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Neutron scattering experiments provide direct access to the forces experienced by nucle-

ons in the nuclear environment. Due to the experimental difficulty of cross section measure-

ments with neutrons, isotopically-resolved neutron scattering cross sections are sorely needed

as inputs for many nuclear models. This dissertation presents the results from a campaign

of isotope-specific neutron total cross section measurements on 16,18O, 58,64Ni, 112,124Sn, and

103Rh from 3-450 MeV and elastic scattering differential cross section measurements on

112,nat,124Sn at 11 and 17 MeV. Equipped with these new data and with computational im-

provements to the Dispersive Optical Model (DOM), we present DOM treatments of 16,18O,

40,48Ca, 58,64Ni, 112,124Sn, and 208Pb. From these analyses across the nuclear chart, we place

additional constraints on the neutron-proton asymmetry-dependence of nuclear properties,

extract essential bound-state quantities including spectroscopic factors and neutron skins,

and identify experimental data sets most needed for further enhancing our understanding of

nuclear structure.
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Chapter 1

Introduction

“The grandest discoveries of science have been but the rewards of accurate

measurement and patient long-continued labour in the minute sifting of

numerical results.”
William Thompson, 1st Baron Kelvin

1.1 Models of the Atomic Nucleus: Overview

The nuclear many-body problem remains one of the most challenging problems in physical

science despite a century of experimental and theoretical advances. Basic questions, including

how nucleons are distributed throughout the nuclear volume and how they share the energy

of binding, are still only qualitatively answered. At the core of the issue is the short-range and

extremely strong nature of nuclear forces, which confine quarks to nucleons and cannot be

treated perturbatively in the MeV-energy regime. Rather than take a truly ab initio approach

where quarks and gluons are the relevant degrees of freedom, a series of approximations must

be made for calculations to be tractable. As long as the energy domain is less than that

of the lowest-lying nucleon excitation, it is well-justified to reduce the nuclear problem to

choosing protons and neutrons as the nuclear building blocks. The proton and neutron
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masses are so close, and their behaviors in the nucleus so similar, that the problem can be

further simplified by introducing a new (approximate) quantum number t, the isospin, and

treating protons and neutrons as generic “nucleons” with differing isospin projections tz.

Starting with these simplifications, many nuclear models have been developed to de-

scribe existing data on nucleon-nucleon, nucleon-nucleus, lepton-nucleus scattering as well

as nuclear binding. Successful models should not only reproduce existing experimental data

accurately but also possess predictive power for as-yet unmeasured quantities. For para-

metric models with many tunable parameters, these two criteria pull in opposite directions:

increasing the number and acceptable range of model parameters often helps to reproduce

experimental data but may jeopardize predictive power if new parameters are not connected

to the underlying physics. We begin by presenting a few workhorse model families most

relevant to the new work presented in this dissertation. Each model’s successes, failures,

and regimes of validity are briefly discussed, with extra attention paid to each model’s con-

frontation with certain challenging data. A central motivation for this work is to provide

experimental data most useful for a particular type of optical model of the nucleus that at-

tempts to connect nuclear structure information (i.e., bound state information) with nuclear

reactions, a longtime goal in nuclear physics.

1.1.1 Liquid Drop Model

The Liquid Drop Model (LDM) describes nuclei as drops of ideal nuclear fluid and has

been successfully employed since the earliest days of nuclear science to describe nuclear

masses, gross fission energetics, and some ground-state properties. The binding of each

nucleus is approximated by five physically-intuitive terms appropriate for a droplet of nuclear

2
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matter:

BE(A,Z) = avolA− asurfA
2
3 − acoul

Z(Z − 1)

A
1
3

− aasym
(A− 2Z)2

A
+ apair(A,Z) (1.1)

In order, these terms are:

• A volume term that describes “bulk” binding that would be experienced in an infinite

sea of nuclear matter,

• A surface term that incorporates the finite size of a nucleus (i.e., it is a drop, not an

ocean), equivalent to considering surface tension,

• A coulomb term that incorporates the electric repulsion experienced by protons kept

in close proximity inside the drop,

• An asymmetry term representing the relative chemical potential of neutrons and pro-

tons as a function of their relative population (which can be re-balanced by beta decay),

and

• a pairing term to account for the experimental observation that nuclei with an even

number of both protons and neutrons are slightly more bound, implying a favorable

pairing interaction.

A and Z are the total number of nucleons and number of protons, respectively and the

nuclear radius is assumed to scale as r = r0A
1
3 . The free parameters in each term can be

fitted to the hundreds of well-measured nuclear masses across the chart of nuclides. These five

simple terms are quite successful in describing masses and radii of spherical nuclei, leading

3
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early nuclear scientists to expect that shell structure was less important in the nuclear many-

body problem than in the atomic one. In this ansatz, the quantum nature of constituent

nucleons is not explicitly considered, so the LDM is unsuitable for extracting excited-state

wavefunction information or predicting scattering cross sections.

The Droplet Model [1] considers a systematic two-dimensional expansion of Eq. 1.1

about two fundamental independent quantities, the nucleon density and neutron-proton

asymmetry:

ε̄ = −1

3

(ρ− ρ0)

ρ0

(1.2)

δ̄ =
ρn − ρz

ρ
(1.3)

Here, ρ0 is the saturation density of 0.16 nucleons fm−3. Relevant quantum effects, such

as changes in level densities near shell closures that affect the observed masses, can be

incorporated through a series of corrections that approximate shell effects and geometric

deformation. The Droplet Model of Atomic Nuclei deploys nine independent coefficients

to describe spherical droplets and six additional coefficients to accommodate non-spherical

effects. This expanded scope can successfully recover the degree of ground-state deformation

in non-spherical nuclei and fission barriers.

Because the LDM is not based upon shell structure, its utility is diminished compared

to other models that reproduce experimental data associated with the quantum behavior

of the nucleus. However, the model still is a useful reference for providing information

about bulk properties of nuclear matter. Per the approach pioneered by Strutinsky [2, 3],

modern macroscopic-microscopic models [4, 5] explicitly equip Droplet-type models with

shell model physics (described in the next section). At present, these are the state-of-the-art

4
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for calculating nuclear masses and fission properties.

1.1.2 Mean-field and Beyond-mean-field Models

Mean-field models begin with a simple motivation: that nucleons traverse the nuclear

environment independently, in an average potential generated by all other nucleons, smeared

out over the nuclear volume. The assumption of independent nucleon motion may seem

dubious, given the crowded environment of the nucleus and immense strength of nucleon-

nucleon forces, but the Pauli exclusion principle provides some justification. From such a

mean field, a shell model can be developed wherein protons and neutrons each obey a nuclear

aufbau, filling orthogonal states with quantum numbers N, L, and J, just as electrons do

in the atomic case. From a mean field consisting of a central potential and a spin-orbit

potential, as in the seminal shell-model work of Goeppert-Mayer and Jensen [6], the basic

ground-state quantum properties of most nuclei (spins, parities, magnetic moments) are

recovered for nuclei near major shell closures. For non-spherical nuclei (in open shells),

deformation effects must be included as well, as deformations break degeneracies found in

models that assume spherical symmetry.

Confined in the mean-field potential, nucleons can be excited into higher (but still bound)

states and the low-lying excitation spectra can be predicted. The consequences of shell struc-

ture are obvious in the experimental record and include increased particle separation energies

and decreased nuclear radii at shell closures, directly analogous to the atomic ionization en-

ergies and radii in the noble gases. The independent treatment of nucleons is most valid near

shell closures, where the level density is reduced, and near beta-stability, where coupling to

the asymptotically-free states of the continuum is least important. In very light nuclear

systems (A<12), the underpinning mean-field assumption begins to break down as nucleons

5
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become too granular to treat on average. Despite these restrictions, mean-field models have

been extremely successful at explaining the fundamentals of nuclear structure near the Fermi

surface.

In a modern treatment, the mean field (usually a Hartree-Fock potential) is typically

considered only as a starting point for a perturbative expansion that collects residual nucleon-

nucleon interactions associated with correlated behavior, many of which can be categorized

as collective rotations and vibrations. Coupled excitations of two or more nucleons to higher

orbitals within or across shells and relativistic effects may be included to accommodate

the experimental phenomena under investigation. Models built on this premise are termed

“beyond-mean-field”, for obvious reasons.

In light systems, where the number of nucleons is not too large, every nucleon may be

allowed to participate in excitations into the valence space of the model (a “no-core shell

model”). As the system size increases, the configuration space grows combinatorially until

calculations become prohibitively expensive. To ease calculations for these larger nuclei,

a variety of approaches are employed, including simply restricting the valence space and

prohibiting deeply-bound nucleons from participating in excitations, hopefully while still

capturing the essence of the physical properties under investigation.

Other beyond-mean-field approaches dispense with the assumption of an average poten-

tial and build up the nuclear Hamiltonian from nucleon-nucleon potentials folded over the

nucleon density profile. An advantage of this approach is the connection between fundamen-

tal nucleon data (for example, neutron-proton scattering phase shifts) and the many-body

properties of light nuclear systems [7]. Many studies have confirmed the importance of spin-

orbit, isospin, tensor, and three-body terms in the nucleon-nucleon potential for accurately

reproducing structure even in very light nuclei. Present computational resources have made

6
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systems as large as A=12 accessible for this type of modeling.

In contrast to the LDM, both mean-field and beyond-mean-field models have something

to say about nuclear reactions and decays. Incident nucleons or nuclei can transfer nucleons

to/from the nucleus being modeled and standard techniques of scattering theory can be

applied, though at high excitation energies and where the continuum becomes important,

accuracy declines.

When the properties of deeply-bound nucleons are investigated, cracks appear in the

mean-field picture. First, it has been known for decades that shell models give nuclear

binding energies that are too small, an indication that deeply-bound nucleons are not being

well-described. Evidence from (e,e’p) and (p,2p) knockout reactions consistently shows that

the occupancy of single-particle levels deep in the nucleus is lower than the mean-field ex-

pectation of full occupancy [8, 9, 10]. For levels near the Fermi surface, the depletion is on

the order of 30% and can partially be explained as a consequence of coupling between single-

particle states and low-lying collective states, physics addressed by many beyond-mean-field

models. However, even for very deeply bound nucleons, like the 0s 1
2
and 0p 3

2
protons in

208Pb, there is still significant depletion, around 10% from unity. Further, the “hole” states

left behind in the target nuclei after knockout are spread over a broad energy range, at

odds with the mean-field assertion that bound nucleons reside in a single subshell with a

discrete energy. Clearly, while mean-field models succeed in describing much of the rele-

vant physics near the Fermi surface, they miss something fundamental about the behavior

of deeply-bound nucleons. Additional evidence is available from elastic electron scattering

measurements from which nuclear charge density distributions can be generated (compiled in

[11]). Compared to these distributions, mean-field potentials generate charge-density distri-

butions with too high a density in the nuclear core (see [12] for an example of this in the Ca

7
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isotopes). Related effects have been seen in GeV-scale deep-inelastic scattering to probe the

momentum distribution of quarks in deeply-bound nucleons. In these experiments, excess

high-momentum content indicates that a few percent of the time, nucleons are traveling far

faster than expected. Including short-range correlations, or interactions between quarks of

different nucleons that are in close proximity, is important for bridging these discrepancies

and continues to be an outstanding issue in nuclear theory. From a more fundamental point

of view, these results also raise questions about when nucleons can be assumed to be good

degrees of freedom and quark degrees of freedom can be ignored.

1.1.3 Optical Models

For the LDM and mean-field models presented thus far, the primary motivation has

been recovery of structural observables like nuclear masses, radii, low-lying excitations, and

magnetic moments. A comprehensive understanding of the nucleus must also say something

about what nuclei do, as in higher-energy nucleon-nucleus scattering experiments and in

astrophysical reactions. The nuclear optical model (OM) was developed to this end and

continues to be a widely-used tool for generating nucleon, α, and heavy-ion scattering cross

sections, though it has had less to say about nuclear structure. Partially to lay a groundwork

for the Dispersive Optical Model (DOM) summary of Chapter 6, more space is devoted here

to optical models than to the LDM or mean-field models above. Motivations for OMs,

stemming from a simple Ramsauer-effect picture, are summarized, and references to several

successful OM potential parameterizations are provided in this section.

Due to the magnitude of the strong nuclear force, it might be expected that the in-

teraction of an incident neutron on a nucleus should be strongly absorptive, with only a

small contribution from elastic scattering. Thus, the earliest model for neutron scattering

8
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described the nucleus as a constant-density sphere that interacts strongly with incident neu-

trons approaching within a nuclear radius [13]. In this “strongly-absorbing sphere” (SAS)

picture devoid of nuclear structure or shell effects, σtot depends only on size scaling of the

interacting bodies:

σtot(E) = 2π(R + λ̄)2 (1.4)

where R = r0A
1
3 and λ̄ is the reduced de Broglie wavelength of the incident neutron in the

center of mass [14, 15].

As neutron scattering experiments expanded to higher energies in the 1950s, neutron

total cross section data emerged that challenged this picture. The total cross section, σtot, is

simply the sum of elastic and inelastic cross sections. Due to the infinite range of the Coulomb

force, σtot is a sensible quantity only for neutral particles. In Fig. 1.1, neutron σtot data are

shown from 2-500 MeV for nuclides from A=12 to A=208 [16, 17, 18, 19, 20]. Predictions for

σtot given by Eq. 1.4 are shown as thin dashed lines for each nucleus. Regular oscillations

about the SAS model are clearly visible, as is the trend for the oscillation maxima and

minima to shift to higher energies as A is increased. At low energies, resonance structures

are visible especially for light nuclides where the density of states is smallest. Note that

at higher neutron energies, the experimental cross sections drop below those predicted by

the SAS model, illustrating a increase in nuclear transparency. These hallmark oscillations

in the neutron σtot can be explained as the result of a phase shift between neutron waves

passing around the nucleus (unshifted) and waves passing through the the nucleus, where

they experience refraction (illustrated in Fig. 1.2). This explanation was termed the “nuclear

Ramsauer effect” by Peterson [21], based on the analogous effect seen in electron scattering

on noble gases.

9
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Figure 1.1: Experimental neutron σtot data on several natural samples (solid lines) from 2-500 MeV.
The predictions of the crude strongly-absorbing-sphere model (Eq. 1.4) are shown as dashed lines.
Resonance structures are clearly visible in the natC neutron σtot below 20 MeV.

Following Angeli [22], these considerations can be incorporated by imbuing the strongly-

absorbing sphere relations (equation 1.4) with an additional sinusoidal term:

σtot = 2π(R + λ̄)2[1− ρ cos(δ)] (1.5)

where ρ = e− Im(∆), and δ = Re(∆), with ∆ the phase difference between the wave traveling

around and traveling through the nucleus. Thus, the amplitude of the oscillation provides

the elastic removal, or inelastic, phase shift and the period of oscillation provides the elastic

phase shift. As can be seen from Eq. 1.5, the large magnitude of the oscillations means that

inelastic scattering (from Im(∆)) accounts for only a fraction of the total cross section, in

10
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turn implying a much larger mean free path for neutrons through the nucleus than would be

expected in the absence of Pauli blocking [23].

If the nucleus presents a spherical potential of radius R and depth U , the total phase

shift δ is:

δ =
C
([

E+U
E

] 1
2 − 1

)
λ̄

(1.6)

where C = 4
3
R is the average chord length through the sphere [22]. Rearranging Eq. 1.6 in

terms of A and E and discarding leading constants yields:

δ ∝ A
1
3 ×

(√
E + U −

√
E
)

(1.7)

This form reveals an important relation: as A is increased, to maintain constant phase δ, E

must also increase [15, 21]. This is contrary to a typical resonance condition where an integer

number of wavelengths are fit inside a potential; in that case, to maintain constant phase

as size is increased, E must be decreased. Thus these σtot oscillations have been referred

to as “anti-resonances” or “echoes” [15, 24]. It should be noted that this simple Ramsauer

picture is illustrative only, as it fails to account for interference between the partial waves

of the incident nucleon and cannot be extrapolated to high energies without conspicuous

deficiencies [25].

A new type of nuclear model is thus at hand: by replacing the intractable many-body

problem of the target nucleus by a complex, refractive potential, both elastic scattering

(from the real part of the potential) and inelastic scattering (from the imaginary part) can

be neatly explained. The existing mathematical machinery for calculating scattering of

light from refractive materials can then be repurposed for nuclear scattering, giving birth to

the “optical model” of the nucleus [24, 26]. Instead of a single central optical potential, a

11
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series of potential terms may be used, centered on the nuclear surface and nuclear volume,

corresponding to differing physics thought to be relevant for these areas (much as in the

Droplet Model). Many comprehensive overviews of optical models are available [27, 28] that

explore various potential forms and connect optical models to other approaches.

Global OMs have been developed to simultaneously reproduce single nucleon, heavy

ion, and other hadron scattering data on targets across the chart of nuclides up to several

hundred MeV [29, 30]. Because the proton-proton, proton-neutron, and neutron-neutron

scattering cross sections are not identical, OM potentials are expected to differ for protons

and neutrons. Isoscalar terms, which respect isospin symmetry and thus treat protons and

neutrons identically, account for most of the observed scattering, but do not include the

asymmetry-dependent interactions known to exist between nucleons, such as charged meson

exchange. Thus isovector and isotensor terms, which depend on the difference between

the proton and neutron density distributions in the nucleus, are needed. As experimental

facilities like the Facility for Radioactive Isotope Beams (FRIB) come online and produce

extremely asymmetric nuclei, knowing the asymmetry-dependence of optical potentials will

become increasingly important for predicting nucleon scattering on exotic nuclei. Isovector

considerations are not unique to full-blown optical models and can be introduced to simpler

Ramsauer-like models as well. For example, building on the addition of spin-spin terms to a

Ramsauer model by Gould et al. [31], Anderson and Grimes added an explicit isovector term

to analyze isotone and isotope shifts in neutron total cross sections [32]. They concluded

that “although [their] model may give semiquantitative agreement with some aspects of the

data, optical-model calculations should be used for quantitative comparison”.

Despite their excellent reproduction of experimental data, OMs involve the interaction of

many sometimes-opaque parameters with many incident partial waves, blurring the intuitive
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picture of the underlying physics. OMs are unabashedly phenomenogical so a wide variety

of experimental data types and energies are required to constrain the potential. When data

are absent, model predictions are poor. Without a clearer connection to formal many-body

methods, the empiricism of optical models does not clarify the connection between nuclear

reactions and nuclear structure. A major step forward was taken by Mahaux and Sartor [33],

who linked the nucleon self-energy to the optical potential by means of a dispersion relation,

allowing for a more-direct comparison between scattering data and mean-field nuclear struc-

ture calculations. We employ a descendant of their dispersive optical model, generalized

to include a fully non-local potential, to treat nuclear structure and reactions on the same

footing.

A long-standing difficulty in optical-model analyses is in constraining the isovector de-

pendence of the real and imaginary parts of the potential [32, 34]. Improving constraints on

the isovector terms in particular requires data on asymmetric nuclei, preferably on highly-

asymmetric nuclei or isotopic chains, where the imbalance of protons and neutrons makes

any isovector effects most visible. The isovector strength of the nuclear potential is di-

rectly connected to a host of open problems in nuclear physics, including fixing the density-

dependence of the symmetry energy, L, locating the neutron dripline, and understanding how

high-momentum content is distributed between neutrons and protons. Making progress in

this area requires improved experimental data sets, a topic explored in the following section.

13
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Figure 1.2: In this Ramsauer logic illustration, a neutron plane wave (series of blue lines) impinges
from the left on a real Woods-Saxon potential centered at the origin (diffuse red circle). The
potential refracts the neutron wave, retarding the phase of the wavefront as it passes through the
potential. After escaping the potential, a phase difference ∆ between the wave component passing
around and through the center of the potential persists, dictating the scattering amplitude. For the
leading wavefront, ∆ is indicated in the top right-hand corner of each panel. A differential version
of Eq. 1.6 is used to calculate the phase shift for each step. In this figure, the neutron energy En =
14 MeV and nuclear mass A = 25. For the Woods-Saxon potential, we used a potential depth U =
42.8 MeV (following Angeli and Csikai’s analysis of σtot data at 14 MeV [22]), with nuclear radius
R = r0A

1
3 , r0 = 1.4 fm, and a diffuseness parameter a of 0.5 fm.
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1.2 Relevant Experimental Nuclear Data

1.2.1 Nucleon Scattering Data

Elastic nucleon scattering cross sections, especially with protons, comprise the most

extensively-measured sector of experimental scattering databases. The EXFOR experimental

reaction database [35] contains thousands of proton and neutron differential elastic scatter-

ing and analyzing power data sets between 1-300 MeV, the domain relevant for this work.

Optical model fits to these data, both regional and global [29, 30], have helped constrain

nuclear radii and the strength of the spin-orbit coupling and have revealed the importance

of an imaginary spin-orbit term.

Inelastic nucleon scattering data are more difficult to collect experimentally and much

sparser in the literature record. By helping fix the strength and energy-dependence of the

absorptive component of the nuclear potential, inelastic data serve a complementary role

to elastic data. Isotopically-resolved data are particularly valuable for constraining nuclear

models, as they avoid averaging over multiple isotopes naturally present in many elemental

samples. Unfortunately, many pure isotopes are extremely expensive (>$10,000 per gram)

to separate, putting them out of reach for all but the most well-funded experiments. Indeed,

as late as 1988, only a handful of neutron σtot measurement campaigns on multiple samples

had been conducted, most of them elemental, not isotopic [36].

Figs. 1.3 and 1.4 illustrate the status of isotopically-resolved inelastic nucleon scattering

data in the EXFOR nuclear reaction database as of 2019. Except for light isotopes and

a few security-related actinides, coverage is sparse and has changed little since the early

2000s. Isotopic proton σrxn measurements over a broad energy range are particularly lacking
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due to the paucity of suitable accelerators and the subtlety of such a measurement. Both

high-energy (>100 MeV) neutron σtot and proton σrxn data are useful for understanding the

asymmetry-dependence of the imaginary strength of the nuclear potential. In this work,

we focus on isotopically-resolved neutron scattering, which is easier to measure and, when

combined with proton elastic cross sections, also provides information on the asymmetry-

dependence of the real part of the nuclear potential.

In the last few decades, a smattering of isotope-chain neutron total cross section analyses

have been carried out [38, 32, 39]. The most sophisticated was conducted by Dietrich et

al. [40] using new data they measured on the 182,184,186W isotope chain (a conspicuous

bright spot in Fig. 1.3). In their study, an expanded Ramsauer-type model performed

quite well at reproducing the relative difference between 186W and 182W, apart from a phase

mismatch – but only when the isovector components they introduced in the Ramsauer model

are suppressed (see Fig. 1.5). Despite the dubiousness of ignoring isospin, the resulting

Ramsauer model agrees better with the experimental data than does the Ohio global optical

potential [41], shown in Fig. 1.6.

The authors also performed phenomenological coupled-channel calculations based on a

dispersive optical model formalism [33] that showed similar behavior: it gave good agree-

ment with the experimental σtot relative differences, but only when isovector terms in the

calculations were explicitly neglected. As the authors point out, it is quite puzzling that

“good agreement with the experimental data can be obtained at the expense of an incor-

rect physical picture”. Of the models they tested, only a deformed, semimicroscopic optical

model potential (SMOMP), obtained by folding an energy- and density-dependent optical

model potential from nuclear matter calculations over the deformed nuclear densities, was

capable of satisfactorily describing the σtot isotope shift in W. From this case study on W
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CHAPTER 1: INTRODUCTION

Figure 1.5: 186W-182W neutron σtot relative difference and Ramsauer model predictions. Figure
from [40]. If the standard isovector strength from optical-model treatments is used to dictate the
Ramsauer isovector dependence (solid line), the model performs more poorly against the experimen-
tal data. When the isovector strength is suppressed, the correspondence to data improves (dashed
line).

isotopes, several follow-up questions arise: is a microscopic knowledge of the proton and neu-

tron matter densities important for reproducing the neutron σtot across an isotope chain?

More fundamentally, what terms in an optical potential are the neutron σtot cross sections

sensitive to, and are neutron σtot data connected to structural (i.e., bound-state) information

in a consistent, transparent way?

Answers to these questions hinge on the availability of well-measured isotopic neutron

σtot data sets across a broad energy range. Indeed, the 40,48Ca neutron σtot data collected
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Figure 1.6: 186W-182W neutron σtot relative difference and Ohio global optical potential predictions.
Figure from [40].

by our group at LANSCE in 2009, in part inspired by the W measurements of [40], provided

grist for a non-local Dispersive Optical Model (DOM) analysis in 2015 [42]. This non-

local analysis revealed connections between the asymmetry-dependence of single-particle

occupation numbers and high-energy scattering data. Providing experimental data on key

nuclei, in particular for use with the DOM, is a primary motivation for the isotopically-

resolved neutron σtot and dσ
dΩ

results presented in this work. These new data are analyzed

in Chapter 7 with an improved non-local DOM capable of fits to data on even-even nuclei.
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Details on our DOM implementation are presented in chapter 6.

1.2.2 Nuclear Masses, Matter Radii, and Charge Radii

The mass and spatial extent of a nucleus are two of its most fundamental properties. Of

all experimental data, nuclear masses are known to the highest precision, up to ten significant

digits [43]. Connecting masses and radii is a central goal of the Liquid Drop Model and many

other theoretical treatments over the last century (e.g., Hartree-Fock-BCS treatment of 700

nuclei to calculate proton and neutron RMS radii [44]). Extracting nuclear radii from optical

models has been an active area of research for over fifty years [45].

Experimentally, a variety of techniques are available to probe the nuclear charge density

distribution. On stable nuclei, x-ray energies from muonic atoms [46] are sensitive to de-

viations of the nuclear charge distribution from sphericity. Elastic electron scattering data

on stable isotopes can be used (after a Fourier transform) to provide the full nuclear charge

density profile at spatial resolutions between 2π/qmin and 2π/qmax, where q is the momen-

tum transfer associated with the elastic scattering [11]. On unstable nuclei, collinear laser

spectroscopy [47] uses small shifts in electronic levels to extract the difference in RMS radii

(δRMS) of the charge distributions along an isotope chain, the so-called “isotope shift”. The

isotope shift is shown for the even-A Sn isotopes in Fig. 1.7 [48]. It has long been clear that

the isotope shift is critically connected to the neutron and proton matter distributions. The

difference in RMS radii between the protons and neutron point distributions (i.e., not includ-

ing the finite size of the protons and neutrons) is commonly referred to as the “neutron skin”

[49] and was first identified as an important nuclear quantity by Wilkinson over fifty years

ago [50]. In a Droplet Model picture, the slope of the isotope shift is linked to the symmetry

energy J , density dependence of the symmetry energy L, and surface stiffness coefficient Q1,
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Figure 1.7: Root-mean-squared (RMS) charge radii in Sn isotopes. The A=106-114 region and
A=114-116 region are shaded and labeled indicating the expected single-particle occupation of the
valence neutrons. An isoscalar treatment that only accounts for size scaling predicts an A

1
3 slope as

neutrons are added, but the data show a nearly-linear A
1
6 slope instead. The slope of the isotope

shift is connected to the symmetry energy and its density dependence. Data from Anselment et al.
[48].

the same bulk quantities that determine neutron-skin thickness [1, 51]. Without additional

experimental constraints, the J , L, and Q parameters form an underdetermined system from

which unique values cannot be recovered, even if the consensus value of J ≈ 30 MeV is used

1In [1], the J-, L-, and Q-dependent contributions to the binding energy are:

E(N,Z; shape) = [Jδ̄2 − 1

2
Kε̄2 +

1

2
Mδ̄4]A

+
9

4
(J2/Q)δ̄2A

2
3Bs + CC(J,Q)

where δ̄ and ε̄ of Eq. 1.2 are fully parameterized as:

δ̄ = I +
3

16
(c1/Q)ZA−

2
3Bv]/[1 +

9

4
(J/Q)A−

1
3Bs]

ε̄ = [−2a2A
− 1

3Bs + Lδ̄2 + c1Z
2A−

4
3Bc]/K
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to reduce the parameter space. As was already pointed out 50 years ago by Myers [52], the

single-particle configuration of a given nucleus may have a significant effect on the formation

and size of such a skin.

Charge radius measurements have become sufficiently precise that models can no longer

equate the proton matter distribution and the charge distribution; the non-uniform charge

distributions of the proton and neutron must be accounted for as well. Constraining the neu-

tron matter distribution experimentally is extremely difficult, as neutrons do not interact

Coulombically with the electron and muonic probes used to determine the charge distribu-

tion. An on-going, multi-year experimental effort at Jefferson Laboratory aims to measure

the 48Ca and 208Pb neutron and proton matter distributions directly using parity-violating

electron scattering, taking advantage of the different weak charges of the proton and neutron

[53]. The neutron skins of these and other neutron-rich nuclei are of immense theoretical

and astrophysical interest, as they are closely correlated with the density-dependence of the

symmetry energy, essential for the neutron star equation-of-state, and with many other bulk

properties of nuclei, including the electric-dipole-polarizability (EDP) and the location of

the pygmy and giant dipole resonances (PDR and GDR) [54, 55, 56, 57, 58]. Constraining L

using these asymmetry-dependent properties is quite challenging: the properties of highly-

asymmetric nuclei are most closely correlated with L, but harder to measure experimentally,

and the properties of low-asymmetry nuclei are much more weakly correlated with L. One

of the chief goals of the Dispersive Optical Model (detailed in Chapter 6) is to extract well-

constrained values for the neutron skin thickness on a variety of nuclei (shown in Chapter 7).

In these equations, K is the compressibility coefficient, M accounts for anharmonicity of the binding-energy
dependence on δ̄, and Bs accounts for shape dependence of the surface energy. CC(J,Q) are corrections to
the Coulomb term associated with deformation. The quantity 9

4 (J2/Q)δ̄2 is the correction to the binding
energy from excess neutrons accumulating on the nuclear surface (i.e., neutron skin formation).
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By judiciously applying all available scattering and bound-state data in the DOM approach,

we hope to test the assertion that the EDP, GDR location, neutron skin, and L are as tightly

correlated as it appears from mean-field models.

1.3 Motivation, Scope, and Dissertation Outline

Improved isotopically-resolved neutron scattering data are an essential ingredient for bet-

ter nuclear reaction models and to test the asymmetry-dependence of the nuclear potential.

The results from our campaign to collect these valuable σtot and dσ
dΩ

data sets on cornerstone

nuclei form the backbone of this dissertation. In addition to these experimental results, a

suite of Dispersive Optical Model analyses that incorporates these new data is presented.

From the DOM potentials, a variety of asymmetry-dependent nuclear-structure quantities,

including neutron skins and relative momentum content, are extracted.

An overview of neutron σtot experimental considerations, the details of our σtot experi-

ment, and analysis for our isotopically-resolved σtot measurements on 16,18O, 58,64Ni, 103Rh,

and 112,124Sn are detailed in Chapters 2 and 3. Similarly, our elastic scattering measurements

on 112,124Sn are presented in Chapters 4 and 5. A brief summary of the Dispersive Optical

Model formalism is given in Chapter 6 and the results from our DOM fits of 16,18O, 40,48Ca,

58,64Ni, 112,124Sn, and 208Pb are presented in Chapter 7. A complete listing of the experi-

mental data used in the DOM analyses, the parameter values of the DOM potentials, and

figures showing the results of the DOM fits are provided in Appendices B, C, and D.
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Chapter 2

Neutron Total Cross Sections: Experimental
Setup

2.1 Overview of Neutron σtot Experiments

Neutron scattering is a direct, Coulomb-independent tool for probing the nuclear en-

vironment. The simplest measurement of neutron interaction with a nucleus, the neutron

total cross section σtot, provides fundamental information about nuclear size and the ratio of

elastic-to-inelastic components of nucleon scattering. Additionally, σtot data are connected

to a variety of nuclear properties of great interest including the neutron skin of neutron-

rich nuclei [59] and thus the density dependence of the symmetry energy L, essential for an

accurate neutron star equation-of-state (EOS) [56, 54, 55].

By scattering secondary radioactive beams off hydrogen targets in inverse kinematics,

proton-scattering experiments are possible even on highly unstable nuclides. In contrast,

because neutrons themselves must be generated as a secondary radioactive beam, neutron-

scattering experiments are restricted to normal kinematics and σtot measurements are pos-

sible only for relatively stable nuclides that can be formed into a target. At present, σtot

measurements above the resonance region on nuclides with short half-lives (shorter than

the timescale of days) are technically infeasible for this reason, though a handful have been
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carried out on samples with half-lives in the tens to thousands of years [18, 60, 61].

Traditionally, σtot measurements have relied on analog electronics for processing and

recording events, techniques that suffer from a large per-event deadtime of up to several

µs. For a state-of-the-art intermediate-energy σtot measurement with dozens or hundreds

of energy bins, achieving statistical uncertainty at the level of 1% requires a thick sample

to attenuate a sizable fraction of the incident neutron flux. For cross sections in the 1-10

barn range, this means sample masses of tens of grams [16, 20]. Producing an isotopically-

enriched sample of this size is often prohibitively expensive. This explains the lack of data

for isotopically-resolved σtot measurements from 1-300 MeV even for closed-shell isotopes of

special importance like 3,4He, 64Ni, and 204Pb (see Table 2.1).

In the 1990s, a comprehensive series of measurements were made at the Weapons Neutron

Research (WNR) facility of the Los Alamos Neutron Science Center (LANSCE) on a wide

battery of samples from Li to Pb [16, 20], some isotopically-separated. Twenty years later,

the measurements on 40,48Ca [37] were the first to employ newly-available digital-signal-

processing technology to reduce the deadtime associated with processing each event and

thus reduce the needed sample size. In 2015, we embarked on a systematic campaign to

measure neutron σtot across the widest possible energy range for the heaviest and lightest

stable isotopes in the Z = 8, Z = 28, and Z = 50 closed shells.
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Table 2.1: Selected results from a literature search for isotopically-resolved σtot data using the
EXFOR database [35]. For the heaviest and lightest stable nuclides in each closed shell in Z,
all datasets falling at least partially within 1-500 MeV are shown. For elements whose natural
abundance is >90% of a single isotope (e.g., 96.9% of natCa is 40Ca), σtot data on the natural
sample was included as “isotopic”.

Isotope Nat. Abund. [%] Energies [MeV] Reference
3He 2×10−4 1.5 – 40 [62]
4He >99.9 0.7 – 30 [63]

2 – 40 [62]
77 – 151 [64]

16O 99.8 0.2 – 49 [65]
5 – 600 [16]

18O 0.20 0.1 – 2.5 [66]
2.5 – 19 [67]

40Ca 96.9 <0.1 – 6.4 [68]
5.3 – 560 [20]

48Ca 0.187 0.6 – 5.2 [69]
12 – 276 [37]

58Ni 68.1 <0.1 – 68 [70]
64Ni 0.926 14.1 [71]

112Sn 0.97 <0.1 – 1.4 [72]
14.1 [71]

124Sn 5.79 0.3 – 5.0 [73]
5.1 – 26 [74]

204Pb 1.4 <0.1 – 27 [75]
208Pb 52.4 <0.1 – 695 [76]

5 – 600 [16]

27



DETECTOR CONSTRUCTION

2.2 Detector Construction

Because neutrons carry no charge, they penetrate materials much further than protons

and do not deposit energy continuously along their path. Further, when neutrons do interact

with nuclei in detector materials, the energy transferred does not correspond linearly to the

neutron energy. Thus assigning the correct energy to a scattered neutron is far from trivial.

The main approach to energy determination for fast neutrons is by time-of-flight (TOF) as

evidenced by state-of-the-art neutron detector arrays including MoNA [77], VANDLE [78],

and NeuLAND [79].

Figure 2.1 shows a TOF detector used in one of our neutron σtot measurements. A 2-

inch x 2-inch x 1-inch block of BC-400 fast plastic scintillator is coupled to two transparent

BC-800 adiabatic lightguides with RTV rubberized adhesive. The 2-inch x 2-inch face is

perpendicular to the beam and the 1-inch dimension is parallel to the beam. These compo-

nents were encased in an aluminum structural housing. On the distal end of the lightguides,

Hamamatsu 1668 photomultiplier tubes were connected with optical grease and enclosed by

µ-metal shielding, used to prevent external magnetic fields from affecting photoelectrons.

Phototube signals and high voltage were supplied by a phototube base attached to the back

of each phototube. To hold the phototubes, fitted black Delrin sleeves (shown on the left

side of the CAD cutaway in Fig. 2.2) were custom-made to apply slight compression, keeping

the optical surfaces in good contact. The entire assembly is 24 9/16 inch in length.
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Figure 2.1: A TOF detector, partially assembled, with pencil for scale. The aluminum casing
and Delrin phototube sleeves are at top, and the scintillator (beneath the beam direction arrow),
lightguides, and phototubes, at bottom. The detector described in the text has a thinner scintillating
plastic element (1 inch thick) and tapered lightguides to match.

Figure 2.2: Cutaway CAD figure of TOF detector described in the text. The 1-inch-thick scintil-
lating plastic element is visible in the middle of the aluminum housing brackets, and the light-tight
sleeve for the phototube is visible on the left.
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2.3 Sample Preparation

Where possible, the σtot samples were formed as right cylinders 8.25 mm in diameter

and ranging from 10-27 mm in length (see Table 2.2 for sample characteristics and Fig.

2.3 for sample images). A natural-abundance sample was also prepared for each element

to benchmark our results against already-existing literature neutron σtot data on natural

samples. During the experiment, the samples were inserted into styrofoam sleeves and seated

in the cradles of the sample changer, described below. This design minimizes the amount

of non-target mass proximate to the neutron beam path that could cause unwanted neutron

scattering. The areal density of atoms, the relevant quantity for cross section measurements,

for each O, Ni, and Sn sample differs by less than 1% compared to the other samples of the

same element.

For the oxygen isotopes, isotopically-enriched water samples were prepared to increase

the areal density of O in the sample volume and for ease of handling. After measurement,

the extremely-well-known neutron σtot on hydrogen could be subtracted to yield the O σtot

values. This technique was also used by [66, 67]; cf. the use of ZnO and BeO [16]. Because

the natural abundance of 16O in H2O is >99%, a sample of ordinary distilled water was

used for the H2
16O sample. For H2

18O, we used distilled water enriched to 99.9% in 18O

purchased from Aldrich. Both samples were enclosed in brass vessels with thin (0.002 inch)

brass endcaps, to minimize neutron attenuation. At the temperature and altitude of the

experimental facility, the amount of dissolved gas and ions in the water samples were small

enough to have no effect on the measurement.

The isotopic Sn samples were prepared by melting highly-enriched foils at 800 C in a tube

furnace, cooling to ambient temperature, and pressing the ingots to the desired cylindrical
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shape in a tempered die. To reduce formation of tin oxide during melting, the samples were

melted in vitreous carbon crucibles and kept under a reducing atmosphere (90% Argon/10%

H2) while at elevated temperatures. Of the 4.9 grams of 112Sn used to prepare the sample, 3.9

grams were from a semi-permanent loan from the group of Lee Bernstein from LLNL and the

remainder we purchased from Isoflex Corp. All of the 5.8 grams of 124Sn were purchased from

Isoflex. The natSn sample was prepared by melting and pressing analytical-grade Sn shot

from Mallinckrodt Corp. Loss of isotopic material during the sample preparation process

was minimal. The natural and isotopic Ni samples were prepared by Mike Zach at Oak

Ridge National Lab (ORNL) to match the diameter of our Sn samples.

Due to its poor machining properties, the Rh sample was prepared by stacking a series

of thin rhodium disks instead of manufacturing a fused cylinder. Four disks of 99.9% pure

natural (monoisotopic) Rh metal were purchased from Goodfellow Corp. These were cor-

ralled inside a plastic sleeve with open ends, similar to the styrofoam sleeves used for the

Ni and Sn samples, to match the 3
4
-inch-diameter cradles of the sample changer (Fig. 2.4).

This kept the discs snugly in series and perpendicular to the beam path.

Lastly, two natural-abundance graphite samples of different lengths and one natural-

abundance Pb sample, all with the same diameter as the Sn and Ni samples, were prepared.

These samples were used to benchmark the total cross sections measured at LANSCE by

comparison with previous measurements of the C and Pb total cross sections available in

the literature [16, 20]. In addition, the low-energy neutron σtot resonance structure of the

C samples served a crucial role in fixing the exact distance of the TOF detector as detailed

in Chapter 3. Before use, the C samples were baked in an oven for several hours to remove

adsorbed water.

Appendix A lists the full composition of each isotopic sample as listed by the manufacturer
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or from mass spectrometer analysis.
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Table 2.2: For isotopically-enriched samples, the natural abundance of the enriched isotope and
the isotopic fraction of the sample are given. To calculate cross sections, the relevant “sample
thickness” is the areal density of nuclei ρareal, equivalent to the (volumetric) density times the
length of the sample. For liquid samples Hnat

2 O, Dnat
2 O, and H18

2 O, the length and diameter listed
are for the interior of the vessels used to hold the samples and the masses given are calculated based
on literature values for the density of each sample at 25 C. Our samples are generally much smaller
than those used in previous measurements; for comparison, the Ni and Sn samples used in [20, 16]
had areal densities of 1.515 and 0.5475 mol

cm2 , respectively (12.7 and 6.5 times larger than our Ni and
Sn samples). Columns 6 and 7 give the natural abundance of the isotope (NA) and the purity of
our isotopic samples (SP).

Isotope Len. [mm] Diam. [mm] Mass [g] ρareal [molcm2 ] NA [%] SP [%]
natC 13.66(2) 8.260(5) 1.2363 0.1921(1) - -
natC 27.29(2) 8.260(5) 2.4680 0.3835(2) - -

H2
natO 20.00(1) 8.92(1) 1.2461 0.1107(3) - -

D2
natO 20.00(1) 8.92(1) 1.3852 0.1107(3) 0.02 99.9

H2
18O 20.00(1) 8.92(1) 1.3844 0.1107(3) 0.20 99.9

58Ni 7.97(3) 8.18(2) 3.6438 0.1197(3) 68.1 99.6
natNi 8.00(3) 8.20(2) 3.6898 0.1192(3) - -
64Ni 7.96(2) 8.20(4) 3.9942 0.1192(6) 0.93 92.2

103Rh 2.03(1) 10.20(2) 2.8359 0.02426(4) 100 99.9

112Sn 13.65(3) 8.245(5) 4.9720 0.08332(5) 0.97 99.9
natSn 13.68(3) 8.245(5) 5.3263 0.08414(5) - -
124Sn 13.73(3) 8.245(5) 5.5492 0.08399(5) 5.79 99.9

natPb 10.07(2) 8.27(1) 6.130 0.05508(6) - -
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Figure 2.3: 112,nat,124Sn (section a), Hnat,18
2 O (section b), and 58,nat,64Ni samples (section c) used for

neutron σtot measurements, with rulers for scale. Brass vessels were used to hold the water samples.
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Figure 2.4: 103Rh sample used for the neutron σtot measurements. One of the four Rh discs has
been removed from the plastic sleeve to show detail.
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2.4 Experimental Facility at LANSCE

All neutron σtot measurements were carried out at the 15R beamline of the Weapons

Neutron Research (WNR) facility at the Los Alamos Neutron Science Center (LANSCE) over

two run cycles (November 2016 and September 2017). At WNR, broad-spectrum neutrons

up to 700 MeV are generated by impinging an 800-MeV proton beam onto a water-cooled,

7.5-cm-long tungsten target (see Fig. 2.5). A permanent magnet deflects all charged particles

from the beam path, allowing only neutrons and γ rays to reach our samples. The neutron

flux can be adjusted by the user with a pair of horizontal and vertical shutters upstream of

the experimental vault. Based on beam divergence simulations, the beam was collimated to

0.200 inch at the entrance to the experimental vault using steel donuts with a total thickness

of 24 inches. To reduce (but not eliminate) the γ-ray component of the beam, a 1
2
-inch-thick

plug of Hevimet (90% W, 6% Ni, 4% Cu by weight) was inserted at the upstream end of the

stack of collimator donuts. After collimation, the beam passed successively through a flux

monitor, the sample of interest held in a sample changer (see Fig. 2.6), a veto detector, and

finally the TOF detector approximately 25 meters from the neutron source (see Fig. 2.7).

The monitor detector and veto detector were constructed along similar principles to the TOF

detector construction but only have one phototube each. The monitor and veto detectors

each had scintillator thicknesses of 1
4
inch. Figure 2.9 shows the entire experimental area,

looking upstream from the perspective of the TOF detector. Figure 2.8 shows the same area,

but looking downstream from the monitor detector.

The particular neutron beam structure at WNR dictates the energy range achievable for

σtot measurements (see Fig. 2.10). Proton pulse trains, called “macropulses”, are delivered

to the tungsten target at 120 Hz. Each macropulse consists of 350 individual proton pulses,
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called “micropulses”, spaced 1.8 µs apart. Each micropulse consists of a single proton packet

<1 ns wide when it arrives at the tungsten target that generates γ rays and neutrons within

a tight temporal-spatial range. As neutrons from this micropulse travel along the beam

path, high-energy neutrons separate in time from lower-energy neutrons so that neutron

energy can be determined by standard TOF techniques described in Chapter 3 (see [80] for

additional details). Because the γ rays and high-energy neutrons from later micropulses can

overtake slower neutrons from an earlier micropulse, an important tradeoff exists between

measuring low- and high-energy neutrons. The further the TOF detector is placed from the

neutron source, the higher the minimum neutron energy that can be unambiguously resolved.

However, placing the TOF detector closer to the neutron source increases the maximum

instantaneous neutron flux at the start of each micropulse, increasing the digitizer-dead

probability for the highest-energy neutrons. A balance must be stuck between the detector

thickness, the neutron flux, the γ-ray flux, the TOF detector distance, and the rate of data

acquisition.

A programmable sample changer with six positions was used to cycle each sample into

the beam at a regular interval of 150 seconds per sample. Once per macropulse, an analog

signal from the sample changer was recorded to indicate its current position. The sample

configuration for each run varied, but generally all six positions on the sample changer were

used. For the solid targets, a typical configuration was to place an empty styrofoam sample

sleeve in the first sample-changer cradle as the “blank”, the natC and natPb samples in the

second and third cradles, and the samples of interest (e.g., 58Ni, natNi, 64Ni) in the fourth,

fifth, and sixth cradles. For water samples, an empty brass vessel was placed in the first

cradle to serve as the blank.

Due to beam divergence after collimation and the small diameter of the samples, precise
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alignment of the sample changer was paramount. The sample changer was placed on an

adjustable table and roughly aligned by laser. For precise alignment, a 2-inch aluminum

cylinder with a 1
16
-inch axial hole was placed in the first position of the sample changer and

a radiographic film placed immediately posterior. The film was irradiated by the neutron

beam for fifteen minutes and developed to show the alignment of the aluminum cylinder with

the beam profile. The position of the target changer was adjusted to improve alignment, and

the process was iterated until alignment was satisfactory, ensuring that all neutrons reaching

the TOF detector had to pass through the in-beam sample. Figure 2.11 shows a radiogram

confirming alignment of all sample changer positions within 1 mm.

The beam flux of each macropulse, required to normalize absolute cross sections, was con-

tinuously monitored by the flux monitor detector. The veto detector immediately upstream

of the TOF detector was used to reject TOF events from charged-particle production in the

samples and in air along the flight path. The left and right PMTs of the TOF detector were

gain-matched and a 0.5-ns cable delay was introduced on the right PMT signal to improve

the time-matching between the left and right signals.
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Figure 2.5: Layout of the 15R beamline at the WNR facility at LANSCE, with our experimental
equipment indicated toward the bottom of the flight path. After a permanent magnet sweeps
charged particles from the beam, neutrons and γ rays are collimated to 0.200 inch en route to the
detectors used in the experiment. Samples are cycled into and out of beam using a linear actuator
with a period of 150 seconds. Times-of-flight (TOFs) are determined by the TOF detector and used
to calculate neutron energy.
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Figure 2.6: Upstream view of sample changer, monitor detector, and collimation stack.
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Figure 2.7: Veto and TOF detectors installed in the 15R beamline. Beam enters from the left.
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Figure 2.8: Downstream view of monitor detector, sample changer and TOF detectors installed in
the 15R beamline.
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Figure 2.9: Upstream view of σtot experimental setup in the 15R beamline. In the foreground is
the TOF detector (the veto detector is not pictured here). In the background, the sample changer
and monitor detector are visible. The blue cart holds the coarse-alignment laser.
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Figure 2.10: Neutron beam structure at WNR facility. “Macropulses” of protons (row d) are deliv-
ered to WNR’s tungsten Target 4, where they generate neutrons by spallation. Each macropulse
consists of ≈350 proton “micropulses” (row c). Neutrons from each micropulse (row b) disperse
in time as they travel along the flight path so that γ rays and high-energy neutrons catch up to
low-energy ones from the previous pulse (row a).

Figure 2.11: Radiographic film showing precision alignment of the sample changer. When the high-
intensity central region lies in the center of the diffuse halo, alignment is achieved. All six positions
of the sample changer were tested.
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2.5 Data Acquisition

Signals from all detectors and the sample changer were relayed to an 8-channel, 14-bit,

500-MHz CAEN DT-5730 waveform digitizer as shown in Fig. 2.12. Custom software was

used to run the digitizer in two complementary modes, referred to as “DPP mode” and

“Waveform mode”. In DPP mode, triggers were initiated by the digitizer’s onboard peak-

sensing firmware. For each trigger, several quantities were recorded: the trigger timestamp,

two charge integrals over the detected peak with different integration ranges (32 ns for

the short integral, 100 ns for the long integral), and a 96-ns portion of the raw digitized

waveform, referred to as a “wavelet”. The timestamp was stored as two components: a 48-

bit timestamp with 2 ns resolution, and 10-bit “fine time” within the 2 ns coarse time bin

period. DPP mode was used for the vast majority of the experiment and accounts for ≈99%

of the total data volume. In waveform mode, the digitizer performs no peak sensing and

was externally triggered. Upon triggering, the trigger timestamp and a very long wavelet

(60 µs) were recorded. While waveform mode data accounts for only ≈1% of the total data,

the instantaneous data rate is much higher than in DPP mode because hundreds of µs of

consecutive waveform samples are stored. Roughly once every three seconds, the digitizer

was switched to waveform mode for one macropulse, then switched back to DPP mode as

quickly as possible (within 10-40 ms, depending on run configuration). When the buffer for

any channel filled, all buffers were read out by optical link to a flash memory drive of the

data acquisition computer, minimizing the downtime of the digitizer due to data readout.

Because we had fast digital-signal-processing technology available, we were able to per-

form event detection and processing in a fundamentally different way compared to analog-

mediated approaches. This is worth mentioning here as it enabled a dramatic reduction,
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over an order of magnitude, in the size of the samples required compared to previous mea-

surements at the same facility. The reasons for our approach and tradeoffs are described in

Section 3.2 of Chapter 3.
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Chapter 3

Neutron Total Cross Sections: Analysis and
Results

3.1 Timing Considerations

To assign correct neutron energies, the time resolution of the TOF detector is critical.

Several tests and corrections were applied to improve timing resolution as much as possible.

The DT-5730 provides leading-edge discrimination (LED) and constant-fraction discrim-

ination (CFD) modes for timing determination. In pre-experiment testing, we found that

using the on-board CFD calculation increased the time required to process each event by

40 ns or more, an unacceptable increase in the per-event deadtime. Thus we chose to use

the digitizer’s faster LED option and to calculate precise event timing in software, after the

experiment, by analyzing the digitized waveform for each event. Data taken from the left

and right PMTs separately and gated by neutron energy are shown in Figs. 3.1 and 3.2.

For each energy range, the FWHM of the distribution was calculated and a hyperbolic fit

was performed, shown in Fig. 3.3. The inherent left-right timing resolution, independent of

neutron energy, was identified as 0.34 ns FWHM. When folded over the actual beam energy

profile (as during the experiment) the left-right time resolution degraded to 0.52 ns.

To calculate the TOF for each event, the “starting gun” of each micropulse had to be pre-
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cisely determined. All event times were first adjusted for cable and electronics delay so that

each event was assigned to the correct macropulse. To reduce unnecessary data collection,

we collected only the first T0, a logic signal, of each macropulse. Using this time and the

precisely-known micropulse frequency, we identified all γ rays for a given macropulse and

tabulated the average γ-ray TOF, as shown in Fig. 3.4. The uncertainty of our macropulse

start time manifests as a spread in average γ-ray times-of-flight. Were the start time exactly

known for each macropulse, and the micropulse period exactly known, the TOF for each

γ ray would be exactly the same (if detector time resolution is ignored). The difference

between the average calculated γ-ray times-of-flight (using the imprecise macropulse start

time) and the expected TOF (given the TOF detector distance and speed of light) can be

used to improve the macropulse start time. This γ-averaging procedure was applied to all

events in each macropulse (see Fig. 3.6). We also examined the stability of the T0 period and

found that its day-to-day variation had a negligible effect on the calculated times-of-flight

(see Fig. 3.5).

After these corrections, the total TOF resolution, taken as the FWHM of the γ-ray peak

in the TOF spectrum, ranged from 0.60-0.90 ns over the series of σtot measurements. This

is comparable to the resolution from our digitizer-mediated Ca experiment from 2008 [37],

which used a similar γ-averaging technique. For a 100-MeV neutron and a TOF detector

distance of 27 meters, an uncertainty of 0.80 ns translates to an energy resolution of ≈900

keV. For neutrons below ≈20 MeV, the TOF time resolution worsens as the traversal time

through the 1-inch thickness of the scintillator becomes non-negligible. However, because the

TOF of these neutrons is already several hundred ns or longer, the relative energy resolution

(∆E
E
) is superior at low energies. To wit, for a 5 MeV neutron with a 0.82 ns detector-

traversal time and an inherent TOF resolution of 0.80 ns, ∆E is only 13 keV. These energy

50



CHAPTER 3: NEUTRON TOTAL CROSS SECTIONS: ANALYSIS AND RESULTS

uncertainties have been propagated through the subsequent analysis.

Precise determination of the TOF distance was done by comparing our measured σtot

data for natC with the precisely known resonance structure from 3-15 MeV (Fig. 3.7). The

distance was determined as 2709±1 cm for the Ni and Rh run configuration and 2554 ±1

cm for the Sn and O run configuration. With all corrections applied, all events in the TOF

detector channel were filtered against events in the veto detector to remove events caused

by charged-particles created along the flight path.
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Figure 3.1: Fine times for left and right PMT events, taken separately, of the TOF detector as
recovered by our software CFD algorithm. The times plotted are referenced to the start of each
event waveform, which varied by several ns event-to-event. Thus the spread from 35-55 ns depends
on where the digitizer initiated the waveform for each event and does not indicate timing resolution
information.
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Figure 3.2: Effect of energy gating on the left/right PMT time difference. Higher-energy neutrons
traverse also deposit more energy on average, slightly improving the precision of the software CFD.
The same number of events were populated into each energy-range histogram.
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Figure 3.3: The time difference between the left and right PMTs of the TOF detector was calculated
for all events in a diagnostic run. The FWHM of these time differences as a function of neutron
energy are shown (black points) and fitted with a hyperbolic curve (red line). For low-energy events,
the time resolution is poorer due to the lower signal amplitude. As energy increases, the FWHM
time resolution asymptotically approaches 0.34 ns (grey dashed line).
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Figure 3.4: Deviation of the average γ-ray arrival time by macropulse.
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Figure 3.5: Results of a study of the micropulse frequency (T0) stability. The T0 period used in
the analysis was varied in 1-picosecond increments to change the calculated arrival TOF of events
in each micropulse. Within each micropulse, the FWHM of the time uncertainty in the γ-ray flash
was tabulated. The variation of the γ-ray flash FWHM from varying the micropulse period was
then fitted with a quadratic curve (solid lines). The true micropulse frequency was taken as the
minimum of this curve. This procedure was repeated on data from different days throughout the
experimental run, verifying that the observed drift in the micropulse frequency is small enough to
have a negligible effect on the recovered times-of-flight.
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Figure 3.6: The effects of timing corrections on the γ-ray peak of a typical run are shown. The
uncorrected spectrum is shown in black, the spectrum after correction with our software CFD is
shown in blue, and the spectrum after correction with both our software CFD and γ-averaging
is shown in pink. For this run, the final γ-ray peak FWHM after both corrections is 0.866 ns,
comparable to the precision we achieved in our Ca study [37], which also employed γ-averaging.
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Figure 3.7: Results of a study to determine the distance between the neutron source and the TOF
detector for the Ni/Rh running configuration are shown. First, a plausible range of flight path
distances (26.97-27.21 m) was selected based on rough estimation during the experiment. Using
each distance in this range, the σtot for natural carbon was calculated in the resonance region (3-15
MeV). The RMS difference between the cross section generated using that distance and literature
data from Abfalterer [19, 20] was calculated (shown as black points in the figure). A quartic fit to
these RMS data is shown (solid line). By minimizing the RMS difference, the flight path distance
of 2709±1 cm was determined for the Ni and Rh run configuration.
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3.2 Deadtime Correction

Because events are not processed instantaneously, there is a brief period after each trigger

during which the digitizer is busy processing that trigger. The busy period following each

event is referred to as the “analytic” or “per-event” deadtime and can be corrected for accord-

ing to standard techniques [80]. In an ideal experiment, the instantaneous flux at all times

would be sufficiently low (and the amount of beam time available sufficiently high) that only

very rarely would another event arrive at the TOF detector while a previous event was still

being processed. In reality, given the low duty factor of the pulsed beam, the flux during

each pulse must be high to achieve sufficient statistics over dozens or hundreds of energy bins

within a few weeks of beam time. Given the extremely small areal density of our samples,

this meant we required a rate of approximately one event per micropulse on average. Even

with a flat TOF spectrum, a sizable fraction of events would arrive in the shadow of the

previous event’s processing period, and thus be ignored by the pulse-processing firmware. In

reality, the problem is far worse, as the instantaneous flux is much higher during the γ-ray

flash and arrival of high-energy neutrons.

In [16, 20], this problem was addressed by using a “looking period” logic. Arriving T0

signals were used to begin a “looking period” during which neutron and γ-ray events could

be collected. At the time of the T0 arrival, if the electronic modules were still busy from

processing a previous event (as indicated by a “system busy” signal), the looking period was

aborted. During a looking period, if a single neutron or γ-ray was detected, no subsequent

events were allowed in the period. This logic is diagrammed in Fig. 3.8, reproduced from

[20]. The fraction of T0 signals that result in looking periods (T0,live
T0

) is tabulated, as is

the so-called “analytic deadtime”, i.e. the chance that the detector is busy for a given time
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Figure 3.8: “Looking period” logic used by previous neutron σtot measurements at LANSCE [20].
Per the original caption: proton beam bursts arriving at evenly-spaced 1.8-µs time intervals define
a time frame 1.4-1.6 µs long. For each time frame, a delayed copy of the T0 defining it was used as a
stop signal on the TDC clocks. In contrast, the event processing logic of our experiment dispensed
with looking periods to maximize the number of neutrons detected.

within each looking period. TOF histograms are then scaled by these fractions to recover

the true number of events per unit flux. This approach is useful if the analytic deadtime is

commensurate with the micropulse period, as it means that only one event can be detected

per micropulse anyway. For this approach to be successful, the analytic deadtime must be

very precisely known, as corrections can soar to over 100% if the beam flux is high.

Due to the extremely low areal density of our samples, we could not afford to discard

any neutron events and still acquire sufficient statistics. Thanks to the dramatically-reduced

analytic deadtime of the digitizer algorithm, we could use a more straightforward deadtime

correction logic and minimize the number of lost events. Assuming negligible variation in

beam flux between micropulses (an assumption investigated below), the fraction of time F [i]
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that the digitizer is dead for a given time bin i can be calculated:

Fi =
N−1∑
j=0

R(i−j) mod N × Pj (3.1)

where N is the number of time bins in the micropulse, Rx is the rate of detected events per

micropulse in bin x, and Pj is the probability that the digitizer is still busy from a trigger

j bins ago. Moore [80] also provides a more general formula to calculate the appropriate

deadtime correction in cases where the variation in beam flux is significant. However, an

examination of our flux-per-micropulse data showed almost no variance in the flux per mi-

cropulse, except during the first 10% of each macropulse when flux was “ramping up”. In

our final analysis, we have discarded the first 40 micropulses of each macropulse and used

the simpler Eq. 3.2 to calculate the deadtime fraction.

To model Pj, we employed a logistic function and fitted it to the observed spectrum for

time differences between consecutive events (see Fig. 3.9). For a given bin i, the fraction

of time that the digitizer is dead, Fi, is in essence a discrete convolution of the measured

TOF spectrum with Pj. Note that except for the first and last micropulses in a macropulse,

micropulses are consecutive and thus deadtime effects can “wrap around” from the end of

one micropulse to the next. For these wrap-around contributions (that is, j > i), the (mod

N) term ensures that the bin referred to by (i− j) is non-negative and has physical meaning

as a time bin from the previous micropulse.

By optimizing trigger processing in digitizer firmware, we were able to reduce the per-

event deadtime to between 160-230 ns, depending on the digitizer configuration. For a 230

ns per-event deadtime, the dead-probability Fi of our time bins is given in Fig. 3.10, showing

that the probability-dead never exceeds 25%, much smaller than the 50-80% typical in the
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approach described above [16, 20]. Once the fraction dead was identified for each time bin,

the total number of events detected in that bin, Nd[i], was corrected to the true number of

events in that bin Nt[i] that would have been detected in the absence of a per-event deadtime:

Nt[i] = −ln

[
1−

Nd[i]
M

(1− Fi)

]
×M (3.2)

where M is the total number of micropulse periods. The difference between uncorrected and

analytic-deadtime-corrected TOF spectra is shown in Fig. 3.11. At large TOFs (low energies)

the correction is as low as a few percent, but at small TOFs (high energies) when the digitizer

is still dead from the γ-ray flash and high-energy neutrons, the correction is significant (≈20%

for our Ni/Rh runs, and ≈40% for our Sn/O runs). Again, these corrections are themselves

far lower than the correction required when using the previous approaches [16, 20], which

could be over 100% for the lowest-energy neutrons, depending on beam flux. It is important

to keep in mind that in these experiments the probability that the data acquisition electronics

are busy is not a fixed number but a function of the neutron energy.

During analysis, it was noted that occasionally (1 in 400 macropulses), one or two adjacent

macropulses would have an abnormally small number of flux monitor events or TOF events.

The frequency of these “data dropouts” was similar to the rate of switching between DPP

and waveform modes and we suspect it is related to edge case behavior right before or after

a mode switch. To mitigate this issue, any macropulse that had less than 50% of the average

event rate in either the flux monitor or TOF detector channel was ignored.

After applying these corrections, the veto and integrated charge gates are applied to

all events and surviving events are populated into TOF spectra (see Fig. 3.12). From

these spectra, room background was subtracted (responsible for 0.1% to 1% of event rate,
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Figure 3.9: The time difference between adjacent TOF-detector events for a single run is plot-
ted (black histogram). Below a certain minimum time difference (the “deadtime”), no events are
recorded. A logistic fit (red) models the detector’s deadtime response and is used to generate a
deadtime correction. The underlying linearly-decreasing count rate (gray dashed line) in incorpo-
rated into the logistic model. From the fit, a mean deadtime of 228.1 ns was extracted for the Sn
and O run configuration (a similar procedure was used to recover a deadtime of 159.7 ns for the Ni
and Rh run configuration).

depending on energy) and events were mapped to the energy domain.

It is worth mentioning two additional systematic differences between our configuration

and those of previous LANSCE measurements [16, 20, 37], namely the flight path length and

sample diameters. Flight path lengths of 37.70 meters, 38.14 meters, and 45 meters were

used in [16], [20], and [37] respectively, much longer than the 25-27 meters position of our

TOF detector. Had these lengths been available for our experiment, it would have reduced

the high-energy instantaneous neutron flux by 1
3
, potentially affecting our results for the

highest-energy neutrons. Future experimental work at the 90 meter flight path station at
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Figure 3.10: Using TOF data from a typical run, the fraction of time that a given TOF bin is
“dead” is shown for the blank sample (red line) and the natC sample (blue line). The sharp rise at
90 ns is the response to the γ-ray flash, the gradual increase from 90-245 ns is the response to the
arrival of high-energy neutrons, and the sharp fall at 245 ns is the elapse of the γ-ray “shadow”.
Only high-energy neutrons have a probability-dead exceeding 10%.

LANSCE would be ideal: the instantaneous neutron flux would be reduced by more than half

compared to our experiment and neutrons as low as 10 MeV could still be unambiguously

identified before micropulse wraparound. The other major difference, the sample diameters,

affects the diameter of the collimation used. Diameters of 2.2-2.9 cm, 2.3-3.8 cm, and 1.3

cm were used for [37], [16], and [20], respectively, much larger than the 0.8 cm diameter of

our samples. As sample (and thus collimator) size decreases, the cross-sectional area of the

collimation pipe decreases compared to its circumference. At some point, neutrons scattering

at very small angles on the interior of the collimation could become significant compared to

the number of neutrons passing through the collimation freely, distorting results. While we

see no evidence of this phenomenon affecting our results, a collimation-scattering simulation
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Figure 3.11: A typical TOF spectrum from the Ni/Rh run configuration is shown, before (in blue)
and after (in red) analytic deadtime correction. Relevant neutron energies are indicated above the
spectra. For this digitizer configuration, the mean deadtime was 155 ns (see Fig. 3.9 for details on
mean deadtime determination). Note that at 245 ns, there is an obvious defect in the uncorrected
spectrum that is repaired in the corrected spectrum. The defect corresponds to the elapse of the
155-ns-long deadtime “shadow” from the γ-ray flash, which arrived at 90 ns (not shown).

may be warranted for experiments with even smaller sample diameters.
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Figure 3.12: Typical TOF spectra after analytic deadtime correction and veto and integrated charge
gating. A spectrum from the blank sample is shown in red and a spectrum for the natC sample is
shown in blue, both from the Ni/Rh experiment configuration. The γ-ray peak presents as a sharp
spike at 90 ns, followed by the highest-energy neutrons at 130 ns. The small spikes spaced 60 ns
apart (visible before 90 ns and after 1500 ns) are γ-ray peaks from a low-level, continuous “drip”
of protons onto the tungsten target caused by mistuning of the proton buncher; their effect on the
calculated cross sections is negligible. Low-energy carbon resonances are visible above 600 ns.

3.3 Cross Section Calculation

The fundamental quantity of interest, σtot, is related to the flux loss through a sample

by:

It = I0e
−`ρσtot (3.3)

or, equivalently,

σtot = − 1

`ρ
ln

(
It
I0

)
(3.4)
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where I0 is the neutron flux entering the sample, It is the neutron flux transmitted through

the sample without interaction, ρ is the number density of nuclei in the sample, and ` is the

sample length. For thin or low-density samples, flux attenuation through the sample will

be small (e.g., 13% for our Ni samples at 100 MeV) and a large number of counts will be

required to determine the cross section to high precision.

From these energy spectra, the raw cross sections were calculated, bin-wise, as follows:

σtot = − 1

`ρ
ln

(
I0

Is
× Ms

M0

)
(3.5)

where I0
Is

is the ratio of counts in the energy spectra between the blank and sample, Ms

M0
is the

ratio of counts in the monitor detector between the sample and blank (for flux normalization),

` is the length of the sample, and ρ is the number density of atoms in the sample.

A series of small corrections were applied to the raw cross sections to produce the final

results. First, because the blank sample contains air and not vacuum, the cross section of

air must be added to each other sample’s cross section (scaled by the ratio of areal densities

of air in the blank and the sample of interest). For the 103Rh sample, which had the smallest

areal density, this correction was approximately 2 mb at energies above 100 MeV. The cross

section for 64Ni was corrected for the isotopic enrichment of our sample (92.2%) using our

measured natNi cross section. All other isotopes were sufficiently pure such that the isotopic

impurities contributed <0.1% to the final cross section.

Oxygen cross sections were calculated by subtracting the well-known hydrogen cross

section from the raw H2O result (we used H σtot data sets from Clement et al. [81] and

Abfalterer et al. [20], which together cover the range 0.5 ≤ En ≤ 500 MeV and are in

excellent agreement where their energy ranges overlap). In light of the additional uncertainty
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Figure 3.13: The σtot relative difference between deuterium and hydrogen, as calculated by sub-
traction of our O σtot results from D2O and H2O. Data from our measurement are shown as red
squares; the data of Abfalterer et al. [82] are shown as black circles.

inherent to this kind of subtractive σtot determination, a Dnat
2 O sample from which the

literature σtot for D2 could be subtracted was prepared as an additional cross-check. The

results of the deuterium-to-hydrogen relative difference are shown in Fig. 3.13.
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3.4 Results

3.4.1 Benchmarking σtot Results with Natural Samples

To validate our analysis, we first compared our σtot measurements on natC, natNi, natSn,

natPb against the high-precision data sets on natural samples from Finlay et al. [16] and

Abfalterer et al. [20], shown in Fig. 3.14. From 3-100 MeV, our measurements are in

excellent agreement, within statistical error, with these previous data sets. Above 100 MeV,

our results on natural samples diverge from the previous measurements up to a relative

difference of 5% at 300 MeV for all samples, suggesting a small systematic effect at high

energies when the instantaneous neutron flux is highest. To investigate this discrepancy,

we analyzed data from multiple digitizer thresholds during data production, applied various

software thresholds, gated events by low- and high-integrated charge, and varied our software

CFD logic, among other diagnostic tests. Throughout these exercises, the agreement at

<100 MeV and the discrepancy >100 MeV persisted. To ensure the shift was not related

to imprecision in the areal density of the targets, we compared both our short and long

natural carbon targets against each other (see Fig. 3.15) and found excellent agreement: the

relative difference was within 1% throughout our energy domain, comparable to a similar

test conducted by Abfalterer et al. [20]. From Eq. 3.5, it is clear that changes in flux

ratio and sample areal density can shift the calculated cross section up or down across the

entire energy range measured, but cannot change the slope of the cross section as energy

is increased. Thus, the high-energy discrepancy is unlikely to be from an incorrect monitor

flux. Further, it was not dependent on the nuclear mass of the sample nor with any other

physical characteristics of the samples, suggesting that backshine of neutrons into the flux
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monitor from the samples, or another physical mechanism, was not the cause.

Interestingly, we did not see any energy-dependent discrepancy in the 16O results (see Fig.

3.16). Both our measurement and previous measurements on O isotopes used compound

samples (H2O, D2O, BeO, ZnO), so it is possible that the subtraction of the positive-ion

species (D and H for us, Be and Zn for [16]) eliminated the energy-dependent systematic

difference in our measurements.

At neutron times-of-flight corresponding to energies >100 MeV, the number of counts

in the spectrum rises sharply as one moves to higher energies. In this region, even a sub-

nanosecond timing difference between the spectrum for the blank and for the sample of

interest is amplified into a large error in the cross section calculation. Thus the event timing

and data storage routines must be kept completely ignorant of which target is currently

in-beam so as to avoid sample-dependent timing effects. In practice, this is difficult, as

acquisition with the blank sample is naturally associated with a higher data rate as fewer

neutrons are absorbed or scattered in-flight than when samples are in the beam path. By

reducing the rate of data acquisition by an order of magnitude or more, the analog-electronics

approach reduces the absolute data rates of both the blank and the samples, mitigating this

effect. However, because much larger samples are required with the overall reduced data

rate, the relative data rate between the blank and samples is increased, amplifying any effect

on the electronics. Without a study of digital and analog systems running simultaneously

with input from the same detectors, it is not clear which approach suffers more from this

effect. Such a follow-up, especially with multiple digitizers from differing manufacturers,

would help resolve the high-energy discrepancy we see between all of our σtot data sets and

literature data.

Our absolute σtot results for all isotopic targets are shown in Figs. 3.16, 3.18, 3.20, and
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3.21. All previous isotopic σtot measurements (where they exist) are shown alongside our

results for comparison, and residuals between our data and literature data are provided in

the lower panels. To make comparison meaningful, the literature data sets shown have been

modified to have the same bins as our data via a simple linear interpolation of the original

data bins. This rebinning washes out the fine structure of the cross section data where the

density of states for a given sample is low and individual resonances are visible (e.g., natC

below 10 MeV). In all figures, error bars are indicated on data points or are smaller than

the size of the markers used.

Relative differences of our measured σtot between 16,18O, 58,64Ni, and 112,124Sn are shown in

Figs. 3.17, 3.19, and 3.22, respectively. By examining relative differences between isotopes,

any systematic errors of our approach (besides the areal density uncertainties) are divided

out.
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Figure 3.14: A comparison of literature data (taken with analog techniques) and our results (signals
processed with a digitizer, or “DSP”) for natural C, Ni, Sn, and Pb. In panel (a), the absolute cross
sections are shown from 3-500 MeV; in panel (b), the relative differences between the literature
data and our data are shown in percent. From 3-100 MeV, our data are fully consistent with the
literature datasets but above 100 MeV, a relative difference arises, peaking at ≈5% at 300 MeV.
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Figure 3.15: Relative difference of cross sections (red line) of our two lengths of natC, (27.3 mm and
13.7 mm), shown from 3-400 MeV. Total error (including statistical and systematic) is indicated
by the blue shaded region. Systematic error only (due to uncertainty in the areal density) is shown
by the red shaded region (very small and immediately adjacent to the red line). Clearly, statistical
error dominates for this relative difference. Despite the low statistics of this diagnostic run (only 1.5
hours beam-on-target for each sample), the high efficiency of the digitizer-enabled approach means
that the relative difference can be resolved to ±1% for most of the energy range.
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3.4.2 16,18O σtot Results

Above 5 MeV, our 16O σtot results are within 5% of those from [16], where ZnO and BeO

were used rather than H2O. Below 5 MeV, the rapidly-rising (n,p) cross section and resonance

structure of Zn, Be, and 16O contribute to increased relative differences. Our measurement

on 18O extends the known neutron σtot by over an order of magnitude and shows reasonable

agreement to the previous measurements taken over 50 years ago by [66, 67]. Above 200

MeV, the 18O σtot is smaller than the 16O σtot, a consequence of the larger neutron elastic

phase shift in 18O compared to 16O, which pushes the σtot minimum to higher energies in

18O.
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Figure 3.16: Neutron σtot for 16,18O: our results and literature data. (a) shows our digitizer-measured
isotopic results (in shades of red) and corresponding analog-measured literature data [16, 65, 66, 67]
(in shades of blue). The data for 18O have been shifted up by 1 barn for visibility. (b) shows the
relative difference between our data and literature data that are shown in panel (a).
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Figure 3.17: 16,18O neutron σtot relative difference, from our newly-measured data sets (in red).
Assuming a simple A

1
3 size scaling for the nuclear radius of 18O from 16O, the strongly-absorbing-

sphere model Eq. 1.4 prediction for the 16,18O neutron σtot relative difference is shown (black
dashed line). From 10-100 MeV, the SAS model is surprisingly successful at reproducing the relative
difference, though it fails above 100 MeV as the 18O neutron σtot drops below that of 16O.
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3.4.3 58,64Ni σtot Results

In contrast to the case of O, no isotopic Ni data were available at all above 100 MeVand

high-precision literature data were only available up to 15 MeV for 58Ni [70] and at only one

point, 14.2 MeV, for 64Ni [71]. Our results extended the energy range to 400 MeV and are

in good agreement with the previous results when their errors are included.
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Figure 3.18: Neutron σtot for 58,64Ni: our results and literature data. (a) shows our digitizer-
measured isotopic results (in shades of red) and corresponding analog-measured literature data
[70, 71] (in shades of blue). (b) shows the relative difference between our data and literature data
that are shown in panel a).

78



CHAPTER 3: NEUTRON TOTAL CROSS SECTIONS: ANALYSIS AND RESULTS

Figure 3.19: 58,64Ni neutron σtot relative difference, from our newly-measured data sets (in red).
Total error (including statistical and systematic) is indicated by the red shaded region. Systematic
error only (due to uncertainty in the sample areal density) is shown by the blue shaded region.
Assuming a simple A

1
3 size scaling for the nuclear radius of 64Ni from 58Ni, the simple strongly-

absorbing-sphere model Eq. 1.4 prediction for the 58,64Ni neutron σtot relative difference is shown
(black dashed line).
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3.4.4 103Rh σtot Results

The extremely small areal density and the reduced beam time allotted for our 103Rh

sample made it difficult to acquire sufficient statistics. Nevertheless, by reducing the energy

range and number of bins slightly, we were able to achieve 1% statistics for all bins and our

results agree with those of [18] up to 20 MeV. Our results extend the known energy range

by over an order of magnitude up to 400 MeV.
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Figure 3.20: Neutron σtot for 103Rh: our results and literature data. (a) shows our digitizer-
measured isotopic results (in red) and corresponding analog-measured literature data [18] (in blue).
(b) shows the relative difference between our data and literature data that are shown in panel (a).
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3.4.5 112,124Sn σtot Results

Similar to Ni isotopes, the only existing Sn isotope neutron σtot data were below 25 MeV

for both 112Sn and 124Sn [73, 72, 74, 71]. Our results extended the energy range to 400 MeV

and are in excellent agreement, ≈1% difference, with the previous results.
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Figure 3.21: Neutron σtot for 112,124Sn: our results and literature data. (a) shows our digitizer-
measured isotopic results (in red) and corresponding analog-measured literature data [73, 72, 74, 71]
(in shades of blue). (b) shows the relative difference between our data and literature data that are
shown in panel (a). The data sets are in excellent agreement where literature data exist, up to 20
MeV.
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Figure 3.22: 112,124Sn neutron σtot relative difference, from our newly-measured data sets (in red).
Total error (including statistical and systematic) is indicated by the red shaded region. Systematic
error only (due to uncertainty in the sample areal density) is shown by the blue shaded region.
The predictions of the simple strongly-absorbing-sphere model of Eq. 1.4 for the 112,124Sn neutron
σtot relative difference are shown for two nuclear radius size scalings: rαA

1
3 (black dashed line) and

rαA
1
6 (cf. the observed A

1
6 scaling of the Sn isotope shift in Fig. 1.7).
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Chapter 4

Neutron Elastic Differential Cross Sections:
Experimental Setup

4.1 Overview of Neutron dσ
dΩ Experiments

In neutron elastic scattering measurements, the same time-of-flight techniques are used:

given a “starting gun” when neutrons are produced and the neutron arrival time at a time-

of-flight detector, the neutron energy can be calculated. However, in contrast to total cross

section measurements, neutron elastic scattering measurements require a monoenergetic neu-

tron beam so that elastically-scattered neutrons can be isolated. Unlike transmission mea-

surements (e.g., total cross sections), which measure the neutron scattering integrated over

all solid angles, neutron dσ
dΩ

cross sections are measured differentially with respect to solid

angle. To measure the angular dependence, one or more time-of-flight detectors are moved

around the scattering sample on a large goniometer. As the differential cross section drops

precipitously at large scattering angles, more beam time must be spent at large angles to

generate sufficient statistics.

In transmission measurements, the time-of-flight detector is typically placed very far

from the scattering sample so that it subtends an extremely small solid angle and thus only

unscattered particles are detected. For example, in the neutron σtot experimental setup
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described in Chapter 2, the scintillator of the time-of-flight detector subtended 4.5×10−6

steradians from the point of view of the samples. Thus, the contribution to background

from isotropic γ-ray production in the samples is negligible. In differential measurements,

background from γ-ray production in the samples may exceed the signal from elastically-

scattered neutrons, especially at backward angles where the elastic cross section is lowest.

Pulse-shape discrimination (PSD) techniques must be used to filter out γ rays, leaving only

events from elastically-scattered neutrons.

4.1.1 Pulse-Shape Discrimination (PSD)

To identify neutron- and γ-ray-induced detector events, pulse-shape discrimination relies

on the different energy-deposition modes of neutrons and γ rays. The scintillator used should

exhibit both prompt fluorescence with a lifetime of a few ns (from a singlet state) and delayed

phosphorescence with much longer lifetime in the µs range or longer (from a triplet state).

Figure 4.1 shows the relevant level structure for molecules of such a scintillator. During a

scattering experiment, incident neutrons deposit energy by collision with scintillator nuclei.

These recoiling nuclei (mostly protons) decelerate rapidly in the scintillating medium via

Coulombic interactions with all electrons in the vicinity, exciting many scintillator molecules

in the ion track. In contrast, incident γ rays interact primarily with single atomic elec-

trons, which, during their recoil, produce a lower excitation energy density. For the same

total energy deposition, neutron-initiated events produce a higher concentration of excited

scintillator molecules than do γ-ray-initiated events.

In each population of excited scintillator molecules, most molecules are in a singlet excited

state, and they decay promptly by fluorescence back to the ground state. A small fraction

remain in a triplet excited state, either due to their initial excitation to a triplet state
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or because of intersystem crossing from a singlet state. Kept isolated, these triplet-state

molecules have lifetimes that are orders of magnitude longer (µs to ms) than the those

in a singlet state because of the required spin flip to return to the singlet ground-state.

If, however, two nearby triplet-state molecules collide and exchange a unit of spin, they

can convert to two singlet-state molecules, one in the ground-state manifold and one in an

excited-state manifold. The excited singlet-state molecule will decay promptly (ns), freed

of quantum-mechanical forbiddenness. Thus, after the initial prompt fluorescence, delayed

light output will appear tens of ns later from these triplet-triplet fusion events. The amount

of light will be dependent on the rate of triplet-triplet collision, a second-order kinetics

process associated with the diffusion of excited scintillator molecules in the medium. For

neutron-initiated events, where the concentration of excited molecules is higher, the delayed

light output is correspondingly higher than for γ-ray-initiated events. By comparing the

tail of the light output signal to the prompt fluorescence peak, neutrons and γ-rays can

be distinguished. Typically, the differences in light output are quantified by comparing the

integrated charge of the prompt fluorescence peak with the integrated charge of a section of

the delayed fluoresence. Machine learning techniques have also been applied to light output

data to further improve discrimination [83] beyond the simple charge-gate-ratio method.

Recently, pulse-shape discrimination has been shown to be possible in certain solid organic

crystals (e.g., para-terphenyl, which is also used in laser dyes).

In our 112,124Sn neutron dσ
dΩ

cross section measurements presented below, we used both

PSD information and the pulse height of each event to differentiate neutrons from γ-rays (see

Figure 5.1 in Chapter 5). Our approach follows similar neutron dσ
dΩ

measurements conducted

at the Triangle University Nuclear Laboratory (TUNL) over the last three decades, including

a measurement on 120Sn at 17 MeV conducted by Guss et al. [85, 86] to which we later
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compare our results on 112,124Sn.
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Figure 4.1: Example Jablonski diagram for an organic scintillator used for pulse-shape discrimi-
nation. After initial excitation to a higher electronic manifold, energy is shed non-radiatively by
internal conversion on the picosecond timescale. If the first vibrational state of the S1 manifold is
reached, rapid decay to the S0 manifold occurs on the ns timescale. Alternatively, the system may
undergo intersystem crossing to the T1 manifold, where it reaches the lowest vibrational state. The
T1-S0 transition is quantum-mechanically forbidden, dramatically increasing the lifetime of the T1
state and leading to delayed light output from triplet-triplet fusion, as detailed in the text. Figure
used with permission from J. Kang [84].
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4.2 Sample Preparation

The same 112,nat,124Sn samples used in the neutron σtot experiment (see Chapter 2) were

used for our neutron dσ
dΩ

measurements without modification. Two additional samples, one

of graphite and one polyethylene, were provided by the TUNL facility in order to normalize

our dσ
dΩ

results using the extremely-well-known (n,p) elastic cross section. The details of this

normalization are given in Chapter 5. The physical characteristics of all the samples are

given in Table 4.1.

Isotope Len. [mm] Diam. [mm] Mass [g] NA [%] SP [%]
natC 23.58 9.39 2.924 - -

(CH2)n 22.70 14.18 3.389 - -
112Sn 13.65(3) 8.245(5) 4.9720 0.97 99.9
natSn 13.68(3) 8.245(5) 5.3263 - -
124Sn 13.73(3) 8.245(5) 5.5492 5.79 99.9

Table 4.1: Physical characteristics of samples used for the neutron dσ
dΩ measurements. For

isotopically-enriched samples, the natural abundance of the enriched isotope and the isotopic frac-
tion of the sample are given. Columns five and six give the natural abundance of the isotope in
question (NA) and the isotopic purity of our samples (SP).

4.3 Experimental Facility at TUNL

We conducted our neutron dσ
dΩ

measurements at the neutron TOF beamline at TUNL

(diagrammed in Fig. 4.2) in 2017 and 2018. Incident deuterons, supplied by the facility’s

variable-energy tandem Van de Graaff accelerator, impinged on a deuterium gas cell to pro-

duce a forward-focused neutron beam via the d(d,n)3He reaction. This exothermic reaction

has a Q-value of 3.269 MeV. Two measurements, one for 11 MeV neutrons and one for
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17 MeV neutrons, were conducted. The gas cell pressure varied between 35-40 psi during

our measurement. Per [86], we estimate a neutron beam energy spread at the sample po-

sition of 350 keV, mostly from deuterium beam straggling in the gas cell prior to reacting.

The deuterium gas cell was backed with a fresh tantalum beam stop to prevent unreacted

deuterons from reaching the samples. Based on the number of counts collected during the

normalization runs described below, we estimated that the average neutron flux incident on

the sample was ≈ 5 × 106 neutrons per second for the 11 MeV run in 2017 and ≈ 1 × 107

neutrons per second for the 17 MeV run in 2018. Of course, the instantaneous neutron flux

is much higher due to the pulse structure of the beam.

The production samples (112Sn, 124Sn, and a blank) were suspended several cm down-

stream of the gas cell in a vertically-aligned wire basket apparatus. In addition to the

production runs, a few normalization runs were taken with the TUNL-supplied samples

(graphite, polyethylene, and a blank). Between runs, samples were rotated into position

with a hand-actuated pulley. Sample alignment with the gas cell was confirmed by tran-

sit. Neutrons scattering off the samples were recorded by one of the two main time-of-flight

detectors, designated “4M” and “6M”, roughly 4 and 6 meters away from the target. These

detectors were mounted on large, movable carriages, or “arms”, that could be rotated to

different angles independently so that two angular measurements could be conducted simul-

taneously. By recessing the detectors deep within the arms’ heavy shielding, only neutrons

entering the arm at a precise angle were counted. The active volumes of the 4M and 6M

detectors were composed of NE218 organic liquid scintillator capable of PSD.

To further reduce room background and to shield detectors from direct, unscattered

neutrons, an ensemble of “shadow bars” (wedge-shaped tungsten bricks) were arranged near

the entrance to the detector arms. After an arm’s angle was changed, the shadow bars were

91



EXPERIMENTAL FACILITY AT TUNL

aligned by hand so that the detector had no line-of-sight to the gas cell or the shielding

of the other arm. Any configuration in which the arms were in opposition (i.e., the angle

between the arms was 180±20 degrees) could allow neutrons scattered from one arm to enter

the detector of the other arm, so these configurations were avoided.

Besides the time-of-flight detectors installed in the arms, a ceiling monitor detector

(CMON) and zero-degree detector aligned with the beam (ZDEG) were used to record beam

flux. In addition, a capacitive pickoff signal from the accelerator was collected to serve as a

time-of-flight (TOF) stop signal any time an event was recorded on one of the four neutron

detectors. Prior to production, detectors were gain-matched and calibrated with 137Cs and

22Na sources using the Compton edges produced from these γ-ray sources. For the 4M (6M)

detector, a time resolution of 2 ns (3 ns) was achieved for elastically-scattered neutrons. An

exhaustive description of the TUNL TOF room geometry, detector characteristics, gas cell,

and other apparatus considerations is provided in [86].
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Figure 4.2: Diagram of the neutron TOF room at TUNL. Neutrons are produced by d(d,n)3He
reaction in a small gas cell, forming a forward-focused cone (in red). They scatter off the sample
into one of the detector arms, labeled 4M and 6M, where the neutron times-of-flight are recorded.
Another shielded detector (not pictured), suspended from the ceiling, serves as a flux monitor so that
absolute cross sections can be recovered. The angle of each detector arm is read from a goniometer
in the center of the room.
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Figure 4.3: Image of the neutron TOF room at TUNL. The deuteron beam pipe is visible on the
left and terminates in a small deuteron gas target in the middle of the image, where neutrons are
produced. The two detector arms are shown at center (6M) and right (4M). The ceiling monitor
detector (CMON), which records beam flux, is visible at the top of the image.
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4.4 Data Acquisition

Timing, pulse-shape discrimination, and pulse height information were extracted by the

analog signal processing logic laid out in Fig. 4.4. Raw signals from each neutron detector

were processed by Mesytec MPD-4 pulse-shape-discrimination modules. The pulse tail length

was converted to an amplitude via a time-to-analog converter (TAC), providing neutron-

gamma discrimination. The pulse amplitude was measured by a separate analog-to-digital

converter (ADC). Event times (labeled “Gate” from each MPD-4) were passed as logic signals

to a single time-to-digital converter (TDC) so that event times were recorded using a single

clock. Pulse counts (“scalers”) are collected at each step and the TDC, ADC, and data

acquisition computer busy signals were used to arrest the TDC when the system was already

busy processing, avoiding event pile-up.
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Chapter 5

Neutron Elastic Differential Cross Sections:
Analysis and Results

5.1 Event Identification

During production, runs were taken in batches of three, one each with 112Sn, 124Sn, and

the blank samples. Because the distance to each time-of-flight detector was already measured,

the time-of-flight for elastically-scattered neutrons could be directly calculated and used to

determine the delay from electronics and cabling. The timestamp of each event was thus

adjusted by a fixed amount so that the first peak of the neutron spectrum aligned with the

expected time-of-flight. Next, background γ-ray events were separated from relevant neutron

events by a pulse-shape discrimination analysis, shown in Fig. 5.1.

After scaling histogram counts by detector efficiency, histograms were normalized by the

total neutron flux (i.e., total counts in the CMON detector for that run) and summed by de-

tector angle. Then, blank-run histograms were subtracted from the isotopic-run histograms

to yield the neutron scattering events from the isotopic samples. Figure 5.2 provides example

results for the 4M detector. For the 4M detector and at forward angles for both detectors, the

elastic and first-inelastic scattering peaks are closer together in time and cannot be cleanly

resolved. Measurements in this kinematic regime are the most challenging as the increased
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Figure 5.1: Event pulse height (PH) vs. pulse-shape-discrimination (PSD) for a typical run. A
gate (dashed line) isolates neutron events, which are used for subsequent analysis. At low pulse
heights, the PSD output from the MPD-4 module is non-linear, making neutron-γ-ray separation
more difficult (bottom-left of the figure).

overlap between these peaks increases the uncertainty of the number of counts in the elastic

peak. We fit the amplitudes of two Gaussian distributions to the elastic and first-inelastic

peaks while fixing the width and centroid of each Gaussian according to our time-of-flight

resolution and the expected time-of-flight. The integral of the first Gaussian provides the

number of counts in the elastic peak.
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Figure 5.2: Scaled event histograms showing neutron elastic scattering and first-inelastic scattering
peaks from the 4M detector for a few representative angles. The histograms for isotopic-sample
runs (dark gray bottom layer), blank-sample runs (light gray middle layer), and the difference (red
top layer) are shown. For each difference histogram, a double-Gaussian function was constructed
with the centroid and width of each Gaussian fixed according to the expected time-of-flight for the
elastic and first inelastic peaks and the detector resolution. The heights of each Gaussian were fitted
to the difference histogram and the fitted Gaussians are shown in dark blue (elastic peak) and light
blue (first-inelastic peak). The blue dashed lines bracketing the elastic-scattering peak depict the
gates used to find the number of elastic-scattering counts for the cross section calculation. In the
top two panels, the significant background peak is from neutron elastic scattering on atmospheric
N2.
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5.2 Normalization

To normalize the cross sections, a reference point is needed that connects the neutron

flux (as measured by the monitor detector) to a known cross section. We took several

reference runs using a graphite, a polyethylene, and a blank sample at both the beginning

and end of our experiments. Figure 5.3 shows histograms for the 4M and 6M detectors

for one set of these runs, taken at 30° in the lab frame. The same coloring conventions

from Fig. 5.2 are used, except that now the light blue arrows correspond to the elastic and

first-excited states of 12C. In addition, the anticipated location of the peak from neutron

elastic scattering on atmospheric N2 is indicated by a green arrow. The dark gray histogram

(back histogram layer) shows the elastic and first-excited states of 12C and also a broad

peak from elastic scattering on H. After scaling for the number of moles in the graphite and

polyethylene samples, stoichiometry, and neutron flux, the graphite spectrum (light gray,

middle histogram layer) was subtracted from the polyethylene spectrum, yielding neutron

events only from elastic scattering on protons (area of the red histogram between the blue

dashed lines). As the cross section for (n,p) scattering is extremely well-known, the number

of counts in the time-of-flight detectors in the reference run can be pegged to the absolute

differential cross section. We used the Scattering Analysis Interactive Database (SAID) code

[87] to provide the (n,p) cross section at the energies and angles of the reference runs, and

using the reference cross section, the 112,124Sn dσ
dΩ

were normalized as:

dσ

dΩ
(θ) =

dσ

dΩ ref
(θ)× Xsample

Xref

× Nsample

Nref

(5.1)

where dσ
dΩ ref

(θ) is the (n,p) cross section at lab angle θ, Xsample and Xref are number of counts
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in the flux-normalized elastic scattering peak for the sample and the reference runs, respec-

tively (see Figs. 5.2 and 5.3), and Nsample and Nref are the number of atoms in the sample

of interest and the number of hydrogen atoms in the polyethylene sample, respectively.
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Figure 5.3: Reference runs of neutron scattering on C and (CH2)n. The (CH2)n run (back histogram,
in dark gray) and C run (middle histogram, in light gray) are scaled by beam flux and number of
atoms in each sample. Their difference (front histogram, in red) shows a broad peak corresponding
to neutron-proton elastic scattering. The expected time-of-flight for neutrons elastically scattered
from protons is shown by the blue arrow and aligns with the observed peak. Similarly, the light
blue arrows indicate the expected times-of-flight associated with neutron elastic and first-excited-
state inelastic scattering on C. The green arrow indicates the expected time-of-flight of neutrons
elastically scattered on atmospheric N2.
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5.3 Finite-Size Corrections

In an idealized differential cross section measurement, the sample and neutron detectors

can be treated as point objects. In reality, the neutron beam, samples, and detectors occupy

a finite size (as illustrated in Fig. 5.4), leading to so-called finite-size effects that distort the

measured cross sections. The experimenter is responsible for applying appropriate corrections

to make results size- and apparatus-independent. The finite-size analysis for a similar TUNL-

based neutron dσ
dΩ

measurement on 116,120Sn is described in detail in [86]. In that analysis,

Monte Carlo simulations using the EFFIGY code were prepared to generate a correction for

geometric uncertainty of the neutron scattering track, the possibility of multiple scattering

in the samples, and flux attenuation in the samples. For the isotopic Ni and Sn samples they

studied, they generated finite-size corrections of roughly 1-10% depending on the scattering

angle. As seen in Fig. 5.5, the biggest effect is on the depth of the diffraction minima.

However, their samples were an order of magnitude larger than our samples: 42.59 g and

44.73 g for their 116Sn and 120Sn samples, respectively, compared to 4.97 g and 5.55 g for our

112Sn and 124Sn samples. Thus we anticipated a significantly smaller correction would be

required for our measurement. Figure 5.4 illustrates the potential for multiple scattering in

the samples and the small degree of angular uncertainty in the neutron scattering path. The

effect of this angular uncertainty on the measured cross sections is to “wash out” the sharp

diffraction minima expected to be present in the true cross section. To assess the magnitude

of this effect from our samples, an iterative simulation was prepared in which a uniform

beam of neutrons impinged on the sample volume and was scattered into the time-of-flight

detectors. To select each neutron’s scattering path, we took the raw cross section from our

measurement to be the true cross section and allowed neutrons to propagate through the
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sample and scatter up to twice. After scattering, neutrons were scored in simulated detectors

with the same dimensions used in the real experiment and an “output” cross section was

generated. The output is thus a weighted convolution of the input cross section over the

finite-size effects of the samples and detectors. In addition to running a simulation with the

sample sizes used in the experiment, we performed addition simulations with exaggerated

sizes for the sample to make finite-size effects more visible. A comparison between the input

and output cross sections shows the effects of beam attenuation and angular uncertainty, seen

in Figs. 5.6 and 5.7. To calculate correction factors, we divided the simulation’s input cross

section by the output cross section for each angle and multiplied our experimental results

by this factor. In principle, this procedure to generate the correction should be repeated

iteratively, with the new corrected cross section plugged back into the simulation, but in

practice the corrections for our data were so small that only the first iteration was required.
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Figure 5.4: Illustration of finite-size effects relevant for dσ
dΩ cross section measurements, from the

PhD thesis of P. Guss [86]. Due to the uncertainty in the exact path taken by neutrons during
scattering and the possibility of multiple scattering in the sample, a series of finite-size corrections
must be applied to recover the true cross section.
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Figure 5.5: The extent of finite-size correction on a previous neutron dσ
dΩ measurement at TUNL

are shown. Figure is from the PhD thesis of P. Guss [86]. The raw data from this measurement on
Ni isotopes are shown as data points. Using a Monte Carlo simulation, the authors of the previous
study generated a correction accounting for multiple scattering in their samples and the angular
uncertainty due to the finite volume of their samples, resulting in the dashed curve. With beam
attenuation also considered, the cross section is uniformly increased across the angular range, giving
the solid curve, which they take to be the “true” cross section. Because our targets are approximately
an order of magnitude smaller, we see smaller finite-size effects in our simulation (see Figs. 5.6 and
5.7).
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Figure 5.6: The extent of our finite-size corrections are shown, per the output of a typical finite-size
simulation. Our raw 11 MeV 124Sn dσ

dΩ data are shown as black points (connected with lines to
guide the eye) and were used as the input cross section for the finite-size simulation. The simulation
scattered neutrons according to the input distribution that were scored on an array of detectors
with the same geometry as in the experiment. “Output” cross sections were calculated based on the
number of detector hits. The results of two simulations are shown: one including only the effects
of angular uncertainty (AU) and multiple scattering (MS), shown by red triangles, and the other
also including flux attenuation in the target (FA), shown as blue triangles. For our targets, the
finite-size effects were an order of magnitude smaller than those shown in Fig. 5.5, as anticipated
given the smaller size of our targets.
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Figure 5.7: Relative counts due to single scattering and double scattering in the sample volume, per
our finite-size simulation on 124Sn. The measured data from our experiment include scattering to
all orders. Our simulation shows that the contribution from double scattering (and higher orders)
is quite small and makes an appreciable difference only in the depth of the diffraction minima.
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5.4 Results

5.4.1 112,124Sn dσ
dΩ

at 11 MeV

Figure 5.8 shows our final results for 112,124Sn dσ
dΩ

at 11 MeV after applying the corrections

described above. Our data on 124Sn at 11 MeV are in reasonable agreement with those of

Rapaport et al. [74], which were taken using a much larger enriched sample (≈ 1
3
mol) at

the University of Ohio neutron time-of-flight facility. At angles just less than diffraction

minima (e.g., at angles of 65-70°), the 112Sn dσ
dΩ

is seen to be larger than that of 124Sn, a

consequence of nuclear size differences leading to a phase mismatch, similar to the effect in

the 16,18O σtot relative difference of Fig. 3.17. This same phase-mismatch trend is visible in

the 116,118,120,122,124Sn dσ
dΩ

collected by Rapaport et al., though the effect is less dramatic as

the isotopic range is smaller. Due to our small 112,124Sn sample sizes, our statistics in the

80° and 120° diffraction minima are limited, leading to a large uncertainty in the dσ
dΩ

relative

difference between 112,124Sn.
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Figure 5.8: Neutron dσ
dΩ on 112,124Sn at 11 MeV: our results and data on 124Sn from Rapaport et

al. [74]. The data collected with the 4M detector are shown as circles, and the data collected with
the 6M detector are shown as triangles. At 32.5°and 50°, data were taken with both 4M and 6M
detectors independently and results from the two detectors are in reasonable agreement.

5.4.2 112,124Sn dσ
dΩ

at 17 MeV

Figure 5.9 shows our final results for 112,124Sn dσ
dΩ

at 17 MeV after applying the corrections

described above. Our data on 124Sn at 17 MeV are in reasonable agreement with those on

120Sn of Guss et al. [85, 86], which were taken at the same TUNL neutron time-of-flight

facility using an enriched sample roughly ten times larger than ours. The same phase-

mismatch effect is visible to the left of the diffraction minima (e.g., at 70°). Above 100°, we

were unable to collect sufficient statistics to recover a precise 112,124Sn dσ
dΩ

relative difference, a

110



CHAPTER 5: NEUTRON ELASTIC DIFFERENTIAL CROSS SECTIONS:
ANALYSIS AND RESULTS

consequence of the reduced cross section at 17 MeV compared to 11 MeV. Whereas in the 11

MeV dataset, the 4M and 6M detectors were in good agreement, in the 17 MeV dataset, our

results from the 4M detector appear to be systematically slightly lower than those from the

6M detector, likely due to the increased difficulty in resolving the elastic from the inelastic

scattering peaks in the 4M detector at 17 MeV, especially at low angles. As with the σtot

results presented in Chapter 3, the relative difference between isotopes (relevant for fixing

the isovector strength) should be insensitive to any systematic errors in our measurement.

As with the 11 MeV dataset, the biggest difference between the 112,124Sn dσ
dΩ

data is at the

first diffraction minimum from 30-40°. The cross section in this low-angle region is expected

to be sensitive to the interaction of the incident neutron with the nuclear surface rather than

with the nuclear core, which is better probed with backward-angle scattering. Connecting

the shape and magnitude of these dσ
dΩ

results with the shape and magnitude of the nuclear

potential is the subject of Chapter 7.
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Figure 5.9: Neutron dσ
dΩ cross sections on 112,124Sn at 17 MeV: our results and data on 120Sn from

Guss et al. [85]. The data collected with the 4M detector are shown as circles, and the data collected
with the 6M detector are shown as triangles. In addition to data on 112,124Sn, we collected data on
natSn at 50° and 60°, shown in pink. The data on natSn lie halfway between our data on 112Sn and
124Sn, adding confidence that the relative difference between 112,124Sn is accurate. At 30°, 40°, and
50°, data were taken with both 4M and 6M detectors at separate times, and results from the two
independent detectors are in rough agreement, though results from the 4M detector appear to be
systematically slightly lower at low angles.
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Chapter 6

Dispersive Optical Model: Overview

This chapter provides a brief summary of the Dispersive Optical Model (DOM). A few

motivating concepts and definitions, sourced from more extensive treatments [42, 88], are

followed by an explicit parameterization of the optical potential used for the DOM fits of

Chapter 7. For all sectors of experimental data used in said fits, the formulae connecting

the optical potential to the scattering data are given. For detail on the development of the

DOM formalism, the seminal work of Mahaux and Sartor [33] and a recent review [27] are

recommended. The goal here is to connect the terms of the potential to different sectors of

experimental data. In addition, several computational improvements to our implementation

of the DOM, important for expanding the reach of the fully non-local DOM of [42] to all

even-even systems, are pointed out. In most cases, the notation used conforms to [88], which

also provides an introduction to second quantization and historical background for relevant

many-body concepts.

6.1 The Single-Particle Propagator

The central project of the Dispersive Optical Model (like any optical model) is to un-

derstand how nucleons move about in a nuclear many-body system as parameterized by a
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potential. Specifically, we wish to know how a nucleon with energy E and quantum numbers

α (position, momentum, spin, isospin, etc.) at time t0 will be measured at a later time t with

quantum numbers β after interaction with the potential. Given a Hamiltonian that models

this interaction, the Schrödinger equation relates the Hamiltonian to the time evolution of

this state:

i~
∂

∂t
|α, t0; t〉 = H |α, t0; t〉 , (6.1)

where |α, t0; t〉 is the state at time t, given an initial state |α, t0〉. Simple substitution into

Eq. 6.1 shows that the initial state propagates in time according to:

|α, t0; t〉 = e−
i
~H(t−t0) |α, t0〉 . (6.2)

In position space, the wavefunction of the particle at a given time, ψ(r, t), is the sum over all

contributions from the propagation of the initial state up to that time, a direct application

of Huygens principle:

ψ(r, t) = 〈r|α, t0; t〉 =

∫
dr′ 〈r|e−

i
~H(t−t0)|r′〉 〈r′|α, t0〉 . (6.3)

The integrand of Eq. 6.3 is referred to as the “single-particle propagator”, denoted G(r, r′; t−

t0) in the time domain, as it determines how the wavefunction of a single particle propagates

over time. Crudely speaking, the propagator can be interpreted as the probability that a

given initial state will evolve into a final state according to the wave equation.

To conduct practical scattering calculations, the energy-domain representation of the

propagator may be more useful than the time-domain representation. Applying a Fourier

transform to the propagator (and omitting the intermediate algebraic steps) moves us to the
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energy domain, bringing the mathematical structure of the propagator into focus:

G(r, r′;E) =

∫ ∞
−∞

d(t− t′)e
i
~E(t− t′)G(r, r′; t− t′)

= 〈0|ar
1

E −H + iη
a†r′ |0〉

= 〈r| 1

E −H + iη
|r′〉 ,

(6.4)

where ar and a†r are the particle removal and addition operators in the second-quantization

picture, respectively, and |0〉 is the vacuum state. Equation 6.4 contains the same information

as Eq. 6.3: that the wavefunction ψ(r) is the sum of the weighted contributions from all r′

and the weights are determined by the difference between the energy E and the evaluation of

H on each of the r′ contributions. Of course, we need not privilege r-space; G can be written

using any suitable single-particle basis. For example, the momentum-space representation

for a spinless, non-interacting free particle of mass m and momentum k reads:

G0(k,k′;E) = δ(k − k′) 1

E − ~2k2
2m

+ iη
. (6.5)

If the independent-particle model was exact and the mean-field potential could be perfectly

known, calculating the propagation of nucleons through the nucleus would be as simple as

calculating single-particle scattering off a potential well. Such a calculation involves little

more than a matrix inversion of the Hamiltonian in the denominator of Eq. 6.4. Real

nucleon-nucleus scattering involves the possibility of excitations in the nucleus from the

incident nucleon so that the wavefunction of the compound system may be very different

from that of the nuclear ground state. The single-particle propagator must include these

possibilities as well. The propagator from the |α〉 state at time t to the state |β〉 at a later
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time t′ is:

G(α, β; t, t′) = − i
~
〈ΨN

0 |T [aαH (t)a†βH (t′)]|ΨN
0 〉 . (6.6)

Here, |ΨN
0 〉 is the normalized Heisenberg ground state for the N-particle system with eigen-

value EN
0 :

Ĥ |ΨN
0 〉 = EN

0 |ΨN
0 〉 (6.7)

The time-ordering operator T ensures that operators with later time appear to the left of

operators with earlier time1, important for the perturbative treatment to follow. In short,

this expression includes contributions from both particle propagation, already seen Eq. 6.3,

and hole propagation, new behavior only pertinent for a many-particle system capable of

particle excitation/hole production. We can expand Eq. 6.6 and once again apply a Fourier

transform to make interpretation easier:

G(α, β;E) =

∫ ∞
−∞

d(t− t′)e
i
~E(t−t′)G(α, β; t− t′)

=
∑
m

〈ΨN
0 |aα|ΨN+1

m 〉 〈ΨN+1
m |a†β|ΨN

0 〉
E − (EN+1

m − EN
0 ) + iη

+
〈ΨN

0 |aβ|ΨN−1
n 〉 〈ΨN−1

n |a†α|ΨN
0 〉

E − (EN
0 − EN−1

n ) + iη

= 〈ΨN
0 |aα

1

E − (Ĥ − EN
0 ) + iη

a†β|Ψ
N
0 〉+ 〈ΨN

0 |a
†
β

1

E − (EN
0 − Ĥ)− iη

aα|ΨN
0 〉

(6.8)

|ΨN±1
m(n)〉 are the normalized Heisenberg states for the N±1 particle systems. The |ΨN+1

m 〉 have

1The time-ordering operator T is defined as:

T [aαH
(t)a†βH

(t′)] = θ(t− t′)aαH
(t)a†βH

(t′)− θ(t′ − t)a†βH
(t′)aαH

(t)
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eigenvalues EN+1
m and the |ΨN−1

n 〉 have eigenvalues EN−1
n :

Ĥ |ΨN+1
m 〉 = EN+1

m |ΨN+1
m 〉

Ĥ |ΨN−1
n 〉 = EN−1

n |ΨN−1
n 〉

(6.9)

in keeping with Eq. 6.7. The second line of Eq. 6.8 is referred to as the “Lehmann rep-

resentation”. To reach the third line of Eq. 6.8, the complete bases of |ΨN+1
m 〉 and |ΨN−1

n 〉

have been removed from the corresponding terms on the second line. The particle and hole

contributions to the propagator are neatly separated and each possesses the relevant energy

weighting in the denominator, sandwiched between the fermion creation and annihilation op-

erators. Neither the ground-state wavefunction of the correlated many-body system ΨN
0 or

the full Hamiltonian Ĥ are known at this stage, but they are now amenable to a perturbation

expansion, the subject of the next section.

6.1.1 Perturbation Expansion and The Dyson Equation

The full single-particle propagator G can be calculated via perturbation expansion by

starting with a non-interacting (unperturbed) propagator G0 and adding interaction terms,

V̂ , that bring G0 closer to the real G. This expansion requires a change from the Heisenberg

picture of the previous section to the Interaction picture2. First, the full Hamiltonian H is

broken up into the non-interacting and interacting parts:

Ĥ = Ĥ0 + Ĥ1, (6.10)
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where Ĥ0 contains the kinetic energy operator T̂ and possibly a one-body auxiliary potential

Û , and Ĥ1 collects all residual interactions (the hard part of the problem). Broken up in

this way, the non-interacting propagator reads:

G(0)(α, β; t− t′) = − i
~
〈ΦA

0 |T [aαI(t)a
†
βI(t

′)]|ΦA
0 〉 , (6.11)

where the fully-correlated many-body ground state |ΨA
0 〉 has been replaced by |ΦA

0 〉, the

uncorrelated ground-state associated with H0. Through algebraic manipulation and employ-

ing the Interaction version of all operators, the full single-particle propagator, including the

contribution from the interactions buried in Ĥ1, is:

G(α, β; t− t′) =
Num

Denom
, (6.12)

where

Num = − i
~

∞∑
n

(
i

~

)n
1

n!

∫ ∞(1−iη)

−∞(1−iη)

dt1

∫ ∞(1−iη)

−∞(1−iη)

dt2 · · ·
∫ ∞(1−iη)

−∞(1−iη)

dtn

× 〈ΦN
0 |T [Ĥ1(t1)Ĥ1(t2) · · · Ĥ1(tn)aαI(t)a

†
βI(t

′)]|ΦN
0 〉 ,

Denom =
∞∑
m

(
−i
~

)m
1

m!

∫ ∞(1−iη)

−∞(1−iη)

dt′1

∫ ∞(1−iη)

−∞(1−iη)

dt′2 · · ·
∫ ∞(1−iη)

−∞(1−iη)

dt′m

× 〈ΦN
0 |T [Ĥ1(t1)Ĥ1(t2) · · · Ĥ1(tm)(t′)]|ΦN

0 〉 .

2Operators in the Interaction picture are related to those in the Schrödinger picture by:

OI(t) = e
i
~ Ĥ0tOSe

−i
~ Ĥ0t

Appendix A of [88] provides a complete description of these different quantum-mechanical pictures.
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Despite the extra ink, the mathematical structure of the Lehmann representation (Eq. 6.8)

is still visible: the numerator contains the contributions from the creation and annihila-

tion operators attaching to the uncorrelated ground-state, and the denominator provides an

energy weighting. We have generated an infinite series of terms with increasing order in

the number of Ĥ1 interactions permitted. Aside from arbitrary counting indices, the only

differences between the numerator and denominator are a factor of − i
~ and the fermion anni-

hilation and creation operators responsible for moving from |α〉 to |β〉. Wick’s theorem3 can

be applied to remove contributions to the propagator that appear in both the numerator and

the denominator and do not survive the division. This dramatically reduces the number of

terms at each level of the perturbation expansion, and when the dust settles, the propagator

reads:

G(α, β; t− t′) = − i
~

∞∑
n

(
i

~
)n

1

n!

∫
dt1

∫
dt2 · · ·

∫
dtn

× 〈ΦA
0 |T [Ĥ1(t1)Ĥ1(t2) · · · Ĥ1(tn)aαI(t)a

†
βI(t

′)]|ΦA
0 〉connected .

(6.13)

Physically speaking, the full propagator is the infinite sum of the expectation value of Ĥ1

iteratively applied to the non-interacting ground state. The non-interacting ground state is

modified by each interaction and thus all the many-body correlations of |ΨN
0 〉 are encoded

by the repeated operation of Ĥ1. The subscript “connected” indicates that only terms cor-

responding to fully-connected Feynman diagrams should be included in the full propagator,

as all non-connected diagrams appear in both the numerator and denominator of Eq. 6.12

and do not survive the division. We can represent the perturbation expansion of Eq. 6.13

diagrammatically to clarify the physical meaning of the expansion terms. Figure 6.1 shows

3See section 8.4 of [88] for the full procedure.
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several diagrams from the first few orders of the expansion. To zeroth-order, the

Figure 6.1: A subset of the diagrams from the first few orders that contribute to the single-particle
propagator perturbation expansion. The interaction V̂ is represented by the horizontal dashed line
and is taken to be two-body only in this treatment.

expansion is only one non-interacting term, which is just the free single-particle propagator.

At each higher order, one more interaction is permitted to enter the diagram and can attach

at any fermion line (i.e., into any propagator line). By grouping and rearranging the terms,

we can condense the full perturbation expansion to a self-consistent equation called the
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Figure 6.2: The Dyson equation in diagrammatic form.

Dyson equation:

G(α, β;E) = G(0)(α, β;E) +
∑
γ,δ

G(0)(α, γ;E)Σ∗(γ, δ, E)G(δ, β;E). (6.14)

A diagrammatic representation of the Dyson equation is given in Fig. 6.2. The two sum-

mation variables γ and δ label states internal to the diagrams that are accessed during the

particle’s excitation of the many-body system4. The Dyson equation introduces a new term,

the irreducible nucleon self-energy Σ∗, that connects the free single-particle propagator to

the full single-particle propagator that incorporates all the in-medium effects of traveling

through the nuclear environment. The self-energy serves the role of the potential – the op-

tical potential – experienced by a particle in the medium. This makes the Dyson equation

4While there are only two additional summation variables in Eq. 6.14, if a three-body interaction was
included, an additional summation variable would be needed.
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the equivalent of the Schrödinger equation, but for particles embedded in the medium rather

than propagating in free space. Calculating the full self-energy explicitly remains impossi-

ble in practice, as it involves a (countably) infinite number of diagrams and the underlying

nuclear interactions are only approximately known. Rather than solve this problem analyt-

ically, the DOM solves it empirically by identifying the full self-energy as equivalent to the

optical potential. By fitting the self-energy to experimental data, we cut the Gordian knot of

making an analytic calculation to all orders. As already discussed in Chapter 1, the optical

potential is readily connected to a host of experimental data: elastic cross sections, analyz-

ing powers, and inelastic reactions for both protons and neutrons. From a well-constrained

optical-potential/self-energy, additional important quantities, like overlap functions and neu-

tron skins, can be extracted. This phenomenological approach is the heart of the Dispersive

Optical Model.

6.1.2 The Dispersion Relation

State-of-the-art optical models [29, 30] typically restrict their potentials to the positive-

energy domain relevant for nucleon-nucleus scattering. From the previous section, though,

it is clear that the self-energy must have a negative-energy component if it is to describe

the correlated many-body ground state: bound nucleons experience the same potential as

scattering nucleons, albeit at negative energies. It has been recognized for over fifty years

[89, 90] that the real and imaginary parts of the self-energy should obey a dispersion relation:

if the real part is known at all energies (positive and negative), the imaginary part can be

deduced and vice-versa. Optical models that obey this relation may be called dispersive

optical models.

The real part of the self-energy can be shown to have two components: one independent
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of energy (equal to the correlated Hartree-Fock term) and an energy-dependent part that

can be calculated from the imaginary part:

Re(Σ∗(α, β;E)) = Re(Σs(α, β)) + Re(Σd(α, β;E)). (6.15)

The relevant dispersion relation to calculate the real energy-dependent part is:

Re(Σd(α, β;E)) = −P
∫ ∞
ε+T

dE ′

π

Im(Σd(α, β;E ′))

E − E ′
+ P

∫ ε−T

−∞

dE ′

π

Im(Σd(α, β;E ′))

E − E ′
. (6.16)

P is the Cauchy principle value and the integration limits ε±T are selected to be just below

the lowest-lying imaginary strength in the positive-energy domain (for ε+T ) and just above

the highest-lying imaginary strength in the negative-energy domain (for ε−T ). Between these

thresholds, the imaginary component of the potential vanishes, so the self-energy is entirely

real. After some algebraic rearrangement, it can be shown that:

Re(Σ(α, β;E)) = Re(Σ(α, β; εF ))

− P
∫ ∞
ε+T

dE ′

π

Im(Σd(α, β;E ′))

E − E ′

[
1

E − E ′
− 1

εF − E ′

]
+ P

∫ ε−T

−∞

dE ′

π

Im(Σd(α, β;E ′))

E − E ′

[
1

E − E ′
− 1

εF − E ′

] (6.17)

which is referred to as the “subtracted dispersion relation”. The integral of the imaginary

component of the self-energy over the entire energy domain determines the dynamic (energy-

dependent) part of the real component, ensuring that the potential is self-consistent and

that reactions and structure calculations take place on equal footing. This is the form of the

dispersion relation employed in the subsequent analysis.
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6.2 Connection to Experimental Observables

6.2.1 Elastic and Inelastic Nucleon Scattering

For nucleon-nucleus scattering, the momentum basis is a natural choice. The scattering

amplitude can be directly calculated using the reducible self-energy Σ5:

fm′s,ms(θ, φ) = −4mπ2

~2
〈k′m′s|Σ(E)|kms〉 (6.19)

where kms are the wave vector and spin quantum number of the incident nucleon and k′m′s

are for the exiting nucleon. The matrix structure of the right side can be split into spin-

independent and spin-dependent portions F and G:

f(θ, φ) = F(θ)I + σ · n̂G(θ), (6.20)

where

F(θ) =
1

2ik

∞∑
l=0

[
(l + 1)e2iδl+−1 + l

(
e2iδl− − 1

)]
Pl(cosθ)

G(θ) = σ · n̂

[
sinθ

2k

∞∑
l=1

[e2iδl+ − e2iδl− ]P ′l (cosθ)

]
.

(6.21)

Here, Pl are Legendre polynomials of degree l, P ′l is the derivative of the Legendre polynomial,

and δl± ≡ δl± 1
2
, corresponding to the spin being parallel or antiparallel to the orbital angular

5The reducible self-energy is related to the irreducible self-energy of Eq. 6.14 by:

Σ = Σ∗ + Σ∗G(0)Σ (6.18)

. See [42] for details.
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momentum. From the scattering amplitude, the unpolarized cross section is simply:

(
dσ

dΩ

)
(θ) = |F(θ)|2 + |G(θ)|2 (6.22)

and the analyzing power is:

A(θ) =
2F(θ)(G(θ))∗

dσ
dΩ

(θ)
. (6.23)

The complex phase shift (equivalently, the S-matrix elements) for each partial wave asso-

ciated with the nucleon under investigation can be calculated directly from the reducible

self-energy:

e2iδlj ≡ 〈k|Slj(E)|k〉

= 1− 2πi

(
mk

~2

)
〈k|Σlj(E)|k〉 ,

(6.24)

where k is the center-of-mass momentum of the nucleon, m is the nucleon mass, and E is

the center-of-mass energy. The reaction cross section at a given energy is the sum of the

partial reaction cross section over all partial waves:

σrxn =
∞∑
l=0

π

k2

[
(2l + 1)− (l + 1)|e2iδl+ |2 − l|e2iδl− |2

]
, (6.25)

and the total cross section simply a sum of the reaction and elastic over all partial waves:

σtot = σel + σrxn (6.26)
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where

σel =

∫
dθ

∫
dφ

dσ

dΩ
(θ)

=
∞∑
l=0

π

k2

|(l + 1)(e2iδl+ − 1) + l(e2iδl− − 1)|2

2l + 1

× l(l + 1)|e2iδl+ − e2iδl−|2

2l + 1
.

(6.27)

6.2.2 Bound-state Properties

To compare the bound-state information of the propagator with experimental data, we

first define the spectral functions for holes and particles:

Sh(α;E) =
1

π
Im(G(α, α;E)) for E ≤ ε−F

=
∑
| 〈ΨN−1

n |aα|ΨN
0 〉 |2δ(E − (EN

0 − EN−1
n )),

Sp(α;E) = − 1

π
Im(G(α, α;E)) for E ≥ ε+F

=
∑
| 〈ΨN+1

n |a†α|ΨN
0 〉 |2δ(E − (EN+1

n − EN
0 )).

(6.28)

In this expression, ε±F are the lowest-unoccupied and highest-occupied single-particle levels,

which yield the Fermi energy εF when averaged. Physical speaking, the hole spectral function

at the energy E is the probability density for plucking out a particle with quantum numbers

α from the ground state and leaving the residual nucleus with the energy EN
0 − E. The

particle spectral function provides the same information, but for adding a particle, leaving

the nuclear system with energy EN
0 + E. From the spectral functions, the occupation of a
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state is simply

n(α) = 〈ΨN
0 |a†αaα|ΨN

0 〉

=

∫ −εF
−∞

Sh(α;E).
(6.29)

Numerically, this integral can be difficult to compute near εF where peaks in the spectral

function (from bound quasi-hole states just below εF ) become δ-function-like. This is a

consequence of the vanishing imaginary strength near εF . Thus, we use a piecemeal procedure

where the spectral function is integrated up to an arbitrary threshold near (but below)

the δ-function-like behavior, and the spectroscopic factor of any quasi-holes between the

threshold and ε−F is added to account for the remaining occupation. The spectroscopic factor

is calculated:

S =

(
1− ∂Σ∗(αqh, αqh;E)

∂E

∣∣∣∣
ε−n

)−1

, (6.30)

where qh indicates the quasi-hole nature of the single-particle state indicated by α and ε−n =

EN
0 − EN−1

n is the eigenvalue associated with the quasi-hole state. It should be noted that

if the self-energy has a significant imaginary component at ε−n , the quasi-hole normalization

will be incorrect and the validity of Eq. 6.30 degraded. Hence, this expression should only

be used in the vicinity of the Fermi energy where the imaginary strength is negligible.

Previous DOM analyses (e.g., [42]) dealt only with doubly-closed shell nuclei such as

40Ca and 48Ca. For these nuclei, the above procedure to calculate the occupation number is

sufficient. The present analysis includes nuclei with open neutron subshells (e.g., the ν0d 5
2

in 18O and ν0f 5
2
in 58Ni)6, motivating a new procedure. Per standard treatments of nucleon

pairing [91], an additional pairing parameter ∆ was added to account for open subshells’
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fractional occupation n±. This parameter splits these subshells’ occupants into upper and

lower sublevels with energies E±:

E± = µ± [(εF − µ)2 + ∆2]
1
2 , (6.31)

where µ is the energy of the open subshell before pairing is considered and εF is the Fermi

energy. The magnitude of ∆ corresponds to the energy difference between adding/removing

a nucleon to/from that subshell. The subshell is split between the upper and lower sublevels.

The occupancy of these sublevels is calculated via:

n± =
1

2

(
1− χ

E±

)
, (6.32)

where χ = |E± − µ| − (εF − µ). Only occupation in the lower sublevel is counted toward

the total particle number. For each open-shell nucleus with neutron number N and proton

number Z, ∆ was fixed according to:

∆(N,Z) =
1

4
[B(N − 2, Z)− 3B(N − 1, Z) + 3B(N,Z)−B(N + 1, Z)] , (6.33)

where B(N,Z) is the nuclear binding energy [91].

In addition to the total occupation of each state with quantum numbers α, the density

distribution of particles in that state in r-space can be calculated. By summing the single-

particle position-space distributions, the total point distributions for protons and neutrons

can be calculated. After folding this distribution with an appropriate form factor associated

with the internal charge density distribution for protons and neutrons [12], the final distri-

6The standard notations π and ν refer to proton and neutron subshells, respectively.
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bution can be compared to the experimental charge density distribution calculated in (e,e)

scattering experiments.

The total binding energy of the nucleus may be calculated directly from the spectral

function and the kinetic energy operator T̂ :

EN
0 = 〈ΨN

0 |Ĥ|ΨN
0 〉

=
1

2

[∑
α,β

〈α|T̂ |β〉nα,β +
∑
α

∫ ε−F

−∞
dE E Sh(α;E)

] (6.34)

and the discrete single-particle energy levels can be calculated by diagonalizing the Hamiltonian.

It should be noted that while previous DOM treatments have calculated binding energies

after fitting was complete, the present DOM treatment is the first to explicitly include the

binding energy as part of the fitting process. The PhD thesis of M. Atkinson [92], published

simultaneously with this work, includes an in-depth discussion of the energy density and

presents fit results for 40,48Ca and 208Pb using an alternative DOM parameterization.

6.3 Parameterization of the Potential

As discussed earlier in this chapter, the irreducible nucleon self-energy is composed of

both real and imaginary parts that govern elastic and inelastic processes, respectively. If the

real part is broken into a static component Σs with no energy dependence and a dynamic

part Σd with energy dependence, the self-energy reads:

Σ∗(α, β;E) = Σs(α, β) + Σd(α, β;E) + Im(Σ∗(α, β;E)). (6.35)
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No confusion should arise between Σ, the reducible self-energy introduced in Section 6.2.1,

and the static and dynamic real irreducible self-energy components Σs and Σd of this equa-

tion. To parameterize the real and imaginary terms, functional forms are selected to conform

with general physical intuition about the nuclear many-body problem and past experience

with optical potentials. Accordingly, the self-energy should be, non-local, complex, and dis-

persively correct. Before the full parameterization is provided, a few standard mathematical

forms need to be introduced. The free parameters that are fitted to data during the DOM

procedure we denote in bold. Thus the bolded variables in this section do not denote vector

quantities (which is a common notation in the literature). After the basic functional forms

are introduced, all bolded free parameters are assigned numbers to facilitate comparison with

the list of parameter values of Appendix C.

6.3.1 Functional Forms

We use two standard form factors to describe the radial dependence of components asso-

ciated with the nuclear volume (a Woods-Saxon shape) and the nuclear surface (a derivative

of the Woods-Saxon shape):

fvol(r; r0,a) =
−1

1 + e(r−R)/a
,

fsur(r; r0,a) =
1

r

d

dr
fvol(r; r0,a).

(6.36)

R is the nuclear radius, calculated as R = r0A
1
3 , with A the total number of nucleons in the

nucleus. The diffuseness term a determines how quickly the potential tends to zero in the

nuclear surface region. The sign of the potential is such that the Woods-Saxon form provides
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an attractive interaction. To approximate the non-locality, equivalent local potentials [33]

with an additional energy dependence may be used, but their additional energy-dependence

violates the dispersion relation and thus makes local-equivalent potentials unsuitable for a

comprehensive treatment at both positive and negative energies unless certain corrections

are applied [33]. The self-energy/optical potential used in our treatment is based on that of

[42], which was the first to fully implement the non-locality in the potential forms alongside

the dispersion relation. For simplicity, we use a Gaussian non-locality first proposed by [93]:

N(r, r′;β) =
1

π
3
2β3

e|r−r
′|2/β2

, (6.37)

where β is a free parameter that sets the Gaussian width. The energy-dependence of the

imaginary components is based on the functional form of [94]:

ωn(E;A,B,C) = Θ(X)A
Xn

Xn +Bn
(6.38)

where

X = |E − εF | −C

and Θ(X) is the Heaviside step function.

We are now ready to give the full parameterization. The parameterization for symmetric

nuclei is simpler as the same potential is used for protons and neutrons, excepting Coulomb.

For asymmetric systems, we introduce a handful of asymmetry-dependent additional terms.

All calculations are non-relativistic with a first-order relativistic correction and do not ex-

plicitly account for nucleon excitations (e.g., the ∆ resonance). Accordingly, the potential

is not expected to be valid outside the domain -300 MeV < E < 200 MeV, which we used

131



PARAMETERIZATION OF THE POTENTIAL

during fitting.

6.3.2 Real Part

The energy-independent real part of the self-energy consists of a nonlocal Hartree-Fock

and a spin-orbit component (plus a local Coulomb term if the nucleon in question is a

proton):

Σs(r, r
′) = ΣHF (r, r′) + Vso(r, r

′) + δ(r − r′)× VC(r). (6.39)

The Coulomb term is calculated using the same experimentally-derived charge density distri-

butions (see [11]) used in fitting. Figure 6.3 shows the radial dependence of the Hartree-Fock

and spin-orbit components of the real part of the potential. The Hartree-Fock component

VHF has two subcomponents:

ΣHF (r, r′) = Vvol(r, r
′) + Vwb(r), (6.40)

where the non-local Hartree-Fock volume term Vvol(r, r
′), is defined as a Woods-Saxon form

coupled to a Gaussian non-locality:

Vvol(r, r
′) = V1×fvol(r; r1,a1)×N(r, r′;β1). (6.41)

The local Hartree-Fock wine-bottle term Vwb, named for resemblance to the dimple at

the bottom of a wine bottle, is defined as a Gaussian centered at the nuclear origin:

Vwb(r) = V2×er
2/σ2

2 . (6.42)
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Figure 6.3: The local radial dependence of the real part of the neutron optical potential is shown for
58Ni at 50 MeV for l = 3~. The central Hartree-Fock term is the dominant component of the real
potential and has a small wine-bottle contribution at the nuclear core (see Eq. 6.40). Per Eq. 6.43,
the Woods-Saxon form of the real spin-orbit component is allowed to have a different radius and
diffuseness compared to the Hartree-Fock Woods-Saxon form. In this fit, the radial component of the
spin-orbit Woods-Saxon is smaller than that from the Hartree-Fock Woods-Saxon. The hyberbolic
asymptotic growth of the real spin-orbit component at the origin is a consequence of the 1

r term in
Eq. 6.43 but contributes negligibly to the volume integral of the real part of the potential.

The real spin-orbit component Vso is defined using a derivative-Woods-Saxon shape in keeping

with the expectation that the spin-orbit coupling is strongest near the nuclear surface:

Vso(r, r
′) =

(
~
mπc

)2

V3 ×
1

r
fsur(r; r3,a3)×N(r, r′;β3)×(` · σ). (6.43)

The leading constant
(

~
mπc

)2

is taken to be 2.0 fm2 [42]. The energy-dependent part of

the real component of the potential, Re(Σ∆(α, β;E)), is generated using the imaginary

component of the potential, according to the dispersion relation (Eq. 6.17). Figure 6.5 shows
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the energy-dependent behavior of the dispersively-generated real part. This completes the

parameterization of the real component.

6.3.3 Imaginary Part

The imaginary part of the potential is comprised of independent surface and volume

terms both above and below the Fermi surface:

Im(Σ∗(r, r′, E)) = Im(Σ±vol(r, r
′, E)) + Im(Σ±sur(r, r

′, E)), (6.44)

where the volume and surface components are:

Im(Σ±vol(r, r
′, E)) = W±

vol(E)×fvol(r; r4,a4)×N(r, r′;β4),

Im(Σ±sur(r, r
′, E)) = 4a4W

±
sur(E)×fsur(r; r4,a4)×N(r, r′;β4).

(6.45)

The terms labeled with + determine the potential above εF , and the terms labeled with

− determine the potential below εF . Note that in this equation, the same Woods-Saxon

variables and nonlocality are used for both imaginary surface and imaginary volume, both

at positive and negative energies. Figure 6.4 shows the radial dependence of the imaginary

components of the potential. Compared to parameterizations used in previous DOM treat-

ments, the parameterization given here reduces by nine the number of r-space parameters

used for the imaginary surface and volume terms. The energy dependence of the imaginary

volume term reads:

W±
vol(E) = A±5

[
(E∆)4

(E∆)4 + (B±5 )4
+W±

NM(E)

]
, (6.46)
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Figure 6.4: The local radial dependence of the imaginary part of the neutron optical potential is
shown for 58Ni at 50 MeV for l = 3~. At this energy, there are significant contributions from both
the surface- and volume-associated terms.

where E∆ = |E − εF | and

W+
NM(E) = α6

[
√
E +

(εF +E+
6 )

3
2

2E
− 3

2

√
εF +E+

6

]
,

W−
NM(E) =

(εF − E −E−6 )2

(εF − E −E−6 )2 + (E−6 )2
.

(6.47)

The terms W±
NM are asymmetric above and below the Fermi surface and are modeled after

nuclear-matter calculations. They account for the decreasing phase space at negative energies

and the increasing phase space at positive energies. The imaginary surface terms read:

W±
sur(E) = ω4(E,A±7 ,B

±
7 , 0)− ω2(E,A±7 ,B

′±
7 ,C±7 ) +W7 × (` · σ), (6.48)
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Figure 6.5: Typical energy dependence of the imaginary part and the dispersion-relation-generated
energy-dependent real part of the neutron optical potential are shown for 58Ni.

where ωn was defined in Eq. 6.38, and W7 represents the change in the imaginary surface

strength due to an imaginary spin-orbit force. An imaginary spin-orbit contribution has been

seen to be useful in previous optical-model treatments in order to reproduce the high-energy

analyzing power data. Figure 6.5 depicts the energy-dependence of the imaginary terms in

the potential and the energy-dependence of the dispersive correction to the real part of the

potential. For comparison to other models and to compare the potential between nuclei, the

volume integral of the potential is the most useful. An example for the neutron imaginary

potential 58Ni is shown in Fig. 6.6. This completes the parameterization of the potential for

symmetric nuclei.
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Figure 6.6: Volume integrals of imaginary part of the neutron optical potential are shown for 58Ni
for the relevant LJ quantum numbers. At this energy, there are significant contributions from both
the surface- and volume-associated terms.

6.3.4 Parameterization of Asymmetry Dependence

For asymmetric nuclei, the parametric forms must be modified to account for the different

potential experienced by protons and neutrons. Previous DOM treatments have created

entirely separate proton and neutron potentials, each having all the free parameters used in

the symmetric parameterization presented above. For example, the fit of 48Ca in [42] used

over sixty unique parameters. Such an abundance of parameters risks overfitting, which can

hamper interpretation and predictive power. To reduce this risk, in this analysis we allowed

only a select handful of parameters to differ between neutrons and protons. Of the ten free

parameters used for the real potential in the symmetric parameterization above, only the
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depth of the central potential, V1 from Eq. 6.41, is allowed to vary with asymmetry:

V1 ⇒


V1 + Vasym × N−Z

A
for protons

V1 − Vasym × N−Z
A

for neutrons.
(6.49)

Of the nineteen free parameters used for the imaginary potential in the asymmetric param-

eterization above, the magnitude of the energy-dependence for the imaginary surface and

volume, A±5 and A±7 from Eqs. 6.46 and 6.48, are allowed to vary with asymmetry:

A±5 ⇒


A±5 +A±vol,asym × N−Z

A
for protons

A±5 −A
±
vol,asym × N−Z

A
for neutrons,

(6.50)

A±7 ⇒


A±7 +A±sur,asym × N−Z

A
for protons

A±7 −A±sur,asym × N−Z
A

for neutrons.
(6.51)

There should be no confusion between A±5,7, A (the total number of nucleons), and the

analyzing power. With these four additional asymmetric imaginary terms, the total number

of free parameters used for fitting asymmetric nuclei in the present work comes to thirty-four:

eleven real, twenty-three imaginary.

6.4 Computational Considerations

As with any high-dimensional optimization problem, the fitter must be vigilant against

the overfitting of data. In practice, this requires:

• parsimony with the number of parameters used in the model,
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• checking “under the hood” during optimization to verify that parameter values are

sensible, given the assumptions that undergird the model,

• understanding of what the value function is (i.e., the function being optimized) and

whether certain experimental data are being privileged over others, and

• that the cross-correlation between parameters is understood.

As was pointed out by Koning and Delaroche [30], large-scale fitting to experimental data is

part science, part art: fits should deviate as little as possible from the experimental values but

also be aesthetically acceptable to the eye of the fitter. Thus the preconceptions of the fitter

play a major role in the definition of the potential forms, the starting values of the parameters,

and the conclusion that a fit is “good enough” to stop fitting. For an extrapolation from

a fit to be well-justified, the fitted potential should be physically reasonable throughout its

domain and each parameter used in the fit should be well-constrained by the data.

To conclude this chapter, we briefly mention a few preconceptions that guided our expec-

tations on how the nuclear potential should look. Based on countless optical model analyses

over the last fifty years, the Woods-Saxon radius parameters r0 and diffuseness parameters

a were expected to be 1.1-1.2 fm and 0.5-0.7 fm, respectively. As non-local behavior is at

least partially associated with Pauli-exclusion-principle arguments, our fitted non-localities

β are expected to stay between 0.5-1.5 fm, commensurate with the size of the nucleon. In the

energy domain, above the Fermi level, the imaginary strength is expected to be dominated

by the surface-associated term from 0-50 MeV and by the volume-associated term from 50

MeV upward, keep flat beyond 200 MeV to agree with measurements of inelastic nucleon-

nucleon scattering in the GeV regime. Below the Fermi surface, the imaginary strength is

at first largely symmetric to that of the positive-energy regime, then tapers off as the phase
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space is reduced. Especially for smaller nuclei like 16O and even for 40Ca, it is difficult to

cleanly separate the negative-energy imaginary surface and imaginary volume terms, and

this separation may not be physically meaningful anyway. These general trends comport

with the expectation that low-lying excitations (surface phonons and collective modes) and

two-particle-one-hole excitations should be responsible for most surface imaginary strength.

6.4.1 Fitting Procedure

The Powell minimization method, outlined in Numerical Recipes in C [95], was used to

minimize the χ2 between experimental data points and the values calculated from the DOM

potential. A weighting scheme was assigned to the data points according to the number

of data sets for each sector of experimental data (e.g., dσ
dΩ
, binding energies) and to their

relative importance, guiding the fit to reproduce the most essential data. From fit to fit,

the weighting scheme was adjusted as necessary to escape local minima and reproduce the

broadest range of experimental data.

The radial grid, energy grid, size of the Lagrange and Laguerre bases, partial wave

angular momentum cutoff, and various integration cutoffs used in calculating the potential

and observable quantities were varied to ensure that results were not distorted by rounding

or truncation errors.
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Chapter 7

Dispersive Optical Model:
Results on 16,18O, 40,48Ca, 58,64Ni, 112,124Sn, 208Pb

The DOM fits on 16,18O, 40,48Ca, 58,64Ni, 112,124Sn, and 208Pb presented in this chapter

are the culmination of the new σtot and dσ
dΩ

experimental results (Chapters 3 and 5) and new

computational improvements in our DOM code (Chapter 6). Previous DOM treatments

have either used a local equivalent potential [94, 96] or only provided results on one or two

nuclei [59, 97]. All nine fits detailed here use the same fully-non-local approach (outlined in

chapter 6) and lay the groundwork for a comprehensive DOM treatment across the chart of

nuclides.

Beginning with 40Ca, results from our new analyses of 40,48Ca are compared to the pre-

vious DOM analyses of [42] and [97]. Highlights from our results on 16,18O, 58,64Ni, 112,124Sn,

and 208Pb are then presented; a complete picture of the fits on these nuclei is reserved for

Appendix D. Last, general trends are identified across all nine nuclei and successes and

deficiencies of the present DOM treatment are pointed out. A complete list of experimental

data used to constrain the fits is provided in Appendix B. The best-fit parameter values for

each nucleus are given in Appendix C.
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7.1 Results for 40,48Ca

As doubly-closed, mid-A nuclei, 40,48Ca are heavy enough for both density functional

theory (DFT) calculations [57] and light enough for certain ab initio treatments [98]. As

such, they have long been cornerstone nuclei for nuclear modeling. The size of the neutron

skin of 48Ca (along with that of 132Sn and 208Pb) is of great theoretical interest as it is

expected to be tightly correlated with the density-dependence of the symmetry energy [56].

A model-independent determination of the neutron skin thickness of 48Ca is the goal of the

upcoming parity-violating electron scattering measurement CREX [53]. Given this degree

of interest in Ca isotopes, optical models have been applied to 40,48Ca more than almost any

other nuclei. Thanks to the great deal of high-quality 40,48Ca elastic and inelastic nucleon

scattering data, quasi-free scattering data, and elastic electron scattering data available,

40,48Ca are ideal candidates to test the DOM approach. To orient the reader and facilitate

a comparison to previous DOM treatments, the 40,48Ca fit results are presented in greater

detail than are the fit results on 16,18O, 58,64Ni, 112,124Sn, and 208Pb presented in later sections.

7.1.1 Results for 40Ca

As with previous DOM treatments of 40Ca [42, 99], the present fit quickly converged on

proton and neutron elastic and inelastic scattering data from 10-200 MeV (shown in Figs.

7.1 and 7.2). Because the 40Ca proton σrxn has been measured up to 200 MeV, the energy-

dependence of the imaginary volume potential, W+
vol, was well-constrained, expediting the

fitting process and lending confidence to the quality of our fit. Inelastic scattering data for

protons and neutrons on 40Ca are shown in Figs. 7.3 and 7.4.

Table 7.1 shows the nucleon occupancy associated with each set of quantum numbers
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Table 7.1: 40Ca proton and neutron occupancies by orbital angular momentum L and total angular
momentum J from our DOM analysis. While most of the particle occupancy resides in states
completely filled in an independent-particle-model (0s 1

2
, 0p 3

2
, 0p 1

2
, 0d 5

2
, 0d 3

2
, and 1s 1

2
for 40Ca),

more than 10% of the occupancy appears in higher-angular-momentum states.

LJ s 1
2

p 3
2

p 1
2

d 5
2

d 3
2

f 7
2

f 5
2

g 9
2

g 7
2

` > 4 Total

πocc 3.455 3.628 1.807 5.265 3.391 0.426 0.246 0.295 0.195 1.374 20.08
νocc 3.452 3.624 1.803 5.257 3.39 0.421 0.244 0.291 0.192 1.351 20.02

LJ as calculated from our 40Ca fit. We see slightly less depletion of the proton 1s 1
2
and

0d 3
2
occupancy than the treatments of [42, 59], but there is qualitative agreement. In both

treatments, the correct total proton and neutron numbers were achieved within 1% of the

real values. From Fig. 7.8, it is clear that without significant depletion of the proton 0s 1
2

and 1s 1
2
shells, the charge density at the core of 40Ca would be too high, a characteristic

failure of mean-field models that do not account for depletion. The spectral functions of 40Ca

nucleons that we extract from the fit (Fig. 7.6) show spectral peak broadening compared to

the mean-field expectation, in keeping with (e,e’p) and (p,2p) measurements [9, 10].

From the spectral functions, the momentum-space distribution for protons and neutrons

was calculated (shown in Figs. 7.9 and 7.10). The amount of “high-momentum content”

of these distributions is of great interest, as significant high-momentum content indicates

deviation from the mean-field picture due to short-range correlations (SRCs). SRCs arise

even in very light nuclear systems (e.g., 4He) and are associated with an altered quark

distribution in nucleons [100, 101, 102]. Tensor-force interactions in neutron-proton pairs are

thought to be a dominant source of SRCs [103]. Thus in symmetric nuclei like 12C and 40Ca,

the high-momentum content is expected to be nearly the same for protons and neutrons,

whereas in asymmetric nuclei like 208Pb, the minority nucleon species is expected to have
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a larger high-momentum tail in the momentum distribution. In [104], the 12C proton and

neutron momentum distributions showed that ≈10% of the nucleon density has momentum

above roughly 270 MeV/c. We recover high-momentum fractions of 13.9% and 14.6% for

protons and neutrons in 40Ca, respectively.

The total binding energy for 40Ca is readily calculated using Eq. 6.34. Its radial depen-

dence is shown in Fig. 7.14 and the contributions to the binding energy from each single-

particle LJ are shown in 7.13. Per our fit, even though the 0s 1
2
nucleons are only about 9% of

the total nucleons in 40Ca, they provide a significant share of the binding energy (35%). As

the spectral functions (Fig. 7.6) reveal, 0s 1
2
nucleons spend a small but significant portion

of their time at very negative energies (<-100 MeV), pulling the weighted average binding

energy closer to 8.5 MeV/A, the experimentally-known binding energy for 40Ca. Even in

our fits that posses a large negative-energy tail, we still underpredict the binding by roughly

2 MeV/A. It appears that a better description of nucleon-nucleon correlations at extreme

negative energies is required to locate the remaining binding energy.

Lastly, from the proton and neutron point distributions generated by our fit, we calculate

a 40Ca neutron skin for of -0.056 fm (see Fig. 7.12). This is in good agreement with the

skin calculated in previous DOM treatments [42] and with the expectation that the neutron

skin should be slightly negative in symmetric nuclei, a consequence of Coulomb repulsion

nudging proton density toward the surface.
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Figure 7.1: Proton elastic scattering cross sections on 40Ca: experimental data and results from
DOM fit. Experimental data are shown as points and calculated values from the DOM fit of these
data are shown as lines. Differential cross sections ( dσdΩ) are shown in the left panel and analyzing
powers are shown in the right panel. For visual clarity, the data have been offset along the ordinate
axis so that the highest-energy data appear at the top of the figures. Data are colored according to
the energy ranges shown in the left panel. References to all experimental data are listed in Appendix
B.
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Figure 7.2: Neutron elastic scattering cross sections on 40Ca: experimental data and results from
DOM fit. Experimental data are shown as points and calculated values from the DOM fit of these
data are shown as lines. Differential cross sections ( dσdΩ) are shown in the left panel and analyzing
powers are shown in the right panel. For visual clarity, the data have been offset along the ordinate
so that the highest-energy data appear at the top of the figures. Data are colored according to the
energy ranges shown in the left panel. References to all experimental data are listed in Appendix
B.
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Figure 7.3: Proton reaction cross sections on 40Ca: experimental data and DOM predictions.
Experimental data are shown as points and calculated values from our DOM fit of these data
are shown by the line. References to all experimental data are listed in Appendix B.

Figure 7.4: Neutron reaction and total cross sections on 40Ca: experimental data and DOM pre-
dictions. Experimental data are shown as points and calculated values from our DOM fit of these
data are shown by the line. References to all experimental data are listed in Appendix B.
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Figure 7.5: Single-particle energy levels in 40Ca for protons and neutrons. In each panel, calculated
energies are shown on the left and experimental energies are shown on the right. References to all
experimental data used to estimate these energy levels are listed in Appendix B.
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Figure 7.6: Proton spectral functions by orbital angular momentum L and total angular momentum
J in 40Ca, as generated by our DOM fit. In deeply-bound shells, spectral peak broadening is
obvious, a consequence of increased imaginary strength in the self-energy at energies far from the
Fermi energy. The shape and location of the neutron spectral functions in 40Ca are similar except
for a Coulomb shift. The general shape and degree of occupation depletion associated with our
spectral functions agree with results of (p,2p) and (e,e’p) scattering and former DOM treatments
[42]. The vertical lines at 20 MeV show the threshold used to calculate particle numbers in the s 1

2

and d 3
2
shells, per the discussion following Eq. 6.29.
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Figure 7.7: Charge density distribution of 40Ca, as generated by our DOM fit (in red) and as
generated from experimental elastic electron scattering [11]. No error bars are reported in the
compilation of [11]; we show an arbitrary uncertainty range of 1% (blue shaded region).

Figure 7.8: Proton single-particle density distributions in 40Ca, as generated by our DOM fit. Only
the s 1

2
has density at the origin, which means that to recover the correct charge density at the

origin, the occupation of the proton 0s 1
2
and 1s 1

2
in 40Ca must be depleted by 20-30%. That the

bound LJs are significantly depleted indicates the importance of accounting for short- and long-range
correlations when extracting structural information.
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Figure 7.9: Integrated proton momentum distribution in 40Ca, as generated by our DOM fit. For
the slightly-occupied proton f 7

2
, f 5

2
, and g 9

2
and higher shells (which are completely vacant in an

independent-particle model), a significant fraction of their density lies above 270 MeV/c (indicated
by the shaded gray region). The fraction of proton high-momentum content (i.e., above 270 MeV/c)
is listed.

Figure 7.10: Integrated neutron momentum distribution in 40Ca, as generated by our DOM fit.
The slightly-occupied neutron f 7

2
, f 5

2
, and g 9

2
shells make a significant contribution to the high-

momentum content above 270 MeV/c (indicated by the shaded gray region), as is true for the
protons in the figure at top of the page. The fraction of neutron density with momentum above 270
MeV/c is listed.
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Figure 7.11: Volume integral of proton imaginary potential in 40Ca. Above the Fermi energy, the
surface-associated and volume-associated strength are clearly identifiable around 40 MeV and above
100 MeV, respectively. Near the Fermi energy, the potential is symmetric. Below the Fermi energy,
the reduction of phase space reduces the magnitude of imaginary strength, but even at very negative
energies, there is some strength. The small – but significant – occupation at very negative energies
make an outsized contribution to the total binding energy.
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Figure 7.12: Proton and neutron point density distributions in 40Ca, as generated by our DOM
fit. The RMS radii of the distributions and their difference (the neutron skin) are provided. In a
symmetric system like 40Ca, the neutron skin is expected to be slightly negative as a consequence of
slight reduction of proton density in the core from Coulomb repulsion. The neutron skin we extract
is in good agreement with the previous DOM fit of [42]. A comparison to the experimental 40Ca
charge density distribution is shown in Section D.3 of Appendix D.
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Figure 7.13: Energy density distribution for protons in 40Ca, as generated by our DOM fit. Valence
nucleons (e.g., in the proton 1s 1

2
and 0d 3

2
subshells in 40Ca) contribute only slightly to the binding

energy.

Figure 7.14: Total energy density integral in 40Ca, as generated by our DOM fit. The total binding
energy and binding energy per nucleon are given.
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7.1.2 Results for 48Ca

The recent non-local DOM treatment of Mahzoon et al. [59] was able to reproduce a

wide variety of experimental data on 48Ca and recovered a 48Ca neutron skin of 0.249 ±

0.023 fm. This neutron skin value is significantly higher than the 0.132 fm calculated by the

ab initio treatment of [98]. Mahzoon et al. found that when the smaller ab initio neutron

skin size was forcibly applied to their fit, it disturbed the fit’s reproduction of experimental

48Ca neutron σtot data, implying that the neutron σtot might be sensitive to the neutron skin

thickness. In this work, our fit on 48Ca uses essentially the same experimental data used by

Mahzoon et al. but less than half as many potential parameters.

There are fewer available elastic nucleon scattering data sets for 48Ca compared to 40Ca,

so it was somewhat more difficult to nail down the real terms of the potential. Still, with

both proton elastic scattering data sets and a complete neutron total cross section data set in

hand, we did not have too much trouble converging on a reasonable asymmetry-dependence

for the depth of the real central potential Vasym. This term sets the relative depth of the

central potential for protons and neutrons and thus is moderately important for the size of

the neutron skin. A more serious problem was the lack of proton σrxn data above 48 MeV, as

it meant that the magnitude parameter of the imaginary volume asymmetry A±vol,asym was

very difficult to constrain. In our final optimization, we have a rather low value of W+
vol for

48Ca compared to that of 40Ca (compare Fig. 7.11 with Fig. 7.15).

Figure 7.16 shows the matter density distribution of 48Ca per our fit. Compared to 40Ca,

the difference in proton and neutron distributions is more apparent, as the valence ν0f 7
2
shell

goes from mostly empty in 40Ca (0.42 neutrons, per our fit) to mostly full in 48Ca (6.84

neutrons, per our fit). We extract a neutron skin of 0.150 fm, significantly lower than the
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Figure 7.15: Volume integral of proton imaginary potential in 48Ca. Compared to 40Ca, the magni-
tude and slope above 100 MeV is significantly lower, likely because there were no proton σrxn data
available for 48Ca above 48 MeV to constrain this regime.

0.249± 0.023 fm of the previous DOM treatment and only slightly larger than the ab initio

result. Without a covariance analysis of the DOM parameters, it cannot be clear which DOM

result is more reliable. If most of the additional parameters of [42] are well-constrained, then

our present treatment with fewer parameters is likely deficient, as we would have discarded

relevant physics. If the previous DOM treatment was underconstrained, their result may be

a consequence of overfitting. We await the results of the CREX measurement to provide a

model-independent indication of the 48Ca neutron skin size.
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Figure 7.16: Proton and neutron point density distributions in 48Ca, as generated by our DOM
fit. The RMS radii of the distributions and their difference (the neutron skin) are provided. The
neutron skin we extract is significantly smaller that of the previous DOM fit of [42] and is only
slightly larger than the skin extracted from the ab initio treatment of [98]. A comparison with the
experimental 48Ca charge density distribution is shown in Section D.4 of Appendix D.

7.2 Results for 16,18O

The lightest system analyzed in the DOM framework, 16O is a valuable benchmark for

χ-EFT, shell model, and ab initio approaches. A wealth of scattering and bound-state

information have been collected on 16O, making it a good test case for the validity of the

DOM in light systems and helping to validate the choices of DOM potential forms.

Of the nuclides we chose for a DOM treatment, 18O was one of most challenging due
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to the paucity of available experimental data, the lightness of the system, and the neutron

open shell. To constrain the negative-energy domain of the potential, the only unambiguous

experimental data were the neutron and proton separation energies and the overall binding

energy, adding to the uncertainty in the 18O negative energy parameter values.

7.2.1 Results for 16O

The large corpus of experimental data used to constrain the 16O potential includes pro-

ton dσ
dΩ

and analyzing powers up to 200 MeV, neutron dσ
dΩ

and analyzing powers up to 100

MeV, proton σrxn cross section up to 65 MeV, and qualitative knowledge about the shape

of the spectral functions of the bound πs 1
2
, p 3

2
, and p 1

2
subshells from (e,e’p) measurements.

Reasonable agreement with all experimental data was achieved, excepting the highest-energy

(> 150 MeV) proton differential elastic cross sections and analyzing powers, especially at

backward angles.

For a system as light as 16O, the density of states at low energies (i.e., below the neu-

tron separation energy) is sufficiently low that a smoothly-varying potential will be a poor

approximation of the resonance structure that dictates the strength of inelastic scattering.

This deficiency is particularly acute in the doubly-closed-shell nuclei, where the level spacing

is larger near the Fermi energy. We expect this to be a contributing factor to the slight

overestimation of the RMS charge radius (see Fig. 7.17).

As with 40Ca, we find that 16O has a slightly negative neutron skin, -0.024 fm.
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Figure 7.17: Charge density distribution of 16O, as generated by our DOM fit (in red) and as
generated from experimental elastic electron scattering [11]. No error bars are reported in the
compilation of [11]; we show an arbitrary uncertainty range of 1% (blue shaded region).

Figure 7.18: Proton single-particle density distributions in 16O, as generated by our DOM fit.
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7.2.2 Results for 18O

For 18O, a complete Fourier-Bessel-parameterized charge density distribution (used for

16O, 40,48Ca, 58,64Ni, 124Sn, and 208Pb) was unavailable. To generate an approximate charge

density distribution for 18O we linearly scaled the 16O charge density distribution to repro-

duce the 18O-16O δRMS from [11] while maintaining a total charge of eight. The reported

RMS charge radii of 16O and 18O differ by only 0.07 fm (≈2.5%), so the 18O charge density

distribution we generated is barely distinguishable from the 16O distribution. This same

scaling procedure was also employed to generate a charge density distribution for 112Sn,

using the experimentally-derived 124Sn charge density distribution.

To initiate the fit on 18O, the 16O best-fit parameter values were assigned to the 18O

parameter file and observables were calculated to compare with 18O experimental data. The

16O optimized parameter values were moderately successful at reproducing the 18O scattering

data without further adjustment, though almost no neutron scattering data was available

for 18O besides our newly-measured neutron σtot. Using the raw 16O parameters, the DOM

predictions for 18O proton SP levels were underbound by several MeV per particle and

the calculated particle number was too low, unsurprising given the insufficiency of the 16O

Hartree-Fock term in providing two additional nucleons’ worth of binding in 18O. Thus, be-

fore loosening any other parameters, the HF depth and HF depth asymmetry terms were

allowed to vary, reducing the chi-square contribution from the charge density, particle num-

ber, and energy level sectors. Once a chi-square minimum had been reached with these two

parameters, all other parameters were allowed to vary. Our optimum fit achieved good agree-

ment with all experimental 18O scattering data except the 24 MeV neutron elastic scattering

data of Grabmayr et al. [105], where our fit somewhat underestimates the differential cross
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Figure 7.19: Proton and neutron point density distributions in 18O, as generated by our DOM fit.
The RMS radii of the distributions and their difference (the neutron skin) are provided. Adding
two neutrons to 16O dramatically increases the neutron skin, as most of the added neutron density
settles into the ν0d 5

2
shell, outside the 16O core. A comparison to the experimental 18O charge

density distribution is shown in Section D.2 of Appendix D.

section throughout its range.

Figure 7.19 shows the matter density distributions for protons and neutrons extracted

from our fit on 18O. We recover a large neutron skin of 0.197 fm, commensurate with the

neutron skin of much heavier, more asymmetric nuclei. The reason is clear: most of density

from the two extra neutrons in 18O goes into the ν0d 5
2
, which peaks at the nuclear surface,

increasing the neutron RMS radius. To test our extracted neutron skin thickness for 18O

we considered the difference in RMS charge radii between mirror nuclei 18Ne and 18O. The
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values of 2.97 fm for 18Ne from [106] and 2.79 fm for 18O from [11, 12] yield a difference of

0.18 fm, quite close to our extracted neutron skin for 18O.

7.3 Results for 58,64Ni

Unlike 40,48Ca, both 58Ni and 64Ni have partially-occupied neutron shells in the independent-

particle-model picture. Accordingly, Ni isotopes have increased level density near the Fermi

level and should possess significant imaginary strength in this region, impacting low-energy

elastic and inelastic nucleon cross sections. Recently, A. Brown has outlined a program to

constrain the density dependence of the symmetry energy using RMS charge radii in mirror

nuclei in the Fe and Ni region [107], heightening interest in accurate matter density distri-

butions for these isotopes. While 60Ni and 62Ni were not analyzed here, the charge density

distributions of both are well-known [11], making the even Ni isotopes an ideal target for a

future DOM analysis along an isotope chain.

7.3.1 Results for 58Ni

Like 40Ca, 58Ni enjoys abundant proton and neutron elastic scattering data. In our 58Ni

fit, the imaginary strength rises steeply just above the Fermi energy, understandable in light

of the lower-lying excited states in 58Ni compared to all the lighter closed-shell isotopes

already presented. As with 48Ca, the lack of high-energy proton σrxn data makes it difficult

to unambiguously identify the high-energy imaginary strength (W+
vol).

Figure 7.20 shows the matter distributions and neutron skin we extract for 58Ni. In the

case of 18O, the addition of two neutrons compared to symmetric 16O increased the neutron

skin size dramatically. In 58Ni, the two extra neutrons (with respect to symmetric 56Ni)
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Figure 7.20: Proton and neutron point density distributions in 58Ni, as generated by our DOM fit.
The RMS radii of the distributions and their difference, the neutron skin, are provided. The two
valence neutrons (with respect to a 56Ni core) do little to increase the neutron skin, as most of
the added neutron density populates the ν1p 3

2
shell close to the nuclear core. A comparison to the

experimental 58Ni charge density distribution is shown in Section D.5 of Appendix D.

join the p-shell, dwelling mostly near the nuclear core where they do little to change the

neutron skin size. Per this rudimentary picture, it is clear that shell structure is critical for

understanding the evolution of neutron skins along an isotope chain.

7.3.2 Results for 64Ni

Due to its low natural abundance, 64Ni is a dramatically more expensive target material

than 58Ni, making experimental coverage very sparse on this isotope. Our search of the
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EXFOR database showed no 64Ni elastic or inelastic neutron scattering data at all, except

for a single study on 58,60,62,64Ni from 5-7 MeV almost forty years old [108]. Without our

new σtot data, a DOM analysis of this type would have been infeasible. Our fit of 64Ni

easily converged on our new neutron σtot and the experimental binding energy per nucleon,

suggesting that the 64Ni fit parameters are still significantly underconstrained. Accordingly,

the neutron skin we extract for 64Ni is expected to be less reliable but still worth reporting.

Compared to 58Ni, our fit suggests that much of the extra neutron density of 64Ni adds to

the occupation of the ν0f 7
2
and ν0f 5

2
subshells. The extra occupation in the high-angular-

momentum f-shell grows the neutron skin substantially, to 0.15 fm (cf. -0.0054 fm for 58Ni).

7.4 Results for 112,124Sn

Of the isotopic systems studed in this treatment, 112,124Sn was the least characterized by

experimental data. Our new neutron σtot and dσ
dΩ

measurements provide a sizable fraction

of the total available nucleon scattering data on 112,124Sn from 1-200 MeV. Because of the

lack of data, our Sn fits are likely the least well-constrained of all the fits presented here,

with the possible exception of 64Ni. Still, the structural information exctracted from our fits

on 112,124Sn largely comports with the trends seen in the other isotopic systems and may

be useful for extrapolating properties of the doubly-magic 100Sn and 132Sn. In addition,

mid-shell Sn isotopes exhibit neutron superfluidity and help provide important information

about deviations from the shell model outside shell closures.
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7.4.1 Results for 112Sn

For 112Sn, the only neutron scattering data available from 10-200 MeV were the new data

sets presented earlier in this work. Given this situation, it is encouraging that the momentum

distributions we extract, shown in Figs. 7.21 and 7.22, are comparable to those of both the

lighter 58Ni and heavier 208Pb, suggesting that our parameters for 112,124Sn are reasonably

well-constrained.

It should be noted that while 112Sn and 18O have almost the same asymmetry (N−Z
A

),

the valence neutrons in 112Sn are spread more evenly over several shells, so it is sensible that

the neutron skin we recover is nearly zero.
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Figure 7.21: Integrated proton momentum distribution in 112Sn, as generated by our DOM fit. The
fraction of proton high-momentum content is comparable, but slightly lower than, that of neutrons
(figure below).

Figure 7.22: Integrated neutron momentum distribution in 112Sn, as generated by our DOM fit.
The fraction of neutron density with momentum above 270 MeV/c is listed.
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7.4.2 Results for 124Sn

Figure 7.23 shows the matter distribution for protons and neutrons in 124Sn and the

neutron skin as generated by our fit. For both Sn isotopes, we had trouble reproducing the

experimentally-derived charge density distributions with the same degree of accuracy as the

nuclei presented above. Whether this difficulty stemmed from insufficient nucleon scattering

data or from a deficiency in our parameterization, we do not know. To make up for the lack

of data on any one Sn isotope, previous local DOM fits on the Sn isotopes [94, 96] had fit

several members of the ten stable Sn isotopes simultaneously. The current non-local DOM

version used in this work is not equipped for this strategy, but it is a promising direction

that we hope to pursue in future work.
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Figure 7.23: Proton and neutron point density distributions in 124Sn, as generated by our DOM
fit. The RMS radii of the distributions and their difference (the neutron skin) are provided. The
neutron skin of neutron-rich systems like 124Sn are expected to be strongly correlated with the size
of the density-dependence of the symmetry energy, L.

7.5 Results for 208Pb

Like 40Ca and 16O, 208Pb occupies an important square on the chart of nuclides and has

received a great deal of experimental and theoretical attention. The size of the neutron

skin of 208Pb has been identified by numerous studies as highly correlated with the density-

dependence of the symmetry energy, L, a critical input for the neutron star equation-of-state.

By employing parity-violating electron scattering to probe the weak charge distribution in

208Pb, the PREX experiment at Jefferson Laboratory extracted a 208Pb neutron skin value
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of 0.33±0.17 fm. A followup experiment with improved statistics, PREX II, is slated to run

later in 2019 and is expected to provide a model-independent value for the 208Pb neutron

skin thickness to within 0.06 fm. Given the wide range of 208Pb neutron skin thicknesses

predicted by relativistic and non-relativistic mean-field models, this quantity is an excellent

test for the value of the DOM as a predictive tool.

Figures 7.24 and 7.25 show the momentum distribution for protons and neutrons we ex-

tract from our 208Pb fit. As with 48Ca, the proton high-momentum content is lower than

the neutron high-momentum content, a consequence of additional filling of higher-angular-

momentum subshells for neutrons compared to protons, skewing the total momentum distri-

bution upward. Figure 7.26 shows the nucleon matter distributions, which yield a neutron

skin of 0.200 fm. Compared to previous DOM treatments, our value for the 208Pb neutron

skin is slightly smaller and more in line with the average of mean-field calculations [56]. An

important difference in our DOM treatment is that only the depth of the Hartree-Fock po-

tential is allowed to vary with asymmetry; previous treatments relaxed this restriction and

equipped every real-term parameter with an asymmetry-dependence. We suspect that some

of the difference in our extracted 208Pb radii derives from this choice. Unfortunately, our

present fit of 208Pb fails to recover enough binding energy per nucleon and substantially un-

derbinds the most deeply-bound proton levels (e.g., the 0p 3
2
), indicating that our description

of very deep levels is inadequate. In the end, it is not clear which DOM parameterization is

better-justified without a deeper analysis of the model-dependence of the results.
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Figure 7.24: Integrated proton momentum distribution in 208Pb, as generated by our DOM fit. The
fraction of proton density with momentum above 270 MeV/c is listed.

Figure 7.25: Integrated neutron momentum distribution in 208Pb, as generated by our DOM fit.
The fraction of neutron density with momentum above 270 MeV/c is listed.
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Figure 7.26: Proton and neutron point density distributions in 208Pb, as generated by our DOM
fit. The RMS radii of the distributions and their difference (the neutron skin) are provided. The
neutron skin of neutron-rich systems like 208Pb are expected to be strongly correlated with the size
of the density-dependence of the symmetry energy, L.
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7.6 General Trends

7.6.1 Neutron Skins Sensitive to Shell Structure

Table 7.2 presents the neutron skins we extracted from our optimized DOM fits on all

nuclei under study. As anticipated, both the total degree of asymmetry and the specific shell

structure affect the calculated skins.

Isotope π rrms [fm] ν rrms [fm] ∆rms [fm]
16O 2.685 2.661 -0.024
18O 2.677 2.874 0.197

40Ca 3.470 3.414 -0.056
48Ca 3.472 3.621 0.150
58Ni 3.738 3.733 -0.005
64Ni 3.828 3.977 0.150

112Sn 4.569 4.560 -0.009
124Sn 4.608 4.780 0.170
208Pb 5.482 5.680 0.200

Table 7.2: Neutron skins (∆rms) extracted from DOM analysis. The skins are calculated as the
difference between the proton and neutron point distribution root-mean-square (RMS) radii and thus
do not include the nucleon-size form factor. All values are rounded, so the neutron skin reported
in the last column may not exactly match the difference of proton and neutron RMS radii listed.
The full calculated matter distributions for protons and neutrons for each nucleus are available in
Appendix D.

7.6.2 Depletion, Momentum Content, and Deep Imaginary Strength

For over fifty years, (e,e’p) and (p,2p) measurements have shown that in real nuclei,

single-particle spectroscopic factors are significantly reduced both near the Fermi surface

and for deeply-bound subshells. Table 7.3 shows the spectroscopic factors for valence proton
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and neutron subshell for each nucleus modeled in this work and indicates consistent reduction

in spectroscopic factors by around 25-30%, for valence subshells.

Isotope Protons Neutrons

Level SF Level SF
16O 0p 1

2
0.75 0p 1

2
0.75

18O 0p 1
2

0.78 0d 5
2

0.76
40Ca 0d 3

2
0.76 0d 3

2
0.76

48Ca 1s 1
2

0.75 0f 7
2

0.76
58Ni 0f 7

2
0.70 1p 3

2
0.71

64Ni 0f 7
2

0.74 1p 1
2

0.78
112Sn 0g 9

2
0.70 1d 5

2
0.74

124Sn 0g 9
2

0.72 0h 11
2

0.76
208Pb 2s 1

2
0.67 1f 5

2
0.73

Table 7.3: Spectroscopic factors for protons and neutrons in the valence subshell (e.g., πp 1
2
, νd 5

2
for

18O) are listed for all nuclei considered in the present treatment. For some of the heavier sys-
tems with multiple, nearly-degenerate levels nears the Fermi surface (e.g., 124Sn), we list only one
representative level.

When examined in momentum space, the proton and neutron particle density distribu-

tions are expected to show significant enhancement of nucleon density at higher momentum

than would be expected in an independent-particle shell model [109]. The amount of this

so-called “high-momentum content” has been investigated by knockout reactions [104, 109]

and shown to be significant even for very light nuclei such as 12C (≈ 10% above 270 MeV/c).

Table 7.4 shows the percentage of the proton and neutron densities with momentum above

270 MeV/c per our fits. The values we extract are roughly constant for all nuclei at around

12-15% for protons and 15-18% for neutrons. For 112Sn and 124Sn where experimental cov-

erage is most sparse, we see deviations from the average, suggesting that our optimized fits
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Table 7.4: High-momentum content as extracted from DOM analysis. For protons and neutrons for
each nucleus under study, the nucleon density distribution in momentum-space is calculated and the
fraction of the density distribution above 270 MeV/c is tabulated. For comparison, [104] reported
≈ 10% high momentum content for 12C. The full momentum-space matter distributions for protons
and neutrons for each nucleus are available in Appendix D.

Isotope π p>270 [%] ν p>270 [%] p/n Ratio
16O 15.3 15.7 0.97
18O 14.3 13.8 1.03

40Ca 13.9 14.6 0.95
48Ca 12.4 15.5 0.80
58Ni 12.3 14.8 0.83
64Ni 14.7 16.0 0.92

112Sn 14.9 18.7 0.80
124Sn 10.9 15.8 0.69
208Pb 15.3 17.6 0.87

require more experimental data for a clearer picture. For the symmetric nuclei 16O and

40Ca, we see that the neutron high-momentum content is slightly larger than the proton

high-momentum content, ostensibly from a slight broadening of the momentum distribution

for neutron subshells compared to proton subshells, which nudges more neutron density into

the high-momentum regime.

For highly asymmetric nuclei (e.g., 124Sn, 208Pb), we might expect that, all other things

being equal, the minority nucleon species should have a larger fraction of high-momentum

content [103, 100], a consequence of the enhanced short-range correlations experienced by the

minority-species nucleons. At first glance, our results appear to contradict this expectation:

for example, in 48Ca, we see a reduction in the percentage of proton high-momentum content

compared to 40Ca (12.4% for 48Ca, 13.9% for 40Ca). However, a closer look at the breakdown

of momentum distributions by angular momenta (Fig. 7.27) shows that the story is more

complicated. In going from 40Ca to 48Ca, the nuclear potential widens and the proton Fermi
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Figure 7.27: The proton s 1
2
, d 5

2
, and f 7

2
momentum distributions for 40,48Ca are shown. Compared

to 40Ca, we see a slight reduction in the total 48Ca proton high-momentum content over all subshells
(the total fraction of protons with momentum above 270 MeV/c is listed in the gray box). This
reduction is associated with a slight narrowing of the valence-region momentum distributions (e.g.,
d 5

2
and f 7

2
) that are the dominant contributors to the total high-momentum fraction.

energy drops considerably, by almost 10 MeV. Per our fit, the first lobe of the proton s 1
2

momentum distribution appears to shift toward higher momentum slightly, but the second

lobe (corresponding to the proton 1s 1
2
level) narrows slightly. More importantly, the subshells

that contribute the most to the proton high-momentum content (e.g., the proton d 5
2
and f 7

2
)

are also reduced in width, lessening the overall high-momentum fraction. It is plausible that

the narrowing of the momentum-space peaks is due to the widening of the proton potential

from the eight extra neutrons in 48Ca, but it also may indicate that our parameterization is

insufficiently flexible to reproduce the true potential. In any case, our results suggest that to

connect short-range correlations with increased high-momentum content, a fixed momentum

threshold (e.g., 270 MeV/c) may not be useful for comparing nuclei and a more nuanced
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treatment may be needed. Of course, additional experimental data to constrain the deep

negative-energy regime for 48Ca, especially for neutrons, would be quite valuable.

The deep negative-energy realm is perhaps the most challenging sector for our fit, as

our only direct constraint is the experimental binding energy. Because the binding energy

does not differentiate between protons and neutrons, we have very limited sensitivity to the

isovector-dependence of the potential in this area. As a result, the relative high-momentum

content between protons and neutrons that we extract can only be taken qualitatively.

7.6.3 Overestimation of RMS Charge Radius

The charge density distributions extracted from our fits showed a slight excess of charge

density on the extreme tail of the distributions (e.g., above 5 fm for 40Ca). As the RMS

charge radius is most sensitive to contributions from the tail, this excess led to chronic

overestimation of the RMS charge radius of roughly 0.05-0.10 fm across nuclei. We found

that density in the extreme tail of the matter distributions was very sensitive to the amount

of imaginary strength just below the Fermi energy (W−
sur); in fits with a high weight for the

RMS charge radius, W−
sur would tend toward zero or even cross into negative territory, which

is unphysical. Especially in the lighter systems we studied, our fits routinely moved all the

negative-energy imaginary strength intoW−
vol. We had no difficulties fittingW+

sur, largely due

to the availability of proton σrxn and neutron σtot data from 20-50 MeV. Interestingly, the

volume integral of the imaginary strength (an integration over the radial form factors) of our

optimized fits shows the imaginary potential to be largely symmetric about the Fermi energy

within roughly 30 MeV (see Fig. 7.11), in keeping with the expectations of [33] and many

other theoretical treatments. Whether the partitioning of the negative-energy imaginary

strength into W−
vol over W

−
sur has real significance is unclear, but it suggests that subsequent
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analyses may need more specialized treatment in the near-surface negative-energy regime.

Practically speaking, because the nuclear surface and volume overlap significantly in

light systems like 16O, we did not expect to see a unique best-fit for the negative-energy

parameters. In real nuclei near the Fermi surface, imaginary strength should vary rapidly

due to the discrete resonance structure of the nucleus. In this region, the optical potential

corresponds quite poorly with this reality as it can only represent a smooth average. With

these considerations in mind, it is perhaps not surprising that we had trouble getting the

negative-energy surface parameters under control. In the end, for 16,18O we fixedW−
sur to zero

for the final optimizations to avoid numerical problems and prevent any unphysical imaginary

parameter values. In our fits, the W−
vol term had no trouble providing imaginary strength

where it was needed to recover correct particle numbers, charge density distributions, and,

to some extent, binding energies.

It should be noted that while we produce RMS charge radii that are a tad high compared

to experimental measurements, we had good success recovering the shape of the full charge

density distribution profiles. As the neutron skin is the difference between proton and

neutron matter radii, any systematic issues that affect both the neutron and proton matter

distributions should have only a small effect on our neutron skin values.
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Chapter 8

Conclusions

8.1 Advancements in Digitizer-enabled Neutron σtot Measurements

of Rare Isotopes

By applying newly-available digitizer technology to reduce per-event deadtime, we have

advanced a program of isotopic σtot measurements valuable for constraining the isovector

strength of the nuclear potential at positive energies. New data have been obtained on

16,18O, 58,64Ni, 103Rh, and 112,124Sn up to 450 MeV, dramatically expanding the coverage of

these nuclei and laying the groundwork for subsequent optical model analyses. At the same

time, we have identified shortcomings in the digital-signal-processing approach that must be

rectified in future measurements, namely, the uncertainty in the true analytic deadtime and in

the deadtime associated with digitizer buffer readout to the data acquisition computer. These

effects depend on the proprietary digitizer firmware algorithms used for peak identification

and buffer management, both of which are opaque to the end user. In an ideal experiment,

DPP and raw waveform traces should be collected in parallel throughout the experiment and

compared during data analysis to pinpoint any weaknesses in the peak-detection algorithm

and identify variations in the analytic deadtime. Due to the ferocious data rate, we could
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only collect small snippets of raw waveform data, insufficient for a full DPP-raw-waveform

comparison. To resolve the discrepancy in our results above 100 MeV with those of [16] and

[20], we suggest two types of benchmarking experiments in the future. First is a two-digitizer

experiment: the same detector signals are fed into two separate time-synchronized digitizers,

one running only in DPP mode, and one running in raw waveform mode. During analysis,

a simulated DPP-mode peak sensing algorithm can be developed, applied to the real raw

waveform-mode data, and its results compared with the real DPP-mode data, clarifying

the DPP-mode behavior of the digitizer firmware. The second experimental setup would use

both a digitizer and analog electronics: the same signals would be fed both into the digitizer,

as in our experiment, and into analog-electronics logic utilizing a “looking period” (shown in

Fig. 3.8).

8.2 Implications of DOM Results

Our DOM analyses of 16,18O, 40,48Ca, 58,64Ni, 112,124Sn, and 208Pb have yielded new insight

into the validity of the DOM approach and what experimental data are most needed for

improved calculations of essential structural quantities. Our successful fits of 16,18O show that

even lighter systems (e.g., 12C) may be amenable to a non-local DOM treatment, providing

a bridge between ab initio calculations and phenomenological optical models. The shape of

the imaginary potential above the Fermi energy is consistent across all our fits and agrees

qualitatively with the state-of-the-art global optical model of [30]. Below the Fermi energy

where experimental data are much sparser, we see significant variation in the shape of the

potential between nuclei especially near the Fermi surface, where the magnitude of the

imaginary potential changes rapidly. This is most conspicuous in the lighter nuclei where a
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Table 8.1: Sensitivity of optical potential terms to the experimental nucleon scattering data types
used in our fit. The typical range of available experimental data roughly corresponds to that used
for our DOM treatments. Parameter terms are detailed in Section 6.3.

Data type Protons Neutrons

Typ. range [MeV] Affected terms Typ. range [MeV] Affected terms
dσ
dΩ

0− 200 Vvol, Vso 0− 100 Vvol, Vso

AP* 0− 200 Vvol, Vso 0− 100 Vvol, Vso

σrxn 0− 100
W+
sur, W

+
vol,

W+
NM

14.1 W+
sur

σtot – – 10− 200
Vvol, Vso, W+

sur,
W+
vol, W

+
NM

*Analyzing Power

reduced level density makes a smooth optical potential a poor approximation. Heavy nuclei

have sufficient phase space and level density on both sides of the Fermi energy that the nuclear

potential is largely symmetric near the Fermi energy, in keeping with the expectations of

Mahaux and Sartor [33].

Tables 8.1 and 8.2 summarize our understanding of the sensitivity of optical potential

terms to the many experimental data types used in our fit. As discussed in Chapter 1 and

shown in Appendix B, there is an abundance of nucleon elastic scattering data from 0-200

MeV on many isotopic targets. Equipped with these data, optical-model analyses have

tightly constrained the magnitude and shape of the real components of the self-energy (in

our treatment, the central potential and spin-orbit components). Unsurprisingly, the gaps

in our knowledge of the self-energy are largest for imaginary terms, especially in areas where

experimental data are sparsest. In our parameterization, this meant that the imaginary

potential above 100 MeV (W+
vol) and at all energies below the Fermi surface (W−

vol) were

difficult to constrain due to lack of data. At small positive energies, the imaginary strength
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Table 8.2: Sensitivity of optical potential terms to the bound-state experimental data types used
in our fit. The typical range listed here refers to the choice of incident particle momentum used to
perform the measurement. Parameter terms are detailed in Section 6.3.

Data type Typical range Affected terms

(e,e) q-range:
0.5− 3.5 fm

Vvol, Vasym,
W±
vol, W

−
NM

(e,e’p) p-range:
70− 200 MeV/c W−

sur, W
−
vol

〈r2〉 12 – Vvol, W−
sur

SP Levels – Vvol, Vso

Binding Energies – Vvol, W−
vol,

W−
NM

W±
sur was relatively well-constrained by the handful of proton σrxn studies from 20-80 MeV

all more than a decade old [110, 111, 112, 113]. These crucial mid-energy proton σrxn data

streamlined the fitting process for 16O, 40,48Ca, 58Ni, and 208Pb and added confidence in the

quality of our fits. Unfortunately, proton σrxn data between 100-200 MeV were available only

for 40Ca and 208Pb, so a chart-wide study of the evolution of the proton imaginary strength

remains out of reach. To understand the asymmetry-dependence of the imaginary strength

from 100-200 MeV, our new σtot results only contribute to the neutron half of the story. New

proton σrxn measurements above 100 MeV would provide the other.

In preliminary fits that did not include the binding energy, we found that the deep

negative imaginary strength, essentially W−
vol, was very poorly constrained. These early

fits gave far too small a binding energy, roughly 2-4 MeV/A. The inclusion of the binding

energy as a fitting constraint had a dramatic impact on the imaginary terms in the potential:

not only did W−
vol grow considerably, but the imaginary non-locality β4 grew from ≈ 0.6

fm to ≈ 0.9 fm, affecting the angular-momentum-dependence of the imaginary strength
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at all energies. With the binding energy included, all our fits indicate that a significant

fraction, as much as half, of the nuclear binding energy is generated by a small fraction

of the total nucleon density at very negative energies (<-50 MeV). To understand why, a

comparison to mean-field models is useful. In real nuclei near the Fermi surface, there is

little absorptive strength and thus the spectral functions for nucleons are primarily discrete

peaks. In this regime, mean-field models can give an excellent description of nuclear behavior

as the assumption of independent particle motion (and a discrete spectrum) is appropriate.

However, at very negative energies with larger imaginary strength, spectral peak broadening

is dramatic and adds a small, but significant, single-particle occupation at very negative

energies, occupation that plays an outsized role in binding. If our interpretation is correct,

it would partially explain the underbinding of nuclei in shell models as a failure to account

for spectral peak broadening beyond the valence space of the model. While our optimized

fits produced a binding energy per nucleon roughly 2 MeV/A smaller than the experimental

values, our results indicate that the binding energy is still quite useful for constraining the

imaginary potential strength at negative energies.

By comparison to experimentally-measured charge density distributions, we see that sig-

nificant depletion of s-shell occupation is needed to reproduce the proton density in the nu-

clear core. This depletion should occur in all bound shells as a consequent of short-range and

long-range correlations and significantly alters the proton and neutron matter distributions.

It is clear in our analysis that the matter distributions are sensitive to the proton and neutron

single-particle configurations as anticipated by Wilkinson [50] and Myers [52] several decades

ago. To wit, the neutron skin thickness we extract for 18O (0.197 fm) appears to be as large

or larger than that of 208Pb (0.200 fm), even though the asymmetry ratio of 208Pb (0.212) is

almost twice as large as that of 18O (0.111). In light of this result, we expect that the neutron
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Figure 8.1: Correlation between the neutron skin of 208Pb and several nuclear structure observables,
per a relativistic mean-field calculation with the FSUGold interaction conducted by J. Piekarewicz.
Many mean-field models recover a very strong correlation between the size of the neutron skin of
several neutron-rich nuclides and the density-dependence of the symmetry energy, L. Figure used
with permission.

Figure 8.2: Proton and neutron RMS radii in the
Sn isotopes computed in a relativistic mean-field
approximation using the FSUGold and NL3 pa-
rameter sets, with experimental data for compar-
ison. Figure and caption used with permission
from [114].

skins may balloon in 52Ar and 54Ca with

the filling of the νf 7
2
and f 5

2
subshells, but

grow more slowly in even heavier Ar and Ca

isotopes. Future experiments at FRIB and

other radioactive beam facilities will probe

this region and clarify the relative impor-

tance of the asymmetry ratio and high-spin

intruder subshells in determining the neu-

tron distribution near the dripline.

In relativistic and non-relativistic mean-

field models, the neutron skin, electric dipole
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polarizability, and dipole resonances of neutron-rich nuclei are shown to be tightly correlated

with the density-dependence of the symmetry energy, L. While some of our neutron skin

predictions are in agreement with those extracted from state-of-the-art mean-field models,

the full story is not at all clear. As an example, Fig. 8.1 shows the results of a covariance

analysis on a variety of nuclear structure quantities as calculated by a relativistic mean-field

model that employs an FSUGold interaction [56]. The neutron skin for 208Pb generated

by our fit is in good agreement with this model. However, another treatment that uses

the same interaction [114] gives a neutron skin for 112Sn of roughly 0.09 fm (see Fig. 8.2),

much larger than the -0.01 fm predicted by our fit. Understanding the model-dependence of

these predictions, both from relativistic mean-field approaches and from the DOM, is critical

for making progress on constraining L. As has been pointed out by other authors, a multi-

pronged approach is warranted and should include electroweak measurements like PREX [53],

comparison of charge radii in mirror nuclei [107], modeling of dipole polarizability [114], and

multi-messenger astrophysical measurements on neutron stars. With the expanded scope of

the DOM introduced in this work, we hope to add our new predictions to the mix.

Last, a few comments should be made about the DOM parameterization choices made

in this work. While we have found that the neutron skin is inflated with the filling of the

high-angular-momentum neutron subshells, we have also seen significant variation in the skin

thickness depending on small changes in the parameter values. In the present treatment, to

reduce the risk of overfitting, we reduced the total number of parameters to 34, less than half

as many as used in other DOM analyses by our group. As a consequence, it appears that

we have discarded some important physics: we were unable to recover, for example, the full

binding energies and the experimentally-known RMS charge radii for most of the isotopes we

analyzed. Further, the momentum distributions we generate for protons and neutrons likely
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underestimate the amount of high-momentum content, especially for protons in neutron-rich

systems. As mentioned earlier, the absence (and value) of high-energy proton σrxn plays an

important role in resolving these discrepancies. A comprehensive error analysis is required

to identify which parameters, if any, should be reintroduced to accommodate missing physics

while keeping the total number of parameters to a minimum.

8.3 Additional Directions for Future Study

In light of the advances and limitations of this work, we identify several additional avenues

of research worth pursuing. Besides the digitizer benchmarking experiments described earlier

in this chapter, σtot measurements on the stable Fe and Cd isotopes would supplement our

Ni and Sn isotope studies and provide much-needed information about optical-potential

isovector dependence outside closed proton shells. Data for σtot on the intermediate stable

isotopes 114,116,118,120,122Sn would improve optical-model extrapolations to 100Sn and 132Sn,

both of which are valuable for testing shell-model validity near the driplines. We reiterate the

importance of new proton σrxn studies across the chart of nuclides, particularly on closed-shell

isotope and isotone chains.

A major defect in the DOM treatment presented here is the lack of covariance analysis

of DOM parameters. Without theoretical error bars associated both with uncertainty in

the experimental data used and in the DOM’s parameteric forms, comparisons between the

DOM and other models cannot be complete. Such an analysis would also help reveal exactly

which experimental data are most needed to clarify the murkier energy domains in our fits

(e.g., the imaginary potential below -100 MeV and above 100 MeV). A first step toward this

goal is publication of the DOM codebase, a priority of our group. Even in the absence of
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appropriate error analysis, the single-particle densities and overlap functions generated by

DOM fits can be immediately applied for calculations of coherent neutrino scattering [115]

and scattering of potential dark matter candidates on common detector materials [116].

We close by noting that without a wide variety of fundamental experimental nuclear

data on stable targets – at high and low energies, both for elastic and inelastic scattering,

and probing both protons and neutrons – systematic analyses like that of the DOM are not

possible. Even as radioactive beam facilities reach further toward the driplines, the capacity

for basic scattering experiments on stable targets is vital for illuminating the relationship

between nuclear structure and reactions.
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Appendix A

Isotopic Composition of Enriched Samples

Tables A.1-A.6 give the isotopic distributions of the enriched samples used in neutron σtot

and dσ
dΩ

measurements. The distributions were determined by mass spectrometry or are from

the manufacturer’s certificate of analysis. To create the 4.9 g 112Sn sample, 3.9 g of 112Sn foil

(on semi-permanent loan from the group of Lee Bernstein of Lawrence Livermore National

Laboratory) and 1.0 g of 112Sn powder were combined. The 112Sn sample abundances given

here are a mass-weighted average of the isotopic abundances of the foil and powder.

For all of our samples, impurities from other elements were < 0.01%. The natural abun-

dances listed are from [117] and are rounded to the nearest 0.01%. Physical dimensions and

masses of each sample are given in Table 2.2.
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Table A.1: D2O sample isotopic distribution

Isotope Natural [%] Sample [%]
H 99.98-100.00 < 0.1
D 0.02-0.00 99.9

Table A.2: H18
2 O sample isotopic distribution

Isotope Natural [%] Sample [%]
16O 99.74-99.78 < 0.1
17O 0.04 < 0.1
18O 0.22-0.19 99.9

Table A.3: 58Ni sample isotopic distribution

Isotope Natural [%] Sample [%]
58Ni 99.56 68.08
60Ni 0.31 26.22
61Ni 0.01 1.14
62Ni 0.05 3.63
64Ni 0.07 0.93

Table A.4: 64Ni sample isotopic distribution

Isotope Natural [%] Sample [%]
58Ni 4.68 68.08
60Ni 2.30 26.22
61Ni 0.14 1.14
62Ni 0.72 3.63
64Ni 92.16 0.93

Table A.5: 112Sn sample isotopic distribution

Isotope Natural [%] Sample [%]
112Sn 0.97 99.89
114Sn 0.66 0.08
115Sn 0.34 0.01
116Sn 14.54 < 0.01
117Sn 7.68 < 0.01
118Sn 24.22 < 0.01
119Sn 8.59 < 0.01
120Sn 32.59 < 0.01
122Sn 4.63 < 0.01
124Sn 5.79 < 0.01

Table A.6: 124Sn sample isotopic distribution

Isotope Natural [%] Sample [%]
112Sn 0.97 < 0.01
114Sn 0.66 < 0.01
115Sn 0.34 < 0.01
116Sn 14.54 < 0.01
117Sn 7.68 < 0.01
118Sn 24.22 < 0.01
119Sn 8.59 < 0.01
120Sn 32.59 < 0.01
122Sn 4.63 0.10
124Sn 5.79 99.90
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Appendix B

Experimental Data Used to Constrain DOM
Potentials

In this work, each DOM fit incorporated up to nine types of experimental data. Sources

for proton and neutron scattering data ( dσ
dΩ
, analyzing powers, σrxn, σtot) are listed, starting

with 16O. For bound state data (binding energies, single-particle level energies, spectral func-

tion widths, charge density distributions, and RMS charge radii), we drew on compilations

given in Table B.1. For 18O and 112Sn, the full Fourier-Bessel-parameterized charge density

distributions were unavailable. In these cases, we scaled the charge density distributions of

16O and 124Sn, respectively, so that they would reproduce the experimentally-known RMS

charge radii of 18O and 112Sn.

Data types are abbreviated as follows: AP (analyzing power), BE (binding energy), ρch(r)

(charge density distribution), ∆SF (spectral function widths), and rrms (root-mean-square

charge radius). All energy ranges listed refer to the energy range of data used in the fit, not

the energy range available in the reference, which in some cases is larger.

Table B.1: Sources for bound-state data on all nuclei

Type Reference

ρch(r) [11]
rrms [11]
∆SF [9, 10]

SP levels [43]
BE [43]
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16O SCATTERING DATA

B.1 16O Scattering Data

Table B.2: 16O proton dσ
dΩ data

Energy [MeV] Reference

7.13 [118]
8.04 [118]
9.42 [118]
10.2 [118]
11 [119]
12.9 [118]
13.9 [118]
15.4 [120]
16.6 [120]
17.5 [121]
19.8 [122]
20.4 [122]
21.4 [122]
23.4 [123]
24.5 [123]
27.3 [123]
30.1 [123]
34.1 [123]
39.7 [123]
46.1 [123]
49.48 [124]
61 [125]
65 [126]
135 [127]
142 [128]
179.9 [129]
200 [130]

Table B.3: 16O neutron dσ
dΩ data

Energy [MeV] Reference

4.92 [131]
6.01 [131]
7.03 [131]
8 [132]

9.708 [133]
10 [134]

11.147 [133]
12 [134]

13.61 [135]
14 [134]
15 [136]
17 [134]
18 [137]
20 [137]
22 [137]
23 [138]
24 [137]
26 [137]
94.8 [139]
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APPENDIX B: EXPERIMENTAL DATA USED TO CONSTRAIN DOM POTENTIALS

Table B.4: 16O proton AP data

Energy [MeV] Reference

5.66 [140]
6 [140]

7.01 [140]
8.5 [140]
9.5 [140]
10.6 [141]
11.9 [140]
12.42 [141]
19.8 [122]
20.4 [122]
21.4 [122]
30.4 [142]
35 [143]
40.9 [144]
65 [126]
117 [145]
135 [127]
179.9 [129]
200 [130]

Table B.5: 16O neutron AP data

Energy [MeV] Reference

10 [134]
12 [134]
14 [134]
17 [134]
23 [138]

Table B.6: 16O proton σrxn data

Energy [MeV] Reference

18.8-47.7 [146]
20.9-43.2 [111]

65.5 [112]

Table B.7: 16O neutron σrxn data

Energy [MeV] Reference

14.1 [147]

Table B.8: 16O neutron σtot data

Energy [MeV] Reference

10-200 this work
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18O SCATTERING DATA

B.2 18O Scattering Data

Table B.9: 18O proton dσ
dΩ data

Energy [MeV] Reference

7.89 [148]
8.77 [148]
9.24 [148]
9.66 [148]
10.61 [148]
10.71 [148]
11.16 [148]
12.37 [148]
13.04 [148]
13.29 [148]
14.7 [149]
16.28 [148]
17.7 [149]
19.1 [149]
20.6 [149]
22.3 [149]
24.5 [149]
26.2 [149]
28.2 [149]
30.5 [149]
32.7 [149]
35.2 [150]
37.3 [149]
39.5 [149]
41.4 [149]
43 [151]
44.1 [149]

Table B.10: 18O neutron dσ
dΩ data

Energy [MeV] Reference

8.5 [152]
14.14 [147]
24 [105]
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APPENDIX B: EXPERIMENTAL DATA USED TO CONSTRAIN DOM POTENTIALS

Table B.11: 18O proton AP data

Energy [MeV] Reference

24.5 [153]

No 18O neutron AP data were used

No 18O proton σrxn data were used Table B.12: 18O neutron σrxn data

Energy [MeV] Reference

14.1 [147]

Table B.13: 18O neutron σtot data

Energy [MeV] Reference

10-200 this work
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40Ca SCATTERING DATA

B.3 40Ca Scattering Data

Table B.14: 40Ca proton dσ
dΩ data

Energy [MeV] Reference

17.57 [154]
19.57 [155]
21 [156]
25 [156]
26.3 [157, 156]
30 [156]
35 [156]
40 [156, 158]
45 [156]
48 [156]
61.4 [159]
65 [160]
80.2 [161, 162]
100.6 [163]
135.1 [161]
152 [164]
160 [165]
160 [162]
179.5 [166]
181 [161, 162]
181.5 [166]
200 [167]

Table B.15: 40Ca neutron dσ
dΩ data

Energy [MeV] Reference

9.9 [168]
11 [169]
11.9 [168]
13.9 [170]
16.9 [170]
19 [171]
20 [169]
21.7 [171]
25.5 [171]
26 [169]
30 [172]
40 [172]
65 [173]
75 [174]
85 [174]
95 [174]

107.5 [174]
127.5 [174]
155 [174]
185 [174]
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APPENDIX B: EXPERIMENTAL DATA USED TO CONSTRAIN DOM POTENTIALS

Table B.16: 40Ca proton AP data

Energy [MeV] Reference

14.08 [175]
15.65 [175]
16.25 [175]
21 [156, 176]
26.3 [157, 156]
30.3 [177]
49 [178]
65 [160]
65 [179]

100.6 [163]
152 [164]
160 [162, 161]
175 [145]
181 [162, 161]
200 [167]

Table B.17: 40Ca neutron AP data

Energy [MeV] Reference

9.9 [168]
11.9 [168]
13.9 [170]
16.9 [170]

Table B.18: 40Ca proton σrxn data

Energy [MeV] Reference

10.3-21.6 [180]
24.9-48.0 [110]

28.5 [181]
65.5 [112]

81-180 [113]

Table B.19: 40Ca neutron σrxn data

Energy [MeV] Reference

40.3-50.4 [182]

Table B.20: 40Ca neutron σtot data

Energy [MeV] Reference

10-200 [37]
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48Ca SCATTERING DATA

B.4 48Ca Scattering Data

Table B.21: 48Ca proton dσ
dΩ data

Energy [MeV] Reference

8 [183]
10 [183]
12 [183]

14.03 [175]
15.05 [175]
15.65 [175]
21 [156]
25 [156]
30 [156]
35 [156]
40 [156]
45 [156]
48.4 [156]
65 [160]
200 [167]

Table B.22: 48Ca neutron dσ
dΩ data

Energy [MeV] Reference

6 [184]
7.97 [185]
11.9 [96]
16.8 [96]
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APPENDIX B: EXPERIMENTAL DATA USED TO CONSTRAIN DOM POTENTIALS

Table B.23: 48Ca proton AP data

Energy [MeV] Reference

8 [183]
10 [183]
12 [183]

14.03 [175]
15.05 [175]
15.65 [175]
65 [160]
200 [167]

No 48Ca neutron AP data were used

Table B.24: 48Ca proton σrxn data

Energy [MeV] Reference

23-48 [186]

No 48Ca neutron σrxn data were used

Table B.25: 48Ca neutron σtot data

Energy [MeV] Reference

6.15-17.1 [185]
14.2 [187]

18.2-200 [37]
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58Ni SCATTERING DATA

B.5 58Ni Scattering Data

Table B.26: 58Ni proton dσ
dΩ data

Energy [MeV] Reference

7 [188]
8 [188]
9 [188]

9.51 [189]
10 [189]
11 [189]
11.7 [190]
12 [188]
16 [191]
16 [192]
18.6 [193]
18.6 [194]
20 [194]
21 [195]
30 [196]
30.3 [197]
35.2 [198]
39.6 [199]
39.8 [200]
40 [158, 201]
61.4 [159]
65 [160]
65 [179]
65 [202]
100 [203]
178 [204]
192 [205]

Table B.27: 58Ni neutron dσ
dΩ data

Energy [MeV] Reference

4.5 [206]
5.5 [206]
6.5 [206]
7.5 [206]

8.399 [206]
9.99 [206]
11.952 [207]
14 [206]

16.934 [208]
21.5 [206]
24 [209]
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APPENDIX B: EXPERIMENTAL DATA USED TO CONSTRAIN DOM POTENTIALS

Table B.28: 58Ni proton AP data

Energy [MeV] Reference

9.51 [189]
14 [210]
16 [192]
18.6 [193]
21 [195]
24.6 [211]
26.3 [157]
29 [212]
40 [158, 201]
49 [178]
60.2 [213]
65 [179]
172 [214]
178 [204]
192 [205]

Table B.29: 58Ni neutron AP data

Energy [MeV] Reference

9.92 [207]
13.91 [207]
16.934 [208]

Table B.30: 58Ni proton σrxn data

Energy [MeV] Reference

8.8 [215]
9.1 [216]
14.5 [217]

22.7-47.9 [218]
28.5 [181]

30-60.8 [219]
65.5 [112]
81 [113]

No 58Ni neutron σrxn data were used

Table B.31: 58Ni neutron σtot data

Energy [MeV] Reference

10-200 this work
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64Ni SCATTERING DATA

B.6 64Ni Scattering Data

Table B.32: 64Ni proton dσ
dΩ data

Energy [MeV] Reference

9.6 [190]
9.69 [189]
11 [220]
11.7 [190]
12 [221]
12 [188]
16 [191]
18.6 [193]
39.6 [199]
65 [160]

Table B.33: 64Ni neutron dσ
dΩ data

Energy [MeV] Reference

5 [108]
6 [108]
7 [108]
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APPENDIX B: EXPERIMENTAL DATA USED TO CONSTRAIN DOM POTENTIALS

Table B.34: 64Ni proton AP data

Energy [MeV] Reference

9.69 [189]
18.6 [193]
20.4 [222]
39.6 [199]
65 [160]
65 [202]

No 64Ni neutron AP data were used

Table B.35: 64Ni proton σrxn data

Energy [MeV] Reference

40-60.8 [219]

No 64Ni neutron σrxn data were used

Table B.36: 64Ni neutron σtot data

Energy [MeV] Reference

10-200 this work
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112Sn SCATTERING DATA

B.7 112Sn Scattering Data

Table B.37: 112Sn proton dσ
dΩ data

Energy [MeV] Reference

16 [223]
30.4 [224]

Table B.38: 112Sn neutron dσ
dΩ data

Energy [MeV] Reference

11 this work
17 this work

No 112Sn proton AP data were used No 112Sn neutron AP data were used

Table B.39: 112Sn proton σrxn data

Energy [MeV] Reference

22.8-47.8 [225]
65.5 [112]

No 112Sn neutron σrxn data were used

Table B.40: 112Sn neutron σtot data

Energy [MeV] Reference

10-200 this work
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APPENDIX B: EXPERIMENTAL DATA USED TO CONSTRAIN DOM POTENTIALS

B.8 124Sn Scattering Data

Table B.41: 124Sn proton dσ
dΩ data

Energy [MeV] Reference

16 [223]
16 [226]
20.4 [222]
30.4 [224]
39.6 [227]
49.35 [228]

Table B.42: 124Sn neutron dσ
dΩ data

Energy [MeV] Reference

11 [229]
17 this work
24 [229]

Table B.43: 124Sn proton AP data

Energy [MeV] Reference

16 [226]
20.4 [222]
39.6 [227]

No 124Sn neutron AP data were used

Table B.44: 124Sn proton σrxn data

Energy [MeV] Reference

22.9-47.9 [225]
65.5 [112]

No 124Sn neutron σrxn data were used

Table B.45: 124Sn neutron σtot data

Energy [MeV] Reference

10-200 this work
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APPENDIX B: EXPERIMENTAL DATA USED TO CONSTRAIN DOM POTENTIALS

B.9 208Pb Scattering Data

Table B.46: 208Pb proton dσ
dΩ data

Energy [MeV] Reference

16 [29, 192]
21 [230]
24.1 [230]
26.3 [230, 157]
30.3 [230, 231]
35 [230]
40 [158]
45 [230]
47.3 [230]
61 [159]
65 [179]
80 [161]
121 [161]
155 [232]
160 [161, 162]
182 [161, 162]
200 [233]

Table B.47: 208Pb neutron dσ
dΩ data

Energy [MeV] Reference

4 [234]
5 [234]
6 [234]
7 [234]

7.97 [235]
8.5 [236]
9 [237]

9.97 [238]
11 [237]
13.9 [239, 240]
14.6 [241]
16.9 [240]
20 [242]
22 [242]
24 [242]
26 [237]
30.3 [243]
40 [243]
65 [174]
75 [174]
85 [174]
95 [174]
96 [174]

107.5 [174]
127.5 [174]
155 [174]
185 [174]
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APPENDIX B: EXPERIMENTAL DATA USED TO CONSTRAIN DOM POTENTIALS

Table B.48: 208Pb proton AP data

Energy [MeV] Reference

9 [244]
12.98 [245]
16 [192]
26.3 [230, 157]
29 [212]
30.3 [230, 231]
40 [158]
49 [178]
49.3 [228]
65 [179]
79.8 [162]
98 [162]
155 [232]
160 [161, 162]
182 [161, 162]
185 [230]
200 [233]

Table B.49: 208Pb neutron AP data

Energy [MeV] Reference

5.969 [235]
6.967 [235]
7.97 [235]
8.958 [235]
9.97 [238]
13.9 [240]

Table B.50: 208Pb proton σrxn data

Energy [MeV] Reference

21.1-48.0 [110]
28.5 [181]

30.0-60.8 [219]
60.0 [246]
65.5 [112]

81.0-180 [113]

Table B.51: 208Pb neutron σrxn data

Energy [MeV] Reference

14 [247]

Table B.52: 208Pb neutron σtot data

Energy [MeV] Reference

10-200 [20]
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Appendix C

Parameter Values of DOM Potentials

Below are the parameter values from our best DOM fits for each nucleus in the present

work. The parameter labels correspond to those in the equations of Chapter 6. For symmetric

nuclei 16O and 40Ca, the asymmetry-dependent parameters were disabled during fitting. As

mentioned in Chapter 7, for a few nuclei, one or more parameters were set to zero to prevent

the fit from drifting into unphysical territory, most notably the negative imaginary surface

and real wine-bottle parameters for 16,18O.

Table C.1: Real parameters (volume-like, symmetric)

Parameter 16O 18O 40Ca 48Ca 58Ni 64Ni 112Sn 124Sn 208Pb

V1 104.79 104.03 104.01 93.68 97.72 89.19 82.28 85.54 88.93
r1 1.03 1.03 1.08 1.11 1.10 1.11 1.15 1.16 1.17
a1 0.45 0.57 0.63 0.55 0.63 0.65 0.42 0.50 0.62
β1 1.13 1.04 1.13 1.05 1.04 0.98 0.99 1.04 1.04
V2 - - 23.73 29.51 21.90 16.76 3.65 3.09 32.07
σ2 - - 0.36 0.48 0.57 0.49 1.71 1.94 0.33

Table C.2: Real parameters (volume-like, asymmetric)

Parameter 16O 18O 40Ca 48Ca 58Ni 64Ni 112Sn 124Sn 208Pb

Vasym - 49.87 - 37.80 24.86 59.41 44.56 33.62 38.63
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APPENDIX C: PARAMETER VALUES OF DOM POTENTIALS

Table C.3: Imaginary parameters (volume-like, symmetric)

Parameter 16O 18O 40Ca 48Ca 58Ni 64Ni 112Sn 124Sn 208Pb

r4 1.17 1.22 1.21 1.11 1.16 1.15 1.21 1.18 1.22
a4 0.59 0.60 0.64 0.61 0.66 0.61 0.58 0.64 0.63
β4 0.96 0.98 0.82 0.94 1.10 1.07 0.89 0.93 0.85
A+

5 27.58 33.87 39.89 24.84 24.14 32.68 24.50 21.17 31.96
B+

5 117.15 117.51 139.91 143.69 78.43 77.72 65.72 54.20 59.07
A−5 14.20 10.27 10.16 10.70 15.69 25.66 19.06 16.80 19.99
B−5 25.57 28.83 31.82 24.40 19.56 46.12 33.97 28.95 34.15
E+

6 47.88 114.69 103.51 60.55 140.06 118.54 48.86 130.90 67.07
E−6 88.28 127.10 102.20 97.89 60.83 94.07 75.60 72.62 76.26
α6 0.17 0.16 0.12 0.15 0.14 0.18 0.13 0.13 0.14

Table C.4: Imaginary parameters (volume-like, asymmetric)

Parameter 16O 18O 40Ca 48Ca 58Ni 64Ni 112Sn 124Sn 208Pb

A+
vol,asym - -35.44 - 23.39 -95.19 31.65 43.20 -11.25 20.49

A−vol,asym - 3.39 - -19.96 -68.62 -20.66 -39.79 -22.09 -5.97

Table C.5: Imaginary parameters (surface-like, symmetric)

Parameter 16O 18O 40Ca 48Ca 58Ni 64Ni 112Sn 124Sn 208Pb

A+
7 16.81 23.42 13.19 40.36 17.00 27.02 43.45 28.54 28.68

B+
7 23.88 19.22 18.64 25.90 12.51 23.27 23.45 24.05 15.07

B
′+
7 86.88 64.81 210.84 64.06 650.12 54.68 48.10 131.88 43.28
C+

7 3.46 3.89 5.41 3.92 3.26 3.82 3.35 3.41 3.01
A−7 - - 2.50 5.94 2.69 8.32 6.53 3.35 0.39
B−7 - - 15.99 18.15 10.00 19.48 15.12 13.71 8.75
B

′−
7 - - 30.71 37.99 20.75 35.88 28.00 22.40 18.21
C−7 - - 5.10 8.50 10.81 13.92 7.00 5.66 8.45
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APPENDIX C: PARAMETER VALUES OF DOM POTENTIALS

Table C.6: Imaginary parameters (surface-like, asymmetric)

Parameter 16O 18O 40Ca 48Ca 58Ni 64Ni 112Sn 124Sn 208Pb

A+
sur,asym - -39.33 - -24.67 -17.56 1.09 17.14 37.59 36.83

A−sur,asym - - - 15.76 25.14 -8.78 24.09 10.06 -

Table C.7: Spin-orbit parameters

Parameter 16O 18O 40Ca 48Ca 58Ni 64Ni 112Sn 124Sn 208Pb

V3 10.01 14.63 10.18 15.47 10.14 11.78 11.99 13.17 11.61
r3 1.00 0.73 0.95 1.15 1.06 1.08 1.16 1.16 1.16
a3 0.68 0.63 0.69 1.00 0.84 0.95 0.56 0.54 0.99
W7 -0.15 - -0.16 -0.28 -0.10 -0.23 -0.15 -0.21 -0.19
β3 0.28 0.27 0.33 0.43 0.28 0.32 0.44 0.41 0.49
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Appendix D

Visualization of DOM Fit Results

For each nucleus studied with the DOM in this treatment, this Appendix visualizes the

quality of the DOM reproduction of experimental data and predictions of structural ob-

servables. Nucleon scattering data is presented first, followed by charge density and single-

particle level information, followed by visualization of the optimized potentials, followed

by structural predictions (spectral functions, momentum distributions, and matter distribu-

tions). Additional detail on the quantities plotted is included in Chapters 6 and 7.

In all figures below, experimental data (referenced in Appendix B) are shown as points

with error bars and DOM calculations are shown as lines. In the elastic scattering figures,

data sets at different energies are offset vertically for clarity; points and data in these figures

have been colored according to the energy of the data set. We drew all charge density

distributions from the compilation of [11], except for the distributions of 18O and 112Sn,

which we generated by scaling the 16O and 124Sn distributions to reproduce the 18O and

112Sn RMS radii given in [11]. The charge density distributions in [11] are reported without

errors; in the figures below, we display them with an arbitrary 1% uncertainty band, in

blue. Experimental single-particle levels were assigned from proton and neutron separation

energies in [43], for the valence levels, and roughly estimated from systematics in (e,e’p) and

(p,2p) compilations, for the deeper levels. Thus the location of experimental deeply bound

levels should only be taken as approximate.

In spectral function figures, the vertical lines near the Fermi energy show the threshold

used in the piecemeal approach for calculating particle occupations needed for certain LJs
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(see Eq. 6.29 for discussion). In single-particle level figures for nuclei with open neutron

shells, the upper and lower levels E±, split by the pairing term ∆, are both shown (see Eq.

6.31 for discussion).
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APPENDIX D: VISUALIZATION OF DOM FIT RESULTS

D.1 DOM fit of 16O

16O proton elastic scattering 16O neutron elastic scattering

16O proton σrxn
16O neutron σrxn and σtot
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DOM FIT OF 16O

16O charge density 16O single-particle levels

16O proton potential energy dependence 16O neutron potential energy dependence

16O proton volume integral 16O neutron volume integral

16O proton spectral functions 16O neutron spectral functions
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APPENDIX D: VISUALIZATION OF DOM FIT RESULTS
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16O matter density distribution
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18O matter density distribution
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40Ca matter density distribution
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48Ca matter density distribution
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58Ni matter density distribution
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64Ni matter density distribution
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112Sn matter density distribution
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208Pb matter density distribution
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Physical Constants

fermi (fm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 · 10−15(m)

barn (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 (fm2) = 10−24 (cm2)

eV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6022·10−19 (Joules)

Planck’s Constant (~) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.582 ·10−22 (MeV·s)

Speed of Light (c) . . . . . . . . . . . . . . . . . . . . . . . . . . 2.99792458·108 (m/s) ≈ 29.98 (cm/ns)

~c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197.3 (MeV·fm)

Elementary Charge (e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.60217662·10−19 (Coulombs)

Coulomb’s Constant (ke) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.44 (MeV·fm/e2)

amu (u) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 931.494 (MeV/c2)

Neutron Mass (mn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 939.565 (MeV/c2) = 1.0087u

Proton Mass (mp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 938.272 (MeV/c2) = 1.0073u

Electron Mass (me) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5110 (MeV/c2) = 5.486·10−4u
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Glossary

ADC Analog-to-digital converter, a device that digitally records the integral of an incident

electrical signal over a window specified by the user. 95

CFD Constant-fraction discrimination, a technique for determining event timestamps inde-

pendent of the pulse amplitude of the signal. 49, 52

DOM The Dispersive Optical Model, a phenomenological framework for extracting nuclear

structure and reaction information from experimental data. 20, 113, 141

Dyson equation A self-consistent relationship between the dressed propagator G, the free

propagator G0, and the irreducible nucleon self-energy, Σ∗ (shown in Eq. 6.14). The

equation can be expressed pictorally via Feynman diagrams (shown in Fig. 6.2). 121

finite-size correction Any of a series of corrections that account for the non-zero size

of scattering targets used in cross section measurements, including flux attenuation,

angular uncertainty in the scattering path, and multiple scattering. 106

inverse kinematics An experimental approach where the nucleus under study (e.g., 14O).

is bombarded onto a sample containing a typical scattering particle (e.g., protons or
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GLOSSARY

α-particles). By reversing the usual kinematics of scattering, reactions can be studied

on unstable nuclei that cannot be made into a fixed target. 25

LANSCE The Los Alamos Neutron Science Center, the site of our neutron σtot measure-

ments on 16,18O, 58,64Ni, 103Rh, and 112,124Sn. 26

LDM Liquid Drop Model. An early, physically-intuitive model that treats the nucleus as a

charged drop of nuclear fluid. 2

LED Leading-edge discrimination, where event timestamps are assigned according to the

time the leading edge of the signal crosses a fixed threshold. 49

nucleon self-energy A complex, non-local mathematical object that describes the interac-

tion of a nucleon with another body (typically a nucleus) via an infinite sum of relevant

Feynman diagrams. If the nucleon self-energy is known in a given system, a multitude

of other important physics quantities (scattering amplitudes, the mean free path, the

level density) can be extracted. The DOM links the optical potential and the nucleon

self-energy, enabling a phenomenological approach for extracting information about

the nuclear many-body problem. 121, 129

optical potential A complex potential used to approximate the microscopic nuclear many-

body problem. Incident nucleons scatter off the potential in analogy to the refraction

and absorption of light in optical media. In both cases, the real component of the po-

tential determines elastic scattering, and the imaginary component determines inelastic

scattering. 11, 13, 113, 121, 130
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APPENDIX 8: GLOSSARY

PSD Pulse-shape discrimination, a technique for differentiating between detector events

caused by neutrons, heavy ions, and γ rays. 86, 87

single-particle propagator a mathematical object (specifically, a Green’s function) that

dictates the evolution of a single-particle state per the Schödinger equation. 114

TDC Time-to-digital converter, a device that digitally records the timestamp of an incident

electrical signal according to a threshold specified by the user. 95

TOF Time-of-flight. Measuring neutron TOF from a pulsed source is a common neutron

energy determination technique. 28

TUNL The Triangle Universities Nuclear Laboratory, the site of our neutron dσ
dΩ

measure-

ments on 112Sn and 124Sn. 87

WNR Weapons Neutron Research facility at LANSCE, site of a spallation neutron source

useful for σtot measurements. 26
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