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ABSTRACT OF THE DISSERTATION 

Molecular Mechanisms Responsible for Functional Cortical Plasticity During Development and 

after Focal Ischemic Brain Injury 
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Andrew W. Kraft 
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Professor Jin-Moo Lee, Chair 

 

The cerebral cortex is organized into functional representations, or maps, defined by increased 

activity during specific tasks. In addition, the brain exhibits robust spontaneous activity with 

spatiotemporal organization that defines the brain’s functional architecture (termed functional 

connectivity). Task-evoked representations and functional connectivity demonstrate experience-

dependent plasticity, and this plasticity may be important in neurological development and 

disease.  An important case of this is in focal ischemic injury, which results in destruction of the 

involved representations and disruption of functional connectivity relationships. Behavioral 

recovery correlates with representation remapping and functional connectivity normalization, 

suggesting functional organization is critical for recovery and a potentially valuable therapeutic 

target. However, the cellular and molecular mechanisms that drive this systems-level plasticity 

are unknown, making it difficult to approach therapeutic modulation of functional brain 

organization.  Using cortical neuroimaging in mice, this dissertation explores the role of specific 

genes in sensory deprivation induced functional brain map plasticity during development and after 
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focal ischemic injury. In the three contained chapters, I demonstrate the following: 1) Arc, an 

excitatory neuron synaptic-plasticity gene, is required for representation remapping and 

behavioral recovery after focal cortical ischemia. Further, perilesional sensory deprivation can 

direct remapping and improve behavioral recovery. 2) Early visual experience modulates 

functional connectivity within and outside of the visual cortex through an Arc-dependent 

mechanism. 3) Electrically coupled inhibitory interneuron networks limit spontaneous activity 

syncrhony between distant cortical regions. This work starts to define the molecular basis for 

plasticity in functional brain organization and may help develop approaches for therapeutic 

modulation of functional brain organization.  
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Chapter 1 

Introduction and Perspective 
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Recovery after ischemic stroke 

With over 5.8 million survivors, stroke is the leading cause of adult disability in the United States 

(1). The nature of neurologic deficits can encompass several cognitive domains (motor, sensory, 

attention, language), depending on infarction location. The acute deficits caused by the ischemic 

event are followed by spontaneous recovery that occurs in the subsequent weeks to months. This 

recovery, however, is often incomplete leaving patients in a state of chronic disability (2). 

Nonetheless, the fact that recovery occurs suggests that endogenous repair mechanisms exist, 

and these mechanisms might be potentiated in order to improve recovery after an ischemic stroke.  

Current approaches to stroke rehabilitative therapy 

Current approaches to therapy are limited. In the case of upper limb motor deficits, rehabilitative 

therapy aims to force use of the disabled arm by preventing use of the unaffected arm. This 

strategy, termed constraint-induced movement therapy (CIMT) has demonstrated limited, but 

significant benefit for stroke patients (3). Importantly, CIMT’s success suggests that activity-

dependent plasticity within the injured system appears central to recovery after brain injury. 

Given the need for better therapies to alleviate disability, other approaches to influencing activity-

dependent cerebral physiology are being examined with great interest. Common approaches 

include various pharmacologic manipulations and cortical stimulation approaches (4-6). Non-

invasive stimulation approaches (using transcranial direct current stimulation and transcranial 

magnetic stimulation) have been used extensively. Although select small studies have 

demonstrated benefits with these techniques (7-9), the benefits were not reproduced in larger 

randomized controlled trials (5, 6). 

These limitations highlight our poor understanding of the biology responsible for recovery after 

stroke. In order to develop better therapeutic approaches, the mechanisms involved in recovery 

after focal ischemic injury must be better understood.  
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Animal models of recovery after ischemic injury 

Pre-clinical animal models offer an important platform to investigate the mechanisms involved in 

recovery after stroke. Many different animal models exist, and they vary in species and how 

ischemia is induced. The most commonly used species include monkeys, rats, and mice. 

Common approaches to induce ischemia include mechanical vessel ligation (permanent or 

temporary), endovascular vessel occlusion, exogenous emboli infusion, and photochemically 

induced thrombosis. These choices can be tailored to generate a model with features suited for 

the specific scientific question (10, 11).  

Some models enable a reproducible infarction and behavioral deficits that are followed by 

consistent behavioral recovery profiles following injury. Long-term recovery models have been 

developed for non-human primates, rats, and mice, and these models are especially valuable 

for experimental determination of factors influencing behavioral recovery. Non-human primates 

and rats offer superior assays for neurologic behavior assays, whereas the advanced molecular 

biology tools readily available in the mouse have made mice valuable for mechanistic 

investigation in recovery after injury (11).  

Recovery studies in animal models after focal ischemia have characterized some of the cellular 

and physiologic changes which occur in association with behavioral recovery. For example, 

proteins involved in axonal growth and synaptogenesis are upregulated in peri-lesional areas after 

stroke, including neuronal growth promoting factors (BDNF, Insulin growth factors, fibroblast 

growth factors), axonal guidance cues (Nogo, SDF-1, ephrins, GDF10), and synaptogenic 

molecules (12). These processes may be critical for restoration, or novel formation, of connections 

required to restore neural communication. 

In addition to structural repair, changes in signaling physiology may also be important for 

recovery. Brain tissue in the perilesional area becomes hypoexcitable due to a decrease in 

extracellular γ-aminobutyric acid (GABA) uptake by activated astrocytes, resulting in increased 
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tonic neuronal inhibition (13). Blocking this tonic GABA signaling pharmacologically or by genetic 

manipulation accelerates motor recovery in mice (13). Moreover, AMPA receptor potentiation 

enhances limb recovery in this same animal model (14). This suggests that altering the balance 

between excitatory and inhibitory signaling may be a critical target for improving recovery after 

ischemic injury. 

These mechanistic discoveries offer insight into cellular processes that play a role in brain repair. 

However, synaptic branching and signaling both occur at the microscopic scale whereas 

behavioral performance involves large-scale integration of brain systems. Given the complex 

architecture of the brain, understanding the systems-level physiology involved in brain repair after 

ischemic injury will be critical.  

Systems-level plasticity in recovery after focal ischemic injury 

Indeed, animal models have suggested some systems-level phenomena that may be important 

for recovery after ischemic injury. Work in monkeys demonstrated that ablation of motor cortex 

representations was followed by a reappearance of lost representations in nearby motor cortex 

(15). Termed “cortical remapping,” it was also shown that this processes required physical use of 

the affected limb and occurred in conjunction with motor behavior recovery (15). This landmark 

discovery established functional cortex reorganization as an important component of recovery 

after cortical infarction. 

In addition to plasticity in cortical maps defined by task, more recent work has found a robust 

correlation in correlated spontaneous activity and recovery after focal ischemia (for more on 

correlated spontaneous activity, see below). Taken together this suggests that plasticity in the 

cortex’s functional organization is a critical substrate in recovery after injury.  

Indeed, modulating functional cortex organization might be a valuable therapeutic approach for 

patients with chronic disability due to an ischemic stroke. Unfortunately, there is no evidence for 



  5 
 

specific mechanisms that drive these processes and it is unclear how they might be manipulated 

for therapeutic gain. 

Overview of functional brain mapping 

The anatomical basis for mental performance has been at the center of our fascination for 

centuries. The earliest “brain mapping” can be traced to ancient Egyptian hieroglyphs that 

recognized a relationship between head injury and altered mental status, resulting in the 

realization that the brain is the seat of consciousness (16). In the same vein, neurologic 

syndromes clinical correlation with neuroanatomical lesions has provided insight into certain 

aspect of function brain maps (17, 18).  

Fortunately, brain activity involves precise physiologic alterations in ion conductance, 

cerebrovascular flow, blood oxygenation, and glucose metabolism (19). Although complex, and 

not entirely understood, these changes provide a robust platform to measure brain activity that 

can be measured by various non-invasive techniques (19). This technology has paired well with 

the neurosciences to determine how systems-scale changes in brain activity correspond to 

specific behaviors. 

The hemodynamic response is an especially reliable component of brain activity. Blood-flow 

radioisotopes for positron emission topography (PET) imaging enabled landmark functional 

mapping work (19), and functional neuroimaging using hemoglobin-based contrasts have been 

especially important. Hemoglobin-based imaging via magnetic and optical platforms is made 

possible by its distinct magnetic and spectral properties that have made blood oxygen level 

dependent (BOLD) magnetic resonance imaging (MRI) and optical intrinsic signal (OIS) imaging 

neuroscience workhorses. 

Cortical maps defined by activity increases during task 
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Intraoperative cortical microstimulation produced sensory and motor maps with beautiful detail 

(20). However, neuroimaging (both PET and MRI) enabled study of functional representations in 

a safer, less restricted setting. Not only could activation locations be determined non-invasively, 

but higher-order influences on sensory responses were demonstrated. Key findings include 

anticipatory responses to painful stimuli  (21)  and emotional modulation of sensory response 

amplitude (22). These examples, and others, revealed that task-evoked activity increases involve 

dynamic interaction with other components of the brain. 

Furthermore, by sampling the entire brain volume, neuroimaging has enabled mapping beyond 

the sensorimotor system. Moreover, neuroimaging platforms are compatible with experimental 

paradigms that involve more complex cognitive tasks. Certain tasks were shown to activate a 

collection of separate brain regions, which were collectively termed a network. Key examples 

include networks activated during word processing and attention tasks (23-27). These 

experiments also revealed a set of cortical regions, termed the default mode network, with activity 

decreases during attention demanding tasks (28-30). 

Cortical networks defined by spontaneous activity 

BOLD data from task-evoked neuroimaging experiments revealed a high degree of signal 

variance even outside of active tasks (31). At first this was considered physiologic “noise” and 

that was actively removed by averaging. However, it was eventually realized that this intrinsic 

actively is precisely organized between distinct brain regions (32-37). Thus, these spontaneous 

activity relationships may reflect higher-level integration of information across distinct brain 

systems and be a critical aspect in forming complex behaviors.  

Anti-correlations in spontaneous brain activity led to some of the earliest descriptions of 

spontaneous activity network organization (32, 38). Anti-correlations are especially interesting 

because they separate areas that have respective increases and decreases in activity during 

focused tasks (22, 27, 32, 38-41). The best demonstration of this is seen in the dorsal attention 



  7 
 

networks and default mode networks in humans (32). Activity in the default mode network 

decreases during attention demanding tasks, and this is thought to be driven by the brain pivoting 

from self-referential activity to task-directed activity requiring focused attention (28, 32, 42).  

In addition to the default mode and dorsal attention networks, additional analysis has shown 

robust correlation relationships for the executive control, salience, sensorimotor, visual, and 

auditory systems (31). Each of these networks involve strong homotopic correlation and variable 

anterior-posterior correlation in a manner that largely reflects task-evoked responses (31). 

Several studies have demonstrated a strong correlation between neurologic disease and 

functional connectivity (43-45), suggesting these spontaneous activity relationships are critical in 

brain function. 

Although often studied separately, it is clear that spontaneous activity influences task-evoked 

responses. Animal studies have demonstrated that spontaneous fluctuations modulate sensory 

evoked responses (46-48).  Human fMRI has revealed this also occurs within motor cortex for 

motor activity evoked somatomotor responses (49), and these fluctuations also correlate with the 

output motor force (50). This argues that the brain undergoes a constant, intrinsic conversation 

that interacts with stimulus, and it is not simply a set of cells that passively waits for input to 

determine output decisions. 

Importantly, even though much effort towards understanding “brain connectivity” continues to 

focus on anatomically based connectivity, much of these functional relationships are not 

constrained by anatomy (51, 52). Thus, functional brain maps may represent a level of brain 

organization rooted in neural activity that is hierarchically above anatomy and provides the 

substrate for complex behaviors. 

Plasticity in functional cortex organization 
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Based on early work that recognized the somatotopic organization of the cortex, it was believed 

that somatotopic representations were fixed by the peripheral anatomy (53). This was later 

challenged by the demonstration that peripheral nerve lesions resulted in spatial rearrangement 

of cortical maps – a processed termed cortical remapping (54, 55).  

Cortical remapping has been extended to the principle that sensory deprivation results in cortical 

“takeover” by spared senses, and this phenomenon has been reported in experimental animals 

and humans with sensory deficits. Sensory-deprivation induced remapping occurs with long-term 

deprivation as with peripheral nerve injury, or blindness, but it can also occur with more rapid 

experimental deprivation via anesthetic nerve block of blindfolding (56, 57). In addition, there is 

evidence that extensive activities can expand pertinent cortical representations, as in musicians 

and cab drivers (58, 59). Taken together, this suggests that experience dependent plasticity 

actively modulates cortical maps throughout life.  

Likewise, sensory experience and learning can modulate spontaneous ISA patterns at the 

systems-scale.  Specifically, visual and motor learning (34, 60), extended Law School Admission 

Test (LSAT) preparation (61), early-age blindness (62-65), and peripheral nerve injury (66-68) 

have all been demonstrated to alter ISA correlation in humans.  

In these examples, the functional connectivity changes occur with topographic specificity. For 

paradigms involving learning tasks inside the scanner, functional connectivity changes occurred 

between regions activated during the learning task. Further, in examples involving sensory 

deprivation, functional connectivity changes involved the deprived cortical regions. In addition, the 

magnitude of the effects induced by visual perception learning correlated with behavioral 

measurements of degree of perceptual learning (60). This suggest that functional connectivity is 

a critical component of systems-level brain plasticity, and specific functional connections can be 

selectively modified with certain maneuvers.  
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Understanding these systems-level changes may improve our therapeutic approach to many 

neurologic diseases. More specifically, neurodegeneration, psychiatric disease, developmental 

delay disorders, stroke, all demonstrate relationships in deficits and functional brain organization 

(43-45, 69-71). So far neuroimaging findings have largely been used as a biomarker for disease 

status in these conditions, but modulating cortical representations and resting-state relationships 

may have unrealized therapeutic potential.  

The finding that sensory deprivation can alter functional representations and resting-state 

relationships with anatomical specificity suggests that targeted sensory deprivation may facilitate 

cortical plasticity and improve function. In addition, sensory deprivation is likely to trigger genetic 

cascades that allow cortical plasticity, and these genetic programs may be therapeutically 

important. Unfortunately, little is known regarding the mechanisms underlying systems-level 

modulation of spontaneous ISA organization.  

A leading hypothesis is that experience-dependent ISA modulation reflects “brain plasticity.”  It is 

widely believed that plasticity at the systems level may be driven by mechanisms at the molecular 

level, especially those involving the modulation of synaptic strengths. However, there has been 

to date no evidence linking synaptic plasticity mechanisms, which operate on the spatial scale of 

microns (72), with the systems-scale ISA modulations occurring on the scale of centimeters (34, 

60-63).  

Functional cortical reorganization in ischemic stroke 

As mentioned above, stroke results in task evoked maps and resting-state network changes that 

correlate with behavioral outcomes (69, 70, 73-75). In the case of focal ischemia involving the 

cortex, there is an acute loss of behavioral capability associated with the infarcted region.  

Recovery occurs in parallel with the reappearance of an effective functional representation in 

perilesional cortex in the weeks to months following infarction (73, 74, 76-80). This process, 
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termed remapping, has been observed in both animal models and human patients recovering 

from focal ischemic injury (73, 74, 81-83).  

The cellular and molecular mechanisms that drive remapping are unknown. Physiologically, 

remapping involves perilesional neurons shifting their receptivity from uninvolved limbs to the 

injured limb (78). Taken with the finding that injured limb activity is required for remapping to occur 

(76), this suggests remapping may involve an activity-dependent competition for cortical neuron 

representation. If this is the case, it suggests certain approaches that might facilitate remapping 

for therapeutic gain.  

In addition to disrupting infarcted representations, stroke can cause remote dysfunction in distant 

but functionally connected regions of the brain (diaschisis). It is well known that stroke disrupts 

spontaneous correlation networks, and that acute disability correlates with the degree of 

functional connectivity decrement between specific regions (69, 75, 84). Behavioral deficits are 

especially profound when interhemispheric functional connectivity in the somatomotor network is 

disrupted: a finding that has been shown both in humans and rodent models (69, 70, 75). 

Furthermore, functional connectivity patterns normalize in parallel with behavioral recovery, and 

the extent of behavioral recovery correlates with the extent of normalization in correlation strength 

(70, 75).  

Thus facilitating representation remapping and spontaneous network normalization may be 

critical targets for raising the recovery ceiling. Unfortunately, our current understanding is limited 

to the observed correlation between the alterations in functional architecture and behavior 

capability.  Furthermore, it’s not clear how the cortex can be manipulated to facilitate functional 

reorganization for therapeutic gain.  

Understanding the molecular mechanisms involved in reorganization of functional brain 

arrangement may offer insight into how these plastic changes may be manipulated for therapeutic 

gain.  



  11 
 

Parallels between developmental critical periods and recovery after injury 

Understanding the development of functional organization in the cortex is likely to be valuable for 

understanding network changes after injury in adults. Neuroimaging has revealed robust 

functional network development at a very young age (85-88). It is reasonable to suspect that 

functional network disruption may play a role in neurologic developmental disorders, and there is 

evidence for this in schizophrenia, bipolar disorder, and autism (71, 87, 89-92).  

Interestingly, much of the reported network development in humans appears to happen late in 

utero or within the first 2 years of life (85-88), a time that contains developmental critical periods 

(93). Developmental critical periods have been studied at length, and many molecular 

mechanisms involved in experience-dependent changes in visual critical periods are known.  

Ocular dominance plasticity has been a particularly valuable model for understanding 

mechanisms of experience-dependent plasticity during critical periods. Non-human primates, 

cats, ferrets, and rodents have all demonstrated that monocular deprivation during the critical 

periods results in depression of deprived eye visual responses and potentiation of spared eye 

visual responses (94). This model has combined well with the genetic and molecular toolset 

available in mice to demonstrate a diverse set of mechanisms that drive ocular dominance 

plasticity during early development and subsequently lock these changes in place throughout 

adult life. 

During the visual critical period, there are robust changes at both excitatory and inhibitory 

synapses that alter excitatory-inhibitory balance in order to allow plastic change and subsequently 

lock it in place (95). GABAergic signaling changes were one of the first recognized mechanisms 

of critical period. Critical period studies have demonstrated a dramatic experience-driven increase 

in proteins specific to inhibitory interneurons and GABAergic receptors (95-97). Parvalbumin, a 

Ca2+ binding protein thought to be critical for rapid spiking, is exclusively present in a class of 

inhibitory interneurons (termed fast spiking or parvalbumin inhibitory interneurons) (98). Increased 
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parvalbumin expression and GABA receptor expression correlated with increased inhibitory tone 

and more selective receptive fields in excitatory primary visual cortex neurons (96). This 

suggested that specificity gained during development was achieved by inhibitory influences that 

gate excitatory neuron responses (95).  

GABAergic blockade, whether pharmacologic or genetic, has been shown to play an essential 

role in critical period ocular dominance plasticity (95, 99-101). However, reversible GABAergic 

blockade prevented critical period closure whereas GABAergic agonists cause early and 

shortened critical periods (95, 99-101). Thus, GABAergic signaling is thought to drive non-

reversible changes that result in cortex maturation. 

Much of this synaptic development appears to be driven by brain derived neurotrophic factor 

(BDNF), and it was thought that BDNF’s expression during the critical period drove inhibitory 

synapse plasticity exclusively (95, 102-104). However, more recent work has demonstrated 

AMPA receptor plasticity within excitatory neurons plays a critical role in visual critical period 

ocular dominance plasticity (105).  

This has been best demonstrated by a lack of ocular dominance plasticity in mice deficient for 

activity-regulated cytoskeleton-associated protein (Arc), a protein selectively expressed in 

glutamatergic neurons (105, 106). Arc plays a role in altering excitatory synapse strength via 

endocytosis of AMPA receptor subunits (107). Interestingly, actively differences within individual 

synapses of the same neuron enable Arc to selectively endocytose AMPA receptors at silent 

synapses (108). This mechanism may be important for experience-directed strengthening and 

weakening of specific connections that drive ocular dominance plasticity.  

Arc activity is also driven by BDNF (109-111). Thus, critical period BDNF signaling likely drives 

changes at both excitatory and inhibitory synapses. Subtle differences in the development 

trajectories between excitation and inhibition allow for a short periods of high excitability that 



  13 
 

allows plasticity to occur that is followed by durable period of increased excitation that cements 

these plastic changes in place (95).   

These critical period findings have remarkable parallels to preclinical models of recovery after 

focal ischemic injury. Pioneering work has shown that GABAergic antagonists and AMPA receptor 

potentiation both improve behavioral recovery after stroke (13, 14). This may result from 

increasing the excitatory-inhibitory ratio to create an effective “critical period opening” in the post-

injury environment that facilitates plasticity and improves recovery.  

Thus, development and recovery after brain injury may rely on a core set of neurologic plasticity 

pathways. Understanding these pathways may enable therapies that allow reshaping of the 

cortex’s functional organization in order to treat systems-level neurologic disease. While this idea 

may be promising, it is not entirely clear how these mechanisms tie into functional cortex plasticity. 

Indeed, ocular dominance plasticity involves functional representation changes within the visual 

system, but it is unclear how these changes interact with the cortex at large. In addition, while 

some cellular and genetic processes have been implicated in behavioral recovery after stroke, 

the role of these genes in cortical functional organization plasticity is unknown.  

Summary of findings 

The central hypothesis of this dissertation is that the molecular mechanisms responsible for 

synaptic-scale plasticity during development drive experience-dependent functional cortex 

plasticity during health and disease. Using functional neuroimaging in mice, I’ve taken advantage 

of the molecular tools readily available in mouse models to examine how functional map plasticity 

is influenced by specific genes. More specifically, I demonstrate that Arc, a gene critical for 

experience-dependent synaptic plasticity in excitatory neurons, plays a role in vision-dependent 

changes in spontaneous activity networks as well as remapping and behavioral recovery after 

focal ischemic injury. In addition, I show that focal sensory deprivation can lead to targeted 

changes in functional brain organization. Lastly, I show that inhibitory interneuron gap junctions 
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modulate functional specific functional networks. This work starts to establish a molecular basis 

for targeted functional cortical map plasticity and suggests molecular pathways and maneuvers 

that may be an important therapeutic target for neurological disease that involve disruption of 

systems organization.  
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Abstract 

Recovery after stroke, the leading cause of adult disability, is often unpredictable and 

incomplete.  Behavioral recovery is associated with functional remapping to perilesional regions, 

suggesting that mechanisms underlying remapping may be important therapeutic targets to 

enhance recovery. However, molecular mechanisms underlying remapping are poorly 

understood, and it is unclear if modifying remapping alters behavioral recovery. We 

photothrombosed forepaw somatosensory cortex in mice, and followed remapping using Optical 

Intrinsic Signal imaging and behavioral recovery using the cylinder rearing test. Focal sensory 

deprivation targeted to the perilesional whisker barrel (via whisker trimming) accelerated forepaw 

sensory remapping into the whisker barrel cortex and improved the extent of sensorimotor 

behavioral recovery. Further, these improvements persisted even after targeted sensory 

deprivation was ceased. Mice deficient in Arc, a gene critical for activity-dependent synaptic 

plasticity, failed to remap or recover sensorimotor function. These results suggest that post-stroke 

remapping occurs through Arc-mediated synaptic plasticity and is required for behavioral 

recovery. Furthermore, recovery may be improved with maneuvers that enhance perilesional 

cortical plasticity.   
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Introduction 

Ischemic stroke is the leading cause of disability throughout the world (1), resulting in deficits that 

can be profoundly debilitating (2-4). While some recovery may occur in the weeks to months 

following the initial ischemic event, this recovery is unpredictable and often incomplete (2-4). 

Thus, recovery can be expected to plateau well below baseline levels leaving patients in a state 

of chronic disability (2-4). Because limited recovery can occur, it is clear that endogenous repair 

mechanisms exist. Several plasticity mechanisms driving repair and recovery have been 

uncovered in animal models of focal brain ischemia, and enhancing these pathways can improve 

behavioral outcomes (5-8). 

In the case of focal ischemia involving the cortex, there is an acute loss of function associated 

with the infarcted region.  Functional recovery occurs in parallel with the reappearance of an 

effective functional representation in perilesional cortex in the weeks to months following infarction 

(9-14). This process, termed remapping, has been observed in both animal models and human 

patients recovering from stroke (15-17). Remapping has not only been demonstrated following 

lesions limited to sensory or motor cortex, it has also been demonstrated following infarction of 

subcortical structures (18). However, the role of remapping in recovery remains correlational; it is 

unclear if remapping is a necessary step for behavioral recovery. Moreover, the cellular and 

molecular mechanisms responsible for remapping are only beginning to be elucidated. Early 

studies examining recovery after motor cortex lesions in non-human primates demonstrated that 

activity in the affected limb was required for motor remapping to occur (9). Subsequent work using 

multiphoton imaging with cellular resolution on mice with genetic calcium reporters revealed that 

remapping after sensory cortex infarction involved changes in somatic sensory receptivity at the 

level of individual neurons (11). Thus, sensory remapping may involve competing somatosensory 

input from affected somatic regions and adjacent non-affected somatic regions (with intact 

sensation) that vie for receptivity of common neurons in the somatosensory cortex.  
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In the absence of injury, competition for cortical sensory representation can also occur in the 

setting of sensory deprivation—a maneuver well-known to induce cortical plasticity (19, 20). 

Amputation of limbs or digits, trimming of whiskers, and visual deprivation, each result in 

expanded representation of spared sensory modalities into the deprived cortical regions (19-22).  

While the effects of deprivation may be most dramatic during development, sensory deprivation 

also induces plasticity in the adult brain (19, 23-26).  

These studies raise the exciting possibility that focal sensory deprivation after cortical infarction 

could enhance plasticity in a manner that facilitates remapping and improves behavioral recovery. 

Furthermore, there may be substantial overlap between the mechanisms driving plasticity induced 

by sensory deprivation in the uninjured brain and those involved in remapping in the injured brain. 

Of note is activity-regulated cytoskeleton-associated protein (Arc), which has been demonstrated 

to play a critical role in experience-dependent synaptic plasticity (27). Arc gene deletion 

attenuates LTD and LTP consolidation in situ and memory consolidation in vivo (31). Furthermore, 

Arc is required for ocular dominance plasticity (ODP) in the visual cortex during critical period 

monocular deprivation (29). Arc mediates these effects via coordinated AMPA receptor 

endocytosis (32) and can be targeted at individual synapses.  This mechanism permits the 

selective weakening of inactive synapses and potentiation of active synapses (33), making Arc-

mediated synaptic plasticity a strong candidate pathway for mediating remapping and recovery 

after focal ischemia.  

To examine this possibility, we turned to a previously established mouse model of focal cortical 

ischemia that is consistently followed by remapping and recovery. Primary forepaw 

somatosensory cortex photothrombotic infarction results in acute behavioral deficits and loss of 

somatosensory forepaw (S1FP) evoked responses (11, 12). We followed S1FP remapping and 

behavioral recovery in mice subjected to chronic whisker trimming, depriving sensory input to the 

perilesional whisker barrel cortex (S1WB). To determine if remapping and recovery was 
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dependent on activity-dependent synaptic plasticity, mice with genetic deletion of Arc (28) were 

subjected to the infarct-remapping-recovery paradigm. We have found that sensory deprivation 

accelerates remapping and improves behavioral recovery in wild-type mice, whereas Arc-/- mice 

demonstrated no remapping and persistent behavioral deficits.  

Results 

Mice were subjected to right S1FP photothrombosis (right forepaw somatosensory representation 

on left cortical hemisphere) and followed for 8 weeks after ischemia. Forepaw mapping and 

behavioral testing were performed prior to and at multiple timepoints following ischemia (Fig. 

2.2.1). This study consisted of 4 experimental groups 1) Arc+/+ mice (WT-Control); 2) Arc+/+ mice 

with sensory deprivation (WT-Depriv); 3) Arc-/- mice (Arc-Control); 4) Arc-/- mice with sensory 

deprivation (Arc-Depriv). S1FP photothrombotic infarct volume and perilesional astrogliosis were 

not different between WT and Arc-/- mice (Figs. S1,S2).   Throughout the study period, all mice 

were housed in enriched environments to expand the dynamic range for behavioral recovery. 

Remapping is accelerated and redirected to the whisker barrel cortex in whisker deprived mice 

To determine if post-infarct remapping can be altered by targeted perilesional sensory deprivation, 

we trimmed all contralesional (right) mystacial whiskers starting 48 hours after ischemia to deprive 

the barrel cortex adjacent to S1FP. Whiskers were kept under 1mm for the entire recovery time-

course (for 8 weeks).  Right forepaw stimulation resulted in consistent activation of S1FP cortex 

on the left hemisphere in all groups prior to photothrombosis (Figs. 2, S3, S4). Photothrombosis 

targeted to right S1FP (left hemisphere) resulted in loss of evoked right forepaw responses in the 

first week following injury in all groups (Figs. 2, S3, S4).  Photothrombosis did not affect the 

evoked responses of the left forepaw or the right hindpaw in any of the groups (Fig. 2.2.3), and 

left forepaw activations were stable across imaging time points (Fig. 2.2.S5).  Evoked right 

forepaw responses reappeared 8 weeks after infarction in WT mice, and were focused to regions 

anterior to the infarct (near motor cortex). In whisker-deprived mice, reappearance of S1FP maps 
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occurred earlier (4 week time-point), and remapping was observed in regions posterior to the 

infarct, within the whisker barrel cortex. At 8 weeks post-ischemia, the right forepaw evoked 

response was still present in the whisker cortex. Thus, focal sensory deprivation influenced both 

the timing and location of remapping.  

While substantial evidence suggests that cortical plasticity is dependent on the dynamic changes 

in synaptic structure and function, it is unclear if similar mechanisms are required for remapping 

following cortical injury. To determine if activity-dependent synaptic plasticity was required for 

post-infarct remapping and recovery, we subjected Arc-/- mice to photothrombosis and followed 

S1FP remapping. In our experiments baseline sensory-evoked responses in Arc-/- mice were 

similar in location and amplitude to that in WT mice.  After photothrombosis, right forepaw evoked 

responses did not reappear in the whisker-deprived Arc-/- mice even out to 8 weeks after 

ischemia; nor did remapping occur in the Arc-/- mice with intact whiskers.  Collectively, these data 

show that Arc is required for infarct-induced cortical remapping (Figs. 2, S3, S4) and suggests 

that cortical remodeling following focal ischemia shares essential components with mechanisms 

involved in synaptic plasticity.  

Whisker deprivation improves behavioral recovery following focal ischemia 

To determine if whisker deprivation altered sensorimotor behavioral recovery, we used the 

cylinder rearing test—an observational sensorimotor test that assesses lateralized forelimb use 

during spontaneous exploratory behavior inside of a glass cylinder (Fig. 2.4).  Healthy animals 

explore the walls of the cylinder while rearing using both forepaws equally. However, immediately 

after sensory or motor cortex photothrombosis, mice preferentially use the unaffected limb; this 

asymmetric forelimb use is followed by recovery of symmetry within 8 weeks after infarction (7, 

12, 34). A major advantage of this test is that it does not involve any training—an essential 

requirement for the examination of Arc-/- mice, which have significant learning deficits (31). 
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At baseline, all groups demonstrated symmetrical forelimb use (Fig 3). S1FP photothrombosis 

resulted in use asymmetry due to relative decreases in right forelimb use that was consistent 

across all groups examined (Fig. 2.4). In WT-Control mice, limb use symmetry was significantly 

improved at WK7 compared to WK1, but the WK7 limb use was still statistically asymmetric 

compared to baseline (partial recovery). This time course is in agreement with previous studies 

utilizing small photothrombotic lesions isolated to the primary sensory cortex (12). In the whisker-

deprived WT mice, recovery showed marked acceleration as use-symmetry returned to baseline 

levels by 3 weeks post-ischemia (complete recovery) which persisted to week 7. Thus, focal 

sensory deprivation via whisker trimming improved both the rate and extent of behavioral 

recovery. Arc-/- mice (both whisker-deprived and whisker-intact) showed persistent use-

asymmetry throughout the 8-week timeline, indicating the absence of behavioral recovery (Fig. 

2.4). Whisker deprivation alone (in the absence of cortical photothrombosis) for 3 weeks, did not 

result in any limb use-asymmetry (Fig. 2.S10). 

Dendritic spine density is enhanced in remapped cortex 

Turnover of dendritic spines is likely an important mechanism involved in brain repair after focal 

ischemia. Within hours of an ischemic insult, a marked decrease in perilesional dendritic spine 

density is observed (35-38). In the following weeks, spine turnover increases dramatically with 

spine generation outpacing spine removal. This results in spine accumulation and gradual 

recovery of perilesional spine density in the weeks after ischemia (38). This process may reflect 

the initial loss of structural and functional connectivity that occurs following infarction and the 

subsequent synaptic rearrangement in perilesional cortex that is required for remapping and 

recovery. Furthermore, it has been shown that recovery of spine density correlates with behavioral 

recovery (39), suggesting the synaptic changes reflected by spine density are important for 

recovery.  
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We quantified dendritic spine density 3 weeks after ischemia in layers II/III and IV at three cortical 

locations: 1) anterior perilesional (near motor cortex); 2) posterior perilesional (whisker barrel); 

and 3) distant site (1.5mm medial to the lesion; Fig. 2.5). Overall, we found decreased dendritic 

spine density at the perilesional locations compared to the distant site (far away from infarction)—

a finding consistent with previous studies (38). However, in the WT mice, spine density in the 

anterior perilesional location (where remapping occurred) was significantly higher than all other 

groups. In contrast, WT mice subjected to whisker deprivation had increased spine density at the 

posterior perilesional location (within whisker barrel cortex) compared to all other groups. In both 

groups the location of increased spine density corresponded to the region of remapping.  The 

Arc-/- mice did not show any increase in spine density at any location examined, regardless of 

whisker trimming status.  Collectively, our data demonstrate that cortical regions of remapping 

demonstrate increased dendritic spine density.  

Deprivation-induced remapping and behavioral improvement are stable after whisker regrowth 

To determine the stability of deprivation-induced remapping and behavioral recovery, we 

examined remapping and behavioral performance after allowing whisker regrowth (Fig. 2.6). 

Using the previous recovery paradigm, we performed whisker trimming for 8 weeks and then 

allowed whiskers to regrow for 4 weeks (Fig. 2.6). Whiskers regrow at a rate of >1mm per day, 

and were fully grown after 1 week. Further, 4 weeks of whisker regrowth has been previously 

shown to reverse deprivation-induced cortical evoked response changes in the setting of 

uninjured CNS (40).  

Using WT mice with and without sensory deprivation via whisker trimming (WT-Control and WT-

Depriv), we examined right forepaw evoked responses 8 weeks after photothrombosis. At this 

point, whiskers were allowed to regrow in the WT-Depriv group, and forepaw maps were 

reexamined 4 weeks later (12 weeks post-photothrombosis, see Fig. 2.6 for timeline). At the 8 

week time point, we found that right S1FP maps in WT-Control and WT-Depriv mice were in 
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significantly different locations (Fig. 2.7G), as seen in the previous experiment (Fig. 2.2). After 4 

weeks of whisker regrowth, the right S1FP maps for each group remained in the same location 

(significant overlap) compared to their respective 8-week maps (Fig. 2.7K,L). These data suggest 

that whisker regrowth and concomitant whisker sensory input did not adversely affect the S1FP 

remapped area which remained stable during this period of regrowth (Fig. 2.7H). 

To determine the spatial relationship between the S1FP remapped region and the whisker 

sensory area, we examined right whisker evoked responses 12 weeks post-photothrombosis (Fig. 

2.7). Both Control and Depriv groups showed robust whisker-evoked maps; however, the Depriv 

maps were significantly smaller than those of the Control mice (Fig. 2.7K, Fig. 2.S9). Moreover, 

the smaller Depriv whisker maps were restricted to the posterior-lateral region of the WT-Control 

whisker maps (Fig. 2.7M).  Superimposing the S1FP remapped regions onto the whisker map, 

revealed little overlap between these two sensory maps, and the spatial distributions of the S1FP 

and S1WB maps were statistically distinct (Fig. 2.7J). While the display comparisons shown in 

Fig. 2.7 show the 65% incidence contour, it is important to note that all statistical comparisons 

were made independent of any %incidence threshold (see Methods, Fig. 2.7. Fig. 2.S9).   

Altogether, these data suggest that whisker-deprivation enhances remapping into the whisker 

somatosensory cortex and that this remapping occurs at the spatial expense of the whisker map.  

Moreover, this remapped S1FP remains stable despite whisker regrowth. 

To determine if withdrawal of whisker sensory deprivation altered forepaw use, we performed 

serial cylinder rearing tests during and after whisker trimming (Fig. 2.6).  During the period of 

whisker trimming, the Depriv group showed accelerated and complete recovery by 5 weeks after 

photothrombosis.  Even after whisker regrowth, this improved performance persisted in the Depriv 

group, whereas control mice demonstrated a continued behavioral deficit (Fig. 2.8). These data 

suggest that adjacent focal sensory deprivation accelerates and improves the extent of behavioral 
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recovery following ischemic injury; and that this recovery is durable despite the resumption of 

sensory input. 

Discussion 

It has long been speculated that brain plasticity with concomitant functional remapping is 

important for behavioral recovery after focal brain injury (9, 10, 15, 17, 41).  In this study, we 

provide evidence that experimental manipulation of cortical plasticity can alter remapping and 

enhance behavioral recovery. We show that remapping can be directed to specific cortical regions 

using focal sensory deprivation targeted to perilesional regions. Focal sensory deprivation (via 

whisker deprivation) resulted in earlier remapping, improved behavioral recovery, and increased 

synaptic spine density within the remapped areas (whisker barrel cortex). This remapping and 

improved recovery persists even after the resumption of sensory input. Furthermore, we show 

that remapping and behavioral recovery require Arc, suggesting the importance of mechanisms 

involved in synaptic plasticity. 

Our finding that sensory deprivation modifies post-ischemic remapping is consistent with the 

effects of sensory experience in the uninjured brain. More specifically, selective sensory 

deprivation in both young and mature animals leads to the contraction of deprived sensory cortical 

representations and concomitant expansion of neighboring, spared cortical representations (19, 

20, 22-26, 42, 43). A well-studied example of this phenomenon is ocular dominance plasticity with 

monocular deprivation, where ocular dominance columns from the normal eye expand into 

columns representing the deprived eye (20, 26, 42). The same principle applies to the 

somatosensory system where removal of select whiskers results in expansion of neighboring 

spared whiskers barrel fields into the deprived barrels (19, 23, 24, 43, 44), and transection of the 

infraorbital nerve in adult rats results in expansion of the forepaw digit somatosensory 

representations into the barrel cortex (22). Our studies demonstrate that focal sensory deprivation 

targeted to perilesional cortex can enhance remapping, suggesting that cortical plasticity is 
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heightened by functional non-use of the targeted cortical region.  Moreover, our data suggest that 

this remapping may occur at the spatial expense of the cortical region targeted for sensory 

deprivation.  

Receptivity shifts after photothrombosis observed with OIS (e.g. remapping) have been shown to 

involve receptivity shifts in individual perilesional neurons (11). More specifically, perilesional 

hindlimb S1 neurons are initially unaffected by S1FP photothrombosis and respond only to 

himdlimb stimulation. However, weeks later, these same perilesional hindlimb S1 cortical neurons 

are excitable by both forelimb and hindlimb stimulation. Eventually these neurons become 

selectively responsive to forepaw stimulation, and this process reflects what is seen with OIS 

remapping studies (11). It is likely that the sensory input from each somatic region influences 

changes in cortical representation.  Thus, whisker activity may compete with forepaw activity for 

cortical representation. By eliminating whisker activity (and thereby a competing stimulus), one 

might enhance receptivity of neurons in the whisker barrel to competing forepaw stimuli, thereby 

boosting remapping potential of the forepaw somatosensory cortex.  

While we observe remapping in cortical regions, the precise cellular “reconnections” that are 

required for remapping and recovery of function are unclear.  It is possible that surviving cortical 

neurons representing the affected limb form new connections to adjacent cortex, thereby creating 

a new representation (i.e. remapping). Alternatively, it has been suggested that pre-existing silent, 

or sub-threshold, thalamocortical synapses may be strengthened to allow remapping to occur (5). 

While thalamocortical plasticity has been postulated to be generally limited in mature mice (45, 

46), it is possible that ischemic injury initiates plasticity mechanisms to allow these thalamocortical 

neurons to extend axons to form new synapses in adjacent surviving cortex. In addition to 

potentiation of pre-existing connections, formation of de novo connections appears to be 

important as well. In the weeks after cortical infarction, upregulation of various genes, including 
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GDF10, results in robust axonal sprouting that increases cortical connectivity and plays a role in 

behavioral recovery (6, 8).  

Photothrombosis in wild-type mice without intervention resulted in remapping, suggesting injury 

itself may also trigger plasticity and remapping.  Ischemia induces post-stroke cascades that alter 

gene expression (6, 8, 47-49), and accumulating evidence suggests that some of these pathways 

are critical for plasticity required for recovery. For example, ischemia results in HIF-1 induced 

VEGF expression that results in angiogenesis critical for neurovascular remodeling (50). 

Inflammation induced by ischemia leads to production and elaboration of matrix metalloproteases 

which play a critical role in neurovascular remodeling and behavioral recovery weeks after the 

initial injury (51). Furthermore, ischemia induces perilesional expression of factors that induce 

axonal sprouting—a critical element of behavioral recovery (6, 8). Indeed, there are likely many 

endogenous mechanisms beyond these examples involved in recovery, and our study suggests 

that these endogenous mechanisms can be enhanced to accelerate, and improve the extent of 

behavioral recovery.  

The behavioral recovery advantage of focal perilesional sensory deprivation was persistent even 

after the reintroduction of sensory input. Four weeks after whisker regrowth, the S1FP remapped 

area remained stable, as did the behavioral recovery.  S1FP remapping occurred within the 

original whisker barrel cortex, compressing the sensory map of the regrown whiskers to the 

posterior-lateral region of the original whisker barrel cortex.   The finding that whisker-evoked 

responses remained robust after deprivation suggests that the whisker somatosensory system is 

functional. However, it is unclear if this whisker map contraction reflects compromised whisker 

sensory function, as this was not formally tested.  It should be noted that constraint-induced 

movement therapy (CIMT), a standard neurorehabilitative intervention, uses a similar approach 

(in principle) of movement restriction of the arm contralateral to the paretic arm. There is no 

evidence for deficits induced by CIMT, though it has not been carefully examined (52-54). 
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While the results in the current study may be the first study to implicate Arc in post-ischemic 

remapping, extensive work has implicated Arc in cortical plasticity following sensory deprivation 

in the uninjured brain. Sensory deprivation alone results in the induction of cAMP response 

element-binding protein (CREB) related genes, and plays a critical role in modifying post-synaptic 

neurons to allow expansion of adjacent functional regions (44). Arc, an immediate early gene 

regulated by CREB, has been specifically demonstrated to be required in ocular dominance 

plasticity with monocular deprivation (29).  In addition to its role in ocular dominance plasticity, 

Arc is also required for orientation learning in the visual cortex and long term memory 

consolidation seen in behavioral learning paradigms (31). Arc-deficient brain slices show 

attenuated LTP and LTD consolidation and Arc-/- mice have profound learning deficiencies, 

suggesting these higher-level deficits result from dysfunction of synaptic plasticity. Arc mediates 

synaptic change by regulating glutamate receptors in the dendritic spines of excitatory neurons 

(32). Arc can regulate synaptic strength at the level of single synapses or whole-neurons (33, 55). 

Interestingly, excitation at active synapse can induce Arc-mediated AMPAR removal and synaptic 

weakening at silent or inactive synapses selectively (33)—and this pathway may enable the 

activity-dependent modulation of select synapses required for receptivity field changes seen with 

cortical remapping.   

Importantly, prior work has demonstrated that Arc-/- are remarkably normal: Compared to WT 

mice, Arc-/- mice have normal weigh and fertility (28, 29); Detailed examination of the visual 

system retino-thalamic neuroanatomy is normal (29); and functional retionotopic representations 

in the visual cortex are not altered in Arc-/- mice (29).  Moreover, cortical neuron membrane 

excitability and sensory evoked-response potentials are virtually identical to WT neurons (28-30). 

Thus the experience-dependent plasticity attenuated in Arc-/- mice is not due to generalized 

neuronal dysfunction, but due to specific disruption of experience-dependent change. Our data is 
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consistent with this as Arc-/- mice have normal baseline somatosensory maps but lack the post-

ischemic plasticity that drives remapping and behavioral recovery. 

Previous examination of perilesional synapses at the level of dendritic spines reveals enhanced 

spine loss and spine generation. This suggests old connections are replaced with new ones, a 

process likely critical for receptivity switches in perilesional neurons. Here, we show that post-

ischemic spine density recovers selectively in cortical regions where remapping occurs, and that 

Arc is required for this increase in dendritic spine density. These results are consistent with 

previous work from sensory deprivation paradigms (without CNS injury) where robust anatomical 

plasticity was associated with changes in dendritic spines in deprived cortex (56, 57). Similar to 

what is seen in perilesional cortex after ischemia, sensory deprivation results in increased spine 

turnover implicating similar programs for structural and functional connectivity in deprived cortex 

(56). Arc is known to regulate dendritic spine dynamics through its interaction with actin-regulating 

proteins in dendritic spines (58-60). Thus, it is not surprising that post-ischemic spine density 

remains low in Arc-deficient mice.  However, post-ischemic dendritic spine recovery reflects the 

new synapses that form through Arc-mediated mechanisms.  

Implications for therapy 

Current rehabilitative strategies for motor recovery have focused on increasing use of disabled 

limbs through “forced use” or constraint-induced movement therapy (CIMT) (52-54). While this 

therapeutic strategy takes advantage of use-dependent competition for perilesional cortical 

representation, it neglects competition from perilesional cortex representing unaffected somatic 

regions. Thus, rehabilitation might be more effective when coupling forced-use with focal 

deprivation of motor activity represented in targeted perilesional cortex. Such an approach might 

involve focal sensory deprivation or motor restraint, whether through mechanical or 

pharmacological means. Our results suggest that this therapy may only need to be applied 

temporarily, which is consistent with improvements demonstrated with CIMT (52-54). Current 
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rehabilitative deprivation approaches have not demonstrated negative impact on functionality 

after deprivation is ceased (52-54), but the potential for negative consequences must be 

considered in clinical trials assessing this strategy.  

Methods 

Study Design 

The aim of this study was to determine if post-stroke remapping could be manipulated (both 

spatially and temporally) to alter behavioral recovery; and to determine if remapping was 

dependent on activity-dependent synaptic plasticity.  Toward this end, we performed 

photothrombosis targeted at the forepaw somatosensory cortex in mice. Half of the mice were 

randomly selected to receive focal sensory deprivation (via contralesional whisker trimming), a 

maneuver known to enhance cortical plasticity (19) in the perilesional cortex.  Remapping after 

injury was assessed using OIS imaging (11, 12), and sensorimotor behavioral recovery was 

assessed using the cylinder rearing test (6, 7, 12). Sample size and specific time points were 

selected based on previous studies examining behavioral recovery after forepaw somatosensory 

cortex photothrombosis (6, 7, 12).  To determine if activity-dependent synaptic plasticity was 

required for remapping and recovery, Arc+/+ and Arc-/- mice were subjected to photothrombosis 

and focal sensory deprivation, and assessed for remapping and behavioral recovery (as 

described above).  In a separate cohort of mice, dendritic spines were quantified after Golgi-Cox 

staining, 4 weeks after photothrombosis in 3 regions of the cortex:  1) anterior to infarction, 2) 

posterior to infarction (in whisker barrel cortex), and distant to the infarction (ipsi-lesional).  

Sample size was selected based on previous studies examining dendritic spine density dynamics 

after photothrombosis (36, 37).  Image processing and data analysis was performed by an 

examiner blinded to group and/or genotype. All experiments were performed in accordance with 

animal protocols approved by the Washington University Animal Studies Committee in 

compliance with AAALAC guidelines. 
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Mice 

Colonies of Arc+/+ (WT) and Arc-/- mice on a pure C57Bl6/J background 

(RRID:IMSR_JAX:007662)  (28)  were raised in standard cages with ad libitum access to food 

and water in a dedicated mouse facility with a 12-12 light/dark cycle  

Imaging Windows 

Under isoflurane (3.0% induction, 1.5% maintenance), the scalp and periosteal membranes were 

reflected from the skull, and Plexiglas imaging windows were fixed to the skull with clear metabond 

dental cement as described previously (61), to provide a wide field of view of the dorsal cortex.  

The windows provided a stable imaging platform for serial imaging throughout the study period. 

Windows were examined for development of infectious abscesses, and any mice that developed 

window infections were immediately sacrificed in accordance with our animal protocol (WT 

Control n=1; WT Depriv. n=2; Arc-/- Control n=0; Arc-/- Depriv. n=1).  

Whisker Trimming 

Mice were lightly anesthetized with isoflurane anesthesia, and all right mystacial whiskers where 

cut to <1mm with surgical scissors. Mice that did not receive whisker trimming were subjected to 

the same anesthetic protocol.  

Enriched Environments and housing 

For all recovery studies, mice were housed in 24” x 17” x 8” cages (Nalgene) with the following 

environmental enrichment components: Mouse Arch, Mouse Huts, Mouse Igloos, Mouse Tunnels, 

Fast Trac (bio-serv) and Environdri crinkle paper. 

Photothrombosis 

Under isoflurane anesthesia (see above), mice were placed in a stereotactic frame. A 532nm 

green DPSS laser (Shanghai Laser & Optics Century) collimated to a 0.5mm spot was centered 
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on S1FP (0.5mm anterior to bregma, 2.2mm left of bregma) at low power (<0.25mW). The laser 

was turned off, and mice were then given 200uL Rose Bengal dissolved in saline (10g/L) via I.P. 

injection. After 4 minutes, the laser was powered to 23mW (centered on S1FP), and targeted to 

S1FP for 10 minutes. This approach lead to thrombosis of all blood vessels in the target region. 

Cylinder Rearing 

Cylinder rearing recording and analysis was done as previously described (7, 12, 34). Briefly, 

mice were placed in a 1000 mL glass beaker and video recorded for 5 minutes. Group identity 

was masked and a custom MATLAB interface was used to manually analyze videos to determine 

the amount of time that the 1) right paw, 2) left paw, or 3) both paws made contact with the glass 

walls, and the percent of total forepaw contact time was calculated for each condition. Paw-use 

asymmetry was calculated as (% left paw contact time – % right paw contact time). Any mice that 

were not spontaneously active during any of the behavioral timepoints were excluded from 

analysis (WT Control n=0; WT Depriv. n=5; Arc-/- Control n=1; Arc-/- Depriv. n=0). 

Imaging animal prep 

As reported previously (62), anesthesia was initiated via i.p. injection with a bolus of ketamine-

xylazine (5μL per gram; drug concentration: 86.9 mg/kg ketamine, 13.4 mg/kg xylazine dissolved 

in saline) and animals were allowed 15 minutes for anesthetic induction. After induction, the 

animal was placed on a heating pad maintained at 37°C via feedback from a rectal probe (mTCII, 

Cell Microcontrols) and its head secured in a stereotactic frame. While under ketamine-xylazine 

anesthesia, forelimb and hindlimb stimulation electrodes were placed (see below); the cortex was 

positioned in focus of the camera, and the animals were then transitioned to isoflurane anesthesia 

(<0.5%) for stimulation studies.  

Paw Stimulation 



  44 
 

Transcutaneous electrical stimulation was applied to the forepaw or hindpaw by placing 

microvacular clips (Roboz) on either side of the wrists or ankles. Electrical stimulation was 

provided in a block design (AM Systems Model 2100) with the following parameters: 5 seconds 

rest, 1 second stimulation (0.5 mA, 5ms duration, 100Hz) 24 seconds rest as previously described 

in other S1FP remapping studies (11, 12). 

Whisker Stimulation 

Whiskers where stimulated via mechanically displacement by placing all mystacial whiskers 

through an aluminum screen attached to a piezoelectric bending actuator (Piezo Systems). A 2° 

anterior-direction deflection occurred for 5ms and the piezo was allowed to fall back to the neutral 

position. This was presented at 10Hz with the following parameters: 5 seconds rest, 1 second 

stimulation. 

Image acquisition 

Sequential illumination was provided at four wavelengths by a ring of light emitting diodes (LEDs) 

placed approximately 10 cm above the mouse’s head. The field of view included most of the 

cerebral cortex (approximately 1cm2). Diffuse reflected light was detected by a cooled, frame-

transfer EMCCD camera (iXon 897, Andor Technologies); the LED ring and the camera were 

time-synchronized and controlled via computer using custom-written software (MATLAB, 

Mathworks) at a full frame rate of 30 Hz. 

Image Processing 

Data from all mice were subject to an initial quality check prior to spectroscopic analysis. Data 

blocks in which reflected light level intensity (mean value over the brain) varied as a function of 

time by greater than 1% for any wavelength were excluded from further analysis. Further, data 

blocks that had movement contamination were excluded. For subsequent analysis, image light 

intensity at each wavelength was interpreted using the Modified Beer-Lambert Law, usually 
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expressed as: Φ(r,t) = Φ0*exp(−Δμa(r,t)*L). Here, Φ(r,t) is the measured light intensity, Φ0 is the 

baseline light intensity, Δμa(r, t) is the change in absorption coefficient due to hemodynamic 

changes, and L is the optical path length factor for photons in the tissue (63). We normalized 

relative to the average light intensity at each pixel, resulting in differential measures of absorption 

at each wavelength at each pixel: Δμa,λ(r,t) = −ln(Φλ(r,t)/< Φ0λ(r,t)>)/Lλ. Absorption coefficient data 

were converted to hemoglobin (Hb) concentration changes by inverting the system of equations, 

Δμa,λ (r,t) = Eλ,i Δ[Hbi](r,t) (where E is the extinction coefficient matrix, and i runs over hemoglobin 

species). This inversion was performed using least-squares methods, yielding changes in 

oxygenated hemoglobin (HbO) at each pixel at each time point. Each pixel’s time series was 

downsampled from 30 Hz to 1 Hz, and all further analysis was performed only on those pixels 

labeled as brain using a manually-constructed brain mask. The time traces of all pixels defined 

as brain were averaged to create a global brain signal. This global signal was regressed from 

every pixel's time trace to remove global sources of variance; global signal regression was applied 

independently on each stimulation block. Since the spectral content of the OIS signal is known to 

be roughly “1/f”, we excluded runs in which 50% of the power of the regressed data was found 

above 0.04 Hz to exclude data strongly contaminated by oscillatory vascular artifact (64). 34% of 

all imaging blocks were rejected. 

Creating Somatosensory Maps 

Oxy-hemoglobin was used for this study because it offers the greatest contrast to noise of all of 

our spectral components (Fig. 2.S11). For each mouse, stimulation blocks were averaged 

together. From that average response, baseline images (1s prior to stimulation) were subtracted 

from post-stimulation images (2s after stimulation) to generate the response image. All pixels that 

were >%50 of the maximum amplitude were defined as activated as reported previously (11, 12). 

To create individual binary activation maps, a minimum intensity threshold of 35% of the 

respective baseline amplitude (averaged over all groups) was required for pixels to be included 
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(this was required to view percent incidence maps at the group level). Percent maps were 

calculated at the group level by determining the percentage of mice for which each pixel was 

activated. Mean intensity maps were generated by averaging the intensity maps together without 

applying a minimum intensity cutoff. Maps of p-values were determined via Student’s t test 

between all baseline and activated oxy-hemoglobin images for all group members at each time 

point. 

Image Co-registration  

Image sequences of each mouse (as well as the brain mask for each mouse) were affine-

transformed to a common atlas space determined by the positions of the junction between the 

coronal suture and sagittal suture (posterior to the olfactory bulb and cerebrum along midline) and 

lambda as we have done previously (65). Bregma was not visible in all mice, and was calculated 

based on the above two anatomical landmarks. The anterior-posterior stretch was set equal to 

the medial-lateral stretch, and all transformed images were centered at bregma. The intersection 

of every brain mask was calculated and made symmetric by reflection across the midline allowing 

all subsequent comparisons to be performed on shared brain areas across all mice. 

Dendritic Spines 

Brains were harvested from all groups (WT-Control, n=5; WT-Depriv., n=5; Arc-Control, n=4; Arc-

Depriv., n=4) 25 days after photothrombosis. The Histo Golg-Cox OptimStain (Hitobiotech) was 

used to label spines per kit instructions. Brains were embedded in low melting point gelatin, 

coronal slices at 200 microns with a vibratome, and mounted on gelatin coated slides. Spines 

were examined in layers II/II and IV. Images were taken at 67X using Microbrightfield Stereology 

to systematically collect image stacks (25 images per site, 1 micron separation) and generate 

minimum intensity projections (MIPs). 3 MIPs were collected at each sampled location, resulting 

in an average of 570 spines being imaged per mouse at each location. All spines in the images 

areas were analyzed. Spine counting and dendrite length was performed on MIPs in ImageJ. For 
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each mouse, a spine density was calculated at each sample location. At each location, spine 

density was compared across groups. 

Histology 

7 days following S1FP infarction, mice (WT, n=4; Arc, n=4) were deeply anesthetized and 

transcardiac perfusion with PBS followed by 4% PFA was performed. Brains were submerged in 

4% PFA for 24 hours, then kept in cryoprotectant solution for 72 hours before slicing. Brains were 

sliced at 50 micron thickness on a sliding microtome. To determine infarction volume, slices were 

stained with Cresyl Violet. Stained sections were imaged with a Nanozoomer and infarction 

volume was quantified in ImageJ. GFAP immunostaining was performed using anti-GFAP 

antibodies (Sigma) and developed using the Vector Laboratories 3,3'-diaminobenzidine ABC 

developing kit (Vector). Perilesional images of GFAP-labeled sections were taken with a 40X 

objective using Microbrightfield Stereology to systematically collect image stacks and generate 

minimum intensity projections (MIPs). MIPs were intensity-thesholded, and %area of GFAP 

immunoreactivity was calculated for each mouse. 

Statistical analysis 

For evoked maps, P-values were calculated for each pixel by comparing Oxy-Hb values at 

baseline and after stimulus using all images within each group at each time point. Clusters of 75 

or more pixels with uncorrected P values <e-10 were considered statistically significant.  For 

cylinder rearing testing, differences between groups were analyzed using one-way ANOVA with 

repeated measures and Newman–Keuls' multiple pair-wise comparisons as has been done 

previously (7). The level of significance was set at P<0.05. For spine density analysis, differences 

between groups were analyzed using two-way ANOVA with Bonferroni correction for multiple 

comparisons with the level of significance was set at P<0.05. For infarction volume studies, 

Student’s t-test was used with the level of significance was set at P<0.05. Statistical map 

comparisons (Figure 7) were performed by summing the dot products for the %incidence maps 
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for the two maps being compared (the sum of the element-wise produce of both %incidence maps 

being compared). This produced a single value, termed “overlap,” that was used as the test 

statistic. A “overlap” null distribution for each comparison was calculated by calculating the 

overlap for 10000 random groupings of the mice involved in the comparison (Fig. 2.S8). Statistical 

significance was set at P<0.007 (P<0.05 / 7 comparisons). 
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Figure 2.1.  Experimental design and timecourse.  Wildtype (WT) and Arc knockout (Arc -/-) mice 

were subjected to right forepaw somatosensory (S1FP) photothrombosis.  Half of the mice in each 

group underwent right whisker trimming every other day for the duration of the experiment.  Cranial 

windows were created in order to permit serial OIS imaging prior to and after photothrombosis (as 

indicated in timeline).  Mice were also serially tested for behavioral recovery using the cylinder 

rearing test (as indicated in timeline). 
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Figure 2.2.  Whisker deprivation accelerates S1FP remapping after photothrombosis. (A) All groups 

showed similar evoked maps following right forepaw stimulation at baseline (Pre). Photothrombosis 

targeted to right S1FP (left hemisphere) resulted in acute loss of right forepaw response in all groups at 

week 1. 8 weeks post-photothrombosis, WT mice demonstrated remapping anterior to the infarct. 

Remapping in whisker-deprived mice occurred earlier (week 4), and was located within the barrel cortex 

(black outline, posterior to the infarct). Remapping did not occur in Arc-/- mice. Maps shown are 

activation density maps projected onto a white light cortical image. The whisker barrel cortex, delineated 

using whisker stimulation-evoked mapping with OIS imaging, is outlined in black. (B) Mean activation 

intensity after RFP stimulation for each group over the recovery time course. Intensity response is 

determined for each mouse prior to being group-averaged, and this reflects the remapping see in (A). * 

P≤0.05, ** P≤0.01, *** P≤0.001 compared to baseline time-point using ANOVA with repeated measures. 

WT Control, n=11; WT Depriv., n=10; Arc-/- Control, n=8; Arc-/- Depriv., n=7. 
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Figure 2.3. Right S1FP phothrombosis is functionally selective. Evoked maps for left forepaw 

(LFP) and right hindpaw (RHP) are shown prior to and 1 week after photothrombosis.  In all 

groups, evoked maps were unaffected by right S1FP photothrombosis. WT Control, n=11; WT 

Depriv., n=10; Arc-/- Control, n=8; Arc-/- Depriv., n=7. 
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Figure 2.4. Whisker deprivation accelerates and enhances behavioral recovery after S1FP 

photothrombosis. (A) Limb use, measured with the cylinder rearing test, was completely symmetrical 

at baseline in all groups (Pre). Photothrombosis resulted in use asymmetry due to decreased use of 

the right forelimb within the first week. WT mice (WT Control) demonstrated significant improvement 

by week 7, but a deficit was still present compared to baseline (partial recovery). Whisker trimmed WT 

mice (WT Depriv.) showed more rapid return to symmetric forelimb use by 3 weeks post-

photothrombosis (complete recovery) which persisted to week 7. Arc-/- mice with or without whisker 

deprivation had persistent use asymmetry through the entire recovery time-course (absent recovery).  

(B) Example image of rearing with right forepaw use. * P≤0.05, ** P≤0.01, *** P≤0.001 compared to 

baseline time-point (Pre), using ANOVA with repeated measures and Newman–Keuls' multiple pair-

wise comparisons. WT Control, n=22; WT Depriv., n=16; Arc-/- Control, n=7; Arc-/- Depriv., n=7. 
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Figure 2.5. Region of remapping demonstrates increased dendritic spine density. (A) Example 

of golgi-cox stained dendritic spines. (B) Spines were sampled at three locations: 1) distant; 

2) anterior perilesional; 3) posterior perilesional. (C) At the distant site, spine density was not 

different between the 4 groups. (D-E) At all perilesional locations, overall spine density was 

decreased compared to the distant location. (D) At the anterior perilesional location, spine 

density was significantly greater in WT mice (in region of remapping). (E) At the posterior 

perilesional location, spine density was significantly greater in the whisker-deprivation mice (in 

region of remapping). At each location, spine density was compared between all groups using 

ANOVA with Bonferroni correction for multiple comparisons. All statistically significant 

differences are shown (* P≤0.05). WT Control, n=5; WT Depriv., n=5; Arc-/- Control, n=4; Arc-

/- Depriv., n=4. 

 



  54 
 

Figure 2.6.  Experimental design and timecourse for whisker trimming and regrowth (Figs. 7-

8).  Wildtype (WT) were subjected to right forepaw somatosensory (S1FP) photothrombosis.  

Half of the mice underwent right whisker trimming every other day for the first 8 weeks of the 

experiment. After 8 weeks, trimming was halted and whisker were allowed to regrow and limb 

behavior and S1 maps were assessed at the times indicated. 
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Figure 2.7. Deprivation-induced remapping is stable beyond the deprivation period. (A-F) 

Evoked response density maps showing R. S1FP maps 8 and 12 weeks after photothrombosis 

and R. S1WB maps 12 weeks after photothrombosis in (A-C) WT Control and (D-F) WT 

Depriv. Groups. Consistent with Fig. 2.2, sensory deprivation via whisker trimming altered the 

remapping location at WK8. (G-M) Map Comparisons. Displayed are maps of the >65% 

density response for each map. Map identity is indicated by the label in each image, and yellow 

represents overlap between the maps. The >65% cut off was used only for display, and 

statistical comparisons were independent of this cut off. * Indicates a statistically significant 

difference in spatial distribution between the evoked responses compared (see Fig. 2.S8 and 

methods for more detail). (G,I) Significant spatial differences between the WT Control and WT 

Depriv. R. S1FP maps demonstrates that remapping occurs in separate locations. (H,J) 

Significant spatial differences between the forepaw and whisker maps demonstrates specific 

between distinct peripheral representations. (K,L) For both groups group, the R. S1FP location 

was stable between 8 and 12 weeks, demonstrating that regrowth of whiskers did not disrupt 

deprivation-facilitated remapping. (M) WT Control and WT Depriv whisker maps were 

significantly altered, suggesting chronic deprivation did affect that deprived cortical 

representation. WT Control, n=11; WT Depriv., n=11. 
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Figure 2.8. Deprivation-induced behavioral recovery persist beyond the deprivation period. R. 

S1FP photothrombosis resulted in acute limb use asymmetry in both WT Control and WT 

Depriv. groups. As in Fig. 2.4, recovery was accelerated and extent was improved by whisker 

trimming (WT Depriv. mice). After 8 weeks of whisker trimming, whiskers were allowed to 

regrow and limb use was assessed at WK11. Limb use asymmetry at WK8 and WK11 were 

not statistically different within each group by ANOVA and paired t-test analysis. This 

demonstrates that improvements to the extent of behavioral recovery from sensory deprivation 

were stable following deprivation withdraw. * P≤0.05, ** P≤0.01, *** P≤0.001 compared to 

baseline time-point (Pre), using ANOVA with repeated measures and Newman–Keuls' multiple 

pair-wise comparisons. WT Control, n=11; WT Depriv., n=8. 
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Figure 2.S1. Arc gene deletion does not affect infarct volume. (A) Representative brain 

slices from mice 28 days after right S1FP photothrombosis stained with cresyl violet shows 

equivalent infarct sizes (arrows). (B) Infarct volume was not different between WT and Arc-

/- mice (P=0.3; n=4 per group).  
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Figure 2.S2. Arc gene deletion does not alter perilesional reactive astrocytosis. GFAP 

immunoreactivity in (A,B) WT and (C,D) Arc-/- mice 7 days after photothrombosis. (A,C) 

Low magnification view of the infarction (red star) and perilesional territory (orange star). 

(B,D) High power magnification of the perilesional terrirotry. (E) Quantification of perilesional 

GFAP-immunoreactivity demonstrates no difference in astrocytosis between WT and Arc-/- 

mice.   
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Figure 2.S3. Right S1FP remapping density maps, extended (from Fig. 2.2). (A) R. 

S1FP density maps with a black circle showing the photothrombosis target and 

black outline showing whisker barrel cortex. (B) R. S1FP density maps showing the 

full range of density values. 
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Figure 2.S4. Right S1FP remapping with mean HbO2 intensity maps (from Fig. 2.2). For 

each mouse, activation intensity <50% of the maximum amplitude was set to zero. No 

minimum intensity was required for a response to be considered an activation. The group-

averaged response intensity is shown (A) overlayed on the brain image with an intensity cut 

off, and (B) without any intensity cut off. Consistent with % activation maps (Figure 2), 

remapping is seen earlier and within the deprived S1WB in WT Deprived mice. Remapping 

does not occur in Arc-/- mice.  Black outline indicates whisker barrel cortex. 

 

 

 

 

Why  
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Figure 2.S5. Right S1FP remapping with statistical threshold maps (from Fig. 2.2). Statistical 

right S1FP evoked maps demonstrate remapping consistent with prior metrics (Figure 2, 

Figure S1).  P values were calculated by comparing oxy-hemoglobin values at baseline and 

post-activation. Pixel clusters with P < e-10 are shown in red. Right S1FP remapping is 

consistent in maps calculated with this method (see methods).  Black outline indicates 

whisker barrel cortex. 
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Figure 2.S6. Left S1FP activation remains intact throughout injury and recovery.  Complete 

timecourse of left S1FP evoked maps shown with (A) activation density, (B) mean intensity (C), and 

statistical threshold maps. All metrics show consistent Left S1FP maps throughout the recovery 

timecourse.  Black outline indicates whisker barrel cortex. 
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Figure 2.S7. Fig. 2.7 S1 evoked response density maps, extended. (A) R. S1FP density maps 

with a black circle showing the photothrombosis target and black outline indicates whisker barrel 

cortex. (B) R. S1FP density maps showing the full range of density values. 
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Figure 2.S8.  Spatial statistical analysis for Fig. 2.7. The 65% density contour is shown for the listed 

comparison. A spatial test statistic, termed “Overlap”  was calculated from the summed dot products 

of the two full-range density maps (orange line in “Null Dist.” histogram). The null distribution was 

calculated for each comparison by calculating the Overlap value for 10000 random group 

combinations. Statistical significance was set at P<0.007 (0.05 / number of comparisons).  
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Figure 2.S9. Right S1WB representation area from WT-Control and WT-Depriv groups. Right S1WB 

activation area for each mouse was defined as the all pixels that were >50% of the maximum 

response amplitude. S1WB activation are was smaller in WT Depriv. mice compared to WT Control 

mice. * P<0.05, Student’s t test.  
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Figure 2.S10.  Whisker deprivation does not affect limb use symmetry. Mice were 

tested with the cylinder rearing test 3 weeks after chronic right whisker trimming. 

Whisker trimming had no effect on limb use symmetry (P=0.7; n=5 per group). 
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Figure 2.S11.  Contrast comparisons for raw light and spectroscopy-derived Hb signals. 

RFP mapping was performed on 3 mice. (A) For each wavelength used, group averaged 

reflectance changes are shown next two the full-width at half max defined ROI for each 

mouse. The averaged reflectance time-trace over the ROI is shown. (B) Group averaged 

Hb concentration changes, full-width at half max ROIs, and response time traces are 

shown for oxy- and deoxy-hemoglobin. (C) CNR is shown for each contrast at varying 

times after stimulus initiation. σrest was defined from the variance of signals that occurred 

in the 5 seconds prior to stimulation.  The peak CNR is found with oxy-Hb 2 seconds after 

stimulus onset. In addition, Oxy-Hb shows the most spatial consistency as demonstrated 

by the ROI maps.  
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Chapter 3 

Early visual experience modulates spatiotemporal 

relationships in infra-slow activity between distinct cortical 

regions through an Arc-dependent mechanism   
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Abstract 

Decades of work in experimental animals has established the importance of visual experience 

during critical periods for the development of normal sensory-evoked responses in the visual 

cortex. However, much less is known concerning the impact of early visual experience on the 

systems-level organization of spontaneous activity. Human resting-state fMRI has revealed that 

infra-slow fluctuations in spontaneous activity are organized into stereotyped spatiotemporal 

patterns across the entire brain. Furthermore, the organization of spontaneous infra-slow activity 

(ISA) is plastic in that it can be modulated by learning and experience, suggesting heightened 

sensitivity to change during critical periods. Here we used wide-field optical intrinsic signal 

imaging in mice to examine whole-cortex spontaneous ISA patterns. Using monocular or 

binocular visual deprivation, we examined the effects of critical period visual experience on the 

development of ISA correlation and latency patterns within and across cortical resting-state 

networks. Visual modification with monocular lid suturing reduced correlation between left and 

right cortices (homotopic correlation) within the visual network, but had little effect on inter-

network correlation.  In contrast, visual deprivation with binocular lid suturing resulted in 

increased visual homotopic correlation and increased anti-correlation between the visual 

network and several extra-visual networks, suggesting cross-modal plasticity. These network-

level changes were markedly attenuated in mice with genetic deletion of Arc, a gene known to 

be critical for activity-dependent synaptic plasticity. Taken together, our results suggest that 

critical period visual experience induces global changes in spontaneous ISA relationships, both 

within the visual network and across networks, through an Arc-dependent mechanism. 
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Introduction  

During the visual critical period, neurons within the visual cortex exhibit robust plasticity in 

response to visual stimuli. Binocular visual input during this period is required for the proper 

development of normal visual cortex function (1-5). This experience-dependent activity drives a 

cascade of events leading to the development of mature response properties, such as ocular 

dominance, orientation selectivity, spatial acuity, and others, to produce normal adult vision (1-

11). As first demonstrated by Hubel and Wiesel, binocular and monocular deprivation alter the 

response of visual cortex neurons to visual stimuli in distinct ways: Binocular deprivation prevents 

maturation of normal visual responses, causing immature visual responses to be retained; while 

monocular deprivation induces robust ocular dominance plasticity (ODP), actively depressing 

deprived eye responses (1, 2, 4-7). These effects have been demonstrated at multiple spatial 

scales spanning single neuron electrophysiology (4, 6) to entire visual hemi-cortex responses (12-

14) in several species including primates, cats, ferrets, rats, and mice (1, 4-8, 12, 13, 15). 

Moreover, the visual deprivation paradigm has illuminated the molecular mechanisms that drive 

experience-dependent visual plasticity. However, the outcome measure in almost all prior studies 

has been limited to visual stimulus-evoked responses within the visual cortex. 

Notwithstanding the scientific gains obtained by studying sensory-evoked responses, it is 

increasingly recognized that spontaneous (intrinsic) neural activity represents a complementary 

and productive line of investigation (16-18). Spontaneous activity accounts for the majority of 

brain activity and is thought to play a critical role in brain function (19-21). The brain exhibits 

spontaneous activity at multiple temporal scales. Spontaneous infra-slow activity (ISA; 0.01-0.1 

Hz), while initially regarded as “noise” (22), is now known to reflect properties of whole-brain 

network organization (23-28). Organized spontaneous activity has been observed using multiple 

imaging modalities, including resting state functional magnetic resonance imaging (RS-fMRI) 

and optical imaging, in multiple species, including humans, non-human primates, and rodents 
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(19, 20, 23, 29-31). More specifically, network organization is observed by patterns of 

spontaneous ISA correlation (termed functional connectivity, FC) and spontaneous ISA 

propagation speed between separate brain regions.  

Human RS-fMRI studies have shown that the general organization of spontaneous ISA 

correlation and propagation is quite stable within and across individuals (26, 32). However, 

sensory experience and learning can modulate spontaneous ISA patterns at the systems-scale. 

Specifically, motor learning (25, 33), extended Law School Admission Test (LSAT) preparation 

(34), and early-age blindness (35-38) have all been demonstrated to alter ISA correlation in 

humans. Moreover, the magnitude of these effects correlated with behavioral measures (33). 

However, little is known regarding the mechanisms underlying systems-level modulation of 

spontaneous ISA organization. A leading hypothesis is that experience-dependent ISA 

modulation reflects “brain plasticity.”  It is widely believed that plasticity at the systems level may 

be driven by mechanisms at the molecular level, especially those involving the modulation of 

synaptic strengths. However, there has been to date no evidence linking synaptic plasticity 

mechanisms, which operate on the spatial scale of microns (39), with the systems-scale ISA 

modulations occurring on the scale of centimeters (25, 33-36). 

Of particular interest is that these spontaneous activity changes involve relationships between 

distinct functional systems, suggesting a paradigm of experience-dependent cross-modal 

plasticity that operates at the level of spontaneous activity. Although there already exists 

substantial evidence that visual loss in humans has extra-visual, or cross-modal effects on 

spontaneous ISA organization throughout the cerebral cortex (35, 36), the role of critical period 

visual input on whole-cortex spontaneous ISA spatiotemporal organization has not been 

examined. 

In order to understand how critical period visual experience modulates whole-cortex ISA, we 

utilized functional optical intrinsic signal (fOIS) imaging in mice after binocular deprivation (BD) or 
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monocular deprivation (MD) during the visual critical period. We subsequently tested the role of 

synaptic plasticity in systems-level ISA reorganization by applying this paradigm to mice with 

genetic deletion of activity-dependent cytoskeleton-associated protein (Arc). Several studies 

performed on a fine-spatial scale have established that Arc is essential for experience-dependent 

synaptic plasticity, largely through action on glutamate receptors (40-43). However, a role for Arc 

in systems-level ISA plasticity has not been studied. 

Results 

Visual deprivation and ISA imaging paradigm 

We manipulated visual experience via lid suturing in mice at the beginning of the visual critical 

period (immediately after weaning at P21). Littermates were subjected to either: 1) binocular lid 

suturing (i.e., binocular deprivation; BD), 2) monocular right lid suturing (i.e., monocular 

deprivation; MD), or 3) no lid suturing (Normal Vision; NV). A schematic of the experimental design 

is depicted in Figure 3.1. After lid suturing, mice were returned to cages with littermates. Two 

weeks later (P35), fOIS imaging was performed to measure ISA.  All mice tolerated the suturing 

and imaging procedures well without mortality or morbidity.  

ISA spatiotemporal organization analysis 

As shown in Figure 3.2, we examined two features of the spatiotemporal organization in 

spontaneous ISA: zero-lag temporal correlations (functional connectivity; FC) and temporal 

delays (propagation latency). Zero-lag correlations spatially partition the cortex into segregated 

functional networks known as resting state networks (RSNs) that provide a spatial view of the 

system-level cortical organization (26, 44, 45). More recent work has shown that ISA also exhibits 

temporal relationships manifesting as reproducible propagation latency patterns, which can be 

computed by analyzing temporal delays (24, 25). Figure 2 illustrates how correlation and 

propagation latency metrics were derived from a sample 20 second epoch of spontaneous ISA 
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data from a single mouse (Fig. 3.2A). ISA correlation in the present report is described both in 

terms of left visual-seeded correlation maps (corresponding to right-eye visual manipulation; Fig. 

3.2C) as well as RSN-sorted correlation matrices (Fig. 3.2D). Propagation was examined with left 

visual-seeded latency maps displaying the earliness or lateness of each pixel relative to the left 

visual area (Fig. 3.2E; described further in methods). Together, these approaches were used to 

quantify the effects that critical period visual experience had on the correlation and propagation 

latency patterns in spontaneous cortical ISA.  

Visual deprivation alters ISA correlation (functional connectivity) 

To determine if visual manipulation during the critical period alters ISA correlation, we examined 

visual-seeded correlation maps in wild type (WT) mice with normal visual experience (WT-NV), 

binocular deprivation (WT-BD), and monocular deprivation (WT-MD) at P35 (after 2 weeks of 

visual deprivation; Fig. 3.3A-C). We chose to examine correlations for each pixel relative to the 

average signal of all left visual RSN pixels, since MD was applied to the right eye. In all groups, 

left visual-seeded correlation maps demonstrated high correlation with the right visual cortex and 

anti-correlation to the more anterior regions, especially on the contralateral hemisphere. Statistical 

significance of correlation differences between groups was assessed with a spatial cluster-wise 

basis using threshold-extent criteria computed by extensive permutation resampling (Fig. 3.3, 

D,E; see Methods for further detail). Comparing WT-BD to WT-NV demonstrated that BD resulted 

in increased homotopic correlation within the visual RSN (increased correlation between the 

interhemispheric visual areas) and increased anti-correlation between the visual and anterior 

areas (Fig. 3.3D). More specifically, these anterior areas included the primary motor (M1) and 

secondary motor (M2) areas as well as the anterior edge of the cingulate/retrosplenial area (Fig. 

3.3D.  Many pixels with significantly altered correlation to the left visual area fell just outside of 

the PCA derived RSNs; according to Paxinos atlas coordinates, the area of increased anti-

correlation (blue) was in anterior cingulate cortex (Fig. 3.S1A). MD, on the other hand, resulted in 
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dramatically decreased homotopic visual correlation (within the visual network), but very little 

change in extra-visual network correlation (Fig. 3.3E, Fig. 3.S1B), effects in stark contrast to those 

found with BD. 

Interestingly, with both BD and MD there were no changes in correlation between the visual 

cortices and adjacent brain regions: correlation changes were restricted to longer distance 

connections. Histograms of visual homotopic correlation values demonstrate that BD and MD 

were shifted in opposite directions relative to NV: BD enhanced cross-hemispheric visual 

correlation while MD disrupted it (Fig. 3.3F). Comparing BD to NV using anti-correlation 

histograms between visual and non-visual pixels showed a dramatic increase in anti-correlation 

between visual and extra-visual areas (Fig. 3.3G). MD, on the other hand, induced only a small 

effect on anti-correlation between visual and extra-visual areas (Fig. 3.3G). 

To examine ISA correlation changes related to visual manipulation at a more global level, we next 

created RSN-sorted correlation matrices, similar to that shown in Fig. 3.2D (but using the entire 

group-averaged data set rather than a sample 20-second epoch). These matrices demonstrated 

correlation and anti-correlation between networks in all three WT groups (Fig. 3.4A-C). By 

definition, intra-network correlation (diagonal blocks) was high, with prominent homotopic 

correlation in most RSNs, as has been shown previously in multiple mammalian species using 

optical and magnetic resonance imaging modalities (23, 29, 46, 47). Anti-correlation was apparent 

along the anterior-posterior axis both within and across hemispheres. The overall qualitative 

topography of correlation patterns was preserved between groups, but there were clear 

differences in correlation values.  

To examine differences quantitatively at the whole-cortex level, we examined the correlation 

difference (Δcorrelation) matrices calculated by subtracting the WT-BD or WT-MD correlation 

matrices from the WT-NV correlation matrix (Fig. 3.4D,G). These Δcorrelation matrices highlight 

the contrasting effects induced by BD and MD. The black outlines in Figure 3.4D and 3.4G, which 
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highlight the visual RSN, demonstrate the increased visual intra-network homotopic correlation 

seen in WT-BD vs. WT-NV (red off-diagonal blocks) and the decreased visual intra-network 

homotopic correlation in WT-MD vs. WT-NT (blue off-diagonal blocks). Outside of the visual RSN, 

the anterior-posterior inter-network correlation differences had higher magnitude and opposite 

direction in the WT-BD minus WT-NV Δcorrelation matrix compared to the WT-MD minus WT-NV 

Δcorrelation matrix. Thus, in alignment with our visual-seeded analysis, the effects of visual 

deprivation were most pronounced in connections involving the visual areas, with the sign of 

change for each connection largely opposite in the BD vs. MD groups. 

To determine statistical significance of whole-cortex correlation changes in WT with NV, BD, or 

MD, we computed the Δcorrelation matrix (WT-BD minus WT-NV and WT-MD minus WT-NV) 

over all pixels in the mouse cortex (instead of the subset of pixels included in the parcellation), 

and subjected this whole-cortex Δcorrelation matrix to principal component analysis (PCA). True 

differences in ISA correlation relationships that exist between groups manifest as eigenvectors 

accounting for variance greater than that expected by chance, as assessed through permutation 

re-sampling (see Methods for further details). The topography of any statistically significant PC 

provides a spatial summary of correlation changes between groups (this strategy for assessing 

correlation differences has been previously applied in (24); see Methods for further details). This 

approach to statistical significance does not depend on the choice of RSNs as every pixel is 

included in this PCA approach. Using this method, we found one statistically significant PC 

(termed a Δcorrelation PC) for the correlation differences between WT-NV vs. WT-BD (Fig. 3.4E).  

A map of this Δcorrelation PC1 demonstrates a pronounced increase in the posterior cross-

hemispheric correlation in addition to anterior-posterior anti-correlation (Fig. 3.4F). This result is 

consistent with the findings from the visual-seeded correlation analysis (Fig. 3.3D) and the 

qualitative assessment of the RSN-sorted Δcorrelation matrices (Fig. 3.4 D), which showed 

increased visual homotopic correlation and increased visual-anterior area anti-correlation.   One 
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statistically significant PC was also found in the WT-NV vs. WT-MD correlation difference (Fig. 

3.4H). The corresponding WT-MD vs. WT-NV Δcorrelation PC1 map showed decreases in 

posterior correlation values and increases in anterior correlation values (Fig. 3.4I). Compared to 

the WT-BD vs. WT-NV Δcorrelation PC1 (Fig. 3.4F), the WT-MD vs. WT-NV Δcorrelation PC1 

showed changes of opposite direction, albeit with much lower magnitude.  

Visual deprivation does not alter ISA correlation in Arc-/- mice  

The previous experiments established an experimental model for experience-dependent ISA 

correlation plasticity in mice. To examine the role of synaptic plasticity in vision-mediated ISA 

changes, we used the same visual deprivation paradigm in Arc-/- mice. It is important to note that 

Arc-/- mice are viable, fertile, and have normal anatomy and growth curves. Furthermore, Arc-/- 

mice have normal LGN anatomy and visual cortex retinotopy (48), and cortical neuron membrane 

excitability is not altered (49). Additionally, Arc-/- mice have pre-critical period visual evoked 

potentials that are identical to those found in WT (48). While the visual system in pre-critical period 

Arc-/- mice appears normal, profound experience-dependent changes that occur during or after 

the critical period are absent or attenuated: In Arc-/- mice ODP plasticity was absent after 

monocular deprivation (48), selective responses potentiation did not occur with repeated visual 

presentation (48), and visual orientation learning was attenuated in adult Arc-/- mice (50). Taken 

together, these results suggest that experience-dependent processes that are attenuated in Arc-

/- mice are not attributable to developmental aberrations that disrupt basic visual functionality, but 

the specific action of Arc on experience-driven synaptic change. 

 

Prior to any correlation analysis, we examined ISA spectral content in Arc-/- groups. We found 

that ISA power was equivalent between all WT and Arc-/- groups, demonstrating equal amounts 

of spontaneous ISA was present in all groups (Fig. 3.S2). Left visual-seeded correlation maps in 

all Arc-/- groups exhibit the same features as those seen in WT mice: homotopic visual 
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correlations and posterior-anterior anti-correlation (Fig. 3.5A-C). However, in stark contrast to the 

WT mice, the correlation maps appeared nearly identical across Arc-NV, Arc-BD, and Arc-MD 

mice. Cluster-analysis revealed no statistically significant differences in left-visual seeded 

correlation maps between Arc-BD and Arc-NV (Fig. 3.5D) or Arc-MD and Arc-NV (Fig. 3.5E). 

Furthermore, the correlation histograms for both visual-visual and visual-non-visual connection 

showed no statistically significant group differences (Fig. 3.5F,G).  

At the whole-cortex level, RSN-sorted correlation matrices were very similar between all 3 Arc-/- 

groups (Fig. 3.6A-C). Examination of the Δcorrelation matrices from Arc-BD minus Arc-NV and 

Arc-MD minus Arc-NV comparisons demonstrated markedly attenuated ISA correlation 

differences compared to those seen in WT mice (Fig. 3.6D,F). Furthermore, PCA revealed no 

statistically significant Δcorrelation PCs for Arc-BD minus Arc-NV or Arc-MD minus Arc-NV (Fig. 

3.6E,G). Taken together these results establish the role of Arc mediated synaptic plasticity in 

experience-dependent ISA correlation plasticity.  Moreover, these Arc-mediated changes in ISA 

correlation were not confined to the visual network, but manifested between distant networks as 

seen with BD manipulation.   

Visual deprivation alters ISA propagation latency 

Recent work in humans has demonstrated reproducible patterns of ISA propagation latency within 

and between brain regions (24, 25). Propagation latency can be quantified by calculating temporal 

delays between spontaneous activity measured at pixel pairs. Like ISA correlation, ISA 

propagation latency patterns can be modified by experience (25). To determine how early visual 

experience influences propagation latency patterns, we examined ISA propagation latency over 

the whole-cortex relative to visual activity in our WT and Arc-/- mice (Fig. 3.7). The methodology 

for computing these propagation latency maps has been previously described ((24, 25); see 

Methods). In brief, we compute the activity correlation curve between every pair of pixels in mouse 

cortex. The time corresponding to the peak of the latency correlation curve is the propagation 
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delay (or latency) between the pair of signals. We can thereby calculate a latency value for every 

pair of pixels in the mouse cortex. As with our correlation analysis, we chose to examine latencies 

for each pixel relative to the average signal of all left visual RSN pixels, and used this analysis to 

produce a left visual-seeded latency map for each experimental group (Fig. 3.7A-F).  

Examination of the visual-seeded latency maps revealed common features between all WT and 

Arc-/- groups. Latency maps in both genotypes and all visual deprivation conditions were roughly 

symmetrical and showed common early (blue) and late (red) areas. In all groups, visual area 

activity was early relative to motor area activity, consistent with fMRI data from sleeping humans 

(24). However, quantitative group differences were apparent. To determine which changes after 

visual deprivation (BD and MD) were statistically significant, we applied spatial cluster-wise 

threshold-extent criteria to the relevant within-genotype Δlatency maps (Fig. 3.7G-J).  

Compared to WT-NV, both WT-BD and WT-MD showed widespread changes in propagation 

latency. More specifically, BD resulted in elongated propagation time from motor to visual areas 

and visual to cingulate/retrosplenial areas; motor area activity occurred earlier (blue) and 

cingulate/retrosplenial area activity occurred later in WT-BD mice compared to WT-NV mice. 

Latency change occurred at the anterior edge of cingulate/retrosplenial RSN, in a region we 

identify as centered in the cingulate, using the same logic as in Figure 3.3 (see also Fig. 3.S1C,D). 

Propagation latency was altered in distinct locations within the visual area (Fig. 3.7G). Similarly, 

MD in WT mice resulted in slowing of motor-visual-cingulate signal propagation. However, 

changes within the visual area resulting from MD were exclusive to the left hemisphere 

(contralateral to the deprived eye) and included slowed propagation to the adjacent sensory area 

and lateral extra visual area (Fig. 3.7H). In sum, BD and MD resulted in cross-modal ISA 

propagation latency changes between visual and extra-visual areas separated by both short and 

long cortical distances.  
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In the Arc-/- groups, Δlatency maps thresholded for statistical significance revealed markedly 

attenuated changes attributable to visual deprivation (Fig. 3.7I,J). Nonetheless, a subset of the 

latency changes that occurred in WT mice were also found in the absence of Arc, but Δlatency 

magnitude within these clusters was attenuated in the Arc-/- groups. Compared to Arc-NV mice, 

Arc-BD demonstrated propagation slowing within the visual RNS bilaterally but lacked the motor 

and cingulate latency increases seen in WT mice (Fig. 3.7I). Furthermore, Arc-MD mice showed 

the same unilateral latency changes near the visual area seen in WT-MD, but the motor and 

cingulate area latency changes were absent (Fig. 3.7J). Thus, experience-dependent ISA 

propagation plasticity was attenuated but not completely absent in Arc-/- mice. The cross-modal 

latency changes that occurred adjacent to the left visual RSN in WT mice were present in the Arc-

/- mice, but more distant latency effects of visual deprivation were not observed.  

Discussion 

The effects of critical period visual experience on sensory-evoked neuronal and microcircuit 

responses in the visual cortex have been well-characterized; however, its impact on whole-cortex 

spontaneous ISA correlation and propagation patterns has not been examined. In this study, we 

utilized wide-field optical imaging in mice, experimentally manipulating visual experience during 

the critical period, to examine effects on network-scale ISA plasticity. We found that BD and MD 

induced distinct effects on intra- and inter-network spontaneous ISA correlation and propagation. 

Moreover, we found that these effects were attenuated in Arc-/- mice.  

Binocular visual deprivation alters intra- and inter-network relationships in spontaneous ISA 

correlation 

In WT mice, BD enhanced spontaneous ISA correlation across hemispheres within the visual 

RSNs. Work in experimental animals has shown that complete visual deprivation stalls the critical 

period, preventing the development of mature response features (1, 2, 4, 6-8, 11, 15). We were 

surprised to find that BD increased homotopic visual functional connectivity, given that decreased 
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ISA correlation generally is a reliable biomarker of CNS disease (51-53). Rather, these findings 

suggest that normal visual development results in “functional pruning” that tunes correlation in 

spontaneous activity between homotopic visual hemi-cortices to a specific range.  

At the level of individual neurons, BD is known to impair the maturation of feature detection (4, 5, 

7, 8). During normal development, visual cortex neurons become more selective, for both 

receptive fields and specific features, the differences encoded in individual visual cortex neurons 

may become increasingly divergent. With each visual hemi-cortex being largely monocular in 

mice, normal visual disparity between separate visual fields may result in decreased visual 

homotopic correlation.  

In addition to altering visual intra-network correlation, we found that BD altered inter-network 

correlation between visual and extra-visual networks. We observed enhanced anti-correlation 

between visual areas and cingulate/retrosplenial as well as contralateral motor cortex. Thus, we 

infer that visual experience influences cross-modal connectivity between visual and extra-visual 

regions. 

The concept of cross-modal plasticity was initially suggested by the observation that blind or deaf 

individuals have heightened auditory or visual perception, respectively (54-56). Although these 

findings are currently debated, it is clear that loss a single sensory modality alters anatomical and 

functional relationships between distinct brain systems (35, 36, 54-58). Cross-modal plasticity has 

been demonstrated by physiologic and molecular assays in humans (35, 36), cats (59), rodents 

(57), and even C. Elegans (60), which suggests it is a generalizable property of the nervous 

system. We suggest that enhanced inter-network correlation of ISA observed after BD (between 

visual, cingulate, and motor networks) may be a signature of cross-modal plasticity. 

In experimental animals, visual deprivation results in enhanced axonal sprouting between the 

deprived visual area and surrounding auditory and somatosensory areas (59, 61-63). In addition 

to anatomic change, cross-modal plasticity also involves homeostatic plasticity mechanisms that 
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drive alterations in synaptic strength. Enhanced evoked responses to auditory and tactile stimuli 

have been reported in mice within days of deprivation (57, 64). Congenitally blind humans exhibit 

widespread changes in ISA correlation in multiple networks (35, 36), suggesting that cross-modal 

plasticity involves altered spontaneous activity relationships over long distances. Caution may be 

appropriate in the interpretation of these human studies as they may be confounded by 

heterogeneous pathologic etiologies (35, 36). Moreover, Braille experience is common in blind 

individuals (35), and it has been argued that decades of Braille use may drive these changes (37, 

38). Our results suggest that these cross-network changes in ISA correlation can occur rapidly 

during the critical period (over 2 weeks in this study), and do not require lifetime use of an adaptive 

behavior. In this regard, it may be noted that enhanced cross-modal somatosensory performance 

has been reported in sighted humans following only 5 days of blindfolding (65). It is interesting to 

speculate that these rapid changes may precede and even facilitate the development of adaptive 

behaviors. Future studies will be required to understand the consequences of these internetwork 

changes. 

Monocular visual deprivation induces intra-network change in spontaneous ISA correlation 

opposite to those seen with binocular deprivation 

MD induces ocular dominance plasticity, which depresses the deprived eye responses and 

strengthens the spared eye responses (4, 6, 15, 66, 67). While the binocular zone is limited in 

mice, the deprived monocular zone undergoes visual response depression (67). This process 

manifests physiologically as changes in the visual response amplitude ratio between the spared 

and deprived eye (1, 2, 4-7, 15, 66, 67). In this study, we find that MD induces diminished 

homotopic visual correlation. 

The opposed effects of BD vs. MD (compared to normal vision) suggest that the correlation of 

spontaneous ISA between visual hemi-cortices matches sensory input.  Indeed, MD causes more 

sensory discordance between each hemisphere than either BD or NV. Moreover, previous work 
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using MD has shown that interhemispheric inhibition through callosal inputs weakens deprived 

eye evoked responses (68). Hypothetically, the interhemispheric inhibition provided by 

transcallosal connections may also contribute to the “functional pruning” that tunes ISA correlation 

between the visual hemi-cortices.  

Modest correlation changes between visual and extra-visual areas were observed after MD. 

However, these changes were spatially limited and of lesser magnitude to those seen after BD. 

Thus, the MD-induced changes appear to be much more concentrated within the visual system. 

Since MD alters visual experience while BD “eliminates” visual experience, it is not surprising that 

extra-visual changes in ISA are less affected than in BD. However, it remains unclear why the 

extra-visual changes that do occur in MD mice tend towards the direction opposite to those in BD. 

These differences are likely to stem from the distinction between a brain that is rewiring visual-

motor circuits to adapt to altered vision (MD), as opposed to the adaptations necessary to achieve 

motor coordination in the absence of vision (BD). 

ISA propagation latency plasticity is distinct but overlaps with ISA correlation plasticity 

In addition to spatial correlation relationships, experience has been shown to alter propagation 

latency patterns in ISA (25). Indeed, our data demonstrate that visual experience influences ISA 

propagation latencies in many of the same regions showing altered correlation. In mice with NV, 

our visual-referenced latency maps demonstrate early visual activity and late motor activity (Fig. 

3.7A), a hallmark of human activity propagation during sleep (24). Following either BD or MD, 

motor activity was early-shifted while cingulate area activity was delayed (Fig. 3.7A-C,D,H). These 

effects may reflect disruption of the visual-cingulate-motor circuit following visual deprivation.  

The most prominent disparity in propagation latency plasticity induced by BD vs. MD was 

observed near the visual RSN: in MD, these changes occurred only in the deprived hemisphere, 

while, in BD, these changes occurred in both hemispheres (both of which were deprived). The 

contrasting differences seen in correlation versus propagation change demonstrate the distinct 
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nature of these ISA features. Propagation latency changes induced by BD vs. MD were quite 

similar in areas distant from the visual cortex. In contrast, the correlation changes induced by BD 

vs. MD were distinct, suggesting that propagation latency and correlation patterns reflect different 

aspects of cross-modal communication between functional systems. 

These results suggest that visual area relationships with both motor and cingulate/retrosplenial 

regions appear especially sensitive to visual deprivation; similar findings have been observed in 

early blind humans (35). Previous work has demonstrated that rodent cingulate cortex has 

reciprocal connections with the visual area and projects to motor areas (69, 70). In addition, visual 

stimulation can elicit evoked responses in the cingulate cortex (71), and direct electrical 

stimulation of cingulate cortex can elicit movement (72-74).  Thus, converging evidence suggests 

that the cingulate cortex plays a role in integrating sensory information to generate behavioral 

outputs. Accordingly, we speculate that altered ISA relationships between visual and 

cingulate/retrosplenial cortex in BD mice reflects reorganization of the brain in the absence of 

visual input.  

More broadly, our findings extend the principle, previously articulated in human studies, that the 

organization of spontaneous ISA is subject to experience-dependent plasticity. Several examples 

of this phenomenon have been described in humans: the correlation and propagation structures 

of the BOLD signal are known to be altered after motor learning (25, 28, 75, 76). Correlation 

changes have been reported in the context of exam preparation (34) as well as lifelong absence 

of vision (35, 36). The present results, obtained on the basis of fOIS imaging of mouse cortex, 

demonstrate that visual experience during the mouse critical period also induces marked changes 

in the correlation and propagation structure of spontaneous ISA. Therefore, although the 

molecular basis of experience-dependent plasticity in the organization of spontaneous ISA 

remains unexplored in humans, the present paradigm offers an opportunity to probe the molecular 

bases of this re-organization in the mouse.  
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Arc-dependence of spontaneous ISA plasticity  

All of the changes in correlation induced by visual manipulation (intra-network changes in MD, 

and inter-network changes in BD) were absent in Arc-/- mice. Similarly, changes in propagation 

latency were largely attenuated in Arc-/- mice. These results suggest that Arc expression is 

required for experience-dependent changes in spontaneous activity correlation and propagation 

patterns that occur during the visual critical period.   

Previous work has shown that visually-evoked responses in Arc-/- mice are identical to WT mice 

prior to the critical period, but Arc-/- failed to undergo experience-dependent changes elicited by 

visual experience. More specifically, Arc-/- mice did not exhibit ocular dominance plasticity with 

visual deprivation or stimulus-selective response potentiation after repeated visual presentations 

(48). A role for Arc in experience-dependent plasticity has been demonstrated more broadly in 

additional settings: adult Arc-/- mice have attenuated visual orientation learning with repeated 

orientation presentation (50); Arc-/- mice have profound deficits in memory consolidation, and 

brain slices from Arc-/- mice show attenuated LTP and LTD (77).  

Several studies have implicated Arc as a key regulator of structural, Hebbian, and homeostatic 

synaptic plasticity (39). More specifically, Arc has been shown to influence dendritic spine 

dynamics, LTP and LTD durability, as well as whole-neuron synaptic scaling. The best understood 

mechanism by which Arc influences plasticity concerns its regulation of synaptic strength via 

control of glutamate receptors. Arc regulates glutamate receptor levels at multiple scales, from 

individual synapses to the entire neuron (40-43). At the individual synapse level, Arc has been 

shown to target silent dendrites during activation of adjacent dendrites in the same neuron (42). 

Through this mechanism, Arc facilitates the selective removal of silent synapses. In addition, Arc 

has been shown to translocate to the nucleus and initiate whole-neuron decreases in glutamate 

receptor production, enabling scaling of synaptic strength throughout the entire neuron (41, 43).  
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Given the profound control that Arc exerts on synaptic strength, it is reasonable to hypothesize 

that Arc has a role in maintaining systems-level organization of the brain by modulating synaptic 

strength between distinct brain systems. In accordance with this view, our experiments 

demonstrate that Arc-/- mice fail to exhibit the changes in the systems-level organization of 

spontaneous ISA that normally occur during the visual critical period. We were surprised that 

visual deprivation in Arc-/- mice modulated the short-distance temporal ISA patterns, but not the 

longer-distance correlation or temporal relationships that occurred in WT mice. Thus, Arc, which 

is capable of selective synapses removal on the basis of activity, may be especially important in 

regulating both the inter-hemispheric connections within the visual network and the long-distance, 

cross-modal connections between visual and extra-visual modalities. Indeed, it is well known that 

Arc acts locally within the visual system for vision-induced plasticity (48, 50). However, there must 

exists additional mechanisms that drive deprivation-induced ISA latency change within and near 

the visual system. 

Importantly, prior studies have shown that Arc gene deletion does not alter growth curves, visual 

system anatomy, visual cortex retinotopic maps, visual evoked potentials, or cortical neuron 

membrane excitability (48-50). Thus, the experience-dependent processes that were attenuated 

in Arc-/- mice are not attributable to disrupted basic visual functionality, but to specific action of 

Arc on experience-driven synaptic change. Similarly, we show here that WT and Arc-/- mice 

exhibit equivalent ISA spectral content, demonstrating that spontaneous brain activity was equally 

abundant in both WT and Arc-/- mice (Fig. 3.S2), but the reorganization of ISA spatiotemporal 

organization was attenuated in the absence of Arc.   

To conclude, our results demonstrate that critical period visual experience dramatically alters 

correlation and propagation latency patterns in spontaneous neural activity, both within and 

outside the visual cortex. Widespread alterations in neural activity after such a dramatic 

intervention are not surprising: a mouse with intact vision must interact with its environment very 



  94 
 

differently compared to a mouse without any vision (BD), or a mouse with limited vision (MD). 

Different experience-dependent activity patterns (normal vision vs. BD vs. MD) induce the brain 

to converge on distinct systems-wide patterns of neural communication, as reflected by the 

organization of spontaneous ISA. The process of transducing experience-dependent activity 

patterns into altered functional organization undoubtedly requires synaptic plasticity, and our 

results imply that Arc-dependent mechanisms play a role in this process. It is plausible that the 

local activities of Arc at the single synapse and whole-neuron level are sufficient to coordinate 

systems-wide re-organization on the basis of coordinated experience-dependent activity. Future 

studies are required to investigate these possibilities. Nonetheless, despite these mechanistic 

uncertainties, our results clearly establish that Arc-mediated molecular plasticity mechanisms, 

previously studied at a fine spatial scale, are also relevant for understanding the re-organization 

of neural activity at a systems-level.   

Limitations 

All imaging performed in this study was done under ketamine/xylazine anesthesia. While 

anesthesia alters spontaneous neural activity, recent work in mice has shown that cortical 

correlations in slow activity are quite stable across wake and ketamine/xylazine anesthesia states 

(78). This is in agreement with data showing stability of low frequency correlation across states 

of consciousness in humans (79). Moreover, although the slow wave phenomenon was first 

reported in the context of anesthesia and slow wave sleep (80, 81), recent work has also shown 

that slow wave propagation is also present in awake rodents (82). Thus, in light of the work 

showing stability in low frequency correlations and propagation across states, it is very likely that 

the main findings of the paper are not driven by state effects. 

Methods 

Mice 
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All procedures described below were approved by the Washington University Animal Studies 

Committee in compliance with AAALAC guidelines. Male and female Arc+/+ and Arc-/- mice 

(RRID:IMSR_JAX:007662) on a pure C57Bl6/J background were raised in standard cages in a 

dedicated mouse facility with a 12-12 light/dark cycle. Pups were weaned at P21 and immediately 

subjected to suturing. 

  

Lid Suture 

 

Mice from the same litter were randomly assigned to right monocular lid suture, binocular lid 

suture, or no suturing (normal vision) P21 mice were anesthetized using isofluorane until 

unresponsive to toe pinch. Lid margins were trimmed using fine surgical scissors and sutured 

shut. Normal vision mice were subjected to equal lengths of anesthesia. After suturing, mice were 

kept in standard cages with 4-5 mice total in a semi-clean facility with a 12 - 12 light/dark cycle 

until P35. 

  

Imaging animal prep 

  

In accord with our previously published animal preparation protocol for fcOIS imaging (29), 

anesthesia was initiated via i.p. injection with a bolus of ketamine-xylazine (1x dose: 86.9 mg/kg 

ketamine, 13.4 mg/kg xylazine) and animals were allowed 15 minutes for anesthetic transition. 

After induction, the animal was placed on a heating pad maintained at 37°C via feedback from a 

rectal probe (mTCII, Cell Microcontrols) and its head secured in a stereotactic frame. The head 
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was shaved and cleaned, a midline incision was made along the top of the head to reflect the 

scalp and the skull was kept intact. 

  

Image acquisition 

  

Sequential illumination was provided at four wavelengths by a ring of light emitting diodes (LEDs) 

placed approximately 10 cm above the mouse’s head. The field of view included most of the 

cerebral cortex (approximately 1cm2). Diffuse reflected light was detected by a cooled, frame-

transfer EMCCD camera (iXon 897, Andor Technologies); the LED ring and the camera were 

time-synchronized and controlled via computer using custom-written software (MATLAB, 

Mathworks) at a full frame rate of 30 Hz. 

  

Image Processing 

  

Data from all mice were subjected to an initial quality check prior to spectroscopic analysis. Data 

runs (5 minutes) in which reflected light level intensity (mean value over the brain) varied as a 

function of time by greater than 1% for any wavelength were excluded from further analysis. This 

preliminary quality control yielded 10–30 minutes of data per mouse. For subsequent analysis, 

image light intensity at each wavelength was interpreted using the Modified Beer-Lambert Law, 

usually expressed as: Φ(r,t) = Φ0*exp(−Δμa(r,t)*L). Here, Φ(r,t) is the measured light intensity, 

Φ0 is the baseline light intensity, Δμa(r, t) is the change in absorption coefficient due to 

hemodynamic changes, and L is the optical path length factor for photons in the tissue (83). As 

there is no pre-stimulus baseline in resting-state experimentation, we normalized relative to the 

average light intensity at each pixel, resulting in differential measures of absorption at each 
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wavelength at each pixel: Δμa,λ(r,t) = −ln(Φλ(r,t)/< Φ0λ(r,t)>)/Lλ. Absorption coefficient data were 

converted to hemoglobin (Hb) concentration changes by inverting the system of equations, 

Δμa,λ (r,t) = Eλ,i Δ[Hbi](r,t) (where E is the extinction coefficient matrix, and i runs over hemoglobin 

species). This inversion was performed using least-squares methods, yielding changes in 

oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) at each pixel at each time 

point. Differential changes in hemoglobin concentration were filtered to retain the infra-slow 

activity/functional connectivity band (0.009–0.08 Hz) following previous human functional 

connectivity algorithms (23). After filtering, each pixel’s time series was downsampled from 30 Hz 

to 1 Hz, and all further analysis was performed only on those pixels labeled as brain using a 

manually-constructed brain mask. The time traces of all pixels defined as brain were averaged to 

create a global brain signal. This global signal was regressed from every pixel's time trace to 

remove global sources of variance; global signal regression was applied independently on each 

contiguous imaging session. Finally, data from some imaging sessions exhibited strongly 

oscillatory activity in the 0.04-0.08 Hz range, which that likely reflects vascular (not neural) 

physiology (84). Since the spectral content of the BOLD signal is known to be roughly “1/f” (85), 

we excluded runs in which 50% of the power of the filtered, regressed data was found above 0.04 

Hz. This quality control step excludes data strongly contaminated by oscillatory vascular artifact.  

  

Image Co-registration 

  

Image sequences of each mouse (as well as the brain mask for each mouse) were affine-

transformed to a common atlas space determined by the positions of the junction between the 

coronal suture and sagittal suture (posterior to the olfactory bulb and cerebrum along midline) and 

lambda, as previously reported (86). Bregma was not visible in all mice, and was calculated based 

on the above two anatomical landmarks. The anterior-posterior stretch was set equal to the 
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medial-lateral stretch, and all transformed images were centered at bregma. The intersection of 

every brain mask was calculated and made symmetric by reflection across the midline allowing 

all subsequent comparisons to be performed on shared brain areas across all mice. 

   

ISA correlation (functional connectivity) analysis 

 

Conventional (zero-lag) functional connectivity was computed using Pearson correlation on pairs 

of pixel time series. In figures depicting correlation matrices, for ease of display, we show only 

pixels corresponding to six RSNs inferred through principal components analysis (PCA) 

parcellation method of the fOIS neuroimaging data from this study (Fig. 3.2B) that has been used 

to define RSNs previously (87). Network names were assigned to PCA topographies on the basis 

of colocalization with Paxinos coordinates (29, 88). Note that network sorting of pixels is applied 

for visualization only. All analyses of the full correlation matrix were computed over all pixels in 

the brain.  

  

ISA propagation latency analysis 

 

Our method for computing propagation latency between time series has been previously 

published (24, 25). In brief, we determine temporal propagation latency by computing lagged 

cross-covariance functions: 

 𝐶𝑥1𝑥2(𝜏) =
1

𝑇
∫𝑥1(𝑡 + 𝜏) ∙ 𝑥2(𝑡)𝑑𝑡,      [E1] 

where 𝜏 is the latency (in units of time). The value of 𝜏 at which 𝐶𝑥1𝑥2(𝜏) exhibits an extremum 

defines the temporal latency (equivalently, delay) between signals 𝑥1 and 𝑥2 (89). Although cross-



  99 
 

covariance functions can exhibit multiple extrema in the analysis of periodic signals, BOLD time 

series are aperiodic (85, 90), and almost always give rise to lagged cross-covariance functions 

with a single, well defined extremum, typically in the range ±1 sec (24).  We determine the 

extremum abscissa and ordinate using parabolic interpolation (25). 

Here, we compute delays between the time-series and each pixel and the mean time-series 

extracted from a left visual cortex area of interest. This set of temporal delays defines a left-visual 

seeded propagation latency map.  

 

Statistics 

 

To assess the topography of pair-wise correlation changes across conditions, we computed the 

difference correlation matrices, and applied spatial principal components analysis to the 

difference matrix. Permutation re-sampling between groups was used to determine the amount 

of variance expected in the first eigenvalue of the PCA decomposition in the null case. 

Eigenvalues in the true eigenspectrum exceeding the null expectation by 2.5 standard deviations 

(p < 0.05; red line Figs. 3, 5, 6) are counted as statistically significant. Statistical significance of 

propagation sequence differences in spatial maps (Figs. 4-6) was assessed on a cluster-wise 

basis using threshold-extent criteria computed by extensive permutation resampling (91, 92). 

Data and Code Availability 

All presented data and analysis algorithms are available upon request. 
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Figure 3.1: Visual deprivation paradigm. (A) Experimental timeline for eyelid 

suturing and imaging. (B) Genotypes and deprivation groups used in this 

study:  wildtype (WT), Arc gene deletion (Arc-/-), binocular visual deprivation 

(BD), monocular visual deprivation (MD). (C) Cartoon of mouse visual 

anatomy highlighting monocular (solid) and binocular areas (striped).  
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Figure 3.2: Analysis of ISA correlation and propagation patterns for 20 seconds of data from a 

single mouse. (A) Frames from a sample movie showing 20 seconds of spontaneous ISA from a 

single mouse. In this example, activity propagates from the posterior to anterior regions. Note that 

although ISA fluctuates over 10-100’s of seconds, propagation occurs more quickly (~2 seconds in 

this example). Correlation between separate regions over the entire 20 seconds is present and 

especially apparent between homotopic interhemispheric regions throughout the cortex (B) Resting 

state network (RSN) parcellation of mouse cortex on the basis of principal components analysis of 

group-level correlation structure (see Methods). (C) Left visual-seeded correlation map from the 

sample data shows high correlation between left and right visual areas along with anti-correlation 

between the left visual and anterior regions. (D) Correlation matrix showing the correlation value for 

every pixel-pair in the cortex from the sample ISA in A, organized by RSNs produced from (B, color-

coded on right). Within each RSN, left hemisphere pixels are sorted above right hemisphere pixels. 

This sorting offers a more detailed picture of correlation topography than what is viewable with a 

single correlation map. The visual RSN is outlined in the black box (D). The off diagonals (the top 

right or bottom left corner of the matrix), showed very high correlation between the left and right 

visual areas, in accordance with what is seen in the ISA sample in panel A and visual-seeded map 

in C. (E) Left visual-seeded activity propagation latency map of sample ISA in A shows early activity 

in the posterior region and later activity in the more anterior regions, consistent with what is seen in 

the sample ISA. M1: primary motor; M2: secondary motor; C/RS: Cingulate/Retrosplenial; S1: 

primary sensory; PRS: posterior retrosplenial; V: visual. 
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Figure 3.3: Critical period visual deprivation alters visual-seeded ISA 

correlation patterns. (A-C) Group-level correlation maps seeded in the left 

visual RSN in (A) WT-NV, (B) WT-BD, and (C) WT-MD mice. (D) Statistically 

significant correlation differences between WT-NV and WT-BD mice based 

on spatial cluster-wise threshold-extent criteria (see methods). Cool-colored 

pixels show decreased correlation in WT-BD compared to WT-NV, and warm-

colored pixels show increased correlation in WT-BD compared to WT-NV 

mice. (E) Statistically significant correlation differences between WT-NV and 

WT-MD mice. (F) Correlation histograms between all right visual RSN pixels 

and the left visual RSN. (G) Correlation histograms between all non-visual 

pixels (both within and outside of RSNs in 2B) and the left visual RSN. BD 

enhances interhemispheric intra-network correlation and increases inter-

network anti-correlation, while MD reduces intra-network correlation with little 

effect on inter-network correlation. 
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Figure 3.4: Unbiased correlation analysis over the entire cortex reveals differential 

influence of BD and MD on intra- and inter-network correlation. (A-C) Group level 

correlation matrices showing correlation between every pixel pair for pixels located within 

RSNs for (A) WT-NV, (B) WT-BD, and (C) WT-MD mice. The RSN pixels have been sorted 

as in Fig. 3.2B and D. (D) Correlation difference matrix calculated from WT-BD minus WT-

NV demonstrates how correlation for each pixel pair differs between these two groups. 

The visual network is highlighted in black in panels B-D. Thus, the black outline in panel D 

demonstrates increase in correlation, in WT-BD vs. WT-NV, within the visual system. (E) 

To assess the full topography of pair-wise correlation changes, we applied spatial principal 

components analysis (PCA) to the full, unmasked correlation difference matrix. The 

resulting eigenspectrum (panel D) shows that there is 1 statistically significant PC (red line 

corresponds to p < 0.05, corrected; threshold computed by permutation re-sampling). (F) 

Topography of the significant PC, from which we term Δcorrelation PC1, indicates 

increased correlation between homotopic visual areas, and decreased correlation in the 

somatomotor system and cingulate areas, in accordance with the primary features of the 

difference correlation matrix (panel C). (G) Correlation difference matrix calculated as WT-

MD minus WT-NV. (H) The eigenspectrum resulting from spatial principal components 

analysis (PCA) applied to the full, unmasked correlation difference matrix shows that there 

is 1 statistically significant PC. (I) Topography of the Δcorrelation PC1 indicates decreased 

correlation in the visual system, and increased correlation in the somatomotor system and 

cingulate areas.  
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Figure 3.5: Visual deprivation does not induce visual-seeded ISA correlation 

change in Arc-/- mice. (A-C) Group-level correlation maps seeded in the left 

visual RSN in (A) Arc-NV, (B) Arc -BD, and (C) Arc -MD mice. (D,E) Neither 

BD nor MD resulted in statistically significant correlation differences 

compared to NV in Arc-/- mice based on spatial cluster-wise threshold-extent 

criteria. (F) Correlation histograms between all right visual RSN pixels and the 

left visual RSN. (G) Correlation histograms between all non-visual pixels (both 

within and outside of RSNs in 2B) and the left visual RSN.  
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Figure 3.6: Whole-cortex correlation ISA is not altered by visual deprivation in Arc-/- mice. 

(A-C) Group level correlation matrices showing correlation between every pixel pair for 

pixels located within RSNs for (A) Arc-NV, (B) Arc-BD, and (C) Arc-MD mice. The pixels 

have been ordered as in Fig. 3.2B and D. (D) Correlation difference matrix calculated from 

Arc-BD minus Arc-NV, demonstrates how correlation for each pixel pair differs between 

these two groups. The visual network is highlighted in black in panels B-D. Thus, the black 

outline in panel D demonstrates increased correlation, in Arc-BD vs. Arc-NV, within the 

visual system. (E) The eigenspectrum resulting from spatial principal components analysis 

(PCA) to the full, unmasked correlation difference matrix shows no statistically significant 

PCs (red line corresponds to p < 0.05, corrected; threshold computed by permutation re-

sampling). (F) Correlation difference matrix calculated from Arc-BD minus Arc-NV 

demonstrated how correlation for each pixel pair differs between these two groups. The 

visual network is highlighted in black in panels B-D. Thus, the black outline in panel D 

demonstrates increased correlation, in Arc-BD vs. Arc-NV, within the visual system. (G) 

The eigenspectrum resulting from spatial principal components analysis (PCA) to the full, 

unmasked correlation difference matrix shows no statistically significant PCs. 
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Figure 3.7: BD and MD result in selective short- and long-distance 

propagation latency changes involving visual, motor and 

cingulate/retrosplenial areas; long-distance latency changes appear to be 

Arc-dependent. (A-C) Propagation latency relative to the left visual RSN in 

WT groups: (A) WT-NV, (B) WT-BD, and (C) WT-MD groups. (D-F) 

Propagation latency relative to the left visual RSN in Arc-/- groups: (D) WT-

NV, (E) WT-BD, and (F) WT-MD groups. (G) Statistically significant 

differences in propagation latency between WT-BD and WT-NV mice based 

on spatial cluster-wise threshold-extent criteria. (H) Statistically significant 

differences in propagation latency between WT-BD and WT-NV mice. (I) 

Statistically significant differences in propagation latency between Arc-BD 

and Arc-NV mice. (J) Statistically significant differences in propagation 

latency between Arc-BD and Arc-NV mice. 
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Figure 3.S1: Correlation and propagation latency difference maps shown with 

the cingulate cortex delineated. The cingulate perimeter is marked on the 

brain map in black. 
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Figure 3.S2: Spontaneous infra-slow spectral content is equivalent in all WT 

and Arc experimental groups. The group-averaged spectral content over the 

infra-slow frequency band, calculated after filtering and global signal 

regression, is plotted for each group. This demonstrates that correlation and 

propagation differences in ISA patterns are not driven by differences in the 

amount of activity. 
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Chapter 4 

Electrically coupled inhibitory interneuron networks limit 

spontaneous activity coupling between distant cortical 

regions   
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Abstract 

Spontaneous infra-slow brain activity (ISA) exhibits a high degree of temporal synchrony, or 

correlation, between distant brain regions. Spatial organization of ISA coordination is not 

explained by anatomy alone, suggesting active processes modulate spontaneous activity. 

Inhibitory interneurons (IIN) form electrically coupled networks with the gap junction protein 

connexin 36 (Cx36), and these IIN networks may be one biological mechanism that influences 

functional organization of neural activity. Deleting Cx36 disrupts electrical coupling in IIN networks 

and attenuates theta and gamma local field potential oscillations, but the role of electrically 

coupled IIN networks in regulating ISA organization over the entire brain is unknown. In this study, 

we performed OIS imaging on Cx36-/- mice to examine the role of this gap junction in ISA 

coordination across the entire cortex. We show that Cx36 deletion increased long-distance intra-

hemispheric anti-correlations and inter-hemispheric correlation in spontaneous ISA. In addition, 

local correlation was unaltered, or in certain locations increased, in Cx36-/- mice. This suggests 

that electrically coupled IIN networks are involved in decoupling infra-slow spontaneous activity 

between distant brain regions.  
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Introduction 

At rest, the brain is continuously oscillating over a wide frequency range (<0.01Hz – 600Hz) (1). 

Infra-slow activity (ISA), activity between 0.1 and 0.01 Hz, dominates the power spectrum of 

spontaneous brain activity and occurs with precise spatiotemporal organization. More specifically, 

spontaneous ISA across distinct brain regions is temporally synchronous, and these patterns of 

correlated activity between regions define functionally connected networks (2-4). Spontaneous 

activity correlation patterns (often termed functional connectivity) are remarkably stable within and 

between individuals (4, 5). Moreover, these patterns are present with remarkable homology in 

non-human primates and rodents (6-9). This suggest that these resting state correlation patterns 

may be fundamental to neurological function. Consistent with this, decreased network correlation 

is a common feature of neurological disease (10-12). 

While there is some overlap between neuroanatomy and spontaneous ISA correlation, the bulk 

of functionally connected systems do not have a clear anatomical connection (3, 4, 6, 13, 14). 

Furthermore, correlation strength varies widely between functional networks for unknown 

reasons. Thus, correlation is not merely a readout of anatomical connectivity, and other biological 

mechanisms must be modulating brain activity to shape synchrony in spontaneous activity. 

Inhibitory interneuron (IIN) networks may be one system that modulates temporally synchronous 

networks. IINs form robust interconnections amongst each other using both chemical and 

electrical synapses (15-17). The electrical synapses are formed by Connexin 36 (Cx36), a gap 

junction protein found throughout the brain and in the cortex it is exclusively in inhibitory 

interneurons (15, 16). Deletion of Cx36 does not result in obvious deficits: Cx36-/- mice have 

normal anatomy, growth, fertility, and no obvious behavior deficits (15, 16). However, closer 

examinations have revealed that Cx36 deletion impairs higher-level cognitive processes including 

ocular dominance plasticity, LTP, and context-dependent fear learning (18-21). 
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Cx36’s role in neuroplasticity is not completely clear. However, there are several demonstrations 

that disrupting Cx36 attenuates certain aspects of neural coordination. Cx36 enables coordinated 

inhibition across separate cells at distances up to 400 microns (16). This appears to be important 

for local field potential oscillations as in vitro and in vivo recordings demonstrated diminished 

gamma frequency (30-80Hz) power in Cx36-/- mice. 

In addition, IIN modulation of these oscillations appears to be state dependent. Ocular dominance 

plasticity and fear learning paradigms resulted in increased hippocampal theta activity (3-12Hz) 

that was absent with Cx36 gene deletion or pharmacologic blockade (19, 21). Furthermore, motor 

activity results in large gamma power differences between Cx36+/+ and Cx36-/- mice that 

dissipate during sleep (22). Thus, Cx36 has a well-defined role in coordinating certain low-

frequency (theta and gamma, 3Hz - 80Hz) neural oscillations within small brain volumes, and this 

may be important for complex behaviors and plasticity.  

Given this, it is reasonable to suspect electrically coupled IIN networks play a role in coordinating 

ISA activity between regions separated by large distances to generate whole-brain spontaneous 

correlation patterns. However, the role of Cx36 in coordinating brain activity in the ISA range has 

not been examined. To address this, we performed wide-field optical intrinsic signal (OIS) imaging 

in Cx36+/+ and Cx36-/- mice to examine whole-cortex spontaneous ISA correlation organization. 

We found that Cx36 gene deletion resulted in enhanced inter-hemispheric ISA correlation and 

intra-hemispheric ISA anti-correlation between specific cortical regions. This suggests that 

electrically coupled inhibitory neuron networks play a role in decoupling ISA between distant 

cortical regions.  

Results 

Cx36 gene deletion influences spatial ISA correlation in specific cortical regions without altering 

ISA power 
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Given previous findings that show Cx36 gene deletion results in decreased gamma and theta LFP 

oscillation power (15, 19, 21, 22), we first examined ISA (0.1Hz – 0.01Hz) spectral power in the 

OIS data from Cx36+/+ and Cx36-/- mice.  We found that Cx36 gene deletion had no significant 

effect on ISA power over the cortex as measured with OIS (Fig. 4.4.1).  

To examine if electrically coupled IIN networks influence the spatial correlation observed in ISA 

across the brain, we looked at the relationship between intra-hemispheric distance and 

correlation. First we examined this relationship for every pixel: each intra-hemspheric pixel-pixel 

pair’s correlation value and separation distance was calculated, and the average correlation vs. 

distance curve was generated (Fig. 4.2A). In Cx36+/+ mice this relationship shows high positive 

correlation values at short distances, decreasing correlation with distance, and anti-correlation 

occurs at longer distances. Cx36 gene deletion did not alter this relationship (Fig. 4.2A). 

Given that Cx36 has a non-uniform distribution throughout the cortex (16), we wondered if Cx36 

may have a spatially specific influence on correlation relationships. We separated our mice into 

two separate analysis sets. To determine pertinent ROIs, we selected 3 Cx36+/+ and 3 Cx36-/- 

mice at random and performed component analysis on the whole-cortex Δcorrelation matrix. The 

first principal component (PC) explained 28% of the variance (Fig. 4.S1) and projection of the 

Δcorrelation matrix on the corresponding eigenvector generated a Δcorrelation PC map (Fig. 

4.2B). The Δcorrelation PC map demonstrated focal territories of correlation increases and 

decreases, and these areas were used to define ROIs for subsequent analysis (Fig. 4.2C). 

Importantly, these ROIs were used on the separate set of mice from those used to select the ROIs 

(Cx36+/+ n=16, Cx36-/- n=10). We examined the intra-hemispheric spatial correlation relationship 

for pixels within the determined ROIs and found that for both the anterior and posterior ROIs, 

Cx36 deletion enhanced anti-correlation at longer distances (Fig. 4.2D,E). In addition, for pixels 

in the anterior ROI, Cx36 deletion increased correlation between pixels separate by very short 

distances (Fig. 4.2,D). For pixels outside of these ROIs, there was no difference in the spatial 
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correlation relationship (Fig. 4.2F). Thus, Cx36 deletion enhanced correlation and anti-correlation 

for selective cortical regions. 

We also looked at ISA spectral power within these ROIs and found no significant differences 

between Cx36+/+ and Cx36-/- mice (Fig. 4.S2). 

Cx36 gene deletion decreases inter-hemispheric correlation and intra-hemispheric anti-

correlation in select cortical regions 

We next examined the correlation between these ROIs, taking inter-hemispheric relationships into 

account (Fig. 4.3). First we used ROI-sorted matrices that examined the mean correlation value 

for every set of ROI pairs (Fig. 4.3B). Qualitative inspection of these activity correlation matrices 

shows a clear influence of Cx36 on the intra- and inter-hemispheric correlation relationships. 

Subtracting these two matrices to generate the Δcorrelation matrix for these ROIs shows that, 

indeed, Cx36-/- mice have increased inter-hemispheric correlation and increased intra-

hemispheric anti-correlation (Fig. 4.3C). Consistent with Fig. 4.2, the intra-hemispheric Ant. ROI 

and Post. ROIs have increased anti-correlation in the Cx36-/- mice, and the Ant. ROIs have 

increased auto-correlation. In addition, this analysis shows that Cx36 deletion increases 

homotopic correlation between the Ant. ROIs. Homotopic correlation between the Post. ROIs was 

increased, but the difference did not reach statistical significance (Fig. 4.3C).  

Next we calculated whole-cortex correlation maps seeded by our ROIs (Fig. 4.4). Obvious 

differences were present between Cx36+/+ and Cx36-/- correlation maps (Fig. 4.4A-H). 

Consistent with previous analyses, Cx36+/+ maps had largely attenuated inter-hemispheric 

correlation and intra-hemispheric anti-correlation for the ROIs examined. Statistical significance 

of correlation differences between groups was assessed with a spatial cluster-wise basis using 

threshold-extent criteria computed by extensive permutation resampling (see Methods for further 

detail).  
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An additional key finding in the statistically masked difference maps are that both the left and right 

Post. ROIs showed contralateral clusters of increased correlation that were centered just outside 

of the homotopic ROI (Fig. 4.4K,L). This suggests that for the Post. ROIs, Cx36 limits the positive 

correlation beyond the homotopic region. Further, the Ant. ROI in Cx36-/- mice demonstrated 

increased anti-correlation with the contralateral Post. ROI. Although these differences were only 

statistically significant for the right Ant. seeded region, they suggest Cx36 also limits off-homotopic 

anti-correlation.   

Altogether, this analysis is consistent with what is shown be the previous metrics: Cx36 limits ISA 

correlation magnitude for cortical ROIs separated by long distances within and across 

hemispheres.  

Cx36 gene deletion enhances the anterior-posterior correlation gradient boundary 

The cortex can be partitioned into functional regions based on abrupt transitions in resting state 

correlation patterns that occur across functionally distinct ROIs. Based on this functional 

boundaries can be assigned to the brain (23). This metric reveals zones of high ISA correlation 

pattern similarity that are separated by narrow edges of transition (23). 

We wondered how electrically coupled IN networks might influence functional transitions between 

regions. Using all imaged Cx36+/+ and Cx36-/- mice (Cx36+/+ n=19, Cx36-/- n=13), we generated 

correlation edge gradient maps (Fig. 4.5A,B). In Cx36+/+ mice, an anterior-posterior gradient 

border zone was apparent, suggesting abrupt correlation changes occur over the anterior-

posterior correlation transition (Fig. 4.5A). Cx36-/- gradient maps were generally the same except 

that the anterior-posterior gradient was much wider and of larger magnitude (Fig. 4.5B). 

Subtracting the two, it is clear that Cx36+/+ mice have a much narrower correlation transition 

gradient along the A-P axis (Fig. 4.5C).  



 128 
 

Using the entire set of mice, we performed PCA on the Δcorrelation matrix to generate the 

Δcorrelation PC map (Fig. 4.5F). This Δcorrelation PC explained 39% of the variance (Fig. 4.S3) 

and was consistent with the Δcorrelation PC map generated from the subset of mice in Fig. 4.2B. 

Overlaying the gradient changes on the Δcorrelation PC map demonstrates that Cx36 deletion 

resulted in a widened transition zones between the anterior and posterior regions (Fig. 4.5G). In 

comparing this gradient change to the Paxinos mouse brain atlas (Fig. 4.5H), it is clear that this 

border exists along the interface of many anatomically defined territories. Thus in addition to 

altering spontaneous activity correlation, Cx36 deletion causes the anterior-posterior functional 

border to occur over a longer distance. This suggests that electrically coupled IIN networks play 

a role in generating sharp transitions between functionally defined regions. 

Discussion 

In this study we used wide-field OIS imaging in mice deficient for Cx36, the gap junction protein 

that forms gap junctions between IINs, to examine the role of electrically coupled IIN networks in 

shaping spontaneous activity correlation patterns over the cerebral cortex. We found that 

disrupting electrically coupling in IIN networks resulted in increased ISA correlation magnitude 

between distant cortical regions both within and across hemispheres.  

Cx36 influence on intra-hemispheric correlation organization 

Anti-correlations in spontaneous brain activity led to some of the earliest descriptions of 

spontaneous activity network organization (3, 24). Anti-correlations are especially interesting 

because they separate areas that have respective increases and decreases in activity during 

focused tasks (3, 24-29). The best demonstration of this is seen in the dorsal attention networks 

and default mode networks in humans (3). Activity in the default mode decreases during attention 

demanding tasks, and this is thought to be driven by the brain pivoting from self-referential activity 

to task-directed activity requiring focused attention (3, 30, 31).  
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Our results demonstrate that electrically coupled IIN networks decrease anti-correlations in 

spontaneous activity. Thus some set of processes enable anti-correlations that are actively 

opposed by IIN networks. Spontaneous anti-correlations are thought to be important in 

segregating distinct processing streams, but these findings suggests electrically coupled IIN 

networks may play a role in limiting anti-correlation to optimally balance integration and 

segregation across separate systems. 

Moreover, the correlation transition gradients in Cx36+/+ mice were much more narrow those in 

Cx36-/- mice. In human fMRI imaging, this approach allows a non-invasive method of delineating 

architectonic areas (23). We show that Cx36 deletion results in a widening of the anterior-posterior 

gradient intensity. This suggests that electrically coupled IIN networks play a role in generating 

sharp functional transitions between separate functional regions in the cortex. 

Cx36 influence on inter-hemispheric correlation organization 

In addition to anti-correlation enhancement in Cx36-/- mice, we also found increased correlation 

for certain relationships. This included increased local correlation for the Ant. ROIs and increased 

inter-hemispheric correlation between the Ant. and Post. ROI pairs (for the homotopic 

relationships, roughly speaking). Homotopic correlations are especially robust in humans and 

present in all species that have been examined (2-4, 6, 8, 9, 32, 33). Indeed, this phenomenon 

extends to the mouse and has been observed using fMRI, fOIS, genetically encoded calcium 

imaging, genetically encoded glutamate imaging, and voltage sensitive dyes (8, 9, 32, 34-36).  

Our results suggest that electrically coupled IIN networks play a role in limiting spontaneous 

synchrony between homotopic cortical regions. This is especially interesting given that homotopic 

correlation decrement is a powerful biomarker of neurologic disease (10, 12). Cx36 deletion, on 

the other hand, enhances certain homotopic correlations but causes deficits in complex motor 

learning and experience-dependent plasticity (18-21, 37).  
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By partially limiting inter-hemispheric correlation, each cortical hemisphere may be able to act 

with more independence. This may also be the purpose for intra-hemispheric anti-correlation 

limits imposed by electrically coupled IINs. Ideal brain function must involve a balance between 

system independence and integration. Over-synchronization across all systems may limit the 

ability of each brain system to handle specific tasks independently. One the other hand, complete 

dyssynchrony may prevent the cross-system communication required for high order integration. 

Thus through the observed effect on ISA decoupling, electrical coupled IIN networks may enable 

better parallel processing for handling complex scenarios.  

Anatomy of electrically coupled IIN networks and spontaneous ISA correlation organization 

The spatial reach of electrically coupled IIN networks is not entirely clear. Work from brain slices 

showed that IPSPs correlation is present in cortical cells separated by up to 400 microns, and this 

correlation is dramatically reduced in Cx36-/- slices (16). Given this limit, it is unclear how 

disrupting electrically coupled IIN networks influences spontaneous ISA correlation relationships 

between cortical regions separated by several millimeters.  

Cx36 gap junctions are present between dendrites and the extensive dendritic trees found on IIN 

could expand network distance. Furthermore, IIN networks involve many neurons, which could 

help extend the network reach. That said, electrical coupling is spatially limited as amplitude 

decrements with distance (38).  

Thus, electrically coupled IIN networks may be coordinated by longer-distance axonal inputs. In 

the case of homotopic cortical partners, it has been suggested that transcallosal projections have 

both excitatory and inhibitory interhemispheric influences (39). Transcallosal projections may 

synapse on IINs (directly or indirectly) and exert coordinated interhemispheric inhibition that is 

carefully balanced with excitatory signaling to generate a precise excitatory/inhibitory balance. 

Electrical coupling amongst these IINs may be crucial for proper inhibition across hemispheres. 
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Likewise, long-distance intra-hemispheric connections may be important for limiting out of phase 

synchrony that produces anti-correlated activity.  

State-dependency (Limitations – not sure about having this section) 

All fOIS experiments performed in this study were done under ketamine/xylazine anesthesia. 

Recent work in mice has shown that cortical correlations in slow activity are quite stable across 

wake and ketamine/xylazine anesthesia states (40). This is in agreement with data showing 

stability of low frequency correlation across states of consciousness in humans (41).   

Previous work using Cx36-/- brain slices in vitro and awake Cx36-/- mice in vivo have both showed 

decreased gamma power with Cx36 deletion. However, in vivo work has revealed that some 

differences in Cx36-/- mice are accentuated under specific conditions. More specifically gamma 

power differences between Cx36+/+ and Cx36-/- mice were larger during wheel running that 

during sleep (22), and theta power increases following plasticity paradigms were absent in Cx36-

/- mice (19, 21). Thus, the resting state differences we see may not be capturing more robust 

network-level effects that occur during complex tasks or after learning. Future work will be 

required to examine this. 

Methods 

Mice 

All procedures described below were approved by the Washington University Animal Studies 

Committee in compliance with AAALAC guidelines. Littermate (male and female) Cx36+/+ and 

Cx36-/- mice (RRID:MGI:3810169)(15) on a pure C57Bl6/J background were raised in standard 

cages in a dedicated mouse facility with a 12-12 light/dark cycle. All imaging was performed on 

P90 mice. 

Imaging animal prep 
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In accord with our previously published animal preparation protocol for fOIS imaging (9), 

anesthesia was initiated via i.p. injection with a bolus of ketamine-xylazine (1x dose: 86.9 mg/kg 

ketamine, 13.4 mg/kg xylazine) and animals were allowed 15 minutes for anesthetic transition. 

After induction, the animal was placed on a heating pad maintained at 37°C via feedback from a 

rectal probe (mTCII, Cell Microcontrols) and its head secured in a stereotactic frame. The head 

was shaved and cleaned, a midline incision was made along the top of the head to reflect the 

scalp and the skull was kept intact. 

Image acquisition 

Sequential illumination was provided at four wavelengths by a ring of light emitting diodes (LEDs) 

placed approximately 10 cm above the mouse’s head. The field of view included most of the 

cerebral cortex (approximately 1cm2). Diffuse reflected light was detected by a cooled, frame-

transfer EMCCD camera (iXon 897, Andor Technologies); the LED ring and the camera were 

time-synchronized and controlled via computer using custom-written software (MATLAB, 

Mathworks) at a full frame rate of 30 Hz. 

Image Processing 

Data from all mice were subjected to an initial quality check prior to spectroscopic analysis. Data 

runs (5 minutes) in which reflected light level intensity (mean value over the brain) varied as a 

function of time by greater than 1% for any wavelength were excluded from further analysis. This 

preliminary quality control yielded 10–30 minutes of data per mouse. For subsequent analysis, 

image light intensity at each wavelength was interpreted using the Modified Beer-Lambert Law, 

usually expressed as: Φ(r,t) = Φ0*exp(−Δμa(r,t)*L). Here, Φ(r,t) is the measured light intensity, 

Φ0 is the baseline light intensity, Δμa(r, t) is the change in absorption coefficient due to 

hemodynamic changes, and L is the optical path length factor for photons in the tissue (42). As 

there is no pre-stimulus baseline in resting-state experimentation, we normalized relative to the 

average light intensity at each pixel, resulting in differential measures of absorption at each 
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wavelength at each pixel: Δμa,λ(r,t) = −ln(Φλ(r,t)/< Φ0λ(r,t)>)/Lλ. Absorption coefficient data were 

converted to hemoglobin (Hb) concentration changes by inverting the system of equations, 

Δμa,λ (r,t) = Eλ,i Δ[Hbi](r,t) (where E is the extinction coefficient matrix, and i runs over hemoglobin 

species). This inversion was performed using least-squares methods, yielding changes in 

oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) at each pixel at each time 

point. Differential changes in hemoglobin concentration were filtered to retain the infra-slow 

activity/functional connectivity band (0.009–0.08 Hz) following previous human functional 

connectivity algorithms (3). After filtering, each pixel’s time series was downsampled from 30 Hz 

to 1 Hz, and all further analysis was performed only on those pixels labeled as brain using a 

manually-constructed brain mask. The time traces of all pixels defined as brain were averaged to 

create a global brain signal. This global signal was regressed from every pixel's time trace to 

remove global sources of variance; global signal regression was applied independently on each 

contiguous imaging session. 

Image Co-registration 

Image sequences of each mouse (as well as the brain mask for each mouse) were affine-

transformed to a common atlas space determined by the positions of the junction between the 

coronal suture and sagittal suture (posterior to the olfactory bulb and cerebrum along midline) and 

lambda, as previously reported (43). Bregma was not visible in all mice, and was calculated based 

on the above two anatomical landmarks. The anterior-posterior stretch was set equal to the 

medial-lateral stretch, and all transformed images were centered at bregma. The intersection of 

every brain mask was calculated and made symmetric by reflection across the midline allowing 

all subsequent comparisons to be performed on shared brain areas across all mice. 

ISA correlation (functional connectivity) analysis 

Functional connectivity was computed using Fisher’s Z transformed correlation on pairs of pixel 

time series. Correlation difference PCA segmentation (Figs. 2B, 5F) was performed by applying 
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spatial principal components analysis to the whole-cortex correlation difference matrix calculated 

from the difference in average correlation at each pixel between the two groups. 

Statistics 

All single-dimension statistical comparisons were assessed with Student’s t test. The statistical 

threshold was set at 0.05 divided by the number of comparisons performed. Statistical 

significance of correlation differences in spatial maps (Fig. 4.4I-L) was assessed on a cluster-wise 

basis using threshold-extent criteria computed by extensive permutation resampling (44, 45). 
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Figure 4.1. Cx36 gene deletion does not change ISA spectral power. The 

group-averaged spectral content over the infra-slow frequency band, 

calculated after filtering and global signal regression, and bin-averaging is 

plotted for Cx36+/+ and Cx36-/- mice. Error bars are standard deviation. For 

each ISA bin, differences between groups were not statistically significant. 

This demonstrates that the amount of ISA is not altered by Cx36 gene 

deletion. Error bars are standard deviation. Statistical significance was set at 

P<0.0063 (0.05/number of frequency bins; determined using Student’s t test 

with Bonferonni correction). Cx36+/+ n=19, Cx36-/- n=13. 

 



 136 
 

  

Figure 4.2. Cx36 deletion alters spatial ISA correlation relationships in specific cortical 

regions. (A) Group averaged correlation values vs. distance for every intra-hemispheric 

pixel. For each mouse, the correlation vs. distance curve from the left and right hemisphere 

were averaged before group averaging was performed. Using a subset of mice (Cx36+/+ 

n=3, Cx36-/- n=3), PCA was performed on the correlation differences between groups in 

order to find ROIs that may be selectively influenced by Cx36.  (B) The first principal 

component derived from ΔCorrelation PCA reveals distinct anterior and posterior ROIs with 

ISA correlation patterns that differ between Cx36+/+ and Cx36-/- groups. (C) Anterior and 

Posterior ROIs defined after smoothing and bilateral averaging of the ΔCorrelation PC in 

(B).  These ROIs were used for analysis on an independent set of mice (Cx36+/+ n=16, 

Cx36-/- n=10). (D-E) Spatial correlation values for pixels within the ROIs from (C). (D) Within 

the anterior ROI, Cx36 deletion caused increased correlation for nearby pixel pairs 

(<1.2mm), and increased anti-correlation for more distant pixel pairs (3.5mm-4.7mm). (E) 

Within the posterior ROI, Cx36 deletion resulted in increased anti-correlation at further 

distances (3.5mm-4.7mm).  The correlation vs. distance curve was calculated between all 

pixels within the ROIs and every other pixel in the same hemisphere. (F) Correlation vs. 

distance relationship for pixels outside of the ROIs from (C). No differences were found for 

pixels in this area. *P<0.0083 (0.05/number of distance bins; determined using Student’s t 

test with Bonferonni correction). 
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Figure 4.3. Cx36 deletion increases inter-hemispheric correlation and intra-hemispheric 

anti-correlation between specific ROIs. (A) ROIs used for analysis. (B) Average 

correlation values for all pixels within and between all ROIs in (A) in Cx36+/+ and Cx36-

/- mice. (C) Cx36-/- minus Cx36+/+ ΔCorrelation matrix with statistically significant 

correlations marked. In the Ant. ROIs, within ROI correlation and homoptopic correlation 

was increased in Cx36-/- mice. In addition, the intra-hemispheric Ant.-Post. anti-

correlation was increased in Cx36-/- mice. Post. ROI homotopic correlation was 

increased in Cx36-/- mice, but not statistically significant. *P<0.005 (0.05/number of 

correlations examined; determined using Student’s t test with Bonferonni correction). 

Cx36+/+ n=16, Cx36-/- n=10. 
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Figure 4.4. Spatial distribution of correlation changes with Cx36 deletion. Seeded 

correlation maps for (A-D) Cx36+/+ and (E-H) Cx36-/- mice. Seeded regions are 

outline in black. Enhanced homotopic correlation and intra-hemispheric anti-

correlation are qualitatively apparent in Cx36-/- mice. (I-L) Statistically masked 

correlation difference maps (Cx36-/- minus Cx36+/+) for each ROI. Significance 

was determined using spatial cluster-wise threshold-extent criteria (see methods). 

(I,J) For Ant. ROIs, Cx36-/- mice demonstrated increased within ROI correlation, 

homotopic correlation was increased, and increased Ant.-Post. ROI anti-correlation 

for each hemisphere. (K,L) Post. ROIs showed regionally selective increases in 

intra-hemispheric anti-correlation and increased inter-hemispheric correlation. The 

inter-hemispheric correlation increases were centered outside of the homotopic 

Post. ROI. Cx36+/+ n=16, Cx36-/- n=10. 
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Figure 4.5. Cx36 deletion causes a more abrupt anterior-posterior correlation 

transition gradient. (A-B) Correlation gradient maps for (A) Cx36+/+ mice and (B) 

Cx36-/- mice. (C) Cx36-/- minus Cx36+/+ gradient difference map reveals a focally 

increased correlation transition gradient on the anterior-posterior axis. (D) Gradient 

differences threshold-masked and outlined. (E) Thresholded gradient differences 

shown with overlaid Paxinos anatomy shows that these gradient differences occur at 

the border of several anatomical regions separated on the anterior-posterior axis. (F) 

The Δcorrelation PC1 determined from PCA on correlation differences between all 

mice analyzed. This Δcorrelation PC1 is similar to the Δcorrelation PC1 found in a 

subset of mice in Fig. 4.2B. ΔCorrelation PC1 with overlaid (G) correlation gradient 

differences and (H) Paxinos anatomical boundaries.  Panel G demonstrates that the 

correlation transition gradient was more abrupt in Cx36-/- mice. (I) Paxinos atlas for 

reference. Cx36+/+ n=19, Cx36-/- n=13. 
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Figure 4.S1. Eigenspectrum for Δcorrelation PCA performed in Fig. 

4.2B. Cx36+/+ n=3, Cx36-/- n=3. PC1 explains 28% of the variance 

and was used to determine ROIs for in subsequent analyses. 
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Figure 4.S2. Cx36 gene deletion does not alter ISA spectral power in Δcorrelation-derived 

ROIs. Correlation vs. distance for pixels in the (A) anterior ROIs, (B) posterior ROIs, and 

(C) not in any ROI. (D) ROI map for reference. These calculations were performed on the 

set of mice independent from those used to determine ROIs. Error bars are standard 

deviation. Statistical significance was determined using Student’s t test with Bonferonni 

correction. Cx36+/+ n=16, Cx36-/- n=10 
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Figure 4.S3. Eigenspectrum for Δcorrelation PCA performed 

in Fig. 4.5F. Cx36+/+ n=19, Cx36-/- n=13. PC1 explains 39% 

of the variance. 
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Chapter 5 

Conclusion 
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Summary of findings 

The collection of work contained in this dissertation has demonstrated components of excitatory 

and inhibitory synaptic plasticity that modulate functional organization in the cortex. The specific 

conclusions are: 

1. Focal sensory deprivation can modulate task-evoked and resting-state functional cortex 

organization through an Arc-dependent mechanism. 

2. Focal somatosensory deprivation can accelerate and reposition functional representation 

remapping after somatosensory cortex infarction. This also results in improved behavioral 

recovery, and these changes persist after sensory deprivation is withdrawn. 

3. Focal visual deprivation modifies spontaneous activity relationships involving the visual 

system. Partial (monocular) and complete (binocular) deprivation have differential effects, 

with partial deprivation resulting in intra-network correlation changes (within visual system) 

and complete deprivation resulting in inter-network correlation changes. 

4. Arc is required for post-infarction remapping and behavioral recovery. 

5. Arc is required for intra- and inter-network spontaneous activity organization plasticity. 

6. Electrically coupled inhibitory interneuron (IIN) networks limit spontaneous coupling 

between distant cortical regions. 

As predicted from the critical period literature, synaptic mechanisms within both excitatory and 

inhibitory neurons drive functional cortex organization plasticity. This suggests that the critical 

period model of excitatory-inhibitory balance controlling plasticity may also apply to functional 

cortex organization changes during development and in recovery following neurologic injury. 

Cortical remapping as a modifiable therapeutic target 

Cortical remapping after focal injury was first reported over 20 years ago (1). Since then, the same 

phenomenon has been observed in rodent models and human patients (2-9). Moreover, it was 
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repeatedly seen that remapping occurred in conjunction with behavioral recovery, arguing for the 

importance of this process in reversing disability (2, 3, 5). However, there was no evidence that 

modifying remapping influenced behavioral recovery. 

Chapter 2 of this dissertation demonstrates that 1) disrupting remapping (via Arc gene deletion) 

prevents behavioral recovery and that 2) accelerating remapping (via whisker trimming) improves 

behavioral recovery. These findings establish that manipulating functional cortex organization 

after focal ischemic injury can influence behavioral recovery. Further, it suggests rehabilitative 

maneuvers, such as targeted sensory deprivation, may be an effective approach for promoting 

remapping in stroke patients. 

Relationship between task-evoked remapping and spontaneous activity 

Like task-evoked cortical remapping, spontaneous activity relationships, or functional 

connectivity, changes after focal ischemia are known to correlate with behavioral recovery (10-

12). However, this relationship remains correlational and it is unclear how important functional 

connectivity plasticity is for recovery. Furthermore, the relationship between post-ischemic task-

evoked remapping and resting-state functional connectivity plasticity remains unclear. Separate 

studies have shown that these two phenomena both correlate with behavioral recovery (1-3, 10-

12). While I was able to establish the role of representation remapping in behavioral recovery 

after ischemic injury, the relationship between task-evoked representation remapping and resting-

state correlation network plasticity remain unclear. Given the finding in healthy brains that 

spontaneous correlation occurs between areas that are co-activated during specific tasks, it is 

likely the case that inter-hemispheric correlation recovery is dependent on remapping. However, 

the time course of these two phenomenon has not been compared directly. The paradigms 

established in Chapter 2 offer an approach that can prevent and relocate remapping. This will be 

valuable for examining the relationship between task-evoked map and spontaneous network 

plasticity following ischemia, and determining the importance spontaneous network plasticity in 
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behavioral recovery. In addition, experiments examining task-evoked remapping and functional 

connectivity plasticity may offer insight into how remapped local circuits integrate with global 

networks after ischemic injury.  

Excitatory neuron mechanisms in cortical functional organization plasticity: a role for Arc 

A role for Arc in experience-dependent plasticity has been demonstrated broadly in several 

settings: Arc-/- mice had attenuated critical period ocular dominance plasticity (13); adult Arc-/- 

mice had attenuated visual orientation learning with repeated orientation presentation (14); Arc-/- 

mice had profound deficits in memory consolidation, and brain slices from Arc-/- mice showed 

attenuated LTP and LTD (15). Importantly, pre-critical period visually-evoked responses were 

identical in Arc+/+ and Arc-/- mice, demonstrating Arc-mediated effects are specific to experience-

dependent plastic change. The experiments performed in this dissertation establish an additional 

role for Arc in driving functional cortex reorganization after injury and during development. 

Several studies have implicated Arc as a key regulator of structural, Hebbian, and homeostatic 

synaptic plasticity (16). More specifically, Arc has been shown to influence dendritic spine 

dynamics, LTP and LTD durability, as well as whole-neuron synaptic scaling. The best understood 

mechanism by which Arc influences plasticity concerns its regulation of synaptic strength via 

control of glutamate receptors. Arc regulates glutamate receptor levels at multiple scales, from 

individual synapses to the entire neuron (17-20). At the individual synapse level, Arc has been 

shown to target silent dendrites during activation of adjacent dendrites in the same neuron (19). 

Through this mechanism, Arc facilitates the selective removal of silent synapses. In addition, Arc 

has been shown to translocate to the nucleus and initiate whole-neuron decreases in glutamate 

receptor production, enabling scaling of synaptic strength throughout the entire neuron (18, 20).  

Thus, this work establishes Arc-dependent synaptic plasticity as a cellular mechanism required 

for remapping after ischemia and functional connectivity changes during development. However, 

the exact components of Arc-dependent mechanisms involved are unclear. Given the complexity 
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inherent in systems-level organization, it is certainly plausible that several arms of Arc-dependent 

mechanism participate in these phenomena, but future work will be needed to examine this in 

detail. It is also worth highlighting that the Arc manipulations performed in this dissertation 

demonstrate a role for excitatory neuron mechanisms in functional organization plasticity. 

Electrically coupled inhibitory interneuron networks modulate cortical functional 

organization 

Visual critical period work has demonstrated an essential role for GABAergic signaling in 

experience dependent cortical development (21). Thus, we expected inhibitory interneuron 

networks to play an important role in shaping functional organization in the cerebral cortex. 

Electrically coupled IIN networks were an attractive candidate for modulating spatial synchrony in 

spontaneous neural oscillations. It has already been shown that Cx36 gene deletion, which 

disrupts IIN electrical coupling, attenuated spatial learning and ocular dominance plasticity. 

Moreover, Cx36 deletion also caused subtle changes in gamma and theta oscillation power that 

occurs during these plasticity paradigms (22-26).  

The experiments performed in this dissertation demonstrate that electrically coupled IIN networks 

play an important role in decoupling spontaneous infra-slow activity synchrony between cortical 

regions separated by long distances. Thus, IIN networks may be targeted to alter communication 

between separate brain systems.  

It is important to keep in mind that electrical coupling between inhibitory interneurons has a poorly 

understand influence on inhibitory tone at large. It is also unclear how electrically coupled IIN 

networks influence relationships over distances thought to be greater than the span of the IIN 

network. It is likely that neurons project to local IIN networks to achieve long-distance 

coordination. Future work will take advantage of advanced tools in molecular biology to answer 

these questions (see below). 
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Tuning spontaneous activity correlation to the appropriate level 

A fascinating component seen both with critical period visual deprivation and Cx36 gene deletion 

is that disrupting natural processes can increase homotopic functional connectivity. Many studies 

have utilized functional connectivity as a biomarker, and a correlation between behavioral deficit 

and functional connectivity has been shown in several neurologic diseases (11, 27-29). From a 

biomarker perspective, this has led to the thinking that higher homotopic correlation in functional 

connectivity is better. However, this work demonstrates that certain experimental manipulations, 

which result in neurologic deficits, generate heightened functional connectivity levels. 

More specifically, binocular deprivation in wild-type mice results in enhanced visual homotopic 

correlation, and this did not occur in Arc-/- mice. This suggests that visual experience decreases 

homotopic correlation to an appropriate level through an Arc-dependent mechanism. In addition, 

disrupting electrically coupled inhibitory interneuron networks via Cx36 gene deletion resulted in 

increased homotopic functional connectivity in between specific cortical regions. Cx36-/- mice are 

known to have various plasticity deficits as well (23, 26, 30). In addition to homotopic changes, 

Arc deletion prevented critical period cross-modal spontaneous correlation changes, and Cx36 

deletion altered cross-modal correlation as well. Altogether these findings demonstrate that 

processes within excitatory and inhibitory neurons play a role in tuning spontaneous correlations 

to a specific level. 

This tuning may be essential for establishing the ideal balance in cross-system independence 

and integration which must achieved for optimized brain function. Over-synchronization across all 

systems may limit the ability of each brain system to handle specific tasks independently. One 

the other hand, complete dyssynchrony may prevent the cross-system communication required 

for high order tasks.  

Plasticizing the adult brain 
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Critical periods demonstrate a clear plasticity decrease in the adult brain compared to children. In 

humans, visual and language critical periods are the best demonstration of this (31, 32). Of 

course, it is also clear from human observation and animal model experimentation that adult 

plasticity, while slower, still occurs (33).  

In the context of this dissertation, improved adult plasticity is suggested as the answer for 

reversing chronic disability following neurologic injury. More broadly, the idea of enhanced adult 

plasticity more broadly comes with the desirable idea of infinite, rapid learning potential throughout 

life. However, the fact that robust plasticity occurs in limited windows must have some 

evolutionary advantage, and several potential advantages can be imagined. For example, critical 

periods may allow specialization in cortical neurons to occur and remain in place without constant 

exposure—allowing certain “lessons” to be kept. In addition, critical period learning likely comes 

with extensive energy demands, and a system that learns once is likely much more efficient. This 

is consistent with PET studies showing brain glucose utilization is highest from 4-10 years of age 

(34).  

However, this rigidness is maladaptive in the case of focal ischemia where limited plasticity results 

in chronic disability. It is promising to see that functional map organization can be modulated with 

implications for therapeutic gain in a preclinical ischemia model. Indeed, it is exciting to speculate 

what the clinical potential of this approach might be. Furthermore, my findings that focal 

manipulations modulate specific cortical regions suggests that we can design strategies to 

selectively boost plasticity where needed. 

Targeted facilitation of cortical plasticity with sensory deprivation 

Two separate sensory deprivation paradigms were used in this dissertation: somatosensory 

deprivation (via whisker trimming) and visual deprivation (via eyelid suture). Given potential 

concerns with potentiating global plasticity (as mentioned in the previous section), raising 
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plasticity focally within the perilesional territory may be favorable. In the setting of focal ischemia, 

the recovery benefits resulting from focal deprivation are especially promising. 

However, stroke in human patients occurs in a variety of locations. Currently, it is unclear how 

many separate systems might offer use deprivation. Most pertinent is the motor system. Will 

somatosensory deprivation improve motor recovery after infarction involving the motor cortex? 

Given the intimate interconnection between the sensory and motor system, this may be the case. 

However, motor cortex infarction may be better treated with perilesional motor deprivation. This 

could be achieved by limb casting or botulinum toxin A injections targeted to muscle groups with 

perilesional representations. Given the more recent realization that motor cortex is arranged in 

coordinated postures, target selection may be more challenging and will have to be addressed in 

future work.  

Stroke, of course, can cause disability in higher level cognition. Language and attention 

disabilities are particularly devastating. It will be interesting to see if perilesional deprivation offers 

therapeutic potential for recovery of networks involved in these systems. 

Enhancing plasticity with direct cortical manipulation 

In addition to manipulating the cortex with interventions applied to the periphery, cortical plasticity 

will certainly be modifiable with agents that act on the brain directly. Indeed, pharmacologic 

blockade of GABAergic signaling can alter visual critical period timing and improve behavioral 

recovery after cortical infarction (21, 35). However, increasing cortical plasticity globally may not 

be favorable as improvements to the injured region may come with unwanted plasticity in 

uninjured domains. 

Invasive and noninvasive transcranial stimulation techniques have been used on stroke patients 

in an attempt to manipulate excitability on a targeted hemisphere (both the ipsilesional and 

contralesional hemispheres have been targeted). Unfortunately, the results have been mixed with 
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larger randomized controlled trials showing no benefit (36, 37). This suggests inadequate 

understanding of how circuits need to be manipulated to improve plasticity. 

Improvements in molecular biology have enabled regionally selective manipulation of cortical 

excitation and inhibition. Prime examples of this include optogenetics and chemogenetics. These 

tools involve expressing light or chemical sensitive channels in genetically defined neural 

populations. Using viral gene transfer, these channels can be targeted to specific neuron subtypes 

in targeted regions. By application of light or chemicals reversible excitation or inhibition to the 

targeted cell type can be applied (38, 39).  

In the preclinical setting, this offers a tool kit that dissect the contribution of specific neural circuits 

in functional cortex organization in health and after injury. For example, instead of applying 

perilesional sensory deprivation, one could focally block inhibitory interneuron activity in the 

perilesional cortex. Indeed, applying this to the visual cortex has been shown to extend the visual 

critical period (40). In addition to focal manipulation, these tools can be used to globally 

manipulate activity in inhibitory interneurons. Compared to gene deletion experiments, this would 

allow direct examination of how activity from inhibitory interneurons influences functional 

networks. Further, these manipulations are reversible and avoid off-target development 

compensation that can result from gene deletion.  

In addition to affecting GABAergic neurons broadly, the specific interneuron subtypes can be 

selectively modulated. This might be especially important as interneuron subtypes, defined by 

specific protein expression, have distinct circuit arrangements. Subcategories of note include 

parvalbumin (PV) interneurons, somatostatin (SOM) interneurons, and vasoactive intensitnal 

polypeptide (VIP) interneurons (41).  

Although these inhibitory neurons are involved in complex feed-forward and feed-back inhibitory 

circuits, their broad influences can be generalized: PV and SOM interneurons inhibit pyramidal 

cells, whereas VIP interneurons inhibit SOM interneurons. PV and SOM interneurons can be 
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further classified by their synaptic localization with PV neurons synapses on excitatory neuron 

cell bodies (42-44) and SOM neurons synapses on excitatory neuron dendrites (30, 43, 45). 

This arrangement is generalizable throughout the cortex and appears to be essential for 

integrating signals across systems. Unsurprisingly, each of these inhibitory interneuron subtypes 

have been shown to play a role in cortical plasticity (46). However, given the non-equivalent 

relationship of each neuron subtype in generating excitatory-inhibitory balance, understanding 

individual subtype contributions may be important. 

For example, inhibiting PV neuron activity can extend the visual critical period (40) whereas 

enhancing VIP neuron activity can have the same effect (47).  This dichotomy is not surprising 

given the known circuitry arrangement of these IIN subtypes. However, it suggests that 

therapeutic approaches may be more successful if they are more selective in action.  In addition, 

inhibitory activity from each of these interneuron subtypes is likely to contribute distinct features 

to spontaneous oscillatory neural activity. Future work addressing these questions will be critical 

in order to understand how specific cellular circuits contribute to functional organization within the 

cortex, and how specific components of neurocircuitry can be manipulated for therapeutic gain. 

With current clinical approaches to cortical stimulation after stroke appearing somewhat random 

(and resulting in no benefits) (36, 37), these studies will be especially valuable for rationale cortical 

stimulation design. 

Examining higher frequency content in functional organization relationships 

Throughout this dissertation, functional cortex organization was assayed using a hemodynamic 

contrast. The hemodynamic response is a relatively slow phenomenon, and this creates a serious 

limitation on the frequencies that can be measured using it. Furthermore, fMRI, which generated 

the bulk of the foundation of this work, is additionally limited by framerate. 
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Spontaneous brain oscillations occur over a wide frequency range (<0.01Hz – 600Hz), and 

hemodynamic contrasts cannot access much of this spectral range (48). Although infraslow 

activity (0.1Hz – 0.01Hz) is clearly important for neurologic function, other components of this 

broadband activity must be involved. This dissertation, and many cited studies within, argue for 

infraslow activity’s importance in systems-level neurophysiology. However, it may be the case 

that treating systems-scale neurologic disorders will require understanding the cross-frequency 

interplay over the entire range at which brain activity occurs.  

Emerging technology promises to open up the frequency range that can be examined over large 

brain volumes. Genetically encoded calcium indicators and genetically encoded voltage sensitive 

reporters offer faster kinetics and access to high frequency content of the brain’s activity. Calcium 

imaging with GCaMP-expressing mice have already enabled wide-field imaging in the delta 

frequency range (49, 50). These experiments have been especially valuable in revealing wave 

propagation across the cortex. Voltage sensitive dyes have been used to examine even faster 

frequency ranges, with limits being set by the imaging frame rate (51). Unfortunately, these dyes 

involve invasive procedures and heavy anesthesia. Improvements in genetically encoded voltage 

sensitive reporters will be helpful. 

Electrophysiological recordings offer sampling rates up to 30KHz (52). The limit for these 

approaches has been placing sufficient numbers of probes to observe systems-level 

communication. Improvement in probe materials has enabled high density probes that can be 

placed over large brain volumes. Further, these probes have thicknesses as small as 10 microns, 

limiting that amount of damage they cause on placement. Current techniques enable thousands 

of recording sites, and this makes sampling large volumes of brain at up to 30KHz possible.  

All of these techniques will be valuable tools for better understanding the brain activity at a 

systems-level, and improve our model of neurologic function in health and disease in order to 

improve neurorehabilitation.   
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Concluding Remarks 

Pursuing a better understanding of the mechanisms that generate functional organization within 

the cerebral cortex, and plasticity of this organization, may dramatically advance 

neurorehabilitation options for stroke patients with chronic disability. In addition, these pursuits 

may lead to an improved understanding of how the brain works, and this may have important 

implications for treating neurological disease at large.  

Functional connectivity disruptions, as measured with fMRI, are not unique to ischemic stroke. 

Disrupted functional connectivity been reported in other types of nervous sytem injury including 

subarachnoid hemorrhage, spinal cord injury traumatic brain injury, and peripheral nerve injury 

(53-55). In addition several reports have found aberrant functional connectivity in multiple 

psychiatric diseases. 

In schizophrenia and biopolar disorder, reduced functional connectivity between prefrontal, 

parietal, and temporal cortices has been reported (56, 57). This is consistent with additional 

studies finding generalized functional connectivity decreases between cortical regions in patients 

diagnosed with schizophrenia (58, 59). In addition to cortical abnormalities, there is also evidence 

Schizophrenia is associated with aberrant functional connectivity between cortical and thalamic 

regions (60, 61). 

Autism spectrum disorder offers another example of altered functional connectivity in a psychiatric 

disorder. fMRI studies on patients diagnosed with autism spectrum disorders have produced 

discordant findings: some studies have found increased functional connectivity while other have 

found decreased functional connectivity in inter- and intra- hemispheric relationships (62-70).  

There may be many reasons for these discrepancies including small sample sizes, different 

analytic approaches, and reliance on a categorical diagnosis for a particularly heterogeneous 

syndrome. Nonetheless, these studies suggest functional connectivity is perturbed in autism 

spectrum disorder patients. 
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These psychiatric diseases are unique because, unlike the other listed examples, there are not 

known anatomical defects involved. Thus, disrupted communication between brain systems may 

be the primary defect. If so, techniques that enable adjustments in functional cortex spontaneous 

activity relationships would be especially valuable for treating psychiatric disease. 

Indeed, the neurologic relevance of function connectivity remains elusive. However, it is exciting 

to speculate that the observed connectivity alterations seen in so many different types of disease 

are indicative of pathologic communication between brain systems. Hopefully an improved 

understanding of what this physiology represents, and how it can be modulated, will advance our 

therapeutic approaches to these complex psychiatric and neurological disorders.  
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