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Abstract of the Dissertation

Limits and Singularities of Normal Functions

by

Tokio Sasaki

Doctor of Philosophy in Mathematics,

Washington University in St. Louis, 2019.

Professor Matt Kerr, Chair

On a projective complex variety X, constructing indecomposable higher Chow cycles

is an interesting question toward the Hodge conjecture, motives, and other arithmetic

applications. A standard method to determine whether a given higher cycle is indecom-

posable or not is to consider it as a general fiber of a degenerate family of higher cycles,

and observe the asymptotic behaviors of the associated higher normal functions. In this

thesis, we introduce some known examples of indecomposable cycles and a new method

to detect the linearly independence of R-regulator indecomposable K1-cycles which is

based on the singularities and limits of admissible normal functions with real coefficients.

We also construct a collection of higher Chow cycles on certain surfaces in P3 of degree

d ≥ 4 which degenerate to an arrangement of d planes in general position. By applying

our method, we show that these higher Chow cycles are enough to show the surjectivity

vi



of the real regulator map when d = 4. Hence our construction gives a new explicit proof

of the Hodge-D-Conjecture for a certain type of K3 surfaces. As an application, we

also construct new examples of non trivial elements in the Griffiths groups on a certain

Calabi-Yau threefold, which is a general fiber of a Tyurin degeneration arising from two

reflexive polytopes. Since these Calabi-Yau manifolds and (higher or usual algebraic)

cycles are totally derived from the combinatorial geometry of these polytopes, we expect

that their dual polytopes encodes the mirror objects via mirror symmetry.
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1. Introduction

Let X be a smooth quasi-projective variety over C. An algebraic cycle on X is defined

as a locally finite formal linear sum of subvarieties on X. The quotient of the groups

of algebraic cycles by an adequate equivalence relation such as rational, algebraic, nu-

merical, and homological equivalence defines an invariant of X and finding non trivial

elements of such a quotient is interest in Algebraic Geometry. When we consider the

rational equivalence, which identifies two algebraic cycles given as the zero and pole of

a rational function over a one dimensional higher subvariety, the quotient is called the

Chow group CHp(X) (of codimension p cycles). The celebrated Hodge Conjecture states

the surjectivity of the cycle class map from the Chow group CHp(X) with the rational

coefficients to the Hodge cycle class Hdg(X).

For a closed subvariety Z in X and its complement U , their Chow groups defines the

localization exact sequence

CHp(Z) → CHp(X) → CHp(U) → 0.

To extend this sequence to a long exact sequence, we need an extended notion of the

Chow group, which is called the higher Chow groups CHp(X,n). Roughly speaking,

an element of higher Chow groups (which is often called a higher cycle) is a algebraic
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cycle on X × □n of codimension p with □n := (P1 \ {1})n on an appropriate position,

with the information of ”boundaries” coming from the pullback-pushforward images of

0,∞ ∈ □1 (See Chapter 2 for the precise definition). The higher Chow groups CHp(X,n)

are isomorphic to the motivic cohomology H2p−n
M (X,Q(p)) for a smooth variety and have

a natural bigraded product structure which is compatible with the cup products on the

cohomology of each realization, and contains the image of CHp−1(X) for CHp(X, 1) via

this product structure. A higher cycle in this image is called decomposable, and we

may consider it as an apparent higher one and essentially arising from a usual algebraic

cycle. Hence to show a given higher cycle is indecomposable is a deeper question than

its non-triviality.

The aim of this paper is to introduce some known constructions of indecomposable

cycles and show a new method to detect the linear independence of indecomposable K1-

cycles on the nearby fiber by using the asymptotic behaviors of real regulators. We also

find a systematic construction of a collection of higher Chow cycles on a certain type of

families {Xt}t∈P1 of degree d surfaces in P3. This construction gives a new explicit proof

of the Hodge-D-Conjecture when d = 4. The Hodge-D-Conjecture is a generalization of

the Hodge Conjecture: We can generalize the cycle map from the Chow group to the

higher Chow groups CHp(X,n), and by extending the coefficient to R, we obtain the real

regulator map rp,nD,R : CHp(X,n)⊗ R → H2p−n
D (X,R(p)). Hodge-D-Conjecture states the

surjectivity of rp,nD,R. Unfortunately this conjecture is false for general projective varieties,

but it is still open (and expected to hold) for X defined over Q ( [1]). The most significant

2



result is due to X. Chen and J. Lewis and introduced in Chapter 3. They proved that the

Hodge-D-Conjecture holds for (analytically) general polarized K3 surfaces in the moduli

space by observing the deformation of the higher cycles along the degeneration of the

general K3 to a special one with Picard number 20 (which is called Bryan-Leung K3

surface).

While the existence of sufficiently many higher cycles is abstractly contained in Chen

and Lewis’s work, our construction is completely explicit and concrete. The precise

construction is given in Section 5.1, but roughly the type of surfaces we consider has the

form

Xt : L1L2 · · ·Ld + tM1M2 · · ·Md = 0 ⊂ P3

with general t ∈ P1 and linear forms Li,Ml in general position. Then each intersection

Li ∩ Ml defines a line on Xt, which is constant even when we move t. By choosing

intersecting three lines of this type with the boundaries at Li∩Lj ∩Ml, we can construct

a higher Chow cycle γijk,l ∈ CH2(Xt, 1) so that its support is just a union of three lines.

By changing the roles of the linear forms L and M , we also can construct another type

of higher Chow cycle δi,lmn, and moreover each line Li ∩ Ml as an algebraic cycle also

defines an element λil of CH2(Xt, 1) in the naive way. Theorem 7 in Chapter 5 states that

these higher cycles {γijk,l}, {δi,lmn}, {λil} are enough to prove the Hodge-D-Conjecture

for d = 4 and general choices of t, Li,Ms.

Our method is based on the theory of limits and singularities of admissible normal

functions. After a resolution of singularities and change of the coordinates, we may

3



consider {Xt}t∈∆∗ as a semistable degeneration to the simple normal crossing divisor

X0 with smooth fibers over the punctual unit disc ∆∗ = ∆ \ {0}. The Abel-Jacobi

values of γijk,l and δi,lmn as families of higher Chow cycles define holomorphic sections

of the intermediate Jacobian bundle over ∆∗, which are examples of admissible normal

functions. Roughly speaking, the limit of the admissible normal function associated to a

family of higher Chow cycles describes the limiting behavior of the Abel-Jacobi value as t

approaches to 0. However, generally the degeneration of the family of higher Chow cycles

may not be a higher Chow cycle, since it may have some obstructions coming from the

singularities. Such an obstruction can be described as another invariant, which is called

the singularity of the admissible normal function.

Recently, the limiting behaviors of complex valued admissible (or usual) normal func-

tions has been studied ( [2] [3] [4]) and it is not difficult to show that the singularity

invariants factor through the projection to the real regulator. In fact, for general d we

show that each γijk,l has non-trivial singularities and moreover {γijk,l} ∪ {λil} span the

codomain Hdg(CokerN) of this invariant, where N denotes the log monodromy action

around t = 0 (Theorem 5 in Chapter 5) and this implies that {γijk,l} span a 19 dimen-

sional subspace of H1,1
R .

On the other hand, the limit invariants are typically killed by the projection to the real

regulator. As our new method, in Section 5.3 and 5.4 we dig further into the asymptotic

behavior of the real regulator to recover these limits. We show not only the non-triviality

of the limit of δi,lmn when d = 4, but also the limit of its real regulator value is linearly

4



independent from that of { 1
log(t)

γijk,l}. These results give explicit proof of the Hodge-

D-Conjecture for this type of K3 surface. We also remark that our construction itself

yields a collection of higher cycles on the surface Xt of general degree d ≥ 4. While the

Hodge-D-Conjecture is known to be false for very general surfaces in P3 of degree ≥ 5,

it is still an interesting problem to determine subfamilies on which the conjecture holds.

Though we are not able to prove Hodge-D-Conjecture yet for Xt of general degree, at

least each of γijk,l is still R-regulator indecomposable (cf. Section 2.3 for the definition).

It suggests that the higher cycles {γijk,l}, {δi,lmn}, {λil} may indicate an explicit proof.

As another application, we also introduce a new construction of threefolds with non-

trivial Griffiths groups from γijk,l. The Griffiths group Griffp(X) of a projective variety

X is defined by the quotient CHp
hom(X)/CHp

alg(X) by the subgroup CHp
alg(X) of cycles

which are algebraically equivalent to zero. Cycles in Griff2(X) and their normal functions

provide the B-model for Morrison and Walcher’s work on the open mirror symmetry (

[5]). Meanwhile, C. Doran, A. Harder and A. Thompson introduced a non-toric mirror

scenario involving Tyurin degenerations, in which the Calabi-Yau threefolds degenerate

to a union of quasi-Fano threefolds intersecting along a K3 surface ( [6]). Key to studying

open mirror symmetry in the latter setting would be to construct K1-cycles on the K3

surface which are limits of K0-cycles on the nearby Calabi-Yau threefold (this is called

“going-up” in the theory of the K-theory elevator which is introduced in [4]). For this

construction, one will need totally concrete K1-cycles on the K3 surface, and this point

is an advantage of our explicit proof of the existence of R-regulator indecomposable
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cycles. In Section 6.1, starting from a general degree d surface Xt0 defined as above,

we construct a semistable degeneration family Y of threefolds, which is an example of

Tyurin degeneration when d = 4. Its singular fiber Y0 consists of the union of the product

Xt0 × P1 and two blown up copies of P3, meeting along two copies of Xt0 (The picture

before taking the blow up is drawn in Figure 2).

Applying the theory of the K-theory elevator, we can shift the higher Chow cycle γijk,l

in the intersection Xt0 ×P1 of Y0 to an algebraic cycle in one of the blown up P3, which is

a fiber of a family of algebraic cycles Cijk,l on Y . R-regulator indecomposability of γijk,l

implies the non-triviality of the general fiber of Cijk,l in the Griffiths groups. Therefore

this yields a new example exhibiting the connection between the algebraically non-trivial

cycles and R-regulator indecomposable cycles.

This thesis is organized as follows. In Chapter 2, we briefly recall the definitions of

the higher Chow cycles, indecomposable cycles, real regulator map, and the statement

of Hodge-D-conjecture. We also introduce the KLM formula, which is an essential tool

in computing the Abel-Jacobi maps. In Chapter 3, we introduce the construction of in-

decomposable cycles by A. Collino on Jacobians of hyperellpitic curves, and the proof of

Hodge-D-Conjecture by X. Chen and J. Lewis. Their approaches to show the indecom-

posablity is based on finding a specialization of the constructed higher cycles and consider

the limiting behavior of associated admissible normal functions or real regulator values.

More generally, these limit and singularity invariants of admissible normal functions are

explained in Chapter 4. Chapter 5 is the body of this paper. We define the family of

6



surfaces X = {Xt} and construct the specific higher Chow cycles γijk,l, δi,lmn, and λil

on this family. Then we show the non-triviality of these invariants for the above higher

Chow cycles respectively, and prove the Hodge-D-Conjecture for our case in Section 5.4.

Finally, we construct a threefold with non-trivial Griffiths groups starting from Xt0 as

another application in Chapter 6.
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2. Higher Chow Groups and Indecomposable cycles

2.1 Higher Chow Groups

Throughout this paper, we fix the base field to be C and an algebraic variety means

an integral separated scheme of finite type over C. Firstly, we recall the definition of the

higher Chow groups. See [7] for the original construction with algebraic simplexes and

[8] for the cubical version, which we use here. The algebraic n-cube is defined by

□n := (P1 \ {1})n.

For each i (0 ≤ i ≤ n), there is the ith-face map ρi : □n−1 ↩→ □n with  = 0,∞ defined

by the embedding (z1, z2, . . . , zn−1) → (z1, z2, . . . , zi−1, , zi, . . . , zn). The facet ∂
i□n is

defined by the image of ρi and more generally the face ∂
I□n for each I ⊂ {0, . . . , n} and

 = {(i)}i∈I is defined by


i∈I ∂
(i)
i □n. We also denote ∂□n :=


i∈I


=0,∞ ∂

i□n.

Let X be a quasi-projective variety. For p, n ∈ Z≥0, Cp(X,n) is defined as the free

abelian group generated by subvarieties of X × □n of codimension p which intersects

each X × ∂
I□n properly. It contains the subgroup Dp(X,n) which is generated by the

pullbacks of cycles via face projections X×□n ↠ X×□n−|I|, and we denote the quotient

8



Cp(X,n)/Dp(X,n) by Zp(X,n). Then Zp(X, •) becomes a chain complex with the well-

defined boundary map

∂ :=


i

(−1)i((ρ0i )
∗ − (ρ∞i )∗) : Zp(X,n) → Zp(X,n− 1).

An element of Zp(X,n) is called a precycle on X. The higher Chow groups are defined

by taking the homology of this complex:

CHp(X,n) := Hn(Zp(X, •)).

Note that CHp(X) = CHp(X, 0) by the definition.

When X is smooth, there is another expression via the Gersten-Milnor resolution for

CHp(X, 1):

CHp(X, 1) ∼= H1(


cdxZ=p−2

KM
2 (C(Z)) →



cdxZ=p−1

KM
1 (C(Z)) →



cdxZ=p

KM
0 (C(Z))).

Here, KM
p (k) is the p-th Milnor K-theory of a field k. Since KM

0 (C(Z)) ∼= Z and

KM
1 (C(Z)) = C(Z)∗, each element of CHp(X, 1) can be represented by a formal sum


(fi, Zi) with a codimension (p−1) subvariety Zi and a rational function fi over Zi such

that


i div(fi) = 0. Taking the quotient by the image of the Tame symbols, we obtain

CHp(X, 1). More specifically, the graph of fi|Zi\f−1
i (1) as a subvariety of X × (P1 \ {1})

defines an element of Zp(X, 1).

Notation 1 We consider only non-torsion higher cycles in this paper. For this reason,

we use the notation CHp(X,n) for the rational coefficient higher Chow groups

CHp(X,n)⊗Q from now on.

9



2.2 Hodge-D-Conjecture

For a subring A ⊂ R, the Deligne complex is defined by a complex of sheaves on X

AD(p) : A(p) → OX → Ω1
X → . . . → Ωp−1

X .

Here A(p) := A(2π
√
i)p. Then the Deligne cohomology is defined by the hypercohomology

H i
D(X,A(p)) := Hi(AD(p))

and Bloch defined a cycle class map

clp,nD : CHp(X,n) → H2p−n
D (X,Q(p)).

In the case of n = 0, clpD := clp,0D can be considered as the unified map of the usual

cycle class map clp to the Hodge class Hdgp(X) and the Abel-Jacobi map AJp to the

intermediate Jacobian Jp(X). More precisely, there is a commutative diagram

0  CHp
hom(X) 

AJp



CHp(X) 

clpD


CHp(X)/CHp
hom(X,n)

clp



 0

0  Jp(X)  H2p
D (X,Q(p))  Hdgp(X)  0

with exact rows.

For a quasi-projective variety U , we can define the higher cycle class map to the

generalized Hodge class

clp,n : CHp(U, n) → Hdgp,n(U) :=Hdg(H2p−n(U,Q)(p))

:=HomMHS(Q, H2p−n(U,Q)(p))

10



and the higher Abel-Jacobi map from CHp
hom(U, n)(:= Ker(clp,n)) to the generalized in-

termediate Jacobian

AJp,n : CHp
hom(U, n) → Ext1MHS(Q, H2p−n−1(U,Q)(p)).

By replacing the Deligne cohomology to the absolute Hodge cohomology ( [9], Section

2), we also can define the cycle class map clp,nH and obtain the generalization of the above

commutative diagram:

0  CHp
hom(U, n)



AJp,n



CHp(U, n) 

clp,nH


CHp(U, n)/CHp
hom(U, n)

clp,n



 0

0  Jp,n(U)  H2p
H (U,Q(p))  Hdgp,n(U)  0.

The composition CHp(U, n) → CHp(U, n)/CHp
hom(U, n)

clp,n−−→ Hdgp,n(U) is also often

denoted by just clp,n. For a smooth projective variety X, however, each cohomology class

has the pure Hodge structure and hence H2p−n(X,Z)(p) has no weight 0 graded pieces

up to torsion. Thus Hdgp,n(X) = {0} and the diagram turns into

CHp
hom(X,n)

AJp,n



CHp(X,n)

clp,nD


Jp,n(X) H2p−n
D (X,Q(p)).

The vanishing of the generalized Hodge class clearly shows that we cannot state the

Hodge conjecture for the higher case as the surjectivity of clp,n. Instead, we consider

the composition of the natural surjection H2p−n
D (X,Q(p)) → H2p−n

D (X,R(p)) after clp,nD ,

which is called the real regulator map

rp,nD : CHp(X,n) → H2p−n
D (X,R(p)).

11



Then a version of Beilinson’s Hodge-D-Conjecture is

Conjecture 1 (Hodge-D-Conjecture) For a smooth variety X over Q̄,

rp,nD,R := rp,nD ⊗ R : CHp(X,n)⊗ R → H2p−n
D (X,R(p))

is surjective.

Note that H2p−1
D (X,R(p)) ∼= Hp−1,p−1

R (X)(p− 1) := Hp−1,p−1(X,R)⊗ R(p− 1) ( [10],

Section 3).

Remark 1 The same statement for quasi-projective varieties over C is known to be false.

See [1].

2.3 Indecomposable Cycles

The higher Chow groups have a product structure

CHp(X,n)⊗ CHq(X,m) → CHp+q(X,n+m)

which is compatible with the cup products in the Deligne cohomology and the real regu-

lator map. Since it is known that CH1(X, 1) ∼= H1
D(X,Q(1)) ∼= C∗, especially we obtain

a map

C∗ ⊗ CHp−1 → CHp(X, 1). (2.1)

The image CHp
dec(X, 1) of the above map (2.1) is called the subgroup of the decomposable

cycles and the group of indecomposable cycles is defined by the quotient

CHp
ind(X, 1) := CHp(X, 1)/CHp

dec(X, 1).

12



If especially the real regulator image rp,1D,R(γ) of an element γ ∈ CHp(X, 1) is not in the

image Im(H1
D(X,R(1)) ⊗H2p−2

D (X,R(p − 1))
µ−→ H2p−1

D (X,R(p))) ∼= R ⊗ Hdgp−1(X), we

say that γ is R-regulator indecomposable. Clearly R-regulator indecomposable cycles are

indecomposable.

The Deligne cohomology H2p−n
D (X,A(p)) can be also defined as the (−r)th cohomol-

ogy of the Deligne cohomology complex

M• := Cone{C2p+•
X (X,A(p))⊕ F pD2p+•

X (X)
−l−−→ D2p+•

X (X)}[−1]

with the sheaves of topological chains and distributions on X. Here,  maps to the

associated current and l is the natural embedding. On the other hand, the complex of

precycles Zp(X, •) has a subcomplex Zp
R(X, •) of cycles meeting real faces properly such

that the inclusion is a (rational) quasi-isomorphism. The KLM-formula [11] is a map of

complexes Zp(X,−•) → M• defined by

Z → (2πi)p−n((2πi)nTZ ,ΩZ , RZ),

and indicating AJp,n. Here, each of TZ ,ΩZ , RZ is essentially defined by the pushforward-

pull back image of the following current on □r := (P1 \ {1})r respectively:

Tr := (2πi)rδ[−∞,0]r

Ωr :=



□r

∧r
k=1d log zk

Rr :=



□r

log z1 ∧r
k=2 d log zk − (2πi)



[−∞,0]×□r−1

log z2 ∧r
k=3 d log zk

+ . . .+ (−2πi)r


[−∞,0]r−1×□1

d log zr.
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When TZ = ∂Γ and ΩZ = dΞ, by adding the differentialD((2πi)nΓ,Ξ, 0) = (−(2πi)nTZ ,−ΩZ ,−Ξ+

(2πi)nδΓ) we can simplify the formula. Especially when d := dimX ≤ p or p ≤ n, since

F pD2p−n(X) vanishes and hence ΩZ is trivial, we obtain

AJp,n(Z)(ω) = (−2πi)p−n(RZ + (2πi)nδΓ)(ω)

=
1

(−2πi)n−p



X

RZ ∧ ω + (2πi)n


Γ

ω



for each closed test form ω in F d−p+1Ω2d−2p+n+1(X), yielding a class in Jp,n(X) ∼=

{F d−p+1H2d−2p+n+1(X,C)}∨/H2d−2p+n+1(X,Q(p)).

More generally, the KLM formula holds for a smooth quasi-projective U , and even for

a normal crossing divisor Y on X by changing each complex appearing in the formula to

the simple complex associated to a certain double complex (See Section 5.3). Especially

it defines the cycle map

clp−1,n−1
D : CHp−1(Y, n− 1) → H2p−n+1

D,Y (X,Q(p))

and hence

clp−1,n−1 : CHp−1(Y, n− 1) → Hdg(H2p−n+1
Y (X,Q(p)))

for the cohomologies with support on Y . For the detail of the construction, see Section

5.9 of [11] and Section 3 of [9].
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3. Examples of Indecomposable cycles

3.1 Indecomposable cycles on Jacobians of curves

We introduce A. Collino’s construction of the indecomposable cycles on Jacobians of

hyperelliptic curves. The construction is natural, and has an analogy with the Ceresa

cycles.

For a very general genus g curve C with a fixed point x ∈ C, we define a map

ıx : C → J(C) := J1(C) to its Jacobian defined by

ix(y) = AJ(y − x).

With the push forward i−x := ι∗(ix) by the involution ι, the Ceresa cycle is defined by

ix(C)− i−x (C) ∈ CHg−1(J(C)).

Since two points x, x′ ∈ C are connected by C itself, we obtain the unique class in

Griffg−1(J(C)) which is independent from the choice of x. Ceresa showed that this cycle

is actually not algebraically trivial when g ≥ 3, though obviously it is homologically

trivial ( [12]).
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Collino constructed a natural higher cycle in CHg(J(C), 1) for a general hyperelliptic

curve based on the same idea. For a given hyperelliptic curve C of genus g, let h : C → P1

be the double cover and take two different ramification points p, q ∈ C. By changing the

parameter, we may assume that h(p) = 0 and h(q) = ∞. Then we obtain a precycle

(hp, ip(C)) ∈ Zg(J(C), 1) with the rational function hp : ip(C) → P1 induced by h via

ip. Similarly the point q defines another precycle (hq, iq(C)). Note that ip(C) ∪ iq(C) =

{0, AJ(p− q)}. Since div(hp) = −div(hq), ((hp, ip(C))+ (hq, iq(C)) defines a higher cycle

in CHg(J(C), 1). For the simplicity with respect to the symmetry we shift p and q with

a point ξ = AJ(p−q)
2

∈ J(C), and then we obtain the required higher cycle

Z(C) = ((hp)ξ, ip(C)− ξ) + ((hq)ξ, iq(C)− ξ)

= ((hp)ξ, ip(C)− ξ)− (((hq)ξ)
−1, iq(C)− ξ).

Here, (hp)ξ, (hq)ξ mean the translations of the rational functions. When we consider the

Abel-Jacobi values in J2g,1(J(C)) ∼= H2g−1
D (J(C),Q(g)), the decomposable cycles define

the subgroup W as the image of

CHg−1(J(C))⊗ C∗ → H2g−2
D (J(C),Q(1))⊗ C∗ → J2g,1(J(C)).

Changing the parameter by the translation is contained in W , so that we obtain the

well-defined regulator class

ν(C, p, q) := AJ2,1(Z(C)) ∈ J2g,1(J(C))/W,

which depends on C, p, q and independent from the choice of ξ. By considering the moduli

space of hyperelliptic curves with two Weierstrass points p, q, hence finally we obtain an
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admissible normal function ν (we introduce the general property of admissible normal

functions and its invariant in Chapter 4).

Recall that a given variation of mixed Hodge structures V over S defines the complex

C• := (V → Ω1
S ⊗ V → Ω2

S ⊗ V → . . .)

with the connection ∇ as the diffenrential. The hodge filtration F• on V also defines a

filtration

F pC · := (FpV → Ω1
S ⊗ Fp−1V → Ω2

S ⊗ Fp−2V → . . .)

by the Griffiths’ transversality condition, so that we obtain a short exact sequence

0 → H1(S,H0(F 0C•)) → H1(S, F 0C•) → H0(S,H1(F 0C•)) → 0

from the hypercohomology spectral sequence. Since a normal function can be defined as

an element of H0(S,C•/(F 0C• ⊕ V)) with the underlying (rational) local system V, we

obtain two invariants of admissible normal functions inH0(S,H1(F 0C•)) via H1(S, F 0C•)

and H1(S,V) via H1(S, F 0C•⊕V) respectively. The former one is called the infinitesimal

invariant of the given normal function, and the latter is called the topological invariant.

Proposition 1 ( [13]) When we consider the deformation of (C, p, q) to a nodal curve

defined by attaching p and q, the associated infinitesimal invariant δν is non trivial.

We may construct ν ′ as a normal function on the primitive Jacobian and can show

that this invariant δν is independent from the choice of the lifting ν. Hence Z(C) is

indecomposable for a general choice of C. Collino and Fakhruddin also extended this
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result to the Jacobian of a smooth projective curve C ( [14]). They showed that the

decomposability of a given higher cycle is preserved by the specialization, and construct

a higher cycle on J(C) which is supported on the four embedded copies of C such that

they can be specialized to the difference of the above natural cycle on a hiperelliptic curve

and its translation.

3.2 Hodge-D-Conjecture for general K3 surfaces

In this section we introduce the proof of the Hodge-D-Conjecture for general K3

surfaces and abelian surfaces by X. Chen and J. Lewis. Here the meaning of general

is not algebraic, but analytic. Specifically, a projective variety Xs is general in a given

family over an algebraic variety S (parametrized by s ∈ S) when s is in the complement

of a countable union of real analytic subvarieties in S.

Theorem 1 ( [10]) With the above terminology, the Hodge-D-Conjecture holds for gen-

eral polarized K3, Abelian, and Kummer surfaces.

Note that the result for general K3 surfaces immediately deduces that for Abelian and

Kummer surfaces. In fact, special Kummer surfaces (which arise from reduced Abelian

surfaces) is dense in the period domain of marked K3 surfaces ( [15]). For a given

Abelian variety A, we obtain the corresponding special Kummer Surface X by taking

the quotient by the involution and then blow-up along 16 double points. The induced
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correspondence defines a surjection H2(X,R(1)) → H2(A,R(1)), which is compatible

with the real regulator maps.

The main idea of the proof is to construct sufficiently many higher Chow cycles from

rational curves, which deforms to specific divisors in a BL K3 surfaces. A K3 surface is

called a BL K3 surface when it has the Picard lattice



−2 1

1 0



 ,

hence the Picard group is generated by two effective divisors F and C such that C2 =

−2, C · F = 1, and F 2 = 0. One can construct such a surface as an elliptic fibration

over P1 with its fiber F and the unique section C. The following proposition shows some

essential properties of BL K3 surfaces:

Proposition 2 (i) A general K3 surface can be degenerated to a BL K3 surface X

with the primitive class degenerated to C + gF .

(ii) Let D ⊂ X be the limit of a family of rational curves and assume that D ∈ |C+gF |.

Then D has the form of

D = C ∪ F1 ∪ F2 ∪ . . . ∪ Fg

with rational curves {Fi ∈ |F |}.

We consider a BL K3 surface S with the elliptic fibration such that there is exactly 6

singular fibers F1, F2, . . . , F6. Then each Fi consists of the union of four rational curves

and S has the maximum Picard number 20.
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Recall that one can obtain a precycle in Z2(X, 1) on a smooth surface X as a com-

bination of curves {Ci} and rational functions {fi} over them such that


div(fi) = 0.

Especially, when each Ci is a rational curve and ∪(Ci) is normal crossing, we may choose

the isomorphism between Ci and P1 such that each of 0,∞ ∈ P1 is an intersection with

another rational curve Cj. By finding a combination of {Ci} such that these boundaries

0 and ∞ cancel out as the divisor class, we obtain an element of CH2(X, 1). To follow

this construction, we shall take a family X /∆ of K3 surfaces of genus g over the unit

disk ∆ ⊂ C such that X0 = S, and find the limiting curves on X0 of rational curves on

the general fiber Xt (t ∈ ∆). Here, a problem is that any two limiting curves D1 and

D2 in |C + gF | do not intersect properly by Prop 2. Hence we firstly need to take the

blow up X of X along F1, . . . , F6. Take one of the singular fibers Fi and denote it by the

union of four rational curves E = E0 ∪ E1 ∪ E2 ∪ E3 (We assume that E0 is the unique

curve which intersects with C). Then the exceptional divisor R over E is in the central

fiber X0. The inverse image Ri = p−1(Ei) by the projection p : R → E is isomorphic to

P1 × P1, and each of {Ri} intersects along the fiber Qi = p−1(Ei−1 ∩Ei). Note that each

Qi contains a rational double point ri of X .

Now, Choose a map φi,i+1 : Qi → Qi+1 (we denote just φ for the simplicity) with a

point x ∈ Qi such that the curve connecting x and φ(x) is in the linear system |Ei|. We

denote r
(k)
i = φk(ri) and take the curve r

(j)
i r

(j+1)
i which connects r

(j)
i and r

(j+1)
i in Ri+j

(mod 4). Now we can construct an example of limiting rational curves:
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Proposition 3 ( [10] Section 8, 9) Take the unique curve NΓ ⊂ R0 in |E0+Q0| which

contains r
(−3)
0 , r0, q, and NΣ ⊂ R0 in |E0 + 2Q0| which contains r1, r

(3)
1 , r

(−1)
2 , r

(2)
2 , q. Let

Γ and Σ be reduced curves in R defined by






Γ := NΓ +
−1

j=−3 r
(j)
0 r

(j+1)
0

Σ := NΣ +
2

j=0 r
(j)
1 r

(j+1)
1 +

1
j=−1 r

(j)
2 r

(j+1)
2

Then both Γ and Σ are limits of rational curves. More precisely, there exists a family

of rational maps YΓ,YΣ → X which is compatible with the projection to ∆ such that the

images of YΓ,0 = (YΓ)0 and YΣ,0 = (YΣ)0 are Γ and Σ respectively.

Since Γ and Σ intersects at exactly three points u, v, q ∈ NΓ ∩NΣ by putting the bound-

aries 0 and ∞ on u and v respectively, we obtain a family of higher cycles  in CH2(X , 1).

( Precisely, this procedure constructs an element of the higher Chow group CH
2
(X , 1) of

prestable maps, since Γ and Σ themselves are reducible. However, the restriction to each

component defines a natural projection CH
2
(X , 1) → CH2(X , 1). See [CL, Section 7]. )

We may change the choices of ri as the following pairs of Γ and Σ;






Γ := NΓ +
2

j=0 r
(j)
1 r

(j+1)
1

Σ := NΣ +
−1

j=−3 r
(j)
0 r

(j+1)
0 +

1
j=−1 r

(j)
2 r

(j+1)
2

(r1, r
(3)
1 , q ∈ NΓ, r0, r

(−3)
0 , r

(−1)
2 , r

(2)
2 , q ∈ NΣ)
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Γ := NΓ +
1

j=−1 r
(j)
2 r

(j+1)
2

Σ := NΣ +
−1

j=−3 r
(j)
0 r

(j+1)
0 +

2
j=0 r

(j)
1 r

(j+1)
1

(r
(−1)
2 , r

(2)
1 , q ∈ NΓ, r0, r

(−3)
0 , r1, r

(3)
1 , q ∈ NΣ)

then each choice defines other higher cycles ′ and ′′ respectively. By the local com-

putation of the Abel Jacobi map on the singular fiber X0, one can show the following

Lemma 1 The subspace in H1,1
R (X0) spanned by the images of 0, 

′
0, 

′′
0 by the real regu-

lator map r2,1D,R contains the cycle class c1(E0), c1(E1), c1(E1 + E2 + E3).

By changing the role of r2 to r4 in the above construction, we also obtain the similar

higher cycles and can show that the linear combinations of their real regulator values

contains c1(E3). Applying this argument to each choice of the singular fiber E from

F1, . . . F6, we finally obtain the proof of Theorem 2.
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4. Singularities and limits of Normal Functions

4.1 Invariants of admissible normal functions

In this chapter, we introduce two invariants of normal functions which are called

the singularity and limit. When we obtain a family of higher cycles over a family of

projective varieties, the Abel-Jacobi map defines the corresponding admissible normal

function. When the family is a semistable degeneration we can observe its singularity

by using the Clemens-Schmid exact sequence. If the normal function has the trivial

singularity, then we obtain its limit value in the limiting Jacobian.

Let S be a complex manifold and j : S → S be an open immersion of a Zariski open

subset S. For a variation of Hodge structure H, its generalized Jacobian bundle is defined

by

J(H) :=
H

F0H +HQ
.

A holomorphic horizontal section of J(H) is called a J(H)-valued normal function over

S. The group of J(H)-valued normal functions NF (S,H) is canonically isomorphic to

Ext1VMHS(S)(Z,H) with the category VMHS(S) of variations of mixed Hodge structures
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over S. Moreover, VMHS(S) contains the subcategory VMHS(S)ad
S

of admissible vari-

ations of Hodge structures ( [16]). An element of the subgroup Ext1VMHS(S)ad
S

(Z,H) of

Ext1VMHS(S)(Z,H) is called an admissible normal function with respect to S. By Section

2 of [17], the group of admissible normal functions NF (S,H)ad
S

⊗ Q with rational coef-

ficients is isomorphic to Ext1MHM(S)ps
S

(Q,H). Here, MHM(S)ps
S

is the category of smooth

polarizable mixed Hodge modules over S.

Let ν be an admissible normal function over S and ιs be the embedding of a point

s ∈ S. We define a map sings by the composition

NF (S,H)ad
S

⊗Q ∼=Ext1MHM(S)ps
S

(Q,H)

(ι∗sRj∗)Hdg

−−−−−−→Ext1DbMHM({s})(Q, ι∗sRj∗H)

∼=Ext1DbMHS(Q, ι∗sRj∗H)

→HomMHS(Q, H1((ι∗sRj∗)H)).

The invariant sings(ν) is called the singularity of the normal function ν at s. From

the spectral sequence for the cohomology functor and HomMHS(Q,−), we also obtain
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a natural map lims : Ker(sings) → Ext1MHS(Q, H0(ι∗sRj∗H)) which makes the following

commutative diagram:

0

HomMHS(Q, H1((ι∗sRj∗)H))



NF (S,H)ad
S

⊗Q

sings
❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

(ι∗sRj∗)Hdg

 Ext1DbMHS(Q, ι∗sRj∗H)



Ker(sings)



lims  Ext1MHS(Q, H0(ι∗sRj∗H))



0



We can apply the above theory of admissible normal functions to a family of higher

cycles on smooth projective varieties, because of the following result of Brylinski and

Zucker: Let f : X∗ → S be a smooth proper family of quasi-projective varieties. A higher

cycle

Z∗ ∈ CHp(X∗, n)prim :=


x∈S
Ker(CHp(X∗, n) → CHp(Xx, n) → Hdgp,n(Xx))

defines a holomorphic section νZ of J(Hp,n) for Hp,n := R2p−n−1π∗Q(p) ⊗ OS by taking

the fiberwise Abel-Jacobi values.

Theorem 2 [18] νZ∗ is an admissible normal function.
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If X∗ is the restriction of a proper family X over S to S and Z∗ is that of a family

of higher cycle Z ∈ CHp(X, n), with the complement Xsing := X \ X∗, we obtain the

localization exact sequence

· · · → CHp(Xsing, n) → CHp(X, n) → CHp(X∗, n)
res−→ CHp−1(Xsing, n− 1) → · · · .

Here, the morphism res is defined by Bloch’s moving lemma. In fact, for each γ ∈

CHp(X∗, n) this lemma guarantees that there exists a precycle Γ ∈ Zp(X, n) such that its

restriction to X∗ is a higher cycle with the same class to γ. We can see that res(γ) := ∂Γ

is actually in Xsing.

4.2 Singularities and Limits for semistable degenerations

Now we consider the special case that X is a one-parameter semistable degeneration.

It means that S is a projective curve and each singular fiber Xs0 ⊂ Xsing is a reduced

simple normal crossing divisor. Take a point in the discriminant locus s0 ∈ S \ S and let

∆ ⊂ S be the unit disk in a local coordinate of S with the origin s0. By changing the

coordinate of S if we need, we may assume that Xs0 is the unique singular fiber in the

restriction X|∆.

The upper half plane H can be considered the universal cover of ∆∗ := ∆ \ {0}. With

the base change XH := X|∆ ×∆∗ H, we obtain the commutative specialization diagram

XH
k 



X|∆



Xs0
i


H  ∆ {0}.
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Since XH is homotopic to any general fiber Xt (t ∕= 0), we can define the specialization

map

sp : Hk(Xs0 ,Q) → Hk(XH,Q) ∼= Hk(Xt,Q)

induced by the adjoint morphism QXs0
→ i∗Rk∗k

∗QX|∆ . We remark that originally

this map is defined analytically by Clemens’ retraction X|∆ → Xs0 , but generally this

retraction is not holomorphic ( [19]. Also, since the local monodromy T around s0 is

unipotent, it defines the log monodromy action

Ns0 :=
k

l=1

(−1)l−1

l
(T − I)l : Hk(Xt,Q) → Hk(Xt,Q).

In this setting, there exists a mixed Hodge structure on Hk(Xt,Q) such that sp and

Ns0 are morphisms of mixed Hodge structures of weight 0 and −1 respectively (with

the usual mixed hodge structure on Hk(Xs0 ,Q)). See [19] and Chapter 11 of [20].

This is called the limiting mixed Hodge structure (LMHS) and we denote Hk
lim(Xt,Q)

for Hk(Xt,Q) equipped with LMHS. With this mixed Hodge structure, we obtain the

Clemens-Schmid exact sequence:

Theorem 3 [19] There is a long exact sequence of mixed Hodge structures

· · · → Hk(X0,Q)
sp−→ Hk

lim(Xt,Q)
Ns0−−→ Hk

lim(Xt,Q(−1))

α−→ H2(d−1)−k(Xs0 ,Q(−d))
φ−→ Hk+2(Xs0 ,Q) → · · · .

Here, φ is the composition of the Poincaré-Lefschetz duality H2(d−1)−k(Xs0 ,Q(−d)) ∼=

Hk+2(X|∆,X|∆∗ ;Q), the natural morphism Hk+2(X|∆,X|∆∗ ;Q) → Hk+2(X|∆,Q) and the

isomorphism Hk+2(X|∆,Q) ∼= Hk+2(Xs0 ,Q). Moreover α factors through Hk+1(X|∆∗ ,Q).
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Since dimS = 1, ι∗sRj∗Hp,n is quasi-isomorphic to the complex

{H2p−n−1
lim (Xt,Q(p))

Ns−→ H2p−n−1
lim (Xt,Q(p− 1))}

( [21]). Hence in this case, we may consider the singularities and limits as the invari-

ants in Hdg(CokerNs) := HomMHS(Q,CokerNs) and Jlim,s := Ext1MHS(Q,Ker(Ns)) ∼=

J(H2p−n−1
lim (Xt,Q(p))) respectively. As an extension class, we can represent the admissi-

ble normal function ν by a short exact sequence

0 → V → Eν → QS → 0

of variations of mixed Hodge structures with the underlying local systems

0 → V → Eν → QS → 0.

Deligne’s extension Ẽν := e−
1

2πi
log sNsEν defines the extension Eν,e := Ẽν ⊗ O∆ and the

admissibility of ν means that ν = νF − νQ in the Jacobian bundle with a lift νF and νQ

of 1 to Eν,e and Ẽν,0 respectively such that νF |∆∗ is in the Hodge filtration F0(Eν) and

NνQ is in the monodromy weight filtration W−2Ṽ0. With these notations, specifically the

singularity at s0 = 0 ∈ ∆ is given by

sings0(ν) = [NνQ](≡ [NνF (0)]).

Let Z∗ be a higher cycle over X∗. If the general fiber Xt is a smooth projective variety,

Z∗ is in CHp(X∗, n)prim since the generalized Hodge classes vanish. By Theorem 2, it de-

fines the admissible normal function νZ∗ . Hence we obtain a map AJ p,n : CHp(X∗, n) →
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NF (S,Hp,n)ad
S

⊗ Q. On the other hand, since S is a curve, the codomain of singu-

larities is Hdg(Coker(Ns0)) for Ns0 : H
2p−n−1
lim (Xt,Q(p)) → H2p−n−1

lim (Xt,Q(p − 1)) as

we have seen above . By Theorem 3, this group can be regarded as a subgroup of

H2d−2p+n−1(Xso ,Q(p− d)). We denote

Hdgp−1,n−1(Xs0) := Hdg(H2d−2p+n−1(Xso ,Q(p− d))).

Note that the Poincaré-Lefschetz duality isomorphism induces the natural map

β : Hdg(H2p−n+1
Xs0

(X,Q(p))) → Hdgp−1,n−1(Xs0)

since the isomorphism is a morphism of mixed Hodge structures.

Since each singular fiber is a simple normal crossing divisor, we can consider the cycle

map from CHp−1(Xs0 , n−1) as the end of the previous section. With this map, we obtain

a relation of res(Z) and sings0(νZ∗):

Proposition 4 Suppose X → S be a semistable degeneration of smooth projective vari-

eties and n ≥ p or p ≥ d. Then for each s0 ∈ S \ S, there is a commutative diagram

CHp(X∗, n)
AJ p,n



res



clp,n

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚

NF (S,Hp,n
f )ad

S
⊗Q

sings0  Hdg(Coker(Ns0))
 

Hdg(α)



CHp−1(Xsing, n− 1)

i∗s0


Hdgp,n(X∗)

Hdg(r)

❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙

CHp−1(Xs0 , n− 1) clp−1,n−1
 Hdg(H2p−n+1

Xs0
(X,Q(p)))

β  Hdgp−1,n−1(Xs0).
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Here, is0 is the inclusion Xs0 ⊂ Xsing and r is defined as the composition of natural

maps H2p−n(X∗,Q(p)) → H2p−n(X∗|∆∗ ,Q(p))
ress0−−−→ H2p−n+1(X|∆,X|∆ \ Xs0 ;Q(p)) and

the Poincaré-Lefschetz duality isomorphism.

Proof The commutativity of the lower triangular diagram follows from the functori-

ality of the cycle maps for the pull back and residue maps. To see that of the up-

per triangular diagram, recall that the image of the cycle map clp,n(Z∗) for a given

familly Z∗ in CHp(X∗, n) is obtained by the class of a topological cycle [(2πi)pTZ′∗ ]

via the KLM formula (for the complement of a normal crossing divisor) clp,nD (Z∗) =

[(2πi)p−n((2πi)nTZ′∗ ,ΩZ′∗ , RZ′∗)] with a representative Z′∗ in Zp
R(X

∗, n) of Z∗. Hence

Hdg(r) ◦ clp,n(Z∗) coincides with the dual of (2πi)press0([TZ′∗ ]).

On the other hand, we can take a chain Γt with ∂Γt = TZt since [TZt ] = 0 on

each general fiber Xt. From the assumption n ≥ p or p ≥ d, ΩZ∗ = 0, and hence we

may simplify the triple for clp,nD (Zt) to (0, 0, R′
Zt

:= (2πi)p−nRZt + (2πi)pδΓt) by adding

D((2πi)pΓt, 0, 0) = (0, 0, (2πi)pδΓt). Therefore ν(t) := AJp,n(Zt) = νQ(t) − νF (t) can

be represented by the family of currents {R′
Zt
}, on whose class [R′

Zt
] the Gauss-Manin

connection ∇ is computed by locally, lifting the {R′
Zt
} to R′

Z∗
U
and applying d to get ΩZ∗

U
.

Hence ∇ν = [ΩZ∗ ] = clp,n(Z∗). It is well-known that ress0(∇) = −2πiN , therefore

sings0 ◦AJ p,n(Z∗) = NνF (0) = (−2πi)−1ress0(∇)(νF (0))

= (2πi)−1ress0(∇)(ν)

= (2πi)−1ress0(∇ν) = (2πi)−1(ress0 ◦ clp,n)(Z∗).
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Since α is a morphism of type (1-d,1-d) it coincides with the above computation.

By Theorem 3, Coker(Ns0) is isomorphic to Ker(φ). Hence we obtain the composition

sings0 := Hdg(β) ◦ clp−1,n−1 ◦ i∗s0 ◦ res : CHp(X∗, n) → Hdg(Ker(φ)).

Corollary 1 In the situation of the above proposition, sings0(νZ∗) ∕= 0 if and only if

sings0(Z
∗) ∕= 0.

We also can describe the limit invariant lims0(νZ∗) as follows under the assump-

tion that res(Z∗) vanishes. Since the specialization map sp : H2p−n−1(Xs0 ,Q(p)) →

H2p−n−1
lim (Xt,Q(p)) is a morphism of MHS, it induces a map J(sp) : J(Xs0) → Jlim,s0 .

Now lims0(νZ∗) is an invariant in the right hand side, but we also can extend Z∗ to a

higher cycle Z in CHp(X, n). It defines the pullback Z0 in H2p−n
M (Xs0 ,Q(p)). Then

Theorem 4 [4]

lims0(νZ∗) = J(sp)(AJXs0
(Z0)).

Especially, when we have a family of Hodge classes ω(s) in Hdg(H2p−n−1(Xt,Q(−p)))

such that it lifts to a class on X∗ with non-trivial residue on X0, dually it induces a

splitting

η : H2p−n−1(X0,Q(p)) ↠ Q(p)

of the morphism of MHS. The analytic limit of the paring 〈νZ(s),ω(s)〉 can be obtained

as the period

lim
s→s0

〈νZ(s),ω(s)〉 ≡ J(η)(AJX0(Z0))
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in J(Q(p)) ∼= C/Q(p).

Remark 2 More generally, the above theorem does not require the SSD condition. ( [4],

Section 5.3).
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5. Higher Cycles on a certain types of K3 surface

5.1 Construction of Families of Higher Cycles

In this chapter, we consider a certain family of degree d surfaces X in P3 of a general

form. Over this type of family, we can construct a family of higher cycles in CH2(Xt, 1) for

the general fiberXt. We classify these elements into families of decomposable cycles D and

other two types of families of higher cycles I0,I∞, which are R-regulator indecomposable

when d = 4. In the case of quartic surfaces, in later sections we will prove the Hodge-D-

conjecture for a general fiber Xt of X by showing that the images of I0 and I∞ by r2,1D,R

span the regulator indecomposable cycles Coker(µ) ∼= H1,1
tr (X,R(1)).

Let Li (1 ≤ i ≤ d) and Ml (1 ≤ l ≤ d) be linear forms in P3 in general position.

Define a flat family of degree d surfaces X over P1 by

X := {Xt : L1L2 · · ·Ld + tM1M2 · · ·Md = 0}t∈P1 ⊂ P3 × P1.

The base locus B of this family is obtained by

B =


1≤i≤d

Bi (Bi :=


1≤l≤d

Li ∩Ml).

33



Its general fiber Xt is smooth, and X0 = (L1L2 · · ·Ld = 0) is a simple normal crossing

divisor on X . In fact, each point of X0 has an analytic neighborhood with coordinates

such that Xt is defined by the equation xy + tz = 0 or simpler (the same holds for X∞).

Hence the base locus B includes no singular points on Xt. Near X0, this local equation

also shows that the singular loci of the total family X are given by d

d
2


nodes defined

by pijl := Li ∩ Lj ∩Ml. We denote the projection to the parameter t by π : X → P1 and

also define S := P1 \ (discriminant locus) and X ∗ := π−1(S). We write Li,Ml ⊂ X for

the constant families of planes defined by Li and Ml respectively.

We start by constructing some decomposable cycles. Recall that each element of

CH2(X, 1) can be represented by a formal sum of pairs of divisors and rational functions

over them such that the sum of their zeros and poles vanishes. Take a constant family

of lines Li ∩ Ml as a divisor of X ∗. Since X ∗ does not include either X0 or X∞, the

projection π is an invertible function over X ∗. Hence its restriction π|Li∩Ml
defines an

element of C∗ via the identification OP1(P1) ∼= C∗. Thus the pair (π|Li∩Ml
,Li ∩ Ml)

defines a family λil ∈ CH2(X ∗, 1) of decomposable cycles via the map (2.1). We define

D := {λil | 1 ≤ i, l ≤ d}.

Next we define I0. Take three planes Li, Lj, Lk(1 ≤ i < j < k ≤ d) and another

one Ml. For each α ∈ {i, j, k}, again we take the divisor Lα ∩Ml, but for the rational

function we take an isomorphism φαl : Lα ∩Ml

∼=−→ P1 on each t ∈ P1 defined by

φαl =
Lσ(α)

Lσ2(α)

.
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Here, σ ∈ S3 is the cyclic permutation defined by




i j k

j k i



. Hence φ−1
αl (0) = Lα ∩

Lσ(α)∩Ml and φ−1
αl (∞) = Lα∩Lσ2(α)∩Ml. We use the same notation φαl for the rational

function over X defined by φαl constantly with respect to t. Then we obtain a precycle

Γαl := (φαl,Lα ∩Ml) ∈ Z2(X ∗, 1).

By the definition of φαl, ∂(Γαl) is the divisor [Li∩Lσ(α)]− [Li∩Lσ2(α)]. Hence the precycle

γijk,l := Γil + Γjl + Γkl

satisfies ∂(γijk,l) = 0. Thus we obtain a higher cycle γijk,l ∈ CH2(X ∗, 1). We also use the

same notation γijk,l ∈ CH2(Xt, 1) for each fiber at t = 0 (Figure 1). We define

I0 := {γijk,l | 1 ≤ i < j < k ≤ d, 1 ≤ l ≤ d}.

Finally, I∞ is defined by changing L and M in the above construction of I0. Specif-

ically, for three planes Ml,Mm,Mn and Li and for each β ∈ {l,m, n}, we take an iso-

morphism ψiβ : Li ∩ Mβ

∼=−→ P1 such that ψ−1
iβ (0) = Li ∩ Mβ ∩ Mσ(β) and ψ−1

iβ (∞) =

Li ∩Mβ ∩Mσ2(β). Then it defines a precycle Γ′
iβ := (ψiβ,Li ∩Mβ) and we can see that

δi,lmn := Γ′
il + Γ′

im + Γ′
in

is also an element of CH2(X ∗, 1). We define

I∞ := {δi,lmn | 1 ≤ i ≤ d, 1 ≤ l < m < n ≤ d}.
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Figure 5.1. Higher Chow cycle γijk,l and δi,lmn

5.2 Higher Chow Cycles with Non-trivial Singularities

We use the same notations as Section 5.1. In this section we shall prove the following

statement.

Theorem 5 Let ∗ be 0 or ∞. For general choices of {Li} and {Ml}, sing∗◦AJ 2,1(I∗ ∪ D)

spans Hdg(Coker(N∗)) ⊂ Hdg1,0(X∗).

To apply the discussions in the previous section, first of all, we resolve the singular-

ities of X to obtain a semistable degeneration family X̃ . Recall that X has d

d
2


nodal
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singularities {pijl }1≤i<j≤d,1≤l≤d which are included in the base locus B =


Bi. If we

denote P3 = P 0 and define a successive blow up P i of P3 inductively by the blow up

bi : P
i → P i−1 of P i−1 along the strict transformation of Bi in P i−1, then the composi-

tion bi ◦ bi−1 ◦ · · · ◦ b1 defines a strict transformation X i → X . Since each pijl ∈ Bi is

a node, this strict transformation resolves pijl . We define a smooth family X̃ by taking

a resolution of the remaining singularities in X d. Denote the composition of these res-

olutions by b : X̃ → X . Though a singular fiber X̃t0 of X̃ may not be a simple normal

crossing unless t0 = 0 or ∞, by the semistable reduction theorem ( [22]), we may assume

that π̃ : X̃ → S with a finite cover S → P1 is a semistable degeneration family after

repeating base changes and desingularizations. Note that X̃t
∼= Xt and X̃0

∼= (X d)0 is

given by adding the exceptional curve Eij
l := b−1(pij,l) to Lj ⊂ X0. More precisely, for

the strict transformation L̃j of Lj,

Pic(L̃j) ∼= b∗Pic(Lj)⊕ (


i<j,l

Z[Eij
l ])

∼= (Zlj)⊕ (


i<j,l

Zeijl ).

Here, lj is the divisor class of the general line in Lj
∼= P2 and eijl is that of Eij

l
∼= P1.

Now, we have the invariant sing0 : CH2(X̃ , 1) → Hdg(Ker(φ)) by the discussion in

the previous section. Since both X∗ and I∗ (∗ = 0,∞) have the symmetry by replacing

each linear form Li with Mi and Ml with Ll, we also can consider sing∞ with another

blow up b′ : X̃ ′ → X defined by replacing Bi =

(Li ∩Ml) by B′

i :=

(Mi ∩ Ll) in the

above construction of X̃ . From now on we consider only sing0, but one can obtain exactly

the same result for sing∞ by replacing linear forms.
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Lemma 2 Consider li and eijl as elements in H2(X̃0,Q(−1)). Then a basis of the Q-

vector space Hdg(Ker(φ)) ⊂ Hdg(H2(X̃0,Q(−1))) is given by

B :=




1≤i≤d

li


∪




1≤l′≤d

(eijl − eijl′ )



1≤i<j≤d,1≤l≤(d−1)

In particular,

dim(Hdg(Coker(N0))) = Hdg(Ker(φ)) = 1 + (d− 1)


d

2



.

Proof We firstly find a basis of Hdg(H2(X̃0,Q(−1))) = H2(X̃0,Q)(−1,−1), and then

find that of Hdg(Ker(φ)). For the simplicity we denote Y := X̃0, YI :=


i∈I L̃i and

Y [k] :=


|I|=k+1 YI .

The weight spectral sequence in this case is given by dualizing that for cohomology

groups ( [23]):

E1
p,q = Hq(Y

[p],Q) ⇒ Hp+q(Y,Q).

Since it degenerates at E2 and differentials for cohomology groups are compatible with

the Gysin morphisms,

GrW−2(H2(X0,Q)) = E∞
0,2

∼= Coker(d1 : H2(Y
[1],Q) → H2(Y

[0],Q))

and the differential d1 is given by the natural morphism.

Since the strict transformation Li ∩ Lj is isomorphic to the original line Li ∩ Lj,

H2( Li ∩ Lj,Q)(−1,−1) (i < j) is generated by the unique class lij. Via d1 : H2(Y
[1],Q) →
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H2(Y
[0],Q), each of (lij) induces a relation in H2(Y

[0],Q). To see this relation, we should

represent lij in each of Pic(L̃i) and Pic(L̃j) with respect to the above basis. The inter-

section products for each i < j are given by

(li · li)L̃i
= 1

(lj · eijl )L̃j
= 0

(eijl · ei′jl′ )L̃j
=






−1 ((i, l) = (i′, l′))

0 ((i, l) ∕= (i′, l′)),

and

(lij · li)L̃i
= (lij · lj)L̃j

= 1

(lij · eijl )L̃j
= 1

(lij · ei
′j
l )L̃j

= 0 (i ∕= i′).

Hence we can see that

lij = li in Pic(L̃i)

lij = lj − (


l

eijl ) in Pic(L̃j).

Therefore

H2(Y,Q)(−1,−1) ∼= 〈 {li}1≤i≤d, {eijl }1≤j<i≤d,1≤l≤d 〉 / {lj − li =


1≤l≤d

eijl }1≤i<j≤d.

Since each relation is independent from others, it also shows that

dim(H2(Y,Q)(−1,−1)) = d+ d


d

2


−


d

2


= d


1 +

(d− 1)2

2


.
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To find the required basis of the Hdg(Kerφ), recall that φ is induced by the Poincaré-

Lefschetz duality, and hence is defined by taking the intersection products:

φ : α → (α · )X̃ (α ∈ H2(Y,Q(−1))).

By the transversality, we obtain

(li · [L̃i′ ])X̃ = 1 (i′ ∕= i)

(eijl · [L̃i′ ])X̃ =






1 (i′ = i)

0 (i′ ∕= i, j).

Moreover, since the graph of the map X̃ → P1 defines an algebraic cycle in Z1(X̃ × P1),

Y = X̃0 and X̃t are rationally equivalent. Since X̃t ∩ V = ∅ for any subvariety V of Y ,

(α · Y )X̃ = (α ·


L̃i)X̃ = 0 for any α ∈ H2(Y,Q). Thus we also can see that

(li · [L̃i])X̃ = (li · [Y ]− [


i′ ∕=i

L̃i′ ])X̃ = −(d− 1)

(eijl · [L̃j])X̃ = (eijl · [Y ]− [


j′ ∕=j

L̃j′ ])X̃ = −1.

Summarizing the computation, we obtain the following intersection matrix:
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l1 l2 . . . ld e121 e122 . . . e12d−1 e131 e132 . . . ed−1,d
d−1

L̃1 −(d− 1) 1 . . . 1 1 1 . . . 1 1 1 . . . 0

L̃2 1 −(d− 1) . . . 1 −1 −1 . . . −1 0 0 . . . 0

L̃3 1 1 . . . 1 0 0 . . . 0 −1 −1 . . . 0

...
...

L̃d−1 1 1 . . . 1 0 0 . . . 0 0 0 . . . 1

L̃d 1 1 . . . −(d− 1) 0 0 . . . 0 0 0 . . . −1





Note that we do not need to consider eijd , since it is generated by the above other classes

via the relation lj− li =


l e
ij
l . It is easy to check that B in the statement is a basis of the

kernel of this matrix. In fact, by the intersection products we can see that the 1+(d−1)

d
2



elements of B are linearly independent. On the other hand, since the columns for (e1j1 )j

generate any other columns, dim(Hdg(Ker(φ))) = d

1+ (d−1)2

2


− (d−1) = 1+(d−1)


d
2


.

We use the following lemma later to prove Lemma 4.

Lemma 3 the equation Lσ(α) = 0 in Nil := Li ∩Ml ⊂ X̃ defines the divisor class

e
α,σ(α)
l × {0}+ [p

α,σ(α)
l × P1] if α < σ(α)

[p
σ(α),α
l × P1] if α > σ(α).
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Proof Since the statement is local, we take the local coordinates (x, y, z; t) ∈ A3 × P1

on an analytic open set U ⊂ X about pα,σ(α). By taking a sufficiently small U , we may

assume that

x = Lα, y = Lσ(α), z = Ml

and

U = {xy + tz = 0} ⊂ A3 × P1.

In particular, pα,σ(α) is the unique singular point in U .

If we assume α < σ(α), then only the α-th blow up bα changes U . Note that bσ(α) is

isomorphic over U since the node pα,σ(α) has already been resolved. Therefore, the strict

transformation Ũ ⊂ X̃ of U is isomorphic to the strict transformation Xy + tZ = 0 via

the blow up of A3 × P1 along x = z = 0. Here, [X : Z] ∈ P1 is the blow up coordinate.

Then Nil = {x = z = Xy + tZ = 0} ⊂ A3 × P1 × P1 defines a smooth curve for each

t ∕= 0, but it degenerates to two lines {x = y = z = 0} and {x = z = X = 0} as t

goes to 0. Hence the function Lσ(α) = y = 0 defines two lines {x = y = z = t = 0} and

{x = y = z = X = 0}. The former one is E
α,σ(α)
l × {0} and the latter is p

α,σ(α)
l × P1.

If α > σ(α), we should change x and y in the above discussion. Specifically, we may

assume that Nil is defined by the closure of {x = z = xY + tZ = Y z − Zy = 0}∩

A3 ×

P1 × P1 \ {y = z = 0}

= {x = z = Z = 0} ∩ {y ∕= 0}. Hence Nil = {x = z = Z = 0} and

the function Lσ(α) = y = 0 defines only one line {x = y = z = Z = 0} = p
σ(α),α
l × P1.
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By taking the strict transformation of each subvariety in X ∗ × Pn by the blow up

X̃ × Pn → X × Pn, we obtain higher cycles Z̃ ∈ CHp(X̃ ∗, n) from each Z ∈ CHp(X ∗, n).

We denote sing0(Z) := sing0(Z̃)

Remark 3 Since X̃ ∗ is isomorphic to X ∗, Hp,n
π

∼= Hp,n
π̃ . Moreover, νZ̃ = νZ via this

isomorphism by the functoriality of the Abel-Jacobi map. Hence we can identify their

singular invariants.

Lemma 4 For each 1 ≤ i < j < k ≤ d and 1 ≤ l ≤ d,

(i) sing0(γijk,l) = eijl + ejkl − eikl

(ii) sing0(λil) = li −


i′<i e
i′i
l


+ (


i′>i e

ii′
l ).

Proof (i) Recall that the higher cycle γijk,l is consisted by the graph in X ∗ × P1 of

φαl. This rational function also defines a graph Γφαl
on X × P1. Let Γ̃φαl

be the strict

transformation of Γφαl
, so that γ̃ijk,l = (Γ̃φil

+ Γ̃φjl
+ Γ̃φkl

)|X ∗ . By the definition of

res : CH2(X̃ ∗, 1) → CH1(X̃sing), res(γ̃ijk,l) = ∂(Γ̃φil
+ Γ̃φjl

+ Γ̃φkl
).

We now compute ∂(Γ̃φαl
). For • = 0,∞, let ρ• : X̃ ↩→ X̃×P1 be the natural embedding

at 0 or∞. Then, by the definition of φαl, the pullback ρ
∗
•(Γ̃φαl

) = (πX̃ )∗(Γ̃φαl
·X̃×{•})X̃×P1

is given by the equation

Lσ(α) = 0 for • = 0

Lσ2(α) = 0 for • = ∞
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over Nil ⊂ X̃ . Therefore, by applying Lemma 3 with α = i, j, k respectively, we obtain

∂(Γ̃φil
) = [eijl × {0}] + [pijl × P1]− [eikl × {0}]− [pikl × P1]

∂(Γ̃φjl
) = [ejkl × {0}] + [pjkl × P1]− [pijl × P1]

∂(Γ̃φkl
) = [eikl × {0}]− [ejkl × {0}]− [pjkl × P1]

and hence

∂(Γ̃φil
+ Γ̃φjl

+ Γ̃φkl
) = eijl + ejkl − eikl

via the identification of X0 × {0} with X0.

(ii) Since λil is defined with the rational function π : X → P1, ∂(λ̃il)|X0 = Li ∩Mj ⊂

X̃0. In the proof of Lemma 3, we have seen that Nil degenerates to (d − i) exceptional

curves {Ei′l}i′>i and the other one Cil ⊂ L̃i, which is isomorphic to the strict transfor-

mation of Li ∩Ml by the blow up of Li at d(i − 1) points {pi′il }i′<i. By the intersection

products

(li · [Cil])L̃i
= 1

(ei
′i
l · [Cil])L̃i

= 1,

we can see that [Cil] = li −


i′<i e
i′i
l


in Pic(L̃i). Therefore

[ Li ∩Mj] = [Cil] + [


i′>i

Ei′l] = li −


i′<i

ei
′i
l


+ (



i′>i

eii
′

l )

in Pic(X̃0).

Proof [Proof of Theorem 5] From Corollary 1 and the remark above Lemma 4, we should

show that the basis in Lemma 2 is in sing0(I∗ ∪ D). As mentioned before Theorem 5,
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the discussions for sing0 and sing∞ are exactly the same. Hence we prove only for the

case ∗ = 0.

Firstly, we can see that

sing0(


1≤i≤d

λil) =


1≤i≤d

li

for each l by Lemma 4 and direct computation. Hence it suffices to show that


1≤l′≤d(e
ij
l −

eijl′ ) is in the span of sing0(I∗ ∪ D) for each 1 ≤ i < j ≤ d and 1 ≤ l, l′ ≤ d. Since

lj − li =


1≤l′≤d e
ij
l′ in H2(Y,Q)(−1,−1),

sing0(λil − λjl) = (li − lj) + 2eijl −


k<i

ekil − ekjl

+
 

i<k<j

eikl + ejkl

+


j<k

eikl − ejkl


= −
 

1≤l′≤d

eijl′

+deijl −



k<i

ekil − eijl − ekjl


+
 

i<k<j

eikl + ejkl − eijl

+


j<k

−eijl + eikl − ejkl


= −
 

1≤l′≤d

eijl − eijl′

−


k<i

γkij,l +


i<k<j

γikj,l −


j<k

γijk,l.

Therefore



1≤l′≤d

(eijl − eijl′ ) =
sing0(λjl − λil −



k<i

γkij,l +


i<k<j

γikj,l −


j<k

γijk,l).

From the above computations, specifically we obtain the expression of the singularities

relative to the basis B:

sing0(γijk,l) =
1

d




l′

(eijl − eijl′ ) +


l′

(ejkl − ejkl′ )−


l′

(eikl − eikl′ )
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sing0(λil) =
1

d




i

li −


i′<i




l′

(eii
′

l − eii
′

l′ )


+


i′>i




l′

(eii
′

l − eii
′

l′ )



Hence the singularity of γijk,l is linearly independent from the singularities of D . This

implies

Corollary 2 Each of γijk,l is an R-regulator indecomposable cycle.

5.3 Higher Chow Cycles with Non-trivial Limits

Theorem 2 shows that I0 and I∞ have non-trivial singularities, but at different

singular fibers X0 and X∞ respectively. From the construction of each higher cycle

in δi,lmn in I∞, it is clear that its singularity at X0 is trivial. To show the linearly

independence of I0 ∪ {δi,lmn}, we compute the limit invariant of δi,lmn at X0.

We use the same notation Y = X̃0, YI =


i∈I L̃i as before and also denote Y I :=


j /∈I YI∪{j} Recall that the motivic cohomology of the simple normal crossing divisor

Y = X̃0 is obtained by

H2p−n
M (Y,Q(p)) = H−n(Z•

Y (p)).

Here, we take a subgroup Zp
#(YI , •) := Zp

R(YI , •)Y I ⊂ Zp(YI , •) which consists of the

precycles in good position with respect to Y I ( [9], Section 8) and Z•
Y (p) is the associated

simple complex to the double complex

Zk,m
Y (p) =



|I|=k+1

Zp
#(YI ,−m)
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with Bloch’s differential ∂B and the alternating sum ∂I of the pullbacks by the inclusion

YI∪{j} ↩→ YI . Similarly, the normal currents D•
#(YI) and integral currents C•

#(YI ,Q(p))

denotes the associated simple complex K•
Y (p) of a double complex

Kk,m
Y :=



|I|=k+1

{C2p+m
# (YI ,Q(p))⊕ F pD2p+m

# (YI)⊕D2p+m−1
# }

and the Deligne cohomology can be obtained by

H2p−n
D (Y,Q(p)) = H−n(K•

Y (p)).

When the class of a higher cycle Z in H2p−n
M (Y,Q(p)) can be represented by

{Z [k]
I ∈ Zk,−k−n

Y (p)}k,|I|=k+1,

the componentwise KLM formula

{(2πi)p−k((2πi)kT
Z

[k]
I
,Ω

Z
[k]
I
, R

Z
[k]
I
)}

in K−n
Y (p) induces AJp,n

Y (Z).

Now, the strict transformation δi,lmn in YI of δi,lmn satisfies this condition and hence

we can show

Lemma 5 When d = 4, AJ2,1
Y (δi,lmn) is non-trivial in H3

D(Y,Q(1)).

Proof Consider the moduli of the families X . Since the choices of the linear forms are

general, it suffices to show the non-triviality of AJ2,1
Y (δi,lmn) for a particular family in
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this moduli space. For the simplicity we assume that i = 4, l = 1,m = 2, n = 3, and we

choose the linear forms

L1 : X = 0 M1 : X + µY − Z +W = 0

L2 : Y = 0 M2 : µX − Y + Z +W = 0

L3 : Z = 0 M3 : −X + Y + µZ +W = 0

L4 : W = 0 M4 : X + Y + Z − µW = 0.

Here, µ is the primitive 6th root of unity 1+
√
3i

2
. This family is an example of a tempered

family, a notion which is defined in Section 3 of [3] for more general toric hypersurfaces.

For our case, this condition is equivalent to each plmi having the root of unity coordinates

with respect to [X : Y : Z : W ]. A crucial point of the smooth tempered families of toric

hypersurafaces which is defined by a reflexive Newton polytope is that the natural Hodge

class

1

(2πi)n
d log x1 ∧ d log x2 ∧ . . . d log xn ∈ Hn((C∗)n,Q(n))

defined by the toric coordinate symbol {x1, x2, . . . , xn} ∈ Hn
M((C∗)n,Q(n)) can be ex-

tended to the Hodge class on the family itself. Therefore if we take 2-form

ω :=


1

2πi

2
dx

x
∧ dy

y

with (x, y) := (X/Z, Y/Z) for each general fiber Xt, dually it defines a family {ω(t) ∈

Hdg(H2(Xt,Q(−2)))}. By the KLM formula, we shall compute the membrane integral
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of this test 2-form ω on the triangle Γ whose edges are the strict transformations of the

three lines

L4 ∩M1 : X + µY − Z = 0

L4 ∩M2 : µX + Y + Z = 0

L4 ∩M3 : −X + Y + µZ = 0

coming from δi,lmn. Then

AJi,lmn := AJ2,1
Y (δi,lmn)(ω) = (−2πi)



Li

Rδi,lmn
∧ ω + (2πi)



Γ

ω



=


(−2πi)



δi,lmn

log(t)ω


−


(2πi)2



Γ

ω


.

However, its first term vanishes since dx and dy are linearly dependent on δi,lmn. Since

the vertices of Γ with respect to the coordinates (x, y) are given by

plmi = (−µ, 2− µ), plni = (i
√
3, µ2), pmn

i = (1
3
(1 + µ),− 1√

3
i),

we obtain

−AJi,lmn =



Γ

dx

x
∧ dy

y

=

 2−µ

− 1√
3
i

 −µy+1

y+µ

dx

x


dy

y
+

 µ2

2−µ

 1
µ
y− 1

µ

y+µ

dx

x


dy

y

=

 2−µ

− 1√
3
i

log(−µy + 1)

y
dy


+

 µ2

2−µ

log( 1
µ
y − 1

µ
)

y
dy


−

 µ2

− 1√
3
i

log(y + µ)

y
dy


.

Generally, the integral of a multivalued function log(a+bz)
z

(a, b ∈ C) is


log(a+ bz)

z
dz = −Li2(−

b

a
z) + log(z)


log(a+ bz)− log(1 +

b

a
z)


.
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with the dilogarithm function Li2. By applying this integral to each term of −AJi,lmn,

we can see that

 2−µ

− 1√
3
i

log(−µy + 1)

y
dy = −Li2 (1 + µ) + Li2


1

1 + µ



 µ2

2−µ

log( 1
µ
y − 1

µ
)

y
dy =


−Li2


1

−µ


+ Li2(1− µ2)


+


−2

9
π2 +

2

3
iπ log 3



−
 µ2

− 1√
3
i

log(y + µ)

y
dy =


Li2(−µ)− Li2


1

1− µ2


+


7

18
π2 − 1

6
iπ log 3


.

and hence

−AJi,lmn =Li2(−µ)− Li2


1

−µ


+ Li2


1

1 + µ


− Li2 (1 + µ)

+ Li2(1− µ2)− Li2


1

1− µ2


+


1

6
π2 +

1

2
iπ log(3)


.

To compute the dilogarithm terms, we also use functional equations

Li2


z − 1

z


− Li2 (z) = −1

6
π2 + log(z) log(1− z)− 1

2
log(z)2

Li2


1

1− z


− Li2 (z) =

1

6
π2 + log(−z) log(1− z)− 1

2
log(1− z)2,

for z which is not on the branch cuts. Note that µ satisfies the equations

1

1 + µ
=

1

1− (−µ)
, 1 + µ =

(− 1
µ
)− 1

− 1
µ

, 1− µ2 =
(−µ)− 1

−µ
,

1

1− µ2
=

1

1− (− 1
µ
)
.
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Hence we can show

Li2


1

1 + µ


− Li2 (1 + µ) =Li2(−µ)− Li2


1

−µ



+
1

3
π2 − 3

8
π2 − log(3)2

8
− 1

4
iπ log(3)

Li2(1− µ2)− Li2


1

1− µ2


=Li2(−µ)− Li2


1

−µ


− 1

3
π2

+
3

8
π2 +

log(3)2

8
− 1

4
iπ log(3).

With − 1
µ
= −µ, finally we obtain

−AJi,lmn = 3(Li2(−µ)− Li2(−µ)) +


−1

2
iπ log(3)


+


1

6
π2 +

1

2
iπ log(3)



= 3(Li2(−µ)− Li2(−µ)) + ζ(2).

Since the first term is purely imaginary and non zero, it shows that AJi,lmn is non-trivial

in C/Q(2).

Since {ω(t)} is the family of Hodge classes, as we see at the end of Section 5, we have

lim
t→0

〈νδi.lmn
(t),ω(t)〉 ≡ AJi,lmn ∈ C/Q(2).

From the above lemma, the right hand side is non-trivial and hence we have proven

Theorem 6 Suppose d = 4. For general choices of {Li} and {Ml}, νδi.lmn
has non-trivial

limit. Especially the higher cycles {δi.lmn}∪I0∪D are linearly independent in CH2(Xt, 1).
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5.4 Hodge-D-Conjecture for a certain type of K3 surfaces

In this section we consider the case that d = 4. Hence Xt is a K3 surface with the

form

Xt : L1L2L3L4 + tM1M2M3M4 = 0,

and H3
D(Xt,R(2)) ∼= H1,1

R (Xt)(1) is 20-dimensional. Though the real regulator map is

generally not injective, by computing the limit of real regulator values we can see that

the image of 20 higher cycles {δi.lmn} ∪ I0 ∪ D actually spans this vector space.

Theorem 7 When d = 4 and {Li}, {Ml} are very general, r2,1D,R({δi.lmn}∪I0∪D) are lin-

early independent in H1,1
R (Xt)(1), explicitly validating the Hodge-D-Conjecture this case.

Proof Since Hdg(Coker(N)) is 19 dimensional, Hdg(Ker(N)) is also 19 dimensional.

For a fixed Xt, take a basis d1, . . . , d19 of Hdg(Ker(N)). By Theorem 5, the images of

linear combinations of higher cycles in I0∪D give these classes. We also take an element

γ2 ∈ Hlim := H2
lim(Xt,Q(2)) which does not vanish in GrW4 Hlim. Denote γ1 := Nγ2,

γ0 := N2γ2. Though each {γi} defines a multivalued section of the cohomology sheaf H2,

from them we can define single valued sections by

e′i := e−l(t)Nγi(t).
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with l(t) := log(t)
2πi

. Specifically e′0 = γ0, e
′
1 = γ1−l(t)γ0, and e′2 = γ2−l(t)γ1+

l2(t)
2
γ0. Hence

{e′0, e′1, e′1, d1, . . . , d19} is a single valued frame of the extension H2
e. Since di is already a

single valued section (in other word, di = e−l(t)Ndi(t)), we obtain a single valued frame

{e′0, e′1, e′1, d1, . . . , d19}

of the cohomology sheaf H2
e.

Take a holomorphic section ω(t) ∈ F 2(H2
lim,C) such that ω ∕= 0 in GrW4 . Generally

ω(t) can be written as

ω(t) = e′2 + f(t)e′1 + g(t)e′0 +
19

i=1

hi(t)di

with holomorphic functions f(t), g(t), hi(t) by normalizing ω with respect to the coefficient

of e′2. By changing t to the new coordinate t′ := te−2πif(t) (hence l(t′) = l(t) − f(t)), we

define ei from e′i:

ei(t
′) := ef(t)Nei(t) = e−l(t′)Nγi(t).

Note that this shift of the parameter does not change di. Hence

ω(t) = (γ2 − l(t)γ1 +
l2(t)

2
γ0) + f(t)(γ1 − l(t)γ0) + g(t)γ0 +


hi(t)di

= (γ2 − l(t′)γ1 ++
l2(t′)

2
γ0) + (g(t)− f 2(t)

2
)γ0 + g(t)γ0 +


hi(t)di

= e2 + (g(t)− f(t)2

2
)e0 +


hi(t)di.

For the simplicity, we use the notation t for t′ instead of the original coordinate from

here. Then, by changing f, g, hi to new functions, we can write ω as

ω(t) = e2 + g(t)e0 +


hi(t)di = e2 + κ(t)
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with κ(t) := g(t)e0 +


hi(t)di ∈ KerN . Though e2 may not be in F 2(H2
lim,C), we obtain

e1 = Ne2 = Nω

since κ(t) ∈ KerN . Hence e1 ∈ F 1 ∩W2(H
2
lim,C) and e0 = Ne1 ∈ F 0 ∩W0(H

2
lim,C).

By the definition, it is easy to check that the quadratic form Q(ei, ej) for the polar-

ization is given by the matrix 



0 0 −1

0 1 0

−1 0 0





after a normalization of γ2. Also note that the conjugates satisfy the equalities

e0 = e0

e1 = e1 + 2iℑ(l)e0

e2 = e2 + 2iℑ(l)e1 − 2(ℑ(l))2e0

di = di.

with the imaginary part ℑ(l) = − log |t|
2π

of l(t).

Take a non zero element η ∈ H1,1
lim,R which is linearly independent from d1, . . . , d19 ∈

H1,1
lim,R. We shall express η by using e0, e1, e2. Since η ∈ F 1, there exists a C∞ function

φ(t) such that

η = ω + φ(t)e1 = e2 + φ(t)e1 + κ(t).

η is also a real form, hence

η = η = (e2 + 2iℑ(l)e1 − 2(ℑ(l))2e0) + φ(t)(e1 + 2iℑ(l)e0) + κ(t) ∈ F 1(H2
lim).
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Specifically κ(t) = g(t)e0+


hi(t)di, hence this term does not include any e1 term. Thus

we can compare the e1 terms of η and η to obtain ℑ(φ(t)) = ℑ(l). Also, the coefficient

of the e0 term of 2η = η + η is given by 2ℜ(g(t))− 2(ℑ(l))2 + 2iφ(t)ℑ(l), which must be

a real number. This implies that φ(t) is pure imaginary. Therefore

φ(t) = iℑ(l)

and hence

η = e2 + iℑ(l)e1 + κ(t).

Now, we compute our real regulator value R(t) of δi,lmn. We know that the singular

invariant of δi,lmn is trivial and its limit invarinat is a pure imaginary number iL :=

AJi,lmn ∈ C/Q(2). Hence we may write

R(t) = iLe0 + t


α0(t)e0 + α1(t)e1 + α2(t)e2 +

19

j=1

βj(t)dj



with holomorphic functions αi(t), βj(t). Hence

ℑ(R(t)) = − i

2
(R(t)−R(t))

= − i

2


iLe0 + t


α0(t)e0 + α1(t)e1 + α2(t)e2 +


βj(t)dj



− (−iLe0 + t

α0(t)e0 + α1(t)(e1 + 2iℑ(l)e0)

+α2(t)(e2 + 2iℑ(l)e1 − 2(ℑ(l))2e0) +


βj(t)dj



=

L+ ℑ(tα0(t))− tα1(t)ℑ(l)− itα2(t)(ℑ(l))2


e0+


ℑ(tα1(t))− tα2(t)ℑ(l)


e1 + ℑ(tα2(t))e2 +


ℑ(tβj(t))dj.
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Finally we consider the limit of Q(ℑ(R(t)), η) as t → 0. Note that di ∈ Hdg(Ker(N))

is orthogonal to each of e0, e1, e2. With the notation qij := Q(di, dj), hence we obtain

Q(ℑ(R(t)), η) = Q


L+ ℑ(tα0(t))− tα1(t)ℑ(l)− itα2(t)(ℑ(l))2

e0+


ℑ(tα1(t))− tα2(t)ℑ(l)


e1 + ℑ(tα2(t))e2, e2 + iℑ(l)e1 + g(t)e0



+Q


ℑ(tβj(t))dj,


hi(t)di



= −(L+ ℑ(tα0(t))− tα1(t)ℑ(l)) + iℑ(tα1(t))ℑ(l)− g(t)ℑ(tα2)

+


i,j

hi(t)ℑ(tβj(t))qij

= −L−ℑ(tα0(t)) + ℜ(tα1(t))ℑ(l)− g(t)ℑ(tα2) +


i,j

hi(t)ℑ(tβj(t))qij.

This value goes to −L as t → 0. On the other hand, for each di,

Q(ℑ(R(t)), di) = Q(


j

ℑ(tβj(t))dj, di) =


j

ℑ(tβj(t))qij

goes to 0 as t → 0. Hence we conclude that

lim
t→0

Q(ℑ(R(t)), η) = −L

lim
t→0

Q(ℑ(R(t)), dj) = 0.

This shows that r2,1D,R({δi.lmn} ∪ I0 ∪ D) are linearly independent. In fact, a linear com-

bination of I0 ∪ D defines an admissible normal function Ri(t) for each i (1 ≤ i ≤ 19)

with sing0(Ri(t)) = di. This function has a form

Ri(t) := α0(t)e0 + α1(t)e1 + α2(t)e2 + i log(t)di +


j ∕=i

βj(t)dj.
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and the admissibility implies that each αi(t) and βj(t) is a holomorphic function ( [24],

Proposition 5.28). Therefore

lim
t→0

Q(ℑ( 1

log(t)
Ri(t)), dj) =






1 (i = j)

0 (i ∕= j)

and moreover

lim
t→0

Q(ℑ( 1

log(t)
Ri(t)), η) is a finite number Ci.

In fact,

ℑ

Ri(t)

log(t)


=


ℑ( α0

log(t)
)−ℑ(l) α1

log(t)
− i(ℑ(l))2 α2

log(t)


e0

+


ℑ( α1

log(t)
)−ℑ(l) α2

log(t)


e1

+ ℑ( α2

log(t)
)e2 + di +



j ∕=i

ℑ( β2

log(t)
)dj,

hence the only non-vanishing term of ℑ


1
log(t)

Ri(t)

as t → 0 is

−

ℑ(l) α1

log(t)
e0 + ℑ(l) α2

log(t)
e1 + di
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and its paring with η = e2 + iℑ(l)e1 + κ(t) is finite. Summarizing them, the matrix

defined by paring limt→0 Q( , ) is given as





η d1 d2 . . . d19

ℑ(R(t)) −L 0 0 . . . 0

ℑ( 1
log(t)

R1(t)) C1 1 0 . . . 0

ℑ( 1
log(t)

R2(t)) C2 0 1 . . . 0

...
. . .

ℑ( 1
log(t)

R19(t)) C19 0 0 . . . 1





.

Hence its determinant is non-trivial and it implies that the real regulator value ℑ(R(t)),ℑ(R1(t)), . . . ,ℑ(R19(t))

are linearly independent.

The above computation of the real regulator values especially show that

Corollary 3 When d = 4, each of δi,lmn is an R-regulator indecomposable cycle.

Remark 4 (1) If we assume the given VMHS is a nilpotent orbit and the family is

tempered, the above computation in the proof is much simpler. In fact these conditions

imply ω = e2 and hence η = e2 + iℑ(l)e1. To compute the pairing with this η and each dj

as t → 0, we may assume that

R(t) = iLe0

Ri(t)

log(t)
=

α1(t)

log(t)
e1 + idi.

Hence we obtain exactly the same matrix as above.
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(2) Though we can construct the family of higher cycles δi,lmn even for general d ≥ 5,

there are two problems to apply the similar discussion to prove the Hodge-D-Conjecture.

Firstly, by applying an action of PGL3 which maps the plane Li and three lines Li ∩Ml,

Li∩Mm, Li∩Mn to the special ones in the proof of Lemma 5, we may take exactly the same

family of test forms {ω(t)}. However, this 2-form may not be a Hodge class unless X is a

tempered family after applying the action. Another issue is that generally dim(H1,1
R (Xt))−

dim(Hdg(CokerN)) > 1, hence we need to show not only the non-triviality of δi,lmn, but

the linearly independence of some of {r2,1D,R(δijk,l)} (for example, we need four linearly

independent classes when d = 5). One possible approach to solve this point is to find an

enough number of test Hodge classes such that the matrix of the paring limt→0 Q( , ) is

regular. Finally here, we just state

Conjecture 2 For general d, r2,1D,R(I0 ∪ I∞ ∪ D) spans H1,1
R (Xt)(1). Hence the Hodge-

D-Conjecture holds this case.
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6. Threefold with Non-Trivial Griffiths Groups

6.1 Construction of Non-Trivial Elements of Griffiths Groups

As an application of our main result in Chapter 5 , we construct non-trivial elements

of the Griffiths group of a certain threefold which is constructed from Xt.

When we consider a proper smooth family Y over a quasi-projective curve S such

that its completion Y → S is also proper and Y is smooth, a given family of cycles

Z in CHp(Y) defines the class of Zt in Griffp(Yt) on each fiber Yt (t ∈ S). Since

AJ(CHp
alg(Ys)) ⊂ H2p−1

Hdg (Ys,Q(p)), where H2p−1
Hdg (Ys,Q(p)) denotes the largest sub-Hodge

structure of H2p−1(Ys,Q(p)) in H0,−1 ⊕H−1,0, the Abel-Jacobi map induces a map

Griffp(Ys) → J

H2p−1(Ys,Q(p))/H2p−1

Hdg (Ys,Q(p))

.

On the other hand, for each discriminant locus 0 ∈ S \S, Z0 is an element of the motivic

cohomology H2p
M(Y0,Q(p)). Suppose that Y0 is a SNCD with the strata Y

[k]
0 , then we also

obtain the induced map

CHp
ind(Y

[1]
0 , 1) → J(H2p−2

tr (Y0,Q(p))) ∼= J(H2p−2(Y0,Q(p))/N1H2p−2(Y0,Q(p))
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by the Abel-Jacobi map. Note that the element Z0 ∈ W−1H2p
M(Y0,Q(p)) := Ker(H2p

M(Y0,Q(p)) →

H2p
M(Y

[0]
0 ,Q(p))) also defines an element of CHp

ind(Y
[1]
0 , 1), since the degree 0 term of Z•

Y0
(p)

is the direct sum of the following boxed components:

...
...

. . .  Zp
#(Y

[1]
0 , 1)

∂B 



Zp
#(Y

[1]
0 ) 



. . .

. . .  Zp
#(Y

[0]
0 , 1)

∂B 

∂I



Zp
#(Y

[0]
0 ) 

∂I



. . .

...



...



With the analytic limit of the Abel-Jacobi value, hence we obtain the diagram

Griffp(Ys)
AJ  J


H2p−1(Ys,Q(p))

H2p−1
Hdg (Ys,Q(p)

)



lims→s0



W−1H2p
M(Y ,Q(p))

ι∗s



ι∗0

❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘

CHp
ind(Y

[1]
0 , 1) AJ  J( H2p−2(Y0,Q(p))

N1H2p−2(Y0,Q(p)
).

Since this diagram is commutative (Theorem 2.2 of [4]), if Z0 defines an R-regulator

indecomposable cycle, it implies that Zs is non-trivial in Griffk(Ys) for a general s.

Now, as the proper smooth family Y , we take a resolution of the singular family Y ′

defined as follows: Firstly take a general t0 ∈ P1 near 0. Then Xt0 is a smooth degree d

surface which is discussed in the previous sections. For simplicity, we denote its defining
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function by L + t0M = 0. With a new parameter u ∈ P1, hence we obtain a family of

degree d+ 1 threefolds

Y ′ := {Y ′
s : (L+ t0M)(

u

u2 − 1
) + s(L+ t0M(

u

u2 − 1
)) = 0}

in P3 × P1 × P1. Clearly Y ′
0 is a singular fiber consisting of the union of the constant

family X0×P1 along u and two copies of P3 at u = 0,∞. The singular loci of Y ′ must be

on the base locus L+ t0M = L+ t0M( u
u2−1

) = 0, and hence we can compute the Jacobian

by taking the local coordinates such as x = Li, y = Lj, z = Ms for [x : y : z] ∈ P3. Thus

we can see that the singular locus of Y ′ near s = 0 comprises the lines

Y ′
0 ∩ Li ∩Ml ∩ {u = 0,∞}

on Y0 and points

Y ′
t ∩ Li ∩ Lj ∩Ml ∩ {u = 0,∞}

on every fiber Ys. We resolve them by the successive blow ups of P3 × P1 × P1 along the

constant family of lines Li ∩Ml for each combination of i, l and then the family turns to

be a semistable degeneration toward s = 0. After resolving the other singularities of Y ′,

we obtain a smooth family of degree d + 1 threefolds Y over S = P1 which degenerates

to a SNCD Y0.

Remark 5 In particular this is a degenerating family of Calabi-Yau threefolds when d =

4. A motivation of this construction comes from the toric geometry. Xt is defined as
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a Laurent polynomial of a 3 dimensional reflexive Newton polytope ∆. By changing the

coordinate u to w = u−1
u+1

adjusting the coefficients, we obtain the equation

(L+ t0M)(w − 1

w
) + s(L+ t0M(w − 1

w
) = 0.

This is a Laurent Polynomial with support contained in the Minkowski sum of the interval

[−1, 1] as a polytope and ∆, and is an example of the construction of Tyurin degenerations

of Calabi-Yau threefolds from a nef-partition of a reflexive polytope ( [6], Chapter 3.1).

It will be a future work to extend this construction to more general nef-partitions.

Since a component of Y ′
0 is the constant family Xt0 × P1, each γijk,l and δi,lmn is also on

Y ′
0 . We denote their pullback to Y0 by γijk,l and δi,lmn respectively.

Theorem 8 For each higher Chow cycle γijk,l (δi,lmn) on Xt0, there exists a family of

algebraic 1-cycles Cijk,l (resp. Di,lmn) on Y such that the fiber (Cijk,l)0 in Y0 defines the

same class with γijk,l (resp. δi,lmn) in H4
M(Y0,Q(2)).

Since the above successive blow up is isomorphic over the component Xt0 ×P1, Corollary

3 implies that their pullbacks γijk,l are also R-regulator indecomposable. When d = 4,

similarly Corollary 2 implies the same indecomposability of δi,lmn. Thus, by the discussion

at the beginning of this section,

Corollary 4 The class of each algebraic cycle (Cijk,l)s in Griff2(Ys) is non-trivial for a

general s. When d = 4, it also holds for (Di,lmn)s.
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Figure 6.1. Central fiber Y ′
0 of the family Y ′

Proof [Proof of Theorem 8] Since the construction of Cijk,l and Di,lmn are exactly the

same after changing L with M , we only consider Cijk,l. Recall that γijk,l is the sum of

precycles with the form

Γαl = (
Lσ(α)

Lσ2(α)

,Lα ∩Ml).

For each of these precycles, we define a precycle ∆αl on Y as follows: Since we are

taking the successive blow up along Li ∩ Ml, Lj ∩ Ml, and then Lk ∩ Ml, the zero

locus Lα ∩ Ml ∩ Y ∩ {u = 0} with the original equation of Li and Mj defines the

unique irreducible component for α = i, but two components for α = j, k. In fact, each

intersection Lα ∩ Lσ(α) in the above zero locus defines an exceptional curve after the

strict transformation. (See the local explanation after this proof). Hence the equation
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Lα ∩Ml ∩ Y ∩ {u = 0} on Y is generally given by (a strict transformation of) P1 × P1,

and the exceptional curve P1 if α = j, k. We denote the former irreducible component

by Zαl, which can be considered a reduced algebraic cycle. Therefore we can define a

precycle

∆αl := (
Lσ(α)

Lσ2(α)

, Zαl).

Then the restriction of this precycle on the component Xt0 × P1 ⊂ Y0 is the strict

transformation Γαl of the original Γαl on Xt0 × {u = 0}. Hence the fiber (∆ijk,l)0 of

∆ijk,l := ∆il + ∆jl + ∆kl at s = 0 is an element of Z2
#(Y

[0]
0 , 1) such that ∂I(∆ijk,l)0 =

Γil + Γjl + Γkl = γijk,l. Therefore we should define Cijk,l by

Cijk,l := ∂B(∆ijk,l)0.

We remark locally what the algebraic cycle Cijk,l is. By changing the coordinates of

P3, assume x = Li, y = Lj, z = Ms. Then, with an invertible function f , locally Y is

given by the strict transformation of (xy + t0fz)u + s(xy(u2 − 1) + t0fzu) = 0 for the

blow up along Li = Ms = 0 and then Lj = Ms = 0. Denoting the blow up coordinates
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by[X : Z] for the former one and [Y : Z] for the latter, specifically Y is given by the

system of equations.






(XY + t0f Z)u+ s(XY (u2 − 1) + t0f Zu) = 0

xZ = zX

y Z = ZY

Over these equations, ∆ijk,l is given by ∆il and ∆jl, which are defined by

∆il = (y, {x = z = u = 0}), ∆jl = (
1

x
, {y = Z = u = 0}).

Note that their support cycles are the (blow up of) P1 × P1 only when s = 0. If s ∕= 0,

we need to take the intersection with sXY = 0 additionally. In these local coordinates,

the boundary Cijk,l := ∂B(∆ijk,l)0 is given by the algebraic cycle

[{x = y = z = u = 0}]− [{x = y = Z = u = 0}],

which is exactly the exceptional curve P1 parametrized by [X : Z]. Denoting this P1 by

Pij, therefore globally we obtain

Cijk,l = Pij + Pjk − Pik

as Figure 4. The boundary Cijk,l itself is on each fiber Ys, but the precycle ∆ijk,l is only

on Y0. Hence the class of the higher cycle γijk,l “goes down” to Cijk,l by the K-theory

elevator on the singular fiber.
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Figure 6.2. Local figure of ∆ijk,l

Figure 6.3. Algebraic Cycle Cijk,l
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