column. Prep HPLC was performed with a mobile phase of 5 mM ammonium 

acetate in (A) water and (B) acetonitrile, and data were processed using 32 Karat software, v7.0. 

LC-MS was performed on an Agilent 6130 quadrupole LC-MS with G1313 autosampler, G1315 

diode array detector, and 1200 series solvent module. A Phenomenex Gemini C18 column, 50 × 2 

mm, 5 μm with guard column was used for all LC-MS separations. LC-MS mobile phases were 

0.1% formic acid in (A) water and (B) acetonitrile, and data were processed using G2710 

ChemStation software. NMR was performed on a Varian Unity Inova-600 MHz instrument with 

a cold probe. Bacterial growth studies were performed using polystyrene 96-well plates with 

polystyrene lids. OD600 measurements were taken on a Molecular Devices SpectraMax Plus 384 

plate reader. 

Isolation and purification of Acb, FimA and FimF.  

Acinetobactin (Acb), Fimsbactin A (FimA) and Fimsbactin F were isolated and purified 

from A. baumannii ATCC 17978 cultures using a modified literature procedure.9,12 PreAcb and 
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OxPreAcb were synthesized as described previously by our group.5,9 Briefly, 1 L cultures of A. 

baumannii ATCC 17978 were grown overnight in M9 minimal media. Cells were pelleted and the 

supernatant was adjusted to pH ~6 using citric acid. XAD-7HP resin was added to the supernatant 

and the mixture was shaken gently. The mixture was filtered and the resin was washed with 

methanol. The methanol washings were combined and concentrated via rotary evaporation under 

reduced pressure. Acb (retention time 12 min, 31 mg/L), FimA (retention time 15 min, 5 mg/L) 

and FimF (retention time 13 min, 2 mg/L) were purified from the crude residue by preparatory 

HPLC (gradient of 0% B to 95% B over 17 min, then 95% B to 100% B over 8 min). The holo-

siderophores were prepared by mixing PreAcb, Acb, FimA and FimF with excess Fe(acac)3 in 

methanol following by concentration and trituration with Et2O to provide the pure PreAcb2Fe, 

Acb2Fe, FimAFe and FimF2Fe complexes.9,10  

A. baumannii Growth Studies.   

Stock solutions of FimF and FimFFe were prepared in M9 media at 250 μM (up to 2.5% 

final DMSO v/v). Each well of a 96-well plate was filled with 50 μL of M9 media. 50 µL of the 

250 µM test compound stock solutions were added to the first row of a 96 well plate. Compounds 

were serially diluted down the plate to 3.9 μM. An inoculum was made by adding 100 μL of 0.5 

McFarland standard (A. baumannii ATCC 17978) to 4.0 mL of M9 minimal media supplemented 

with 350 μM 2,2’-dipyridyl (DIP). Inoculum (50 μL) was added to each well for a final 

concentration of 175 μM DIP per well and a serial dilution of test compounds at 62.5-1.95 μM. 

Growth promotion was determined at 37 °C by measuring OD600 using a microplate reader 

(Molecular Devices SpectraMax Plus 384 plate reader). Control growth curves were performed in 

M9 media with 175 μM DIP and no test compounds. DIP concentrations were optimized prior to 
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each experiment by serial dilution against A. baumannii under the growth conditions described in 

this section.  All experiments were performed in triplicate as independent trials. 

For the biological evaluation of combinations of FimA, FimF, and corresponding ferric 

complexes, a 96-well plate was filled with 40 μL of M9 minimal media per well, 5 μL of each of 

the compounds of interest, a final concentration of 175 μM DIP per well and 50 μL of the inoculum. 

To explore the combination of FimA/FimF, the following concentrations were tested in duplicate 

in all possible combinations: 3.9 μM, 15.6 μM, 62.5 μM. For the combination of FimAFe/FimF 

the following concentrations were tested in duplicate in all possible combinations: FimAFe 0.5 

μM, 3.9 μM, 15.6 μM; FimF 3.9 μM, 15.6 μM, 62.5 μM. For the combination of FimA/FimFFe 

the following concentrations were tested in duplicate in all possible combinations: FimA 3.9 μM, 

15.6 μM, 62.5 μM; FimFFe 0.5 μM, 3.9 μM, 15.6 μM. Growth promotion was determined at 37 

°C by measuring OD600 using a microplate reader (Molecular Devices SpectraMax Plus 384 plate 

reader). Control growth curves were performed in M9 media with 175 μM DIP and no test 

compounds. All experiments were performed in duplicate as independent trials. 

For the biological evaluation of combinations of FimF, Acb, and corresponding ferric 

complexes, a 96-well plate was filled with 40 μL of M9 minimal media per well, 5 μL of each of 

the compounds of interest, a final concentration of 175 μM DIP per well and 50 μL of the inoculum. 

To explore the combination of FimF/Acb, the following concentrations were tested in duplicate in 

all possible combinations: 3.9 μM, 15.6 μM, 62.5 μM. For the combination of FimFFe/Acb the 

following concentrations were tested in duplicate in all possible combinations: FimFFe 0.5 μM, 

3.9 μM, 15.6 μM; Acb 3.9 μM, 15.6 μM, 62.5 μM. For the combination of FimF/Acb2Fe the 

following concentrations were tested in duplicate in all possible combinations: FimF 3.9 μM, 15.6 

μM, 62.5 μM; Acb2Fe 0.5 μM, 3.9 μM, 15.6 μM. Growth promotion was determined at 37 °C by 
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measuring OD600 using a microplate reader (Molecular Devices SpectraMax Plus 384 plate reader). 

Control growth curves were performed in M9 media with 175 μM DIP and no test compounds. All 

experiments were performed in duplicate as independent trials. 

Determination of FimFFe Complex Stoichiometry.   

A solution of 570 μM FimF in methanol was prepared. A fluorescence emission spectrum 

was recorded (λexcitation = 330 nm; λemission = 380 nm). To determine stoichiometry of the complex 

between Fim and Fe(III), aliquots of a methanolic solution of Fe(acac)3 were added 0.044 

equivalents at a time via Hamilton syringe and emission spectra were recorded after each addition. 

Peak fluorescence (Abs380nm) was plotted against Fe(III) equivalents to reveal a 2:1 FimFFe 

stoichiometry (Figure 4.18). 

Determination of Apparent KFe  for FimFFe.   

A stock solution of 100 µM FimFFe was prepared in 10 mM HEPES buffer (10 mM 

HEPES, 600 mM NaCl, 100 mM KCl, pH 7.4) and an optical absorbance spectrum was obtained 

from λ = 300–700 nm (Figure 4.17). While continuously monitoring optical absorbance at 500 

nm, EDTA was added at a final concentration of 120 μM (1.2 equivalents relative to FimFFe). The 

apparent iron-binding affinity (KFe) was determined based on the change in optical absorbance at 

500 nm after 800 min for two independent trials using the equations provided in the supplementary 

information. 

N-His6-BauB Expression and Purification.   

The bauB gene from Acinetobacter baumannii (Genbank Accession Number AAT52185) 

was codon optimized for expression in E. coli and cloned into a pET28b vector by GenScript 

Biotech Corporation. The bauB gene was then subcloned into a pET28bTEV vector using 
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restriction enzyme-based cloning.14 BauB was expressed as the N-terminal hexahistidine fusion, 

N-His6-BauB, in E. coli BL21 (DE3) as described in Chapter 3. Protein purity was analyzed by 

SDS-PAGE with visualization by Coomassie blue staining. Protein mass were confirmed by ESI-

MS. Purified protein was flash frozen in liquid N2 at 180 μM and stored at –80 °C. 

Determination of Apparent Kd Values for BauB.   

N-His6-BauB was recovered on ice from a –80 °C freezer stock. A 400 nM BauB stock 

solution was prepared in assay buffer (25 mM Tris-HCl, 8 g/L NaCl, 0.2 g/L KCl, pH 7.4). For 

each measurment, 300 μL of the BauB stock solution was transferred to a fluorescence cuvette 

(HellmaAnalytics High Precision Cell cuvette made of Quartz SUPRASIL; light path 10 x 2 mm) 

in the presence of apo- and holo-FimsbactinF at concentrations ranging from 100–1200 nM. 

Emission spectra were recorded at λemission = 300–400 nm using a PerkinElmer LS 55 

Luminescence Spectrometer (slit width 10 nm; scan speed 400 nm/min) at excitation = 280 nm. 

Fluorescence intensity at 320 nm was plotted versus substrate concentration (nM) and apparent Kd 

was calculated using nonlinear regression and a one binding site model in GraphPad Prism v7.0b 

(Figure 4.16, Table 4.1).14 All experiments were performed in duplicate as independent trials. 

Metal Titration Studies.   

A 500 μM stock solution of apo-small molecule (PreAcb, Acb, FimA, FimF or OxPreAcb) 

was prepared in methanol. 300 μL of the small molecule stock solution was transferred to a 

fluorescence cuvette (HellmaAnalytics High Precision Cell cuvette made of Quartz SUPRASIL; 

light path 10 x 2 mm). An emission spectra was recorded at λemission = 300–400 nm using a 

PerkinElmer LS 55 Luminescence Spectrometer (slit width 10 nm; scan speed 400 nm/min) at 

excitation = 280 nm. 10 mM metal chloride stock solutions were prepared (Fe3+, Ni2+, Zn2+, Cu2+, 
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Co2+ and Mg2+). 1 µL portions of the 10 mM metal chloride stock solutions were added to the 300 

μL 500 μM small molecule solution. Following each addition, the solution was gently mixed and 

an emission spectra was recorded. In the case of PreAcb and Zinc, absorption maxed out the 

detector limits following less than 0.2 equivalents added. To obtain a more accurate view of the 

absorption from the addition of Zinc, experiment was re-ran using 0.0066 equivalent additions of 

zinc chloride.  Fluorescence intensity at 460 nm was plotted versus equivalents of metal ion in 

GraphPad Prism v7.0b (Figures 4.21-4.27, Table 4.1). All experiments were performed in 

duplicate as independent trials. 
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4.7 Figures and Tables   

 

 

Figure 4.1: Siderophores of Acinetobacter baumannii. 
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Figure 4.2: Fimsbactin siderophores A-F. 
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Figure 4.3: DAD at 263 nm (black), EIC at m/z 347 (blue), EIC at m/z 576 (red) ), and EIC at m/z 

439 (green) chromatograms from LCMS analysis of crude A. baumannii ATCC 17978 supernatant 

after acidification, treatment with XAD-7HP resin, and methanol elution. 
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Figure 4.4: Diode array optical absorbance detection (DAD) and extracted ion chromatograms 

(EICs) for fimsbactin A–F [M+H]+ ions from LCMS analysis of culture supernatant extraction 

from A. baumannii ATCC 17978 using ESI ionization in positive ion mode. The x-axis represents 

retention time (min) for all chromatograms. 
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Figure 4.5: Diode array optical absorbance detection (DAD) and extracted ion chromatograms 

(EICs) for Fimsbactin F [M+H]+ ions from LCMS analysis using positive ion mode of A. 

baumannii ATCC 17978 culture supernatant HPLC-Prep purified. The x-axis represents retention 

time (min) for all chromatograms  
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Figure 4.6: Diode array optical absorbance detection (DAD) and extracted ion chromatograms 

(EICs) for Fimsbactin-F [M+H]+ ions from LCMS analysis using positive ion mode of A. 

baumannii ATCC 17978 culture supernatant HPLC-Prep purified. Fimsbactin F-Fe ionizes as 

Fimsbactin-F ion [M+H]+  The x-axis represents retention time (min) for all chromatograms  
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Figure 4.7: High-resolution ESI MS (positive ion mode) of Fimsbactin F purified by prep-HPLC 

from A. baumannii ATCC 17978 culture supernatant. Expected [M+H]+ for C19H27N4O8 439.1823, 

found 439.1817. 
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Figure 4.8: 1H-NMR (600 MHz, CD3OD) spectrum of purified Fimsbactin F purified by prep-

HPLC from A. baumannii ATCC 17978. The x-axis is chemical shift given in parts per million 

(ppm). The y-axis is arbitrary peak intensity.  
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Figure 4.9A: 13C-NMR (151 MHz, CD3OD) spectrum of purified Fimsbactin F purified by prep-

HPLC from A. baumannii ATCC 17978. The x-axis is chemical shift in parts per million (ppm). 

The y-axis is arbitrary peak intensity.  
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Figure 4.9B: COSY-NMR (CD3OD) spectrum of purified Fimsbactin F purified by prep-HPLC 

from A. baumannii ATCC 17978. 



172 
 

 

Figure 4.9C: HMBC-NMR (CD3OD) spectrum of purified Fimsbactin F purified by prep-HPLC 

from A. baumannii ATCC 17978. 
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Figure 4.9D: HSQC-NMR (CD3OD) spectrum of purified Fimsbactin F purified by prep-HPLC 

from A. baumannii ATCC 17978. 
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Figure 4.10: Dose dependent growth promotion of A. baumannii ATCC 17978 by apo-Fimsbactin 

F and holo-Fimsbactin F. Line graphs depict the growth of A. baumannii ATCC 17978 in M9 

minimal media supplemented with 175 µM 2,2’-dipyridyl (DIP) determined by measuring the 

optical density at 600 nm (OD600) as a function of time in the presence of variable siderophore 

concentrations. All experiments were performed in triplicate. Data from these plots were used to 

crease the bar graphs in Figure 4.11. 
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Figure 4.11: Influence of apo- and holo-siderophore on A. baumannii growth depicting the 

comparison of OD600 values after 30 hours in the presence of variable concentrations of FimF and 

FimF2Fe. Error bars represent standard deviations from the mean for three independent trials. 

****p<0.0001, ***p<0.001. 
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Figure 4.12: Influence of apo- and holo-siderophore combinations on A. baumannii growth. Bar 

graphs depict the comparison of A. baumannii ATCC 17978 growth measured by optical density 

at 600 nm (OD600) values after 30 hours in the presence of variable concentrations of (a) FimA 

and FimF, (b) FimAFe and FimF, and (c) FimA and FimF2Fe. Error bars represent standard 

deviations from the mean for two independent trials. ****p<0.0001; **p<0.01; *p<0.1; ns = not 

significant. Figure 4.13 shows full growth curve data. 



177 
 

 

  



178 
 

 

  



179 
 

 

Figure 4.13: Influence of apo- and holo-siderophore combinations on the growth of A. baumannii 

ATCC 17978. Line graphs depict the growth of A. baumannii ATCC 17978 in M9 minimal media 

supplemented with 175 µM 2,2’-dipyridyl (DIP) determined by measuring the optical density at 

600 nm (OD600) as a function of time in the presence of variable concentrations of siderophore 

mixtures. For all graphs, siderophore concentration gradients are provide on the x-axis and y-axis 

of the checkerboard. The black line graph represents bacterial growth without addition of 

siderophores. The red line graph represents bacterial growth in the presence of variable 

concentrations of (A) apo-FimA and apo-FimF, (B) holo-FimAFe and apo-FimF, or (C) apo-FimA 

and holo-FimF2Fe. Error bars represent standard deviations from the mean for two independent 

trials. Data from these plots were used to create bar graphs shown in Figure 4.12 



180 
 

 

Figure 4.14: Influence of apo- and holo-siderophore combinations on A. baumannii growth. Bar 

graphs depict the comparison of A. baumannii ATCC 17978 growth measured by optical density 

at 600 nm (OD600) values after 30 hours in the presence of variable concentrations of (a) Acb and 

FimF, (b) Acb2Fe and FimF, and (c) Acb and FimF2Fe. Error bars represent standard deviations 

from the mean for two independent trials. **p<0.01; *p<0.1; ns = not significant. Figure 4.15 

shows full growth curve data. 
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Figure 4.15: Influence of apo- and holo-siderophore combinations on the growth of A. baumannii 

ATCC 17978. Line graphs depict the growth of A. baumannii ATCC 17978 in M9 minimal media 

supplemented with 175 µM 2,2’-dipyridyl (DIP) determined by measuring the optical density at 

600 nm (OD600) as a function of time in the presence of variable concentrations of siderophore 

mixtures. For all graphs, siderophore concentration gradients are provide on the x-axis and y-axis 

of the checkerboard. The black line graph represents bacterial growth without addition of 

siderophores. The red line graph represents bacterial growth in the presence of variable 

concentrations of (A) apo-Acb and apo-FimF, (B) holo-Acb2Fe and apo-FimF, or (C) apo-Acb 

and holo-FimF2Fe. Error bars represent standard deviations from the mean for two independent 

trials. Data from these plots were used to create bar graphs shown in Figure 4.14 
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Figure 4.16: Siderophore-dependent fluorescence quenching of N-His6-BauB. Graphs depict 

intrinsic tryptophan fluorescence quenching (y-axis: λexcitation = 280 nm; λemission = 340 nm) of 400 

nm N-His6-BauB in the presence of variable siderophore concentrations (x-axis). Apparent Kd 

values were calculated using a single-binding mode curve-fitting model in GraphPad Prism version 

7.0b. Error bars represent standard deviations for two independent trials.  
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Compound BauB Binding 

Affinity (apo/holo) 

LogKFe Fe Binding 

Ratio 

FimA5 354.8 ± 139.3/ 

244.4 ± 93.3 

27.1 ± 0.2 1:1 

PreAcb9,10,14 382.8 ± 106.1/ 

754.4 ± 155.4 

27.4 ± 0.2 2:1 

Acb9,10,14 302.5 ± 105.1/ 

162.3 ± 81.4 

26.2 ± 0.1 2:1 

FimF 297.4 ± 67.3/ 

360.3 ± 86.1 

25.9 ± 0.1 2:1 

Table 4.1. Comparison of A. baumannii siderophore periplasmic siderophore binding protein, 

BauB, iron affinity and iron stoichiometry.  
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Figure 4.17: Optical absorbance spectrum of the holo-FimF2Fe complex at 100 µM in phosphate 

buffer (50 mM potassium phosphate at pH 8.0, 150 mM NaCl, 1 mM DTT, 5% glycerol). 

 

Figure 4.18: Fimsbactin F forms a 2:1 complex with Fe(III). Graph depicts fluorescence (λexcitation 

= 330 nm; λemission = 380 nm) vs equivalents of Fe(acac)3 showing a titration end point correlating 

with 2:1 stoichiometry. 
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Figure 4.19: Absorbance over time of FimF in 10 mM HEPES following addition of EDTA. Data 

from this figure was used to calculate the apparent KFe of FimsF 
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Figure 4.20: Hypothesized potential relationship between FimA and FimF. We hypothesize 

Fimsbactin can compete with some acinetobactin transport proteins, as we already demonstrated a 

competition for siderophore binding protein, BauB.  
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Figure 4.21: Metal titration studies with Copper, iron, nickel, cobalt and zinc chloride with Acb, 

PreAcb, FimA, FimF and OxPreAcb. Top graph x-axis: 1/[(min abs at 460 nm /starting abs at 

460 nm) x 100]. Bottom graph x-axis:  log(1/[(min abs at 460 nm /starting abs at 460 nm) x 

100]). 
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Figure 4.22: Metal titration curves for FimA 
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Figure 4.23: Metal titration curves for FimF 
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Figure 4.24: Metal titration curves for Acb 
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Figure 4.25: Metal titration curves for PreAcb 
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Figure 4.26: Metal titration curve for PreAcb titrated with Zn, maxed out the detector at less 

than 0.2 equivalents.  
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Figure 4.27: Metal titration curves for OxPreAcb 
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Equations 4.1 

As described in the experimental methods section of the main text, an EDTA competition experiment was 

used to measure the apparent KFe for FimF2Fe at pH 7.4. The following equations were used to calculate 

apparent KFe based on the change in optical absorbance observed at 500 nm for FimF2Fe in the presence of 

1.2 equivalents of EDTA. A KFe value of 1025.1 was used for EDTA at pH 7.4 in final calculations.15 

(1)  𝐾 =  
[ୣ]

[ிయశ][ଶ]
                            for the following equilibrium;  [Fe3+] + [2L] ⇌ [FeL2] 

 

(2) 𝐾ிா் =  
[ிா்]

[ிయశ] [ா்]
        for the following equilibrium; [Fe3+] + [EDTA] ⇌ [FeEDTA]  

 

(3) 𝐾ா௫ =  
ಽ

ಷಶವಲ
          for the following equilibrium; [FeEDTA] + [2L] ⇌ [FeL2] + [EDTA] 

 

(4) 𝐾ா௫ =  
[ிଶ][ா்]

[ிா்][ଶ]
 

 

(5) ∆  =  
௦ಷಽି ௦ಷಽశಶವಲ

ఌಽ
 

 

(6)        𝐾 = 𝐾ிா்  ×  
[ி ][ா்]

[ிா்][ଶ]
 

 

(7) [𝐹𝑒𝐿2] =  
௦ಷಽ

ఌಽ
 

 

(8) [𝐸𝐷𝑇𝐴] = [𝐸𝐷𝑇𝐴]் − ∆         where  [EDTA]T = total EDTA added 

 

(9)   [𝐹𝑒𝐸𝐷𝑇𝐴] =  ∆ 

 

(10)     [2𝐿] =  ∆ 

 

(11) KFe = apparent KL 
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5.1 Preface  
 This chapter was adapted in part with permission from [Bohac, T. J., Shapiro, J. A. & 

Wencewicz, T. A. ACS Infect. Dis.3, 802-806 (2017)] Copyright ©2017 American Chemical 

Society. All authors contributed to writing of the manuscript. TJB synthesized all compounds and 

performed Spartan computational work. JAS performed biological evaluation of compounds. 

TAW served as principal investigator and oversaw experimental design. 

5.2 Abstract  
The emergence of multi-drug resistant (MDR) Gram-negative bacterial pathogens has 

raised global concern. Non-traditional therapeutic strategies, including antivirulence approaches, 

are gaining traction as a means of applying less selective pressure for resistance in vivo. Here, we 

show that rigidifying the structure of the siderophore pre-acinetobactin from MDR Acinetobacter 

baumannii via oxidation of the phenolate-oxazoline moiety to a phenolate-oxazole results in a 

potent inhibitor of siderophore transport and imparts a bacteriostatic effect at low micromolar 

concentrations under infection-like conditions. 

5.3 Introduction    

 As discussed in prior chapters, our laboratory seeks to understand the PreAcb pathway in 

great molecular detail.1 The PreAcb pathway starts when the siderophore scaffold is assembled on 

an NRPS biosynthetic template.2 After formation of the phenolate oxazoline moiety, the 

penultimate thioester is cleaved from the NRPS peptidylcarrier domain by N-hydroxyhistamine 

releasing PreAcb (1) (Figure 5.1).  Upon release from the NRPS, PreAcb is effluxed to the 

extracellular space where it isomerizes to the isooxazolidinone acinetobactin (Acb, 2) (Figure 

5.1).2 The 5-exo-tet cyclization proceeds with clean stereochemical inversion at C5’ and shows a 

distinct pH-rate-dependent profile.1 The isomzerization is slow at acidic pH and fast at neutral and 
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basic pH. Both forms of the siderophore, 1 and 2, promote the growth of A. baumannii ATCC 

17978 under iron-restrictive conditions and use the same transport proteins. Given that most sites 

of A. baumannii infection are acidic, we hypothesize that both PreAcb and Acb will be present and 

functional as iron-sequestering virulence factors, providing a growth advantage under an expanded 

pH range. Consistent with this hypothesis, PreAcb accumulates in A. baummannii supernatants in 

acidic media, while only Acb is detectable in neutral media. Both PreAcb and Acb form stable, 

2:1 complexes with iron(III). Structure-function studies of PreAcb and Acb analogs showed that 

iron(III) chelation is required for growth promotion of A. baumannii  in iron-restrictive media.3 

Structural analogs incapable of promoting growth might competitively inhibit the Acb pathway. 

Subtle structural changes in a siderophore scaffold can dramatically influence function. A 

single carbon epimer of mycobactin was shown to block siderophore cycling in M. tuberculosis 

leading to high intracellular accumlulation of siderophores that induced a lethal phenotype.4 

Mutasynthesis of pyochelin analogs by feeding substituted salicylate precursors to P. aeruginosa 

decreases the efficiency of iron uptake.5 The modified pyochelin analogs are potential competitive 

inhibitors that block pyochelin uptake. Furthermore, oxidation of the thiazoline in pyochelin to the 

corresponding aromatic thiazole was shown to block transport of ferric pyochelin in P. 

aeruginosa.6 Oxidized des-methyl pyochelin binds tightly to the pyochelin outer membrane 

transporter FptA and blocks uptake, but not binding, of ferric pyochelin. Computational docking 

and molecular dynamics simulations showed that oxidized pyochelin is more rigid than pyochelin, 

which might limit its ability to form stable metal complexes and increase stability of the FptA 

complex. The des-methyl phenolate-bis-thiazoline precursor to pyochelin is also a known 

intermediate in yersiniabactin biosynthesis.7 Recently, Henderson and coworkers showed that 

yersiniabactin-producing Enterobacteriaceae also excrete oxidized des-methyl pyochelin, a 



203 
 

compound now identified as escherichelin, to block virulence of opportunistic P. aeruginosa 

during clinical bacteriuria.8 Escherichelin-producing Enterobacteriaceae have potential as 

probiotic treatments for urinary tract infections and purified escherichelin might also be useful as 

an antivirulence agent. Similar to escherichelin blocking siderophore transport in pyochelin-

utilizing pathogens, we hypothesize that oxidation of the PreAcb oxazoline to the corresponding 

aromatic oxazole (3) might rigidify the siderophore backbone, block isomerization to Acb, and 

result in inhibition of PreAcb/Acb uptake (Figure 5.1). 

5.4 Results and Discussion  
The synthesis of oxidized pre-acinetobactin (OxPreAcb, 3) commenced with two 

precursors, N-Boc-O-benzylhydroxy-histamine 6 and oxazole benzyl ester 8 (Scheme 5.1). 

Hydroxyhistamine 6 was synthesized starting from histamine, as previously reported.1,9 

Diazotization/halogenation of histamine dihydrochloride 4 with sulfuric acid and potassium 

bromide, followed by addition of sodium nitrite, provided the corresponding bromo- and chloro-

ethylimidazoles 5 in 52% yield, as a ~3:1 bromo-/chloro-mixture. SN2 displacement of halo-

mixture 5 with the sodium salt of N-boc-O-benzylhydroxamine afforded N-Boc-O-

benzylhydroxyhistame 6 in good yield. Oxazole 8 was synthesized in a one-pot, two- step synthesis 

adapted from Graham,10 via the condensation of 2,3-dihydroxybenzyaldehyde with Bn-protected 

L-Thr and subsequent oxidation of the intermediate aminal with BrCCl3. Hydrogenolytic 

debenzylation of 8 and TFA-mediated Boc-removal of 6 generated the free acid 9 and amine 10, 

respectively (Scheme 5.2). EDC/HOBt coupling of 9 and 10 provided O-benzyl protected N-

hydroxyamide 11. Hydrogenolysis of 11 yielded OxPreAcb 3 to complete the synthesis in 5 longest 

linear steps (LLS) and 7 total steps.  
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OxPreAcb is stable and does not spontaneously isomerize in aqueous buffer as observed 

for the oxazoline to isooxazolidinone isomerization from PreAcb and Acb.1 Thus, OxPreAcb is 

structurally “locked” in the PreAcb-like form via aromatization to the phenolate-oxazole 

heterocycle. We investigated the effect of Acb and OxPreAcb on the growth of A. baumannii 

ATCC 19606T in M9 minimal medium under iron-restrictive (125 μM 2,2’-dipyridyl) conditions. 

We chose Acb over PreAcb because we have shown in previous work that both isomers have 

equivalent growth promoting effects at pH 7, and Acb is easier to isolate from A. baumannii 

cultures.1 As expected, Acb promoted the growth of A. baumannii ATCC 19606T in a dose-

dependent manner (Figure 5.2A). In striking contrast, OxPreAcb strongly inhibited growth at all 

concentrations tested (0.78-50 μM) (Figure 5.2B). Furthermore, growth inhibition by OxPreA was 

competitive and dose-dependent in the presence of 10 μM Acb (Figure 5.2C). Antagonism of 

OxPreAcb growth inhibitory activity by Acb supports competition for the same biological target 

or transport pathway. OxPreAcb activity was confirmed on two separate synthetic lots to confirm 

the observed biological activity (Figure 5.3). In medium supplemented with 100 μM 2,2’-

dipyridyl, OxPreAcb inhibited A. baumannii ATCC 19606T growth with an MIC of 1.56 μM. 

To probe the iron-dependence of OxPreAcb activity, wild-type A. baumannii ATCC 

19606T and a biosynthesis deficient ATCC 19606T s1 mutant were grown in M9 media in the 

presence of variable OxPreAcb with and without supplemented 10 μM Fe(acac)3 (Figure 5.4). 

Ciprofloxacin was included as a control antibiotic with activity that is not strongly affected by iron 

concentration.11 As expected, ciprofloxacin activity against A. baumannii ATCC 19606T and the 

s1 mutant was not affected by iron concentration. However, the growth inhibitory activity of 

OxPreAcb was strongly antagonized by iron supplementation. The amount of OxPreAcb required 

to fully inhibit growth of wild-type ATCC 19606T and ATCC 19606T s1 was 50 µM (Figure 
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5.4AC). Upon supplementation with 10 μM Fe(acac)3, the concentration of Ox-PreAcb required 

to fully inhibit growth increased to 200 µM (Figure 5.4BD). PreAcb biosynthesis is under the 

transcriptional control of ferric uptake repressors (FURs).2 FUR proteins repress transcription 

when bound to Fe(II) and allow transcription when no metal is bound. This level of transcriptional 

control ensures that expression of proteins in costly siderophore pathways remain reserved for 

times of iron restriction when the metal is needed most. Iron-dependence is commonly observed 

for SACs and other antibiotics that rely on siderophore-binding proteins for cell entry.12 Thus, 

OxPreAcb might be entering cells via the Acb pathway. 

To investigate the role of Acb transport proteins on the growth inhibiting activity of 

OxPreAcb we performed growth studies in M9 medium using gene insertion mutants of A. 

baumannii ATCC 19606T t6 and t7, which are deficient in the outer membrane receptor protein 

BauA and inner-membrane transport protein BauD, respectively (Figure 5.5).1 Wild type ATCC 

19606T and the t7 mutant showed similar levels of growth, while the s1 and t6 mutants showed 

reduced growth across multiple concentrations of OxPreAcb (Figure 5.5A). Interestingly, when 

OxPreAcb was pre-complexed with Fe(III) prior to growth studies, the growth of wild type A. 

baumannii ATCC 19606T and the s1, t6, and t7 mutants was promoted suggesting that the 

OxPreAcb-Fe(III) complex can be used as a source of iron and only the metal-free form of 

OxPreAcb has growth inhibitory activity (Figure 5.5B). Disrupting Acb biosynthesis and transport 

systems does not strongly affect the growth inhibitory activity of OxPreAcb. The activity of 

OxPreAcb is antagonized by supplementing growth medium with Fe(III). Thus, it remains unclear 

whether complexation of OxPreAcb truly abolishes the growth inhibitory effect or if that added 

Fe(III) is simply having the same antagonistic effect as supplementation with Fe(acac)3. During 

human infections, iron is a limiting nutrient so OxPreAcb would be presumably be metal free and 
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growth inhibitory towards A. baumannii pathogens.13 The overall growth inhibitory effect of 

OxPreAcb on A. baumannii appears to be bacteriostatic (Figure 5.6). 

We tested the antibiotic activity of OxPreAcb against two additional clinical isolates of A. 

baumannii (ATCC 17978 and ATCC 19961), the non-pathogenic strain Acinetobacter baylyi 

ATCC 33305, and pathogenic E. coli ATCC 29522 (Figure 5.7). The iron-restrictive M9 medium 

supplemented with DIP was optimized specifically for A. baumannii ATCC 19606T. To ensure 

growth of all the strains the M9 media was not supplemented with DIP, which reduces the potency 

of OxPreAcb for inhibiting bacterial growth (similar to supplementing Fe(acac)3). OxPreAcb 

inhibited the growth of all the Gram-negative bacteria at 100–200 µM. This could indicate that a 

more general mechanism than siderophore disruption, such as metal withholding or 

metalloenzyme targeting, is at play. All of the Acinetobacter strains produce Acb, and E. coli is 

known to transport catecholate siderophores, so a siderophore-based inhibition mechanism is still 

possible. 

The conversion of OxPreAcb from a growth inhibitor to a growth promoter upon iron(III) 

chelation inspired us to study the iron(III) binding properties. We used a fluorescence quenching 

assay to titrate OxPreAcb with iron(III) showing that a stable 2:1 (OxPreAcb)2Fe(III) complex 

forms (Figure 5.8). PreAcb and Acb also form stable 2:1 complexes with iron(III).3 We used an 

EDTA competition assay to measure the apparent stability constants (KFe) of the (PreAcb)2Fe(III), 

(Acb)2Fe(III), and (OxPreAcb)2Fe(III)  complexes (Figure 5.9). Apparent KFe values were 27.4 ± 

0.2, 26.2 ± 0.1, and 26.5 ± 0.3 for (PreAcb)2Fe(III), (Acb)2Fe(III), and (OxPreAcb)2Fe(III),   

respectively. Based on similarity of the apparent KFe values we predict that OxPreAcb will be 

competitive with PreAcb and Acb for iron(III) in a biological setting. 
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5.5 Outlook and Conclusions  

The mechanistic basis for the growth inhibitory activity of OxPreAcb against Gram-

negative bacteria remains unknown. Simple oxidation of the PreAcb oxazoline to the OxPreAcb 

oxazole is predicted to increase rigidity of the siderophore backbone. Energy minimization of the 

metal-free PreAcb and OxPreAcb structures revealed significant differences in 3D-orientations of 

the phenolate-oxazoline and phenolate-oxazole moieties, respectively (Figure 5.10). Both the 

phenolate-oxazoline and phenolate-oxazole systems are relatively flat, with the trans-oxazoline of 

PreAcb slightly puckered and the oxazole of OxPreAcb appearing in plane with the phenyl ring. 

In the gas phase, a stable H-bond was predicted between the 2-hydroxyl group of the phenyl ring 

with the oxazoline nitrogen of PreAcb, which presumably stabilizes the planar structure and 

restricts rotation around the oxazoline C1 to phenyl C1’ bond. The same type of H-bonding 

interaction was found in the OxPreAcb energy minimized structure except the H-bond was formed 

between the oxazole nitrogen and the hydroxyl group of the hydroxamic acid. PreAcb is capable 

of this same H-bonding interaction, but it was not found during energy minimization. The origin 

for this difference in H-bonding modes might be the relative rotational barriers about the 

oxazoline/oxazole C4 to hydroxamate carbonyl carbon bond. The trans-orientation of the 

oxazoline methyl and hydroxamate substituents decreases steric clash in rotational isomers. The 

cis-planar orientation of the oxazole methyl and hydroxamate substituents introduces A1.3-strain. 

Computational analysis of the energy landscape for rotational isomers about the oxazoline/oxazole 

C4 to hydroxamate carbonyl carbon bond of PreAcb and OxPreAcb supported this model (Figure 

5.11, 5.12). The sterically smaller carbonyl group of the hydroxamate prefers to eclipse the oxazole 

methyl group to minimize the A1,3-strain, which puts the bulky N-alkyl-N-hydroxy group closer to 

the oxazole nitrogen. Restricted rotation in the rigid phenolate-oxazole ligand set of OxPreAcb is 
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predicted to limit the accessible number of theoretical modes for iron(III) chelation compared to 

the more flexible PreAcb and Acb structures. In medicinal chemistry, rigidity is often used to 

increase the affinity of a ligand for a protein target.14 Escherichelin, a rigid pyochelin analog, was 

shown to tightly bind the outer membrane receptor FptA and block transport of ferric pyochelin.6 

A similar phenomenon might be taking place in A. baumannii for OxPreAcb in the presence of 

Acb. Like escherichelin8, OxPreAcb might be effective at blocking virulence of A. baumannii by 

disrupting siderophore utilization, which is required for growth during infection (Figure 5.13).14 

Here, the importance of molecular recognition is revealed by subtle structural changes (Figure 

5.14). A more detailed understanding of siderophore receptor binding and membrane transport 

paradigms in A. baumannii are required to fully appreciate how OxPreAcb competes with Acb for 

cellular uptake.15 It also remains unclear whether the net growth inhibitory effect of OxPreAcb is 

due exclusively to blocking siderophore cycling or if inhibition of metalloenzymes or disruption 

of metal homeostasiss are contributing factors.16 Phenolate-oxazolines and phenolate-thiazolines 

are common motifs in many siderophore scaffolds, including siderophores associated with 

virulence in bacterial pathogens.17 Simple oxidation of the oxazolines/thiazolines found in 

bacterial siderophores might be a general strategy for preparing rigid siderophore analogs as 

antivirulence agents that competitively block siderophore utilizaton in producing pathogens. 

5.6 Materials and Methods  
Strains, Materials, and Instrumentation 

Growth studies were conducted using A. baumannii ATCC 19606TT and derivatives t6 

(bauA::EZ::TN<R6Kcori/KAN-2>), t7 (bauD::EZ::TN<R6Kcori/KAN-2>), and s1 (basD::aph) 

provided by Dr. Luis Actis. Precultures and 96-well plate A. baumannii growth assays were 

performed in filter-sterilized M9 minimal media. Samples for LC-MS were prepared in 0.45 μM 
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PTFE mini-UniPrep vials from Agilent. All preparatory HPLC was performed using a Beckman 

Coulter SYSTEM GOLD 127P solvent module and 168 detector with a Phenomenex Luna 10u 

C18(2) 100A column, 250 × 21.20 mm, 10 μm with guard column. Prep HPLC was performed 

with a mobile phase of 5 mM ammonium acetate in (A) water and (B) acetonitrile, and data were 

processed using 32 Karat software, version 7.0. All LC-MS was performed on an Agilent 6130 

quadrupole LC-MS with G1313 autosampler, G1315 diode array detector, and 1200 series solvent 

module. A Phenomenex Gemini C18 column, 50 × 2 mm, 5 μm with guard column was used for 

all LC-MS separations. LC-MS mobile phases were 0.1% formic acid in (A) water and (B) 

acetonitrile, and data were processed using G2710 ChemStation software. NMR was performed 

on a Varian Unity Inova-600 MHz instrument with a cold probe. Bacterial growth studies were 

performed using polystyrene 96-well plates with polystyrene lids. OD600 measurements were 

taken on a Molecular Devices SpectraMax Plus 384 plate reader.  

Acinetobactin Isolation 

Natural acintobactin was isolated and purified from A. baumannii cultures as previously reported.1 

Briefly, liter cultures of A. baumannii ATCC 17978 were grown overnight in M9 minimal media. 

The cultures were centrifuged down and the supernatant was adjusted to pH 6. XAD-7HP resin 

was added and the supernatant was shaken. The resin was washed with methanol. The methanol 

extract was concentrated and preparatory HPLC purified to yield pure acinetobactin. 
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Compound Synthesis 

 

 

Benzyl 2-(2,3-dihydroxyphenyl)-5-methyloxazole-4-carboxylate (8). The synthesis of 8 was 

adapted from a previously reported, one-pot synthesis of oxazoles.10 To a clean, dry round bottom 

flask equipped with a stirbar and argon inlet was added L-throenine benzyl ester oxalate (1.0 g, 

3.34 mmol), potassium carbonate (0.92 g, 6.68 mmol), and N,N’-dimethylacetamide (8.3 mL) 

(Note: a white, cloudy solution was formed). To the resultant mixture was added 2,3-

dihydroxybenzaldehyde (0.46 g, 3.34 mmol) [solid, in one portion], which resulted in the 

formation of a bright yellow solution which stirred at room temperature, under argon, for 12 hrs. 

After 12 hrs, the reaction was cooled to 0°C, and bromotrichloromethane (0.99 mL, 10.02 mmol) 

and 1,8-diazabicyclo[5.4.0]undec-7-ene (1.50 mL, 10.02 mmol) were added. The resulting deep 

orange solution was stirred at 0°C for 2 hrs, at which point the reaction was removed from the ice 

bath and warmed to rt. The mixture stirred at rt for an additional 10 hrs [monitored by LC-MS]. 

The reaction was diluted with DD-H2O (3x original volume) and extracted with MTBE (3 x 15 

mL) and EtOAc (3 x 15 mL). The organic layers were combined, washed with brine, and dried 

over Na2SO4. The product was concentrated by rotary evaporation to yield a dark orange sticky 

solid (0.92 g, 85% crude yield). The crude product was then purified as needed by prep HPLC 

(gradient of 0% B to 95% B for 17 min then hold at 100% B for 8 minutes) to provide the title 

compound as a pale yellow oil (5 mg per injection, yielded 3.5 mg of pure compound). 1H NMR 

(600 MHz, Chloroform-d) δ 7.46 (d, J = 7.1 Hz, 2H), 7.43 – 7.33 (m, 4H), 7.31 (d, J = 8.0 Hz, 

1H), 7.03 (d, J = 7.9 Hz, 1H), 6.86 (t, J = 7.9 Hz, 1H), 5.38 (s, 2H), 2.70 (s, 3H). 13C NMR (151 
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MHz, Chloroform-d) δ 161.5, 159.5, 155.4, 145.3, 144.7, 135.7, 128.8, 128.6, 128.4, 127.0, 120.0, 

117.6, 116.9, 110.2, 66.8, 12.3. LC-MS cald for C18H16NO5 (M + H)+ 326.1028; found 326.1. 

 

2-(2,3-dihydroxyphenyl)-5-methyloxazole-4-carboxylic acid (9). To a solution of oxazole 8 (20 

mg, 0.06 mmol) in MeOH (2 mL) was added 10% P/C (2 mg) at rt. The vial was purged with H2 

and allowed to stir under H2 atm (1 atm) for 1 hr [monitored by LC-MS]. Once complete, as judged 

by LC-MS, the solid catalyst was removed via syringe filtration, and the solution was concentrated 

under reduced pressure to provide pure carboxylic acid 9 as a clear colorless oil (99% yield). 1H 

NMR (600 MHz, Methanol-d4) δ 7.33 (d, J = 7.9 Hz, 1H), 6.94 (d, J = 7.9 Hz, 1H), 6.83 (t, J = 7.9 

Hz, 1H), 2.72 (s, 3H). 13C NMR (151 MHz, Methanol-d4) δ 164.8, 160.8, 156.7, 147.2, 146.8, 

128.5, 120.8, 119.4, 117.6, 111.7, 12.0.  LC-MS cald for C11H10NO5 (M + H)+ 236.0559; found 

236.1. 

 

N-(2-(1H-imidazol-4-yl)ethyl)-N-(benzyloxy)-2-(2,3-dihydroxyphenyl)-5-methyloxazole-4-

carboxamide (11). To a clean, dry round bottom flask equipped with a stirbar and argon inlet was 

added carboxylic acid 9 (60 mg, 0.25 mmol), DMF (8 mL), and hydroxyhistamine 7 (82 mg, 0.38 

mmol). To the stirring solution was added EDC (198 mg, 1.28 mmol) and HOBt (172 mg, 1.28 

mmol), and Et3N was added to the reaction dropwise until a pH of ~9 was obtained. The reaction 

stirred under argon for 12 hrs (monitored by LC-MS), at which point the reaction mixture was 

concentrated by rotary evaporation and purified by prep HPLC (gradient of 0% B to 95% B in 17 



212 
 

minutes, 95% B to 100% B in 2 minutes, hold 100% B for 8 minutes) to yield title compound 11 

as a pale yellow oil (64 mg, 58% yield). 1H NMR (600 MHz, DMSO-d6) δ 7.49 (s, 1H), 7.38 – 

7.26 (m, 5H), 7.20 (dd, J = 7.9, 1.6 Hz, 1H), 6.92 (d, J = 7.8 Hz, 1H), 6.79 (s, 1H), 6.75 (t, J = 7.8 

Hz, 1H), 4.95 (s, 2H), 4.06 (t, J = 7.2 Hz, 2H), 2.87 (t, J = 7.2 Hz, 2H), 2.42 (s, 3H). 13C NMR 

(151 MHz, DMSO-d6) δ 172.0, 161.4, 157.9, 146.1, 145.1, 134.8, 129.3, 129.1, 128.6, 128.3, 

119.6, 118.2, 116.5, 111.1, 75.6, 25.0, 21.1, 11.4. HRMS cald for C23H23N4O5 (M + H)+ 435.1663; 

found 435.1669 

 

N-(2-(1H-imidazol-4-yl)ethyl)-2-(2,3-dihydroxyphenyl)-N-hydroxy-5-methyloxazole-4-

carboxamide (3). O-benzyl-oxidized-pre-acinetobactin 11 (12 mg, 0.05 mmol) was stirred in 

MeOH with ~1/10 mass equivalent of 10% Pd/C under H2 atmosphere (1 atm). Upon 

confirmation of reaction completion by LC-MS (~1 hr), the solid catalyst was removed through 

syringe filtration and the solution was concentrated by rotary evaporation to provide oxidized 

preacinetobactin 3 as a colorless oil. 1H NMR (600 MHz, DMSO-d6) δ 7.54 (s, 1H), 7.23 (dd, J = 

7.9, 1.6 Hz, 1H), 6.95 – 6.92 (m, 1H), 6.86 (s, 1H), 6.80 (t, J = 7.9 Hz, 1H), 3.93 (s, br, 2H), 2.88 

(t, J = 7.3 Hz, 2H), 2.50 (s, 3H, under DMSO residual solvent peak). 13C NMR (151 MHz, 

DMSO-d6) δ 157.8, 151.4, 146.2, 145.3, 134.8, 128.0, 119.5, 118.2, 116.1, 110.7, 48.6, 

11.4.HRMS cald for C16H17N4O5 (M + H)+ 345.1199; found 345.1193. 
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Biological Studies 

M9 minimal media was prepared for all experiments as previously described.1 

For biological assessment of acinetobactin 2 and oxidized pre-acinetobactin 3 under iron-

restrictive conditions, stock solutions of 800 μM 2 and 3 were prepared in M9 minimal media and 

filter sterilized. A 96-well plate was filled with 50 μL of M9 minimal media per well. Into the first 

column, 50 μL of either acinetobactin stock or oxidized pre-acinetobactin stock was added, and 

columns were serially diluted down to 1.56 μM. An inoculum was made by adding 200 μL of 0.5 

McFarland standard (A. baumannii ATCC 19606TT s1) to 29.8 mL of M9 minimal media 

supplemented with 250 μM 2,2’-dipyridyl. Inoculum (50 μL) was added to each well for a final 

concentration of 125 μM 2,2’-dipyridyl and a serial dilution of 200-0.78 μM acinetobactin and 

oxidized pre-acinetobactin. Growth promotion or inhibition was determined as compared to a 

control with 125 μM 2,2’-dipyridyl, 0 μM acinetobactin and 0 μM oxidized pre-acinetobactin. All 

experiments were performed in triplicate. For confirmation of biological activity of re-purified 

compound, procedure was reproduced but with 200 μM 2,2’-dipyridyl inoculum for a final 

concentration of 100 μM 2,2’-dipyridyl. 

For biological assessment of competition between acinetobactin 2 and oxidized pre-

acinetobactin 3, a stock solution of 800 μM 3 was prepared in M9 minimal media and filter 

sterilized. A 96-well plate was filled with 50 μL of M9 minimal media per well. Into the first 

column, 50 μL of oxidized pre-acinetobactin stock was added, and columns were serially diluted 

down to 1.56 μM. An inoculum was made by adding 200 μL of 0.5 McFarland (A. baumannii 

ATCC 19606TT s1) to 29.8 mL of M9 minimal media supplemented with 200 μM 2,2’-dipyridyl 

and 20 μM acinetobactin. Inoculum (50 μL) was added to each well for a final concentration of 

100 μM 2,2’-dipyridyl, 10 μM acinetobactin, and a serial dilution of 200-0.78 μM oxidized pre-
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acinetobactin. Growth promotion or inhibition was determined as compared to a control with 100 

μM 2,2’-dipyridyl, 10 μM acinetobactin, and 0 μM oxidized pre-acinetobactin. All experiments 

were performed in triplicate. 

For the biological evaluation of the Fe3+-complex of oxidized pre-acinetobactin, 200 μM 

stocks of acinetobactin-Fe3+ and oxidized pre-acinetobactin-Fe3+ were prepared in M9 minimal 

media and filter sterilized. A 96-well plate was filled with 50 μL of M9 minimal media per well. 

Into the first column, 50 μL of either acinetobactin-Fe3+ stock or oxidized pre-acinetobactin-Fe3+ 

stock was added, and columns were serially diluted down to 0.39 μM. An inoculum was made by 

adding 200 μL of 0.5 McFarland standard (A. baumannii ATCC 19606TT s1) to 29.8 mL of M9 

minimal media supplemented with 300 μM 2,2’-dipyridyl. Inoculum (50 μL) was added to each 

well for a final concentration of 150 μM 2,2’-dipyridyl and a serial dilution of 50-0.19 μM 

acinetobactin and oxidized pre-acinetobactin. Growth promotion was determined as compared to 

a control with 125 μM 2,2’-dipyridyl, 0 μM acinetobactin-Fe3+ and 0 μM oxidized pre-

acinetobactin-Fe3+. All experiments were performed in triplicate. 

For MIC evaluation of oxidized pre-acinetobactin, stock solutions of 800 μM oxidized pre-

acinetobactin and ciprofloxacin were prepared in M9 minimal media and filter sterilized. Eight 96-

well plates were filled with 50 μL of M9 minimal media per well. For the first column of each 

plate, 50 μL of either oxidized pre-acinetobactin stock or ciprofloxacin stock was added, and 

columns were serially diluted down to 1.56 μM. Seven separate inocula were prepared by diluting 

200 μL of appropriate 0.5 McFarland standard (E. coli ATCC 25922, A. baumannii ATCC 

19606TT, A. baumannii ATCC 19606T t6, A. baumannii ATCC 19606T t7, or A. baumannii 

ATCC 19606T s1) in either plain M9 minimal media (all bacterial strains) or M9 minimal media 

supplemented with 20 μM Fe(acac)3 (just A. baumannii ATCC 19606T and A. baumannii ATCC 
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19606T s1). Inocula (50 μL) were added to each well of separate plates for a final concentration 

of either 0 μM or 10 μM Fe3+ and a serial dilution of 200-0.78 uM oxidized pre-acinetobactin and 

ciprofloxacin. Growth was measured by endpoint OD600. All experiments were performed in 

triplicate. 
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Determination of KFe 

Stock solutions of 100 μM pre-acinetobactin 1, acinetobactin 2, and oxidized pre-acinetobactin 3 were 

prepared in 10 mM HEPES buffer and a UV-Vis scan was recorded. Next 120 μM EDTA was added and 

absorbance at 500 nm was measured over 800 minutes. Iron-binding affinity (KFe) was determined using 

the following calculations. 

(1)  𝐾 =  
[ிమ]

[ிయశ][]మ                            for the following equilibrium;  [Fe3+] + 2[L] ⇌ [FeL2] 

 

(2) 𝐾ிா் =  
[ிா்]

[ிయశ] [ா்]
        for the following equilibrium; [Fe3+] + [EDTA] ⇌ [FeEDTA]  

 

(3) 𝐾ா௫ =  
ಽ

ಷಶವಲ
          for the following equilibrium; [FeEDTA] + 2[L] ⇌ [FeL2] + [EDTA] 

 

(4) 𝐾ா௫ =  
[ிమ][ா்]

[ிா்][]మ 

 

(5) ∆  =  
௦ಷಽమ

ି ௦ಷಽశಶವಲ

ఌಽ
 

 

(6)        𝐾 = 𝐾ிா்  ×  
[ிమ][ா்]

[ிா்][]మ 

 

(7) [𝐹𝑒𝐿ଶ] =  
௦ಷಽమ

ఌಽ
 

 

(8) [𝐸𝐷𝑇𝐴] = [𝐸𝐷𝑇𝐴]் − ∆         where  [EDTA]T = total EDTA added 

 

(9)   [𝐹𝑒𝐸𝐷𝑇𝐴] =  ∆ 

 

(10)     [𝐿] =  2∆ 

 

(11) KFe = apparent KL 
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Fluorescence Quenching Titration 

A solution of 570 μM oxidized pre-acinetobactin 3 in methanol was prepared and a fluorescence 

emission spectra was recorded (λexcitation = 330 nm). To determine stoichiometry of the complex 

between 3 and iron (III), Fe(acac)3 was added 0.0438 equivalents at a time (1 μL of 10 μM 

Fe(acac)3 added by Hamilton syringe) and emission spectra were recorded at 380 nm after each 

addition. Peak fluorescence (Abs380nm) was plotted against iron (III) equivalents. 

Computational Studies 

All calculations were performed using Spartan ’16. Oxidized pre-acinetobactin 3 and pre-

acinetobactin 1 were modeled in Spartan. The lowest energy conformations were obtained using 

the minimize energy function. The 3’-4’-9-8 dihedral (see Table 5.1 for atom numbers) was 

constrained in both molecules as the energy profile was created investigating the rotation around 

the oxazole-carbonyl bond. The energy profile was run at ground state in the gas state with 

molecular mechanics MMFF. The energy was calculated in kJ/mol as the heterocycle-carbonyl 

bond rotated 360 degrees over 25 steps. The energy was plotted as against the 25 conformations.  

Compound Characterization  
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Benzyl 2-(2,3-dihydroxyphenyl)-5-methyloxazole-4-carboxylate (8) 
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2-(2,3-dihydroxyphenyl)-5-methyloxazole-4-carboxylic acid (9) 
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N-(2-(1H-imidazol-4-yl)ethyl)-N-(benzyloxy)-2-(2,3-dihydroxyphenyl)-5-methyloxazole-4-
carboxamide (11) 
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223 
 

N-(2-(1H-imidazol-4-yl)ethyl)-2-(2,3-dihydroxyphenyl)-N-hydroxy-5-methyloxazole-4-
carboxamide (3) 
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HRMS – OxPreA (3) 
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Table 5.1. 2D NMR characterization data of oxidized pre-acinetobactin (3) in DMSO-d6. 

 
 Oxidized Pre-Acinetobactin (3) 
 

Atom 13C 
(ppm) 

1H (ppm), 
Multiplets in Hz 

COSY 
1H-1H  
3 bond 

HMBC 
  1H-13C  
 2-3 bond 

HSQC 

2      
3  6.86 (s, 1H) - - - 
5 134.8 7.54 (s, 1H) - - 5 
6 24.9 2.88 (t, 2H) 7 7 6 
7 48.1 3.93 (s(br), 2H) 6 - - 
9   - - - 
2’ 157.8  - - - 
4’ 128.0  - - - 
5’ 151.5  - - - 
6’ 11.5 2.50 (s, 3H) - 5’ 6’ 
1’’ 110.7  - - - 
2’’ 145.3  - 4’’,6’’ - 
3’’ 146.2  - 5’’ - 
4’’ 118.2 6.92-6.95 (m, 1H) 5’’ 2’’,5’’ 4’’ 
5’’ 119.6 6.80 (t, 1H) 6’’ 3’’,4’’ 5’’ 
6’’ 116.1 7.23 (dd, 1H) 5’’ 2’,2’’,4’’ 6’’ 
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OxPreAcb (TFA salt) 

OxPreAcb (3) was re-purified by preparatory HPLC upon reviewer request. Prep HPLC 

was performed with a mobile phase of 0.1% trifluoroacetic acid in (A) water and (B) acetonitrile 

(gradient of 0% B to 95% B in 17 min, 95% B to 100% B in 2 min, hold 100% B for 8 min).  See 

1H NMR and LC-MS below. This batch of OxPreA was higher purity and reproduced the iron-

dependent growth inhibitory effects on A. baumannii (Figure 5.3). 
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5.7 Figures and Tables   

 

Figure 5.1. Structures of pre-acinetobactin (PreAcb, 1), acinetobactin (Acb, 2), and oxidized pre-

acinetobactin (OxPreAcb, 3). 
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Scheme 5.1: Synthesis of precursors to OxPreAcb (3) 

 

Scheme 5.2: Synthesis of OxPreAcb (3) 
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Figure 5.2. OxPreAcb (3) competes with Acb (2) to inhibit A. baumannii growth. Growth curves 

of A. baumannii ATCC 19606T in M9 minimal medium supplemented with 125 μM 2,2’-dipyridyl 

(DIP) and gradient concentrations of Acb (A.), 125 μM DIP and gradient concentrations of 

OxPreAcb (B.), 100 μM DIP, 10 μM Acb, and gradient concentrations of OxPreAcb (C.). Error 

bars represent s.d. for three independent trials. 
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Figure 5.3. Oxidized pre-acinetobactin (3) is a potent inhibitor of Acinetobacter baumannii 

ATCC 19606T growth in iron (III) controlled M9 minimal media. By reviewer request, the 

target compound was isolated to a greater degree of purity to ensure that extra signals from the 

NMR were not responsible for biological activity. Re-purified compound was then tested under 

new conditions to give an MIC90 reading. Compound 3 totally inhibited growth at 1.56 μM under 

these conditions.  
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Figure 5.4. Growth inhibition by OxPreAcb (3) is attenuated by iron. OD600 taken at 42 hrs of A. 

baumannii ATCC 19606T and 19606T s1 (Acb biosynthesis mutant) grown in M9 minimal 

medium supplemented with gradient concentrations of either OxPreAcb (3) (black bars) or 

ciprofloxacin (grey bars). No DIP was added to the media. (A.) Wild-type A. baumannii ATCC 

19606T. (B.) Wild-type ATCC 19606T supplemented with 10 μM Fe(acac)3. (C.) ATCC 19606T 

s1. (D.) ATCC 19606T s1 supplemented with 10 μM Fe(acac)3. Error bars represent s.d. for three 

independent trials. 
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Concentration 
OxPreAcb (μM) 

p-value (t6) p-value (t7) p-value (s1) 

200 0.4929* 0.4452 0.0001*** 
100 0.002** 0.4935 0.0127* 
50 0.0213* 0.0871* 0.1401 
25 0.0450* 0.1042 0.7185 
12.5 0.0474* 0.5530 0.3827 
6.25 0.0084** 0.6228 0.2429 
3.125 0.0252* 0.0095** 0.0068** 
1.56 0.4204 0.0211* 0.4948 
0.78 0.0053** 0.0941 0.2769 
0.39 0.2244 0.0837 0.0001*** 
0 0.1018 0.0006*** 0.2460 

 

Concentration 
OxPreAcb-Fe(III) (μM) 

p-value (t6) p-value (t7) p-value (s1) 

25 0.0015** 0.0017** 0.3074 
12.5 0.0495* 0.7924 0.004** 
6.25 0.0016** 0.0112* 0.0072** 
3.125 0.0001*** 0.0363* 0.0001*** 
1.56 0.0001*** 0.0005*** 0.001** 
0.78 0.0006*** 0.0052** 0.0005*** 
0.39 0.0006*** 0.0432* 0.0023** 
0.195 0.0256* 0.5659 0.0033** 
0.98 0.7008 0.5602 0.1355 
0 0.2917 0.6997 0.1963 

All p-values are relative to the wild type strain at equal concentration of added molecule. 

* indicates a difference that is statistically significant. 

** indicates a difference that is very statistically significant. 

*** indicates a difference that is extremely statistically significant. 
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Figure 5.5. OxPreAcb (3) promotes the growth of A. baumannii when complexed with iron (III). 

Endpoint OD600 measurements taken of bacterial growth of wild-type and mutants of A. baumannii ATCC 

19606T in M9 minimal media. (A.) Media supplemented with gradient concentrations of oxidized pre-

acinetobactin (3). Media contains 0 μM 2,2’-Dipyridyl. Measurements taken at 42 hours. (B.) Media 

supplemented with gradient concentrations of oxidized pre-acinetobactin (3) Fe(III)-Complex. Media 

contains 150 μM 2,2’-Dipyridyl. Measurements taken at 48 hours. Error bars represent standard deviations 

for three independent trials. All p-values and statistical significance are provided below in table format. 
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Figure 5.6. The antibiotic effect of oxidized pre-acinetobactin (3) is bacteriostatic. Images of 

96 well microplates at 42 hours (top) and 72 hours (bottom) showing dose dependent and 

bacteriostatic antibiotic effect of serially diluted oxidized pre-acinetobactin (3) against A. 

baumannii ATCC 19606T with a ciprofloxacin control. Wells in control rows contain no 

ciprofloxacin and no oxidized pre-acinetobactin. Growth curve analysis and regrowth studies of 

cells treated with OxPreAcb suggest no loss of viable A. baumannii cells upon treatment with 

OxPreAcb. 
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Figure 5.7. Oxidized pre-acinetobactin (3) is bacteriostatic towards multiple strains of 

pathogenic A. baumannii, as well as environmental Acinetobacter and pathogenic E. coli. 

Endpoint OD600 measurements taken of bacterial growth in M9 minimal media supplemented with 

gradient concentrations of either oxidized pre-acinetobactin (3) or ciprofloxacin. (A.) 

Acinetobacter baumannii ATCC 17978. (B.) Acinetobacter baumannii ATCC 19961. (C.) 

Acinetobacter baylyi ATCC 33305. (D.) Escherichia coli ATCC 29522.  
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Figure 5.8. Oxidized pre-acinetobactin (3) forms a stable 2:1 complex with iron (III). Graph 

shows the peak absorbance at 380 nm of emission spectra (λex = 330 nm) of 3 (570 μM) with 

increasing quantities of Fe(acac)3. 
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Figure 5.9. Pre-acinetobactin, acinetobactin, and oxidized pre-acinetobactin all form 

colored, high-affinity complexes with iron(III). (A.) UV-Vis spectra of 100 μM pre-

acinetobactin (1) complexed with iron (III) in 10 μM HEPES buffer. (B.) UV-Vis spectra of 100 

μM oxidized pre-acinetobactin (3) complexed with iron (III) in 10 μM HEPES buffer. (C.) Kinetic 

single-wavelength (500 nm) scan of 100 μM pre-acinetobactin (1) complexed with iron (III) in 

HEPES supplemented with 120 μM EDTA. Black line represents average of two independent 

measurements and grey area represents standard deviation. Log(KFe) calculations provided in 

Equations 1–11. (D.) Kinetic single-wavelength (500 nm) scan of 100 μM oxidized pre-

acinetobactin (3) complexed with iron (III) in HEPES supplemented with 120 μM EDTA. Black 

line represents average of two indpendent measurements and grey area represents standard 

deviation. Log(KFe) calculations provided in Equations 1–11. The apparent KFe values for the 2:1 

PreAcb, Acb, and OxPreAcb iron(III) complexes were 27.4 ± 0.2, 26.2 ± 0.1, and 26.5 ± 0.3, 

respectively. 
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Figure 5.10. Oxidized pre-acinetobactin is more rigid than pre-acinetobactin. Gas phase 

minimum energy calculation structures of (A.) pre-acinetobactin (red) overlaid with oxidized pre-

acinetobactin (blue), (B.) pre-acinetobactin, and (C.) oxidized pre-acinetobactin. Pre-acinetobactin 

forms a stable intramolecular H-bond between the C2-hydroxyl group of the phenyl ring with the 

oxazoline nitrogen. Oxidized pre-acinetobactin forms a stable H-bond between the hydroxyl group 

of the hydroxamic acid and the oxazole nitrogen. 

 

 

 

Figure 5.11. A1,3 strain induces conformational rigidity. Energy minimization shows OxPreAcb 

adopts a planar geometry causing reduced flexibility, which may contribute to antibiotic properties. 
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Figure 5.12. Oxidation of pre-acinetobactin oxazoline to the corresponding oxazole restricts 

rotation about the heterocycle-carbonyl bond through the introduction of A1,3 strain. (A.) 

Energy coordinate diagram for rotation around the oxazoline-carbonyl bond in pre-acinetobactin 

1. (B.) Energy coordinate diagram for rotation around the oxazole-carbonyl bond in oxidized pre-

acinetobactin 3.  

0 5 10 15 20 25
340

360

380

400

420

440

Molecule

E
n

er
g

y 
(k

J/
m

o
l)

PreAcb Energy Distribution

N

O

Me

H

H
OHHO

N
O

HO

Im

N

O

Me

H

H
OHHO

O
N

Im

OH

∆E = 39.61 kJ/mol

A.

0 5 10 15 20 25
300

320

340

360

380

400

420

Molecule

E
n

er
g

y 
(k

J/
m

o
l)

OxPreAcb Energy Distribution

N

O

OHHO
N

O

HO

Me

Im

N

O

OHHO

Me

O

N

Im

OH

∆E = 54.48 kJ/mol

B.



241 
 

 

Figure 5.13. Hypothetical model for the mechanism of action of OxPreAcb growth inhibition 

of A. baumannii. Biosynthesis of PreAcb takes place in the cytoplasm. Efflux of PreAcb to the 

extracellular space provides a mixture of PreAcb and Acb after isomerization spontaneously 

occurs. PreAcb and Acb form stable complexes (PreAcb)2Fe(III) and (Acb)2Fe(III), respectively, 

that are transported to the periplasmic space by the outer membrane receptor BauA with assistance 

of the ExbB/ExbD/TonB complex. The periplasmic binding protein BauB shuttles 

(PreAcb)2Fe(III) and (Acb)2Fe(III) to the ABC-transporter BauCDE for transport to the cytoplasm. 

The flavin reductase BauF is predicted to reduce Fe(III) to Fe(II) and provide PreAcb/Acb for the 

next siderophore cycle. OxPreAcb is competitive with Acb and inhibits the growth of A. 

baumannii. The mechanism of competition with Acb and growth inhibition is unknown. 

Competition for transport could take place at the level of BauA on the outside of the cell or BauB 

on the inside of the cell. Raymond proposed a shuttle mechanism for siderophore transport in 
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Gram-negative bacteria that argues for the involvement of both an iron-bound siderophore and an 

iron-free siderophore that undergoe metal swapping.15 The iron-free OxPreAcb might interfere 

with this siderophore shuttle process, but more fundamental studies of this membrane transport 

paradigm are required to test this hypothesis. Additionally, OxPreAcb might inhibit siderophore 

biosynthesis or iron assimilation processes by a competitive mechanism resulting from the 

structural similarity of OxPreAcb to PreAcb and Acb. Lastly, OxPreAcb was shown to strongly 

chelate iron(III) so a general mechanism of metalloenzyme inhibition or disruprtion of metal 

homeostasis might be at play. This type of more general mechanism might account for the growth 

inhibitory activity of OxPreAcb against non-Acb producing bacteria like E. coli.16 

 

 

 

Figure 5.14. Structures of pre-acinetobactin (PreAcb), acinetobactin (Acb), OxPreAcb, 

pyochelin, yersiniabactin, and escherichelin. OxPreAcb and escherichelin both contain rigid 

aromatic heterocycles and inhibit the growth of pathogenic bacteria producing structurally similar 

siderophores with non-aromatic heterocycles. 
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Chapter 6: Iron Binding Proves to be Crucial 
in Siderophore Cycling Disruption by Oxidized 
Pre-Acinetobactin in Acinetobacter baumannii 
  



246 
 

6.1 Preface  
 The abstract of this chapter was adapted in part from [Bohac, T. J., Shapiro, J. A., 

Wencewicz, T. A.] abstract for ACS national meeting Boston, August 2018. This chapter was 

adapted in part from manuscript in preparation [Bohac, T. J., Shapiro, J. A., Fang, F, Giblin, D. E. 

& Wencewicz, T. A.]. TJB synthesized all compounds and performed all compound 

characterization. JAS performed MIC evaluation of compounds. LF performed growth studies with 

gallium complex. DEG performed DTF computational work. TAW served as principal investigator 

and oversaw experimental design and completion. 

6.2 Abstract  
The rise of antibiotic resistance is driving exploration of non-canonical antibiotic 

approaches, including neutralization of virulence factors. Multi-drug resistant (MDR) Gram-

negative pathogens, including Acinetobacter baumannii, are of particular concern because of the 

small number of clinically useful antibiotics available for use. We have previously reported a new 

method for blocking iron acquisition in MDR A. baumannii as an antivirulence strategy using rigid 

oxazole analogs of the siderophore acinetobactin. All genome sequenced clinical isolates of MDR 

A. baumannii to date possess the capacity for acinetobactin biosynthesis and utilization. 

Acinetobactin is a primary iron scavenging molecule for A. baumannii that is found in two isomeric 

forms, pre-acinetobactin and acinetobactin, composed of either an oxazoline or isooxazolidinone 

core, respectively. By oxidizing the oxazoline of pre-acinetobactin to an oxazole, we stabilized 

this isomeric form providing a molecule that is still capable of forming high affinity 2:1 

siderophore:iron(III) complexes and gains cell entry via the acinetobactin uptake pathway. Here 

we report a comprehensive investigation of acinetobactin structure-function relationships for the 

oxazoline, oxazole, and isooxazolidinone isomeric forms and show that iron chelation and receptor 
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binding are critical for biological activity. The oxazole acinetobactin analog is a potent growth 

inhibitor (MIC values as low as 1µM) of the CDC panel of MDR A. baumannii clinical isolates 

and represents a new lead antivirulence molecule for disrupting siderophore-mediated iron 

acquisition in this deadly pathogen. 

 

6.3 Introduction    

Previously, as discussed in Chapter 5, we have synthesized oxidized pre-acinetobactin 

(OxPreAcb) by conversion of the phenolate-oxazoline moiety to a phenolate-oxazole.1 We showed 

that this small structural change resulted in a drastic change in bioactivity, from a growth promotor 

as PreAcb to a growth inhibitor as OxPreAcb. We hypothesized that this planar structure would 

be more rigid due to A1,3 strain and that this rigidity may contribute to the antibiotic properties 

demonstrated by OxPreAcb. There have been few reports of oxidized siderophore-variants as 

potential antimicrobials2 —particularly as it relates to A. baumannii. Therefore, studies probing 

specific structure-activity relationships of these interesting small molecules are of great interest. 

In this study, we shed light on how OxPreAcb functions and what moieties are critical to inhibitory 

function. This work establishes structure activity relationships of OxPreAcb that are crucial to 

further optimization of the drug-like properties of OxPreAcb. We report the synthesis and 

biological evaluation of a library of OxPreAcb analogs. These analogs demonstrate a direct 

correlation between iron binding and the ability to inhibit growth.   

6.4 Results and Discussion  
Previous work by our group investigated the structure activity relationship of analogs of 

pre-acinetobactin and acinetobactin.3, 4 A panel of ten pre-acinetobactin and nine corresponding 

acinetobactin analogs were synthesized. These analogs explored the effect of hydroxyl group 
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positioning on the aromatic catechol on the left hand side of the molecule, the chain length and 

influence of the imidazole group on the right hand side of the molecule, and the role of the 

hydroxamate hydroxyl group on bioactivity and iron binding. The features of these analogs probed 

the ability of the compound to bind iron, the ability to promote growth and the rate of 

isomerization. The findings of this study highlighted the necessity of the 2’-hydroxyl group for 

both iron (III) binding as well as growth promotion in the pre-acinetobactin form, while the 

hydroxamate hydroxyl group and the presence of the imidazole ring were seen to influence the 

rate of isomerization. In the acinetobactin form, both the 2’- and 3’- hydroxyl groups were crucial 

in iron (III) binding and growth promotion ability of the compound (Figure 6.1).   

Equipped with the knowledge from our SAR studies on pre-acinetobactin and 

acinetobactin, we aimed to investigate OxPreAcb in a similar manner. The three parts of the 

OxPreAcb molecule that were of interest to us were: (1) the necessity and positioning of the 

hydroxyl groups on the aromatic ring of OxPreAcb, (2) the necessity of the imidazole ring, and (3) 

the necessity of the hydroxamate hydroxyl group. We probed the role of these moieties through 

the synthesis of OxPreAcb and 8 structural analogs generated from various commercially available 

substituted benzaldehydes (Scheme 6.1). The modularity and convergent nature of the synthesis 

allows for ease of diversification, as starting with various commercially available benzaldehydes 

provides diversification around the left hand aromatic ring, while compounding of various amines 

affords diversification on the right hand side of the molecule.  Starting with the corresponding 

benzaldehyde, the addition of L-threonine benzyl ester, followed by the oxidation of the 

intermediate oxazoline, provided the corresponding oxazole benzyl esters. Hydrogenolysis of the 

benzyl ester afforded the corresponding carboxylic acids that when exposed to EDC, HOBt 

coupling with various amines, in the presence of facilitating base, afforded compound 2, along 
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with the benzyl protected OxPreAcb 1 and compounds 3-9. Final deprotection of these 

intermediates with H2 and Pd/C delivered title compounds 1, 3-9 in good yield (38-63%).  

It has been hypothesized that OxPreAcb utilizes the Acb uptake pathway and that the 

ability of OxPreAcb to bind iron (III) is instrumental to the mode of action. Therefore, with the 

panel of analogs in hand, the ability of each analog to bind iron (III) was explored through a chrome 

azurol S assay (CAS) (Figure 6.2). Compounds 1 and 3-6 demonstrated iron binding ability. As 

compound 3 lacks the imidazole group on the right hand side of the molecule, and is instead 

replaced with a butane group, its ability to bind iron(III) demonstrates that the presence of the 

imidazole group is not necessary for metal chelation. Compounds 3-6 each contain a hydroxyl 

group in the 2’- position, while compounds 5 and 6 contain an additional hydroxyl group in the 

5’- or 4’- position respectively. The ability for all three of these compound to bind iron(III) 

indicated the necessity for the 2’- hydroxyl group, while the presence or position of an additional 

hydroxyl group seems no have no influence on metal bonding (Table 6.1). Taken collectively, all 

the compounds with iron binding capabilities contained both a 2’-hydroxyl group, as well as the 

hydroxamate hydroxyl group, deeming these groups crucial for metal chelation ability. These 

results complement our group’s previous finding that the oxidized system of OxPreAcb adopts a 

planar geometry and was predicted to bind iron with these two hydroxyl moieties. We 

hypothesized that this binding mode was favored over binding iron through the 2’-hydroxyl and 

the carbonyl oxygen due to A1’3 strain induced between the methyl group and the hydroxamate 

substituents (hydroxyl group or imidazole ring) (Figure 6.3). This A1’3 strain is not as severe in 

the natural pre-acinetobactin siderophore due to the trans orientation between the methyl and 

hydroxamate groups.    
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To test the inhibitory effect of our analogs, MIC90 values were obtained through growth 

studies in iron restricted minimal media. Briefly, OxPreAcb analogs were serially diluted in M9 

media supplemented with 100µm DIP. MIC90 values were read as the lowest concentration at 

which no visible growth was observed. Compounds 2 and 7-9 all provided MIC values >200; 

analog 2 does not contain the hydroxymate hydroxyl group, while analogs 7-9 are the 3’-OH, 

benzyl and 2,3-dimethoxy analogs, respectively. Interestingly, these four analogs are all of the 

analogs with a negative CAS result and inability to bind iron(III) (Table 6.1). This finding 

indicates that iron binding is crucial to the mode of action leading to growth inhibition. Compounds 

1 and 3-6 all inhibited growth with MIC values as low as 0.78 µM, again correlating directly with 

the ability of the molecule to chelate metal. Compound 3 demonstrated that the presence of the 

imidazole ring is not required for iron binding (positive CAS result) nor for growth inhibition (MIC 

value 1.56µM), signifying the right hand side of the molecule as a potential site for further 

derivatization.  

With these compounds in hand, we sought to explore the ability of these analogs to utilize 

and interact with the siderophore uptake pathway. Preacintobactin and acinetobactin are known to 

be transported through TonB-dependent outer membrane transport protein, BauA. Recently, 

Naismith and coworkers resolved an interesting crystal structure of a holo-PreAcb/Acb complex 

bound to BauA.5 Once in the periplasm, periplasmic siderophore binding protein, BauB, directs 

the siderophore-iron complex to the inner membrane ABC-transport protein, BauCDE. As 

discussed in Chapter 2, a crystal structure of Acb2Fe-BauB complex highlighted the binding mode 

of Acb-iron and matched that was predicted by DFT calculations.6 With expressed and purified 

BauB in hand, we performed fluorescence quenching assays of the small molecule to BauB to 

determine BauB binding affinities for the natural compound along with the analogs (Figures 6.4, 
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6.5 & Table 6.1). All molecules possessing a substituent in the 2’- position of the ring on the right 

hand side of the molecule were able to bind BauB with nM affinities; notably, molecules 7 and 8 

which lack a 2’- substituent failed to bind BauB. This finding indicates the necessity of a 

substituent (hydroxyl or methyl ester) to be the 2’- position of the right hand catechol ring, which 

is likely needed for hydrogen bounding to the protein binding site. We determined the binding 

affinities for both the iron free (apo) and iron bound (holo) forms of the natural siderophores Acb 

and Fims, in addition to OxPreAcb and analogs, as relevant references to natural BauB binding. 

In the holo form, OxPreAcb has the lowest BauB binding affinity, suggesting that OxPreAcb can 

interact with and can potentially outcompete with the natural siderophores for the siderophore 

pathway.  

With lead compound OxPreAcb in hand, we sought to investigate the how effective this 

compound inhibited the growth of clinically relevant bacterial strains; thus, we performed growth 

studies of OxPreAcb against 13 clinical strains of A. baumannii obtained from the CDC AR-

BANK. These clinical isolates have various number of resistances genes (5-14 antibiotic genes) 

and serve as a representation of clinically revelant multidrug resistant A. baumannii. The MIC90’s 

and susceptible – intermediate – resistant (S-I-R) interpretation of these isolates against 21 

common antibiotics are obtained by the CDC and listed in Figure 6.6. OxPreAcb showed 

inhibition of all 13 strains as low as 1.56µM at 17 hours and as low as 6.25µM at 40 hours (Table 

6.2), demonstrating the potential for OxPreAcb to treat clinical multidrug resistant infections. The 

increase in MIC90 values at 17 hours to 40 hours and the growth recovery over time is consistent 

with our previous hypothesis that OxPreAcb works in a bacteriostatic manner.  

We determined the relative cytotoxicity using a lactose dehydrogenase (LDH) release assay 

of OxPreAcb to healthy stable cell type, mammalian cells, and found OxPreAcb to be non-
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cytotoxic, with LDH release of 1.379% at 100µM concentration OxPreAcb (Figure 6.7). 

Cytotoxicity was determined through average lactate dehydrogenase release in madin-darby 

canine kidney cells. This low toxicity is encouraging and serves as grounds to warrant further 

investigation and optimization of OxPreAcb and oxidized siderophore scaffolds as a general ant 

virulence approach.     

To help elucidate the mechanism of action of OxPreAcb, we sought to determine whether 

disruption of the siderophore is in fact the target or if OxPreAcb plays a role in general disruption 

of metal homeostasis or metalloenzyme inhibition within the cell. In order to explore this 

possibility, the OxPreAcb-Ga complex was synthesized. Gallium has been reported to have 

antibacterial activity when conjugated to both protoporphyrin IX (potent activity against Gram-

negative and Gram-positive bacteria)7 as well as siderophores such as deferoxamine mesylate 

(activity against P. aeruginosa).8 Further, as gallium serves as a mimic of iron, gallium fails to be 

reduced in cells and therefore upon reaching the cytoplasm, siderophore-gallium conjugates would 

fail to be reduced, thus preventing release of free metal and recycling of the siderophore. Initial 

growth studies of OxPreAcb-Ga against A. baumannii ATCC17978 in M9 minimal media with 

supplemented DIP showed complete growth inhibition at all concentrations (Figure 6.8). This 

inhibition of activity by OxPreAcb-Ga, however, can be recovered in a dose-dependent manner 

upon the addition of Fim-Fe, Acb2-Fe or OxPreAcb-Fe. This growth recovery upon siderophore 

addition indicates that OxPreAcb-Ga was not merely a general toxic effect from the presence of 

Ga but instead points to pathway competition of OxPreAcb-Ga and A. baumannii siderophore and 

supports the theory that OxPreAcb disrupts the siderophore pathway, as opposed to disrupting 

metal homeostasis (Figure 6.9 & 6.10). Further evidence that OxPreAcb utilizes the siderophore 
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pathway is shown in the ability of OxPreAcb-Ga binding to BauB with similar affinity to that of 

the natural siderophores (Figure 6.11).  

6.5 Outlook and Conclusions     

In summary, we generated, characterized, and evaluated eight structural analogs of 

previously reported OxPreAcb to identify structure-activity-relationships related to iron binding, 

growth inhibition, and periplasmic binding protein affinity (BauB). Studies show a direct 

correlation between inhibition and ability to bind iron. Additionally, the right hand portion of the 

molecule was identified as a potential site for further diversification, as the presence of the 

imidazole tail did not have an effect on iron binding ability nor growth inhibition ability.  

Moreover, growth inhibitions studies with (OxPreAcb)2-Ga and corresponding growth recovery 

promoted by known, iron-bound A. baumannii siderophores suggests a competition of OxPreAcb 

with the natural system (Figure 6.12). BauB binding assays highlight the ability of OxPreAcb 

analogs to bind to this protein, provided the analog possesses a substituent (hydroxyl or methoxy) 

in the 2’-position. In conclusion, through the presented studies, we have identified promising 

candidates, with low cytotoxicity and potent inhibitory activity across a panel of highly resistant 

A. baumannii clinical isolates, which merit further study and evaluation as lead compounds for the 

treatment of MDR A. baumannii infections.  

6.6 Materials and Methods     

Strains, Materials, and Instrumentation 

Growth studies for the oxidized pre-acinetobactin analog panel were conducted using A. 

baumannii ATCC 19606T provided by Dr. Luis Actis. Growth studies for oxidized pre-

acinetobactin against clinical strains were conducted using A. baumannii AR-BANK #0273, 
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#0275, #0278, #0284, #0287, #0290, #0293, #0296, #0299, #0302, #0305, #0308, #0311 from the 

Antimicrobial Resistance Bank (collected by the CDC and FDA), provided to us by Dr. Gautam 

Dantas. Precultures and 96-well plate A. baumannii growth assays were performed in filter-

sterilized M9 minimal media. Samples for LC-MS were prepared in 0.45 μM PTFE mini-UniPrep 

vials from Agilent. All preparatory HPLC was performed using a Beckman Coulter SYSTEM 

GOLD 127P solvent module and 168 detector with a Phenomenex Luna 10u C18(2) 100A column, 

250 × 21.20 mm, 10 μm with guard column. Prep HPLC was performed with a mobile phase of 5 

mM ammonium acetate in (A) water and (B) acetonitrile, and data were processed using 32 Karat 

software, version 7.0. All LC-MS was performed on an Agilent 6130 quadrupole LC-MS with 

G1313 autosampler, G1315 diode array detector, and 1200 series solvent module. A Phenomenex 

Gemini C18 column, 50 × 2 mm, 5 μm with guard column was used for all LC-MS separations. 

LC-MS mobile phases were 0.1% formic acid in (A) water and (B) acetonitrile, and data were 

processed using G2710 ChemStation software. NMR was performed on a Varian Unity Inova-600 

MHz instrument with a cold probe. Bacterial growth studies were performed using polystyrene 96-

well plates with polystyrene lids.  

CAS Assay 

CAS agar plates were prepared as described previously.1,3,4 Wells were made in the solid 

agar, and 50 μL each of 100 μM solutions of oxidized pre-acinetobactin analogs in M9 minimal 

media (diluted from calibrated DMSO-d6 stocks) were pipetted into the wells. Color change was 

observed after 4 hours. 

A. baumannii Growth Studies in Minimal Media 

M9 minimal media was made as described previously.3 

Analog Panel: 
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Solutions of 800 μM oxidized pre-acinetobactin analogs in M9 media were filter sterilized. 

96-well plates were filled with 50 μL of M9 minimal media per well. Into the first column, 50 μL 

of analog was added and columns were serially diluted down to 0.39 μM. An inoculum was made 

by adding 200 μL of a 0.5 McFarland standard of A. baumannii ATCC 19606T to 29.8 μL of 200 

μM 2,2’-dipyridyl in M9 minimal media. Inoculum (50 μL) was added to each well for a final 

concentration of 100 μM 2,2’-dipyridyl and a serial dilution of 200 μM-0.39 μM analog. An MIC90 

was read visually as the concentration at which no growth was observed and recorded at 72 hours. 

Clinical Strain Panel:  

A solution of 800 μM oxidized pre-acinetobactin in M9 media was filter sterilized. 96-well 

plates were filled with 50 μL of M9 minimal media per well. Into the first column, 50 μL of 

oxidized pre-acinetobactin was added and columns were serially diluted down to 0.39 μM. For 

each AR-BANK strain described in the above section, an inoculum was made by adding 200 μL 

of a 0.5 McFarland standard to 29.8 μL of 200 μM 2,2’-dipyridyl in M9 minimal media. Inoculum 

(50 μL) was added to each well for a final concentration of 100 μM 2,2’-dipyridyl and a serial 

dilution of 200 μM-0.39 μM analog. An MIC90 was read visually as the concentration at which no 

growth was observed and recorded at 17 hours and 40 hours. 

OxPreAcb-Ga growth studies in A. baumannii ATCC 17978: 

 For biological assessment of OxPreAcb-Ga under iron-restrictive conditions, stock 

solutions of 10 mM of OxPreAcb-Ga were prepared in DMSO. A 96-well plate was filled with 50 

μL of M9 minimal media per well. These stock solution were diluted adding 20 μL of 10 mM 

OxPreAcb-Ga stock to 180 μL of M9 minimal media, affording a 1 mM stock solutions. 50 μL of 

OxPreAcb-Ga 1 mM stock solutions were added to the first row of a 96 well plate. Compound was 

serially diluted down the plate to 7.8 μM. An inoculum was made by adding 100 μL of 0.5 
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McFarland standard (A. baumannii ATCC 17978) to 4.0 mL of M9 minimal media supplemented 

with 350 μM 2,2’-dipyridyl. Inoculum (50 μL) was added to each well for a final concentration of 

175 μM 2,2’-dipyridyl  and  a  serial dilution  of 250-7.8 μM OxPreAcb-Ga.  Growth promotion 

was  determined  as compared  to  a  control  with  175 μM 2,2’-dipyridyl, 0 μM OxPreAcb-Ga. 

All experiments were performed in triplicate. 

Combination studies of OxPreAcb-Ga and Fim-Fe, Acb-Fe or OxPreAcb-Fe:  

For  the  biological  evaluation  of  combinations  of  OxPreAcb-Ga and Fim-Fe, Acb-Fe 

or OxPreAcb-Fe, a 96-well plate was filled with 50 μL of M9 minimal media per well.  2.5 μL of 

10 mM OxPreAcb-Fe or Fim-Fe was added into 197.5uL M9 minimal media to make 125uM stock 

solution. For Acb-Fe, 3.3uL of 7.6mM Acb-Fe was added into 196.7uL M9 minimal media to 

make 125 uM stock solution. 50uL of Fim-Fe, Acb-Fe or OxPreAcb-Fe  was added to the first row 

of of a 96 cell plate. Compounds were serially diluted down the plate to 0.975μM. 4.68 uL of 10 

mM OxPreAcb-Ga was added to 115.32 uL M9 minimal media to make 0.39 uM stock solution. 

2uL of 0.39 uM OxPreAcb stock solution was added to each well of 96-well plate. An inoculum 

was made by adding 100 μL of 0.5 McFarland standard (A. baumannii ATCC 17978) to 4.0 mL 

of M9 minimal media supplemented with 350 μM 2,2’-dipyridyl. Inoculum (50 μL) was added to 

each well for a final concentration of 175 μM 2,2’-dipyridyl, 7.8uM OxPreAcb-Ga and  a  serial 

dilution  of 31.25-0.975μM iron compounds.  Growth promotion was determined as compared to 

a control with  175 μM 2,2’-dipyridyl, 0 μM OxPreAcb-Ga. All experiments were performed in 

triplicate. 

BauB Fluorescence Quenching Studies 

BauB fluorescence quenching experiments were performed as previously reported.6 

Briefly, a 183 μM bead of protein BauB-ss was thawed and diluted ten-fold in TBS buffer to afford 
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a 18.3 μM stock solution. This stock solution was then diluted again to provide a 400 nM stock 

solution. 300 μL of the 400 nM stock solution was transferred to a fluorescence cuvette. A stock 

solution of 400 nM protein and 16 μM small molecule was made.  

An emission spectrum was taken at each concentration as an average of 3 scans. Excitation 

wavelength of 280 nm, fluorescence observed between 300 and 400 nm. Slit width was set to 10 

nm with a scan speed of 400. Fluorescence at 320 nm was tracked as a function of small molecule 

concentration. All measurements were performed in duplicate.  

Fluorescence spectra were taken of 400 nM protein with the following concentrations of 

small molecule: 0 nM, 106.8 nM, 212.8 nM, 318.0 nM, 422.4 nM, 684.0 nM, 1196.0 nM, 1688.0 

nM, 2644.0 nM and 3536.0 nM.  
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Compound Synthesis 
 

 

  

Compound R1 R2 R3 

38 2,3-di-OH  

 

OBn  OH (OxPreA, 1) 

2 2,3-di-OH H (2) 

39 2,3-di-OH 
 

OBn  OH (3) 

40 2-OH  
 
 

 

OBn  OH (4) 

41 2,5-di-OH OBn  OH (5) 

42 2,4-di-OH OBn  OH (6) 

43 4-OH OBn  OH (7) 

44 H OBn  OH (8) 

45 2,3-di-OMe OBn  OH (9) 

Compound R1 
17, 24, 31 2,3-di-OH 
18, 25, 32 2-OH 
19, 26, 33 2,5-di-OH 
20, 27, 34 2,4-di-OH 
21, 28, 35 4-OH 
22, 29, 36 H 
23, 30, 37 2,3-di-OMe 
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Compound 12 was synthesized and characterized as previously reported by our group.3 

 

Compound 13 was synthesized through the N-Boc removal of N-Boc-O-benzylhydroxylamine 

(12). 20mg of 12 was dissolved in 5 mL of neat TFA. Reaction stirred for 1 hr, monitored by LC-

MS. Upon verification of completion, TFA was removed by rotary evaporation under reduced 

pressure to afford the TFA salt of O-benzylhydroxylamine 13 in quantitative yield. Compound 13 

was used without purification or characterization. 

 

Compound 15 was synthesized and characterized as previously reported by our group.4 

 

Compound 16 was synthesized through the N-Boc removal of N-Boc-O-benzylhydroxylamine 

(15). 20mg of 15 was dissolved in 5 mL of neat TFA. Reaction stirred for 1 hr, monitored by LC-

MS. Upon verification of completion, TFA was removed by rotary evaporation under reduced 

pressure to afford the TFA salt of O-benzylhydroxylamine 16 in quantitative yield. Compound 16 

was used without purification or characterization.  
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General Procedure A. The synthesis of oxazole benzyl esters 24-30 was adapted from a 

previously reported, one-pot synthesis of oxazoles.9 Briefly, L-throenine benzyl ester oxalate (3.34 

mmol), potassium carbonate (6.68 mmol), and N,N’-dimethylacetamide (8.3 mL) were stirred 

under argon. To the resultant mixture was added various benzaldehyde (3.34 mmol), the solution 

stirred at room temperature, under argon, for 12 hrs. After 12 hrs, the reaction was cooled to 0°C, 

and bromotrichloromethane (10.02 mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (10.02 mmol) 

were added. The solution stirred at 0°C for 2 hrs, at which point the reaction was removed from 

the ice bath and warmed to rt. The mixture stirred at rt for an additional 10 hrs [monitored by LC-

MS]. The reaction was diluted with DD-H2O (3x original volume) and extracted with MTBE (3 x 

15 mL) and EtOAc (3 x 15 mL). The organic layers were combined, washed with brine, and dried 

over Na2SO4. The product was concentrated by rotary evaporation to yield desired compound. The 

crude product was then purified as needed by prep HPLC (gradient of 0% B to 95% B for 17 min 

then hold at 100% B for 8 minutes) to provide the title compound. NMR matched previous reports.1 

O

N

O

OH

R1

 

General Procedure B. Oxazole carboxylic acids 31-37 were synthesized through the 

hydrogenation of oxazole benzyl esters 24-30. Briefly, oxazole benzyl esters 24-30 (20 mg) were 

dissolved in MeOH (2 mL) 10% P/C (2 mg) was added at rt. The vial was purged with H2 and 

allowed to stir under H2 atm (1 atm) for 1 hr [monitored by LC-MS]. Once complete, as judged by 

LC-MS, the solid catalyst was removed via syringe filtration, and the solution was concentrated 
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under reduced pressure to provide pure carboxylic acids 31-37 in quantitative yield. These 

compounds were used without purification or characterization.  

 

General Procedure C. Compounds 2, 38-45 were synthesized through the coupling of oxazole 

carboxylic acids 31-37 and amines 10, 13 and 16. Carboxylic acids 31-37 (0.25 mmol) were 

dissolved in DMF (8 mL) under argon. Amines 10, 13 or 16 (0.38 mmol) were added. To the 

stirring solution was added EDC (1.28 mmol) and HOBt (1.28 mmol). Et3N was added to the 

reaction dropwise until a pH of ~9 was obtained. The reaction stirred under argon for 12 hrs 

(monitored by LC-MS), at which point the reaction mixture was concentrated by rotary 

evaporation and purified by prep HPLC (gradient of 0% B to 95% B in 17 minutes, 95% B to 

100% B in 2 minutes, hold 100% B for 8 minutes) to yield title compound 2, 38-45. Compound 2 

was characterized by HRMS and 2D-NMR.  

 

General Procedure D. OxPreA and analogs (1-9) were synthesized through hydrogenation of 

oxazole amides 38-45. Oxazole amides 38-45 was stirred in MeOH with ~1/10 mass equivalent of 

10% Pd/C under H2 atmosphere (1 atm). Upon confirmation of reaction completion by LC-MS (~1 

hr), the solid catalyst was removed through syringe filtration and the solution was concentrated by 
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rotary evaporation to afford desired compounds 1-9 in quantitative yield. Characterized by HRMS 

and 2D-NMR. 

 

Compound 17 was synthesized and characterized as previously reported in our group.1  

 

Compound 18 was synthesized by general procedure A starting with 2-hydroxybenzyaldehyde. 

1H NMR (600 MHz, Chloroform-d) δ 10.82 (s, 1H), 7.77 (dd, J = 7.9, 1.7 Hz, 1H), 7.46 (d, 2H), 

7.40 (t, J = 7.5 Hz, 2H), 7.36 (d, 2H), 7.07 (d, J = 8.4, 0.8 Hz, 1H), 6.94 (t, J = 8.0, 7.4, 0.9 Hz, 

1H), 5.37 (s, 2H), 2.70 (s, 3H). 13C NMR (151 MHz, Chloroform-d) δ 161.5, 159.4, 157.4, 155.3, 

135.7, 132.8, 128.8, 128.5, 128.3, 127.0, 126.0, 119.5, 117.5, 110.4, 66.7, 12.2. LC-MS cald for 

C18H16NO4 (M + H)+ 310.1074; found 310.1 

 

Compound 19 was synthesized by general procedure A starting with 2,5-

dihydroxybenzyaldehyde. 1H NMR (600 MHz, DMSO-d6) δ 10.03 (s, 1H), 9.25 (s, 1H), 7.47 (d, J 

= 7.2 Hz, 2H), 7.42 (t, J = 7.4 Hz, 2H), 7.38 – 7.34 (m, 1H), 7.16 (d, J = 2.7 Hz, 1H), 6.91 – 6.84 

(m, 2H), 5.36 (s, 2H), 2.67 (s, 3H).13C NMR (151 MHz, DMSO-d6) δ 160.8, 158.6, 155.9, 150.1, 
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149.2, 135.8, 128.6, 128.2, 128.1, 126.3, 120.7, 117.9, 111.4, 110.2, 66.1, 11.9. LC-MS cald for 

C18H16NO5 (M + H)+ 325.1023; found 326.1   

 

Compound 20 was synthesized by general procedure A starting with 2,4-

dihydroxybenzyaldehyde. 1H NMR (600 MHz, Chloroform-d) δ 7.65 (d, J = 8.7 Hz, 1H), 7.45 (d, 

2H), 7.39 (t, J = 7.3 Hz, 2H), 7.35 (d, J = 7.3 Hz, 1H), 6.52 (d, J = 2.3 Hz, 1H), 6.45 (dd, J = 8.6, 

2.3 Hz, 1H), 5.37 (s, 2H), 2.68 (s, 3H). 13C NMR (151 MHz, Chloroform-d) δ 161.8, 159.7, 159.7, 

159.7, 159.3, 154.7, 135.8, 128.8, 128.5, 127.7, 126.8, 107.9, 103.7, 66.8, 12.2. LC-MS cald for 

C18H16NO5 (M + H)+ 326.1023; found 326.1 

 

Compound 21 was synthesized by general procedure A starting with 4-hydroxybenzyaldehyde. 

1H NMR (600 MHz, Chloroform-d) δ 7.90 (d, J = 8.9 Hz, 1H), 7.43 (d, J = 6.9 Hz, 1H), 7.38 – 

7.28 (m, 4H), 6.87 (d, J = 8.9 Hz, 1H), 5.37 (s, 2H), 2.66 (s, 2H). 13C NMR (151 MHz, Chloroform-

d) δ 162.5, 160.2, 158.6, 158.4, 156.0, 135.9, 139.9, 128.7, 128.7, 128.6, 128.4, 116.0, 66.8, 12.4. 

LC-MS cald for C18H16NO4 (M + H)+ 310.1074; found 310.1 

 

Compound 22 was synthesized by general procedure A starting with benzyaldehyde. 1H NMR 

(600 MHz, Chloroform-d) δ 8.09 – 8.00 (m, 2H), 7.52 – 7.46 (m, 2H), 7.45 – 7.40 (m, 3H), 7.38 

(t, J = 7.2 Hz, 2H), 7.35 – 7.30 (m, 1H), 5.41 (s, 2H), 2.68 (s, 3H). 13C NMR (151 MHz, 
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Chloroform-d) δ 162.4, 159.8, 156.5, 135.9, 130.8, 128.8, 128.7, 128.7, 128.5, 128.4, 126.7, 66.7, 

12.4. LC-MS cald for C18H16NO3 (M + H)+ 294.1125; found 294.1 

 

Compound 23 was synthesized by general procedure A starting with 2,3 dimethoxy-

benzyaldehyde. 1H NMR (600 MHz, Chloroform-d) δ 7.55 (dd, J = 7.9, 1.5 Hz, 1H), 7.47 (d, J = 

7.4 Hz, 2H), 7.37 (t, J = 7.3 Hz, 2H), 7.35 – 7.30 (m, 1H), 7.11 (t, J = 8.0 Hz, 1H), 7.02 (dd, J = 

8.2, 1.5 Hz, 1H), 5.40 (s, 2H), 3.92 (s, 3H), 3.90 (s, 3H), 2.69 (s, 3H). 13C NMR (151 MHz, 

Chloroform-d) δ 162.5, 158.4, 156.8, 153.7, 148.0, 136.1, 128.7, 128.5, 128.5, 128.4, 124.4, 122.1, 

121.6, 114.9, 66.6, 61.5, 56.2, 12.5.  LC-MS cald for C20H20NO5 (M + H)+ 354.1336; found 354.1 

 

Compound 38 was synthesized and characterized as previously reported by our group.1  

 

Compound 39 was synthesized by general procedure C through EDC/HOBt mediated couple of 

oxazole carboxylic acid 31 and O-benzylehydroxylamine 16 in the presence of facilitating base. 

1H NMR (600 MHz, DMSO-d6) δ 7.95 (s, 1H), 7.42 (s, 2H), 7.31 (s, 3H), 7.24 (dd, J = 7.9, 1.6 

Hz, 1H), 6.95 (dd, J = 7.9, 1.5 Hz, 1H), 6.82 (t, J = 7.9 Hz, 1H), 4.99 (s, 1H), 4.94 (s, 1H), 3.88 – 

3.72 (m, 2H), 1.69 – 1.54 (m, 2H), 1.38 – 1.24 (m, 2H), 0.94 – 0.76 (m, 3H). 13C NMR (151 MHz, 

DMSO-d6) δ 158.1, 146.0, 145.1, 133.7, 129.4, 129.13 129.02 128.6, 128.6, 128.3, 119.7, 118.3, 
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118.1, 116.4, 76.6, 19.3, 19.0, 13.6, 13.4. LC-MS cald for C22H25N2O5 (M + H)+ 397.1758; found 

397.2 

 

Compound 40 was synthesized by general procedure C through EDC/HOBt mediated couple of 

oxazole carboxylic acid 32 and O-benzylehydroxylamine 13 in the presence of facilitating base.  

1H NMR (600 MHz, DMSO-d6) δ 7.78 (dd, J = 7.8, 1.7 Hz, 1H), 7.50 (s, 1H), 7.44 – 7.39 (m, 1H), 

7.35 (s, 2H), 7.31 (s, 3H), 7.06 (dd, J = 8.3, 1.1 Hz, 1H), 7.02 – 6.97 (m, 1H), 6.80 (s, 1H), 4.95 

(s, 2H), 4.05 (t, J = 7.2 Hz, 2H), 2.88 (t, J = 7.2 Hz, 2H), 2.43 (s, 3H). 13C NMR (151 MHz, 

DMSO-d6) δ 172.1, 161.6, 157.2, 156.1, 152.2, 135.0, 134.8, 132.6, 129.3, 128.5, 128.4, 128.3, 

126.9, 119.7, 118.1, 117.0, 111.0, 75.6, 25.1, 11.5. LC-MS cald for C23H22N4O4 (M + H)+ 

418.1641; found 418.2 

 

Compound 41 was synthesized by general procedure C through EDC/HOBt mediated couple of 

oxazole carboxylic acid 33 and O-benzylehydroxylamine 13 in the presence of facilitating base.  

1H NMR (600 MHz, DMSO-d6) δ 7.49 (s, 1H), 7.36 – 7.28 (m, 5H), 7.15 (d, J = 2.8 Hz, 1H), 6.88 

(d, J = 8.7 Hz, 1H), 6.86 (dd, J = 8.9, 2.8 Hz, 1H), 6.80 (s, 1H), 5.79 (s, 1H), 4.94 (s, 2H), 4.03 (t, 

J = 7.2 Hz, 2H), 2.86 (t, J = 7.2 Hz, 2H), 2.41 (s, 3H). 13C NMR (151 MHz, DMSO-d6) δ 158.0, 

157.6, 150.0, 149.0, 134.8, 129.3, 128.5, 128.4, 128.3, 120.3, 117.9, 111.4, 110.5, 56.6, 45.0, 27.9, 

15.7. LC-MS cald for C23H22N4O5 (M + H)+ 434.1590; found 434.2 
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Compound 42 was synthesized by general procedure C through EDC/HOBt mediated couple of 

oxazole carboxylic acid 34 and O-benzylehydroxylamine 13 in the presence of facilitating base. 

1H NMR (600 MHz, DMSO-d6) δ 7.59 (d, J = 8.5 Hz, 1H), 7.49 (s, 1H), 7.36 – 7.28 (m, 5H), 6.79 

(s, 1H), 6.43 (dd, J = 8.6, 2.2 Hz, 1H), 6.41 (d, J = 2.3 Hz, 1H), 5.78 (s, 2H), 4.93 (s, 2H), 4.02 (t, 

J = 7.3 Hz, 2H), 2.86 (t, J = 7.3 Hz, 2H), 2.39 (s, 3H). 13C NMR (151 MHz, DMSO-d6) δ 161.6, 

158.2, 158.0, 157.9, 134.8, 129.3, 128.5, 128.3, 127.9, 108.3, 102.8, 102.6, 56.7, 45.6, 28.0, 15.7. 

LC-MS cald for C23H22N4O5 (M + H)+ 434.1590; found 434.2 

 

Compound 43 was synthesized by general procedure C through EDC/HOBt mediated couple of 

oxazole carboxylic acid 35 and O-benzylehydroxylamine 13 in the presence of facilitating base.  

1H NMR (600 MHz, DMSO-d6) δ 7.76 (d, J = 8.7 Hz, 2H), 7.49 (s, 1H), 7.41 (s, 1H), 7.34 (s, 2H), 

6.88 (d, J = 8.7 Hz, 2H), 5.77 (d, J = 6.4 Hz, 3H), 5.04 (s, 2H), 4.09 (s, 2H), 2.89 – 2.83 (m, 2H), 

2.44 (s, 3H). 13C NMR (151 MHz, DMSO-d6) δ 160.0, 158.1, 158.0, 134.7, 129.0, 128.4, 128.3, 

127.8, 117.3, 116.0, 56.8, 37.6, 28.0, 15.7. LC-MS cald for C23N22N4O4 (M + H)+ 418.1641; found 

418.2 

O

N

O

N

OBn

NH
N

 

Compound 44 was synthesized by general procedure C through EDC/HOBt mediated couple of 

oxazole carboxylic acid 36 and O-benzylehydroxylamine 13 in the presence of facilitating base.  
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1H NMR (600 MHz, DMSO-d6) δ 7.96 – 7.92 (m, 2H), 7.55 – 7.49 (m, 3H), 7.50 (s, 1H), 7.41 (s, 

2H), 7.33 (s, 3H), 6.81 (s, 1H), 5.06 (s, 2H), 4.11 (s, 2H), 2.89 (t, 2H), 2.47 (s, 3H). 13C NMR (151 

MHz, DMSO-d6) δ 135.3, 134.7, 131.0, 130.8, 129.2, 129.2, 129.1, 128.4, 128.3, 126.4, 126.1, 

126.0, 125.9, 75.7, 51.7, 24.9, 11.6. LC-MS cald for C23H22N4O3 (M + H)+ 402.1692; found 402.2 

O

N

O

N

OBn

NH
NMeO OMe

 

Compound 45 was synthesized by general procedure C through EDC/HOBt mediated couple of 

oxazole carboxylic acid 37 and O-benzylehydroxylamine 13 in the presence of facilitating base. 

1H NMR (600 MHz, DMSO-d6) δ 7.48 (s, 1H), 7.43 – 7.36 (m, 2H), 7.36 – 7.31 (m, 3H), 7.23 (dd, 

J = 8.2, 1.8 Hz, 1H), 7.19 (t, J = 7.9 Hz, 1H), 6.79 (s, 1H), 5.79 (s, 1H), 5.03 (s, 2H), 4.13 (s, 2H), 

3.86 (s, 3H), 3.78 (s, 3H), 2.87 (t, J = 7.5 Hz, 2H), 2.47 (s, 3H). 13C NMR (151 MHz, DMSO-d6) 

δ 162.1, 158.0, 155.9, 153.4, 147.0, 135.4, 134.7, 129.1, 128.4, 128.3, 124.6, 121.0, 120.8, 115.1, 

60.7, 56.8, 51.7, 28.0, 15.7. LC-MS cald for C25H27N4O5 (M + H)+ 463.1976; found 463.2 
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6.7 Figures and Tables    
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Figure 6.1: SAR analysis of pre-acinetobactin and acinetobactin2 

 

Scheme 6.1: Synthetic route for OxPreAcb and analogs. *note: compound 2 lacks a 

hydroxymate hydroxyl group and thus does not require a final de-protection step  
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Figure 6.2: CAS assay determination of iron binding ability of OxPreAcb and analogs  

COMPOUND MIC CAS BAUB BINDING 
AFFINITY  

Acb >200 + 302 ± 105 
Acb-Fe >200 + 162 ± 81 
PreAcb >200 + 383 ± 106 

PreAcb-Fe >200 + 754 ± 155 
FimsA >200 + 355 ± 139 

FimsA-Fe >200 + 244 ± 93 
OxPreAcb, 1 1.56 + 198 ± 78 
OxPreAcb-Fe >200 + 317 ± 172 
OxPreAcb-Ga <0.78 + 293 ± 172 

2 >200 - 183 ± 112 
3 1.56 + 218 ± 126 
4 0.78 + 217 ± 212 
5 0.78 + 260 ± 129  
6 0.78 + 206 ± 138 
7 >200 - No fit 
8 >200 - No fit 
9 >200 - 143 ± 60 

 

Table 6.1: MIC90 values (µM), CAS assay and BauB affinities for natural siderophores and 

OxPreAcb derivatives  
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Figure 6.3: The presence of the hydroxymate group in OxPreAcb is necessary for OxPreAcb 

inhibition  
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Figure 6.4: Fluorescence Quenching of BauB by OxPreAcb, OxPreAcb-Fe, PreAcb, PreAcb-Fe, 
Acb, Acb-Fe, DFO-B and Kanamycin 
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Figure 6.5: Fluorescence Quenching of BauB by OxPreAcb analogs   
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0273 9 R R R R R R S R R R - R R I R S R - R R 
0275 11 R R R R R R S R R R - R R I R S R - R R 
0278 14 R R R R R R S R R R - R R I R S R - R R 
0284 7 R R R R R R S R R R - R R S R S R - R R 
0287 6 I R R R R R S R S R - R R S R S R - R R 
0290 13 R R R R R R S R R R - R R I R S R - R R 
0293 5 I R R R R R S R R R - I R I R S R - R S 
0296 6 R R R R R R S R R R - R R S R S R - R R 
0299 14 R R R R R R S R R R - R R S R S R - R R 
0302 9 R R R R R R S R R R - R R I R S R - R R 
0305 7 I I R R R R S R R R - R R S R S S - R R 
0308 10 R R R R R R R R R R - R R R R R R - R R 
0311 11 R R R R R R S R R R - R R S R S R - R R 

 

Figure 6.6: CDC clinical isolates resistances to current antibiotics (S - susceptible, I – intermediate, R - resistant)  
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CDC Isolate Strain MIC90 (17 hrs) 
µm 

MIC90 (40 hrs) 
µm 

0273 1.56 6.25 

0275 3.125 6.25 

0278 3.125 6.25 

0284 12.5 25 

0287 3.125 6.25 

0290 6.25 25 

0293 0.78 6.25 

0296 6.25 25 

0299 No growth 12.5 

0302 6.25 25 

0305 3.125 12.5 

0308 6.25 25 

0311 6.25 25 

   
Table 6.2: MIC90 values of OxPreAcb against CDC clinical isolates of A. baumannii 
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  Cytotoxicity (MDCK, LDH Release, n=3) 

Positive Control LDH Lysis Buffer 

Test Compound Concentration (µM) 
Average LDH Release 
(%) 

SD 

OxPreAcb 

0 1.238% 0.535% 

0.1 0.298% 0.222% 

0.333 0.094% 0.094% 

1 0.157% 1.102% 

3.33 0.016% 0.267% 

10 0.235% 0.163% 

33.3 0.345% 0.380% 

100 1.379% 0.190% 

Positive Control NA 100.000% 7.636% 

 

 

Figure 6.7: Toxicity data Alliance Pharma  
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Figure 6.8: OxPreAcb2Ga inhibits A. baumannii ATCC17978 growth. Growth curves of A. 

baumannii in M9 minimal medium supplemented with 125 μM 2,2’-dipyridyl (DIP) and gradient 

concentrations of OxPreAcb2Ga (A.), without error bars (B.) with error bars. Error bars represent 

s.d. for three independent trials. 
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Figure 6.9: Growth studies of A. baumannii ATCC17978 in the presences of 1. OxPreAcb-Ga 

(7.8 μM) and Fims-Fe (31.25 μM, 0.975 μM) 2. OxPreAcb-Ga (7.8 μM) and (Acb)2-Fe (31.25 

μM, 0.975 μM) 3.  OxPreAcb-Ga (7.8 μM) and OxPreAcb-Fe (31.25 μM, 0.975 μM) 4. 

OxPreAcb (250 μM, 6.25 μM). 5. OxPreAcb-Ga (250 μM, 7.8 μM) 

  

1 2 3 4 5 
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Figure 6.10: 7.8 μM OxPreAcb-Ga with variable Fims-Fe, Acb-Fe and OxPreAcb-Fe growth 

studies against A. baumannii ATCC17978. Growth in M9 minimal medium supplemented with 

DIP. Error bars represent s.d. for three independent trials.  
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Figure 6.11: Fluorescence quenching assay of BauB with OxPreAcb-Ga 

 

 

Figure 6.12: OxPreAcb inhibits growth of A. baumannii by disruption of the siderophore 

pathway, as shown by the ability of OxPreAcb to bind periplasmic siderophore binding protein, 

BauB.   
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Figure 6.13: UV-Vis spectra for apo-OxPreAcb analogs  

Compound Characterization Data 
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benzyl 2-(2-hydroxyphenyl)-5-methyloxazole-4-carboxylate (18) 
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benzyl 2-(2,5-dihydroxyphenyl)-5-methyloxazole-4-carboxylate (19) 
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benzyl 2-(2,4-dihydroxyphenyl)-5-methyloxazole-4-carboxylate (20)  

 

 



284 
 

 
benzyl 2-(4-hydroxyphenyl)-5-methyloxazole-4-carboxylate (21)  
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benzyl 5-methyl-2-phenyloxazole-4-carboxylate (22) 
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benzyl 2-(2,3-dimethoxyphenyl)-5-methyloxazole-4-carboxylate (23)
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N-(benzyloxy)-N-butyl-2-(2,3-dihydroxyphenyl)-5-methyloxazole-4-carboxamide (39) 
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N-(2-(1H-imidazol-4-yl)ethyl)-N-(benzyloxy)-2-(2-hydroxyphenyl)-5-methyloxazole-4-carboxamide 
(40) 
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N-(2-(1H-imidazol-4-yl)ethyl)-N-(benzyloxy)-2-(2,5-dihydroxyphenyl)-5-methyloxazole-4-
carboxamide (41) 
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N-(2-(1H-imidazol-4-yl)ethyl)-N-(benzyloxy)-2-(2,4-dihydroxyphenyl)-5-methyloxazole-4-
carboxamide (42) 
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N-(2-(1H-imidazol-4-yl)ethyl)-N-(benzyloxy)-2-(4-hydroxyphenyl)-5-methyloxazole-4-
carboxamide (43) 
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N-(2-(1H-imidazol-4-yl)ethyl)-N-(benzyloxy)-5-methyl-2-phenyloxazole-4-carboxamide (44) 
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N-(2-(1H-imidazol-4-yl)ethyl)-N-(benzyloxy)-2-(2,3-dimethoxyphenyl)-5-methyloxazole-4-
carboxamide (45) 
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N-(2-(1H-imidazol-4-yl)ethyl)-2-(2,3-dihydroxyphenyl)-5-methyloxazole-4-carboxamide – 11 

HRMS cald for C16H17N4O4 (M + H)+ 329.1244; found 329.1245 
 

Atom 13C 
(ppm) 

1H (ppm), 
Multiplets in Hz 

COSY 
1H-1H  
3 bond 

HMBC 
  1H-13C  

 2-3 bond 

HSQC 

2      
3  6.85 (s, 1H)    
5 134.8 7.57 (d, 1H)   5 
6 27.9 2.76 (t, 2H) 7 7 6 
7 37.6 3.47 (q, 2H) 6   
9      
2’ 157.6     
4’ 128.8     
5’ 151.4     
6’ 11.3 2.66 (s, 3H)  5’ 6’ 
1’’ 110.7     
2’’ 145.1   4’’, 6’’  
3’’ 146.3   5’’  
4’’ 118.3 6.65 (dd, 1H) 5’’ 2’’, 5’’ 4’’ 
5’’ 119.5 6.80 (t, 1H) 6’’ 3’’, 4’’ 5’’ 
6’’ 116.3 7.23 (dd, 1H) 5’’ 2’, 2’’, 4’’ 6’’ 
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LC_MS and HRMS for 1 
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N-butyl-2-(2,3-dihydroxyphenyl)-N-hydroxy-5-methyloxazole-4-carboxamide – 2 

HRMS cald for C15H19N2O5 (M + H)+ 307.1288; found 307.1286 
 

Atom 13C 
(ppm) 

1H (ppm), 
Multiplets in Hz 

COSY 
1H-1H  
3 bond 

HMBC 
  1H-13C  

 2-3 bond 

HSQC 

1 
2 

     

3 34.1 2.98 (m, 2H) 4 4 3 
4 27.5 1.65 (m, 2H) 3, 5 3, 5 4 
5 21.2 1.48 (m, 2H) 4, 6 4, 6 5 
6 1.32 1.32 (m, 3H) 5 5 6 
2’ 157.8     
4’ 128.0     
5’ 151.5     
6’ 11.5 2.54 (s, 3H)  5’ 6’ 
1’’ 110.8     
2’’ 145.2   4’’, 6’’  
3’’ 146.1   5’’  
4’’ 118.3 6.94 (dd, 1H) 5’’ 2’’, 5’’ 4’’ 
5’’ 126.4 6.80 (t, 1H) 6’’ 3’’, 4’’ 5’’ 
6’’ 115.5 7.23 (dd, 1H) 5’’ 2’, 2’’, 4’’ 6’’ 
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LC_MS and HRMS for 2 
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N-(2-(1H-imidazol-4-yl)ethyl)-N-hydroxy-2-(2-hydroxyphenyl)-5-methyloxazole-4-carboxamide – 3 

HRMS cald for C16H17N4O4 (M + H)+ 329.1244; found 329.1241 
 

Atom 13C 
(ppm) 

1H (ppm), 
Multiplets in Hz 

COSY 
1H-1H  
3 bond 

HMBC 
  1H-13C  

 2-3 bond 

HSQC 

2      
3  6.85 (s, 1H)    
5 134.7 7.54 (s, 1H)   5 
6 24.5 2.88 (t, 2H) 7  6 
7  3.93 (s(br), 2H) 6   
9      
2’ 157.3     
4’ 128.7     
5’ 151.6     
6’ 11.5 2.50 (s, 3H) 

*under DMSO peak 
 4’, 5’ 6’ 

1’’ 110.6     
2’’ 156.1     
3’’ 117.0 7.05 (d, 2H) 4’’ 1’’, 5’’, 2’’ 3’’ 
4’’ 132.5 7.42 (t, 1H) 3’’ 6’’, 2’’ 4’’ 
5’’ 119.8 7.01 (t, 1H) 4’’, 6’’ 1’’, 3’’, 6’’ 3’’ 
6’’ 126.4 7.79 (d, 1H) 3’’ 2’’, 4’’, 2’ 6’’ 
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LC_MS and HRMS for 3 
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N-(2-(1H-imidazol-4-yl)ethyl)-2-(2,5-dihydroxyphenyl)-N-hydroxy-5-methyloxazole-4-carboxamide – 4 

HRMS cald for C16H17N4O5 (M + H)+ 345.1193; found 345.1190 
 

Atom 13C 
(ppm) 

1H (ppm), 
Multiplets in Hz 

COSY 
1H-1H  
3 bond 

HMBC 
  1H-13C  

 2-3 bond 

HSQC 

2      
3  6.86 (m, 3H)    
5 134.7 7.53 (s, 1H)   5 
6 21.2 2.87 (t, 2H) 7 7 6 
7 45.7 3.91 (s (br), 2H) 6   
9      
2’ 158.2     
4’ 128.0     
5’ 149.1     
6’ 11.5 2.50 (s, 3H) 

Under DMSO peak 
 5’ 6’ 

1’’ 110.2     
2’’ 126.4     
3’’ 126.6 6.86 (m, 3H)  4’’ 2’’, 4’’ 3’’ 
4’’ 120.3 6.86 (m, 3H) 3’’ 3’’ 4’’ 
5’’ 150.0     
6’’ 117.9 7.14 (d, 1H)   6’’ 
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LC_MS and HRMS for 4 
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N-(2-(1H-imidazol-4-yl)ethyl)-2-(2,4-dihydroxyphenyl)-N-hydroxy-5-methyloxazole-4-carboxamide – 5 

HRMS cald for C16H17N4O5 (M + H)+ 345.1193; found 345.1190 
 

Atom 13C 
(ppm) 

1H (ppm), 
Multiplets in Hz 

COSY 
1H-1H  
3 bond 

HMBC 
  1H-13C  

 2-3 bond 

HSQC 

2      
3  6.85 (s, 1H)    
5 134.7 7.53 (s, 1H)   4 
6 28.0 2.09 (t, 2H) 7 7 6 
7 45.2 3.91 (s(br), 2H) 6   
9      
2’ 158.0     
4’ 128.2     
5’ 150.4     
6’ 11.4 2.47 (s, 3H)  5’ 6’ 
1’’ 102.4     
2’’ 158.0   3’’  
3’’ 102.8 6.40 (d, 1H)  2’’, 4’’ 3’’ 
4’’ 161.6     
5’’ 108.3 6.43 (dd, 1H) 6’’ 6’’, 4’’ 5’’ 
6’’ 127.5 7.59 (d, 1H) 5’’  6’’ 
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LC_MS and HRMS for 5 
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N-(2-(1H-imidazol-4-yl)ethyl)-N-hydroxy-2-(4-hydroxyphenyl)-5-methyloxazole-4-carboxamide – 6 

HRMS cald for C16H17N4O4 (M + H)+ 329.1244; found 329.1242 
 

Atom 13C 
(ppm) 

1H (ppm), 
Multiplets in Hz 

COSY 
1H-1H  
3 bond 

HMBC 
  1H-13C  

 2-3 bond 

HSQC 

2      
3  6.88 (m, 3H)    
5 134.7 7.50 (s, 1H)   5 
6 28.0 2.88 (t, 2H) 7 7 6 
7 45.2 4.02 (s (br), 2H) 6   
9      
2’ 158.0     
4’ 127.2     
5’ 158.1     
6’ 11.4 2.43 (s, 3H)  5’ 6’ 
1’’      
2’’ 117.5 7.77 (d, 2H) 3’’ 3’’ 2’’ 
3’’ 115.9 6.88 (m, 3H) 2’’ 2’’ 3’’ 
4’’ 160.0     
5’’ 115.9 6.88 (m, 3H) 6’’ 6’’ 5’’ 
6’’ 117.5 7.77 (d, 2H) 5’’ 5’’ 6’’ 
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LC_MS and HRMS for 6 
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N-(2-(1H-imidazol-4-yl)ethyl)-N-hydroxy-5-methyl-2-phenyloxazole-4-carboxamide – 7 

HRMS cald for C16H17N4O3 (M + H)+ 313.1295; found 313.1295 
 

Atom 13C 
(ppm) 

1H (ppm), 
Multiplets in Hz 

COSY 
1H-1H  
3 bond 

HMBC 
  1H-13C  

 2-3 bond 

HSQC 

2      
3  6.80 (s (br), 1H)    
5 134.7 7.54 (m, 4H)     
6  2.89 (t, 2H) 7  6 
7  4.02 (s (br), 2H) 6  7 
9      
2’ 157.7     
4’ 127.8     
5’ 156.6     
6’ 11.52 2.45 (s, 3H)   5’ 6’ 
1’’ 130.7     
2’’ 129.2 7.54 (m, 4H) 3’’ 3’’, 4’’ 2’’ 
3’’ 125.8 7.95 (m, 2H) 2’’, 4’’ 2’’, 4’’, 5’’ 3’’ 
4’’ 129.3 7.54 (m, 4H) 3’’, 5’’ 2’’, 3’’, 5’’, 

6’’ 
4’’ 

5’’ 125.8 7.95 (m, 2H) 4’’, 6’’ 3’’, 4’’, 6’’ 5’’ 
6’’ 129.2 7.54 (m, 4H) 5’’ 4’’, 5’’ 6’’ 
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LC_MS and HRMS for 7 
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N-(2-(1H-imidazol-4-yl)ethyl)-2-(2,3-dimethoxyphenyl)-N-hydroxy-5-methyloxazole-4-carboxamide- 8 

HRMS cald for C18H21N4O5 (M + H)+ 373.1506; found 373.1502 
 

Atom 13C 
(ppm) 

1H (ppm), 
Multiplets in Hz 

COSY 
1H-1H  
3 bond 

HMBC 
  1H-13C  

 2-3 bond 

HSQC 

2      
3  6.85 (s (br), 1H)    
5 134.6 7.48 (s (br), 1H)   5 
6 28.0 2.87 (m, 2H) 7   
7  4.08 (s (br), 2H) 6   
9      
2’ 158.0     
4’      
5’      
6’ 11.4 2.47 (s, 3H)  5’ 6’ 
1’’ 121.1     
2’’ 153.4     
3’’ 147.0     
4’’  7.20 (m, 2H) 5’’ 5’’, 6’’ 4’’ 
5’’ 120.8 7.40 (dd, 1H) 6’’ 4’’, 6’’ 5’’ 

  6’’ 124.6 7.20 (m, 2H) 5’’ 4’’, 5’’ 6’’ 
7’’ 60.8 3.78 (s, 3H)  3’’ 7’’ 
8’’ 55.8 3.86 (2, 3H)  2’’ 8’’ 
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LC_MS and HRMS for 8 
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7.1 Preface  
 This chapter was adapted in part with from [Bohac, T. J., Fang, L., Banas, V. S., Giblin, 

D. E. & Wencewicz, T. A. manuscript in preparation] TJB performed the synthesis, 

characterization and evaluation of the compounds. LF performed all growth and competition 

studies. VSB assisted in the synthesis of the analogs. DEG performed all DFT calculations. TAW 

served as principal investigator and oversaw experimental design and completion. 

7.2 Abstract  
Herein, we report the synthesis of three structural and functional Fimsbactin siderophore 

mimics. We report the growth promotion abilities and iron binding affinities of the three analogs 

to be comparable to that of natural Fimsbactin A. We determined siderophore charge has little, if 

any, effect on metal and BauB binding or growth promotion. Through growth recovery and 

siderophore binding protein, BauB, affinities studies, we observed that the Fimsbactin mimics 

utilize the siderophore transport pathway and can compete with natural siderophores acinetobactin 

and Fimsbactin A. Equipped with this knowledge, further mimics and siderophore-antibiotic 

conjugates can be synthesized to continue to exploit the A. baumannii siderophore transport 

pathways as a Trojan horse strategy for antibiotic delivery.  

7.3 Introduction   
While antibiotic resistance is on the rise for both Gram-negative and Gram-positive 

pathogens, those infections caused by Gram-negative bacteria are often more difficult to treat.1 

Due to the presence of a second outer cell membrane, many traditional antibiotics that are effective 

against Gram-positive pathogens fail to permeate the outer membrane of Gram-negative 

pathogens, rendering them ineffective.2 Thus, unique strategies for targeted antibiotic delivery are 

of increasing interest to combat multi-drug resistant Gram-negative infections.2 In particular, 
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Trojan horse delivery strategies which employ siderophores as vehicles of antibiotic delivery have 

gained interest over the past few decades.2 Siderophore-antibiotic conjugates have shown promise 

against both Gram-positive and Gram-negative pathogens, and siderophore-antibiotic conjugate 

Cefiderocol of Shionogi has recently proceeded to phase III clinical trials for the treatment of a 

range of MDR Gram-negative pathogens.3 

In particular, our laboratory focuses on the study of one such multi-drug resistant pathogen, 

Acinetobacter baumannii¸ which produces a cocktail of three siderophores. These siderophores, 

acinetobactin4, Fimsbactin5 and baumannoferrin6, support cell growth through the acquisition of 

essential metal nutrients. On-going work in our lab has sought to elucidate the mechanisms by 

which A. baumannii siderophores interact and promote growth. Building upon the body of research 

targeting the biosynthesis and biological function of Acb and Fims, we sought to expand these 

studies to include synthetically simpler siderophore mimics as probes of the natural system.  

Leading in the synthesis, discovery and evaluation of Trojan horse siderophore-antibiotic 

conjugates, the Miller group synthesized a Fimsbactin structural mimic (Fim analog 1, 2), 

containing three bidentate binding moieties consistent with natural Fimsbactin A: two catechols 

and one hydroxymate moiety (Figure 7.1). Unlike the natural system, this structural mimic does 

not contain any stereo-centers; thus, represents as a synthetically simpler target molecule.  To date, 

numerous antibiotics have been conjugated to this structural mimic, including ciprofloxacin2,7, 

carbacephalosporin,2 daptomycin,8 and vancomycin.9 Interestingly, while both Fimsbactin analog-

conjugated carbacephalosporin and daptomycin showed extremely low MIC values (as low as 

0.2µM) against A. baumannii¸ conjugates with flouroquinolones (ciprofloxacin) afford little to no 

inhibition against A. baumannii (MIC >125µM).2,8 Given that beta-lactam antibiotics target 

penicillin binding proteins (PBP) located in the periplasm, while fluoroquinolones target DNA 
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gyrase located in the cytoplasm, the lack of growth inhibition by the Fimsbactin mimic-

ciprofloxacin target suggests the Fimsbactin structural mimic fails to reach the cytoplasm of the 

cell. Correspondingly, it has been hypothesized that the natural Fimsbactin siderophores are 

reduced in the periplasm of the cell and never reach the cytoplasm. This hypothesis is further 

supported by the absence of an inner membrane transport protein in the A. baumannii Fimsbactin 

gene cluster.11 However, the mechanism of action of transport and delivery via Fimsbactin analog 

antibiotic conjugates still remains unknown. In this regard, we sought to explore if this Fimsbactin 

analog serves as both a structural analog and functional mimic of the natural Fimsbactins, which 

utilizes the natural Fimsbactin transport pathways that support bacterial virulence. This chapter 

includes the synthesis and biological study of three structural Fimsbactin mimics (Figure 7.2) and 

evaluates their ability to serve as possible siderophore-like scaffolds for antibiotic delivery. 

7.4 Results and Discussion   

To achieve our established goals, we first synthesized compound 1 in 8 steps starting from 

commercially available starting materials (Figure 7.3)2, which, after troc-deprotection, possesses 

a terminal primary amine for further coupling/diversification. Previous work in our group has 

highlighted the role of siderophore charge in bacteria siderophore utilization [in particular, of 

danoxamine analogs of S. aureus9]. This led us to explore the influence of charge on the structural 

Fimsbactin mimic system. To this end, we synthesized previously reported Fimsbactin analog 1 

(2) - negatively charged at neutral pH, Fimsbactin analog 2 (3) – neutral charge at neutral pH, and 

Fimsbactin analog 3 (4) – positively charges at neutral pH. Fimsbactin analog 1 (2) was obtained 

in two steps from compound 1 via the removal of the troc-protecting group and addition of succinic 

anhydride, followed by global benzyl de-protection via hydrogenylsis. Similarly, Fimsbactin 

analogs 2 and 3 (3, 4) were synthesized via troc-deprotection of compound 1 with activated zinc, 
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followed by the addition of acetic anhydride or Cbz-beta-alanine-N-hydroxysuccinimide ester, 

respectively; global benzyl/benzylcarbamate de-protection then affords title compounds 3 and 4, 

in good overall yield.   

With these analogs in hand, we first sought to investigate the role of siderophore-mimic 

charge on growth promotion abilities. In both the apo- and holo- forms, all three analogs were seen 

to promoted growth in a dose dependent manner—with higher growth promotion in the holo- form 

than in the apo- variant (Figure 7.4, 7.5). There was no apparent effect of charge on growth 

promotion, as all three analogs promoted growth at a similar rate. As all three analogs promoted 

growth in the holo- form, we sought to explore the effect of charge on iron binding affinity in 

reference to the natural Fimsbactin system. We were excited to find that all three fimbactin analogs 

bind iron with similar affinities as the natural system (logKFe = 27.1) (Table 7.1)—with the 

neutrally charged analog (3) possessing a slightly higher binding affinity (logKFe = 28.5) than the 

positively charged analog (4) (logKFe = 27.3).  These results implied that the structural 

modification of Fimsbactin A to afford simpler analogs—provided the metal-binding functional 

groups are maintained—allows for the easy generation of viable Fims-like probes. 

Due to the similarities in the iron binding and growth promotion of the Fimsbactin analogs 

to natural Fimsbactin A, we next sought to investigate if the analogs utilize the siderophore 

transport pathway as a means of gaining outer membrane permeability. To explore this possibility, 

we synthesized gallium loaded Fimsbactin analog compounds and tested their effect on the whole 

cell growth of A. baumannii. As expected, all three gallium complexes inhibited whole cell growth. 

Gallium mimics the iron-siderophore contacts but is not reduced in the periplasm or cytosol—

therefore inhibiting essential iron acquisition. We next set out to identify if growth could be 

recovered via the addition of natural siderophore iron complexes, FimFe and AcbFe, which would 
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indicate that the Ga-Fims analog complexes utilize the siderophore pathway. Indeed, dose-

dependent growth recovery was observed with the addition of FimFe and AcbFe, demonstrating 

that the analogs compete with Fimsbactin and Acb uptake pathways (Figures 7.6-7.9). Greater 

growth recovery was observed in the FimsFe/Fim-Ga competition studies, suggesting direct 

competition of the analog with Fims-specific transport and illustrating that the Fimsbactin analog 

are in fact functional, as well as structural, mimics. Fimsbactin analog-Ga competition with Acb 

is consist with our previous findings10 that natural Fims compete with natural Acb, as well, since 

previous studies have shown that natural Fimsbactin can compete with Acb for periplasmic binding 

protein, BauB.11 Thus, to evaluate if the Fimsbactin analogs could also bind BauB, we performed 

BauB fluorenscene quenching assays with both the apo- and holo- forms of each analog (Table 

7.1, Figure 7.10). BauB-binding was observed for all analog forms and apparent binding affinities 

were consistent with natural Fimsbactin A, further supporting that the Fimsbactin analogs serve as 

functional Fimsbactin mimics.  

The DFT-computed energy minimized structure of holo-Fimsbactin analog 1 (2), was 

strikingly similar to that of the computed holo-Fimsbactin A structure (Figure 7.11A and 7.11B). 

Both structures bind iron in a hexadentate manner, with the catecholate ligands and hydroxamate 

ligand occupying the same sites. An overlap of these two structures highlight these commonalities 

(Figure 7.11C). Both these energy-minimized structures contain a tetrahedral center, denoted with 

a star in Figure 7.1; this center forces the geometry of the binding moieties of the Fimsbactin 

analog to occupy the same 3-dimensional positions as in the natural system, thus providing further 

evidence of the ability of the analog to mimic natural Fimsbactin A. Moreover, the DFT energy 

minimized structure of [FimFe]- was strikingly similar to the experimentally observed cis-

[Acb2Fe]- complexed to BauB.12 Since the minimized structure of [FimFe]- appears to occupy 
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similar 3-dimensional space as BauB-bound [Acb2Fe]- (as depicted in Figure 7.11), we 

hypothesize that the [FimsbactinFe]- analog will also bind BauB in a similar fashion—as the 

energy minimized structure of the [FimsbactinFe]- analog overlays well with the [FimFe]- 

structure. These findings are consistent with the ability of the Fimsbactin analogs to compete with 

both natural Fimsbactin and natural Acb in BauB binding and indicate the viability of the 

simplified analogs to serve as functional mimics of the natural system. Moreover, the structural 

simplification of more complex siderophore systems may prove useful in the facile generation of 

functional siderophore-like probes and new simplified scaffolds for antibiotic-conjugate drug 

delivery systems. However, it must be noted that the analogs cannot be hydrolyzed. As discussed 

in chapter 4, the potential ability of the natural Fimsbactin A siderophore to be hydrolyzed to 

fimsbactin F may play a vital role in the interworking of the Fimsbactin system.  

7.5 Outlook and Conclusions  

 In summary, we completed the synthesis of three simplified structural Fimsbactin analogs. 

Through whole cell growth promotion studies and iron binding assays, we demonstrated that all 

three analogs promote growth and bind iron in a similar manner as the natural Fimsbactin A 

siderophore—independent of analog formal charge. Moreover, we determined that all three 

analogs utilize the siderophore transport pathway through growth recovery competition assays 

with gallium bound analogs and iron bound Fimsbactin and acinetobactin. In particular, the 

observed competition between the Fimsbactin analogs and acinetobactin highlights the importance 

of sideorphore competition for periplasmic binding protein, BauB, binding as it relates to growth 

promotion. BauB binding assays confirmed that the generated Fimsbactin bind BauB with similar 

affinities as the natural siderophores, Fimsbactin and acinetobactin. Taken collectively, these 

results suggest that the simplified Fimsbactin analogs serve as both structural and functional 
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Fimsbactin mimics and may be useful for the generation of “siderophore”-antibiotic conjugates 

for targeted drug delivery.   

7.6 Materials and Methods  
Strains, Materials, and Instrumentation 

Growth studies for the Fimsbactin analogs were conducted using A. baumannii ATCC 

19606T provided by Dr. Luis Actis. Precultures, and 96-well plate A. baumannii growth assays 

were performed in filter-sterilized M9 minimal media. Samples for LC-MS were prepared in 0.45 

μM PTFE mini-UniPrep vials from Agilent. All preparatory HPLC was performed using a 

Beckman Coulter SYSTEM GOLD 127P solvent module and 168 detector with a Phenomenex 

Luna 10u C18(2) 100A column, 250 × 21.20 mm, 10 μm with guard column. Prep HPLC was 

performed with a mobile phase of 5 mM ammonium acetate in (A) water and (B) acetonitrile, and 

data were processed using 32 Karat software, version 7.0. All LC-MS was performed on an Agilent 

6130 quadrupole LC-MS with G1313 autosampler, G1315 diode array detector, and 1200 series 

solvent module. A Phenomenex Gemini C18 column, 50 × 2 mm, 5 μm with guard column was 

used for all LC-MS separations. LC-MS mobile phases were 0.1% formic acid in (A) water and 

(B) acetonitrile, and data were processed using G2710 ChemStation software. NMR was 

performed on a Varian Unity Inova-600 MHz instrument with a cold probe. Bacterial growth 

studies were performed using polystyrene 96-well plates with polystyrene lids. BauB affinity 

studies were conducted using a fluorescence cuvette (HellmaAnalytics High Precision Cell cuvette 

made of Quartz SUPRASIL; light path 10 x 2 mm). Emission spectra were recorded at λemission = 

300–400 nm using a PerkinElmer LS 55 Luminescence Spectrometer (slit width 10 nm; scan speed 

400 nm/min) at excitation = 280 nm. Fluorescence intensity at 320 nm was plotted versus substrate 
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concentration (nM) and apparent Kd was calculated using nonlinear regression and a one binding 

site model in GraphPad Prism v7.0b 

 
A. baumannii Growth Studies in Minimal Media 

 
M9 minimal media was prepared as described previously.13,14,15 

 
Growth studies 
 

For biological assessment of Fimsbactin analogs under iron-restrictive conditions, stock 

solutions of 10 mM each analog were prepared in DMSO. A 96-well plate was filled with 50 μL 

of M9 minimal media per well. These stock solution were diluted adding 5 μL of 10 mM 

Fimsbactin analog stock to 195 µL of M9 minimal, affording 250 µM stock solutions. 50 µL the 

Fimsbactin analog 250 µM stock solutions were added to the first row of a 96 well plate. 

Compound was serially diluted down the plate to 1.95 μM. An inoculum was made by adding 100 

μL of 0.5 McFarland standard (A. baumannii ATCC 17978) to 4.0 mL of M9 minimal media 

supplemented with 350 μM 2,2’-dipyridyl. Inoculum (50 μL) was added to each well for a final 

concentration of 175 μM 2,2’-dipyridyl and a serial dilution of 62.5-1.95 μM Fimsbactin analog. 

Growth promotion was determined as compared to a control with 175 μM 2,2’-dipyridyl, 0 μM 

Fimsbactin analog. All experiments were performed in triplicate.  

For the biological evaluation of the Fe3+-complex of 250 μM stocks of each Fimsbactin 

anlog-Fe3+ were prepared in M9 minimal media. A 96-well plate was filled with 50 μL of M9 

minimal media per well. Into the first row, 50 μL of Fimsbactin analog-Fe3+ stock was added, and 

rows were serially diluted down to 1.95 μM. An inoculum was made by adding 100 μL of 0.5 

McFarland standard (A. baumannii ATCC 17978) to 4.0 mL of M9 minimal media supplemented 

with 350 μM 2,2’-dipyridyl. Inoculum (50 μL) was added to each well for a final concentration of 

175 μM 2,2’-dipyridyl and a serial dilution of 62.5-1.95 μM Fimsbactin analog-Fe3+. Growth 
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promotion was determined as compared to a control with 175 μM 2,2’-dipyridyl, 0 μM Fimsbactin 

analog-Fe3+. All experiments were performed in triplicate. 

 
Growth studies with Gallium:  

 
For the biological evaluation of the Ga-complex of 125 μM stocks of each Fimsbactin 

anlog-Ga were prepared in M9 minimal media. A 96-well plate was filled with 50 μL of M9 

minimal media per well. Into the first row, 50 μL of Fimsbactin analog-Ga stock was added, and 

columns were serially diluted down to 0.9765 μM. An inoculum was made by adding 100 μL of 

0.5 McFarland standard (A. baumannii ATCC 17978) to 4.0 mL of M9 minimal media 

supplemented with 350 μM 2,2’-dipyridyl. Inoculum (50 μL) was added to each well for a final 

concentration of 175 μM 2,2’-dipyridyl and a serial dilution of 31.25-0.9765 μM Fimsbactin 

analog-Ga. To all wells in the first 3 columns, 2 μL of 195 μM FimA-Fe was added to afford a 

final concentrations of 3.9 μM of FimA-Fe. To all the wells in the next 3 columns, 2 μL of 195 

μM Acb-Fe was added to afford a final concentrations of 3.9 μM of Acb-Fe. Growth promotion 

was determined as compared to a control with 175 μM 2,2’-dipyridyl, 0 μM Fimsbactin analog-

Ga and also compared to an additional control of a 175 μM 2,2’-dipyridyl, and a serial dilution of  

31.25-0.9765 μM Fimsbactin analog-Ga. All experiments were performed in triplicate. 

BauB Fluorescence Quenching Studies 

BauB fluorescence quenching studies were performed as previously reported.11,12 Briefly, 

a bead of protein BauB-ss was thawed and diluted to provide a 400 nM stock solution. 300 μL of 

this 400 nM stock solution was transferred to a fluorescence cuvette. A stock solution of 400 nM 

protein and 16 μM small molecule was made. An emission spectrum was taken at each 

concentration as an average of 3 scans. Excitation wavelength of 280 nm, fluorescence observed 

between 300 and 400 nm. Slit width was set to 10 nm with a scan speed of 400. Fluorescence at 
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320 nm was tracked as a function of small molecule concentration. All experiments were 

performed in duplicate as independent trials. Increasing concentrations of small molecule were 

added without altering protein concentration. Measurements at the following concentrations of 

small molecule were taken: 0, 106.8, 212.8, 318, 422.4, 684, 1196, 1688, 2644, 3536 nM 

DFT Calculations.  

 Stable holo-siderophore complexes with ferric iron were calculated using density 

functional theory16,17 (DFT) in a similar manner as described previously.12 Monte Carlo/MMFF 

molecular mechanics/dynamics was used to explore conformer spaces. Initial structure 

optimization was performed by using the PM3d semi-empirical algorithm (Spartan Linux v10, 

WaveFunction, Inc.). We employed DFT (Density Functional Theory, Gaussian 09, Gaussian Inc.) 

for calculations using the PBE0 hybrid functional (PBE1PBE in Gaussian parlance) with basis sets 

Def2-SVP and Def2-TZVP. Minima were optimized at the level PBE0/Def2-SVP and single-point 

energies were calculated at level PBE0/Def2-TZVP, with scaled thermal-energy corrections from 

B3LYP/6-31G(d,p).18 Solvent-based single-point energies were calculated at the same level using 

the CPCM polarizable conductor calculation model for water and the Universal Force Field for 

atomic radii.19 DFT functionals and basis sets were chosen for efficiency and compatibility with 

ferric complexes.20,21,22  
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Determination of KFe 

Stock solutions 100 µM Fimsbactin analog iron complexes were prepared in 10 mM 

HEPES buffer and a UV-Vis scan was recorded. Next 120 µM EDTA was added and absorbance 

at 500 nm was measured over 800 minutes. Iron-binding affinity (KFe) was determined using the 

following calculations. 

 
(1)  𝐾 =  

[ୣ]

[ிయశ][]
                            for the following equilibrium;  [Fe3+] + [L] ⇌ [FeL] 

 
(2) 𝐾ிா் =  

[ிா்]

[ிయశ] [ா்]
        for the following equilibrium; [Fe3+] + [EDTA] ⇌ [FeEDTA] 

 
(3) 𝐾ா௫ =  

ಽ

ಷಶವಲ
          for the following equilibrium; [FeEDTA] + [L] ⇌ [FeL] + [EDTA] 

 
(4) 𝐾ா௫ =  

[ி][ா்]

[ிா்][]
 

 
(5) ∆  =  

௦ಷಽି ௦ಷಽశಶವಲ

ఌಽ
 

 

(6)        𝐾 = 𝐾ிா்  ×  
[ி][ா்]

[ிா்][]
 

 
(7) [𝐹𝑒𝐿] =  

௦ಷಽ

ఌಽ
 

 
(8) [𝐸𝐷𝑇𝐴] = [𝐸𝐷𝑇𝐴]் − ∆         where  [EDTA]T = total EDTA added 
 
(9)   [𝐹𝑒𝐸𝐷𝑇𝐴] =  ∆ 
 
(10)     [𝐿] =  ∆ 
 
(11) KFe = apparent KL 
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Synthetic procedures:  

 

Compound 1 was synthesized and characterized as previously reported by Miller and colleagues 

following synthetic scheme 1.2 Briefly, 2,3 dihydroxybenzoic acid was benzyl protected with 

benzylbromide and subsequent saponification afforded 2,3(bisbenzyloxy)benzoic acid (93%, 17.4 

grams). An N,N’-carbonyldiimidazole (CDI)-mediated coupling reaction of spermidine and 

2,3(bisbenzyloxy)benzoic acid afforded N’N8-bis(2,3-bis(benzyloxy)benzoyl)spermidine (91%, 

6.87 grams). Addition of succinic anhydride in the presence of catalytic DMAP in DCM afforded 

4-((4-(2,3-bis(benzyloxy)benzamido)butyl)(3-(2,3-bis(benzyloxy)benzamido)propyl)amino)-4-

oxobutanoic acid, S1 (93%, 3.79 grams). Correspondingly, boc protection of 5-amino-1-pentanol 

(87%, 15.4 grams) followed by Mitsunobu amination with N-troc-O-benzyl-hydroxylamine 

provided 2,2,2-trichloroethyl (benzyloxy)(5-((tert-butoxycarbonyl)amino)pentyl)carbamate, S2 

(73%, 3.96 grams). The free amine of S2 was synthesized via the removal of boc-protecting group 

of S2 by trifluroacetic acid. Subsequent EDC-mediated coupling with S1 in the presence of 

facilitating base, triethyl amine and catalytic DMAP provided compound 1 (76%, 3.86 grams). 

NMR characterization was consistent previously reports.  
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Benzyl protected - Fimsbactin analog 1 was synthesized and characterized as previously 

reported.2 Briefly, activated zinc was added to a stirring solution of compound 1 in a 1:1 mixture 

of THF:AcOH at room temperature under argon atmosphere. To the stirring reaction mixture was 

added succinic anhydride, dropwise, slowly. When the reaction was complete (as determined by 

LC-MS, ~ 3 hours), the mixture was filtered to remove insoluble zinc, and the solvent removed 

under reduced pressure. The resultant crude oil was dissolved in EtOAc and washed with water (2 

times) and brine (2 times), dried over magnesium sulfate, filtered over cotton, and concentrated 

under reduced pressure. The crude mixture was separated by preparative high performance liquid 

chromatography (C18-silica, 0B to 95B gradient 17 minutes, 95B to 100B gradient 8 minutes, 5 

mM ammonium acetate buffer) to afford benzyl-protected Fimsbactin analog 1 (60 mg) NMR 

(Figures 7.13 & 7.14) analysis was consistent with previous reports. 

 

Fimsbactin Analog 1. To a stirring solution of benzyl-protected Fimsbactin analog 1 dissolved in 

MeOH under argon atmosphere was added ~1/10 mass equivalent of 10% Pd/C as a solid in one 

portion. The flask was purged with H2, and the resultant solution stirred under hydrogen 

atmostphere (1 atm) for approximately 1 hour. Upon confirmation of reaction completion by LC-
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MS (~1 hr), the reaction mixture was filtered to remove insoluble palladium catalyst, and the 

solution was concentrated under reduced pressure to afford Fimsbactin Analog 1 (10 mg). ESI LC-

MS, HR-MS and NMR (Figures 7.15-7.18) analysis of Fimsbactin Analog 1 were consistent with 

previous reports 

 

Benzyl protected - Fimsbactin analog 2.  Activated zinc (6 mg) was added to a stirring solution 

of compound 1 (6 mg) in a 1:1 mixture of THF:AcOH at room temperature under argon 

atmosphere. To the stirring reaction mixture was added acetic anhydride (4.9 mg), slowly. When 

the reaction was complete (as determined by LC-MS, ~ 3 hours), the mixture was filtered to 

remove insoluble zinc, and the solvent removed under reduced pressure. The resultant crude oil 

was dissolved in EtOAc and washed with water (2 times) and brine (2 times), dried over 

magnesium sulfate, filtered over cotton, and concentrated under reduced pressure. The crude 

mixture was separated by preparative high performance liquid chromatography (C18-silica, 0B to 

95B gradient 17 minutes, 95B to 100B gradient 8 minutes, 5 mM ammonium acetate buffer) to 

afford compound 3 (6 mg). NMR analysis of benzyl protected Fimsbactin analog 2 are shown in 

Figures 7.19 & 7.20. 
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Fimbactin Analog 2. To a stirring solution of compound benzyl protected Fimsbactin analog 2 

dissolved in MeOH under argon atmosphere was added ~1/10 mass equivalent of 10% Pd/C as a 

solid in one portion. The flask was purged with H2, and the resultant solution stirred under 

hydrogen atmostphere (1 atm) for approximately 1 hour. Upon confirmation of reaction 

completion by LC-MS (~1 hr), the reaction mixture was filtered to remove insoluble palladium 

catalyst, and the solution was concentrated under reduced pressure to afford Fimsbactin Analog 2 

(8.6 mg). Figures 7.21-7.24 

 

Benzyl/Cbz protected - Fimsbactin analog 3. Activated zinc (6 mg) was added to a stirring 

solution of compound 1 (4.4 mg) in a 1:1 mixture of THF:AcOH at room temperature under argon 

atmosphere. To the stirring reaction mixture was added Cbz-beta-alanine-N-hydroxysuccinimide 

ester (113 mg), slowly. When the reaction was complete (as determined by LC-MS, ~ 3 hours), 

the mixture was filtered to remove insoluble zinc, and the solvent removed under reduced pressure. 

The resultant crude oil was dissolved in EtOAc and washed with water (2 times) and brine (2 

times), dried over magnesium sulfate, filtered over cotton, and concentrated under reduced 

pressure. The crude mixture was separated by preparative high performance liquid 



353 
 

chromatography (C18-silica, 0B to 95B gradient 17 minutes, 95B to 100B gradient 8 minutes, 5 

mM ammonium acetate buffer) to afford Benzyl/Cbz protected - Fimsbactin analog 3 (5 mg). NMR 

analysis is shown in Figures 7.25 & 7.26. 

 

Fimsbactin Analog 3. To a stirring solution of Benzyl/Cbz protected - Fimsbactin analog 3 

dissolved in MeOH under argon atmosphere was added ~1/10 mass equivalent of 10% Pd/C as a 

solid in one portion. The flask was purged with H2, and the resultant solution stirred under 

hydrogen atmostphere (1 atm) for approximately 1 hour. Upon confirmation of reaction 

completion by LC-MS (~1 hr), the reaction mixture was filtered to remove insoluble palladium 

catalyst, and the solution was concentrated under reduced pressure to afford Fimsbactin Analog 3 

(4.2 mg). ). NMR analysis is shown in Figures 7.27-7.30. 
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7.7 Figures and Tables   
 

 

Figure 7.1: Natural Fimsbactin A and synthetic Fimsbactin Analogs. Common metal binding moieties are 

highlighted – catechol (blue) and hydroxymate (red). Each compound contains a similar tetrahedral center 

denoted with a *.  
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Figure 7.2: Naturally produced siderophore Fimsbactin A and three synthetic analogs. Each 

analog contains a different sidechain substituent which are negatively, neutral and positively 

charged, respectively, as neutral pH.  

 

Figure 7.3: Three Fimsbactin structural analogs are synthesized via divergent synthesis from 

common compound 1   
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Compound  BauB Binding Affinity 
(apo/holo) 

LogKFe 

Fimsbactin A12  354.8 ± 139.3/ 
244.4 ± 93.3 

27.1 ± 0.2  

Fims analog - 
1  

393.3 ± 63.3/ 
350.3 ± 143.5 

27.9 ± 0.1  

Fims analog - 
2 

259.3 ± 55.4/ 
215.9 ± 30.3 

28.5 ± 0.4 

Fims analog – 
3 

 239.4 ± 103.2/ 
286.3 ± 106.9  

27.3 ± 0.1 

Table 7.1: Iron affinities and periplasmic siderophore binding protein, BauB, binding affinities 

for both iron-bound and iron-free Fimsbactin analogs and natural Fimsbactin A.  

O
D

6
0

0

 

Figure 7.4: Influence of apo- and holo-fimsbactin analogs on A. baumannii growth. Bar graphs 

depict the growth of A. baumannii ATCC 17978 determined by measuring the optical density at 

600 nm (OD600) as a function of time in the presence of 15.625 µM concentration of either the 

apo- or holo- form of each Fimsbactin analog.  Error bars represent standard deviations from the 

mean for three independent trials. ****p < 0.0001. Full growth curves at variable concentration 

seen in Figure 7.5.  
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Figure 7.5: Influence of apo- and holo-fimsbactin analogs on A. baumannii growth. Line graphs 

depict the growth of A. baumannii ATCC 17978 determined by measuring the optical density at 

600 nm (OD600) as a function of time in the presence of variable concentration of either the apo- 

or holo- form of each Fimsbactin analog.  Error bars represent standard deviations from the mean 

for three independent trials.  
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Figure 7.6: Growth inhibition by each Fimsbactin analog-Ga complex and the growth recovery of 

variable Fimsbactin analog-Ga (0.975µM or 31.25µM) and 3.9µM Fimsbactin A-Fe or Acb-Fe. 

Bar graphs depict the growth of A. baumannii ATCC 17978 determined by measuring the optical 

density at 600 nm (OD600) as a function of time.  Error bars represent standard deviations from the 

mean for three independent trials. ****p < 0.0001, ns: non-significant. Full growth curves at 

variable concentration seen in Figure 7.7, 7.8 and 7.9. 
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Figure 7.7: (a) Dose dependent growth inhibition by Fimsbactin analog 1-Ga complex (b) 

3.9µM Fim-Fe and variable Fimsbactin analog 1-Ga complex (c) 3.9µM Acb-Fe and variable 

Fimsbactin analog 1-Ga complex .Line graphs depict the growth of A. baumannii ATCC 17978 

determined by measuring the optical density at 600 nm (OD600) as a function of time.  Error bars 

represent standard deviations from the mean for three independent trials. 
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Figure 7.8: (a) Dose dependent growth inhibition by Fimsbactin analog 2-Ga complex (b) 

3.9µM Fim-Fe and variable Fimsbactin analog 2-Ga complex (c) 3.9µM Acb-Fe and variable 

Fimsbactin analog 2-Ga complex .Line graphs depict the growth of A. baumannii ATCC 17978 

determined by measuring the optical density at 600 nm (OD600) as a function of time.  Error bars 

represent standard deviations from the mean for three independent trials. 
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Figure 7.9: (a) Dose dependent growth inhibition by Fimsbactin analog 3-Ga complex (b) 

3.9µM Fim-Fe and variable Fimsbactin analog 3-Ga complex (c) 3.9µM Acb-Fe and variable 

Fimsbactin analog 3-Ga complex .Line graphs depict the growth of A. baumannii ATCC 17978 

determined by measuring the optical density at 600 nm (OD600) as a function of time.  Error bars 

represent standard deviations from the mean for three independent trials. 
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Figure 7.10: Fluorescence quenching by Fimsbactin analogs and their respective iron complex of 

N-His6-BauB. Graphs depict intrinsic tryptophan fluorescence quenching (y-axis; excitation = 280 

nm; emission = 340 nm) of 400 nM N-His6-BauB in the presence of variable siderophore 

concentrations (x-axis). Apparent Kd values were calculated using a single-binding mode curve-

fitting model in GraphPad Prism version 7.0b. Error bars represent standard deviations for two 

independent trials. 
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Figure 7.11: Structural comparison of FimFe and Fimsbactin analog 1 complexes. DFT 

calculated structures of the monoanionic (a) 1:1 [FimFe]- and (b) 1:1 [Fimsbactin analog 1-Fe]- 

complexes (c) Overlay of both structures highlighting similarity of geometry and placement of 

ligands.  
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Figure 7.12: UV-Vis spectra of Fimsbactin analog 1, 2 and 3 iron complexes   

 
 

I. Compound Characterization  
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Figure 7.13. 1H-NMR (600 MHz, CDCl3) spectrum of benzyl-protected compound 2, 

Fimsbactin Analog 1. The x-axis is chemical shift given in parts per million (ppm). The y-axis is 

arbitrary peak intensity. 
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Figure 7.14. 13C-NMR (151 MHz, CDCl3) spectrum of benzyl protected compound 2, 

Fimsbactin Analog 1. The x-axis is chemical shift given in parts per million (ppm). The y-axis is 

arbitrary peak intensity. 
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Figure 7.15. 1H-NMR (600 MHz, CD3OD) spectrum of compound 2, Fimsbactin Analog 1. The 

x-axis is chemical shift given in parts per million (ppm). The y-axis is arbitrary peak intensity. 
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Figure 7.16. 13C-NMR (151 MHz, CD3OD) spectrum of compound 2, Fimsbactin Analog 1. The 

x-axis is chemical shift given in parts per million (ppm). The y-axis is arbitrary peak intensity. 
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Figure 7.17. Diode array optical absorbance detection (DAD) and extracted ion chromatograms 

(EICs) for fimsbactin analog 1 [M+H]+ ions from LCMS analysis using ESI ionization in positive 

ion mode. The x-axis represents retention time (min) for all chromatograms. 
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Figure 7.18.  High-resolution ESI MS (positive ion mode) of Fimsbactin analog 1  
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Figure 7.19. 1H-NMR (600 MHz, CDCl3) spectrum of benzyl-protected compound 3, Fimsbactin 

Analog 2. The x-axis is chemical shift given in parts per million (ppm). The y-axis is arbitrary 

peak intensity. 
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Figure 7.20. 13C-NMR (151 MHz, CDCl3) spectrum of benzyl-protected compound 3, Fimsbactin 

Analog 2. The x-axis is chemical shift given in parts per million (ppm). The y-axis is arbitrary 

peak intensity. 
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Figure 7.21. 1H-NMR (600 MHz, CD3OD) spectrum of compound 3, Fimsbactin Analog 2. The 

x-axis is chemical shift given in parts per million (ppm). The y-axis is arbitrary peak intensity. 
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Figure 7.22. 13C-NMR (151 MHz, CD3OD) spectrum of compound 3, Fimsbactin Analog 2. The 

x-axis is chemical shift given in parts per million (ppm). The y-axis is arbitrary peak intensity. 
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Figure 7.23. Diode array optical absorbance detection (DAD) and extracted ion chromatograms 

(EICs) for fimsbactin analog 2 [M+H]+ ions from LCMS analysis using ESI ionization in positive 

ion mode. The x-axis represents retention time (min) for all chromatograms. 
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Figure 7.24. High-resolution ESI MS (positive ion mode) of Fimsbactin analog 2  

 

  



377 
 

 
Figure 7.25. 1H-NMR (600 MHz, CDCl3) spectrum of benzyl/cbz-protected compound 4, 

Fimsbactin Analog 3. The x-axis is chemical shift given in parts per million (ppm). The y-axis is 

arbitrary peak intensity. 
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Figure 7.26. 13C-NMR (151 MHz, CDCl3) spectrum of benzyl/cbz-protected compound 4, 

Fimsbactin Analog 3. The x-axis is chemical shift given in parts per million (ppm). The y-axis is 

arbitrary peak intensity. 
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Figure 7.27. 1H-NMR (600 MHz, DMSO-d6) spectrum of compound 4, Fimsbactin Analog 3. The 

x-axis is chemical shift given in parts per million (ppm). The y-axis is arbitrary peak intensity. 
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Figure 7.28. 13C-NMR (151 MHz, DMSO-d6) spectrum of compound 4, Fimsbactin Analog 3. 

The x-axis is chemical shift given in parts per million (ppm). The y-axis is arbitrary peak intensity. 

 



381 
 

 

 
Figure 7.29. Diode array optical absorbance detection (DAD) and extracted ion chromatograms 

(EICs) for fimsbactin analog 3 [M+H]+ ions from LCMS analysis using ESI ionization in positive 

ion mode. The x-axis represents retention time (min) for all chromatograms. 
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Figure 7.30. High-resolution ESI MS (positive ion mode) of Fimsbactin analog 3 
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8.1 Preface  
 This chapter was written by T. Bohac. Initial work towards some of the future directions 

has been conducted by TJB, VSB and LF.  

8.2 Summary of Dissertation   
Taken collectively, this dissertation aims to further expand the fundamental knowledge of 

pathogenic virulence factors in the hopes of combating the rise in anti-microbial resistance – 

particularly as it relates to the multi-drug resistant pathogen A. baumannii. This dissertation 

focuses on nutrient acquisition, metal in particular, via small secondary metabolites called 

siderophores. A. baumannii is known to synthesize three classes of siderophores, acinetobactin, 

Fimsbactin and baumannoferrin. This dissertation is two-part in that it begins with furthering the 

current knowledge of the natural system and ends with applying this knowledge to the design and 

synthesis of antimicrobial compounds for potential therapeutic applications.  

Chapter one of this dissertation provides an in-depth discussion of iron acquisition in 

pathogens, as well as an overall of the current knowledge of the siderophores of A. baumannii. 

Chapter two expands upon the knowledge of siderophore acinetobactin, as we discuss a crystal 

structure of Acb2Fe bound to periplasmic siderophore binding protein, BauB. We identify key 

binding residues and interactions and perform fluorescence quenching assays with a panel of 

acinetobactin and pre-acinetobactin analogs to further probe these key binding interactions.  

Chapter three discusses the isolation and characterization of siderophore Fimsbactin A. By 

performing siderophore competition studies between natural acinetobactin and Fimsbactin A, we 

were surprised to see an inhibitory effect at high concentrations of Fimsbactin A, demonstrating 

the importance of concentration and balance in the growth-promoting siderophore cocktail. 
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Moreover, studies on protein binding and ligand displacement showed that Fimsbactin A can 

compete with acinetobactin for siderophore transport protein BauB. We proposed that this finding 

was important in understanding the role of siderophore cocktail biosynthesis and production, as 

strains containing the Fims biosynthetic gene cluster maintain low concentrations of Fims in 

infectious conditions. Furthermore, many strains of A. baumannii do not contain the Fimsbactin 

biosynthetic gene cluster but produce high quantities of acinetobactin, thus eliminating any 

deleterious competition caused by dual production.  

Chapter four attempts to examine the seemingly redundancy of multiple siderophores in A. 

baumannii, we isolated and characterized Fimsbactin F and explored additional siderophore 

combination studies. In addition, we investigated metal preference among natural and synthetic 

siderophores to explore their role in metal homeostasis.  

Chapter five and six explore the ability to induce subtle structural changes through 

oxidation and aromatization of cyclic moieties to transform a growth promoting siderophore, 

acinetobactin, into a growth inhibitor “siderophore-like” analog, oxidized acinetobactin. We show 

iron binding to be crucial for inhibition, and findings support that inhibition occurs through the 

disruption of the siderophore transport pathway. We highlighted OxPreAcb effectiveness against 

a panel of CDC multi-drug resistant A. baumannii clinical isolates, and concurrent mammalian 

cytotoxicity studies showed that OxPreAcb was non-cytotoxic, even at high concentrations, 

making it an ideal candidate for further development in in vivo infection models.  

Finally, studies presented in Chapter seven examined a currently used Fimsbactin structural 

mimic and generated 2 new related analogs. We hypothesized that these mimics would serve as 

effective vehicles for antibiotic drug delivery, through Trojan horse siderophore-antibiotic 

conjugates, and studies were designed to validate the effectiveness of the structural analogs to 
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behave in a similar manner to the natural system. In this regard, we were able to confirm that the 

three Fimsbactin mimics serve as both structural and functional Fimsbactin mimics and that net 

charge has little to no effect on the ability of each mimic to function as a siderophore. Taken 

collectively, this work highlights the ability to simplify structurally complex siderophore systems, 

while maintaining biological viability, and serves as a reference for further development of 

siderophore probe molecules—particularly in regards to Trojan horse antibiotic delivery.  

8.3 Future Directions    
While this dissertation extended previous work, it also laid the foundation for future work. 

While there are many many ideas and future directions that stem from the work discussed in this 

dissertation, herein I will highlight a few areas that I view as interesting and instrumental in the 

future of this project.  

Baumannoferrin synthesis and evaluation  

 In order to truly understand the interworking of a siderophore cocktail in A. baumannii, the 

third siderophore, the baumannoferrins, must be synthesized or isolated. While no total synthesis 

of the baumannoferrins has been reported, synthesis of siderophores containing fragments similar 

to the baumannoferrins have been reported in the synthesis of staphyloferrin B by Nolan (2015)1 

and in the synthesis of acinetoferrin by Phanstiel (1998).2 Using similar methods developed in 

these two works, a proposed total synthesis of the baumannoferrins could be accomplished through 

the route seen in Figure 8.1. 

The proposed synthesis commences with isolation of benzyl ester 4 in three steps starting 

from (S)-malic acid 1, as previously reported by Nolan (2015).1 Dioxolanone 2 is afforded through 

the stereoselective acetyl protection of malic acid 1 with trimethylacetaldehyde.  Allylation by 
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allyl bromide, with lithium hexamethyldisilazide (LiHMDS) as facilitating base, provides 3 in 

moderate yield. Subsequent ring-opening transesterification affords the resulting acid 4.  In turn, 

amine 7 could be generated from the EDC-mediated coupling of carboxylic acid 5, derived from 

2-oxo-pentanedioic acid.3 and amino-acid derivative 6, derived from Bn-protected Boc-protected 

of 2, 4-diamino-butyric acid.  

Coupling of amine 7 with acid 4, using EDC and Hunig’s base, would provide amide 8. 

Oxidative cleavage of the terminal olefin of 8 with ruthenium (III) chloride in the presence of 

sodium periodate would afford terminal carboxylic acid 9.  EDC-mediated coupling of acid 9 with 

compound tert-butyl (3-aminopropyl)(benzyloxy)carbamate 10, in the presence of facilitating base 

(N,N-diisopropylethylamine, DIPEA), would generate compound 11. Subsequent Pd-catalyzed 

hydrogenation and treatment with TFA would provide hydroxamine 12. The diversification of 

baumannoferrin analogs can be achieved at in the final step of the synthesis, where various acid 

chlorides can be coupled with hydroxamine 12 to provide the corresponding hydroxamides. 

Through exploration of derivatives, necessity of a double bond in the structure could be probed or 

additional degrees of unsaturations can be installed to evaluate the importance of tail structural 

rigidity.  Additionally, since it has been hypothesized that the baumannoferrins are able to integrate 

with the lipid membrane and experience membrane “flip-flop”, based upon a “flip-flop” motion 

observed by structurally similar siderophore acinetoferrin (Figure 8.2), we can identify the optimal 

chain length of the hydrophobic lipid chain through analog synthesis.4 In the case of the synthesis 

of baumannoferrin A (13), hydroxamine 12 can be treated with 2-decenoyl chloride (derived from 

2-decenoic acid) with facilitating base to afford the title product (13).  

With the baumannoferrins in hand, we could explore structure activity relationships as 

aforementioned. Further, we could perform biological evaluation of the baumannoferrins through 
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growth assays, metal binding and affinity studies and protein binding assay. Moreover, with pre-

acinetobactin, acintobactin and Fimsbactin already isolated/synthesized, combination studies with 

all three siderophore classes of A. baumannii would allow for a more holistic representation of the 

natural system.   

Further derivatization of OxPreAcb and Click Chemistry 

 In Chapters 5 and 6, the synthesis and evaluation of oxidized pre-acinetobactin (OxPreAcb) 

and analog was discussed in depth. With the strong inhibitory nature of this lead compound, further 

evaluation and exploration of this compound is merited. While 8 structural analogs of OxPreAcb 

have been synthesized and evaluated, discussed in Chapter 6, further diversification and SAR of 

OxPreAcb can be explored around the right hand of the molecule with changes to the imidazole 

tail (Figure 8.3), as this position was seen to be non-crucial for iron binding nor growth inhibition. 

Further diversification can be explored at the oxazole ring system (Figure 8.3), to date no SAR 

around this system has been explored.  

 While we have seen that OxPreAcb can interact with BauB and the siderophore transport 

pathway, further exploration of the mechanism of action of this molecule is desirable. One analog 

of OxPreAcb that can allow for vast diversification and serve many function is an OxPreAcb 

alkyne with the alkyne moiety on the right hand side of the molecule in place of the imidazole ring 

(Figure 8.4). This alkyne moiety then can undergo click chemistry with different azide molecules, 

resulting in formation of a triazole moiety along with attachment of different groups as seen in 

Figure 8.4. One route can use click chemistry with azide-antibiotic groups to observe where the 

OxPreAcb molecule reaches inside the cell, as well as to observe the inhibitor-antibiotic effect on 

inhibition. As discussed in Chapter 7, work by many, including Wencewecz et al., highlighted the 

utility of employing siderophore-antibiotic conjugates as a means of Trojan horse drug delivery.5 
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While a siderophore is innately growth promoting, siderophore-antibiotic conjugates have been 

seen to reach MIC’s as low as 0.2 µM against A. baumannii6; since OxPreAcb in itself is inhibitory, 

OxPreAcb-antibiotic conjugates serve as an attractive target molecule. Further, following work by 

Wencewicz at el, through attachment of beta-lactams antibiotics (penicillin binding protein target 

– periplasm) and fluoroquinolones antibiotics (DNA gyrase target – cytoplasm), we can investigate 

where the OxPreAcb molecule reaches in the cell based upon MIC values and effectiveness of 

these two conjugates.5 In the same vain, click chemistry between the OxPreAcb-alkyne and 

fluorophore-azides can allow for imaging and cellular localization studies and possible 

identification of the ultimate intracellular location of the OxPreAcb-fluorphore conjugate. 

 While we have evidence that OxPreAcb interacts with periplasmic siderophore binding 

protein, BauB, we can use the OxPreAcb-alkyne molecule to further probe the interactions of 

OxPreAcb on the protein level. Through bacteria feeding studies, incubation allows the OxPreAcb-

alkyne to interact with target proteins, which, after cell lysis and click conjugation with an affinity 

tag, could be isolated and characterized through MS-MS proteomics.  

 We have previously showed that OxPreAcb binds to iron in a 2:1 stoichiometry.7 

Synthetically derived OxPreAcb dimers, using click chemistry between the OxPreAcb-alkyne 

molecule and an OxPreAcb-azide molecule, serve as interesting target compounds. These dimers 

can be synthesized of various lengths, as well as of various forms of connectivity (head to head, 

tail to head, etc.). Subsequent iron binding and metal titration studies with the generated dimer 

library would allow for the determination of metal-ligand stoichiometry—in hopes of identifying 

a candidate which binds iron in a 1:1 ligand-metal conformation. Such a system would decrease 

the entropy cost associated with iron binding and enhance the ability of the molecule to outcompete 



393 
 

the natural acinetobactin system. Outcompeting the natural siderophore systems would then 

provide a means to more potently inhibit the growth of MDR A. baumannii. 

Extending oxidation to other known siderophores with oxidizable groups  

 Previous work by the Henderson group highlighted the ability of nature to synthesize an 

antimicrobial secondary metabolite, esherichelin, which is structurally similar to a known growth 

promoting siderophore, pyrochelin.8 The most noteworthy difference between these two 

compounds is the degree of unsaturation within the S,N-containing heterocycle, which is a thiazole 

in escherichelin and a thiazoline in pyrochelin. As discussed in Chapters 5 and 6, our group was 

able to extend this “oxidation strategy” to the acinetobactin system of A. baumannii by 

synthesizing an oxidized variant of the natural siderophore. This variant, coined OxPreAcb, 

contained an oxazole in the place of the natural oxazoline and served as a growth inhibitor as 

opposed to a growth promoter.7 Pyrochelin and pre-acinetobactin are two of a plethora of known 

siderophores with oxidizable heterocyclic groups; some of these siderophores include agrobactin, 

anguibactin, and mycobactin (Figure 8.5). With the structural similarity to pre-acinetobactin, 

anguibactin, produced by the fish pathogen Vibrio anguillarum, presents as a suitable target 

molecule for synthesis and evaluation by our group. Additionally, a recent publication by Abe et 

al reports the isolation of the hinduchelins A-D.9 These compounds contain a central oxazole, 

serving as yet another example of a siderophore-like oxidized system further supporting the 

incorporation of these motifs in future synthetic strategies to biologically active small molecules.   

 Our group has been recently working towards the synthesis of both the natural anguibactin 

siderophore, as well as the oxidized version of the molecule. Unlike pre-acinetobactin, anguibactin 

is hypothesized to not undergo isomerization to a post-isomerized form (Figure 8.6).10, 11 

However, this hypothesis has never been experimentally confirmed in the context of a synthetic 
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strategy. Thus, our group targeted the synthesis of natural anguibactin in order to evaluate its 

biological activity and explore its possible pH-dependent isomerization. While current efforts are 

focused on optimization of the synthesis, initial synthetic efforts commenced with EDC/HOBt 

mediated coupling of 2,3-dihydroxybenzoic acid and L-cysteine-methyl ester in the presence of 

facilitating to afford coupled compound 1 (Figure 8.7). Compound 1 is then cyclized to afford the 

corresponding thiazoline-methyl ester 2. Concurrently, histamine 3 is converted to the 

corresponding halogenated salt 4 which then through an SN2 reaction with N-boc-O-benzyl-amine 

provides N-boc-O-benzyl-histamine 5. Thiazoline-methyl ester 2 is then saponified with lithium 

hydroxide to afford the free acid.  Hydrogenation of N-boc-O-benzyl-histamine 5 with palladium 

on carbon followed by treatment with trifluoroacetic acid provides free amine, N-(2-(1H-imidazol-

4-yl)ethyl)hydroxylamine, 7. EDC/HOBt mediated coupling between free acid and free amine in 

the presence of facilitating bases yields title compound, anguibactin. Interestingly, with HPLC 

prep purifying the title compound, anguibactin (m/z 348), we observed a new peak appearing over 

time. This new peak (m/z 332) we hypothesize is in fact due to isomerization of anguibactin, 

followed by hydrolysis of the newly formed thiocarbonyl forming des-methyl-acinetobactin 

(Figure 8.8). We hypothesis that the isomerization is indeed occurring and due to the subsequent 

addition of water, may have gone overlooked previously. Future studies are needed to isolate, fully 

characterize, and monitor isomerization conditions and determine isomerization rates of the 

anguibactin system.  

 The synthesis of oxidized anguibactin (OxAng) is also currently being pursued and 

optimized in our lab. Similarly to the synthesis of OxPreAcb, the synthesis of OxAng commences 

with a one pot, two-step reaction of coupling 2,3-dihydroxybenzaldehyde and L-cysteine-methyl-

ester, cyclization and oxidation by DBU to afford the thiazole-methyl-ester 1 (Figure 8.9). As 
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previously discussed N-boc-O-benzylhydoxyhistamine 4 can be synthesized in 2 steps starting 

from histamine 2. Saponification of thiazole-methyl-ester with lithium hydroxide afforded free 

acid 5 while treatment of doubly protected amine 4 with TFA provides free amine 6. HATU 

coupling of acid 5 and amine 6 yields the title compound-benzyl-ester protected 7, which upon 

deprotection with boron trichloride and tetra-n-butylammonium bromide, affords OxAng 8.  

 Upon successful synthesis of both anguibactin and OxAng, biological evaluation of these 

compounds can explore whether the oxidation of a known siderophore can result in inhibition in a 

third system. Provided OxAng has an inhibitory effect, this strategy of siderophore oxidization as 

a potential anti-virulent approach should be optimized and extended as a general strategy of 

combating multi-drug resistant pathogens.  

Fimbactin (A and F) analogs and antibiotic conjugates  

 As discussed in chapters 3 and 4, we now have a method for isolating natural Fimsbactin 

A, as well as natural Fimsbactin F, from A. baumannii culture. Isolating these compounds opens 

the door for numerous derivatization and conjugation chemistry. Using a semi-synthetic approach, 

isolation of Fimsbactin A and F followed by oxidation of the oxazoline ring, using methods such 

as the DBU oxidation that was seen to be successful with the OxPreAcb system, might allow for 

the synthesis of yet another two oxidized siderophore systems (Figure 8.10). Further, Fimsbactin 

F contains an alcohol moiety that can serve as a handle for potential further chemistry (Figure 

8.11). Like with the OxPreAcb-alkyne system, further diversification can include attachment of 

fluorophores and/or antibiotics to both investigate the target location of Fimsbactin F inside the 

cell, as well as serve as a Trojan horse scaffold. Moreover, the alcohol handle on Fimsbactin F 

may allow for quick diversification through the addition of varies acyl chlorides. Addition of a 

molecule such as 4-chlorobenzoyl chloride can serve as a probe molecule to investigate the 
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relationship/interconversion, if any, between Fimsbactin A and Fimsbactin F. Synthesizing this 

analog, feeding it to the bacteria, and then performing HRMS can allow us to detect formation, if 

any, of the free 4-chlorobenzoic acid. If detected that may indicate that Fimsbactin A is cleaved 

by an esterase to yield Fimsbactin F.  

Fimsbactin A can also be obtained through total synthesis as shown in Figure 8.12. Crude 

final compound was obtained, however there was racemization at the denoted carbon. This 

synthetic strategy could be optimized to allow for diversification to allow for the synthesis of 

various fimsbactin analogs.    

DFT computational calculations and BauB crystal structures  

 With extremely fruitful collaborations with both the Gulick group (State University of New 

York at Buffalo) and Dr. Daryl Giblin (WUSTL Chemistry), we are currently continuing our 

efforts to further expand upon on previous work. Efforts continue to crystalize periplasmic 

siderophore binding protein, BauB, and other siderophore transport proteins with our current panel 

of natural and synthetic compounds. Further structural evidence and interactions at the protein 

level will allow for more targeted structure diversification work, as well as provide insight to the 

inter-workings of the natural siderophore transport pathways. DFT and computational work 

continues to explore lowest energy confirmation of natural and synthetic compounds, as well as to 

explore metal interactions and metal complex formations to extend upon our work with various 

metal titration/preference of various siderophore systems.  
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8.5 Figures   

 

Figure 8.1. Proposed synthetic route towards the total synthesis of the baumannoferrins. 

Highlighted in red shows a site of potential diversification which can allow for rapid derivatization 

of variable chain length and degrees of unsaturation.  
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Figure 8.2. Structures of Baumannoferrin A and structurally similar Acinetoferrin. Shared 

structural features are highlighted in red. 

 

Figure 8.3. OxPreAcb structure. Blue circles represent areas for potential site for further 

diversification. 

Figure 8.4. OxPreAcb-alkyne molecule can allow for rapid functionalization via click chemistry 

to explore the location of OxPreAcb in the cell, protein the molecule interacts with, potential 

optimization of the molecule as an inhibition through dimerization and a potential Trojan horse 

vehicle inhibitor-antibiotic system.   
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Figure 8.5. Structures of siderophores with oxidizable groups highlighted in green. Groups in red 

denote the two oxidized moiety in “siderophore-like” molecules that have been shown to be 

inhibitory in their respective pathogens.  

 

Figure 8.6. Anguibactin, a siderophore from Vibrio anguillarum is thought to not be able to 

undergo spontaneous isomerization as is seen in the case of pre-acinetobactin from A. baumannii 

isomerizing to acinetobactin. Initial research by group, however, suggests potential isomerization 

followed by addition of water to the thiocarbonyl to afford acinetobactin des-methyl. 
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Figure 8.7. Synthetic route to the total synthesis of anguibactin  
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Figure 8.8. DAD at 263 nm (black), EIC at m/z 333 (pre-acinetobactin-des-methyl, blue), and EIC 

at m/z 349 (anguibactin, red) chromatographs from LCMS synthesis of HPLC-prep purification of 

synthetic anguibactin. 
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Figure 8.9. Synthetic route towards the total synthesize of OxAng 

 

Figure 8.10. Potential semi-synthetic route to synthesis of Ox-FimA and Ox-FimF 
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Figure 8.11. Potential semi-synthetic approach to the diversification of Fimsbactin F, allowing for 

fluorophore and antibiotic conjugation as well as rapid synthesis of analogs via derivatization at 

the alcohol handle.   

 

 

 

 

 

 



404 
 

 

Figure 8.12. Synthetic efforts towards the synthesis of Fimsbactin A. Crude compound was 

obtained but there was racemization of stereochemistry at the denoted carbon. Further optimization 

is needed.  
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