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Human neuroimaging techniques enable researchers and clinicians to non-invasively 

study brain function across the lifespan in both healthy and clinical populations. However, 

functional brain imaging methods such as functional magnetic resonance imaging (fMRI) 

are expensive, resource-intensive, and require dedicated facilities, making these powerful 

imaging tools generally unavailable for assessing brain function in settings demanding 

open, unconstrained, and portable neuroimaging assessments. Tools such as functional 

near-infrared spectroscopy (fNIRS) afford greater portability and wearability, but at the 

expense of cortical field-of-view and spatial resolution. High-Density Diffuse Optical 

Tomography (HD-DOT) is an optical neuroimaging modality directly addresses the image 

quality limitations associated with traditional fNIRS techniques through densely 

overlapping optical measurements. This thesis aims to establish the feasibility of using 

HD-DOT in a novel application demanding exceptional portability and flexibility: mapping 

disrupted cortical activity in chronically malnourished children. I first motivate the need for 
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dense optical measurements of brain tissue to achieve fMRI-comparable localization of 

brain function (Chapter 2). Then, I present imaging work completed in Cali, Colombia, 

where a cohort of chronically malnourished children were imaged using a custom HD-

DOT instrument to establish feasibility of performing field-based neuroimaging in this 

population (Chapter 3). Finally, in order to meet the need for age appropriate imaging 

paradigms in this population, I develop passive movie viewing paradigms for use in optical 

neuroimaging, a flexible and rich stimulation paradigm that is suitable for both adults and 

children (Chapter 4). 
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Chapter 1: Introduction 

1.1 Principles of optical neuroimaging 

1.1.1 Measuring cortical hemodynamics with near-infrared light 

Optical neuroimaging methods encompass a broad range of techniques that aim to 

assess the structure and function of the brain using light (Hillman, 2007). These 

techniques span a broad range of spatial scales, from structures at the cellular level to 

regions and networks at the systems level, using a variety of contrast agents. These 

contrast agents are either intrinsic to the tissue of interest (endogenous) or exogenously 

applied and provide insight into brain function through mechanisms including changes in 

cellular metabolic state, ionic concentrations, and tissue oxygenation (Ohki, Chung, 

Ch’ng, Kara, & Reid, 2005; Shoham et al., 1999). The selection an of appropriate optical 

neuroimaging technique for an experimental question therefore depends on parameters 

including the organism of interest and the desired source of contrast. Imaging parameters 

such as the field-of-view and spatial resolution are subsequently constrained by the 

imaging system. 

In humans, a commonly used non-invasive optical brain imaging technique is near-

infrared spectroscopy (NIRS) (Scholkmann et al., 2014). This technique relies on the 

discovery that changes in blood oxygenation are measurable with near-infrared light, 

which was first demonstrated in felines (Jöbsis, 1977). A NIRS instrument includes a 

source of near-infrared illumination (approximately 650-1000 nm) and a detector, both of 

which are positioned on the head. Near-infrared light emitted by the source travels from 



 2 

the source to the detector through the head, in a path that includes both superficial (i.e. 

skull and scalp) and cortical tissue (Ferrari & Quaresima, 2012). Critically, relative to small 

animal imaging systems, which may use visible light, near-infrared light has less scatter 

and absorption in biological tissues, enabling deeper penetration into the cortical tissue 

of interest. As near-infrared light enters the head, it is scattered and attenuated by both 

superficial and cortical tissues. The absorption properties of the chromophores of interest 

in the near-infrared regime, in this case deoxygenated and oxygenated hemoglobin, 

mean that changes in light intensity measured by the detector are therefore related to 

changes in the concentrations of deoxygenated and oxygenated hemoglobin species 

(Arno Villringer & Chance, 1997). Consequently, this source-detector measurement 

provides information about the blood oxygenation of the underlying cerebral tissue. 

Through a mechanism called neurovascular coupling, changes in neuronal activity 

result in dilation of local arterioles (Raichle, 1998). This dilation results in a local increase 

in delivery of oxygenated hemoglobin through an increase cerebral blood flow. The 

increased oxygenated delivery exceeds the demands rate of neuronal oxygen utilization, 

meaning that the result of neuronal activity is a surplus of oxygen in the blood surrounding 

the area of increased neuronal activity. Although the exact mechanisms of this process 

are still unclear, the changes in blood oxygenation that accompany neuronal activity are 

a source of intrinsic contrast that is used to indirectly measure brain activity (Lauritzen & 

Gold, 2003; Logothetis, 2003; Raichle & Mintun, 2006; A. Villringer & Dirnagl, 1995). 

Consequently, when NIRS techniques are used to measure changes in blood 
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oxyhemoglobin and deoxyhemoglobin concentration related to brain function, the 

technique is referred to as functional NIRS (fNIRS). 

A typical fNIRS system is comprised of multiple sources and detectors positioned 

on the head, and to achieve optimal tissue spectroscopy, two or more source wavelengths 

are used. The light level between a source-detector pair is referred to as a channel or 

measurement, and the geometry of the source-detector array determines the system’s 

sensitivity to hemodynamics in the underlying cortical tissues. While early fNIRS systems 

have relied on a relatively small number of measurements to probe hemodynamics in 

broad swaths of cortex (i.e. entire lobes), more recent fNIRS systems have achieved 

greater spatial specificity by increasing the number of source-detector measurements, 

resulting in more precise localization of hemodynamic changes. Even still, the resulting 

maps of brain activation are topographic images with relatively coarse spatial resolution 

(approximately 1 cm) and are not depth-resolved (Ferrari & Quaresima, 2012). These 

image characteristics stand in contrast to other human neuroimaging techniques that 

measure blood oxygenation to infer changes in neuronal activity, such as functional 

magnetic resonance imaging (fMRI) and positron emission tomography (PET). These 

techniques usually result in depth-resolved images of hemodynamics at a higher spatial 

resolution (Cui, Bray, Bryant, Glover, & Reiss, 2011). 

The field-of-view associated with fNIRS instruments also stands in contrast to fMRI 

and PET fields-of-view, which generally encompass the entire brain. The field-of-view 

associated with a given fNIRS instrument is directly dependent on the positioning of 

sources and detectors on the head, as well as the attenuation and scattering of near-
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infrared light (Fukui, Ajichi, & Okada, 2003). The result of these two factors is that twofold. 

First, the source-detector array must be positioned over the cortical regions of interest. 

Second, due to attenuation and scattering, fNIRS systems can only measure 

hemodynamics in the superficial cortex. The separation between a source and detector 

dictates how deeply the associated measurement penetrates the tissue; however, the 

rapid attenuation of light as it travels through the tissue renders even deep cortical 

structures such as the insula or operculum inaccessible to these techniques (Dehghani, 

White, Zeff, Tizzard, & Culver, 2009).  

The relationship between source-detector separation and measurement depth 

means that measurements with a short source-detector separation are biased towards 

sampling superficial tissues, while longer source-detector separations incorporate 

sampling of cortical tissues (Gregg, White, Zeff, Berger, & Culver, 2010). In both cases, 

however, the measurement samples superficial tissues that contain vascular physiology 

of limited relevance to most neuroscientific questions. Blood flow changes in the scalp, 

as well as systemic physiology (Franceschini, Fantini, Thompson, Culver, & Boas, 2003) 

(e.g. respiration, heart rate, vasomotion, and Mayer waves) are components of all fNIRS 

measurements and must be addressed in order to more closely isolate the measured 

signal to cortical hemodynamics (Saager & Berger, 2005). One strategy for addressing 

this nuisance physiology is to incorporate multiple source-detector separations in a 

source-detector configuration. In doing so, the shorter measurements provide an 

approximation of nuisance physiology which can then be removed from the deeper 
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measurements, resulting in fNIRS measurements that more closely report the cortical 

physiology of interest. 

In summary, the components of a functional near-infrared spectroscopy system 

are sources and detectors of near-infrared light. The light intensity measured by the 

detector depends on the concentration of oxygenated and deoxygenated hemoglobin, 

and changes in the concentrations of these chromophores are indirectly related to 

neuronal activity through neurovascular coupling. The ability of an fNIRS system to 

generate topographic images of superficial cortical hemodynamics depends critically on 

the positioning of sources and detectors on the head. In addition to the number and 

positioning of measurements included in an fNIRS system, which dictate a system’s 

resolution and field-of-view, the separation of source-detector measurements determines 

how deeply the measurement will sample the underlying tissue. However, all 

measurements will sample superficial tissue and be sensitive to systemic physiology. 

Consequently, in the context of performing cognitive neuroscience research, an 

experimenter using fNIRS must take steps to ensure that the source-detector 

arrangement is appropriate for the cortical regions of interest and that nuisance 

physiology is appropriately addressed. 

1.1.2 Applications of functional near-infrared spectroscopy 

Cognitive neuroscience researchers have a variety of techniques at their disposal for 

imaging the human brain. The selection of a technique can be constrained by 

considerations of resolution (temporal and spatial), participant comfort, and participant 

contraindications (e.g. implanted metal or radiation exposure). Imaging techniques that 
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rely on neurovascular coupling to indirectly infer brain activity all share a slower temporal 

sensitivity relative to techniques that measure electrical activity, as the slow 

hemodynamic response essentially acts as a low-pass filter on faster neuronal impulses 

(Kim, Richter, & Uǧurbil, 1997). Investigators researching questions in which this reduced 

temporal precision is acceptable might select fNIRS over other brain imaging methods 

that also infer brain activity through neurovascular coupling, such as fMRI or PET, for 

both practical and experimental considerations. These considerations provide a 

framework for describing the applications of fNIRS in human brain research. 

1.1.2a Logistical considerations in functional near-infrared spectroscopy 

Relative to fMRI and PET, fNIRS instruments are less expensive and demand fewer 

dedicated resources. Consequently, fNIRS instruments are less expensive to implement, 

and have enabled imaging in low-resource regions of the world where other neuroimaging 

techniques would be too expensive to implement (John, Black, & Nelson, 2017). This 

greater accessibility has enabled researchers to perform assessments of brain function 

in populations that would otherwise be inaccessible. For instance, low-resource regions 

of the world generally have higher rates of childhood deprivation, including acute and 

chronic undernutrition (Tomalski et al., 2013). The low cost and portability associated with 

fNIRS enables neuroimaging laboratories to be established in the field, in regions where 

this deprivation is endemic. Indeed, the first field-based functional neuroimaging 

assessments of childhood malnutrition were performed using a highly portable fNIRS 

instrument (Lloyd-Fox et al., 2014). 
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 Further, participants in fNIRS experiments are not constrained to a bore, as they 

are during PET or fMRI scans. Consequently, these instruments open new avenues of 

clinical neuroimaging, as neuroimaging instruments can be brought to the patient’s 

bedside, instead of transporting patients to stationary neuroimaging instruments (Ferrari, 

Culver, Hoshi, & Wabnitz, 2016). Further, bedside imaging using a portable and wearable 

fNIRS instrument enables longitudinal observation of brain function, potentially creating 

novel strategies for patient monitoring in critical care environments (e.g. stroke intensive 

care units) (Arenth, Ricker, & Schultheis, 2007; Kassab et al., 2018). 

 In addition to a bore-free imaging environment, the fNIRS imaging environment is 

also silent, providing additional enhancements in patient comfort. While the gold-standard 

of cognitive neuroscience participants, healthy undergraduate students (Henrich, Heine, 

& Norenzayan, 2010), may not demand exceptionally comfortable imaging environments, 

other participant populations are sensitive to the constrained and noisy environment 

posed by other imaging methods. For instance, young children may find enclosed scanner 

environments too frightening, or they may move to an extent that renders scans unusable. 

Solutions to this challenge include using mock scanner training, implementing real-time 

feedback, imaging during sleep, or alleviating anxiety with sedatives (Dosenbach et al., 

2017; Greene et al., 2018). However, fNIRS provides an imaging solution that is less 

prone to these obstacles, enabling imaging of awake, behaving participants in a variety 

of comfortable settings. Indeed, along with other wearable modalities (e.g. 

electroencephalography), these methods enable developmentalists to study brain 

function during performance of tasks assessing developmentally relevant domains such 
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as language acquisition, motor development, and social development (Aslin & Mehler, 

2005; Franceschini et al., 2007; S. Lloyd-Fox, Blasi, & Elwell, 2010). 

 In summary, fNIRS instruments offer greater portability, lower operational costs, 

and more open imaging environments than other modalities. These advantages enable 

functional neuroimaging in settings such as low-resource areas or clinical settings where 

neuroimaging would have previously been considered cost-prohibitive or impractical. 

1.1.2b Experimental considerations in functional near-infrared spectroscopy 

Some experimental questions pose constraints on methodological choices that make 

fNIRS the most appropriate method for a given research topic. For instance, a study 

assessing perception of auditory stimuli may be confounded by additional noise 

introduced by the fMRI environment, meaning that cortical responses measured during 

task performance may not be directly attributable to stimulus processing. In addition, the 

superficial location of regions related to auditory and linguistic processing make fNIRS an 

appropriate solution for addressing this confound (Ferrari & Quaresima, 2012; 

Hassanpour, Eggebrecht, Culver, & Peelle, 2015; Peelle, 2017). Additionally, some 

patient populations, such as those with cochlear implants or deep brain stimulators are 

contraindicated for MRI, meaning that a surrogate imaging method is required to study 

these populations. fNIRS does not pose such contradictions and therefore enables study 

of populations who otherwise may be unable to undergo functional neuroimaging 

(Eggebrecht et al., 2014). 

 Functional neuroimaging modalities are notoriously sensitive to image artifacts 

induced by head motion (Brigadoi et al., 2014; Power, Barnes, Snyder, Schlaggar, & 
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Petersen, 2012); however, fNIRS is generally more tolerate to motion artifacts than fMRI. 

Although the motor system can be studied at a systems-level using passive imaging 

approaches such as resting-state functional connectivity (Xiong, Parsons, Gao, & Fox, 

1999), imaging task-evoked responses to movements is challenging in an environment 

that is so exquisitely sensitive to head motion . For instance, somatomotor cortex can be 

functionally localized in the bore using directed movements of the tongue and extremities 

(Drobyshevsky, Baumann, & Schneider, 2006), but more pronounced movements and 

natural movements (e.g. walking, speaking) may not be easily accessible using fMRI. 

fNIRS, as a wearable and portable device, has contributed to motor neuroscience by 

enabling imaging of the neural underpinnings of these behaviors (Piper et al., 2014; 

Walsh et al., 2017). 

As with motor tasks, social neuroscience using fMRI relies on highly distilled 

versions of social stimuli, with limited ecological validity. For instance, dyadic 

conversations imaged with fMRI are generally not face-to-face, and may not even happen 

in real time, which are experimental designs required to overcome the restrictions of the 

imaging environment. In contrast, fNIRS enables more ecologically valid measurements 

of brain activity during naturalistic social interactions that unfold face-to-face and in real 

time (Quaresima & Ferrari, 2019). An emerging sub-field of hyperscanning even enables 

imaging of both participants in a dyadic social interaction, extending the field of social 

neuroscience into even more realistic settings (Liu et al., 2017). 

Taken alongside the logistical advantages of portable and wearable optical 

neuroimaging instruments such as fNIRS, the additional populations and experimental 
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designs enabled by the unique capabilities of fNIRS offer the opportunity to extend the 

utility of imaging cortical hemodynamics beyond the bore. 

1.1.3 Limitations of functional near-infrared spectroscopy 

Despite the numerous applications available to researchers using fNIRS, several caveats 

limit widespread use of these techniques. As explained in Section 1.1, the image quality 

characteristics and field-of-view associated with any fNIRS instrument depend on array 

design and other system specifications such as illumination wavelength (Strangman, 

Culver, Thompson, & Boas, 2002). Measurement arrays with limited numbers of sources 

and detectors may be able to detect a change in cortical hemodynamics but may not be 

able to localize the exact source of the hemodynamic response (White & Culver, 2010b). 

The relatively coarse localization capability associated with fNIRS is further evident in 

how researchers display results from fNIRS studies. While topographic, 2-D maps of brain 

activation are sometimes displayed, activation timecourses that are coarsely attributed to 

an underlying cortical lobe are also commonly chosen data representation tools (Colier 

et al., 2001; G. Gratton, Corballis, Cho, Fabiani, & Hood, 1995; Taga, Asakawa, Maki, 

Konishi, & Koizumi, 2003). This limitation in localization is due to the relatively coarse 

lateral resolution resulting from sparse sampling of the underlying tissue. Consequently, 

researchers must take steps to ensure consistent array positioning on participants’ heads 

(Singh, Okamoto, Dan, Jurcak, & Dan, 2005); otherwise, group-level differences could be 

attributable to localization errors resultant from variability in array placement, rather than 

the more desirable attribution to genuine differences in brain function. 
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 Another challenge associated with array placement is making a priori decisions 

about field-of-view. With a set number of sources and detectors, experimenters face a 

tradeoff between field-of-view and lateral resolution, such that an extended field-of-view 

comes at the expense of localization capability. However, in experimental paradigms 

without a strong, hypothesis-driven cortical region-of-interest, experimenters may be 

forced to sacrifice resolution in order to ensure any region(s) implicated in the task are 

within the instrument’s field-of-view. While some tools exist to optimize this tradeoff and 

eliminate some of the subjectivity (Brigadoi, Salvagnin, Fischetti, & Cooper, 2018; Morais, 

Balardin, & Sato, 2018), the reality remains that it is often difficult to predict in advance 

the cortical structures that may be implicated in a task or show between-group 

differences. Further, in the absence of a highly distilled, uni-modal task, cortical 

information processing usually implicates a distributed hierarchy of regions (Petersen, 

Fox, Posner, Mintun, & Raichle, 1988). Consequently, generating a comprehensive 

image of the cortical activity underlying a task requires both lateral resolution and an 

extensive field-of-view. 

1.2 Principles of high-density diffuse optical tomography 

fNIRS instruments with a fixed channel count are not appropriately configured to optimize 

both lateral resolution and cortical field-of-view, creating a need for more sophisticated 

solutions that meet these demands for enhanced image quality, while preserving the 

established uses for optical neuroimaging techniques. High-density diffuse optical 

tomography (HD-DOT) is an optical neuroimaging methodology that, like fNIRS, performs 

tissue spectroscopy to measure cortical hemodynamics that are associated with focal 
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changes in brain activity. The critical advancement from fNIRS is a highly dense array of 

sources and detectors, which results in a densely overlapping set of optical 

measurements at multiple source-detector separations (Boas, Chen, Grebert, & 

Franceschini, 2004). Like fNIRS, the field-of-view is constrained by the positioning of the 

sources and detectors; however, unlike fNIRS, the tissue within the field-of-view is 

sampled at a higher lateral resolution and is also depth profiled, enabling tomographic 

reconstruction of three-dimensional images of brain hemodynamics. Critically, while other 

diffuse optical tomography (DOT) methods are available, such as time-resolved DOT 

(Benaron et al., 2000; Selb, Stott, Franceschini, Sorensen, & Boas, 2005), which relies 

on complex photon gating procedures to depth profile tissue, the following discussion is 

restricted to DOT techniques that depth resolve tissue using multiple source-detector 

separations. 

1.2.1 High-density diffuse optical tomography instrumentation 

A HD-DOT instrument relies on the same underlying instrumentation as an fNIRS 

instrument. That is, sources illuminate the head (generally at two or more wavelengths) 

and detectors collect the light emitted from sources. In order to achieve a densely 

overlapping set of measurements, a larger quantity of sources and detectors are required. 

And, due to the greatly increased number of measurement channels in an HD-DOT 

system (sometimes multiple orders of magnitude greater measurement counts than would 

be obtained with an fNRIS instrument, special considerations must be paid to both the 

illumination and detection methodologies. 
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 An HD-DOT instrument collects overlapping measurements at multiple source-

detector separations. Consequently, the light emitted by one light source will be detected 

by multiple adjacent detectors, which are positioned at multiple source-detector 

separations. This measurement bookkeeping in the dense array poses a challenge, as 

the light collected by a detector at any given point in time must be accurately attributed to 

the correct source in order to quantify the light level associated with that single source-

detector measurement. Solutions to this challenge include spatial, temporal, and 

frequency encoding patterns that ensure that the light collected by a detector at a given 

timepoint can be attributed to a known source (Eggebrecht et al., 2014). Spatial and 

temporal encoding patterns control when and where sources in an array are illuminated, 

and frequency encoding modulates the illumination of given source at a set frequency, 

such that a Fourier transform of a detector’s output will reveal peaks at the modulation 

frequencies. Consequently, simultaneously illuminated sources can be unmixed in the 

frequency domain, given an appropriately designed frequency encoding scheme. These 

source encoding strategies ensure accurate measurement bookkeeping, which is 

essential for managing the large number of measurements obtained by an HD-DOT 

instrument.  

 In addition to measurement bookkeeping, the multiple source-detector separations 

in an HD-DOT instrument may span several centimeters. These multiple source-detector 

separations confer several critical image quality advantages. First, images obtained with 

HD-DOT are depth-resolved. Second, shorter source-detector measurements provide a 

dedicated readout of nuisance physiology attributable to scalp hemodynamics, as well as 
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systemic physiology attributable to pulse, respiration, vasomotion, and Mayer waves 

(Bumstead, Bauer, Wright, & Culver, 2017; Gregg et al., 2010). This dedicated readout 

can subsequently be removed from the HD-DOT measurements in order to more 

accurately isolate cortical physiology of interest. However, due to the rapid attenuation of 

light through biological tissue, accurate detection of the light intensity at longer 

measurement distances poses an instrumentation challenge. Consequently, the 

detection instrumentation chosen for an HD-DOT instrument must retain sufficiently high 

signal-to-noise across a broad dynamic range (White & Culver, 2010a; Zeff, White, 

Dehghani, Schlaggar, & Culver, 2007). Otherwise, the deeper cortical measurements 

associated with longer source detector separations will be at the detector’s noise floor for 

photon detection, rendering the measurements unusable and eliminating the potential 

image quality improvements conferred by densely overlapping measurements. 

Avalanche photo diodes and scientific CMOS cameras (Bergonzi et al., 2018) are two 

detection technologies that have been proven to meet these rigorous specifications. 

 HD-DOT, through increased measurement density, offers an elegant solution to 

the image quality challenges associated with standard optical neuroimaging techniques. 

Although the increased measurement density poses technological challenges, solutions 

in both source illumination and light detection address these challenges and enable 

collection of densely overlapping measurements suitable for tomographic image 

reconstruction. 

1.2.2 Tomographic image reconstruction 
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 In HD-DOT, tomographic image reconstruction transforms the set of optical 

measurements, taken at the surface, into a 3D image of the underlying tissue (Eggebrecht 

et al., 2014, 2012). This step estimates the desired image of cortical hemodynamics using 

a finite set of projections, or measurements, that section the tissue of interest. This is an 

inverse problem that can be expressed as follows, 

y = A x, 

where at a given timepoint in an acquisition, y is a vector of light-level measurements at 

the surface (i.e. observed with HD-DOT), x is the absorption changes within a voxelated, 

volumetric space (i.e. the image we wish to reconstruct), and A is a sensitivity matrix that 

relates the set observed light-level measurements to the volume that is to be 

reconstructed. Consequently, is y a variable obtained with the HD-DOT instrument, A is 

a variable generated using a forward modeling procedure, and x is the variable that must 

be solved for in order to generate an image. 

 The sensitivity matrix, A, models light propagation through the tissue of interest, 

which is in this case the head. This forward model requires solving for the light 

propagation using a model of head anatomy and the positions of the sources and 

detectors on the head. The head anatomy may be derived from an anatomical image (e.g. 

MRI or CT) from an individual subject, or it may be derived from an appropriately 

representative atlas, if no individual anatomical image is available (Ferradal, Eggebrecht, 

Hassanpour, Snyder, & Culver, 2014). Spatial localization improves the more closely the 

image of head anatomy matches the actual participant’s anatomy, but localization is still 

acceptable with an atlas-based model.  
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Briefly, to account for the unique scattering and absorption properties of the tissue 

compartments a photon will encounter from source to detector, the image of head 

anatomy is segmented into five tissue compartments (scalp, skull, grey matter, white 

matter, and cerebrospinal fluid) (Ségonne et al., 2004), and the segmented image is 

converted into a finite-element mesh, which enables finite-element solutions to modeling 

light transport through tissue (Jermyn et al., 2013). Once the sources and detectors are 

positioned onto the mesh, a source-detector measurement’s sensitivity is calculated using 

a finite-element solution to the diffusion approximation to the radiative transport equation 

(Dehghani et al., 2008). After repeating this procedure for all source-detector 

measurements in a system (potentially excluding long-distance measurements that are 

beyond the system’s detection sensitivity), this sensitivity matrix is resampled into a 

voxelated space, which ultimately corresponds to the desired space of the to-be-

reconstructed image. 

This tomographic reconstruction procedure stands in stark contrast to 

topographically generated images from fNIRS as it is substantially more computationally 

and mathematically intensive. However, the resulting reconstructed image of cortical 

hemodynamics is in a voxelated space, much like images generated with fMRI or PET. 

While cross-modality comparisons have been completed between fNIRS and fMRI (Duan, 

Zhang, & Zhu, 2012; Strangman et al., 2002), the anatomical modeling in HD-DOT image 

reconstruction accounts for tissue-specific optical properties as well as individual head 

anatomy. Consequently, images reconstructed with HD-DOT should reflect cortical 
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hemodynamics with greater fidelity than optical neuroimaging techniques that do not 

include image reconstruction with anatomical light modeling. 

Given a set of optical measurements on the surface and a forward model of light 

transport, the image is then reconstructed by inverting the forward model, such that the 

above equation, y = A x, can be solved for x. 

1.2.3 Validation of high-density diffuse optical tomography 

Like fNIRS, evaluating the performance of HD-DOT involves generating images of brain 

activation in controlled task conditions with predictable cortical responses. Images of 

brain activations reconstructed with HD-DOT-derived measurements can be compared 

with other studies using the same task paradigm reported using other modalities. An even 

stronger validation procedure entails collecting subject-matched data under the same 

task conditions, enabling quantitative evaluation of image quality and localization 

performance. Work validating HD-DOT has utilized both approaches and has generally 

shown that images obtained with HD-DOT are highly comparable to images obtained with 

other modalities (Eggebrecht et al., 2014, 2012). Unlike fNIRS, the resolution 

enhancements associated with HD-DOT enable detection of boundaries between cortical 

regions, and the extended field-of-view enables detection of spatially distributed brain 

responses. 

 The mammalian brain, and sensorimotor systems in particular, contain 

topographic maps that have been convergently established across techniques and 

organisms (Silver & Kastner, 2009). In humans, these maps have been non-invasively 

studied using neuroimaging techniques (Engel, Glover, & Wandell, 1997; Fox et al., 1986; 
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Ogawa et al., 1992). For more novel imaging systems such as HD-DOT, these maps can 

be used to assess the system’s mapping performance: The more closely the imaging 

system recapitulates these known representations, the better the performance of the 

imaging system. For instance, primary visual cortex, V1, is retinotopically mapped, 

meaning that adjacent neurons in V1 have receptive fields in the retina that are also 

adjacent. The topographic map of auditory cortex is arranged such that spatially adjacent 

neurons represent adjacent sounds in frequency space (Romani, Williamson, & Kaufman, 

1982). Likewise, structures responsible for processing other sensory inputs show 

topographies related to the arrangement of incoming afferents neurons on the 

corresponding sensory epithelium.  

 While some of these topographic maps, such as the rhinotopic map in olfaction, 

are too deep to be accessible with optical neuroimaging methods, other topographic maps 

are more superficial and are therefore more accessible with HD-DOT. Indeed, using 

classic retinotopic mapping paradigms established with fMRI and PET, retinotopic 

organization of visual cortex assessed with HD-DOT recapitulates multiple 

representations of visual angles and eccentricities within a single hemisphere, 

highlighting the ability of HD-DOT to meet a classic benchmark of neuroimaging system 

validation (White & Culver, 2010a; Zeff et al., 2007). 

 In addition to validating imaging performance using cortical topographic maps, 

other established task paradigms can be replicated across modalities to quantitatively 

evaluate spatial overlap between reconstructed activations. For instance, seminal work 

with PET used a set of increasingly complex language paradigms to image cortical 
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regions related to tasks as simple as passively listening to spoken words and as complex 

as imagined speaking of a word related to a visually presented cue (Petersen et al., 1988). 

Because each more complex task contained processing elements that overlapped with 

the previous, less complex task, activation images from adjacent tasks in the hierarchy 

could be subtracted from one another to isolate regions that were specifically recruited as 

the task complexity increased. Crucially, this task hierarchy recruits a spatially distributed 

set of regions related to language processing. Over 20 years after the original PET study, 

participants who underwent both HD-DOT and fMRI with the same suite of tasks revealed 

activations congruent with the original work that were also highly spatially overlapping 

across fMRI and HD-DOT (Eggebrecht et al., 2014), providing further distinction between 

the image quality associated with HD-DOT and other optical neuroimaging modalities 

such as fNIRS (White & Culver, 2010b). 

 The imaging of task-evoked responses provides one avenue for interrogating brain 

function and cross-validating imaging modalities. Imaging the brain at rest provides a 

complementary approach through resting-state functional connectivity, which reveals that 

slow patterns of cortical activity measured in the absence of a task are correlated across 

functionally related systems (Buckner, Krienen, & Yeo, 2013). In other words, a timeseries 

of brain activity extracted from a region related to visual processing would be correlated 

with other regions related to visual processing, but uncorrelated with other sensory 

systems. Regions correlated at rest are therefore “functionally connected,” and thought 

to reflect the brain’s coactivation history. Despite the nomenclature implying direct 
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connectivity between regions, functionally connected regions are not necessarily 

monosynaptically connected. 

 Functional connectivity provides a powerful technique for assessing all known 

cortical systems during a single imaging run, and functional connectivity varies across 

development and disease states, providing a systems-level description of how cortical 

networks interact across a variety of conditions (Power et al., 2011). Rather than reflecting 

moment-to-moment changes in mental state or task performance, patterns of functional 

connectivity are more different across individuals than they are across states (C. Gratton 

et al., 2018). Finally, because patterns of functional connectivity differ as one traverses 

an areal boundary, a functional connectivity scan can be used to generate a map of 

cortical regions, or parcellation, by identifying boundaries where patterns of connectivity 

abruptly change (Cohen et al., 2008). Consequently, the information garnered during a 

functional connectivity scan is complementary to task-based imaging. While most of the 

pioneering work with functional connectivity was completed with fMRI, other modalities 

have tried to leverage the large amount of information potentially available from functional 

connectivity assessments by establishing similar sensitivity to correlated patterns of 

spontaneous brain activity. 

 Work with HD-DOT during rest has established similar sensitivity to functional 

connectivity and has also included comparisons to subject-matched fMRI (Eggebrecht et 

al., 2014). The broad HD-DOT field-of-view maximizes sensitivity to spatially distributed 

functional systems and extends the fNIRS-based functional connectivity measures that 

are generally restricted to homotopic connectivity between 1-2 functional systems (Duan 
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et al., 2012; Lu et al., 2010; Zhang et al., 2010). Regional boundary detection using HD-

DOT, in which patterns of abrupt connectivity change indicate a boundary between 

adjacent regions, match boundaries detected with fMRI, providing yet another indication 

that image characteristics within the HD-DOT field-of-view are comparable to fMRI. 

 In summary, through both tasks and functional connectivity scans, work empirically 

evaluating HD-DOT image performance has successfully demonstrated fMRI-

comparable results. This work in humans is further substantiated through convergent 

simulations demonstrating the improvements in localization accuracy and image 

localization related to increasing measurement density. Despite the specialized 

instrumentation associated with increasing the number of sources and detectors to 

include measurements at multiple source-detector separations, the principal advances 

and methodological appeals of optical neuroimaging techniques are preserved in HD-

DOT instruments, including low cost, limited need for specialized facilities, quiet and open 

imaging environment, and wearable headgear. Consequently, many of the unique 

experimental cognitive neuroscience questions that are well suited for fNIRS are also 

suitable for HD-DOT, with the added benefit of fMRI-comparable images within the field-

of-view.  

1.3 Applications of high-density diffuse optical tomography 

In addition to evaluating the image resolution and spatial localization performance of HD-

DOT relative to other benchmark modalities using established neuroimaging paradigms, 

recent neuroimaging with HD-DOT has begun to demonstrate this technique’s suitability 

for imaging brain function in settings optimized for optical neuroimaging. For instance, a 
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portable HD-DOT instrument with headgear optimized for neonates was used to 

demonstrate feasibility of imaging neonates in a critical care environment using functional 

connectivity scans (Ferradal et al., 2016). This work eliminates the need to transport the 

infants to an MRI bay, but preserves the potential predictive power of obtaining functional 

connectivity assessments in infancy and opens the possibility for longitudinal monitoring 

of functional connectivity in critical care environments (Kassab et al., 2018). Other work 

has leveraged the silent imaging environment to observe cortical responses related to 

processing auditorily presented sentences of varying complexity, revealing increased 

recruitment of speech processing regions to understand more complicated sentences 

(Hassanpour et al., 2015). Like other optical neuroimaging studies, these recent 

examples of HD-DOT experiments leverage the unique characteristics of the 

instrumentation to answer questions that may be inaccessible with other modalities.  

1.3.1 Motivation for thesis work 

While HD-DOT has been established in healthy young adults, older adults with 

Parkinson’s disease, and neonates, HD-DOT has not yet been established as an imaging 

modality suitable for children. Consequently, the goal of this thesis is twofold. The first 

goal is to evaluate the performance of an HD-DOT instrument in imaging task-evoked 

responses in 7-10-year-old children, using a simple passive word listening task that 

produces predictable and stereotyped activations. This work was completed in Cali, 

Colombia in a cohort of chronically malnourished children, in order to secondarily validate 

that HD-DOT could successfully be used in a field setting, like other portable fNIRS 

instruments. Having established the feasibility of imaging this age group, the second goal 
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is to develop richer and more engaging imaging paradigms that are suitable for assessing 

multiple information processing domains in both school aged children, as well as younger 

children. This work addresses the gap that currently exists between child-friendly HD-

DOT imaging equipment and child-friendly imaging paradigms to accompany the imaging 

equipment.  

 However, this work rests on the presupposition that optical measurement density 

is directly related to attainment of fMRI comparable activations. Prior simulations have 

shown that sparse measurement grids produce distorted activations (White & Culver, 

2010b), but these studies did not include physiological noise that is induced by superficial 

tissues (Saager & Berger, 2005). Prior work with multi-modal cross validation between 

fMRI and HD-DOT showed excellent spatial correspondence between the two modalities 

(Eggebrecht et al., 2014) but did not evaluate whether fewer measurements would 

produce the same spatial correspondence. Consequently, this work begins with a direct 

comparison of activations reconstructed using HD-DOT, sparse measurement arrays with 

no overlapping measurements, and subject-matched fMRI in Chapter 2. By evaluating 

the performance of imaging grids in vivo, including physiological noise and a subject-

matched set of reference images, we directly evaluate the extent to which measurement 

density impacts imaging performance. Characterization of this relationship is especially 

critical to motivate the continued use of dense measurement arrays in imaging contexts 

demanding exceptional portability, such as field imaging. 

1.3.2 Understanding altered brain development due to malnutrition 
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Having evaluated the relationship between measurement density and ability to resolve 

fMRI-comparable activations, Chapter 3 introduces imaging work performed in a cohort 

of chronically malnourished 7-10-year-old children, following work evaluating childhood 

malnutrition globally using fNIRS techniques (Lloyd-Fox et al., 2014). Like other work 

establishing field optical neuroimaging sites, this work establishes feasibility of field 

imaging using a well-defined task with stereotyped activations, rather than prioritizing 

identification of deficits related to malnutrition burden. However, as feasibility of imaging 

is established, and in preparation for imaging younger children who have a greater need 

for engaging and entertaining imaging paradigms, we also develop child-friendly 

naturalistic imaging paradigms. 

1.3.3 Developing naturalistic brain mapping paradigms 

Naturalistic imaging, as it is introduced in Chapter 4, refers to richly stimulating imaging 

paradigms that incorporate information processing demands that unfold concurrently, as 

they would in a natural setting outside of the laboratory (Quaresima & Ferrari, 2019). 

However, operationalized within the context of the laboratory, these richly stimulating 

paradigms often involve the passive viewing of a feature film or television show (Hasson, 

Nir, Levy, Fuhrmann, & Malach, 2004). We have developed passive movie viewing 

paradigms for HD-DOT, demonstrating that responses to these stimuli are both 

reproducible and decomposable into feature-specific responses.  These results set the 

stage for further study across multiple age groups, as well as applying the same feature-

based analysis techniques in truly naturalistic settings (e.g. social interactions) that would 

be inaccessible to other imaging modalities. 
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Chapter 2: Diffuse optical tomography measurement 
density impacts reconstruction of fMRI-comparable 
cortical activations 
 
This chapter is being prepared for publication as a journal article. The citation will 
be: 
 
Burns-Yocum, Tracy M.*, Andrew K. Fishell*, Muriah D. Wheelock, Joseph P. Culver, and 
Adam T. Eggebrecht. “Diffuse optical tomography measurement density impacts 
reconstruction of fMRI-comparable cortical activations.” 
*Denotes equal contribution. 

2.1 Abstract 

Functional neuroimaging methods such as MRI and PET enable whole brain imaging in 

conjunction with outstanding spatial localization of brain activations during task 

performance. Limitations of these modalities include a need for dedicated and specialized 

facilities, constrained and noisy imaging environments, and high costs. Other functional 

neuroimaging techniques, including optical neuroimaging with functional near-infrared 

spectroscopy, overcome some of these limitations, and provide a tool for performing brain 

imaging in situations that may demand greater portability or open imaging environments. 

Despite these advantages, common limitations of optical imaging include a limited cortical 

field-of-view (FOV) and lower image resolution relative to modalities such as fMRI. 

However, increasing the number of fNIRS measurements to include overlapping optical 

measurements at multiple source-detector separations permits tomographic image 

reconstruction, as incorporated in methods such as high-density diffuse optical 

tomography (HD-DOT). Consequently, HD-DOT instruments overcome some of the 

limitations associated with other optical neuroimaging techniques. In this work, we 
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investigate the effect of varied optical measurement on localization of task-evoked brain 

responses. Spatial localization is quantified using metrics of image congruency between 

brain activations measured during three language tasks with fMRI, and subject-matched 

images reconstructed using with three separate fNIRS optode arrays and one HD-DOT 

optode array. Brain activations derived using the HD-DOT grid were most congruent with 

brain activations measured with fMRI across paradigms as quantified by three image 

similarity metrics, demonstrating that overlapping measurements result in the most fMRI-

comparable images. We further investigated two superficial signal regression (SSR) 

techniques to identify strategies for removing nuisance physiological signal that may 

interfere with sparse grids’ ability to fully localize brain activations. Applying SSR methods 

to images reconstructed using sparse grids removed unwanted noise and resulted in 

increased similarity to fMRI. 

2.2 Introduction 

Human neuroimaging techniques such as functional magnetic resonance imaging (fMRI) 

and position emission tomography (PET) have enabled researchers and clinicians to non-

invasively study brain function across the lifespan in healthy and clinical populations 

(Davidson, Thomas, & Casey, 2003; Power et al., 2011; Yeo et al., 2011; D. Zhang & 

Raichle, 2010). These tools enable whole-brain imaging but are large instruments that 

require experimental participants to remain still in a loud, constrained imaging 

environment for the duration of the experiment. Wearable neuroimaging tools, such as 

electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) 

provide an alternative to fMRI and PET, particularly when the experimental question at 
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hand demands an open, less constrained experimental environment (Pinti et al., n.d.). In 

particular, fNIRS instruments are quiet, portable, and wearable. In some instances, these 

optical instruments have generated fMRI-comparable images, highlighting the potential 

for these techniques to achieve image quality that approaches “gold-standard” techniques 

in human neuroimaging (Eggebrecht et al., 2014, 2012; Habermehl et al., 2012a).   

Experimenters have leveraged the exceptional portability and wearability of fNIRS 

instruments to perform imaging research that would be difficult to adapt to MRI or PET 

imaging environments, highlighting the need for human neuroimaging tools that can go 

beyond the bore. For instance, researchers interested in longitudinal monitoring of clinical 

patients have used fNIRS instruments to perform bedside scanning in clinical settings, in 

both adult (Murkin & Arango, 2009) and pediatric populations (Ferradal et al., 2016; Lee, 

Cooper, & Austin, 2017; Lloyd-Fox, Blasi, & Elwell, 2010). Beyond clinical settings, when 

experimental questions involve complex environments (Noah et al., 2015; Ono et al., 

2015), require participant movement (Miyai et al., 2001; Piper et al., 2014; Suzuki, Miyai, 

Ono, & Kubota, 2008), or include human social interactions (Hirsch, Zhang, Noah, & Ono, 

2017; Liu et al., 2017), fNIRS offers a brain imaging tool unencumbered by bulky, 

unmovable, and sometimes loud instruments.   

fNIRS instruments illuminate the head (scalp, skull, and superficial cortical tissue) 

with non-ionizing near-infrared light to recover changes in hemoglobin species 

concentration that occur as a result of local neuronal activity (Bluestone, Abdoulaev, 

Schmitz, Barbour, & Hielscher, 2001; Boas et al., 2001). Consequently, the signal 

measured by fNIRS instruments is an indirect, hemodynamic signal of brain activity, 



 36 

analogous to the blood-oxygen level dependent (BOLD) contrast utilized in fMRI studies. 

Unlike fMRI, which uses magnetic fields and radio waves to image tissue, fNIRS uses 

optical measurements obtained with optodes positioned on the participant’s head. These 

optodes either illuminate the head with near-infrared light (sources) or collect light 

(detectors), and the light level between a given source-detector pair constitutes a single 

fNIRS measurement. Combined with known tissue absorption and scattering coefficients 

for the hemoglobin species of interest (e.g. oxyhemoglobin, and deoxyhemoglobin), the 

light level for a given measurement indicates the hemoglobin concentration in the tissue 

sampled by the source-detector pair (Bluestone et al., 2001). 

The arrangement of source-detector optode pairs, or fNIRS measurements, on the 

head directly determines a given system’s key image quality parameters, including field-

of-view, point-spread function, depth sensitivity, and susceptibility to physiological 

artifacts (Cui, Bray, Bryant, Glover, & Reiss, 2011; White & Culver, 2010). Traditional 

fNIRS instruments use a sparse measurement configuration, arranging the sources and 

detectors broadly over the head in order to cover as much of the superficial cortex as 

possible. Consequently, these sparse grid geometries, while offering substantial cortical 

coverage, have point-spread functions much broader than fMRI. Larger point-spread 

functions contribute to mislocalization of reconstructed activations, resulting in activations 

that may appear artificially distorted (White & Culver, 2010). Further, sparse fNIRS 

instruments with only one source-detector separation distance cannot depth profile tissue 

and are therefore susceptible to contamination from vascular physiology in superficial 

tissues (skull and scalp) that do not reflect neurovascular coupling and are generally of 

no interest to brain researchers. A critical advantage of sparse measurement 
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configurations, however, is the need for fewer source and detector optodes, which 

generally results in a highly portable and wearable instrument. 

Dense measurement arrays overcome some of the key image quality challenges 

faced by sparse arrays. fNIRS techniques that use these arrays, such as high-density 

diffuse optical tomography (HD-DOT), use a densely packed array of source and detector 

optodes, resulting in a large number of overlapping measurements at multiple source-

detector separations (Eggebrecht et al., 2014; Habermehl, Steinbrink, Müller, & Haufe, 

2014; Koch et al., 2010). Because the physical distance between a source and detector 

determines how deeply into the tissue the resulting measurement will sample, HD-DOT 

systems achieve depth-resolved images of brain function with point-spread functions that 

are comparable to images obtained with fMRI (Eggebrecht et al., 2014; Habermehl et al., 

2012a). Like other fNIRS instruments with multiple source-detector separations, HD-DOT 

instruments obtain superficial measurements of blood oxygenation from the skull and 

scalp that can be removed from deeper measurements, ensuring that the deeper 

measurements more closely reflect isolated cortical hemodynamics (Gregg, White, Zeff, 

Berger, & Culver, 2010; Saager & Berger, 2005). The combination of high-resolution 

lateral sampling (Zeff, White, Dehghani, Schlaggar, & Culver, 2007, p. 200) and depth 

profiling afforded by the high measurement density enables tomographic reconstruction 

of images of brain hemodynamics (Dehghani, White, Zeff, Tizzard, & Culver, 2009; 

Eggebrecht et al., 2014; Gregg et al., 2010; White & Culver, 2010; Zeff et al., 2007). 

However, a common drawback of dense measurement arrays results from the increased 

number of source and detector optodes utilized in these systems, which, if unmanaged, 

results in reduced wearability and ergonomics relative to sparse fNIRS systems.  



 38 

Images reconstructed with sparse and dense fNIRS arrays have been previously 

compared using simulations, showing that sparse grids result in lower spatial resolution 

than dense grids (Habermehl et al., 2012b; Tian, Alexandrakis, & Liu, 2009; White & 

Culver, 2010; Yamamoto et al., 2002). However, a drawback of many image 

reconstruction simulations is the lack of superficial physiological noise in the simulation, 

which is better isolated and removed using dense arrays (Gregg et al., 2010). Other work 

has used in vivo assessments of grid density during a sensorimotor task, showing that a 

dense grid with 900 optical measurements produces fMRI-comparable images in 7 out of 

10 participants (Habermehl et al., 2012b). When the same task was imaged with a sparse 

measurement array, the resulting images were not tomographically reconstructed, limiting 

comparability across measurement grids. In the present work, all optical images are 

reconstructed tomographically, enabling comparison across measurement densities.   

The present work extends prior evaluations of grid density through an in vivo 

assessment of fNIRS measurement density. Because many human brain imaging 

experiments demand high-resolution localization of complex brain functions, we compare 

images obtained during a set of three previously published language tasks that recruit 

distinct and distributed cortical regions (Petersen, Fox, Posner, Mintun, & Raichle, 1989), 

extending prior work using tasks that typically result in single, focal activations. Subsets 

of the over 1,500 dense HD-DOT measurements are then selected to create three distinct 

sparse imaging grids, which are used to tomographically reconstruct maps of brain 

hemodynamics using the same underlying data, crucially eliminating cross-session 

variance and variance attributable to cap position. We then compare these four (3 sparse, 

1 dense) tomographically reconstructed images to subject-matched reference images 
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obtained with fMRI to evaluate the effect of measurement density on an optical 

measurement grid’s ability to localize fMRI-comparable cortical activations. 

2.3 Materials and methods 

2.3.1 Participants 

The HD-DOT and MRI data used in this study are from a previously published data set 

(Eggebrecht et al., 2014).  All participants gave written informed consent to participate in 

the experiments, which were conducted under a protocol approved by the Washington 

University School of Medicine Human Research Protection Office.  Participants included 

5 healthy, right-handed, native English-speaking adults. Data were acquired with HD-

DOT and fMRI on separate days. 

2.3.2 Data Acquisition and Stimulus Protocol 

During DOT data acquisition, the participants were seated in an adjustable chair facing a 

19-inch liquid crystal display monitor positioned 75 cm from the participant’s nasion in a 

sound-isolated imaging chamber.  During fMRI acquisition, visual stimuli were presented 

via a projector onto a screen viewed via a mirror attached to the head coil; auditory stimuli 

were presented via headphones.  The screen resolutions were set such that screens 

subtended the same solid angles in the fMRI environment as in the DOT imaging room. 

Stimuli were presented using the Psychophysics Toolbox, V3, in MATLAB (Brainard, 

1997). 

Data used herein includes three language paradigms designed to map multiple 

language processing areas (Petersen et al., 1989).  Each paradigm consisted of six 
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blocks, during which 15 single words were presented at a rate of one word per second, 

followed by 15 seconds of result, during which a fixation cross was displayed on the 

screen. Word stimuli, all of which were concrete nouns, were either presented visually or 

aurally, depending on the task. The three tasks in the present study measured responses 

to aurally presented words (“Hearing Words”), responses to silent reading of visually 

presented words (“Covert Reading”), and responses during a verb generation task 

(“Generate Verbs”), during which participants were instructed to imagine themselves 

speaking a verb that corresponded to the visually presented noun. 

2.3.3 HD-DOT instrumentation 

 

 

Figure 2.1. HD-DOT instrumentation. A: HD-DOT cap on a participant’s head, 
illustrating the positioning of the dense optode array. B: Fiber management schematic, 
showing how the 188 constituent fibers in the HD-DOT cap are managed using a 
double halo design, ensuring that the participant’s head and neck are not restrained 
and do not bear any weight of the fibers. C: Cross section of the HD-DOT cap, showing 
how flexible foam rings (brown, red) enable consistent optode coupling with the 
participant’s scalp (tan), regardless of individual differences in head shape. D: 
Representative flat-field reconstruction of the HD-DOT sensitivity matrix, showing 
regions of superficial cortex in the field-of-view (red). Sensitivity in this image is 
calculated based on the Montreal Neurological Institute ICBM-152 atlas, meaning that 
an individual’s sensitivity may vary from the group-level field-of-view. 
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The HD-DOT system (Figure 2.1) has been described in prior work using this 

instrument (Eggebrecht et al., 2014).  Briefly, the HD-DOT system is a continuous-wave 

instrument with a 96 source and 92 detector array. The sources optodes consisted of light 

emitting diodes (LEDs) illuminating at 750 and 850 nm, to provide optimal spectroscopic 

separation of oxygenated and deoxygenated hemoglobin concentrations (Boas et al., 

2001). The detector optodes consisted of 92 avalanche photo diode detectors 

(Hamamatsu C5460-01). The sources and detectors were coupled to the head using 4.2 

m long fiber-optic bundles (CeramOptec, 2.5-mm diameter bundles of 50 µm fibers), 

which are embedded in a semi-rigid imaging cap. The fiber tips extend 3mm beyond the 

inside of the imaging cap to facilitate combing through hair and to achieve perpendicular 

optode-scalp coupling, essential for optimal data quality.  

The weight of the 188 fibers was managed using an extruded aluminum frame and 

series of collinear rings surrounding the participant, ensuring that participants do not bear 

any of the fiber weight. The optode grid geometry results in source-detector separations 

for first through fourth nearest neighbors of 13 mm (322 measurements), 30 mm (534 

measurements), 39 mm (220 measurements), and 47 mm (424 measurements), 

respectively, with over 1,500 possible measurements per wavelength. Previously 

published temporal, spatial, and frequency encoded source illimitation patterns enabled 

the HD-DOT system to achieve an overall framerate of 10 Hz (Eggebrecht et al., 2014). 

Using image reconstruction procedures as specified below, the measurements were then 

converted into voxelated movies of brain hemodynamics. 

2.3.4 HD-DOT image reconstruction 
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The full set of source-detector measurements were tomographically reconstructed into 

voxelated movies of cortical hemodynamics using a previously published HD-DOT 

processing pipeline (Eggebrecht et al., 2014), implemented in the NeuroDOT toolbox for 

MATLAB (Eggebrecht, Muccigrosso, & Culver, 2019; Muccigrosso & Eggebrecht, 2018). 

This pipeline consists of measurement preprocessing, anatomical light modeling, image 

reconstruction, and tissue spectroscopy. During measurement preprocessing, raw 

measurements (i.e. light levels for single source-detector pairs) were converted to log-

ratio timeseries data by taking the logarithm of the ratio of the instantaneous light level 

and the source-detector measurement’s mean value over the course of the imaging run. 

Consequently, after the log-ratio procedure, the baseline for a given measurement is the 

defined as the mean for that measurement.  

Next, measurement channels with excessive temporal variance were excluded 

from further processing, as these measurements were likely contaminated by sources of 

non-physiological variance (e.g. head motion, poor optode coupling). A threshold of 7.5% 

was applied to the measurement data, such that channels with a temporal standard 

deviation greater than 0.075 were excluded from image reconstruction. The 

measurements that survived this threshold were then temporally filtered to remove long-

term drift and physiological signals not related to task performance (e.g. pulse, 

respiration, vasomotion (Bumstead, Bauer, Wright, & Culver, 2017)). The bandpass filter 

cutoffs for all runs were set to 0.02 < f < 0.5 Hz. Next, the superficial signal, or signal 

originating from scalp and skull hemodynamics, was approximated by averaging the first 

nearest-neighbor measurements (S-D separation = 13mm) and regressing this global 

signal from all measurements. 
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After measurement preprocessing, subject-specific forward models of light 

propagation were generated using anatomical MRIs obtained during each subject’s MRI 

session (Eggebrecht et al., 2012). These anatomical images were segmented into five 

non-uniform tissues compartments with tissue specific optical properties: scalp (μa,750 = 

0.017 ; μa,850 = 0.019; μs,750’ = 0.74; μs,850’ = 0.64), skull (μa,750 = 0.012; μa,850 = 0.014; μs,750’ 

= 0.94; μs,850’ = 0.84), grey matter (μa,750 = 0.018; μa,850 = 0.019; μs,750’ = 0.84; μs,850’ = 

0.67), white matter (μa,750 = 0.018; μa,850 = 0.021; μs,750’ = 1.19; μs,850’ = 1.01), and 

cerebrospinal fluid (μa,750 = 0.004; μa,850 = 0.004; μs,750’ = 0.3; μs,850’ = 0.3) (Eggebrecht et 

al., 2014). Using measurements of optode positions relative to the tragus, eyes, nasion, 

and inion, the optodes were positioned onto the subject-specific anatomy (Eggebrecht et 

al., 2014, 2012). Finally, using the subject specific anatomy and optode positions, a 

forward model was generated using NIRFAST (Dehghani et al., 2008), resulting in a 

wavelength dependent sensitivity matrix with tissue-specific optical properties. This 

matrix relates relative changes in the ratiometric light-level measurements to relative 

changes in absorption within the volume. The sensitivity matrix was inverted using 

Tikhonov regularization with spatially-variant regularization (λ1 = 0.01; λ2 = 0.1). Finally, 

literature-derived spectroscopy values converted the images from differential absorption 

to differential hemoglobin, resulting in the four dimensional (3 spatial, 1 temporal) movies 

of three hemodynamic contrasts: oxyhemoglobin (∆HbO2), deoxyhemoglobin (∆HbR) and 

total hemoglobin (∆HbT), down-sampled to a final framerate of 1 Hz to reduce data size. 

Unless otherwise specified, analyses utilized the ∆HbO2 contrast, which has been 

previously shown to produce the highest signal-to-noise of the three hemoglobin contrasts 

(Eggebrecht et al., 2014, 2012; Ferradal et al., 2016). 
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2.3.5 Tomographic image reconstruction using sparse measurement grids 

 

 

Figure 2.2. HD-DOT and sparse measurement arrays. A: A flattened view of the 
HD-DOT optode array (left) showing source (red) and detector (blue) optode positions. 
First through third nearest-neighbor measurements resulting from this arrangement 
are indicated by black lines resulting in approximately 1200 measurements per 
wavelength. Optode positions on the head (right) indicate the three-dimensional 
arrangement of the optodes for this array. B: A flattened view of the “horizontal 
triangular” sparse array (right), which is generated using 32 sources (red) and 32 
detectors (blue) selected from the dense array in Panel A. This optode configuration 
results in 103 measurements at a single source-detector separation (30mm). Optode 
positions on the head (right) indicate the three-dimensional arrangement of the 
optodes for this array. C: A flattened view of the “vertical triangular” sparse array (right), 
which is generated using 24 sources (red) and 37 detectors (blue) selected from the 
dense array in Panel A. This optode configuration results in 74 measurements at a 
single source-detector separation (30mm). Optode positions on the head (right) 
indicate the three-dimensional arrangement of the optodes for this array. D: A flattened 
view of the “square” sparse array (right), which is generated using 19 sources (red) 
and 20 detectors (blue) selected from the dense array in Panel A. This optode 
configuration results in 56 measurements at a single source-detector separation 
(30mm). Optode positions on the head (right) indicate the three-dimensional 
arrangement of the optodes for this array. 
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To directly assess the effects of measurement density using the same in vivo data, three 

sparse optode grid patterns previously used in simulations evaluating grid density (White 

& Culver, 2010) were replicated and directly derived from using subsets of measurements 

from the full 96 source by 92 detector HD-DOT array (Figure 2.2). The full HD-DOT grid 

contains up to 1,512 possible measurements, per wavelength, within a source-detector 

separation of 5cm (i.e. first through fourth nearest neighbor measurements). 

Each of the three sparse grids were designed such that they only used source-

detector measurements at a separation of 30mm, corresponding to the second nearest-

neighbor measurements in the full HD-DOT array. The three sparse grid designs 

included: a horizontal triangular grid (Figure 2.2B; 32 sources, 32 detectors, 103 total 

measurements); a vertical triangular grid (Figure 2.2C; 24 sources, 37 detectors, 74 total 

measurements); and a square grid (Figure 2.2D; 19 sources, 20 detectors, 56 total 

measurements). 

Tomographic image reconstruction using the sparse grids followed the image 

reconstruction procedures described in Section 2.3.4, except instead of using the full set 

of possible HD-DOT source-detector measurements, measurements were restricted to 

include only source-detector pairs contained within a given grid pattern. However, due to 

uniformity of source-detector separations within each of the sparse grids, superficial 

signal regression using the average of all usable first-nearest neighbor measurements 

was not possible. Consequently, sparse images were tomographically reconstructed 

without superficial signal regression. To further characterize the effects of superficial 
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signal regression in sparse grids, alternative methods for nuisance physiology removal 

schemes in sparse grid reconstruction were utilized, as described in Section 2.3.6.  

Crucially, all sparse and dense images reconstructed for a given subject were 

reconstructed using the same underlying data, eliminating variance attributable 

movement, cap fit, and task performance, as well as variance related to imaging the same 

participant across multiple task repetitions and disparate imaging sessions. As a result, 

differences in activation localization across the sparse and dense image reconstructions 

are more likely to be attributable to optode positioning and measurement density. 

2.3.6 Superficial signal regression using sparse measurement grids 

 

 

Figure 2.3. Superficial signal regression in high-density diffuse optical 
tomography. Superficial signal regression (SSR) as implemented in HD-DOT is 
designed to approximate and remove signals related to systemic physiology that is 
unrelated to the cortical hemodynamics of interest. SSR approximates this nuisance 
signal by averaging all first nearest-neighbor measurements (i.e. measurement 
between source, S, and detector, D1, with sensitivity indicated in red) which have 
sensitivity biased towards superficial tissues. By removing this superficial signal from 
measurements with greater source-detector separation (i.e. measurement between 
source, S, and detector, D2, with sensitivity indicated in green), measurements with 
greater depth sensitivity can more specifically probe deeper, cortical tissues of interest. 
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As light in a single measurement travels from the source optode to the detector optode, 

the measured light level contains contributions from superficial, systemic physiology such 

as respiration and heartbeat. These systemic signals are distinct from the deeper, focal 

changes in cortical hemodynamics related to neurovascular coupling (Huppert, Diamond, 

Franceschini, & Boas, 2009; Saager & Berger, 2005). As described in Section 2.3.4 

superficial signal regression is a strategy for removing the contribution of superficial 

signals to optical measurements, resulting in measurements that more closely reflect 

variance related to cortical hemodynamics (Figure 2.3). The superficial signal was 

approximated by averaging all first nearest-neighbor measurements (separation = 

13mm), which have a sensitivity that is heavily weighted towards the superficial tissue. 

This approximation of superficial physiology is then regressed from all source-detector 

measurements (Gregg et al., 2010; Zeff et al., 2007), which is a common technique in 

HD-DOT image reconstruction (Eggebrecht et al., 2014, 2012; Hassanpour, Eggebrecht, 

Culver, & Peelle, 2015; Hassanpour, Eggebrecht, Peelle, & Culver, 2017). 

Because the sparse grids described in Section 2.3.5 lack measurements at a short 

source-detector separation, superficial signal regression was initially not performed in 

tomographic image reconstruction using these arrays. However to further investigate the 

effects of superficial signal regression on sparsely reconstructed images, the sparse 

reconstruction was repeated using two superficial signal regression strategies that may 

be available to researchers using sparse optode arrays: (1) Regress using the first 

nearest-neighbor average from the full HD-DOT grid to evaluate the effect of including a 

short source-detector separation in a sparse measurement array and (2) regress using 



 48 

the average of all clean measurements in the sparse arrays, which is analogous to 

regressing the global signal from the data. 

2.3.7 fMRI acquisition and processing 

MRI scans were collected on a Siemens Trio 3T scanner.  Anatomical T1-weighted 

MPRAGE (echo time (TE) = 3.13 ms, repetition time (TR) = 2,400 ms, flip angle = 8°, 1 × 

1 × 1 mm isotropic voxels) and T2-weighted (TE = 84 ms, flip angle = 120°, 1 × 1× 4 mm 

voxels) scans were taken at each session. Functional images were collected during 

performance of the three language paradigms described in Section 2.2 using a series of 

asymmetric gradient spin-echo echo-planar (EPI) sequences (TE = 27 ms, TR = 2,000 

ms, flip angle = 90°, 4 × 4 × 4 mm voxels) to measure the Blood Oxygen Level Dependent 

contrast.  

Importantly, to enable comparison between fMRI and HD-DOT-derived maps of 

brain activations, the fMRI data were smoothed using a 13 mm FWHM Gaussian kernel 

to match the HD-DOT point-spread-function (Eggebrecht et al., 2014). Further, to account 

for the larger field-of-view afforded by fMRI, the fMRI datasets were spatially masked to 

match the HD-DOT field-of-view. As described in prior work, this field-of-view masking 

procedure limits the cortical field-of-view to approximately the outer 10 mm of cortex 

(Eggebrecht et al., 2014, p. 2). 

2.3.8 Block analysis of task data 

In order to generate spatial maps of brain activation during the three language paradigms 

used in this work, images of brain hemodynamics during task were contrasted with 

images of brain activity during fixation (i.e. no task). As in previous work utilizing HD-DOT 
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during performance of these language tasks, the response magnitude was computed 

using a voxelwise paired t-statistic, contrasting the task image with the fixation image 

across subjects.  

2.3.9 Image comparison metrics 

The result of the HD-DOT image reconstruction, sparse image reconstruction, subject-

matched fMRI acquisition, and block analysis was set of five activation maps, per subject, 

per task. The set of five images consisted of 1 image obtained through HD-DOT 

reconstruction, 3 sparsely reconstructed images, and 1 subject-matched fMRI image. 

Because the goal of this work was to evaluate agreement between reference images 

obtained with fMRI and images reconstructed using sparse and dense measurement sets, 

three image agreement metrics were used to quantify image agreement: Dice’s 

coefficient, overlap percentage, and spatial correlation. These metrics were chosen to 

provide distinct but convergent information about image agreement across the 

reconstruction schemes. 

Dice’s coefficient is a region-based similarity coefficient that was calculated using 

T-maps thresholded at 50% of the maximum value for the fMRI and optical T-maps. 

Voxels that survive the threshold were considered to be “activated,” and Dice’s coefficient 

is computed as the ratio of the number of overlapping activated voxels between the two 

maps as compared with the total number of activated voxels. Values of Dice’s coefficient 

range from 0 (no agreement) to 1 (total agreement). 

The overlap percentage is calculated by identifying the strongest contiguous 

regions of activation in two activation maps (i.e. one fMRI image and one optical image), 



 50 

after thresholding each image at 50% of the maximum. Then, the percentage of voxels in 

one activated region that spatially correspond with the activated region in the second 

image is calculated.  

Unlike Dice’s coefficient and overlap percentage, spatial correlation does not use 

any thresholding in the maps, and therefore provides a measure of agreement across the 

entire FOV between images from multiple modalities.  The spatial correlation is computed 

as Pearson’s product-moment correlation coefficient between two images. As with all 

Pearson product-moment correlation coefficients, values range from -1 (anti-correlation) 

to 0 (no correlation) to 1 (perfect correlation).  

All image agreement metrics were computed between either a sparsely or densely 

reconstructed image and fMRI. A pairwise T-test was used to test for significant 

differences between image agreement metrics for pairs of reconstructed optical images, 

resulting in a total of 6 pairwise comparisons between the 1 dense and 3 sparse 

reconstructions. Thus, a Bonferroni-corrected alpha value was set to 0.0083 for all 

pairwise comparisons (α = 0.05/6). 

2.4 Results 

Our primary question was how the number of measurements in an optical imaging array 

affects the reconstruction of activations that spatially concur with activations obtained 

using a high-resolution, whole-brain imaging modality, fMRI. For each of the three 

language paradigms used in this study, we used either the full set of HD-DOT 

measurements (“Dense Array”) or subsets of HD-DOT measurements (“Sparse Arrays”) 

to compute metrics of image agreement between the optical arrays and fMRI. All three 
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metrics indicated the highest agreement between fMRI-derived activation maps and 

activation maps reconstructed using the dense, HD-DOT array. In this section, we first 

consider group-level responses across all three language processing task across sparse 

and dense reconstruction schemes. We then evaluate the effect of incorporating 

superficial signal regression into the sparse reconstruction scheme on the image 

agreement metrics. 

2.4.1 Group-level analysis 

2.4.1a Hearing words 

 

 

Figure 2.4. Activations related to the hearing words task. During the hearing words 
task, participants passively listen to words presented over a speaker. A: Using fMRI, 
group-level activations related to this task were computed using a block design 
analysis and localized to bilateral superior temporal gyrus. Unthresholded maps (top) 
are scaled to the maximum T-value for image, indicated below each image. 
Thresholded maps (bottom) are thresholded at 50% of the maximum T-value and 
scaled to the image’s maximum T-value. B: Group-level activations reconstructed 
using the dense HD-DOT array. C:  Group-level activations reconstructed using the 
sparse horizontal triangular array, with 103 source-detector measurements. D: Group-
level activations reconstructed using the sparse vertical triangular array, with 74 
source-detector measurements. E: Group-level activations reconstructed using the 
sparse square array, with 56 source-detector measurements. Image agreement 
metrics for maps in Panel A and Panels B-E are reported in Table 2.1. 
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The Hearing Words task required participants to listen to sequences of spoken concrete 

nouns. Both thresholded and unthresholded fMRI maps revealed that this task produces 

bilateral activations centered on the superior temporal gyrus, as shown by the T-maps 

presented in Figure 2.4A. Of the four optical reconstruction schemes (Figure 2.4B-E), the 

maps reconstructed using the HD-DOT array produced activation maps with the highest 

spatial agreement with fMRI activations. Like the fMRI-derived maps, the activations 

reconstructed with HD-DOT resulted in focal loci of activation on each hemisphere. 

Quantitatively, the image agreement metrics (Table 2.1) confirm that the HD-DOT 

reconstructions most closely recapitulate the fMRI activations, as the Dice’s Coefficient 

(0.59), percent overlap (73%), and spatial correlation (r = 0.48) for the HD-DOT metrics 

were significantly greater for the dense reconstruction compared to the three sparse 

reconstructions (Figure 2.4F-G). There were no significant differences between image 

agreement metrics for any pairs of sparse measurement grids. 

 

Grid Type Dice’s 
Coefficient 

Overlap 
Percentage 

Spatial 
Correlation 

HD-DOT 0.46 (± 0.05) 0.77 (± 0.04) 0.48 (± 0.04) 

Sparse: 103 
Measurements 

0.32 (± 0.06) 0.55 (± 0.10) 0.22 (± 0.11) 

Sparse: 74 
Measurements 

0.35 (± 0.06) 0.64 (± 0.10) 0.28 (± 0.04) 

Sparse: 56 
Measurements   

0.33 (± 0.06) 0.66 (± 0.10) 0.28 (± 0.08) 

Table 2.1. Image agreement metrics for the hearing words task. Image agreement 
metrics between sparsely/densely reconstructed images and subject-matched fMRI for 
the hearing words task. Values reported are the group means and SEM for each 
reconstruction scheme and metric. 
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2.4.1b Covert reading 

The Covert Reading task required participants read sequences of visually presented 

concrete nouns. This task resulted in activations centered in occipital cortex, as shown 

by fMRI (Figure 2.5A). Like the passive word listening task, the images reconstructed 

using HD-DOT resulted in the greatest agreement with the fMRI-based images, as 

indicated by the three image agreement metrics (Figure 2.5F). However, for this task, 

images reconstructed using the sparse arrays also recovered focal activations in occipital 

cortex, as indexed by the moderate agreement between the three sparse arrays and fMRI 

across the image agreement metrics (Table 2.2). 

 

 

Figure 2.5. Activations related to the reading words task. During the reading words 
task, participants passively read words presented on a monitor. A: Using fMRI, group-
level activations related to this task were computed using a block design analysis and 
primarily localized to bilateral occipital cortex. Thresholded maps are thresholded at 
50% of the maximum T-value and scaled to the image’s maximum T-value, which is 
reported below each image. B: Group-level activations reconstructed using the dense 
HD-DOT array. C:  Group-level activations reconstructed using the sparse horizontal 
triangular array, with 103 source-detector measurements. D: Group-level activations 
reconstructed using the sparse vertical triangular array, with 74 source-detector 
measurements. E: Group-level activations reconstructed using the sparse square 
array, with 56 source-detector measurements. Image agreement metrics for maps in 
Panel A and Panels B-E are reported in Table 2.2. 
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2.4.1c Generate verbs 

 

Grid Type Dice’s 
Coefficient 

Overlap 
Percentage 

Spatial 
Correlation 

HD-DOT 0.68 (± 0.03) 0.82 (± 0.04) 0.46 (± 0.08) 

Sparse: 103 
Measurements 

0.60 (± 0.06) 0.79 (± 0.04) 0.36 (± 0.09) 

Sparse: 74 
Measurements 

0.61 (± 0.06) 0.74 (± 0.06) 0.39 (± 0.07) 

Sparse: 56 
Measurements   

0.55 (± 0.08) 0.65 (± 0.09) 0.33 (± 0.11) 

 

Table 2.2. Image agreement metrics for the reading words task. Image agreement 
metrics between sparsely/densely reconstructed images and subject-matched fMRI for 
the reading words task. Values reported are the group means and SEM for each 
reconstruction scheme and metric. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Activations related to the verb generation task. During the verb 
generation task, participants imagined themselves speaking a verb related to a cue 
word presented on a monitor. A: Using fMRI, group-level activations related to this task 
were computed using a block design analysis and primarily localized to bilateral 
occipital cortex. Thresholded maps are thresholded at 50% of the maximum T-value 
and scaled to the image’s maximum T-value, which is reported below each image. B: 
Group-level activations reconstructed using the dense HD-DOT array. C:  Group-level 
activations reconstructed using the sparse horizontal triangular array, with 103 source-
detector measurements. D: Group-level activations reconstructed using the sparse 
vertical triangular array, with 74 source-detector measurements. E: Group-level 
activations reconstructed using the sparse square array, with 56 source-detector 
measurements. Image agreement metrics for maps in Panel A and Panels B-E are 
reported in Table 2.3. 
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In the Generate Verbs paradigm participants covertly spoke verbs related to visually 

presented concrete nouns, resulting in spatially distributed brain activations related to 

reading the cue word and generating a novel word in response to the cue. While both 

sparsely and densely reconstructed images of brain activation during this task resulted in 

detection of spatially distributed responses (Figure 2.6), the dense HD-DOT grid most 

resulted in images with the greatest spatial agreement with fMRI, as quantified by both 

Dice’s coefficient and percent overlap. In this case, the sparsely reconstructed responses, 

while spatially distributed, were both enlarged and included regions not detected with 

fMRI, resulting in lower Dice’s coefficients and overlap percentages relative to the dense 

reconstruction, which produced more focal and spatially concordant responses. Further, 

the three sparse grids showed substantial variance across participants for Dice’s 

coefficient and percent overlap, indicating that activation localization performance for the 

sparse reconstructions varied considerably from individual to individual (Table 2.3). 

Grid Type Dice’s Coefficient Overlap 
Percentage 

Spatial 
Correlation 

HD-DOT 0.29 (± 0.16) 0.35 (± 0.19) 0.08 (± 0.08) 

Sparse: 103 
Measurements 

0.12 (± 0.14) 0.16 (± 0.18) 0.05 (± 0.11) 

Sparse: 74 
Measurements 

0.10 (± 0.10) 0.12 (± 0.12) 0.12 (± 0.12) 

Sparse: 56 
Measurements   

0.11 (± 0.12) 0.20 (± 0.21) 0.06 (± 0.10) 

 

Table 2.3. Image agreement metrics for the verb generation task. Image 
agreement metrics between sparsely/densely reconstructed images and subject-
matched fMRI for the verb generation task. Values reported are the group means and 
SEM for each reconstruction scheme and metric. 
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However, for this task, the spatial correlation between reconstructed images and subject-

matched fMRI did not reveal superior performance for any of the reconstruction schemes. 

2.4.2 Applying superficial signal regression to sparsely reconstructed images 

Initially, image reconstruction using the three sparse measurement grids did not include 

a superficial signal regression step, as these measurement grids did not include 

measurement pairs at a shorter source-detector separation that was suitable for 

approximating the superficial signal regression. However, some sparse optode arrays do 

include multiple measurement distances, and the global average of measurements at a 

longer source-detector separation may also capture superficial nuisance physiology. To 

account for these possibilities, the sparsely reconstructed images were reprocessed to 

evaluate two superficial signal regression schemes. The first scheme approximated the 

superficial signal using the average of the first nearest-neighbor measurements from the 

full HD-DOT grid, as is done in standard HD-DOT processing. The second scheme did 

not incorporate an additional source-detector separation and instead approximated the 

superficial signal using the average of all clean (i.e. below the 7.5% temporal variance 

threshold described in Section 2.3.4) measurements in the sparse array. 

Relative to sparsely reconstructed images from the hearing words task with no 

superficial signal regression (Figure 2.4), sparsely reconstructed images with superficial 

signal regression resulted in greater agreement with subject-matched fMRI (Figure 2.7). 

As quantified in Tables 2.4 and 2.5, the trend of greater agreement with activations 

obtained with fMRI is captured by the three image agreement metrics. Consequently, 
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incorporating an approximation of nuisance physiology into image reconstruction results 

in improved agreement with reference images obtained using fMRI. 

 

Figure 2.7. Sparsely reconstructed images with two superficial signal regression 
schemes. Sparse images from the hearing words task were reconstructed two 
superficial signal regression (SSR) strategies. A: Reconstructed images from the three 
sparse grids with no SSR. B: Reconstructed images from the three sparse grids using 
a superficial nuisance signal approximated using the first nearest-neighbor 
measurements from the full HD-DOT grid. C: Reconstructed images from the three 
sparse grids using a superficial nuisance signal approximated using the average of all 
clean measurements used in sparse reconstruction. Maps in A-C are unthresholded 
and scaled to each image’s maximum T-value, which is reported below each individual 
image. D: Thresholded view of the map presented in Panel B. E: Thresholded view of 
the map presented in Panel C. Maps in D-E are thresholded at 50% of each image’s 
maximum T-value and scaled to each image’s maximum T-value, which is reported 
below each individual image. 
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Grid Type Dice’s Coefficient Overlap 
Percentage 

Spatial Correlation 

 Mean % 
Chg 

Mean % Chg Mean % Chg 

HD-DOT 0.46 (± 
0.05) 

- 0.77 (± 
0.04) 

- 0.48 (± 
0.04) 

- 

Sparse: 103 
Measurements 

0.42 (± 
0.09) 

30.0 0.58 (± 
0.09) 

5.4 0.33 (± 
0.7) 

50.8 

Sparse: 74 
Measurements 

0.40 (± 
0.08) 

13.2 0.56 (± 
0.10) 

-11.9 0.33 (± 
0.6) 

17.6 

Sparse: 56 
Measurements   

0.44 (± 
0.06) 

31.7 0.64 (± 
0.08) 

-3.1 0.35 
(±0.04) 

23.4 

Table 2.4. Hearing words SSR image agreement metrics. Sparse images were 
reconstructed using superficial signal regression (SSR) based on a superficial signal 
approximated using the mean of clean first-nearest neighbor measurements from the 
full HD-DOT measurement grid. Values reported are the group means and SEM for 
each reconstruction scheme and metric. Percent change indicates the percent 
increase/decrease of the image agreement metric with superficial signal regression 
relative to image agreement metrics for non-SSR images, reported in Table 2.1. 

 

Grid Type Dice’s Coefficient Overlap 
Percentage 

Spatial Correlation 

 Mean % Chg Mean % Chg Mean % Chg 

HD-DOT 0.46 (± 
0.05) 

- 0.77 (± 
0.04) 

- 0.48 (± 
0.04) 

- 

Sparse: 103 
Measurements 

0.46 (± 
0.07) 

42.4 0.63 (± 
0.05) 

14.6 0.35 (± 
0.07) 

59.9 

Sparse: 74 
Measurements 

0.39 (± 
0.08) 

10.4 0.56 (± 
0.11) 

-11.9 0.35 (± 
0.05) 

24.7 

Sparse: 56 
Measurements   

0.44 (± 
0.06) 

31.7 0.66 (± 
0.08) 

-0.1 0.35 (± 
0.05) 

23.4 

Table 2.5 Hearing words SSR image agreement metrics. Sparse images were 
reconstructed using superficial signal regression (SSR) based on using the mean of 
all clean measurements. Values reported are the group means and SEM for each 
reconstruction scheme and metric. Percent change indicates the percent 
increase/decrease of the image agreement metric with superficial signal regression 
relative to image agreement metrics for non-SSR images, reported in Table 2.1. 
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2.5 Discussion 

In this work, we assessed the agreement between activations reconstructed with four 

optical imaging grids of varying measurement density and activations obtained with 

subject-matched fMRI data. Across three language processing paradigms, a dense 

measurement array is most likely to result in maps of brain activation in spatial agreement 

with fMRI, as quantified by three image agreement metrics. We further demonstrate that 

approximating and removing nuisance physiology, either with a short source-detector 

measurement or global measurement average, is one strategy for improving agreement 

between sparsely reconstructed images and subject-matched fMRI. 

Prior work has assessed grid densities in simulations, in the absence of 

physiological noise, demonstrating that grids with overlapping measurements more 

reliably localize functional activations as compared to sparse measurement grids 

(Habermehl et al., 2012b; Tian et al., 2009; White & Culver, 2010; Yamamoto et al., 2002). 

This work extends this work evaluating activation localization capability by using in vivo 

data from both HD-DOT and fMRI, enabling further evaluation of the effect of nuisance 

physiology on localization capability. An advantage of using a dense measurement array 

such as HD-DOT is that sparsely reconstructed images can be obtained from the same 

dataset, simply by restricting the reconstruction to include predetermined measurement 

sets that comprise sparse arrays. By utilizing the same underlying data for all 

reconstructions, common sources of variance such as array position and task 

performance/attentiveness are mitigated. Consequently, differences in localization 
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performance across reconstruction schemes can more confidently be attributed to 

measurement density. 

The sparse grids consistently had low spatial agreement with fMRI for all three 

language paradigms, including poorly localized activations and spurious secondary 

activations. This discrepancy is a result of their grid arrangement, which places all source-

detector pairs equidistant from one another. The HD-DOT array, which permits over 1,500 

measurements at both wavelengths allows for surface profiling and more accurate 

localization at three different depths that is not possible with unidistant sparse grids 

(Dehghani et al., 2009; Gregg et al., 2010).  These benefits of a dense array lead to 

reliable high-quality data over a wider FOV.  Relatively good agreement is found between 

HD-DOT and subject-matched fMRI data for all the paradigms and image quality metrics. 

For the functional brain areas probed in this paper, sparse grids with 30 mm 

source-detector separation and no superficial signal regression typically generate images 

with lower spatial agreement fMRI than images reconstructed with dense grids 

incorporating multiple source-detector separations.  Failing to account for superficial 

nuisance physiology means that the images reconstructed using sparse arrays are 

contaminated with noise unrelated to stimulus driven brain responses(Diamond et al., 

2005; Huppert et al., 2009).  Superficial signal regression is a useful strategy for 

approximating and removing unwanted physiological noise in optical data, as shown by 

prior work(Gregg et al., 2010; Saager & Berger, 2005) incorporating a measurements with 

a shorter source-detector separation, biasing the physiologic origin of the measured 

signal to superficial tissues. 
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We investigated two strategies for incorporating superficial signal regression into 

sparse reconstruction schemes and found that these strategies generally improve 

agreement between sparsely reconstructed images and subject-matched fMRI, as shown 

in Figure 2.7. The first strategy incorporated first nearest-neighbor measurements 

obtained with the full HD-DOT grid, and used these measurements to approximate the 

superficial signal, highlighting the utility of including optical measurements at multiple 

source-detector separations (Gregg et al., 2010; Saager & Berger, 2005). The second 

strategy averaged the unidistant measurements already included in the sparse arrays to 

approximate systemic nuisance physiology (Pfeifer, Scholkmann, & Labruyère, 2017; 

Saager & Berger, 2005). This superficial signal regression strategy does not require 

overlapping measurements, allowing this technique to be more easily implemented in 

existing instruments with unidistant measurements. 

One limitation of this study is the focus on task-evoked responses during language 

processing paradigms. Two of the language paradigms, hearing words and reading 

words, were presented in a single sensory modality, and resulted in bilateral activations 

in a focal brain region related to that sensory modality (i.e. visual or auditory cortex). In 

these cases, the sparsely reconstructed images resulted in activations that were often 

partially overlapping or adjacent to activations imaged with fMRI, in addition to other 

activations that were not present in the subject-matched fMRI data. This finding highlights 

that sparse arrays may be suitable detecting activations for paradigms in which 

experimenters have an a priori hypothesis about the brain region of interest, with the 

caveat that exact localization of a cortical response may depend on the optode geometry. 

Indeed, novel tools now exist for fNIRS researchers to optimize optode arrays given a 
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constrained set of a priori regions of interest (Brigadoi, Salvagnin, Fischetti, & Cooper, 

2018), potentially automating this time consuming and often subjective process. The other 

paradigm used in this work, covert verb generation, recruited spatially distributed 

responses related to reading the cue word and generating a response to the cue. In this 

paradigm, the sparsely reconstructed images showed the lowest agreement with subject-

matched fMRI, emphasizing that grid density is a particularly important consideration for 

localization of multiple, spatially distributed cortical activations. 

Other imaging paradigms, such as resting-state functional connectivity also 

measure spatially distributed brain activity, but in the absence of task performance, to 

assess patterns of correlated brain hemodynamics. These patterns of correlated 

hemodynamics reflect coactivation patterns between regions, revealing functionally 

related networks of brain regions. Prior work with fNIRS has used functional connectivity 

techniques to image a subset of these functional networks (e.g. somatomotor and sensory 

systems) (Lu et al., 2010; H. Zhang et al., 2010), generally limited by the fNIRS 

instrument’s field-of-view. Work with HD-DOT demonstrates that a broader cortical field-

of-view paired with higher lateral resolution enables sampling of a greater number of 

cortical systems. Further, regional changes in connectivity associated with crossing 

borders between regions are detectable using both fMRI and HD-DOT (Cohen et al., 

2008; Eggebrecht et al., 2014). In contrast, simultaneous fNIRS and fMRI assessments 

functional connectivity focused on two functional systems and assessed both modalities’ 

sensitivity to patterns of bilateral homotopic connectivity (Duan, Zhang, & Zhu, 2012), 

underscoring the need for higher resolution and larger fields-of-view to assess more 

complex network structure. Consequently, the relationship between optical measurement 
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density and sensitivity to spatially distributed patterns of functional connectivity is an 

important future direction for future grid density assessments. 

Due to the reduced channel count, sparse arrays that use fiber optics are more 

lightweight and wearable than their fiber-based dense counterparts. However, the tradeoff 

between wearability and spatial resolution is being mitigated by advances in optical 

neuroimaging technology that either use novel detection methods to enable use of lighter 

weight fiber bundles, or eliminate fiber optics altogether (Bergonzi et al., 2018; Chitnis et 

al., 2016). Consequently, future optical neuroimaging instrumentation may not be as 

susceptible to the tradeoff between portability/wearability and image quality and may 

more readily achieve the fMRI-quality spatial localization afforded by dense measurement 

arrays. The potential for highly portable and wearable instruments that do not sacrifice 

fMRI-comparable localization capability represents a critical advancement in optical 

neuroimaging technology, enabling researchers to fully leverage the potential advantages 

of optical neuroimaging, including imaging of complex behaviors in naturalistic 

environments or high-resolution longitudinal monitoring of clinical populations.  
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Chapter 3: Portable, field-based neuroimaging using high-
density diffuse optical tomography 
 
This chapter is being submitted for publication as an invited journal article. The 
citation will be: 
 
Fishell, A.K., Claudia P. Valdés, Tracy M. Burns-Yocum, Arefeh Sherafati, Edward J. 
Richter, Margarita Torres, Adam T. Eggebrecht, Christopher D. Smyser, Ana María 
Arbeláez, Joseph P. Culver. “Portable, field-based neuroimaging using high-density 
diffuse optical tomography.” NeuroImage (2019). 
 
3.1 Abstract  

Behavioral and cognitive tests in children with malnutrition have revealed malnutrition-

related deficits that persist throughout the lifespan, but long-term effects of malnutrition 

have not been extensively examined. These findings have motivated recent neuroimaging 

investigations, which use highly portable functional near-infrared spectroscopy (fNIRS) 

instruments to meet the demands of brain imaging experiments in low-resource 

environments and enable longitudinal investigations of brain function in the context of 

long-term malnutrition. However, the limited cortical field-of-view and image quality 

limitations associated with fNIRS instruments necessitate higher-resolution imaging tools 

that preserve portability, wearability, and ergonomics. In this work, we introduce high-

density diffuse optical tomography (HD-DOT), an optical neuroimaging modality that 

produces fMRI-comparable images of brain function, in a field setting. Our results 

evaluate the performance of a custom HD-DOT instrument for assessing brain function 

in a cohort of malnourished children in Cali, Colombia. In addition to demonstrating 

portability and wearability, we show the HD-DOT instrument’s sensitivity to distributed 

brain responses using a sensory processing task and measurement of homotopic 
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functional connectivity. Task-evoked responses to the passive word listening task 

produce activations localized to bilateral superior temporal gyrus, resembling previously 

published work using this paradigm. Evaluating this localization performance across 

sparse and dense reconstruction schemes indicates that greater localization consistency 

is associated with a dense array of overlapping measurements. These results set the 

stage for additional avenues of investigation, including identifying and characterizing a 

child’s individual malnutrition burden and eventually contributing to intervention 

development. 

3.2 Introduction 

Despite increased efforts focused upon reducing the prevalence of childhood malnutrition 

and the high mortality rates associated with this condition, the deleterious effect of 

malnutrition on brain development is a pressing global health concern (Chugani, Phelps, 

& Mazziotta, 1987; Goyal, Hawrylycz, Miller, Snyder, & Raichle, 2014; Kuzawa et al., 

2014; Thompson & Nelson, 2001). During the first decade of life, the human brain has 

exceptional nutritional and metabolic requirements as the brain undergoes critical 

structural and functional changes, including neuronal development, synaptogenesis, and 

synaptic remodeling (Goyal & Raichle, 2013; Murthy & Desiraju, 1991; Thompson & 

Nelson, 2001; Wiggins, 1982). Thus, if nutrients are scarce and energetic demands are 

unmet during this critical period, trajectories of brain development can be irreversibly 

compromised, leading to life-altering deficits (Black et al., 2019; S. Grantham-McGregor 

et al., 2007; Liu, Raine, Venables, Dalais, & Mednick, 2003). 
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Correlational studies of weight gain during early childhood show that weight gain 

during the first two years of life is related to subsequent performance in school (Martorell, 

1999; Martorell et al., 2010). Additional studies show a relationship between malnutrition 

status and attainment of WHO-established motor milestones, social behaviors, and 

linguistic abilities (Barrett, Radke-Yarrow, & Klein, 1982; Iannotti et al., 2016). 

Interventional studies have directly assessed the effect of various therapeutic feeding 

regimens and supplements on subsequent neurodevelopmental outcomes, establishing 

a causal link between childhood malnutrition and brain development (Cusick & Georgieff, 

2012; S. M. Grantham-McGregor, Powell, Walker, & Himes, 1991; McKay, Sinisterra, 

McKay, Gomez, & Lloreda, 1978). If malnutrition is unaddressed during childhood, the 

long-term sequelae of malnutrition include cognitive, behavioral, and social deficits 

throughout the lifespan (Liu et al., 2003; Prado & Dewey, 2014). In turn, these lifelong 

consequences impact social and economic development on a national scale (Hoddinott, 

Maluccio, Behrman, Flores, & Martorell, 2008). 

 Malnutrition-related deficits revealed using behavioral assessments raise 

additional questions about the neurological changes underlying behavioral differences 

between typically developing and malnourished children (Nelson, 2015; Raizada & 

Kishiyama, 2010). Assessing compromised brain development in regions where 

malnutrition is highly prevalent requires careful selection of methods that are both 

sensitive to a child’s malnutrition burden and practical to implement in low-resource 

settings. Widely used neuroimaging modalities, such as magnetic resonance imaging 

(MRI), can elucidate typical and atypical developmental trajectories, but are often poorly 



                       
 

 
 

71 

suited for global neuroimaging contexts due to the limited portability, need for specialized 

facilities, and high cost associated with these methods (Estep et al., 2014; Greene et al., 

2016; JL, n.d.; Smyser et al., 2010; Smyser, Snyder, & Neil, 2011; Smyser et al., 2013). 

To address the need for neuroimaging studies in these environments, researchers have 

turned to more portable optical neuroimaging instrumentation. These highly portable 

tools, including electroencephalography (EEG) (Jensen et al., 2019), functional near-

infrared spectroscopy (fNIRS) (Lloyd‐Fox et al., 2019; Lloyd-Fox et al., 2016, 2014), and 

diffuse correlation spectroscopy (DCS) (Roberts et al., 2017), effectively create mobile 

neuroimaging laboratories that can be deployed virtually anywhere, eliminating practical 

constraints imposed by costly and immobile neuroimaging facilities. 

 These neuroimaging methods have begun to address the urgent need for portable 

and inexpensive tools for assessing brain function in low-resource settings. In addition to 

establishing these methods in new regions where neuroimaging research may be 

unfamiliar, investigators using these highly portable techniques must also achieve results 

demonstrating high-quality data and risk sensitivity in the population(s) of interest. To 

date, research based in The Gambia, Guinea-Bissau, and Bangladesh supports the 

feasibility for using these tools to perform field-based brain imaging experiments, and 

some recent results show altered cortical physiology related to early adversity and 

malnutrition (Jensen et al., 2019; Lloyd-Fox et al., 2016; Roberts et al., 2017). However, 

one significant challenge associated with these methods is the tradeoff between cortical 

field-of-view and portability, as increasing an instrument’s cortical coverage generally 

increases the physical size of the instrument. 
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 High-density diffuse optical tomography (HD-DOT) is an optical neuroimaging 

modality that, like fNIRS, uses near-infrared light to measure tissue oxygenation, resulting 

in an indirect measure of neuronal activity analogous to the blood oxygen level dependent 

(BOLD) signal obtained with fMRI. However, unlike fNIRS, HD-DOT utilizes a densely 

overlapping measurement array, which produces depth resolved images of cortical 

hemodynamics with point-spread functions comparable to fMRI (Eggebrecht et al., 2014, 

2012). With a broad cortical field-of-view, HD-DOT enables measurement of spatially 

distributed brain function, eliminating the need to configure source/detector arrays for a 

priori cortical regions of interest. While HD-DOT has successfully mapped distributed 

brain function using both task-evoked responses and resting-state functional connectivity 

in healthy adults, adults with Parkinson’s, and neonates in the intensive care unit, HD-

DOT has not yet been established as an imaging modality suitable for applications 

demanding highly portable instruments, such as on-site studies of childhood malnutrition 

(Eggebrecht et al., 2014; Ferradal et al., 2016; White & Culver, 2010a, 2010b). 

 The goal of this work is to evaluate the performance of a field-optimized HD-DOT 

system. We used both task-evoked responses and functional connectivity measures to 

demonstrate feasibility of imaging chronically malnourished children recruited as part of 

a larger study investigating the effects of malnutrition on brain development and cognition 

in Cali, Colombia. Task-evoked responses to a passive auditory processing task were 

used to evaluate response localization performance and data quality in this novel cohort. 

Assessment of homotopic functional connectivity was used to evaluate sensitivity to 

distributed brain function, setting the stage for future assessments of malnutrition burden 
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across multiple cortical systems, using this powerfully predictive imaging paradigm 

(Wheelock et al., 2018). Our results demonstrate that a high channel count can be 

preserved in a portable, field-ready optical neuroimaging system and can confer the 

image quality and localization improvements associated with tomographically 

reconstructed images of brain function in a non-laboratory setting.  

3.3 Methods 

3.3.1 Participants 

Participants in this experiment were recruited from the urban and peri-urban regions 

surrounding Cali, Colombia. Families were primarily recruited from community health and 

educational programs established by the Cali Department of Health, the Malnutrition 

Rehabilitation Program for the municipality, and some school lunch programs. In 

accordance with experimental protocols approved by the Human Research Protection 

Offices at Washington University and the Centro Medico Imbanaco Ethics Committee, 

caregivers gave written consent and participants gave verbal assent to participate in the 

study. All participants had normal physical examinations and were not acutely ill at the 

time of study. No participants had a personal history of premature birth, diabetes, chronic 

disease, psychiatric, or neurological conditions. In total, a cohort of 30 participants 

completed the HD-DOT experiments. After completing the HD-DOT experiments, 

participants were excluded primarily due to poor cap fit and/or excessive motion (N=13), 

leaving a total of 17 participants (Mean age = 8.4 years; 9 females, 8 males) included in 

the subsequent analyses (Table 3.1). 
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3.3.2 Experimental procedures and stimuli 

Participants underwent an HD-DOT cap fit procedure lasting approximately 5-10 minutes. 

Cap fit was optimized for a given participant using real-time displays of measurement light 

level, optode signal-to-noise, and optode-scalp coupling coefficients. This procedure 

ensured that the greatest possible number of measurements would be retained for 

subsequent analysis. Following cap fit, participants completed two experimental 

paradigms: passive word listening and passive movie viewing. Participants alternated 

between the two paradigms until three repetitions of each paradigm were acquired or the 

experimenter judged that the participant began to move excessively or became too 

fatigued to continue with the experiment. All stimuli were presented using a liquid crystal 

display monitor positioned at eye-level in front of the seated participant, as well as a 

speaker positioned in front of the participant. 

3.3.2a Passive word listening 

Following previously published procedures (Eggebrecht et al., 2014), during the passive 

word listening task, participants listened to lists of spoken Spanish concrete nouns in a 

N 17 
Sex 8 male; 9 female 
 Mean SD Range 
Age (years) 8.4 0.9 7 – 10 
Head Circumference (cm) 51.4 1.7 49 – 54.4 
Height (cm) 128 6.0 118.5 - 140 
Weight (kg) 24.2 4.7 18.2 – 33 
Height-for-Age (WHO Z-Score) -0.5 1.1 -2.44 – 1.31 
Weight-for-Age (WHO Z-
Score) 

-0.9 1.2 -3.64 – 0.95 

 
Table 3.1. Demographic information. Demographic information for participants 
included in HD-DOT analyses. 
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block design. Words were presented at a rate of 1 word/second for 15 seconds, followed 

by 15 seconds of silence. During a single 3-minute run, participants listened to 6 blocks 

of words (90 words in total). The passive word listening task was chosen because it has 

been previously published with both fMRI and HD-DOT (Eggebrecht et al., 2014), 

producing reliable activations to a sensory stimulus. Further, this task was not 

hypothesized to show any malnutrition-related effects, underscoring that this task was 

intended to generate activation maps consistent with previous studies (Eggebrecht et al., 

2014), enabling assessment of data quality, image reconstruction procedures, instrument 

performance, and localization capabilities. 

3.3.2b Passive movie viewing 

During a passive movie viewing run, participants were instructed to sit still and quietly 

watch an unedited, continuous 10-minute segment from Buscando a Nemo (Finding 

Nemo). Participants viewed one of two clips, lasting from either (00:45-10:45) or (10:45-

20:45). The passive movie viewing task was chosen because it enabled acquisition of a 

continuous, 10-minute measurement of brain activity, permitting subsequent analysis of 

functional connectivity, which can be related to subsequent outcomes in pediatric 

populations (Wheelock et al., 2018). Critically, in pediatric populations, functional 

connectivity measured during periods of quiet fixation resulted in greater head movement 

relative to functional connectivity assessed during movie viewing (Greene et al., 2018; 

Vanderwal, Kelly, Eilbott, Mayes, & Castellanos, 2015). Therefore, passive movie viewing 

was chosen in order to maximize the number of usable functional connectivity datasets. 

3.3.3 High-density diffuse optical tomography instrumentation 
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3.3.3a Design specifications 

The HD-DOT instrument built for field use in these experiments (Figure 3.1) followed 

design specifications for previously published HD-DOT instruments (Eggebrecht et al., 

2014, 2012), but was optimized to have a smaller footprint in a single self-contained 

console, in order to maximize portability and usability. The instrument used in this work 

was a custom-built continuous wave instrument, consisting of 48 LED sources illuminating 

the head at two wavelengths (λ = 750 nm and 850 nm), and 30 avalanche photodiodes 

(Hamamatsu C5460-01), coupled to the head using fiber-optic bundles (2.5-mm diameter 

bundles of 50 µm fibers). 

 The weight of the 78 fibers was managed using a custom-built, collapsible support 

made of extruded aluminum, ensuring that the participant’s head did not bear any weight 

from the fibers. Fiber tips were positioned on the scalp using a custom-built neoprene 

imaging cap, which maintained an optode geometry such that first-through third-nearest 

neighbor separations were 13, 29, and 39 mm, respectively. Temporal, frequency, and 

spatial encoding of the source illumination pattern achieved an overall HD-DOT framerate 

of 10 Hz. As in other optical neuroimaging systems, a measurement consists of the light 

level between a single source-detector pair. The total number of first- through third-

nearest neighbor measurements afforded by this array configuration was 324 

measurements per wavelength (116 first nearest neighbor, 158 second nearest neighbor, 

50 third nearest neighbor). These measurements were converted into volumetric, 

voxelated movies of brain hemodynamics using the image reconstruction procedures 

described in Section 3.3.4. 
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3.3.3b Instrument setup 

Critical considerations for imaging instruments used in non-laboratory settings included 

factors such as portability, fast setup, and ease of use, which are not necessarily 

 

Figure 3.1. HD-DOT instrumentation. A: The HD-DOT instrument used in these 
experiments is a portable, self-contained instrument containing all opto-electronic 
equipment needed for the 30 detector by 48 source system. The instrument includes 
a removable fiber support system, ensuring that the participant’s head bears no weight 
from the fibers, and the overall footprint for this system is 76×55 cm. B: HD-DOT cap 
position on two participants in Cali, Colombia. C: The field-of-view based on optode 
positions, projected on to the surface of the MNI atlas. D: Simulated point-spread 
function for the HD-DOT system, shown on the cortical surface and volumetric slices 
of the MNI atlas. E: Optode layout for both panels of the HD-DOT cap, including 
sources (red numbers), detectors (blue numbers), and first through third nearest-
neighbor measurements (grey lines). 
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considerations for fixed instruments that remain in laboratory environments. The large 

channel count on the field HD-DOT system used in this work necessitated a design that 

facilitated easy imaging by a variety of users. Consequently, the instrument was designed 

to be encased in a commercially available equipment cart (Gator G-TOUR16UCA-24D), 

which had a footprint of 76 x 55 cm. This design enabled the HD-DOT instrument to be 

easily transported and positioned at the imaging site at Centro Medico Imbanaco. Of note, 

the HD-DOT instrument was ready for imaging after 4 hours of setup on site and training 

new HD-DOT users was complete after 5 working days of guided imaging, highlighting 

the ease of use associated with this HD-DOT instrument.   

3.3.4  Image reconstruction 

3.3.4a Measurement pre-processing and anatomical light modeling 

As previously published using existing HD-DOT systems, image reconstruction occurs in 

five steps: light-level measurement pre-processing, anatomical light modeling, image 

reconstruction, spectroscopy and spatial normalization (Eggebrecht et al., 2014, 2014). 

To begin, raw detector light levels were converted to a time-series of log-ratio data, using 

the mean of a given measurement as the baseline. An initial quality control step identified 

measurements with excessive noise by excluding any measurement with a temporal 

variance exceeding 7.5%, as this excessive variance was more likely to reflect nuisance 

variance (e.g. head motion) than it was to reflect variance related to cortical 

hemodynamics (Eggebrecht et al., 2014). Subsequently, the measurements that passed 

the variance threshold were then high-pass filtered (passive word listening cutoff: f  > 0.02 

Hz; passive movie viewing cutoff: f  > 0.009 Hz). Next, nuisance signals resulting from 
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systemic or superficial (i.e. scalp and skull) physiology were approximated using the 

average of all first nearest neighbor measurements, which provided the most superficial 

penetration into the tissue. This superficial signal was regressed out of all measurements. 

Finally, the measurements were low-pass filtered (passive word listening cutoff: f  < 0.5 

Hz; passive movie viewing cutoff: f  < 0.08 Hz).  

 Anatomical light modeling requires either a subject-specific segmented anatomical 

mesh or an atlas-based anatomy. In these experiments, an age appropriate atlas-based 

model was used, in order to eliminate the need for subject-specific anatomy obtained with 

costlier and frequently unavailable modalities such as MRI or CT. Using atlas-based 

forward modeling has been previously shown to result in reasonable individual and group-

level localization errors on the order of millimeters (Ferradal, Eggebrecht, Hassanpour, 

Snyder, & Culver, 2014). A non-linear ICBM152 atlas from the Montreal Neurological 

Institute was for image reconstruction in this work. This atlas is segmented into five tissue 

compartments in order to account for the unique optical properties of each: skull, scalp, 

grey matter, white matter, and cerebrospinal fluid. Using this atlas anatomy combined 

with the positions of the 30 detector and 48 source optodes, a sensitivity matrix was 

generated using NIRFAST (Dehghani et al., 2008) for each wavelength. The sensitivity 

matrix was subsequently inverted using Tikhonov regularization, and spectroscopy was 

performed using literature-derived values (Bluestone, Abdoulaev, Schmitz, Barbour, & 

Hielscher, 2001). 

 The output of the image reconstruction procedure was volumetric time-series data, 

down-sampled from 10 Hz to 1 Hz for three hemoglobin contrasts: oxyhemoglobin 
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(∆HbO2), deoxyhemoglobin (∆HbR) and total hemoglobin (∆HbT). All analyses performed 

on these images utilize the oxyhemoglobin (∆HbO2) contrast, unless otherwise specified 

(e.g. see Appendix Figure 3.8 for results with ∆HbO2, ∆HbR, and ∆HbT.)   

3.3.4b Head motion quantification 

To quantify the amount of head motion present during an imaging run, we leveraged the 

inherent covariance induced by head motion across optical measurements. The temporal 

variance across measurements was quantified using the Global Variance in the Temporal 

Derivative (GVTD) (Sherafati, Eggebrecht, Burns-Yocum, & Culver, 2017). For a given 

run, GVTD was computed over a matrix with j measurements and i timepoints, yji. The 

squared temporal derivative,  

(yji - yj(i-1))2 

was then computed. Finally, to generate a single timeseries quantifying GVTD over the 

course of the run, the root mean square was taken over the temporal derivative of all 

measurements, such that GVTD, g, for timepoint i, is expressed as,  

gi = ∑ 1
𝑛𝑛�(𝑦𝑦𝑗𝑗𝑗𝑗 − 𝑦𝑦𝑗𝑗(𝑗𝑗−1))2𝑛𝑛

𝑗𝑗=1  

This metric is analogous to the DVARS metric used to assess head motion in fMRI 

datasets (Smyser et al., 2010), and enables comparison of head motion related variance 

across data collected across sites, instruments, and cohorts as shown in Figure 3.7 

(Appendix). 

3.3.5 Image analysis 

3.3.5a Passive word listening 
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The passive word listening task delivered auditory stimulation in a block design, with 

alternating blocks of stimulation (“On”) and no stimulation (“Off”). Consequently, the 

magnitude of the cortical response to the stimulus was calculated by comparing the voxel-

wise responses during the On and Off conditions. During each 30-second block, the 

stimulus was on for 15 seconds, followed by 15 seconds of silence. All blocks from a 

single participant were then averaged to produce a single volumetric movie containing 

the block-averaged response to the stimulus. The difference between voxelwise 

responses during the On and Off conditions was estimated by averaging seconds 10-19 

of the block (“On”) and contrasting that response to seconds 20-29 of the block (“Off”). A 

random effects t-statistic was computed across participants to assess the magnitude of 

the contrast between conditions. 

3.3.5b Passive movie viewing 

Oxyhemoglobin timeseries obtained during passive movie viewing were filtered to the 

functional connectivity band (0.009 < f < 0.08) in order to examine patterns of 

oxyhemoglobin fluctuation representing correlated, or functionally connected, brain 

regions (Vanderwal, Eilbott, & Castellanos, 2018). As in previous work using HD-DOT to 

measure functional connectivity, a seed-based approach was used to assess patterns of 

homotopic, or bilateral, connectivity (Ferradal et al., 2016). Seeds consisted of 12 spheres 

(radius 5 = mm) placed across the HD-DOT field-of-view. For each seed, the 

oxyhemoglobin signal was extracted by averaging the ∆HbO2 signal for all voxels within 

the sphere, to generate a single time-series for the seed. This time-series was then cross-

correlated with every other seed to produce a correlation matrix showing the functional 
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connectivity between pairs of seed regions. To assess functional connectivity between a 

single seed and all voxels within the field-of-view, a spatial map of Pearson product-

moment correlations was generated by cross correlating the seed ∆HbO2 timeseries with 

the voxelwise ∆HbO2 timecourses from across the entire field-of-view. Individual 

correlation maps were then converted to a normally distributed statistic using the Fisher’s 

z-transformation. Finally, group-average connectivity maps were generated by averaging 

individual z-transformed seed maps across all subjects. 

3.3.6  Sparse array reconstruction and analysis 

The HD-DOT measurement array results in a densely overlapping set of measurements, 

which produces depth-resolved images of brain function with a point-spread function 

comparable to images obtained with fMRI. However, sparser measurement arrays are 

often favored over dense arrays due to the reduced channel count, which results in a 

smaller instrument with fewer fibers affixed to the participant’s head. We evaluated the 

effect of measurement density by reconstructing passive word listening data using a 

sparse array. A sparse array was constructed by selecting a subset of second nearest 

neighbor measurements from the larger set of HD-DOT measurements to achieve a 

measurement count comparable with other fNIRS systems used for global health 

applications (Lloyd-Fox et al., 2014). These sparse array measurements were selected 

to have the same lateral coverage as the HD-DOT array, but with no overlapping source-

detector measurements. The resulting simulated sparse array consisted of 16 

measurements per hemisphere, for a total of 32 measurements at a 29-millimeter 

separation. 
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 Measurement processing, image reconstruction, and image analysis followed the 

same procedures outlined in Sections 3.3.4a and 3.3.5a, with one notable exception. 

Because the sparse measurement array did not contain any measurement pairs with a 

short source-detector separation, no superficial signal regression was performed. Without 

measurements with a short source-detector separation, the superficial nuisance signal 

cannot be approximated. Consequently, images reconstructed using the simulated 

sparse array do not include any superficial signal regression. 

 Spatial overlap maps were used to quantify the agreement between passive word 

listening activations reconstructed using the dense and sparse reconstruction schemes, 

leveraging the reliability of the activations produced by the passive word listening 

paradigm (see Figure 3.10, Appendix). To compute spatial overlap of activations across 

individual maps, each participant’s dense and sparse block-averaged passive word 

listening maps were thresholded at 25% of the maximum voxel value for each map. 

Individual maps were then binarized such that any voxel meeting or surpassing the 

threshold was set to 1, and all remaining voxels were set to 0. The activation overlap was 

then computed by summing across individual activation maps for dense and sparse 

reconstructions separately. 

 To compute the spatial overlap between individual activation maps and the group-

averaged activation map, individual maps were again thresholded and binarized as 

described above. The spatial overlap between the dense/sparse activation maps and the 

respective dense or sparse group-average map was computed by the conjunction 

between the two binarized images. Summing across individual conjunction images 
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resulted in a map showing the extent to which the dense and sparse reconstruction 

schemes produced individual passive word listening activations consistent with the group 

average response. 

3.4 Results 

3.4.1  Wearability and data quality 

On average, participants completed approximately 26 minutes of imaging, including two 

repetitions of the passive word listening task (3-minute duration), and two repetitions of 

the passive movie viewing (10-minute duration). Combined with short breaks between 

imaging runs and 5-10 minutes for initial cap fit, participants in this study wore the HD-

DOT cap for approximately 40 minutes per session, indicating the tolerability of HD-DOT 

imaging in this cohort of 7-9-year-old children with no prior experience participating in 

brain imaging experiments. 

 Scan duration provided an indicator for participant comfort and instrument 

ergonomics. In addition, we assessed measurement data quality using a battery of 

readouts generated during image reconstruction (Figure 3.2). These readouts ensure that 

only high-quality measurements are used in reconstruction, mitigating the deleterious 

effects of including measurements contaminated by poor optode-scalp coupling or head 

motion. As shown in Figure 3.2, HD-DOT measurements are of sufficient quality across 

the entire field-of-view, resulting in cortical coverage at three source-detector separations. 

Finally, signal-to-noise at the participant’s pulse frequency (Figure 3.2, E) verified that 
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measurements were sensitive to vascular physiology. These rigorous quality control 

measurements ensure that the reconstructed images provided a high-fidelity readout of 

brain function.  

 
Figure 3.2. Data quality. The data quality report generated during image 
reconstruction indicates the measurement quality obtained during a single scan and 
includes multiple measurement quality assessments used to determine the usability of 
a scan in real-time. This report was generated from a representative subject during a 
passive word listening acquisition. A: The average light level for first nearest neighbor 
(NN1) measurements across the two panels of the HD-DOT cap indicated relatively 
strong light levels across the cap. B: A plot of light level as a function of source-detector 
separation (i.e. measurement distance) showed log-linear light falloff, as would be 
expected in biological tissue. C: The plot of measurement retention for this acquisition 
showed measurements retained for subsequent image reconstruction (green lines), as 
well as optodes where at least 33% of measurements were rejected (black circles). D: 
The histogram of measurement-wise temporal variance indicated that most 
measurements are below the temporal variance threshold (7.5%, red line) imposed on 
measurements to exclude measurements contaminated by movement or poor optode 
coupling. E: The signal-to-noise for first nearest-neighbor measurements showed, in 
general, strong signal-to-noise ratio at the participant’s pulse frequency, indicating 
good sensitivity to vascular physiology needed to image cortical hemodynamics. F: A 
plot of individual second nearest-neighbor measurements showed sensitivity to the 
participant’s pulse, and a lack of global variance across measurements that could be 
associated with global noise introduced by head motion. 
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Measurement retention as a function of source detector separation was relatively 

consistent across the cohort (Figure 3.6, Appendix), with an average of 94% of first 

nearest-neighbor measurements, 77% of second nearest-neighbor measurements, and 

24% of third nearest-neighbor measurements retained per participant. Further, using 

GVTD, as described in Section 3.3.4b, to quantify head-motion induced variance in each 

dataset (Figure 3.7, Appendix) shows that data quality quantified using this metric is 

comparable to HD-DOT data quality across multiple sites, instruments, and age groups. 

3.4.2 Task-evoked responses 

Group-averaged oxyhemoglobin activation maps from the passive word listening 

paradigm are displayed in Figure 3.3. This group average map contains activation data 

from 17 individual participants, who in total completed 46 runs of the passive word 

listening task. The group average map (Figure 3.3, A) reveals elevated oxyhemoglobin 

concentration in bilateral superior temporal gyrus, the same cortical region activated by 

this task in prior work (Eggebrecht et al., 2014). Further, the time course of the 

hemodynamic response (Figure 3.3, B) shows the expected elevation in oxyhemoglobin 

concentration, including a brief hemodynamic lag (approximately 4 seconds) between 

stimulus onset and hemodynamic response onset. 

 We used a t-statistic to contrast the voxelwise brain responses between the 

stimulus On/Off conditions to assess the contrast-to-noise achieved in this paradigm 

(Figure 3.3, F-G). Further, inspection of single-subject maps (Figure 3.9, Appendix) that 



                       
 

 
 

87 

comprise the group average indicated that the topography of the activation--bilateral 

responses centered on the superior temporal gyrus--was observable from a single run of 

the passive word listening task (i.e. 3 minutes of data). Finally, repeating the block 

 
 
Figure 3.3. Passive word listening activations. A: Block averaged oxy-hemoglobin 
activations associated with the passive word listening task averaged across the entire 
cohort of participants. Activation locations were in agreement with previously published 
HD-DOT results using this task, showing bilateral activations on superior temporal 
gyrus. B: The block averaged oxy-hemoglobin time course extracted from left superior 
temporal gyrus showed a stimulus-related activation. The shaded area represents the 
stimulation epoch, in which participants listened to concrete Spanish nouns at a rate 
of 1 word/second. Error bars are S.E.M. across participants. C: A volumetric map of 
the oxyhemoglobin activation shows depth-resolved images of the surface projection 
shown in Panel A. Crosshairs indicate the location of the voxel used to plot the 
timecourse displayed in Panel B. F: Random effects T map showing the contrast 
between “On” and “Off” stimulation periods. G: Voxelwise distribution of T-statistics 
shown in Panel F. 
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average analysis with all three hemoglobin contrasts obtainable with the HD-DOT 

instrument, ∆HbO2, ∆HbR, and ∆HbT, produced both convergent maps and activation 

timecourses (Figure 3.8, Appendix), further verifying image quality and spectroscopy 

performance via the ratios between the three contrasts (Zeff, White, Dehghani, 

Schlaggar, & Culver, 2007). 

3.4.3 Task-evoked responses with sparse array reconstruction 

To evaluate the effect of reconstructing images of brain activation with a sparse array, we 

reconstructed images of ∆HbO2 during passive word listening with a subset of second 

nearest neighbor measurements from the full set of HD-DOT measurements. 

Measurements were selected such that they spanned a field-of-view comparable to the 

HD-DOT field-of-view, but with no overlapping measurements (Figure 3.4, A). A single 

subject’s passive word listening responses for the sparse array (Figure 3.4, B-C) and 

dense array (Figure 3.4, E-F) revealed an effect of measurement density on the 

localization of the passive word listening response in the reconstructed images.  

 While the sparse reconstruction reveals a pattern of bilateral activations near the 

superior temporal gyrus, the shape and magnitude of these responses differed from the 

responses reconstructed using the dense measurement array. For example, comparing 

the right hemisphere activations between sparse and dense reconstructions revealed that 

measurement density affected the spatial extent and magnitude of the reconstructed 

oxyhemoglobin concentration change. Importantly, these images were produced with the 

same underlying data—the variance between sparse and dense reconstructions cannot 
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be attributed to variance driven by analyzing data derived from different cap fits, different 

imaging sessions, or different participants. 

 Across all participants, the dense reconstruction scheme resulted in more 

consistent localization of passive word listening activations across participants (Figure 

3.10, Appendix). While both reconstruction schemes produced group-averaged bilateral 

 
 
Figure 3.4. Sparse and dense image reconstruction. A: The sparse measurement 
grid used to reconstruct tomographic images of brain function using a measurement 
count more typical of field-based fNIRS instruments. Sources (red) and detectors 
(blue) show optode locations in the full HD-DOT optode array. The subset of HD-DOT 
measurements used to reconstruct sparse-measurement fNIRS images are indicated 
by grey lines. All 32 measurements were at a single source-detector separation of 29 
mm. B: Unthresholded oxy-hemoglobin activations reconstructed using sparse 
measurements obtained during the passive word listening task. C: Thresholded image 
of data shown in Panel B. D: The full HD-DOT optode array includes 324 
measurements at 3 source-detector separations, which were subsequently used for 
tomographic image reconstruction of the same data shown in Panels B, C. E: 
Unthresholded oxy-hemoglobin activations reconstructed using dense measurements 
obtained during the passive word listening task (i.e. the same data used for sparse 
reconstruction). F: Thresholded image of data shown in Panel E. 
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activations, greater spatial consistency was observed between individual activation maps 

reconstructed using a dense array of optical measurements. Further, individual maps 

reconstructed using the dense array showed greater overlap with the group-averaged 

activation map, further underscoring that an individual activation map reconstructed using 

a dense measurement array has a higher likelihood of consistently localizing the 

activation to the same region of superior temporal gyrus than maps reconstructed using 

a sparse measurement array. 

3.4.4 Bilateral functional connectivity 

We assessed bilateral, or homotopic, functional connectivity using a set of twelve seed 

regions (Figure 3.5, A) that spanned the HD-DOT field-of-view. The seed set included 

seeds in superior temporal gyrus (auditory), the middle temporal lobe, visual cortex, and 

the temporal-parietal junction (Figure 3.5, G). Seed positions were informed by prior 

functional connectivity analyses using HD-DOT and constrained by the present 

instrument’s field-of-view (Ferradal et al., 2016). The correlation matrix between seed 

pairs (Figure 3.5, B) and individual voxelwise seed maps (Figure 3.5, C-F) display the z-

transformed correlation value, representing the magnitude of the correlation between a 

pair of oxyhemoglobin timetraces. 

 Bilateral connectivity is quantified through the correlation coefficient between 

homotopic seed pairs and is evident through elevated off-diagonal correlations in the 

correlation matrix (Figure 3.5, B).  Seed maps (Figure 3.5, C-F) show the spatial extent 

of bilateral connectivity for four seeds with the highest homotopic connectivity, with the 

highest correlation values present on the ipsilateral hemisphere, near the seed region. 
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However, areas with elevated correlations were observed in the corresponding region on 

the contralateral hemisphere, highlighting the capability of the field HD-DOT instrument 

to sample connectivity in multiple, distributed regions throughout the field-of-view. 

3.5 Discussion 

 

Figure 3.5. Homotopic functional connectivity. Homotopic functional connectivity 
was assessed using a seed-based approach. A: Location of the 12 seeds spanning 
the HD-DOT field-of-view used in the functional connectivity analysis. B: Correlation 
matrix displaying the Fisher z-transformed correlation magnitudes for pairwise seed 
correlations. C-F: Seed maps showing z-transformed correlation coefficients for four 
of the seeds with the strongest bilateral connectivity. Seed maps were generated by 
computing the Pearson correlation between the Pearson correlation between the oxy-
hemoglobin timeseries extracted from the 5-mm radius spherical seed and every voxel 
in the field of view. G: Seed locations for the seed maps shown in Panels C-F; the 
colors of the seed map outlines correspond to the color of the seed. 
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High-density diffuse optical tomography instruments use a large channel count and 

dense, overlapping optical measurements to produce fMRI-comparable images of cortical 

hemodynamics during tasks and rest (Eggebrecht et al., 2014, 2012). In this work, an HD-

DOT system was used for the first time to image brain function in a cohort of malnourished 

children in Cali, Colombia. Like other work investigating the effects early malnutrition on 

brain function, imaging this population was feasible due to the utilization of a portable and 

wearable optical neuroimaging modality, as low-resource settings where malnutrition is 

endemic demand imaging tools that can function in the absence of expensive, dedicated 

infrastructure (Lloyd-Fox et al., 2016, 2014; Roberts et al., 2017). Here, HD-DOT was 

used to measure task-evoked responses and homotopic functional connectivity in Cali, 

Colombia, establishing the capability of measuring spatially distributed brain function in a 

portable HD-DOT instrument. 

Optical imaging has been used globally to perform neuroimaging assessments in 

settings that would not be reachable with imaging modalities that require dedicated 

infrastructure. fNIRS and DCS-based studies of childhood malnutrition have assayed 

various aspects of brain function hypothesized to be impacted by malnutrition in the first 

1000 days of life, including executive functioning and social processing (Lloyd‐Fox et al., 

2019; Lloyd-Fox et al., 2016, 2014; Roberts et al., 2017). These studies incorporate cross-

culturally appropriate, risk sensitive imaging paradigms to provide insight into 

malnutrition-related deviances in developmental trajectories (Lloyd‐Fox et al., 2019). 

While these studies focused on younger participants (i.e. < 2 years), continued 
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investigation of the older children in the present cohort will provide complementary insight 

into the effects of long-term malnutrition over the course of childhood.    

Like other work introducing field imaging instruments in novel settings, the focus 

of the imaging performed in this work was to obtain maps of brain function in good 

agreement with previously published HD-DOT results, rather than investigating potential 

group-level differences between typically-developing and malnourished children (Lloyd-

Fox et al., 2014). Indeed, the images obtained with the HD-DOT instrument introduced in 

this work agreed with previous HD-DOT work performed with other instruments, across 

multiple sites, in both healthy adults and neonates (Eggebrecht et al., 2014; Ferradal et 

al., 2016). This finding indicated that the instrument design, channel count, and optode 

configuration successfully managed the tradeoff between portability and cortical coverage 

(i.e. sensitivity to multiple cortical regions). 

The sensitivity to homotopic functional connectivity established in this analysis sets 

the stage for using this powerfully predictive measurement in future analyses that are 

more targeted at identifying correlates of malnutrition burden (Estep et al., 2014; Smyser 

et al., 2011, 2013). Prior work using fetal and infant fMRI demonstrates the emergence 

of bilateral FC over development, highlighting the utility of this measure in future 

assessments of a child’s developmental status (Smyser et al., 2010; Thomason et al., 

2013). Importantly, the functional connectivity scans collected in this work were during 

passive movie viewing conditions. While this condition means that functional connectivity 

results from this work may not be directly comparable to results obtained during rest (i.e. 

passive fixation), movie viewing is a powerful tool to enhance subject compliance during 
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functional connectivity scans and reduce the pernicious effects of head motion (Greene 

et al., 2018; Vanderwal et al., 2018, 2015).  

Future analyses with this dataset may leverage the rich, multimodal content of the 

movie stimulus by filtering the data to a band more appropriate for measuring task-evoked 

responses (e.g. 0.02 < f < 0.5 Hz). Evaluating the task-evoked responses during movie 

viewing opens additional analytic possibilities, including assessing synchronized brain 

responses during passive movie viewing (Hasson, Nir, Levy, Fuhrmann, & Malach, 2004). 

Critically, prior work using fMRI has shown that the extent to which an individual exhibits 

synchronized brain responses during passive movie viewing is related to mathematical 

and linguistic ability, and also varies between typical and atypical development (Byrge, 

Dubois, Tyszka, Adolphs, & Kennedy, 2015; Cantlon & Li, 2013; Moraczewski, Chen, & 

Redcay, 2018). Consequently, this study establishes a foundation for incorporating these 

powerful analyses in ongoing assessments of malnutrition burden. 

A key difference between the HD-DOT system introduced in this work and other 

fNIRS systems is the density of optical measurements. The system introduced in this 

work provides coverage of both hemispheres, using a total of 78 optodes, resulting in up 

to 324 measurements per wavelength, enabling tomographic image reconstruction. In 

contrast, an fNIRS system may have an order of magnitude fewer measurements and 

limited cortical coverage; consequently, topographic analysis of brain function is often 

favored over analyzing tomographically reconstructed images (Everdell et al., 2005; 

Lloyd-Fox et al., 2014). In this work, we directly compared tomographically reconstructed 

images using both sparse and dense measurement configurations. While both 
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configurations detected a hemodynamic signal change associated with stimulus 

presentation, the localization of the resulting signal change varied as a function of grid 

density, with consistently localized brain activations most prominently evident in the 

dense reconstructions. Accordingly, an instrument’s channel count is a critical 

consideration in experiments demanding both detection and localization of brain 

activations. 

While prior work with simulations and in-vivo comparisons of grid density show that 

increasing grid density improves image quality characteristics including the system’s 

point-spread function and localization error (Habermehl et al., 2012; Tian, Alexandrakis, 

& Liu, 2009; White & Culver, 2010b; Yamamoto et al., 2002), one key limitation of the 

sparse and dense measurement comparison presented here is the lack of a “ground truth” 

image for evaluating the quality of the two reconstruction schemes used in this work. 

Consequently, follow- up work will require comparing the images resulting from sparse 

and dense image reconstruction schemes using subject-matched images obtained using 

a reference modality, such as fMRI. 

 In addition to the imaging results presented in this work, our results highlight the 

usability of the HD-DOT instrument in non-laboratory contexts. After four hours of setup, 

the HD-DOT instrument was ready for imaging, and posed no infrastructure requirements 

beyond electricity. New users learned to perform cap fit and data collection procedures 

within a week of supervised imaging. This manageable learning curve is a significant 

advantage of optical neuroimaging instruments relative to other imaging modalities (e.g. 
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MRI), and is likely a contributing factor to the burgeoning use of these instruments in the 

field. 

3.6 Conclusions 

 The present work establishes HD-DOT as an optical neuroimaging modality 

suitable for investigations of brain function in low-resource contexts that demand portable 

instruments, while maintaining cortical coverage and image resolution associated with 

less portable modalities. Reconstructing subject-matched data with fewer measurements 

revealed that optical measurement density is a contributing factor in reconstructing 

consistently localized brain activations.   Finally, the combination of task-evoked and 

functional connectivity maps evaluated in this work set the stage for targeted 

investigations of the developing brain in the context of childhood malnutrition, including 

identifying and characterizing a child’s risk to foster future intervention development 

(Raizada & Kishiyama, 2010). 

3.7 Appendix 

 

 
 
Figure 3.6. Group-level measurement retention. Boxplots show the percentage of 
measurements retained as a function of measurement density. (NN1 = first nearest 
neighbor, 13 mm source-detector separation; NN2 = second nearest neighbor, 29 mm 
source detector separation; NN3 = third nearest neighbor, 39 mm source detector 
separation). 
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Figure 3.7. Quantifying global measurement variance across participants and 
sites. A: Matrix (measurements x time) displaying the squared first derivative of first 
nearest neighbor measurements, obtained during a 3-minute passive word listening 
run. The dashed red box indicates a period of global measurement variance, likely 
attributable to a head movement. B: A timeseries showing the Global Variance 
Temporal Derivative (GVTD) is generated by taking the root mean square of the 
squared first derivative of all measurements (i.e. Panel A). Spikes in the GVTD 
measure (dashed red box) correspond to epochs of global measurement variance. C: 
The distribution of GVTD values for all passive word listening runs (N = 46) obtained 
in the cohort. D: Data quality can be assessed by imposing a GVTD threshold, such 
that timepoints with GVTD values above the threshold are censored from analysis. As 
the threshold is relaxed (x-axis), the percentage of data retained (y-axis) increases. 
Consequently, steeply rising curves are indicative of higher quality datasets. Individual 
curves in this panel represent data retention for all 17 participants in this cohort. E: 
Data retention curves for 3 passive word listening datasets, collected across sites and 
HD-DOT instruments: 7-10-year-old participants in Colombia (blue, present dataset); 
young adults in the USA (yellow, unpublished data); 3-5-year-old participants (red, 
unpublished data). The data retention curve for participants in this study shows that 
data quality in Colombia is closely matched to data collected in more traditional 
laboratory settings. 

 



                       
 

 
 

98 

 

 
Figure 3.8. Passive word listening activations with all hemoglobin contrasts. A-
C: Activation maps from the passive word listening task using oxy-hemoglobin (A), 
deoxy-hemoglobin (B), and total hemoglobin (C) contrasts. D: Timecourses show the 
temporal dynamics of activation in the left superior temporal gyrus. The shaded portion 
indicates the stimulation period, during which participants passively listened to 
concrete Spanish nouns presented at a rate of 1 word/second. Error bars indicate 
S.E.M. 
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Figure 3.9. Single-subject passive word listening activations. A-Q: Single-subject 
maps from the group-level map of passive word listening activations shown in Figure 
3.3. 
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Figure 3.10. Quantification of activation overlap between sparse and dense HD-
DOT image reconstruction schemes. A: Block-averaged oxy-hemoglobin activation 
across all participants, reconstructed using the dense measurement grid for the 
passive word listening task. B: After thresholding and binarizing individual activation 
maps at 25% of the maximum oxy-hemoglobin value, the overlap between individual’s 
densely reconstructed activation map was computed by summing the binarized 
images, showing consistent overlap between individual participants. C: Masking the 
image in Panel B by a thresholded and binarized group average image shows that 
well over half of the participants in the study show activations within the bounds of the 
densely-reconstructed group average. D: Block-averaged oxy-hemoglobin activation 
across all participants, reconstructed using the sparse measurement grid for the 
passive word listening task. E: After thresholding and binarizing individual activation 
maps at 25% of the maximum oxy-hemoglobin value, the overlap between individual’s 
sparsely reconstructed activation map was computed by summing the binarized 
images, showing limited overlap between individual participants. F: Masking the image 
in Panel E by a thresholded and binarized group average image shows that while the 
group average for sparsely reconstructed activations produces bilateral activations, 
most participants’ activations do not fall within the bounds of the sparsely-
reconstructed group average. 
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Chapter 4: Mapping brain function during naturalistic 
viewing using high-density diffuse optical tomography 
 
This chapter has been re-submitted with revisions to a journal for publication. The 
citation will be: 
 
Fishell, A.K., Tracy M. Burns-Yocum, Karla M. Bergonzi, Adam T. Eggebrecht, Joseph 
P. Culver. “Mapping brain function during naturalistic viewing using high-density diffuse 
optical tomography.” Scientific Reports (2019). 
 

4.1 Abstract  

Naturalistic stimuli, such as movies, more closely recapitulate “real life” sensory 

processing and behavioral demands relative to paradigms that rely on highly distilled and 

repetitive stimulus presentations. The rich complexity inherent in naturalistic stimuli 

demands an imaging system capable of measuring spatially distributed brain responses, 

and analysis tools optimized for unmixing responses to concurrently presented features. 

In this work, the combination of passive movie viewing with high-density diffuse optical 

tomography (HD-DOT) is developed as a platform for naturalistic brain mapping. We 

imaged healthy young adults during free viewing of a feature film using HD-DOT and 

observed reproducible, synchronized cortical responses across a majority of the field-of-

view, most prominently in hierarchical cortical areas related to visual and auditory 

processing, both within and between individuals. In order to more precisely interpret broad 

patterns of cortical synchronization, we extracted visual and auditory features from the 

movie stimulus and mapped the cortical responses to the features. The results 

demonstrate the sensitivity of HD-DOT to evoked responses during naturalistic viewing, 
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and that feature-based decomposition strategies enable functional mapping of naturalistic 

stimulus processing, including human-generated speech. 

4.2 Introduction 

Optical neuroimaging techniques enable functional brain imaging in naturalistic settings 

unavailable to imaging modalities with highly constrained imaging environments such as 

functional magnetic resonance imaging (fMRI) (Matusz, Dikker, Huth, & Perrodin, 2018; 

Yücel, Selb, Huppert, Franceschini, & Boas, 2017). For instance, functional near-infrared 

spectroscopy (fNIRS) enables functional brain imaging of social interactions or 

unconstrained movements (Hirsch, Zhang, Noah, & Ono, 2017; Liu et al., 2017; Miyai et 

al., 2001; Noah et al., 2015; Ono et al., 2015; Piper et al., 2014; Suzuki, Miyai, Ono, & 

Kubota, 2008). Naturalistic imaging paradigms more closely recapitulate real-life 

conditions than experiments relying on tightly controlled stimuli, such as assessing 

speech perception with single sentence presentations, or mapping retinotopic 

organization of visual cortex using flashing checkerboard patterns (Hamilton & Huth, 

2018; Hassanpour, Eggebrecht, Culver, & Peelle, 2015; Heer, Huth, Griffiths, Gallant, & 

Theunissen, 2017; Lerner, Honey, Silbert, & Hasson, 2011; White & Culver, 2010a). 

Further, naturalistic paradigms are highly engaging, contain multi-modal content, and may 

be particularly well suited for populations (e.g. young children) unable make overt 

behavioral responses or perform a repetitive or predictable task (Church, Petersen, & 

Schlaggar, 2010; Karim & Perlman, 2017; Vanderwal, Eilbott, & Castellanos, 2018; Zaki 

& Ochsner, 2009). In addition to social interactions and natural movements, naturalistic 

imaging paradigms have included free viewing of movies and television shows (Bartels & 
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Zeki, 2004; Hasson, Malach, & Heeger, 2010; Hasson, Nir, Levy, Fuhrmann, & Malach, 

2004). Naturalistic viewing paradigms employing movies or television shows enable 

repeatability and control over stimulus presentation, like experiments incorporating 

simplified and distilled stimuli, but preserve the richness and greater ecological validity 

associated with more unconstrained naturalistic paradigms. 

 Naturalistic viewing tasks have been extensively studied using other brain imaging 

modalities, including fMRI (Hasson et al., 2004), EEG (Poulsen, Kamronn, Dmochowski, 

Parra, & Hansen, 2017) and MEG (K. Lankinen, Saari, Hari, & Koskinen, 2014).  Work 

using fMRI has established both practical and neuroscientific advantages of naturalistic 

viewing experiments. From a practical perspective, participants passively viewing a movie 

during brain imaging, particularly children, tend to move less relative to other passive 

tasks, such as resting-state paradigms, thereby reducing the pernicious effects of image 

artifacts related to head motion (Greene et al., 2018; Power, Barnes, Snyder, Schlaggar, 

& Petersen, 2012; Vanderwal, Kelly, Eilbott, Mayes, & Castellanos, 2015). In the cognitive 

neuroscience literature, naturalistic viewing tasks have been shown to reliably provide 

synchronized cortical responses across participants, show sensitivity to subsequent 

memory of the movie content, and modulate across typical and atypical developmental 

trajectories (Hasson et al., 2004; Hasson, Furman, Clark, Dudai, & Davachi, 2008; Byrge, 

Dubois, Tyszka, Adolphs, & Kennedy, 2015; Ki, Kelly, & Parra, 2016; Moraczewski, Chen, 

& Redcay, 2018; Salmi et al., 2013). Further, comprehension of the narrative elements of 

the stimulus is not constrained to a single sensory modality, further emphasizing the 

richness contained within naturalistic stimuli such as movies (Nguyen, Vanderwal, & 

Hasson, 2019). Though some optical studies have utilized naturalistic settings such as 
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real-life interactions, the methodological and scientific appeal of repeatable and tunable 

narrative movie viewing paradigms, in general, have yet to be fully leveraged using optical 

neuroimaging (Liu et al., 2017).  

 Naturalistic viewing simultaneously and reliably engages multiple cortical 

processing systems, including those related to processing the movie’s auditory/visual 

content and narrative structure (Bartels & Zeki, 2004; Hasson et al., 2004). These 

systems are spatially distributed across the cortex, underscoring the need for a large field-

of-view to capture the multi-modality responses. Furthermore, the complexity of 

information contained within the stimulus demands high spatial resolution, in order to map 

features within a modality (e.g. visual categories) to cortical structures related to 

processing those features. As with other whole-brain paradigms, such as resting state 

functional connectivity, imaging systems with higher space bandwidth product 

(~FOV/Resolution) provide more powerful readouts of movie-evoked responses. 

Therefore, in comparison to traditional sparse fNIRS systems, optical neuroimaging 

techniques such as high-density diffuse optical tomography (HD-DOT), which utilize a 

densely arranged array of measurements across a broad field-of-view, are better suited 

for mapping movie-evoked responses (Eggebrecht et al., 2014, 2012; White & Culver, 

2010b).  

 Therefore, the central goal of the present work is to evaluate the functional 

mapping performance of naturalistic movie viewing combined with a large field-of-view 

HD-DOT system in healthy young adults. Cortical synchronization, as indexed by the 

correlation coefficient between the brain responses to repeated movie viewings, has been 

demonstrated using other imaging modalities including EEG (Poulsen et al., 2017), ECoG 
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(Honey et al., 2012), MEG (K. Lankinen et al., 2014), and fMRI (Chang et al., 2015; 

Hasson et al., 2004; Kaisu Lankinen et al., 2018). Cortical maps of the correlation strength 

between runs during naturalistic viewing highlight the broad constellation of regions 

reliably involved in stimulus processing. Further, if HD-DOT is sensitive to complex, multi-

modal cortical responses associated with naturalistic viewing, we hypothesize that highly 

reproducible, synchronized, cortical responses will be measurable across regions related 

to both sensory (auditory/visual) and higher-order cognitive (e.g. linguistic) processing.  

 A limitation of spatially mapping the correlation coefficient between brain 

responses measured across repeated viewings is that this style of analysis is agnostic to 

specific components of the stimulus, such as speech or visual motion, that are relevant 

to mapping cortical information processing. In contrast, feature extraction tools provide a 

powerful technique for parameterizing individual movie features and subsequently 

identifying regions related to processing those features during naturalistic viewing (Bartels 

& Zeki, 2004; Kauttonen, Hlushchuk, & Tikka, 2015; Russ & Leopold, 2015). Accordingly, 

the second analysis developed in this paper is an approach that maps feature-specific 

cortical responses during naturalistic viewing. Like cortical responses mapped with 

reductive, non-naturalistic stimuli, these feature maps relate measured brain responses 

to task-related information processing demands.  

4.3 Methods 

4.3.1 Participants 

Participants in this experiment were healthy young adults, recruited from the Washington 

University community. All participants gave written informed consent to participate in the 

experiment, which was approved by and carried out in accordance to the Human 
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Research Protection Office at Washington University School of Medicine. Participants, all 

right-handed native English speakers, self-reported no history of neurological or 

psychiatric illness. In total, 12 participants were enrolled in the naturalistic viewing 

experiment (aged 23.5-29.4 years; 6 female). Of the 12 initial participants, 10 are included 

in the analyses reported below, as two participants were excluded due to falling asleep 

during one of the two imaging sessions.  

4.3.2 Stimuli and experimental procedure 

Participants underwent an HD-DOT cap fit procedure lasting approximately 5-10 minutes, 

guided by real-time readouts of measurement light level, signal-to-noise, and optode-

scalp coupling coefficients. Following cap fit, participants began the naturalistic viewing 

experiment. Informed by previous fMRI studies (Hasson et al., 2004), all participants in 

this experiment viewed a 30-minute segment from the feature film, The Good, the Bad, 

and the Ugly, directed by Sergio Leone. As published previously using this stimulus, 

participants viewed minutes 16:48 to 46:48 (Hasson et al., 2004). During an imaging 

session, participants viewed the same 30-minute segment two times, and each participant 

completed at least two imaging sessions on separate days. During passive movie 

viewing, unless otherwise specified, participants were instructed to relax, remain still, and 

watch the movie as they would normally, outside of the laboratory. The stimulus was 

presented on a 20-inch (diagonal) liquid-crystal display with 1080x760 pixels, positioned 

75 cm from the participant’s nasion, subtending a vertical view angle of 23 degrees, and 

a horizontal view angle of 30 degrees. The stimulus was presented using the 

Psychophysics Toolbox 3 package for MATLAB (2010b) (Brainard, 1997).  

4.3.3 HD-DOT instrumentation 
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The large field-of-view HD-DOT instrument used in this experiment (Figure 4.1) has been 

described in detail in prior work using this instrument (Eggebrecht et al., 2014). In brief, 

this custom-built continuous wave instrument consists of 96 LED sources illuminating the 

head at two wavelengths (750 nm and 850 nm), and 92 avalanche photo diode detectors 

(Hamamatsu C5460-01), coupled to the head using 4.2 m long fiber-optic bundles 

 

Figure 4.1. HD-DOT Instrumentation. A: The HD-DOT instrument used in the 
naturalistic viewing experiments consisted of a 96 source, 92 detector array, resulting 
in a dense grid of measurements used to produce spatially-resolved maps of brain 
hemodynamics. Black lines indicate measurements used in image reconstruction from 
a representative participant. B: The cortical field-of-view resulting from the optode 
arrangement. C: During naturalistic viewing, participants watched a clip from a feature 
film, while undergoing multi-modal sensory stimulation resulting from a hierarchical set 
of visual and auditory features. 
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(CeramOptec, 2.5-mm diameter bundles of 50 µm fibers). The weight of the 188 fibers 

was managed using an extruded aluminum frame and series of collinear rings 

surrounding the participant, ensuring that participants do not bear any of the fiber weight.  

Fibers were affixed to the scalp using a custom-built imaging cap, which positions 

optodes such that first-through fourth-nearest neighbor separations are 1.3, 3.0, 3.9, and 

4.7 cm, respectively. Using previously published temporal, frequency, and spatial 

encoding patterns, the HD-DOT system achieves an overall framerate of 10 Hz 

(Eggebrecht et al., 2014). In a typical participant, this system configuration yielded over 

1,200 source-detector measurements (per wavelength), which were then converted into 

voxelated movies of brain hemodynamics as specified below. 

4.3.4 HD-DOT image reconstruction 

Image reconstruction occurs in five separate phases: light-level measurement pre-

processing, anatomical light modeling, image reconstruction, spectroscopy and spatial 

normalization. The measurement pre-processing and image reconstruction steps 

followed previously published procedures using the same HD-DOT instrument 

(Eggebrecht et al., 2014). Raw detector light levels were first converted to time-series log-

ratio data. Log-ratio data was generated by taking the logarithm of the ratio of the 

instantaneous light level and the source-detector measurement’s mean value across the 

entire run. In this approach, the baseline is therefore defined as the measurement’s mean 

value across the entire run. Next, any measurements with a temporal variance exceeding 

7.5% were considered to be contaminated by non-physiological variance (e.g. head 

motion) and excluded from image reconstruction for the entire run. The percentage of 

measurements retained for each source-detector separation in this sample was (Mean ± 
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SD): 99.7±1% of first nearest-neighbors, 97.0±3% of second nearest-neighbors, 

83.6±11% of third-nearest neighbors, and 40.0±9% of fourth nearest-neighbors. 

Consequently, the exact set of measurements used in image reconstruction varied on a 

run-by-run basis (Figure 4.8, Appendix). However, the measurement density afforded by 

the HD-DOT instrument ensures that a given voxel is over-sampled by multiple 

measurements and minimizes any potential sampling dropout caused by the removal of 

any single measurement. The measurements that passed the variance threshold were 

then high-pass filtered (f  > 0.02 Hz) to remove long term drift. Next, systemic and 

superficial signals, which were approximated by averaging all first nearest-neighbor 

measurements, were regressed out of all measurements. Measurements were then low-

pass filtered (f < 0.5 Hz). 

For anatomical light modeling, the non-linear ICBM152 atlas from the Montreal 

Neurological Institute was used to generate a wavelength-dependent forward model of 

light propagation through five non-uniform tissue compartments with tissue specific 

optical properties: scalp (μa,750 = 0.017 ; μa,850 = 0.019; μs,750’ = 0.74; μs,850’ = 0.64), skull 

(μa,750 = 0.012; μa,850 = 0.014; μs,750’ = 0.94; μs,850’ = 0.84), grey matter (μa,750 = 0.018; μa,850 

= 0.019; μs,750’ = 0.84; μs,850’ = 0.67), white matter (μa,750 = 0.018; μa,850 = 0.021; μs,750’ = 

1.19; μs,850’ = 1.01), and cerebrospinal fluid (μa,750 = 0.004; μa,850 = 0.004; μs,750’ = 0.3; 

μs,850’ = 0.3) (Fonov, Evans, McKinstry, Almli, & Collins, 2009). This light modeling 

accounts for the wavelength dependence of both the illumination patterns (light fluence), 

and the collection sensitivity patterns, as published previously with HD-DOT (Eggebrecht 

et al., 2014). These modelling steps, combined with superficial signal regression (Gregg, 

White, Zeff, Berger, & Culver, 2010; Saager & Berger, 2005) and optimal wavelength 
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choice (λ = 750 and 850 nm) provide accurate unmixing of oxy- and deoxy-hemoglobin 

(Boas et al., 2001). 

The atlas-based forward modeling technique eliminates the need for subject-

specific forward modeling using individual anatomical images, and results in individual 

and group level image quality with localization errors on the order of millimeters (Ferradal, 

Eggebrecht, Hassanpour, Snyder, & Culver, 2014). Using the atlas anatomy combined 

with the 188 optode positions, the sensitivity matrix was generated using NIRFAST 

(Dehghani et al., 2008). The sensitivity matrix was then inverted using Tikhonov 

regularization (Eggebrecht et al., 2012). The conversion from differential absorption to 

differential hemoglobin was made using spectroscopy values from the literature 

(Bluestone, Abdoulaev, Schmitz, Barbour, & Hielscher, 2001).  

 For image reconstruction, the measurement data was converted to voxel space 

using the inverted sensitivity matrix and spectroscopy parameters described above, which 

resulted in volumetric time-series data of three hemodynamic contrasts: oxyhemoglobin 

(∆HbO2), deoxyhemoglobin (∆HbR) and total hemoglobin (∆HbT) at a framerate of 1 Hz. 

All analyses performed on these images utilize the oxyhemoglobin (∆HbO2) contrast, 

unless otherwise specified (see Figure 4.9 for results with all three hemoglobin contrasts). 

 Hemoglobin spectroscopy performance was verified using an independent dataset 

collected from a subset (N=5) of participants in this study. These participants viewed a 

rotating wedge consisting of a black and white checkerboard that flickered at a 10 Hz 

reversal rate to produce an evoked response in visual cortex, following previously 

published procedures (White & Culver, 2010a; Zeff, White, Dehghani, Schlaggar, & 

Culver, 2007). The ratios of the ∆HbO2, ∆HbR, and ∆HbT responses in visual cortex follow 
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previously reported responses obtained with near-infrared tissue spectroscopy using 

similar stimulation protocols (Figure 4.9, Appendix). Utilizing a more traditional stimulation 

paradigm to evaluate spectroscopy performance confirms that the light modeling and 

spectroscopy parameters are appropriate for the more novel naturalistic viewing 

analyses. 

4.3.5  Data analysis of movie responses 

The image reconstruction procedure resulted in a volumetric time-series of brain 

responses time-locked to the stimulus presentation. Two analyses were performed on 

these HD-DOT images. First, we evaluated the inter- and intra-subject synchronization 

between multiple viewings of the movie stimulus following procedures previously used 

with fMRI (Hasson et al., 2004). Second, we evaluated the correlation between 

parameterized features of the movie stimulus and the measured cortical responses 

(Bartels & Zeki, 2004; Russ & Leopold, 2015). For correlation maps resulting from both 

the synchronization and feature-based analyses, the voxelwise correlation coefficients 

were assessed using the T-statistic. The observed Pearson product-moment correlations 

were transformed to a normally distributed statistic using the Fisher Z-transformation,  

𝑧𝑧′ = 0.5 [ln(1 + 𝑟𝑟) −  ln(1 − 𝑟𝑟)] 

Examples of Z-transformed maps are presented in Figure 4.9 (Appendix). For a given 

voxel, the Z-transformed correlation coefficient was then mean subtracted and divided by 

the standard error, σ/√𝑛𝑛, where σ is the sample standard deviation, and n is the number 

of images included in a given analysis. The resulting contrast-to-noise T-maps therefore 

indicate the extent to which an observed correlation coefficient deviates from a null 

distribution in which there is no observed correlation between signals.  
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4.3.5a Inter- and intra-subject synchronization 

To assess the extent to which an individual exhibited synchronized responses across 

repeated presentations (intra-subject synchronization), as well as the extent to which an 

individual synchronized with others in the sample (inter-subject synchronization) we 

performed a correlation analysis.  For each voxel, we calculated the correlation coefficient 

between the voxel’s ∆HbO2 timeseries for two separate movie presentations(Hasson et 

al., 2004). Repeating this procedure across all voxels in the field-of-view produces a 

spatial map of synchronization across the cortex.  

4.3.5b Feature-based analysis 

The movie stimulus was decomposed into both visual and auditory features in order to 

more precisely relate features of the stimulus to observed ∆HbO2 responses. Visual 

features included features based on image statistics calculated based on individual movie 

frames (luminance, flow). Luminance was indexed by the mean pixel intensity for a single 

frame, after converting the full-color image to a grayscale image (Russ & Leopold, 2015). 

Motion was parametrized by calculating optical flow, using the Lucas-Kanade algorithm 

for solving the optical flow constraint equation:  

𝐼𝐼𝑥𝑥𝑢𝑢 +  𝐼𝐼𝑦𝑦𝑣𝑣 +  𝐼𝐼𝑡𝑡 = 0, 

where Ix, Iy, and It, are spatiotemporal image brightness derivatives, and u and v are 

horizontal and vertical optical flow, respectively. The Lucas-Kanade algorithm was 

implemented using the opticalFlowLK class in the MATLAB Computer Vision Toolbox 

(noise threshold = 0.0039). For each frame, the average magnitude of optical flow across 

all pixels was used to track changes in visual motion intensity for the duration of the 

stimulus.   
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A second set of visual features included manually coded features: visually 

presented faces, bodies, and hands.  For manually coded features, three human raters 

viewed the stimulus in 1-second bins and made a binary judgment regarding the presence 

of the three visual features of interest: Faces, bodies, and hands. Bins during which the 

raters’ judgments were discordant were subsequently re-evaluated to reach a consensus. 

 Auditory features included the envelope of the stimulus audio, as well as moment-

to-moment changes in the presence of human-generated speech. The envelope of the 

stimulus audio was used to track overall changes in audio intensity, regardless of the 

content of the audio, and implemented in MATLAB. Following previously published 

methods, the envelope of audio intensity was calculated by computing power modulations 

across 25 frequency bands (center frequencies: 200 Hz – 5 kHz; width: 200 Hz; sampling 

rate: 50 ms) (Honey et al., 2012). Within each band, the logarithm of the power time 

course was taken, and then all frequency bands were averaged, resulting in a single time 

course representing the audio envelope of the stimulus audio. The presence of human 

speech (excluding human-generated non-speech sounds) was manually coded by three 

raters, using binary judgments on 1-second bins of audio. Discordant judgments were 

subsequently re-evaluated to reach a consensus. 

 To model the response to each feature, we convolved the raw feature time-series 

with a canonical hemodynamic response and then bandpass filtered (0.02 Hz < f < 0.5 

Hz) the feature time-series to match the measurement filtering parameters (Hassanpour 

et al., 2014). To relate feature dynamics to measured cortical responses, we calculated 

the temporal correlation between the modeled time-course for each feature and the 

∆HbO2 response time-course for each voxel across the field-of-view. This procedure 
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generated a spatial map of the correlation strength between the brain responses and each 

feature time-course. To differentially assess pairs of features, a paired-samples T-test 

between sets of two feature correlation maps was used to identify cortical regions with 

differential responses between a pair of features.  

4.4 Results 

4.4.1 Inter- and intra-subject synchronization 

For a single voxel, intra-subject, between-viewing synchronization is indexed and 

quantified by the Pearson product-moment correlation coefficient between ∆HbO2 

 

Figure 4.2. Intra-subject synchronization. A: Seed region (purple sphere) used to 
extract an exemplar oxy-hemoglobin timeseries during viewing of repeated movie 
stimuli (B) and mismatched movie stimuli (C) from a single subject’s data (i.e. two 
repetitions of the movie stimulus). D: During repeated presentations of the stimulus, 
the group average of individual viewers’ synchronization maps shows elevated 
synchronization in regions across the cortical field-of-view, particularly auditory and 
visual processing regions, as shown in this unthresholded T-map. E: During 
mismatched stimulus presentations, the synchronization values are greatly reduced, 
as shown in this unthresholded T-map. F: Voxelwise distributions of Pearson 
correlation values during repeated and mismatched movie presentations. 
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timeseries, obtained during two separate repetitions of the same stimulus within the same 

participant (Figure 4.2, A-C). Repeating this procedure across the field-of-view generates 

a correlation map. Averaging these correlation maps across participants (N = 10 

participants; 2 stimulus repetitions per participant) reveals regions of elevated correlation 

coefficients, or synchronization, across the entire HD-DOT field-of-view (Figure 4.2, D). 

In particular, elevated correlation coefficients are observed in regions related to auditory 

and visual processing, underscoring that the strongest correlations observed are due to 

sensory processing of the multi-modal movie stimulus. For a given participant, intra-

subject synchronization was assessed using stimulus repetitions obtained within and 

across imaging sessions, meaning that an individual participant’s intra-subject 

synchronization map could include responses measured during movie viewings of the 

same repeated clip, across multiple days.  

Obtaining multiple runs during repetitions of the same stimulus across multiple 

imaging sessions enables assessment of potential habituation effects, which would result 

in diminished activation magnitudes as the number of stimulus repetitions increases 

(Buckner et al., 1998). In the intra-subject synchronization analysis, these effects would 

be evident in diminished intra-subject synchronization between viewings across disparate 

sessions, relative to viewings within a session (i.e. when there have been fewer stimulus 

repetitions). To assess this potential habituation effect, the intra-subject synchronization 

analysis was repeated with runs that were (1) obtained within the same session and (2) 

obtained across separate sessions (Figure 4.10, Appendix). While the average value of 

the Fisher z-transformed correlation was slightly lower across sessions (mean z(r) = 

0.038) than it was within sessions (mean z(r) = 0.041), the voxelwise topographies and 
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distributions of correlation coefficients are largely overlapping, (Figure 4.10, Appendix), 

indicating no observed habituation effect across the repeated stimulus presentations in 

this dataset. 

 If the observed synchronization between voxelwise responses is related to 

processing repetitions of the same stimulus, then the magnitude of the correlation should 

be diminished when the analysis is repeated with ∆HbO2 timeseries obtained during 

disparate viewing conditions (i.e. different movie clips). Indeed, when participants view 

non-overlapping movie segments, the correlation coefficients are diminished both within 

a single region (Figure 4.2, C) and across the entire HD-DOT field-of-view (Figure 4.2, 

E). The dramatic reduction in the correlation coefficients is also evident in the distributions 

of correlation values observed during both matched and mis-matched viewing conditions 

(Figure 4.2, F). Voxelwise responses in individual viewers show the greatest reliability, or 

synchronization, during repetitions of the same stimulus (Figure 4.2, D).  

 Cortical responses measured within single individuals reveal movie-driven 

responses with high correlation coefficients in regions related to stimulus processing. To 

assess whether this effect extended beyond individual viewers to disparate pairs of 

viewers, the synchronization analysis was repeated across all possible pairs of the ten 

viewers. The voxelwise correlation coefficient between the ∆HbO2 time-series in each 

participant was calculated for each pair of viewers, which revealed a synchronization 

topography comparable to the intra-subject analysis (Figure 4.3). In other words, not only 

does the naturalistic stimulus reliably drive cortical responses within an individual, it also 

reliably drives cortical responses across individuals. 
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4.4.2  Gaze-based synchronization modulations 

To demonstrate the sensitivity of naturalistic viewing experiments to eye position, a 

subset of participants (N = 4) in the present work repeated the experiment under modified 

viewing conditions. These participants viewed the stimulus once under natural conditions, 

and a second time while maintaining central fixation throughout the entire viewing period, 

during which a crosshair was overlaid over the center of the movie stimulus. Within both 

of the viewing conditions, synchronization in visual cortex was preserved, as indexed by 

the high correlation coefficients in visual cortex (Figure 4.4). However, when the 

correlation coefficient between ∆HbO2 time-series from disparate viewing conditions was 

calculated, synchronization was diminished, highlighting that the synchronization effect in 

 

Figure 4.3. Inter-subject synchronization. A: Pairs of separate viewers also show 
synchronized cortical responses in regions related to visual and auditory processing 
during naturalistic viewing, as shown in the unthresholded map of synchronization 
averaged across all possible pairs of 10 viewers (45 pairs in total). B: Oxy-hemoglobin 
timeseries from a seed region in the left superior temporal gyrus (inset) for individual 
viewers (grey lines) and the group average (black line). 
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visual cortex, in part, depends on consistent viewing conditions. This result is consistent 

with the observation that eye position during unconstrained viewing of professionally 

produced movie is reproducible across viewers (Dorr, Martinetz, Gegenfurtner, & Barth, 

2010). 

4.4.3  Feature-based analysis 

The feature extraction procedure, applied across visual and auditory modalities, resulted 

in a set of seven features (Figure 4.5). Inspection of the content of the movie clips at the 

times corresponding to the minima and maxima (labels 1-4 in Figure 4.5, A) indicated that 

the extraction procedures reliably parameterize the features of interest. In general, 

features were not strongly correlated with each other, with the exception of the two 

features derived from image statistics, luminance and optical flow (Figure 4.5 ,C).  

 

Figure 4.4. Gaze-based synchronization modulations. A subset of participants (N 
= 4) viewed an additional repetition of the stimulus under experimenter-imposed 
viewing conditions, in which participants were instructed to maintain central fixation 
during movie viewing. Voxelwise maps display raw Pearson correlation coefficients, 
which provide a quantification of cortical synchronization during both central fixation 
viewing and free viewing. Synchronization is observable when viewing conditions are 
held constant. Synchronization is abolished when comparing across viewing 
conditions that impose different gaze patterns during naturalistic viewing. 
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Correlation maps generated from the time-series for each feature category were in 

agreement with known functional neuroanatomy (Figure 4.6) (Eggebrecht et al., 2014; 

Wilson, Molnar-Szakacs, & Iacoboni, 2008), and were evaluated using a T-statistic to 

identify voxels with correlation coefficients that deviate from a null distribution in which 

there is no observed correlation between signals (see methods). For instance, in the 

auditory domain, voxels in the bilateral superior temporal gyrus (STG) had the highest 

correlation coefficients to the audio envelope feature time-series, while the correlation 

 

Figure 4.5. Feature extraction procedure. A: Seven features of varying complexity 
across visual and auditory processing were extracted from the stimulus using a 
combination of automated and manual approaches. B: Sample frames from the 
maxima and minima of two features, human-produced speech and visually presented 
faces, illustrate that the feature extraction procedures quantify changes in perceived 
feature intensity. For instance, a peak in human speech intensity corresponds to a 
conversation, while a valley corresponds to a landscape. A peak in visually presented 
face corresponds to a full-frame face, while a valley corresponds to a body with an 
obscured face. C: The correlation between pairs of features was generally weak, with 
the exception of the two visual features based on image statistics: luminance and 
optical flow. 
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Figure 4.6. Correlation maps for individual movie features. Maps represent the 
group averaged map across individual feature maps for each of the 10 subjects 
included in the analysis. Correlation maps for each of the seven visual and auditory 
movie features highlight cortical regions related to processing those features during 
naturalistic viewing. Individual maps are scaled to 90% of the maximum T-statistic for 
each map, indicated in parentheses next to each map title.  

 



                       
 

128 
 

between voxelwise ∆HbO2 and the speech feature revealed a left-lateralized response in 

the STG and left prefrontal cortex.  

For visual features generated by image statistics (luminance and flow), voxels in 

visual cortex have the highest correlation coefficients between the ∆HbO2 time-series in 

these regions and the feature time-series. Conversely, the set of visual feature time-

courses for higher-level visual features revealed patterns of elevated correlation 

coefficients across broader constellations of regions. For instance, the map of face 

processing during naturalistic viewing, generated by computing the voxelwise correlation 

between the ∆HbO2 time-series and the visually presented faces time series, not only 

involved extrastriate visual regions, but also auditory and speech processing regions, 

underscoring that features were not present in isolation during the naturalistic viewing 

task (Wilson et al., 2008). Similarly, the correlation coefficient between voxelwise ∆HbO2 

and the time-course of visually presented bodies was elevated in voxels in the visual 

cortex and voxels in the inferior regions surrounding the central sulcus. 

4.4.4 Hierarchical feature contrasts 

Within the set of features used for functional mapping, individual features differed in 

complexity. For instance, the audio envelope, a low-level feature, indexed non-specific 

changes in stimulus audio intensity. Changes in audio intensity during movie viewing may 

be driven by factors such as environmental sounds, music, or human produced speech. 

Processing human produced speech is a more complex auditory task with both auditory 

and linguistic components, and was indexed by a dedicated, higher-level language 

feature (Juha M. Lahnakoski et al., 2012). Consequently, the set of auditory features used 

in this analysis was both hierarchical and potentially overlapping. To evaluate the 
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relationship between these hierarchical auditory features, a paired T-test was computed 

between the correlation maps for the audio envelope and speech features (Figure 4.7), 

resulting in a map of regions that preferentially respond to speech relative to other sounds 

indexed by the envelope feature. Relative to the correlation map for the speech feature 

alone (Figure 4.6), the contrasted map in Figure 4.7 evaluates a region’s selectivity for 

one feature over another and provided more detailed mapping of regions (e.g. left 

prefrontal cortex, or Broca’s area) involved in naturalistic speech processing. 

 Hierarchical features were not limited to features within a single modality. During 

naturalistic viewing of the stimulus, visually presented human faces co-occurred with 

auditorily presented human speech. Consequently, the correlation map for the visually 

 

Figure 4.7. Maps for pairwise feature contrasts. Maps represent the group 
averaged map across individual feature maps for each of the 10 subjects included in 
the analysis. Paired T-tests between sets of features aimed at identifying regions 
related to speech processing during naturalistic viewing reveal that spatially 
convergent maps can be generated by contrasting disparate, but conceptually related 
features. Top: Contrast between the speech and auditory envelope features. Bottom: 
Contrast between the visually presented faces and auditory envelope features. 
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presented face feature may serve as a surrogate feature for mapping cortical responses 

to social information, specifically human speech (Juha Marko Lahnakoski et al., 2012). 

However, other ambient sounds may also co-occur with visually presented faces, which 

are indexed by the auditory envelope. To test this hypothesis, the paired T-test described 

above was repeated for the face and auditory envelope features (Figure 4.7). 

 The spatial correlation between the maps generated using these two approaches 

to isolating speech processing (or contrasted feature maps) was r = 0.83, indicating good 

agreement. Therefore, by contrasting individual features, cortical responses to movie 

stimuli were further dissected, evaluating a given region’s preference for one feature over 

another. 

4.5 Discussion 

In the present study, we used passive movie viewing, a naturalistic sensory stimulation 

paradigm, to evaluate the feasibility of measuring synchronized, movie-evoked cortical 

responses in healthy adult participants using HD-DOT. This synchronization, as indexed 

by the voxelwise correlation coefficient between oxy-hemoglobin responses measured 

across repeated viewings, was most prominent in auditory and visual cortex, highlighting 

that passive movie viewing is an effective tool for engaging distributed, multi-modal 

cortical regions (Hasson et al., 2004). Further, the spatial maps of correlation coefficients 

generated within participants and between participants both demonstrated elevated 

correlations during repeated stimulus viewings, underscoring that naturalistic stimuli 

reliably drive cortical activity despite the task’s highly unconstrained conditions.  The 

magnitude of the correlation coefficients was greatly diminished when participants viewed 

different, non-overlapping movie segments.  
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While high synchronization was observed both within and between participants 

over the HD-DOT field of view, this analysis approach did not relate features contained 

within the movie to specific cortical areas. In order to leverage the reliable cortical 

responses to the stimulus and relate them to naturalistic information processing, a feature 

decomposition strategy was employed to parameterize the movie stimulus (Bartels & 

Zeki, 2004; Juha M. Lahnakoski et al., 2012; Russ & Leopold, 2015). In the initial feature 

set, seven visual and auditory features of varying complexity were extracted from the 

stimulus. These features were subsequently used to functionally map cortical regions 

related to feature-specific processing; highlighting that, despite the richness and 

concurrent multi-modal stimulation associated with naturalistic tasks, tracking the 

intensity of individual features encountered during naturalistic viewing provides an 

effective strategy for parameterizing and mapping the complex movie stimulus. 

Both synchronization and feature-based mapping strategies have been 

successfully incorporated in neuroimaging research using other modalities. Inter- and 

intra-subject synchronization during naturalistic viewing was first demonstrated using 

fMRI and has been shown in subsequent studies investigating the reproducibility of 

movie-evoked cortical responses (Hasson et al., 2010, 2004). Similarly, feature-based 

decomposition of naturalistic stimuli, using both manual and automated decoding 

approaches, has been incorporated in imaging work in both humans and non-human 

primates, highlighting that naturalistic tasks are suitable for mapping brain activity in a 

manner comparable to more constrained stimuli commonly utilized in functional mapping 

experiments (Bartels & Zeki, 2004; Russ & Leopold, 2015).  



                       
 

132 
 

The present work is extension of these analytic tools to optical neuroimaging 

modalities, leveraging the relatively high resolution and broad coverage of the superficial 

cortex that HD-DOT offers compared to sparse fNIRS. Stimuli such as The Good, the 

Bad, and the Ugly, are narrative movies produced for entertainment; consequently, the 

“tasks” embedded in processing a feature film are complex, rich, and concurrent. Prior 

work using fNIRS has also used video stimuli, although generally with the goal of 

understanding a targeted and constrained information processing task.  For example, 

fNIRS experiments investigating the development of specialized cortical responses to 

social stimuli have successfully leveraged the richness of video stimuli with human actors 

(S. Lloyd-Fox et al., 2017; Sarah Lloyd-Fox et al., 2009). Further, these responses have 

been shown to be sensitive to altered developmental trajectories (S. Lloyd-Fox et al., 

2013). Depending on the study, these targeted videos can be optimized for the specific 

task of interest. On the other hand, because social interactions are inherently rich, multi-

modal experiments, video stimuli are an effective tool for recapitulating this richness in a 

repeatable and controlled manner. By replacing a video stimulus tailored for assessing a 

specific domain with a feature film, as done in the present work, multiple sensory and 

cognitive processing domains can be assessed concurrently using a single, integrated 

movie stimulus. Outside of the laboratory, information is rarely encountered in a single 

sensory domain under rigidly controlled stimulus presentation parameters, underscoring 

the ecological relevance associated with free viewing tasks as implemented in this work. 

Movie viewing tasks also afford practical advantages for special populations of 

interest. For instance, toddlers and school age children may find measurements of task-

evoked brain activity relying on highly constrained and isolated stimuli to be boring, 
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repetitive, or predictable (Vanderwal et al., 2018). Indeed, work using fMRI indicates that 

naturalistic viewing tasks in toddlers and school age children reduces head motion, a 

substantial source of artifact.  Further, the extent to which a child shows synchronized 

brain responses during naturalistic viewing correlates with behavioral assessments of 

mathematical and linguistic ability. Future work using naturalistic viewing tasks in 

conjunction with optical neuroimaging can leverage the practical advantages and 

scientific value of these paradigms alongside comfortable and wearable instrumentation, 

such as HD-DOT, that is particularly well suited for pediatric imaging (Ferradal et al., 

2016). 

One limitation of the naturalistic viewing task, as implemented in this work, is the 

lack of measured behavioral responses. Behavioral responses can track participant 

comprehension and attentiveness throughout the task, two variables that have been 

previously shown to modulate cortical responses measured during naturalistic viewing 

(Byrge et al., 2015; Campbell et al., 2015; Hasson et al., 2008). Possible behavioral 

responses include comprehension assessments following the experiment (Hasson et al., 

2008) and recording eye position during the experiment (Wang, Freeman, Merriam, 

Hasson, & Heeger, 2012). Indeed, while eye position during viewing of a professionally 

produced movie is generally reproducible across subjects, gaze position has been 

reported to vary in special populations, including participants with Autism spectrum 

disorder (Norbury et al., 2009). 

In the present work, the importance of eye position during naturalistic viewing was 

assessed during a separate experiment during which a subset of participants viewed an 

additional repetition of the stimulus while maintaining central fixation during the entire 
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viewing session. The correlation magnitude between voxelwise responses in visual cortex 

within viewing conditions indicated synchronized brain responses across participants; 

however, cortical responses from mismatched viewing conditions did not show the 

synchronization effect (Figure 4.4). In this experiment, participants confirmed their ability 

to comply with the fixation instructions by self-report. In future work, eye tracking can 

confirm compliance with experimenter-imposed gaze conditions and provide better 

characterization of eye position during free viewing. 

An additional limitation of the present experiments is the utilization of a single 

movie clip. Importantly, not all movies are equally suitable for mapping particular features 

of interest. For instance, an animated movie with animal characters (e.g. Finding Nemo) 

would likely be poorly suited for mapping cortical responses to visually presented hands. 

Further, a boring or difficult to understand movie (e.g. Waiting for Godot) may result in 

diminished synchronization resulting from poor attentiveness or comprehension 

(Campbell et al., 2015). Future work employing naturalistic viewing paradigms can assess 

the efficacy of differing stimuli in performing functional brain mapping within a given 

domain of interest, as well as expand the set of features used for a given movie clip. In 

addition to the low and high-level sensory features used in this work, movie stimuli contain 

rich social, emotional, and narrative content that engage higher-order brain functions 

(Juha M. Lahnakoski et al., 2012; Juha Marko Lahnakoski et al., 2012). Sex-related 

differences have been reported in social and emotional processing in imaging and 

behavioral studies using non-naturalistic designs (Lang et al., 1998; Rodway, Wright, & 

Hardie, 2003). While the sample in this study was neither sufficiently powered nor 

balanced to assess potential sex-related effects, naturalistic designs such as passive 
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movie viewing offer a convergent experimental strategy to further explore these sex-

related differences in social and emotional processing. 

Using optical neuroimaging tools to study the brain during naturalistic viewing 

conditions has broad applicability for experimental questions demanding rich, engaging 

stimuli alongside wearable and ergonomic imaging tools (Pinti et al., n.d.; Vanderwal et 

al., 2018). Developmental cognitive neuroscience has benefitted from the broad 

applicability of optical neuroimaging tools for imaging the developing brain (Cristia et al., 

2014; Emberson, Zinszer, Raizada, & Aslin, 2017; Karim & Perlman, 2017; S. Lloyd-Fox 

et al., 2017, 2013; Sarah Lloyd-Fox et al., 2009; Perlman, Luna, Hein, & Huppert, 2014). 

Paired with optical neuroimaging, the movie-based imaging paradigm described in this 

paper provides engaging and ecologically relevant study designs for understanding 

information processing across the lifespan, highlighting the richness of this paradigm for 

interrogating “real-life” brain function.  
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Figure 4.8. Measurement retention across all passive movie viewing runs. A: Box 
plots show the distributions for the number of measurements retained at the first four 
nearest-neighbor separations, with a mean of 642/644 NN1, 1034/1065 NN2, 368/440 
NN3, and 339/848 NN4 measurements retained across all runs. B: Box plots show the 
percentage of measurements retained for the first four nearest-neighbor separations. 
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Figure 4.9. Inter-subject synchronization assessed across oxy-hemoglobin, 
deoxy-hemoglobin, and total hemoglobin contrasts. A: Timeseries for all three 
contrasts from a seed region in temporal cortex (inset) during a five-minute subset of 
the passive movie viewing experiment. B: The oxy-hemoglobin timeseries from the 
seed region during passive movie viewing in all 10 individual subjects (grey lines) and 
the group averaged oxy-hemoglobin response (red line). C: The deoxy-hemoglobin 
timeseries from the seed region during passive movie viewing in all 10 individual 
subjects (grey lines) and the group averaged deoxy-hemoglobin response (blue line). 
D: The total-hemoglobin timeseries from the seed region during passive movie viewing 
in all 10 individual subjects (grey lines) and the group averaged total-hemoglobin 
response (green line). E: Group averaged spatial map of correlation coefficients for the 
inter-subject synchronization analysis performed using the oxy-hemoglobin contrast. 
Voxel values represent Fisher’s Z-transformed correlation coefficients. F: Group 
averaged spatial map of correlation coefficients for the inter-subject synchronization 
analysis performed using the deoxy-hemoglobin contrast. G: Group averaged spatial 
map of correlation coefficients for the inter-subject synchronization analysis performed 
using the total hemoglobin contrast.  
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H: Retinotopic mapping stimulus used for evaluation of hemoglobin spectroscopy in a 
subset of passive movie viewing participants (N = 5). I: Posterior view of the group-level 
block-averaged oxy-hemoglobin response, averaged over the shaded timepoints in Panel 
L. J: Posterior view of the group-level block-averaged deoxy-hemoglobin response, 
averaged over the shaded timepoints in Panel L. I: Posterior view of the group-level block-
averaged total-hemoglobin response, averaged over the shaded timepoints in Panel L. 
L: Activation time traces from left visual cortex for the oxy-hemoglobin, deoxy-
hemoglobin, and total hemoglobin contrasts. 
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Chapter 5: Discussion 

5.1 Summary 

High-density diffuse optical tomography is an optical neuroimaging technique that uses 

near-infrared light to measure cortical tissue oxygenation, which is an indirect readout of 

local neuronal activity (Raichle & Mintun, 2006). These measurements, taken on the 

surface of the head, are tomographically reconstructed into three-dimensional images of 

hemodynamics (Eggebrecht et al., 2014, 2012). Like other optical neuroimaging 

instruments, HD-DOT enables human neuroimaging in a variety of settings unavailable 

to other commonly used imaging modalities, including a patient’s bedside, 

open/naturalistic environments, and regions where other imaging modalities are 

unavailable. Additionally, populations who find other modalities frightening or are 

contraindicated for other modalities are suitable for HD-DOT, including awake children 

and patients with implanted metal. Unlike other optical neuroimaging modalities, HD-DOT 

offers an expanded field-of-view and greater measurement density, enabling fMRI-

comparable mapping of distributed brain function with a wearable and portable device. 

 To date, neuroimaging research using HD-DOT has focused on two avenues of 

work. The first avenue is validating the functionality of the instrument against established 

imaging paradigms, showing that unlike fNIRS, HD-DOT can be considered a surrogate 

for commonly used imaging modalities such as fMRI. This validation work relied on classic 

paradigms mapping stereotyped responses implemented with fMRI, such as the 
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retinotopic organization of visual cortex (White & Culver, 2010a; Zeff, White, Dehghani, 

Schlaggar, & Culver, 2007). In other studies that have included subject-matched fMRI, 

spatial agreement between the modalities is quantifiable, and shows excellent localization 

accuracy (Eggebrecht et al., 2014, 2012). The second line of research involves 

implementing HD-DOT in studies with research questions demanding the unique 

advantages of optical neuroimaging. For instance, studies of speech perception using 

HD-DOT are unencumbered by scanner noise, providing an acoustic environment more 

readily optimized for studies of audition (Hassanpour, Eggebrecht, Culver, & Peelle, 

2015). Further, where as other modalities require patients to be transported to imaging 

equipment, HD-DOT instrumentation can be utilized in the clinical environment, such as 

the neonatal intensive care unit (Ferradal et al., 2016).  

 This thesis work was conducted in a lab focused on technology development and 

optimization and is therefore targeted at identifying and validating novel applications for 

HD-DOT. The first question addressed in this work is the extent to which measurement 

density in an optical neuroimaging array impacts the reconstruction of fMRI-comparable 

images (Chapter 2). This work uses in vivo data to extend prior work using simulated 

reconstructions (White & Culver, 2010b) and indicates that sparse measurement arrays 

are prone to distorted or mis-localized activations to a greater extent than dense arrays. 

Having established the importance of dense measurement arrays for localization of 

cortical activations, the remainder of the thesis aims to establish methods to localize and 

map brain function in another population considered to be exceptionally suitable for 

optical neuroimaging: children (Aslin & Mehler, 2005; S. Lloyd-Fox, Blasi, & Elwell, 2010). 
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This objective was accomplished in two steps. First, HD-DOT performance was evaluated 

in a cohort of 7-10-year-old children (Chapter 3). This work was conducted in Cali, 

Colombia, and had the dual purpose of establishing HD-DOT as a method suitable for 

field-based neuroimaging assessments aimed at identifying malnutrition-related cortical 

deficits. However, instrumentation that is acceptable for developmental neuroimaging 

solves only half of the challenge. In addition to suitable instrumentation, developmental 

neuroimaging requires paradigms that are more engaging and stimulating than traditional 

block or event-related task designs. The naturalistic imaging tasks established in Chapter 

4 are an attempt to fulfill this need, by using HD-DOT to measure cortical responses 

during a passive movie viewing task.  

 In this chapter, I provide a brief overview of the principal results shown in each 

chapter. Within each of the body chapters, the respective discussion section 

contextualizes the results within the current neuroimaging literature and highlights the 

implications of the results. Consequently, in this closing chapter, my discussion is more 

pointed towards the future research directions created by each of these lines of research.  

5.2 Commentary on optical neuroimaging instrumentation 

Unlike HD-DOT, other optical neuroimaging tools such as fNIRS use a sparse array of 

sources and detectors. This means that the measurement separation is usually at a single 

distance, and the measurements are usually not spatially overlapping (Boas, Chen, 

Grebert, & Franceschini, 2004; Boas et al., 2001). The results of these two factors is that 

brain hemodynamics measured with fNIRS are susceptible to contamination by superficial 
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and systemic nuisance physiology (Saager & Berger, 2005), and that lateral resolution 

afforded by non-overlapping measurements permits only coarse localization of 

activations. Consequently, while an fNIRS instrument may successfully detect an 

activation resulting from neuronal activity, localization of that activation may be less 

reliable than localizations detected using denser measurement arrays. Using subject-

matched fMRI, the work in this chapter aimed to evaluate the effect of measurement 

density on reconstruction of fMRI comparable images.  

 We found that in general, using a set of three image agreement metrics, across 

three language processing tasks, that images reconstructed with HD-DOT agreed with 

fMRI more so than images reconstructed with sparse arrays. We also found that 

accounting for superficial and systemic nuisance physiology in the sparse arrays 

improved the image agreement between sparsely-constructed images and subject-

matched fMRI. 

 The results of this work indicate that if a study aims to localize brain activity with 

fMRI-comparable accuracy, then measurement density must be considered as a critical 

imaging system speficifcation. Minimally, in the absence of a dense measurement array, 

incorporation of superficial signal regression methods is a practical and important data 

quality improvement technique, where data quality is here operationalized as the 

agreement between an image and subject-matched fMRI. 

 An important contextualizing factor for this work is that many fNIRS studies do not 

explicitly wish to localize fMRI-comparable images. This factor is illustrated that while 
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some fNIRS studies using sparse arrays do use image reconstruction techniques 

(Jackson et al., 2019), many more studies do not, and instead present channel-wise 

statistics or topographically reconstructed images (Sarah Lloyd-Fox et al., 2009). While 

some techniques do exist to optimize array design and placement to better attribute the 

measured fNIRS signal to underlying cortical signals (Brigadoi, Salvagnin, Fischetti, & 

Cooper, 2018; Morais, Balardin, & Sato, 2018; Yamamoto et al., 2002), the reality remains 

that signal detection, not localization, remains the principal capability of many fNIRS 

studies. While some studies do attempt to attribute observed signal changes to underlying 

cortical structures, in the absence of an anatomical registration method (Singh, Okamoto, 

Dan, Jurcak, & Dan, 2005), these attributions are generally subjective and of limited 

precision. This anatomical localization capability stands in stark contrast to the emphasis 

placed on careful attention to brain anatomy espoused by fMRI researchers (Devlin & 

Poldrack, 2007) and may represent a reason why some neuroimaging researchers are 

hesitant to include fNIRS techniques in the suite of tools utilized in their laboratories. 

Of course, detection of a hemodynamic change in a given fNIRS channel 

presupposes that (1) the array is consistently positioned across participants and (2) the 

array is appropriately designed such that it samples the cortical regions related to the 

experimental question. Consequently, even in studies that do not wish to localize a 

cortical response, and instead aim to simply detect a signal related to some brain state, 

task manipulation, or stimulus presentation, array geometry and placement represents a 

source of variance. One example of such a study that might prioritize the detection of a 

relevant signal over attribution or localization of that signal is the emerging use of fNIRS 
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in brain-computer interfaces, which aim to leverage the wearability and portability of these 

devises in this burgeoning application (Naseer & Hong, 2015). 

One solution to the potential confound of array placement and design is to use 

tools to optimize these design decisions, as stated above. Another solution is, of course, 

to increase the resolution of the system using a dense measurement grid and incorporate 

image reconstruction steps that account for subject-specific brain anatomy. This solution 

increases the number of fibers associated with a system; therefore, instrument size 

increases accordingly. In situations demanding high portability, such as the brain-

computer interface described above, fiberless systems (Chitnis et al., 2016) or systems 

using detection methods that permit more lightweight fibers (Bergonzi et al., 2018) are 

two solutions that enable researchers to overcome the potential trade-off between image 

quality and wearability. 

Currently, HD-DOT systems utilized by the lab generate approximately 1,200 

measurements per wavelength. Future evaluations of optical measurement density may 

continue exploring the relationship between cortical activation localization and 

measurement density by increasing the number of measurements, rather than decreasing 

the number of measurements. Rather than eroding image quality, this work would test 

whether the current measurement configuration is at the ceiling for activation localization 

precision, or whether further improvements are available. As has been done previously, 

such work may be carried out in simulation prior to constructing a new instrument. 

However, while theoretical image quality improvements may be achievable using greater 

measurement density, the theoretical improvements must be considered alongside 
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practical limitations, such as participant’s hair, which may interact negatively with denser 

arrays with reduced combing ability, relative to instruments with less densely packed 

arrays. 

Ultimately, the goals of this dissertation are better served by fMRI-quality 

localization, as they involve complex tasks or situations in which a priori decisions about 

cortical field-of-view are undesirable. Consequently, through a quantitative assessment 

of image overlap using optical data and fMRI, the work completed in this chapter supports 

the intuition that the results presented in subsequent chapters would not have been 

achievable with a sparse fNIRS system. 

5.3 Commentary on using neuroimaging to predict 
malnutrition status 
 
Optical neuroimaging instruments are substantially more portable than neuroimaging 

instruments such as MRI or PET. Consequently, researchers have used these 

instruments to interrogate brain function in settings that demand portability, due to the 

lack of nearby neuroimaging infrastructure capable of housing larger brain imaging tools 

(Sarah Lloyd-Fox et al., 2014; Roberts et al., 2017a; Wijeakumar, Kumar, Reyes, Tiwari, 

& Spencer, n.d.). In essence, tools such as fNIRS enable the establishment of mobile, 

field-based neuroimaging laboratories. An emerging application of this capability has 

been to use optical neuroimaging tools, including fNIRS, to study brain development in 

low-resource regions of the world, where traditional neuroimaging modalities are too 

expensive and too resource-intensive to be readily available. In these regions, conditions 
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such as childhood malnutrition are extremely prevalent. Extensive behavioral studies 

(Barrett, Radke-Yarrow, & Klein, 1982; Grantham-McGregor, 1995) and limited imaging 

research (Odabaş et al., 2005) show that malnutrition during early brain development has 

pervasive effects on cognition, socialization, emotion, motor abilities, and other domains, 

providing strong motivation for the need to fully characterize these deleterious and life-

long consequences. 

 Relative to fNIRS, HD-DOT offers a broader cortical field-of-view, greater lateral 

resolution, and three-dimensional images of brain hemodynamics. Consequently, the 

goal of the work presented in Chapter 3 was to evaluate the performance of an HD-DOT 

instrument in Colombia, with the ultimate objective of eventually using HD-DOT to 

understand the neurological consequences associated with childhood malnutrition. One 

of the first portable fNIRS laboratories was established in The Gambia (Sarah Lloyd-Fox 

et al., 2014), and the first results from this field laboratory focused on feasibility of imaging, 

using a paradigm that produces stereotyped brain responses. Similarly, the work 

presented in Chapter 3 used a passive sensory paradigm (Eggebrecht et al., 2014; 

Petersen, Fox, Posner, Mintun, & Raichle, 1989) and measures of bilateral functional 

connectivity (Ferradal et al., 2016; Smyser et al., 2010; Thomason et al., 2013) to 

establish the performance of this instrument in a completely novel imaging environment. 

Relative to other work introducing optical neuroimaging instruments in field-environments, 

the work in Chapter 3 places an emphasis on data quality, using a set of real-time and 

post-hoc image quality metrics (Sherafati, Eggebrecht, Burns-Yocum, & Culver, 2017) to 

quantitatively evaluate HD-DOT performance in a field setting, showing that data quality 
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in Cali is comparable to data in St. Louis. Finally, because HD-DOT instruments 

incorporate a larger number of fiber optic cables to support a greater channel count, we 

evaluate the effect of reducing the channel count on the resulting reconstructed images.  

  The results of this work indicate that task-evoked and resting-state imaging in the 

cohort of 7-10-year-old children used in this sample produces the expected results and is 

of high quality. Relative to images reconstructed using sparser measurement arrays, the 

densely reconstructed images consistently localize cortical responses to stimuli, 

indicating that other instruments with fewer fibers and channels may successfully detect 

an activation, but localize the activation with substantially more variability than 

instruments using dense arrays. Further, the dense arrays incorporate a broader cortical 

field-of-view than other optical neuroimaging instruments, potentially reducing the need 

for subjective, a priori decisions about which structures to image and which structures to 

exclude from imaging. 

 The results of this initial field-based HD-DOT study set the stage for future 

investigation of a child’s malnutrition burden. These investigations could rely in task-

based imaging, in which a particular domain (e.g. social cognition (Sarah Lloyd-Fox et al., 

2015, 2014); visual working memory (Wijeakumar et al., n.d.)) that is thought to be 

affected by a child’s malnutrition status is interrogated using a task that probes the neural 

system underlying that domain. Selection of an appropriate task should likely be informed 

by behavioral data from the same population, which would enable formulation of an 

appropriate hypothesis. A complementary approach would be to leverage functional 

connectivity to assess the cortical systems within the field-of-view and use assessments 
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of an individual’s network structure to classify an individual’s malnutrition status. 

Functional connectivity during development is also predictive of future outcomes, 

highlighting the potential to identify individuals with developmental trajectories that are 

most seriously compromised by their malnutrition burden (Smyser et al., 2013; Wheelock 

et al., 2018). 

 While the potential for future study of malnutrition using HD-DOT is promising and 

includes multiple, complementary strategies for mapping the malnourished brain, these 

studies are limited by their descriptive nature. In other words, if successful, these future 

studies will provide a detailed characterization of how the brains of a malnourished 

individual differ from the brains of a well-nourished individual. Within the context of an 

academic teaching hospital, these descriptive studies are critical for providing a systems-

level characterization of how brains differ between individuals and populations, and 

individuals in patient populations generally participate in imaging while potentially 

undergoing treatment. In the context of field imaging, prioritizing the largely scientific task 

of performing imaging to characterize or describe a patient population may not fully serve 

the needs of individuals and families who volunteer their time to participate in these 

studies. Neuroimaging in a global context, if implemented with the needs of the local 

communities who participate in imaging studies in mind, must push beyond the more 

constrained goal of describing disrupted brain function using novel imaging tools, and 

ensure that studies are designed such that potential future impact on local communities 

is maximized. 
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 Future studies that not only characterize disrupted brain function but aim to 

improve the condition of global communities that participate in the studies may utilize 

several strategies to achieve this goal, including interventional studies and more critical 

methodological evaluation. Brain imaging may be used in conjunction with an 

intervention, such as a therapeutic food (Linneman et al., 2007; Manary, Ndkeha, Ashorn, 

Maleta, & Briend, 2004), to serve the dual purpose of (1) characterizing malnutrition status 

using imaging and (2) using imaging as one of multiple potential endpoints in a trial of 

various foods. This dual purpose has been implemented in only a limited number of global 

neuroimaging studies (Roberts et al., 2017b). Assessing intervention efficacy, even at a 

traditional teaching hospital, is a complex and resource-intensive question, and 

implementing such a study in a novel setting will only intensify those challenges. It 

requires expanding an imaging research team to include researchers developing 

interventions and is a goal a single lab may not realistically be expected to achieve in 

isolation. Consequently, other entities such as funding agencies, may have a larger role 

to play in ensuring that research teams have the resources necessary to conduct 

research that is both scientifically impactful and impactful to local communities who play 

host to research teams. 

 If the goal of a study is to make predictions about a child’s developmental 

trajectory, then the use of neuroimaging over other methods must be critically evaluated 

and justified. This is not to say that neuroimaging is tool with limited predictive power or 

a limited role in clinical decision making, as both of these applications have been 

articulated extensively (Eggebrecht et al., 2017; Greene et al., 2016; Lee, Smyser, & 
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Shimony, 2013; Marrus et al., 2018). However, taking the unique demands of performing 

field research into account, groups that welcome neuroimaging researchers into their 

communities have a reasonable expectation that the researchers will positively impact 

their community, above and beyond intangible benefits such as publicity that is associated 

with being the site of a global neuroimaging study. If this expectation is valid, then the use 

of neuroimaging over other equally predictive tools should be a methodological decision 

that is explicitly evaluated and justified. 

 Outside of global neuroimaging studies, brain-computer interfaces are one 

orthogonal application that has benefitted from critically evaluating the methods used to 

create tools that read out physiological signals and use those signals in a computation, 

broadly construed. For instance, one goal of a brain-computer interface may be to read 

out and decode signals related to an individual’s intended speech. As the organ system 

responsible for generating behavior, the central nervous system, particularly the brain, 

certainly contains signals related to intended speech. However, the signal generated by 

this system is of course repropagated to the periphery through the efferent pathways that 

carry centrally generated speech signals to articulatory structures. Engineers who have 

used electrical activity in these structures (e.g. jaw musculature) have been able to 

successfully implement a computer interface that reads out intended speech (Kapur, 

Kapur, & Maes, 2018). Of course, this result may have limited clinical utility for individuals 

with paralysis and consequently no readable signals in the musculature, but a key 

advantage of obtaining decodable signals from the periphery is the ease of 

implementation, relative to obtaining and decoding potentially more complex and noisy 
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signals from the central nervous system. This result provides a case study in critically 

evaluating whether the highest fidelity signal, whether it is to be used for brain-computer 

interface or a predictive algorithm, is localized to the central nervous system or elsewhere 

in the body. If the objective of a study is to obtain a signal that is to be used subsequently 

for prediction or in a computer interface, then the engineers developing the system should 

necessarily seek a high-fidelity signal for that purpose.  

Consequently, returning to the global health context, if a study’s stated objective 

is to predict malnutrition status, then the choice of neuroimaging must be justified against 

other measures such as anthropometry, and the advantages consequent from choosing 

an imaging-based signal over another signal must be stated. Similarly, if a study’s stated 

goal is to predict future behavioral deficits or developmental trajectories, the choice of the 

signal supporting the predictive algorithm must be justified and contextualized among 

other available signals. For instance, in the case of a neonatal subject population, imaging 

is a potentially attractive signal choice, as it provides a signal that is available to be read 

out much earlier than a signal that would rely on overt or performed behavior (Smyser et 

al., 2013; Wheelock et al., 2018). While this imaging application is achievable in a 

research hospital, researchers are becoming increasingly aware of the amount of imaging 

data required to achieve appropriate signal-to-noise (Laumann et al., 2015), in addition 

to these tools’ exquisite sensitivity to head motion (Power, Barnes, Snyder, Schlaggar, & 

Petersen, 2012). It is therefore reasonable to hypothesize that data collected in a non-

academic setting will not meet these same stringent data quality criteria, making 
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achievability of adequate data quality another design consideration as methods move 

from the laboratory to non-laboratory settings. 

The behavioral and neural system of interest further constrains the signal 

selection. For instance, early detection of motor deficits may be possible using 

accelerometer-based techniques, as continuous accelerometry provides a readout from 

the motor system that does not require completion of a specific task or imaging study 

(Hoyt et al., 2019). While this accelerometry study was implemented in an academic 

research setting, participants wore the accelerometers continuously, in contexts 

extending beyond the clinic. It is therefore reasonable to predict that data quality demands 

posed by a wearable accelerometer would be achievable in a variety of non-clinical 

settings. Furthermore, the method’s low implementation cost means that actigraphy may 

readily achieve widespread adoption if deemed useful to implement in a low-resource 

context to monitor the motor system for diagnostic and predictive purposes.  

The purpose of this discussion is to promote the intuition that research context 

matters. It is a critical consideration in study design; in particular, low-resource settings 

cause considerations to arise that may be unfamiliar or unnecessary relative to traditional 

academic research settings. Low-resource contexts demand more robust justification of 

chosen research methods than traditional academic contexts. This necessity arises 

because clinical research in an academic context generally unfolds concurrently with 

patient care, while the role of a clinical researcher may not be as distinctly 

compartmentalized in a low-resource context. Without this compartmentalization between 

clinical care and clinical research, researchers must consider both scientifically valuable 
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and clinically actionable components of their research with greater acuity. The results of 

the HD-DOT work in Colombia presented in Chapter 3 demonstrate that HD-DOT is 

feasible in a global, non-academic context, potentially enabling HD-DOT to be included 

in the suite of tools available for malnutrition research. However, assessing a method’s 

feasibility is a distinct question from assessing a method’s suitability for a given research 

question. This work aimed to address the former topic, and was therefore not intended 

to, and did not establish HD-DOT as the most appropriate method or signal source for 

patient classification, prediction of developmental trajectories, or intervention 

assessment. These questions must be addressed by future work using HD-DOT in field 

settings and should incorporate an assessment of methodological suitability and 

actionability of the research question as essential study design parameters. 

5.4 Commentary on naturalistic brain imaging paradigms 

In this work, the motivation for imaging the brain during passive movie viewing was a 

practical one. While optical neuroimaging instruments such as HD-DOT offer an imaging 

environment that is likely more comfortable for imaging task-evoked brain responses in 

children relative to more constrained and noisy environments associated with fMRI, task 

imaging paradigms used with HD-DOT are not similarly well-suited for children. 

Consequently, in an effort to design an imaging paradigm that incorporated sensory 

stimulation as well as higher-order cognitive processing in an engaging design, we 

identified passive movie viewing as a potential solution for imaging task-evoked cortical 

responses in children using an engaging, fun, and rich paradigm. 
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 Movie viewing during functional brain imaging is part of a larger field of research 

using stimuli that more closely resemble the day-to-day naturalistic environment, relative 

to stimuli that are highly distilled, probe a targeted set of cognitive processing domains, 

and are presented under strictly controlled timing conditions. This field, naturalistic brain 

imaging, includes sensory processing tasks such as viewing rich, professionally-

produced stimuli (Kauttonen, Hlushchuk, & Tikka, 2015; Juha Marko Lahnakoski et al., 

2012; Moraczewski, Chen, & Redcay, 2018) (e.g. movies or television shows), but also 

investigates other domains including interacting with real environments, natural 

movements, and social interactions (Hirsch, Zhang, Noah, & Ono, 2017; Liu et al., 2017; 

Ono et al., 2015; Piper et al., 2014). 

 Passive viewing of movies or television shows offers an ideal blend of naturalistic 

features as well as features from more temporally controlled (i.e. block or event-related 

design) paradigms. Passive movie viewing is rich in the sense that it simultaneously 

engages multiple sensory domains in the context of a broader narrative structure that 

includes social, linguistic, and emotional processing to fully comprehend. However, unlike 

imaging using even more unconstrained stimuli or processing tasks, such as naturalistic 

social interactions, movie stimuli are repeatable and tunable, thereby permitting a degree 

of experimenter control unavailable with other naturalistic tasks. For instance, the same 

stimulus can be repeatedly presented to multiple participants without concern that the 

stimulus may vary from presentation to presentation, thereby inducing additional variance 

into measured cortical responses. Further, movie stimuli are tunable, in the sense that 

experimenters can manipulate the professionally-produced stimulus to address an 
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experimental question. For instance, to address how speech intelligibility impacts cortical 

processing in a naturalistic context where other communicative cues (e.g. facial 

expressions, body gestures) are available, an experimenter may present a stimulus with 

noise vocoded speech, which eliminates the intelligibility of the speech while holding other 

low-level acoustic features relatively constant. In contrast to a stimulus with fully 

intelligible speech, this contrast could probe cortical structures that respond differentially 

to speech intelligibility. This tunability stands in contrast to other, fully naturalistic imaging 

contexts, where experimental manipulations have to unfold in real-time, imposing more 

complex design demands upon the experimenter. 

 However, a key advantage of experimenter-designed stimuli relative to movie 

stimuli is that stimuli designed by the experimenter have known stimulus presentation 

parameters. This enables the experimenter to average together repetitions of the same 

stimulus type using a block design. Using more sophisticated event-related designs, 

experimenters may model expected cortical responses to presented stimuli and perform 

contrasts between pre-determined stimulus types. Consequently, naturalistic brain 

imaging paradigms generally demand more careful attention to the analysis of cortical 

responses to naturalistic stimuli, as these stimuli lack pre-designed presentation 

parameters for different types of stimuli. Often, the naturalistic stimulus itself must be 

analyzed to uncover the features and timing structures contained within the stimulus 

before proceeding to analysis of cortical responses related to stimulus processing.  

 In the passive movie viewing work introduced in Chapter 4, two complementary 

analysis approaches were used to analyze cortical hemodynamics during passive movie 
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viewing. The approaches are complementary in that one approach, inter/intra-subject 

synchronization makes no assumptions about the content of the stimulus, while the other 

approach, feature-based analysis, requires analysis of the stimulus itself in order to 

identify features that map onto information processing demands during movie viewing. 

 Given the unconstrained nature of free movie viewing, one may hypothesize that 

cortical responses may vary considerably across viewers, reflecting individual differences 

in viewing patters and idiosyncrasies in stimulus processing. Consequently, many 

cognitive neuroscientists were surprised by the result that, in the context of free viewing 

of a feature film, cortical responses to the stimulus are highly reproducible, both within 

and across individual viewers (Hasson, Nir, Levy, Fuhrmann, & Malach, 2004). This result 

has been explored using other imaging modalities (e.g. EEG, MEG) (Chang et al., 2015), 

and also using additional readouts such as eye-tracking (Dorr, Martinetz, Gegenfurtner, 

& Barth, 2010). In healthy-adults, eye-tracking convergently confirms that gaze patterns 

during free viewing are remarkably consistent across individual viewers, underscoring the 

notion that these stimuli direct viewers’ attention in a controllable, reproducible manner 

(Norbury et al., 2009). 

 Using HD-DOT, we found reproducible, or synchronized patterns of brain activity 

during viewing of a feature film in healthy young adults. This reproducibility was 

observable both within subjects and across subjects, and included cortical regions 

implicated in sensory (i.e. visual and auditory) processing, as well as cortical systems 

required to process the narrative content of the stimulus (e.g. linguistic and social 

processing). Crucially, while eye-tracking in a limited number of participants revealed 
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reproducible gaze patterns across individuals, a gaze-based manipulation during movie 

viewing provided further insight into the origins of the reproducible cortical responses 

observed during movie viewing. During some repetitions, participants were directed to 

maintain central fixation over the course of the entire stimulus viewing, by foveating on a 

fixation cross overlaid on the center of the stimulus. Relative to free viewing conditions, 

in which participants can scan the full visual scene and fixate on the most relevant or 

dynamic regions, this gaze constraint introduced a distinct and artificial viewing pattern. 

The contrast between the two viewing patterns was evident by assessing cortical 

synchronization in visual cortex. When synchronization was assessed between runs with 

the same viewing condition, correlated hemodynamic responses were observable in 

visual cortex. However, when synchronization was assessed across disparate viewing 

conditions, synchronization was diminished. Consequently, this result indicates that 

synchronization in visual cortex, depends in part, on consistent gaze position during 

stimulus viewing. Accordingly, in stimuli that do not direct eye position as effectively as 

feature films, fixation patterns may vary more across subjects, resulting in diminished 

cortical synchronization (Ki, Kelly, & Parra, 2016). 

 We observed the synchronization effect over broad swaths of cortex, causing 

these maps to be poorly suited for attributing cortical responses seen in a set of regions 

to a particular processing domain contained within the stimulus. Feature extraction 

strategies provide one approach for parameterizing processing domains within the 

stimulus, permitting greater interpretability of the movie-evoked responses (Bartels & 

Zeki, 2004; Russ & Leopold, 2015). The feature approaches we used in the HD-DOT 
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work involved both manual feature extraction (e.g. annotation of frames containing visual 

features) as well as automated feature extraction (e.g. quantification of image parameters 

such as motion and brightness and quantification of sound intensity). As media annotation 

algorithms become more sophisticated, it is likely that more features, including those 

related to narrative content, will be amenable to automated annotation (McNamara, De 

La Vega, & Yarkoni, 2017).  

 The feature-based mapping strategies introduced in Chapter 4 resulted in a set of 

seven features that parametrized low and high-level visual and auditory features 

contained within the movie. Contrasts between pairs of features enabled more 

sophisticated comparisons, and implicated distributed sets of regions, a result that is likely 

attributable to the multi-modal nature of the stimulus. The complexity of these feature 

maps further highlight that brain regions recruited during naturalistic processing likely 

differ from processing characterized using more distilled stimuli. Crucially, both cortical 

mapping approaches are complementary: More controlled stimuli and contrasts enable 

more precise mappings between cortical regions and underlying information processing, 

while richer naturalistic stimuli enable mapping of brain activity as it unfolds in real-life 

contexts, using constellations of region that have been rigorously characterized using 

other paradigms. 

 Feature-based mapping approaches face two principal limitations. First, the 

stimulus chosen constrains the available features. As an extreme example, a silent movie 

would be inappropriately suited for understanding naturalistic auditory processing. 

Consequently, if experimenters have a hypothesis-driven question regarding a specific 
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processing domain, it is critical to assess whether the content of the movie is appropriate 

for question at hand. Second, the set of features extracted from a stimulus, using the 

procedures described in Chapter 4, is limited by the experimenter’s capability to identify, 

quantify, and subsequently extract those features. Parameters that map onto sensory 

domains are more straightforward to quantify than parameters that describe social 

processing domains. Consequently, more sophisticated tools may enable extraction of 

more complex features, but it is incumbent on the experimenter to address the 

interpretability of those more complex features and the resulting correlation maps. 

 One approach that was not used in the passive movie viewing work described in 

Chapter 4 was data-driven approaches to decompose the cortical responses measured 

during movie viewing using approaches such as independent component analysis. Unlike 

the feature-based mapping approach, which requires an a priori decision about which 

features to map, data-driven approaches extract independent patterns of brain activity 

that concurrently unfold during stimulus viewing (Lahnakoski et al., 2012; Mantini, 

Corbetta, Romani, Orban, & Vanduffel, 2012). Like independent component analysis 

procedures implemented in other brain imaging applications, such as functional 

connectivity, the maps of the resultant independent components are usually then subject 

to the experimenter’s identification and annotation. Thus, while data-driven approaches 

could identify related sets of regions that a feature-based approach may not be able to 

as easily extract, the attribution of a given independent component to a processing 

domain during naturalistic viewing still depends on an experimenter’s judgment. 
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 So far, the naturalistic imaging conducted with HD-DOT has focused largely on 

repeating paradigms established with fMRI, which is an important step to demonstrate 

image quality and instrument performance. Future directions with naturalistic imaging 

paradigms using HD-DOT include extending these paradigms to populations more easily 

imaged with HD-DOT than other methods, such as children (Bartels & Zeki, 2004; Hasson 

et al., 2004; Vanderwal, Eilbott, & Castellanos, 2018). Because synchronized cortical 

responses seem to depend, in part, on an individual’s ability to interpret, understand, and 

follow the stimulus’s narrative content in a reproducible way (Ki et al., 2016), cortical 

reproducibility may follow a developmental trajectory as a child gains the ability to process 

the stimulus in an adult-like way (Cantlon & Li, 2013; Moraczewski et al., 2018; Nguyen, 

Vanderwal, & Hasson, 2019). Indeed, prior work has demonstrated more adult-like 

patterns of cortical activity during movie viewing over development, which may be 

attributable to comprehension (particularly of content containing linguistic or 

mathematical information). Consequently, passive movie viewing may provide an 

attractive solution to image multi-domain cortical processing as it develops from 

idiosyncratic patterns (i.e. low comprehension) to reproducible patters (i.e. high 

comprehension). 

 An alternative to naturalistic imaging with HD-DOT that reliant on paradigms 

developed with fMRI is to extend these naturalistic tasks to incorporate imaging 

environments that leverage the bore-free environment of HD-DOT (Zaki & Ochsner, 

2009). Indeed, naturalistic imaging using fNIRS has usually leveraged the ability of these 

techniques to image neural responses accompanying behaviors that are not able to be 



 168 

performed within a bore, such as conversations or locomotion (Liu et al., 2017; Miyai et 

al., 2001; Piper et al., 2014). The approaches used to analyze HD-DOT images obtained 

during movie viewing are well-suited for these even more naturalistic tasks as well. For 

instance, during conversations, reproducibility of cortical responses across speakers and 

listeners may index comprehensibility. Further, in environments in which participants are 

freely moving through environments, a video recording of the participant’s behavior that 

is time-locked to the imaging acquisition enables feature annotation during the imaging 

session. In this case, the features reflect the participant’s actual behavior, rather than the 

content of a presented stimulus. However, the “feature” concept, as introduced here, is 

intentionally general, enabling applications in a variety of naturalistic imaging paradigms. 

5.5 Closing Comments 

This section is the culmination of approximately 10 years spent as a student at WashU. 

When I first came to WashU in 2009, it was to learn about brains. Specifically, it was 

because WashU had a program called “Philosophy-Neuroscience-Psychology” that 

basically guaranteed I would never be bored, and also guaranteed that I would always 

have a fun fact to tell people about everyone’s favorite organ: the brain. Although I have 

no points of comparison, I will still happily make the claim that WashU is the best place 

to learn about brains, simply because I have not had to experience boredom for the past 

10 years. I am immensely grateful to the faculty and my fellow students for that. 

When I learned that you could put a brain in a scanner and obtain all sorts of 

(potentially) useful information about said person while they stare at a plus sign, I was 
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shocked, and also decided to pursue graduate education. The Culver Lab simultaneously 

fulfilled my interest in tinkering with technology with my interest in neuroscience, and I 

enjoyed being mostly unable to predict what questions would come my way in lab. What’s 

the best way to distill a stroke patient’s functional connectome into a single metric? What 

on earth is going on that causes “y = A x” to take so long for my computer to solve? How 

can we understand what the brain is doing during a totally unconstrained task with no 

behavioral output? While I could rarely predict what the next question was going to be, I 

was grateful that I could count on it being an interesting question, and that I could count 

on those around me to help me understand the nuances of it.  

 As Dr. Ashley Nielsen stated in her dissertation, “While not necessarily ground-

breaking for the field of neuroscience as a whole, this series of projects taught me a lot 

about the scientific process.” It is likely not surprising that Ashley has articulated 

something that also resonates deeply with me. In addition to learning more about 

biophotonics, instrumentation design, and human neuroimaging than I could even 

imagine, my graduate education also taught me that the scientific process is much more 

incremental than I initially appreciated. Despite that incremental progress, I hope that this 

dissertation contains work that advances the field, however incrementally, towards the 

goals of using neuroimaging to improve and inform clinical outcomes, learn about how 

the brain functions in naturalistic conditions, and develop instrumentation to make 

neuroimaging available for more routine assessments. 

 When I first joined the Culver Lab, I did not know that “photonics” was a word. Now, 

it is one of my favorite words--partially because no one else knows that it is a word. Just 
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as my naïveté towards the field optical neuroimaging nevertheless resulted in what I hope 

is perceived as a fruitful five or so years in the lab, I am convinced that some of the most 

interesting pursuits are probably the ones of which I currently have no awareness. While 

I have chosen to pursue a career in outside of academia, I feel it is important to note that 

this choice was driven not by a rejection of or disdain for research, but rather in pursuit of 

my interest in consulting, and my belief that the depth of graduate training combined with 

the breadth of consulting will provide exposure to those other interesting, but currently 

unknown interests. Because my time in the lab was so rich and so jam-packed with 

information, skills, and life lessons, I have no doubt that I will find ways to apply the 

knowledge I’ve gained as a graduate student the unexpected situations that have yet to 

come. 
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