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Glycans play diverse biological roles, ranging from structural and regulatory functions to 

mediating cellular interactions. For pathogens, they are also often required for virulence and sur-

vival in the host. Our interest in glycoconjugates stems from their role in the fungal pathogen 

Cryptococcus neoformans. This yeast colonizes the lungs and disseminates to the brain of im-

munocompromised individuals, where it causes a meningoencephalitis that is frequently lethal, 

killing almost 200,000 people each year. The major virulence factor of this yeast is a polysaccha-

ride capsule that enables it to manipulate the host immune response and resist host antimicrobial 

defenses.  

Synthesis of the capsular glycans and other critical glycoconjugates occurs primarily in 

the secretory compartment, although almost all activated precursors are made in cytosol. This 

topological problem is resolved by nucleotide sugar transporters (NSTs), which are thus required 

for such glycosylation. The identity and regulation of the complete set of cryptococcal NSTs, 

however, remain elusive. This major gap in our knowledge severely limits our understanding of 

and ability to manipulate critical biosynthetic processes in this important pathogen.  



xiv 

 

Here, we identified three novel NSTs and determined their kinetic profiles and roles in crypto-

coccal biology. Uut1 is a high-affinity ER-localized UDP-glucuronic acid (UDP-GlcA) trans-

porter, and Uxt1 and Uxt2 are dual UDP-xylose (UDP-Xyl) transporters found in the Golgi appa-

ratus and endoplasmic reticulum, respectively. Mutants lacking these proteins exhibited compo-

sitional changes in their glycoconjugates, including the capsule, increased sensitivity to stress, 

and altered interactions with phagocytes. UDP-GlcA and UDP-Xyl transport activities were also 

required for full virulence. Interestingly, UDP-Xyl transport was not required for persistence 

within the host, as the double uxt1Δ uxt2Δ mutant established a chronic infection of the lung and 

induced delayed formation of tertiary lymphoid tissue. Collectively, this work advanced our un-

derstanding of the localization and sequence of glycan biosynthetic events, and their relationship 

to virulence. It also set the stage for further studies of fundamental glycobiology, cryptococcal 

biology and pathogenesis, and potential antifungal agents. 
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Chapter 1: Introduction 

 

Partially adapted from: 

Unraveling synthesis and remodeling of the cryptococcal cell wall and capsule 

Zhuo A. Wang,* Lucy X. Li,* and Tamara L. Doering (*co-first authors) 

 

 

Glycobiology 2018, 28(10):719-730. doi: 10.1093/glycob/cwy030. PMID: 29648596. 

Copyright @ 2018 Oxford University Press. All rights reserved. 
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1.1 Cryptococcus neoformans and cryptococcosis 

Cryptococcus neoformans, an environmentally ubiquitous encapsulated fungus, causes serious 

respiratory disease in the setting of immune compromise, which often progresses to a lethal me-

ningoencephalitis. Even with treatment, C. neoformans can establish a persistent infection due to 

inadequate primary therapy, development of fluconazole resistance, or the failure of antifungals 

to penetrate the infection space. Cryptococcal meningitis is responsible for 15% of AIDS-related 

mortality, making it the second most common cause of death in this population (1). Each year 

there are over a million cases of disease worldwide, resulting in almost 200,000 deaths (1-3).  

 

Cryptococcosis is initially acquired by inhaling fungal cells or spores into the lower respiratory 

tract, where the infectious particles lodge within alveoli (4). There, alveolar macrophages are the 

first responders to and primary controllers of cryptococcal infection (5). In healthy individuals, 

phagocytosis of the fungi by these cells usually results in their death within the phagolysosome 

and the resolution of infection (6), but C. neoformans can also become latent and reactivate if the 

individual becomes immunosuppressed. The exact mechanism that enables development of la-

tency remains an open question, although yeast cells appear to evade immune detection by re-

maining dormant (7). In immunocompromised patients, phagocytes also provide an intracellular 

niche for C. neoformans to replicate, which eventually leads to host cell lysis. This can promote 

fungal dissemination, which has a particular tropism for the brain, where it causes a life-

threatening infection (8).  

 

Glycans, like those of the cryptococcal capsule and cell wall, are attractive antifungal targets be-

cause they are often required by pathogens for virulence and survival in the host. They also play 
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a diverse set of essential biological roles, ranging from structural and regulatory functions to me-

diating cellular interactions (9). The newest class of antimycotic drugs exploits fungal depend-

ence on glycans by inhibiting cell wall polysaccharide synthesis with rapid, broad fungicidal ef-

fect, but it unfortunately lacks clinical activity against C. neoformans (10). Our ability to manip-

ulate these crucial determinants of fungal survival and pathogenesis in C. neoformans is limited 

by our lack of knowledge about how they are synthesized. 

 

1.2 Glycans in C. neoformans 

C. neoformans has an extensive glycoconjugate repertoire that is critically important for patho-

genesis, encompassing a polysaccharide-based capsule and cell wall, in addition to typical eu-

karyotic glycoconjugates like glycoproteins and glycolipids. Although this glycan profile is often 

compared to the much less complex one of the distantly related model fungus, Saccharomyces 

cerevisiae, it exhibits marked genetic and metabolic differences. By defining cryptococcal glyco-

sylation, we can develop novel therapeutic and diagnostic strategies that exploit its unique biolo-

gy.  

 

1.2.1 Capsule 

The definitive virulence factor of C. neoformans is the polysaccharide capsule. Upon exposure to 

environmental stress (e.g. host conditions), the complex capsule polymers are synthesized and 

associate with the outer side of the cryptococcal cell wall to create a protective layer that im-

pedes phagocytosis and immune mediator binding (11). Capsule material is also continually shed 

into the extracellular space where it suppresses the host immune response and interferes with 

normal cytokine release and leukocyte migration (12).  
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The unique capsule structure is mainly composed of the polysaccharides glucuronoxylomannan 

(GXM) and glucuronoxylomannogalactan (GXMGal), with trace amounts of mannoproteins. 

GXM (1,700-7,000 kDa) accounts for 90% of the capsule mass (13, 14), and consists of an α-

1,3-linked mannose (Man) backbone substituted with single β-1,2 glucuronic acid (GlcA), and β-

1,2 and β-1,4-xylose (Xyl) residues (13, 15). NMR analysis of capsule polymers has defined six 

distinct structural reporter groups of GXM that differ in the number of Xyl and 6-O-acetylation 

modifications on the Man backbone (13). The differences in the relative proportion of these 

structural motifs in different serotypes help produce the distinct antigenic properties of GXM 

from those strains (16).  

 

GXMGal is relatively small (~100 kDa) in comparison to GXM and comprises the remaining 

10% of the capsule mass. This glycan consists of an -1,6 linked galactose (Gal) backbone mod-

ified with galactomannan side chains containing a variable number of -linked GlcA and Xyl 

residues (17), and 80% of the Man residues bear either an O-2 or O-6-linked acetyl group (18). 

Rare galactofuranose (Galf) modifications also decorate the Gal backbone (18-21).  

 

Besides the two polysaccharides, mannoproteins (MPs) are a minor component of the capsule 

(<1% capsule mass). Hyaluronic acid, a polymer of GlcA and GlcNAc disaccharides, is also de-

tected at the interface of the capsule and cell wall (22, 23), and several studies also suggest that 

sialic acid and hyaluronic acid may exist in the capsule (24), although their presence and possible 

roles in capsule remain unclear. 
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1.2.2 Cell wall 

Fungal cell walls provide a critical protective barrier against extracellular stress and regulate cel-

lular permeability (25). Mutants with defective cell walls are typically reduced in viability and 

often avirulent (26). The cryptococcal cell wall primarily consists of an extensive matrix of glu-

can (- and β- linked), chitin, and chitosan associated with glycoproteins that is organized into a 

striated dense inner layer and a looser more particulate outer one (27).  

 

Extended -1,3- and β-1,6-glucan polymers constitute the majority of the cryptococcal cell wall 

(28). β-1,3-glucans comprise less than 10% of the cell wall polysaccharides, which contrasts with 

the extensive β-1,3-glucan content of cell walls in other yeast species (29). The glucans are fur-

ther reinforced by covalent linkages to chitin polymers, which consist of linear chains of β-1,4-

linked N-acetylglucosamine (GlcNAc). This helps to maintain cellular integrity and resist envi-

ronmental stress. A large portion of the chitin is deacetylated to produce chitosan, which lends 

greater flexibility to the cell wall (30). The high chitosan level is another unique feature of C. 

neoformans cell walls. 

 

Glycoproteins (Section 1.2.3), modified by N- and/or O-linked oligosaccharides, are also incor-

porated into this network of carbohydrate fibers. These proteins regulate cellular integrity by 

controlling porosity and mediate remodeling of this dynamic structure to accommodate cellular 

growth and division, and capsule synthesis (27). Over half of these proteins are modified by a 

glycosylphosphatidylinositol (GPI, Section 1.2.4) anchor in the endoplasmic reticulum (ER). 

They then either remain membrane associated or are transferred with part of the anchor to be co-
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valently linked to cell wall glucans (31-33), some in only a transient fashion before being 

cleaved and released into the surrounding medium. 

 

1.2.3 Glycoproteins 

Glycan modifications found on cryptococcal proteins have not been completely characterized, 

but are high in mannose content and are structurally similar to those found in S. cerevisiae. N-

glycans, which consist of an oligosaccharide core linked to asparagine residues, are the most 

common eukaryotic glycan modification on proteins (34). The basic mannose structures in C. 

neoformans are extended by the addition of short α1,6-Man(α1,2)-Man chains, and by the unusu-

al incorporation of single β1,2- linked Xyl and Xyl-phosphate residues (35). Abrogating these 

outer chain processing events slightly attenuates virulence, potentially by altering host-fungus 

interactions (35). 

 

O-glycans, in all yeasts and filamentous fungi studied so far, are synthesized by α-linkage of a 

mannose to serine or threonine followed by extension into a mannotriose (36). In C. neoformans 

additional Man and Xyl residues further modify this core structure (37). These O-glycans are 

critical for the stability, proper localization, and efficient function of secretory and membrane 

proteins, which impact numerous essential cellular processes (38).  

 

1.2.4 Glycolipids  

Glycolipids consist of one or more monosaccharides joined to a lipid by a glycosidic linkage and 

are classified by the nature of lipid moiety: glycosphingolipids contain a ceramide while glyco-

glycerolipids have a conserved diacylglycerol or related structure. Long considered integral 
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structural components of the cell membrane, the former are also key regulators of pathogenicity, 

and are required for cellular growth and resistance to alkaline conditions, and spore production 

and germination (39). The ceramide structure can vary in length, hydroxylation, and saturation 

(40), and there is a range of glycan components. Glucosylceramide (GlcCer), for instance, con-

sists of a single glucose moiety covalently bound to a sphingoid backbone and fatty acid, and is 

critical for extracellular survival (41), while those sphingolipids bearing a mannose or inositol 

facilitate phagolysosome survival and replication (42-44). Glycoinositolphosphorylceramides 

(GIPCs), cryptococcal glycosphingolipids not present in mammals, span the range of relatively 

simple mannose-containing structures to more complex ones that also incorporate Xyl and Gal 

(45-47). They are essential mediators of proper cell cycle progression in non-acidic and elevated 

CO2 environments, which are conditions that are present in the host (41). 

 

GPIs are a distinct family of glycolipids that link proteins to the external leaflet of the plasma 

membrane. The structure consists of a conserved linear core of three Man and a non-acetylated 

glucosamine, which is covalently linked to an inositol phospholipid and the C-terminus of the 

polysaccharide (48). GPI modification modulates the movement, localization, and cleavage and 

release of the attached protein (49).  

 

1.3 Glycan biosynthesis 

Capsule polysaccharides and other cryptococcal glycoconjugates are assembled in the secretory 

pathway. However, nucleotide sugars, which donate individual sugar moieties to growing glycan 

structures, are synthesized primarily in the cytosol (50). Only a small fraction of cytosolic glycan 

precursors is consumed in that compartment, primarily for cell wall construction by plasma 
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membrane-bound glucan synthases and chitin synthase (27). The majority is translocated into the 

secretory pathway where glycosyltransferases facilitate the transfer of the sugar from the activat-

ed donor to modify nascent proteins and lipids, and form the protective capsule (34, 51).  

 

1.3.1 Monosaccharides and activated sugars  

Based on compositional studies of capsule glycans and glycoproteins, we know that GDP-Man, 

UDP-Gal, UDP-GlcA, UDP-Xyl and UDP-Galf are required to synthesize complex polysaccha-

ride structures in the secretory pathway. The synthetic pathways of these precursors are fairly 

well understood. In C. neoformans and other fungi, GDP-Man is synthesized through the sequen-

tial action of phosphomannose isomerase, phosphomannomutase, and GDP-Man pyrophosphory-

lase on fructose-6-phosphate (52). This sugar phosphate is also converted to UDP-GlcNAc 

through a series of transamination, N-acetylation, isomerization, and phosphorylation reactions. 

The other nucleotide sugars mentioned above are all generated from UDP-Glc, which is synthe-

sized in two steps from glucose-6-phosphate by phosphoglucomutase followed by UDP-Glc py-

rophosphorylase. Uge1, a UDP-glucose 4-epimerase, converts UDP-Glc to UDP-Gal, which may 

be further modified by UDP-galactopyranose mutase, Glf1, to produce UDP-Galf (53). Lastly, 

UDP-Glc is also dehydrogenated by Ugd1 to generate UDP-GlcA; this in turn may be decarbox-

ylated by Uxs1 to form UDP-Xyl (54, 55).  

 

Disrupting synthesis of any of the nucleotide sugars mentioned above markedly alters the struc-

ture and composition of glycoconjugates in C. neoformans, with significant consequences. Dele-

tion of MAN1, which encodes the phosphomannose isomerase (52), or of UGD1, which com-

pletely abrogates synthesis of UDP-GlcA and thus UDP-Xyl (56), inhibits capsule formation and 
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polysaccharide secretion, and causes morphological abnormalities. Deletion of UXS1 specifically 

interrupts UDP-Xyl biosynthesis, and the mutant displays markedly reduced capsules as com-

pared to wild type (56, 57). Mutants lacking Uge1 are, as would be expected, unable to synthe-

size GXMGal, but surprisingly, despite completely lacking 10% of the capsule material, they ex-

hibit enlarged capsules (58). This supports a model where GXMGal participates in capsule poly-

saccharide organization, so that its absence yields a looser, and therefore more voluminous, 

structure. Mutants in these pathways, unsurprisingly, are all avirulent in mice (52, 56, 57, 59, 

60), except for the mutant that lacks UDP-Galf synthesis. NMR analysis of capsule glycans iso-

lated from glf1Δ cells confirm the absence of Galf in GXMGal despite no visible changes in cap-

sule size or organization, and no detectable defects in virulence or survival (21), possibly be-

cause this sugar is only present at low levels.  

 

1.3.2 Nucleotide sugar transporters 

Although some UDP-Glc and UDP-GlcNAc is utilized in the cytosol for glucan and chitin syn-

thesis, as mentioned above, most nucleotide sugars must gain access to the secretory pathway, 

where the majority of glycan biosynthesis reactions occur. The ER and Golgi membranes consti-

tute physical barriers that prevent activated sugars from accessing biosynthetic enzymes. Nucleo-

tide sugar transporters (NSTs) provide a solution to this topological problem, by translocating 

activated sugars into the secretory pathway in exchange for the corresponding nucleoside mono-

phosphates (61-63). They are predicted to have an even number of transmembrane domains (6-

10) with both termini present on the cytosolic side. The C-terminus appears to mediate homodi-

merization and protein stability (64), and the N-terminus may encode a localization signal. The 

cytosolic domains are usually responsible for binding a single type of nucleotide although a few 
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NSTs have been reported to recognize both UDP and GDP (65, 66). Transport activity is further 

restricted by interactions with the sugar portion of the activated donor (67, 68).  

 

Identification of novel NSTs and determination of their precise biochemical function is limited 

by our inability to reliably predict NST specificity from primary sequences. A few limited NST 

sequence motifs have been associated with specific substrates (69), but NSTs with ~50% amino 

acid identity may still transport distinct substrates while others with ~20% identity may translo-

cate the same one (70). Cells may also express several NSTs with overlapping specificity but 

non-identical substrate affinities and kinetics. Some transporters are highly selective for a specif-

ic substrate, while others transport as many as four nucleotide sugars (65, 68, 71-79). Further 

complicating the picture, association with glycan synthetic enzymes and subcellular localization 

may also influence the activity of a given transporter (80, 81). Determining NST substrate(s) thus 

requires biochemical demonstration of activity. All of these factors make it a challenge to deter-

mine the full complement of cryptococcal NSTs, impeding our ability to fully define critical gly-

can synthetic processes.  

 

We initially identified ten NST candidates in the cryptococcal genome based on sequence analy-

sis, but for the reasons above we could not assign substrates based on homology. Deletion of two 

candidates that were homologous to the S. cerevisiae GDP-Man transporter enabled identifica-

tion of two functionally redundant GDP-Man transporters, Gmt1 and Gmt2 (32, 82). Cells delet-

ed for only one of the corresponding genes still produce and display capsule although the capsule 

of gmt1Δ, but not gmt2Δ, is smaller than that of wild type. This result suggests that Gmt1 is the 

major transporter of the pair, although there is functional overlap. Loss of both genes disrupted 
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protein mannosylation and the accumulation of any detectable capsule material on the cell sur-

face, similar to the phenotype of mutants incapable of synthesizing GDP-Man. There appears to 

be only a single UDP-Gal transporter in C. neoformans (58), which was assayed biochemically 

to exhibit the expected transport activity (83). Completely interrupting the transport of these two 

nucleotide sugars, either through double or single knockouts as appropriate, disrupted capsule 

polysaccharide production and left the mutant cells unable to cause disease (56, 58, 81, 83). De-

termining the specificity of the remaining seven NST candidates and their contribution to viru-

lence and survival was the focus of my thesis work.  

 

1.3.3 Glycosyltransferases 

Once nucleotide sugars are transported into the luminal space, glycosyltransferases utilize the 

nucleotide sugars as donors to initiate and extend sugar polymers. Completed glycan structures 

are then trafficked to the proper cell compartment or surface, likely through the classical secreto-

ry pathway. Glycosyltransferases are generally specific for a particular sugar donor, acceptor, 

and type of linkage created (34). The complexity of cryptococcal glycan structures such as cap-

sule polysaccharides suggests that a variety of glycosyltransferases are required for proper syn-

thesis. However, we have only identified one glycosyltransferase implicated in capsule synthesis 

(84), although more than 70 glycosyltransferase candidates exist in the cryptococcal genome. 

Unfortunately, sequence analysis is an unreliable predictor of function for glycosyltransferases, 

and functional redundancy is common among this family of proteins. This increases the chal-

lenge of elucidating function through homology and genetic disruption.   
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1.4  Aim of the present study 

At the time I began my thesis work, the only NSTs identified in C. neoformans were those for 

GDP-Man and UDP-Gal (58, 81-83). This failed to account for the precursors of acidic mono-

saccharides such as GlcA and sialic acid, or of other moieties like Xyl that are incorporated into 

protein- and lipid-linked glycans, and the capsule. I have investigated NST candidates identified 

by homology to known transporters in other organisms. I sought to demonstrate their transport 

activity and correlate those data with changes in glycoconjugate composition, as well as ascertain 

the role of these NSTs in growth, stress resistance, and resistance to internalization and clear-

ance. For some transporters I also analyzed the host response to understand changes in disease 

dynamics as measured by virulence and organ burden. Together this work aimed to advance our 

understanding of glycan biosynthesis to address critical questions of fundamental glycobiology 

and cryptococcal pathogenesis.  
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2.1 Abstract 

Glycans play diverse biological roles, ranging from structural and regulatory functions to mediat-

ing cellular interactions. For pathogens, they are also often required for virulence and survival in 

the host. In Cryptococcus neoformans, an opportunistic pathogen of humans, the acidic mono-

saccharide glucuronic acid (GlcA) is a critical component of multiple essential glycoconjugates. 

One of these glycoconjugates is the polysaccharide capsule, a major virulence factor that enables 

this yeast to modulate the host immune response and resist antimicrobial defenses. This allows 

cryptococci to colonize the lung and brain, leading to hundreds of thousands of deaths each year 

worldwide. Synthesis of most glycans, including capsule polysaccharides, occurs in the secretory 

pathway. However, the activated precursors for this process, nucleotide sugars, are made pri-

marily in the cytosol. This topological problem is resolved by the action of nucleotide sugar 

transporters (NSTs). We discovered that Uut1 is the sole UDP-GlcA transporter in C. neofor-

mans, and is unique among NSTs for its narrow substrate range and high affinity for UDP-GlcA. 

Mutant cells deleted for UUT1 lack capsule polysaccharides and are highly sensitive to environ-

mental stress. As a result, the deletion mutant is internalized and cleared by phagocytes more 

readily than wild-type cells and is completely avirulent in mice. These findings expand our un-

derstanding of the requirements for capsule synthesis and cryptococcal virulence and elucidate a 

critical protein family.  

 

2.2 Introduction 

UDP-glucuronic acid (UDP-GlcA) is a critical precursor for essential glycoconjugates across bi-

ological kingdoms, ranging from mammalian glycosaminoglycans and plant cell wall polysac-

charides to bacterial capsule glycoglycerolipids (1-3). Aberrant UDP-GlcA synthesis or subcellu-
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lar localization leads to severe impairments such as Schneckenbecken dysplasia in humans (4) 

and virulence defects in bacterial pathogens (5-7).  

 

Our interest in UDP-GlcA stems from its role in the fungal pathogen Cryptococcus neoformans. 

This opportunistic yeast colonizes the lungs and disseminates to the brain of immunocompro-

mised individuals, where it causes a meningoencephalitis that is responsible for roughly two 

hundred thousand deaths per year (8-10). UDP-GlcA is a key biosynthetic precursor of crypto-

coccal polysaccharides. These complex polysaccharides associate with the cell wall to form the 

cryptococcal capsule, which provides a physical barrier against host immune defenses. These 

polysaccharides are also shed into the extracellular space (11), where they impede host defenses 

by interfering with phagocytosis and clearance of the yeast, inhibiting the production of proin-

flammatory cytokines, depleting complement components, and reducing leukocyte migration to 

sites of inflammation (12). 

 

The capsule consists of two complex polysaccharides, glucuronoxylomannan (GXM) and glucu-

ronoxylomannogalactan (GXMGal). GXM, which constitutes 90% of the capsule by mass, is a 

repeating polymer with a mannose (Man) backbone that is partially acetylated and is substituted 

with monosaccharide side chains of glucuronic acid (GlcA) and xylose (Xyl) (13). The remain-

ing 10% of the capsule mass consists of GXMGal, which is a linear galactose (Gal) polymer 

bearing both single galactofuranose (Galf) residues and galactomannan side chains substituted 

with a variable number of GlcA and Xyl residues (14-16). Overall, GlcA comprises approxi-

mately 16% and 7% of the GXM and GXMGal residues, respectively, and is responsible for their 

acidic nature. 
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Both GXM and GXMGal, like most other eukaryotic glycans, are believed to be assembled in 

the secretory pathway (17). However, nucleotide sugars, which donate individual sugar moieties 

to growing glycan structures, are synthesized primarily in the cytosol (18). The ER and Golgi 

membranes, therefore, constitute physical barriers that prevent substrate access to biosynthetic 

enzymes. Nucleotide sugar transporters (NSTs) provide a solution to this topological problem, by 

translocating activated sugars into the luminal space in exchange for the corresponding nucleo-

side monophosphates (19, 20). In this way, NSTs enable luminal glycan biosynthesis.  

 

Predicted protein sequence is not a reliable predictor of NST substrate specificity. For example, 

NSTs with almost 50% amino acid identity have been reported to transport distinct substrates, 

while others with only 20% identity appear to translocate the same one (21). Further complicat-

ing the picture, individual NSTs range from highly specific proteins that recognize a single sub-

strate to less restrictive ones that transport up to four substrates, and NSTs with overlapping but 

non-identical substrate affinities can be found in a single cell (22-28). Finally, associated glycan 

synthetic enzymes and subcellular localization may also influence the activity of a given NST 

(29, 30). All of these factors make it a challenge to identify and characterize the full complement 

of NSTs in a cell type of interest, impeding our ability to fully define critical glycan synthetic 

processes. 

 

Mutant C. neoformans strains incapable of synthesizing UDP-GlcA do not produce capsule or 

cause disease in mice, demonstrating the importance of GlcA in cryptococcal biology and patho-

genesis (31, 32). Despite this, the NST(s) responsible for transporting its donor, UDP-GlcA, has 

never been identified in C. neoformans. Here we show that C. neoformans Uut1 is a UDP-GlcA 
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transporter by using an in vitro assay to directly demonstrate its activity. We also characterize its 

specificity and kinetic properties. We further show that cells lacking Uut1 exhibit marked growth 

defects and metabolic abnormalities, which correlate with greater phagocytosis by host macro-

phages and quicker clearance of infection in vitro and in vivo. Uut1 is thus a critical protein for 

cryptococcal biosynthetic processes and is required for multiple aspects of C. neoformans viru-

lence.   

 

2.3 Results 

2.3.1 Identification of Uut1 as a nucleotide sugar transporter candidate 

To identify the cryptococcal UDP-GlcA transporter, we first used BLASTP to search the C. 

neoformans genome for predicted proteins with homology to known UDP-GlcA transporters. 

Although we found no homologs of the transporters from Caenorhabditis elegans, Homo sapi-

ens, or Drosophila melanogaster, we did find a predicted ortholog of the Arabidopsis thaliana 

transporter UUAT1 (33), which we termed Uut1 (CNAG_06230). Similar to other NSTs, Uut1 is 

predicted to have an even number of transmembrane domains (here 10) such that the N- and C- 

termini are on the same side of the membrane, likely in the cytosol (Fig. 2.S1). Phylogenetic 

analysis of Uut1 places it closest to UUAT1 (Fig. 2.1), and more distant from other UDP-GlcA 

transporters and from known cryptococcal NSTs. Notably, Uut1 and UUAT1 share only 16% 

amino acid identity, although as discussed above, homology is a poor predictor of substrate spec-

ificity in this family of proteins.  
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2.3.2 Uut1 localizes to the ER 

If Uut1 is indeed a nucleotide sugar transporter that supplies precursors for polysaccharide syn-

thesis, we expect it to reside in the secretory pathway. To test this we took advantage of existing 

markers and facile imaging methods in the model yeast S. cerevisiae, and expressed FLAG-Uut1 

under a copper inducible promoter in that system. Immunofluorescence (IF) staining showed that 

the tagged protein colocalized with an ER marker (Kar2p/BiP) but not with the late Golgi marker 

Sec7 (34) (Fig. 2.2; see discussion). A KXKXX motif near the C terminus (Fig. 2.S1) may be 

involved in this localization. Such motifs mediate the retrieval of type I transmembrane proteins 

from downstream membranes to the ER (35, 36), although the Uut1 sequence (Fig. 2.S1) is atyp-

ical in that it is followed by three additional amino acids.  

 

2.3.3 Uut1 is required for capsule synthesis 

To define the role of Uut1 in cryptococcal biology, we deleted the corresponding gene (UUT1). 

Even when the resulting mutant was grown in capsule-inducing conditions (see Materials and 

methods), we detected no capsule by negative staining (Fig. 2.3A) or by staining with fluoro-

phore-conjugated anti-GXM antibodies (Fig. 2.3B). We also detected no GXM shed into the 

growth medium by enzyme-linked immunosorbent assay (ELISA; Fig. 2.3C) or by immunoblot-

ting (Fig. 2.3D), and the mutant cells appeared clumpy compared to wild type (Fig. 2.3A, Fig. 

2.3B). All of these phenotypes were consistent with those of the acapsular strain cap59Δ and 

were reversed when the deletion was complemented with the wild-type gene at the original locus 

(Fig. 2.3, UUT1). We obtained similar results for capsule staining, GXM shedding ELISA, and 

GXM immunoblotting with additional antibodies (Table 2.S1). As far as we can determine, 

therefore, cells lacking Uut1 are completely acapsular. 
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2.3.4 Uut1 is a UDP-glucuronic acid transporter 

The absence of capsule on cells lacking Uut1 suggested that this putative nucleotide transporter 

translocates a major capsule substrate(s). The components of GXM and GXMGal are Man, Gal, 

Xyl, Galf, and GlcA. We previously identified two transporters of GDP-Man (30, 37), and there 

is a known UDP-Gal transporter (38, 39), so we hypothesized that those were less likely to be 

substrates of Uut1. Additionally, even completely abrogating synthesis of UDP-Xyl or UDP-Galf 

yields hypo- or normo- capsular cells, respectively (15, 32, 40), rather than the acapsular cells 

observed in the uut1D mutant; this argued against these capsule donors as Uut1 substrates. This 

reasoning left UDP-GlcA as the best candidate substrate, which was further supported by the ob-

servation that cells unable to synthesize UDP-GlcA are acapsular (31, 32).  

 

To test our hypothesis that Uut1 transports UDP-GlcA, we directly assayed its activity in vitro. 

For these studies we first prepared microsomes from S. cerevisiae heterologously expressing V5-

tagged Uut1. We then reconstituted the microsomal protein in proteoliposomes, which were pre-

loaded with UMP or GMP to serve as antiport substrates. After confirmation of Uut1-V5 expres-

sion by immunoblotting (Fig. 2.S2), the proteoliposomes were incubated with a mixture of nu-

cleotide sugars, subjected to gel filtration to remove any that were not imported, and analyzed by 

liquid chromatography-tandem mass spectrometry (LC-MS/MS). UDP-GlcA was the only cryp-

toccal nucleotide sugar that was transported over background by Uut1-bearing proteoliposomes 

pre-loaded with UMP (Fig. 2.4A). This transport was saturable with time and substrate concen-

tration (Fig. 2.4C, Fig. 2.4D), and had an apparent KM of 0.6 ± 0.1 μM and Vmax of 1.1 ± 0 nM s-1 

(mean ± SEM from four independent experiments) with a turnover rate of 0.08 s-1. We also ob-

served minor transport of UDP-galacturonic acid and UDP-arabinofuranose, but those substrates 
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have never been reported in C. neoformans and are not detectable in our analyses (see below). 

We observed no transport of any assayed nucleotide sugar when the proteoliposomes were pre-

loaded with GMP (Fig. 2.4B). 

 

We next wondered whether eliminating UDP-GlcA transport would alter cellular nucleotide sug-

ar metabolism. UDP-GlcA is synthesized from UDP-Glc by UDP-Glc dehydrogenase (Ugd1), 

and may be decarboxylated by UDP-Xyl synthase (Uxs1) to produce UDP-Xyl; this product in-

hibits Ugd1 to regulate the pathway (Fig. 2.5A). Our measurements of nucleotide sugar content 

(see Materials and methods) showed that the level of UDP-Glc in uut1Δ cells was about 4-fold 

higher than in WT cells (Fig. 2.5B). The levels of UDP-GlcA and UDP-Xyl, in contrast, were 

not significantly different between mutant and WT cells (Fig. 2.5B).  

 

We next examined the cellular level of UDP-GlcA when C. neoformans was incubated for 24 

hours under conditions that induce capsule synthesis, which we expected to require increased 

UDP-GlcA. Surprisingly, the overall concentration of UDP-GlcA remained constant in these 

conditions (4 ± 2 pmol/mg wet weight; mean ± SD from four independent experiments). Con-

sistent with this observation, transcriptome sequencing (RNA-seq) studies showed no change in 

UGD1 transcription over this interval (Fig. 2.6). However, under the same conditions UUT1 ex-

pression was upregulated 28-fold (Fig. 2.6). It thus appears that the increased demand for UDP-

GlcA is satisfied by greater transport in the context of adequate cytosolic pools.  
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2.3.5 Loss of Uut1 causes defects in cell morphology and stress resistance 

GXM and GXMGal are the only C. neoformans glycans known to contain glucuronic acid, alt-

hough not all cryptococcal glycoconjugates have been extensively profiled. Furthermore, the 

UDP-GlcA synthase mutant, ugd1Δ, exhibits profound cellular defects that cannot be solely at-

tributed to the absence of capsule (31, 32). We therefore assayed additional characteristics of 

cells lacking Uut1.  

 

We had already noticed that ugd1Δ mutant cells appeared smaller and less spherical than WT 

cells and exhibited the aggregation typical of acapsular strains (Fig. 2.3A). Closer examination of 

uut1Δ by transmission electron microscopy (TEM) confirmed these observations, and revealed 

the absence of the distinct morphological layers in the cell wall (Fig. 2.7A) that are normally pre-

sent in WT cells (11, 41-43). The mutant cell wall also appeared less organized (Fig. 2.7A) and 

showed altered exposure of mannans as detected by ConA binding, although dyes recognizing 

other components of the cell wall bound the two strains similarly (Fig. 2.S3). Furthermore, the 

cell membrane appeared to make irregular contact with the internal surface of the cell wall, and 

the cells contained large vacuoles and abnormal intracellular inclusions, often associated with the 

plasma membrane, whether they were grown in rich or nutrient-deficient media (Fig. 2.7A, Fig. 

2.S4). The contents of vacuoles or membranous inclusions were not recognized by anti-GXM 

antibody in immunoelectron microscopy studies (Fig. 2.S4). 

 

In addition to marked abnormalities in cell morphology, the uut1Δ mutant was highly susceptible 

to a range of stresses. It demonstrated temperature sensitive growth (shown for solid and liquid 

media in Fig. 2.7B and Fig. 2.S5, respectively), which was exacerbated by nutrient limitation 
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(Fig. 2.S5). Mutant cells also grew poorly in the presence of SDS or high salt (Fig. 2.7B). Heter-

ologous expression of the human UDP-GlcA transporter, UGTrel7, did not restore growth under 

any of these conditions (Fig. 2.S6).  

 

Since pigment production correlates with resistance to environmental stress (44-46), we assayed 

the ability of the mutant strain to produce melanin on medium containing the precursor L-3,4-

dihydroxyphenylalanine (L-DOPA). We observed no melanization, however, even after 7 days 

of growth (Fig. 2.7C). In all phenotypic studies the complement restored growth or melanization 

to WT levels.  

 

2.3.6 UDP-glucuronic acid transport is required for virulence 

We next tested whether the observed mutant phenotypes would translate into aberrant interac-

tions with host cells. Using an automated imaging method (47), we found that differentiated hu-

man monocytic cells (THP-1 cells) internalized the uut1Δ mutant at significantly higher rates 

than they internalized the WT, independent of serum opsonization (Fig. 2.8A). The mutant was 

also more susceptible to killing after internalization: host phagocytes completely cleared uut1Δ 

by 24 h, in contrast to stable levels of WT and the complemented strain (UUT1; Fig 2.8B). 

 

Our data suggested that uut1Δ would poorly evade recognition and clearance by the host immune 

system and was unlikely to survive under host nutrient and temperature conditions. To test this in 

vivo, we inoculated mice with WT, uut1Δ, or UUT1 intranasally, to mimic the natural route of 

infection. The uut1Δ mutant was cleared from the lungs by 15 days post infection (dpi; Fig. 

2.9A), with no fungi detected in the brain or spleen at that time (Fig. 2.S7). The WT or the com-
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plemented strain, in contrast, caused the mice to succumb to infection by three weeks post inocu-

lation (Fig. 2.9B).  

 

2.4 Discussion 

We have discovered the first fungal nucleotide sugar transporter that translocates UDP-GlcA. 

This protein, Uut1, is critical for C. neoformans virulence, likely due to its role in providing a 

key precursor for synthesis of the polysaccharide capsule and potentially other glycoconjugates, 

and it is also notable for its substrate specificity. Importantly, Uut1 has less than 12% identity at 

the protein level with its human counterpart, which also does not compensate for deficiencies in 

the fungal mutant (Fig. 2.S6). 

 

Similar to other NSTs, Uut1 is localized to the secretory pathway. Our immunofluorescence 

studies suggest that this protein occurs mainly in the ER (Fig. 2.6), like the human transporter 

(UGTrel7) and in contrast to the more closely-related, yet Golgi-localized, plant transporter 

(UUAT1) (33, 48). This is surprising, because we expect formation of mannose polymers to pre-

cede the addition of GlcA, and the mannose donor enters the secretory pathway in the Golgi ap-

paratus (30, 49, 50). It may be that luminal UDP-GlcA progresses through the secretory pathway. 

Alternatively, the distribution of protein upon heterologous expression in S. cerevisiae may not 

accurately reflect the native localization, for example because of expression level or the lack of 

potential cryptococcal interaction partners. Furthermore, even if much of the protein is retrieved 

to the ER, perhaps to serve transport-independent functions, some fraction may remain in the 

Golgi apparatus (spatially separated from late Golgi proteins like Sec7) and carry out transport 
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there. Further analysis to determine localization of the cryptococcal transporter must await the 

development of reliable subcellular imaging methods for C. neoformans.  

 

Uut1 is unique, however, in its specificity for UDP-GlcA among cryptococcal nucleotide sugars. 

Other known proteins that translocate UDP-GlcA also transport additional substrates in vivo: 

UGTrel7 and UUAT1 transport UDP-GalNAc and UDP-GalA, respectively (33, 48), while the 

Drosophila and C. elegans transporters, UST74c and SQV-7, recognize an even wider range of 

UDP-sugars (22, 51). Another notable feature of Uut1 is its affinity for UDP-GlcA, which is sig-

nificantly above that of plant or human transporters; KM of 0.6 μM compared to 1.5 mM for 

UUAT1 and 4 μM for UGTrel7 (33, 48). This low KM relative to the measured cellular UDP-

GlcA concentrations (Fig. 2.5B) suggests that Uut1 functions at a constant rate in both rich and 

nutrient-deficient media. Meeting increased demand for UDP-GlcA in the secretory pathway, for 

example in capsule-inducing conditions, thus requires more Uut1, which is achieved by upregu-

lation at the transcriptional level (Fig. 2.6). The higher rates of UDP-GlcA transport out of the 

cytosol could then reduce UDP-Xyl production and consequent inhibition of Ugd1, balancing the 

system and maintaining stable UDP-GlcA levels (Fig. 2.5 and reported values above). In the ab-

sence of Uut1, there is likely an elevated pool of cytosolic UDP-GlcA due to the absence of 

transport and subsequent consumption, which leads to slightly increased UDP-Xyl production in 

that compartment and consequent feedback inhibition on Ugd1. Thus, total UDP-Glc, but not 

UDP-GlcA or UDP-Xyl, was significantly higher in uut1Δ cells than in WT cells. 

 

Uut1 and the human transporter UGTrel7 overlap in subcellular localization, and both translocate 

UDP-GlcA, yet UGTrel7 does not rescue the uut1Δ mutant phenotype. At 550 amino acids, Uut1 
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is also roughly 70% longer than UGTrel7 and other NSTs, mainly due to a unique extended N-

terminal cytosolic domain (Fig. 2.S1) that is absent from the human and plant transporters and 

dispensable for transport activity (Fig. 2.4, Fig. 2.S2). It may be that this domain interacts with 

cryptococcal synthetic machinery to efficiently channel substrates into the luminal compartment 

or performs other functions specific to Uut1. Further studies of this unusual protein may eluci-

date functional differences that could be exploited for therapeutic intervention. 

 

Cells lacking the donor of Xyl, an abundant capsule component, display capsule although the 

fibers are short and deformed (32, 40). Since GlcA is less abundant than Xyl in capsule polysac-

charides, we originally expected to observe a similar phenotype in uut1Δ cells. We were there-

fore surprised to observe that these cells completely lacked capsule (Fig. 2.3, Fig. 2.S4). These 

unexpected results suggest that GlcA modification is a prerequisite for Xyl addition. This model 

is consistent with the greater variability in GXM and GXMGal of capsule Xyl residues compared 

to GlcA, and their more distal position in GXMGal (11). An acapsular phenotype could also re-

sult if GlcA incorporation is required for the extension of GXM’s mannose backbone or to inhib-

it the degradation of unmodified mannose polymers.  

 

Another possible explanation for the lack of capsule on uut1Δ cells is that GlcA modification is 

required for export of GXM and/or GXMGal, either directly by interacting with trafficking ma-

chinery or indirectly by enabling additional modifications (e.g. Xyl incorporation) (76-78) re-

quired for recognition. The mutant cells do contain unusual intracellular inclusions (Fig. 2.7, Fig. 

2.S4), although their contents were not recognized by anti-GXM antibody (Fig. 2.S4). (The pos-

sibility remains that aberrant polymers are made but are not recognized by the anti-GXM anti-
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bodies we tested, although none of these antibodies are reported to require GlcA for binding (52, 

53).) Finally, GlcA modification could be required for function of a protein involved in capsule 

synthesis (see below). 

 

We observed numerous defects in the growth and morphology of cells lacking Uut1, including 

cell wall disorganization and abnormal plasma membranes (Fig. 2.7, Fig. 2.S3). This suggests a 

role for GlcA modification beyond the capsule. Although GlcA has not been detected thus far in 

surveys of cryptococcal protein-linked glycans or glycolipids (54-57), the levels might be below 

the limits of detection of the methods used. Glucuronidation could also potentially occur in addi-

tional contexts (e.g., the cytosol). Further detailed characterization of cryptococcal glyconconju-

gates may elucidate such mechanisms. 

 

The lack of a GlcA donor in the secretory pathway drastically influences cryptococcal interac-

tions with the host. The resulting absence of the polysaccharide capsule may expose normally 

hidden immunogenic components (Fig. 2.S3) (58), while aberrant glycosylation may also create 

novel immunoreactive epitopes. Both of these could lead to the increased recognition and inter-

nalization of uut1Δ by macrophages that we observe (Fig. 2.8). Internalized uut1Δ cells are also 

rapidly cleared both in vitro (Fig. 2.8) and in vivo (Fig. 2.9), likely facilitated by the reduced 

ability of uut1Δ to resist environmental stress. These observations suggest processes involving 

UDP-GlcA synthesis as a potential target for intervention, which might exploit the unique fea-

tures of key proteins like Uut1 and the novel biology of the pathogen.  
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Our discovery of a highly specific, high-affinity fungal UDP-GlcA transporter has provided nov-

el insights into cryptococcal biology. These studies have advanced our understanding of the lo-

calization and sequence of glycan biosynthetic events, and supported the hypothesis that GlcA is 

incorporated into structures other than capsule, and that it plays integral roles in maintaining cel-

lular homeostasis. This work thus sets the stage for future studies in both cryptococcal pathogen-

esis and fundamental glycobiology.  

 

2.5 Materials and methods 

2.5.1 Sequence and phylogenetic analysis  

uut1 was identified by BLASTP searches against C. neoformans predicted proteins (Broad Insti-

tute; Cryptococcus neoformans var. grubii H99 database) using known UDP-GlcA transporters 

from Arabidopsis thaliana (NP_196036.1), Caenorhabditis elegans (NP_495436.1, 

AT5G04160), Homo sapiens (NP_055954.1.), and Drosophila melanogaster (NP_524126.1).  

Multiple sequence alignment (MUSCLE; (59)), phylogenetic analysis (PhyML; (60)), and tree 

rendering (TreeDyn; (61)) of Uut1, characterized UDP-GlcA transporters (listed above), and 

other known cryptococcal NSTs was done using the online Phylogeny.fr program 

(http://www.phylogeny.fr/index.cgi ) with default settings (62, 63). The putative protein topolo-

gy of Uut1 was predicted using the Constrained Consensus TOPology prediction server 

(CCTOP; Institute of Enzymology, Budapest, Hungary; (64, 65)) and visualized using Protter 

(http://wlab.ethz.ch/ protter/start/) (66). The predicted ER localization signal was identified using 

LocSigDB (http://genome.unmc.edu/ LocSig DB/) (67). 

  

 

http://www.phylogeny.fr/index.cgi
http://www.phylogeny.fr/index.cgi
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2.5.2 Cell growth  

C. neoformans strains were grown at 30 °C in YPD medium (1% wt/vol BactoYeast Extract, 2% 

wt/vol BactoPeptone, 2% wt/vol dextrose) with shaking (230 rpm) unless otherwise noted.  

 

For phenotypic analysis, cells from overnight (O/N) cultures (16 – 18 hours) were washed in 

sterile phosphate buffered saline (PBS), resuspended at 106 cells/mL in PBS, and 5 μL aliquots 

of five-fold serial dilutions were plated and grown at 30°C or 37°C as indicated. Conditions test-

ed included YPD plates containing 0.01% SDS, 1.2 M NaCl, 1.2 M KCl, Tris pH 8.8, 1.5 M sor-

bitol, 0.05% Congo red (CR), or 2% calcofluor white (CFW). Samples were also tested on YNB 

medium (0.67% wt/vol yeast nitrogen base without amino acids, 2% wt/vol glucose, 2% wt/vol 

agar, 25 mM sodium succinate pH 4.0) supplemented with 0.5 mM hydrogen peroxide (H2O2) or 

sodium nitrite (NaNO2) to test oxidative and nitrosative stress sensitivity, respectively. Cell-

associated melanin production was assayed by plating 5 μL of a 106 cells/mL solution on agar 

plates containing 8 mg/mL KH2PO4, 2 mg/mL glucose, 2 mg/mL L-glycine, 1 μg/mL D-biotin, 1 

μg/mL thiamine, 0.92 mg/mL MgSO4 7 H2O, and 0.4 mg/mL L-3,4-dihydrohyphenylalanine (L-

DOPA; Sigma-Aldrich). 

 

To determine growth rates of various strains, cells from O/N cultures were washed in sterile PBS 

and resuspended at 105 cells/mL in 30 mL of YPD, YNB, DMEM, or RPMI at 30°C or 37°C as 

indicated. Triplicate samples were taken at regular intervals and counted with a hemocytometer. 
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2.5.3 C. neoformans strains and plasmids  

To generate the uut1Δ mutant, we replaced UUT1 in the KN99α wild-type (WT) strain with a 

nourseothricin (NAT) resistance marker, using a split marker strategy (68). Transformants of in-

terest were identified by resistance to NAT and validated by PCR verification of gene replace-

ment. We used a similar strategy to replace the NAT deletion cassette with UUT1 (amplified 

from KN99α cDNA) or UGTREL7 (amplified from a pMKIT-neo hUGTrel7-HA plasmid (48)), 

in tandem with a geneticin (G418) resistance marker. Transformants resistant to G418 and sensi-

tive to NAT were verified by PCR. 

 

2.5.4 S. cerevisiae localization  

UUT1 was amplified from KN99α cDNA, cloned into the copper-inducible expression vector 

pYEScupFLAGK (26), and transformed into S. cerevisiae strain Sec7x3GFP (from Dr. Benjamin 

S. Glick, University of Chicago) using lithium acetate. After O/N growth in synthetic complete 

(SC) medium minus uracil (URA), cultures were adjusted to 0.5 mM CuSO4 and cultured for 1 h. 

The cells were fixed in 1% paraformaldehyde for 30 min, washed, resuspended in a 0.1 M KPO4 

(pH 6.5)/1.2 M sorbitol buffer, and then incubated for 15 min in buffer supplemented with β-

mercaptoethanol (2% wt/vol) and zymolyase (100μg/mL; Sigma-Aldrich). Fifteen microliter ali-

quots buffer-washed cells were then spotted onto polylysine-coated slides (Electron Microscopy 

Sciences), incubated for 10 min and immediately plunged first into methanol for 5 min and then 

acetone for 30 sec. The samples were blocked with 5% goat serum in PBS for 30 min and stained 

O/N at 4°C with anti-FLAG (mouse antibody diluted 1:1000; Invitrogen) and anti-Kar2p/BiP 

antibody (rabbit antibody diluted 1:1000; from Dr. Jeff Brodsky, University of Pittsburgh). Fi-

nally, cells were incubated for 2 h with AlexaFluor 594-tagged goat anti-mouse IgG (Thermo 
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Fisher Scientific), AlexaFluor 488-tagged goat anti-rabbit IgG (Thermo Fisher Scientific), and 

DAPI (Thermo Fisher Scientific), and viewed with a ZEISS Axioskop2 MOT Plus microscope 

(Carl Zeiss Microscopy, LLC). Where not specified, all steps were performed at room tempera-

ture (RT). 

 

2.5.5 Capsule induction and visualization 

Cultures of C. neoformans grown in YPD O/N were collected by centrifugation (3000 x g, 5 

min), washed twice with sterile PBS. The cells were then resuspended in DMEM at 106 cells/mL 

in T-75 tissue culture flasks or 24-well plates and incubated at 37°C with 5% CO2 for 24 h to in-

duce production of capsule. Induced cells were then collected, washed, and resuspended in PBS, 

mixed with 1.5 parts India ink (Chartpak, Inc.), and viewed with a ZEISS Axioskop2 MOT Plus 

microscope (Carl Zeiss Microscopy, LLC). 

 

2.5.6 GXM detection  

Cell wall-associated and shed GXM were visualized by fluorescence microscopy and immunob-

lotting, respectively. To visualize capsule on cells, the strains were induced as described above 

for 24 h, fixed for 1 h in 3.7% formaldehyde, washed in PBS, and then incubated for 1 h with 1 

mg/mL of anti-GXM monoclonal antibody (mAb) 3C2, 2H1, 3O2, 339, or F12D2 (from Dr. 

Thomas R. Kozel, University of Nevada School of Medicine) conjugated to AlexaFluor 488. 

Stained cells were washed twice with PBS, resuspended in PBS, and examined on a ZEISS Axi-

oskop 2 MOT Plus microscope. All samples from each experiment were imaged with identical 

acquisition settings. To analyze shed GXM, strains were induced for 90 min or 24 h before cells 

were removed by centrifugation. The supernatant fractions were then denatured with heat (60 °C 
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for 5 min), resolved on agarose gels, transferred onto a positively charged nylon membrane, and 

immunoblotted with 1 μg/ml anti-GXM mAb 3C2, 2H1, F12D2, or 339 as described in (69). The 

GXM content of the supernatant fractions was quantified by ELISA as described in reference 70 

using mAb 339 and F12D2.  

 

2.5.7 Heterologous expression, reconstitution, and transport assays 

The UUT1 coding region was synthesized into pUC57-Amp by Genewiz, amplified by PCR 

without the native stop codon, and introduced into the pENTR/SD/D-TOPO vector (Life Tech-

nologies) according to the manufacturer’s protocols to generate pENTR-UUT1. Recombination 

of the entry clone with destination vector pYES-DEST52 (Life Technologies) using LR clonase 

II (Life Technologies) produced a C-terminal His/V5 epitope fusion that was verified by se-

quencing before transformation into S. cerevisiae strain INVSc1 (Thermo Fisher Scientific). To 

verify heterologous protein expression, 2.5 µg of the proteoliposomes were resolved by SDS-

PAGE and analyzed by immunoblotting with anti-V5 antibody (Thermo Fisher Scientific) as 

previously described (71). UDP-GlcA transport was measured at the UDP-GlcA concentrations 

and times indicated, and kinetic parameters were calculated by nonlinear regression using the 

Prism 6 application (GraphPad Software). Measured Uut1 content (Table 2.S2) was used to de-

termine turnover rate.  

 

2.5.8 Quantification of nucleotide sugars by mass spectrometry 

Nucleotide sugars were extracted from approximately 50 mg of ground cells (wet weight) ac-

cording to previous methods (72). LC-MS/MS was performed using porous graphitic carbon as 

the stationary phase on an 1100 series HPLC system (Agilent Technologies) and a 4000 QTRAP 
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LC-MS/MS system (Sciex) equipped with a TurboIonSpray ion source using methods previously 

described (73). Four biological replicates were analyzed, each in duplicate. 

 

2.5.9 Fungal gene expression  

Wild-type cells cultured in YPD were induced for capsule as described above and sampled at 0, 

1.5, 3, 8, and 24 h for RNA isolation and sequencing. See reference (74) for details. 

 

2.5.10 Electron microscopy  

Strains were grown in YPD medium or under capsule-inducing conditions, collected by centrifu-

gation (3,000 x g, 5min), fixed for 1 h at RT with 2% glutaraldehyde (Polysciences Inc.) in 100 

mM phosphate buffer (pH 7.2), and then incubated for 1 h in 1% osmium tetraoxide (OsO4; Pol-

ysciences Inc.). Following dehydration with ethanol and propylene oxide, cells were embedded 

in Eponate 12 resin (Tel Pella Inc.), and 70-90 nm sections were cut with a UCT ultramicrotome 

(Leica Microsystems Inc.). Sections were stained with uranyl acetate and lead citrate for visuali-

zation with a JEOL 1200EX transmission electron microscope (JEOL Inc.).  

 

For immunoelectron microscopy, cells were fixed and labeled as in (17). Briefly, induced cells 

were fixed in glutaraldehyde as above, washed in citrate buffer (pH 6.0), and treated with lysing 

enzymes from Trichoderma harzianum (Sigma-Aldrich) in the same buffer for 30 min before 

being washed in 0.1 M phosphate buffer (pH 7.0), and post-fixed in 1% OsO4. Ethanol-

substituted samples were then substituted in propylene oxide and embedded in Eponate 12 resin. 

Sections were blocked with 5% fetal bovine serum (FBS; Thermo Fisher Scientific) in PIPES 

buffer (pH 7.0) for 30 min, labeled with the anti-GXM mAb 3C2 for 1 h, washed in blocking 
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buffer, and incubated with 12 nm gold-conjugated goat anti-mouse IgG (Jackson Immuno Re-

search). Sections were then washed in PIPES buffer and water, stained with uranyl acetate and 

lead citrate, and viewed with a JEOL JEM-1400Plus 120kV Transmission Electron Microscope 

(JEOL Ltd.). 

 

2.5.11 Cell wall staining 

For eosin Y staining, O/N cultures were washed, diluted to 107 cells/mL in McIlvaine’s buffer 

(pH 6.0), and incubated with 250 μg/mL eosin Y for 15 min. For the other dyes, the cells were 

washed, diluted to 107 cells/mL in PBS, and stained for 15 min with 100 μg/mL CFW (fluores-

cent brightner 28, Sigma), 30 μg/mL ConA-FITC (Concanavalin A, Sigma), or 1:10,000 dilution 

Pontamine (Pontamine fast scarlet 4B, Bayer Corp.). The cells were then washed in PBS and im-

aged with a ZEISS Axioskop2 MOT Plus microscope. 

 

2.5.12 Macrophage assays  

Macrophage phagocytosis and survival of fungal strains was quantified as in reference 39. Brief-

ly, cells were grown in YPD medium, collected by centrifugation, washed, and opsonized with 

human serum before incubation with differentiated THP-1 macrophages for 1 h. To measure 

fungal uptake by phagocytes, host cell cytosol and nuclei and fungal walls were stained, and 

samples were imaged on a Cytation3 plate reader (BioTek) and analyzed using IN Cell Develop-

er Toolbox 1.9.2 (GE Healthcare Life Sciences). For survival assays, samples were washed twice 

with PBS, lysed either immediately or after a 24 h incubation, and the lysate plated on YPD agar 

for counts of colony forming units (CFU). Assay results for the uut1Δ mutant were compared to 
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those for wild-type and complemented strains by one-way analysis of variance (ANOVA) with 

Tukey’s post-hoc test. 

 

2.5.13 Animal studies  

Fungal strains to be tested were cultured O/N in YPD medium, washed in sterile PBS, and dilut-

ed to 106 cells/mL in sterile PBS. Four- to 6-week-old female A/JCr mice (National Cancer Insti-

tute) were then intranasally inoculated with 50 µL aliquots of each strain. Groups of three mice 

infected with the WT strain and three mice infected with the uut1Δ mutant were sacrificed at 6, 

12, and 15 days post-inoculation. Initial inocula and organ (lung, brain, spleen) homogenates 

were plated for CFU, and organ burden was analyzed by Student’s t-test. Additional groups of 

eight mice were infected with WT, uut1Δ, and UUT1 strains, weighed daily, and sacrificed once 

they lost >20% of their body weight relative to peak weight or at day 50. Survival curves were 

compared using a log rank test in GraphPad Prism. All studies were performed in compliance 

with institutional guidelines for animal experimentation.  
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2.8 Figures 

 

Figure 2.1. Evolutionary conservation of UDP-GlcA transporters. Phylogenetic relationships of 

C. neoformans (Cn) nucleotide sugar transporters (NSTs) and other UDP-GlcA transporters 

(shown in boldface type) from Caenorhabditis elegans (Ce), Homo sapiens (Hs), Drosophila 

melanogaster (Dm), and Arabidopsis thaliana (At). Tree reconstruction was performed with the 

Phylogeny.fr web server (62, 63) using MUSCLE, PhyML, and TreeDyn software. Branch 

lengths are drawn to scale. 
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Figure 2.2. Cryptococcal Uut1 colocalizes with the ER marker Kar2p/BiP (A), but not with the 

late Golgi marker Sec7 (B). Sec7-3xGFP S. cerevisiae cells transformed with vector alone (Vec-

tor) or vector expressing FLAG-tagged Uut1 (FLAG-Uut1) were stained with DAPI and probed 

with the indicated antibodies. Bright field (BF), single-channel, and merged images are shown, 

all images have the same magnification (bars, 1 μm). The colors indicate the following: blue, 

DAPI; red, anti-FLAG (α-FLAG); green, anti-GFP (α-GFP) and anti-Kar2p/BiP (α-Kar2p/BiP). 

Images are representative of three independent immunofluorescence experiments. 
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Figure 2.3. The uut1Δ mutant does not produce capsule. (A) Wild-type (WT), uut1Δ, and com-

plemented uut1Δ (UUT1) strains were cultured under capsule-inducing conditions (see Materials 

and methods) for 24 h and then visualized by light microscopy after negative staining with India 

ink. Bar = 5 μm. (B) Cells from the indicated strains were incubated with calcofluor white 

(CFW; blue) to stain the cell wall, and mAb 3C2 (red) to visualize the capsule. Bright field, sin-

gle-channel gray scale, and merged images are shown. Bar = 5 μm. (C) Shed capsule polysaccha-

ride, from two independent deletions and control strains, was quantitated by ELISA (see Materi-
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als and methods). Values are means ± SEM from three independent experiments. Values that are 

significantly different (P < 0.01) by one-way ANOVA and Tukey’s posthoc test from the value 

for the WT strain are indicated by an asterisk. ND, not detected. (D) Conditioned medium from 

the indicated strains was resolved on an agarose gel, transferred to a nylon membrane, and ana-

lyzed by immunoblotting with anti-GXM mAb 3C2 as in reference 69. 
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Figure 2.4. Uut1 activity in vitro. (A, B) Substrate and exchange substrate specificity of Uut1. 

Proteoliposomes from cells without Uut1 (white bars) or with Uut1 (black bars), preloaded with 

30 mM UMP (A) or 30 mM GMP (B), were incubated for 10 min with a mixture of the indicated 

nucleotide sugars, each at 50 µM. Data were normalized to the total protein content of the prote-

oliposome preparations. (C) Proteoliposomes from cells expressing Uut1, preloaded with 10 mM 

UMP, were incubated with UDP-GlcA at the indicated concentrations for 2 min and UDP-GlcA 
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transport was measured as described in Materials and methods. (D) Proteoliposomes, preloaded 

as described for panel C, were assayed with 50 μM UDP-GlcA for the times shown. Values are 

normalized to the Uut1 content of the proteo-liposome preparations (Table 2.S2). All values 

shown are the means ± SEMs from four independent experiments. 
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Figure 2.5. UDP-GlcA metabolism. (A) UDP-GlcA synthesis and regulation. (B) Nucleotide 

sugar concentrations in the uut1Δ mutant (black bars) compared to the WT control (white bars). 

Values are the averages ± SEMs of four independent replicates. Values that are significantly dif-

ferent (P ≤ 0.01) by two-tailed Student’s t test are indicated by two asterisks. 
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Figure 2.6. Transcription of UUT1 increases during capsule induction. The number of reads 

from RNA-Seq data (mean  SD) during capsule induction (see Materials and methods) were 

normalized to their levels at t = 0, which were as follows: 125691  8645 for UUT1; 1761976  

108920 for UGD1; and 4495647  279579 for ACT1 (included as a control). Values shown are 

compiled from three independent experiments, each with RNA prepared from three biological 

replicates as in reference 74.  
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Figure 2.7. uut1Δ mutants exhibit defects in cell morphology and growth. (A) Electron micro-

graphs of WT, uut1Δ, and UUT1 strains grown in rich medium (left and middle columns, bar = 1 

μm) with enlarged insets (right column, bar = 0.25 μm). (B) Melanization of the indicated strains 

after growth on L-DOPA plates (see Materials and methods). lac1Δ cells do not melanize (75). 

(C) The indicated strains were grown overnight at 30°C in YPD medium, and 5-μl volumes of 

serial dilutions (10-fold starting at 106 cells/mL) were spotted and grown on YPD or minimal 

medium under the conditions shown. Images of the 30 °C and 37 °C plates were taken 2 and 3 

days after inoculation, respectively. 
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Figure 2.8. Cells lacking Uut1 are more efficiently phagocytosed and killed by human cells than 

wild-type C. neoformans. (A) Phagocytic index (engulfed fungi per 100 host cells) for fungi with 

or without serum opsonization. (B) Fold change in CFU (comparing results at 24 h to results at 1 

h) after internalization of opsonized fungi by THP-1 cells. Data are the means ± SEMs for three 

biological replicates. Values that are significantly different (P < 0.05) by one-way ANOVA and 

Tukey’s posthoc test are indicated by an asterisk. ND, not detected.  
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Figure 2.9. uut1Δ is severely attenuated for virulence. (A) Lung CFU of mice infected intrana-

sally with 5 x 104 cells of WT (white bars) or the uut1Δ mutant (black bars). Values that are sig-

nificantly different by two-tailed Student’s t test are indicated by bars and asterisks as follows: *, 

P < 0.05; **, P < 0.01; ***, P < 0.001. ND, not detected. (B) Survival of mice infected as in 

panel A with the indicated strains (8 or 9 mice per strain).  



61 

 

2.9 Supplementary materials 

 

Figure 2.S1. Predicted secondary structure of Uut1 (550 amino acids), showing an extended N-

terminal domain (amino acids 1 to 244), 10 predicted transmembrane domains, and a predicted 

ER localization signal (KXKXX motifs; dark grey) near the C terminus. 
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Figure 2.S2. Anti-V5 immunoblot of proteoliposomes prepared from S. cerevisiae expressing 

vector alone (control) or V5-tagged Uut1; 2.5 μg of total protein was loaded into each lane. The 

positions of the molecular mass standards (in kDa) are shown to the left of the gel. In S. cere-

visiae, the expressed and active polypeptide is cleaved prior to amino acid 200. 
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Figure 2.S3. Surface exposure of cell wall components. WT, uut1Δ, UUT1, and cap59Δ strains 

were grown and stained with CFW (binds chitin), concanavalin A (binds mannoproteins), eosin 

Y (binds chitosan), and Pontamine (binds unspecified cell wall components). The images shown 

are representative of two independent experiments. Bar = 5 μm. 
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Figure 2.S4. GXM is not detected within or around uut1Δ cells, in contrast to the abundant la-

beling of this capsule component on WT and complemented controls. Shown are electron micro-

graphs of WT, uut1Δ, and UUT1 strains grown for 24 h in nutrient-deficient media, which in-

duces capsule production. Sections were labeled with anti-GXM mAb 3C2 and 12-nm gold-

conjugated anti-mouse antibody, which appears as black dots. Bar = 500 nm.   
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Figure 2.S5. Growth of uut1Δ mutant (red) is restricted at 37 °C and at 30 °C under nutrient-

limiting conditions (either the yeast medium YNB or mammalian tissue culture media DMEM 

and RPMI 1640) compared to wild type (blue) and the complemented mutant (green). Strains 

were grown overnight at 30 °C in YPD medium, diluted to 105 cells per mL in the media indicat-

ed, and incubated at 30 or 37 °C with shaking. The results shown are the averages of three meas-

urements. 
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Figure 2.S6. The human UDP-GlcA transporter does not complement uut1Δ. uut1Δ and WT 

strains transformed with vector alone (vector) or vector expressing His-tagged UGTrel7 were 

grown overnight at 30°C in YPD with G418, and 5 μL of serial dilutions (10-fold starting at 106 

cells per mL) were spotted and grown as indicated on medium containing G418. Images of the 

WT and uut1Δ strains were taken three and six days later as indicated.
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Figure 2.S7. uut1Δ does not disseminate from the lung. Brain and spleen CFU at day 15 post 

infection. Data shown is the mean ± SD for 3 mice. 
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Table 2.S1. Summary of GXM detection assays.  

        

 

ELISA  

(ng/mL, mean ± SEM) 
GXM blotting 

Capsule 

staining 

       mAb 
 

Strain 
339 F12D2 2H1 3O2 339 F12D2 2H1 

WT 31.9 ± 0.3 113.3 ± 12.9 + + + + + 

uut1Δ   0 ± 0   0 ± 0 - - - - - 

UUT1 25.2 ± 3.2 69.8 ± 7.7 + + + + + 

cap59Δ   0 ± 0   0 ± 0 - - - - - 

 

 

 

 

 

 

 

Table 2.S2. Uut1 content of proteoliposomes used for transport assays.  

 

*Amount was estimated using LC-MS/MS (MRM) quantitation of a C-terminal peptide 

(SRGPFEGKPIPNPLLGLDSTR) and interpreted based on the molecular mass (including V5-

tag and 6-His tags) estimated using the Compute pI/Mw tool at ExPASy 

(http://web.expasy.org/). 
†Values represent the mean ± SD of three independent experiments. 

  

 
Molecular Mass (Da) fmol*/5 µg ng/5 µg Total protein (%) 

Uut1 63195.7 79.7 ± 4.1† 5.0 ± 0.3† 0.1 ± 0.0† 
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3.1 Abstract 

Cryptococcus neoformans, an AIDS-defining opportunistic pathogen, is the leading cause of 

fungal meningitis worldwide and is responsible for hundreds of thousands of deaths annually. 

Cryptococcal glycans are required for fungal survival in the host and for pathogenesis. Most gly-

cans are made in the secretory pathway, although the activated precursors for their synthesis, nu-

cleotide sugars, are made primarily in the cytosol. Nucleotide sugar transporters are membrane 

proteins that solve this topological problem, by exchanging nucleotide sugars for the correspond-

ing nucleoside phosphates. The major virulence factor of C. neoformans is an anti-phagocytic 

polysaccharide capsule that is displayed on the cell surface; capsule polysaccharides are also 

shed from the cell and impede the host immune response. Xylose, a neutral monosaccharide that 

is absent from model yeast, is a significant capsule component. Here we show that Uxt1 and 

Uxt2 are both transporters specific for the xylose donor, UDP-xylose, although they exhibit dis-

tinct subcellular localization, expression patterns, and kinetic parameters. Both proteins also 

transport the galactofuranose donor, UDP-galactofuranose. We further show that Uxt1 and Uxt2 

are required for xylose incorporation into capsule and protein; they are also necessary for C. 

neoformans to cause disease in mice, although surprisingly not for fungal viability in the context 

of infection. These findings provide a starting point for deciphering the substrate specificity of an 

important class of transporters, elucidate a synthetic pathway that may be productively targeted 

for therapy, and contribute to our understanding of fundamental glycobiology. 

 

3.2 Introduction  

Glycans are critical for the normal development, growth, and viability of organisms across all 

kingdoms of life. The extensive glycoconjugate repertoire of Cryptococcus neoformans, a ubiq-
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uitous environmental fungus, enables this pathogen to cause serious respiratory disease in the 

setting of immune compromise. This pulmonary infection often progresses to a lethal menin-

goencephalitis, even with treatment, leading to several hundred thousand deaths each year (1-3).  

 

The major virulence factor of C. neoformans, a polysaccharide capsule, acts as a physical barrier 

against host defenses when associated with the cell wall and as an immune modulator when shed 

into the extracellular space (4, 5). This material consists primarily of two complex polysaccha-

rides, glucuronoxylomannan (GXM) and glucuronoxylomannanogalactan (GXMGal) (4). The 

more abundant capsule component, GXM, is a linear mannose (Man) polymer with single glucu-

ronic acid (GlcA) and xylose (Xyl) side chains (6). The second polysaccharide, GXMGal, con-

sists of a galactose backbone modified with single galactofuranose (Galf) residues and galac-

tomannan side chains bearing a variable number of GlcA and Xyl residues (7-9).  

 

Beyond the capsule, C. neoformans glycoconjugates include proteins with N- and O-linked gly-

cans that resemble the corresponding mannose structures of the model yeast Saccharomyces 

cerevisiae, although they are further modified with Xyl or Xyl-phosphate residues (10-13). Cryp-

tococcal glycosphingolipids range from simple mannose modification of lipids to more complex 

structures that also incorporate galactose (Gal) and Xyl (14), and the cryptococcal cell wall con-

sists of glucans, chitin, chitosan, and mannoproteins, many of which bear GPI anchors (15). 

These glycans play integral structural and regulatory roles to facilitate fungal survival and patho-

genesis (16).   

 

Consistent with the abundant glycosylation of C. neoformans, a significant portion of its genetic 
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machinery and metabolic energy is dedicated to glycan synthesis. These synthetic reactions typi-

cally occur in the secretory pathway, although they rely on nucleotide sugar donors that are syn-

thesized in the cytosol (17). The charged donors enter the luminal space via nucleotide sugar 

transporters (NSTs), which exchange activated sugars for the corresponding nucleoside mono-

phosphates (18, 19). NSTs thus mediate a limiting step in glycan biosynthesis and are conse-

quently required for cryptococcal viability and pathogenicity (20-22).  

 

Our focus is on defining glycan synthesis in C. neoformans, motivated by its unique biology and 

critical role in a deadly disease. Cryptococcal NSTs comprise a key subset of this machinery, 

which has stimulated us to identify these proteins and their functions. This effort is complicated 

by the observations that NST homology is not always a reliable predictor of substrate specificity 

and that NSTs may be functionally redundant. Individual NSTs also range from highly specific 

single-substrate transporters to more promiscuous, multi-substrate proteins (23-28). NST sub-

strate specificity may also be modulated by localization to a particular cellular compartment 

and/or association with other glycan biosynthetic enzymes (21, 29). 

  

In prior work, protein structure predictions and homology facilitated identification of the crypto-

coccal NSTs responsible for GDP-Man (21, 30) and UDP-Gal (20, 22) transport. We have now 

used product analysis and mass spectrometry-based assays to discover Uxt1 and Uxt2, which 

both transport UDP-Xyl although they exhibit distinct subcellular localization, expression pat-

terns, and kinetic parameters. Cells without these two proteins lack Xyl in all analyzed glycocon-

jugates, and exhibit growth defects and metabolic abnormalities that are present to a lesser extent 
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in single mutant strains. We further made the unexpected finding that transporter function is re-

quired for virulence in a mouse model of disease but not for persistence in that context.  

 

3.3 Results  

3.3.1 Identification of cryptococcal UDP-xylose transporters 

In examining the cryptococcal genome for genes encoding putative NSTs, we discovered a pair 

of sequences (CNAG_02036 and CNAG_03695) that encoded closely related proteins (57% 

identity at the amino acid level; Fig. 3.S1A). We were interested in these sequences because the 

level of identity could indicate functional redundancy to ensure transport of a key glycan precur-

sor, or, in the absence of shared activity, could shed light on mechanisms of substrate specificity. 

 

To assess the biological role of the novel protein pair we had identified, we generated single and 

double deletion strains. We first tested whether these mutations affected the major cryptococcal 

virulence factor, its polysaccharide capsule. Composition analysis of capsule GXM showed 

complete loss of Xyl from the double mutant, while single mutants were less affected (Fig 3.1A). 

This suggested that both proteins transported the Xyl precursor UDP-Xyl, so we designated them 

as UDP-Xyl transporters 1 and 2 (Uxt1 and Uxt2). uxt1Δ GXM had only 20% of the Xyl found 

in WT material, while uxt2Δ exhibited no defect in composition. Consistent with these results, 

linkage analysis of GXM mannose residues showed a dramatic shift to less substitution of the 

mannose backbone in the double mutant, with a slightly lesser shift in uxt1Δ (Table 3.S1).  

 

To further examine the mutant capsules, we used a Xyl-dependent monoclonal antibody to GXM 

(31). This antibody, F12D2, labeled both single mutant strains, but not the uxt1Δ uxt2Δ strain 



74 

 

(Fig. 3.1B). In this respect the double mutant resembled uxs1Δ, a strain that does not synthesize 

UDP-Xyl (32). Both uxt1Δ uxt2Δ and uxs1Δ still bind Xyl-independent anti-GXM monoclonal 

antibodies (Fig. 3.S2, Table 3.S2).  

 

We next used an unbiased approach to directly measure UDP-Xyl transport activity and assay for 

additional transport substrates. To do this, we prepared microsomes from S. cerevisiae heterolo-

gously expressing Uxt1 and Uxt2 (Fig. 3.2A). When these were preloaded with UMP we ob-

served import of UDP-Xyl (Fig. 3.2B-D), consistent with our composition studies and antibody 

binding results. Transport of UDP-Xyl by both proteins was saturable with substrate (Fig. 3.2E) 

and time (Fig. 3.2F). Uxt1 had an apparent KM of 1.0 ± 0.2 μM and Vmax of 20.4 ± 0.6 nM s-1 

(mean ± SEM of n = 4) with a turnover rate of 0.9 s-1, while Uxt2 exhibited lower affinity and 

catalytic efficiency with an apparent KM of 2.2 ± 0.5 μM, Vmax of 2.2 ± 0.1 nM s-1, and a turnover 

rate of 0.4 s-1. These KM values were consistent with the estimated μM physiological concentra-

tion of UDP-Xyl (Table 3.S3). 

 

We further observed transport of UDP-Galf, the donor of a known capsule component, although 

assessment of its transport kinetics was hindered by its instability, which necessitates simultane-

ous synthesis and assay. We also observed transport of UDP-Arap and UDP-Araf (Fig. 3.2C, Fig. 

3.2D, Fig. 3.S3) although arabinose has never been reported in C. neoformans. Neither of these 

donor molecules were detected in our nucleotide sugar analyses (Table 3.S3). 

 

Surprisingly, Uxt2 was almost as efficient in using GMP as UMP as an antiport substrate for 

UDP-Xyl and UDP-Galf. In contrast we observed minimal transport activity over control when 
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Uxt1-bearing proteoliposomes were preloaded with GMP (Fig. 3.2G, Fig. 3.S3E). Although 

Uxt1 and Uxt2 have similar activity, they are clearly not functionally identical at the enzymatic 

level. 

 

3.3.2 UXT1 and UXT2 sequence and expression 

We wondered how Uxt1 and Uxt2, the first reported fungal UDP-Xyl/UDP-Galf transporters, 

compared to other NSTs with similar substrate specificities. Phylogenetic analysis with known 

transporters of UDP-Xyl and UDP-Araf placed Uxt1 and Uxt2 closest to the A. thaliana UDP-

Araf transporters (UAfT1-4) even though, as mentioned above, arabinose has never been detect-

ed in C. neoformans (Fig. 3.S1B). Interestingly, Uxt1 and Uxt2 were more divergent from 

known UDP-Xyl transporters, such as those from human and A. thaliana (Fig. 3.S1B), which 

may be of therapeutic relevance.  

 

Our biochemical and phylogenetic studies did not explain why C. neoformans has two transport-

ers for UDP-Xyl and UDP-Galf and raised the question of whether they have distinct roles in vi-

vo. To define the physiological roles of Uxt1 and Uxt2, we first examined the expression of 

UXT1 and UXT2 under nutrient rich and deficient (capsule-inducing) conditions; the latter was 

tested because of the central role capsule plays in virulence and the differences we had noted in 

capsule composition. We found that UXT1 expression was not affected by capsule induction, 

while UXT2 had a lower basal level of expression in rich media (0 h) that was upregulated 15-

fold upon capsule induction (Fig. 3.3).  
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3.3.3 Uxt1 and Uxt2 localize to distinct subcellular compartments 

When we expressed FLAG-tagged Uxt1 and Uxt2 in S. cerevisiae to assess their subcellular lo-

calization, we found that Uxt2 localized to the ER (Fig. 3.4A). In contrast, Uxt1 exhibited a Gol-

gi distribution (Fig. 3.4B), consistent with its predicted N-terminal ER export signal (two di-

acidic motifs). Swapping the N-terminal cytosolic domains of the two proteins caused each to 

shift to the other secretory compartment (Fig. 3.4, bottom row of each panel). 

 

3.3.4 Absence of UXT1 and UXT2 has pleiotropic effects on cell morphology 

and stress resistance 

We wondered if the observed differences in protein expression and localization had phenotypic 

consequences beyond alterations in GXM. All of the mutants grew normally at 37 °C, except for 

a modest increase in the doubling time of uxt1Δ uxt2Δ, which was further exacerbated by nutri-

ent limitation (Fig. 3.S4). We saw no changes in growth when these strains were challenged with 

stressors that target the cell wall, consistent with their wild-type patterns of cell wall staining 

(Table 3.S2). At this temperature, however, uxt1Δ uxt2Δ growth was abolished by SDS (that of 

uxt1Δ was slightly inhibited), and the growth of both of these strains was slightly inhibited by 

high salt (Fig. 3.5A).  

 

Both of the single uxt mutants showed normal capsule thickness (Fig. 3.5B; Fig. 3.S5A), cell di-

ameter (Fig. 3.5B, Fig. 3.S5B), and GXM shedding (Fig. 3.S5C). The uxt1Δ cells, however, ag-

gregated more than wild type (Fig. 3.5B), and differed from wild-type cells in capsule organiza-

tion, despite the similarity in overall capsule radius: individual fibers seemed thicker and ap-

peared to form a sparser network over the cell surface (Fig. 3.5C, Fig. 3.S5D). The capsule 
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changes were more striking in uxt1Δ uxt2Δ cells; these showed significantly thinner capsules 

(Fig. 3.S5A) and reduced GXM shedding (Fig. 3.S5C). Their capsule fibers also appeared shorter 

and coarser than those of uxt1Δ, resembling those of uxs1Δ cells, which do not synthesize UDP-

Xyl (Fig. 3.5C, Fig. 3.S5D). 

 

The observed differences in capsule did not explain the increased sensitivity of uxt1Δ and uxt1Δ 

uxt2Δ to stress, because even acapsular cells grow normally under these conditions (33, 34). We 

hypothesized that this sensitivity instead results from reduced Xyl in other glycoconjugates, such 

as protein-linked glycans. In support of this idea, the Xyl content of soluble glycoproteins isolat-

ed from uxt1Δ and uxt2Δ was 15% and 90% of their respective complements. We detected no 

Xyl in samples purified from uxt1Δ uxt2Δ or the control uxs1Δ.  

 

3.3.5 Lack of luminal UDP-xylose alters interactions with host phagocytes 

and virulence 

We wondered whether the stress sensitivity and altered glycoconjugate xylosylation of the uxt 

mutants would translate into aberrant interactions with host cells. Since host macrophages are 

critical for determining the outcome of cryptococcal infection (35), we investigated the ability of 

our mutants to interact with bone marrow macrophages (BMM) in vitro. We found that the level 

of internalization by BMMs was inversely related to the degree of xylosylation: uxt1Δ uxt2Δ was 

taken up more readily than WT cells while uxt1Δ exhibited an intermediate phenotype (Fig. 

3.6A). Notably, while WT and the single deletion strains replicated ~2-fold over 24 h after inter-

nalization by BMM, the level of uxt1Δ uxt2Δ did not change (Fig. 3.6B). This reflected both de-
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creased replication and increased clearance, which negated the small growth that occurred (Fig. 

3.6C).  

 

The altered host interactions we observed in vitro suggested a potential defect in pathogenicity of 

the uxt strains. Studies using an inhalational model to mimic the natural route of infection 

showed that uxt2Δ and, more surprisingly, uxt1Δ, caused disease with normal kinetics (Fig. 

3.6D) and organ burdens (Fig. 3.6E, Fig. 3.S7). In contrast, uxt1Δ uxt2Δ was attenuated for viru-

lence in both A/JCr and C57BL/6 mice (Fig. 3.6D, Fig. 3.S6). More detailed studies using A/JCr 

mice showed that the double mutant was unexpectedly detectable in the lungs out to 100 days 

post infection (dpi), when the experiment was terminated (Fig. 3.6E). Despite the persistent pul-

monary burden, uxt1Δ uxt2Δ failed to disseminate from the lungs; it was never detected in the 

spleen and was only transiently detected in the brain (Fig. 3.S7).  

 

3.4 Discussion 

C. neoformans encodes an unusual pair of highly homologous UDP-Xyl/UDP-Galf transporters, 

which together are critical for virulence. Uxt1 and Uxt2 are unique for their high affinity for 

UDP-Xyl (Fig. 3.2), with KM values almost two orders of magnitude lower than those of the Ar-

abidopsis UDP-Xyl transporters (36). Despite transporting the same nucleotide sugars, the two 

proteins are not completely functionally redundant, likely due to differences in expression, en-

zyme kinetics, and localization.  

 

Beyond nucleotide sugars known to occur in C. neoformans, in vitro Uxt1 and Uxt2 also 

transport UDP-Arap and UDP-Araf (Fig. 3.2), potentially enabled by the similar structures of 
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Xyl and Ara (D-Xyl and L-Ara are epimers). While the NSTs most closely related to Uxt1 and 

Uxt2 (At UAfT1-4) are highly specific for UDP-Araf (37), the substrate range of the cryptococ-

cal proteins most closely resembles that of plant UDP-Xyl transporters (UXT1-3; (36)) despite 

their sequence divergence (Fig. 3.S1B). These observations highlight the importance of using 

rigorous biochemical analysis to test functional assumptions based on homology.  

 

Since UDP-Ara is not found in cryptococcal cells and abrogating UDP-Galf synthesis does not 

alter cryptococcal growth or virulence (8), the phenotypes associated with loss of Uxt1 and Uxt2 

likely result from disruption of UDP-Xyl transport into the secretory compartment. Notably, cap-

sule material was still produced (Fig. 3.5), even when no Xyl was detected in GXM because both 

transporters were absent (Fig. 3.1A). This suggests that Xyl incorporation is not required for 

GXM backbone synthesis or elongation, or for incorporation of GlcA. However, lack of the Xyl 

donor did reduce the amount of shed capsule material by over 75% (Fig. 3.S5C). Since Xyl con-

stitutes only 20-30% of the capsule mass, loss of this moiety alone does not explain this reduc-

tion. Instead, it may be a direct effect of the reduced Xyl incorporation, if these side chains are 

needed for capsule recognition by synthetic or trafficking machinery, or an indirect effect, for 

example if synthetic enzymes must be xylosylated to function efficiently. Lack of UDP-Xyl 

transport also yielded thinner capsules (Fig. 3.5B, Fig. 3.S5A) with abnormal fiber morphology 

(Fig. 3.5C, Fig. 3.S5D); this presumably results from the lack of Xyl substitution, which may be 

required for proper stabilization and organization of capsule polysaccharides.  

 

Why does C. neoformans express two UDP-Xyl transporters? Judging by the severity of mutant 

phenotypes (Fig. 3.5) and the gene expression levels (Fig. 3.3), Uxt1 is the major transporter of 
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the pair, but loss of both is required to eliminate Xyl incorporation (Fig. 3.1). These data exclude 

the possibility of a third UDP-Xyl transporter of any significance, while highlighting the unequal 

contribution of these two proteins. One factor in this inequity is likely the higher affinity and cat-

alytic efficiency for UDP-Xyl transport of Uxt1 compared to Uxt2 (Fig. 3.2). Another is proba-

bly their distinct regulatory patterns, with UXT1 expressed constitutively, while UXT2 expres-

sion levels is upregulated in response to greater glycan biosynthetic demands (Fig. 3.3). Curious-

ly, expression of the two genes was not optimally regulated to enable compensation in the single 

mutants: expression of UXT1 did not change in response to the loss of UXT2 even in capsule-

inducing conditions, and the normal UXT2 induction was muted in the absence of UXT1 (Fig. 

3.S8). Future studies will address this regulatory relationship.  

 

The distinct roles of Uxt1 and Uxt2 also potentially reflect their association with other glycan 

synthetic proteins, such as glycosyltransferases. We found no evidence of association with spe-

cific xylosyltransferase(s), as for example preferential loss of β-1,2 or β-1,4 linked Xyl in the 

GXM of either mutant (Table 3.S1). However, the full cryptococcal glycan repertoire is not 

known; future studies may enable us to identify specific protein or lipid modifications enabled by 

each enzyme. Another factor in the dominant role of Uxt1 is likely its localization to the Golgi 

(Fig. 3.4B), the probable site of capsule and protein xylosylation (10, 11, 14), in contrast to the 

ER localization of Uxt2 (Fig. 3.4A). The latter is intriguing, as this compartment is upstream of 

most glycan synthesis. It is possible that Uxt2 has transport-independent functions, or that it sup-

plies novel synthetic processes that have yet to be described. These will be exciting areas for fu-

ture investigation.  
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The increased sensitivity to stress (Fig. 3.5A) and greater uptake by host phagocytes (Fig. 3.6A) 

of uxt1Δ were insufficient to alter its behavior in animal infection (Fig. 3.6D). We expected the 

highly impaired double mutant uxt1Δ uxt2Δ, which cannot transport UDP-Xyl into the secretory 

pathway, to behave like strains that cannot synthesize UDP-Xyl (uxs1Δ), which are avirulent and 

completely cleared by 7 days post-infection (38). Surprisingly, this mutant persisted in the lungs 

(Fig. 3.6E), suggesting either a cytosolic role for UDP-Xyl or a UDP-Xyl-independent role for 

Uxs1; these possibilities remain to be investigated.  

 

The double mutant population increased very slowly in both A/JCr and C57BL/6 mice, likely 

due to its slower growth rate under stress (Fig. 3.6C, Fig. 3.S4) and reduced ability to resist host 

defenses (Fig. 3.6A, Fig. 3.6B). Xyl modifications have been identified as immunodominant 

epitopes in antibody responses to allergens and pathogens (39, 40), and the absence of Xyl modi-

fications in uxt1Δ uxt2Δ did increase immune detection and clearance of the pathogen in vitro 

(Fig. 3.6A, Fig. 3.6B). The mutant also remained confined to the lungs of A/JCr mice (Fig. 3.S7) 

and was slow to cause lethal meningoencephalitis in C57BL/6 mice (Fig. 3.S6). This may reflect 

an inability to disseminate or to efficiently establish infection at distal sites, or may be the result 

of active restriction by the immune system. Notably, phagocytes have a multifaceted role in 

cryptococcal infection, potentially aiding and/or inhibiting fungal survival and dissemination de-

pending on the circumstance (35). Elucidating the complex interplay between Uxt mutants and 

the infected host will be the focus of future work. Further studies may also uncover facets of this 

infection that could be exploited for therapeutic intervention and potentially inform vaccine de-

sign. 

 



82 

 

C. neoformans is unusual among yeast for its extensive utilization of Xyl, in capsule polysaccha-

rides, N- and O-linked glycans (including a unique Xyl-phosphate modification), and glycolipids. 

By elucidating UDP-Xyl transport, we have expanded our understanding of this aspect of crypto-

coccal glycan biosynthesis, including the sequence and localization of capsule synthetic events, 

and of NSTs as a protein family. We have identified the first fungal UDP-Xyl/UDP-Galf trans-

porters and also set the stage for studies of an unusual mutant that may help elucidate mecha-

nisms of cryptococcal pathogenesis and host response.   

 

3.5 Materials and methods 

3.5.1 Sequence and phylogenetic analysis  

Uxt1 and Uxt2 were identified by BLASTP searches of known NSTs against C. neoformans pre-

dicted proteins (Broad Institute; Cryptococcus neoformans var. grubii H99 database); the closest 

related sequence was that of the Aspergillus fumigatus UDP-Galf transporter (ACR56866.1). The 

online Phylogeny.fr program (http://www.phylogeny.fr/version2_cgi/index.cgi) with default set-

tings (41, 42) was used for multiple sequence alignment (MUSCLE; (43)), phylogenetic analysis 

(PhyML; (44)), and tree rendering (TreeDyn; (45)) of Uxt1 and Uxt2 and other NSTs. These in-

cluded transporters of UDP-Galf (Aspergillus fumigatus, Af), UDP-Xyl (Homo sapiens, Hs, UXT 

NP_116215.1; Arabidopsis thaliana, At, UXT1 NP_850120.3 (At2g28315), At UXT2 

NP_180604.4 (At2g30460), and At UXT3 NP_172172.2 (At1g06890)), and UDP-

arabinofuranose (At UAfT1 NP_568469.1, At5g25400; At UAfT2 NP_196684.1, At5g11230; At 

UAfT3 NP_194965.1, At4g32390; At UAfT4 NP_180122.1, At2g25520), as well as other cryp-

tococcal (Cn) NSTs.  
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Sequence alignment between Uxt1 and Uxt2 was analyzed using T-coffee 

(http://tcoffee.crg.cat/apps/tcoffee/do:regular) and formatted using Boxshade (http:// 

www.ch.embnet.org/software/BOX_form.html). The protein sequences were analyzed for pre-

dicted localization signals using LocSigDB (http://genome.unmc.edu/ LocSigDB/; (46)).  

 

3.5.2 Cell growth  

C. neoformans strains were grown in YPD medium (1% wt/vol BactoYeast Extract, 2% wt/vol 

BactoPeptone, 2% wt/vol dextrose) at 30 °C with shaking (230 rpm) unless otherwise noted. For 

phenotypic analysis, cells were grown overnight (O/N), washed in sterile phosphate buffered sa-

line (PBS), and diluted to 106 cells/mL in PBS. 4 μL aliquots of serial 5-fold dilutions were plat-

ed and grown at 30 or 37 °C as indicated. The stress conditions tested included YPD containing 

0.01% SDS, 1.2 M NaCl, 1.2 M KCl, Tris pH 8.8, 1.5 M Sorbitol, 0.05% Congo Red (CR), or 

2% Calcofluor White (CFW). To test oxidative and nitrosative stress sensitivity, dilutions were 

spotted onto solid YNB medium (0.67% w/v yeast nitrogen base without amino acids, 2% wt/vol 

glucose, 2% wt/vol agar, 25 mM sodium succinate, pH 4.0) supplemented with 0.5 mM hydro-

gen peroxide (H2O2) or 0.5 mM sodium nitrite (NaNO2). To assess cell-associated melanin pro-

duction, 5 μL of a 106 cells/mL solution was plated on agar plates containing 8 mg/mL KH2PO4, 

2 mg/mL glucose, 2 mg/mL L-glycine, 1 μg/mL D-biotin, 1μg/mL thiamine, 0.92 mg/mL 

MgSO4 7H2O, and 0.4 mg/mL L-3,4-dihydrohyphenylalanine (L-DOPA; Sigma-Aldrich). To 

assay growth, cells were cultured O/N; washed in sterile PBS; resuspended at 105 cells/mL in 30 

mL of YPD, YNB, DMEM, or RPMI; and incubated at 37 °C for 120 h, with triplicate samples 

counted by hemocytometer at various times. 
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3.5.3 C. neoformans strains 

We replaced UXT1 in KN99α (WT) with a nourseothricin (NAT) resistance marker using a split 

marker strategy (47). Transformants of interest were identified by resistance to NAT and validat-

ed by PCR verification of gene replacement. We used a similar strategy to complement the uxt1 

deletion strain at the endogenous locus by replacing the deletion cassette with UXT1 in tandem 

with a G418 resistance marker. Transformants resistant to G418 and sensitive to NAT were veri-

fied by PCR and assessed for reversal of mutant phenotypes (see Results). We generated uxt2Δ 

and UXT2 with an identical approach, using G418 and NAT markers in the deletion and com-

plement constructs, respectively. To obtain an uxt1Δ uxt2Δ double mutant, we crossed the single 

mutants on V8 agar plates (48). Double mutants were selected for by resistance to both drugs and 

verified by PCR amplification. 

 

3.5.4 Capsule induction and visualization 

O/N cultures of C. neoformans were collected by centrifugation, washed twice with sterile PBS, 

diluted to 106 cells/mL in DMEM and incubated at 37 °C in 5% CO2 for 24 h in T-75 tissue cul-

ture flasks or 24-well plates. The cells were then washed and resuspended in PBS, mixed with 

1.5 parts India Ink, and viewed by light microscopy with a ZEISS Axioskop2 MOT Plus micro-

scope (Carl Zeiss Microscopy, LLC). 

 

For antibody detection of cell wall-associated GXM, strains were induced as above for 24 h, 

fixed for 1 h in 3.7% formaldehyde, washed in PBS, and then incubated for 1 h at room tempera-

ture (RT) with 1 mg/mL of anti-GXM monoclonal antibody (mAb) F12D2 or 302 (from Dr. 

Thomas R. Kozel, University of Nevada School of Medicine) conjugated to AlexaFlour 488. 
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Stained cells were washed twice with PBS, resuspended in PBS, and examined on a ZEISS Axi-

oskop 2 MOT Plus microscope.  

 

3.5.5 GXM ELISA 

GXM content of supernatant fractions from cell cultures was quantified by ELISA according to 

previous methods (49), using anti-GXM mAb 339 (from Dr. Thomas R. Kozel, University of 

Nevada School of Medicine). 

 

3.5.6 Glycan isolation and analysis  

GXM was isolated from strains of interest by selective precipitation of culture supernatants with 

hexadecyltrimethylammonium bromide (CTAB) as detailed in (11). For isolation of soluble gly-

coproteins, O/N cultures were diluted into YPD and grown to 107 cells/mL. 2 x 107 cells per 

strain were collected, washed in Tris-EDTA buffer (100 mM Tris pH 8.5, 0.1 mM EDTA pH 

8.0), and resuspended in 40 mL Tris-EDTA buffer with protease inhibitors. Samples were then 

subjected to 15 cycles of bead beating (3 min) alternating with 3 min on ice, which yielded ~75% 

cell lysis (as judged by microscopy). All subsequent steps were performed at 4 °C. Lysates were 

collected, pooled with three 10 mL rinses of the beads, and subjected to a clearing spin (1000 x 

g; 25 min). Supernatant fractions were then transferred to fresh tubes, adjusted to a final concen-

tration of 1% CHAPS, incubated with rocking for 2 h, and subjected to ultracentrifugation 

(75000 x g; 45 min). The CHAPS extract was then dialyzed (8000 Mr) against 2 L of 50 mM 

NH4HCO3 with three buffer changes over 48 h, lyophilized, and washed with 80% acetone to re-

duce detergent and polymeric contaminants.  
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For compositional analysis, per-O-trimethylsilyl (TMS) derivatives of monosaccharide methyl 

glycosides were produced from the GXM samples by acidic methanolysis using methods de-

scribed in (50, 51). Glycosyl composition was then determined by combined gas chromatog-

raphy/mass spectrometry (GC/MS) on an Agilent 7890A GC interfaced to a 5975C MSD (mass 

selective detector, electron impact ionization mode; Agilent Technologies) with a Supelco EC-1 

fused silica capillary column (30 m  0.25 mm ID; Sigma-Aldrich). For linkage analysis, GXM 

samples were permethylated, depolymerized, reduced, and acetylated as described in (7). The 

resultant partially methylated alditol acetates (PMAAs) were then analyzed as above but using a 

30 m Supelco SP-2331 bonded phase fused silica capillary column (Sigma-Aldrich). 

 

3.5.7 Heterologous expression, reconstitution, and transport assays 

The UXT1, UXT2, GMT1, and GMT2 coding regions were amplified from WT cDNA and intro-

duced into the pENTR/SD/D-TOPO vector (Life Technologies) according to the manufacturer’s 

protocols to generate pENTR-UXT1, pENTR-UXT2, pENTR-GMT1, and pENTR-GMT2. Re-

combination of each entry clone with destination vector pYES-DEST52 (Life Technologies) us-

ing LR clonase II (Life Technologies) produced a C-terminal His/V5 epitope fusion that was ver-

ified by sequencing before transformation into S. cerevisiae strain INVSc1 (Thermo Fisher Sci-

entific). Heterologous expression, reconstitution into proteoliposomes, and transport assays were 

performed as previously described in reference (52). UDP-Galf was prepared from UDP-

galactopyranose (UDP-Galp) according to reference (53). Protein expression and incorporation 

was verified by polyacrylamide gel electrophoreses and immunoblot analysis of 2.5 µg of micro-

somes or proteoliposomes using anti-V5 antibody (Thermo Fisher Scientific), also as previously 

described in reference (52). Kinetic parameters were calculated by non-linear regression using 
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the Prism 6 application (GraphPad). The assay was validated, and its sensitivity confirmed using 

the well-characterized GDP-Man transporters Gmt1 and Gmt2 (Fig. 3.S9A). Both proteins trans-

ported GDP-Man and smaller amounts of other GDP-sugars in exchange for GMP and, signifi-

cantly less efficiently, UMP (Fig. 3.S9D, Fig. 3.S9E). 

 

3.5.8 Quantification of nucleotide sugars by mass spectrometry  

Nucleotide sugars were extracted from approximately 50 mg of ground cells (wet weight) as pre-

viously described in reference (54). Four biological replicates were processed per strain and con-

dition, and then analyzed in duplicate by LC-MS/MS using porous graphitic carbon as the sta-

tionary phase on an 1100 series HPLC system (Agilent Technologies) and a 4000 QTRAP 

LC/MS/MS system (Sciex) equipped with a TurboIonSpray ion source as in reference (55). Re-

sults in pmol mg-1 wet weight were converted to concentrations using a cell volume of 47.7 μm3 

(based on the average radius of 107 cells, measured by cellometer (Nexcolom Bioscience LLC; n 

= 3)) and a mass of 4.35 x 10−8 mg/cell (based on weighing a known number of cells; n = 3). 

 

3.5.9 Protein localization  

For expression in S. cerevisiae, UXT1 and UXT2 were amplified from WT cDNA, cloned into 

the copper-inducible expression vector pYEScupFLAGK (26), and transformed using lithium 

acetate into S. cerevisiae strain Sec7-3xGFP (from Dr. Benjamin S. Glick, University of Chica-

go). To generate N-terminal swaps of Uxt1 and Uxt2, we amplified both genes from the start co-

don to the beginning of the first predicted transmembrane domain (UXT1 bp 1-135, UXT2 bp 1-

180) and from the first transmembrane domain until the stop codon (UXT1 bp 136-1032; UXT2 

bp 181-1068), using WT cDNA as a template. We then PCR amplified to fuse the N-terminal 
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region of UXT1 to the transmembrane region of UXT2 and vice versa, cloned each construct into 

pYEScupFLAGK, and transformed into S. cerevisiae Sec7-3xGFP as above. All constructs were 

verified by sequencing.  

 

For localization, cultures were grown O/N in synthetic complete media without uracil (SC-

URA), adjusted to OD 0.5 and 0.5 mM CuSO4, and cultured for an additional hour. The cells 

were then fixed for 30 min in 1% paraformaldehyde, washed and resuspended in 0.1M KPO4/1.2 

M sorbitol, and incubated for 15 min in the same buffer containing β-mercaptoethanol and zymo-

lase (100 μg/mL). 15 μL of the cells were then spotted onto polylysine-coated slides (Electron 

Microscopy Sciences), incubated for 10 min, and plunged into methanol for 5 min followed by 

acetone for 30 sec. The samples were blocked with 5% goat serum in PBS for 30 min, and 

stained O/N at 4 °C with anti-FLAG (Mouse, 1:1000; Invitrogen) and anti-Kar2p/BiP antibody 

(Rabbit, 1:1000; from Dr. Jeff Brodsky, University of Pittsburgh). Finally, cells were incubated 

for 2 h with AlexaFluor 594-tagged goat anti-mouse IgG, AlexaFluor 488-tagged goat anti-rabbit 

IgG (Thermo Fisher Scientific), and DAPI (Thermo Fisher Scientific), and viewed with a ZEISS 

Axioskop2 MOT Plus microscope.  

 

3.5.10  Fungal gene expression  

Wild-type cells cultured O/N in YPD were placed in DMEM capsule-inducing conditions and 

sampled at 0, 1.5, 3, 8, and 24 h for RNA isolation and sequencing as in (56). Additional samples 

were collected at 0 and 24 h for qPCR analysis. Levels of UXT1, UXT2, and the reference gene 

ACT1 were quantified using the CFX96 Real Time System (BioRad). All sample reactions con-

tained 1 μL cDNA (100 ng), 4 μL of each primer (200 nM), and 10 μL SYBR Select Master Mix 
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(Applied Biosystems). qRT-PCR was performed in triplicate for each sample and non-template 

controls (for each set of primers) using 15 min activation and denaturation at 95 °C followed by 

40 cycles of 15 sec at 95 °C, 30 sec at 60 °C, and 30 sec at 72 °C. Baseline and threshold values 

were determined for all reactions using CFX manager software (BioRad) and exported to Mi-

crosoft Excel for additional analysis using the ΔCq method. 

 

3.5.11  Electron microscopy  

Strains were induced for capsule (as above), collected by centrifugation, fixed for 1 h at RT with 

2% glutaraldehyde (Polysciences Inc.) in 100 mM phosphate buffer (pH 7.2), and incubated for 1 

h in 1% osmium tetraoxide (Polysciences Inc.). Cells were then dehydrated with ethanol and 

propylene oxide and embedded in Eponate 12 resin (Tel Pella Inc.). 70 to 90 nm sections were 

cut with an UCT ultramicrotome (Leica Microsystems Inc.) and stained with uranyl acetate and 

lead citrate for visualization with a JOEL 1200EX transmission electron microscope (JOEL Ltd).  

 

3.5.12  Macrophage assays 

Bone marrow macrophages (BMMs) from the femurs and tibiae of C57BL/6 mice (Jackson La-

boratory) was incubated for one week at 37°C and 5% CO2 in BMM medium (20% FBS, 30% 

L-cell supernatant, 1% Penicillin-Streptomycin in RPMI), which was refreshed 4 and 6 days af-

ter plating. Cells were harvested on day 7 by incubation in ice-cold PBS for 10 min and by posi-

tive selection using biotinylated α-F4/80 antibody (eBioscience) and anti-biotin conjugated mag-

netic beads (Miltenyi Biotec). BMMs were then plated in 24-well plates at 3.5 x 105 cells/mL of 

R10 media, and incubated O/N at 37 °C and 5% CO2. On the following day, log-phase fungi 

were collected by centrifugation, washed, and opsonized with mouse serum (40 %) for 30 min at 
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37 °C. The strains were then washed with PBS, resuspended at 3.5 x 104 cells/mL in DMEM, 

and incubated with macrophages for 1 h. Samples were washed twice with PBS, and lysed using 

water either immediately or after 24 h incubation in DMEM at 37 °C and 5% CO2. For CFU 

quantification, the lysates and initial inocula were plated on YPD agar. Results were analyzed 

using one-way analysis of variance (ANOVA) with Tukey’s post-hoc test. For assays distin-

guishing parental and daughter cells, fungi were also stained with Oregon Green 488 dye (2 

μg/mL; ThermoFisher) in 0.1 M sodium bicarbonate (pH 8.0) for 1 h at room temperature prior 

to opsonization and then treated as described above. Following lysis, cells were stained with 

calcofluor white (2 mg/mL PBS) for 30 min before flow analysis with a BD LSRFortessa X-20 

using OneComp eBeads (eBioscience) for compensation controls. Data were analyzed using 

FlowJo (Treestar) and compared using Student’s t-tests. 

 

3.5.13  Animal studies  

Fungal strains were cultured O/N in YPD, washed, and diluted to 106 cells/mL in sterile PBS. 50 

L aliquots of each strain were inoculated intranasally into groups of eight 6- to 8-week-old fe-

male A/JCr (National Cancer Institute) or C57BL/6 (Jackson Laboratory) mice. Infected mice 

were weighed daily and sacrificed if they lost >20% relative to peak weight, or on day 49, 63, or 

100 post infection, whichever came first. Lung, brain, and spleen homogenates were harvested 

and plated for CFU at time of death or indicated time points, and organ burdens were analyzed 

by ANOVA with Tukey’s post-hoc test.  

 

All animal studies were approved by the Washington University Institutional Animal Care and 

Use Committee (Protocol 20140184). All research involving animals was carried out in strict ac-
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cordance with the “Guide for the Care and Use of Laboratory Animals” published by the Nation-

al Research Council and endorsed by the Association for the Assessment and Accreditation of 

Laboratory Animal Care. 
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3.8 Figures 

 

 

Figure 3.1. Capsule characteristics of uxt mutants. (A) Glycan composition of GXM. (B) Cell 

wall and capsule staining with Calcofluor white (CFW; blue) and anti-GXM mAb F12D2 

(green), respectively. Bright field, single channel, and merged images are shown; scale bar = 10 

μm.  
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Figure 3.2. Uxt1 and Uxt2 in vitro transport activities. (A) Immunoblot analysis of microscomes 

(M) and proteoliposomes (P) prepared from S. cerevisiae expressing vector alone (Control) or 

V5-tagged Uxt1 or Uxt2 (2.5 μg protein per lane; S, standards; C, control; 1, Uxt1; 2, Uxt2). (B 

and C) Representative LC-MS/MS spectra of proteoliposomes prepared from (B) control or (C) 

Uxt1-expressing S. cerevisiae cells, preloaded with 30 mM UMP, and incubated with a mixture 



99 

 

of 16 nucleotide / nucleotide sugar substrates (50 µM each, 10 min, 37 °C); Peak 1, UDP-Arap; 

Peak 2, UDP-Xyl; Peak 3, UDP-Araf. (D) Nucleotide sugar uptake into proteoliposomes pre-

loaded with 30 mM UMP. Values were normalized to the total protein content of the proteolipo-

some preparations. Data represent the mean ± SD of n = 4 assays. *, mixture of UDP-GalNAc 

and UDP-GlcNAc. (E and F) Proteoliposomes preloaded with 10 mM UMP were incubated for 2 

min with UDP-Xyl (E) at variable concentrations (0 - 100 μM) or (F) for the indicated times with 

50 μM UDP-Xyl. Values were normalized to the actual NST content in proteoliposome prepara-

tions (Table 3.S4). Data are the mean ± SEM of n = 4 assays. (G) Nucleotide sugar uptake into 

proteoliposomes preloaded with 30 mM GMP analyzed as in (D). 
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Figure 3.3. Transcription of UXT2 but not UXT1 increases during capsule induction. Reads from 

RNA-Seq data (mean  SD) during capsule induction (see Materials and methods) were com-

piled from three independent experiments, each with RNA prepared from three biological repli-

cates as in (56). 
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Figure 3.4. Subcellular localization of Uxt1 and Uxt2. Sec7-3xGFP S. cerevisiae cells trans-

formed with vector alone (Vector) or vector expressing FLAG-tagged Uxt1, Uxt2, or chimeras of 

Uxt1 and Uxt2 were stained with DAPI and probed with the indicated antibodies. Bright field, 

single channel, and merged images are shown (scale bars, 1 μm). Blue, DAPI; red, α-Kar2p/BiP 

to mark the ER (A) or α-GFP to localize the Golgi marker Sec7 (B); green, α-FLAG. Images are 

representative of three independent studies. 
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Figure 3.5. uxt1Δ and uxt1Δ uxt2Δ mutants exhibit growth and capsule defects. (A) 5-fold serial 

dilutions of the indicated strains, grown on the indicated media at 37 °C and photographed after 

three days. uxs1Δ is included as a control. (B and C) The indicated strains were placed in cap-

sule-inducing conditions (see Materials and methods) for 24 h, and then visualized by light mi-

croscopy after negative staining with India ink (B, scale bar = 5 μm) or by electron microscopy 

(C, scale bar = 0.5 μm). Additional EM images are provided in Fig. 3.S5D. 
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Figure 3.6. UDP-Xyl transport is required for host interactions and virulence. (A) Percent phag-

ocytosis (engulfed fungi/initial inoculum) of opsonized fungi. (B) Fold-change in colony-

forming units (CFU) 24 h:0 h after internalization. (C) Proportion of daughter cells in the popula-

tion of WT (dashed line) and uxt1Δ uxt2Δ (black line) cells incubated with BMMs for 0, 24, and 

48 h. Data are the mean ± SEM of three independent experiments. *, p < 0.05 by (A, B) one-way 

ANOVA with Tukey’s post hoc test or (C) Student t-test. (D) Survival of A/JCr mice after in-

tranasal inoculation with 5 × 104 cells of the indicated strains (n = 8-9). (E) Lung CFU of infect-

ed mice at the time of death (for WT, uxt1Δ, uxt2Δ, and complemented mutants; n = 8) or at the 

indicated time points (for uxt1Δ uxt2Δ; n = 3). Open circles, individual mice; black bar, mean; 

dashed line, initial inoculum. **, p < 0.01 by one-way ANOVA with Tukey’s post hoc test. 
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3.9 Supplementary materials 
 

 

Figure 3.S1. Conservation of cryptococcal nucleotide sugar transporters. (A) Protein sequence 

alignment of Uxt1 and Uxt2 (CNAG_02036 and CNAG_03695) with conserved residues high-

lighted (black, identical residues; grey, conserved substitutions). (B) Phylogenetic relationships 

of C. neoformans (Cn) NSTs (including Uxt1 and Uxt2, in bold), and UDP-Xyl, UDP-Galf, and 

UDP-Arap transporters from other organisms (Hs, Homo sapiens; Af, Aspergillus fumigatus; At, 
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Arabidopsis thaliana) using MUSCLE, PhyML, and TreeDyn software (see Materials and meth-

ods). Branch lengths are drawn to scale.   
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Figure 3.S2. uxt1Δ uxt2Δ is recognized by Xyl-independent capsule antibodies. Cells from the 

indicated strains were incubated with calcofluor white (CFW; blue) to stain the cell wall and an-
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ti-GXM mAb 302 to visualize the capsule (green). Bright field, single channel, and merged im-

ages are shown; scale bar = 10 μm. cap59Δ is an acapsular strain included as a control. 
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Figure 3.S3. Uxt1- and Uxt2-mediated UDP-Galf uptake into proteoliposomes. (A) LC-MS/MS 

analysis of UDP-Galf prepared from UDP-Galp utilizing E. coli UDP-galactopyranose mutase 

(GLF). (B - D) Proteoliposomes prepared from S. cerevisiae expressing vector alone (B), Uxt1 

(C), or Uxt2 (D) were preloaded with 30 mM UMP, and analyzed by LC-MS/MS after a 10 min 

incubation with 700 μM UDP-Galp and 10 μg purified GLF. Based on mass and retention time, 

the minor peak between UDP-Galp and UDP-Galf is likely UDP-Glc, presumably present in the 

reaction starting material. (E and F) Quantification of nucleotide sugar uptake into proteolipo-
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somes preloaded with 30 mM UMP (E) or 30 mM GMP (F). Amounts were calculated using a 

UDP-Galp standard and normalized to the total protein content of the proteoliposome prepara-

tions, and the mean ± SD of four assays are plotted. All assays were performed at 37 °C. 
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Figure 3.S4. uxt1Δ uxt2Δ growth is restricted at 37 °C. The indicated C. neoformans strains 

were grown overnight at 30 °C in YPD, diluted to 105 cells/mL in the media indicated, and incu-

bated at 37 °C with 5% CO2. The results shown are the averages of three measurements. Black, 

WT; red, uxt1Δ; green, UXT1; purple, uxt2Δ; blue, UXT2; grey, uxt1Δ uxt2Δ (continuous and 

dashed lines, representing three independently obtained double deletion strains). 
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Figure 3.S5. Morphological defects of uxt1Δ uxt2Δ. Induced cells were stained with India Ink, 

and the radius of the capsule (A) and diameter of the cell body (B) were measured using ImageJ 

(100 cells counted per strain; mean  SEM of three biological replicates). (C) GXM shed from 

equal numbers of each of the indicated strains was quantitated by ELISA (see Materials and 
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methods). Data is the mean ± SEM of three independent experiments. *, p < 0.05, one-way 

ANOVA with Tukey’s post-hoc test. (D) Electron micrographs of the indicated strains induced 

for capsule as in Fig. 5. Two representative images are displayed for each strain. Scale bar = 0.5 

μm. 
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Figure 3.S6. uxt1Δ uxt2Δ is severely attenuated for virulence in C57BL/6 mice. Survival of 

C57BL/6 mice after intranasal inoculation with 5 × 104 cells of WT (n = 5) or uxt1Δ uxt2Δ (n = 

19). C57BL/6 mice naturally skew towards a non-protective Th2-type response, which increases 

their susceptibility to cryptococcal infection compared to A/JCr mice (57). 
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Figure 3.S7. uxt1Δ uxt2Δ does not colonize extrapulmonary sites. Brain (A) and spleen (B) 

CFUs of infected A/JCr mice at the time of death (for WT, uxt1Δ, uxt2Δ, and complemented mu-

tants; n = 8) or at the indicated time points (for uxt1Δ uxt2Δ; n = 3). Open circles, individual 

mice; black bar, mean; dashed line, initial inoculum. **, p < 0.01 by one-way ANOVA with 

Tukey’s post hoc test. 
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Figure 3.S8. UXT1 and UXT2 transcription levels. Expression of UXT1 and UXT2 measured by 

qRT-PCR with RNA prepared from the indicated strains after growth in nutrient rich (YPD) or 

capsule-inducing conditions (DMEM, 37 °C and 5% CO2). Values are normalized to the WT 

sample grown in YPD and are the mean ± SEM of six biological replicates. 
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Figure 3.S9. Nucleotide sugar uptake into Gmt1- and Gmt2- containing proteoliposomes. (A) 

Immunoblot analysis of microsome (M) and proteoliposome (P) preparations from S. cerevisiae 

expressing vector only (Control) or V5-tagged Gmt1 or Gmt2 (2.5 μg protein per lane; S, molec-

ular weight standards; C, control; 1, Gmt1; 2, Gmt2). (B and C) Representative LC-MS/MS 

spectra of GMP-preloaded proteoliposomes (B, Control; C, Gmt1) incubated for 10 min at 37 °C 
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with a mixture of 16 nucleotide/nucleotide sugar substrates, each 50 mM. Peak 1, GDP-Man; 

Peak 2, GDP-Glc; Peak 3, GDP-fucose (D and E) Quantification of nucleotide sugar uptake into 

proteoliposomes preloaded with (D) 30 mM GMP or (E) 30 mM UMP. Data were normalized to 

the total protein content of the proteoliposome preparations and show the mean ± SD of four as-

says. These results are consistent with prior studies (21, 30) and yield new information about 

Gmt substrate specificity. 
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Table 3.S1. Methylation analysis of GXM for the indicated strains.a  

 WT uxt1Δ UXT1 uxt2Δ UXT2 uxt1Δ uxt2Δ 

t-Man 0.4 0.1 0.1 0.3 0.1 0.5 

3-Man 42 66 47 51 39 80b 

2,3-Man 53 33 48 45 54 18 

3,4-Man 0.8 0.4 0.6 0.8 1.4 0.8 

2,3,4-Man 3.4 0.4 4.5 2.5 4.1 0.0 

 
a Values reported as percent of total mannose linkages to facilitate comparison. 
b This product primarily reflects backbone substitution with GlcA.  

 

 

 

 

Table 3.S2. Staining and stress sensitivity of Cryptococcus neoformans strains. 

           Anti-GXM 

mAbs 
Cell wall staininga Cell growthb 

 

Strain 
2H1 3C2 CFW ConA EosinY Pont YPD 

2% 

CFW 

0.05% 

CR 

0.01% 

SDS 

1.5 M 

Sorbitol 

WT + + + + + + + + + + + 

uxt1Δ + + + + + + + + + + + 

UXT1 + + + + + + + + + + + 

uxt2Δ + + + + + + + + + + + 

UXT2 + + + + + + + + + + + 

uxt1Δ uxt2Δ - - + + + + + + + + + 

uxs1Δ - - NTc NT NT NT + + + + + 

 
a The indicated strains were stained with anti-GXM mAbs 2H1 or 3C2, CFW (binds chitin), 

ConA (binds mannoproteins), Eosin Y (binds chitosan), or Pontamine (binds unspecified cell 

wall components) as in Materials and methods. 
b All growth conditions were assayed at 30°C. 
c NT, not tested 
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Table 3.S3. Nucleotide sugar contents of Cryptococcus neoformans strains.a  

Compound Wild type uxt1Δ UXT1 uxt2Δ UXT2 
uxt1Δ 

 uxt2Δ 
uxs1Δ 

UDP-α-D-Xyl    1 ± 0b 3 ± 1   2 ± 1   1 ± 0   1 ± 0 6 ± 3 NDc, d 

UDP-α-D-Glc 16 ± 2 55 ± 17 26 ± 7 23 ± 6 21 ± 6 46 ± 21 50 ± 9 

UDP-α-D-GlcA   4 ± 1 4 ± 2   5 ± 1   6 ± 1   5 ± 2 0 ± 0    400 ± 105c 

UDP-α-D-Gal   1 ± 0 4 ± 3   2 ± 1   1 ± 1   1 ± 1 3 ± 3   4 ± 3 

 

a Levels of UDP-α-D-Galf, UDP-α-D-Arap, and UDP-α-D-Araf were below the limit of detec-

tion. 

b Values are given in pmol mg-1 wet weight and represent the average of n = 4 (± SEM). Estimat-

ed cell volume was used to convert values to μM (see Materials and methods for details).  
b ANOVA, p ≤ 0.01.  
c ND, below limit of detection. 

 

 

 

 

Table 3.S4. Uxt1 and Uxt2 content of proteoliposomes used for transport assays.  

 

a Amount was estimated using LC-MS/MS (MRM) quantitation of a C-terminal peptide 

(SRGPFEGKPIPNPLLGLDSTR) and interpreted based on the molecular mass (including V5-

tag and 6-His tags) estimated using the Compute pI/Mw tool at ExPASy 

(http://web.expasy.org/). 
 

b Values represent the mean ± SD of n = 3. 

 

 

 

 

 Molecular Mass (Da) fmola/5 µg ng/5 µg Total protein (%) 

Uxt1 42442.2 501.8 ± 2.0b 21.3 ± 0.1b 0.43 ± 0.00b 

Uxt2 43535.4 116.2 ± 5.9b   5.1 ± 0.3b 0.10 ± 0.01b 
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4.1 Introduction 

Cryptococcus neoformans is a ubiquitous environmental fungus that causes pneumonia and men-

ingitis. This opportunistic pathogen infects over a million individuals each year, with overall 

mortality exceeding 20% (1-3). Patient immune status is the main determinant of infection out-

come, highlighting the importance of host immune responses in the control of cryptococcosis. 

 

C. neoformans infection begins when the organism is inhaled, followed by its proliferation in the 

lungs. This pulmonary infection may then disseminate to the brain, where it causes a frequently 

lethal meningoencephalitis. In the lungs, C. neoformans first interacts with host phagocytes, in-

cluding macrophages and dendritic cells, which can engulf the fungus and present antigen to ini-

tiate the adaptive immune response. The protective immune response to C. neoformans, howev-

er, is primarily T cell mediated. Specifically, T helper cell type 1 (Th1) responses are protective 

against C. neoformans (4), although T helper type 17 (Th17) responses may also play a role by 

facilitating pathogen clearance at mucosal surfaces (5-7). In contrast, Th2 responses are associat-

ed with a non-protective immune response leading to fungal growth and dissemination to the 

CNS (8, 9). The induction of these non-protective responses is not well understood, but crypto-

coccal glycans may contribute to this process (10). 

 

Glycan structures facilitate antigen recognition, immune activation, or immune regulation in 

multiple organisms (11). In C. neoformans the major virulence factor, a polysaccharide capsule, 

modulates the immune response by multiple mechanisms (12, 13). The capsule is composed of 

primarily of two large polysaccharides, glucuronoxylomannan (GXM) and glucuronoxylo-

mannogalactan (GXMGal) (14, 15). One major component of both polymers is xylose (Xyl), 
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which comprises almost one fourth of the polysaccharide capsule mass (16). Xylose also occurs 

in cryptococcal glycolipids (17) and as both Xyl and Xyl-phosphate modifications of protein-

linked glycans (18-20). We demonstrate here that Xyl plays an important role in the immune 

recognition of, and response to, C. neoformans.  

 

The incorporation of Xyl into cryptococcal glycan structures occurs in the secretory pathway, via 

enzyme reactions that use the substrate molecule UDP-Xyl. This xylose donor is imported into 

the synthetic compartment by two transporters, termed Uxt1 and Uxt2 (21). A mutant strain that 

lacks both transporters (uxt1Δ uxt2Δ) exhibits defects in glycosylation, including incomplete 

synthesis of capsule polysaccharides, and is avirulent in mouse models of infection. Surprisingly, 

this strain persists in the lungs of infected mice, despite its avirulence. In pursuing the mecha-

nism of this persistence, we observed the formation of inducible bronchus associated lymphoid 

tissue (iBALT) in the lungs of both uxt1Δ uxt2Δ and wild-type (WT) infected mice, although the 

characteristics of this tissue differed. In the mutant strain, where mice experience a long-term 

asymptomatic infection rather than a rapid and lethal one, iBALT formation was delayed. How-

ever, once formed, the iBALT appeared better organized and successfully controlled the infec-

tion, unlike the case when mice were infected with fully xylosylated WT C. neoformans. To-

gether, our results suggest that luminal Xyl modifications of cryptococcal glycoconjugates inhib-

it the immune recognition and activation that are required to control infection. 

   

4.2 Results 

4.2.1 UDP-xylose transport is required for cryptococcal virulence and  

dissemination 
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We previously observed that a C. neoformans strain lacking UDP-Xyl transporters (uxt1Δ uxt2Δ) 

was highly attenuated in virulence compared to the WT parental strain KN99α, yet persisted in 

the lungs of asymptomatic mice for at least 100 days after infection (21). To probe the mecha-

nism responsible for this chronic infection, we first examined the kinetics of fungal burden in 

mice after intranasal inoculation with each strain. In A/JCr mice infected intranasally with WT 

fungi, we observed a rapid and significant rise in pulmonary fungal burden (Fig. 4.1A), along 

with significant dissemination to the spleen (Fig. 4.1B) and brain (Fig. 4.1C); these mice typical-

ly succumb to infection roughly 18 days post-infection (dpi). In contrast, the pulmonary burden 

in uxt1Δ uxt2Δ-infected mice increased only gradually from initial inoculum levels to a modest 

peak at 63 dpi (Fig. 4.1A). Colony-forming units in the lung then gradually declined, with clear-

ance in 30% of the mice by 189 dpi (Fig. 4.1A). This infection was not limited to the lungs, alt-

hough only a fraction of the mice had measurable uxt1Δ uxt2Δ cells in the spleen (Fig. 4.1B) and 

brain (Fig. 4.1C) at any time during infection. Furthermore, this limited dissemination was only 

observed at the times of highest lung burden (63 and 126 dpi), with no fungi detected in distal 

sites by 189 dpi (Fig. 4.1B, Fig. 4.1C). These results suggest that the A/JCr mice would eventual-

ly clear the uxt1Δ uxt2Δ infection.  

 

4.2.2 Induction of a Th2 cytokine response is independent of cryptococcal  

xylosylation  

We next sought to identify the mechanism(s) responsible for the protracted, although ultimately 

successful, host clearance of uxt1Δ uxt2Δ infection. As summarized above, protection against C. 

neoformans is generally associated with a Th1-type immune response, characterized by the pro-

duction of interleukin (IL)-2, IL-12, interferon gamma (IFN-γ), and tumor necrosis factor alpha 
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(TNF-α). In contrast a Th2-type immune response to cryptococcal infection (characterized by the 

production of IL-4, IL-5, IL-10, and IL-13) is generally detrimental (22) and is associated with 

dissemination to the central nervous system (4, 22). 

 

We hypothesized that the increased survival of mice infected with the mutant cryptococci re-

flected an alteration in the immune response elicited by pulmonary infection. To test this hypoth-

esis, we analyzed cytokine levels over time in lung homogenates from mice infected with WT or 

uxt1Δ uxt2Δ (Fig. 4.1). Infection with the WT strain induced a strong Th2-type response with 

significant induction of IL-4 and IL-5 over the 15 days prior to sacrifice (Fig. 4.1D, Fig. 4.1E). 

In contrast, while infection with uxt1Δ uxt2Δ elicited a more quiescent cytokine response in the 

comparable early stages of infection. Furthermore, by the time of peak fungal burden in uxt1Δ 

uxt2Δ-infected mice (day 63, Fig. 4.1A), there was a significant increase in the T cell polarizing 

cytokine, IL-12p40, over the level observed in naïve lungs (Fig. 4.1F). IL-12p40 levels subse-

quently slowly decreased, along with fungal burden (Fig. 4.1F). Levels of IFNγ and TNFα (Fig. 

4.1G, Fig. 4.1H) were showed little difference from those in the lungs of naïve mice, although 

IL-17a trended higher at the point of peak infection (Fig. 4.1I). Overall, while WT infection in-

duced non-protective Th2 responses, infection with uxt1Δ uxt2Δ failed to do so (even at peak 

fungal burden), while exhibiting sustained induction of IL-12p40 and an increase in IL-17a. 

 

4.2.3 Inducible bronchial-associated lymphoid tissue develops following  

cryptococcal infection  

The differences we observed in fungal burden and cytokine levels between mutant and WT in-

fection suggested alterations in the immune response at the cellular level. To test this, we per-
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formed quantitative histopathology on lungs from WT-infected mice at day 15 and uxt1Δ uxt2Δ-

infected mice on days 15 and 189. The mutant-infected animals showed significantly reduced 

lung inflammation at both time points (Fig. 4.2A), consistent with the more quiescent cytokine 

response reported above (Fig. 4.1). We also noted lymphocytic accumulations proximal to the 

basal side of the bronchial epithelium in both mouse populations (Fig. 4.2B). The lymphoid pop-

ulations within these structures were organized into B cell germinal centers surrounded by CD3+ 

T cell cuffs (B220Lo; Fig. 4.2C). These inflammatory foci were consistent with inducible bron-

chus-associated lymphoid tissue (iBALT) (23).  

 

iBALT is a tertiary lymphoid tissue that forms in the lung. Its structure resembles that of second-

ary lymphoid organs like lymph nodes, consisting of two zones: the B cell follicle and the T cell 

zone (24). The B cell follicle contains follicular B cells and is associated with the production of 

CXCL13. It is surrounded by a zone of T cells that contains CD4 and CD8 T cells as well as 

dendritic cells (DCs) (24). At 15 days after infection with WT cryptococci, we observed numer-

ous highly developed iBALT structures, with clear B cell follicles surrounded by T cells (Fig. 

4.2C, Fig. 4.2D). In contrast, uxt1Δ uxt2Δ infected animals exhibited significantly fewer, less 

well-developed, B cell follicles at the same time point (Fig. 4.2C, Fig. 4.2D). By 189 dpi, how-

ever, uxt1Δ uxt2Δ-induced iBALT were well-organized structures that, although still less abun-

dant than the 15 dpi WT iBALT (Fig. 4.2D), were larger (Fig. 4.2E) and even contained 

IgG+ plasma cells (Fig. 4.2C). Early in uxt1Δ uxt2Δ infection the reduced formation of these 

iBALT structures was accompanied by increased peri-vascular cuffing of T cells (Fig. 4.2F) and 

lower production of CXCL13 (Fig. 4.2G, Fig. 4.2H), which is required for iBALT structure for-

mation and organization (23). By a late time point in this protracted developmental process, 
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however, reduced T cell cuffing (Fig. 4.2F) and increased CXCL13 expression (Fig. 4.2G, Fig. 

4.1H) were evident. 

 

4.2.4 Cryptococcal-induced iBALT recruits increased T and B cells at late 

time points 

To further define the host immune response to uxt1Δ uxt2Δ, we used flow cytometry to charac-

terize leukocyte populations in the lungs of mice infected with WT or uxt1Δ uxt2Δ cells. By 12 

to15 dpi the fraction of leukocytes that were B (Fig. 4.3A) or T cells (CD4+ and CD8+; Fig. 4.3B, 

Fig. 4.3C) in uxt1Δ uxt2Δ-infected mice significantly exceeded those of WT-infected mice and 

continued to rise as infection progressed. The total numbers of cells in these populations re-

mained elevated through 126 dpi (Fig. 4.3A-C, right), although they subsequently declined, con-

sistent with the decreased average T cell cuff size of iBALT at 189 versus 15 dpi (Fig. 4.2F).  

 

4.2.5 Survival of uxt1Δ uxt2Δ-infected mice is dependent on T cells 

To test the role of T and B cells in the prolonged survival of uxt1Δ uxt2Δ-infected mice, we ex-

amined whether ablation of these cell types altered the course of infection. For these studies we 

used mouse lines in the C57BL/6 background, so this strain was included as a control; these mice 

are less resistant to C. neoformans than the A/JCr mice used above (25), as shown by their even-

tual susceptibility to uxt1Δ uxt2Δ infection (Fig. 4.3D, solid black line). We found that Rag1-/- 

mice were significantly more susceptible to uxt1Δ uxt2Δ infection than controls, succumbing by 

55 dpi (Fig. 4.3D; solid blue line).  
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Since Rag1-/- mice lack both T and B cells, we also infected mice deficient in either T cells 

(TCRβ -/-) or B cells (μMT). B cell deficient mice exhibited a more protracted course of disease 

than Rag1-/-, succumbing over an 85-day period (Fig. 4.3D, solid green line). Mice lacking T 

cells alone, however, succumbed to uxt1Δ uxt2Δ infection with kinetics similar to those of the 

Rag1-/- mice (Fig. 4.3D, solid red line). In contrast, all mice inoculated with WT C. neoformans 

succumbed by 20 dpi (Fig. 4.3D; dashed lines). Rag1-/- and TCRβ-/- mice still succumbed slight-

ly faster than C57BL/6 and μMT mice, (Fig. 4.3D). Together, these data show that T cells are the 

prominent cell type responsible for the increased survival of uxt1Δ uxt2Δ-infected mice, alt-

hough B cells may play a role in protection. 

 

4.2.6 Lack of luminal xylose modification in C. neoformans stimulates DC  

activation 

DCs are critical for induction of a protective immune response against C. neoformans (26), and 

DC activation and cytokine production are required for iBALT formation and maintenance (24). 

During iBALT formation, antigen-triggered activation of DCs and their consequent cytokine 

production is responsible for T and B cell recruitment (24); this could potentially induce both the 

observed increase in these cell populations and the protective effect of the T cells during crypto-

coccal infection. We tested DC interactions with WT cells, which exhibit Xyl modification of 

antigens, and uxt1Δ uxt2Δ cryptococci, which lack these modifications. We also tested single 

uxtΔ mutants: uxt1Δ shows an intermediate level of Xyl utilization while uxt2Δ is similar to WT 

(21). In these assays, we measured the ability of heat-killed fungi to stimulate DC production of 

pro-inflammatory cytokines, comparing WT, uxt1Δ uxt2Δ, single uxt mutants, uxs1Δ (which 

lacks all Xyl modification because it cannot synthesize UDP-Xyl), and an acapsular control 
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strain (cap59Δ) which has been shown to induce a potent DC response (27). We found that 

BMDCs co-incubated with uxt1Δ uxt2Δ cells released high levels of IL-1β, IL-6, and TNF-α, 

similar to levels following treatment with a completely acapsular control strain, cap59Δ (Fig. 

4.4A-C). In contrast, individual uxt mutants and uxs1Δ induced IL-1 and IL-6 levels similar to 

those induced by WT fungi (close to background levels; Fig. 4.4A, Fig. 4.4B). TNF-α similarly 

showed the greatest response upon challenge with uxt1Δ uxt2Δ, with levels like those induced by 

an acapsular strain, although some increase was also noted with other xylose-deficient strains 

(uxt1Δ and uxs1Δ). These results suggest that early interaction with DCs and consequent induc-

tion of proinflammatory cytokines are regulated by Xyl expression in Cryptococcus.   

 

4.3 Discussion 

Here we report that iBALT forms during C. neoformans infection, although this process does not 

prevent mice from succumbing to the disease. Notably, the iBALT observed in our experimental 

infections resembles subpleural nodules that have been reported in cryptococcosis patients (28), 

although further histological examination would be necessary to support this relationship. The 

only other fungus reported to induce iBALT is Pneumocystis (23). 

 

When we infected mice with mutant fungi unable to use Xyl for luminal glycoconjugate synthe-

sis (uxt1Δ uxt2Δ), we observed a delay in the organization of the iBALT structures and in fungal 

accumulation. When uxt1Δ uxt2Δ burden did peak, it was accompanied by a rise in IL-12p40 

(Fig. 4.1F), a cytokine normally required for inducing a protective response against C. neofor-

mans (29), which may have facilitated resolution of the uxt1Δ uxt2Δ infection. A change in IL-

12p40 level might reflect an increase in either IL-23 or IL-12 (30), which stimulate a Th17 or 
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Th1 type response, respectively; the former is required for iBALT formation (23). Since we saw 

no difference in IFN-γ levels, IL-12p40 is more likely associated with a Th17 response. We did 

observe a trend towards increased IL-17 levels when uxt1Δ uxt2Δ burden was the highest, which 

was absent in WT-infection.  

 

DCs reacted more strongly to uxt1Δ uxt2Δ than to WT in vitro, releasing greater amounts of pro-

inflammatory cytokines (Fig. 4.4A-C). These may directly or indirectly lead to the increased re-

cruitment of T and B cells in uxt1Δ uxt2Δ infection (Fig. 4.3A-C), which are subsequently orga-

nized into germinal centers (Fig. 4.2). Such differences in development may confer distinct prop-

erties on the iBALT induced by WT and uxt1Δ uxt2Δ, influencing their ability to respond to C. 

neoformans.  

 

We expected that the highly immunostimulatory behavior of uxt1Δ uxt2Δ in vitro reflected its 

lack of Xyl modifications on secreted glycoconjugates, a consequence of the lack of UDP-Xyl 

transport into the secretory compartment. We were surprised, therefore, that mutants unable to 

synthesize UDP-Xyl (uxs1Δ), which similarly lack Xyl modifications on secreted glycoconju-

gates, did not phenocopy this broad and robust DC response. This suggests that Uxs1 itself is re-

quired for the strong response seen in the absence of xylosylation in the secretory pathway. It 

may be that this protein plays additional roles unrelated to glycosylation, or that the stimulatory 

component is dependent on cytosolic UDP-Xyl, rather than UDP-Xyl that has been transported 

into the secretory pathway. 

 



130 

 

Unlike encapsulated strains, mutants lacking capsule induce the upregulation of multiple genes 

involved in cytokine responses as well as in antigen processing and presentation by DCs (31). 

Interestingly, the cytokine levels induced in DC by the uxt1Δ uxt2Δ mutant were similar to those 

induced by the acapsular mutant cap59Δ (Fig. 4.4A-C). Xyl may thus be critical for the immune 

suppressive effects normally exerted by capsule material. The mechanisms behind the robust DC 

activation seen in these two mutants, including the cellular receptors and fungal components re-

sponsible, remain to be determined.  

 

Control of uxt1Δ uxt2Δ infection requires both T and B cells (Fig. 4.3D), which suggests that 

iBALT formation may play a key role in restricting disease. Even in the absence of T and B 

cells, however, mutant-infected mice still survived more than twice as long as WT-infected ani-

mals (Fig. 4.3D); this may be due to slower growth of the mutant, which we have previously ob-

served (21). 

 

We have found that C. neoformans infection induces iBALT formation, although this is insuffi-

cient to protect against wild-type fungal infection. Inoculation with a uxt1Δ uxt2Δ strain, howev-

er, induced similar lymphoid structures, which do appear to restrict infection despite delayed or-

ganization in this context. In vitro, these mutants induced DCs to release much higher levels of 

proinflammatory cytokines than WT fungi. This is presumably a consequence of the lack of sur-

face Xyl modification, suggesting a role for this residue in the immunosuppressive character of 

capsule polysaccharides or other surface exposed or secreted glycoconjugates. By influencing the 

dynamics of the inflammatory process, we may be able exploit this response to help control in-

fection and use this information to help guide novel therapies.  
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4.4 Materials and methods 

4.4.1 Fungal strains 

C. neoformans strains (Table 4.S1) were grown at 30 °C in YPD medium (1% [wt/vol] yeast ex-

tract, 2% [wt/vol] peptone, 2% [wt/vol] dextrose) with shaking (230 rpm) or on YPD agar plates 

(YPD medium with 2% [wt/vol] agar) supplemented with the following antibiotics as appropri-

ate: 100 μg/ml nourseothricin (NAT; Werner BioAgents) or Geneticin (G418; Invitrogen).   

 

4.4.2 Mice 

C57BL/6J and A/JCr mice were from Jackson Laboratory. Rag1-/-, TCRβ-/-, and μMT mice (all 

on C57BL/6 background) were generously provided by Dr. Michael Diamond (Washington Uni-

versity School of Medicine) and Dr. Wayne Yokoyama (Washington University School of Medi-

cine); breeders were originally purchased from Jackson Laboratory. All mice were 6- to 8-weeks 

old at the time of infection. A/JCr mice were female; male and female mice were used for the 

other strains with gender and age matched C57BL/6 controls.  

 

4.4.3 Ethics statement  

All animal protocols were reviewed and approved by the Animal Studies Committee of the 

Washington University School of Medicine and conducted according to National Institutes of 

Health guidelines for housing and care of laboratory animals.  
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4.4.4 C. neoformans inoculation 

Fungal strains were cultured overnight (O/N) and diluted to 106 cells/mL in sterile PBS. Mice 

were intranasally inoculated with a 50 L aliquot, and then weighed daily. Infected mice were 

sacrificed if they lost >20% relative to peak weight or at specified time points. At the time of 

sacrifice, mice were perfused intracardially with 10 mL sterile PBS, and organs were processed 

as described below for fungal burden, flow analysis, and cytokine measurements.   

 

4.4.5 Organ burden and cytokines 

Brain and spleen homogenates were harvested and plated for CFU at the specified time points. 

50 μL aliquots of the left lung homogenates (VT = 1 mL) were similarly plated for CFUs. The 

remaining sample was assayed for pulmonary cytokine levels using the Bio-Plex Protein Array 

System (Bio-Rad Laboratories). Briefly, the lung homogenates were mixed with an equal volume 

of PBS/0.1% Triton 100x/2x protease inhibitor (Pierce EDTA-free protease inhibitor; Thermo 

Scientific), vortexed for 3 seconds, and clarified by centrifugation (2500 x g, 10 min). Superna-

tant fractions were then assayed using the Bio-Plex Pro Mouse Cytokine 23-Plex (Bio-Rad La-

boratories) for the presence of IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12 

(p40), IL-12 (p70), IL-13, IL-17A, granulocyte colony stimulating factor (G-CSF), granulocyte 

monocyte colony stimulating factor (GM-CSF), interferon-γ (IFN-γ), CXCL1/keratinocyte-

derived chemokine (KC), CCL2/monocyte chemotactic protein-1 (MCP-1), CCL3/macrophage 

inflammatory protein-1α (MIP-1α), CCL4/MIP-1β, CCL5/regulated upon activation normal T 

cell expressed and secreted (RANTES), and tumor necrosis factor-α (TNF-α). 
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4.4.6 Immunofluorescence staining and histologic analysis 

Mice were perfused with sterile PBS, and the lungs inflated with 10% formalin. Lung tissue was 

then fixed O/N in 10% formalin, and submitted to the Washington University Developmental 

Biology Histology Core for paraffin-embedding, sectioning, and staining with H&E. Immuno-

fluorescence staining for germinal center B cells (APC-conjugated rat anti-mouse CD45R/B220, 

clone RA3-6B2, BD Biosciences), T cell cuffing (CD3-ε, clone M-20, Santa Cruz Biotechnolo-

gy), and CXCL13-producing cells (goat α-mouse CXCL13, AF470, R&D Systems) was per-

formed as in reference 23. Images were collected with a Zeiss Axioplan2 microscope, and lung 

structures were quantitated in a blinded manner using the outline tool in Zeiss Axiovision.  

 

4.4.7 Flow analysis  

The right lung of individual mice was enzymatically digested (in 5 mL RPMI with 1 mg/mL col-

lagenase type IV) at 37 °C with shaking (230 rpm) for 30 min, and then sequentially passed 

through sterile 70 and 40 µm pore nylon strainers (BD Biosciences, San Jose, CA). Red blood 

cells in the samples were lysed by treatment for 3 min on ice with 5 mL ammonium-chloride-

potassium lysing buffer (8.024 g/L NH4Cl, 1.001 g/L KHCO3, and 2.722 mg/L EDTANa2 

2H2O) followed by the addition of 2 volumes of PBS. The remaining cells were pelleted (1000 x 

g, 5 min, 4 °C), washed twice with PBS, diluted to 106 cells/mL in PBS, and stained with 

LIVE/DEAD fixable blue dead cell stain (1:1000; Thermo Scientific). Following incubation in 

the dark for 30 min at 4 °C, cells were washed with PBS and FACS buffer (2% fetal bovine se-

rum in PBS) before resuspension in FACS buffer. Samples were then treated with CD16/CD32 

(1:500; Fc Block™; BD Biosciences) for 5 min and incubated for 30 min with optimal concen-

trations of fluorochrome-conjugated antibodies (Table 4.S2) diluted in Brilliant Stain Buffer (BD 
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Biosciences). After three washes with FACS buffer, the cells were fixed in 2% formalde-

hyde/FACS buffer. For data acquisition, >50,000 events were collected on a BD LSRFortessa X-

20 flow cytometer (BD Biosciences), and the data were analyzed with FlowJo V10 (Fig. 4.S1; 

TreeStar). The absolute number of cells in each leukocyte subset was determined by multiplying 

the absolute number of CD45+ cells by the percentage of cells stained by fluorochrome-labeled 

antibodies for each cell population analyzed.    

  

4.4.8 Isolation of bone marrow derived cells 

Bone marrow was flushed from the femurs and tibiae of C57BL/6 mice using RPMI. Cells were 

collected (1000 x g, 5 min, 4 °C), resuspended in RPMI, and counted by hemocytometer. To 

prepare bone marrow derived dendritic cells (BMDCs), 2 x 106 bone marrow cells were plated in 

10 mL R10 medium (10% FBS, 0.4% Penicillin-Streptomycin, 2 mM L-glutamate, 50 μM 2-β-

mercaptoethanol in RPMI) supplemented with 1 ng/mL GM-CSF, and incubated at 37 °C and 

5% CO2. Medium was changed 3 and 6 days after plating, and cells were harvested on day 8. 

BMDCs were enriched by depletion of BMMs using biotinylated α-F4/80 antibody (eBioscience) 

and anti-biotin conjugated magnetic beads (Miltenyi Biotec). The BMDCs in the flow through 

were positively selected using α-CD11c magnetic beads according to the manufacturer’s protocol 

(Miltenyi Biotec).  

 

4.4.9 Dendritic cell assays  

To assay the ability of fungal strains to activate the BMDCs, C. neoformans strains of interest 

were grown O/N, washed in PBS, and incubated at 65 °C for 15 min to heat kill (HK) the fungi. 

BMDCs and HK fungi (106 cells of each) were then co-incubated for 24 h, sedimented, and the 
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supernatant fractions transferred to 1.5 mL centrifuge tubes containing 10 μL of 100x protease 

inhibitor (ThermoScientific) for measurement of IL-1β, IL-6, and TNF-α levels by ELISA ac-

cording to the manufacturer’s protocol (R&D Systems).     

 

4.4.10  Statistical analysis   

Each experiment was performed a minimum of two times. Statistical analyses were conducted 

using GraphPad Prism version 6.0f (GraphPad Software). All studies comparing two groups 

were analyzed with a Student’s t-test. Those with three or more groups were compared using an 

ordinary one-way ANOVA with Tukey’s post-hoc test. p < 0.05 was considered statistically sig-

nificant. 
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4.7 Figures 

 

Figure 4.1. Fungal burden and cytokine responses in WT and uxt1Δ uxt2Δ mice. (A-C) Tissue 

homogenates of infected A/JCr mice were plated for CFUs at the indicated dpi (open circles, 

WT; red circles, uxt1Δ uxt2Δ; dashed line, initial inoculum). (D-I) Cytokines in lung homoge-

nates at the indicated dpi (dashed line, naïve; gray bars, WT; red bars, uxt1Δ uxt2Δ). For all pan-

els, data shown is for individual mice from two independent experiments (n = 5 per group per 
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experiment), plotted with the mean ± SEM. *, p < 0.05; **, p < 0.01; ***, p < 0.005 by Stu-

dent’s t-test comparing wild type to mutant. 
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Figure 4.2. Inflammation and iBALT formation during C. neoformans infection. (A) Quantifica-

tion of inflammation and (B) iBALT development during C. neoformans infection. Representa-

tive micrographs of H & E stained lung sections at 15 and 189 dpi are shown. Scale bar = 100 

μm. (C) Immunofluorescent staining of B cells (B220+), T cells (CD3+), and plasma cells 
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(IgG+) in the lungs of infected A/JCr mice. Scale bar = 50 μm. (D-F) Quantification of iBALT 

structures in A/JCr mice infected with WT and uxt1Δ uxt2Δ. (G, H) Immunofluorescent staining 

and quantification of CXCL13 (red) expression; nuclei are stained with DAPI (blue). Scale bar = 

50 μm. Plots show the mean ± SEM (n = 4-5; two independent experiments). *, p < 0.05; ***, p 

< 0.005 by Student’s t-test. 
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Figure 4.3. Increased T and B cell population in uxt1Δ uxt2Δ infection is required to prevent 

disease progression. (A) B cell, (B) CD4+ T cell, and (C) CD8+ T cell populations in the lungs 

of infected mice were quantified by flow analysis (gray, WT; red, uxt1Δ uxt2Δ). Data shown are 
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mean ± SEM of 10 mice from two independent experiments. *, p < 0.05; **, p < 0.01; ***, p < 

0.005 by Student’s t-test. (D) Survival of mice after intranasal inoculation with 5 × 104 cells of 

WT (n = 5) or uxt1Δ uxt2Δ (n = 10). Data shown are from two independent experiments. **, p < 

0.01; ***, p < 0.005 by the log-rank test. 
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Figure 4.4. Cytokine production by dendritic cells. DCs were co-incubated for 24 h with heat-

killed cells from the indicated strains. Levels of (B) IL-1β, (C) IL-6, and (D) TNF-α in the su-

pernatant were then quantified by ELISA (no tx, no treatment). Data shown is the mean ± SD (n 
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= 3) of one representative experiment of five similar independent experiments. **, p < 0.01 by 

one-way ANOVA with Tukey’s post hoc test. 
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4.8 Supplementary materials 

 

Figure S1. Representative data from the multi-color flow cytometry gating strategy used to 

quantify the indicated immune cell subsets.   
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Table 4.S1. C. neoformans strains utilized in these studies 

 

 

 

 

 

 

 

 

 
a All mutant strains are derived from KN99α 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.S2. Flow analysis antibodies  

Antigen Clone Fluorophore Dilution Company 

CD3 17-A2 APC-Cy7 1:250 BioLegend 

CD4 GK1.5 BUV737 1:500 BD Biosciences 

CD8a 53-6.7 BV650 1:125 BD Biosciences 

CD1/CD32 FC Block 2.4G2 (not applicable) 1:500 BD Biosciences 

CD19 1D3 BV786 1:125 BD Biosciences 

CD45 30-F11 Pacific Blue 1:250 BioLegend 

   

C. neoformans straina Origin 

KN99α (32) 

uxt1Δ (21) 

UXT1 (21) 

uxt2Δ (21) 

UXT2 (21) 

uxt1Δ uxt2Δ  (21) 

uxs1Δ (33) 

cap59Δ (34) 
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Chapter 5:  

Conclusions and future directions  
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5.1 Overview  

Cryptococcus neoformans is an opportunistic fungal pathogen that infects over one million peo-

ple and kills almost 200,000 individuals worldwide each year. Current treatments are inadequate 

with high rates of morbidity, mortality, and relapse following infection despite expensive and 

toxic antifungal interventions. Cryptococcal glycans are indispensable for an amazing diversity 

of basic metabolic functions, and are also crucial determinants of survival and pathogenesis, 

making them attractive therapeutic targets. Defining C. neoformans glycan biosynthetic path-

ways will allow us to potentially disrupt their function during the course of infection.  

 

Synthesis of glycoconjugates requires activated donor molecules, which are generally made in 

the cytosol and then transported by NSTs into the ER and/or Golgi, where most glycosylation 

reactions occur. Glycan biosynthesis is thus completely dependent on the activity of these trans-

porters to move select substrates across hydrophobic membrane barriers in exchange for nucleo-

side monophosphates. In prior work, GDP-Man transport was attributed to Gmt1 and Gmt2 (1, 

2), and UDP-Gal appeared to be transported by Ugt1 (3). This did not, however, account for the 

donors of additional moieties such as GlcA and Xyl that are incorporated into the capsule. This 

major gap in our knowledge severely limited our understanding of and ability to manipulate crit-

ical biosynthetic processes in this important pathogen. My thesis project was designed to address 

this gap. 
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5.2 Summary of major findings 

5.2.1 Uut1 is a UDP-glucuronic acid transporter 

Uut1 (CNAG_06230) is an ER-localized UDP-GlcA transporter (Fig 2.2; Fig. 2.4). Unique 

among NSTs for its narrow substrate range and high affinity for UDP-GlcA (Fig. 2.4), it is also 

the sole transporter of this precursor in C. neoformans. UDP-GlcA transport by Uut1 was satura-

ble with time and substrate concentration (Fig. 2.4), and had an apparent KM of 0.6 ± 0.1 μM and 

Vmax of 1.1 ± 0 mM s-1 (mean ± SEM of n = 4) with a turnover rate of 0.08 s-1. 

 

To investigate the physiological role of Uut1, we examined the uut1 deletion mutant for changes 

in glycoconjugate composition. Although GlcA has only been detected in the side chains of cap-

sule polysaccharides, loss of UUT1 surprisingly abrogated capsule production and appeared to 

alter cell shape (Fig. 2.3). The cell membrane of the mutant also seemed to make irregular con-

tact with the internal surface of the cell wall. The wall itself exhibited altered exposure of man-

nans (Fig. 2.S3) and lacked the distinct morphological layers (Fig. 2.7), which are normally pre-

sent in WT cells (4-7). In addition to marked abnormalities in cell morphology, uut1Δ was highly 

susceptible to elevated temperature, nutrient limitation, and environmental stressors (Fig. 2.7 and 

Fig. 2.S5), phenotypes which were not rescued by heterologous expression of the human UDP-

GlcA transporter, UGTrel7 (Fig. 2.S6). As a result of these defects, the deletion mutant was in-

ternalized and cleared by phagocytes more readily than wild-type cells (Fig. 2.8) and was com-

pletely avirulent in mice (Fig. 2.9).  

 

Together these data indicate that Uut1 is a functionally significant UDP-GlcA-specific trans-

porter and suggest that GlcA is a key modification of glycoconjugates beyond the capsule. It also 
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seems that the extension of capsule polymers requires GlcA modification, either directly (e.g. 

because it participates in recognition by glycosyltransferases) or indirectly (e.g. because it influ-

ences the localization or activity of glycoactive enzymes).   

 

5.2.2 Uxt1 and Uxt2 are UDP-xylose/UDP-galactofuranose transporters 

Uxt1 (CNAG_02036) and Uxt2 (CNAG_03695) are dual UDP-Xyl/UDP-Galf transporters (Fig. 

3.2, Fig. 3.S3). Although the two proteins share 57% amino acid identity (Fig. 3.S1A), Uxt1 dis-

played higher affinity and catalytic efficiency for UDP-Xyl (Fig. 3.2E-F) and exhibited stricter 

antiport substrate requirements (Fig. 3.2G). We also detected significant transport of UDP-Arap 

and UDP-Araf by both NSTs (Fig. 3.2D), but arabinose has never been reported in C. neofor-

mans and is not detectable in our analyses, so we did not pursue this activity.  

 

In addition to the differences in kinetic parameters, UXT1 and UXT2 demonstrated distinct pat-

terns of expression (Fig. 3.3) and of localization (Fig. 3.4). These differences raised the question 

of whether Uxt1 and Uxt2 are functionally redundant in vivo. Deletion of UXT1, but not UXT2, 

markedly reduced the mole % of Xyl in capsule polysaccharides and in glycoproteins, although 

complete abrogation of Xyl incorporation into both glycoconjugates required the deletion of both 

genes (Fig. 3.1A). Uxt1 thus seems to be the major UDP-Xyl transporter, although there are still 

significant contributions by Uxt2.    

 

Loss of UDP-Xyl transport lengthened mutant doubling time (Fig. 3.S4), altered capsule fiber 

morphology (Fig. 3.5C, Fig. 3.S5D), and reduced capsule size (Fig. 3.S5A) and GXM shedding 

(Fig. 3.S5C) with respect to WT. The mutants also exhibited increased sensitivity to high salt and 
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SDS (Fig. 3.5A). Together, these defects contributed to the increased phagocytosis and clearance 

of uut1Δ by host phagocytes in vitro (Fig. 3.6A-C). When inoculated into mice, the double mu-

tant was avirulent (Fig. 3.6D) although mutant cells persisted in the lungs until the experiment 

was terminated at 100 dpi (Fig. 3.6E). These data (Chapter 3) support the critical importance of 

the UDP-Xyl transport mediated by Uxt1 and Uxt2.  

 

5.2.3 C. neoformans xylose transport influences the host immune response 

UDP-Xyl transport was required for cryptococcal virulence and dissemination. Although WT-

infected mice succumbed by 15 dpi, uxt1Δ uxt2Δ-infected mice remained asymptomatic despite 

detectable pulmonary burdens (Fig. 4.1A). In these mice fungi were detected at distal sites only 

transiently, coinciding with the peaks in lung burden at day 63 and 126 dpi (Fig. 4.1A-C). By 

189 dpi the mutant was cleared from 30% of the mice (Fig. 4.1A-C), which suggested that the 

remaining mice would eventually resolve the uxt1Δ uxt2Δ infection.   

 

Early in infection, uxt1Δ uxt2Δ stimulated a more quiescent cytokine response with a milder Th2 

cytokine skew than WT (Fig. 4.1D-I). When mutant burden peaked at day 63, there was a signif-

icant increase in the Th1/Th17 cytokine IL-12p40 as compared to naïve levels at day 63, and 

levels subsequently dropped with the fungal burden as the mice began to resolve the infection 

(Fig. 4.1F), although the level of inflammation was still lower than that in WT-infected mice 

(Fig. 4.2A). Infection with either strain, however, induced formation of lymphoid structures 

proximal to the basal side of the bronchial epithelium (Fig. 4.2B). These lymphoid aggregates 

were organized into a germinal center with a T cell cuff, consistent with inducible bronchus-

associated lymphoid tissue (iBALT; Fig. 4.2C). The structures involved a smaller area and were 
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slower to form in uxt1Δ uxt2Δ-infected lungs as compared to WT-infection (Fig. 4.2D-G), which 

correlated with the overall lower fungal burden in the former. 

  

In uxt1Δ uxt2Δ infection, but not WT, we observed a rise in the population of B (Fig. 4.3A) and 

T (CD4+ and CD8+; Fig. 4.3B-C) cells within the lung, with both cell populations required to 

control infection (Fig. 4.3D). During iBALT formation, T and B cell recruitment is triggered by 

antigen activation of and cytokine production by DCs (8). BMDCs co-incubated with uxt1Δ 

uxt2Δ, but not WT, released high levels of IL-1β (Fig. 4.4A), IL-6 (Fig. 4.4B), and TNF-α (Fig. 

4.4C). These increases in cytokine production may have led to the greater T and B cell popula-

tions that we observed. This may also have caused functional differences that resulted in the re-

duced morbidity associated with uxt1Δ uxt2Δ infection although iBALT was induced by both 

strains.  

 

5.3 Open questions 

While the work presented in this thesis has advanced our understanding of nucleotide sugar 

transport in C. neoformans, there are still many questions about NSTs that remain unanswered. 

Below I explore several unresolved questions that arose during my study of Uut1, Uxt1, and 

Uxt2, and discuss possible approaches and outcomes.   

 

5.3.1 Nucleotide sugar transporter structure and function relationship 

There are no sequences known to confer specificity for a particular nucleotide sugar(s) although 

NSTs are able to discriminate between these activated donors. While a GDP-Man motif was pro-

posed (9), Gmts have proven to be promiscuous GDP-sugar transporters (Fig. 3.S9). Domain 
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swaps between the CMP-sialic acid and UDP-Gal transporters have also only defined broad re-

gions required for substrate recognition (10).  

 

Since we have identified the substrates and kinetic parameters of Uut1 and the Uxts, we can now 

compare NSTs from multiple phyla that share their substrates, in conjunction with in silico anal-

ysis of nucleotide sugar and NST docking. The conserved residues that are predicted to interact 

favorably with the substrate(s) may provide the structural basis for substrate preferences and dif-

ferences among NSTs, which could be validated by directed mutagenesis. Uut1 might be espe-

cially useful in these studies as it exhibits high affinity and specificity for UDP-GlcA despite 

sharing less than 20% identity with the A. thaliana and H. sapiens UDP-GlcA transporters. The 

UDP-Xyl transporters will also be an interesting tool for interrogating these question as they are 

~60% identical at the amino acid level and recognize the same activated donors, but have non-

identical kinetic parameters and nucleoside monophosphate requirements. They are also less than 

20% identical to the A. thaliana, H. sapiens, and A. fumigatus transporters that share all or a sub-

set of the same nucleotide sugar substrates.   

 

5.3.2 Nucleotide sugar transporter regulation 

Work by our lab and others has generated a network map of the complex interactions between 

cryptococcal transcription factors (TF) and their downstream targets, under conditions including 

capsule induction (11-13). Using these data we have examined the expression of the genes en-

coding predicted NSTs and made predictions of possible TFs interactions, but we have not sys-

tematically studied their regulation. Further examination of the upstream regions for TF binding 

sites will expand our knowledge of NST regulation and possible transcriptional coordination of 
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glycosylation machinery. This may help explain why UXT2 was not upregulated to WT-levels in 

the absence of UXT1, and why the expression of UXT1 was unresponsive to the loss of UXT2 

(Fig.3.S8).  

 

Aside from this transcriptional regulation of NSTs, there are also likely mechanisms of post-

translational control. Cryptococcal NSTs are notable for their unique long N-terminal domains. 

There are ~250 amino acids between the start codon of Uut1 and the beginning of the first 

transmembrane domain, and ~300 amino acids in the same region of Ugt1, in comparison to < 20 

amino acid N-terminal cytosolic regions for comparable transporters in other systems. Uxt1 and 

Uxt2 have shorter N-termini (~50 amino acids), but they are still several times longer than those 

of the A. thaliana UDP-Xyl transporters. The Ugt1 N-terminus was not absolutely required for 

substrate recognition and transport (3), but it may modulate the efficiency of those processes or 

additional downstream glycosylation reaction(s); the requirement for this domain has not yet 

been tested for any other cryptococcal NSTs.  

 

The solvent-exposed regions of the NSTs might impact downstream glycosylation reaction(s) by 

mediating interactions with capsule-associated glycosyltransferases to efficiently channel sub-

strates into the luminal compartment, influencing oligomerization-based regulation, or modulat-

ing binding of regulatory proteins. Distinct complexes of glycoactive enzymes may be recruited 

depending on environmental cues, for example preferential association with capsule-specific 

glycosyltransferases under capsule-inducing conditions. These differences might explain the 

poor ability of human NSTs that share the same in vitro transport activity to complement crypto-

coccal NST mutants. We can directly interrogate this hypothesis by expressing chimeric fusion 



157 

 

proteins that include these regions. This approach may furthermore offer insights into the func-

tional differences between Uxt1 and Uxt2 since the majority of their divergent residues reside 

prior to the second transmembrane domain. We can potentially distinguish the contributions of 

these innate enzymatic properties (Fig. 3.2) from the distinct expression patterns (Fig. 3.3) by 

placing Uxt1 and Uxt2 (and the fusions constructs) under the reciprocal promoters. Future work 

addressing the role(s) of particular regions in cryptococcal NSTs might also include interrogating 

protein interactions with these domains by co-immunoprecipitation with mass spectrometry 

analysis; being sure to validate any detected interactions with complementary approaches includ-

ing more quantitative ones.  

    

5.3.3 Additional nucleotide sugar transporter candidates 

Alongside UUT1 and the UXTs, we identified four other genes encoding putative NSTs (G, J, L, 

and X) in our initial analysis of the cryptococcal genome. I examined their contribution to sur-

vival and pathogenesis, and also made significant efforts to ascertain their biochemical function 

(described in Appendix B). None of them, however, transported any of the 16 nucleotide sugars 

assayed (as in Fig. 2.4; Joshua Heazlewood, personal communication), and none of the corre-

sponding mutants had detectable changes in GXM composition (Table B.1, Table B.2) although 

nstGΔ and nstXΔ produced smaller capsules than WT cells (Fig. B.1).  

 

These four proteins may not be NSTs but may instead transport molecules that are structurally 

similar to nucleotide sugars. NSTG, for example, clades with triose phosphate transporters. We 

may be able to adapt our in vitro transport assay to test a broad range of sugar phosphates. Alter-

natively, we could determine the ability of these NST candidates to complement cell lines defi-
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cient for known transporters. We are particularly interested in identifying the substrates of NSTG, 

NSTL, and NSTX, since the loss of the corresponding genes reduced or completely abolished 

cryptococcal virulence (Fig. B.4, Fig. B.9).           

 

5.3.4 Glycan repertoire of C. neoformans 

Compositional analysis of glycans in C. neoformans has elucidated the monosaccharide compo-

nents of each class of cryptococcal glycoconjugate. The crude preparations utilized in these stud-

ies, however, may overlook minor, but critical, sugars. We furthermore lack information about 

the glycans decorating specific proteins or lipids.  

 

The pleiotropic effects of deleting UUT1 suggested that GlcA is incorporated into structures oth-

er than the capsule, although that is the only C. neoformans glycoconjugate reported to contain 

GlcA. It may be that the GlcA content in other glycans is below the limit of detection, while still 

being functionally significant. Prior glycoprotein profiling efforts have utilized lower-resolution 

HPLC studies or MALDI-TOF analyses that obtained multiple unassigned peaks (14, 15). Addi-

tional studies with MALDI-TOF may prove more fruitful if aided by comparison of WT glyco-

protein (examining N- and O-linked glycans separately) or glycolipid profiles to those of uut1Δ 

and uxt1Δ uxt2Δ. Our previous work provides precedent for using mutants with Xyl-deficient 

capsule polysaccharides to assist with structural analysis (16, 17).  

 

We can also identify and characterize cryptococcal glucuronyltransferases for evidence of GlcA 

in non-capsule glycans; no enzyme of this type is known in C. neoformans to date. For example, 

the presence of transferases specific for GlcA linkages other than β1,2 and β1,4 (normally found 
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in GXM and GXMGal), might suggest that polysaccharides other than capsule incorporate GlcA. 

This would have the added benefit of expanding our understanding of the cryptococcal glycosyl-

transferase repertoire, of which only two xylosyltransferases have been elucidated. These efforts 

might also help to link the uut1Δ stress and growth phenotypes to specific glycoproteins and gly-

colipid defects.    

 

Glycosylation could also potentially occur in additional contexts (e.g. the cytosol). Exposure to 

cells with perturbed UDP-Xyl synthesis (uxs1Δ) and UDP-Xyl transport (uxt1Δ uxt2Δ), for ex-

ample, clearly leads to distinct cytokine responses in dendritic cells. This difference between 

cells that totally lack UDP-Xyl and those that have it only in the cytosol suggests that either 

Uxs1 has synthesis-independent functions or that UDP-Xyl is utilized within the cytosol (i.e. di-

rectly donating Xyl to a nascent cellular component or being further modified). The downstream 

product of this cytosolic process is then immunogenic in the absence of luminal xylosylation. 

Further detailed characterization of glycoconjugates in ugd1Δ and uxs1Δ alongside the afore-

mentioned transporter mutants may help identify the responsible cellular component(s). 

 

5.4 Impact and closing remarks  

At the outset of my thesis work, we had a good understanding of nucleotide sugar metabolism, 

but knew little about how these critical precursors traffic within the cell. GDP-Man transport was 

attributed to Gmt1 and Gmt2, and there was only circumstantial evidence that Ugt1 transported 

UDP-Gal (1, 2, 18). There were no proteins identified that could transport precursors of addi-

tional moieties such as GlcA, Xyl, or potentially sialic acid that are incorporated into the capsule.  
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Through my thesis work, I have doubled the number of known transporters and characterized an 

equal number of putative NST candidates. I determined that Uut1 is a highly specific, high af-

finity UDP-GlcA transporter, and obtained evidence that GlcA is incorporated into structures 

other than capsule. I also showed that Uxt1 and Uxt2 are UDP-Xyl/UDP-Galf transporters with 

only partial functional redundancy, exhibiting distinct localization and expression patterns, and 

kinetic profiles. Finally, I established that Ugt1 is actually a dual UDP-Gal/UDP-GalNAc trans-

porter using a biochemical approach (3). Importantly, all of these transporters play key roles in 

cryptococcal survival and pathogenesis.   

 

We have now defined a transporter for the activated donor of every monosaccharide reported in 

cryptococcal glycoconjugates made in the secretory pathway of C. neoformans, including its ma-

jor virulence factor, and assigned activity to four proteins of previously unknown function. This 

work has advanced our understanding of the localization and sequence of glycan biosynthetic 

events, which have not been fully characterized in C. neoformans. These data have also expand-

ed our knowledge of NSTs as a protein family, enabling comparisons across phyla, which will 

set the stage for future mechanistic and phylogenetic studies. Together these studies furthered 

our efforts to completely describe the cellular machinery that assembles the glycan-rich surfaces 

of C. neoformans, and to determine how these components are involved in interactions with and 

modulation of host immunity. Unique features of the essential fungal NSTs identified in this 

work and from future efforts have the potential to be exploited for novel therapies.     
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Abstract 

Cryptococcus neoformans, an opportunistic fungal pathogen, produces a glycan capsule to evade 

the immune system during infection. This definitive virulence factor is composed mainly of 

complex polysaccharides, which are made in the secretory pathway by reactions that utilize acti-

vated nucleotide sugar precursors. Although the pathways that synthesize these precursors are 

known, the identity and regulation of the nucleotide sugar transporters (NSTs) responsible for 

importing them into luminal organelles remain elusive. The UDP-galactose transporter, Ugt1, 

was initially identified by homology to known UGTs and glycan composition analysis of ugt1Δ 

mutants. However, sequence is an unreliable predictor of NST substrate specificity, cells may 

express multiple NSTs with overlapping specificities, and NSTs may transport multiple sub-

strates. Determining NST activity thus requires biochemical demonstration of function. We 

showed that Ugt1 transports both UDP-galactose and UDP-N-acetylgalactosamine in vitro. Dele-

tion of UGT1 resulted in growth and mating defects along with altered capsule and cellular mor-

phology. The mutant was also phagocytosed more readily by macrophages than wild-type cells 

and cleared more quickly in vivo and in vitro, suggesting a mechanism for the lack of virulence 

observed in mouse models of infection.  
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Introduction 

Cryptococcus neoformans is an opportunistic fungal pathogen that is ubiquitous in the environ-

ment. It infects over a million people worldwide each year and kills over 600,000 of them, dis-

proportionately affecting resource-limited areas (1). Cryptococcosis is initially acquired by inha-

lation of fungal cells or spores into the lower respiratory tract (2). This leads to a primary pulmo-

nary infection, which is normally controlled by alveolar macrophages. In immunocompromised 

individuals, however, fungi can proliferate and disseminate throughout the host, with a particular 

tropism for the brain.  

 

The principal virulence factor of C. neoformans is a polysaccharide capsule, which helps it evade 

the host immune response. This structure surrounds the yeast cell wall, which as in other fungi is 

made of glucans, chitin, and mannoproteins (3). The capsule is composed of two polysaccha-

rides, glucuronoxylomannan (GXM) and glucuronoxylomannogalactan (GXMGal), with trace 

amounts of mannoproteins (4). These polymers, which are synthesized intracellularly (5), be-

come associated with the outer surface of the cryptococcal cell wall (6), forming a protective 

layer that impedes phagocytosis and immune mediator binding (7). This structure is highly re-

sponsive to environmental conditions, becoming particularly large during infection of mammali-

an hosts (3). Capsule polysaccharides are also continually shed from the yeast, and act in sup-

pression of the host immune response (7). Understanding the pathways that produce the capsule 

and other essential glycoconjugates is central to developing strategies to effectively disrupt their 

function and combat this lethal pathogen. 
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GXM typically constitutes ~90% of the capsule mass (3). It is a repeating polymer, made up of a 

mannose backbone with glucuronic acid (GlcA) and xylose (Xyl) side chains (8) (all sugars are 

pyranose forms unless otherwise indicated). GXMGal, which makes up the remaining 10% of 

the capsule mass, consists of a galactan backbone modified with galactomannan side chains bear-

ing a variable number of Xyl and GlcA residues (9); the backbone may also be modified with 

single galactofuranose (Galf) residues (10). Mutants lacking either or both capsular polysaccha-

rides are avirulent (11, 12).   

 

C. neoformans dedicates a significant portion of its genetic machinery and metabolic energy to 

synthesizing capsule and other cellular glycoconjugates, including protein-linked glycans (13-

15), cell wall components (6, 16-19), and glycolipids (20-23). These compounds are essential for 

maintaining cellular homeostasis and establishing infection. Synthesis of many glycoconjugates 

relies on activated donor molecules, such as nucleotide sugars, from which individual sugar moi-

eties are transferred to a growing glycan structure. Nucleotide sugars are generally made in the 

cytosol and then transported into the secretory organelles (endoplasmic reticulum and/or Golgi 

apparatus) where most glycan biosynthesis occurs (24). Nucleotide sugar transporters (NSTs) 

mediate transport of these highly charged compounds by importing them in exchange for the cor-

responding nucleotide monophosphates via an antiport mechanism (25, 26). This makes the nu-

cleotide sugars available for use by the luminal glycosyltransferase enzymes that synthesize cap-

sule polymers or other glycans.  

 

The capsule polysaccharides are composed of galactose (Gal), Galf, GlcA, Man, and Xyl; this 

suggests that their synthesis requires the corresponding donors, which are UDP-Gal, UDP-Galf, 
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UDP-GlcA, GDP-Man, and UDP-Xyl. The enzymatic pathways required for synthesis of these 

compounds in C. neoformans have been elucidated (27-32), but the identity and regulation of 

most of the NSTs that translocate them into the secretory pathway remain elusive. Only transport 

of the mannose donor, GDP-mannose, has been demonstrated biochemically (33). 

 

Strains deficient in UDP-Gal synthesis have aberrant capsule, likely due to perturbed GXMGal 

production, and are completely avirulent, emphasizing the critical role of this nucleotide sugar 

(32). A UDP-Gal transporter, Ugt1, was initially identified by homology to known UDP-Gal 

transporters (12), which are found ubiquitously in eukaryotes. However, sequence identity does 

not tell the whole story of NST substrate specificity (34). For example, cells may express several 

NSTs with overlapping specificities but non-identical substrate affinities. Some transporters are 

highly selective for a specific substrate, while others transport as many as four distinct nucleotide 

sugars (35-41). Finally, transport activity may also be influenced by association with glycan syn-

thetic enzymes and by subcellular localization (42). Although the absence of galactose in total 

capsular polysaccharide and whole cell preparations from ugt1Δ mutants (12) provides indirect 

evidence that UDP-galactose is a Ugt1 substrate, defining NST activity requires biochemical 

demonstration of function.  

 

Here we directly interrogated the biochemical activity of Ugt1, motivated by the central role of 

galactose in cryptococcal virulence and the gaps in our knowledge of C. neoformans NSTs (12). 

We found that Ugt1 transports both UDP-Gal and UDP-N-acetylgalactosamine (GalNAc) in 

vitro and that this function does not depend on the extended cytosolic termini of the protein. Fur-

thermore, cells lacking Ugt1 exhibit growth and mating defects, along with altered capsule and 
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cellular morphology. Finally, the mutant was phagocytosed more readily by macrophages and 

cleared more quickly in vivo and in vitro. Our studies define the biochemical role of this im-

portant protein and suggest mechanisms for the reduced virulence of cells lacking this trans-

porter. 

 

Results 

C. neoformans strains are classified into four serotypes: A and D are associated with cryptococ-

cosis in immunocompromised populations, while B and C are associated with disease in other-

wise healthy individuals. We initially identified UGT1 in serotype A, which is the most prevalent 

serotype and causes most of the mortality from this disease (43), and subsequently identified 

homologs with 92-95% identity at the protein level in the other serotypes (protein accession 

numbers XP_012048733, KIR46271, KIR59644, and XP_568024 for serotypes A through D, 

respectively). Phylogenetic analysis of the serotype D UGT1 sequence together with character-

ized human NSTs places Ugt1 in the SLC35A subfamily, along with its human counterpart (Fig. 

A.1). Similar to other transporters, it is predicted to have an even number of transmembrane do-

mains (here ten) with cytosolic N- and C- termini (Fig. A.2). The predicted cytosolic termini are 

unique and unusually long (Fig. A.2), at least five times longer than those of other known UDP-

Gal transporters with no significant sequence similarity (not shown). The NST domain of Ugt1 

(aa 299-558) also shares less than 50% identity to those proteins (Fig. A.S1).     

 

We next investigated Ugt1 localization by comparing staining of episomally expressed Ugt1-HA 

to that of a known Golgi xylosyltransferase, Cxt1p, which we have tagged with myc (14). When 

we probed doubly-tagged cryptococci with both anti-HA and anti-myc antibodies, we observed 
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co-staining of large perinuclear puncta, suggesting Golgi localization of Ugt1 (Fig. A.S2). This 

localization is consistent with a role for this protein in providing raw materials for glycan synthe-

sis to processes occurring in the secretory pathway. Because the inherent challenges of im-

munostaining this yeast limit image quality, we also localized HA-tagged human and cryptococ-

cal Ugt1 in MDCKII cells. In this higher resolution analysis both proteins colocalized with the 

Golgi marker giantin (Fig. A.3A), supporting our C. neoformans results.  

 

The mammalian Lec8 cell line is deficient in UDP-Gal transport (44, 45). We used transient 

transfection to assess whether the cryptococcal transporter could complement this defect, using 

Griffonia simplicifolia lectin (GSII) as a reporter. This lectin binds terminal GlcNAc residues, 

which are masked in normal cells by galactose added in the secretory pathway. In cells lacking 

UDP-Gal transport this galactose modification is absent, so the lectin is able to bind to the cell 

surfaces. Expression of cryptococcal Ugt1 reversed this binding (Fig. A.3B). Notably, the subset 

of transiently transfected cells that did not express exogenous protein still bound the lectin (Fig. 

A.3B), serving as an internal control. This staining pattern was mirrored by expression of the 

human UDP-Gal transporter, strongly supporting shared biochemical activity of the two proteins.  

 

To directly measure the activity of the cryptococcal transporter we used heterologous expression 

in S. cerevisiae. When we assessed the transport of a panel of radiolabeled nucleotide sugars in 

vitro, Golgi vesicles from cells expressing cryptococcal Ugt1 demonstrated transport of UDP-

Gal, as predicted by homology, as well as somewhat lower transport of UDP-GalNAc (Fig. A.4). 

We did not detect transport over background of other capsule precursors (UDP-Xyl or UDP-

GlcA), UDP-GlcNAc, or UDP-Glc.  
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We had noted the unusual length of the N- and C-terminal cytosolic tails of Ugt1 and wondered 

whether they were required for its transport activity. To test this we used transient transfection to 

determine which of a series of Ugt1 truncation variants (Fig. A.2) could complement the defi-

cient UDP-Gal transport of CHOP8 cells, which are derived from Lec8 cells (see Materials and 

methods). We detected activity by co-transfection with DNA encoding a rat  1,3-

glucuronyltransferase, such that the combination could support the synthesis of GlcUA1,3Gal 

epitopes; these are recognized by the antibody L2-412 (46, 47). As shown in Table A.3, all of the 

cytosolic tail truncations that we tested (Fig. A.2) retained activity; function was only disrupted 

when the truncation was extended beyond the first transmembrane domain.  

 

Because galactose is a major component of one capsule polysaccharide, GXMGal, we examined 

the expression of UGT1 and other genes related to galactose metabolism under growth condi-

tions that induce capsule synthesis. RNA-seq analysis indicated that both UGT1 and UGE1, a 

gene encoding a UDP-glucose epimerase (which catalyzes the interconversion of UDP-glucose 

and UDP-Gal), are upregulated several fold under these conditions (Fig. A.5), consistent with a 

role for both proteins in capsule synthesis. A UGE1 paralog, UGE2, remains at basal levels dur-

ing capsule induction (Fig. A.5); the corresponding mutant also has no defects in capsule synthe-

sis or virulence (32). Other genes involved in UDP-Gal metabolism (galactokinase and galac-

tose-1-phosphate uridylyltransferase) showed no change or less two-fold reduction in expression 

over the same time course of induction (data not shown).  

 

We next directly examined the effect of deleting UGT1 on capsule morphology. When we grew 

cells in non capsule-inducing conditions (the rich yeast medium YPD), both wild-type and mu-
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tant cells had thin capsules, which were minimally discernible by negative staining (Fig. A.6A, 

first column). Capsules of both strains were also similarly enlarged when the cells were grown in 

our standard capsule-inducing conditions (DMEM at 37°C and 5% CO2; Fig. A.6A, second col-

umn), which were also used for the expression profiling above. Because serotype A cells lacking 

UGT1 had previously been reported to be hypercapsular (12), which we did not observe in the 

DMEM conditions, we tested other inducing media. We found that ugt1 cells grown in 10% 

Sabouraud’s media were hypercapsular compared to wild-type cells (Fig. A.6A, third column). 

The capsule fibers of mutant cells grown in this medium were also markedly longer by electron 

microscopy (Fig. A.6A fourth column); these phenotypes were reversed by complementation of 

the mutant. In all conditions, the mutant cells tended to aggregate, which suggested altered sur-

face properties independent of capsule formation. 

 

Cryptococcal glycans have not been exhaustively analyzed, but galactose is a known component 

of cryptococcal glycolipids (48) and capsule polysaccharides, and may occur in other glycocon-

jugates as well. For this reason we tested other characteristics of cells lacking Ugt1. We noted 

that ugt1Δ cells were significantly more sensitive than wild type to Congo Red dye, suggesting a 

cell wall defect (Fig. 6B). This strain was also sensitive to H2O2 (Fig. A.6B), in addition to high 

temperature and SDS (properties previously reported for the corresponding serotype A mutant 

(12), which we verified for serotype D (not shown)). The mutant cells were also defective in 

mating, failing to form filaments and spores when co-cultured on solid media with cells of the 

opposite mating type (Fig. A.6C). In all cases the wild-type phenotypes were restored in the 

complemented mutant.  
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We wondered whether the extended termini of Ugt1, which were not required for transport activ-

ity (Table A.3), might influence cell phenotypes. To test this, we episomally complemented 

ugt1Δ with wild type UGT1, or UGT1 modified so its product lacked either the N- or C-

terminus, all under control of the constitutive actin promoter. All three construct-expressing 

strains restored wild-type resistance to stress but also exhibited larger capsules than wild-type 

cells. Interestingly, the full length and C-terminally truncated UGT1 produced considerably larg-

er capsules than wild-type cells (1.8- and 1.6-fold greater than WT, respectively; Fig. A.7A). 

They also demonstrated greater growth on NaCl but not on any of the other conditions tested 

(Fig. A.7B) (see Discussion).  

 

The observed changes in surface properties and reduced ability to resist stress of the mutant 

strongly suggested that its interactions with host cells would be aberrant. To test this, we first 

used an automated high throughput imaging method (49) to quantify the early interactions be-

tween a human monocytic cell line (THP-1) and each strain. As in previous work, unopsonized 

fungi were poorly phagocytosed. For opsonized samples, we found that when the yeast had been 

cultured in rich medium (YPD or Sabouraud’s broth), ugt1Δ was engulfed at significantly higher 

rates than wild type (Fig. A.8A). This was independent of capsule size, as wild-type and mutant 

cells both produce minimal capsule in YPD (Fig. A.6A). In contrast, after culturing in conditions 

where wild type and mutant displayed equally large capsules (Fig. A.6A, DMEM), phagocytosis 

of all strains was similar (Fig. A.8A). We also tested the relative survival of internalized fungi 

during a 24-hour period. We found that the mutant cell population increased more slowly than 

wild-type or complemented strains within host phagocytes, reflecting poor growth and/or in-

creased destruction by the host cells (Fig. A.8B).  
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The combination of defects we observed in ugt1Δ suggested that this strain would do poorly in 

an infected host, as previously observed in a model based on tail vein infection (12). We tested 

this in mice infected intranasally, which mimics the natural route of infection. In this model 

ugt1Δ was completely cleared from the lungs by 7 days after inoculation, in contrast to wild type 

and complement infected mice (average log10CFU/mL at 7dpi: WT, 2.76; ugt1Δ, 0; UGT1, 2.33). 

This rapid clearance of the mutant supports the key role of Ugt1 in cryptococcal biology. 

  

Discussion 

C. neoformans encodes a single functional UDP-Gal/UDP-GalNAc transporter, which is homol-

ogous to UGTs found across multiple phyla (e.g. H. sapiens, C. elegans, S. pombe, A. thaliana; 

Fig. A.S1). This protein is predicted to have ten transmembrane segments with N- and C-

terminal tails in the cytosol (Fig. A.2) and is localized to the Golgi apparatus (Fig. A.3A, Fig. 

A.S2), consistent with other transporters in this family. Alignment of Ugt1 and known transport-

ers, however, did not reveal any common motif that would potentially confer UDP-Gal or UDP-

GalNAc specificity (Fig. A.S1).     

 

We demonstrated that cryptococcal Ugt1 transports UDP-Gal both indirectly, through comple-

mentation of Lec8 cells (Fig. A.3B), and directly, by performing transport assays in a heterolo-

gous system (Fig. A.4). Of the other potential substrates tested (Fig. A.4), we only observed 

transport of UDP-GalNAc. Human and Drosophila UGTs similarly recognize this combination 

of substrates, although only the human and cryptococcal UGTs transport UDP-Gal more effi-

ciently than UDP-GalNAc (Fig. A.4 and ref (37)). Galactose is an abundant component of cryp-

tococcal capsule and is also known to be incorporated into some of its glycolipids. GalNAc, in 
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contrast, has not been detected in any cryptococcal glycans to date, but this does not preclude the 

possibility that small amounts are incorporated into these structures, particularly as the synthetic 

machinery for UDP-GalNAc is encoded in the cryptococcal genome. 

 

Specific recognition of multiple substrates with the same nucleotide portion is common among 

NSTs, with the nucleotide binding specificity mediated by the cytosolic domains (25). The cryp-

tococcal Ugt1 is noteworthy for having unusually long cytosolic tails, which stimulated us to 

pursue their function. The first transmembrane helix of human SLC35A2 is required for UDP-

Gal transport (50); we similarly found that the first transmembrane domain of the cryptococcal 

protein was needed for transport in mammalian cells, although both cytosolic tails were dispen-

sable (Fig. A.2 and Table A.3). In C. neoformans, episomal expression of Ugt1 truncations that 

spared the transmembrane domains also restored wild-type capsule and stress resistance to ugt1Δ 

(Fig. A.7), supporting the dispensability of the cytosolic domains for transport activity. Notably, 

constitutive episomal expression of full length Ugt1 (or the C-terminal truncation) yielded cap-

sules that were larger than those of wild-type cells (Fig. A.7A) and appeared to confer an in-

creased salt tolerance (Fig. A.7B). One potential explanation of these findings is that Ugt1 over-

expression impacts the quantity or composition and structure of cellular glycoconjugates, per-

haps through greater incorporation of galactose, producing larger capsules and modulating stress 

resistance pathways. The inability of N-terminal mutants to produce capsules as large as mutants 

expressing full length and C-terminal Ugt1 thus suggests that, while the N-terminus is not abso-

lutely required for substrate recognition and transport, it may modulate the efficiency of those 

processes or additional downstream glycosylation reaction(s). The N-terminus of Ugt1 might 

impact these processes by mediating interactions with capsule-associated glycosyltransferases, 
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influencing oligomerization-based regulation, or regulating binding of regulatory proteins (51). It 

will be of interest in the future to further elucidate the role of these domains.  

 

When we examined the transcriptional profile of C. neoformans under conditions that induce 

capsule production, and thus presumably UDP-Gal utilization, we observed that UGT1 and 

UGE1 expression are significantly upregulated within 8 hours (Fig. A.5). Other genes implicated 

in galactose metabolism demonstrated less than a two-fold change in either direction, perhaps not 

surprising since strains were grown with glucose as the primary carbon source. C. neoformans 

thus seems to satisfy the greater demand for UDP-Gal imposed under inducing conditions by in-

creasing UDP-Gal synthesis in conjunction with transport into the proper luminal compartment.  

 

Once UDP-Gal is translocated into the secretory pathway, the galactose moiety is incorporated 

into glycoconjugates made in that compartment. These probably include GXMGal, as we previ-

ously localized a glycosyltransferase required for GXMGal synthesis to the Golgi compartment 

(52, 53). Consistent with this finding, GXMGal synthesis is completely abrogated in cells lack-

ing UGT1 (12). Paradoxically, capsules of cells lacking UGT1 are enlarged (Fig. A.6A), con-

sistent with prior reports (12). It may be that GXMGal normally participates in capsule polysac-

charide organization, so that its absence yields a looser, and therefore more voluminous, struc-

ture. Defects in protein glycosylation may also indirectly cause changes in capsule synthesis, for 

example via altered enzyme activity or stability.  

 

It is notable that depending on the induction conditions ugt1Δ exhibits two distinct capsule phe-

notypes, being normocapsular in DMEM medium but hypercapsular relative to wild type in di-
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lute Sabouraud’s broth (Fig. A.6A). Multiple signaling pathways trigger capsule production in 

response to distinct environmental or chemical conditions, and we are just beginning to under-

stand the complex interplay between them (54-56). C. neoformans, furthermore, is a facultative 

intracellular pathogen that occupies multiple sub-environments within the host, including the nu-

trient-limited intracellular and blood stream niches, which we model in vitro with 10% 

Sabouraud and DMEM, respectively. Capsule thickness is known to vary between organs in in-

fected hosts (57, 58); our distinct culture conditions may be similarly inducing changes in both 

size and organization.  

 

The alterations observed in ugt1 cells were not isolated to capsule synthesis. Mutant cells have 

a propensity to aggregate (Fig. A.6A); they are also more sensitive to cell wall perturbing rea-

gents (Congo Red, SDS) and less able to tolerate environmental stresses (temperature, H2O2) 

(Fig. A.6) than wild type (12). These phenotypes suggest defects in cell wall synthesis, again po-

tentially due directly to alterations in component glycans or indirectly due to underglycosylated 

synthetic machinery. However, since galactose and GalNAc modification of protein-linked gly-

cans in C. neoformans has not been examined to date, these models remain to be tested. 

 

The absence of Ugt1 also resulted in the inability of mutant cells to mate. In S. cerevisiae, mating 

depends on the interaction of two distinct cell surface glycoproteins (59), which are five times 

less active when they are not glycosylated (60). Galactosylation of specific determinants may 

similarly be required for efficient mating to occur in C. neoformans. This mechanism also poten-

tially underlies the inability of Schizosaccharomyces pombe mutants deficient in UDP-Gal 

transport to undergo sexual conjugation during nutritional deprivation (61).  
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Finally, we found that ugt1 cells are rapidly cleared in vitro and in vivo, likely facilitated by the 

increased recognition and phagocytosis of ugt1Δ by macrophages (Fig. A.8). This result is 

somewhat surprising, since internalization of hypercapsular mutants is often reduced, attributed 

to the overall increase in the antiphagocytic capsule. However, if the enlarged capsule of ugt1Δ 

results from poorly organized GXM, rather than overproduction of capsule material, it may not 

function normally. In this scenario, changes in surface epitope accessibility may result in better 

recognition by macrophages while the sensitivity profile facilitates clearance. Together, these 

would result in the avirulence seen both in our inhalational model and in prior studies using in-

travenous inoculation with pools of mutants (12). 

 

The pleiotropic defects and general avirulence of cells lacking Ugt1 emphasize the importance of 

galactose precursor localization to the biology and pathogenicity of C. neoformans. Defining the 

activity of Ugt1 and other NSTs will advance our understanding of glycan biosynthetic path-

ways, setting the stage for further studies of fundamental glycobiology and cryptococcal patho-

genesis. 

 

Materials and methods 

Sequence and phylogenetic analysis  

UGT1 was identified by BLASTP searches against C. neoformans predicted proteins (Broad In-

stitute; Cryptococcus neoformans var. grubii H99 database) using known UDP-galactose trans-

porters from Schizosaccharomyces pombe (NP_588041), Arabidopsis thaliana (NP_565158.1), 

Caenorhabditis elegans (NP_001255676.1), and Homo sapiens (NC_000023.11). Alignments 

were performed using the ClustalW program at Jalview 2.0 Alignment Annotator 
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(http://www.bioinformatics.org/strap/aa/) with default settings (62). Transmembrane domains of 

Ugt1 were predicted using TMHMM server v 2.0 (Center for Biological Sequence Analysis, 

Technical University of Denmark). Protter (http://wlab.ethz.ch/protter/start/) was used to visual-

ize putative protein topology. Multiple sequence alignment (MUSCLE; (63)), phylogenetic anal-

ysis (PhyML; (64)), and tree rendering (TreeDyn; (65)) of Ugt1 and characterized human NSTs 

was done using the online Phylogeny.fr program (http://www.phylogeny.fr/version2_ 

cgi/index.cgi) with default settings (66, 67).  

 

Cell growth  

Unless otherwise noted, C. neoformans strains (Table A.1) were grown at 30°C in YPD medium 

(1% [wt/vol] BactoYeast Extract, 2% [wt/vol] BactoPeptone, 2% [wt/vol] dextrose) with shaking 

(230 rpm). For phenotypic analysis, cells from overnight (O/N) cultures were washed in sterile 

phosphate buffered saline (PBS), resuspended at 107 cells/ml in PBS, and 5 ml aliquots of 5 or 

10-fold serial dilutions were plated and grown at 30 or 37°C as indicated. Conditions tested in-

cluded YPD containing 0.005% SDS, 2 M Sorbitol, 10 mM H2O2, or 0.05% Congo Red. Mating 

was assayed at 25°C on 5% V8 juice agar medium, pH = 5.25 (68). 

 

C. neoformans strains and plasmids  

We used a split marker strategy (69) to replace UGT1 with a nourseothricin (NAT) resistance 

marker, selecting transformants on NAT-containing plates for PCR verification of gene replace-

ment. We used a similar strategy to complement the ugt1 deletion strain at the endogenous locus, 

by replacing the NAT deletion cassette with UGT1 in tandem with a geneticin (G418) resistance 

marker. Transformants of interest were identified by resistance to G418 and sensitivity to NAT, 

http://wlab.ethz.ch/protter/start/
http://wlab.ethz.ch/protter/start/
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consistent with replacement of the deletion cassette by UGT1 in tandem with the G418 marker. 

All complemented strains were verified by PCR (data not shown) and reversal of phenotypes 

(see Results). 

 

For protein localization, a construct encoding C-terminally HA-tagged Ugt1 (pUGT1-HA) was 

generated by amplification of UGT1 from genomic Jec21 DNA with Primers 1-2 (Table A.2) to 

incorporate sequence encoding the tag, subcloning into pCR2.1 for sequencing, and then PmeI 

digestion with ligation to pMSC043 to incorporate a NAT resistance marker and place the tagged 

protein under the actin promoter. pUGT1-HA was linearized with IsceI and transformed into the 

Cxt1-myc strain (14) by biolistic transformation. Transformants were selected by growth on 

NAT plates and verified by immunoblotting.  

 

To episomally complement ugt1Δ, N- and C- terminally truncated and full-length Ugt1 con-

structs were generated from Jec21 cDNA by amplification with Primers 3-4, 5-6, and 7-8, re-

spectively (Table A.2). The DNA fragments were then digested with EcoRI/NotI and subcloned 

into pYEScupFLAGK (39) to add an N-terminal FLAG-tag and facilitate sequencing. The result-

ing FLAG-tagged constructs were amplified with Primers 9-10 or 10-11 (Table A.2) and digest-

ed with PmlI/AvrII for ligation into pMSC042-neo to incorporate a G418 resistance marker and 

place UGT1 under control of the actin promoter. The plasmids were subsequently linearized with 

I-SceI and electroporated into ugt1Δ. Transformants were selected by growth on G418 plates and 

verified by PCR.  
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Localization  

JEC21 CXT1-myc (33) alone or expressing Ugt1-HA or Gmt1-HA was prepared for microscopy 

as described in reference (14) with minor modifications. Briefly, cells were grown O/N in YPD 

before fixation and blocking, and slides were then incubated with high-affinity rat anti-

hemagglutinin (anti-HA) monoclonal antibody (Roche Applied Science; 20 ng/ml in blocking 

buffer), mouse anti-c-Myc (anti-myc) antibody (Abcam; 5g/ml in blocking buffer) or blocking 

buffer alone. This was followed by incubation with the appropriate secondary antibody, either 

AlexaFluor 594-tagged goat anti-rat IgG or Alexa Fluor 488-tagged goat anti-mouse IgG (Invi-

trogen), at 1 μg/ml in blocking buffer.  

 

For localization studies in MDCKII cells, human SLC35A2 (BAA95615) or cryptococcal UGT1 

(EAL18940) were amplified so as to encode a C-terminal HA-tag, cloned into the PmeI site of 

pcDNA3.1 (Life Technologies) to form phUGT1-HA or pcUGT1-HA respectively, and verified 

by sequencing. MDCKII cells seeded to 5x104cells/cm2 in a 6-well plate then were transiently 

transfected with 1 μg of pcDNA3.1, pcUGT1-HA, or phUGT1-HA. For transfection the DNA 

and lipofectamine (Life Technologies) were incubated at room temperature (RT) for 15 min and 

added to cells for incubation at 37°C/5% CO2 for 3 h. Cells were then washed and incubated in 

MEM+10% FCS O/N before being plated on cover slips in a 12-well plate. After 24 h at 

37°C/5% CO2, the cover slips were fixed in 4% formaldehyde/PBS for 20 min and the cells were 

permeabilized with 5% BSA in 0.3% TX-100 in PBS for 15 min and stained with rabbit anti-

Giantin IgG (Abcam; 200 ng/ml in blocking buffer) and rat anti-HA (Invitrogen; 20 ng/ml in 

blocking buffer). Finally, cells were incubated for 20 min with AlexaFluor 594-tagged goat anti-

rat IgG and AlexaFluor 488-tagged goat anti-rabbit IgG (Invitrogen; 1 μg/ml in blocking buffer) 
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and viewed with a ZEISS Axioskop2 MOT Plus microscope using a 63× objective. Where not 

specified, all steps were performed at RT. 

 

Lec Cell Complementation  

Lec8 cells were transiently transfected with pcDNA3.1, pcUGT1-HA, or phUGT1-HA as de-

scribed for the MDCKII studies. Cover slips were then fixed with 3.7% formaldehyde for 30 

min, washed 2x with PBS, and permeabilized with 0.1% TX-100/PBS for 30 min. After blocking 

in 1% BSA/PBS for 10 min, cells were stained with fluorescein isothiocyanate (FITC)-

conjugated GSII in blocking buffer for 30 min at 37°C, rat anti-HA for 1 h, and AlexaFluor 594-

tagged goat anti-rat IgG for 1 h. Samples were viewed with a ZEISS Axioskop2 MOT Plus mi-

croscope using a 63× objective. Where not specified steps were performed at RT. 

 

Ugt1 truncations (Table A.3) were assessed in a Lec8 cell line stably transformed with the poly-

oma virus large T antigen (CHOP8) as described in reference (70). Briefly, CHOP8 cells were 

transfected with the vector pEFBO encoding the rat -1,3-glucuronyltransferase (71), and plas-

mids expressing each Ugt1 variant were generated using the primers in Table A.4. After 3 days 

at 37°C/5% CO2, cells were fixed, blocked in 2% milk/TBS, and then stained with rat monoclo-

nal L2-412 (46, 47) followed by goat anti-rat alkaline phosphatase in blocking solution. Samples 

were then treated with Fast-Red substrate (Sigma-Aldrich) to allow enumeration of red cells per 

plate by light microscopy.   
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S. cerevisiae expression and transport assays  

Yeast expression experiments were done in S. cerevisiae strain YPH500 (MATα ura3-52 lys2-

801 ade2-101 trp1-Δ 63 his3-Δ200 leu2-Δ1). UGT1 was amplified from JEC21 RNA using pri-

mers 10 and 11, cloned into pCR2.1 (TOPO TA, Life Technologies), and sequenced. The frag-

ment was then digested with EcoRI and XbaI, ligated into the copper-inducible expression vector 

pYEScupFLAGK, (39) and transformed into YPH500 cells using lithium acetate (Invitrogen).  

 

S. cerevisiae cells transformed with empty pYEScupFLAGK or pYEScupFLAGK–UGT1 were 

grown in 0.5 mM CuSO4-supplemented selective medium (0.67% Bacto yeast nitrogen base 

without amino acids, L-leucine, L-histidine, L-tryptophan, L-lysine, adenine, 2% glucose) for 2 h 

to induce protein expression. Golgi membranes were isolated by subcellular fractionation and 

then assayed for the ability to import radiolabeled nucleotide sugars (NEM Life Science Prod-

ucts) as described in (39). Transport of each assay substrate by strains with empty or Ugt1-

expressing vectors was compared by unpaired Student’s t-test.   

 

Capsule induction  

O/N cultures of C. neoformans grown in YPD were collected by centrifugation and washed twice 

with sterile PBS. Cells were then either resuspended in Dulbecco's Modified Eagle's Medium 

(DMEM; Sigma-Aldrich) at 106 cells/ml in T-75 tissue culture flasks and incubated at 37°C in 

5% CO2 for 24 h or diluted to 5 x 106 cells/ml in 10% Sabouraud’s medium (4% [wt/vol] dex-

trose, 2% [wt/vol] peptone, pH = 5.6) in PBS and grown at 30°C with shaking for 48 h. Cells 

were collected, washed twice in PBS, resuspended in PBS, mixed with 1.5 parts India ink, and 

viewed with a ZEISS Axioskop2 MOT Plus microscope, 63× objective. 
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Fungal gene expression   

Wild-type cells cultured in YPD were grown in DMEM under capsule-inducing conditions and 

sampled at 0, 1.5, 3, 8, and 24 h for RNA isolation and sequencing. See reference (56) for de-

tails. 

 

Transmission electron microscopy  

Strains were grown in Sabouraud's capsule-inducing conditions (72), collected by centrifugation 

(3,000 x g; 5min), fixed for 1 h at RT with 2% glutaraldehyde (Polysciences Inc.) in 100 mM 

phosphate buffer (pH 7.2), and then incubated for 1 h in 1% osmium tetraoxide (Polysciences 

Inc.). Following dehydration with ethanol and propylene oxide, cells were embedded in Eponate 

12 resin (Tel Pella Inc.), and 70-90 nm sections were cut with an UCT ultramicrotome (Leica 

Microsystems Inc.). Sections were stained with uranyl acetate and lead citrate for visualization 

with a JEOL 1200EX transmission electron microscope (JOEL Ltd.).  

 

Macrophage assays  

To assay fungal survival in macrophages, THP-1 monocytes were seeded at 3.5 x 105 cells/well 

in a 96-well plate, treated with 0.2 ug/ml PMA for 72 h to induce differentiation, and incubated 

with C. neoformans at MOI = 0.1 for 1 h at 37°C and 5% CO2. Plates were washed twice with 

PBS, and samples incubated for 1 or 24 h before lysis and plating in triplicate on YPD agar for 

counts of colony forming units (CFU).  

 

Macrophage phagocytosis of fungal strains was quantified using our previously published assay 

(49) with minor modifications. Briefly, cells were grown in capsule inducing media as above or 
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in parallel YPD cultures. Cells were then collected by centrifugation, washed, and opsonized 

with commercial human serum before incubation with differentiated THP-1 macrophages for 1 

h. Host cell cytosol and nuclei and fungal walls were stained, and samples were imaged on a Cy-

tation3 plate reader (BioTek) and analyzed using IN Cell Developer Toolbox 1.9.2 (GE 

Healthcare Life Sciences).  Assay results for ugt1Δ were compared to those for wild-type and 

complemented strains by analysis of variance (ANOVA). 

 

Animal studies  

Fungal strains to be tested were cultured O/N in YPD, washed in PBS, and diluted to 2.5 x 104 

cells/ml in sterile PBS. 50 l aliquots were then inoculated intranasally into six 4- to 6-week-old 

female C57BL/6 mice (NCI, National Institutes of Health). Groups of two and four mice were 

sacrificed at 1 h and 7 days post inoculation, respectively. Initial inocula and lung homogenates 

were plated for CFU, and organ burden was analyzed by ANOVA. All studies were performed in 

compliance with institutional guidelines for animal experimentation.  
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Figures 

 

Figure A.1. Phylogenetic relationships of cryptococcal Ugt1 (bold) and human NSTs with 

known substrates (in parentheses). Tree reconstruction was performed with the Phylogeny.fr web 

server (66, 67) using MUSCLE, PhyML, and TreeDyn software. Human transporters are denoted 

by their SLC35 family designation, and distance is expressed as the number of amino acid substi-

tutions per 100 positions.  
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Figure A.2. Topology of C. neoformans Ugt1 as predicted by TMHMM server v 2.0, showing 

10 putative transmembrane domains and long N- and C- terminal cytosolic tails. Arrowheads in-

dicate the new N-terminus for each N-terminal truncation and the terminal residue of the single 

C-terminal truncation (C1); see text and Table A.3 for details.  
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Figure A.3. The cryptococcal UDP-Gal transporter localizes with a Golgi marker and is func-

tional in mammalian cells. (A) MDCKII cells transiently transfected with vector alone (vector) 

or vector expressing HA-tagged forms of the human UDP-Gal transporter (hUgt) or cryptococcal 

UDP-Gal transporter (cUgt1) were probed with antibodies to HA (red) and to the Golgi protein 

giantin (green). As expected, all cells stain with the Golgi marker, while a subset expresses each 

colocalizing transporter. (B) Lec8 cells were transiently transfected with the same constructs as 

in Panel A and probed with anti-HA antibody (red) and GSII-FITC (a lectin specific for terminal 

GlcNAc; green). Terminal galactose modification of cell surface glycans, which prevents the lec-

tin binding, occurs only in cells that express a UDP-Gal transporter. Bright field and merged im-

ages are shown (Panel A scale bar, 10 μm; Panel B scale bar, 20 μm). 
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Figure A.4. Ugt1 transports UDP-Gal and UDP-GalNAc. Golgi fractions isolated from S. cere-

visiae expressing vector alone (white bars) or UGT1 (black bars) were assayed for transport of 

the indicated nucleotide sugars. Each value represents the mean and standard deviation of dupli-

cate assays from three independent Golgi preps. **, p < 0.001 compared with vector alone.  
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Figure A.5. Transcription of UGT1 and UGE1 increases during capsule induction. Reads from 

RNA-seq data (mean  SD) were normalized to their levels at t = 0, which were: UGT1, 383,949 

 24,018; UGE1, 724,792  19,475; and UGE2, 110,719 18,909. Values shown are compiled 

from three independent experiments, each with RNA prepared from three biological replicates.  
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Figure A.6. ugt1Δ mutants show altered capsule and cellular morphology, and exhibit growth 

and mating defects. (A) Wild type (WT), ugt1Δ, and complemented ugt1Δ (UGT1) were grown 

in the media noted above and visualized by light microscopy after negative staining with India 

Ink (first three columns, scale bar = 5 m) or by electron microscopy (last column, scale bar = 

500 nm). (B) The indicated strains, including two independent ugt1Δ strains, were grown over-

night at 30C in YPD, and 5 l of serial dilutions were spotted and grown as indicated. Left pan-

el, dilutions were 10-fold starting at 106 cells; right panel, dilutions were 5-fold, starting at 107 

cells. (C) Equal volumes of the indicated MAT strains and KN99a were mixed, spotted on V8 

agar, and incubated at RT in the dark. Images were taken two weeks after initial spotting. In 

three independent experiments, no filamentation of either mutant strain was detected. 
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Figure A.7. N- and C- terminal Ugt1 truncations complement capsule and cellular morphology 

defects in ugt1Δ. (A) The strains indicated above the horizontal line, carrying the plasmids 

shown below the line, were grown in DMEM + G418 and visualized by light microscopy after 

negative staining with India Ink (scale bar = 5 m). (B) The indicated strain and plasmid combi-

nations were grown overnight at 30C in YPD + G418. 5 l of serial dilutions were spotted and 

grown as indicated with G418 (except for 0.005% SDS). Dilutions were 5-fold starting at 106 

cells.  
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Figure A.8. Cells lacking Ugt1 are more efficiently phagocytosed and killed by THP-1 cells than 

wild-type C. neoformans. (A) Phagocytic index (engulfed fungi/100 host cells) of strains grown 

in YPD (-/+ opsonization) or in inducing media (+ opsonization). (B) Survival of YPD-grown, 

opsonized fungi after internalization by THP-1 cells. Data are representative of three independ-

ent experiments performed with n = 3 (*, p < 0.01; **, p < 0.001). 
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Table A.1. C. neoformans strains used in these studies. 

C. neoformans straini Serotype Origin 

KN433 D (73) 

KN433 ugt1 D This study 

KN433 ugt1::UGT1 D This study 

Jec21 D (74) 

Jec21 CXT1-myc D (14) 

Jec21 CXT1-myc UGT1-HA D This study 

Jec21 CXT1-myc GMT1-HA D (75) 

KN99a A (76) 
 

iAll strains are MATα except for KN99a. 

 

 

 

 

 

 

Table A.2. Primers used for modification of or expression in C. neoformans. 

 

Primer  Sequence (5′-3′) 

1 CCGGCGCGCCGTTTAAACTCATGCGTAATCCGGAACGTCGTAGGGGTAAC-

CATGCTTTCTATCAATGTCCAAAC 

2 CCCTAGCTAGCGTTTAAACATGGCCCATCGAACCAACACTCG 

3 GTCACGAAGAATTCGTGGGCTATGCTACTGCGATG 

4 TACCTCGGCGCGGCCGCTTAACCATGCTTTCTATC 

5 GTCACGAAGAATTCGCCCATCGAACCAACACT 

6 GTCACGAACCTAGGCTAGATTGGCGGAGCGGGGCT 

7 GTCACGAACCTAGGTCAACCATGCTTTCTATCAATG 

8 GTCACGAACACGTGATGGACTACAAGGACGATGACG 

9 GTCACGAACCTAGGGATTGGCGAGCGGGGCT 

10 GAATTCGCCCATCGAACCAACAT 

11 CTCGAGTTAACCATGCTTTCTATC 



201 

 

Table A.3. Ugt1 truncations and their ability to complement UDP-Gal transport.  

 

 

 

 

 

Table A.4. Primers used to generate truncation constructs for Lec8 expression. 

 

 

 

 

 

 

 

UGT1 Variant 
Amino 

Acids 

CHOP8 Com-

plementation 

Full Length 1-703 + 

N1 56-703 + 

N2 76-703 + 

N3 109-703 + 

N4 168-703 + 

N5 212-703 - 

N6 254-703 - 

C1 1-571 + 

N6/C1 254-571 - 

UGT1 Variant Primer Sequence 

Full Length 5′-ATCGAATTCGCCCATCGAACCAACACT-3′ 

5′-TTAACCATGCTTTCTATC-3′ 

N1 5′-ACTAGAATTCAGAGATCGAAGCGAGAGA-3′ 

5′-TTAACCATGCTTTCTATC-3′ 

N2 5′-ACTAGAATTCGGGAAGACGCGCGGTATGGA-3′ 

5′-TTAACCATGCTTTCTATC-3′ 

N3 5′-ACTAGAATTCTCCTCTACCTCTGTCAGCT-3′ 

5′-TTAACCATGCTTTCTATC-3′ 

N4 5′-ACTAGAATTCGTGGGCTATGCTACTGCGA-3′ 

5′-TTAACCATGCTTTCTATC-3′ 

N5 5′-ACTAGAATTCCACTATTCACGGATATCTA-3′ 

5′-TTAACCATGCTTTCTATC-3′ 

N6 5′-ACTAGAATTCACTGCATCTCCTCCTC-3′ 

5′-TTAACCATGCTTTCTATC-3′ 

C1 5′-ATCGAATTCGCCCATCGAACCAACACT-3′ 

5′-ACACTCGAGACTGGCAGGTGGAGCGGGGCT-3′ 
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Supplementary materials 

 

Figure A.S1. Protein sequence alignment of C. neoformans Ugt1 with other UDP-Gal transport-

ers. The Jalview2 alignment includes aa 195-563 of cryptococcal Ugt1 (703 aa total) and the 

complete sequences of Schizosaccharomyces pombe (Sp) Gms1, Arabidopsis thaliana (At) UDP-

GalT1, Caenorhabditis elegans (Ce) Srf3, and Homo sapiens (Hs) SLC35A2. Residues con-

served in three or more sequences are highlighted in blue with darker color corresponding to a 

greater number of sequences that share the residue.  
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Figure A.S2. Cryptococcal Ugt1 colocalizes with a Golgi enzyme. Cells expressing Cxt1-myc 

alone (top row) or Cxt1-myc and Ugt1-HA (second row) were probed with antibodies to c-myc 

(red) and HA (green). Single wavelength and merged images are shown, all to the same scale 

(scale bar, 1 μm). Cell bodies are outlined with dotted gray lines over the merged image.  
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Appendix B: Other nucleotide sugar 

transporter candidates 
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While the majority of my thesis work focused on Uut1, Uxt1, and Uxt2, I also performed prelim-

inary studies on an additional four NST candidates (G, J, L, and X). Below, I summarize my 

progress and suggest research directions for these proteins.   

 

B.1 NSTG (CNAG_05674) 

NSTG was identified by homology to the human UDP-GlcA transporter (1). Mutants lacking 

NSTG were hypocapsular (Fig. B.1), and expression of NSTG was upregulated ~2-fold during 

capsule induction (Fig. B.2). This initially suggested NSTG transported an activated donor of a 

capsule component, but prior work (2, 3) and this thesis identified NSTs responsible for all cap-

sule glycan precursors. There were furthermore no detectable changes in capsule epitopes; in-

duced nstGΔ cells were recognized normally by anti-GXM antibodies, including those specific 

for Xyl and O-acetyl groups (Table B.1). GXM isolated from this strain also demonstrated no 

compositional differences from WT GXM (Table B.2), which suggested that there was a propor-

tional reduction of all of the capsule monosaccharides.    

 

We next directly assayed transport of a standard panel of 16 nucleotide sugars (as in Fig. 2.4) in 

vitro using proteoliposomes prepared from S. cerevisiae expressing NSTG. We did not, however, 

detect transport activity for any of the nucleotide sugars tested (Joshua Heazlewood, personal 

communication). Further phylogenetic analysis places NSTG in the same clade as triose phos-

phate transporters, so it may, instead, be a sugar phosphate transporter (i.e. G6P, F6P, IP6) 

 

Beyond identifying the substrate(s) of NSTG, we were also interested in determining the physio-

logical role of this NST. nstGΔ exhibited only mild sensitivity to high salt and high pH at elevat-
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ed temperature (Table B.3). The defects were insufficient to reduce its growth rate in the pres-

ence of macrophages in vitro (Fig. B.3), and the time of death for mice infected with this mutant 

was only slightly delayed compared to that of mice infected with control strains (Fig. B.4). There 

may be functionally redundant NSTs that mask the phenotypes from loss of NSTG although there 

are no close homologs of this gene in the cryptococcal genome. Alternatively, the luminal roles 

of the substrate may be dispensable for survival, or we might not have found the conditions un-

der which the substrate is required. Elucidating the biochemical function of NSTG may help dis-

tinguish between these scenarios and explain the capsule size defect.      

 

B.2  NSTJ (CNAG_02036) 

NSTJ was initially identified by homology to the Aspergillus fumigatus UDP-Galf transporter, 

GlfB (4). Deletion of nstJ did not affect capsule size or growth on stress plates (Table B.3), 

which is consistent with loss of Galf in the capsule since loss of the Galf mutase also produces no 

detectable phenotypes (5). We already have evidence that Uxt1 and Uxt2 transport UDP-Galf 

(Fig. B.5). NSTJ might transport substrate(s), including UDP-Galf, for which there are additional 

overlapping NSTs. Given the lack of phenotypes, NSTJ was a lower priority in our studies, and 

we did not pursue it in parallel with the other candidates. 

 

B.3 NSTL (CNAG_02355) 

NSTL was identified by homology to the human UDP-Xyl/UDP-GlcNAc transporter (6), but 

since deletion of UXT1 and UXT2 (Chapter 3) completely abrogates Xyl incorporation into gly-

coconjugates, it is unlikely that NSTL transports the same substrate(s). Loss of NSTL did not af-

fect capsule size (Fig. B.1) or GXM shedding (Table B.1), and the mutant stained normally with 
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capsule antibodies and cell wall stains (Table B.1). NSTL, thus, does not seem to be required for 

capsule production, and NSTL expression was, in fact, repressed four-fold during capsule induc-

tion (Fig. B.2). We furthermore did not detect transport of any nucleotide sugars (standard panel 

of 16, including capsule donors) when we directly assayed transport in vitro using proteolipo-

somes prepared from S. cerevisiae expressing NSTL (Joshua Heazlewood, personal communica-

tion).    

 

Mutants lacking NSTL demonstrated only a mild growth delay in response to standard stress as-

says (Table B.3). nstLΔ also proliferated normally in culture (Fig. B.6) and in the presence of 

macrophages in vitro (Fig. B.7). Despite the limited defects in vitro, nstLΔ-infected mice were 

significantly delayed in time to death (Fig. B.4). We are interested in ascertaining the cause of 

this delay in virulence given the limited defects in vitro; greater insight may result from identifi-

cation of the NSTL substrate(s). 

 

B.4 NSTX (CNAG_05254) 

NSTX was initially identified by homology to the Arabidopsis thaliana UDP-glucose transporter 

(7). nstXΔ is hypocapsular (Fig. B.1), but there were no detectable differences in GXM composi-

tion compared to WT cells. Mutants were also sensitive to cell wall, cell membrane, and osmotic 

stress at high temperature (Table B.3) and grew slower than WT in the presence of macrophages 

in vitro (Fig. B.8). This mutant was extremely attenuated in virulence, with clearance from mice 

by 7 dpi (Fig. B.9).  
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The growth defects of nstXΔ were partially complemented by the human CMP-sialic acid trans-

porter (hCST; Fig. B.10). The presence of sialic acids in C. neoformans, however, is controver-

sial. Although sialylated glycoproteins and sialyltransferase activity have been reported in C. 

neoformans (8-10), we have not detected sialic acids in several lab strains tested, and sequenced 

cryptococcal genomes do not encode homologs of known sialic acid synthetic machinery. Addi-

tionally, when we directly assayed transport in vitro using proteoliposomes prepared from S. 

cerevisiae expressing NSTX, we did not detect transport of any nucleotide sugars assayed, includ-

ing CMP-sialic acid (standard panel of 16 nucleotide sugars; Josh Heazlewood, personal com-

munication). It may be that the partial complementation is due to the ability of hCST to transport 

some other, as yet unknown, substrate.  

 

The human homolog hCST appears to have an as yet undefined and transport-independent role in 

O-mannosylation (11). We collaborated with Dr. Dick Lefeber (Netherlands), who has generated 

a mutant form of hCST with no transport activity but preserved function in O-mannosylation 

(11). Plasmid-mediated expression of the WT and mutant forms of hCST, under control of an 

actin promoter, complemented nstXΔ to the same extent at 30 °C, suggesting that the role in O-

mannosylation is enough to achieve this level of complementation. However, neither one re-

stored fungal growth at 37 °C (Fig. B.11). It may be that hCST requires additional interaction 

partners or protein modifications that are not present in C. neoformans to be completely func-

tional as a replacement for NSTX, or that it cannot do so because of fundamental differences in 

activity. 
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B.5 Future directions  

Since assays of these putative NSTs did not yield detectable transport of any nucleotide sugars in 

vitro, our collaborator (Dr. Joshua Heazlewood) is pursuing additional substrates that are struc-

turally similar to nucleotide sugars and are known to be required in the Golgi and/or ER. Further 

compositional assays will be considered based on the identified substrate(s). 
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B.7 Figures 

 

Figure B.1. NSTG and NSTX deletion mutants are hypocapsular compared to WT. Shown are light 

micrographs of WT, nstGΔ, nstLΔ and nstXΔ grown in capsule-inducing conditions and visualized 

after negative staining with India Ink (scale bar = 5 m). 

 

 

 

Figure B.2. Transcription of NSTG, NSTJ, NSTL, and NSTX during capsule induction. Reads from 

RNA-Seq data (mean  SD) during capsule induction were compiled from three independent ex-

periments, each with RNA prepared from three biological replicates as in (12).  
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Figure B.3. Intracellular survival of cells lacking NSTG resembles that of wild-type C. neofor-

mans. Fold-change in colony forming units (24 h:0 h) after internalization of opsonized fungi by 

THP-1 cells. Data are the mean ± SEM of three independent experiments.  

 

 

Figure B.4. Mice infected with nstGΔ and nstLΔ are delayed in time of death compared to those 

infected with wild-type cryptococci. Shown is survival of mice after intranasal inoculation with 5 

× 104 cell of the indicated strains (n = 8-9).  
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Figure B.5. Uxt1- and Uxt2-mediated UDP-Galf uptake into proteoliposomes. (A) LC-MS/MS 

analysis of UDP-Galf prepared from UDP-Galp utilizing E. coli UDP-galactopyranose mutase 

(GLF). (B - D) Proteoliposomes prepared from S. cerevisiae expressing vector alone (B), Uxt1 

(C), or Uxt2 (D) were preloaded with 30 mM UMP and analyzed by LC-MS/MS after a 10 min 

incubation with 700 mM UDP-Galp and 10 mg purified GLF. (E and F) Quantification of nucle-
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otide sugar uptake into proteoliposomes preloaded with (E) 30 mM UMP, or (F) 30 mM GMP. 

Data were normalized to the total protein content of the proteoliposome preparations (Table 

3.S4) and show the mean ± SD of four assays. All assays were performed at 37 °C. 
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Figure B.6. nstLΔ growth is not restricted at 37 °C. The indicated C. neoformans strains were 

grown overnight at 30 °C in YPD, diluted to 105 cells/mL in the media indicated, and incubated 

at 37 °C with 5% CO2. The results shown are the averages of three measurements.  
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Figure B.7. Intracellular survival of cells lacking NSTL resembles that of wild-type C. neofor-

mans. Fold-change in colony forming units (24 h:0 h) after internalization of opsonized fungi by 

THP-1 cells. Data are the mean ± SEM of three independent experiments.  

 

Figure B.8. nstXΔ growth is delayed in the presence of THP-1s. Fold-change in colony forming 

units compared to 0 h after internalization of opsonized fungi by THP-1 cells (grey bars, 24 hpi; 

white bars, 48 hpi). Data are the mean ± SD (n = 3) from one representative experiment (of two 

independent experiments).  
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Figure B.9. nstXΔ is cleared by 7 dpi in mice. Colony forming units in the lung 1 h (green bars) 

or 1 week (red bars) after intranasal inoculation of 104 cells of the indicated strains. Average and 

each value for groups of 5 mice are shown, with p values shown above. 

 

 

 

Figure B.10. hCST partially rescues nstXΔ growth on SDS. Serial 5-fold dilutions on rich medi-

um of nstXΔ complemented with vector alone (v), NSTX, or the human CMP-sialic acid trans-

porter (hCST). Left, 30 °C YPD; right, 37 °C + SDS. 
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Figure B.11. Transport activity of hCST is not required to rescue nstXΔ growth at 30 °C. Serial 

5-fold dilutions on indicated medium of nstXΔ complemented with vector alone (v), hCST, or the 

mutant hCST that lacks transport (Q101H) at (A) 30 °C and (B) 37 °C. Note that plasmid com-

plementation may yield higher protein expression. 
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Table B.1. Capsule and cell wall phenotypes. 

 Capsule 

size 

GXM 

shedding 
Capsule staining Cell wall staininga 

 

 

Strain 

 
339 + 

F12D2 
339 302 F12D2 CFW Pont LY EY ConA 

nstGΔ Hypo NTb + + + NT NT NT NT NT 

nstJΔ Normal NT NT NT NT NT NT NT NT NT 

nstLΔ Normal Normal + + + + + + + + 

nstXΔ Hypo NT + NT NT NT NT NT NT NT 
 

aCFW (binds chitin), Concanavalin A (ConA, binds mannoproteins), Eosin Y (EY, binds chi-

tosan), and Lucifer yellow (LY, binds unspecified cell wall components), and Pontamine (Pont, 

binds unspecified cell wall components) 
bNT, not tested  

 

 

 

 

 

 

 

 

 

Table B.2. Glycosyl composition analysis of GXM. 

 WTa nstGΔ 

Xyloseb 28.1 24.1 

Glucuronic acid   9.9 11.2 

Mannose 61.9 64.6 
 

a Jec21 is the wild-type strain for these studies. 
b Values are reported as mole percent.  
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Table B.3. Dot plating phenotypes.a 

 

 

a Yellow, no difference from WT; Blue, reduced growth compared to WT; Dark blue, no growth. 
b NT, not tested 

 

 

 

 

 

 

 

 

 

 

  G J L X 

  30 °C 37 °C 30 °C 37 °C 30 °C 37 °C 30 °C 37 °C 

YPD 
              

Tris pH 8.8 
             

1.2 M NaCl 
          NTb 

1.2 M KCl 
          NT 

1.5 M Sorbitol 
         NT NT 

0.2% CR 
        NT   

2 mg/mL CFW 
           

0.2% Caffeine 
         NT NT 

0.01% SDS 
           

YNB 
         NT NT 

10 mM H2O2 
        NT NT NT 

10 mM NaNO2 
        NT NT NT 
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