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ABSTRACT OF THE DISSERTATION 

Mapping and Functional Analysis of cis-Regulatory Elements in Mouse Photoreceptors 

by 

Andrew Everett Oliver Hughes 

Doctor of Philosophy in Biology and Biomedical Sciences 

Molecular Genetics and Genomics 

Washington University in St. Louis, 2019 

Professor Joseph C. Corbo, Chair 

Photoreceptors are light-sensitive neurons that mediate vision, and they are the most commonly 

affected cell type in genetic forms of blindness. In mice, there are two basic types of 

photoreceptors, rods and cones, which mediate vision in dim and bright environments, 

respectively. The transcription factors (TFs) that control rod and cone development have been 

studied in detail, but the cis-regulatory elements (CREs) through which these TFs act are less well 

understood. To comprehensively identify photoreceptor CREs in mice and to understand their 

relationship with gene expression, we performed open chromatin (ATAC-seq) and transcriptome 

(RNA-seq) profiling of FACS-purified rods and cones. We find that rods have significantly fewer 

regions of open chromatin than cones (as well as >60 additional cell types and tissues), and we 

demonstrate that this uniquely closed chromatin architecture depends on the rod master regulator 

Nrl. Finally, we find that regions of rod- and cone-specific open chromatin are enriched for distinct 

sets of TF binding sites, providing insight into the cis-regulatory grammar of these cell types. 

 We also sought to understand how the regulatory activity of rod and cone open chromatin 

regions is encoded in DNA sequence. Cone-rod homeobox (CRX) is a paired-like homeodomain 

TF and master regulator of both rod and cone development, and CRX binding sites are by far the 

most enriched TF binding sites in photoreceptor CREs. The in vitro DNA binding preferences of 
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CRX have been extensively characterized, but how well in vitro models of TF binding site affinity 

predict in vivo regulatory activity is not known. In addition, paired-class homeodomain TFs bind 

DNA as both monomers and dimers, but whether monomeric and dimeric CRX binding sites have 

distinct regulatory activities is not known. To address these questions, we used a massively parallel 

reporter assay to quantify the activity of thousands native and mutant CRX binding sites in 

explanted mouse retinas. These data reveal that dimeric CRX binding sites encode stronger 

enhancers than monomeric CRX binding sites. Moreover, the activity of half-sites within dimeric 

CRX binding sites is cooperative and spacing-dependent. In addition, saturating mutagenesis of 

195 CRX binding sites reveals that, while TF binding site affinity and activity are moderately 

correlated across mutations within individual CREs, they are poorly correlated across mutations 

from distinct CREs. Accordingly, we show that accounting for baseline CRE activity improves the 

prediction of the effects of mutations in regulatory DNA from sequence-based models. Taken 

together, these data demonstrate that the activity of CRX binding sites depends on multiple layers 

of sequence context, providing insight into photoreceptor gene regulation and illustrating 

functional principles of homeodomain TF binding sites.
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Chapter 1: Introduction to gene regulation in 
mouse photoreceptors 

1.1 Mechanisms of transcriptional regulation in mammals 
In multicellular organisms, the development and maintenance of specialized cell types and 

complex tissues require the precise control of gene expression. In individual cell types, gene 

regulation is mediated by both cis- and trans-acting factors—i.e., cis-regulatory elements (CREs) 

and the transcription factors (TFs) that bind them. As a result, genetic variation in both protein-

coding and noncoding regions of the genome play important roles in phenotypic diversity and 

disease susceptibility [1-3]. In humans and mice, the locations of protein-coding genes are largely 

known, and mutations in coding sequence result in predictable changes in amino acids based on 

the universal genetic code. In contrast, efforts to comprehensively map CREs in individual cell 

types are ongoing [4-6], and a comprehensive 'genetic code' for regulatory DNA has yet to be 

defined. Ultimately, understanding how CREs encode information requires a detailed 

understanding of mechanisms of transcriptional regulation—from the three-dimensional 

organization of the nucleus to the arrangement of TF binding sites within individual CREs. 

1.1.1 Chromatin structure and genome organization 
Within the nucleus, DNA associates with proteins to form chromatin, which provides the structural 

basis for hierarchical genome organization. The fundamental unit of chromatin is the 

nucleosome—146 bp of DNA wrapped around a histone octamer (two copies each of histones 

H2A, H2B, H3, and H4) [7]. Nucleosome core particles are bound by the linker histone, H1, which 

modulates the packing of chromatin fibers [8]. In vitro, these fibers have been visualized by cryo-

electron microscopy as a double helix of tetra-nucleosomal subunits [9], but evidence suggests that 

variable numbers of nucleosomes cluster along chromatin fibers in vivo [10]. Importantly, 
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chromatin packing influences gene expression—tightly packed chromatin (heterochromatin) is 

largely untranscribed, while accessible chromatin (euchromatin) is available for transcription. 

During interphase, the distinction between heterochromatin and euchromatin can be 

visualized directly by light microscopy [11-15]. In most cell types, heterochromatin localizes to 

the nuclear periphery and around nucleoli, with centric and pericentric regions forming dense foci 

of constitutive heterochromatin known as chromocenters [16]. Genomic regions that physically 

associate with the nuclear lamina have been mapped in both human and mouse cell lines, revealing 

that they are depleted of genes, transcriptionally repressed, AT-rich, and enriched for LINE repeats 

[17-19]. Regions of the genome that associate with nucleoli have similar properties, although they 

are enriched for satellite repeats as opposed to LINEs [20, 21]. Taken together, these data indicate 

that subnuclear localization reflects a functional partitioning of the genome into transcriptionally 

active and inactive compartments. 

Recently, chromosome confirmation capture (3C) and related techniques (4C, 5C, and Hi-

C) have revealed principles of genome organization at high resolution [22-27]. 3C-based methods 

quantify the frequency of physical interactions between pairs of genomic loci, yielding genome-

wide maps of regional proximity. These maps demonstrate that intrachromosomal interactions are 

significantly more common than interchromosomal interactions (even over hundreds of 

megabases), validating microscopic studies suggesting that individual chromosomes segregate in 

discrete territories [22]. Furthermore, 3C-based methods show that the genome is partitioned into 

cell-type-specific A and B compartments, which alternate along chromosomes at megabase scale 

and correlate with gene density, GC content, repeat content, and transcriptional activity (similar to 

heterochromatin and euchromatin) [22, 26]. Within these compartments, 3C-based methods reveal 

the presence of highly self-interacting domains (so-called topologically associating domains, or 

TADs) [23-25, 27]. TADs are typically a few hundred kilobases in size and have well-defined 
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boundaries—i.e., interactions within TADs are much more frequent than interactions between 

TADs. These boundaries are highly enriched for architectural proteins (including CTCF, cohesin, 

and mediator) and are thought to constrain interactions between enhancers and gene promoters 

[25, 27-30]. 

1.1.2 CRE structure and function 
Within TADs, the transcription of individual genes is coordinated by CREs—i.e., promoters, 

enhancers, and repressors. In current models of transcription initiation, TATA-binding protein 

(TBP) interacts with TBP-associated factors (TAFs) to recognize specific sequences within gene 

promoters, and this complex (TFIID) then recruits RNA polymerase II (Pol II) and general 

transcription factors (TFIIA, TFIIB, TFIIE, TFIIF, and TFIIH) to form the pre-initiation complex 

(PIC) [31, 32]. Historically, this process has been described in the context of recognizing a TATA 

box (TATAWAWR) ~30 bp upstream the transcription start site (TSS). However, genome-wide 

mapping of TSSs in humans reveals that the majority of core promoters (i.e., sequences within ~50 

bp of TSSs that are sufficient to recruit Pol II) lack a TATA box [33]. Instead, mammalian core 

promoters harbor a diverse set of recognition sequences (including Inr, BRE, DCE, DPE, and 

MTE) and often multiple functional TSSs distributed over 50 to 100 bp [31, 32]. 

By themselves, core promoters drive transcription at very low levels, but interactions with 

enhancers can increase expression >100-fold. Enhancers are short stretches of DNA (typically 100 

bp to 1 kb) that harbor clusters of TF binding sites (typically 6-13 bp) and encode cell-type-specific 

regulatory activity. The TFs that bind enhancers modulate expression by recruiting components of 

the basal transcriptional machinery (i.e., the PIC) as well as transcriptional coregulators (including 

chromatin modifiers, chromatin remodeling complexes, DNA methyltransferases, and 

architectural proteins). 



 4 

Frequently, transcriptional coregulators directly alter chromatin structure. Chromatin 

modifiers (histone acetyltransferases, deacetylases, methyltransferases, and demethylases) 

catalyze the addition or removal of acetyl or methyl groups to lysine and arginine residues on 

exposed histone tails. These covalent modifications are strongly correlated with regulatory state: 

acetylation promotes chromatin relaxation and is associated with activation, while the effect of 

methylation depends on the specific lysine or arginine targeted and the number of methyl groups 

present [34]. Similarly, ATP-dependent chromatin remodeling complexes (e.g., the BAF, NuRD, 

and SWR1 complexes) dynamically reposition or eject nucleosomes and/or alter their histone 

composition [35]. Finally, DNA methyltransferases (DNMTs) catalyze the addition of methyl 

groups at cytosines in CpG dinucleotides, which promotes the formation of heterochromatin and 

gene silencing [36]. Thus, in addition to directly recruiting components of the PIC, CREs mediate 

targeted changes in chromatin structure as a means of regulating the expression of individual 

genes. 

1.1.3 Methods to map CREs genome-wide 
Over the past 10 years, advances in high-throughput sequencing have enabled CRE-associated 

chromatin features to be mapped genome-wide (e.g., TF occupancy, covalent histone 

modifications, and chromatin accessibility), facilitating systematic identification of CREs in 

diverse cell types and tissues (Fig. 1.1). In ChIP-seq, proteins are crosslinked to DNA, and 

chromatin is sheared to generate 100-300 bp DNA fragments [37]. Sequences bound by a protein 

of interest are then enriched by antibody selection, after which crosslinking is reversed and 

fragments are sequenced. This strategy can be applied to diverse classes of proteins, provided 

suitable antibodies, including TFs, covalent histone modifications, regulatory complexes, and Pol 

II. 
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In parallel, multiple strategies have been developed for mapping chromatin accessibility, 

which identify CREs independent of a specific protein of interest. In DNase-seq, native chromatin 

is gently digested with DNase I, which preferentially cleaves nucleosome-free regions of the 

genome, and fragments are then purified and sequenced [38]. More recently, mapping transposase-

accessible chromatin (ATAC-seq) has proven to be as effective as DNase-seq, but with the 

advantage that it can be performed on as few as 500 cells, enabling open chromatin mapping of 

rare cell types purified by FACS [39]. 

Through consortium efforts, including the ENCODE Project and Roadmap Epigenomics 

Project, thousands of epigenomic profiles have now been generated in diverse cell types and tissues 

from humans as well as model organisms [4, 6]. These data provide a powerful resource for 

understanding how specific loci are regulated as well as general principles of transcriptional 

regulation. Nevertheless, the majority of these initial studies were conducted in bulk tissues, 

merging the epigenomic profiles of multiple cell types and precluding the analysis of cell-type-

specific cis-regulatory architecture. Furthermore, while regions identified by epigenomic profiling 

are highly enriched for CREs, determining which regions are genuinely active CREs requires 

functional assays. 

1.1.4 Methods to quantify CRE activity 
Historically, the regulatory activities of CREs of interest have been quantified by reporter assays 

using colorimetric, luminescent, or fluorescent readouts. One limitation of these approaches is that 

they are not readily multiplexed, meaning CREs have to be analyzed one-at-a-time. Recently, the 

development of massively parallel reporter assays (MPRAs) has overcome this limitation by 

leveraging DNA barcodes to quantify the activity of large numbers of CREs simultaneously [40]. 

The experimental details of individual MPRAs vary, but general principles are illustrated by cis-

regulatory element analysis by sequencing (CRE-seq) [41-46]. In CRE-seq, a library of test 
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sequences is generated by custom oligo synthesis or targeted capture, and these oligos are cloned 

upstream of a reporter gene harboring a CRE-specific barcode in the 3’ UTR. This reporter library 

is then introduced into cells by electroporation, chemical transfection, or viral transduction, and 

CRE activity is quantified by harvesting RNA and DNA and sequencing barcodes. MPRAs, such 

as CRE-seq, have now been used in diverse cell types and tissues from both humans and model 

organisms to study principles of cis-regulatory grammar [41-50], to identify and engineer cell-

type-specific enhancers [51], and to screen human variants for functional effects [52, 53]. 

MPRAs typically assess CREs in an episomal context (i.e., on a non-integrating plasmid), 

but assaying CREs in their native chromosomal context is necessary to definitively link specific 

regulatory variants to changes in gene expression. To address this, several studies have recently 

demonstrated the effectiveness of forward genetic screens using pooled libraries of CRISPR-Cas9 

guide RNAs targeting noncoding regions [54-57]. Coupled with a single-cell readout of target gene 

activity (e.g., antibody staining or an in-frame fluorescent reporter fusion), this strategy enables 

high-resolution functional mapping of CREs in situ. 

1.2 Regulation of mouse photoreceptor development 
The retina is an extension of the central nervous system (CNS) composed of highly specialized 

cells types that receive and process visual information. In vertebrates, there are seven major classes 

of retinal cells: rod and cone photoreceptors, bipolar cells, horizontal cells, amacrine cells, retinal 

ganglion cells and Müller glia. These cells have a precise laminar architecture consisting of three 

nuclear layers (the ganglion cell layer and the inner and outer nuclear layers) and two synaptic 

layers (the inner and outer plexiform layers). Photoreceptors are located in the outer nuclear layer 

and express light-sensitive opsins that initiate phototransduction. In the inner retina, bipolar, 

horizontal and amacrine cells process and relay information from photoreceptors to retinal 

ganglion cells, which project to the brain. 



 7 

Despite its complexity, the retina is among the best understood regions of the CNS. The 

mouse retina, in particular, has emerged as a powerful system for studying the genetics and 

physiology of highly specialized cell types and intricate neural circuits—from single-cell 

transcriptome profiling of tens of thousands of cells [58, 59] to high-resolution reconstruction of 

inner retinal circuitry by serial electron microscopy [60]. Furthermore, mouse photoreceptors have 

proven valuable as a model for understanding the transcriptional networks that regulate neural 

development (Fig. 1.2). 

1.2.1 TFs regulating mouse photoreceptor development 
Early in development (E11.5), expression of the homeodomain TF OTX2 restricts retinal 

progenitor cells to photoreceptor or bipolar cell fates, both of which fail to develop in retina-

specific Otx2 knockout mice [61-63]. Shortly after (E12.5), Otx2 activates Crx, a second 

homeodomain TF, which plays a key role in photoreceptor maturation [64-66]. In Crx knockout 

mice, photoreceptors lack outer segments and have no detectable responses to light [67]. 

Furthermore, CRX ChIP-seq shows that CRX binds thousands of CREs flanking photoreceptor 

genes [68], many of which are down-regulated in Crx knockout retinas [69, 70]. Taken together, 

these data establish Otx2 and Crx as central TFs within photoreceptor gene regulatory networks. 

Downstream of Otx2 and Crx, additional TFs are required for photoreceptor maturation 

and survival, but these TFs generally regulate more restricted subsets of genes: Neurod1 [71, 72], 

Mef2d [73, 74], and Rax [75]. Furthermore, several TFs are required for the expression of cone-

specific genes, especially the patterning of cone opsins (Opn1mw and Opn1sw): Nr2f1 and Nr2f2 

[76], Onecut1 and Onecut2 [77], Rora [78], Rxrg [79], Sall3 [80], and Thrb [81]. In rods, Rorb 

directly activates Nrl [82-85], which orchestrates extensive rod-specific transcriptional changes 

[82, 86-88], including the activation of the rod-specific TFs Esrrb [89], Mef2c [90], and Nr2e3 



 8 

[91-93]. Thus, detailed genetic studies demonstrate the power of the mouse retina as a model for 

understanding the transcriptional mechanisms regulating the development of complex cell types. 

1.2.2 Genetic diseases of photoreceptors 
Photoreceptors play a critical role in human vision, and they are the most commonly affected cell 

type in inherited blindness [94]. The genetic architecture of blindness is complex: coding 

mutations in over 120 genes have been implicated in just three forms of retinal disease (retinitis 

pigmentosa, cone or cone-rod dystrophy, and Leber congenital amaurosis), and distinct mutations 

within the same gene can produce different disease pathologies and clinical presentations [95, 96]. 

Many of the affected genes have well-characterized roles in photoreceptor gene regulation (e.g., 

Crx, Nrl, Nr2e3, Neurod1, Otx2, and Rax2) and phototransduction (e.g., Cnga3, Cngb3, Gnat2, 

Guca1b, Gucy2d, Pde6a, Pde6b, Pde6c, Pde6g and Rho) [94, 96]. Nevertheless, the mechanisms 

by which mutations in these genes produce specific disease phenotypes are not completely 

understood. 

1.3 Aims and scope of thesis 
As described above, rod and cone photoreceptors are highly specialized sensory neurons that 

mediate vision and are the most commonly affected cell types in genetic forms of blindness. 

Detailed molecular and genetic studies have defined the transcriptional networks underlying rod 

and cone identity, but how rod- and cone-specific gene expression is encoded in regulatory DNA 

is less well understood. In particular, the locations of these CREs have not been systematically 

identified, and the sequence features that encode rod- and cone-specific regulatory activity are not 

known. Therefore, the aims of this thesis are (1) to comprehensively map and characterize 

rod- and cone-specific CREs, and (2) to determine how photoreceptor CREs encode 

regulatory information in primary sequence. 
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In Chapter 2, I use ATAC-seq and RNA-seq to profile chromatin accessibility and gene 

expression in FACS-purified rods and cones. This approach yields highly reproducible cell-type-

specific maps of candidate CREs, which are moderately correlated with transcriptional activity 

genome-wide. Furthermore, these data reveal that rods are depleted of open chromatin compared 

to cones (as well as >60 control cell types and tissues), i.e., that they have a uniquely closed 

chromatin architecture. This phenotype likely reflects the unusual distribution of chromatin in 

rods—suggesting a correlation between global changes in nuclear organization and chromatin 

structure at the resolution of individual CREs. Finally, I identify sequence features (mono- and di-

nucleotide content as well as TF binding sites) enriched in photoreceptor open chromatin, 

providing insight into the cis-regulatory grammar of mouse rods and cones. 

In Chapter 3, I use CRE-seq to perform detailed functional analyses of sequence features 

that influence the activity of CRX binding sites. First, I identify sequence features and orthogonal 

epigenomic measurements that are correlated with the wild-type activity of >1200 CRX-bound 

regions in the mouse genome. I then assay the effect of inactivating mutations in >1700 CRX 

binding sites within these elements, which reveals that dimeric CRX binding sites encode stronger 

enhancers than monomeric CRX binding sites. Furthermore, mutating pairs of CRX sites within 

the same CRE individually and in combination reveals that CRX sites frequently act cooperatively. 

Finally, I examine the effect of all possible single nucleotide substitutions in a 13-bp window 

overlapping 195 CRX binding sites, which reveals that changes in TF binding site affinity are 

moderately correlated with changes in activity within individual CREs, but poorly correlated 

across mutations from different CREs. 

In the Appendix, I describe my initial efforts to adapt these approaches to study the 

functional impact of genetic variation on human retinal CREs, including the prioritization of 

candidate pathogenic variants in cases of inherited blindness. 
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Taken together, these studies provide insight into the mechanisms by which photoreceptor 

CREs encode regulatory information in DNA sequence. In addition, they provide valuable 

reference datasets for studying the regulation of individual rod and cone genes, and they reveal 

principles of cis-regulatory grammar that have implications for developing quantitative models of 

CRE activity. Therefore, these results have the potential to enhance the functional interpretation 

of noncoding variation and accelerate the identification of regulatory sequences involved in 

complex traits and human disease. 
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Figure 1.1. Identification of photoreceptor CREs by epigenomic profiling. Upper panel: tracks 

from the UCSC genome browser showing a 20 kb window centered on the mouse rhodopsin (Rho) 

locus, including open chromatin (DNase-seq), TF occupancy (CRX and NRL ChIP-seq), and 

conservation data (phastCons 60-way). Chromatin accessibility, TF occupancy, and conservation 

profiles align with the Rho promoter, as well as several upstream and downstream enhancers. 

Lower panel: schematic illustrating the chromatin structure of a single upstream cis-regulatory 

element (CRE). As shown in both panels, this CRE overlaps a region of open chromatin (is 

nucleosome-free) and is bound by two TFs (CRX and NRL). Also, this CRE is flanked by adjacent 

nucleosomes (closed chromatin) with covalent histone modifications typical of active enhancers 

(H3K27Ac and H3K4Me1). 
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Figure 1.2. Transcriptional regulation of mouse photoreceptor development. Otx2 and Crx 

are master regulators of photoreceptor development, controlling the expression of additional 

photoreceptor TFs as well as many rod and cone genes. Downstream of Crx, Nrl is the master 

regulator of rod differentiation, activating rod-specific TFs (and other rod genes) and repressing 

cone genes. 
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Chapter 2: Cell-type-specific epigenomic 
analysis reveals a uniquely closed chromatin 

architecture in mouse rod photoreceptors 
Rod photoreceptors are specialized neurons that mediate vision in dim light and are the 

predominant photoreceptor type in nocturnal mammals. The rods of nocturnal mammals are unique 

among vertebrate cell types in having an 'inverted' nuclear architecture, with a dense mass of 

heterochromatin in the center of the nucleus rather than dispersed clumps at the periphery. To test 

if this unique nuclear architecture is correlated with a unique epigenomic landscape, we performed 

ATAC-seq on mouse rods and their most closely related cell type, cone photoreceptors. We find 

that thousands of loci are selectively closed in rods relative to cones as well as >60 additional cell 

types. Furthermore, we find that the open chromatin profile of photoreceptors lacking the rod 

master regulator Nrl is nearly indistinguishable from that of native cones, indicating that Nrl is 

required for selective chromatin closure in rods. Finally, we identified distinct enrichments of 

transcription factor (TF) binding sites in rods and cones, revealing key differences in the cis-

regulatory grammar of these cell types. Taken together, these data provide insight into the 

development and maintenance of photoreceptor identity, and highlight rods as an attractive system 

for studying the relationship between nuclear organization and local changes in gene regulation. 

2.1 Introduction 
Photoreceptors are light-sensitive neurons that express opsins tuned to specific wavelengths of 

light. In the mouse retina >95% of photoreceptors are rods, which express rhodopsin (Rho) and 

mediate vision in dim light [97]. In contrast, cone photoreceptors express both short- and/or 

medium-wavelength opsins (Opn1sw and Opn1mw, respectively) and mediate bright light vision 

as well as color vision [98, 99] (Fig. 2.1A,B). The rods of nocturnal mammals have evolved a 

unique nuclear architecture to enhance visual sensitivity in low-light environments [100]. Whereas 
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the nuclei of nearly every vertebrate cell type harbors multiple discrete clusters of heterochromatin 

largely localized to the nuclear periphery, the rods of nocturnal mammals harbor a dense central 

core of heterochromatin surrounded by a ring of euchromatin (Fig. 2.1C). 

Emerging evidence indicates that the three-dimensional organization of chromatin within 

the nucleus is essential for regulating gene expression [101, 102]. This organization is 

fundamentally hierarchical: within the nucleus, chromosomes segregate into discrete territories 

[103, 104], and they are partitioned into megabase-scale compartments (similar to euchromatin 

and heterochromatin) [22], which are further organized into topologically associating domains 

(TADs) [25]. Within TADs, architectural proteins (including CTCF, mediator, and cohesin) direct 

chromatin looping, mediating local interactions between transcriptional enhancers (i.e., cis-

regulatory elements, or CREs) and their target genes [27, 105]. While the unique localization of 

chromatin in rods has been described extensively at an ultrastructural level [100], whether or not 

this higher-order reorganization is correlated with changes in the regulatory landscape of rods (and 

ultimately gene expression) is not known. 

At the molecular level, the inverted nuclear organization of rods depends on the silencing 

of key nuclear envelope proteins, including lamin B receptor (Lbr) and lamin A/C (Lmna) [106]. 

Although it is not clear how these specific loci are regulated in rods, a tremendous amount is 

known about the transcriptional networks underlying rod and cone identity [107, 108]. 

Commitment to a photoreceptor fate is determined early in development by a pair of ‘K50’ 

homeodomain (HD) transcription factors (TFs)—Otx2 and Crx—whose binding specificity is 

determined, in part, by a lysine (K) in position 50 of the homeodomain [109]. Beginning at E11.5, 

Otx2 provides a necessary signal for photoreceptor specification [63, 110]. Otx2 then directly 

activates Crx (first detectable at E12.5), which is also required for photoreceptor maturation [64-

66]. Comparative expression profiling of wild-type and Crx-/- retinas has shown that Crx regulates 
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additional photoreceptor TFs as well as components of the phototransduction machinery [69, 70]. 

Furthermore, Crx-/- photoreceptors lack outer segments and fail to respond to light [67]. Thus, 

detailed molecular studies have placed Crx at the core of the photoreceptor transcriptional network. 

The decision for a photoreceptor progenitor to differentiate into a rod versus a cone 

photoreceptor is driven by the TF Nrl, which is both necessary and sufficient for rod differentiation 

[86, 111]. Expression profiling has demonstrated that Nrl regulates a large set of rod-specific genes 

[87, 88, 112], and the rods of Nrl-/- mice are transfated into cells with many of the features of native 

blue cones, including a conventional nuclear architecture with multiple heterochromatin clusters 

at the periphery [86, 113, 114]. In addition to regulating genes that contribute directly to 

phototransduction, Nrl activates additional TFs required for subsets of rod gene expression, 

including the nuclear receptors (NRs) Nr2e3 [93, 115] and Esrrb [89], as well as the myocyte 

enhancer factor 2 family member, Mef2c [90]. 

Expression profiling of wild-type and TF mutant mouse retinas has rapidly advanced the 

understanding of how photoreceptor TFs are organized into regulatory networks [70, 88, 112, 116, 

117]. In parallel, significant advances have been made in the discovery of retinal CREs across the 

mouse genome. Specifically, DNase-seq has been used to map regions of open chromatin 

(containing candidate CREs) in whole retina [118], and ChIP-seq has been used to elucidate the 

genome-wide occupancy of individual TFs—CRX [68], NRL [119], and MEF2D [73]—also in 

whole retina. While these studies have proven highly informative, profiling whole retina is limited 

in that the ascertainment of CREs is biased towards highly abundant cell types, and the specific 

cell types underlying individual signals is ambiguous. 

To begin to elucidate the epigenomic landscape of individual photoreceptor subtypes, we 

utilized the assay for transposase accessible chromatin using sequencing (ATAC-seq) [39] to 



 16 

profile purified populations of rods, cones, and Nrl-/- photoreceptors. In addition, we performed 

RNA-seq on flow-sorted rods and Nrl-/- photoreceptors, in order to correlate changes in chromatin 

accessibility with changes in gene expression. Strikingly, we find that mouse rods display a global 

reduction in open chromatin (relative to native cones as well as >60 additional mouse cell types 

and tissues profiled by the ENCODE project), and that this reduction depends on Nrl. Through 

comparative analysis of these datasets, we define thousands of photoreceptor class- and subtype-

specific candidate CREs, and we find that distinct subsets of these elements are enriched for 

different sets of TF binding sites. Taken together, these data reveal that Nrl mediates a uniquely 

closed chromatin architecture in rods, and they provide a framework for elucidating the cell-type-

specific cis-regulatory grammar of rods and cones. 

2.2 Photoreceptor ATAC-seq yields cell-type-specific maps 
of open chromatin 

To isolate purified populations of adult mouse photoreceptors, we performed fluorescence-

activated cell sorting (FACS) on dissociated retinas harvested from 8-week-old mice harboring 

transgenic reporter constructs (Fig. 2.1, Supplemental Table S2.1). Specifically, we obtained rods 

from Nrl-eGFP mice (Fig. 2.1D,G) [88], native ‘green’ cones from Opn1mw-eGFP mice (Fig. 

2.1E,H) [120], and Nrl-/- photoreceptors (putatively blue cones) from Nrl-/-;Nrl-eGFP mice (Fig. 

2.1F,I) [88]. We performed ATAC-seq on all three sorted cell types and RNA-seq on sorted rods 

and Nrl-/- photoreceptors, yielding reproducible chromatin accessibility and expression profiles 

(Pearson correlation coefficients between biological replicates of 0.86-0.99 for ATAC-seq and 

0.95-1.00 for RNA-seq) (Supplemental Fig. S2.1). 

 ATAC-seq of purified photoreceptors revealed cell-type-specific patterns of open 

chromatin flanking canonical rod- and cone-specific genes: Rho (rod-specific), Opn1mw (cone-

specific), and Opn1sw (cone-specific) (Fig. 2.2A-C). In general, rod ATAC-seq exhibited high 
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concordance with whole-retina DNase-seq (as well as CRX ChIP-seq and NRL ChIP-seq), 

especially near rod-specific genes (Fig. 2.2A) [68, 118, 119]. This result is expected, given that 

rods constitute >75% of cells in the mouse retina [97]. In contrast, cones represent only 2% of cells 

in the mouse retina. Therefore, we hypothesized that cell-type-specific ATAC-seq would be more 

sensitive than whole-retina DNase-seq for detecting cone-specific regulatory elements. Indeed, 

ATAC-seq of green cones and Nrl-/- photoreceptors revealed many regions of open chromatin that 

were not previously detected by epigenomic profiling of whole retina, especially near cone-

specific genes (Fig. 2.2B,C). While we observed robust cell-type-specific ATAC-seq peaks 

flanking known rod- and cone-specific genes, we noted that even highly cell-type-specific loci 

frequently harbored peaks open in all three photoreceptor types (Supplemental Fig. S2.2). This 

multiplicity of both cell-type-specific and shared open chromatin elements in photoreceptors is 

similar to the ‘locus complexity’ of cell-type-specific enhancers recently described by Gonzalez 

et al. [121]. 

 Although the majority of mouse retinal cells are photoreceptors, we hypothesized that 

many previously identified whole-retina DNase-seq peaks derive from non-photoreceptor cell 

types. To compare the chromatin accessibility profiles of flow-sorted photoreceptors and whole 

retina, we first merged peak calls from cell-type-specific ATAC-seq (Supplemental Table S2.2) 

and whole-retina DNase-seq to produce a reference set of 60,414 candidate regulatory elements. 

We then plotted the chromatin accessibility profile of each cell or tissue over these intervals (Fig. 

2.2D). We found that there were many whole-retina DNase-seq peaks that did not correspond to 

photoreceptor ATAC-seq peaks (Fig. 2.2D, yellow box). For example, whereas >95% of rod 

ATAC-seq peaks overlapped whole-retina DNase-seq peaks, <50% of whole-retina DNase-seq 

peaks overlapped rod ATAC-seq peaks (Supplemental Table S2.3). To validate that this reduced 

overlap was due to enhanced specificity (vs. reduced sensitivity), we also examined the overlap of 
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ATAC-seq peaks with photoreceptor-specific ChIP-seq data. We found that rod and cone ATAC-

seq peaks overlapped >90% of whole-retina CRX ChIP-seq peaks (i.e., photoreceptor-specific 

regulatory elements). Furthermore, rod ATAC-seq peaks overlapped >90% of NRL ChIP-seq 

peaks (i.e., rod-specific regulatory elements). Taken together, these data suggest that photoreceptor 

ATAC-seq revealed the rod- and cone-specific subsets of open chromatin elements identified by 

whole-retina DNase-seq, and that a substantial number of candidate CREs identified by whole-

retina DNase-seq belong to non-photoreceptor cell types. 

 We also found that the open chromatin profiles of green cones and Nrl-/- photoreceptors 

were nearly indistinguishable, indicating that the well-described cone-like features of Nrl-/- 

photoreceptors [86, 113, 114] are encoded at the level of chromatin accessibility. This finding was 

supported by principal component analysis (PCA) as well as hierarchical clustering of the genome-

wide open chromatin profiles of photoreceptors and control tissues (Fig. 2.2E, Supplemental Fig. 

S2.3). As Nrl-/- photoreceptors preferentially express the short-wavelength opsin (Opn1sw), we 

will henceforth refer to these cells as ‘blue cones’. 

2.3 Nrl is required for global chromatin closure in rods 
In our global comparison of rod and cone open chromatin profiles, we noted a significant excess 

of cone-specific open chromatin relative to rods (Fig. 2.2D, red box). When we reviewed the 

genome-wide distribution of these peaks, we found that many occurred in long runs (hundreds of 

kilobases to tens of megabases), overlapping regions that frequently harbored open chromatin 

peaks in additional (non-photoreceptor) cell types and tissues (Fig. 2.3A,B). Therefore, many of 

the apparently cone-specific regions of open chromatin are more accurately described as regions 

that are selectively closed in rods. This finding suggested that rods have a more closed chromatin 

landscape than other cell types and tissues. 
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To quantify this observation, we examined the distribution of open chromatin signal 

(ATAC-seq or DNase-seq reads) across the mouse genome in 64 additional cell types and tissues 

(Fig. 2.3C, Supplemental Table S2.4). We divided the genome into fixed 50 kb windows, scored 

each window for normalized open chromatin signal (normalized ATAC-seq or DNase-seq reads), 

and then plotted the cumulative distribution (proportion of windows with coverage less than or 

equal to each observed value) for each cell type or tissue. This analysis revealed that the genome-

wide distribution of open chromatin signal in mouse rods was shifted relative to every other cell 

type and tissue we examined in a pattern consistent with a more closed chromatin landscape. In 

Nrl-/- photoreceptors, in contrast, these rod-closed regions are open to a similar extent as in other 

tissues, demonstrating that Nrl is necessary for the global chromatin closure phenotype in rods. 

We next asked if global differences between the accessible chromatin landscapes of rods 

and cones were correlated with changes in gene expression. To address this, we mapped individual 

rod and blue cone ATAC-seq peaks to the nearest transcription start site (TSS) and examined the 

expression of the corresponding gene (Fig. 2.3D, Supplemental Tables S2.5-S2.6). In general, 

changes in chromatin accessibility were directionally correlated with changes in gene expression, 

i.e., genes near rod-specific peaks tended to have higher expression in rods, while genes near cone-

specific peaks tended to have higher expression in cones (Fig. 2.3D, Supplemental Fig. S2.4A). 

We noted, however, that genes near cone-specific peaks had lower expression in both rods and 

cones relative to genes near rod-specific peaks or shared peaks (Supplemental Fig. S2.4A), 

indicating that cone-specific peaks are located in regions that have lower average transcriptional 

activity in both photoreceptor types. Furthermore, cone-specific open chromatin elements were 

located significantly farther from annotated genes compared to rod-specific or shared open 

chromatin elements (median distance 50 kb vs. 18 kb) (Supplemental Fig. S2.4B). Finally, rod-

specific regions of open chromatin were highly enriched for gene ontology (GO) terms related 
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specifically to photoreceptor biology, while cone-specific regions were enriched more generally 

for terms related to neurodevelopment (Supplemental Fig. S2.5). Thus, regions of open chromatin 

that are selectively closed in rods appear to be depleted of genes, especially photoreceptor genes, 

and have lower transcriptional activity. These findings suggest that rod-specific chromatin closure 

may not reflect targeted gene silencing, and may instead be secondary to large-scale alterations in 

nuclear organization (Fig. 2.3E). 

2.4 Lmna expression is selectively downregulated in rods 
A prior study showed that expression of either lamin B receptor (encoded by Lbr) or lamin A/C 

(encoded by Lmna) is required to maintain a conventional nuclear architecture in non-rod cell types 

[106]. To determine whether expression of these two genes is associated with selective chromatin 

closure in rods, we examined the open chromatin and transcriptional profiles of these loci in detail 

(Fig. 2.4). The Lbr locus harbors a single open chromatin peak overlapping the TSS, with 

comparable ATAC-seq signal in rods, green cones and blue cones (Fig. 2.4A). It was previously 

shown by antibody staining that that lamin B receptor is downregulated in both rods and cones as 

they differentiate [106]. Nevertheless, we detected modest levels of Lbr transcript in both rods and 

blue cones (Fig. 2.4C), suggesting that either the level of lamin B receptor in adult photoreceptors 

is regulated post-transcriptionally, or that it is below the limit of detection by antibody staining. 

While the open chromatin profile surrounding Lbr is similar in rods and cones, two peaks at the 

Lmna locus are selectively closed in rods—one overlapping the gene promoter and another ~6.5 

kb upstream (Fig. 2.4B, red boxes). The rod-specific closure of these peaks is correlated with a 

marked reduction in the level of Lmna transcript in rods (Fig. 2.4D), consistent with the rod-

specific reduction in Lamin A/C protein levels reported previously [106]. Taken together, these 

data indicate that rods selectively downregulate Lmna at the transcript level, and this 

downregulation may be mediated by the selective closure of two upstream open chromatin regions. 
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Furthermore, these findings indicate that NRL mediates chromatin closure at the Lmna locus, 

either directly or indirectly, offering a mechanistic link between the expression of a key rod cell 

fate determinant and the cell's inverted nuclear architecture.   

2.5 Photoreceptor open chromatin is enriched for binding 
sites for photoreceptor TFs 

Having characterized photoreceptor open chromatin globally, we next sought to identify local 

sequence features that mediate the regulatory activity of individual CREs. Combining ATAC-seq 

peaks from both rods and cones, we detected a total of 55,161 regions of open chromatin in 

photoreceptors. For each cell type, we partitioned peaks into “promoters” (<1 kb upstream and 

<100 bp downstream of the nearest TSS) and “enhancers” (>1 kb upstream or >100 bp downstream 

of the nearest TSS), in light of work demonstrating that cell-type-specific regulatory elements are 

preferentially enriched among TSS-distal elements [122]. Supporting the idea that these regions 

constitute distinct functional elements, we found that promoter elements in all three photoreceptor 

types were centered on stronger and broader enrichments of ATAC-seq signal, phylogenetic 

conservation, and GC content, and that promoter peaks were more strongly correlated with gene 

expression (Supplemental Fig. S2.6). 

To identify TF binding sites enriched in photoreceptor ATAC-seq peaks, we tested 319 

known sequence motifs curated by the HOMER suite of sequence analysis tools for 

overrepresentation (Fig. 2.5A, Supplemental Fig. S2.7, Supplemental Tables S2.7-S2.8) [123]. 

Whereas promoter peaks were strongly enriched for motifs corresponding to ubiquitous 

transcriptional regulators (Supplemental Fig. S2.7), enhancer peaks were enriched for motifs 

bound by known photoreceptor TFs (Fig. 2.5A,B). Among enhancer elements in both rods and 

cones, the most strongly enriched motif corresponded to the zinc-finger (ZF) architectural protein 

CTCF. CTCF is frequently among the most enriched motifs in open chromatin from most cell 
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types [122] and is thought to mediate interactions between regulatory elements via chromatin 

looping [27, 124]. The second most enriched motif, ‘CTAATCC’, represented the binding of a 

K50 HD TF, most likely the photoreceptor master regulator CRX [68]. In addition, this motif is 

also bound by OTX2 (highly expressed during photoreceptor development but at reduced levels in 

adulthood) [125] and can be bound by SIX6 as well [126]. 

While CTCF and CRX were by far the most enriched motifs in photoreceptor open 

chromatin, we also observed modest enrichments of additional motifs that again corresponded to 

binding sites recognized by well-characterized photoreceptor TFs (Fig. 2.5A, B). These included 

Q50 HD (TAATTA), basic helix-loop-helix (bHLH) (CATATG), MADS (CC[A/T]8GG), NR 

(AGGTCA), GATA (GATA), and bZIP (TGANTCA) families. The enrichment of non-CRX 

binding sites is of considerable interest, as it suggests that specific TFs may cooperate with CRX 

to shape the regulatory activity of photoreceptor-specific CREs. RAX, for example, is the most 

highly expressed Q50 HD TF (which has glutamine [Q] in position 50 of the homeodomain) in 

both rods and cones. It has recently been shown that RAX plays an important role in photoreceptor 

development and is essential for the survival of mature cones [75]. bHLH motifs are likely bound 

by NEUROD1, which is expressed in developing and mature photoreceptors (both rods and cones) 

[127]. The MADS family members MEF2D (rods and cones) and MEF2C (rod-specific) are 

additional essential photoreceptor TFs, and MEF2D in particular has been shown to be recruited 

by CRX to photoreceptor-specific binding sites [73]. The specific role of individual NR motifs is 

more complex, as rods and cones express distinct sets of NR TFs—RORB, ESRRB, and NR2E3 

are significantly upregulated in rods, while RXRG and THRB are expressed in cones (Fig. 2.5B). 

Finally, we observed relative enrichment in cones of a bZIP-type motif (TGANTCA), which may 

be bound by NRL, a bZIP TF in the MAF subfamily (though MAF family members typically prefer 

an extended consensus sequence, TGCTGANTCAGCA). 
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Motifs overrepresented in photoreceptor ATAC-seq peaks were enriched for co-occurrence 

(overrepresentation of pairs of motifs within individual ATAC-seq peaks) (Supplemental Fig. 

S2.8), suggesting they may have cooperative roles in mediating the activity of individual 

regulatory elements. In particular, we identified a candidate regulatory hub consisting of K50 HD 

(CRX), NR (RORB), MADS (MEF2D), MAF (NRL), and bZIP (NRL?) motifs that were co-

enriched in photoreceptor open chromatin (Supplemental Fig. S2.8). Notably, while we did not 

observe a robust enrichment of MAF motifs by themselves, we did observe an enrichment of motif 

pairs involving MAF motifs. This suggests that NRL may be recruited to rod-specific enhancers 

cooperatively with additional cell-type-specific TFs, analogous to the mechanism of 

photoreceptor-specific MEF2D occupancy described recently [73]. While overrepresented 

enhancer TF binding site motifs were typically enriched for co-occurrence, peaks harboring CTCF 

motifs were depleted of other photoreceptor-specific motifs (Supplemental Fig. S2.8). 

Consistent with previous work, we observed modest preferences in spacing and orientation 

between pairs of enriched motifs [68] (Supplemental Fig. S2.9). Nevertheless, specific 

configurations account for a minority of enriched motif pairs, supporting the idea that 

photoreceptor regulatory activity is encoded by a flexible sequence grammar, as suggested by 

previous studies [42, 68]. Finally, we noted that while the majority of rod and cone ATAC-seq 

peaks were shared across cell types, many enriched motifs are likely bound by TFs that are 

differentially expressed in rods and cones in vivo (Fig. 2.5B). This raises the possibility that CREs 

open in both rods and cones encode cell-type-specific regulatory activity via the recruitment of 

distinct arrays of TFs and/or by competition among differentially expressed TFs (e.g., NRs) for 

common binding sites. For example, although NRL is a rod-specific TF, >80% (1603/1935) of 

NRL ChIP-seq peaks overlap elements that are accessible in both rods and cones (Fig. 2.2D). Thus, 

differential expression of trans factors may be an important mechanism by which photoreceptor 
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regulatory elements encode cell subtype-specific functions within shared cis-regulatory elements. 

In addition to identifying enrichments of known TF binding site motifs, we performed de 

novo motif discovery (Supplemental Tables S2.9-S2.10). In general, de novo motifs were highly 

concordant with known motifs that were found to be enriched. A key exception was the de novo 

motif corresponding to a K50 HD family member (likely bound by CRX) (Fig. 2.6A). While 

previous in vitro studies have shown that CRX exhibits a strong preference for the consensus 

CTAATCCC [109], photoreceptor ATAC-seq peaks showed a preference for CRX motifs in a 

paired configuration on opposite strands separated by exactly three nucleotides 

(TAAT[N]3ATTA), a well-known dimer configuration of HD TFs [128, 129]. Furthermore, TAAG 

is highly enriched in photoreceptor open chromatin, especially in a paired configuration 

(TAAG[N]3CTTA or TAAT[N]3CTTA). This finding indicates that, in certain contexts, the fourth 

position of the TAAT homeodomain core tolerates a ‘G’ better than would be expected from 

quantitative gel shift assays [109]. This conclusion was also reached by a previous study that 

analyzed hundreds of variants within a single photoreceptor promoter [41]. When we examined 

individual k-mers underlying the paired K50 HD de novo motif, they were highly enriched for the 

canonical CRX monomer motif (CTAATCC), the 3’ G variant (CTAAGCC), as well as homotypic 

(TAAT[N]3ATTA or TAAG[N]3CTTA) and especially heterotypic (TAAT[N]3CTTA) dimer 

configurations (Fig. 2.6A). 

We next asked if distinct configurations of CRX monomeric and dimeric motifs had 

functional significance with respect to the cis-regulatory activity of individual photoreceptor CREs 

(Fig. 2.6B). Previously, a library of 84-bp CRX-bound sequences (including 865 WT sequences 

and 865 versions with CRX binding sites eliminated by point mutation) were assayed for activity 

in explanted mouse retina via CRE-seq, a massively parallel reporter assay [42]. We re-analyzed 

these data with respect to CRX motif configuration and did not find strong differences in 
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expression depending on the presence of monomeric (TAAT or TAAG cores), homotypic 3’ G 

dimeric (TAAG[N]3CTTA), or heterotypic dimeric (TAAT[N]3CTTA) k-mers. However, we did 

observe a significant repressive effect for the homotypic TAAT dimer configuration 

(TAAT[N]3ATTA) (Fig. 2.6B). Furthermore, examining the corresponding control sequences with 

mutated CRX binding sites, we found that this repressive effect depended on the presence of CRX 

binding sites (Fig. 2.6B). Accordingly, these data demonstrate that distinct arrangements of CRX 

motifs prevalent in endogenous CREs can yield significant differences in cis-regulatory activity. 

Having identified a repressive effect of TAAT[N]3ATTA CRX motifs, we asked if 

additional motifs enriched in photoreceptor open chromatin contributed to photoreceptor CRE 

activity. Consistent with the original analysis by White et al., we did not observe significant 

differences in reporter activity among endogenous CRX-bound sequences due to the presence or 

absence of CRX sites, suggesting the importance of additional sequence features and context (Fig. 

2.6C) [42]. In contrast, we found that constructs harboring bHLH (NEUROD1), MADS (MEF2C 

and MEF2D), or NR (RORB, NR2E3, and ESRRB) motifs had significantly higher expression 

compared to those without (Fig. 2.6C). This activation was retained (though reduced) in control 

sequences in which CRX sites were eliminated by point mutations, suggesting that CRX may act 

cooperatively with these TFs to drive enhancer activity. Thus, high-throughput analysis of 

photoreceptor CREs suggests that specific TF binding sites enriched in photoreceptor open 

chromatin act as potent transcriptional activators in vivo. 

2.6 Rod- and cone-specific regions of open chromatin are 
enriched for distinct TF binding sites 

Finally, we asked if rod- and cone-specific ATAC-seq peaks were enriched for distinct sequence 

features. To define rod- and cone-specific regions, we used DESeq2 [130] to test for differences 

in accessibility between rods and cones (Methods). This analysis yielded 48,143 shared peaks, 
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6,324 cone-specific peaks and 693 rod-specific peaks (Supplemental Table S2.5). To focus on 

elements likely to contain cell-type-specific enhancers, we removed peaks overlapping promoters, 

peaks shared with non-photoreceptor cell types, and peaks with >70% overlap with repeat 

sequences. Filtering reduced the totals to 17,485 photoreceptor-specific peaks, 3,606 cone-specific 

peaks, and 394 rod-specific peaks (Fig. 2.7A). Thus, we found that the vast majority of 

photoreceptor-specific peaks were shared between rods and cones, and that there were 

approximately 10-fold more cone-specific peaks than rod-specific peaks.  

As expected, peaks present in non-photoreceptor cell types and tissue showed little 

enrichment for motifs corresponding to photoreceptor TFs, while shared (rod and cone) 

photoreceptor-specific peaks were enriched for the factors discussed above (Fig. 2.7B). 

Interestingly, rod- and cone-specific peaks were enriched for distinct sets of TF motifs. 

Specifically, cone-specific open chromatin was enriched for Q50 (RAX), bHLH (NEUROD1), 

paired NR (THRB and/or RXRG), and a bZIP motif (whose cognate TF is unknown). In contrast, 

rod-specific open chromatin was specifically enriched for a MAF motif (NRL) and a distinct NR 

motif (RORB, ESRRB, and/or NR2E3), i.e., motifs bound by rod-specific TFs. Thus, comparative 

analysis of cell-type-specific open chromatin identified specific sequence features that may play 

important roles in determining rod- vs. cone-specific gene regulation. 

2.7 Discussion 
In this study, we presented genome-wide maps of open chromatin and gene expression in 

individual photoreceptor subtypes. These data revealed a striking depletion of accessible 

chromatin in rods relative to cones and other cell types, which we hypothesize is related to the 

unique nuclear organization of rods. Furthermore, we leveraged cell-type-specific open chromatin 

maps to identify sequence features that define shared photoreceptor-specific, rod-specific, and 

cone-specific regulatory elements. 
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The inverted nuclear architecture of the rods of nocturnal mammals is thought to enhance 

visual sensitivity in dim light environments [100]. Computational simulations predict that this 

inverted organization of rod nuclei produces less light scattering than the conventionally organized 

nuclei of other cell types. Thus, the inverted nuclear architecture confers desirable optical 

properties to photoreceptor nuclei. In addition, our data suggest that inverted nuclear organization 

has important implications for the regulatory landscape of mouse rods. Specifically, inverted 

architecture is correlated with the closure of thousands of regions of open chromatin, which are 

often clustered within large (105-106 bp) domains and biased towards gene-sparse regions of the 

genome with lower transcriptional activity in photoreceptors. Thus, while inverted nuclear 

organization may reflect selection for certain optical properties, precisely how the nucleus is re-

packaged may be additionally constrained by the gene expression programs essential for 

photoreceptor function. 

An important outstanding question with respect to inverted nuclear architecture is how it 

is regulated. As described above, previous work has shown that rod nuclear organization depends 

on silencing the nuclear envelope proteins Lbr and Lmna [106]. At the protein level, it was shown 

that LBR is present in both rods and cones in early postnatal life, and downregulated in both cell 

types as they mature. Furthermore, as LBR is downregulated, Lamin A/C protein is selectively 

upregulated in cones (and other retinal cell types) but not rods. In the current study, we find low 

levels of Lmna transcript present in adult cones but not rods, suggesting that rods selectively inhibit 

Lmna transcription. In addition, we find two open chromatin peaks (candidate regulatory elements) 

at the Lmna locus that are selectively closed in rods. We note that these peaks are open in both 

endogenous cones and Nrl-/- photoreceptors, indicating that Nrl mediates selective closure of these 

elements, though additional experiments are needed to determine if this is a direct or indirect effect. 

Nevertheless, these observations constitute a first step towards localizing changes in the expression 
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of key nuclear envelope genes within rod-specific gene regulatory networks. 

We previously showed that acute knockout of Nrl results in a partial conversion of rods 

into cones and can delay photoreceptor degeneration in a mouse model of retinitis pigmentosa 

[131]. The present study suggests that widespread chromatin closure in adult rods may represent 

an epigenetic barrier to complete rod-to-cone reprogramming after acute Nrl knockout. It will be 

interesting to determine whether the dynamics of chromatin closure in developing rods temporally 

correlates with the acquisition of resistance to reprogramming observed in our prior study. 

Furthermore, if rod-specific chromatin closure is indeed related to the cell's inverted nuclear 

architecture, adult human rods, which have a conventional chromatin architecture, may prove more 

responsive to direct reprogramming strategies than mouse rods. 

Recently, Mo et al. also evaluated the cell-type-specific epigenomic profile of mouse rods 

[132]. In particular, Mo et al. identified differential DNA methylation in rods and cones, which 

revealed a striking rod-specific enrichment of hypomethylated DNA in closed chromatin. Mo et 

al. suggest that many of these regions represent ‘vestigial enhancers’—regulatory elements active 

earlier in development that retain hypomethylation marks in adult cell types despite loss of activity 

[133]. This is consistent with our observations that these regions appear to be less transcriptionally 

active in both adult rods and cones, and that cone-specific open chromatin is more strongly 

enriched for GO terms related to neural development than photoreceptor physiology. Finally, while 

we show that Nrl is required for chromatin closure in rods, Mo et al. also profiled Nr2e3-/- retinas, 

which demonstrate an intermediate epigenetic phenotype between that of Nrl-/- and WT retinas. 

This finding suggests that rod-specific nuclear organization depends at least in part on TFs 

downstream of Nrl. 

In addition to defining the genome-wide chromatin accessibility profile of individual 
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photoreceptor subtypes, our analysis suggests a simple taxonomy of photoreceptor regulatory 

elements based on TF motif content and their proximity to genes. Consistent with previous work, 

we found that promoters and enhancers are distinct with respect to size, sequence content and 

specificity. In particular, promoters tend to be shared across cell types and are enriched for binding 

sites corresponding to ubiquitous transcriptional regulators, whereas enhancers exhibit greater 

cell-type-specificity and are enriched for binding sites corresponding to photoreceptor TFs. 

Furthermore, enhancers are highly enriched for CTCF binding sites, most of which are shared with 

non-photoreceptor cell types (likely reflecting ubiquitous TADs), though some are photoreceptor-

specific (potentially mediating cell-type-specific contact domains). Enhancers containing CTCF 

motifs were largely devoid of motifs for photoreceptor TFs, whereas enhancers without CTCF 

motifs are highly enriched for the latter. Taken together, these findings suggest that CREs can be 

divided into three classes: promoters, CTCF-bound enhancers, and non-CTCF-bound enhancers. 

We suggest that this tripartite classification is applicable to other cell types. 

With respect to non-CTCF-bound enhancers, our motif enrichment analysis identified a set 

of candidate TF binding sites that extend the ‘vocabulary’ of photoreceptor regulatory elements 

beyond K50 HD (CRX) binding sites, suggesting key roles for Q50 HD, bHLH, NR, MADS, MAF 

and bZIP TF family members. In parallel, our expression analysis identified TFs that were robustly 

expressed in rods and/or cones that likely bind these motifs. With respect to K50 HD TFs, we 

noted that Six6 is expressed at markedly higher levels in adult cones than in rods. While Six6 is 

essential for retinal development in vertebrates [134-136], a photoreceptor-specific role for Six6 

has not been described in mammals. Nevertheless, Six6 has been shown to mediate photoreceptor 

differentiation in medaka [137], and a closely related homolog, Six7, has recently been shown to 

regulate cone-specific gene expression and survival in zebrafish [138, 139]. Additional work is 

needed to determine if Six6 plays an analogous role in mouse cones. 
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In addition to identifying binding sites for TFs that likely cooperate with CRX, our analysis 

suggests that CRX binding sites themselves harbor considerable complexity, including both 

monomeric and dimeric configurations with distinct nucleotide preferences. That key 

photoreceptor enhancers contain multiple K50 HD sites capable of binding CRX dimers has been 

shown previously [69, 140]. Here, we show that this paired configuration is widespread among 

photoreceptor regulatory elements. This is particularly intriguing in light of recent work showing 

that individual nucleotides within paired K50 and Q50 homeodomain motifs (employing the same 

spacing and orientation preferences found in mouse photoreceptors) dictate photoreceptor subtype-

specific gene expression in Drosophila [141]. Comprehensive functional analysis will be required 

to determine if mammalian photoreceptors exploit a similar cis-regulatory logic to control 

photoreceptor subtype-specific expression. Such analyses in primary photoreceptors (both in 

culture and in vivo) are now possible given recent innovations in sequencing-based multiplex 

reporter assays [41-43, 45]. 

We note that while nearly all motifs enriched in photoreceptor enhancers corresponded to 

known photoreceptor TFs, we were unable to unambiguously assign the cone-specific enrichment 

of non-MAF bZIP motifs (TGANTCA) to a candidate regulator. Nevertheless, we suggest that 

NRL might mediate selective closure of these elements in rods, given that bZIP TFs, including 

NRL, bind DNA as flexible homotypic or heterotypic dimers that tolerate a range of binding sites. 

NRL in particular has been shown to bind non-MAF bZIP sites as a heterodimer with either Fos 

or Jun [142]. This raises the intriguing possibility that NRL has opposing activities (activation vs. 

repression) at distinct classes of bZIP sites in vivo—either autonomously or in combination with 

non-cell-type-specific bZIP TFs. 

Overall, the patterns of motif enrichment we describe yield comprehensive, single-

nucleotide resolution maps of regulatory sequence features that can inform functional studies of 
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photoreceptor-specific enhancer activity. These data suggest that—even when comparing highly 

related cell types—cell-type-specific regulatory activity is encoded by complex interactions 

among shared and cell-type-specific TFs acting cooperatively and/or competitively to bind target 

sequences. Thus, a complete understanding of cell-type-specific regulatory logic will likely require 

an integrated analysis of both cis- and trans-acting factors. 

2.8 Materials and methods 
Mice. Mouse husbandry and all procedures (including euthanasia by CO2 inhalation and cervical 

dislocation) were conducted in accordance with the Guide for the Care and Use of Laboratory 

Animals of the National Institutes of Health, and were approved by the Washington University in 

St. Louis Institutional Animal Care and Use Committee. 

Histology. Retinas were harvested from adult (8-week-old) mice, fixed in 4% paraformaldehyde 

in phosphate buffered saline (PBS) overnight at 4˚C, equilibrated in 30% sucrose in PBS, 

embedded in Tissue-Tek O.C.T (Sakura), and stored at -80˚C until sectioning. 14 µm cryosections 

were prepared at -20˚C. Imaging was performed with a Zeiss LSM 700 confocal microscope. 

Retinal dissociation and FACS. Retinas were harvested from adult (8-week-old) male mice 

unless otherwise noted (Supplemental Table S2.1) and dissociated with trypsin as described 

previously [143]. Dissociated cells were resuspended in sorting buffer (1% fetal bovine serum 

[FBS], 0.1 mM ethylenediaminetetraacetic acid [EDTA] in calcium- and magnesium-free Hank’s 

buffered salt solution [HBSS]). Cells were sorted using a FACSAria II (BD Biosciences). Single, 

viable cells were isolated by gating on forward scatter, side scatter, and pulse width. GFP-negative 

retinas were included in each sort as negative controls. GFP-positive cells were collected in 10% 

FBS in PBS (for ATAC-seq) or Buffer RLT (RNeasy mini kit, Qiagen) (for RNA-seq). For green 

cones, we found that double-sorting was necessary to achieve optimal purity. For these sorts, cells 
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were first collected in sort buffer and then re-sorted and collected in 10% FBS in PBS. 

ATAC-seq. ATAC-seq was performed as described previously [39]. Briefly, 10,000-50,000 sorted 

cells were pelleted by centrifugation (500 g for 5 min at 4°C), washed twice with PBS, and nuclei 

were harvested by cold NP-40 lysis. Nuclei were incubated with 2.5 µl of Tn5 transposase 

(Nextera, Illumina) in a 50 µl reaction volume at 37°C for 30 minutes. Tagmented DNA was then 

purified using a MinElute PCR Purification kit (Qiagen). Library fragments were amplified with 

Phusion High-Fidelity DNA Polymerase (NEB), with the total number of PCR cycles calibrated 

by parallel qPCR reactions. Libraries were purified using PureLink PCR Purification kits 

(Invitrogen). Library quality was assessed by gel electrophoresis, and final libraries were 

quantified using KAPA Library quantification kits (Kapa Biosystems). Libraries were pooled in 

equimolar ratios and run on an Illumina HiSeq 2500 (paired-end 50 bp reads) (Supplemental Table 

S2.1). 

RNA-seq. Library preparation was performed using 5 ng of total RNA. RNA integrity was 

assessed using an Agilent Bioanalyzer. cDNA was prepared using the SMARTer Ultra Low RNA 

kit for Illumina Sequencing-HV (Clontech) per manufacturer’s instructions. cDNA was 

fragmented using a Covaris E210 sonicator using duty cycle 10, intensity 5, cycles/burst 200, time 

180 seconds. cDNA was blunt-ended, had an ‘A’ base added to the 3’ ends, and then had Illumina 

sequencing adapters ligated to the ends. Ligated fragments were amplified for 12 cycles using 

primers incorporating unique index tags. Replicate libraries from both cell types were pooled in 

equimolar ratios and sequenced on an Illumina HiSeq 2500 (single-end 50 bp reads) (Supplemental 

Table S2.1). 

ATAC-seq data processing. Paired-end ATAC-seq reads were aligned to the GRCm38/mm10 

mouse genome assembly using Bowtie2 (v2.2.3) in end-to-end mode with a maximum fragment 
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size of 2000 [144]. Alignments were filtered to remove reads with mapping quality <30, discordant 

read pairs, reads aligning to the mitochondrial genome, and reads aligning to ENCODE blacklisted 

regions [4] using SAMtools (v1.3) [145]. PCR duplicates were removed using Picard (v1.121) 

(http://picard.sourceforge.net). Finally, we removed alignments with an insertion size greater than 

100 bp to enrich for nucleosome-free reads (NFR). 

For visualization in the UCSC genome browser, bedgraph files were generated from NFR 

alignments for pooled replicates using HOMER (v4.8), specifying a maximum file size of 500 Mb 

[123]. Reproducible peaks were called for each cell type using MACS2 (v2.1.0) (using a -100 bp 

shift and a 200 bp extension, and calling subpeaks) [146] with an irreproducible discovery rate 

(IDR) threshold of 0.01 [147]. ‘ATAC-seq peaks’ described in subsequent analysis refer to 200-

bp elements centered on peak summits. To assess reproducibility between biological replicates, 

read counts were normalized using the median-of-ratios method [148], and we then plotted 

log2(normalized read counts+1) for each peak for each replicate (Supplemental Fig. S2.1) and 

calculated the Pearson correlation coefficient (PCC) between replicates. This workflow was used 

for ATAC-seq data generated in the current study, as well as previously generated ATAC-seq data 

presented in Fig. 2.3C: pre-B cells (GSE63302) [149], activated B cells (GSE71698) [150], and 

purified neurons (GSE63137) [151]. 

RNA-seq data processing. Single-end RNA-seq reads were aligned to GRCm38/mm10 STAR 

(v2.4.2a), using an index prepared for 50 bp reads and the RefSeq gene model [152]. Read counts 

per gene were calculated using HTSeq [153]. To assess reproducibility between biological 

replicates, read counts were normalized using the median-of-ratios method [148], and we then 

plotted log2(normalized read counts+1) for each gene for each replicate (Supplemental Fig. S2.1) 

and calculated the Pearson correlation coefficient (PCC) between each pair of replicates. For 

visualization in the UCSC genome browser, bedgraph files were generated for pooled replicates 
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using HOMER (v4.8), specifying a maximum file size of 500 Mb [123]. 

ENCODE DNase-seq data processing. FASTQ files from DNase-seq datasets generated by 

ENCODE were downloaded from the ENCODE data portal (https://www.encodeproject.org/) and 

processed identically to ATAC-seq data except that single-end reads were used when paired-end 

reads were not available and alignments were not filtered for NFR reads (insert size <100 bp). 

Individual datasets and accessions are listed in Supplemental Table S2.4. 

ChIP-seq data processing. FASTQ files from previously generated ChIP-seq datasets were 

downloaded from GEO and processed identically to ATAC-seq data except that single-end reads 

were used when paired-end reads were not available, alignments were not filtered for NFR reads 

(insert size <100 bp), and peaks were called on ChIP-seq replicates (vs. input control) with MACS2 

(v2.1.0) using default parameters and an FDR of 0.01. These data are presented in Fig. 2.2A-D 

and Supplemental Table S2.3: CRX ChIP-seq (GSE20012) [68] and NRL ChIP-seq 

(https://datashare.nei.nih.gov/nnrlMain.jsp) [119]. Two biological replicates were pooled for both 

WT and Nrl-/- CRX ChIP-seq. A single biological replicate of NRL ChIP-seq was run on an 

Illumina platform (Genome Analyzer). Only this replicate was included in our analysis of NRL 

ChIP-seq data. 

Quantification of data over photoreceptor ATAC-seq peaks. ATAC-seq, DNase-seq, and 

ChIP-seq read depths as well as phylogenetic conservation (phastCons 60-way vertebrate 

conservation) [154], and GC content were quantified over peak sets using HOMER (v4.8) [123]. 

For per-feature count tables (used to generate the heatmap in Fig. 2.2D), photoreceptor ATAC-seq 

and adult whole-retina DNase-seq peaks were combined using BEDOPS (v2.4.14) [155], and the 

indicated datasets were scored over these intervals in 5-bp bins distributed over a 3 kb window 

centered on peak summits. For average signal histograms (Supplemental Fig. S2.6), data were 
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scored separately for rod, green cone, and Nrl-/- photoreceptor ATAC-seq peaks in 5-bp bins 

distributed over a 2 kb window centered on the nearest TSS (promoter peaks) or peak summits 

(enhancers). 

Quantification of sample relatedness. For PCA of brain DNase-seq and photoreceptor ATAC-

seq, peaks from each cell type were merged into a master list with BEDOPS (v2.4.14) [155]. For 

each replicate, reads were counted within elements of the master list using bedtools (v2.24.0) 

[156]. PCA was then performed on regularized logarithm-transformed values [130]. For pairwise 

analysis between replicates of photoreceptor ATAC-seq and whole retina, brain, lung, liver and B 

cell DNase-seq, peaks were again combined using BEDOPS (v2.4.14) [155]. Elements in the union 

were scored for coverage in each replicate using bedtools (v2.24.0) [156]. We then calculated the 

pairwise Spearman correlation coefficient (ρ) matrix, clustering rows and columns by 1-ρ using 

average linkage. 

Comparative analysis of global chromatin closure. To quantify the global distribution of 

chromatin accessibility, we partitioned the genome into 50 kb fixed windows and calculated read 

coverage over these windows for each cell type and tissue using bedtools (v2.24.0) [156]. For each 

sample, we normalized counts to total reads, and plotted the empirical cumulative distribution 

(proportion of 50 kb windows with less than or equal to each observed coverage value). 

Identification of differentially accessible peaks. ATAC-seq peaks from each photoreceptor type 

were merged into a master list with BEDOPS (v2.4.14) [155]. For each ATAC-seq replicate, reads 

were counted within elements of the master list using bedtools (v2.24.0) [156], and differentially 

accessible peaks were identified with DEseq2 testing for a log2(fold change) greater than 1 at an 

FDR of 0.1 [130]. Counts from rods, double-sorted green cones, and Nrl-/- photoreceptors were 

used for differential accessibility analysis, with cone subtypes collapsed to a single level. The 
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results of this analysis were used to partition photoreceptor ATAC-seq peaks into three subsets: 

“rod-specific” (significantly more open in rods), “cone-specific” (significantly more open in 

cones), and “shared” (differential accessibility not statistically significant). 

Identification of differentially expressed genes. We used DEseq2 to test for differential 

expression between rods and cones using per gene read counts for rod and Nrl-/- photoreceptor 

RNA-seq data [130]. Statistical testing was performed using a log2(fold change) threshold of 1 and 

an FDR of 0.05. 

Integrated analysis of chromatin accessibility and gene expression. To assess the relationship 

between the accessibility of individual peaks and the expression of nearby genes, peaks were 

assigned to genes by nearest TSS. In this way, differential expression of individual genes or the 

distribution of expression of groups of genes could be putatively associated with ATAC-seq peaks. 

GO enrichment analysis. Enrichment of GO Biological Process term within rod- or cone-specific 

ATAC seq peaks was performed using GREAT (v3.0.0) [157]. 

Motif enrichment analysis. Known motif enrichment and de novo motif discovery were 

performed for photoreceptor ATAC-seq peaks as well as brain, liver, lung and B cell DNase-seq 

peaks using HOMER (v4.8) [123]. Target sequences consisted of 200-bp elements centered on 

peak summits. Background sequences consisted of approximately 50,000 randomly selected 200-

bp intervals from the mouse genome normalized for mono- and di-nucleotide content relative to 

each target set. Repeat sequences were masked from the genome, and targets with >70% of bases 

masked were dropped from enrichment analysis. Motif enrichment was performed separately for 

promoter peaks (peaks less than 1000 bp upstream and 100 bp downstream of an annotated TSS) 

and enhancer peaks. Sequence logos presented in Fig. 2.5 and Supplemental Fig. S2.7 were 

trimmed to remove flanking positions with low information content (<1 bit). Complete known and 
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de novo motif enrichment results are presented in Supplemental Tables S2.7-S2.10. To assess 

motif co-occurrence, we first collapsed the database of 319 known motifs curated by HOMER to 

a set of 66 non-redundant motifs (by aligning motifs, calculating the PCC across nucleotide 

frequencies, and selecting the highest scoring motif among pairs with a PCC > 0.6). For each motif, 

we then counted the number of peaks with ≥1 occurrence, and for each pair, we counted the number 

of peaks with ≥1 pair. The enrichment of co-occurrence was then calculated as the log2(observed 

pairs/expected pairs), where the number of expected pairs was estimated from the frequency of 

individual motifs: expected = (number of peaks with motif 1) x (number of peaks with motif 2) / 

(total peaks). The pairwise co-occurrence enrichment matrix was plotted as a heatmap, with rows 

and columns clustered by Euclidean distance and average linkage. Preferential spacing between 

highly enriched motifs (K50 HD, MAF, bZIP, MADS, and NR motifs) was assessed by first 

centering shared photoreceptor ATAC-seq peaks on individual motifs, and then plotting the 

density of secondary motifs (using a relaxed log odds threshold of 5) on either strand upstream 

and downstream of the primary motif. 

Analysis of CRE-seq data. Previously generated CRE-seq data were downloaded from the 

supporting information included in White et al. [42]. Constructs were classified as having or not 

having k-mers of interest based on exact matches to TAAT (or ATTA), TAAG (or CTTA), 

TAAT…ATTA, TAAG…CTTA, or TAAT…CTTA (or TAAG…ATTA). We then examined the 

distribution of CRE-seq expression (a measure of the enhancer activity) based on the presence or 

absence of individual k-mers. In addition, CRE-seq constructs were determined to contain 

instances of motifs enriched in photoreceptor ATAC-seq peaks by scanning sequences for 

individual motifs (CRX, NEUROD1, MEF2D, and RORB) using HOMER (v4.8) [123]. We again 

examined the distribution of CRE-seq expression based on the presence or absence of individual 

motifs. 
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Statistics and data visualization. Statistical analyses were implemented in R (v3.3.0) [158] using 

base packages, as well as coin [159] and DEseq2 [130]. Data visualization was implemented with 

ggplot2 [160] and gplots [161]. 

Data access. ATAC-seq data (raw data, signal tracks, peak calls, and count tables) and RNA-seq 

data (raw data, signal tracks, and count tables) have been deposited in the NCBI Gene Expression 

Omnibus (GEO) under accession number GSE83312. 
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Figure 2.1. Epigenomic analysis of photoreceptor subtypes. (A) The mouse retina is composed 

of three layers: the outer nuclear layer, the inner nuclear layer, and the ganglion cell layer (ONL, 
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INL, and GCL, respectively). (B) There are seven major classes of cells in the retina: rod and cone 

photoreceptors, bipolar cells, horizontal cells, amacrine cells, ganglion cells, and Müller glia. (C) 

Compared to the nuclei of other cell types (e.g., cones) rod nuclei have an inverted architecture 

with inactive heterochromatin (H3K9me3, H4K20me3) localized to the center and active 

euchromatin (H3K4me3) localized to the periphery (image adapted from [68]). (D-F) Reporter 

lines used to purify individual photoreceptor types: Nrl-eGFP (rod), Opn1mw-GFP (green cones), 

Nrl-/-; Nrl-eGFP (Nrl-/- photoreceptors, or blue cones). In the adult, Nrl-/-;Nrl-eGFP retinas exhibit 

a peripheral (high) to central (low) gradient of GFP expression (F). (G-I) Representative FACS 

plots from individual sorts of dissociated retinal cells from each reporter line. 
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Figure 2.2. ATAC-seq of flow-sorted photoreceptors yields cell-type-specific maps of open 
chromatin. (A-C) ATAC-seq profile at rod- (A) and cone-specific (B-C) loci. Previously 

generated data sets also shown: CRX ChIP-seq (photoreceptor-specific TF) in WT (rod-dominant) 

and Nrl-/- (all-cone) retinas, NRL ChIP-seq (rod-specific TF) in WT retina, as well as DNase from 

whole retina (P1, P7, and adult), brain, liver, lung, and B cells derived from the ENCODE project. 

(D) Genome-wide profile of epigenomic datasets shown in (C) across photoreceptor ATAC-seq 

and adult whole-retina DNase-seq peaks. Rows show the read depth (denoted by pseudo-colored 

intensity) of the indicated epigenomic dataset in 3 kb windows centered on photoreceptor ATAC-

seq and whole-retina DNase-seq peak summits (60,414 peaks randomly down-sampled to 10,000 

for plotting). Rows are ordered by hierarchical clustering, revealing that approximately one-third 

of peaks are ubiquitously accessible (top), one third are non-photoreceptor peaks (middle, yellow 
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box), and one-third are photoreceptor-enriched peaks (bottom). Rod and cone profiles are highly 

similar, but a subset of cone-enriched peaks appear to be selectively closed in rods (red box). (E) 

Principal component analysis (PCA) of brain DNase-seq and photoreceptor ATAC-seq (two 

replicates per cell type) shows that the open chromatin profile of rods and cones are highly similar 

but distinct, whereas cone subtypes are indistinguishable. 
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Figure 2.3. Mouse rods have a uniquely closed epigenomic landscape. (A) Representative 

genomic interval showing an extended run of open chromatin elements selectively closed in rods 
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(yellow box). Tracks show ATAC-seq profiles for rods, green cones, and blue cones and DNase-

seq profiles for ten additional tissues (including three developmental time points for whole retina). 

(B) Representative window from (A) at higher resolution illustrating rod-specific closure of 

individual peaks. (C) Empirical cumulative distribution functions for genome-wide chromatin 

accessibility (normalized ATAC-seq or DNase-seq reads in fixed 50 kb windows, see Methods). 

Rods have a uniquely closed epigenomic landscape relative to blue and green cones as well as 64 

additional mouse tissues and cell types (black arrow). Regions that were open in rods tended to 

have especially high read counts (gray arrow). (D) Change in accessibility vs. change in the gene 

expression in rods and blue cones. For each photoreceptor ATAC-seq peak (n=55,161), the log of 

the ratio of normalized ATAC-seq reads (rods/blue cones) is plotted on the x-axis, and the log of 

the ratio of normalized RNA-seq reads corresponding to the nearest gene (rods/blue cones) is 

plotted on the y-axis. Peaks that are both significantly differentially accessible (FDR < 0.1) and 

significantly differentially expressed (FDR < 0.1) are colored red (more open in rods, higher 

expression in rods), blue (more open in cones, higher expression in cones), or purple (more open 

in rods, higher expression in cones, or more open in cones, higher expression in rods). Changes in 

accessibility and expression are directionally correlated, but many peaks near differentially 

expressed genes are not differentially accessible, and many differentially accessible peaks are not 

correlated with differential gene expression (especially in cones, left half of plot). (E) Schematic 

proposing how global differences in nuclear organization in rods and cones are correlated with 

local differences in chromatin accessibility (figure design adapted from [100]). 
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Figure 2.4. Rod-specific chromatin closure and reduced expression of Lmna but not Lbr. (A) 

ATAC-seq profiles from rods, green cones, blue cones, and DNase-seq profiles from whole retina 

(P1, P7, and adult), brain, liver, lung, and B cells at the Lbr locus. (B) Same datasets as in (A) 

shown for the Lmna locus. One open chromatin peak overlapping the promoter and one peak ~6.5 

kb upstream are selectively closed in rods (red boxes). (C) Lbr expression in rods and blue cones 

as measured by RNA-seq. (D) Lmna expression in rods and blue cones as measured by RNA-seq. 

For (C) and (D), bar height corresponds to expression mean (normalized read counts x 104); error 

bars correspond to ±1 standard deviation. Note that the data in (C) and (D) are plotted on different 

scales. 
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Figure 2.5. TF binding site motif enrichment in photoreceptor enhancers (A) Enrichment of 

known TF binding site motifs in enhancer (TSS-distal) peaks in rods, green cones, blue cones, 

brain, liver, lung, and B cells. For each panel, distance from peak summit (-500 bp to 500 bp) is 

plotted on the x-axis and motif density (motifs per peak at each position) is plotted on the y-axis, 

illustrating central enrichments of the motifs presented. Motifs are labeled by TF class, and 

candidate photoreceptor TFs that may bind each motif are indicated in parentheses. (B) Expression 

of candidate TFs for each motif in (A) in rods and cones as measured by RNA-seq. Bar height 

corresponds to expression mean (normalized read counts x 104); error bars correspond to ±1 

standard deviation. 
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Figure 2.6. Functional effects of enriched motifs on photoreceptor enhancer activity. (A) 

Dimeric K50 HD motif identified in photoreceptor enhancers (TSS-distal ATAC-seq peaks). The 

motif logo shows nucleotide preferences scaled to observed frequencies; highly enriched k-mers 

that compose this motif are listed beneath. (B) Expression of CRE-seq constructs from White et 

al. harboring distinct TAAT and TAAG monomeric and dimeric motifs (gray: indicated k-mer not 

in tested sequence, red: ≥1 instance of indicated k-mer in tested sequence) [42]. The left panel 

shows the expression of native constructs (84-bp sequences centered on CRX ChIP-seq peaks), 

and the right plot shows the expression of constructs with CRX motifs eliminated by point 

mutation (CTAATCC to CTACTCC). (C) the expression of constructs assayed by White et al. 

stratified by the presence or absence of four motifs found to be highly enriched in photoreceptor 
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open chromatin: CRX, NEUROD1, MEF2D, and RORB. Box plots show the distribution of 

expression for constructs with or without the indicated motif in endogenous elements (left panel), 

constructs with mutated CRX sites (center panel), and scrambled controls (right panel). 
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Figure 2.7. Rods and cones show distinct patterns of TF binding site enrichment. (A) 

Examples of peak sets used for motif enrichment analysis: (1) peaks open in photoreceptors and 

other cell types; (2) photoreceptor-specific peaks (open in rods and cones but not other cell types); 

(3) cone-specific (open in cones but not rods or other cell types); and (4) rod-specific (open in rods 

but not cones or other cell types). (B) Motif enrichment (ratio of motifs in target vs. background 

sequences) for selected motifs in the indicated peak sets. Motif logos are labeled by TF family, 

and cognate photoreceptor TFs are listed in parentheses. 
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2.9 Supplemental materials 
2.9.1 Supplemental tables 
Supplemental Table S2.1. Technical covariates and sequencing metrics for photoreceptor ATAC-

seq and RNA-seq. RIN: RNA integrity number. Raw sequencing reads: number of forward and 

reverse reads for each sample. Processed sequencing reads: number of forward and reverse reads 

after filtering out improperly paired reads, reads with mapping quality <30, reads aligning to the 

mitochondrial genome, reads aligning to unplaced or unlocalized contigs, ENCODE blacklist 

regions, and PCR duplicates. URL: 

https://images.nature.com/original/nature-assets/srep/2017/170228/srep43184/extref/srep43184-

s2.xls 

Supplemental Table S2.2. Annotated ATAC-seq peaks. Consensus peak calls for each cell type 

are presented on separate worksheets. URL: 

https://images.nature.com/original/nature-assets/srep/2017/170228/srep43184/extref/srep43184-

s3.xls 

Supplemental Table S2.3. Overlap between photoreceptor ATAC-seq and additional whole-

retina epigenomic datasets. URL: 

https://images.nature.com/original/nature-assets/srep/2017/170228/srep43184/extref/srep43184-

s4.xls 

Supplemental Table S2.4. Datasets and accessions. URL: 

https://images.nature.com/original/nature-assets/srep/2017/170228/srep43184/extref/srep43184-

s5.xls 
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Supplemental Table S2.5. Differentially accessible peaks (rods vs. cones). Rod 1, rod 2, green 

cone 1, green cone 2, blue cone 1, blue cone 2: normalized ATAC-seq reads for each cell type. 

Base mean: average across all cell types. Log2(fold change): fold change is calculated as rod 

ATAC-seq reads / cone ATAC-seq reads. Green cones and blue cones are collapsed into a single 

level for statistical analysis. URL: 

https://images.nature.com/original/nature-assets/srep/2017/170228/srep43184/extref/srep43184-

s6.xls 

Supplemental Table S2.6. Differentially expressed genes (rods vs. blue cones). Rod 1, rod 2, rod 

3, blue cone 1, blue cone 2, blue cone 3: normalized RNA-seq reads for each cell type. Base mean: 

average across all cell types. Log2(fold change): fold change is calculated as rod RNA-seq reads / 

blue cone RNA-seq reads. URL: 

https://images.nature.com/original/nature-assets/srep/2017/170228/srep43184/extref/srep43184-

s7.xls 

Supplemental Table S2.7. Known motif enrichment: photoreceptor promoters. A complete list of 

sequence logos and position weight matrices (PWMs) for individual motifs is available online in 

the HOMER database (http://homer.salk.edu/homer/motif/HomerMotifDB/homerResults.html). 

URL: 

https://images.nature.com/original/nature-assets/srep/2017/170228/srep43184/extref/srep43184-

s8.xls 

Supplemental Table S2.8. Known motif enrichment: photoreceptor enhancers. A complete list of 

sequence logos and position weight matrices (PWMs) for individual motifs is available online in 

the HOMER database: http://homer.salk.edu/homer/motif/HomerMotifDB/homerResults.html. 
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URL: 

https://images.nature.com/original/nature-assets/srep/2017/170228/srep43184/extref/srep43184-

s9.xls 

Supplemental Table S2.9. De novo motif enrichment: photoreceptor promoters. PWMs for de 

novo motifs are included as a separate worksheet. URL: 

https://images.nature.com/original/nature-assets/srep/2017/170228/srep43184/extref/srep43184-

s10.xls 

Supplemental Table S2.10. De novo motif enrichment: photoreceptor enhancers. PWMs for de 

novo motifs are included as a separate worksheet. URL: 

https://images.nature.com/original/nature-assets/srep/2017/170228/srep43184/extref/srep43184-

s11.xls 

 

2.9.2 Supplemental figures 
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Supplemental Figure S2.1. Photoreceptor ATAC-seq and RNA-seq reproducibility. (A-D) 

Reproducibility between pairs of biological replicates for rod, Nrl-/- photoreceptor (blue cone), 

single-sorted green cone, and double-sorted green cone ATAC-seq. For each peak, the read count 

for biological replicate 1 (x-axis) is plotted against the read count for biological replicate 2 (y-

axis). (E-J) Reproducibility between pairs of biological replicates for rod and Nrl-/- photoreceptor 

(blue cone) RNA-seq. For each gene, the read count for biological replicate 1 (x-axis) is plotted 

against the read count for biological replicate 2 (y-axis) (three pairs of replicates per cell type). 

PCC: Pearson correlation coefficient. 
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Supplemental Figure S2.2. Locus complexity of rod- and cone-specific genes. The 50 most 

differentially expressed genes between rods and blue cones (as assessed by RNA-seq) are ordered 

on the x-axis by fold-change (rod expression/cone expression). For each gene (column), each point 

represents an ATAC-seq peak that mapped to that gene (based on nearest TSS). Peaks shared by 

rods and cones are colored gray, rod-specific peaks are red, cone-specific peaks are blue. For rods, 

the bottom point for each gene is positioned on the y-axis to correspond to the estimated log of the 

fold change (rods/blue cones) in the expression of that gene; additional points (if present) are 

stacked on top. For cones, this value corresponds to the top point, and additional points (if present) 

are included beneath. Genes that are more highly expressed in rods are typically flanked by rod-

specific peaks, whereas genes that are more highly expressed in cones are flanked by cone-specific 

peaks. Both rod- and cone-enriched genes are frequently flanked by shared ATAC-seq peaks. This 

style of data presentation was adapted from [121]. 
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Supplemental Figure S2.3. Pairwise correlations between open chromatin datasets. Peaks 

from each cell or tissue type were merged into a common set of 173,219 regulatory elements. 

Reads in each feature were counted in each cell type, and samples were clustered across features 

using Spearman’s r with average linkage. Control tissues cluster distinctly from photoreceptors. 

Whole retina falls between brain and photoreceptors. Rods cluster distinctly from cones, and cone 

subtypes cluster together.  
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Supplemental Figure S2.4. Gene expression near shared and cell-type-specific CREs. (A) 

Each photoreceptor enhancer ATAC-seq peak (n=35,173), was mapped to a gene based on nearest 

TSS. The distribution of expression for genes surrounding shared peaks was not significantly 

different in rods vs. cones. Gene expression was significantly higher in rods near rod-specific 

peaks (permutation test, 10,000 permutations). Gene expression was significantly higher in cones 

near cone-specific peaks (permutation test, 10,000 permutations). I.e., rod- and cone-specific 

ATAC-seq peaks are associated with elevated expression in rods and cones, respectively, but genes 

near cone-specific ATAC-seq peaks have lower expression in both cell types relative to genes near 

shared or rod-specific peaks. (B) Shared and rod-specific peaks were located approximately the 

same distance from genes, whereas cone-specific open chromatin was located significantly farther 

from genes (permutation test 10,000 permutations). In other words, regions selectively closed in 

rods are located farther from genes than typical open chromatin elements. 
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Supplemental Figure S2.5. GO enrichment analysis for cell-type-specific ATAC-seq peaks. 

(A) Rod-specific peaks were highly enriched for terms specifically related to vision and 

photoreceptor biology. (B) Cone-specific peaks were highly enriched for terms related to 

neurodevelopment and smooth muscle biology. 
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Supplemental Figure S2.6. Distinct features of photoreceptor promoters and enhancers. 

ATAC-seq peaks within -1 kb to +100 bp of a TSS were classified as “promoter” peaks, whereas 

peaks outside this interval were classified as “enhancer” elements. (A-B) The average ATAC-seq 
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signal (normalized reads per base pair) was higher in promoters compared to enhancers, and the 

enrichment over baseline was broader. (C-D) Mean conservation (phastCons 60-way vertebrate 

conservation) as well as GC content (E-F) were also higher and broader surrounding promoter 

peaks vs. enhancer peaks. (G-H) Promoter and enhancer peaks were mapped to genes by nearest 

TSS. In both rods and cones, the presence or absence of a promoter peak was more strongly 

correlated with gene expression than the presence or absence of an enhancer peak, but the presence 

of either was associated with increased expression.  
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Supplemental Figure S2.7. Enrichment of known TF binding sites in TSS-proximal 
(promoter) peaks. For each panel, distance from peak summit (-500 bp to 500 bp) is plotted on 

the x-axis and motif density (motifs per peak at each position) is plotted on the y-axis, illustrating 

central enrichments of the motifs presented. Motifs are labeled by TF class, and the specific factor 

from which the sequence logo shown was derived is indicated in parenthesis. Compared to 

enhancers (Fig. 2.4A), motif enrichment in promoters is highly similar across cell and tissue types. 
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Supplemental Figure S2.8. Motif co-occurrence in photoreceptor ATAC-seq peaks. (A) 

Enrichment of motif co-occurrence was calculated for pairs of 60 motifs based on the observed 

counts of pairs in peaks compared to the expected counts based on the known frequency of 

individual motifs in peaks (Methods). Rows and columns are hierarchically clustered by Euclidean 

distance using average linkage. (B) The motifs from the boxed region in (A). bZIP, NR, MAF, 

MADS, and K50 HD TFs cluster together and are mutually co-enriched. These motifs are depleted 

of CTCF motifs (ZF, blue row and column). 
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Supplemental Figure S2.9. Preferential motif spacing flanking K50 HD sites. Each panel 

shows the strand-specific per nucleotide density of the indicated secondary motif upstream and 

downstream of K50 HD motifs in photoreceptor ATAC-seq peaks. Secondary motifs on the 

positive strand are shown in blue, above the midline. Secondary motifs on the negative strand are 

shown in red, below the midline. 
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Chapter 3: A massively parallel reporter 
assay reveals context-dependent activity of 

homeodomain binding sites in vivo 
Cone-rod homeobox (CRX) is a paired-like homeodomain transcription factor (TF) and a master 

regulator of photoreceptor development in vertebrates. The in vitro DNA binding preferences of 

CRX have been described in detail, but the degree to which in vitro binding affinity is correlated 

with in vivo enhancer activity is not known. In addition, paired-class homeodomain TFs can bind 

DNA cooperatively as both homodimers and heterodimers at inverted TAAT half-sites separated 

by two or three nucleotides. This dimeric configuration is thought to mediate target specificity, but 

whether monomeric and dimeric sites encode distinct levels of activity is not known. Here, we use 

a massively parallel reporter assay, CRE-seq, to determine how local sequence context shapes the 

regulatory activity of CRX binding sites in mouse photoreceptors. We assay inactivating mutations 

in >1700 TF binding sites, and we find that dimeric CRX binding sites act as stronger enhancers 

than monomeric CRX binding sites. Furthermore, the activity of dimeric half-sites is cooperative, 

dependent on a strict 3-bp spacing, and tuned by the identity of the spacer nucleotides. Saturating 

single-nucleotide mutagenesis of 195 CRX binding sites shows that, on average, changes in TF 

binding site affinity are correlated with changes in regulatory activity, but this relationship is 

obscured when considering mutations across multiple CREs. Taken together, these results 

demonstrate that the activity of CRX binding sites is highly dependent on sequence context, 

providing insight into photoreceptor gene regulation and illustrating functional principles of 

homeodomain binding sites that may be conserved in other cell types. 

3.1  Introduction 
Advances in high-throughput sequencing have enabled genome-wide mapping of cis-regulatory 

elements (CREs) in diverse cell types and tissues, providing a powerful resource for studying the 
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role of noncoding genetic variation in health and disease [4]. Nevertheless, predicting the 

functional impact of regulatory variants requires a detailed understanding of the sequence 

constraints mediating interactions between CREs and transcription factors (TFs). The DNA 

binding preferences of thousands of TFs have been characterized in vitro [162-164], but how 

accurately these models predict the activity of TF binding sites in vivo is not known. 

Cone-rod homeobox (CRX) is a paired-like homeodomain TF and a master regulator of 

photoreceptor gene expression in vertebrates [64, 69, 70]. The DNA binding preferences of CRX 

and the closely related homologs OTX1 and OTX2 have been defined by quantitative gel shift, 

high-throughput SELEX, and protein binding microarray (PBM) [3, 109, 162, 165]. All three 

methods yield similar models of TF binding site affinity, with the high-affinity consensus 5’-

TAATCC-3’. In addition, detailed structural studies have shown that paired-class homeodomains 

can bind DNA cooperatively as both homodimers and heterodimers at inverted TAAT repeats 

[128, 129, 166]. Paired-class TFs with a lysine (K) or a glutamine (Q) in position 50 of the 

homeodomain (K50 or Q50 TFs) bind dimeric half-sites with a 3-bp spacing, while those with a 

serine (S) in position 50 (S50) bind with a 2-bp spacing. Furthermore, K50 homeodomains, 

including CRX, prefer cytosines 3’ of each TAAT half-site (5’-TAATCNGATTA-3’). In an earlier 

study, we mapped CRX occupancy in adult mouse photoreceptors by ChIP-seq, showing that 

CRX-bound regions in vivo are enriched for both monomeric and dimeric CRX binding sites [68]. 

However, whether monomeric and dimeric TF binding sites encode distinct levels of activity is 

not known. 

Massively parallel reporter assays (MPRAs) leverage barcoded reporter constructs to 

quantify the activity of large numbers of CREs simultaneously. We and others have used 

MPRAs to characterize sequence features mediating tissue- and cell-type-specific regulatory 

activity in cell lines [50, 51, 167], explanted tissues [41, 42, 46], and in vivo [45, 48]. MPRAs 
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can be designed to measure both the promoter activity of individual CREs (the level of reporter 

expression they drive autonomously) as well as their enhancer or repressor activity (the level of 

reporter expression they drive above or below a basal promoter). Previously, we used an MPRA, 

CRE-seq, to quantify the effects of all possible single-nucleotide substitutions in a 52-bp 

segment of the Rhodopsin promoter in mouse retina [41]. We found that changes in the affinity 

of two targeted CRX binding sites were moderately correlated with changes in CRE activity, but 

the extent to which these results generalize to other loci is not known. We subsequently 

quantified the effects of mutating CRX binding sites in hundreds of CRX-bound promoters and 

enhancers, but we only assayed a single mutation in each CRE, precluding a comprehensive 

analysis of the relationship between TF binding site affinity and activity [42]. 

In the current study, we aim to build upon these results to further understand how 

sequence context shapes the regulatory activity of CRX binding sites. First, we use CRE-seq to 

quantify the enhancer activity of >1200 CRX-bound regions in explanted, intact mouse retinas, 

and we identify primary sequence features and orthogonal epigenomic measurements that are 

correlated with native CRE activity. We then assay inactivating mutations in >1700 CRX 

binding sites within these CREs to compare the regulatory activity of monomeric and dimeric 

CRX binding sites. Furthermore, when multiple CRX binding sites are present within individual 

CREs, we mutate them individually and in combination to assess TF binding site cooperativity. 

Next, to examine the relationship between CRX binding site affinity and activity in detail, we 

select 195 CRX binding sites and quantify the effect of all possible single-nucleotide 

substitutions in a 13-bp window overlapping each TF binding site. Finally, to determine if the 

spacing between dimeric half-sites is functionally constrained, we assay the effect of small 

insertions and deletions on CRE activity. 



 66 

Taken together, our results demonstrate that both the precise configuration of individual 

CRX binding sites as well as the broader sequence context in which they occur play key roles in 

determining their activity. These observations provide specific insight into how photoreceptor 

CREs encode information, and they have general implications for the quantitative modeling and 

interpretation of cis-regulatory variation. Furthermore, as homeodomains constitute one of the 

largest classes of metazoan TFs, defining functional principles of CRX binding sites may provide 

general insights applicable to the cis-regulatory mechanisms of additional cell types and tissues.  

3.2 A simple model combining dinucleotide frequencies and 
TF binding sites accurately predicts CRX occupancy in 
vivo 

We previously used ChIP-seq to profile CRX occupancy in adult mouse photoreceptors, showing 

that CRX-bound regions are phylogenetically conserved, have elevated GC content, and are 

enriched for K50 homeodomain binding sites, as well as binding sites for several other TFs [68] 

(Fig. 3.1A-C, Supplemental Fig. S3.1-S3.2). Strikingly, we subsequently reported that none of 

these features alone is an accurate predictor of CRX occupancy genome-wide [42]. Here, we revisit 

these data to determine if a model integrating multiple predictors can accurately classify CRX-

bound vs. CRX-unbound regions and provide insight into the sequence features that determine 

CRX occupancy in vivo. 

For this analysis, we selected 5250 200-bp sequences centered on the summits of CRX 

ChIP-seq peaks, focusing on distal enhancers (i.e., peaks occurring >1 kb upstream and >100 bp 

downstream of any TSS) (Fig. 3.1A). We then selected 52500 200-bp CRX-unbound sequences 

sampled randomly from the mouse genome, controlling for GC and repeat content [168]. We 

scored each CRX-bound and CRX-unbound sequence for two classes of features—all ten non-

redundant dinucleotide frequencies and occurrences of 206 TF binding sites [162, 169]. We then 
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used these features to train logistic regression classifiers to differentiate CRX-bound from CRX-

unbound sequences. We used lasso regularization to control model complexity [170], and we 

evaluated model performance with repeated ten-fold cross-validation (see Methods). 

To develop an intuition for the information contained in specific classes of features, we 

measured the performance of models using increasingly complex subsets of variables, quantified 

by area under the receiver operating characteristic (AUC-ROC) and area under the precision recall 

curve (AUC-PR) (Supplemental Fig. 3.3, Supplemental Table S3.1). First, we considered a model 

using only dinucleotide frequencies. We found that despite the limited resolution of these 

predictors (average dinucleotide frequencies over a 200-bp window), this model performs nearly 

as well as using counts of individual CRX binding sites (AUC-ROC=0.75 vs. AUC-ROC=0.77, 

respectively). Next, we noted that identifying CRX binding sites by scoring sequences with a 

position weight matrix (PWM) and simply counting matches above a defined threshold fails to 

account for the quality of the PWM match (and, implicitly, TF binding site affinity). To address 

this issue, we binned counts of CRX sites into four 'affinity' classes (high, medium, low, and very 

low) based on the PWM match p-value (see Methods), thereby partitioning one variable (the 

number of CRX sites) into four. This modification significantly improves model performance 

(AUC-ROC=0.84), highlighting the value of incorporating graded TF binding site affinity into 

models of TF occupancy. Finally, we trained a model using counts of 206 TF binding sites (using 

a single, fixed threshold) selected from a database of PWMs for mouse and human TFs [162, 169]. 

This approach again yielded a significant improvement in performance (AUC-ROC=0.92), 

illustrating that multiple TF binding site models capture non-redundant information in CRX ChIP-

seq peaks. 

Next, we combined dinucleotide frequencies and counts of 206 TF binding sites binned by 

motif score in a single model, yielding the best performance among the logistic regression 
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classifiers we tested (AUC-ROC of 0.95) (Fig. 3.1D). Two key advantages of regularized logistic 

regression are that (1) the fitted coefficients have an accessible interpretation (in this case, the 

relative contribution of individual dinucleotide frequencies or TF binding sites to the likelihood 

[log odds] of CRX binding), and (2) lasso regularization shrinks the coefficients of irrelevant or 

redundant variables towards zero. Strikingly, from an initial set of 834 predictors, only 18 have 

non-zero coefficients in the final model predicting CRX occupancy: GC, AG, and CG dinucleotide 

frequencies, as well as six TF binding sites, the four strongest of which correspond to 

homeodomain binding sites (Supplemental Table S3.2). These results suggest that, genome-wide, 

a substantial fraction of CRX occupancy can be explained by the presence of one (or more) of a 

limited set of homeodomain TF binding sites in a favorable dinucleotide context. Furthermore, 

these results illustrate that multiple PWMs (even ostensibly similar homeodomain PWMs) capture 

non-redundant information about TF binding preferences, predicting TF occupancy more 

accurately in combination than any one individually. 

Recently, several groups have developed methods for predicting TF occupancy from k-mer 

content (DNA words of length k, typically six to ten base pairs), and these have generally yielded 

highly accurate models [168, 171-174]. We used one of these tools, gkm-SVM, to classify CRX-

bound vs. CRX-unbound regions, and find that, indeed, this model outperforms classifiers built on 

dinucleotide frequencies and PWMs (AUC-ROC=0.99). Nevertheless, k-mer based models are 

challenging to interpret. For example, one can use a gkm-SVM model to score all non-redundant 

k-mers and then cross-reference strong predictors with databases of TF binding sites, but it may 

not be clear how many discrete TF binding site signals are represented by these lists. Accordingly, 

we believe that the interpretability of regularized logistic regression using experimentally-derived 

TF binding sites complements the high prediction accuracy of k-mer based methods. 
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Finally, given that multiple models of primary sequence features accurately predict CRX 

occupancy in vivo, we asked if the location of informative features was spatially constrained 

relative to the center of CRX ChIP-seq peaks. To address this question, we trained new versions 

of our logistic regression classifier (using dinucleotide frequencies and counts of TF binding sites 

binned by motif p-value), extracting features from windows ranging from 20 bp up to 200 bp (Fig. 

3.1E). We find that the maximum AUC-ROC and AUC-PR values are obtained by restricting 

features to the central ~140 bp relative to the summit, suggesting that most of the information 

mediating CRX occupancy is contained within the footprints of individual nucleosomes (i.e., ~146 

bp) [7]. 

3.3 Dinucleotide frequencies and TF binding site content 
are correlated with the enhancer activity of CRX-bound 
regions in vivo 

Having identified primary sequence features that predict CRX occupancy genome-wide, we asked 

if these same features were correlated with regulatory activity in vivo. To quantify the activity of 

many CREs simultaneously, we used CRE-seq, as described previously (Fig. 3.2A) [41, 42, 45, 

46]. Briefly, we used array-based oligonucleotide synthesis to generate a library of 1230 100-bp 

DNA fragments centered on native enhancers identified by CRX ChIP-seq [68]. We cloned this 

library upstream of a photoreceptor promoter (either pRho or pCrx) driving DsRed, and we 

included a CRE-specific DNA barcode in the 3’ UTR of each construct. We electroporated this 

library into newborn (P0) mouse retinas, which were cultured for eight days. Finally, we harvested 

RNA and DNA and PCR amplified and sequenced barcodes to measure copy number-adjusted 

enhancer activity (the ratio of normalized cDNA and DNA counts for each barcode, see Methods). 

In previous studies [42, 46], we used CRE-seq to assay the activity of CRX-bound regions 

cloned upstream of a 205-bp segment of the Rho promoter (pRho), which drives high expression 
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in rod photoreceptors [83, 175]. In the current study, we assayed our library on pRho as well as on 

the 206-bp Crx promoter (pCrx), which drives moderate expression in both rod and cone 

photoreceptors, to assess the effect of distinct promoters on CRE activity. CRE-seq generates 

reproducible estimates of enhancer activity on both pRho and pCrx (Spearman correlation 

coefficients between biological replicates of 0.98-0.99 and 0.93-0.94, respectively) (Supplemental 

Fig. S3.4), and we observe similar distributions of relative CRE activity on both promoters (Fig. 

3.2B). However, this distribution is skewed toward higher expression on pRho compared to pCrx, 

which may indicate that the linear range of CRE-seq is sensitive to the absolute activity of the 

promoter. 

To identify primary sequence features that influence CRE activity, we examined the 

correlation between dinucleotide frequencies or counts of TF binding sites and CRE-seq 

expression (FDR<0.05) (Fig. 3.2C-D). Consistent with previous work [42, 46], we find that CRE 

activity is negatively correlated with the number of CRX binding sites when assayed on pRho 

(PCC=-0.088) (Fig. 3.2C). In contrast, CRE activity is positively correlated with the number of 

CRX binding sites when assayed on pCrx (PCC=0.062). This inversion may reflect complex 

promoter-enhancer interactions, or it may be a technical effect related to the absolute activity of 

each promoter. 

Overall, we identified 24 sequence features that were significantly correlated with CRE 

activity on either pRho or pCrx (Fig. 3.2D). These correlations were directionally consistent 

between pRho and pCrx, except for CRX binding sites (noted above) and AT-rich dinucleotide 

classes (AA, AT, and TA) as well as CA and AC dinucleotides. In contrast to the sequence features 

that predict CRX occupancy (Supplemental Table S3.2), we find that a more complex set of 

sequence features are correlated with enhancer activity, including multiple non-K50 TF binding 
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sites. This suggests that, while homeodomain binding sites are necessary for CRX binding, they 

are not sufficient to determine activity. 

TF binding sites that are correlated with CRE-seq activity can be assigned to five distinct 

TF families (Fig. 3.2D). TF binding sites for nuclear receptors, basic helix-loop-helix, and zinc 

finger TFs are positively correlated with activity, whereas TF binding sites for Q50 homeodomain 

and T-box TFs are negatively correlated with activity (see discussion of K50 motifs above). Most 

of these families correspond to one or more TFs that play a well-characterized role in mouse 

photoreceptor development (Supplemental Fig. S3.5): Esrrb, Nr2e3, Rorb, Rxrg, and Thrb 

(nuclear receptors); Neurod1 (a basic helix-loop-helix TF); Sp1, Sp3, and Sp4, among others (zinc 

finger TFs); Crx and Otx2 (K50 homeodomain TFs); and Rax (a Q50 homeodomain TF). In 

contrast, a role for T-box TFs in mammalian photoreceptors has not yet been established, but recent 

transcriptome profiling of mouse photoreceptors shows that, among all 13 Tbx family members in 

mouse, only Tbx2 and, to a lesser degree, Tbx3 are expressed in the early postnatal period 

(Supplemental Fig. S3.5) [176, 177]. 

In addition to assessing sequence features correlated with CRE activity, we compared our 

CRE-seq data to epigenomic profiling data from retina and other tissues (Fig. 3.2E, Supplemental 

Table S3.3) [4, 118, 119, 132, 178]. Specifically, we examined the correlation between CRE 

activity and the signal strength (read depth) of open chromatin (ATAC-seq or DNase-seq), TF 

ChIP-seq, and histone modification ChIP-seq data (Supplemental Fig. S3.6, Supplemental Table 

S3.4). Datasets generated in retina have the strongest absolute correlations, suggesting that CRE-

seq captures tissue- and cell-type-specific regulatory activity. Activating histone marks, ChIP-seq 

for the photoreceptor-specific TFs CRX and NRL, and retina and photoreceptor chromatin 

accessibility are positively correlated with CRE activity, while repressing histone marks and non-

retina chromatin accessibility are negatively correlated with CRE activity. Interestingly, a number 
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of these correlations are stronger than those observed between activity and primary sequence 

features (Supplemental Table S3.4). 

To test how well combinations of primary sequence features or epigenomic data 

('chromatin features') predict the enhancer activity of CRX-bound regions, we used regularized 

logistic regression to classify CREs with high (>3-fold above the median) vs. low (within 1.2-fold 

of the median) activity (see Methods). For both pRho and pCrx CRE-seq data, chromatin features 

classify CREs more accurately (AUC-ROC=0.79, and AUC-ROC=0.78, respectively) than 

sequence features (AUC-ROC=0.75, and AUC-ROC=0.69, respectively) (Fig. 3.2E, Supplemental 

Table S3.5). Nevertheless, the performance of models predicting CRE activity using either feature 

set is modest compared to the performance of models classifying CRX occupancy (Fig. 3.1D). 

This may be due in part to working with smaller numbers of elements when predicting activity, 

but it may also reflect a need to include additional features and/or non-additive interactions to 

predict CRE activity—i.e., fundamental differences in the cis-regulatory grammar underlying TF 

occupancy and CRE activity. 

3.4 Dimeric CRX binding sites encode stronger enhancers 
than monomeric CRX binding sites 

As discussed above, homeodomain TFs bind DNA as both monomers and dimers, and CRX ChIP-

seq peaks are enriched for both monomeric and dimeric CRX binding sites (Fig. 3.1C). 

Furthermore, monomeric and dimeric CRX binding sites within CRX ChIP-seq peaks have distinct 

profiles of evolutionary conservation (Fig. 3.3A). Specifically, both TAAT cores of dimeric 

binding sites have elevated average phyloP scores [179], suggesting both are functional. In 

addition, the most highly conserved position within the TAAT core (in both monomeric and 

dimeric CRX binding sites) is the second adenine (TAAT). We previously showed that 
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substitutions at this position effectively eliminate CRX binding in vitro [109], a finding consistent 

with the key role of this position in mediating homeodomain-DNA interaction [180]. 

To quantify the regulatory activity of individual TF binding sites, we used CRE-seq to 

assay the effect of inactivating mutations in 1756 CRX binding sites within a subset of the 1230 

CRX-bound regions described above (Fig. 3.3B). In general, CRX binding sites act as enhancers—

74% of mutations decrease activity, and 25% decrease activity by more than two-fold (vs. 4% that 

increase activity by more than two-fold) (Fig. 3.3C). Nearly half (49%) of these changes are 

statistically significant (FDR<0.05), and 85% of statistically significant differences are decreases 

in activity (Fig. 3.3D). 

We next asked if the predicted affinity of CRX binding sites is correlated with their activity. 

We calculated the motif score for each targeted CRX site using both a monomeric and a dimeric 

homeodomain PWM, and we binned sites based on the match p-value into very low-, low-, 

medium-, and high-affinity classes. To account for the fact that CRX binding sites can act as either 

enhancers or repressors, we considered the absolute log fold change in activity (instead of the 

signed log fold change). We were surprised that monomeric CRX binding site scores are not 

significantly correlated with activity. In contrast, dimeric CRX binding site scores are significantly 

(though modestly) correlated with activity (PCC=0.23). Similarly, the activity of targeted sites 

does not vary significantly across affinity classes defined by the monomeric homeodomain PWM, 

whereas all pairwise comparisons (except medium vs. high) are significantly different when 

comparing affinity classes defined by the dimeric homeodomain PWM (FDR<0.05) (Fig. 3.3E, 

Supplemental Table S3.6). Taken together, these data show that medium- and high-affinity dimeric 

CRX binding sites encode stronger enhancer activity than monomeric CRX binding sites. 
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3.5 Pairs of CRX binding sites act cooperatively 
To characterize the interactions between CRX binding sites, we selected 225 CREs with exactly 

two monomeric CRX binding sites (with unconstrained intersite spacing and orientation) and 

mutated them individually and in combination. For each pair, we defined the binding site with the 

higher monomeric homeodomain PWM score to be “site 1.” Consistent with the above results, we 

find that mutating either binding site has a similar effect on wild-type activity, independent of their 

relative affinities (Fig. 3.3F). Furthermore, the effects of mutating distinct CRX binding sites 

within a single CRE are highly correlated (PCC=0.81) (Supplemental Fig. S3.7), which suggests 

that flanking sequence plays a key role in determining CRX binding site activity. Finally, mutating 

both CRX binding sites has only a slightly greater effect than mutating either site individually (Fig. 

3F, Supplemental Fig. S3.7). This result suggests that at least some pairs of CRX binding sites act 

synergistically—i.e., they increase (or decrease) CRE activity more in combination than we would 

predict based on the marginal activity of either site alone. To test this, we modeled the activity of 

each CRE as a linear function of the presence or absence of both targeted CRX binding sites and 

an interaction term (see Methods). For nearly half (47%) of the 225 CREs we analyzed, the 

interaction term was significant (FDR<0.05) (Supplemental Table S3.7), suggesting that non-

additive interactions between CRX binding sites are common among photoreceptor CREs. 

We used this same approach (mutating sites individually and in combination) to dissect the 

activity of half-sites in 130 dimeric CRX binding sites. Similar to the above, we defined “half-site 

1” and “half-site 2” based on the orientation of the highest scoring match to a dimeric 

homeodomain PWM. We again find that mutating either half-site alone significantly decreases 

activity, but that mutating them together has minimal additional effect (Fig. 3.3F), suggesting that 

both half-sites play a key role in determining activity. Indeed, the effects of mutating either half-

site within dimeric binding sites are highly correlated (PCC=0.85) (Supplemental Fig. S3.7), 
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indicating that both half-sites contribute to wild-type activity. Finally, we again used linear models 

to test for interactions between half-sites, which revealed statistically significant interactions in 

62% of cases (FDR<0.05) (Supplemental Table S3.8), indicating that half-sites frequently act 

cooperatively. 

3.6 The correlation between CRX binding site affinity and 
activity is CRE-dependent 

We were surprised that the effects of inactivating mutations in CRX binding sites (n=1756) are not 

strongly correlated with TF binding site affinity (Fig. 3.3E). However, this analysis only 

considered a single mutation (TAAT to TACT). To characterize the relationship between CRX 

binding site affinity and activity in greater detail, we used CRE-seq to quantify the effect of all 

possible single nucleotide substitutions in a 13-bp window overlapping 97 monomeric and 98 

dimeric CRX binding sites (Fig. 3.4A). We again find that mutations in dimeric CRX binding sites 

are enriched for strong effects compared to mutations in monomeric CRX binding sites, suggesting 

that dimeric homeodomain motifs identify functional CRX binding sites more specifically (Fig. 

3.4B). Furthermore, these data define the key functional positions within CRX binding sites, with 

mutations in the TAAT core and the first 3’ nucleotide (typically a cytosine) having the strongest 

effects on activity, including both half-sites within dimeric CRX binding sites (Fig. 3.4B-D; 

Supplemental Fig. S3.8-S3.9). In general, these results are consistent with the in vitro DNA 

binding preferences of CRX that we determined previously by quantitative gel shift (Fig. 3.4C) 

[109], as well as the DNA binding preferences of closely related homeodomain TFs that have been 

estimated by high-throughput SELEX (Supplemental Fig. S3.10) [162]. Strikingly, the median 

effects of specific substitutions at each position within CRX binding sites are highly correlated 

with the associated changes in PWM score (PCC=0.82 for both monomeric and dimeric CRX 

binding sites) (Supplemental Fig. S3.10). 
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While the median effects of specific substitutions are strongly correlated with their impact 

on CRX binding, we find substantial variation in the effects of specific mutations across CREs 

(Fig. 3.4D). Accordingly, when we consider the relationship between changes in TF binding site 

affinity and activity across all mutations (without aggregating by position or nucleotide identities), 

this correlation is significantly lower (PCC=0.32 for monomeric CRX binding sites, and 

PCC=0.35 for dimeric CRX binding sites) (Supplemental Fig. S3.10). Nevertheless, within 

individual CREs, these correlations are often stronger (median absolute PCC=0.54 for monomeric 

CRX binding sites, and median absolute PCC=0.58 for dimeric CRX binding sites). This apparent 

contradiction is explained by examining the relationship between TF binding site affinity and 

activity within individual CREs (Supplemental Fig. S3.11). For a given CRE, changes in activity 

are typically well-described by a linear function of changes in affinity, but the slope of the fit is 

CRE-dependent. In other words, sequence context appears to re-scale the relationship between 

changes in CRX binding site affinity and activity across CREs—preserving the relative effects of 

different mutations, but altering their absolute effects (Supplemental Fig. S3.11). These results 

suggest that, while models of TF binding site affinity may accurately predict the relative effects of 

mutations within a single CRE, predicting the relative effects of mutations across multiple CREs 

may prove challenging. 

In addition to examining the relationship between TF binding site affinity and activity, we 

asked if phylogenetic conservation is correlated with the effects of mutations in CRX binding sites. 

We find that the average conservation (phyloP scores) of specific positions within CRX binding 

sites are correlated with the median effects of mutations at those positions (compare Fig. 3.3A and 

Fig. 4D, see also Supplemental Fig. S3.12) (PCC=0.89-0.95). Nevertheless, conservation is poorly 

correlated with mutation effects across CREs (PCC=0.07-0.10), suggesting that simple 
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conservation scores should be used cautiously when prioritizing candidate regulatory variants from 

multiple loci. 

3.7  The activity of dimeric CRX binding sites depends on 
half-site spacing 

In addition to analyzing single-nucleotide substitutions, we quantified the effect of small insertions 

and deletions in monomeric and dimeric CRX binding sites on CRE activity (Fig. 3.5). In 

particular, we tested if the activity of dimeric CRX binding sites was dependent on half-site 

spacing. First, we made all 1-, 2-, and 3-bp deletions (n=7 per targeted site) of the three nucleotides 

3’ of the TAAT core in the 97 monomeric and 98 dimeric CRX binding sites described above. On 

average, deletions significantly decrease activity (p<1.4x10-4) (Fig. 3.5A), but deletions of 

different sizes do not have significantly different effects. Interpreting these results with respect to 

spacing is challenging since deletions impact the affinity of individual half-sites as well as 

potential TF interactions, though we note that deletions in dimeric CRX binding sites have stronger 

effects than deletions in monomeric CRX binding sites (p<8.5x10-4). 

To test the effect of alterations in half-site spacing while minimizing effects on the affinity 

of individual half-sites, we made the following insertions (Fig. 3.5B). For 1-bp insertions, we 

doubled the center nucleotide (e.g., 5’-TAAT CAG ATTA-3’ to 5’-TAAT CAAG ATTA-3’). For 

2-bp insertions, we tripled the center nucleotide (e.g., 5’-TAAT CAG ATTA-3’ to 5’-TAAT 

CAAAG ATTA-3’). And for 3-bp insertions, we doubled the entire triplet (e.g., 5’-TAAT CAG 

ATTA-3’ to 5’-TAAT CAGCAG ATTA-3’). All three mutations significantly decrease the 

activity of dimeric, but not monomeric, CRX binding sites (p<4.9x10-7). Taken together, these data 

indicate that the activity of dimeric CRX binding sites depends on a strict three-nucleotide spacing, 

consistent with structural studies of paired-class homeodomain TF-DNA complexes [129, 166]. 
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Finally, our analysis of single-nucleotide substitutions suggests that the activity of dimeric 

CRX binding sites is optimized by the spacer triplet CCG, which creates the highest-affinity K50 

homeodomain binding sites on each strand given the spacing constraints described above. 

However, TAAT cores (separated by three base pairs on opposite strands) with alternative spacer 

nucleotides are also enriched in CRX ChIP-seq peaks. To determine the activity of these different 

spacer sequences, we substituted the six most enriched triplets (CCG, CAG, AGG, AAG, CTC, 

and CCA) into each of the 98 dimeric CRX binding sites tested above (in both orientations). First, 

we note that the effect of individual substitutions is similar regardless of their orientation 

(Supplemental Fig. S3.13), suggesting that dimeric CRX binding sites are not oriented. In addition, 

we find that specific spacer sequences have distinct effects on CRE activity (Fig. 3.5C). These 

effects are positively correlated with the resulting affinity of each half-site for K50 homeodomain 

TFs, and negatively correlated with the resulting affinity for Q50 homeodomain TFs. In particular, 

the spacer CCA has the lowest activity, and this sequence forms a high-affinity K50 binding site 

on the forward strand, and a high-affinity Q50 binding site on the reverse strand. Previously, K50 

and Q50 paired-class TFs have been shown to antagonize one another at specific dimeric 

homeodomain binding sites [166], suggesting that the reduced activity of dimeric CRX binding 

sites with a CCA spacer may reflect such antagonism. 

3.8 Accounting for baseline CRE activity improves the 
prediction of variant effects 

We next asked how accurately primary sequence features predict the effects of mutations in CRX 

binding sites. We used simple linear regression to model the effects of changes in CRX binding 

sites as a function of changes in TF binding site affinity for each of the 195 CREs in our dense 

substitution analysis. As described above, gkm-SVM learns a flexible k-mer representation of 

CRX binding preferences that classifies CRX-bound vs. CRX-unbound regions more accurately 
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than PWMs [181]. In addition, deltaSVM is an extension of gkm-SVM that attempts to predict the 

effects of regulatory variants by calculating the difference between mutant and wild-type scores 

under a specific gkm-SVM model [182]. Accordingly, to predict the effects of mutations in CRX 

binding sites on activity, we compared representing changes in TF binding site affinity as the 

difference between mutant and wild-type PWM scores vs. deltaSVM scores (Supplemental Tables 

S3.9-S3.11).  

Fitting models for each CRE individually, we find that deltaSVM scores derived from CRX 

ChIP-seq data predict the effects of mutations in CRX binding sites more accurately than changes 

in PWM scores (R2=0.41 vs. R2=0.32) (Fig. 3.6A). However, both approaches perform 

significantly worse when we fit models for all mutations simultaneously (R2=0.14 for deltaSVM 

scores and R2=0.12 for changes in PWM scores) (Fig. 3.6B). We hypothesized that the 

performance of these models might be limited by neglecting the contribution of sequence features 

outside the targeted binding sites. In addition, we asked whether models derived from multiple 

epigenomic assays could be combined to yield a more complete representation of sequence 

features relevant to photoreceptor CRE activity. Accordingly, we trained gkm-SVM models on 15 

additional datasets (DNase-seq, ATAC-seq, TF ChIP-seq, and/or histone ChIP-seq from retina and 

six non-retinal tissues), and quantified how well combinations of gkm-SVM (wild-type) and/or 

deltaSVM scores (mutant-specific) predict the activity of mutations in CRX binding sites with or 

without interactions (see Methods) [4, 118, 119, 132, 178]. We found that none of these multi-

feature models substantially improves upon CRX ChIP-seq deltaSVM scores (R2=0.14-0.16) (Fig. 

3.6C). These results suggest that, while additive models of primary sequence features accurately 

predict TF occupancy, more complex models (e.g., ones incorporating interactions between TF 

binding sites) may be necessary to accurately predict regulatory activity. 
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As an alternative to predicting the effects of mutations (i.e., change in CRE activity) from 

primary sequence features alone, we asked how accurately the combination of wild-type (baseline) 

CRE activity and sequence features could predict the activity of mutant CREs. Strikingly, wild-

type activity alone explains 66% of the variation in mutant activity (Fig. 3.6D). Furthermore, 

combining wild-type expression with deltaSVM scores from multiple datasets significantly 

improves performance (R2=0.73), and incorporating interactions between wild-type activity and 

deltaSVM scores yields additional improvement (R2=0.76) (Fig. 3.6D). These data demonstrate 

that the effects of mutations in CRX binding sites are highly dependent on wild-type CRE activity. 

Accordingly, while modeling the effects of CRX binding site mutations from primary sequence 

alone remains challenging, knowledge of baseline CRE activity significantly improves the 

prediction of the functional effects of cis-regulatory variants. 

3.9 Discussion 
Understanding the impact of cis-regulatory variation on phenotypic diversity and disease requires 

a detailed understanding of how CREs encode information in TF binding sites. Here, we assay 

thousands wild-type and mutant CREs to identify sequence features that modulate the activity of 

CRX binding sites, and we find that the activity of CRX binding sites depends on multiple layers 

of sequence context. Both the affinity of individual CRX binding sites as well as their configuration 

(i.e., monomeric vs. dimeric) have modest but significant effects on their activity. Moreover, the 

broader sequence context in which CRX binding sites occur, including the number and affinity of 

additional K50 as well as non-K50 TF binding sites, has even stronger effects on their activity. We 

also find that multiple instances of CRX binding sites within individual CREs frequently act 

cooperatively, and interactions between CRX (and potentially other) TF binding sites may explain 

why flanking sequence plays a stronger role than TF binding site affinity in determining CRX 

binding site activity. Thus, while CRX occupancy can largely be explained by an additive model 
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of homeodomain TF binding sites and dinucleotide content, the activity of CRX-binding sites 

appears to be determined by a richer vocabulary of sequence features, including significant non-

additive interactions. These results are broadly consistent with a recent study of PPARG-bound 

regions in a mouse adipocyte cell line [50], suggesting that they highlight general mechanisms by 

which mammalian enhancers encode cis-regulatory activity. 

As described above, our analysis of TF binding sites correlated with native CRE activity 

confirms a role for several families of TFs known to regulate photoreceptor development (i.e., K50 

and Q50 homeodomain, nuclear receptor, basic helix-loop-helix, and zinc finger TFs) (Fig. 3.2D). 

One surprising result is that T-box motifs are negatively correlated with photoreceptor CRE 

activity (Fig. 3.2D). Although T-box TFs have no established role in mammalian photoreceptor 

development, Tbx2b mutant zebrafish show a transfating of ultraviolet cones into rods [183]. In 

addition, a recent expression profiling study in chicken shows that Tbx2 is expressed in the 

embryonic retina and may play a role in violet cone development [143]. In mouse, Tbx2 is the most 

highly expressed T-box TF in developing photoreceptors (Supplemental Fig. S3.5) [176, 177], and 

TBX2 has generally been shown to act as a repressor [184]. Together with CRE-seq data, these 

observations suggest that TBX2 acts as a transcriptional repressor in the developing mouse retina, 

which would establish this TF as an ancient and highly conserved regulator of vertebrate 

photoreceptor identity. 

In addition to T-box motifs, we find that Q50 TF binding sites are negatively correlated 

with CRE activity (Fig. 3.2D), suggesting they may also act as repressors. Among Q50 TFs in 

mouse, Rax is the most highly expressed in photoreceptors [176, 177] and has been shown to play 

a role in photoreceptor maturation and survival [75]. However, reporter assays in cultured cells 

suggest that RAX is a weak activator of photoreceptor CREs, not a repressor [75]. Accordingly, 

additional functional studies are needed to determine if individual Q50 TF binding sites are 
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activators or repressors in photoreceptors. Interestingly, other retinal cell types express additional 

Q50 TFs (e.g., VSX2 in bipolar cells), raising the possibility that retinal CREs harboring Q50 TF 

binding sites may encode distinct activities in different cell types. 

Recently, Inoue et al. reported a systematic comparison of MPRAs using integrating vs. 

non-integrating lentiviral reporter constructs in a human liver cell line [49]. The authors found that 

activity estimates from integrating constructs were somewhat more reproducible (Spearman 

correlation of 0.94 vs. 0.91 between biological replicates) and more strongly correlated with 

orthogonal genomic annotations (Spearman correlation of 0.52 vs. 0.39), raising concerns about 

the generalizability of conclusions drawn from episomal reporter assays (such as CRE-seq). In the 

current study, we find that the activity of native CRX-bound regions (as estimated by CRE-seq) is 

correlated with the presence of binding sites for photoreceptor-specific TFs as well as orthogonal 

retina- and photoreceptor-specific epigenomic datasets. Furthermore, saturating mutagenesis of 

CRX binding sites demonstrates that the average position-specific effects of different substitutions 

are correlated with their effects on CRX binding in vitro. These results suggest that CRE-seq 

captures relevant features of cell-type-specific cis-regulatory grammar even though elements are 

not assayed in their native context. Nevertheless, assaying CREs in their native genomic context 

is necessary to validate predictions from MPRAs. 

Currently, there is intense interest in developing quantitative models to predict the effects 

of noncoding variants on CRE activity to identify causal variants underlying disease association 

signals [174, 182, 185]. Several groups have recently evaluated the accuracy of specific methods 

for predicting the activity of native CREs (as estimated by MPRA), finding that current models 

explain 4-38% of the variation in regulatory activity [49, 50, 182]. Here, we report that linear 

models using multiple deltaSVM scores explain 16% of the variation in the effects of mutations in 

CRX binding sites (i.e., changes in activity). Thus, multiple studies suggest that additional work 
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is needed to predict regulatory activity from primary sequence, and we hypothesize that models 

incorporating higher order interactions between features are likely to prove valuable. Nevertheless, 

we show that combining estimates of wild-type CRE activity with deltaSVM scores explains most 

of the variation in mutant CRE activity (R2=0.76) (note that R2=0.91 between biological 

replicates). Additional experiments are necessary to determine if this approach can predict the 

effects of mutations in non-CRX binding sites or in other cell types and tissues. If it can, combining 

reference sets of wild-type cell-type-specific CRE activity (e.g., ascertained via CRE-seq or similar 

methods) with cell-type-specific models of sequence grammar (e.g., deltaSVM models) could be 

a powerful strategy for predicting the cell-type-specific effects of novel cis-regulatory variants. 

 

3.10 Materials and methods 
CRE-seq library design. 1270 target regions were selected from CRX ChIP-seq peaks (100-bp 

elements centered on peak summits). Candidate monomeric CRX binding sites were identified 

with FIMO (v4.11.2) [186] using the OTX2_DBD_1 PWM [162] and a p-value threshold of p < 

10-3. Candidate dimeric CRX binding sites were identified by matches to the pattern 5’-

TAAKNNNMTTN-3’ or 5’-NAAKNNNMTTA-3’ (two TAAT or TAAG cores on opposite 

strands, separated by three base pairs, allowing up to one mismatch in the first thymidine of either 

TAAT core). For monomeric CRX binding sites, we mutated each TAAT core to TACT (one 

mutant construct per site). For dimeric CRX binding sites, we mutated each TAAT half-site to 

TACT individually as well as both in combination (three mutant constructs per site). In addition, 

within each CRE, we mutated each CRX binding site individually as well as all in combination 

(n+1 mutant constructs for n sites). For saturating mutagenesis, we selected 100 monomeric and 

100 dimeric CRX binding sites and made all possible single-nucleotide substitutions in a 13-bp 

window overlapping each CRX binding site as well as selected insertions, deletions, and 
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substitutions of the spacer nucleotides. Each of the 14987 wild-type and mutant target sequences 

were paired with six or seven unique 13-bp barcodes (pairwise edit distance >2), yielding a final 

library of 100,000 targets. 

CRE-seq library construction. 170-bp oligos were generated by array-based oligonucleotide 

synthesis through a limited licensing agreement with Agilent Technologies. Oligos were amplified 

and cloned into (Rho-prox)-DsRed [83] as described previously [41, 42]. The resulting plasmid 

library was sequenced to assess CRE representation (99.7% of 100,000 targeted oligos were 

detected, 98.8% at >1 barcode per million barcodes). A promoter-DsRed reporter construct (either 

pRho-DsRed or pCrx-DsRed) was then cloned between each CRE and barcode to generate the 

final CRE-seq library. See Supplemental Methods for details. 

CRE-seq assay. Retinas were isolated from P0 CD-1 mice, and electroporated in a solution 

containing 30 µg of CRE-seq library and 30 µg of CAG-GFP as described previously [41, 42, 45, 

187]. Electroporated retinas were cultured for eight days, at which point they were harvested, 

washed three times with HBSS (Gibco), and stored in TRIzol (Invitrogen) at -80˚C. Five retinas 

were pooled for each biological replicate, and three replicates were performed for each CRE-seq 

library. RNA and DNA were extracted from TRIzol according to manufacturer instructions, and 

RNA samples were treated with TURBO DNase (Invitrogen) as described previously [45]. cDNA 

synthesis was performed with SuperScript IV (Invitrogen) using an oligo(dT) primer according to 

manufacturer instructions. 197-bp fragments (including unique 13-bp barcodes) were amplified 

from cDNA and DNA samples by PCR (21 cycles), and indexed sequencing adapters were added 

with an additional round of PCR (eight cycles). Libraries were sequenced on an Illumina HiSeq 

3000 loaded at 150 pM with 20% PhiX DNA. 
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CRE-seq data processing. Sequencing reads were demultiplexed with ea-utils (v1.02) 

(github.com/ExpressionAnalysis/ea-utils), and 13-bp barcodes were identified in sequencing reads 

based on exact matches to designed barcodes, including 22 bp of fixed sequence context (18 bp 

upstream and 4 bp downstream). A pseudocount of 1 was added to raw cDNA and DNA counts, 

which were then scaled across biological replicates using the median ratio method [148]. Only 

barcodes with >5 scaled counts in each DNA library were included in the analysis. For each target 

sequence, activity was estimated as the log2 ratio of cDNA counts (summed over barcodes) over 

DNA counts (summed over barcodes). These values were then quantile normalized across 

replicates [188]. 

Models of TF occupancy and CRE activity. Logistic regression models predicting TF occupancy 

or CRE activity and linear regression models predicting mutation effects were implemented in R 

(v3.3) [158] using the packages glmnet [189] and caret (Kuhn 2017). For each target sequence, the 

ten non-redundant dinucleotide frequencies were calculated on both strands, and instances of TF 

binding sites were identified with FIMO (v4.11.2) [186] using a database of 206 human and mouse 

PWMs derived from high-throughput SELEX and ChIP-seq [162, 169]. gkm-SVM models 

predicting TF occupancy, chromatin accessibility, and histone modifications were trained with LS-

GKM (word length 11, 7 informative columns) [173] using background sequence sets generated 

with the gkm-SVM R package [168, 181]. See Supplemental Methods for details. 

Data visualization. Plots were generated in R (v3.3) [158] using the ggplot2 package [160]. 

Animals. Mouse husbandry and all procedures were conducted in accordance with the Guide for 

the Care and Use of Laboratory Animals of the National Institutes of Health, and were approved 

by the Washington University in St. Louis Institutional Animal Care and Use Committee. 
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Data access. Sequencing reads, barcode counts, and normalized expression values for annotated 

CREs have been deposited in the GEO (GSE106243). See Supplemental Table S3.3 for an 

overview of previously generated datasets also referenced in this study. 
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Figure 3.1. Primary sequence features predict CRX occupancy in vivo. (A) Schematic of 

analytical approach. 5250 CRX-bound regions and 52500 CRX-unbound regions were selected 

based on CRX ChIP-seq data (200-bp elements centered on peak summits). Feature vectors 

composed of average dinucleotide frequencies and/or counts of specific TF binding sites (up to 

206) were defined for each sequence. (B) CRX ChIP-seq peaks are centered on local enrichments 

of specific dinucleotide classes, including elevated GC and AG dinucleotide content. (C) CRX 

ChIP-seq peaks are centered on local enrichments of specific TF binding sites, including 

monomeric and dimeric homeodomain (CRX) binding sites. (D) Performance of specific models 

classifying CRX-bound vs. CRX-unbound sequences visualized with ROC (FPR vs. TPR) and PR 

(recall vs. precision) curves. TPR: true positive rate. FPR: false positive rate. Dashed lines: 

performance of random classifiers. LR: logistic regression. LR: best PWM—counts of dimeric 

CRX binding sites (single PWM) (AUC-ROC=0.77, AUC-PR=0.26). LR: full model—

dinucleotide frequencies and counts of 206 TF binding sites (binned by PWM score) (AUC-
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ROC=0.95, AUC-PR=0.74). See Supplemental Table S3.2 for feature weights. gkm-SVM: 11-

mers with 7 informative positions (AUC-ROC=0.99, AUC-PR=0.92). (E) Performance of LR: full 

model with features extracted from windows of different sizes (20 bp to 200 bp). 
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Figure 3.2. Primary sequence features are correlated with CRE activity in vivo. (A) 

Schematic of experimental approach. 100-bp elements centered on CRX ChIP-seq peaks were 

cloned upstream of a photoreceptor promoter driving DsRed with CRE-specific barcodes. 

Constructs were electroporated into P0 mouse retina and cultured for eight days, at which point 

RNA and DNA were harvested and barcodes were amplified and sequenced to quantify activity. 

(B) Distribution of activity of elements assayed on either pRho or pCrx. Data are median-centered. 

Dashed lines: three-fold decrease or increase relative to median. The percentage of constructs with 

activity above or below this threshold is indicated. (C) Correlation between number of dimeric 

CRX binding sites and activity on pRho and pCrx. (D) Heatmap of Pearson correlations between 

specific dinucleotide frequencies or counts of TF binding sites and activity on pRho and pCrx. 

Included features were significantly correlated with activity on at least one promoter. (E) Heatmap 
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of Pearson correlations between epigenomic datasets and CRE activity. (F) Performance of 

specific models classifying elements with low (within 1.2-fold of the median) vs. high (>3-fold 

above the median) activity. LR: sequence—logistic regression classifier using dinucleotide 

frequencies and counts of 206 TF binding sites (binned by PWM score) (pRho: AUC-ROC=0.75; 

pCrx: AUC-ROC=0.69). LR: chromatin—logistic regression classifier using signal strength from 

multiple epigenomic datasets (pRho: AUC-ROC=0.79; pCrx: AUC-ROC=0.78). Dashed line: 

performance of a random classifier. 
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Figure 3.3. Dimeric CRX sites have higher activity than monomeric CRX sites. (A) Upper 

panels: heatmaps of nucleotide content in a 30-bp window centered on monomeric or dimeric CRX 

binding sites. Rows corresponds to distinct TF binding sites, columns correspond to distinct 

positions, and tiles are colored by nucleotide identity. Lower panels: average conservation (60-

way vertebrate phyloP scores) at each position. Positions 0-3 (and 7-10 for dimeric TF binding 

sites) correspond to TAAT cores (gray boxes). (B) Schematic of experimental approach. The 

effects of 1-bp substitutions (TAAT to TACT) in 1756 CRX binding sites within CRX ChIP-seq 

peaks were quantified by CRE-seq. (C) Distribution of mutation effects (log2 fold change). (D) 

Volcano plot of mutation effects. Among mutations that significantly change activity (FDR<0.05), 

85% decrease activity and 15% increase activity. Red: significant decrease in activity. Blue: 
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significant increase in activity. Gray: change in activity not significant. (E) Absolute effect size 

vs. monomeric or dimeric PWM score (binned by match p-value). (F) Left panel: activity 

distributions of CREs with two monomeric CRX binding sites when neither, one, or both are 

mutated. Right panel: activity distributions of CREs with dimeric CRX binding sites when neither, 

one, or both half-sites are mutated. 
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Figure 3.4. Dense mutagenesis of monomeric and dimeric CRX binding sites. (A) Schematic 

of experimental approach. All single-nucleotide substitutions in a 13-bp window overlapping 97 

monomeric and 98 dimeric CRX binding sites were quantified by CRE-seq (n=39 mutations per 

TF binding site). (B) Heatmaps of median effects (across all three substitutions) at each position 

(columns) in each targeted CRX binding site (rows). Each heatmap represents 97 or 98 distinct 

elements, and rows are sorted by wild-type activity (high to low). (C) Heatmaps of median effects 

(across all target sites) at each position (columns) for specific substitutions (rows). Top panel: 

change in CRX binding site affinity determined by quantitative gel shift for all possible 

substitutions in a single target sequence [109]. Middle panel: change in activity determined by 

CRE-seq for substitutions in 97 monomeric CRX binding sites. Bottom panel: change in activity 
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determined by CRE-seq for substitutions in 98 dimeric CRX binding sites. (D) Scatter plot of 

median effects (for all three substitutions) (y-axis) at each position (x-axis) in each targeted CRX 

binding site. Points represent different targeted CRX binding sites, and horizontal bars represent 

the median across all targets. 
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Figure 3.5. The activity of Dimeric CRX binding sites depends on half-site spacing. (A) Left: 

schematic of experimental approach. The effect of all 1-, 2-, and 3-bp spacer deletions in 195 CRX 

binding sites were quantified by CRE-seq. Right: scatter plot of mutation effects. Points represent 

individual mutations and horizontal bars represent the median across all targets for deletions of the 

indicated size. (B) Left: schematic of experimental approach. The effect of specific one-, two-, and 

3-bp spacer insertions in 195 CRX binding sites were quantified by CRE-seq. Right: scatter plot 

of mutation effects. Points represent individual mutations and horizontal bars represent the median 

across all targets for insertions of the indicated size. In (A) and (B), p-values are reported for 

Mann-Whitney-Wilcoxon tests comparing the distributions of effects between mutations in 

monomeric vs. dimeric CRX binding sites. (C) Left: schematic of experimental approach. The 

effects of selected 3-bp spacer substitutions in 98 dimeric CRX binding sites were quantified by 



 96 

CRE-seq. Right: scatter plot of mutation effects. Points represent individual mutations and 

horizontal bars represent the median across all targets for the indicated substitution. The included 

heatmap shows counts of the indicated K50 and Q50 motifs among binding sites with each spacer 

substitution. 
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Figure 3.6. Accounting for baseline CRE activity improves the prediction of variant effects. 

(A) Performance (R2) of simple linear regression predicting the effect of individual substitutions 

from changes in PWM scores or CRX ChIP-seq deltaSVM scores, fitting separate models for each 

CRE. (B) Same as in (A), except fitting a single model for all CREs. (C) Performance of multiple 

linear regression predicting the effect of individual substitutions using deltaSVM scores from 

multiple datasets (m-deltaSVM), m-deltaSVM and the corresponding gkm-SVM scores from 

multiple datasets (m-gkm-SVM), or m-deltaSVM scores and m-gkm-SVM scores including all 
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pairwise interactions. (D) Performance of multiple linear regression predicting mutant expression 

using wild-type (WT) expression, WT expression and m-deltaSVM scores, or WT expression, m-

deltaSVM scores, and interactions between WT expression and deltaSVM scores. In (A), 

individual points represent the performance of models fit for different CREs (n=195). In (B-D), 

individual points represent the performance of models estimated from different folds of repeated 

ten-fold cross validation (n=100). 
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3.11 Supplemental materials 
3.11.1 Supplemental methods 

CRE-seq library construction 

Oligo library structure. 100,000 170-bp oligos were ordered from Agilent with the following 

structure: 

PCR_primer_1          CRE_100bp      Barcode_13bp    PCR_primer_2 
******************    *              *************   ******************** 
GTAGCGTCTGTCCGTGTCGAC-X-ACTAGTCGGTACCNNNNNNNNNNNNNGCGGCCGCCAACTACTACTACAG 
               ******   ****** ******             ******** 
               SalI     SpeI   KpnI               NotI 

  

Oligo library amplification. 170-bp oligos were supplied at ~10 pmol and reconstituted in 100 

µl TE (yielding a stock of 100nM or 11 ng/µl). Library oligos were amplified in 25 µl PCR 

reactions as follows: 1 µl 100nM library oligos (11 ng), 12.5 µl Phusion Hot Start Flex 2X Master 

Mix (NEB), 1.25 µl 10 mM PCR_primer_1, 1.25 µl 10 mM PCR_primer_2, 0.75 µl DMSO 

(Agilent), and 8.25 µl H2O. PCR conditions were as follows: 98˚C for 30 seconds, 6 cycles of 

(98˚C for 10 seconds, 59˚C for 30 seconds, 72˚C for 30 seconds), and 72˚C for 5 minutes. PCR 

reactions were purified with a MinElute PCR Purification Kit (Qiagen) and eluted in 10 µl EB. 

Oligo library digest. PCR-amplified oligos were digested as follows: 10 µl PCR products, 3 µl 

CutSmart buffer (NEB), 0.3 µl SalI-HF (NEB), 0.3 µl NotI-HF (NEB), and 16.4 µl H2O. Reactions 

were incubated at 37˚C for 3 hours and then run on a 10% TBE gel (Bio-Rad) at 50V for 2 hours. 

The gel was stained with SYBR gold (Invitrogen) for 30 minutes, and a ~140 bp band was excised 

and minced with a clean razor blade. Gel fragments were transferred to a 1.5 ml microcentrifuge 

tube, combined with an equal volume of elution buffer (0.5M NH4OAc and 1 mM EDTA), and 

incubated at 37˚C overnight. Gel fragments were centrifuged at 10,000 x g for 10 minutes, and the 

supernatant was transferred to a fresh microcentrifuge tube. Gel fragments were resuspended in a 
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half volume of elution buffer, vortexed, centrifuged at 10,000 x g for 10 minutes, and the 

supernatants were combined. DNA was then purified by ethanol precipitation and eluted in 15 µl 

EB (Qiagen). 

Vector backbone preparation. The vector backbone was digested as follows: 1 µg (Rho-prox)-

DsRed [83], 3 µl CutSmart buffer (NEB), 1 µl SalI-HF (NEB), 1 µl NotI-HF (NEB), final volume 

to 30 µl with H2O. Reactions were incubated at 37˚C for 3 hours, and 1 µl alkaline phosphatase 

(Roche) was added after 2 hours. Restriction digests were run on a 1% agarose gel at 100V for 90 

minutes, purified with a QIAquick Gel Extraction Kit (Qiagen), and eluted in 30 µl TE. 

Oligo library transformation. Digested oligos and vector were ligated with Mighty Mix (Takara 

Bio) at room temperature for 30 minutes at a 1:1 molar ratio with 1 ng of insert per reaction. A 

total of 15 ligations were transformed into NEB 5-alpha Competent E. coli (High Efficiency) 

according to manufacturer instructions. After 1 hour outgrowth at 37˚C, transformations were 

pooled and split into three 5 ml aliquots, each of which was added to 150 ml of LB/ampicillin and 

cultured overnight in a 37˚C shaker. Aliquots of the pooled transformations were plated to estimate 

transformation efficiency (~0.8x106 CFUs). After overnight culture, plasmid DNA was harvested 

with a PureLink HiPure Maxiprep Kit (Thermo Fisher). 

Sequencing library preparation (barcoded CRE plasmid library). Four PCR reactions 

amplifying a 212-bp fragment from the barcoded CRE plasmid library (prior to the insertion of 

promoter-DsRed constructs) were prepared as follows: 1 ng plasmid library, 25 µl Phusion Hot 

Start Flex 2X Master Mix (NEB), 2.5 µl 10 mM CRE-bc_F, 2.5 µl 10 mM CRE-bc_R, final volume 

to 50 µl with H2O. PCR conditions were as follows: 30 seconds 98˚C, 14 cycles of (10 seconds 

98˚C, 30 seconds 72˚C), and 5 minutes 72˚C. PCR reactions were purified with a MinElute PCR 

Purification Kit (Qiagen) and eluted in 10 µl of EB. An A-tailing reaction was prepared as follows: 
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300 ng purified PCR product, 5 µl NEBuffer 2 (NEB), 1 µl 10 mM dATP, 3 µl Klenow Fragment 

(3'→5' exo-) (NEB), final volume to 50 µl with H2O. The A-tailing reaction was incubated at 37˚C 

for 30 minutes, then purified with Agencourt AMPure XP (Beckman Coulter) and eluted in 12 µl 

H2O. Illumina adapters (annealed) were ligated to A-tailed PCR products in the following reaction: 

10 µl A-tailed PCR products, 3.1 µl T4 DNA Ligase Reaction Buffer (NEB), 2 µl 25 µM Illumina 

adapters (annealed), 1 µl T4 DNA ligase (NEB), 13.9 µl H2O. The ligation was incubated at 20˚C 

for 30 minutes, then purified with Agencourt AMPure XP (Beckman Coulter) and eluted in 32 µl 

H2O. PCR reactions to enrich adapter-ligated fragments were prepared as follows: 20 µl adapter-

ligated DNA, 25 µl Phusion Hot Start Flex 2X Master Mix (NEB), 2.5 µl 10 mM 

Multiplex_PCR_primer_1.0, 2.5 µl 10 mM SIC_index_NNNN. PCR conditions were as follows: 

30 seconds 98˚C, 16 cycles of (10 seconds 98˚C, 30 seconds 72˚C), and 5 minutes 72˚C. The 

sequencing library was purified with Agencourt AMPure XP (Beckman Coulter), eluted in 50 µl 

H2O, and sequenced with 2x250 bp reads on an Illumina MiSeq (~11x106 reads, ~100X coverage). 

Subcloning of promoter-DsRed constructs. (Rho-prox)-DsRed [83] was digested with KpnI-HF 

(NEB), blunted, and ligated to eliminate a KpnI site between pRho and the coding sequence of 

DsRed. The modified pRho-DsRed sequence was amplified using the primers SpeI_pRho and 

KpnI-DsRed and cloned into pBlueScript with SpeI and KpnI. Similarly, pCrx-DsRed was 

amplified using the primers SpeI_pCrx and KpnI-DsRed and cloned into pBlueScript with SpeI 

and KpnI. 

Insertion of promoter-DsRed constructs into barcoded CRE library. Restriction digests were 

prepared for the barcoded CRE library, pRho-DsRed in pBlueScript, and pCrx-DsRed in 

pBlueScript as follows: 1 µg plasmid DNA, 3 µl CutSmart buffer (NEB), 1 µl SpeI-HF (NEB), 1 

µl KpnI-HF (NEB), final volume to 30 µl with H2O. Digests were incubated at 37˚C for 3 hours, 

and 1 µl alkaline phosphatase (Roche) was added to the barcoded CRE library after 2 hours. 
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Digested fragments were run on an agarose gel at 100V for 90 minutes and gel purified using a 

QIAquick Gel Extraction Kit (Qiagen). Purified products were ligated and transformed into NEB 

5-alpha Competent E. coli (High Efficiency) as described above (see Oligo library transformation), 

with an estimated transformation efficiency of 1.2x106 CFUs. 

CRE-seq sequencing library preparation 

Sequencing library preparation (CRE-seq cDNA and DNA). PCR reactions were prepared for 

purified cDNA and DNA as follows: 2 µl purified DNA (or 3µl cDNA), 25 µl Phusion Hot Start 

Flex 2X Master Mix (NEB), 2.5 µl 10 mM read1_bc, 2.5 µl 10 mM read2_DsRed, final volume 

to 50 µl with H2O. PCR conditions were as follows: 30 seconds 98˚C, 21 cycles of (10 seconds 

98˚C, 30 seconds 72˚C), and 5 minutes 72˚C. PCR reactions were purified with a MinElute PCR 

Purification Kit (Qiagen) and eluted in 10 µl of EB. PCR products were amplified and indexed 

with an additional round of PCR as follows: 10 ng PCR products, 25 µl Phusion Hot Start Flex 2X 

Master Mix (NEB), 2.5 µl 10 mM Multiplex_PCR_primer_1.0, 2.5 µl 10 mM SIC_index_NNNN, 

final volume to 50 µl with H2O. PCR conditions were as follows: 30 seconds 98˚C, 8 cycles of (10 

seconds 98˚C, 30 seconds 72˚C), and 5 minutes 72˚C. PCR reactions were purified with a PureLink 

PCR Purification Kit (Thermo Fisher) and eluted in 30 µl of EB. cDNA and DNA libraries from 

biological replicates were pooled and sequenced 1x50 bp reads on an Illumina HiSeq 3000 (29-

43x106 reads per library). 

Bioinformatic analysis of barcoded CRE plasmid library 

Bioinformatic analysis of barcoded CRE plasmid library. Prior to the insertion of promoter-

DsRed constructs, 212-bp fragments (spanning target CREs and barcodes) were amplified from 

the barcoded CRE plasmid library and sequenced with 2x250 bp reads to assess target 

representation and proper CRE-barcode pairing (see Sequencing library preparation [barcoded 

CRE plasmid library]). Paired-end reads were merged with FLASH (v1.2) [190], and barcodes for 
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which >10% of reads could not be merged were removed from subsequent analysis (n=1286). 

Merged reads were aligned to designed oligos (including 100 bp of vector sequence on either side) 

with bowtie2 (v2.3.0) [144]. Barcodes for which >10% of reads were not aligned to the proper 

CRE were removed from subsequent analysis (n=4344). The mismatch rate at each position within 

library oligos was calculated with pysamstats (v0.24) (https://github.com/alimanfoo/pysamstats), 

and barcodes for oligos with >50% mismatch rate at any individual position were removed from 

subsequent analysis (n=1207). Taken together, these quality control steps flagged 6313 barcodes 

that were removed from analysis. 

Pre-processing of previously generated datasets 

DNase-seq, TF ChIP-seq, and Histone ChIP-seq data processing. See Supplemental Table 3.3 

for a complete list of datasets used in the current study, including accessions and references. 

Single-end sequencing reads from DNase-seq of various mouse tissues were downloaded from 

ENCODE [4]. Single-end sequencing reads from CRX ChIP-seq (wild-type and Nrl-/- whole 

retina) were downloaded from the GEO (GSE20012) [68]. Single-end sequencing reads from NRL 

ChIP-seq (wild-type whole retina) were downloaded from the NEI [119]. Single-end sequencing 

reads from H3K27Ac, H3K4Me1, H3K4Me3, and H3K27Me3 ChIP-seq were downloaded from 

the GEO (GSE72550) [132]. Reads were aligned to mm10 with bowtie2 (v2.3.0) [144]. 

Alignments with mapping quality <30 or overlapping ENCODE blacklist regions [4] were 

removed with SAMtools (v1.5) [145]. Alignments were sorted and deduplicated with Picard 

(broadinstitute.github.io/picard/). Peaks were called with MACS2 (v2.1.1) [146] and annotated 

with HOMER (v4.9) [123]. For wild-type CRX ChIP-seq, dinucleotide frequencies, known motif 

enrichment, and motif densities were calculated with HOMER. 
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ATAC-seq data processing. Paired-end sequencing reads from rod and cone ATAC-seq were 

downloaded from the GEO (GSE83312) [178]. Reads were aligned to mm10 with bowtie2 (v2.3.0) 

[144], allowing fragment lengths up to 2 kb. Alignments with mapping quality <30 or overlapping 

ENCODE blacklist regions [4] were removed with SAMtools (v1.5) [145]. Alignments were 

sorted and deduplicated with Picard (broadinstitute.github.io/picard/), and alignments were filtered 

for nucleosome-free reads (read pairs with fragment length <150). Peaks were called with MACS2 

(v2.1.1) [146] and annotated with HOMER (v4.9) [123]. 

RNA-seq data processing. Sequencing reads from transcriptome profiling of developing mouse 

rods and cones were downloaded from the GEO (GSE74660) [176, 177]. Transcript abundance 

(transcripts per million, or TPM) was estimated with kallisto (v0.43) [191] using the Ensembl gene 

model (GRCm38 assembly, release 79). 

Models of TF occupancy and CRE-seq activity 

Prediction of CRX-bound regions with logistic regression. 200-bp regions centered on TSS-

distal (>1000 bp upstream and >100 bp downstream) CRX ChIP-seq peaks annotated as intergenic 

or intronic were lifted over to mm9 with HOMER (n=5250). FASTA files for these regions as well 

as a 10X set of background sequences were generated with the gkmSVM R package [168]. 

Features for each positive (CRX-bound) and negative (CRX-unbound) sequence were extracted as 

follows. The ten non-redundant dinucleotide frequencies were calculated over both strands for 

each sequence: 1) AA or TT, 2) AC or GT, 3) AG or CT, 4) AT, 5) CA or TG, 6) CC or GG, 7) 

CG, 8) GA or TC, 9) GC, and 10) TA. The AC or GT dinucleotide class was arbitrarily removed 

to eliminate linear dependency. In addition, instances of 843 TF binding sites [162] in each 

sequence were identified with FIMO (v4.11.2) [186] using the mononucleotide frequencies of 

negative sequences as a background model and a p-value threshold of p < 10-2. The number of 

distinct TF binding sites was reduced by collapsing TF binding sites belonging to the same cluster 
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as defined by a recent analysis of 9650 PWMs [169], retaining the most prevalent TF binding site 

in each cluster as a representative member. Models were fit using TF binding site counts above a 

single threshold (p < 10-2) as well as counts binned by match p-value (as a proxy for TF binding 

site affinity): high (p < 10-5), medium (10-5 < p < 10-4), low (10-4 < p < 10-3), and very low (10-3 < 

p < 10-2). Logistic regression models were fit with the R packages glmnet [189] and caret [192], 

and lasso regularization was used to control the complexity of models that included more than one 

feature. To promote sparse solutions, the largest regularization parameter (lambda) that yielded an 

AUC-ROC within 2% of the maximum AUC-ROC was selected. Model performance was 

evaluated by repeated 10-fold cross-validation (10 repeats), and ROC and PR curves were 

generated with the package PRROC [193, 194]. 

Prediction of CRX-bound regions with gkm-SVM. Positive (CRX-bound) and negative (CRX-

unbound) regions were defined as described above. gkm-SVM models were trained with LS-GKM 

[173] using a word length of 11 with 7 informative positions. Model performance was evaluated 

by 10-fold cross-validation, and ROC and PR curves were generated with the PRROC package 

[193, 194]. 

Correlation between primary sequence features or chromatin features and CRE-seq activity. 

Wild-type CRE-seq constructs were scored for dinucleotide frequencies and TF binding sites as 

described above (using a single p-value threshold of p < 10-3). TF binding sites present in fewer 

than 30 CREs were removed. For ATAC-seq, DNase-seq, and TF ChIP-seq datasets, normalized 

read depths in 100-bp windows centered on each CRE (calculated with HOMER (v4.9) [123] were 

used as feature scores. For histone ChIP-seq datasets, normalized read depths in 100-bp windows 

centered 180 bp downstream of each CRE (calculated with HOMER (v4.9) [123] were used as 

feature scores. For each CRE, the median expression across biological replicates was used as the 
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response variable. All variables were standardized, and separate linear models were fit for each 

feature (dinucleotide frequency class, TF binding site count, or chromatin feature). 

Prediction of CRX-bound regions with high vs. low activity by logistic regression. The wild-

type expression of each CRE was classified by its activity relative to the median. “Low” was 

defined as being within 1.2-fold of the median (197 elements on pRho, and 245 elements on pCrx). 

“High” was defined as being >3-fold over the median (81 elements on pRho, and 121 elements on 

pCrx). For each CRE, feature vectors were defined using either primary sequence features 

(dinucleotide frequencies and TF binding sites counts binned by match p-value) or chromatin 

features (normalized read depth from various epigenomic datasets as described above). Logistic 

regression models were fit with the R packages glmnet [189] and caret [192], and lasso 

regularization was used to control model complexity. Model performance was evaluated by 

repeated 10-fold cross-validation (10 repeats), and ROC and PR curves were generated with the 

PRROC package [193, 194]. 

Prediction of mutation effects from primary sequence features. Wild-type and mutant PWM 

scores were calculated for each CRE in the saturating mutagenesis analysis. Monomeric CRX 

binding sites (97) were scored with a monomeric PWM (PITX1_DBD), and dimeric CRX binding 

sites (98) were scored with a dimeric PWM (OTX2_DBD_1) [162]. For each mutation, deltaSVM 

scores were calculated using various gkm-SVM modes. For CRX (wild-type or Nrl-/- retina) and 

NRL (wild-type retina) ChIP-seq, gkm-SVM models were trained on all TSS-distal peaks 

annotated as intergenic or intronic [173]. For ATAC-seq and DNase-seq data, gkm-SVM models 

were trained using cell- and tissue-type-specific peaks identified by DESeq2 [130], again 

restricting peaks to TSS-distal elements annotated as intergenic or intronic. For H3K27Ac, 

H3K4Me1, H3K4Me3, and H3K27Me3 ChIP-seq data, photoreceptor ATAC-seq peaks were 

ranked by the normalized level of each histone mark in 200-bp windows 180 bp downstream of 
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peak summits, and gkm-SVM models were trained on the top 2000 peaks identified in this way 

for each histone mark. Linear regression models were trained using different combinations of 

features (changes in PWM score, deltaSVM scores, and gkm-SVM scores) using the R packages 

glmnet [189] and caret [192]. Lasso regularization was used to control the model complexity, and 

model performance was evaluated by repeated 10-fold cross-validation (10 repeats). Training and 

testing folds were partitioned such that CREs used for training were excluded from testing. 

Conservation analysis 

Conservation profiles centered on CRX binding sites. CRX binding sites were identified with 

FIMO (v4.11.2) [186] using the PWMs PITX1_DBD (monomeric) and OTX2_DBD_1 (dimeric) 

[162] at a p-value threshold of p < 10-3. Peaks were centered on either monomeric or dimeric 

binding sites, and average conservation (phyloP scores derived from a multiple alignment of 100 

vertebrate genomes to the mouse mm10 assembly) was calculated over these intervals using 

bedtools (v2.26) [156]. 

PCR primers 

Oligo library amplification (170 bp): 

>PCR_primer_1 
GTAGCGTCTGTCCGTGTC 

>PCR_primer_2 
CTGTAGTAGTAGTTGGCGGC 

Barcoded CRE library sequencing amplicon (212 bp): 

>CRE-bc_F  
TAAACAAATAGGGGTTCCGCGCACA 

>CRE-bc_R 
GATAGGCAGCCTGCACCTGAGGAGT 

Illumina adapters (annealed): 

>adapter_oligo1 
/5Phos/GATCGGAAGAGCACACGTCT 
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>adapter_oligo2 
ACACTCTTTCCCTACACGACGCTCTTCCGATC*T 

Illumina library amplification and indexing (adapters added by ligation): 

>Multiplex_PCR_primer_1.0 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT 

>SIC_index_NNNN 
CAAGCAGAAGACGGCATACGAGATNNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTCCGA 
                        ********* 
                        9_bp_index 

pRho-DsRed and pCrx-DsRed subcloning: 

>SpeI_pRho 
TAGCTACTAGTCTAGAATGTCACCTTGGCCCCTCT 

>SpeI_pCrx 
CTGACTAGTCCTGGTTGCAGGCAGGAGTTGGGCTT 

>KpnI_DsRed 
ATTAGGTACCCTACAGGAACAGGTGGTGGCGG 

CRE-seq sequencing amplicon (197 bp): 

>read1_bc 
ACACTCTTTCCCTACACGACGCTCTTCCGATCTGATAGGCAGCCTGCACCTGAGGAGT 

>read2_DsRed 
AGACGTGTGCTCTTCCGATCTGTCCATCTACATGGCCAAGAAGCCC 

 

3.11.2 Supplemental tables 

Supplemental Table S3.1. Performance of models predicting CRX occupancy in mouse 

photoreceptors. URL: 

https://genome.cshlp.org/content/suppl/2018/09/14/gr.231886.117.DC1/supplemental_table_1.xl

sx 

Supplemental Table S3.2. Feature weights for models predicting CRX occupancy in mouse 

photoreceptors. URL: 
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https://genome.cshlp.org/content/suppl/2018/09/14/gr.231886.117.DC1/supplemental_table_2.xl
sx 

Supplemental Table S3.3. Summary of datasets used in the current study. URL: 

https://genome.cshlp.org/content/suppl/2018/09/14/gr.231886.117.DC1/supplemental_table_3.xl
sx 

Supplemental Table S3.4. Primary sequence features and chromatin features significantly 

correlated with wild-type CRE activity. URL: 

https://genome.cshlp.org/content/suppl/2018/09/14/gr.231886.117.DC1/supplemental_table_4.xl
sx 

Supplemental Table S3.5. Feature weights for logistic regression models predicting wild-type 

CRE activity. URL: 

https://genome.cshlp.org/content/suppl/2018/09/14/gr.231886.117.DC1/supplemental_table_5.xl
sx 

Supplemental Table S3.6. Monomeric and dimeric PWM scores and mutant CRE activity for 

1756 inactivating mutations in CRX binding site. URL: 

https://genome.cshlp.org/content/suppl/2018/09/14/gr.231886.117.DC1/supplemental_table_6.xl
sx 

Supplemental Table S3.7. Linear modeling of interactions between pairs of CRX binding sites. 

URL: 

https://genome.cshlp.org/content/suppl/2018/09/14/gr.231886.117.DC1/supplemental_table_7.xl
sx 

Supplemental Table S3.8. Linear modeling of interactions between half-sites within dimeric 

CRX binding sites. URL: 

https://genome.cshlp.org/content/suppl/2018/09/14/gr.231886.117.DC1/supplemental_table_8.xl
sx 

Supplemental Table S3.9. DPWM scores, gkm-SVM scores, deltaSVM scores, and CRE-seq 
expression values for saturating mutagenesis of 195 CRX binding sites. URL: 
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https://genome.cshlp.org/content/suppl/2018/09/14/gr.231886.117.DC1/supplemental_table_9.xl
sx 

Supplemental Table S3.10. Performance of linear regression models predicting the effects of 

mutations in CRX binding sites. URL: 

https://genome.cshlp.org/content/suppl/2018/09/14/gr.231886.117.DC1/supplemental_table_10.x
lsx 

Supplemental Table S3.11. Feature weights for linear regression models predicting the effects 

of mutations in CRX binding sites. URL: 

https://genome.cshlp.org/content/suppl/2018/09/14/gr.231886.117.DC1/supplemental_table_11.x
lsx 
 

3.11.3 Supplemental figures 
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Supplemental Figure S3.1. Dinucleotide profiles of CRX bound regions. Average dinucleotide 

frequencies per base pair per peak (gray dots) with a 25-bp rolling mean (colored lines) in a 1 kb 

window centered on TSS-distal (>1 kb upstream or >100 bp downstream of an annotated TSS) 

CRX ChIP-seq peaks (n=5250). 
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Supplemental Figure S3.2. TF binding site density of CRX bound regions. Average number 

of TF binding sites per base pair per peak (gray dots) with a 25-bp rolling mean (colored lines) in 

a 1 kb window centered on TSS-distal (>1 kb upstream or >100 bp downstream of an annotated 

TSS) CRX ChIP-seq peaks (n=5250). Motif enrichment was calculated for 319 known motifs 

curated by the HOMER suite of sequence analysis tools [123]. TF binding site densities are shown 

for motifs with enrichment p-values less than 10-10. 
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Supplemental Figure S3.3. Prediction of CRX-bound regions from primary sequence 

features. (A) Overview of logistic regression models using primary sequence features to classify 

CRX-bound (n=5250) vs. CRX-unbound (n=52500) regions. (B) Performance of specific models 

as measured by area under the receiver operating characteristic curve (AUC-ROC). Dashed line: 

performance of a random classifier (ROC-AUC=0.50) (C) Performance of specific models as 

measured by area under the precision recall curve (AUC-PR). Dashed line: performance of a 

random classifier (AUC-PR=0.09, the positive class rate). In (B-C), individual points indicate the 

performance of models estimated from different folds of repeated 10-fold cross-validation (logistic 

regression models) or 10-fold cross-validation (gkm-SVM), and horizontal bars represent the 

median cross-validated performance of each model. 
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Supplemental Figure S3.4. CRE-seq library complexity and reproducibility. (A-B) Histogram 

of average barcode counts (per million barcodes) from CRE-seq DNA libraries (three replicates 

each for pRho and pCrx). (C-D) Scatter plots of CRE-seq activity for pairs of biological replicates. 

Points are colored by density. PCC: Pearson correlation coefficient. SCC: Spearman correlation 

coefficient. 
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Supplemental Figure S3.5. Expression of selected TFs during photoreceptor development. 

(A) Heatmap of developmental expression for selected transcription factors corresponding to TF 

binding site families correlated with activity (see Fig. 3.3D) [176, 177]. Rows correspond to 

specific TFs, and columns correspond to developmental age. Separate panels are included for rod 

and cone photoreceptor expression. Opsins are highly expressed rod-specific (Rho) and cone-

specific (Opn1mw and Opn1sw) genes (not transcription factors) included for reference. K50 HD: 

K50 homeodomain. Q50 HD: Q50 homeodomain. bHLH: basic helix-loop-helix. NR: nuclear 

receptor. ZF: Zinc finger. (B) Developmental expression profiles of all T-box family members in 

mouse. 
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Supplemental Figure S3.6. Correlation between individual chromatin features and CRE-seq 

activity. Scatter plots showing signal strength [log2(reads+1)] vs. CRE-seq activity (assayed on 

pCrx) for various epigenomic datasets. Lines show a linear fit for each scatter plot, and Pearson 

correlation coefficients are included in the upper left of each panel. 
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Supplemental Figure S3.7. Effect of single- and double-mutants within the same CRE. (A) 

Scatter plots showing the effect of mutating pairs of CRX binding sites individually or in 

combination for CREs with two predicted CRX binding sites. (B) Scatter plots showing the effect 

of mutating either half site of dimeric CRX binding sites individually or in combination. Black 

lines: identity lines. Blue lines: linear fits. PCC: Pearson correlation coefficient. 
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Supplemental Figure S3.8. Dense substitution analysis of monomeric CRX binding sites. 

Scatter plots of the effects of specific substitutions at specific positions (gray points) within 

monomeric CRX binding sites. Separate panels are included for each of the 12 possible reference 

to variant substitutions at each position. For example, the first column of panels shows the effects 

of mutating a reference A at each position to a C (row 2), G (row 3), or T (row 4). Horizontal bars: 

the median effects of each substitution at each position. Red lines: no effect (log fold change equals 

zero). Gray boxes: TAAT core positions. 
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Supplemental Figure S3.9. Dense substitution analysis of dimeric CRX binding sites. Scatter 

plots of the effects of specific substitutions at specific positions (gray points) within dimeric CRX 

binding sites. Separate panels are included for each of the 12 possible reference to variant 

substitutions at each position. For example, the first column of panels shows the effects of mutating 

a reference A at each position to a C (row 2), G (row 3), or T (row 4). Horizontal bars: the median 

effects of each substitution at each position. Red lines: no effect (log fold change equals zero). 

Gray boxes: TAAT core positions. 
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Supplemental Figure S3.10. Aggregate correlation between change in affinity and change in 

CRE-seq activity. (A) Scatter plot of change in PWM score vs. median change in activity as 

measured by CRE-seq for monomeric (left panel) and dimeric (right panel) CRX binding sites. 

Aggregating across CREs, changes in affinity are strongly correlated with changes in activity. Blue 

lines: linear fits. (B) Scatter plot of change in PWM score vs. change in activity as measured by 

CRE-seq for monomeric (left panel) and dimeric (right panel) CRX binding sites. Each point 

represents an individual mutation. Blue lines: linear fits. PCC: Pearson correlation coefficient. 
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Supplemental Figure S3.11. CRE-level correlation between change in affinity and change in 

CRE-seq activity. Scatter plots of change in PWM score (TF binding site affinity) vs. change in 

activity (as measured by CRE-seq) for a random sample of five monomeric and five dimeric CRX 

binding sites. Whereas the correlation between affinity and activity is low across CREs (see 

Supplemental Fig. S3.10), correlations are much higher when considering mutations within 

individual CREs. PCC: Pearson correlation coefficient. 
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Supplemental Figure S3.12. Correlation between phylogenetic conservation and change in 

CRE-seq activity. (A) Scatter plot of average conservation (60-way vertebrate phyloP scores) vs. 

median absolute change in CRE-seq activity (aggregated by position) for monomeric (left panel) 

and dimeric (right panel) CRX binding sites. (B) Scatter plot of conservation (60-way vertebrate 

phyloP scores) vs. absolute change in CRE-seq activity for individual mutations. PCC: Pearson 

correlation coefficient. 
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Supplemental Figure S3.13. Effect of spacer orientation on CRE-seq activity. Scatter plots 

comparing the activity of CREs with selected spacer triplets in the forward (x-axis) vs. reverse (y-

axis) orientation. Panel labels indicate the forward spacer orientation (with the reverse complement 

being the reverse spacer orientation). The orientation of each motif was determined by the 

orientation with the highest-scoring match to a dimeric homeodomain PWM (OTX2_DBD_1) 

(Jolma et al. 2013). 
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Chapter 4: Summary and future directions 
4.1 Summary 
Understanding how regulatory variation impacts the evolution of complex traits and human disease 

requires a detailed understanding of how cis-regulatory elements (CREs) encode information in 

primary sequence. In this thesis, I define the cis-regulatory architecture of individual mouse retinal 

cell types (rod and cone photoreceptors), and I systematically identify sequence features that 

influence the activity of mouse photoreceptor CREs in vivo. In this chapter, I summarize the main 

results from these studies, and I discuss potential directions for future research. 

4.1.1 Genome-wide identification and characterization of rod- and cone-
specific CREs 

In Chapter 2, I present genome-wide open chromatin maps from FACS-sorted rods, blue cones 

(Nrl-/- photoreceptors), and green cones, along with transcriptome profiles of rods and blue cones. 

Globally, the open chromatin profiles of rods and cones are highly similar, and those of blue and 

green cones are nearly indistinguishable. Nevertheless, thousands of loci are selectively closed in 

rods compared to both cone types (as well as >60 control cell types and tissues), and I show that 

this uniquely closed chromatin architecture depends on the rod-specific transcription factor (TF) 

Nrl. Furthermore, regions that are selectively closed in rods frequently cluster in megabase-scale 

domains, suggesting that their closure reflects changes in higher-order genome organization. In 

addition, I show that rod- and cone-specific genes are typically flanked by complex arrangements 

of shared and cell-type-specific open chromatin peaks, and that changes in the accessibility of 

individual CREs are only moderately correlated with changes in the expression of nearby genes. 

Finally, I identify enrichments of TF binding sites in rod- and cone-specific open chromatin, 

providing a basis for functional studies of cell-type-specific cis-regulatory grammar. 
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Prior to this study, retinal CREs had generally been mapped by whole-retina DNase-seq 

[118] or TF ChIP-seq [68, 73, 90], which are either not specific or not comprehensive with respect 

to photoreceptors. Maps of cell-type-specific CREs offer a blueprint for studying the regulation of 

individual genes, selecting and optimizing CREs for gene therapy, and implementing strategies for 

directed differentiation and cellular reprogramming. In addition, my results demonstrate that the 

so-called ‘inverted’ nuclear architecture of mouse rods is correlated with changes in chromatin 

structure at the level of individual CREs. This observation suggests that the mouse rod 

photoreceptor represents an informative model for studying the relationship between genome 

organization, chromatin state, and gene regulation. 

4.1.2 Functional analysis of photoreceptor CREs 
In Chapter 3, I quantify the activity of thousands of wild-type and mutant CREs to determine how 

sequence context shapes the activity of binding sites for CRX, a homeodomain TF and a master 

regulator of photoreceptor gene expression. My results show that dimeric CRX binding sites 

encode stronger enhancers than monomeric CRX binding sites, and that multiple instances of CRX 

binding sites within individual CREs act cooperatively. In addition, the activity of half-sites within 

dimeric TF binding sites is cooperative, depends on a three-nucleotide spacing, and is sensitive to 

the identity of the spacer nucleotides. Within individual CREs, I find that changes in CRX binding 

site affinity are generally correlated with changes in CRE activity. Nevertheless, the strength of 

this relationship is CRE-dependent, and the correlation between TF binding site affinity and 

activity is obscured when considering mutations across multiple CREs. Finally, CRE activity is 

more strongly correlated with the number and affinity of E-box, nuclear receptor, Q50 

homeodomain, and T-box binding sites than with the number and affinity of CRX binding sites. 

Taken together, these results demonstrate that activity of CRX binding sites depends on multiple 

layers of sequence context. Moreover, they show that quantitative models of enhancer activity 
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need to account for the affinity of individual TF binding sites as well as interactions between 

binding sites. 

4.2 Implications for future research 
4.2.1 Molecular characterization of rod chromatin architecture and its 

regulation 
ATAC-seq reveals dramatic alterations in rod chromatin accessibility, but additional experiments 

are needed to understand these changes in the context of higher-order genome organization. For 

example, Hi-C could be used to determine if regions that are selectively closed in rods correspond 

to well-defined genomic compartments, as well as the degree to which rod chromatin closure 

preserves or disrupts the genome organization of cones [27]. In addition, ChIP-seq for covalent 

histone modifications (e.g., H3K27Ac, H3K27Me3, H3K4Me3, H3K4Me1, and H3K9Me3) 

would reveal the extent to which changes in chromatin accessibility are associated with changes 

in regulatory state. Furthermore, at the level of individual cells, fluorescent in situ hybridization 

(FISH) could be used to compare how specific regions of the genome are localized within rod and 

cone nuclei. Taken together, these approaches would provide insight into how rod chromatin 

closure relates to three-dimensional nuclear organization. 

In addition to further characterization of rod nuclear architecture, more work is needed to 

understand how rod-specific chromatin changes are regulated. I show that rod chromatin closure 

depends on Nrl, and previous work has shown that downregulation of both Lmna and Lbr is 

sufficient for inverted nuclear organization [106]. However, it remains to be shown if Nrl directly 

represses Lmna and Lbr, or if intermediate regulators are involved. In addition, Lmna and Lbr 

mediate interactions with the nuclear periphery, but factors that directly modulate rod chromatin 

accessibility have not been identified (e.g., histone modifiers, histone remodeling complexes, and 

histone variants). Furthermore, the developmental timing of rod chromatin closure has not been 
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established, but could be determined by an ATAC-seq time series. Coupled with gene expression 

profiling, these data would have the potential to identify additional regulators that mediate rod-

specific changes in chromatin accessibility. In addition, this analysis would establish the temporal 

relationship between rod chromatin closure and the development of inverted nuclear architecture 

(which is gradual and not complete until adult stages) [100]. 

4.2.2 Integrated analysis of cis- and trans-acting factors in photoreceptor CREs 
In addition to revealing global changes in chromatin architecture, my results show that 

photoreceptor ATAC-seq is a powerful method for mapping rod- and cone-specific CREs. 

Nevertheless, identifying the TFs that regulate individual CREs remains challenging. ChIP-seq 

maps TF occupancy genome-wide, but demonstrating that TFs bind a particular CRE is not 

sufficient to demonstrate that they contribute to CRE function. Thus, while ChIP-seq experiments 

for additional photoreceptor TFs would be useful (e.g., RAX, RORB, NR2E3, ESRRB, THRB, 

and RXRG), complementary approaches are needed. 

A functional approach to identify TFs that regulate individual CREs would be to combine 

CRE-seq with targeted knockdown (or deletion) of photoreceptor TFs. For example, the same 

CRE-seq library described in Chapter 3 could be assayed in retinas from Nrlflox/flox mice co-

electroporated with Cre recombinase (or control) to identify CREs that are enhanced or repressed 

by NRL. Alternatively, these experiments could be performed with RNAi-mediated TF 

knockdown, or CRISPR/Cas9-mediated TF knockout, to target a broader set of TFs than those for 

which floxed alleles are available. In addition, by assaying native CREs as well as CREs with 

mutations in TF binding sites, this approach could identify the sequences that mediate the effects 

of TFs at single-nucleotide resolution. Importantly, as in most RNA-seq analysis, CRE-seq 

normalization relies on the assumption that the total level of transcriptional activity is constant 

across experimental conditions. This assumption may not be valid when assaying photoreceptor 
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CREs while simultaneously knocking down photoreceptor TFs. Therefore, orthogonal standards 

(e.g., a diverse set of ubiquitous CREs with a broad range of activity) will be needed to accurately 

quantify CRE activity across experimental conditions. 

4.2.3 Developing more complete models of photoreceptor cis-regulatory 
grammar 

CRE-seq has facilitated detailed functional analyses of mutations in CRX binding sites, but 

additional studies are needed to quantify the contribution of non-CRX binding sites. In particular, 

my results suggest that E-box, nuclear receptor, Q50 homeodomain, and T-box TF binding sites 

play significant roles in determining photoreceptor CRE activity, but validating these predictions 

requires comprehensive analysis of TF binding site mutations (e.g., by CRE-seq). Alternatively 

(or in parallel), an analysis of sparsely mutated photoreceptor CREs by CRE-seq has the potential 

to identify functional TF binding sites in an efficient and unbiased manner. For example, a CRE-

seq library could be synthesized consisting of ~500 100-bp CREs in which a 10-bp sliding window 

with a 5-bp step was scrambled (yielding 20 constructs per target sequence). Assaying this library 

in photoreceptors could then identify a comprehensive set of functional TF binding sites and yield 

quantitative estimates of their relative activities. 

As described above, CRE-seq demonstrates that pairs of CRX binding sites often act 

cooperatively. Therefore, once TF binding sites that modulate photoreceptor CRE activity have 

been comprehensively defined, mutating them individually and in combination will be necessary 

to determine if TF binding site cooperativity is a general phenomenon, or if it is restricted to 

specific pairs of binding sites. Furthermore, comparison of TF binding site instances that do and 

do not show evidence of cooperativity could be analyzed to identify patterns of relative spacing 

and orientation that are associated with non-additive interactions. Taken together, these approaches 
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have the potential to provide a more complete picture of how specific combinations of TFs encode 

regulatory activity in photoreceptor CREs. 

4.3 Conclusion 
In this thesis, I present detailed molecular and computational studies of the transcriptional 

mechanisms underlying the development and maintenance of mouse photoreceptors. In particular, 

I demonstrate that integrated epigenomic and transcriptomic profiling of mouse rods and cones is 

a powerful approach for defining the cis-regulatory architecture of individual retinal cell types. In 

addition, I perform comprehensive functional studies, which reveal that the regulatory activity of 

homeodomain binding sites is highly dependent on the broader sequence context in which these 

motifs occur. Finally, I suggest how these approaches can be adapted to study the functional impact 

of regulatory variation in humans (see Appendix). Thus, these studies provide detailed insights 

into the mechanisms of photoreceptor CRE function as well as a framework for studying the cis-

regulatory architecture of additional retinal cell types. 
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Appendix: Functional regulatory variation in 
the human retina 

5.1 Introduction 
Inherited retinal disease (IRD) is a heterogeneous group of genetic diseases characterized by retinal 

dysfunction and vision loss. The genetic architecture of IRD is complex. More than 250 different 

genes have been implicated in IRD [96], and different variants within the same gene can lead to 

distinct pathologies [95]. Furthermore, patients harboring the same causal variant can present with 

divergent phenotypes, suggesting that genetic modifiers play an important role. As a result, high-

throughput sequencing is playing an increasingly important role in the diagnosis of IRD. Recently, 

a major study reported whole-genome sequencing of 650 IRD patients, which identified 

pathogenic protein-coding variants in ~57% of cases [195]. These results raise the possibility that 

noncoding (regulatory) variation contributes to a subset of the remaining (‘unsolved’) cases. 

Nevertheless, assessing the contribution of regulatory variation is challenging, because human 

retinal cis-regulatory elements (CREs) have not been comprehensively defined, and how 

regulatory variation impacts the activity of human retinal CREs is not known. 

Here, we compare open chromatin maps from human retina, heart, kidney, and lung to 

identify >26,000 retina-specific CREs. These CREs are phylogenetically conserved, flank 

photoreceptor-specific genes, and are enriched for transcription factor (TF) binding sites 

corresponding to photoreceptor-specific TFs. To determine which of these regions are functional, 

we have begun to undertake a massively parallel reporter assay (MPRA) to quantify the activity 

of >4,600 CREs in explanted human and mouse retinas. In addition to native CREs, we will assay 

rare and common variants from the UK10K project to determine the general impact of genetic 

variation on CRE function [196]. Finally, we will assay rare variants from the IRD 650 cohort to 
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identify regulatory variants with pathogenic potential. Thus, this study will constitute the first high-

throughput functional characterization of human retinal CREs in vivo. Furthermore, this study will 

assess the utility of MPRAs for interpreting clinical genomic data, and potentially identify 

regulatory variants that contribute to IRD. 

5.2 Methods and preliminary results 
5.2.1 Identification of retina-specific open chromatin in humans 
Open chromatin profiling (including DNase-seq and ATAC-seq) is a powerful approach for 

mapping candidate CREs at high resolution genome-wide [39, 197, 198]. Recently, we obtained 

ATAC-seq data from the Qian and Blackshaw groups from paired macula and peripheral retina 

samples from five adult human donors. In addition, we downloaded DNase-seq data from adult 

human brain, heart, kidney, and lung as well as fetal retina from the ENCODE project [4]. ATAC-

seq and DNase-seq data were processed as follows. Paired-end reads were aligned to hg19 with 

bowtie2 (v2.3.0), allowing a maximum fragment length of 2 kb [144]. Alignments with improper 

pairing, mapping quality <30, or overlapping ENCODE blacklist regions [4] were removed with 

SAMtools (v1.5) [145]. Alignments were then sorted, merged, and deduplicated with Picard [199]. 

To enrich for nucleosome-free reads, read pairs with fragment sizes greater than 150 bp were 

discarded. Finally, peaks were called with MACS2 (v2.1.1) [146]. 

ATAC-seq generated reproducible profiles of genome-wide chromatin accessibility across 

all ten retinal samples (pairwise correlation 0.81-0.97), and we identified a total of 195,782 retinal 

ATAC-seq peaks. Comparison of open chromatin profiles between human and mouse indicates 

that the cis-regulatory architecture of individual retinal genes is often conserved [118, 132, 178]. 

For example, at the rod-specific rhodopsin locus (Fig. 5.1A-B), both human and mouse ATAC-

seq identify strong open chromatin peaks at the promoter, two upstream enhancers, an intronic 

enhancer 3’ of the second exon, and several additional peaks towards the 3’ UTR. Furthermore, 
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ATAC-seq detects well-characterized human retinal CREs, including a cluster of retina-specific 

peaks ~3.5 kb upstream of the long-wavelength opsin gene (OPN1LW) (Fig. 5.1C). These peaks 

overlap the so-called ‘locus control region’ (LCR) which regulates the expression of both 

OPN1LW and OPN1MW (~20 kb downstream) [200, 201]. Previously, a deletion series ascertained 

from 12 families with blue cone monochromacy demonstrated that a 579-bp region precisely 

overlapping one of the LCR ATAC-seq peaks is critical for the expression of both OPN1LW and 

OPN1MW [202]. Finally, ATAC-seq from human retina allows us to study the regulation of 

photoreceptor genes present in humans but not mice, such as RAX2 (Fig. 5.3D). Thus, ATAC-seq 

detects functional retinal CREs, including CREs that play a role in human retinal disease and CREs 

that cannot be studied in mice.  

To define retina-specific CREs, we first merged peak calls from adult retina ATAC-seq 

and control tissue DNase-seq to generate a master list of 508,060 regions. We then used DESeq2 

(v1.14.1) to identify peaks with significantly more reads in adult retina vs. control tissues 

(excluding fetal retina), yielding a set 26,156 adult retina-specific peaks (FDR<1%). We used 

GREAT (v3.0.0) to analyze functional annotations associated with these regions, and we found 

that they were highly enriched for gene ontology (GO) terms associated with photoreceptor 

physiology, and human and mouse phenotypes associated with vision and retinal disease (Table 

5.1) [157]. In addition, we used HOMER (v4.9) to identify TF binding sites enrichment in tissue-

specific CREs from retina and control tissues [123]. This analysis revealed that human retina-

specific CREs are centered on focal enrichments in TF binding sites corresponding to known 

photoreceptor TFs (Fig. 5.2): K50 homeodomain (OTX2 and CRX), Q50 homeodomain (RAX), 

basic helix-loop-helix (NEUROD1), nuclear receptor (RORA, RORB, NR2E3, ESRRB, and THRB), 

and MADS TFs (MEF2C, MEF2D). Furthermore, we find that the TF binding sites enriched in 
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human retina are highly similar to those we have previously characterized in mouse rods and cones, 

suggesting that the cis-regulatory grammar of these cell types is largely conserved. 

5.2.2 Quantifying the effect of regulatory variation in human retinal CREs by 
MPRA 

Previously, we and others have described CRE-seq, an MPRA for assaying the activity of 

thousands of CREs in a single experiment [41-46]. For CRE-seq, oligos of interest (typically 80-

150 bp) are cloned upstream of a promoter-DsRed construct harboring CRE-specific barcodes in 

the 3’ UTR. This library is then delivered to cells of interest, and activity is later quantified by 

harvesting RNA and DNA and counting barcodes by high-throughput sequencing. 

To quantify the activity of human retinal CREs, and to test the effect of single nucleotide 

variants (SNVs) on CRE activity, we have designed a CRE-seq library as follows. First, we 

obtained variant calls from the Raymond group for whole-genome sequencing of 650 patients with 

IRD [195]. Across all 650 patients, we identified 77,819 SNVs and indels that overlap retina 

ATAC-seq peaks. Furthermore, 55,205 of these variants were identified in patients where no 

pathogenic variants were identified (‘unsolved’, n=269) or in patients where a single pathogenic 

allele was detected in a recessive disease gene (‘partially solved’, n=13). To screen for pathogenic 

regulatory variants, we selected rare SNVs from the 282 unsolved or partially solved cases 

overlapping retina-specific ATAC-seq peaks near known retinal disease genes and included these 

in our CRE-seq library. Specifically, we selected all SNVs with a minor allele frequency (MAF) 

<0.01 located within 75 bp of retina-specific ATAC-seq peak summits that were within 200 kb of 

genes in the RetNet database [96]. These criteria identified 1,952 variants in 1,111 CREs. 

We then selected additional variants to broadly survey the functional impact of regulatory 

variation across a range of population frequencies. From all 650 IRD patients, we identified 8,423 

SNVs overlapping conserved positions (GERP>2) within 75 bp of retinal ATAC-seq peaks [179]. 
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From these variants, we selected all common SNVs (MAF >0.01) (n=1,420), all SNVs overlapping 

K50 homeodomain, Q50 homeodomain, basic helix-loop-helix, or nuclear receptor TF binding 

sites (n=872), and a random sample of the remaining (rare) SNVs (n=2,500). These criteria 

identified 3,989 SNVs in 3,279 retinal ATAC-seq peaks. 

Finally, in addition to the 5,816 unique SNVs described above (and corresponding 

reference sequences), we included all retina-specific ATAC-seq peaks near RetNet genes 

(n=1,650). Thus, the final CRE-seq library consisted of 150-bp elements centered on retinal 

ATAC-seq peaks—4,698 reference sequences and 5,618 sequences harboring SNVs for a total of 

10,514 distinct oligos. We paired each oligo with 9-10 unique 15-bp barcodes (pairwise edit 

distance > 2), yielding a set of 100,000 library oligos. These oligos were cloned upstream of a 

pCrx-DsRed reporter as described previously (see Chapter 3), and will be assayed by 

electroporation into explanted mouse retina as well as viral transduction into postmortem adult 

human retinas in culture in future experiments. 

5.3 Summary 
IRD is a clinically important disease that is incompletely explained by genetic variation in protein-

coding genes. Here, we present an initial identification and characterization of retina-specific 

CREs, which provides a valuable resource for studying the role of noncoding variation in retinal 

biology. Furthermore, we have designed a functional assay to quantify the effects of common and 

rare variants within these regions—including an extensive screen for pathogenic regulatory 

variants from a large cohort of patients with IRD. Thus, this study will define and quantify the 

functional activity of a reference set of human retinal CREs, assess the contribution of a relatively 

under-studied class of genetic variation to retinal disease, and provide a framework for using 

MRPAs to characterize the pathogenic potential of individual regulatory variants. 
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Figure 5.1. Open chromatin profiles of human and mouse retina. (A) DNase-seq from adult 

mouse retina and ATAC-seq from adult mouse rods and cones at the rod-specific Rho locus. (B) 

ATAC-seq from adult human retina and DNase-seq from adult human heart and lung at the rod-

specific RHO locus. Human and mouse retinas have highly similar open chromatin profiles, 

illustrating conservation of regulatory architecture. (C) As in (B) at the cone-specific OPN1LW 

locus. LCR: locus control region. ∆BCM: a 579-bp region critical for OPN1LW and OPN1MW 

expression, previously shown to be deleted in patients with blue cone monochromacy. (D) as in 

(B) at the human-specific RAX2 locus. 
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Table 5.1. GO enrichment analysis of human retina-specific ATAC-seq peaks. 
  

GO Collection Term Adjusted P-value Fold Enrichment

GO Biological Process Rhodopsin mediated signaling pathway 1.54E-60 3.46
Regulation of rhodopsin mediated signaling pathway 4.32E-60 3.55
Detection of light stimulus 4.33E-53 2.08
Detection of visible light 6.92E-51 2.14
Photoreceptor cell differentiation 8.50E-49 2.27
Phototransduction 1.69E-48 2.07
Retina homeostasis 7.96E-48 2.97
Photoreceptor cell maintenance 6.80E-44 2.99
Phototransduction, visible light 2.48E-43 2.09
Eye photoreceptor cell differentiation 2.55E-41 2.20
Cellular response to light stimulus 1.20E-37 2.09
Photoreceptor cell development 1.36E-31 2.19
Neural retina development 7.68E-28 2.02
Eye photoreceptor cell development 2.04E-24 2.09

GO Human Phenotype Night blindness 2.90E-121 2.85
Abnormal electroretinogram 2.21E-96 2.45
Abnormality of corneal thickness 1.16E-92 2.82
Decreased corneal thickness 2.34E-90 2.83
Hyperinsulinemia 4.13E-85 2.76
Photophobia 6.73E-83 2.33
Type II diabetes mellitus 7.09E-71 2.49

GO Mouse Phenotype Retinal photoreceptor degeneration 9.75E-86 2.72
Abnormal retinal photoreceptor morphology 2.22E-85 2.13
Abnormal rod electrophysiology 3.77E-83 2.49
Abnormal retinal photoreceptor layer morphology 1.04E-79 2.02
Abnormal cone electrophysiology 2.70E-73 2.56
Abnormal retinal rod cell outer segment morphology 4.39E-60 4.36
Abnormal retinal outer nuclear layer morphology 5.41E-60 2.05
Abnormal retinal rod cell morphology 5.08E-58 2.67
Abnormal photoreceptor outer segment morphology 9.49E-58 2.20
Retinal degeneration 3.62E-57 2.26
Decreased retinal photoreceptor cell number 9.42E-40 2.22
Abnormal retinal cone cell morphology 2.24E-36 2.27
Short photoreceptor outer segment 7.67E-33 2.58
Retinal rod cell degeneration 5.05E-29 3.57
Abnormal retinal rod bipolar cell morphology 1.11E-23 2.31
Absent branchial arches 1.81E-19 3.00
Absent startle reflex 1.11E-16 2.06
Retinal cone cell degeneration 1.67E-15 2.32
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Figure 5.2. Motif enrichment in human and mouse open chromatin. Histograms showing 

average motif density in open chromatin from adult mouse retina and photoreceptors (left) as well 

as adult human retina, heart, lung, and kidney (right). Plots show normalized motif counts in a 1-

kb window centered on ATAC-seq or DNase-seq from each tissue—smoothed with a 20-bp rolling 

average. Retina-specific TF binding site enrichment is similar between mice and humans, 

highlighting conservation of cis-regulatory grammar across species. 
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