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ABSTRACT OF THE DISSERTATION 

First-principles Study of Structural and Optical Properties of Novel Materials 

by 

Wenshen Song 

Doctor of Philosophy in Physics 

Washington University in St. Louis, 2019 

Professor Li Yang, Chair 

 

Novel materials, including two-dimensional (2D) materials, ferroelectric materials, as well as 

hybrid perovskites materials, have attracted tremendous attention in recent years because of their 

unique structural symmetries and electronic structures. Among them, 2D materials, such as 

graphene, black phosphorene, and transition metal dichalcogenides (TMDs), etc., have great 

potentials for nanoelectronics and optical applications. Particularly, these 2D materials can 

sustain much larger strain than their bulk counterparts, making strain a unique and efficient tool 

to tune a wide range of properties of 2D structures. In the first part of this thesis, we explore how 

strain tunes quasiparticle energy and excitonic effects of typical 2D materials, including black 

phosphorus and monolayer 2H-phase TMDs, i.e., MoS2, MoSe2, WS2, and WSe2. Beyond the 

widely studied uniaxial and biaxial strain, we expand the research to arbitrarily axial strains and 

find complicated variations of quasiparticle band gaps, band-edge energies, direct-indirect gap 

transitions, and exciton energies. These results provide a complete picture for straining 

engineering of electronic structures and optical spectra of 2D TMDs. 

The second part of this thesis focuses on the electronic polarization of non-centrosymmetric 

layered van der Waals (vdW) metal chalcogen-diphosphates MCDs, especially on CuInP2Se6. 

We employ first-principles modern-polarization theory to study the electrical polarization 
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ordering and build an electrostatic-energy model to explore the effects of boundary conditions. 

We find the existence of intrinsic off-plane polarization of CuInP2Se6, with an antiferroelectric 

(AFE) ground state for monolayer and ferroelectric state (FE) ground state for bulk under the 

open-circuit boundary condition. However, for close-circuit boundary condition, we find that the 

ground state is always FE through bulk to monolayer. We also apply Monte Carlo simulations to 

obtain the FE Curie temperature and electric hysteresis. This study gives hope to overcoming the 

depolarization effect and realizing ultra-thin FE transistors and memories based on vdW 

materials. 

In the last part, we focus on nonlinear optical properties of a novel family of materials, organic-

inorganic hybrid perovskites materials. We have developed a high-efficient, large-scale parallel 

simulation tool (NLOPACK), making it possible to explore the nonlinear optical properties of a 

family of organic-inorganic hybrid halide perovskites, CH3NH3MX3 (M= Ge, Sn, Pb; X=Cl, Br, 

I), which contains a large number of atoms and cannot be handled by traditional simulation 

packages. We employ this code and find significant second harmonic generation (SHG) and 

linear electro-optic (LEO) effect in the cubic phase of CH3NH3SnI3, in which those effects are 

comparable with those widely used organic/inorganic nonlinear optical materials. The reason for 

these enhanced nonlinear optical properties in hybrid perovskites is explained as well. This work 

will motivate experimental efforts to fabricate hybrid perovskites for low-cost, nonlinear-optical 

device implementations. 
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Chapter 1: Introduction 
Nowadays, the exploration of novel materials have experienced explosive growth in numerous 

fields, such as physics, electronic engineering, chemistry, medicine, energy systems, etc. [1]–[5]. 

Among the novel materials, two-dimensional (2D) materials has become a rising star in the past 

tens of years. Starting with the discovery of single layer graphene by Novoselov and Geim in 

2004 [6], followed by other materials like hexagonal boron nitride (h-BN), transition metal 

dichalcogenide (TMDCs) and black phosphorus (BP) [7]–[9], 2D materials are springing like 

mushrooms and exhibit fascinating and promising properties in applications including 

electronics, optoelectronics and photonics, etc. [10]–[15]. Particularly, the synthesis of 

monolayer MoS2, one of the most representative TMDCs, in 2010 [16] becomes a milestone for 

nanoelectronics applications. With band gap around 1.7 eV, direct-band-gap 2D semiconductor 

monolayer MoS2 exhibits strong photoluminescence spectroscopy [16], [17], which is quite 

distinct from its bulk counterpart which is indirect-band-gap. Therefore, monolayer MoS2 has 

great potentials in visible-light optoelectronic applications. Moreover, monolayer MoSe2, WS2, 

WSe2 from the same TMDCs family, have shown similar electronic and optical properties as 

monolayer MoS2 [18], [19].  

The aforementioned electronic and optical properties are largely determined by quasiparticles 

excitation of many-body electron systems. The most important quasiparticles is exciton [20], 

which is formed by the electron-hole pair interaction after the electron is excited by incident 

photons and attracted by the left-over hole under Coulomb interaction. This electron-hole pair is 

vital in determining the electronic and optical properties, especially when electrons are confined 

in low-dimensional materials which enhances the many-body effect to a large extent [21]. As a 
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result, excited properties, such as photoluminescence (PL) and band energies, are of great 

importance in 2D TMDCs, and have been studied widely in recent years [22]–[26].  

It is a common practice to manipulate material structures for new properties and improving 

performance. Therefore, we have huge interest in tuning excited-state properties by external 

means. Among these means, strain is known for effectively impacting a wide range of properties 

and tailoring materials for various applications [27]–[36].  This is particularly intriguing for two-

dimensional (2D) structures that can sustain much larger magnitude of strain than their bulk 

counterparts. Still, experimentally controllable strain engineering is still challenging since: 1. 

Stretching or bending 2D structures usually introduces spatially inhomogeneous strain; 2. 

Complicated strain distribution is widely expected in fabricated samples [28], [29], [37], [38]. As 

a result, simple cases such as uniaxial/biaxial strains along specific high-symmetry directions 

[39]–[41] are not enough to cover the experimentally trained conditions that the strain may be 

applied with differently amplitudes along different directions because of substrates or various 

boundary conditions. It is necessary to cover arbitrarily axial strain and essential to explore the 

2D strain-mapping properties. Moreover, typical first-principles calculations are based on 

density-functional theory (DFT), but the excited-state properties require including many electron 

effects, i.e., electronic self-energy and electron-hole (e-h) interactions, which are beyond DFT. 

Therefore, a first-principles calculation considering complicated strain conditions and including 

many-electron effects is essential for explaining a wide range of measurements and guiding 

future strain engineering of 2D materials. 

Apart from excited-state properties of 2D materials, polarization ordering, such as 

ferroelectricity is another interesting and intriguing field which has attracted extensive attention 

in 2D materials. Polarization orderings, mainly including ferroelectrics (FE) and antiferroelectric 



3 

(AFE), arise from macroscopic polarization induced by spontaneous ordering of electric dipoles 

and switchable under external electric field. The ultrathin FE films are extremely useful structure 

for exploring new physics and realizing device applications, such as FE transistors and memories 

[42]. Ferroelectrics has been thoroughly studied in bulk materials like perovskites oxides [43]–

[50]. However, surface dangling bonds and accumulated free electrons will appear at the 

intersections for these materials when exfoliating. Meanwhile, their ferroelectricity is extremely 

sensitive to vertical boundary conditions [51], [52]. As a result, drastic depolarization effects 

emerge in these three-dimensional structures when they are thinned down, resulting in a 

suppression of polarization and thus a critical thickness for sustaining the FE state [53], [54]. 

Thus, realizing ultrathin ferroelectricity is hard to achieve. 

Layered van der Waals (vdW) materials may give hope to overcoming this challenge, since there 

are no chemical bonds between layers. 2D in-plane ferroelectricity has been predicted and 

observed in monolayer group IV monochalcogenides [55]–[58]. For the most useful off-plane 

(vertical) ferroelectricity, it is still challenging. Recently, experiments reported that metal 

chalcogen-diphosphates (MCDs) can be a promising family of ultrathin FE materials [59]. 

However, other measurements claim that ferroelectricity can only exist in samples with much 

larger thickness of MCDs [60], [61]. Furthermore, the electric boundary conditions between top 

and bottom surfaces of slab structure of MCDs are crucial in determining polarization orders, as 

mentioned before. Thus, it is worthwhile to explore the polarization order through first-principles 

calculations, under different boundary conditions and layer thickness. 

Another novel material that have attracted considerable interest in recent years is nonlinear 

optical (NLO) materials, which play an important role in modern electronics and photonics. In 

NLO materials, a variety of nonlinear processes can be realized, such as electro-optic (EO) effect 
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and second/third harmonic generation (SHG/THG) [62]. Traditional NLO materials such as 

ternary inorganic oxides have achieved widespread success and play key roles in related 

industries due to their reliable performance, low optical loss, and good stability. However, the 

synthesis of these insoluble oxides requires high temperature treatment, which hinders their 

application for most flexible substrates and their integration into chip-scale nanophotonic 

devices. On the other hand,  although conventional organic NLO materials based on 

chromophores have been considered a promising alternative due to their solution processability, 

faster response and stronger NLO activities, their low intrinsic stability and high optical loss 

severely hindered their applications where high light intensity and elevated temperature are 

expected [63].  

Nowadays, organic-inorganic hybrid halide perovskites (OHPs), such as CH3NH3MX3 (M=Ge, 

Sn, Pb; X= I, Br, Cl), becomes increasingly important and prestigious in the fast-growing 

photovoltaic technologies [64]–[67].  Due to the asymmetry of CH3NH3 units, ferroelectricity 

could be realized in this family of materials naturally or by artificially tuning [68]–[70]. This 

broken inversion symmetry also ensures even order nonlinear optical properties [71], especially 

second harmonic generation (SHG) and linear electro-optic (LEO) effects are also expected in 

such materials [72]–[74]. Moreover, given the fact that such compounds can be easily fabricated 

from liquid phase [13], [14] and nearly unlimited choices of compositions [15], [16], OHPs may 

exhibit unique advantages in fabricating cost and optimizations of NLO properties, compared to 

traditional NLO materials. Moreover, given the fact that such compounds can be easily 

fabricated from liquid phase [64], [65] and nearly unlimited choices of compositions [66], [67], 

OHPs may exhibit unique advantages in fabricating cost and optimizations of NLO properties, 

compared to traditional NLO materials.  
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Although calculations of second-order nonlinear optical properties have been conducted to a 

large number of systems without inversion symmetry from 1D to 3D [75]–[80]. Calculating and 

predicting NLO properties of OHPs are challenging for the available simulation tools, since it 

involves higher-order transitions, which are intrinsically much more expensive in simulation cost 

compared to those of linear optical responses. As a result, it requires fairly dense k-point 

sampling and a large number of empty bands to get convergence, especially for large and 

complex systems with low symmetry, just like OHPs. Such requirements make the calculation 

for nonlinear optical properties extremely hard and time-consuming. To achieve computational 

proficiency for studying NLO properties of OHPs, fundamental coding development is needed to 

for better parallelization performance and simulation efficiency. 

This thesis is organized as follows. In Chapter 2, we go through the theoretical background and 

discuss the computational methods. We first start with density-functional theory (DFT), many-

body perturbation theory, followed by modern theory of polarization and second-order nonlinear 

optics. Chapter 3 mainly focuses on quasiparticle energies and bright excitons of strained 

materials [81], [82], especially on four strained typical TMDC monolayers, i.e., MoS2, MoSe2, 

WS2, and WSe2, using first-principles DFT and many body perturbation theory. By mapping 

their band gaps, absolute band-edge energies, and exciton frequencies into 2D contours of in-

plane strain distributions, we are able to provide a complete picture of arbitrary strain effects on 

these important quantities. 

In chapter 4, we take a typical member of layered vdW MCDs, CuInP2Se6, as an example and 

show that monolayer MCD may sustain a polarization ordering even down to the monolayer 

[83]. We reveal that the vertical boundary conditions are crucial for determining the polarization 

orders of ultrathin structures. Given the substantial transition energy barrier between AFE and 
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FE states, the FE state can be held as a robustly metastable state of the free-standing monolayer, 

giving rise to 2D vertical ferroelectricity. Finally, the FE phase transition temperature and 

electric hysteresis curves of the free-standing monolayer CuInP2Se6 are obtained by Monte Carlo 

(MC) simulations. 

In chapter 5, we apply first-principles calculations to systematically investigate the family 

organic-inorganic hybrid halide perovskites CH3NH3MX3 (M=Ge, Sn, Pb; X= I, Br, Cl) on 

structural and electronic properties. Based on that, second-order nonlinear optical properties, 

including SHG and LEO effects, are explored by our self-developed NLOPACK package, which 

is written in Fortran with Message Passing Interface (MPI) and performs parallel computation on 

k-points. It has good scalability for calculating large and complex system with dense k-point 

sampling and low symmetry, and the excellent parallelization performance can be hold for up to 

a few thousand processors. We explore linear and second-order nonlinear optical properties of 

cubic phase hybrid halide perovskites. Within this family of materials, we find relatively large 

SHG susceptibilities within the infrared frequency range as well significant LEO coefficients for 

CH3NH3SnI3. Furthermore, we work into details to reveal the mechanism behind the formation of 

such large electro-optic coefficients.    
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Chapter 2: Computational Methods 
In an interacting many-electron system, the Hamiltonian can be expressed as [84], [85]: 

 �̂�𝑒𝑙 = −
ℏ

2𝑚𝑒
∑𝛻𝑖

2 + 

𝑖

∑𝑉𝑒𝑥𝑡(𝒓𝑖) + 

𝑖

1

2
 ∑

𝑒2

|𝒓𝑖 − 𝒓𝑗|
 

𝑖

 
(2.1) 

where 𝑖 is summed over all the electrons in the system. The first term is kinetic energy, and the 

second term is external potential of independent electrons, and the third term is the Coulomb 

interaction between all pairs of electrons. It is impossible to solve the formula straightforwardly 

since the number of electrons is extremely large in a real solid system. For approximate solutions 

[86], density functional theory (DFT) [87], [88] and the many-body Green’s function method 

[89] are introduced and proved to be very effective in the study of the ground and excited state 

properties.  

2.1 Density Functional Theory (DFT) 

2.1.1 Hohenberg-Kohn Theorems and Kohn-Sham Equation 

The foundation of DFT originates from two Hohenberg-Kohn Theorems published in 1964 [87]. 

The first Hohenberg-Kohn theorem states that, in a many-electron system, the ground-sate 

electron density 𝑛(𝒓) uniquely determines the external potential 𝑣𝑒𝑥𝑡(𝒓) as well as the 

Hamiltonian of the system. As a consequence, all ground-state properties can be written as 

functional of the ground-state electron density 𝑛(𝒓) instead of the many-body wavefunction. The 

energy functional can be written as follows [87]: 

 𝐸[𝑛] =  ∫𝑣𝑒𝑥𝑡(𝒓)𝑛(𝒓)𝑑𝒓 + 𝐹[𝑛] 
(2.2) 
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, where is 𝐹[𝑛] is the kinetic and interaction energy functional. The second Hohenberg-Kohn 

theorem states that for a given potential 𝑣𝑒𝑥𝑡(𝒓) and total electron number 𝑁, the actual ground-

state density will minimize the functional 𝐸[𝑛].  

The most well-known approximation of the function 𝐹[𝑛] is Kohn-Sham formalism originally 

published in 1965 [88]. It separates the electronic kinetic energy and Hartree potential energy 

from Eq. (2.2): 

 𝐸[𝑛] = ∫𝑣𝑒𝑥𝑡(𝒓)𝑛(𝒓)𝑑𝒓 + 𝑇[𝑛] +
1

2
∫

𝑛(𝒓)𝑛(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓𝑑𝒓′ + 𝐸𝑥𝑐[𝑛] 

(2.3) 

, where 𝑇[𝑛] is the kinetic energy of non-interacting electrons and 𝐸𝑥𝑐[𝑛]is the exchange-

correlation energy. Under the constraints of ∫𝛿𝑛(𝒓)𝑑𝒓 = 0, the variational stationary point can 

be expressed as: 

 𝑣𝑒𝑥𝑡(𝒓) +
𝛿𝑇[𝑛]

𝛿𝑛(𝒓)
+ ∫

𝑛(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓′ +

𝛿𝐸𝑥𝑐[𝑛]

𝛿𝑛(𝒓)
= 0 

(2.4) 

, which is equivalent to solving the single particle Schrodinger equation: 

 [−
ℏ2∇2

2𝑚𝑒
+ 𝑣𝑒𝑥𝑡(𝒓) + ∫

𝑛(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓′ + 𝑣𝑥𝑐(𝒓)]𝜓𝑖(𝒓) = 𝜀𝑖𝜓𝑖(𝒓) (2.5) 

, where 𝑛(𝒓) = ∑ |𝜓𝑖(𝒓)|
2

𝑖  is charge density and 𝑣𝑥𝑐(𝒓) =
𝛿𝐸𝑥𝑐[𝑛]

𝛿𝑛(𝒓)
. Eq. (2.5) reduces N-electron 

problem to a single electron moving in effective potential induced by the other electrons and can 

be solved by self-consistent method. It simplifies the many-body problem to a large extent, thus 

become the foundation of most of the modern DFT calculations [84].   
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Since Hohenberg-Kohn theorems don’t provide details of how to get the exchange-correlation 

potential 𝑣𝑥𝑐(𝒓), different approximations have been developed for practical calculations. A 

simple approximation, local density approximation (LDA) [90], replaces 𝐸𝑥𝑐 with exchange-

correlation potential of homogeneous electron liquid. Another widely used approximation is the 

generalized gradient approximation (GGA) [91], proposes a more accurate way to include the 

first-order gradient expansion around the homogeneous density. LDA and GGA are widely used 

in the calculation of DFT, as they are able to give accurate description of the ground state as well 

as of good simplicity for efficient calculation. There are still plenty of other functionals which 

can achieve better accuracy by including more terms, at the expense of more computational cost, 

such as Perdew, Burke and Enzerhof (PBE) [92], Perdew and Wang (PW91) [93], etc. 

2.1.2 Plane-Wave Pseudopotential Method 

Good choice of basis function set is crucial for solving Kohn-Sham equations. In the early stage, 

the most natural and common choice is orthogonal plane wave method. However, core electrons 

are often localized by atomic nucleus, leading to drastic oscillation in near-core wavefunctions 

which requires too large a number of plane waves for efficient calculation. Considering that 

valence electrons make the dominated contributions in chemical bonding between solids rather 

than core electrons, it is a good idea to use pseudopotentials to only keep the characteristics of 

valence electrons and simplify core electrons. This plane wave pseudopotential method is very 

popular in first-principles calculation, and in this thesis, we will use it as our primary DFT 

methods. 

2.2 Many-Body Perturbation Theory  
Although DFT is widely accepted and applied in first-principles calculations, it still has non-

neglectable limitation, that DFT is only exact for ground state but not for excited state. For 
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example, DFT always underestimate the quasiparticle band gap of materials [94]. Beyond DFT, 

the many-body perturbation theory provides a more accurate way to study the excited state 

properties. 

2.2.1 Quasiparticle and GW Approximation 

The electron-hole (e-h) quasiparticles are excitations behaving like free electron-hole bounded 

by screened Coulomb interaction, which is described by the electron’s self-energy Σ. The energy 

of quasiparticle is solved by Dyson Equation [85], [89], [95], 

 [−
1

2
∇2 + 𝑉(𝒓)]Φ𝑛𝒌(𝒓) + ∫𝑑𝒓′Σ(𝒓, 𝒓′; 𝐸𝑛𝒌)Φ𝑛𝒌(𝒓′) = 𝐸𝑛𝒌Φ𝑛𝒌(𝒓) 

(2.6) 

In 1965, Hedin expands the self-energy and Green’s function 𝐺 in terms of the screened 

Coulomb interaction 𝑊 [96]. Taking the first order, it can be expressed as: 

 Σ = 𝑖𝐺𝑊 
(2.7) 

, which is the origin of the name “GW approximation”. For each k-point 𝒌 and band 𝑛. The 

Dyson equation is solved in the first-order approximation [89]: 

 𝐸𝑛𝒌 = 𝜀𝑛𝒌
𝐷𝐹𝑇 + 〈𝜓𝑛𝒌

𝐷𝐹𝑇|Σ𝑛𝒌(𝐸𝑛𝒌) − 𝑣𝑥𝑐|𝜓𝑛𝒌
𝐷𝐹𝑇〉 

(2.8) 

, where the 𝑣𝑥𝑐 is the exchange-correlation contribution from DFT. The quasiparticle energy 𝐸𝑛𝒌 

is determined based on the single-particle energy 𝐸𝑛𝒌
𝐷𝐹𝑇 from DFT, and the DFT-level exchange-

correlation energy is replaced by the many-body self-energy. The GW approximation is much 

more accurate in estimating the true band gap compared to DFT. 
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2.2.2 Exciton and Bethe-Salpeter Equation (BSE) 

When an electron is excited into conduction bands, a positive empty hole is left over, and the 

electron and hole are bounded together with Coulomb interaction, forming a charge-neutral 

exciton. Excitons can be created by optical excitations, or annihilate under the recombination of 

electrons and holes, emitting a photon for each pair, as shown in Figure 2.1. Therefore, exciton is 

crucial in understanding the optical properties of a solid. 

 

Figure 2.1 (a) The ground state of electrons in semiconductors with quasiparticle band gap 𝐸𝑔, (b) one electron 

excited by the incident photon, left over an empty hole (c) a bound state of the e-h pair by the attractive coulomb 

interaction, 𝐸𝑏  is the binding energy of the exciton state. 

In many-body perturbation theory, Bethe-Salpeter Equation (BSE) [97], [98] is very powerful to 

study excitons. After Tamm-Dancoff approximation [97], it can be expressed as: 

 (𝐸𝑐𝒌 − 𝐸𝑣𝒌)𝐴𝑣𝑐𝒌
𝑆 + Σ𝑣′𝑐′𝒌′𝐾𝑣𝑐𝒌,𝑣′𝑐′𝒌′(Ω𝑆)𝐴𝑣′𝑐′𝒌′

𝑆 = Ω𝑆𝐴𝑣𝑐𝒌
𝑆  

(2.9) 

 , in which 𝐸𝑐𝒌 is the quasi-electron energy, and 𝐸𝑣𝒌 is the quasi-hole energy, and 𝐾𝑣𝑐𝒌,𝑣′𝑐′𝒌′is 

the e-h kernel. Ω𝑆 and 𝐴𝑣𝑐𝒌
𝑆  are the exciton energy and amplitude of a state S. The state S can be 

expressed as linear superposition of e-h pair states 
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 |𝑆⟩ = ∑ ∑ ∑ 

𝒌

𝑒𝑚𝑝𝑡𝑦

𝑐

𝑜𝑐𝑐

𝑣

𝐴𝑣𝑐𝒌
𝑆 |𝑣𝑐𝒌⟩ (2.10) 

Since 𝐸𝑐𝒌, 𝐸𝑣𝒌 are band energies calculated by GW, BSE calculations are often performed after 

GW calculations.  In general, exciton wavefunction in BSE needs finer k-points grid, on which 

the kernel is interpolated from original coarse grid [99]. The absorption spectrum can be 

obtained from BSE eigenstates. 

Furthermore, if we want to calculate the optical absorption of a solid, which is the imaginary part 

of dielectric function, 𝜀2(𝜔). From Fermi’s golden rule [100], we can get: 

 𝜀2(𝜔) =
16𝜋2𝑒2

𝜔2
∑ |�̂� ⋅ 〈𝑣𝒌|𝑣|𝑐𝒌〉|2𝛿(𝜔 − 𝐸𝑐𝒌 − 𝐸𝑣𝒌)𝑣𝑐𝒌        (without e-h) (2.11) 

 𝜀2(𝜔) =
16𝜋2𝑒2

𝜔2
∑ |�̂� ⋅ 〈0|𝑣|𝑆〉|2𝛿(𝜔 − Ω𝑆)𝑆          (with e-h) (2.12) 

, where �̂� ⋅ 〈𝑣𝒌|𝑣|𝑐𝒌〉 is velocity matrix along polarization light direction �̂�. Particularly in 2D 

materials, we can convert dielectric function into optical absorbance by: 

 𝐴(𝜔) = 𝜔𝜀2(𝜔)𝑑/𝑐 
(2.13) 

, where 𝑑 is the periodicity along off-plane direction and 𝑐 is the light speed. Optical absorbance 

𝐴(𝜔) reflects the proportion of incident photons absorbed by a single layer of material. 

2.3 Modern Theory of Polarization  
For a periodic solid, the polarization cannot be well defined by traditional form. The so-called 

Modern theory of polarization [101] provides a route for such calculation in electronic structure 

codes through the Berry phase [102]. In the following, we will introduce modern theory of 

polarization following a simple qualitative discussion according to [103].   
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2.3.1 Periodicity and Polarization Quantum 

The traditional way to describe polarization in finite systems is calculating the electric dipole 

moment, which can be defined as: 

 𝒅 = ∑ 𝑞𝑖𝒓𝑖𝑖                  (point charges) 
(2.14) 

 𝒅 = ∫𝑒 𝑛(𝒓) 𝒓𝑑𝒓        (continuous charges) 
(2.15) 

In one-dimensional chain system, as shown in Figure 2.2, the alternating anions and cations by 

the same interval in the upper chain should be non-polar due to inversion symmetry.  

 

Figure 2.2 One-dimensional chain of alternating anions and cations with unit charge. In the lower chain, the cations 

are moved to x direction by a displacement of d compared to the upper chain 

However, if we choose the unit cell, as the dash rectangle indicates, in the upper chain, the dipole 

moment per unit length is calculated to be: 

 𝑝 =
1

𝑎
∑ 𝑞𝑖𝑥𝑖𝑖 =

1

𝑎
(−1 ×

𝑎

4
+ 1 ×

3𝑎

4
) =

1

2
         (left case) 

(2.16) 

 𝑝 =
1

𝑎
∑ 𝑞𝑖𝑥𝑖𝑖 =

1

𝑎
(1 ×

𝑎

4
− 1 ×

3𝑎

4
) = −

1

2
        (right case) (2.17) 
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It is very straightforward to find that, even for the same system, different choice of unit cell will 

lead to different values of dipole moments. For the upper chain in Figure 2.2, we can get a 

collection of … ,−
5

2
, −

3

2
, −

1

2
,

1

2
,

3

2
,

5

2
 , …, which are called polarization lattice, and the 

quantized value between adjacent values is called polarization quantum, 𝑃𝑞 [103]. For all one-

dimensional non-polar systems, the polarization lattices are either 0 ± 𝑛𝑃𝑞 (one ion at center and 

2 opposite half-ion at unit cell boundaries, and zero point on one ion) or 
𝑃𝑞

2
± 𝑛𝑃𝑞 (zero point not 

on any ions) [103], [104]. 

In experiments, spontaneous polarization is defined and measured by the change of polarization. 

In the lower chain in Figure 2.2, the dipole moment per unit length is 

  𝑝 =
1

𝑎
∑ 𝑞𝑖𝑥𝑖𝑖 =

1

𝑎
(−1 ×

𝑎

4
+ 1 × (

3𝑎

4
+ 𝑑)) =

1

2
+

𝑑

𝑎
         (left case) 

(2.18) 

 𝑝 =
1

𝑎
∑ 𝑞𝑖𝑥𝑖𝑖 =

1

𝑎
(1 ×

𝑎

4
− 1 × (

3𝑎

4
+ 𝑑)) = −

1

2
+

𝑑

𝑎
        (right case) (2.19) 

Again, we get different values differing by one polarization quantum, as Eq. (2.16), (2.17). 

Nevertheless, compared the polarization change 𝛿𝑝 between upper chain and lower chain, the 

change is  
𝑑

𝑎
 which are the same for left and right cases. Considering the upper chain is non-polar 

and the actual polarization value should be 0, we can use this well-defined single value of 

polarization change to serve as the spontaneous polarization as long as unit cell and basis are 

fixed. 

Such a definition can be extended to three dimensions, in which the values of polarization lattice 

are spaced by 
1

Ω
𝑒𝑹 [101], [104], where 𝑒 is the electronic charge, Ω is the unit cell volume and 
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𝑹 = ∑ 𝑛𝑖𝑅𝑖𝑖  is any lattice vector, and 𝑖 donates the 𝑥, 𝑦, 𝑧 principle Cartesian directions. As a 

result, there are 3 polarization quanta for each direction of the basis vectors: 

 𝑃𝑞,𝑖 =
1

Ω
𝑒𝑅𝑖 (2.20) 

2.3.2 Wannier Functions and Berry Phase 

Up to now, we only discuss the polarization for point charge systems. However, in a real solid, 

electrons are dispersed in real space in the form of charge density, as shown in Figure 2.3. To 

extend our previous discussion effectively to the real case, we move on to Wannier functions 

[105], [106] and Berry phase method [102]. 

 

Figure 2.3 One-dimensional chain of alternating electron clouds and cations with unit charge. In the lower chain, the 

cations are moved to x direction by a displacement of d compared to the upper chain. 

In unit cell 𝑹, the Wannier function 𝑤𝑛(𝒓) with band 𝑛 is defined as [103]: 

 𝑤𝑛(𝒓 − 𝑹) =
Ω

(2𝜋)3
∫ 𝑑3𝒌𝑒−𝑖𝒌𝑹

 

𝐵𝑍

𝜓𝑛𝒌(𝒓) =
Ω

(2𝜋)3
∫ 𝑑3𝒌𝑒−𝑖𝒌(𝒓−𝑹)

 

𝐵𝑍

𝑢𝑛𝒌(𝒓) 
(2.21) 
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, where 𝜓𝑛𝒌(𝒓) = 𝑒𝑖𝒌𝒓𝑢𝑛𝒌(𝒓) are the Bloch functions. Wannier functions are localized in real 

space and often used to describe the chemical bonds in solid system. To calculate dipole 

moments, we can still treat ions as point charges. Meanwhile, we need to find the averaged 

position of the dispersed electrons and treat them as point charge in calculating dipole moment. 

This average position, as known as Wannier center, can be expressed as [105]: 

 �̅�𝑛 = ∫𝑤𝑛
∗(𝒓)𝒓𝑤𝑛(𝒓)𝑑

3𝒓 
(2.22) 

In periodic cell, the position operator can be expressed in momentum representation 𝒓 =

−𝑖(
𝜕𝑢𝑛𝒌

𝜕𝒌
), then we can rewrite Eq. (2.23) as: 

 �̅�𝑛 = −𝑖
Ω

(2π)3
∫ 𝑑3𝒌𝑒−𝑖𝒌𝑹 〈𝑢𝑛𝒌|

𝜕𝑢𝑛𝒌

𝜕𝒌
〉

 

𝐵𝑍

 
(2.23) 

Then the polarization can be expressed in a simple formula with the help of Wannier center with 

the summation through all the occupied Wannier functions [103]: 

 𝑝 =
1

𝑎
(∑(𝑞𝑖𝑥𝑖)

𝑖𝑜𝑛𝑠 + ∑(𝑞𝑛�̅�𝑛)
𝑊𝑎𝑛𝑛𝑖𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

𝑜𝑐𝑐

𝑛𝑖

) 
(2.24) 

As mentioned previously, the spontaneous polarization between the polar final state and 

nonpolar initial state can be expressed as [103]: 

 

𝛿𝑝 = 𝑝𝑓 − 𝑝0 =
1

Ω
∑[𝑞𝑖

𝑓
𝒓𝑖

𝑓
− 𝑞𝑖

0𝒓𝑖
0]

𝑖

−
2𝑖𝑒

(2π)3
∑[∫ 𝑑3𝒌𝑒−𝑖𝒌𝑹(〈𝑢𝑛𝒌

𝑓
|
𝜕𝑢𝑛𝒌

𝑓

𝜕𝒌
〉 − 〈𝑢𝑛𝒌

0 |
𝜕𝑢𝑛𝒌

0

𝜕𝒌
〉)

 

𝐵𝑍

𝑜𝑐𝑐

𝑛

] 

(2.25) 
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In Eq. (2.25), the integrals are actually Berry phase developed by the wavefunction 𝑢𝑛𝒌, that is 

[102]: 

 ∑∫ 𝑑3𝒌𝑒−𝑖𝒌𝑹 〈𝑢𝑛𝒌|
𝜕𝑢𝑛𝒌

𝜕𝒌
〉

 

𝐵𝑍

𝑜𝑐𝑐

𝑛

 
(2.26) 

In this way, we start from Wannier functions to find the Wannier center as the center of 

electronic charge dispersed in space, and end with a Berry phase expression for spontaneous 

polarization. 

2.4 Second-Order Nonlinear Optics Properties 
Nonlinear optics is the study of phenomena that occur as a consequence of the modification of 

the optical properties of a material system by the presence of light [62], and they are called 

“nonlinear” because induced polarization responses nonlinearly to an applied optical field. The 

discovery of second-harmonic generation by Franken et al. (1961) [71] is often taken as the 

beginning of field of nonlinear optics. We will give basic introduction of nonlinear optics 

according to [62]. 

Conventionally, the induced polarization depends linearly on the electric field in a material: 

 �̃�(𝑡) = 𝜖0𝜒
(1)�̃�(𝑡)  

(2.27) 

, where �̃�(𝑡) is the polarization, �̃�(𝑡) is the applied field, and  𝜒(1) is linear susceptibility and 𝜖0 

is the dielectric constant. In nonlinear optics, Eq. (2.27) is generalized into high-order expansion: 

 �̃�(𝑡) = 𝜖0[𝜒
(1)�̃�(𝑡) + 𝜒(2)�̃�2(𝑡) + 𝜒(3)�̃�3(𝑡) + ⋯ ] 

(2.28) 

𝜒(2) is known as the second-order nonlinear optical susceptibilities and 𝜒(3) is the third-order 

nonlinear optical susceptibilities. It is easy to find that, the even order nonlinear optical 
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susceptibilities will vanish when there exists inversion symmetry, for the simple reason that if we 

reverse the applied field �̃�(𝑡), the polarization �̃�(𝑡) will also reverse due to the inversion 

symmetry of the materials, thus: 

 

−�̃�(𝑡) = 𝜖0[𝜒
(1)[−�̃�(𝑡)] + 𝜒(2)[−�̃�(𝑡)]2 + 𝜒(3)[−�̃�(𝑡)]3 + ⋯ ] 

≡ −𝜖0[𝜒
(1)�̃�(𝑡)] + 𝜒(2)[�̃�(𝑡)]2 − 𝜒(3)[�̃�(𝑡)]3 + ⋯ ] 

(2.29) 

To keep consistence with Eq. (2.28), 𝜒(2) or other even order terms must be zero. Thus, lack of 

inversion symmetry of the material is a necessary condition for second-order nonlinear optical 

properties. 

2.4.1 Second Harmonic Generation (SHG) and Linear Electro-Optic (LEO)    

According to [62], for an incident light with 2 different frequency components, it can be 

expressed as: 

 �̃�(𝑡) = 𝐸1𝑒
−𝑖𝜔1𝑡 + 𝐸2𝑒

−𝑖𝜔2𝑡 + 𝑐. 𝑐. 
(2.30) 

, where the 𝜔1, 𝜔2 are different frequency and 𝑐. 𝑐. represents complex conjugated terms. 

According to Eq. (2.28), the second-order term can be written as: 

 

∑𝑃(𝜔𝑛)𝑒
−𝑖𝜔𝑛𝑡 =

𝑛

�̃�(2)(𝑡) = 𝜖0𝜒
(2)�̃�2(𝑡) = 𝜖0𝜒

(2){2[𝐸1𝐸1
∗ + 𝐸2𝐸2

∗] + 

[𝐸1
2𝑒−2𝑖𝜔1𝑡 + 𝐸2

2𝑒−2𝑖𝜔2𝑡 + 2𝐸1𝐸2𝑒
−𝑖(𝜔1+𝜔2)𝑡 + 2𝐸1𝐸2

∗𝑒−𝑖(𝜔1−𝜔2)𝑡 + 𝑐. 𝑐. ]} 

(2.31) 

Different components of Eq. (2.31) can be expressed as [62]: 
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𝑃(2𝜔1) = 𝜖0𝜒
(2)𝐸1

2 (𝑆𝐻𝐺), 

𝑃(2𝜔2) = 𝜖0𝜒
(2)𝐸2

2 (𝑆𝐻𝐺), 

𝑃(𝜔1 + 𝜔2) = 2𝜖0𝜒
(2)𝐸1𝐸2 (𝑆𝐹𝐺), 

𝑃(𝜔1 − 𝜔2) = 2𝜖0𝜒
(2)𝐸1𝐸2

∗ (𝐷𝐹𝐺), 

𝑃(0) = 2𝜖0𝜒
(2)(𝐸1𝐸1

∗ + 𝐸2𝐸2
∗) (𝑂𝑅) 

(2.32) 

Here the first 2 expression is labeled as second harmonic generation (SHG), the third is sum 

frequency generation (SFG), followed by difference frequency generation (DFG), and optical 

rectification (OR). For SHG, we see that the incident beam at frequency 𝜔 is converted to 

radiation at the second-harmonic frequency 2𝜔. One common use of SHG is to double the 

frequency of a fixed-frequency laser, such as convert 1064 nm infrared laser into 532 nm green 

laser. For SFG, if we fix 𝜔1 = 𝜔 as the incident beam frequency and 𝜔2 = 0, it can reflect the 

change in refractive index depends linearly on applied electric field, as known as the linear 

electro-optic (LEO) effect or Pockels effect.  

Further considering the directions, second nonlinear optical susceptibilities are tensors of order 3, 

which is:    

 𝑃𝑎(𝜔1 + 𝜔2) = 𝜒𝑎𝑏𝑐(−𝜔1 − 𝜔2; 𝜔1, 𝜔2)𝐸
𝑏(𝜔1)𝐸

𝑐(𝜔2) (2.33) 

As mentioned in last paragraph, SHG and LEO are 2 special cases: 

 𝑃𝑎(2𝜔) = 𝜒𝑎𝑏𝑐(−2𝜔;𝜔,𝜔)𝐸𝑏(𝜔)𝐸𝑐(𝜔)     (SHG) 
(2.34) 
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 𝑃𝑎(𝜔) = 2𝜒𝑎𝑏𝑐(−𝜔;𝜔, 0)𝐸𝑏(𝜔)𝐸𝑑𝑐
𝑐             (LEO) (2.35) 

Here the 𝐸𝑑𝑐 is the actual direct current field. At zero frequency, we have  

 lim
𝜔→0

𝜒𝑎𝑏𝑐(−2𝜔;𝜔,𝜔) = lim
𝜔→0

𝜒𝑎𝑏𝑐(−𝜔;𝜔, 0) 
(2.36) 

a statement of the equivalence of the SHG and LEO susceptibilities at 𝜔 = 0 [107]. 

For the detailed expression [107]–[110], we need to define the dipole transition matrix element 

between two states i and 𝑗 at the 𝒌 point which can be calculated by DFT 

 𝑝𝑖𝑗
𝑎 = 〈𝒌𝑗|𝑝 ̂𝑎|𝒌𝑖〉 

(2.37) 

And the position operator matrix element  

 𝑟𝑛𝑚
𝑎 (𝒌) = {

𝑝𝑛𝑚
𝑎 (𝒌)

𝑖𝑚𝜔𝑛𝑚
, 𝑛 ≠ 𝑚 

0,            𝑛 = 𝑚
   

(2.38) 

The linear susceptibility can be then written as [107]: 

 𝜒𝐼
𝑎𝑏𝑐(−𝜔;𝜔) =

𝑒2

ℏ
∑ 𝑓𝑛𝑚

𝑛𝑚𝑘

 𝑟𝑛𝑚
𝑎 (𝒌)𝑟𝑚𝑛

𝑏 (𝒌)

𝜔𝑚𝑛(𝒌) − 𝜔
 

(2.39) 

The SHG 𝜒𝑎𝑏𝑐(−2𝜔;𝜔,𝜔) can generally be written in the form [107], [109]: 

 𝜒𝑎𝑏𝑐(−2𝜔;𝜔, 𝜔) = 𝜒𝐼𝐼
𝑎𝑏𝑐(−2𝜔;𝜔,𝜔) + 𝜂𝐼𝐼

𝑎𝑏𝑐(−2𝜔;𝜔,𝜔) + 𝜎𝐼𝐼
𝑎𝑏𝑐(−2𝜔;𝜔,𝜔) 

(2.40) 

, in which  
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𝜒𝐼𝐼
𝑎𝑏𝑐(−2𝜔;𝜔,𝜔) =

𝑒3

ℏ2
∑ ∫

𝑑𝒌

8𝜋3
 
𝑟𝑛𝑚

𝑎 {𝑟𝑚𝑙
𝑏 𝑟𝑙𝑛

𝑐 }

𝜔𝑙𝑛 − 𝜔𝑚𝑙
𝑛𝑚𝑙

{
2𝑓𝑛𝑚

𝜔𝑚𝑛 − 2𝜔
+

𝑓𝑚𝑙

𝜔𝑚𝑙 − 𝜔
+

𝑓𝑙𝑛
𝜔𝑙𝑛 − 𝜔 

} 
(2.41) 

𝜂𝐼𝐼
𝑎𝑏𝑐(−2𝜔;𝜔,𝜔) =

𝑒3

ℏ2
∫

𝑑𝒌

8𝜋3
{∑ 𝜔𝑚𝑛𝑟𝑛𝑚

𝑎 {𝑟𝑚𝑙
𝑏 𝑟𝑙𝑛

𝑐 }

𝑛𝑚𝑙

{
𝑓𝑛𝑙

𝜔𝑙𝑛
2 (𝜔𝑙𝑛 − 𝜔)

+
𝑓𝑙𝑚

𝜔𝑚𝑙
2 (𝜔𝑚𝑙 − 𝜔)

}

− 8𝑖 ∑
𝑓𝑛𝑚𝑟𝑛𝑚

𝑎

𝜔𝑚𝑛
2 (𝜔𝑚𝑛 − 2𝜔)

𝑛𝑚

{Δ𝑚𝑛
𝑏 𝑟𝑚𝑛

𝑐 } +
2∑ 𝑓𝑛𝑚𝑟𝑛𝑚

𝑎 {𝑟𝑚𝑙
𝑏 𝑟𝑙𝑛

𝑐 }(𝜔𝑚𝑙 − 𝜔𝑙𝑛)𝑛𝑚𝑙

𝜔𝑚𝑛
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(2.42) 

𝜎𝐼𝐼
𝑎𝑏𝑐(−2𝜔;𝜔,𝜔) =

𝑒3
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8𝜋3
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[𝜔𝑛𝑙𝑟𝑙𝑚
𝑎 {𝑟𝑚𝑛

𝑏 𝑟𝑛𝑙
𝑐 } − 𝜔𝑙𝑚𝑟𝑛𝑙

𝑎 {𝑟𝑙𝑚
𝑏 𝑟𝑚𝑛

𝑐 }]

𝑛𝑚𝑙

+ 𝑖 ∑
𝑓𝑛𝑚𝑟𝑛𝑚

𝑎 {Δ𝑚𝑛
𝑏 𝑟𝑚𝑛

𝑐 }

𝜔𝑚𝑛
2 (𝜔𝑚𝑛 − 𝜔)

𝑛𝑚

} 

(2.43) 

, where Δ𝑚𝑛
𝑎 =

𝑃𝑚𝑚
𝑎 (𝑘)−𝑃𝑛𝑛

𝑎 (𝑘)

𝑚
, and the first term 𝜒𝐼𝐼

𝑎𝑏𝑐(−2𝜔;𝜔,𝜔) is the interband contribution, 

describing a pure interband transition between different band on the same momentum 𝒌;  the 

second term 𝜂𝐼𝐼
𝑎𝑏𝑐(−2𝜔;𝜔,𝜔) is the intraband contribution, describing the contribution from the 

modulation of the linear susceptibility by the intraband motion of the electrons; the third term 

𝜎𝐼𝐼
𝑎𝑏𝑐(−2𝜔;𝜔,𝜔) called modification contribution, represents that portion of the susceptibility 

resulting from the modification of the intraband motion by the polarization energy associated 

with the interband [89], [90]. The linear electro-optic coefficient 𝑟𝑎𝑏𝑐(𝜔) is connected to the 

LEO susceptibility 𝜒𝑎𝑏𝑐
(2)

(−𝜔,𝜔, 0) at zero frequency limit as: 
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𝑟𝑎𝑏𝑐(𝜔) = −
2

𝑛𝑎
2(0)𝑛𝑏

2(0)
𝑙𝑖𝑚
𝜔→0

𝜒𝑎𝑏𝑐
(2)

(−𝜔;𝜔, 0) = −
2

𝑛𝑎
2(0)𝑛𝑏

2(0)
𝑙𝑖𝑚
𝜔→0

𝜒𝑎𝑏𝑐
(2)

(−2𝜔;𝜔,𝜔) 
(2.44) 

Where 𝑛𝑎
 (0) is the refraction index in a direction at zero frequency and 𝑛𝑎

2(0) equals dielectric 

constant 𝜀𝑎(0). Besides, for low frequency region below the bandgap, 𝜒𝑎𝑏𝑐
(2)

(−2𝜔,𝜔,𝜔) and 

𝑛(𝜔) are nearly constant so that the linear electro-optic coefficient 𝑟𝑎𝑏𝑐(𝜔) ≈ 𝑟𝑎𝑏𝑐(0) [78]. 

2.4.2 Scissor Approximation 

As mentioned in 2.2, DFT always underestimate band gap, therefore scissors approximation 

[111] has been suggested to modify the DFT band gap with more accurate values, such as 

quasiparticle band gap, experimental gap or band gap calculated by other methods. The only 

modification is the energy difference [107]: 

 𝜔𝑚𝑛 → 𝜔𝑚𝑛 +
Δ

ℏ 
(𝛿𝑚𝑐 − 𝛿𝑛𝑐) (2.45) 

Meanwhile the matrix elements of the position operator will not change. Since in practical 

calculation, we will use dipole transition matrix 𝒑𝑚𝑛 rather than the position operator 𝒓𝑚𝑛, we 

need to normalize 𝒑𝑚𝑛 as: 

 �̃�𝑚𝑛 = 𝒑𝑚𝑛

𝜔𝑚𝑛 +
Δ
ℏ

(𝛿𝑚𝑐 − 𝛿𝑛𝑐)

𝜔𝑚𝑛
 (2.46) 

Substitute the original expression in Eq. (2.39)~(2.43) , we can include scissor approximation in 

our second-order nonlinear optical calculations.   
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Chapter 3: Quasiparticle and Optical Spectra 

of Strained Materials 

3.1 Introduction 
Strain is known for impacting a wide range of properties of semiconductors and thus it is useful 

to tailor materials for various applications [27]–[30], [32], [33], [112]. However, experimentally 

controllable strain engineering is still challenging. In particular, stretching or bending 2D 

structures usually introduces spatially inhomogeneous strain, as shown in schematics of Figure 

3.1(a). These complicated strain distributions, which are beyond the scope of simple uniaxial or 

biaxial cases, will surely affect local electronic structures and optical properties, bringing 

uncertainty for strain engineering [28], [29], [37], [38]. Moreover, complicated strain distribution 

is widely expected in fabricated samples. Interestingly, those epitaxial samples exhibit various 

local properties: inhomogeneous free-carrier distributions and photoluminescence (PL) have 

been observed [113], [114]. Given the important roles of substrates, edge reconstructions, and 

domain walls, strain may be inevitable in those fabricated samples. In this sense, connecting 

optical or electrical inhomogeneity to spatial strain distributions is an effective way to 

understand these epitaxial processes and local structures, giving hope to further optimizing 

fabrications. 

Different from arbitrary or even inhomogeneous strain realized in experiments, most calculations 

have focused on relatively simple cases, such as uniaxial/biaxial strains along specific high-

symmetry directions [39]–[41]. While uniaxial or biaxial strain decides many important 

properties, they are not enough for covering those experimentally strained conditions: the strain 

may be applied with differently amplitudes along different directions because of substrates or 

various boundary conditions, which are common in fabricated samples. Thus, a study covering 
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arbitrarily axial strain is necessary and essential to explore the 2D strain-mapping properties, 

which is also important to fill a hole of previous studies. 

 

Figure 3.1 (a) Schematic plot of the top view of inhomogeneously strained monolayer 2-H phase TMDC. The 

orthogonal armchair and zigzag directions are specified, respectively. To show atomic structures, the spatial size of 

plotted local strain domains is much smaller than that of realistic samples, which is around micrometers. 

(b) DFT-calculated band structure of monolayer MoS2. The band energy is aligned to the vacuum level. The inset is 

the first BZ with high-symmetry points marked. 

Moreover, typical first-principles calculations are based on (DFT), but the aforementioned PL 

and band energies are essentially excited-state properties, requiring including many electron 

effects beyond DFT. Therefore, a first-principles calculation considering complicated strain 

conditions and including many-electron effects is essential for explaining a wide range of 

measurements and guiding future strain engineering of materials. 

In this chapter, we will first study theoretically the structural and electronic response of layered 

bulk black phosphorus to in-layer 2D strain. This part is co-authored with Dr. Jie Guan and Dr. 

David Tománek [81] , in which our main contribution is quasi-particle calculation of strained 
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layered bulk black phosphorus. To correctly describe the dependence of the fundamental band 

gap on strain, we used the computationally more involved GW quasiparticle approach that is free 

of parameters and is superior to DFT studies, which are known to underestimate gap energies. 

After that, we apply the first-principles DFT and many body perturbation theory to obtain 

quasiparticle energies and bright excitons of four strained typical TMDC monolayers, i.e., MoS2, 

MoSe2, WS2, and WSe2 [82]. By mapping their band gaps, absolute band-edge energies, and 

exciton frequencies into 2D contours of in-plane strain distributions, we are able to provide a 

complete picture of arbitrary strain effects on these important quantities. Combining the high 

spatial resolution of PL spectra with our calculated exciton energies, experimentalists may 

understand the observed inhomogeneous PL measurements and further quantify the local strain 

condition.  

3.2 Computational Methods 
DFT with the Perdew-Burke-Ernzerhof (PBE) functional is employed to calculate the ground-

state properties. Normconserving pseudopotentials are used to approximate the core-electron 

effects on the electronic structure and excited-state properties. 

3.2.1 Black Phosphorus 

For black phosphorus, a 8 × 8 × 4 k-grid sampling and 180 Ry energy cutoff are used for DFT 

calculation [81], implemented in SIESTA code [115] to optimize the structure and to determine 

the structural response to in-plane strain. GW approximation is implemented with BerkeleyGW 

packages [99] on top of DFT calculation in Quantum Espresso [116]. We have expanded the 

dielectric matrix in plane waves up to a cutoff energy of 10 Ry. The quasiparticle energies are 

determined by considering the lowest 158 unoccupied conduction bands and accounting for all 
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higher-lying bands using the modified static-remainder approximation [117]. We use single-shot 

G0W0 calculations with a 14 × 10 × 4 k-point grid, which provide converged results. 

3.2.2 2D TMDCs 

For 2D TMDCs, Only the 2H phase is considered in this work. The atomic structure is fully 

relaxed according to the DFT/PBE-calculated force and stress. A 70 Ry plane-wave truncation 

and an 18 × 18 × 1 k-grid sampling in the first Brillouin zone (BZ) of the intrinsic hexagonal unit 

cell are adopted for calculating fully converged ground-state properties. For strained 

calculations, we take a rectangle cell with 12 × 21 × 1 k point. The quasiparticle energies are 

obtained by the first-principles single-shot G0W0 approximation [89] and subsequently excitonic 

effects and optical absorption spectra are obtained from solving the Bethe-Salpeter equation 

(BSE) within the Tam-Dancoff approximation [97]. The involved unoccupied band number is 

more than 10 times that of valence bands to achieve the converged dielectric function. The 

excitonic effects are included by solving the BSE with a fine k-point grid of 36 × 63 × 1. 

3.3 Quasiparticle Band Gap of Strained Black Phosphorus 
The DFT-level strain-induced structural changes can be found in reference [81] Part. III. A, 

which is the work of co-author Dr. Jie Guan and Dr. David Tománek. 
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Figure 3.2 (a) Ball-and-stick model of the structure of bulk black phosphorus in top and side views. (b) Fractional 

change of the interlayer distance 𝑎3⃗⃗⃗⃗  as a function of the in-layer strain along the 𝑎1⃗⃗⃗⃗  and 𝑎2⃗⃗⃗⃗  directions. (c) 

Dependence of the strain energy 𝛥𝐸 per unit cell on the in-layer strain along the  𝑎1⃗⃗⃗⃗  and 𝑎2⃗⃗⃗⃗  directions 

Here we focus on strain-induced changes of electronic structures involved with GW calculation. 

In DFT calculation with SIESTA [81], the intrinsic unstrained bulk black phosphorus has an 

extremely small direct fundamental band gap value 𝐸𝑔(PBE) ≈ 0.05 eV. However, Quantum 

Espresso will lead to an overlapping between the top of conduction band and the bottom of 

valence band under that condition, making GW correction inapplicable since BerkeleyGW 

cannot break the band topology in order to open a closed bandgap. To solve this problem, we 
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apply moderate strains (~3%) to force a finite band gap of black phosphorus at DFT level, then 

do GW calculation based on those opened band gap [118]. Eventually we extrapolate the 

obtained GW band gaps under different strains back to zero-strain intercept, as shown in the 

schematic diagram Figure 3.3. As a result, we obtain a quasiparticle band gap 0.35 eV in 

unstrained bulk black phosphorus, very close to the observed value around 0.33 eV [119]. 

 

Figure 3.3 Schematic diagram represents how we 1. apply moderate strains to force a finite band at DFT level, then 

2. do GW calculation on these finite DFT bands, 3. then extrapolate back to get intrinsic GW band gap at zero strain. 

The calculation for electronic band structure and density of states (DOS) of unstrained and 

strained bulk black phosphorus are shown in Figure 3.4.  
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Figure 3.4 Electronic band structure (left panels) and density of states (right panels) of bulk black phosphorus (a) 

without strain, (b) when stretched by 1% along the 𝑎 1 direction, and (c) when stretched by 2% along the 𝑎 1 

direction. GW results are shown by the solid black lines. DFT-PBE results, which underestimate the band gap, are 

shown by the dashed red lines. 

A more precise comparison between the quasiparticle spectra and DFT eigenvalues reveals that 

the difference 𝐸𝑞𝑝 − 𝐸𝑃𝐵𝐸 does depend on the energy but is independent of the crystal 

momentum 𝒌.  For 1% strain along 𝑎 1, we find that the quasiparticle energies display a linear 

relationship with DFT eigenvalues, as shown in Figure 3.5(a), given by 

 

𝐸𝑞𝑝(𝐶𝐵) = 1.10 × 𝐸𝑃𝐵𝐸(𝐶𝐵) + 0.11 𝑒𝑉 

𝐸𝑞𝑝(𝑉𝐵) = 1.07 × 𝐸𝑃𝐵𝐸(𝑉𝐵) − 0.18 𝑒𝑉 
(3.1) 

Compare DFT and GW values at different strains, we find that the modulation of band gap 

Δ𝐸𝑔(𝑃𝐵𝐸) ≈ Δ𝐸𝑔(𝑞𝑝) is the same up to ≤ 0.01 𝑒𝑉 in the strain range here. Thus, we can 

deduce the GW band gap at different strain based on DFT band gap with Eq. (3.1). The results, 

based on a cubic spline interpolation of a 5 × 5 grid of strain map, are shown in Figure 3.5(b). 
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Figure 3.5 (a) Correlation between quasiparticle (GW) energies 𝐸𝑞𝑝 and Kohn-Sham energy values 𝐸𝑃𝐵𝐸 , obtained 

using the DFT-PBE functional, for states along high symmetry lines in the Brillouin zone. The straight lines in the 

valence and conduction band regions are drawn to guide the eye. The results represent bulk black phosphorus 

subject to strain values 𝜖(𝑎 1) = 1% and 𝜖(𝑎 2) = 0%. The Fermi level is at zero energy. (b) Dependence of the 

quasiparticle (GW) electronic band gap 𝐸𝑔 on the in-layer strain applied along the 𝑎 1 and 𝑎 2 directions. 

The results indicate that, the band gap 𝐸𝑔 of bulk black phosphorus varies smoothly between 

0.05 and 0.70 eV. Independent of the in-plane strain direction, 𝐸𝑔 increases upon stretching and 

decreases upon compression. With the nearly equidistant spacing between the contour lines in 

Figure 3.5(b), we can extrapolate to larger strains and expect the band gap to close at 

compressive strains along both directions exceeding 2% and band gap even vanishes at 

compressive strain values exceeding 2%. This result agrees with 2D black phosphorene under 

strain [120], [121], which results from accumulating charge around 3p orbitals of P atoms. The 

sensitivity of band gap dependence on -in-layer strain suggests a possible application of black 

phosphorus in strain-controlled infrared devices. 

3.4 Excited-State Properties of Strained 2D TMDCs 
For 2D TMDCs, we take monolayer MoS2 as an example. Its intrinsic band structure calculated 

by DFT is presented in Figure 3.1(b). Here we choose hexagonal unit cell, and the first BZ and 
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those important high-symmetry points (including the Λ point) in the reciprocal space are plotted 

as well. We observe a direct band gap located at the 𝐾(𝐾′) point in suspended monolayer MoS2. 

The in-plane strain is included through a 2D grid, which is expanded by the orthogonal armchair 

and zigzag directions, which are marked in Figure 3.1(a), on a rectangle unit cell. The strain 

magnitude covers the range from −5 to 5% along each direction with a step of 0.5%, forming a 

21 × 21 grid to describe strain conditions. The electronic structures and optical spectra will be 

calculated under each strain condition. As a result, this study covers not only uniaxial and biaxial 

strain cases but also all possible arbitrarily axial strain cases that are observed in fabricated 

samples. Finally, the linear interpolation scheme will be employed to smooth the 2D contour 

plots.  

3.4.1 Sensitivity of SOC and Many-body Correction under Strain 

There are several factors that will influence our results. First, spin-orbit coupling (SOC) is 

significant in these monolayers. For example, the SOC splitting of the valence-band maximum 

(VBM) of monolayer WS2 is around 425 meV [122], definitely affecting the band-edge energies 

and excitons. Fortunately, we have checked that, although SOC is not negligible, it is not very 

sensitive to applied strain. For instance, the SOC splitting of the valence-band edge at the K point 

is around 140 meV for monolayer MoS2 and the variation of SOC is less than 10 meV when 

applied strain is within our studied range (±5%). Thus, in the following we will directly include 

fixed SOC corrections into the band gaps and exciton energies for strained 2D structures. 

Another challenge is to obtain the quasiparticle energies and excitons for strained structures. Due 

to the hardness of calculating GW-BSE, it is nearly formidable to perform the brute-force GW-

BSE calculation for excited-state properties of the 21 × 21 strained structures. Nevertheless, 
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many-electron effects can be regarded as higher-order corrections, therefore in our strain region, 

many-electron corrections may not change substantially.  

 

Figure 3.6 (a)–(c) Optical absorption spectra of intrinsic, +2% uniaxially strained, and +2% biaxially strained 

monolayer MoS2. The blue curves are optical absorption spectra without e-h interactions included and the red curves 

are those with e-h interactions included. The DFT band gap (𝐸𝑔
𝐷𝐹𝑇) and GW-calculated quasiparticle band gap 

(𝐸𝑔
𝐺𝑊) are marked with solid and dashed arrows, respectively. 

To confirm this, we calculate the quasiparticle band gaps and optical spectra of intrinsic 

monolayer MoS2 and two typical strained cases (+2% uniaxial and +2% biaxial cases), as 

included in Table 3.1 and Figure 3.6. The SOC is not included here because we mainly want to 

compare the difference induced by strain and, moreover, SOC is not significantly changed by 

many-electron effects in these monolayers [123]. Substantial self-energy corrections and 
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excitonic effects have been observed in all these monolayers. Our calculated quasiparticle band 

gap and optical absorption spectrum of intrinsic monolayer MoS2 are consistent with previous 

studies [124], [125]. 

Table 3.1 The DFT calculated band gaps (at the K point), quasiparticle band gaps (at the K point), and the 

lowest, bright exciton energies intrinsic and strained monolayer MoS2 (SOC is not included). 

Strain 
DFT 

(eV) 

GW 

(eV) 

Exciton 

(eV) 

Intrinsic 1.69 2.71 2.07 

+2% armchair  1.58 2.59 1.94 

+2% biaxial 1.47 2.44 1.86 

 

We can find that many-electron corrections are essentially insensitive to the applied strain, as 

shown in Table 3.1, all GW correction are around 1 eV and exciton energy shift are around 0.36 

eV, with error tolerance less than 5%. Therefore, we only need to calculate the electronic self-

energy corrections and excitonic effects of intrinsic materials. They are used to rigidly shift the 

quasiparticle band gaps and excitonic energies of monolayer TMDCs within moderate strain. 

More strain conditions are calculated to confirm this rigid shift, and the error bar of the rigid shift 

is shown to be less than 0.1 eV, making it reasonable for applying rigid shifts to all quasiparticle 

band gaps and exciton energies. 

3.4.2 Quasiparticle Band Structures for 2D MoS2 under Strain 

We first focus on excited-state properties of strained monolayer MoS2. Its contour of the 

quasiparticle band gap with SOC included is presented in Figure 3.7(a). Significant variations of 

the band gap are observed: within this ±5% strain range, the band gap can be changed from 1.7 

to 2.8 eV (the intrinsic band gap is 2.6 eV). The band gap is particularly sensitive to both the 
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magnitude of the applied strain and how the strain is applied. Interestingly, the most efficient 

way to tune the band gap is the widely studied one, the biaxial stretching. This can be seen from 

that the steepest sloping direction in Figure 3.7(a) is along the diagonal direction from the origin 

to the right-up corner. On the other hand, along the orthogonal direction to the biaxial strain, the 

band-gap variation is, however, the minimum. Based on those isolines in Figure 3.7(a), we can 

conclude that when the 2D structure is stretched along one direction and compressed along the 

other orthogonal direction, its variation of the band gap is small. In other words, the conservation 

of the in-plane area can minimize the band-gap variation in strained TMDCs. 

 

Figure 3.7 (a) 2D contour plot of the quasiparticle band gap in arbitrarily strained monolayer MoS2. The indirect 

band-gap area is marked by the gray color. (b) 3D contour plot of the absolute band energies of those crucial high-

symmetry points. (c) Variation of the band structure according to the ±2% biaxial strain. The top view and side view 

of the 3D contours of the wave functions of the conduction states at the 𝛬 and 𝐾 points are plotted, respectively. 
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From 5% to -5%, the biaxial strain effect is highly asymmetric: the band gap is not changed 

substantially for the compressing case. This is actually a result of switching band edges, thus 

leading to transformation from direct to indirect bandgap. In Figure 3.7(a), we present a 

complete picture of strain effect for such a direct-indirect band gap transition in monolayer 

MoS2. The gray area stands for the strain condition for holding a direct band gap and the white 

area stands for that of an indirect band gap. Particularly, Figure 3.7(a) shows that even under 

significant stretch along one direction, monolayer TMDCs may still hold the direct band gap if it 

is allowed for shrinking along the orthogonal direction, e.g., the blue cross. 

The above direct-indirect band-gap transitions are essentially from the competitions between 

band edges at those high-symmetry points, marked in Figure 3.1(b). In Figure 3.7(b), we have 

plotted the three-dimensional (3D) contour plot of the absolute quasiparticle energies of the 

valence and conduction band edges of those relevant high-symmetry points, according to the 

vacuum level. We can see that there are energy crossings between those band edges. At some 

critical strain, valence-band maximum (VBM) and conduction-band minimum (CBM) will be 

shifted from 𝐾 point to Γ/Λ point, resulting in a switch of direct/indirect band gap. 

To understand the different strain responses of these band edges at high-symmetry points, we use 

a schematic way to qualitatively analyze the different strain responses. Let us take an example of 

local conduction band minimum at the Λ and 𝐾 points. We have plotted the three-dimensional 

isosurface plots of their wave functions in Figure 3.7(c). The electronic state at the Λ point is 

more localized and the overlap between neighboring unit cells is small. On the other hand, the 

wave function at the 𝐾 point is more delocalized and has a significant overlap between 

neighboring unit cells. As a result, the wave function at the Λ point will not be that sensitive to 

the change of in-plane distance between atoms, compared to strong overlapped state at 𝐾 point. 
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This is also consistent with the results in Figure 3.7 (b), in which the energy of the state at the Λ 

point is nearly fixed while that of the state at the 𝐾 point is varied substantially according to 

strain. 

This arbitrary strain effect on the absolute band-edge energies is useful for understanding the 

recently observed inhomogeneous carrier density in monolayer TMDCs [113], [114]. Due to the 

substrate effect or ripple structures, those samples may have inevitable locally complicated strain 

distributions, which may be neither uniaxial nor biaxial. In particular, for those triangular-shape 

samples epitaxially growing on SiO2/Si substrate, the strain may be accumulated at the corners or 

edges, inducing a significant shift of the absolute band-edge energy and subsequent 

inhomogeneous free-carrier distributions [126]. For example, according to Figure 3.7 (b), the 

accumulations of electrons or holes may indicate a locally biaxial stretching strain condition 

because that strain condition can efficiently decrease the CBM or increase the VBM. 

3.4.3 Excitons of 2D TMDCs under Strain 

The GW-BSE calculated energies of the brightest exciton in all four types of monolayer 2H-

phase TMDCs, i.e., MoS2, MoSe2, WS2, and WSe2, according to arbitrarily axial strain are 

presented in Figure 3.8. From these 2D contour plots, we can see that strain can significantly 

modify the PL frequency. Importantly, within our strain range (±5%), the optical response edge 

can be tuned from the visible light range to the near-infrared one (∼1.3 eV). This will be useful 

for broad physics and biological applications [127]. Meanwhile, the PL peak is strongly 

impacted by the direct/indirect band gap and it is expected that the PL intensity will be 

substantially quenched for those indirect band-gap regions. Therefore, we mark the direct-

indirect band-gap transition regimes in Figure 3.8 to guide strain engineering for optical 

applications. Monolayer MoSe2 seems to be the most robust direct-gap TMDC under strain. It 
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can hold the direct band-gap exciton for compress strain up to 1.5% or the stretching strain up to 

3.5%. On the contrary, intrinsic monolayer WSe2 is almost an indirect band-gap 2D 

semiconductor. Interestingly, it is always an indirect-gap semiconductor under compress and a 

direct-gap one under stretch. 

 

Figure 3.8 Contour plots of the excitation energy of the lowest-energy bright exciton of strained monolayer MoS2 

(a), WS2 (b), MoSe2 (c), and WSe2 (d). The direct band-gap regions are marked by the gray area. SOC is 

approximately included as a constant correction. The temperature effect is not included. 
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The exciton energy according to complicated strain in Figure 3.8 is useful to understand recent 

optical measurements. To date, the techniques for obtaining PL spectra with a high spatial 

resolution have been highly developed and applied for studying epitaxially grown samples [126]. 

In addition to the inhomogeneous carrier distributions, the local strain condition may also be 

responsible for the shift of the frequency of the PL peak with a spatial resolution. Therefore, our 

results in Figure 3.8 will be of help to understand the local strain distribution. Moreover, 

combined with the strain-induced variation of the band-edge energy and exciton energy, it is 

possible to design strain distribution to accumulate optically excited excitons and realize high-

efficient light-emission or photovoltaic devices [128]. 

3.5 Summary 
First, we have studied theoretically the structural and electronic response of layered bulk black 

phosphorus to in-layer strain. DFT calculations reveal that the strain energy and interlayer 

spacing display a strong anisotropy with respect to the uniaxial strain direction. GW quasiparticle 

approach is implemented to correctly describe fundamental band gap on strain. The band gap 

depends sensitively on the in-layer strain and even vanishes at compressive strain values 

exceeding ≈2%, thus suggesting a possible application of black P in strain-controlled infrared 

devices. 

Second, we have presented excited-state properties, including absolute quasiparticle band 

energies, band gaps, and the bright exciton peak, for arbitrarily in-plane strain of typical 

monolayer 2H-phase TMDCs. With many-electron effects included, the complete pictures of 

these important quantities are described by 2D contours of strain conditions. The mechanism for 

the competition of band-edge energies and its impact on band gaps are discussed based on first-

principles results. The variations of these quantities are crucial for experiments to understand 
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local strain distribution and free carrier inhomogeneity by optical measurements. The predicted 

arbitrary strain effects are also helpful for strain engineering of transport and optical properties. 
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Chapter 4: Off-plane Polarization Ordering 

in Metal Chalcogen Diphosphates 

(MCDs) from Bulk to Monolayer 

4.1 Introduction 
Ferroelectrics, arising from macroscopic polarization induced by spontaneous ordering of 

electric dipoles and switchable under external electric field, has attracted extensive attention. The 

ultrathin ferroelectric (FE) films are obviously the most useful structure for exploring new 

physics and realizing device applications, such as FE transistors and memories [42]. To date 

most works on ferroelectrics have focused on perovskite oxides, such as PbTiO3 and BaTiO3 

[43]–[50]. Unfortunately, their ferroelectricity is extremely sensitive to vertical boundary 

conditions [51], [52]. As a result, drastic depolarization effects emerge in these three-

dimensional structures when they are thinned down, resulting in a suppression of polarization 

and thus a critical thickness for sustaining the FE state [53], [54]. Realizing ultrathin 

ferroelectricity is thus known hard to achieve. 

Layered van der Waals (vdW) materials may give hope to overcoming this challenge. Two-

dimensional (2D) in-plane ferroelectricity has been predicted and observed in monolayer group 

IV monochalcogenides [55]–[58]. This ignites novel applications, such as giant piezoelectricity 

[129], [130], bulk photovoltaics, and photostriction [131], [132]. However, the more useful off-

plane (vertical) ferroelectricity is still challenging. More recently, a few layered materials have 

been theoretically predicted to be vertically ferroelectric, such as In2Se3 [133], 1T-phase MoS2 

[134], and Sc2CO2 with 2D electron/hole [135], although many of these structures are metastable 

or the ferroelectricity is not intrinsic. On the other hand, experiments reported that metal 
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chalcogen-diphosphates (MCDs) can be a promising family of ultrathin FE materials: 

Ferroelectricity is observed in a fabricated bilayer [59]. This may shed light on intrinsically 

stable 2D structures with off-plane ferroelectricity. However, other measurements claim that 

ferroelectricity can only exist in samples with much larger thickness of MCDs [60], [61]. 

In this chapter, we take CuInP2Se6 [Figure 4.1 (a)], a typical member of the family of layered 

vdW MCDs, as an example and show that monolayer MCD may sustain a polarization ordering 

even down to the monolayer [83]. Unlike bulk CuInP2Se6 which is always FE, we reveal that the 

vertical boundary conditions are crucial for determining the polarization orders of ultrathin 

structures: The freestanding (open-circuit) monolayer CuInP2Se6 is antiferroelectric (AFE) but 

the closed-circuit (shortcut) monolayer can hold the FE phase as the ground state. Particularly, 

given the substantial transition energy barrier between AFE and FE states, the FE state can be 

held as a robustly metastable state of the free-standing monolayer, giving rise to 2D vertical 

ferroelectricity. Finally, the FE phase transition temperature and electric hysteresis curves of the 

free-standing monolayer CuInP2Se6 are obtained by Monte Carlo (MC) simulations [136]. 

4.2 Computational Methods 
The relaxed atomistic structures and electronic structures are calculated by density functional 

theory (DFT) with the generalized gradient approximation using the Perdew-Burke-Ernzerhof 

(GGA-PBE) functional [92], implemented in the Vienna ab initio simulation package (VASP) 

[137], [138]. The VdW interaction is included through the DFT-D2 method of Grimme [139]. 

The energy cutoff is 600 eV for structure relaxation and solving the Kohn-Sham equation. We 

use a 6 × 6 × 1 k-grid sampling in the reciprocal space. A vacuum distance is set to be larger than 

20 Å between adjacent mono/few layer(s) for avoiding spurious interactions. The climbing 

image nudged elastic band (cNEB) [140], [141] method  is employed to calculate the transition 
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states and minimum energy path (MEP). The polarization is obtained by the modern theory of 

polarization based on the Berry-phase approach [104], [142]. As a validation, we have used the 

Berry-phase method to calculate spontaneous polarization of a typical MCD FE material, bulk 

CuInP2S6 (CIPS), which is 3.20 𝜇C/cm2. This is in good agreement with experimental 

measurements [143], which is 3.5 𝜇C/cm2 at 153 K, 3.0 𝜇C/cm2 at room temperature, and 2.55 

𝜇C/cm2 from hysteresis at room temperature. 

For the Monte Carlo (MC) simulation [136], the length of steps is set to be 0.2 Å and the number 

of steps is 20 000. We randomly pick up the direction (positive/negative) of each step with even 

probability and determine the acceptance using the Metropolis-Hastings algorithm [136]. This 

process is repeated for about 50 times with a fixed starting point and use the average of final 

positions as a result. Finally, the whole process is repeated for about 100 times to obtain the 

converged mean values and standard deviations for estimating error bars. We have verified these 

simulation parameters by comparing the MC-calculated Curie temperature with the measured 

values of bulk CuInP2Se6. 

4.3 Polarizations and Boundary Conditions 
As shown in Figure 4.1 (b), CuInP2Se6 has two typical low energy structures: One is the FE 

ordering with all copper atoms at the same side, which is its known bulk structure that exhibits a 

ferroelectric ground state [143], [144]; the other is the AFE ordering with copper atoms arranged 

in a line-by-line, up-and-down pattern. This is also a popular structure of many other MCDs, 

such as bulk CuCrP2Se6 [144]. Our first-principles calculation confirms that the FE state of bulk 

CuInP2Se6 is more stable than the AFE state by an energy difference of ∼13 meV/formula unit 

(f.u.). For the freestanding monolayer CuInP2Se6, we find that, however, the energy of the AFE 

state is about 12 meV/f.u. less than FE, making AFE be the rigorously ground state of the 
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monolayer due to the depolarization effect. In other words, at very low temperature and under 

perfect equilibrium, the freestanding monolayer CuInP2Se6 will theoretically stay on an AFE 

order or form dipole glass [145]–[147]. 

 

Figure 4.1 (a) Top view of monolayer CuInP2Se6. (b) Side views of the FE (upper) and AFE (lower) states. (c) 

Schematic potential of FE monolayer under the D = 0 (open-circuit) boundary condition. (d) Averaged electric 

potential of bulk under the E = 0 (closed-circuit) boundary condition. 

Since the ground state of bulk CuInP2Se6 is FE while that of the monolayer is AFE, an obvious 

question is to find the critical thickness for this FE/AFE transition. Answering this question leads 

us to a subtle while crucial problem: The above first-principles calculations of bulk and slab 

structures are actually performed under different boundary conditions, which are, unfortunately, 

an essential factor to decide the polarization ordering and depolarization effect. In slab 

structures, as shown in Figure 4.1(c), the existence of a vacuum between layers makes it possible 

to keep the periodic boundary condition by applying a dipole correction only in the vacuum 
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region [148]. This mimics the freestanding case (the open-circuit boundary condition). However, 

to keep the periodic boundary condition of bulk structures [Figure 4.1(d)], the overall electric 

field of bulk must be zero (E = 0) and ab initio packages always automatically apply a 

compensating field to cancel the spontaneous polarization field. In other words, this mimics the 

closed-circuit boundary condition [52]. In this sense, our above calculated total energies of bulk 

and monolayer are under different boundary conditions and the claim for their ground states is 

problematic. Especially, a brute-force first-principles calculation cannot mimic the open-circuit 

(D = 0) boundary condition for bulk FE structures because of they are periodic without vacuum. 

4.4 Electrostatic-Energy Model 
To solve this problem and compare the total energy within the same boundary condition, we 

introduce an electrostatic energy model to investigate ground states and ferroelectricity under 

electric field [51]. This model will also pave the way for following MC simulations and studies 

of hysteresis. Based on the geometry and energy track from the ab initio climbing image nudged 

elastic band (cNEB) method [140], [141], we define the displacement of copper atoms from the 

central position as a polar internal degree of freedom u, which is the displacement of copper 

atoms. The free energy per f.u. can be expressed as 

 

𝐹(𝑢, 𝐸) = 𝑎𝑢2 + 𝑏𝑢4 + 𝑐𝑢6 + 𝐸𝑒𝑠

=  𝑎𝑢2 + 𝑏𝑢4 + 𝑐𝑢6 − (𝑃𝑠(𝑢)𝐸 +
1

2
(𝜖(𝑢) − 1)𝜖0𝐸

2)Ω 
(4.1) 

The first three terms in Eq. (4.1) form a double-well potential that represents the lattice self-

energy described by the Landau theory up to the sixth order. It is called the landau energy part. 

The rest part (𝐸𝑒𝑠) of the free energy represents the electrostatic energy under E field, which is 

defined as 𝐸𝑒𝑠. Ω is the volume of an f.u. and 𝜖 is the electric permittivity. 
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In solids, the total polarization can be written as 

 𝑃 = −
𝜕𝐹(𝑢, 𝐸)

Ω𝜕𝐸
= 𝑃𝑠(𝑢) + (𝜖(𝑢) − 1)𝜖0𝐸 (4.2) 

, where 𝑃𝑠(𝑢) is spontaneous polarization under 𝐸 = 0, merely depending on the displacement u 

of copper atoms in our studied CuInP2Se6 structure. The second term is the electronic 

correspondence to the electric field E, in which 𝜖(𝑢) is the ion clamped relative permittivity, 

which can be calculated by first-principles simulations. Therefore, combining with the general 

relationship, 𝐷 = 𝜖0𝐸 + 𝑃, we can realize different electric boundary conditions by this 

electrostatic-energy model. 

The parameters in Eq. (4.1) can be obtained for bulk and slab structures, respectively. For the 

bulk structure, the relative permittivity can be directly calculated by DFT based on the random-

phase approximation (RPA) [149], [150]. Moreover, because of the periodic boundary condition, 

the overall electric field E must be zero. As a result, the electrostatic energy part of Eq. (4.1) 

disappears and we only need to handle the Landau energy. These parameters can be obtained by 

fitting the first-principles calculated free energy according to the displacement of copper atoms. 

The fitted parameters of bulk CuInP2Se6 are concluded in Table 4.1. 

Table 4.1 Fitted parameters of the Landau energy in Eq. (4.1) 

Layer a (meV/𝐴2) b (meV/𝐴4) c (meV/𝐴6) 

1 −131.10 16.97 26.16 

Bulk −168.13 33.31 -13.2 
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For slab structures including monolayer and few layers, the fitting process is slightly more 

complicated. First, we must find the relative permittivity. Using the relation between electric 

displacement and polarization, 

 𝑃 =
[𝜖(𝑢) − 1]𝐷 + 𝑃𝑠

𝜖(𝑢)
 

(4.3) 

we can tune the applied electric displacement field in first-principles simulations to get the 

polarization and corresponding electric permittivity. Given that dielectric function is a linear-

response property, we confine our calculation within a weak-field limit, such as around 0.1 

V/nm. Within this range of applied field, the first-principles calculation shows that the position 

of copper atoms is nearly fixed. This substantially simplifies the calculation. 

Therefore, we can fix the copper atom displacement u and tune the applied field D. With the 

calculated polarization P from first-principles Berry-phase calculations, the relative permittivity 

can be fitted by using Eq. (4.3). For example, that of monolayer CuInP2Se6 is about 2.58 for the 

FE phase. Interestingly, we observe a substantial change of the relative permittivity according to 

the thickness of FE structures, which can be seen from the concluded Table 4.2. Finally, with 

these parameters of the Landau-energy part. Those fitted parameters of the Landau-energy of the 

monolayer are summarized in Table 4.1 as well.  

Table 4.2 𝐸𝐸𝐹 − 𝐸𝐴𝐹𝐸  (meV/f.u.) for monolayer and bulk CuInP2Se6 under D = 0 and E = 0. 

Layer D = 0 E = 0 

1 12.1 -0.03 

Bulk -0.8 -13.2 
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4.5 Layer-dependent Properties under Different Boundary 

Conditions 

4.5.1 Defining Thickness from Monolayer to Bulk 

For suspended layered structure, the thickness is defined by the range of x-y plane average 

potential variation along z direction in a lattice slab. For periodic bulk system, this thickness 

simply equals lattice constant per unit along z direction. However, for thin slab structure, finding 

thickness is not as simple as it appears, since first-principle calculation only gives total dipole 

moment and charge density disperses beyond the atomic boundaries. To solve this problem, we 

directly obtain polarization from potential plot slope then calculate the thickness. 

In Figure 4.2, we plot Hartree potential along z-direction of 1-4 layer at D = 0. For a better 

comparison, lines are adjusted to share a same starting point. Clearly, potential at slab boundaries 

disperses into vacuum while inner part still holds a periodic pattern between each layer. Potential 

difference per layer distance can therefore be read straightforwardly, and for 2 ~ 4 layers they are 

about the same value= 0.365 V/nm. However, in monolayer slab, which is lack of repetitive 

units, this method is not applicable. We might be able to assert it shares the same value with 2 ~ 

4 layers according to the similarity in potential shape. Still, we need further evidence for this 

deduction. 
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Figure 4.2 1-4 layer Hatree potential along z-direction at D = 0. 

We plot Hatree potential for monolayer slab under different external field and then subtract 

potential variation caused by external field, seen in Figure 4.3(a)(b). From Figure 4.3(b) we can 

clearly see the region of potential variation. We manually cut the rest by hand and obtain a 

thickness of 9.00 Å. With the dipole moment from first-principle calculation, potential variation 

per thickness is 0.364 V/nm, just about the same value. This not only gives us a method to 

determine the polarization for slab structure but provide straightforward verification for 

electronic dispersion at boundaries as well. Based on that, we can further explain the evolution of 

layer-dependent polarization under D = 0 and E = 0 separately. 
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Figure 4.3 (a) hatree potential under external field (V/nm). (b) Same potential subtracted external electric field. 

4.5.2 Critical Thickness of the AFE/FE Transition 

With fitted parameters in Eq. (4.1), we ultimately obtain the FE energy of bulk CuInP2Se6 under 

the open-circuit boundary condition (D = 0). Interestingly, the FE state is still the ground state, 

but its energy is only about 0.8 meV below the AFE state, as shown in Table 4.2. More 

interestingly, under the other boundary condition, i.e., the closed-circuit case (E = 0), the above 

electrostatic model predicts that the energy of the FE state is always lower than that of the AFE 

state, indicating that monolayer CuInP2Se6 can be FE when it is short-circuit. This is because, 

under the closed-circuit boundary condition, a compensating electric field always tends to further 

lower the energy of the FE state, while the AFE configuration holds D = E = 0 intrinsically. In 

this sense, it is necessary to specify the boundary condition when deciding the ground state of 

vertically polarized 2D structures. 
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Combining the energy calculated by the electrostatic model of bulk with the first-principles 

results of mono-/few-layer CuInP2Se6, we finally obtain the layer-dependent evolution of 

stability of CuInP2Se6 under the open-circuit (freestanding) boundary condition in Figure 4.4. 

Here, we fit the energy relationship with the thickness and find that there is an AFE/FE transition 

of the ground state for the freestanding six-layer (∼4 nm) CuInP2Se6. Therefore, for free-

standing CuInP2Se6, under perfect equilibrium, ultrathin structures shall be AFE. 

 

Figure 4.4 Layer-dependent evolution of the energy difference (𝐸𝐹𝐸 − 𝐸𝐴𝐹𝐸) of CuInP2Se6 under the D = 0 boundary 

condition. The critical thickness is marked by the cross sign. 

Finally, with this electrostatic model, we can also calculate the evolution of polarization intensity 

of CuInP2Se6 according to the thickness, under different electric boundary conditions, as listed in 

Table 4.3. Importantly, we can see that the boundary condition plays a significant role in 
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deciding the magnitude of spontaneous polarization. As previously mentioned, open circuit (D = 

0) represents a lack of external field for slab structures. Thus, deviation of centers of ions and 

electronic charge tend to move with same amplitude as 𝑃/𝜖0 but along opposite directions. This 

leads to a negative feedback corresponding to a smaller polarization, i.e., the depolarization 

effect. Interestingly, for our studied vdW layered CuInP2Se6, its depolarization effect is not 

sensitive to the thickness, which is evidenced by the nearly fixed polarization shown in Table 

4.3. This is in rather contrast to the widely accepted wisdom learned from non-vdW FE 

materials, in which the depolarization effect is enhanced in thin films. On the other hand, under 

the closed-circuit (E = 0) boundary condition, the depolarized field is compensated by the 

external field, endowing centers of ions and electronic charge with much more freedom to move 

away from each other. Therefore, larger polarization is generally observed. 

Table 4.3 Layer-dependent thickness, polarization, and relative permittivity (first principle/model) under 

different boundary conditions. 

Layer Thickness (Å/f.u.) 
Polarization (𝜇𝐶/𝑐𝑚2) 

𝜖 𝜖𝑚𝑜𝑑𝑒𝑙 
D = 0 E = 0  

1 9.00 0.322 0.892 2.62 2.77  

2 7.82 0.324 1.222 3.77 3.71  

3 7.80 0.322 1.429 4.44 4.39  

4 7.23 0.320 1.650 4.73 4.72  

Bulk 6.64 0.365 2.531 6.93 6.93  

 

4.5.3 Layer-dependent Relative Permittivity 

Furthermore, we explore layer-dependent relative permittivity. As number of layers increasing to 

infinity (bulk), relative permittivity gradually increases to a converged bulk value. The reason is 

that, for few layers system, charge density disperses beyond the atomic boundaries, as shown in 
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Figure 4.5(a) with transparent yellow eclipse, contributes a lot to the effective thickness, which is 

defined as electric potential variation distance. Meanwhile for periodic bulk system, this 

contribution decreases to 0. A toy model is implemented to explain this phenomenon, as Figure 

4.5(b) shows.  

 

Figure 4.5 (a) Charge dispersion over atoms boundaries in monolayer to bulk CuInP2Se6. (b) Schematics of model 

for calculating effective relative permittivity. 

The green rectangle represents a single repetitive unit with thickness 𝑑𝑖𝑛 and relative permittivity 

𝜖𝑖𝑛, corresponding to bulk layer distance 6.64 Å and bulk relative permittivity 6.93, while the 

yellow rectangle represents the dispersed charge with thickness 𝑑𝑜𝑢𝑡 and relative permittivity 

𝜖𝑜𝑢𝑡. The total effective relative permittivity 𝜖𝑚𝑜𝑑𝑒𝑙 is calculated by formula 

 𝜖𝑚𝑜𝑑𝑒𝑙 =
𝑛𝑑𝑖𝑛 + 𝑑𝑜𝑢𝑡

𝑛𝑑𝑖𝑛/𝜖𝑖𝑛 + 𝑑𝑜𝑢𝑡/𝜖𝑜𝑢𝑡 
 

(4.4) 
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, where 𝑛 is the number of layers. Using monolayer effective thickness 9.00 Å and first-

principles calculated epsilon 2.77, we can easily obtain 𝑑𝑜𝑢𝑡 = 2.36 Å and 𝜖𝑜𝑢𝑡 = 1.03. With 

these parameters, the model gives relative permittivity 𝜖𝑚𝑜𝑑𝑒𝑙, as listed in Table 4.3, in good 

accordance with first-principle values. This model illustrates the mechanism of layer-dependent 

variation of relative permittivity and is very useful to predict the value of relative permittivity for 

samples of different layers. 

4.6 Polarization in Freestanding CuInP2Se6 
In the following, we particularly focus on polarization orderings in monolayer CuInP2Se6 under 

the open-circuit boundary condition, which is the intrinsic case of freestanding samples. 

Importantly, despite the AFE ground state, the FE state can be a robustly metastable state in 

realistic monolayer CuInP2Se6. As shown in Figure 4.6(a), our first-principles cNEB simulation 

shows that the energy barriers from the FE states to the AFE state are significant, e.g., ∼80 meV 

for monolayer and ∼120 meV for bulk. On the other hand, the energy difference between the 

AFE and FE state is much smaller (∼10 meV). In other words, both FE and AFE states could 

coexist due to this large energy barrier. It agrees with the experimental fact that, despite the FE 

ordering is the ground state, bulk CuInP2Se6 exhibits dipole-glass properties at low temperature, 

because of a mixture of FE and AFE orderings [145]–[147]. In other words, if a strong initialing 

field is applied to forcing an FE ordering, the vertically ferroelectricity may be stable and 

observed in monolayer CuInP2Se6 because of the significant energy barrier between the FE and 

AFE states. This gives hope to practically monolayer FE structures. 
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Figure 4.6 (a) Monolayer and bulk sample FE(AFE)-to-paraelectric energy tracks from first-principles NEB 

calculations. (b) Energy variation with aspect to the applied displacement field 𝐷/𝜖0. The energy of the FE state of 

the freestanding monolayer is set to be zero. (c) Temperature-dependent zero-E-field spontaneous polarization 𝑃𝑠in 

monolayer and bulk CuInP2Se6. 

Our results may be useful for understanding recent measurements of few-layer MCDs. For 

example, recent experiments have reached controversial conclusions of the existence of the FE 

state in few-layer CuInP2S6 (CIPS) [59]–[61], a material very similar to our studied CuInP2Se6: 

Ferroelectricity was reported in bilayer CIPS [59] but other measurements [60], [61] showed an 

opposite conclusion. We have calculated spontaneous polarization of mono-/few-layer CIPS. 
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Nearly the same energetic pictures have been obtained. Therefore, on one hand, with a strong 

initial field, the FE state can be formed and observed due to the larger energy barrier between the 

AFE and FE states. On the other hand, if without a strong enough initial field, a likely 

coexistence of AFE and FE domains may lead to a dipole glass state and, thus, eliminate the 

macroscopic polarization. 

Furthermore, first-principles simulations can provide the energetic stability of different orderings 

under the applied external field, as shown in Figure 4.6(b). The energy vs electric field is 

perfectly fitted by a quadratic function, confirming our electrostatic-energy model in Eq. (4.1). 

As expected, when an external field is applied to the slab along the direction of spontaneous 

polarization, FE energy will decrease with a higher rate than AFE. If comparing with the same 

external field, when 𝐷/𝜖0 exceeds 1.9 V/nm marked by a blue cross in Figure 4.6(b), FE energy 

will be lower than that of AFE. This corresponds to a critical situation that the ground state 

transforms from the AFE state to the FE state at 0 K under full equilibrium. 

4.7 Polarization under Finite Temperature 
In addition to spontaneous polarization, ferroelectricity requires the polarization can be switched 

by practical external field. In this sense, the coercive field is crucial for deciding the feasibility of 

our predicted ferroelectricity. At very low temperature, because of the large energy barrier 

shown in Figure 4.6(a), the coercive field to switch these spontaneous polarizations in CuInP2Se6 

could be very large. For example, for bulk one, our calculation shows that its coercive field is 

about 14V/nm, which is too large compared with experimental value of 77 kV/cm [143]. On the 

other hand, previous first-principles calculations revealed the similar size of energy barriers in 

many other known ferroelectric materials [51], [151], whose practically coercive fields are, 

however, much smaller in reality. 
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There are several reasons, such as ferroelectric domains [152], [153], that can contribute to this 

lower coercive field for sizable energy barriers. Here we focus on the temperature effect. In a 

realistic condition, finite temperature can substantially reduce the coercive field. To include the 

temperature effect and further show the important hysteresis, the MC method is thus applied. 

Particularly, because of small interactions between two adjacent units in both FE and AFE states, 

which can be seen from the small energy difference between AFE/FE states [Figure 4.6(a)], our 

MC simulation within a single or double unit cell can reflect the properties of the FE and FE 

orderings, respectively. The MC simulated results are presented in Figure 4.6(c). Based on the 

effective Hamiltonian [Eq. (4.1)] with fitted parameters of bulk CuInP2Se6, MC gives a transition 

temperature around 225 K, which agrees well with experimental values 220 ∼ 240 K of bulk 

CuInP2Se6 [154], [155]. Using the fitted parameter of monolayer CuInP2Se6, we estimate the 

Curie temperature to be around 150 K for the monolayer. This smaller 𝑇𝑐 is mainly from the 

smaller energy barrier of the monolayer, as shown in Figure 4.6(a). 

 

Figure 4.7 (a) Electric hysteresis of polarization of monolayer CuInP2Se6 under 30 K, starting from the AFE ground 

state, then evolving into and stabilizing at the FE state. (b) Electric hysteresis of FE CuInP2Se6 𝑃𝑠 under different 

temperatures. (c) Temperature-dependent coercive field with an exponential decay fitting. 
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Finally, using this MC approach, we can simulate the electric hysteresis of monolayer 

CuInP2Se6. Because the initial AFE state has opposite polarizations between neighbored units, an 

average of two unit cells of the MC process with a different starting position can simulate the 

AFE to FE transition under finite temperature. Figure 4.7(a) shows that, with the added electric 

field [applying our electrostatic-energy model in Eq. (4.1)] at 30 K, the AFE ground state will 

gradually evolve into a commensurate state, since electric field will mandatorily tilt the double-

well potential. In fact, this field that forces the AFE-to-FE phase transition has been observed in 

bulk Pb(Zr,Sn,Ti)O3 experimentally [144] and provides a useful way to obtain the FE state from 

the AFE ground state. In Figure 4.7(b), we present how the hysteresis evolves with the 

temperature. At 30 K, the coercive field is 7.1 V/nm; at 100 K the value decreases to 0.9 V/nm; 

finally, at 200 K, hysteresis degrades into a single-value curve because the ferro-to-para phase 

has occurred at the Curie temperature of 150 K. In other words, as temperature increases, the 

coercive field will reduce rapidly until it reaches the transition temperatures [156], [157]. We 

have concluded the relation between the coercive field and the temperature in Figure 4.7(c), 

which is roughly fitted by an exponential curve. We can see that, if the temperature is above 100 

K, this spontaneous FE ordering can be switchable under the practical field (less than 1 V/nm), 

making it promising to realize and use ferroelectricity in monolayer CuInP2Se6. 

4.8 Summary 
In conclusion, we have clarified two important boundary conditions that are essential for 

deciding energy and polarization orderings in bulk and slab structures. With first-principles 

simulations and the electrostatic-energy model, we predict robust off-plane polarization 

orderings in ultrathin films of a promising family of materials, MCDs. Taking CuInP2Se6 as an 

example, under the (freestanding) open-circuit boundary condition, the ground state of bulk is FE 
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while that of the monolayer is switched to be AFE, and the critical thickness for the AFE/FE 

transition is predicted to be six layers; however, under the closed-circuit boundary condition, the 

ground state of both bulk and monolayer is always FE. Moreover, even for freestanding mono-

/few-layer CuInP2Se6, because of the small energy difference and large barrier between AFE and 

FE states, the FE state can be practically stabilized and useful for devices. Finally, using MC, we 

explore the Curie temperature and electric hysteresis, indicating that the corresponding coercive 

field is well within the practical range at finite temperature. Our studies are useful for 

understanding recent controversial measurements and further shedding light on ferro-/antiferro-

electricity in ultrathin vdW materials.  



59 

Chapter 5: Nonlinear Optical Properties of 

Organic-Inorganic Hybrid Halide 

Perovskites 

5.1 Introduction 
Nonlinear optical (NLO) materials play a critical role in modern electronics and photonics by 

providing means to alter the phase, frequency or amplitude of input electromagnetic waves. Such 

alternation can be realized through a variety of nonlinear processes such as the linear electro-

optic (LEO) effect, second/third/fourth/high harmonic generation (SHG/THG/FHG/HHG), and 

the Kerr effect, etc. [62] The group of traditional NLO materials are ternary inorganic oxides and 

their derivatives such as lithium niobate and lithium tantalate. They have achieved widespread 

success due to their reliable performance, low optical loss, and good stability. However, the 

synthesis of these insoluble oxides requires high temperature treatment, which hinders broader 

applications for flexible substrates and integration into chip-scale nanophotonic devices. In 

contrast to their inorganic counterparts, organic NLO materials based on chromophores have 

been considered a promising alternative due to their solution processability, faster response and 

stronger NLO activities. Unfortunately, the low intrinsic stability and high optical loss severely 

limit their applications.  

Nowadays, organic-inorganic hybrid halide perovskites (OHPs) have attracted tremendous 

interest in emerging photovoltaic (PV) technologies. Extensive theoretical exploration has been 

applied to studying their linear optical responses related to PV, including self-consistent density 

functional theory (DFT) approaches as well as quasiparticle methods [158]–[160]. On the other 

hand, due to the asymmetry of CH3NH3 units, ferroelectricity can be realized in this family of 
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materials naturally or by artificially tuning [68]–[70], [161]. This broken inversion symmetry 

also ensures NLO properties [71], especially second harmonic generation (SHG) and linear 

electro-optic (LEO) effects [72]–[74] while there has very limited attention on NLO properties in 

OHPs. Moreover, given the fact that such compounds can be easily fabricated from liquid phase 

[64], [65] and nearly unlimited choices of compositions [66], [67], OHPs may exhibit unique 

advantages in fabricating cost and optimizations of NLO properties, compared to traditional 

NLO materials. 

Calculating and predicting NLO properties of OHPs are challenging for the available first-

principles simulation tools [78], [162]–[164]. Compared to those of linear optical responses, 

NLO calculations involve higher-order transitions, which are intrinsically much more expensive 

in simulation cost.  Hence, calculating NLO properties requires a dense k-point sampling and a 

large number of empty conduction bands to get converged results. As a result, most NLO studies 

focus on materials either with a small number of atoms per unit cell and high symmetries or low 

dimensions, which can reduce the number of k-point samples and empty bands. Unfortunately, 

OHPs contains a larger number of atoms and owns relatively low symmetries. Studying their 

NLO properties needs fundamental coding developments for better parallelization performance 

and simulation efficiency. 

In this work, we have developed a high-efficient, parallel code (NLOPACK) to study the NLO 

properties of materials. Using Fortran with the Message Passing Interface (MPI) and performs 

parallel computation on k-points, the excellent parallelization performance can be hold for up to 

a few thousand processors. This development enables us to calculate large-scale systems with 

low symmetries. Our first-principles calculations systematically investigate an important family 

of cubic phase OHPs, i.e., CH3NH3MX3 (M=Ge, Sn, Pb; X= I, Br, Cl). Spin-orbital coupling and 
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hybrid functional theory are used to improve the calculated band gaps. SHG and LEO effect are 

observed in all our studied structures, and they are strongly influenced by the cations/anions and 

corresponding band gaps. Particularly, the cubic phase of CH3NH3SnI3 exhibit significant SHG 

and LEO effect, which are comparable with traditional NLO materials. Our work further reveals 

the mechanism behind the formation of such large LEO coefficients and their relationship with 

electronic structures in OHPs.   

5.2 Computational Methods 
In this work, we focus on the widely studied and observed cubic phase of CH3NH3MX3 (M=Ge, 

Sn, Pb; X= I, Br, Cl) [165], [166], which are usually stable at room temperature, making them of 

application interests. The atomic structure is illustrated in Figure 5.1(a). In the cubic unit cell, the 

metal M atom sits on each vertex and the halide X atom sits on the middle position of each edge, 

forming MX6 octahedra cages around the centered organic unit CH3NH3, conforming to the 

widely known perovskite structure. 

 

Figure 5.1. (a) Atomic structure of cubic phase CH3NH3MX3 (M=Ge, Sn, Pb; X= I, Br, Cl). (b) the corresponding 

first Brillouin Zone and high-symmetry points.   
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After relaxation, our density functional theory (DFT)-calculated structures show good 

agreements with previous works [159], [165], [167], [168]. For example, our calculated lattice 

parameter of CH3NH3PbI3 structure is 𝑎 = 6.31 Å, 𝑏 = 6.23 Å, 𝑐 = 6.38 Å, 𝛼 = 90.0°, 𝛽 =

89.2°, 𝛾 = 90.0°, which is close to previously published experimental result [168], 𝑎 =

6.33 Å, 𝛼 = 𝛽 = 𝛾 = 90°. Our calculated slight distortion of the cubic structure is due to that the 

CH3NH3 molecule cation ends up along the [101] direction, inducing a deformation and reducing 

the symmetry of the inorganic PbI6 octahedra. 

5.2.1 Band Structure Calculation.  

The present first-principles calculations are based on density functional theory (DFT) with the 

generalized gradient approximation using the Perdew-Burke-Ernzerhof (GGA-PBE) functional 

[92], implemented in the Vienna ab initio simulation package (VASP) [137], [138]. The 

calculated band structures are along high symmetry lines as shown in Figure 5.1(b). Spin-orbital 

coupling (SOC) effects are included. The VdW interaction is included through the DFT-D3 

method with Becke-Jonson damping [169], [170]. The energy cutoff is 450 eV for structure 

relaxation and solving the Kohn-Sham equation. We use a 4 × 4 × 4 k-grid sampling in the 

reciprocal space. Heyd-Scuseria-Ernzerhof (HSE) hybrid functionals HSE06 [171], [172] with 

𝛼 = 0.45 (the fraction of exact exchange) are implemented to correct the underestimated band 

gap calculated by GGA-PBE.  

5.2.2 Calculation of Optical Properties.  

The linear optical dielectric function and the NLO susceptibility are calculated by our developed 

package NLOPACK based on the basis of the linear response formalism with the independent-

particle approximation (IPA) [107]–[110]. The formulas are adapted from reference [107] with 
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slight modifications [80]. It is known that DFT always underestimates band gaps,  we employ the 

HSE hybrid functional and the scissor approximations correct DFT band gaps [76], [78], [80], 

[107]. Excitonic effects are not included in this work because excitonic effects are usually 

significant in reduced-dimensional structures or large-gap insulators.  

5.3 NLOPACK Performance 

5.3.1 Parallelism and Scalability 

The NLOPACK package can accept the outputs from VASP, which include the momentum 

matrix elements, Kohn-Sham eigenvalues and occupation numbers. Then it separates these data 

by k-points and implement parallel reading and computing by each node based on Fortran MPI. 

Linear and second-order nonlinear properties are calculated using Eq. (2.39)~(2.43), on each 

group of separated data parallelly. Finally, all results are reduced to root and final results, such as 

SHG and LEO, are output. In parallel computation, scalability is a vital criterion to evaluate the 

performance. It is, by definition, a measure of a parallel system’s capacity to increase speedup in 

proportion to the number of processors [173]. According to Eq. (2.39)~(2.43), for each k-point 

the calculations are independent, indicating parallelism based on k-points should be able to 

achieve perfect scalability. An example of SHG calculation running time on GaAs illustrates the 

scalability of our package. As shown in Figure 5.2(a), for NLOPACK package, total time equals 

the split time, which is the time for splitting the input data into groups of k-points, adding the run 

time, which is the pure calculation time on each separated group of k-points. The run time vs 

number of nodes is linear in the log2 scale, indicating that the calculation process is sped up in 

proportion to the number of nodes with perfect scalability. Even the split time will increase with 

number of nodes, the total time will still decrease and gradually converge to a certain value 
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where all k-points are distributed one-by-one to the same number of node. In summary, our 

implementation of parallelism in NLOPACK is efficient and in good scalability.  

 

Figure 5.2. (a) Running time (in log2 scale) of SHG calculation using NLOPACK under different number of nodes, 

in which 𝑡𝑡𝑜𝑡𝑎𝑙= 𝑡𝑟𝑢𝑛 + 𝑡𝑠𝑝𝑙𝑖𝑡. The benchmark calculations are cubic GaAs with 40 total bands under a 8 × 8 × 8 =

512 non-reduced k-point sampling. (b) Calculated SHG susceptibility with different energy tolerance for GaAs. 

 

5.3.2 Singularity Problem 

We should note that there are terms in Eq. (2.39)~(2.43), where the cancellation of energy in the 

dominator will lead to singularities [107], [110], [174], [175]. The singularities will occur under 

two conditions: one is the resonance term that 𝜔𝑖𝑗 ≈ 𝜔 or 2𝜔, and it can be avoided by adding a 

small positive real damping factor 𝜂 to 𝜔
 
← 𝜔 + 𝑖𝜂. Herein 𝜂 is directly related to the bandwidth 

of the Lorentzian resonance peaks. In our calculations for perovskite, we choose 𝜂 = 0.035 𝑒𝑉; 

the other is that 𝜔𝑙𝑛 − 𝜔𝑚𝑙 ≈ 0 at some special k-points. According to [174]–[176], such k-

points are few and the contributions are safe to discard. In our calculation, we set the energy 

tolerance 𝑒𝑡𝑜𝑙, determining which term to discard if the denominator of that term is less than this 
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value. For a larger 𝑒𝑡𝑜𝑙, more terms with singularities tend to be discarded and for a small 𝑒𝑡𝑜𝑙, 

more singularities tend to be reserved.  From the Figure 5.2(b) we can clearly see that, while 

𝑒𝑡𝑜𝑙 = 10−1 discard too much terms for an accurate result, plot for GaAs at 𝑒𝑡𝑜𝑙 = 10−4 with 

less singularities and 𝑒𝑡𝑜𝑙 = 10−20 with more singularities agrees well, indicating that 𝑒𝑡𝑜𝑙 =

10−4  is a good choice for the convergence of susceptibility plot and the rest of singularity terms 

either vanish or cancel with each other ideally in GaAs, thus making no difference to the 

summation. Nevertheless, in practice, when the denominator goes really small, even tiny 

numerical difference will lead to huge difference in real values and the supposed cancellation 

will be broken, which is quite common in NLO calculation of OHPs. As a result, it is fairly 

important to choose a proper 𝑒𝑡𝑜𝑙 to avoid unreasonable large peaks of singularities. For our 

NLO calculation of OHPs, we choose 𝑒𝑡𝑜𝑙 = 10−8. 

5.4 Results and discussion 

5.4.1 Band Structures of CH3NH3MX3 

Because all the CH3NH3MX3 have the same crystalline structure and are isoelectronic, their 

electronic band structures are rather similar. We plot those of two representatives, i.e., 

CH3NH3PbI3 and CH3NH3SnI3 in Figure 5.3. The band gaps have been corrected by the scissor 

approximation based on HSE hybrid functional theory calculations. All the CH3NH3MX3 OHPs 

exhibit direct gap at the R point, which is the corner of the Cubic first Brillouin zone as shown in 

Figure 5.1(b). This agrees well with previous works [167]. 
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Figure 5.3. Band structures (left panels) and projected density of states (PDOS) (right panels) of CH3NH3PbI3 and 

CH3NH3SnI3. Both materials have direct band gap at the R symmetry point. The top valence band is set to be 0 eV. 

The band structures around band edges are mostly determined by the inorganic components of 

the hybrid perovskite [167][177]. The PDOS in Figure 5.3 shows that the bottom of the 

conduction band mainly originates from group-V M atom, while the top of the valence band is 

derived from halide atom X as well as M atom. There is almost no hybridization of the band-

edge states with organic components because PDOS of CH3NH3 are very far away from band 
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gap. Therefore, the organic molecules affect mainly the crystal structure and break the inversion 

symmetry by the orientation of C-N bond, rather than directly influence the band structure. Still, 

this structural effect only leads to tiny change of band structures and will not affect the overall 

optical properties [167]. 

Table 5.1. HSE band gap for cubic CH3NH3MX3 perovskites 

Bandgap (eV) I Br Cl 

Pb 1.64 2.24 2.85  

Sn 1.01 1.48 2.1  

Ge 1.66 2.63 3.46  

 

Table 5.1 summarizes evolution of the band gaps of our studied OHP structures. The calculated 

band gaps agree well with measurements. For example, the calculated band gap of CH3NH3PbI3 

is 1.64 eV which is in a good agreement with experimental value 1.61 eV [178]. Table I also 

reveals that there is a monotonic correlation between the band gap and halide X atoms: the band 

gap increases from I to Br to Cl. Finally, Table 5.1 suggests that the magnitudes of the band gaps 

cover a large scale of light spectrum from infrared to the blue end of the visible frequency. 

Therefore, these OHPs can be promising for applications of electronic, optical, and electro-

optical devices.   
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5.4.2 Second Harmonic Generation (SHG) 

Most of symmetries of the cubic CH3NH3MX3 perovskites are broken. As a result, all elements 

of the SHG tensor are expected to be nonzero. To address the essential results, we focus on 

several typical components. In Figure 5.4(a), the calculated absolute values, which is the 

modulus of real and imaginary parts of SHG susceptibility 𝜒111
(2)

, 𝜒122
(2)

 and 𝜒311
(2)

 of four OHPs, 

i.e., CH3NH3PbI3, CH3NH3PbBr3, CH3NH3SnI3 and CH3NH3SnBr3, are presented. The subscripts 

1, 2, 3 of the susceptibility denote the Cartesian coordinates x, y, and z. Figure 5.4(a) indicates 

that all these OHPS exhibit SHG mainly within the infrared frequency range. In particular, the 

SHG susceptibility of CH3NH3SnI3 is significant, and its intensity is comparable to those of 

widely used SHG materials such as GaAs [77], and emerging two-dimensional transition-metal 

dichalcogenides [78], indicating NLO application potential of OHPs.  

 

Figure 5.4. (a) 111, 122, 311 components of absolute SHG susceptibility of cubic CH3NH3PbI3, CH3NH3PbBr3, 

CH3NH3SnI3, CH3NH3SnBr3 perovskites, and (b) the correspondent imaginary part of dielectric function, 𝜀𝑥
′′(𝜔), 

and the double-resonant one, 𝜀𝑥
′′(2𝜔).   
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To analyze spectra of these SHG susceptibilities, it is helpful to compare them with the 

absorptive part of the corresponding dielectric function. In Figure 5.4(b), the x-direction 

component 𝜀𝑥′′(𝜔) is plotted in a red-color curve. Comparing the linear and SHG spectra, two 

different features can be observed. First, because of the second-order nature of SHG, the low-

energy edge of SHG spectra is about half of that of the linear absorption spectra. Second, the 

positions of peaks are very different between SHG and linear optical absorption spectra. This is 

expected because of the different transition paths in these two processes. Third, the SHG spectra 

in higher energy regime are much weaker compared to those of linear-optical spectra. This is 

because the SHG amplitude is inversely proportional to the square of transition energy while that 

of linear optical absorption is inversely proportional to the transition energy, according to Eq. 

(2.39)~(2.43).   

On the other hand, Figure 5.4 shows there are strong correlation between SHG and linear optical 

absorption. Following an approach of previous work [78], we replot the linear optical absorption, 

which relates to the single-photon resonance process in SHG, with double frequency, 𝜀𝑥′′(2𝜔), 

in Figure 5.4(b) (blue-color curves). This is approximately to only consider two-phonon process 

with identical energy, which reflects the double-photon resonance. Interestingly, these 

approximated double-resonance spectra fit those of SHG very well. As shown in Figure 5.4, 

within the two vertical dashed lines, the peak positions and edges approximately agree with each 

other. Therefore, the main features (peaks) of SHG spectra, especially below band gap (𝐸𝑔), are 

from the double-resonance processes.  

In Figure 5.4(a), with the same M atom, the absolute value of SHG susceptibility |𝜒𝑎𝑏𝑐
(2)

| will 

decrease from I to Br as the X atom. Such a trend can also be seen in the absorptive part of the 
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corresponding dielectric function 𝜀𝑥′′(𝜔) in Figure 5.4(b). The reason is that, when the radius of 

X atom decreases, the band gap of CH3NH3MX3 increases, as shown in Table 5.1. Meanwhile, 

the SHG amplitude is inversely correlated to transition energy. As a result, CH3NH3SnI3 with the 

smallest band gap has the largest SHG susceptibility. The susceptibility |𝜒122
(2)

| reaches about 500 

pm/V at around 0.6 eV, and the susceptibilities along other directions, such as |𝜒311
(2)

|, |𝜒111
(2)

|, also 

have broad peaks above 300 pm/V. 

 

Figure 5.5. Imaginary part of SHG susceptibility and contributions of subdivided interband (inter)and intraband 

(intra) terms of CH3NH3PbI3 and CH3NH3SnI3, half band gap 𝐸𝑔/2 and band gap 𝐸𝑔 are marked with vertical black 

lines. 
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In addition to the above qualitative discussion of the band-gap effect on SHG, we further 

quantitatively analyze the large SHG susceptibility in CH3NH3SnI3. In Figure 5.5, the imaginary 

parts of SHG susceptibility are plotted in upper panels with blue colors. Meanwhile, the 

interband contributions to the imaginary part of SHG, mainly including the double resonance 2𝜔 

(dash line) and single resonance 𝜔 (dash-dot line) components, [107]–[109] are plotted in middle 

panels. Those intraband transitions are plotted in the lower panels. The modulation part is much 

smaller, and we did not list it here.  

In Figure 5.5, there are two significant wave packages with opposite sign wrapping resonance 

terms that mainly comes from interband and intraband terms, starting at 
𝐸𝑔

2
. In both CH3NH3PbI3 

and CH3NH3SnI3, the intraband double resonance term makes the largest contributions, and the 

net contribution leads to a positive peak packet, marked as I, roughly within the region of 

𝐸𝑔

2
~ 𝐸𝑔. Above the band gap, single resonances appear and start to mix up with double-

resonance parts. The large negative contribution of intraband 𝜔 part still gives rise to a negative 

peak package above 𝐸𝑔, marked as II. Due to the contributions of interband 2𝜔 item below 𝐸𝑔 

are of the same scale, and the contributions of intraband 2𝜔 item below 𝐸𝑔 of CH3NH3SnI3 are 

larger than those of CH3NH3PbI3, peak I of CH3NH3SnI3 are larger than that of CH3NH3PbI3. 

Moreover, in the energy region just above 𝐸𝑔, interband and intraband contributions of 

CH3NH3PbI3 cancel with each other to large extent while those of CH3NH3SnI3 aggregates in 

both negative amplitudes. As a result, for both I and II regions, the SHG susceptibility of 

CH3NH3SnI3 is larger than that CH3NH3PbI3. 
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Figure 5.6. (a) Pairs of positive/negative Gaussian peaks as imaginary part, shown in dash line and (b) real part, 

shown in solid line, obtained by Kramers-Kronig relation of SHG susceptibility 

 

5.4.3 Linear Electro-Optical (LEO) Effect 

Figure 5.4 and Table 5.2 also indicate that low-frequency LEO coefficients are also large for in a 

few OHPs. Specially, for 𝜒311
(2)

 of CH3NH3SnI3 there is a large intercept value 103.4 pm/V at zero 

frequency compared to others, which is greatly beneficial for LEO coefficient. Using the Eq. 
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(2.44), for CH3NH3SnI3 LEO coefficient 𝑟311 is found to be 3.9 pm/V, as shown in Table 5.2, 

which is comparable to GaAs [179] and CdTe [180]. All these large values suggest that the cubic 

CH3NH3MX3 perovskites may have application potentials in second-order NLO devices and 

LEO modulators.  

Table 5.2 Calculated dielectric function (εx(0), εz(0)), SHG susceptibility |χ311
(2)

|, and LEO coefficient 

r311 of the CH3NH3MX3. 

 

To further illustrate the effects of SHG part on zero-frequency intercept value, which is directly 

related to the LEO coefficients, we construct a schematic picture in Figure 5.6 consisted of pairs 

of positive/negative Gaussian peaks with peak values (𝐸1, 𝐸2) and linewidth (𝜎1
2, 𝜎2

2) to mimic 

the I and II peaks of the imaginary SHG susceptibility in Figure 5.5. Then we can intercept 

values of the real part from the imaginary part through the Kramers-Kronig relation [78], [107], 

[109]. Comparing results in Figure 5.6 with different linewidth and peak positions, we can find 

that, using the same linewidth 𝜎, if the two imaginary-part peaks move away from the zero 

frequency, which means a larger band gap, the corresponding real-part intercept will decrease. 

M Pb Sn Ge 

X I Br Cl I Br Cl I Br Cl 

𝜀𝑥(0) 5.9 5.2 4.0 7.2 5.2 4.4 5.9 4.1 3.7 

𝜀𝑧(0) 5.6 4.2 3.7 7.4 5.1 4.2 6.4 4.1 3.7 

|𝜒311
(2) (0)| (𝑝𝑚/𝑉) 6.4 0.7 1.9 103.4 19.7 0.9 14.4 2.8 2.7 

𝑟311(0) (𝑝𝑚/𝑉) 0.4 0.1 0.3 3.9 1.5 0.1 0.8 0.3 0.4 
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Furthermore, as shown by the blue and orange-color curves, larger positive peak I and smaller 

negative peak II will lead to a larger real part intercept value, and vice versa. This explains the 

zero-frequency intercept results in Figure 5.4. The energies of the I and II peaks of CH3NH3SnI3 

are lower due to its smaller band gap. Meanwhile, for CH3NH3PbI3, the negative peak II is 

stronger and broader than the positive peak I and for CH3NH3SnI3, peak I and II are about the 

same scale. Combining these two factors, SHG susceptibility zero-frequency intercept, as well as 

LEO coefficient for CH3NH3SnI3 should be much larger than those of CH3NH3PbI3. 

5.5 Summary 
In summary, we investigate the structural and electronic properties of organic-inorganic hybrid 

halide perovskites CH3NH3MX3 (M=Ge, Sn, Pb; X=halide). Linear and second-order NLO 

properties, such as SHG and LEO effects, are explored by our NLOPACK package, which 

proves good parallelism and scalability on such large systems. Due to the lack of inversion 

symmetry, cubic-phase hybrid halide perovskites exhibit SHG responses. We find large SHG 

susceptibilities as well as large LEO coefficients for CH3NH3SnI3, which have application 

potentials in second-order NLO devices and LEO modulators. We further reveal that the large 

zero-frequency intercept of SHG susceptibilities are due to small band gap as well as large 

intraband double resonance contributions. This work will stimulate further experimental and 

theoretical investigations to achieve NLO responses in organic-inorganic hybrid halide 

perovskites, which can be fabricated by low-cost solution-based approaches. 
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