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ABSTRACT OF THE DISSERTATION

Mechanics of Phenotypic Aging Trajectories in C. elegans and Humans

by

William B. Zhang
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Washington University in St. Louis, 2019

Assistant Professor Zachary Pincus, Chair

Overall, my dissertation integrates longitudinal measurements of physiology to investigate the aging

process. In the first half, I examine the surprising and largely unexplained degree of variation in lifes-

pan within even homogeneous populations. I sought to understand how physiological aging differs

between long- and short-lived individuals within a population of genetically identical C. elegans reared

in a homogeneous environment. Using a novel culture apparatus, I longitudinally monitored aspects

of aging physiology across a large population of isolated individuals. Aggregating several measures

into an overall estimate of senescence, I find that long- and short-lived individuals start adulthood on

an equal physiological footing. However, longer-lived individuals then experience slower declines in

function, but spend a disproportionately large portion of life in poor physiological health. Indeed, the

period of early-life good health is much less variable than the period of late-life advanced senescence,

which I conclude to be a more plastic phase of life. In the second half, I show that simple physiological

measurements have broader lifespan-predictive value than previously believed and that incorporating

information from multiple time points can significantly increase that predictive capacity. Using longi-

tudinal data from a cohort of 1349 human participants in the Framingham Heart Study, I show that as

early as 28–38 years of age, almost 10% of variation in future lifespan can be predicted from simple

clinical parameters. Further, different clinical measurements are predictive of lifespan in different

age regimes. Moreover, I find that several blood glucose and blood pressure are best considered as

measures of a rate of “damage accrual”, such that total historical exposure, rather than current mea-

surement values, is the most relevant risk factor (as with pack-years of cigarette smoking). Together,

this work has established the physiological basis of variation in longevity within an isogenic population

of C. elegans and extended our ability to predict mortality from basic clinical measurements in humans.
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All the world’s a stage,

And all the men and women merely players;
They have their exits and their entrances,
And one man in his time plays many parts,
His acts being seven ages. At first the infant,
Mewling and puking in the nurse’s arms.
Then, the whining school-boy with his satchel
And shining morning face, creeping like snail
Unwillingly to school. And then the lover,
Sighing like furnace, with a woeful ballad
Made to his mistress’ eyebrow. Then, a soldier,
Full of strange oaths, and bearded like the pard,
Jealous in honour, sudden, and quick in quarrel,
Seeking the bubble reputation
Even in the cannon’s mouth. And then, the justice,
In fair round belly, with a good capon lined,
With eyes severe, and beard of formal cut,
Full of wise saws, and modern instances,
And so he plays his part. The sixth age shifts
Into the lean and slippered pantaloon,
With spectacles on nose and pouch on side,
His youthful hose, well saved, a world too wide
For his shrunk shank, and his big manly voice,
Turning again toward childish treble, pipes
And whistles in his sound. Last scene of all,
That ends this strange eventful history,
Is second childishness and mere oblivion,

Sans teeth, sans eyes, sans taste, sans everything.

—William Shakespeare, As You Like It, Act II, Scene VII
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Chapter 1

Introduction

Aging is a fundamental and universal experience of the human condition. In some ways, aging can be

considered to be development in reverse. Developmental processes start with a single-celled zygote

and guide it through embryonic developmental, birth, childhood, adolescence, and finally, sexually

mature adulthood. With each successive developmental stage, the individual grows stronger, more

able, and more independent. In contrast, aging begins with an adult in peak condition, weakens the

mind, dulls the senses, and saps the strength of the body. Gradually, an aging individual loses their

vitality, their acuity, their independence (and eventually, life itself).

Given the effects of aging, it is no wonder that attempts to slow or reverse its progression are as old

as civilization itself. Myths about substances with astonishing anti-aging properties have persisted for

millenia. The “elixir of life” and “fountain of youth” have been the subject of fervent interest on the

part of explorers, kings, and conquerers throughout recorded history. Alexander the Great, the first

Chinese emperor Qin Shi Huang, and (perhaps most famously) the Spanish conquistador Ponce de

León have all been connected to quests for these legendary substances [1]. As we know from history,

none of these efforts were successful.

On the other hand, with the advent of the scientific method and modern medicine, giant strides

have been made in the understanding and treatment of other disease processes. Joseph Lister applied

germ theory to surgery in the form of antiseptic techniques [2], and patient outcomes have improved

dramatically. With antibiotics, deaths from infectious disease in the United States have fallen from

797 (per 100,000 individuals) in 1900 to just 59 in 1996 [3]. Many forms of cancer, once only treatable

when small and localized enough to be completely removed by surgery [4–10], are now eminently
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curable using chemotherapy, targeted molecular therapies (such as imatinib for chronic myelogenous

leukemia [11]), and other modern treatment methods.

By comparison, our understanding of the aging process remains relatively immature. We do not

yet have a complete understanding of the root causes of aging or its evolutionary origins [12]. Until the

late 20th century, it was widely thought that aging had little genetic basis and was an entirely stochastic

process driven by entropy, by probabilistic damage accumulation (“wear and tear”) [13]. Furthermore,

epidemiological studies on twins have shown that only 25% of variability in human lifespan can be

possibly explained by heritable factors [14].

While it is clear that much remains to be discovered, aging research has progressed considerably

since the days of Ponce de León. A number of promising hypotheses have been proposed to explain the

core principles and evolutionary derivation of aging [12]. The discovery of the insulin/IGF-1 pathway’s

ability to extend life in the nematode Caenorhabditis elegans has illustrated the plasticity and coordi-

nated nature of the aging process [15,16], and has spearheaded an explosion of recent advances in our

understanding of the genetics of aging. In parallel, biodemographic approaches have characterized

the epidemiology of aging, describing it as an actuarial increase of mortality risk over time [17] and

chronicling historical changes in mortality rates [18].

In this preface, I review historical developments in three distinct but critically interdependent ap-

proaches to the study of aging: evolutionary theory, genetics and molecular biology, and biodemogra-

phy, motivating and contextualizing my dissertation.

1.1 Evolutionary eories of Aging

The fundamental challenge in understanding aging’s evolutionary origins lies in explaining its emer-

gence despite its drawbacks. Aging progressively impairs an organism’s ability to function, to survive,

to reproduce, to pass on its genes. Yet, aging is widely observed across the tree of life. Why? Here,

I review several prominent theories of the evolution of aging, highlighting how they each explain the

development of aging in spite of the reduction of reproductive fitness in aged individuals.

2



1.1.1 Programmed Aging

One prevalent idea about the nature of aging is that while it is harmful to the survival and reproductive

opportunities of aged individuals, it can beneficial to the species as a whole [19]. By reducing the fitness

of individuals from older generations, aging can reduce competition for limited resources and accel-

erate the pace of evolution by increasing generational turnover. Therefore, a type of group selection

causes species with aging phenotypes to outcompete those that do not age, or age less dramatically.

A major objection to this idea rests on the fact that many wild animal populations do not survive

to ages at which senescence is a significant contributor to mortality [20]. As a result, it is unlikely for

any substantial positive evolutionary pressure (or any evolutionary pressure) to act on aged organisms.

Therefore, aging could not have arisen by being positively selected for, and must be the consequence

of some other evolutionary process.

1.1.2 Mutation Accumulation

The theory of mutation accumulation incorporates the finding that selective pressures for senescent

individuals in the wild are either non-existent or very weak [20]. It posits instead that the aging process

is a result of genetic drift. Specifically, detrimental mutations in alleles that act late in life are subject

to only extremely weak purifying selection, and can drift to fixation on an evolutionary time scale.

As successive generations fix more of these detrimental late-life mutations, they accumulate in the

genome, and the aging process emerges.

One issue with the mutation accumulation theory is that it assumes the existence of genes that act

specifically in old age—that they are there (in the genome) to accumulate mutations in the first place!

If wild animals rarely survive to ages at which significant senescence occurs, why would they have genes

specific to old-age to begin with? The rather neat answer lies in the idea of “antagonistic pleiotropy”.

1.1.3 Antagonistic Pleiotropy

The idea of antagonistic pleiotropy solves the issue of the existence of old-age genes by not requiring

them specifically. Instead, it postulates that certain pleiotropic genes may have a positive influence on

fitness in youth, but the opposite effect in old age [21]. For example, a gene that promotes cell division

and robust growth may be beneficial in an adolescent, but may promote the growth of cancerous ma-
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lignancies in older individuals. Thus, antagonistic pleiotropy argues that although the aging process is

detrimental to an organism’s evolutionary fitness, its late-life harm is more than balanced by a higher

level of early-life fitness. Although aging itself is somewhat harmful, it is merely the side-effect of a

stronger beneficial process.

1.1.4 Disposable Soma

Another theory of aging, the disposable soma theory, refines the scope of the antagonistic pleiotropy

theory by focusing on energy usage. It asserts that there is an inherent tradeoff between investing in

somatic maintenance and reproduction [22]. In this theory, an individual who heavily invests energy

in reproduction does so at the cost of somatic maintenance; by being fertile in youth, an organism

sacrifices the energy required to sustain later-life health and function. True to its name, the disposable

soma theory answers our initial question by arguing that the most essential part of an organism is

actually the germline. The somatic cells are merely a temporary vehicle for the reproduction of more

germ cells. Thus, aging is not truly detrimental, since it primarily harms the soma. In fact, aging actually

benefits the germ cells (which, by old age, reside in youthful descendents) by investing additional

energy in reproduction.

1.1.5 Discussion

Today, the question of the evolutionary origins of aging remains open. Though antagonistic pleiotropy

is the most prevalent current theory, the search for specific illustrative genes has been inconclusive,

and clear and explicit examples have not yet been found [23]. It is possible that more than one of the

proposed theories has contributed to the evolution of aging, or that a yet-undiscovered mechanism is

responsible.

1.2 Molecular Mechanisms and Genetics of Aging

While the ultimate cause1 of aging remains uncertain, more proximate causes have been studied exten-

sively. A large body of work [16, 25–34] indicates that aging is a complex biological process with mul-

tiple contributing genetic pathways and molecular mechanisms of action. Here, I attempt to catalog,
1See [24] for a thorough discussion of this term.
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roughly chronologically, historical developments in our understanding of the mechanistic processes

underlying aging, and to briefly summarize the current state of the field.

1.2.1 Telomeres

Leonard Hayflick’s discovery of a limit to human cells’ in vitro replicative potential [35, 36] demon-

strated that senescence is a phenomenon at the cellular level in addition to being a macroscopic phe-

nomenon at the organismal level. Later, short telomere2 length was consistently found to be correlated

with age and reduced replicative potential in human cells [37]. This motivated the attractive hypothe-

sis that telomere shortening is a mechanism for human cellular senescence in vivo, and that it plays a

role in organismal aging.

However, studies on the relationship between telomere length and longevity have been mixed. In

C. elegans, animals with longer telomeres have been shown to have extended lifespans [38]. One study

in humans has found that individuals with shorter telomeres have higher mortality risk than similarly-

aged peers [39]. On the other hand, mice with the telomerase gene knocked out seem to have normal

aging phenotypes and lifespans [40], and additional human studies have found no correlation between

telomere length and mortality when the results are controlled for age [41, 42].

1.2.2 Insulin/IGF-1 Signaling

Mutations in a number of signaling pathways can result in an extended lifespan phenotype in model

animals. The most well-characterized of these signaling pathways is the insulin/IGF-1 pathway, which

is known to modulate lifespan in nematodes, flies, and rodents [43]. The ability of this pathway to

influence lifespan was a landmark discovery, effecting a paradigm shift in our understanding of aging.

As the first signaling pathway known to extend lifespan in a model animal when perturbed [15, 16]

(also see figure 1.13), the insulin/IGF-1 pathway demonstrated that aging is a coordined process that

it is not simple an accumulation of stochastic degradation.

Subsequent studies have elucidated a complex signaling network downstream of the insulin/IGF-1

receptor involving mediators such as DAF-16 and AKT-2, as illustrated in figure 1.2a. Further, the

insulin/IGF-1 receptor cascade is subject to modulation by several hormones and environmental cues,

2Telomeres are protective repetitive DNA sequences at the ends of chromosomes.
3This is perhaps the single most famous figure in all of aging research.
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Figure 1.1: The longevity of daf-2 mutants. We can see that daf-2 single mutants have an extended lifespan phenotype,
while daf-16 single mutants and daf-16; daf-2 double mutants have normal lifespans. This indicates that daf-16
is required for the lifespan-modulating effects of daf-2, and that daf-16 is downstream of daf-2 in the signaling
cascade. Adapted from figure 4 in [16].

which can also act in parallel to regulate lifespan (figure 1.2b-c).

Figure 1.2: Regulation of C. elegans aging by an elaborate endocrine network. Adapted from figure 3 in [44].

1.2.3 Dietary Restriction

While the insulin/IGF-1 pathway is the most well-characterized prolongevity genetic pathway, dietary

restriction (also known as caloric restriction), in which calories are limited to 60–70% of ad libitum in-
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take, is the most well-understood intervention. It was first observed in 1935, whenMcCay and Crowell

published their finding that by severely restricting nutrient intake, the lifespans of laboratory mice

could be dramatically extended [45]. Since then, the lifespan-prolonging effects of dietary restriction

have been observed in a variety of model animals, including other rodents, worms, and yeast [44].

Somewhat mixed but generally positive outcomes have also been reported in primates [46–48].

Figure 1.3: Signaling network of caloric restriction in yeast. Adapted from figure 2 in [44].

While the lifespan-prolonging effects of dietay restriction are well-documented, the general mech-

anism by which caloric restriction works remains unclear. One idea is that caloric restriction reduces

an organism’s metabolic activity, therefore lowering the amount of reactive oxygen species produced

and reducing the oxidative damage caused by those reactive oxygen species. This, according to the

free-radical theory of aging [49], will slow the aging process and result in extended life.

While the general mechanism through which caloric restriction acts remains unclear, its down-
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stream targets in budding yeast have been identified. Figure 1.3 outlines the pathway through which

dietary restriction acts in yeast, acting through a Ras-GTPase-mediated pathway before activating

NAD and Sir2. Interestingly, dietary restriction in yeast acts by silencing gene expression through

chromatin remodeling [44]. However, it is not yet clear how the silenced genes go on to produce a

phenotype and ultimately extend yeast lifespan.

1.2.4 Discussion

In general, genetics research on aging has been very successful at discovering the pathways and net-

works through which lifespan-associated genes act. In addition to the two pathways highlighted here,

several others are known to modulate the aging process independently [26, 29]. Many efforts have

been made to understand these pathways in a wide variety of model organisms, and a cohesive picture

of the upstream portion of aging regulation has been built.

In sharp contrast, however, the mechanisms through which aging phenotypes are mitigated or ex-

acerbated by these pathways remains unclear. The majority of studies consist of making genetic mod-

ifications and then observing lifespans. Through a series of careful and insightful mutants using tools

such as doublemutants, tissue-specific knock-outs, and knock-downs, scientists have been able to build

models of the complex webs of interactions depicted in figures 1.2 and 1.3. This has served to move us

a few steps closer to the ultimate phenotype down the signaling cascade. Conceptually, however, we

have not made substantial advances in understanding the underlying mechanisms of aging.

1.3 Biodemography of Aging

In contrast with more deductive studies on the mechanisms of aging, inductive studies by biodemogra-

phers have provided rich epidemiological descriptions of aging. Despite its biological complexity and

uncertain evolutionary origin, the defining empirical feature of aging is simple: At its core, aging is

simply the statistical phenomenon of an increased probability of death over time. Alternatively, as an

analogy, while evolutionary theory and molecular biology attempt to answer the questions of “why?”

and “how?” we age, respectively, biodemography tackles the question of “when?” [50].
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1.3.1 Gompertz-Makeham Model of Mortality

The field of biodemography has its roots in an observation made by Benjamin Gompertz, an actuary,

in 1825. While seeking to increase efficiency of policy pricing for a life insurance company, Gompertz

found that human mortality increases roughly exponentially with age [17, 51]. In other words, the

hazard function has the form

µ(x) = αeβx, (1.1)

where µ(x) represents the probability of death for an individual at age x, and α and β are constants

(and e is the base of the natural logarithm). This means that at a given age, the increase in mortality

rate (i.e. aging) is proportional to the current mortality rate. While the mechanistic basis for this

property of human mortality is still unclear, it suggests certain features for the underlying biological

process.

In general, theGompertzmodel fromequation 1.1 is a good fit to realmortality data [52]. However,

Gompertz himself noted two important exceptions: The first is that the Gompertz model does not

appear to describe mortality trends at especially advanced ages (above age 92)4. The second issue is

that the equation fails to model extrinsic mortality (such as accidents, etc.), which does not increase

with age. A later modification, generally attributed toMakeham, to equation 1.1 addresses the second

issue [53, 54]. The modified Gompertz-Makeham equation,

µ(x) = αeβx + λ, (1.2)

includes a λ term for extrinsic mortality. Note that the overall hazard function µ(x) is composed of

an age-dependent term αeβx and an age-independent term λ. In addition to founding the field of

biodemography itself, Gompertz’s insight continues to be relevant today, providing insights into the

biology of aging [55].

4This is discussed more fully in a later section.
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1.3.2 Late-Life Mortality Deceleration

One of themost striking features of empirically observedmortality curves is a deceleration of mortality

at the oldest ages [18]. As mentioned earlier, this was noted by Gompertz himself, and is a subject

of ongoing discussion among biodemographers. The phenomenon is illustrated in figure 1.4, which

presents the actual data in red with a non-decelerated Gompertz function in dark blue for comparison.

Further, models derived from logistic and quadratic fits are displayed in cyan and green, respectively.

The actual data dramatically deviates from the dark blueGompertz curve and subsequently plateaus.

This indicates that in some sense, the oldest individuals have stopped or slowed aging. Their mortality

risk is no higher (or just barely higher) than that of their (slightly) younger counterparts. One pro-

posed explanation is grounded in reliability theory have arisen, and argues that the aging process can

be understood as a series of discrete steps, with individuals at the final steps of the progression all ex-

periencing similar mortality risk [55]. While a number of interesting ideas have been proposed, there

is currently no consensus on the mechanism underlying late-life mortality deceleration.

Figure 1.4: Age trajectories of death rates for human females. The red line represents an aggregation of data from Japan
and 13 Western European countries. The cyan, and green lines represent best fit curves for the full data derived
from logistic and quadratic functions, respectively. The darker blue line (note the logarithmic scale on the y-axis)
represents a Gompertz-Makeham curve fit to the data between ages 80 and 84. Adapted from figure 3 in [18].
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1.3.3 Postponement of Senescence

One relatively recent development in the biodemography of aging is the finding that mortality at old

ages is being postponed [56]. The key piece of evidence for this assertion lies in the roughly constant

gap between theX5 andX10 curves in figure 1.5, which indicate the ages at which female life expectancy

is 5 and 10 years, respectively. This implies that the X10 age represents a consistent “aged” state for

women, since all women at age X10 can expect to reach age X5 in a similar span of time5.

Figure 1.5: The postponement of mortality for females. Adapted from figure 1 in [56].

In some sense, this finding can be interpreted to mean that a Japanese 80-year-old woman in 2000

is equivalent in health to a Japanese 70-year-old women in 1950. If true, this would be very inter-

esting indeed. However, the usual caveat about historical trends applies: two individuals from two

different eras are in different environments. Improved medical care, for instance, can increase the life

expectancy of sicker individuals. On the other hand, the impressive consistency of the X10–X5 gap

5To make an explicit analogy, if aging is a stereotyped journey consisting of discrete states, or “towns”, and stretches of
road (periods of time) traveling between them, we can considerX10 andX5 to be two towns along the way, and the period of
time between them to be the road leading from one town to the other. In figure 1.5, we see that the length of road between
these two states has not changed, while the corresponding chronological ages have increased. In the physical road analogy,
this suggests that the road ahead has not been compressed or stretched, and that the distance landmarks beyond X5 have
also remained constant. Thus, the character of the journey ahead is constant for a woman at age X10, regardless of her
chronological age and historical time period.
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argues for mortality postponement being genuine.

1.3.4 Biomarkers of Aging

While survival statistics can predict much of the mortality of a large population in aggregate, they are

less accurate when applied to individuals. Since aging can vary significantly for different individuals at

the same age, an individual’s chronological age is a limited predictor of their actual mortality risk [18].

In order to develop improved prognostic capability for mortality, demographers have sought to

identify biomarkers of aging, functionally defined as a biological parameter of an organism that either

can better predict functional capability or mortality risk than chronological age [57]. This is motivated

by an array of valuable applications, including improved actuarial modeling, biological investigations

of the mechanisms of aging and therapeutics to slow its progress, and the clinical ability to better target

interventions to at-risk patients.

Driven by these goals, researchers in the 1970s and 1980s proposed a large number of candidate

biomarkers of aging [58–60]. Though these studies identified several putative biomarkers, many of the

published multivariable composite scores were overfit—that is, overly tuned to a very specific dataset.

For example, Consequently, these composite scores did not have broad applicability, and later studies

failed to validate the original findings [57, 61–64].

Subsequently, much recent work has had a narrower scope, focusing on predicting specific dis-

ease processes instead of all-cause mortality [65–67]. Many physiological parameters, such as blood

pressure [68] and body mass index (BMI) [69], have been well-characterized as risk factors for cardio-

vascular disease and other specific morbidities. In general, these studies have focused on middle-aged

individuals and have emphasized risk over a limited term, often just 5- or 10-year periods (e.g. [70]).

In addition, most of the work on both general biomarkers of aging and specific risk factors has been

limited to the analysis of data from single time points (with a few exceptions, e.g. [71]).

1.3.5 Discussion

Overall, recent studies in biodemography have been the source of a number of interesting insights

into the aging process. The plateauing of mortality at very old ages suggests that there is no inherent

limit to maximum human lifespan. The postponement of mortality illustrated by figure 1.5 means that

individuals today can look forward to significantly longer, healthier lives than our ancestors.
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By focusing on only mortality, however, biodemographers are limited to a relatively sparse descrip-

tion of aging, and often have difficulty drawing mechanistic conclusions from their results. Further,

aggregate results describing population-level trends in the aging process do not address individual dif-

ferences in the aging process. I believe that a renewed focus on biomarkers and individual variation

could provide a richer description and deeper understanding of aging. For example, attempting to

detect and measure individuals who are more or less “aged” than their chronological age peers could

lead to actionable insights into modulators of the aging process. It could help a generation to age well

and to maintain good health and function longer.

1.4 Mechanics of Phenotypic Aging Trajectories

The results described in the body of the dissertation lie at the intersection of biodemography andmech-

anistic aging research. In particular, they serve to bridge some of the gaps between known molecular

regulators of aging, which are upstream factors that modulate the aging process, and biodemography,

which uses longitudinal tracking to understand downstream trends in aging and mortality in a popula-

tion. Here, we focus on the characteristic patterns of physiological changes that accompany the aging

process and exert their effects between molecules responsible for the initial portions of the cascade

and the final organismal endpoint of increased mortality and death. In both the tractable model worm

C. elegans and in more limited data in humans, this work uncovers fundamental insights into the nature

of aging process and its associated physiological changes.

In the first chapter, we begin by developing a novel culture system to longitudinally and system-

atically monitor the physiological changes that occur in aging C. elegans. By following a genetically

homogeneous population of 734 individuals reared in identical environments, we develop novel in-

sights into how initial small-scale stochastic fluctuations are amplified through organismal physiology

into dramatic differences in lifespan. This work, which is the first systematic study of the biology of

individuality in metazoans, found that while long- and short-lived individuals start adulthood in similar

levels of physiological health, longer-lived individuals then experience slower declines in function, but

spend a disproportionately large portion of life in poor physiological health. We further find that the

period of early-life good health is much less variable than the period of late-life advanced senescence,

which we therefore conclude to be a more plastic phase of life.
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In the second chapter, we extend a similar approach to existing human data from the Framingham

Heart Study (FHS), the largest and most comprehensive longitudinal study of human physiology to

date. In that study, we show that simple physiological measurements have broader lifespan-predictive

value than previously believed and that incorporating information from multiple time points can sig-

nificantly increase that predictive capacity. Using longitudinal data from a cohort of 1349 human par-

ticipants in the Framingham Heart Study, we show that even in early-to-mid adulthood, almost 10%

of variation in future lifespan can be predicted from simple physiological parameters. Further, differ-

ent clinical measurements are predictive of lifespan in different age regimes, indicating a diversity of

mechanisms of physiological aging. Finally, we find that blood glucose and blood pressure are best

considered as measures of a rate of “damage accrual”, such that total historical exposure, rather than

current measurement values, is the most relevant risk factor (as with pack-years of cigarette smoking).

This insight is broadly applicable, indicating that future recovery does not necessarily fully compensate

for present poor health.
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Chapter 2

e Physiological Basis of Variation in

Longevity within an Isogenic Population

The authors of the following publication [72] are: William B. Zhang, Drew B. Sinha, William E.

Pittman, Erik Hvatum, Nicholas Stroustrup, and Zachary Pincus.

Abstract

The surprising degree of variation in lifespan within even homogeneous populations remains largely

unexplained. We sought to understand how physiological aging differs between long- and short-lived

individuals within a population of genetically identical C. elegans reared in a homogeneous environ-

ment. Using a novel culture apparatus, we longitudinally monitored aspects of aging physiology across

a large population of isolated individuals. Aggregating several measures into an overall estimate of

senescence, we find that long- and short-lived individuals start adulthood on an equal physiological

footing. However, shorter-lived individuals then experience more rapid declines in function. Unex-

pectedly, we find that longer-lived individuals, despite a slower rate of decline, spend a disproportion-

ately large portion of life in poor physiological health. Overall, the period of early-life good health is

much less variable than the period of late-life advanced senescence, which we conclude to be a more

plastic phase of life.
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2.0 Introduction

Pioneering work over the last quarter century has identified many molecular pathways involved in de-

termining lifespan, illustrating that aging is a plastic process [13, 44, 73]. To date, many genes, small

molecules, and environmental interventions have now been found that alter a population’s mean lifes-

pan. However, even in very homogeneous conditions, there is a large degree of variability in lifespan

around that mean [18]. Comparatively little is known, however, about the origins and consequences

of inter-individual differences in the aging process.

Often, the bulk of variability in lifespan is of neither genetic nor environmental origin. Studies

estimate that only 15–25% of variation in human lifespan is attributable to genetic variation [14, 74–

76]. Moreover, even genetically identical populations of model organisms, reared in tightly-controlled

laboratory conditions have a similar degree of variability in lifespan as outbred humans (relative to the

population mean) [18,77]. Even conditions andmutations that dramatically extend or shorten lifespan

do not generally change the degree of inter-individual variation in longevity [78].

This raises a fundamental question: what distinguishes long-lived from short-lived individuals,

when they are genetically identical and reared in the same cage, vial, or culture dish? We and oth-

ers have identified inter-individual differences in gene expression that are predictive of future lifespan

in C. elegans, either early [79,80] or late [80,81] in adulthood. However, chronological lifespan merely

measures the end of a complex process of aging and senescence. Pioneering studies of individual ani-

mals have therefore sought correlates of early andmid-life physiological health as well [80,82–84]. But

due to technical limitations and the use of invasive measurements, most previous efforts were unable

to follow individuals longitudinally. Therefore, the relationship between the complex progression of

aging and ultimate lifespan has been relatively unstudied. In this work, we focus on the physiological

changes that characterize senescent decline in C. elegans [85–88].

In particular, we aimed to determine how the physiological process of aging differs between long-

and short-lived wild-type C. elegans. Do individuals with different lifespans senesce in a qualitatively

different manner? Or does an identical aging process simply play out at a different rate for short-

and long-lived individuals? In order to address these questions, we developed a novel experimental

technique to isolate and image many individual C. elegans over each animal’s entire lifespan. This is

not possible with existing automated vermiculture methods, which generally focus on ennumeration
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of lifespans for screening purposes [89–91], and are not designed for making detailed measurements

of physiology. Here, using custom microscopy hardware and image-analysis software, we performed

a battery of non-invasive physiological measurements of each individual, every three hours over their

approximately two-week lifespans. This rich dataset of longitudinal measures of 734 animals, based on

over 400,000 images obtained at subcellular resolution, allowed us to retrospectively understand how

and when the aging process diverges between long- and short-lived individuals.

Overall, we find two chief differences between longer- and shorter-lived individuals. First, though

long- and short-lived individuals start out on an equal physiological footing, longer-lived individuals

experience a lower rate of physiological decline. In effect, individuals with long lifespans age more

slowly than their short-lived siblings. Second, counterintuitively, long-lived individuals experience an

overall lower average quality of life compared to shorter-lived individuals, due to a disproportionately

extended “twilight” period of low physiological function. Indeed, inter-individual differences in the

length of this low-function period account for the bulk of all variability in lifespan. These findings lead

us to conclude that within a homogeneous population subject to stochastic perturbation, the most

plastic period in the aging process is end-of-life senescence.

2.1 Results

2.1.1 Longitudinal Measurements of Physiology in Individual C. elegans

In order to measure physiological changes throughout aging, we developed a specialized culture sys-

tem to allow for observation of many freely moving, isolated individuals throughout their entire lives.

This new system dramatically improves on our previous culture techniques [79], allowing for denser

culture (∼100 animals per standard microscope slide) and fully-automated image acquisition and pro-

cessing. In brief, we produce a smooth hydrogel surface atop standard microscope slides by polymer-

izing polyethylene glycol (PEG) monomers in situ (see Materials and Methods). We then dispense a

grid of ∼2 mm diameter droplets of concentrated bacteria onto the gel, to provide a food source. After

allowing each droplet to adsorb to the surface, we transfer one egg from the temperature-sensitive ster-

ile strain spe-9(hc88) to each food pad. Finally, we pour a thin layer of polydimethylsiloxane (PDMS)

over the gel. While polymerizing overnight at room temperature, the PDMS also cross-links with un-

reacted acrylate moieties in the PEG gel. This cross-linking proceeds everywhere except where the
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PEG is separated from the PDMS by the bacterial food pads. Thus while each individual C. elegans is

free to move about the 2-dimensional surface of its food pad, it is constrained at all borders by strong

covalent bonds within and between the PEG and PDMS polymers (Figure 2.1A).

We placed slides constructed in this fashion on the stage of a computer-controlled microscope,

housed in a temperature- and humidity-controlled enclosure. Every three hours, timepoint data for

each individual was acquired autonomously, driven by custommicroscope-control scripts (Figure 2.1B).

We designed a comprehensive panel of phenotypic measurements encompassing five diverse aspects

of aging physiology. For this, we drew from previously validated “biomarkers of aging” [57,92]. These

biomarkers measure aspects of physiology that differ prospectively between long- and short-lived in-

dividuals, and can thus be used to predict an individual’s future lifespan. First, we examined C. ele-

gans neuromuscular function, as measured by locomotory ability. Second, we assessed age-associated

tissue deterioration through quantitative measurements of textural order and disorder in brightfield

images [79, 93]. Third, we measured age-related declines in homeostatic ability, as manifested in the

accumulation of fluorescent non-hydrolyzable materials in intestinal endosomes [85, 94–97]. Fourth,

we evaluated nutritional history and somatic investment through cross-sectional body size [79, 98].

Fifth, we quantified reproductive output and investment through the number of oocytes laid [88, 99].

These measurements were all performed via custom, fully automated image segmentation and anal-

ysis software (Figure 2.1C and D; see Materials and Methods). Taken together, this panel comprises

a diverse set of individual measurements, allowing us to characterize longitudinal changes in distinct

aspects of aging physiology.

2.1.2 Distinct Physiology of Long- vs. Short-Lived Individuals

In total, we observed 734 individuals from hatching to death, through the stages of larval development,

reproductive maturity, and senescence. The population, maintained throughout life at 25°C, had a

mean lifespan of 12.1 days with a standard deviation of 2.3 days fromhatch, within the range of lifespans

previously observed at this temperature [79, 100, 101]. In order to rule out potential systematic biases

in our data, we confirmed that overall lifespan distributions are consistent across experimental runs

spanning roughly three months of time (Figure 2.7A), and are not influenced by the specific culture

slide used within an experimental run, or by the spatial position of an individual’s food pad within the

slide (Figure 2.7B–G).
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Figure 2.1: Experimental workflow. (A) A novel
culture device allows for lifelong,
longitudinal observation of a high-
density array of isolated individual C.
elegans. Individuals are free to move
about on pads of bacterial food, but
cannot depart the pads. (B) Images
of each individual C. elegans are ac-
quired every three hours throughout
life, at 2.2 μm resolution. The spe-
9(hc88) temperature-sensitive sterile
strain is used to prevent reproduc-
tion. Unfertilized oocytes are visi-
ble as dark clumps on the bacterial
food pad. (C) Custom software au-
tomatically annotates the region of
the food pad and the position of the
animal. (D) These annotations are
used to make several physiological
measurements (left to right): Move-
ment between and within timepoints
is scored as a measure of neuromus-
cular function. The brightfield im-
age of the animal is used to auto-
matically score tissue integrity. Red
autofluorescence is used as a mea-
sure of macromolecular homeosta-
sis. To characterize somatic main-
tenance, body size is measured as
cross-sectional area. Last, the num-
ber of oocytes laid is counted as a
measure of reproductive investment.
(E) This battery of five longitudinal
physiologicalmeasurements is aggre-
gated together to produce an esti-
mate of remaining lifespan at each
timepoint. We use this “prognosis”
as an operational definition of an
individual’s overall degree of senes-
cence. (F) Examples of prognosis
scores. Left: a healthy, young adult
with 10.3 estimated days of life re-
maining. Right: an unhealthy, late-
life animal with 0.5 estimated days
remaining.
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We find that virtually all variation in lifespan is due to differences in the period between repro-

ductive maturity and death, rather than in the length of larval development (Figure 2.7H–J). Though

larval development takes 2.1 days on average (17.3% of an average animal’s lifespan), the variability

of time in development accounts for less than 0.1% of the variability in total lifespan. Therefore, we

limited our analysis to the animals’ lifespans after reproductive maturity.

The mean adult lifespan in our population is 10.0 days, ranging from 2.2–15.5 days. For illustra-

tion, we grouped the animals into seven cohorts by lifespan, with the first cohort containing individuals

with adult lifespans of 2–4 days, the second containing individuals with adult lifespans of 4–6 days, and

so forth (Figures 2.2A and B, 2.8), and plotted cohort averages of each of our physiological measure-

ments over time (Figure 2.2C). For our measures of autofluorescence, body texture, and long-term

movement, we observed a graded difference between shorter-lived and longer-lived cohorts (Figure

2.2D–F). At any given age, the shorter-lived cohorts had higher levels of autofluoresence, worse tissue

maintenance, and were less mobile than their longer-lived peers. In contrast, for our measures of body

size and reproductive output, we noticed a nonlinear trend among our lifespan cohorts (Figure 2.2G

and H). For animals with adult lifespans from 2 to 8 days, larger body size and greater reproductive

output were correlated with longer life, as in the existing literature [79, 88, 98]. Among the longest-

lived cohorts, however, this trend reverses itself: of individuals with lifespans between 10 and 16 days,

longer-lived individuals tend to be smaller and produce fewer oocytes.

We therefore examined this nonlinear relationship between longevity and certain aspects of phys-

iology more closely. Overall, this effect is largely driven by a small subpopulation (13.7% of the total)

of small, sickly-looking individuals which appear unhealthy throughout their lives but have very long

lifespans (Figure 2.9A–G). We have also found evidence of this population in standard C. elegans cul-

ture conditions (Figure 2.9D). Overall, however, the existence of this sub-population suggests that

there may be a component of functional health that can be de-coupled from lifespan. In particular,

it appears that some longer-lived individuals may be qualitatively less healthy over the course of their

lives compared to shorter-lived peers. Regardless, excluding this population does not substantially

alter the results described below (Figure 2.10A–H).
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Figure 2.2: Variation in lifespan and physiology within a homogeneous population. (A) The survival curve for all 734 indi-
viduals in our study population, as a function of age after reproductive maturity. (B) Histogram of the number
of individuals in each of seven cohorts, grouped by lifespan into 2-day-wide bins. A kernel density estimate of
the underlying distribution of ages at death is shown in black. (C) An illustration of how we calculate trends of
a given measurement over time. At left, the distributions of values for some lifespan-predictive measurement
are shown for a long- and short-lived cohort, at day three of adulthood. Dashed lines show the mean of each
distribution. At right, the trend in these means over time is plotted for each cohort. (D) Trends of bulk move-
ment between three-hour timepoints over time, for each lifespan cohort. Due to the limited size of the food pad,
this measurement saturates around 160 μm/hour. (E) Trends in autofluorescence over time, measured as the
80th-percentile of whole-body red-channel autofluorescence. (F) Trends in tissue integrity score over time. This
score is produced via support vector regression that maps brightfield image texture into an estimate of remaining
days of life. (G) Trends in cumulative oocytes laid. (H) Trends in body size.
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2.1.3 Differences in Aging Rate and Health at Death in Long- vs. Short-Lived Individ-

uals

To understand how aging differs in long- and short-lived individuals, we developed a physiological

measure of overall senescence. Since the main hallmark of aging is increased mortality over time,

older and less healthy individuals will have a shorter expected future lifespan. As each of the diverse

physiological parameters we measured is a known biomarker of aging—that is, a predictor of future

lifespan—we therefore aggregated these measures into a single, maximally informative estimate of

future lifespan. We use this estimate, which we term prognosis, as a measure of an individual’s degree

of senescence, or, equivalently, its state of health.

To construct this prognosis, we first verified that in our dataset, each of our measures is a bona

fide biomarker of aging and of mortality (Table 2.3). The trends over time of the raw measurements

also indicate that the relationship between each parameter and future lifespan is generally nonlinear

(Figure 2.2D–H). Therefore, we used support vector regression to define a nonlinear mapping from

an individual’s measured physiological parameters at any given timepoint to an estimate of its future

lifespan at that time. The overall r2 for this regression is 0.695 (10-fold cross-validated r2 = 0.669),

suggesting that throughout life, these measures are able to explain the bulk of the total variability in

future lifespan. While some of the measurements correlate with one another and thus redundantly

measure certain aspects of physiology (Table 2.1), each contributes a measurable amount of inde-

pendent, nonredundant information about future lifespan (Tables 2.2 and 2.3). This indicates the

physiological parameters as a set, and thus our prognosis score, report on multiple distinct aspects of

the aging process. We then performed extensive controls, described in the Methods and Resources

section, to verify that this prognosis score is neither driven by our choice of regression methodology,

nor by any particular physiological measurement.

We next use this prognosis of future lifespan to distinguish among several possibilities for how long-

and short-lived individuals differ in physiological aging. First, it could be that short-lived individuals

simply start their adulthoods in worse health (the “starting point hypothesis”; Figure 2.3A). Second,

it is possible that senescence proceeds more rapidly in short-lived individuals (the “rate of aging hy-

pothesis”; Figure 2.3B). Finally, it may be the case there is no difference in the trajectory of senescent

decline between long- and short-lived individuals, and all individuals start out with similar prognoses
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and decline at the same rate. Here, shorter-lived animals will be those that die “prematurely”, in more

healthy-appearing states, before the full process of senescence has played out (the “premature death

hypothesis”; Figure 2.3C). In this latter case, all individuals would be, by our measurements, indis-

tinguishable over the course of aging, and death would be stochastic and unpredictable. Short-lived

individuals would differ from long-lived ones by simply happening to be the ones that died early.
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Figure 2.3: How does aging physiology differ between long- and short-lived individuals? (A) “Starting Point” hypothesis:
long-lived individuals start their adulthood healthier than short-lived individuals. (B) “Rate of Aging” hypoth-
esis: long-lived individuals age more slowly than do short-lived individuals. (C) “Premature Death” hypothesis:
short- and long-lived individuals are indistinguishable over the course of their lives. In this case, differences in
lifespan arise from stochastic, inherently unpredictable causes of death or from factors outside our prognostic
criteria. (D) Trends in the decline of prognosis over time, for each of the seven lifespan cohorts in Figure 2.2.
These qualitatively match the “rate of aging” and “premature death” hypotheses from panels b and c. (E) We
observe little quantitative relationship between lifespan and starting health (measured by an individual’s prog-
nosis score at reproductive maturity). (F) In contrast, there is a strong negative correlation between lifespan and
the rate of decline of physiological health. (G) Last, there is a moderate negative correlation between health at
death and lifespan, suggesting stochasticity in death or unmeasured differences in functional health.

Strikingly, the trajectories of our health score look very similar to those predicted by the “rate of

aging” and “premature death” hypotheses, even from a cursory visual inspection of Figure 2.3D. To
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test this more rigorously, we examined the relationships between lifespan and an individual’s prognosis

at the first day of adulthood (i.e. its starting health), its rate of decline in prognosis (its rate of aging,

or senescence), and its prognosis at the time of death (how “premature” its demise appears to have

been). As shown in Figure 2.3E and F, there is no substantial relationship between starting health and

lifespan, but a strong correlation between the rate of decline (as measured by simply subtracting an

individual’s ending health from its starting health and dividing by its lifespan) and lifespan (Pearson

r2 = 0.676; p < 10−180, F-test; Spearman r2 = 0.615; p < 10−153, F-test) and a modest one between

prematurity of death and lifespan (Pearson r2 = 0.096; p < 10−30, F-test; Spearman r2 = 0.123;

p < 10−16, F-test). (Quadratic fits were used to estimate r2 values due to the clear nonlinearity

of these two relationships.) This latter trend indicates a modest but significant contribution either

from stochastic death, or from differences in health not captured by our measurements. Overall, we

conclude that long-lived individuals are not physiologically different from short-lived individuals at

the start of reproductive maturity, but age more slowly throughout adulthood and experience the full

scope of senescent decline.

2.1.4 Uneven Rates of Aging Produce Lowerality of Life in Longer-Lived Individu-

als

Next, we asked whether long and short-lived individuals exhibit qualitatively different aging processes,

in addition to having quantitatively different rates of aging. The black line in Figure 2.4A presents a

“neutral rate of aging” for both long- and short-lived individuals: the level of health decreases uni-

formly throughout life. However, an individual might have a positive deviation (green line) from the

neutral, straight-line decline, such that the individual appears tomaintain a high level of function until a

precipitous decline at the very end of its life—a phenomenon known as “morbidity compression” [102].

Alternately, an individual may have a negative deviation (red line) from the neutral decline, and will

thus senesce relatively early in its life, and persist in an extended “twilight” period of low physiological

function for a larger fraction of its life.

To visualize these qualitatively different classes of functional declines independently of their quan-

titative rate, we represent physiological change not as a function of chronological time, but as a func-

tion of the relative fraction of lifespan elapsed. If the process of aging is identical between long- and

short-lived individuals except for differences in rate, then the trajectory of physiological decline of co-
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horts with different lifespans should fully overlap when rescaled to “relative time” (Figure 2.4C, left).

Alternately, long-lived individuals may have systematically more positive deviations, and thus will re-

main healthy for a greater proportion of their lives (Figure 2.4C, center). This would lead long-lived

animals to experience a higher average quality of life, as measured by the area under the health vs.

relative-lifespan curve for long-lived vs. short-lived individuals. Finally, the opposite may be true:

long-lived individuals may exhibit declines in health relatively earlier in life, leading to a greater pro-

portion of life spent in poor health (Figure 2.4C, right). In this scenario, due to an extended period

of poor physiological function, longer-lived individuals would have an overall lower average quality of

life than shorter-lived individuals.

Figure 2.4D shows that this latter hypothesis is most accurate, and that long-lived individuals ex-

perience a lower average quality of life compared to their short-lived counterparts. This is visible not

only in the cohort averages of Figure 2.4D but in the clear negative relationship between each individ-

ual’s lifespan and the deviation from a neutral, straight-line decline from the population mean starting

prognosis to the mean prognosis at death (Figure 2.4E; Pearson r2 = 0.207; p < 10−37, F-test; Spear-

man r2 = 0.183; p < 10−33, F-test). Longer-lived animals typically have negative deviations (i.e. they

decline in health relatively early in life), while shorter-lived animals have more positive deviations and

decline in health relatively late in life.

To control for shorter-lived individuals dying in healthier states, we repeated the analysis with each

animal’s health set to 1 at the onset of reproductive maturity and to 0 at the time of death (Figure 2.4F

andG). Even when adjusted for each individual animal’s starting and ending health, the association be-

tween long lifespan and negative deviation remains (Pearson r2 = 0.123; p < 10−21, F-test; Spearman

r2 = 0.106; p < 10−18, F-test).

Taken together, these results demonstrate that longer-lived individuals have systematically worse

qualitative physiological declines, despite the fact that longer-lived individuals typically have a better

health prognosis on any chronological day of life (Figure 2.3D). The extended end-of-life period of low

function in long-lived animals simply drags the overall average quality of life below that of short-lived

animals.
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Figure 2.4: Systematic differences in the trajectories of physiological decline. (A) The pattern of decline can differ even
among individuals with identical lifespans, starting prognoses, and ending prognoses. Individualsmay experience
senescence evenly throughout life (black; “neutral decline”). Alternately, senescence can accelerate early (red;
a “negative deviation”), which produces a relatively extended period of low function. Finally, senescence can
be delayed (green; “positive deviation”), leading to a compressed period of low function. (B) We quantify an
individual’s trajectory deviation as the area between the actual trajectory (green) and a linear decline (black).
This value is positive for trajectories above neutral decline, and negative for those below. To compare individuals
with different lifespans, we divide this total area by each individual’s lifespan to produce the “average deviation”
throughout life. (C) How trajectories of senescent decline may differ between long- and short-lived individuals.
Left: Senescence is identical between long- and short-lived individuals and is merely stretched in time, causing
the trajectories to align when plotted in terms of the relative fraction of life elapsed. Middle: Longer-lived
individuals might have more positive deviations from neutral declines. Right: Shorter-lived individuals may have
more positive deviations. (D) Trajectories of senescence for different lifespan cohorts in relative time. As in the
“negative hypothesis”, shorter-lived individuals are systematically healthier at any given fraction of adult lifespan.
(E) Lifespan is plotted against “average deviation”, where neutral decline is defined as the straight line between
the population mean prognoses at reproductive maturity and death. Longer-lived individuals have negative
deviation, while short-lived individuals experience positive deviation. (F) After controlling for differences in
starting and ending prognosis, the “negative hypothesis” still applies qualitatively and (G) quantitatively.
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Figure 2.5: In both chronological (A) and relative (B) time, the trajectory of physiological aging can be thresholded into
a span of high physiological function (“healthspan”; time spent above dotted line) and a span of low function
(“gerospan”; time below dotted line). (C) In chronological time, longer-lived cohorts generally have longer
period of good prognosis. However the differences in healthspan between these cohorts are small compared to
the differences in gerospan. (D) In relative time, it is clear that longer-lived individuals are healthy for a smaller
fraction of their total lifespan than shorter-lived individuals. (E) Data from a previous experiment using spe-
9(hc88); fer-15(b26) individuals on standard C. elegans culture conditions [91] confirm that individuals with longer
lifespans spend a larger fraction of their life in poor physiological function, as measured by fraction of life spent
moving very poorly or not at all (n = 55 in each group). (F) An equivalent analysis of movement data from our
culture apparatus produces similar results (n = 146 in each group). Across our population, lifespan positively
correlates with both (G) healthspan (as calculated in panel A), and (H) gerospan. Compared to healthspan,
variability in gerospan explains almost twice as much of the variability in lifespan (r2 of 0.302 vs. 0.672). (I) This
is because, despite having the same mean duration by construction, gerospan (red curve) is more variable across
our study population than healthspan (green curve). The mean of both distributions is 5.0 days, with standard
deviations of 1.3 and 1.9 days for healthspan and gerospan respectively.

2.1.5 Longer-Lived Individuals Have Disproportionately Extended Gerospans

The qualitatively worse senescent declines of long-lived individuals can be observed more starkly by

partitioning each individual’s life into two segments: “healthspan”, the period of high physiological

function, and “gerospan”, the period of low physiological function. Given a threshold prognosis score,

we define healthspan as the period of time from the beginning of adulthood until an individual’s prog-
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nosis dips below that threshold for the first time. Gerospan is then the remainder of life thereafter

(Figure 2.5A and B). In order to make a neutral comparison, we selected a threshold value that yields

identical average healthspans and gerospans across the population: 5.0 days each. (Similar analysis

with different thresholds yields essentially identical results to the below; see Figure 2.11A–P.) Figure

2.5A and C show that, unsurprisingly, longer-lived individuals enjoy longer healthspans in absolute

chronological time. However, the differences in healthspans among long- and short-lived cohorts are

small compared to the differences in gerospans.

In contrast, we observe that despite this long chronological healthspan, longer-lived individuals

nevertheless experience a systematically larger fraction of their total lives in senescent gerospan (Fig-

ure 2.5B and D). This is analogous to the results of our analysis of the full trajectories of senescence,

above: long-lived individuals enjoy a better prognosis at any point in absolute chronological time, but

experience declines in health relatively early in their lives.

In order to validate this key result and ensure it is not an artifact of our culture system or analysis

methods, we turned to data from the “Lifespan Machine”, which measures the movement individual

C. elegans on standard culture plates in order to tally lifespans in an automated fashion [91]. The

Lifespan Machine tracks individual animals once they are no longer able to move more than a few

hundred microns in any direction; therefore this system inherently measures a “fast moving span”

and a “slow moving” span for each individual. We manually validated these span annotations from

an extant dataset with a similar genetic background and culture conditions, and computed the “slow

moving span” (i.e. gerospan) as a fraction of total lifespan for each individual. As shown in Figure

2.5E, longer-lived individuals in these conditions experience a larger portion of life in senescent, slow-

moving states. If we define the slow-moving and fast-moving spans similarly in our present dataset, we

observe a very similar trend in (Figure 2.5F).

This analysis provides an intuitive understanding of why longer-lived individuals spend more of

their lives in gerospan. Figure 2.5G and H plot the relationship between total lifespan and healthspan

or gerospan, respectively. Longer-lived individuals are both likelier to have longer healthspans and

longer gerospans. However, while inter-individual differences in healthspan account for about 30%

of the total variability in lifespan, differences in gerospan account for about 67% of variability in lifes-

pan. As shown in Figure 2.5I, though we selected a threshold that yields equal mean healthspan and

gerospan, there is simply more inter-individual variability in gerospan than healthspan. Indeed, this
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relationship holds for several choices of threshold (Figure 2.11Q andR) and our full deviation analysis,

which is not subject to any arbitrary threshold. In sum, variability in lifespan is in large part driven by

differences in individual gerospans, and much less so by differences in healthspans. Taken together,

this indicates that gerospan may be inherently more flexible than healthspan.

2.2 Discussion

Physiological Aging of Long vs. Short-Lived Individuals
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Figure 2.6: Summary of key findings. We evaluated the process of senescence in long- vs. short-lived individual, based on a
“prognosis” score that aggregates multiple measures of aging physiology. First, based on our physiological mea-
surements, long- and short-lived individuals are indistinguishable at the beginning of adulthood. Second, soon
after the onset of reproductive maturity, short- and long-lived individuals diverge rapidly. Overall, short-lived
individuals experience faster physiological aging than long-lived individuals. In addition, short-lived individuals
often die “prematurely”, while still healthy-appearing. Third, we discovered that long-lived individuals spend a
disproportionate fraction of their lives in highly senescent, ill-appearing states. This extended “twilight period”
of low physiological function has the paradoxical effect of reducing the overall average physiological health of
long-lived individuals to below that of short-lived individuals.

In this work, we examined the substantial variation in lifespan and aging physiology that exists even

in isogenic individuals reared in identical environments. We developed a novel culture method that,

for the first time, allows high-resolution imaging of a large number of individual C. elegans throughout

life. This enabled us to analyze many different aspects of each individual animal’s physiology in lon-

gitudinal fashion, from hatching until death. Motivated by similar efforts to define and characterize a

“biological age” [57, 103] or “frailty score” [104, 105] in humans, we aggregated these measurements

into a prognostic estimate of days of life remaining. Using this prognosis, we were able to determine
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how the progress of senescence differs between longer- and shorter-lived individuals.

As one might expect for a genetically identical population reared in homogenous conditions, long-

lived C. elegans do not begin adulthood with healthier physiology according to any of our measures.

This is consistent with our previous work, which found that while physiological measurements made on

the third and fourth day of adulthood can readily distinguish long- from short-lived individuals, phys-

iological measures earlier in life cannot [79]. However, several fluorescent gene-expression reporters

can be used to predict future lifespan even at the onset of adulthood: the level of the microRNA

mir-71, which regulates insulin signaling [79], and the expression, after a heat shock, of the heat-shock

response protein hsp-16.2 [106]. Thus, while long- and short-lived animals are not physiologically distin-

guishable at the start of adulthood, gene-regulatory and biochemical differences between individuals

with different future fates are already established, and only later manifest themselves as phenotypic

differences.

Indeed, we find that the population does not remain physiologically identical for long. Systematic

differences between the longest- and shortest-lived individuals are detectable less than one day after

reproductive maturity. Overall, shorter-lived animals age more rapidly throughout adulthood. That

is, short-lived individuals are generally in worse physiological health than their long-lived counterparts

at any particular chronological age. In addition, short-lived individuals typically die before experienc-

ing the most advanced stages of senescence. However, senescence typically occurs relatively late in

life in shorter-lived individuals, which thus remain healthy-appearing for a large fraction of their lives.

In contrast, longer-lived animals undergo the full range of senescent decline, from good to ill health.

These declines typically begin relatively earlier in life, leading long-lived animals to die after an ex-

tended twilight period of low physiological function (Figure 2.6). While the mechanisms underlying

this expansion in fractional gerospan in long-lived individuals are unclear, it is possible that they may

result from diminished homeostatic capacity in older animals. One possibility is that phenotypically

similar individuals entering gerospan may nevertheless have different degrees of homeostatic capacity

(also known as “organ reserve” [107,108] or “resilience” [78,109]. Such latent, unobservable variabil-

ity could allow some individuals to persist longer than others in highly senescent states. Alternately, a

uniformly diminished homeostatic reserve in gerospanmight leave individuals susceptible to stochastic

insults (e.g. free-radical damage or protein translation errors) that would be survivable by a healthier

individual. In this scenario, the variability in gerospan would be driven by the rate at which these in-

30



sults occur. Therefore, determining the mechanistic underpinnings of these systematic trends in aging

physiology is an important direction for future study. Finally, we identified a previously uncharacter-

ized subpopulation of individuals that demonstrate these trends in the extreme. Small in size, with

very poor oocyte production, and qualitatively and quantitatively ill appearing, these individuals are,

however, extremely long-lived. Nevertheless, our overall findings are neither driven by this popula-

tion nor by any specific physiological measurement. Instead, we have identified graded trends across

physiological systems, from the shortest-lived to the longest-lived of individuals within a population.

Our examination of physiological variability throughout aging provides an interesting contrast with

a recently discovered invariant property of survival statistics in C. elegans. Stroustrup and colleagues

rigorously demonstrated that a number of diverse interventions—including oxidative stress, different

ambient temperatures, and lifespan-extending mutations—do not change the overall shape of the sur-

vival curve, but merely scale it uniformly in time [78]. The authors argue that these interventions

must therefore all act, directly or indirectly, on a single emergent parameter (termed “resilience” by

the authors) that determines lifespan. In contrast, our data show that within a single population, the

processes that drive variation in physiological aging do not scale uniformly between long-lived and

short-lived individuals. Further, by visual inspection we find that different individuals segregate into

very different “terminal phenotypes” in old age, such as gonadal hypertrophy, large collections of clear

fluid, “wrinkling” of the cuticle due to loss of body size, and distended intestines due to packing of bac-

teria (Figure 2.9H–K). Overall, it is clear that there exists a diversity of qualitatively different ways in

which individuals can be unhealthy prior to death, suggesting that the drivers of inter-individual vari-

ability in health within a population may be different from those that modulate lifespan distributions

between populations. Perhaps surprisingly, we did not observe any significant differences in lifespan

among individuals with different terminal phenotypes (Figure 2.9L and M). Thus, consistent with the

findings of Stroustrup et al., distinct physiological processes of aging can nevertheless converge, per-

haps through a shared mechanism of “resilience”, on very similar mortality statistics.

Our data also offer a new perspective on recent studies of functional declines in health in long-

lived mutants. Bansal et al. measured the population average of several tests of stress resistance and

physiological function in wild-type and long-lived mutant C. elegans, defining “healthspan” for any

particular test as the period of time with greater than 50% of themaximal wild-type functional capacity

[110]. These investigators found that while some long-livedmutants had longer healthspans in absolute
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time on certain functional tests, the relative fraction of life spent in good health was diminished in

many long-lived mutant strains. (A notable exception is the insulin-signaling deficient mutant daf-2;

see also [111].) This overall result has been taken by some to suggest that these long-lived mutants

are not good models for wild-type aging, and that the observed extension of relative time spent in

poor life may have been a pleitropic effect of the lifespan-extending genetic mutations. However, we

show here that this is not necessarily the case. Our study, which incorporates comprehensive, lifelong

measurements and an integrated definition of overall health (suggested to be critical factors for such

an analysis [112]) shows similar results in a genetically identical, wild-type population. Specifically, we

observe a continuum in which the fraction of lifespan spent in good health systematically diminishes

from short- to long-lived individuals. The results of Bansal et al. can thus be seen as placing many

longevity mutants along this same continuum. As such, a relative expansion in gerospan may not be a

“bug” specific to certain long-lived mutants, but rather a general property of the aging process itself.

Together, these results demonstrate that extended lifespan, whether induced by stochastic events

(in the case of inter-individual variability) or mutations (in the case of inter-strain differences), is often

due to a disproportionate extension of a highly senescent “twilight period” of low physiological func-

tion. Put simply, it appears that an individual’s gerospan is inherently more plastic than its healthspan.

Determining whether these results hold in more complex organisms is an important task. First, it

is certainly true that in humans and other mammals, longer-lived individuals typically enjoy more total

days of healthy life. Likewise, it is well established that individuals with higher physiological function

and better physical fitness generally live longer. In particular, several remarkable studies in humans

have shown that heritable factors that favor exceptional longevity also increase healthspan [113, 114].

Further, longevity is more generally associated with a longer chronological span of healthy life, both

within a relatively homogeneous Ashkenazi Jewish population [115], and among the ethnically diverse

general Chinese population [116]. Our results in C. elegans are identical: longer-lived C. elegans enjoy

longer absolute healthspans (Figure 2.4C), and better health at any point in time is correlated with

extended future lifespan (Figure 2.4A).

It is an open question, however, whether longer-lived individuals within mammalian populations

spend a smaller fraction of their lives in good health, as we observe in C. elegans (Figure 2.4D). As

above, several studies in humans have demonstrated in different contexts that extended lifespan is

associated with extended chronological healthspan. Nevertheless, it remains a matter of some debate
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whether longer life brings with it a proportionate extension in healthspan [114, 117]. As most of the

current studies do not include data on ultimate lifespan, either due to cross-sectional study design or

ongoing follow-up in a longitudinal study, these analyses cannot yet shed light on the proportion of life

spent in good health in short- vs. long-lived individuals. Some recent work has been able to address

this question by asking whether modern advances in medicine have been more successful in extending

disability-free life (healthspan) or activity-limited life (gerospan). There is evidence that, especially

for females, medical advances have prolonged longevity primarily by expanding the late-life period

of morbidity, without much effect on the span of disability-free life [118]. Fundamentally, however,

whether it is worthwhile to extend lifespan in this fashion is a value judgment that may vary between

individuals, and is thus more in the realm of clinical decision analysis [119–121] than experimental

biology. (The simple analysis in Figure 2.11S–U shows how the desirability of such extensions can

depend on the threshold for acceptable quality of life.)

It is, however, an experimental question whether there are conditions or mutations that can extend

fractional healthspan as easily as fractional gerospan. In mammals, exercise [122] and caloric restric-

tion [47] may extend the ratio of healthspan to gerospan. In C. elegans, the data from Bansal et al.

and Hahm et al. both show that the long-lived daf-2 mutant enjoys a proportionate extension of both

healthspan and gerospan in relevant physiological assays. Thus the daf-2 mutant likely departs from

the relationship between long life and extended fractional gerospan that we have characterized. Our

longitudinal approach now allows for a more detailed understanding of how health integrates across

physiological systems and evolves over time in different genetic backgrounds, filling a previously un-

met experimental need [112]. Future studies with these approaches promise to unravel the complex

relationship between the plasticity of different phases of senescence and lifespan extension in general.

2.3 Methods and Resources

2.3.1 Key Resources Table

33



Source Identifier

PDMS Dow Corning Sylgard 184 Silicone Elastomer Kit

PEG-DA Jenkem Technology 8ARM(TP)-SH-10K

PEG-8SH Sigma-Aldrich 455008 Aldrich

spe-9(hc88) C. elegans Caenorhabditis Genetics Center BA671

Image Acquisition Software Github https://github.com/zplab/rpc-scope

Analysis Software Github https://github.com/zplab/wormPhysiology

Data Supplemental Data Supplemental_Data.zip

Resources and Reagents

2.3.2 Contact for Reagent and Resource Sharing

Zachary Pincus is the Lead Contact and may be contacted at 660 South Euclid Avenue; Department

of Genetics, CB 8232; St. Louis, MO 63110-1031 and at zpincus@wustl.edu.

2.3.3 Experimental Model and Subject Details

Strains

The C. elegans strain spe-9(hc88), a temperature-sensitive fertilization-defective mutant, was provided

by the Caenorhabditis Genetics Center (CGC). The strain was maintained at 15◦C and assays were

conducted at a restrictive temperature of 25◦C. spe-9(hc88) strains are widely used as an alternative to

5-fluoro-2’-deoxyuridine (FUDR) sterilization, and have been validated to have wild-type lifespans at

the restrictive temperature of 25.5◦C [101] and wild-type brood sizes at the permissive temperatures

of 16◦C and 20◦C [123]. We used spe-9(hc88) to avoid the known confounding effects of FUDR [124]

and to eliminate issues due to the timing of administration (such as being administered at different

phases of life for fast- and slow-developing individuals on the same slide).

2.3.4 Method Details

Single-Animal Vermiculture

Standard 25 mm× 75 mm (1.2 mm thick) glass microscopy slides (obtained from VWR International,

LLC; Radnor, PA, USA) were used as the base support for our culture device. Before use, the glass

slides were bonded to custom-machined aluminum frames (outer dimensions 25 mm × 75 mm; inner

dimensions 20mm× 70mm; thickness 2.36mm) using 120 μLof polydimethylsiloxane (PDMS; Sylgard
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184 Silicone Elastomer Kit obtained fromDowCorning Corporation; Midland, MI, USA). The PDMS

was then cured in an oven at 100◦C for 3 hours. The device was then cleaned with distilled water and

ethanol, sealed in aluminum foil, and dry heat sterilized at 160◦C for 2 hours.

Next, a modified version of standard nematode growth media (NGM) [125] was made by mixing

97.5 mL of distilled water with 0.3 g of sodium chloride, 0.25 g of peptone, 0.1 mL of 1M magnesium

sulfate, and 2.5 mL of 1M potassium phosphate buffer (pH 6.3, titrated with sodium hydroxide and

hydrochloric acid). We omit the calcium chloride used in standard NGM, and modify the pH of the

potassium phosphate buffer from 6.0 to 6.3 to allow for polymerization of the polyethylene glycol

(PEG) gel. Instead of autoclaving, which can darken sugar-containing solutions, we filter-sterilized

the modified NGM to maximize optical clarity.

Then, 8 μL/mL of cholesterol stock (5 mg/mL in 95% ethanol) was added to the NGM, which was

then used to separately dissolve an 8-armedPEG-thiol (JenkemTechnology; Beijing, P. R. China; Item

Number: 8ARM(TP)-SH-10K) and PEG-diacrylate (Sigma-Aldrich; St. Louis, MO, USA; Catalog

Number: 455008Aldrich) at 140mg/mL and 40mg/mL, respectively. TheNGM-PEG-thiol andNGM-

PEG-diacrylate solutions were thenmixed in a 1:1 ratio and vortexed vigorously. 1.7 mL of themixture

was then added to the center of the aluminum frame on the culture device. The device was tilted to

break the surface tension of the PEG mixture and to achieve an even layer of fluid. The device was

then placed in a standard 100 mm × 15 mm petri dish. A delicate task wipe was cut in half and added

to the petri dish, and 700 μL of distilled water was pippetted onto each half wipe in order to maintain

the humidity of the petri dish and prevent excessive evaporation of water from the PEG gel. Finally,

an additional 25 mm × 75 mm glass slide was sterilized with ethanol, dried, and placed on top of the

aluminum frame to further isolate the gel during polymerization. The petri dish containing the device

is then left at room temperature for 90 minutes, during which the 8-armed PEG-thiol crosslinks to the

PEG-diacrylate via Michael addition.

Next, an array of 0.2 μL droplets of an OP50 E. coli (50% by mass) food source was deposited

onto the gel. Single, individual pretzel-stage eggs were picked into each droplet using an eyelash pick.

Approximately 100 eggs can be picked onto each slide in 20 rows of 5 eggs each. After the E. coli

droplets were dried, 1.2 mL of PDMS was deposited over the PEG gel using a syringe. The PDMS

polymerizes overnight; moreover where the gel is in contact with the PDMS (i.e. all locations other

than the bacterial food pad), hydrosilylation addition of unreacted moieties in the PDMS cure agent
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with unreacted acrylate groups in the PEG-diacrylate cause a the PDMS and gel to bond covalently,

trapping each animal on its individual food pad. Immediately after deposition of the PDMS, the glass

slide was placed on the stage of our computer-controlledmicroscope, and automated image acquisition

was initiated.

Image Acquisition

All images were acquired at 5× magnification using custom-built hardware and software. The mi-

croscope itself was housed in a climate-controlled enclosure to provide consistent temperature and

humidity for the animals studied. A thermoelectric cooler with continuous temperature monitor-

ing (Torrey Pines Scientific, La Jolla, CA) was used to maintain the temperature of the enclosure

at 25.0± 0.1◦C. Humidity was maintained at 85± 10% relative humidity by including a tub of distilled

water in the enclosure and using two aquarium air diffusion stones along with an air pump to aerate

the water. Consistent air circulation was achieved with the use of several 80 mm DC fans attached to

the thermoelectric cooler and the walls of the enclosure.

Custom in-house control software was developed and used to move to and automatically focus

[126, 127] on each animal every three hours. At each time point, a series of six brightfield and one

fluorescence imagewas acquired, taking approximately 17 seconds per animal. The fluorescence image

and one bright-field image were taken first, taking less than 60 ms combined time to acquire. The

fluorescence image taken with a 50 ms exposure using a TRITC filter (Semrock part DA/FI/TR-3X-

A-000), with light from a Lumencor Spectra X. The center wavelengths of the excitation and emission

bands were 556 nm and 613 nm, respectively. Next, a series of 5 bright-field images to assess short-

termmovement were taken over 4.5 seconds, with 0.5 seconds between the first and second images, 1.0

seconds between the second and third images, during which time the animals were stimulated with a

0.5 second pulse of cyan light [128], 1.5 seconds between the third and fourth images, and 1.5 seconds

between the fourth and fifth images. For the first 10 timepoints, the 0.5 second pulse of cyan light and

the fluorescence image were omitted to avoid excessive stimulation of the animals during early larval

development.

The microscope was automatically re-calibrated at every three-hour timepoint for spatial and tem-

poral variation in light-source intensity for both the bright-field lamp and the fluorescence light source.

In addition, images were corrected for variation in sensitivity of the camera image sensor. Finally,
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bright-field exposure times and lamp intensities were adjusted at every time point to optimize the dy-

namic range of the acquired images. Overall, all images were corrected for background camera noise

(dark current), spatial illumination inhomogeneity (flat field) and temporal variation in illumination.

After correction, image intensity values were divided by the exposure time to render all images com-

parable.

Image Segmentation

The acquired image series were then manually annotated for time of hatching, reproductive maturity

as indicated by first oocyte laid, and death as indicated by total cessation of coordinated movement.

Eight developmentally defective animals that never reached reproductivematurity were censored from

our analysis, while 734 were included in the final analysis. All animals were observed for an additional

30 hours post-mortem to confirm death.

A suite of custom image analysis software was written to automatically identify the location of the

animal in the over 400,000 bright-field images. First, the rough location of the animal was determined

using background subtraction [129], which takes advantage of the fact that the animal moves around

in the image, while other objects such as the bacterial lawn are stationary. The current image was com-

bined with the previous nine images taken for the same individual by computing a pixel-wise median,

which produces a model of the background. This background image was then subtracted from the

current image, and thresholded for only pixels above the 97.5th percentile of brightness. The largest

contiguous object in the thresholded image was then identified as the animal, and all internal holes in

the object were filled. This location was then masked out of future background contexts to improve

the robustness of the background model. Finally, the algorithm was run backwards in time to identify

the position of the animal during the first nine time points.

Next, the location of the individual was refined using the Canny edge detector [130]. While the

background subtraction segmentation is sensitive to changes in the bacterial lawn surrounding the

animal due to illumination changes or physical churning by the animal’s movement, edge-detection

defines sharper borders based on local spatial intensity gradients. The largest object in the field of

view (excluding the edge of illumination from vignetting and the border of the bacterial lawn itself)

was identified as the worm, and all internal holes in the object were filled. However, edge detection

can occasionally locate the wrong object due to a large pattern of churned bacteria or the introduction
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of a piece of dust or air bubble into the field of view. Therefore, the background subtraction-derived

location was used as a fallback for cases in which the location of the animal as defined by edge detection

was more than 50 pixels from the location as identified by the more reliable background subtraction.

Finally, a support vector classifier [131] with a radial basis function kernel (γ = 4.88 × 10−4, ν =

8.99×10−4) was trained on the intensities from 10,000 5× 5 pixel patches from 1,617 manually drawn

outlines of worms to distinguish between the animals and their surrounding bacteria. This classifier was

then applied to patches centered on each individual pixel within the animal’s location as computed by

the previous two methods. Using the SVC allowed us to improve our image segmentation significantly

in cases in which the animal was in a curled posture and looped back on itself. While the simple hole-

filling would naïvely identify patches of bacteria surround by the animal as part of the animal itself,

the SVC is generally able to distinguish between the two. Overall, the automated segmentation agreed

strongly with manual segmentation, with Pearson correlation coefficients between automated size and

manual size of r2 = 0.81 and between automated position and manual position of r2 > 0.95 (Figure

2.7K–O).

Physiological Panel Design

Several “biomarkers of aging” [57,92] – properties that can predict an individual’s future lifespan better

than age alone – have previously been identified in C. elegans. As each biomarker represents an aspect

of physiology that differs between long- and short-lived individuals at some point in life, we selected a

number of these markers to follow longitudinally across our population. First, we examined C. elegans

neuromuscular function, as measured by locomotory ability. Previous work has shown that locomotion

in age-matched animals diminishes over time, correlates with remaining lifespan [79,86–88,98,132] and

with the degree of sarcopenia [87]. Second, we assay the accumulation of non-hydrolyzable autoflu-

orescent material in intestinal endosomes [85, 94–97]. This is a marker for declining macromolecular

homeostatic capacity over time, as individuals fail to clear the fluorescent material at a pace that bal-

ances its production. We chose to follow red-wavelength autofluorescence, which is most predictive

of future lifespan [97], instead of blue or green autofluorescence, which largely report only incipient

death [97, 133]. Third, we also measure declining tissue organization through quantitative measure-

ments of textural order and disorder in brightfield images, which has been shown to correlate with

lifespan [79,87,93,134]. Fourth, C. elegans reproductive output has also been identified as a biomarker
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of aging and has been shown to decrease with age [99]. While Huang et al. found no correlation be-

tween reproduction and lifespan was found in unmated, and hence sperm-limited, hermaphrodite C.

elegans [88], we here examine the temperature-sensitive sterile strain spe-9, which lays unfertilized

oocytes, and may thus not be sperm-limited in the same way. Finally, we and others have shown that

overall body size, and rate growth and/or shrinkage correlate with future lifespan [79, 98]. Taken

together, this panel comprises a diverse set of individual measurements, allowing us to characterize

longitudinal changes in distinct aspects of aging physiology (Figure 2.1C–E).

Image Measurements

Autofluorescence measurements (in red wavelengths; excitation 556 nm, emission 613 nm [97]) were

made using pixel values within the defined animal location from automated image segmentation of the

paired bright field image. Intensity values were extracted and summary statistics such as 80th percentile

of intensity and integrated total body fluorescence were computed. Using a percentile score provides

robustness against brightly autofluorescent clumps of debris or oocytes overlapping the individual (see

Figures 2.12A for example illustrative images).

Four measures of motion were made at each time point. Long-term movement over a three-hour

time scale was assessed by measuring the displacement between the centroid of the animal’s current

position and that of its previous position. Unstimulated movement and stimulated movement imme-

diately before and after blue-light stimulus were assessed by measuring distances between centroids

of animal positions from the sequence of five bright-field images (see Figures 2.12B for example illus-

trative images).

An estimate of the number of oocytes laid was used as a proxy for reproductive investment. This

measure was made by measuring the total area of objects detected within the bacterial lawn, excluding

the animal itself and thresholding by size to remove small debris. This total area was then divided

by the area of an average oocyte to obtain an estimate of the total number laid (see Figure 2.12C for

example illustrative images).

Cross-sectional size of the animal was measured by simply counting the number of pixels within

the segmented animal region. The raw measured size was adjusted for a slight systematic bias towards

overestimating the animal’s size by a linear regression between automatically measured size and size

from 1,617 human-drawn outlines of the animal (see Figure 2.12D for example illustrative images).
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Finally, a quantitative measure of tissue degeneration similar to the score used in [79] was made by

analyzing pixel patches within animals’ outlines. First, representative texture patches (“textons”) for

different stages of decrepitude were obtained by grouping images by the number of days remaining in

the animal’s life at that point in time (bins of 0–3, 3–6, 6–9, etc. days left to live), sampling 200,000 17×

17 pixel patches from images in each bin, and using k-means classification to obtain 60 representative

patches for bin (300 total). Then, the texture pattern of an image was defined as the 300-element

histogram containing the count of closest-matching 17 × 17 pixel patches for each texton, normalized

by the total number of patches in that image. These histograms were then used to train a support vector

regression procedure to produced a tissue degeneration score in terms of predicted days of remaining

life (see Figure 2.12E for example illustrative images).

2.3.5 antification and Statistical Analysis

Smoothing

Individual animals’ time traces for each measurement were smoothed using 3 iterations of the one-

dimensional Savitzsky-Golay filter [135] with a 1-degree polynomial and awindow length of 9. Smooth-

ing parameters were optimized for signal-to-noise ratio by checking the physiological measurements’

cross-validated partial Pearson r2 with remaining lifespan, controlled for age.

Pearson Correlations

p-values for Pearson correlations were computed using an F-test for linear regression. The F-statistic

was computed in the usual way as F = r2(df)/(1− r2), where df = n− 2, n is the sample size, and r

is the Pearson coefficient of correlation. The test was performed under the assumption of normality,

so for computational efficiency an appropriately renormalized chi-squared distribution was used as an

approximation for the exact Fisher-Snedecor distribution.

Non-parametric Spearman Correlations

To validate our results without the assumption of normality made in computing Pearson correlations

and their associated p-values, we also performed non-parametric Spearman correlations on the ranks
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of the data for each statistical test. These were performed identically to the Pearson correlation p-

values.

Overfitting and Multiple Hypothesis Testing

To guard against overfitting, we analyzed the cross-validated Pearson r2 for defining our prognosis

measurement, finding that it was not substantially lower than the non-cross-validated version.

All p-values are significant even after applying the conservative Bonferroni correction for 6 tests.

Alternate Health Regression Approaches

To ensure that our results were not artifacts of our particular methodology for computing a prognosis

and measuring health, we examined several alternate approaches, none of which altered our key find-

ings. Table 2.4 demonstrates our key results are visible from each of the individual aspects of aging

physiology we measured, without combining them to form the prognosis score. Figure 2.10I–P shows

that these results also hold when using linear regression to create the prognosis, which also allows the

relative contributions of each raw measurement used to be compared (Table 2.5). This indicates that

no specific measurement, nor the regression methodology, drives the central findings of this study.

Next, we used multivariate support vector regression to create alternates to our “prognosis” score.

By regressing against age rather than remaining lifespan we created a “youthfulness” or “biological

age” score [57,103]. Similarly, regressing against predicted three-day survival created a “frailty” score

[104, 105] (Figure 2.10Y, inset). Both frailty and youthfulness scores produced similar findings to our

approach above (Figure 2.10Q–X and Y–FF).

2.3.6 Data and Soware Availability

All physiological data used in this study is included with this manuscript in Supplemental_Data.zip.

The image acquisition software is freely available at https://github.com/zplab/rpc-scope, and the im-

age processing and statistical analysis software is freely available at https://github.com/zplab/wormPhysiology.

2.3.7 Additional Resources

None.
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Figure 2.7: Related to Figure 2.1. Data Quality Controls.
(A) Variation in the lifespan distributions on a trial-by-trial basis. Each trial consists of multiple physical slides
run simultaneously.
(B) There is some variation in the lifespan distributions on a slide-by-slide basis, but the results across all slides
were comparable. We re-analyzed our data excluding the two slides with fat tails on the left side, and found no
substantial changes to our results (data not shown).
(C–G)We also checked for lifespan effects from area of bacterial food source (C), distance from the center of the
slide (edge effects) (D), and x (E), y (F), and z-position (G) in the microscope enclosure, finding no substantial
biases.
(H–J) Scatterplots of the relationships between total lifespan, adult lifespan, and duration of larval development.
(K–L) Gallery of worm segmentations. Randomly selected sample images of manually (K) and automatically
(L) detected worm positions.
(M–O) Summary of worm segmentation accuracy. Correlations between summary statistics of manually- and
automatically-detected worm positions: cross-sectional size (M), position in the field of view along the x-axis
(N), and position in the field of view along the y-axis (O).
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Figure 2.8: Related to Figure 2.2. Randomly selected sample images of worms in each of our adult lifespan cohorts at day 2 of adulthood.
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Figure 2.9: Related to Figure 2.2. Subpopulation Analysis.
(A–B) Mottled subpopulation sample images. The “mottled” subpopulation is a small subpopulation (13.7% of
the total) of small, sickly-looking individuals which appear unhealthy throughout their lives but have very long
lifespans. Randomly selected sample images of worms in the “mottled” subpopulation (A), and the non-mottled
population (B) at day 2 of adulthood.
(C) Longevity of the “mottled” subpopulation.
(D) A bimodal size distribution in standard conditions. The kernel density estimate shown was generated from
22 surviving individuals at day 12 post-hatch. They were raised at 25◦C on a standard NGM plate with minor
modifications to match the conditions of our PEG gels: calcium chloride was excluded from the formulation,
4× the usual concentration of cholesterol was used, a more concentrated OP50 food source (50% by mass) was
used, and the pH of the NGM was titrated to 6.3 rather than the usual 6.0.
(E–G) Size distributions of subpopulations over time, at days 2 (E), 6 (F), and 10 (G) of adulthood.
(H–K) Gallery of images illustrating four distinctive morphological “fates” one day before mortality. Randomly
selected images for worms exhibiting a clear morphology (H), packing of bacteria within the digestive tract (I),
gonadal hypertrophy (J), and a wrinkled-appearing “compressed” or “pressurized” phenotype (K).
(L) Lifespan distributions for subpopulations exhibiting the four distinctive morphological “fates”.
(M) p-values from 2-sample Kolmogorov-Smirnov tests among the four “fates” subpopulations.
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Figure 2.10: Related to Figure 2.3 and Figure 2.4. Alternate Health Definitions.
(A–H) Key analysis excluding mottled subpopulation. Our key analysis is repeated, excluding the mottled sub-
population.
(I–P) Key analysis using linear regression. Our key analysis is repeated using a linear regression in place of a
support vector regression to generate the “prognosis” variable.
(Q–X) Key analysis using youthfulness. We repeat our key analysis by regressing our measured parameters
against age to create a “youthfulness” score, instead of regressing against remaining lifespan to create a “prog-
nosis” score. Biomarkers of aging have often been used to estimate an individual’s “biological age” in this
fashion [57]. Biological age, or “youthfulness”, is closely related to our original measure of prognosis: if a
chronologically old individual is nevertheless physiologically youthful appearing (a young “biological age”), it
is likely to live for relatively more days (a good “prognosis” score) [103]. As shown, using this “youthfulness”
score (scaled such that young individuals have a high “youthfulness”) as an alternative measure of senescence
does not alter the results of our analyses.
(Y, inset) Converting from prognosis to 3-day survival. Individual data points were binned into groups of in-
dividuals within a 0.5 day range of predicted remaining lifespan, and then the fraction remaining alive after 3
days was calculated to be the survival rate. A polynomial is then fit to convert from prognosis (predicted days
of remaining life) to predicted survival rate.
(Y–FF) Key analysis using survival rate. Our key analysis is repeated using “3-day survival” in place of “prog-
nosis”.
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Figure 2.11: Related to Figure 2.5. Thresholding Validation.
(A–D) Spans analysis is repeated using 25% threshold. Our spans analysis is repeated—dividing life into
“healthspan” and “gerospan”—using an alternate threshold so that 25% of life in spent in “healthspan”.
(E–H) Spans analysis is repeated using 37.5% threshold. Our spans analysis is repeated—dividing life into
“healthspan” and “gerospan”—using an alternate threshold so that 37.5% of life in spent in “healthspan”.
(I–L) Spans analysis is repeated using 62.5% threshold. Our spans analysis is repeated—dividing life into
“healthspan” and “gerospan”—using an alternate threshold so that 62.5% of life in spent in “healthspan”.
(M–P) Spans analysis is repeated using 75% threshold. Our spans analysis is repeated—dividing life into
“healthspan” and “gerospan”—using an alternate threshold so that 75% of life in spent in “healthspan”.
(Q) Plasticity analysis is repeated using 40% threshold. The analysis in Figure 2.5I is repeated for a threshold
which partitions 40% of the population’s total lifetime into healthspan (black) and the remainder into gerospan
(gray). After re-scaling to account for differences in means of the distributions, gerospan remains more vari-
able.
(R) Plasticity analysis is repeated using 60% threshold. The analysis in Figure 2.5I is repeated for a threshold
which partitions 60% of the population’s total lifetime into healthspan (black) and the remainder into gerospan
(gray). After re-scaling to account for differences in means of the distributions, gerospan remains more vari-
able.
(S–U) Quality of life analysis. Overall length of life compared to quality of life depends on definition of quality.
We defined a parameter analogous to “Quality-Adjusted Life Years” [120]. For simplicity, we assumed that
the “quality” of a C. elegans life at any point in time is proportional to its prognosis of remaining lifespan as
measured by our parameters. We then calculated the total “Quality-Adjusted Life Days” for each animal and
analyzed that variable’s relationship with lifespan (U). Unsurprisingly, longer-lived worms experience a higher
total number of “Quality-Adjusted Life Days”. To reflect the fact that it is possible to be in such poor health
that an individual may actually experience a negative quality of life, we adjusted our scaling so that having a
positive health score of “3 predicted days of life remaining” (T) or “6 predicted days of life remaining” (S) cor-
responded to zero utility/quality of life. In those cases, the overall “Quality-Adjusted Life Days” were reduced
more drastically for long-lived animals, to the point that in the “6 predicted days of life remaining” case, they
experienced substantially worse lives overall than their short-lived counterparts.
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2016.03.31 spe-9 16 123 2016.02.26 spe-9 11D 149 2016.02.26 spe-9 11D 134 2016.03.25 spe-9 15B 108 2016.03.14 spe-9 14 137

2016.03.31 spe-9 16 080 2016.03.31 spe-9 16 084 2016.03.25 spe-9 15B 044 2016.03.14 spe-9 14 100 2016.02.26 spe-9 11B 036

2016.02.26 spe-9 11D 145 2016.03.14 spe-9 14 066 2016.02.29 spe-9 12B 34 2016.02.29 spe-9 12B 39 2016.03.31 spe-9 16 048
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500 μm 500 μm 500 μm 500 μm 500 μm
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Figure 2.12: Related to Figure 2.1. Measurements Gallery.
(A) Autofluorescence at day 9 of adulthood. Representative randomly selected sample images of worms in
the lower (bottom), middle (middle) and upper (top) quintiles of autofluorescence at day 9 of adulthood. For
illustration, non-worm regions are masked out in black.
(B)Movement at day 5 of adulthood. Randomly selected sample images of worms in the lower (bottom), middle
(middle) and upper (top) quintiles of movement at day 5 of adulthood. For illustration, two consecutive time
points (separated by three hours) are superimposed here.
(C) Reproduction (Laid Oocytes) at day 3 of adulthood. Randomly selected sample images of worms in the
lower (bottom), middle (middle) and upper (top) quintiles of reproductive output at day 8 of adulthood.
(D) Body size at day 2 of adulthood. Randomly selected sample images of worms in the lower (bottom), middle
(middle) and upper (top) quintiles of cross-sectional size at day 2 of adulthood.
(E) Tissue integrity at day 2 of adulthood. Randomly selected sample images of worms in the lower (bottom),
middle (middle) and upper (top) quintiles of textural integrity at day 2 of adulthood.

54



Autofluorescence Prognosis Body Size Prognosis Reproductive Prognosis Texture Prognosis Movement Prognosis Overall Prognosis
Autofluorescence Prognosis 1.0 0.198 0.421 0.298 0.566 0.732
Body Size Prognosis 0.198 1.0 0.328 0.179 0.248 0.297
Reproductive Prognosis 0.421 0.328 1.0 0.164 0.297 0.434
Texture Prognosis 0.298 0.179 0.164 1.0 0.587 0.607
Movement Prognosis 0.566 0.248 0.297 0.587 1.0 0.847
Overall Prognosis 0.732 0.297 0.434 0.607 0.847 1.0

Table 2.1: Related to Figure 2.2.
Correlations between aspects of physiology and longevity.
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Total Lifespan Variance Explained Unique Lifespan Variance Explained

Movement Prognosis 0.588 0.030

Body Size Prognosis 0.213 0.014

Texture Prognosis 0.418 0.017

Overall Prognosis 0.519 0.024

Autofluorescence Prognosis 0.316 0.005

Reproductive Prognosis 0.695 N/A

Table 2.2: Related to Figure 2.2.
Contributions of different aspects of health to our overall prognosis in terms of their ability to predict remaining
lifespan. “Total” variance explained is computed as the r2 value between a prognosis made from only measure-
ments in that physiological category and remaining lifespan, while “unique” variance explained is computed as
the difference between the r2 value between the overall prognosis and lifespan and r2 value between the overall
prognosis excluding that category of physiology and lifespan.
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Total Lifespan Variance Explained Unique Lifespan Variance Explained

Movement 0.570 0.018

Movement (Stimulated A) 0.416 -0.00

Movement (Stimulated B) 0.425 -0.00

Movement Rate (Unstimulated) 0.290 -0.00

Cross-Sectional Size 0.046 0.012

Size Rate of Change 0.147 0.002

Textural Degradation 0.418 0.017

Autofluorescence 80th Percentile Intensity 0.519 0.024

Cumulative Oocytes Laid 0.041 0.006

Oocyte Laying Rate 0.284 0.000

Table 2.3: Related to Figure 2.2.
Contributions of different raw physiological measures to our overall prognosis in terms of their ability to predict
remaining lifespan. “Movement (Stimulated A)” is the movement rate of an individual 0.5–2.0 seconds after
stimulation with cyan light, and “Movement (Stimulated B)” is themovement rate of an individual 2.0–3.5 seconds
after stimulation.
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Start Rate End Average Deviation Relative Deviation

Autofluorescence Prognosis 0.031, 0.001 0.685, 0.470 0.487, 0.237 -0.445, 0.198 -0.362, 0.131

Reproductive Prognosis -0.129, 0.017 0.810, 0.656 0.266, 0.071 -0.144, 0.021 -0.526, 0.277

Movement Prognosis 0.038, 0.001 0.825, 0.681 0.183, 0.034 -0.389, 0.152 -0.452, 0.204

Body Size Prognosis 0.055, 0.003 0.704, 0.496 0.248, 0.062 -0.271, 0.073 -0.105, 0.011

Texture Prognosis -0.017, 0.000 0.347, 0.120 0.216, 0.047 -0.209, 0.044 -0.166, 0.027

Overall Prognosis 0.105, 0.011 0.822, 0.676 0.408, 0.167 -0.455, 0.207 -0.351, 0.123

Youthfulness Index -0.043, 0.002 0.747, 0.559 0.500, 0.250 -0.634, 0.402 -0.441, 0.194

Predicted Survival 0.065, 0.004 0.479, 0.230 0.412, 0.170 -0.437, 0.191 -0.300, 0.090

Linear Prognosis 0.041, 0.002 0.706, 0.499 0.330, 0.109 -0.448, 0.201 -0.356, 0.127

Non-Mottled Prognosis 0.041, 0.002 0.706, 0.499 0.330, 0.109 -0.448, 0.201 -0.356, 0.127

Correlations (Pearson r, r2 ) with Adult Lifespan

Table 2.4: Related to Figure 2.3 and Figure 2.4.
Correlations between geometric characteristics of trajectories and lifespan for individual aspects of physiology
and for alternate definitions of health.
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Weight Units Category
Autofluorescence 80th Percentile Intensity -0.75 Days per Standard Deviation Autofluorescence
Cross-Sectional Size -0.21 Days per Standard Deviation Body Size
Size Rate of Change 0.25 Days per Standard Deviation Body Size
Textural Degradation -0.86 Days per Standard Deviation Texture
Cumulative Oocytes Laid -0.31 Days per Standard Deviation Reproductive
Oocyte Laying Rate 0.18 Days per Standard Deviation Reproductive
Movement 0.99 Days per Standard Deviation Movement
Movement (Stimulated A) 0.05 Days per Standard Deviation Movement
Movement (Stimulated B) 0.27 Days per Standard Deviation Movement
Movement Rate (Unstimulated) -0.03 Days per Standard Deviation Movement

Linear Regression Weights

Table 2.5: Related to Figure 2.2.
Contributions of each raw measurement to the linear regression prognosis.
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2016.02.26 spe-9 11D 154 2016.03.31 spe-9 16 017 2016.03.25 spe-9 15A 27 2016.02.26 spe-9 11A 14

2016.03.31 spe-9 16 192 2016.03.31 spe-9 16 140 2016.03.25 spe-9 15B 080 2016.03.14 spe-9 14 119

2016.02.26 spe-9 11C 065 2016.03.14 spe-9 14 187 2016.02.20 spe-9 10A 02 2016.03.31 spe-9 16 036

Autofluorescence 80th Percentile Intensity at Day 7.0

500 μm

Figure 2.13: Randomly selected sample images of worms in the lower (bottom), middle (middle) and upper (top) quintiles
of autofluorescence at day 7 of adulthood. For illustration, non-worm regions are masked out in black.
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2016.03.25 spe-9 15A 86 2016.03.31 spe-9 16 194 2016.03.31 spe-9 16 203 2016.02.26 spe-9 11D 154

2016.03.25 spe-9 15B 005 2016.02.20 spe-9 10B 53 2016.02.26 spe-9 11C 063 2016.03.31 spe-9 16 046

2016.03.14 spe-9 14 192 2016.02.16 spe-9 9 065 2016.02.20 spe-9 10A 16 2016.03.04 spe-9 13B 31

Autofluorescence 80th Percentile Intensity at Day 8.0

500 μm

Figure 2.14: Randomly selected sample images of worms in the lower (bottom), middle (middle) and upper (top) quintiles
of autofluorescence at day 8 of adulthood. For illustration, non-worm regions are masked out in black.
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2016.03.14 spe-9 14 135 2016.03.25 spe-9 15A 40 2016.03.31 spe-9 16 123 2016.03.25 spe-9 15A 65

2016.02.20 spe-9 10B 53 2016.03.31 spe-9 16 080 2016.03.31 spe-9 16 200 2016.03.25 spe-9 15B 044

2016.03.25 spe-9 15B 096 2016.02.26 spe-9 11D 145 2016.03.25 spe-9 15B 078 2016.02.26 spe-9 11A 09

Autofluorescence 80th Percentile Intensity at Day 9.0

500 μm

Figure 2.15: Randomly selected sample images of worms in the lower (bottom), middle (middle) and upper (top) quintiles
of autofluorescence at day 9 of adulthood. For illustration, non-worm regions are masked out in black.
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2016.03.14 spe-9 14 160 2016.03.31 spe-9 16 158 2016.02.26 spe-9 11A 21 2016.02.20 spe-9 10A 25

2016.03.31 spe-9 16 072 2016.03.25 spe-9 15B 087 2016.03.31 spe-9 16 027 2016.03.31 spe-9 16 084

2016.02.20 spe-9 10B 42 2016.02.26 spe-9 11A 00 2016.03.31 spe-9 16 190 2016.02.26 spe-9 11B 015

Movement at Day 2.0

500 μm

Figure 2.16: Randomly selected sample images of worms in the lower (bottom), middle (middle) and upper (top) quintiles
of movement at day 2 of adulthood. For illustration, two consecutive time points (separated by three hours)
are superimposed here.
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2016.03.25 spe-9 15B 115 2016.02.26 spe-9 11D 149 2016.03.31 spe-9 16 193 2016.03.14 spe-9 14 044

2016.03.31 spe-9 16 129 2016.03.31 spe-9 16 122 2016.03.14 spe-9 14 106 2016.03.31 spe-9 16 084

2016.03.14 spe-9 14 070 2016.03.25 spe-9 15A 40 2016.03.14 spe-9 14 066 2016.02.29 spe-9 12A 22

Movement at Day 5.0

500 μm

Figure 2.17: Randomly selected sample images of worms in the lower (bottom), middle (middle) and upper (top) quintiles
of movement at day 5 of adulthood. For illustration, two consecutive time points (separated by three hours)
are superimposed here.
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2016.03.25 spe-9 15B 083 2016.02.26 spe-9 11C 093 2016.02.26 spe-9 11B 052 2016.02.29 spe-9 12A 18

2016.03.14 spe-9 14 098 2016.03.14 spe-9 14 081 2016.03.04 spe-9 13C 69 2016.02.26 spe-9 11B 017

2016.03.14 spe-9 14 092 2016.03.14 spe-9 14 192 2016.03.25 spe-9 15B 037 2016.03.14 spe-9 14 071

Movement at Day 8.0

500 μm

Figure 2.18: Randomly selected sample images of worms in the lower (bottom), middle (middle) and upper (top) quintiles
of movement at day 8 of adulthood. For illustration, two consecutive time points (separated by three hours)
are superimposed here.
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2016.03.14 spe-9 14 188 2016.03.14 spe-9 14 163 2016.03.14 spe-9 14 119 2016.02.26 spe-9 11A 21

2016.03.04 spe-9 13A 19 2016.03.31 spe-9 16 178 2016.03.31 spe-9 16 049 2016.03.14 spe-9 14 049

2016.03.04 spe-9 13C 59 2016.03.31 spe-9 16 020 2016.02.26 spe-9 11A 16 2016.02.26 spe-9 11A 04

Visible Laid Oocytes at Day 1.0

500 μm

Figure 2.19: Randomly selected sample images of worms in the lower (bottom), middle (middle) and upper (top) quintiles
of reproductive output at day 2 of adulthood.
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2016.03.25 spe-9 15B 046 2016.02.29 spe-9 12B 43 2016.02.26 spe-9 11D 143 2016.02.26 spe-9 11C 072

2016.02.26 spe-9 11C 096 2016.03.25 spe-9 15B 092 2016.03.14 spe-9 14 072 2016.03.04 spe-9 13C 57

2016.03.25 spe-9 15A 60 2016.03.31 spe-9 16 029 2016.03.25 spe-9 15B 077 2016.03.25 spe-9 15B 051

Visible Laid Oocytes at Day 2.0

500 μm

Figure 2.20: Randomly selected sample images of worms in the lower (bottom), middle (middle) and upper (top) quintiles
of reproductive output at day 5 of adulthood.
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2016.03.25 spe-9 15B 027 2016.02.26 spe-9 11D 134 2016.03.04 spe-9 13C 74 2016.03.31 spe-9 16 107

2016.03.25 spe-9 15B 008 2016.03.25 spe-9 15B 044 2016.03.25 spe-9 15B 023 2016.03.31 spe-9 16 036

2016.02.20 spe-9 10A 16 2016.02.29 spe-9 12B 34 2016.03.14 spe-9 14 097 2016.03.25 spe-9 15A 69

Visible Laid Oocytes at Day 3.0

500 μm

Figure 2.21: Randomly selected sample images of worms in the lower (bottom), middle (middle) and upper (top) quintiles
of reproductive output at day 8 of adulthood.
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2016.02.26 spe-9 11A 18 2016.03.25 spe-9 15B 108 2016.03.31 spe-9 16 170 2016.03.25 spe-9 15A 03

2016.02.26 spe-9 11C 101 2016.03.14 spe-9 14 100 2016.03.31 spe-9 16 158 2016.02.16 spe-9 9 054

2016.03.14 spe-9 14 107 2016.02.29 spe-9 12B 39 2016.03.04 spe-9 13B 43 2016.03.14 spe-9 14 159

Cross-Sectional Size at Day 2.0

500 μm

Figure 2.22: Randomly selected sample images of worms in the lower (bottom), middle (middle) and upper (top) quintiles
of cross-sectional size at day 2 of adulthood.

69



2016.02.26 spe-9 11D 113 2016.02.29 spe-9 12A 11 2016.03.31 spe-9 16 121 2016.02.29 spe-9 12A 03

2016.02.29 spe-9 12A 05 2016.03.04 spe-9 13A 12 2016.03.25 spe-9 15B 058 2016.03.25 spe-9 15A 33

2016.03.14 spe-9 14 189 2016.03.04 spe-9 13A 13 2016.03.14 spe-9 14 167 2016.03.31 spe-9 16 014

Cross-Sectional Size at Day 5.0

500 μm

Figure 2.23: Randomly selected sample images of worms in the lower (bottom), middle (middle) and upper (top) quintiles
of cross-sectional size at day 5 of adulthood.
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2016.02.26 spe-9 11D 117 2016.02.29 spe-9 12A 11 2016.02.26 spe-9 11D 137 2016.02.26 spe-9 11D 152

2016.03.31 spe-9 16 107 2016.03.14 spe-9 14 047 2016.03.25 spe-9 15B 050 2016.03.14 spe-9 14 043

2016.02.20 spe-9 10A 20 2016.03.25 spe-9 15A 73 2016.03.31 spe-9 16 169 2016.02.29 spe-9 12B 28

Cross-Sectional Size at Day 8.0

500 μm

Figure 2.24: Randomly selected sample images of worms in the lower (bottom), middle (middle) and upper (top) quintiles
of cross-sectional size at day 8 of adulthood.
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2016.03.14 spe-9 14 148 2016.03.14 spe-9 14 137 2016.03.25 spe-9 15A 60 2016.03.14 spe-9 14 141

2016.02.16 spe-9 9 021 2016.02.26 spe-9 11B 036 2016.02.26 spe-9 11C 109 2016.03.04 spe-9 13A 11

2016.02.26 spe-9 11D 143 2016.03.31 spe-9 16 048 2016.02.26 spe-9 11D 120 2016.03.14 spe-9 14 055

Textural Degradation at Day 2.0

500 μm

Figure 2.25: Randomly selected sample images of worms in the lower (bottom), middle (middle) and upper (top) quintiles
of textural decrepitude at day 2 of adulthood.
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2016.02.20 spe-9 10A 19 2016.03.14 spe-9 14 192 2016.03.25 spe-9 15B 014 2016.03.25 spe-9 15B 084

2016.03.25 spe-9 15B 096 2016.03.25 spe-9 15B 046 2016.03.31 spe-9 16 070 2016.03.25 spe-9 15A 95

2016.03.31 spe-9 16 135 2016.03.25 spe-9 15B 016 2016.03.31 spe-9 16 100 2016.03.25 spe-9 15A 74

Textural Degradation at Day 5.0

500 μm

Figure 2.26: Randomly selected sample images of worms in the lower (bottom), middle (middle) and upper (top) quintiles
of textural decrepitude at day 5 of adulthood.
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2016.03.25 spe-9 15B 050 2016.03.25 spe-9 15B 065 2016.03.25 spe-9 15B 066 2016.03.31 spe-9 16 129

2016.03.25 spe-9 15A 93 2016.03.14 spe-9 14 094 2016.03.14 spe-9 14 125 2016.03.14 spe-9 14 061

2016.03.14 spe-9 14 132 2016.03.31 spe-9 16 104 2016.02.26 spe-9 11C 079 2016.03.25 spe-9 15A 01

Textural Degradation at Day 8.0

500 μm

Figure 2.27: Randomly selected sample images of worms in the lower (bottom), middle (middle) and upper (top) quintiles
of textural decrepitude at day 8 of adulthood.
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Chapter 3

Predicting All-Cause Mortality from

Basic Physiology in the Framingham

Heart Study

The authors of the following publication [136] are: William B. Zhang and Zachary Pincus.

Abstract

Using longitudinal data from a cohort of 1349 participants in the Framingham Heart Study, we show

that as early as 28–38 years of age, almost 10% of variation in future lifespan can be predicted from

simple clinical parameters. Specifically, we found diastolic and systolic blood pressure, blood glucose,

weight, and body mass index (BMI) to be relevant to lifespan. These and similar parameters have

been well characterized as risk factors in the relatively narrow context of cardiovascular disease and

mortality in middle to old age. In contrast, we demonstrate here that such measures can be used to

predict all-cause mortality from mid-adulthood onward. Further, we find that individual clinical mea-

surements are predictive in different age regimes. Specifically, blood pressure and BMI are predictive

of all-cause mortality from ages 35–60, while blood glucose is predictive from ages 57–73. Moreover,

we find that several of these parameters are best considered as measures of a rate of “damage accrual”,

such that total historical exposure, rather than current measurement values, is the most relevant risk

factor (as with pack-years of cigarette smoking). In short, we show that simple physiological measure-

ments have broader lifespan-predictive value than indicated by previous work, and that incorporating
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information from multiple time points can significantly increase that predictive capacity. In general,

our results apply equally to both men and women, though some differences exist.

3.0 Introduction

Aging is a complex biological process with multiple contributing genetic pathways [16, 25–34], signifi-

cant variation among even closely related organisms [137], and an ongoing debate about its root causes

and origin [12]. At its core, however, aging is simply the statistical phenomenon of an increased prob-

ability of death over time. In addition, mortality risk does not increase at equal rates at all ages [18].

Further, aging can vary significantly for different individuals at the same age. As a result, an individ-

ual’s chronological age is a limited predictor of their actual mortality risk.

In order to develop improved prognostic capability for mortality, demographers have sought to

identify biomarkers of aging, functionally defined as a biological parameter of an organism that either

can better predict functional capability or mortality risk than chronological age [57]. This is motivated

by an array of valuable applications, including improved actuarial modeling, biological investigations

of the mechanisms of aging and therapeutics to slow its progress, and the clinical ability to better target

interventions to at-risk patients.

Driven by these goals, researchers in the 1970s and 1980s proposed a large number of candidate

biomarkers of aging [58–60]. Though these studies identified several putative biomarkers, many of the

published multivariable composite scores were overfit—that is, overly tuned to a very specific dataset.

Consequently, these composite scores did not have broad applicability, and later studies failed to val-

idate the original findings [57, 61–64].

As a result, much subsequent work has focused on predicting specific disease processes instead

of all-cause mortality [65–67]. Many physiological parameters, such as blood pressure [68] and body

mass index (BMI) [69], have been well-characterized as risk factors for cardiovascular disease and

other specific morbidities. In general, these studies have focused on middle-aged individuals and have

emphasized risk over a limited term, often just 5- or 10-year periods (e.g. [70]). In addition, most of

the work on both general biomarkers of aging and specific risk factors has been limited to the analysis

of data from single time points.

More recently, Yashin and colleagues have sought to use longitudinal data to gain insight into the
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overall aging process and the relationship between physiological change over time and mortality risk

(e.g. [71]). In particular, modeling physiological change as a dynamic system allowed mortality risk to

be successfully modeled as a function of the difference between an individual’s current physiological

state and the ideal state for an individual of that age [138,139]. Related analyses classified individuals’

likely lifespans according to trajectories of physiological indices [140, 141].Further, a landmark series

of studies of the accumulation of age-related functional deficits in individuals over time identified a

“snowball effect” where individuals with physiological deficits are more likely to accumulate further

deficits over time, and are exponentially more likely to die [142, 143]. Taken together, these studies

indicate that the trajectory of an individual’s physiological state over time provides a rich context for

understanding future mortality risk.

We therefore set out to address two very simple questions about lifespan prediction from longitu-

dinal data. First, given an individual’s history of physiological measurements (blood pressure, height,

weight, and similar), how early in life is there any indication of that individual’s ultimate lifespan?

A very recent investigation showed that that aging is indeed detectable even in young adults [144].

Specifically, these investigators found that young adults who showed signs of accelerated physiological

aging also experienced greater functional impairment. We now ask whether such early-life aging has

detectable impacts on eventual survival decades hence.

Second, this works seeks to determine if data from multiple timepoints can be aggregated in any

way to provide a clearer estimate of future lifespan? Many of the models presented in previous work

(e.g. [138, 139, 142]) use longitudinal data, but estimate mortality risk at a particular time only from

measurements made at that time. This effectively assumes that mortality risks are a memory-free

Markov process. In this work, we test this assumption and determine whether physiological history is

helpful in lifespan prediction.

Our investigation of longer-term biomarkers of longevity was made possible by the continued pro-

gression of the Framingham Heart Study (FHS). With its large cohort, consistent longitudinal mea-

surements of basic physiology, and excellent level of follow-up in terms of rate and length, the FHS

offers a unique opportunity to investigate the contributions of biomarkers from very young ages, as well

as the evolution of biomarker effectiveness throughout the aging process. The FHS population also

allows us to focus on a single longitudinal cohort of individuals, avoiding the possible confounding ef-

fects of using additional cross-sectional data. In this work, we use the Framingham data to understand
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the proportion of variation in all-cause mortality that can be predicted from basic clinical measure-

ments. We study these effects from early-to-mid adulthood, and examine how they evolve as a result

of the aging process (Table 3.1).

Living Subcohort Size Mean Age (Years) % Males % Females
Exam 01 1349 34.5 ± 2.2 0.47 0.53
Exam 02 1329 36.6 ± 2.2 0.47 0.53
Exam 03 1311 38.5 ± 2.2 0.47 0.53
Exam 04 1301 40.5 ± 2.2 0.46 0.54
Exam 05 1285 42.5 ± 2.2 0.46 0.54
Exam 06 1270 44.5 ± 2.2 0.46 0.54
Exam 07 1256 46.5 ± 2.2 0.46 0.54
Exam 08 1236 47.9 ± 2.2 0.46 0.54
Exam 09 1216 49.9 ± 2.2 0.46 0.54
Exam 10 1189 52.0 ± 2.2 0.46 0.54
Exam 11 1162 53.8 ± 2.2 0.46 0.54
Exam 12 1136 56.0 ± 2.2 0.46 0.54
Exam 13 1108 58.0 ± 2.2 0.46 0.54
Exam 14 1071 60.0 ± 2.2 0.45 0.55
Exam 15 1031 61.9 ± 2.2 0.45 0.55
Exam 16 987 63.9 ± 2.2 0.44 0.56
Exam 17 956 65.9 ± 2.2 0.44 0.56
Exam 18 893 68.1 ± 2.2 0.43 0.57
Exam 19 836 70.1 ± 2.2 0.42 0.58
Exam 20 789 72.2 ± 2.2 0.41 0.59
Exam 21 724 74.1 ± 2.2 0.39 0.61
Exam 22 646 76.0 ± 2.2 0.39 0.61
Exam 23 580 77.8 ± 2.2 0.37 0.63
Exam 24 488 79.9 ± 2.2 0.36 0.64
Exam 25 455 81.8 ± 2.2 0.35 0.65
Exam 26 376 83.8 ± 2.2 0.32 0.68
Exam 27 301 85.5 ± 2.1 0.31 0.69
Exam 28 236 87.2 ± 2.0 0.32 0.68

Table 3.1: A table of summary statistics about the changing demographics of the surviving cohort over time.

3.1 Results

To understand the mortality-predictive ability of various physiological biomarkers, we began by select-

ing a well-defined and homogeneous cohort of individuals to analyze. In order to study the effect of

biomarkers on mortality risk at a young age and the effects of incorporating past measurements into

predictive models, we chose to focus on the youngest individuals in the original cohort of the Fram-

ingham Heart Study. The data from these individuals is both the most extensive and begins earliest

in life. Moreover, this cohort, aged 28–38 years at the first Framingham exam, shares a birth decade,

limiting the opportunity for confounding effects due to cultural and medical changes over time.

Out of the hundreds of measurements made by the Framingham investigators, we chose to focus

on basic parameters that were not indicators for any specific pathology and which had a wide dynamic
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Average at Exam 1 Multiple Regression Weight Single-Variable Correlation  (r2)
Blood Glucose 78.7 ± 15.9 mg/dL -9.8 days per unit 0.0026

Body Mass Index 24.7 ±  4.12 kg/m 2 -81.1 days per unit 0.0236
Diastolic Blood Pressure 79.9 ± 9.53 mm Hg -90.3 days per unit 0.0869
Systolic Blood Pressure 126.2 ± 14.07 mm Hg -43.0 days per unit 0.0814

Height 65.6 ± 3.65 inches -84.2 days per unit 0.0075
Weight 153.85 ± 30.53 pounds 10.8 days per unit 0.0293

Age 34.5 ± 2.18 Years n/a 0.0287

Figure 3.1: In early-to-mid adulthood (participants aged 28–38), 9.7% of variation in future lifespan can be predicted from
a weighted combination of systolic and diastolic blood pressure, blood glucose, height, weight, and body mass
index. (top) Scatter plot of predicted lifespan from clinical measurements and actual future survival. Note that
the composite predictor does not simply measure overt pathology, but has a graded response across the full
dynamic range of lifespans. (bottom) A table showing summary information for the six components of the com-
posite predictor, along with age for comparison. At the first clinical exam, systolic and diastolic blood pressure
are the strongest drivers of predictions of all-cause mortality, as shown by the r2 for the in the single-variable
correlations with future lifespan.

range of variation (e.g. not binary variables such as whether a specific type of cardiac arrhythmia was

detected on physical exam). After eliminating parameters that were not consistently measured across

the first 28 clinical exams (over 50 years) of the study, we obtained a panel containing weight, height,

systolic and diastolic blood pressure, BMI, and blood glucose.

3.1.1 Amount of Mortality Predictable from Physiology

In order to determine the fraction of variability in lifespan that can be predicted from the first exam,

we employed multiple linear regression to assign weights to our six selected measurements. This al-

lowed us to combine the six variables into a single composite “risk score” and to assess its relationship
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with mortality (measured in days of survival after the first clinical exam). The relationship between

predicted lifespan and results is shown in figure 1 (at the first clinical exam, when our cohort of partic-

ipants is 28-38 years old). Overall, approximately 10% of variation in ultimate lifespan is predictable

using a simple linear regression on six basic clinical parameters (p = 8.52× 10−32).

In this type of analysis, weights for each measured parameter are chosen based on the known

survival time of each individual. With sufficiently many parameters, models constructed in this fashion

can become “overfit” and not generalize well to future data. In this case we have few parameter weights

(seven: six measurements plus a constant offset) compared to the size of the data, and thus themodel is

unlikely to be overfit. To demonstrate this directly, we estimated the ability of the model to generalize

to future data by using 5-fold cross-validation, in which different subsets of the data were used to fit

the weights versus evaluate the goodness of that fit. This generated a Pearson r2 of 0.085, suggesting

that these results are indeed not overfit.

Thus, even relatively early in adulthood, a modest but meaningful fraction of future lifespan is

already predictable. Further, the lack of sharp demarcations on the scatterplot indicates that this

correlation is not driven exclusively by individuals with overt pathologies. Rather, the effect is graded,

and is spread over much of the dynamic range that exists for both the clinical measurements and the

length of known survival.

Next, we asked how the proportion of predictable mortality from single time-points changes as

the cohort ages. Figure 2 (left) shows the correlation between the measured parameters and mortality

throughout the aging process, for the subcohort of our original population still alive at each time point,

stratified for gender. (Note that the trends in these correlations thus include both the effects of age

and of survivorship bias.) The three different traces represent three approaches to constructing a

composite “risk score” from the clinical data.

First, we used the weights that were computed to be optimal for predicting lifespan at exam 1, when

the mean age of the cohort was 34.5 years (figure 1, bottom). The decrease in the predictive ability of

this score over time suggests that the risk factors that are important in early life become less relevant in

middle age. To illustrate this more explicitly, we then calculated the set of weights that most optimally

predict future lifespan at exam 18, when the mean age was 68.1 years. As expected, the “exam 18”

trace is a worse predictor than the “exam 1” trace early on, but is more effective at later time points.

We next used regression to determine the optimal weighting of the six parameters at each Framingham
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Figure 3.2: (left) The proportion of lifespan predictable from various approaches to constructing composites generally de-
creases with age. The trace computed by re-calculating the regression weights at each time point independently
(“focal”) sets an upper bound on the portion of survival that predictable at each time point. The “exam 1” trace
performs well for early exams, but becomes less relevant at more advanced ages. Finally, the “exam 18” trace,
created by fitting data from individuals at clinical exam 18, performs worse than the “exam 1” trace at early time
points but better at later ones. (center) Our “focal” exam score is compared to the Framingham Heart Score
(FHS) and the Pooled Cohort Equation Risk Score (PCERS), two well-known cardiovascular risk scores. Strik-
ingly, the PCERS and FHS seem to behave like the “exam 1” and “combined” traces, respectively. Note that
the FHS and PCERS are not subject to the “upper bound” set by the “focal” trace, since they include informa-
tion from additional variables (such as blood cholesterol and age itself) not used for the “focal” trace calculation.
(right) A survival curve for the overall cohort studied, illustrating how the size of the surviving subcohort changes
over time.

study exam (the “focal exam”) independently. This provides an upper bound on fraction of lifespan

predictable in a linear fashion from these basicmeasurements over time. (Nonlinear regressionmodels

with more free parameters may well be able to predict more about future lifespan; we excluded these

from our analysis as a guard against overfitting and multiple hypothesis testing.) Of note is the gradual

decline in our ability to predict mortality after roughly age 60. This suggests that the physiological

parameters analyzed are able to capture relevant differences between those who die relatively early

and those who die later, but not the variation among particularly longer-lived individuals.

To put our findings into the context of previously developed clinical risk scores, figure 2 (cen-

ter) compares the lifespan-predictive ability of the well-known Framingham Risk Score [145,146] and

PooledCohort Score [147] with our “focal exam” estimates. These clinical scores were designed specif-

ically to assess cardiovascular risk in a 5–10 year timeframe, using some of the parameters we examined

as well as smoking status, blood cholesterol, and age. Despite this narrow focus, however, both scores

are able to predict a significant proportion of variation in all-cause mortality over 50+ years of follow-

up. Indeed, their predictive value remains valid even at the earliest clinical exam, when the average

age of participants is 34.5 years. This demonstrates a surprising robustness of the lifespan-predictive
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signal in these data: even risk scores such as these, which were not specifically tuned to the task, are

effective biomarkers of aging.

Next, figure 3 illustrates how the individual measurements’ (from figure 1) correlations with future

lifespan change over time. As expected, the predictive ability of most of the parameters under inves-

tigation declines as the overall predictable mortality (measured by the focal exam trace from figure 2)

declines. This trend is most strongly illustrated by the three blood pressure variables, systolic, dias-

tolic and pulse pressure, which are highly predictive of lifespan from ages 35–60 and increasingly less

predictive thereafter. On the other hand, blood glucose is a striking exception. Up to age 70, as all

other significant predictors’ correlations are declining, the correlation of blood glucose with all-cause

mortality rises consistently, achieving its highest values from the ages of 57–73. Overall, it appears

that blood pressure and BMI are predictive of all-cause mortality early in life (ages 35–60, with pulse

pressure interestingly being a stronger predictor in late life than systolic and diastolic blood pressure),

while blood glucose is more meaningful in middle age (ages 57–73). This reinforces the evidence from

figure 2 that the mortality-predictive ability of our clinical variables changes during different phases

of life.
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Figure 3.3: The individual variables’ ability to predict survival changes over time. Blood pressure, BMI, and weight are
predictive of mortality primarily from ages 35–60 and while blood glucose is most predictive from ages 57–73.
Also, note that BMI, all three measures of blood pressure, and weight all decrease in predictivity as the cohort
ages, but blood glucose’s ability to predict survival increases in middle age before declining again.

82



3.1.2 Incorporating Physiological History into Mortality Prediction

As the Framingham data provide measurements of the same physiological parameters at different

ages for each individual, we next investigated whether and how trends in these measures over time

are predictive of future lifespan (figure 4). The simplest possibility is that a particular measurement

directly reflects the current state of health of an individual at that moment (central panel in figure

4). In this case, the previous values of that measurement are redundant/irrelevant. Alternately, there

may be cases where the precise value of a clinical measurement itself is not particularly important for

prognosis, but its rate of change with time is more reflective of future health (illustrated by the slope

of the tangent line in the left panel in figure 4). For example, progressive increases in the size of a skin

blemish could indicate a malignancy, while the actual size of the blemish itself may be less relevant.

Finally, other clinical measures may directly capture rates of change of health, such that the relevant

information for prognosis is the cumulative change over time (the integrated “area under the curve”,

illustrated by the shaded region in the right panel in figure 4). One clear example is an individual’s

risk from their history of smoking. In that case, there is significant evidence that one’s smoking “rate”

(packs per day) is in some sense a rate of decline of health, and that the true risk is best predicted by

total accumulated underlying damage (typically reported as “pack-years” of smoking), rather than the

current smoking rate.

To see which of these possibilities best fits the observed data, we computed “rates of change”

(i.e. differentiated) and “cumulative” (i.e. integrated) versions of our variables and analyzed their

correlations with mortality. We first attempted several formulations of “rates of change”: taking the

difference between successive exams; reducing noise by finding the slope of a line fitted to three exam

time points rather than two; and smoothing the data by averaging multiple adjacent exams before

obtaining pointwise rates of change as above. We found that no “rate of change” formulation was

predictive of mortality (data not shown).

We next focused on the accumulation hypothesis, in which integrating past values for a given

measurement might yield improved predictive ability. To explore the idea of accumulated risk, we

constructed variables analogous to pack-years for smoking by simply summing past measurements,

weighed to account for the uneven timing of the Framingham exams. If, as hypothesized, a particular

variable represents a “rate of change” of health, then its accumulated history will be more predictive
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Figure 3.4: Hypotheses for the relationship between health (risk of mortality) and trends in physiological measurements.
The potential scenarios considered are: (left) the derivative (“rate of change”) of a measurement is the most rel-
evant quantity for predicting mortality; (center) the current value of the measured parameter is most predictive
of mortality; (right) the integral (“accumulated exposure”) is most predictive of mortality. In each panel, a blue
line represents a “healthy” time course, while a purple line represents a more “unhealthy” time course at higher
risk for mortality. In the left panel, the precise values of the measurements over time are not important, but
their stability over time is. Thus, a trajectory in the midst of a sharp decline may be a risk factor, while a more
stable trajectory is lower-risk. The middle panel illustrates the case in which a parameter value directly relates
to underlying risk, so the current value of that parameter is most useful as a quantitative risk factor. Finally, the
right panel shows the case when an individual’s accumulated exposure is the relevant risk factor. Here, the total
historical exposure (area under the curve) is more predictive of mortality than the measure’s current value or
rate of change; as such, in this example the trajectory with the larger shaded area underneath is the more at-risk.

of mortality than its current single-time value. Continuing the example of smoking, an individual’s

accumulated pack-years of smoking should have a stronger correlation with survival than their current

smoking rate. Further, looking at intermediate amounts of history should yield intermediate levels

of predictive capacity. For example, if we obtain individuals’ smoking history for only the previous 5

years, that variable’s correlation with mortality should be greater than the correlation from the single-

time measurement, but less than the correlation obtained for their full lifetime history of smoking. If,

on the other hand, integrating the most recent 5 years or so of history improves predictive abilities but

earlier historical data adds nothing, this may suggest that the ”integrated recent history” may simply be

a de-noised estimate of the current physiological state. While such denoising may be clinically useful,

it is not good evidence that the risk factor truly is cumulative.

For this analysis, we begin with the single-time correlation at a particular exam (the “focal exam”),

then trace the mortality-predictive abilities of individual clinical parameters as progressively more

years of history are incorporated (figure 5). In this figure, each successive point in the line includes

history from one additional Framingham study exam. As more history is incorporated (by summing

variable-years), some variables’ correlation with survival increases consistently and roughly linearly,
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suggesting that these variables are indeed cumulative. Figure 5 shows these traces with exams 16 and

20 as the focal exams. (These exams were conducted when the participants were 59–69 and 67–77

years old, respectively.) For focal exam 16, diastolic blood pressure exhibits a consistent increase in

mortality-prediction with each additional unit of history for both men and women. In contrast, for

focal exam 20, diastolic blood pressure does not seem to accumulate predictivity from history, while

blood glucose does. We have also excluded the effects of hypertension treatment in figures 5 and 6.

This caused the size of the observed effects to decrease marginally without creating any substantial

differences from the same analysis of data uncontrolled for hypertension treatment (data not shown).

We believe that this steady increase in mortality-predictive capacity with additional historical data

is the hallmark of a variable that affects health through cumulative exposure. The switch in which

variables predict future risk at different ages between exams 16 and 20 is consistent with our earlier

analysis, and much other work [148] demonstrating the dramatic change in risk factors with age (figure

3).

To further examine these trends, we focused on diastolic blood pressure, BMI, and blood glucose,

which appear to be cumulative when considered from the perspective of exams 16 and 20. For each

variable, figure 6 shows the utility of additional years of history when starting from a range of focal

exams, rather than just exams 16 and 20. In particular, BMI seems to increase in mortality-predictive

capacity as more history is incorporated, regardless of the clinical exam from which we begin the anal-

ysis. In contrast, diastolic blood pressure appears to stop showing signs of cumulative risk after clinical

exam 17, which corresponds to an average age of 65.9 years. Blood glucose, however, seems to be-

have as an accumulating variable for all exams after clinical exam 13, which corresponds to an average

age of 58.0 years. Again, this extends our result from earlier: Not only do blood glucose and blood

pressure seem to be important for mortality-risk prediction at different age regimes (ages 35–60 and

57–73, respectively), their predictive capability within their regimes is cumulative (ages 35–65, and

58–87, respectively). That is, blood glucose and blood pressure appear to primarily predict mortality

through accumulated lifetime exposure.
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Figure 3.5: A plot of how the mortality-predictive ability of single variables changes as more history is incorporated into an
accumulated risk score at “focal exams” 16 and 20. Accumulating variables are identified by a steady increase in
mortality-prediction with each additional unit of history. At exam 16, diastolic blood pressure exhibits a consis-
tent increase in mortality-prediction with each additional unit of history for both men and women, though the
effect is smaller in size for men. In contrast, at exam 20, blood glucose accumulates predictivity with additional
history for approximately 15 years, corresponding to ages 57–73. BMI, on the other hand, behaves as an accu-
mulating variable for women at focal exams 16 and 20, but is relatively unpredictive of mortality for men at these
exams.

3.2 Discussion

We surveyed the amount of variation in all-cause mortality that could be predicted from physiology

at early-to-mid adulthood, finding a modest but non-trivial effect: 9.7% of variation in mortality at

ages 28–38 can be predicted using the common physiological measurements of height, weight, body

mass index, blood glucose level, and systolic and diastolic blood pressure. In addition, we have shown

that our results are generally valid for both men and women. Though there are several quantitative

differences in the magnitudes of effects and their precise timing, our overarching conclusions apply to

both genders.

Further, the amount of predictable mortality generally decreases as a cohort ages and the least

healthy individuals die off. This result is consistent with survivorship bias: as the unhealthy individuals

die off, the surviving cohort becomes more homogeneous. As a result, the surviving cohort will have
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Figure 3.6: The accumulation of predictivity using additional years of history, starting at different exams. Each single time
trace shown here is analogous to a single time trace in figure 5. Each panel illustrates how additional years of
historical data improve risk prediction for a different physiological variable. Unlike figure 5, which presents
these results from exams 16 and 20, here a range of “focal exams” are shown. Each trace represents the change
in mortality predicitivity as additional years of history are incorporated into the mortality prediction from a given
starting point (“focal exam”). For example, the yellow traces show how the predictive ability of a given measure
at exam 26 can be increased by adding additional historical data. Each particular point on a yellow trace then
represents the gain in predictive ability when data area (as illustrated in the right panel of figure 4) is added
from exam 26 back to that particular point in time. As in figure 5, the hallmark of an accumulating variable is a
steady increase of predictivity with the incorporation of additional history. Note that BMI seems to accumulate
predictivity as more history is incorporated, regardless of the focal exam from which the analysis is begun. In
contrast, diastolic blood pressure and blood glucose only accumulate predictivity in limited regimes. Diastolic
blood pressure and blood glucose accumulate risk from exams 1–14 and 13–20, respectively, which correspond
to average ages of 35–60 and 57–73 years.

less predictable variation in survival; that is, a greater proportion of the variation will be random and

not predictable.

Specifically, figure 3 shows that the ability of blood pressure (diastolic, systolic, and pulse pres-

sure), BMI, and weight to predict variation in survival is high in early-to-mid adulthood, and gradually

decreases up to roughly age 60. Although there is some fluctuation in this trend, likely the result

of measurement noise, the overall direction for most variables is clear. Blood glucose’s predictivity

presents an interesting exception. While essentially all other variables are decreasing in predictive ca-

pacity (up to age 60), blood glucose’s predictive ability seems to sharply increase from age 57, peaking
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around the age of 70. The fact that blood pressure, BMI, and weight are predictive of mortality primar-

ily from ages 35–60 and while blood glucose is most predictive from ages 57–73 suggests a fundamental

difference between their contributions to all-cause mortality.

In parallel, figure 6 demonstrates that harm mediated by hypertension and obesity accumulates

from ages 35–65, while mortality risk from blood glucose accumulates from ages 58–87. In conjunction

with the results from figure 3 discussed above, these results suggest certain “critical periods” [149]

for damage accumulation and mortality predictivity. These “critical periods” vary between different

physiological parameters, but seem to represent times of damage accumulation and high mortality

predictictivity for each parameter. Again, all-cause mortality risk before age 70 seems is best predicted

using blood pressure and BMI, while mortality during the age regime from age 60 and through age 80

is associated with blood glucose. While the confounding effects of changing societal habits over the

years need to be taken into account, this type of analysis promises to yield important insights into the

evolution of health and accumulated mortality risk over the course of the aging process.

The simplistic explanation for these observed “critical periods” is that the changing predictive abil-

ity of blood glucose and other measurements is entirely due to the aging process: in general, perhaps

blood pressure becomes a less important predictor with increasing age while the predictive value of

blood glucose increases. This interpretation, however, is confounded by the changing life habits of the

American population over recent history. Shifts in diet and lifestyle have steadily increased the con-

tribution of diabetes mellitus to morbidity and mortality over the past half-century, and advances in

hypertension treatment have altered the physiological interpretation of blood pressure measurements.

Disentangling these effects calls for additional analysis of both the Framingham data as well as other

cohorts.

In addition to surveying mortality predictivity in the single-time point context, we investigated

trends in variables over time. Rates of change for height, weight, body mass index, blood glucose level,

and systolic and diastolic blood pressure were utterly unpredictive of future mortality, despite several

different approaches to estimating these rates of change. However, in many cases the measured vari-

ables’ accumulated history yielded substantially higher correlations in comparison to the single-time

point context.

Specifically, the ability of diastolic blood pressure and BMI to predict all-cause mortality risk in-

creases steadily and roughly linearly as more historical information is included for individuals below
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the age of 67. For blood glucose, this effect is observed most prominently from the age 58 onward.

In conjunction with our result that indicates that blood glucose is mortality-predictive at later ages

than blood pressure and BMI, these ”accumulating regimes” indicate that these variables’ effects on

mortality are cumulative.

This is consistent with the current understanding of the harms mediated by obesity, high blood

glucose, and high blood pressure. While the precise mechanisms by which high blood pressure is

pathological are still a subject of active research, the consensus so far is that the hemodynamic forces

of hypertension initiate a signal which is transduced by endothelial cells, initiating various pathways

involving ion channels, growth factors, extracellular matrix interactions, and various other molecu-

lar components [150]. The end result of these effects is generally a combination of vascular remod-

elling—blood vessels becoming less pliable, weaker, narrower—and specific organ damage, commonly

in kidneys. Overall, it is generally agreed that the harmful effects of hypertension occur gradually over

time. Similar lines of evidence suggest that pathologies from high blood glucose and obesity occur

gradually as well [151].

Thus, it is not merely having high blood pressure, high blood glucose, or being overweight that

instantaneously puts one at risk for the various associated pathologies. Rather, it is the sustained level

of increased stress on one’s organ systems that causes a gradual accumulation of damage. This sug-

gests that many current preventative medicine guidelines, which focus on cardiovascular risk factors in

older patients, may be failing to fully capture the lasting dangers of an unhealthy lifestyle, especially for

younger individuals. In addition, while the concept of additional risk from sustained lifetime exposure

may be intuitively understood by physicians, this study quantitatively highlights the magnitude of the

effect, and suggests a straightforward way to estimate risk from accumulated exposure: simply sum-

ming historical physiological measurements. Further, some recent work on functional impairment

during the aging process, as measured by frailty indices [152, 153], may be evidence of downstream

effects of accumulated physiological damage.

With the advent of electronic medical records and ever-increasing computing power, it is becoming

commonplace to have access to patients’ previous physiological measurements. By exploiting longitu-

dinal information in novel ways, we have shown that the predictive capacity of many well-studied risk

factors can be greatly increased. Further, these statistical improvements can also drive new biomedi-

cal insights and provide avenues for testing those hypotheses. Much previous work has demonstrated

89



the utility of physiological history for understanding the processes that drive aging and the relation-

ship between disease risk and specific physiological measurements [138–140]. Our results add to this

understanding by demonstrating clearly that early-life physiology informs late-life survival, and that

cumulative historical exposure can be a useful variable to track in addition to the present state of an

individual’s physiology. Incorporating early-life data (where available) and recent history into existing

quantitative models may further improve our understanding of how and why mortality risk increases

with aging.

3.3 Experimental Procedures

3.3.1 Data Collection

The design of the Framingham Heart Study has been previously described [154,155]. For our present

study, subjects in the original cohort who were ages 28 to 38 at the first examination (1948–1953,

1451/5079 subjects) were eligible. We excluded participants that were lost to follow-up (defined by

lacking both a known date of death and having no recorded data from clinical exam 28) and those

who were missing sufficient data for any of the six physiological measures we studied (systolic blood

pressure, diastolic blood pressure, blood glucose, height, weight, body mass index). After applying

our criteria, 91 individuals were excluded on the basis of incomplete follow-up and 10 individuals were

excluded on the basis of insufficient data. We then manually removed a single outlier individual, who

had a systolic blood pressure of 250 mm Hg at the first clinical exam (an extraordinarily pathological

reading, approximately 8.8 standard deviations from themean) and died approximately 3months later.

We thus obtained a cohort of 1349 participants who remained eligible for this study. In Table 3.2, we

see that the differences between our chosen cohort and individuals excluded for lack of follow-up or

insufficient data are minimal, and are unlikely to cause significant bias in our results. By selecting a

birth decade cohort, we hope to minimize the confounding effects of age, since all participants in our

study are similar in age.

3.3.2 Statistics

Statistics (Pearson correlation coefficient, multiple regression weights, partial correlations) were com-

puted using the Python programming language and associated packages.
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Living Subcohort Size Mean Age (Years) % Males % Females
Exam 01 1349 34.5 ± 2.2 0.47 0.53
Exam 02 1329 36.6 ± 2.2 0.47 0.53
Exam 03 1311 38.5 ± 2.2 0.47 0.53
Exam 04 1301 40.5 ± 2.2 0.46 0.54
Exam 05 1285 42.5 ± 2.2 0.46 0.54
Exam 06 1270 44.5 ± 2.2 0.46 0.54
Exam 07 1256 46.5 ± 2.2 0.46 0.54
Exam 08 1236 47.9 ± 2.2 0.46 0.54
Exam 09 1216 49.9 ± 2.2 0.46 0.54
Exam 10 1189 52.0 ± 2.2 0.46 0.54
Exam 11 1162 53.8 ± 2.2 0.46 0.54
Exam 12 1136 56.0 ± 2.2 0.46 0.54
Exam 13 1108 58.0 ± 2.2 0.46 0.54
Exam 14 1071 60.0 ± 2.2 0.45 0.55
Exam 15 1031 61.9 ± 2.2 0.45 0.55
Exam 16 987 63.9 ± 2.2 0.44 0.56
Exam 17 956 65.9 ± 2.2 0.44 0.56
Exam 18 893 68.1 ± 2.2 0.43 0.57
Exam 19 836 70.1 ± 2.2 0.42 0.58
Exam 20 789 72.2 ± 2.2 0.41 0.59
Exam 21 724 74.1 ± 2.2 0.39 0.61
Exam 22 646 76.0 ± 2.2 0.39 0.61
Exam 23 580 77.8 ± 2.2 0.37 0.63
Exam 24 488 79.9 ± 2.2 0.36 0.64
Exam 25 455 81.8 ± 2.2 0.35 0.65
Exam 26 376 83.8 ± 2.2 0.32 0.68
Exam 27 301 85.5 ± 2.1 0.31 0.69
Exam 28 236 87.2 ± 2.0 0.32 0.68

Table 3.2: Comparison of the selected vs. excluded Framingham Heart Study (FHS) participants. All parameter mean
values are within a single standard deviation, suggesting that our exclusion criteria did not introduce any obvious
bias. The only statistically significant differences (at a p = 0.05 level) between included and excluded cohorts are
in BMI and weight. However, even for BMI and weight, the excluded individuals’ mean values are still within a
standard deviation of those of the included cohort. Further, relatively few individuals were excluded in relation
to those who remained in the cohort, so we believe the risk of bias from our exclusion criteria to be minimal.

3.3.3 Construction of Clinical Risk Scores

It should be noted that although we made every effort to reconstruct the Framingham and Pooled

Cohort Equations risk scores as completely as possible, the smoking and high-density lipoprotein

cholesterol terms had to be excluded due to the lack of consistent longitudinal measurement in the

Framingham Heart Study. For example, early blood cholesterol measurements did not distinguish

between high-, low-, and very low-density lipoproteins. The data from smoking questionnaires also

varied among clinical exams, and was difficult to interpret consistently for all longitudinal time points.

3.3.4 Blood Pressure Treatment

To minimize the confounding effects of blood pressure treatment in figures 5 and 6, we adjusted indi-

viduals’ blood pressure measurements to reflect our best estimates of their untreated blood pressure.
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We achieved this by adding the average effect of blood pressure treatment to all individuals. Our re-

sults computed with controlled blood pressure were not substantially different from those from the

same analysis on uncontrolled blood pressure (data not shown).

3.3.5 Pulse Pressure

Pulse pressure, a derived variable defined as the difference between an individual’s systolic and di-

astolic blood pressures, was included as a seventh variable in our analysis from figure 3 onward. We

excluded pulse pressure from figures 1 and 2, which employed multiple linear regression, because it is

linearly dependent on systolic and diastolic blood pressure and would not have made any meaningful

contribution to the derived composite variable.

3.3.6 ExamWeighting in History Accumulation

To adjust for unequal timing of clinical exams, we assumed that at any given point in time, each patient

has the same measurement as the closest clinical exam. For example, if a patient has a measured sys-

tolic blood pressure (inmmHg) of 120 in 1960, 130 in 1966, and 140 in 1976, our analysis would use this

adjustment to assign blood pressures of 120 for 1960–1963, 130 for 1964–1971, and 140 for 1972–1976.

Further, to avoid artificially diminishing the impact of the first and last available time points, we pad

the first and last exams with half of the average inter-exam period. In the given example, we would

actually assign blood pressures of 120 for 1956–1963, 130 for 1964–1971, and 140 for 1972–1980.
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y = 1.0x + 0.0 r^2 = 0.093

Predicted vs. Actual Survival, Males

Average at Exam 01 Multiple Regression Weight Single-Variable Correlation r2

Blood Glucose 79.1 ± 18.65 mg/dL -11.2 days per unit 0.0029
Body Mass Index 25.6 ± 3.71 kg/m2 -394.0 days per unit 0.0126
Diastolic Blood Pressure 82.7 ± 9.77 mm Hg -94.9 days per unit 0.0792
Systolic Blood Pressure 131.1 ± 14.04 mm Hg -41.9 days per unit 0.0671
Height 68.4 ± 2.74 inches -225.0 days per unit 0.0060
Weight 172.58 ± 26.24 pounds 65.44 days per unit 0.0038
Age 34.5 ± 2.16 years nan 0.0247

Figure 3.7: For men in early-to-mid adulthood (participants aged 28–38), 9.3% of variation in future lifespan can be pre-
dicted from a weighted combination of systolic and diastolic blood pressure, blood glucose, height, weight, and
body mass index. This is marginally less than the predictable portion of variation for men and women combined.
This indicates that our composite predictor is to some extent capturing male-female differences in physiology
and their effect on lifespan.
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Predicted vs. Actual Survival, Females

Average at Exam 01 Multiple Regression Weight Single-Variable Correlation r2

Blood Glucose 78.3 ± 12.86 mg/dL -9.2 days per unit 0.0020
Body Mass Index 23.8 ± 4.28 kg/m2 239.4 days per unit 0.0167
Diastolic Blood Pressure 77.4 ± 8.56 mm Hg -77.5 days per unit 0.0580
Systolic Blood Pressure 121.9 ± 12.59 mm Hg -39.9 days per unit 0.0546
Height 63.1 ± 2.34 inches 241.9 days per unit 0.0007
Weight 137.34 ± 23.78 pounds -48.48 days per unit 0.0141
Age 34.5 ± 2.19 years nan 0.0338

Figure 3.8: For women in early-to-mid adulthood (participants aged 28–38), 6.6% of variation in future lifespan can be
predicted from a weighted combination of systolic and diastolic blood pressure, blood glucose, height, weight,
and body mass index. This is less than the predictable portion of variation for men and women combined. This
indicates that our composite predictor is to some extent capturing male-female differences in physiology and
their effect on lifespan. Another possible contributing factor is that more women remain alive at the latest
clinical exam, so follow-up is less complete for women than for men.
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Figure 3.9: The individual variables’ ability to predict survival in a single-time point context, stratified by gender. We see
that the overall patterns of mortality-predictivity are very similar for women and men, though relatively minor
differences in the magnitude of predictable mortality and the timing of longitudinal trends exist. As in figure 3 in
the main text, blood pressure, BMI, and weight are predictive of mortality primarily from ages 35-60 and while
blood glucose is most predictive from ages 57–73.
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Do not go gentle into that good night,
Old age should burn and rave at close of day;
Rage, rage against the dying of the light.

Though wise men at their end know dark is right,
Because their words had forked no lightning they
Do not go gentle into that good night.

Good men, the last wave by, crying how bright
Their frail deeds might have danced in a green bay,
Rage, rage against the dying of the light.

Wild men who caught and sang the sun in flight,
And learn, too late, they grieved it on its way,
Do not go gentle into that good night.

Grave men, near death, who see with blinding sight
Blind eyes could blaze like meteors and be gay,
Rage, rage against the dying of the light.

And you, my father, there on the sad height,
Curse, bless, me now with your fierce tears, I pray.
Do not go gentle into that good night.
Rage, rage against the dying of the light.

—Dylan Thomas, Do not go gentle into that good night
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