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ABSTRACT OF THE DISSERTATION

Essays on Macro-Finance Affine Term Structure Models

by

Biancen Xie

Doctor of Philosophy in Economics

Washington University in St. Louis, 2019

Professor Siddhartha Chib, Chair

Professor Werner Ploberger, Co-Chair

In my dissertation, I focus on theoretical affine term structure models and the development

of Bayesian econometric methods to estimate them.

In the first Chapter, we address the question of which unspanned macroeconomic factors

are the best in the class of macro-finance Gaussian affine term structure models. To answer

this question, we extend Joslin, Priebsch, and Singleton (2014) in two dimensions. First,

following Ang and Piazzesi (2003) and Chib and Ergashev (2009), three latent factors, instead

of the first three principal components of the yield curve, are used to represent the level, slope

and curvature of the yield curve. Second we postulate a grand affine model that includes all

the macro-variables in contention. Specific models are then derived from this grand model by

letting each of the macro-variables play the role of a relevant macro factor (i.e. by affecting

the time-varying market price of factor risks), or the role of an irrelevant macro factor

(having no effect on the market price of factor risks). The Bayesian marginal likelihoods

of the resulting models are computed by an efficient Markov chain Monte Carlo algorithm

and the method of Chib (1995) and Chib and Jeliazkov (2001). Given eight common macro

factors, our comparison of 28=256 affine models shows that the most relevant macro factors

for the U.S. yield curve are the federal funds rate, industrial production, total capacity

ix



utilization, and housing sales. We also show that the best supported model substantially

improves out-of-sample yield curve forecasting and the understanding of term-premium.

The second Chapter considers the question of which unspanned macro factors can improve

prediction in arbitrage-free affine term structure models and convert return forecasts into

economic gains. To achieve this, we develop a Bayesian framework for incorporating different

combinations of macro variables within an affine term structure framework. Then each

specific model within the framework is evaluated statistically and economically. For the

statistical evaluation, we examine its out-of-sample yield density forecasting. The economic

value of each model is compared in terms of the bond portfolio choice of a Bayesian risk-

averse investor. We consider two main kinds of macro factors: representative macro factors in

Chib et al. (2019) and principal component macro factors in Ludvigson and Ng (2009b). Our

empirical results show that regardless of macro dataset we use(either Chib et al. (2019) or

Ludvigson and Ng (2009b)), macro factor in real economic activity, financial sector and price

index will help generate notable gains in out-of-sample forecast. Such gains in predictive

accuracy translate into higher portfolio returns after accounting for estimation error and

model uncertainty. In contrast, incorporating redundant macro variables into the affine

term structure models can even decrease utility and prediction accuracy for investors. In

addition, given the data sample we consider in the Chapter, we also find that principle

component factors can perform relatively better than representative macro factors in terms

of certainty equivalence return (CER).

The third Chapter compares the posterior sampling performance of No-U-Turn sam-

pler(NUTS) algorithm and tailored randomized-blocking Metropolis-Hastings (TaRB-MH)

for macro-finance affine Term structure models. We conduct empirical experiments on 3 affine

term structure models with the U.S. yield curve data. For each experiment, we examine the

sampling efficiency of model parameters, factors, term premium, predictive yields,etc. Our

emprical results indicate that the TaRB-MH substantially outperforms the NUTS method

x



in terms of the convergence and efficiency in posterior sampling. Furthermore, we show

that NUTS’ inefficiency in simulating the affine term structure models will be robust given

different initial values for the algorithm.
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Chapter 1

Framework for Finding Relevant Macro

Factors in Affine Term Structure Models

1.1 Introduction

In recent important work, Duffee (2011) and Joslin et al. (2014) have developed a macro-

finance arbitrage-free affine term structure model in which a set of exogenous factors f

t

at

time t, consisting of three yield curve factors l

t

: 3 ⇥ 1 (given by the first three principal

components of the yield curve), and pre-selected macro economic factors m

t

: m ⇥ 1, are

assumed to follow a first-order Gaussian vector-autoregressive (VAR) process given by

f

t+1

= K +Gf

t

+ "

t+1

, "

t+1

⇠ N
�
0

(3+m)⇥1

,⌦

�

These factors determine the one-period ahead stochastic discount factor (SDF) M

t+1

as

M

t+1

= exp

✓
�r

t

� 1

2

�

0
t

�

t

� �0
t

v

t+1

◆
(1.1.1)

1



where r
t

is the short rate that is assumed to be an affine function of l
t

, but not of m
t

, v
t+1

are

the iid factor shocks such that "
t+1

= ⌦

1/2

v

t+1

, where ⌦ = ⌦

1/2

⌦

1/20, and the time-varying

market price of factor risks �
t

: (3 +m)⇥ 1 is assumed to follow the process

�

t

=

�
⌦

1/2

��1

0

B@

0

B@
�

l

0

m⇥1

1

CA+

0

B@
⇤

ll

⇤

lm

0 0

1

CA

0

B@
lt

m

t

1

CA

1

CA

Joslin et al. (2014) model the role of m
t

in this way to ensure that the bond price for a ⌧

period bond at time t that satisfies the no-arbitrage condition

P

t

(⌧) = E
t

[M

t+1

P

t+1

(⌧ � 1)]

will depend just on lt, but not on m

t

. Technically, their modeling ensures that the macro-

factors are unspanned by the yield curve, which Duffee (2011) and Joslin et al. (2014) argue

is an important requirement. Yet, even though the macro-factors do not directly affect the

yield curve at t, Joslin et al. (2014) show that the macro factors, through their influence on

�

t

, influence the dynamics of the term-premium, and aid in forecasting future values of the

yield curve.

We have two goals in this paper within the context of this model. One is to relax the

assumption that lt are observed factors. Instead, following another branch of the term-

structure literature, for example, Ang and Piazzesi (2003), Cochrane and Piazzesi (2005),

Chib and Ergashev (2009), Chib and Kang (2013), Ludvigson and Ng (2009b), Cooper

and Priestley (2009), Gurkaynak and Wright (2012), Greenwood and D.Vayanos (2014) and

Cieslak (2015), we let lt denote three latent factors. We constrain these in our modeling to

represent the level, slope and curvature of the yield curve. The first three principal compo-

nents of the yield curve are also ostensibly meant to capture the level, slope and curvature

of the yield curve, but our approach with latent variables is more flexible. The downside of

2



modeling the level, slope and curvature by a latent vector is that the econometrics become

more complex (essentially because the likelihood function becomes irregular, with separated

regions and multiple modes). We address the computational challenge of dealing with such

a likelihood function by introducing a prior distribution that smooths out the likelihood

irregularities, following Chib and Ergashev (2009) and Abbritti, Gil-Alana, Lovcha, and

Moreno (2016). The tailored randomized block Metropolis-Hastings (TaRB-MH) algorithm

of Chib and Ramamurthy (2010) is then used to sample the resulting posterior distribution

efficiently.

The second goal is to develop a framework for selecting the appropriate unspanned macro

factors m
t

on the basis of the data evidence. In the model of Joslin et al. (2014), all included

macro-factors affect �
t

, an assumption that the factors are relevant, which may not be

justified. It is possible that some macro-factors may not affect �
t

, and thereby be considered

irrelevant, or some factors excluded from the model should be included as relevant factors.

In the present context, these questions cannot simply be answered by omitting or deleting

a macro factor from the model because this changes the set of modeled outcomes, which in

the model above, are the yields and the macro factors. Our idea, therefore, is to postulate a

grand affine model that includes all the macro-variables in contention. Specific models are

then derived from this grand model by letting each of the macro-variables (in a combinatorial

fashion) play the role of a relevant macro-factor, or the role of an irrelevant macro-factor. In

this way, the number of modeled outcomes remains fixed. In our empirical study with eight

candidate macro-factors, this process of considering all possible combinations of relevant

and irrelevant macro-factors leads to a trove of 28 = 256 competing affine models, each with

its own model parameters, and each with its specific implications for the term-structure of

interest rates. We compare each model, in this conglomeration of models, by the Bayesian

marginal likelihood criterion. The marginal likelihood has a built-in penalty for complexity,

ensuring that more complex models will not rank higher merely because the more flexible

3



Table 1.1: Pool of Candidate Macroeconomic Variables

This table lists the short name of each macro series, the transformation applied to the series, and a brief data description. All

series are from the online database housed at the Federal Reserve Bank of St. Louis. In the column labeled trans., 1 indicates

that the variable is transformed into annual growth rate, and 0 indicates that the variable is retained in level form.

variable trans. description
AHE 1 Average Hourly Earnings:Total Private
CPI 1 Consumer Price Index:All Items
FFR 0 Effective Federal Funds Rate
HSal 1 House Sales-New One Family Houses
IP 1 Industrial Production Index
PCE 1 Personal Consumption Expenditures
TCU 0 Capacity Utilization:Total Industry
Unem 0 Civilian Unemployment Rate

model is capable of fitting the noise in the data.

We find the best supported macro-factors from the composition of relevant factors in

the model with the highest marginal likelihood. We show that the best collection of un-

spanned macro-factors improves yield curve forecasting (which is important, for example, in

bond-portfolio construction), and has consequences for term-premium estimation (which is

important for extracting the market expectation component from long-term interest rates).

The pool of macro-factors that we consider are listed in Table 1.1. This collection consists

of two inflation measures, five real economic activity factors, and one financial factor. The

inflation measures are consumer price index (CPI) and average hourly earning (AHE). The

real activity is measured by industrial production (IP), personal consumption expenditures

(PCE), capacity utilization (CU), unemployment rate (Unem), and housing sales (HSal).

The federal fund rate (FFR) is a proxy of the financial factor.

Our main findings from 256 affine models applied to the U.S. yield curve data (over the

sample period from January 1990 to December 2017) can be summarized as follows. First,

the model with four relevant factors (FFR, HSal, IP, TCU) is found to be best supported

by the data. Table 1.2 presents the log Bayes factors of the top 10 models, where the 10th

best model is used as the benchmark.
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Table 1.2: Log Bayes Factors of the 10 Best Models

This table reports the log Bayes factors of the 10 best models (relative to the 10th best model) from the analysis conducted

below. The first column reports the rank of each model, the second column reports the set of relevant macro factors in that

model and the third column reports the log Bayes Factor of each model. The sample period of the analysis is from January

1990 to December 2017 and the details about the models and the estimation methodology is discussed in the following

sections.

rank relevant macro factors log Bayes Factor
1 FFR, Hsal, IP, TCU 45.21
2 Hsal, IP, TCU, Unem 23.95
3 FFR, Hsal, TCU, Unem 15.13
4 AHE, CPI, IP, PCE, Unem 13.97
5 CPI, Hsal, IP, Unem 13.06
6 Hsal, IP, PCE, Unem 9.36
7 CPI, Hsal, IP, Unem 5.18
8 IP, PCE, TCU, Unem 1.78
9 AHE, FFR, Hsal, IP, Unem 0.88
10 FFR, Hsal, IP, PCE 0

The evidence in favor of these macro-factors is decisive, given that the log marginal

likelihood of the best model exceeds that of the next model by 21.62. Although some of

these macro factors have been considered in the work of, for example, Joslin et al. (2014),

Diebold, Rudebusch, and Aruoba (2006), and Bansal and Yaron (2004), our comparative

analysis shows that these factors in combination are the best supported by the data. Second,

we show that the term premium inferred from the best model is strongly counter-cyclical,

indicating that investors have to bear more macroeconomic risks during recessions. Third,

the best model substantially improves on the out-of-sample density forecasts. It is worth

noting that Bauer and Hamilton (2018) have also studied the role of the unspanned macro

factors on the yield curve but not in a model such as ours, and, hence, those results are not

directly comparable.

The remainder of the paper is organized as follows. In Section 3.2 we present our frame-

work with relevant and irrelevant unspanned macro factors and in Section 2.2 we describe

the data that is used in our empirical analysis. Section 2.4 details our Bayesian estimation

strategy and marginal likelihood computation method. Section 1.5 provides the empirical
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results from the application of our approach. Concluding remarks are presented in Section

2.7 and the Appendix contains supplementary details omitted from the main text.

1.2 Framework

We now describe the macro-finance arbitrage-free affine term structure model, built on the

work of Duffee (2011), and Joslin et al. (2014), designed to satisfy the two goals outlined

above. Our model allows for three distinct sets of factors: latent factors l
t

of size l (= 3)⇥1,

which are present in every model, and two disjoint groups of unspanned macroeconomic

factors, relevant factors m

t

of size m ⇥ 1, and irrelevant factors z

t

of size z ⇥ 1. Note that

under this formulation, the total number of factors is f = l+m+ z and the size of �
t

is now

f ⇥ 1 (the size of the other vectors and matrices in the previous section also now changes).

The macro factors in m

t

are relevant in the sense that these variables affect �
t

, while the

variables in z

t

are constrained to have no effect on �
t

.

A particular model is distinguished by the composition of these groups of macro factors.

As a result, there are 2

(m+z) models of interest. The number of factors is the same across

models, though in some models m

t

or z

t

could be empty, but not both at the same time.

1.2.1 Factor Process

We assume that the factors, f
t

= (l

t

,m

t

, z

t

), follow a first-order vector-autoregressive (VAR)

process given by

0

BBBB@

lt+1

mt+1

zt+1

1

CCCCA

| {z }

=

0

BBBB@

K

l

K

m

K

z

1

CCCCA

| {z }

+

0

BBBB@

G

ll

G

lm

G

lz

G

ml

G

mm

G

mz

G

zl

G

zm

G

zz

1

CCCCA

| {z }

0

BBBB@

lt

m

t

z

t

1

CCCCA

| {z }

+

0

BBBB@

"

l,t+1

"

m,t+1

"

z,t+1

1

CCCCA

| {z }
f

t+1

K G f

t

"

t+1

, (1.2.1)
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where the factor shocks "
t+1

are jointly normally distributed as

"

t+1

⇠ N

0

BBBB@
0

f⇥1

,⌦ =

0

BBBB@

⌦

ll

⌦

lm

⌦

lz

⌦

0
lm

⌦

mm

⌦

mz

⌦

0
lz

⌦

0
mz

⌦

zz

1

CCCCA

1

CCCCA
.

For estimation purposes, it is convenient to express the variance-covariance matrix of the

factor shocks as

⌦ = V �V,

where V = diag(v

1

, v

2

, .., v

k+m

) is the diagonal factor shock volatility matrix and � is the

factor shock correlation matrix.

1.2.2 SDF

Denote the factor shocks as

"

t+1

= ⌦

1/2

v

t+1

,

where

v

t+1

⇠ N (0

f⇥1

, I

f

)

is the vector of normalized factor shocks and ⌦ = ⌦

1/2

⌦

1/20. Then, our assumption is that

the one-period ahead SDF is given by

M

t+1

= exp

✓
�r

t

� 1

2

�

0
t

�

t

� �0
t

v

t+1

◆
(1.2.2)
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where r

t

follows the process

r

t

= � +

✓
�

0
0

0
m⇥1

0

0
z⇥1

◆

0

BBBB@

l

t

m

t

z

t

1

CCCCA

and �
t

follows

�

t

=

�
⌦

1/2

��1

0

BBBB@
�+ ⇤

0

BBBB@

lt

m

t

z

t

1

CCCCA

1

CCCCA
(1.2.3)

where

� =

0

BBBB@

�

l

0

m⇥1

0

z⇥1

1

CCCCA
, and ⇤ =

0

BBBB@

⇤

ll

⇤

lm

0

l⇥z

0

m⇥l

0

m⇥m

0

m⇥z

0

z⇥l

0

z⇥m

0

z⇥z

1

CCCCA
(1.2.4)

similar to the model of Joslin et al. (2014) but allowing for the presence of irrelevant macro-

factors z

t

.

By the no-arbitrage condition given in the introduction, the price P

t

(⌧) of a default-free

zero-coupon bond with ⌧ -periods to maturity at time t that pays one unit at time t+ ⌧ is

P

t

(⌧) = E
t

[M

t+1

P

t+1

(⌧ � 1)], (1.2.5)

where E
t

(·) is the conditional expectation given the information available at time t including

the entire history of the factors, {f
i

}t
i=1

. That is,

P

t

(⌧) =

Z

R

k

exp

✓
�r

t

� 1

2

�

0
t

�

t

� �0
t

v

t+1

◆
P

t+1

(⌧ � 1)

⇥N (f

t+1

|Gf

t

,⌦)df

t+1

.
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By straightforward manipulations, the latter condition can be re-expressed as

P

t

(⌧) = e

�rtEQ
t

[P

t+1

(⌧ � 1)], (1.2.6)

where the Q-measure is

N (f

t+1

|KQ
+G

Q
f

t

,⌦)df

t+1

, (1.2.7)

K

Q
= K � � =

0

BBBB@

K

l

� �
l

K

m

K

z

1

CCCCA
, (1.2.8)

and

G

Q
= G� ⇤ =

0

BBBB@

G

ll

� ⇤
ll

G

lm

� ⇤
lm

G

lz

G

ml

G

mm

G

mz

G

zl

G

zm

G

zz

1

CCCCA
.

Following Joslin et al. (2014), we restrict G

Q as

G

Q
=

0

BBBB@

G

Q
ll

0

l⇥m

0

l⇥z

G

ml

G

mm

G

mz

G

ml

G

mm

G

mz

1

CCCCA
,

which implies that

⇤

ll

= G

ll

�G

Q
ll

,

⇤

lm

= G

lm

,

G

lz

= 0

l⇥z

. (1.2.9)

We set G

lz

= 0

l⇥z

to shut down any back-door influence of zt on �

t

. In contrast, non-zero
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⇤

lm

(= G

lm

) allows m

t

to affect �
t

. We obtain a latent factor only model when all macro

variables are regarded as irrelevant and m

t

is empty.

We complete our model by incorporating the Nelson-Siegel type latent-factor identifying

restriction of Christensen, Diebold, and Rudebusch (2009) and Christensen, Diebold, and

Rudebusch (2011), so that the model-implied risk premiums on exposures to level, slope, and

curvature risks can be derived and estimated. Specifically, we restrict � and G

Q
ll

as follows:

� = (1, 1, 0)

0 (1.2.10)

and

G

Q
ll

=

2

66664

1 0 0

0 exp(�)  exp(�)

0 0 exp(�)

3

77775
,

depending on the single parameter .

1.2.3 Solution

Assuming that P

t

(⌧) is exponentially affine in the latent factors

P

t

(⌧) = exp (�a(⌧)� b(⌧)

0
lt)

for any non-negative integer value of ⌧ , where a(⌧) is a scalar and b(⌧) is a l ⇥ 1 vector, by

the method of undetermined coefficients illustrated in Appendix .1, we get that

a(⌧) = � + a(⌧ � 1)� 1

2

b(⌧ � 1)

0
⌦

ll

b(⌧ � 1)� b(⌧ � 1)

0
�

l

,

b(⌧) = � +G

Q0
ll

b(⌧ � 1). (1.2.11)

As P

t

(⌧ = 0) = 1 for any lt, this recursive system is initialized by a(0) = 0 and b(0) = 0

l⇥1

.
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In addition, as proved by Niu and Zeng (2012), b(⌧) reduces to

b(⌧)

0
= �

0 ⇥
⌧�1X

j=0

�
G

Q
ll

�
j (1.2.12)

=


⌧, ⌧ � 1�exp(�⌧)



,

1�exp(�⌧)


� ⌧ exp(�⌧)
�

It follows now that the yield curve can be expressed as a linear function of the latent factors,

R

t

(⌧) ⇡ �1

⌧

logP

t

(⌧) =

a(⌧)

⌧

+

b(⌧)

0

⌧

l

t

(1.2.13)

where b(⌧)

0
/⌧ has exactly the form of the dynamic Nelson-Siegel factor loadings,


1, 1� 1�exp(�⌧)

⌧

,

1�exp(�⌧)
⌧

� exp(�⌧)
�
.

Due to this functional form of the factor loadings, the latent factors in l

t

can be interpreted

as dynamic level, slope, and curvature factors.

1.2.4 Term Premium and the Role of Relevant Macro Factors

A key quantity of interest in our context is the term premium, which quantifies the compen-

sation required by a risk-averse investor holding long-term government bonds. This section

discusses how relevant macro factors affect the term premium. Let

exr(⌧)
t

= [E
t

[lnP

t+1

(⌧ � 1)]� lnP

t

(⌧)]� (� lnP

t

(1)) (1.2.14)

= �b(⌧ � i)

0
�

t

denote the one-period expected excess return for holding the ⌧ -period bond. Then, as shown

by Cochrane and Piazzesi (2008), the term premium (TP) for a ⌧ -period bond at time t
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is defined as the difference between its yield to maturity and corresponding expectation

hypothesis (EH) term,

TP = R

t

(⌧)� 1

⌧

⌧�1X

i=0

E
t

[r

t+i

]

| {z }
EH

,

which reduces to the average expected excess returns,

TP =

1

⌧

⌧�1X

i=1

exr(⌧+1�i)

t

. (1.2.15)

Inserting the expression of exr(⌧)
t

in Equation (1.2.14) into the equation above, we have the

term premium of ⌧ -period bond at time t in a closed form,

TP = �⌧�1

X
⌧�1

i=1

b(⌧ � i)

0
�

t

= �⌧�1

X
⌧�1

i=1

b(⌧ � i)

0
⇣
⌦

1/2

ll

⌘�1

(�

l

+ ⇤

ll

⇥ lt + ⇤lm ⇥m

t

) .

This can be decomposed into three components: (i) a time-invariant component,

�⌧�1

X
⌧�1

i=1

b(⌧ � i)

0
⇣
⌦

1/2

ll

⌘�1

�

l

,

(ii) a time-varying component by lt,

�⌧�1

X
⌧�1

i=1

b(⌧ � i)

0
⇣
⌦

1/2

ll

⌘�1

(⇤

ll

⇥ lt) ,

and (iii) a time-varying component by m

t

,

� ⌧�1

X
⌧�1

i=1

b(⌧ � i)

0
⇣
⌦

1/2

ll

⌘�1

(⇤

lm

⇥m

t

) . (1.2.16)

The last term represents the effect of the relevant macro factors on the term premium.
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Figure 1.1: Bond Yields

This figure plots the monthly time series of government bond yields with 1, 60, and 120 months to maturity from January

2001 to September 2018. Shaded areas indicate recession periods designated by the National Bureau of Economic Research.
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1.3 Data

Our monthly yield curve data for 1, 3, 12, 24, 36, 48, 60, and 120 month maturities are

obtained from the constant maturity treasury securities that are provided by the U.S treasury

department. Figure 1.1 plots the short-term yield (one month), mid-term yield (60 months),

and long-term yield (120 months), indicating that the yield curve is upward sloping on

average and highly autocorrelated. Our data on the eight macro factors are plotted in

Figure 1.2. It can be seen that IP, PCE, TCU, Hsal, AHE, and CPI are procyclical, while

Unem and FFR are counter-cyclical.

The data used in our empirical analysis range from January 1990 to September 2018,

corresponding to the period after the Great moderation. Table 1.3 provides summary statis-

tics of the bond yields and macro factors. In addition, as we will discuss later, the data

from January 1990 to December 1999 are used as a training sample to arrive at the prior
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Figure 1.2: Macro Factors

This figure plots the eight macro factors mentioned in Table 1.1 for the sample period from January 1990 to September 2018.

Shaded areas indicate recession periods designated by the National Bureau of Economic Research.
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Table 1.3: Summary Statistics of Yields and Candidate Macro Factors

The table provides six measures (Mean, St.dev, Skewness, Kurtosis, min and max) of both yields and macro factor time series

for the sample periods from January 1990 to September 2018.

Mean St.dev Skewness Kurtosis min max
1-month yield 2.24 2.22 0.26 1.76 0.01 8.02
60-month yield 4.01 2.13 0.17 1.91 0.62 8.879
120-month yield 4.75 1.93 0.13 2.05 1.5 8.9
AHE 2.88 0.75 0.07 2.04 1.12 4.32
CPI 2.44 1.25 -0.08 4.26 -2.01 6.18
IP 1.90 4.11 -1.96 8.54 -16.4 8.36
PCE 4.69 1.86 -1.84 8.75 -3.54 8.74
FFR 2.94 2.41 0.27 1.77 0.07 8.29
Unem 5.98 1.56 0.92 3.03 3.7 10
TCU 78.88 3.64 -0.65 3.57 66.8 85
HSal -0.12 18.62 -1.02 3.87 -62.38 52.22

distributions for each competing model, the data from January 2000 to December 2017 are

used for the posterior simulation and marginal likelihood calculation, and the data from

January 2018 to September 2018 is reserved for out-of-sample prediction comparisons.

In Table 1.4 we report the sample correlation between macro factors and the yields. Most

correlations seem to be high, and the correlations with short-term yields tend to be higher

than those with long-term yields. For example, the correlation between AHE and one-month

yield is 0.7 and the correlation between TCU and one-month yield is 0.76. Meanwhile, the

counterparts for the 120-month yield are 0.53 and 0.62, respectively. Roughly speaking, each

macro factor can be seen as potentially informative for the U.S. yield curve.
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Table 1.4: Correlations between Yields and Candidate Macro Factors

This table is a summary of the sample correlations between the macro factors and selected yields of one-month(short term),

60-month(mid-term), and 120-month(long term) bonds. The sample periods are from January 1990 to September 2018.

1-month yield 60-month yield 120-month yield
AHE 0.71 0.59 0.53
CPI 0.57 0.56 0.55
IP 0.25 0.18 0.12
PCE 0.58 0.53 0.46
FFR 0.99 0.91 0.84
Unem -0.48 -0.36 -0.16
TCU 0.76 0.70 0.62
HSal -0.13 -0.09 -0.11

1.4 Prior-Posterior Analysis

1.4.1 State-Space Form

In order to estimate the affine term structure model, we first represent the yield curve model

in the state space form

R

t

(⌧

i

) =

a(⌧

i

)

⌧

i

+

b(⌧

i

)

0

⌧

i

l

t

+ e

t

(⌧

i

), e
t

(⌧

i

) ⇠ N (0, �

2

i

) for i = 1, 2, .., N,

m

t

= m

t

,

z

t

= z

t

,

where e

t

(⌧

i

) is the maturity-specific independent pricing error. We let {⌧
i

}N
i=1

denote N

maturities of interest and let

R

t

=

✓
R

t

(⌧

1

) R

t

(⌧

2

) · · · R

t

(⌧

N

)

◆0

, (1.4.1)

denote the corresponding bond yields at time t. Then, given the vector of the observations at

time t denoted by y

t

= (R

0
t

,m

0
t

, z

0
t

)

0
, the econometric model can be rewritten in vector-matrix
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form,

y

t

|f
t

, a,B,⌃ ⇠ N (a+B⇥ f

t

,⌃), (1.4.2)

where ⌃ = diag(�

2

1

, �

2

2

, .., �

2

N

, 0

(m+z)⇥1

) is a (N + m + z) ⇥ 1 diagonal matrix, I

m+z

is a

(m+ z)⇥ (m+ z) identity matrix,
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⌧
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CA : (N +m+ z)⇥ (l +m+ z).

The transition equation of the state space model is simply given by the factor dynamics,

f

t+1

|f
t

, G,K,⌦ ⇠ N (K +Gf

t

,⌦ = V �V ). (1.4.3)

where we assume that the eigenvalues of G each lie inside the unit circle for second-order

stationarity. In addition, K
l

is constrained to zero for identifying the intercept term � in the

short rate process.

The parameters in the factor dynamics, SDF, and pricing error variances are denoted by

✓

f

= (K,G, V, �), ✓

s

= (�,�

l

,) and ✓
e

= (�

2

1

, �

2

2

, .., �

2

N

) ,

respectively. Let Y = {y
t

}T
t=1

be the time series of the observed bond yields and macro

factors, and F
t

= {y
i

}t
i=1

denotes the history of observations up to time t. Then, the

likelihood function is given by the joint density of the observations given the parameters
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Figure 1.3: Likelihood Surface

This figure plots bivariate likelihood surfaces for some selected pairs of parameters from the model with the relevant macro

factors given by (FFR, IP, Hsal, and TCU). The surface plots are based on 10, 000 draws from the posterior distribution under

a flat prior, after a burn-in of 1, 000 draws. The sample periods used in this estimation runs from January 1990 to December

2017.

0.875

0.900

0.925

0.950

0.8 0.9 1.0 1.1
G1,1

V 3

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.00 0.01 0.02 0.03 0.04
G2,4

λ 3

2.2

2.4

2.6

2.8

3.0

−0.75 −0.50 −0.25 0.00
λ2

V 2

−0.15

−0.10

−0.05

0.00

0.05

0.10

−0.2 −0.1 0.0 0.1
G1,2

Γ
4,
5

✓ = (✓

f

, ✓

s

, ✓

e

)

p (Y|✓) =
TY

t=1

p(y

t

|F
t�1

, ✓),

which we compute by Kalman filtering, as shown in Appendix .2.

This likelihood function is typically irregular, exhibiting multiple modes. To illustrate

this, we consider the model with the best grouping of macro factors in our empirical study,

namely m

t

= {FFR, Hsal, IP, TCU} and z

t

= {AHE, CPI, PCE, Unem}. For this partic-

ular model, we plot in Figure 1.3 the bivariate-likelihood surface for some selected pairs of

parameters. These bivariate views are calculated, following Chib and Ergashev (2009), from

the output of a MCMC simulation of the posterior distribution under a flat prior.
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1.4.2 Prior Specification

For effective model comparison, the prior distributions should be comparable across the

different models, so that the differences in marginal likelihoods are not merely caused by the

differences in priors. We now discuss how we specify such a model-specific prior. The set of

parameters that appear in any model is given by

✓ = (✓

f

, ✓

s

, ✓

e

).

These parameters, in general, lie in a high dimensional parameter space. For example, in the

best model we mentioned above, there are 185 parameters in total. Therefore, the prior, in

any given model, should also serve as a suitable regularizer. Note that the competing models

with different relevant macro factors are characterized by the zero restrictions on G

lz

= 0

l⇥z

.

This means that except for the elements in G

lz

, the competing models can be given an initial

common prior distribution. We determine this initial common prior in Step 1 next. Then in

Step 2, this initial common prior distribution is fine-tuned for each model. We now supply

the details surrounding these two steps.

Step 1: We develop the initial common prior distribution for all 256 models by incorpo-

rating theoretically supported knowledge. In particular, following Chib and Ergashev (2009)

and Abbritti et al. (2016), we incorporate in the prior distribution the belief that the yield

curve should be gently upward sloping on average and persistent over time. We arrive at

this initial prior by sampling a default prior. Given draws from this default prior, we draw

the time series of factors from the assumed VAR process, followed by the draws of the yield

curve from the measurement equation given the factors. We repeat these steps many times,

generating an ensemble of yield curves by time. If these simulated yield curves are not up-

ward sloping on average for each time point, we adjust the hyperparameters of our default

prior, and sample again. This procedure is repeated until the outcomes are consistent with
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our prior beliefs. Figure 1.4 plots the distribution of the prior-implied yield curve for model

which includes four relevant macro factors. Figure 1.4(a) is the prior mean of the yield curve,

which is the intercept term, ā computed at the prior mean of the parameters. The prior-

implied yield curve is gently upward sloping on average, so the first moment of the prior

yield curve reflects our prior beliefs. Figure 1.4(b) presents the 5%, 50%, and 95% quantiles

of the ergodic prior-implied yield curve distributions generated from the ergodic distribution

of the factors and pricing errors. This process leads to the common initial prior distribution

in Table 1.5. This prior distribution is reasonable and can be motivated as follows.

Initial prior for ✓
f

= (K,G, V, �): The parameters of G follow a normal distribution.

Let G

i,,j

denote the (i, j)th element of G. Then, the prior mean of G
i,i

is 0.9 as the bond

yields are known to be persistent. The prior-scale for the remaining elements in G is 0.1.

Assuming the independence among the parameters, we have that

⇡ (G) =

Y
l+m+z

i,j=1

N
�
G

i,j

| ¯G
i,j

, V

G,i,j

�
,

where N (·|µ, �2

) denotes the normal density of mean µ and variance �2. In addition, letting

K

m,i

and K

z,i

denote the ith elements of K
m

and K

z

, respectively, the prior densities of K
m

and K

z

are given by

⇡ (K

m

) =

Y
m

i=1

St
�
K

m,i

| ¯K
m,i

, V

Km,i

, 15

�

and ⇡ (K
z

) =

Y
z

i=1

St(K
z,i

| ¯K
z,i

, V

Kz ,i, 15),

respectively, where St (·|µ, �2

, v) denotes the student-t density of mean µ, scale �

2, and

degrees of freedom v. The prior mean for (K

m

, K

z

) is set to be 0, while the prior scale

is set to be 0.001. The factor shock correlations, �
i,j

have a uniform prior over (-1,1) for

i 6= j and i, j = 1, 2, .., (l + m + z). Thus, it follows that the prior density of � is ⇡ (�) =
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(0.5)

(l+m+z)⇥(l+m+z�1)/2. In addition, V = diag(V

1

, V

2

, .., V

l+m+z

) has an inverse-gamma prior

distribution

⇡ (V ) =

Y
l+m+z

i=1

IG (V

i

|a
V,i

, b

V,i

) ,

where IG (·|a, b) is the inverse-gamma density with mean given by b/(a�1). The prior mean

and scale for V allows for yield curve variations between -3% and 11%, which is flexible

enough to capture various shapes of yield curves over time. Finally, the prior density of ✓
f

is given by

⇡ (✓

f

) = ⇡ (G) ⇡ (K

m

)⇡(K

z

) ⇡ (�) ⇡ (V ) .

Initial prior for ✓

s

= (�,�

l

,): The prior distribution for the parameters in ✓

s

are

Student-t distributions. The prior mean of � is chosen to be the sample mean of the short

term interest rate. Because the value of  determines the factor loadings ¯

B, the prior mean

of  makes the curvature factor loading reach a maximum at 24 months. Figure 1.4(d) is the

factor loadings ¯

B. The prior on the factor loadings are the same as in Nelson-Siegel yield

curve models, as the latent factors in our model correspond to the level, slope, and curvature

of the yield curve. It is critical and challenging to quantify the prior on the risk parameters,

�

l

. Given the prior for  (i.e., b(⌧)), our prior for �
l

is chosen such that the prior-implied

term premium is increasing with maturity, and is not too big for long term bonds. The term

premium averaged over time,

�⌧�1

X
⌧�1

i=1

b(⌧ � i)

0
�

l

is the time-invariant component of the term premium once the Jensen’s inequality is ignored.

Under this prior, the prior-implied average term premium of the 10-year bond is about 2.5%

in annual terms. Figure 1.4(c) plots the term structure of the term premiums. The scale

of parameters of �
l

is set at 0.001 in the Student-t distribution with 15 degrees of freedom.

Finally, the prior density of ✓
s

is given by ⇡ (✓

s

) = ⇡ (�) ⇡ () ⇡ (�

l

) , where �
l,i

is the ith
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Table 1.5: Initial Prior Distributions

Gi,j is the (i, j)th element of G. �l,i, Km,i, and Kz,i are the ith elements of �l, Km and Kz , respectively. Vi,i is the ith

diagonal element of V . St(µ,�

2

, v) is the Student-t distribution with the mean µ, scale �2 and degree of freedom (d.f.) v.

IG(a, b) is the inverse-gamma distribution whose mean is b/(a� 1).

(a) G

normal distribution, N (µ, �

2

)

parameter mean (µ) scale (�2)
G

i,i

0.900 0.1

G

i,j

(/2 G

lz

and i 6= j) 0 0.1

(b) , � and K

Student-t distribution, St(µ, �2

, v)

parameter mean (µ) scale (�2) d. f. (v)
 0.935 6⇥ 10

�3

15

�

l,1

�0.170 10

�3

15

�

l,2

�0.070 10

�3

15

�

l,3

�0.024 10

�3

15

K

m,i

(i = 1, 2, ..,m) 0.000 10

�3

15

K

z,i

(i = 1, 2, .., z) 0.000 10

�3

15

(c) V and ⌃
Inverse-Gamma distribution, IG(a, b)
parameter a b

10

4 ⇥ V

1,1

66 130

10

4 ⇥ V

2,2

102 252

10

4 ⇥ V

3,3

4 1

10

4 ⇥ V

4,4

146 435

10

4 ⇥ V

5,5

146 435

10

4 ⇥ V

6,6

146 435

10

4 ⇥ V

7,7

146 435

10

4 ⇥ V

8,8

146 435

10

4 ⇥ V

9,9

146 435

10

4 ⇥ V

10,10

146 435

10

4 ⇥ V

11,11

146 435

5⇥ 10

5 ⇥ �2

i

54 260
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element of �
l

,

⇡ (�) = St(�|¯�, V
�

, ⌫), ⇡ () = St(|̄, V


, ⌫),

and ⇡ (�
l

) =

Y
3

i=1

St(�

l,i

|¯�
l,i

, V

�,i

, ⌫).

Figure 1.4: Prior-implied Yield Curve

This figure plots average yield curve, yield curve distribution, average term premium, and factor loadings based

on 300 periods of simulated prior draws generated from the model which includes four relevant macro factors.
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initial prior, these error variances are assumed to have inverse-gamma prior distributions

with small prior means

⇡ (✓

e

) =

Y
N

i=1

IG
�
�

2

i

|a
i

, b

i

�
.

Given independence across the three blocks of parameters, our initial prior density ⇡(✓) is

⇡(✓) = ⇡ (✓

f

) ⇡ (✓

s

) ⇡(✓

e

).

Step 2: This initial prior from Step 1 is updated with training sample data for each of

the 256 models by MCMC posterior sampling. The output from these 256 training sample

estimations are used to arrive at the model-specific priors. In particular, the means of these

draws are used to fix the marginal locations of the prior distributions. Standard deviation

of these draws is scaled upwards by a factor of 4 to fix the standard deviation of the model-

specific prior. In addition, to further avoid the possibility of likelihood-prior conflict (say on

account of incorporating the preceding theoretical beliefs), the distribution of all location-

type parameters is taken to be student-t with 2.5 degrees of freedom. Given these model-

specific priors, estimation and model comparisons are then based on the remaining portion

of the data.

Figure 1.5 shows the posterior surface for the same pair of the parameters in Figure

1.3. This figure clearly reveals that our model-specific prior distributions updated from the

training sample mitigate the irregularity remarkably, smoothing out the unlikely regions of

the parameter space.

1.4.3 Marginal Likelihood

We compare the models with different relevant macro factors by using their posterior proba-

bilities. Let Pr(M
j

) and Pr(M
j

|Y) denote the prior and posterior probability of model M
j

,
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Figure 1.5: Posterior Surface

This figure plots bivariate posterior surfaces for some selected pairs of parameters from the model with the relevant macro

factors, (FFR, HSal, IP, and TCU). The surface plots are based on 10, 000 posterior draws after a burn-in of 1, 000 draws.

The sample periods for generating the surface are from January 1990 to December 2017.
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respectively. Then the posterior probability of model M
j

is given by

Pr(M
j

|Y) =

Pr(M
j

)m(Y|M
j

)P
i

Pr(M
i

)m(Y|M
i

)

.

We assume the uniform prior on the models, so that the posterior probability of each model

is determined by the relative size of the marginal likelihoods. As is well-known, marginal

likelihoods automatically penalize the complexity of models. In our framework, a model with

more macro factors in m

t

(i.e. fewer zero restrictions on G

lz

) is not necessarily selected by

the marginal likelihood comparison. We calculate the marginal likelihood of each competing

model, M by the method of Chib (1995), which is based on the identity,

logm(Y|M) = log p(Y|✓⇤,M) + log ⇡(✓

⇤
,M)� log ⇡(✓

⇤|Y,M). (1.4.4)
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Technical details of the marginal density computation can be found in Appendix .4.

We examine the reliability of our marginal likelihood comparison approach by using a

simulation study. After specifying a true model, we generate artificial data for both bond

yields and macro factors. We then apply the training sample procedure described above to

construct the model-specific prior for each candidate model. We then estimate all competing

models and calculate their marginal likelihoods to see if the model with the largest marginal

likelihood is the true model specification. The simulation results indicate that the marginal

likelihood comparison selects the true model with a high probability. Further details are

provided in Appendix .5.

1.5 Empirical Results

Our empirical analysis involves the eight macro factors mentioned in Section 1. Instead of a

apriori asserting the identity of relevant macro factors, our model comparison approach finds

the best supported relevant factors by confronting the 2

8

= 256 possible model specifications

with the data, accessing the relative worth of each model in terms of the marginal likelihood.

All marginal likelihoods are computed from 10,000 draws of the MCMC algorithm, collected

after an initial burn-in period of 1,000 iterations.

1.5.1 Relevant Macro Factor Selection

Table 2.4 reports the results for the model comparison, where the model with no relevant

macro factors, denoted by M
0

, is the benchmark, and models M
A

, M
B

, and M
C

are the

three best models selected from the marginal likelihood comparison. These three models

are strongly preferred over the benchmark model in terms of the standard Jeffreys’ scale,

supporting the use of relevant macro-factors in our yield curve modeling. The marginal

likelihoods also indicate that the group of the relevant macro factors most supported by the
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evidence consist of FFR, Hsal, IP, and TCU.

Table 1.6: Marginal Likelihood Comparison

MA, MB , and MC are the first three best models and M
0

is the benchmark model containing no relevant macro factors. log

Bayes factor is the log Bayes factor of each model relative to the benchmark model. m and z indicate relevant and irrelevant

macro factors, respectively. The sample periods are from January 2001 to December 2017.

M
A

M
B

M
C

M
0

AHE z z z z
CPI z z z z
IP m m z z
PCE z z z z
FFR m z m z
Unem z m m z
TCU m m m z
HSal m m m z
log Bayes factor 245.16 223.90 215.08 0.00

1.5.2 The Source of Marginal Likelihood Improvement

Given that the marginal likelihood is defined as the joint density of the yields and macro

factors, marginalized over the parameters, it is useful to consider the source of the marginal

likelihood gain from incorporating relevant macro-factors. For this purpose, we decom-

pose the log likelihood gain of a particular model relative to the benchmark, denoted by

� log lik(R,M,Z|✓⇤), as � log lik(R|M,Z, ✓

⇤
) + � log lik(M,Z|✓⇤), where R, M, and Z are

{R
t

}T
t=1

, {m
t

}T
t=1

, and {z
t

}T
t=1

, respectively. � log lik(R|M,Z, ✓

⇤
) can be interpreted as the

gain from fitting the entire yield curve, and � log lik(M,Z|✓⇤) is the gain from fitting the

macro factors. As reported in Table 1.7, the marginal likelihood gain comes mostly from

the likelihood rather than the prior information, because the log likelihood gain for MA is

242.47, and this is almost equal to the log marginal likelihood gain of 245.16. More impor-

tantly, the log likelihood gains are obtained mostly from the gain of yield curve fit rather

than macro factors fit, since � log lik(R|M,Z, ✓

⇤
) is 244.45, while � log lik(M,Z|✓⇤) is -1.88.

Consequently, the large marginal likelihood gains are driven by the better yield curve fit.
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Table 1.7: Likelihood Decomposition

This table reports the log likelihood differences between each of the three best models and the benchmark model. The total

log likelihood difference, � log lik(R,M,Z|✓⇤) can be decomposed as � log lik(R|M,Z, ✓⇤) +� log lik(M,Z|✓⇤) where

� log lik(R|M,Z, ✓⇤) is the log likelihood difference for the yield data conditional on macro data, and � log lik(M,Z|✓⇤) is the

log likelihood difference for the macro factors. The sample period is from January 2001 to December 2017.

M
A

M
B

M
C

M
0

�lik(R,M,Z|✓⇤) 242.47 239.62 243.93 0.00
�lik(R|M,Z, ✓

⇤
) 244.35 243.07 246.91 0.00

�lik(M,Z|✓⇤) -1.88 -3.45 -3.45 0.00

1.5.3 Real Activity and Yield Curve

The most relevant macro factor combination chosen from our model comparison is found to

be the IP, FFR, TCU, and HSal. This is a very interesting finding, in sense that three of

them are intimately related to the real activity, whereas the inflation factors including the

CPI and PCE are not selected. In fact, our finding is consistent with that of Ludvigson and

Ng (2009b). Of all the risk factors they estimate, the most important one is highly correlated

with measures of real output, not prices.

It is not surprising that the FFR directly controlled by the central bank is chosen, because

it moves closely with the short end of the yield curve. The reason that the real activity

factors are chosen seems to be related with the stylized fact that the term premium tends

to be counter-cyclical, as documented by a number of previous studies such as Ludvigson

and Ng (2009b), Joslin et al. (2014), and Wachter (2006). In addition, a key link between

the real activity and the yield curve is the monetary policy, so that the current state of real

activity affects the market expectation about the future short-term interest rates. However,

the business cycle driving variables are latent and impossible to summarize with one or two

observable indicators. Among the eight macro factors, the IP, TCU, and HSal turn out to

be most relevant, because these macro factors are most successful in detecting changes in

the market expectations and the counter-cyclical behaviour of the term premium. This is

statistically confirmed by the marginal likelihood comparison.
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Regarding the HSal, when the economy is contracting, less people can afford to purchase

houses, and home values are expected to fall. This gives home buyers a less incentive to

purchase a home. Due to the downward price stickiness, a decline in demand causes the

declines in sales rather than falls in house prices. Hence, the decrease in the house sales

can be regarded as an early warning sign of a recession. Consequently, the relevant macro

factors are useful for forecasting future yields and estimating bond risk premia along with

the level, slope, and curvature factors.

We now interpret the finding that the price factors are irrelevant. This finding does not

necessarily implies that the market participants do not react changes in inflation. Instead,

the information about the inflation or expected inflation are already contained in the latent

factors, so that the observed inflation factors can be spanned by the latent yield curve factors.

This is because, unlike the real activity, the inflation can be measured by a small number

of observations such as CPI or PCE inflation rates. Another reason might be the mixed

empirical findings for the inflation risk premium, while the counter-cyclical property of the

term premium is robust. For instance, Evans (2003) finds a downward sloping inflation

risk premium, but this is negative for most maturities. Hoerdahl, Tristani, and Vestin

(2008) argue that inflation risk premium is positive and small around one-year maturity and

essentially zero for all other maturities. As a result, the impact of the inflation on the risk

premia is relatively unclear compared to the real activity.

Finally, despite the strong evidence of those four relevant macro factors, we would like

to remark that one possible reason for the particular macro factor classification is a model

misspecification. As Ludvigson and Ng (2009b) point out, all term structure models includ-

ing our models are imperfect approximation of the true data generating process, so the small

number of latent yield curve factors can fail to span the information of the observed macroe-

conomic factors that bond market participants use in their decision-making. Consequently,

depending on how the latent factors are identified and extracted from the yield curve data,
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the most relevant macro factors can be different. In practice, it is always unknown how much

informative the latent factors are, and we need to examine whether macro variables can help

improve the in-sample fitting or out-of-sample prediction.

1.5.4 Mixing

For completeness, we summarize the marginal posterior distributions of the parameters in

the best model M
A

in Table 1.8. The TaRB-MH acceptance rate is around 55.89% and the

inefficiency factor is 19.87 on average, indicating that our MCMC chains are well mixed.

1.5.5 Term Premium

Using the analytical expression for the term premium in Equation (1.2.15), this section

provides an empirical investigation of the term premium dynamics estimated from the best

model M
A

. Figure 1.6 presents the posterior estimates of the dynamics term structure of

term premiums. Note first that the term premiums varies considerably over time, and that

these variations are higher for the longer maturities. In particular, the term premium of the

10-year bond tends to be negative during recessions, perhaps because of the flight-to-safety

effect. The expectations hypothesis of the term structure of interest rates states that the

term premium is constant. However, it is clear that such a hypothesis is not supported by

our term premium dynamics, which is consistent with the empirical work of Campbell and

Shiller (1991).

Second, more importantly, the term premiums seem to be counter-cyclical. For example,

as shown in Figure 1.6, the term premium of the five-year bond yield tends to rise during

recessions. This is because bond investors require larger compensation for bearing risks

during recessions. This may partly explain the sharp increase in the term premium during the

2007 financial crisis. Another reason for the counter-cyclical term premium is the asymmetric
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Table 1.8: Posterior Summary for Selected Parameters in model M
A

This summary is based on 10,000 MCMC draws beyond a burn-in of 1,000. 2.5% , and 97.5% refer to 0.025 and 0.975

quantiles of the simulated draws, respectively. mean is the posterior mean, and ineff refers to the inefficiency factor. The

sample periods are from January 2001 to December 2017.

Parameters 2.5% mean 97.5% accept.rate ineff
G

1,1

0.78 0.89 0.93 100% 4.4
G

2,2

0.81 0.94 1.07 100% 5.80
G

3,3

0.82 0.89 0.92 100% 4.86
G

4,4

0.81 0.86 0.91 100% 5.01
G

5,5

0.79 0.86 0.93 100% 3.86
G

6,6

0.64 0.70 0.75 100% 6.05
G

7,7

0.79 0.86 0.92 100% 3.58
G

8,8

0.77 0.83 0.89 100% 3.44
G

9,9

0.93 0.97 1.02 100% 5.22
G

10,10

0.88 0.91 0.94 100% 4.26
G

11,11

0.94 0.96 0.99 100% 3.49
�

1

-0.07 -0.07 -0.06 58.68% 15.76
�

2

-0.22 -0.10 -0.01 57.3% 6.73
�

3

-0.07 0.01 0.09 50.59% 17.28
V

1,1

1.88 2.14 2.44 58.55% 20.30
V

2,2

2.22 2.50 2.84 59.21% 14.80
V

3,3

5.2 5.8 6.47 59.84% 8.11
V

4,4

2.68 3.01 4.10 58.99% 5.65
V

5,5

3.96 4.40 4.93 58.93% 7.80
V

6,6

0.86 1.01 1.14 53.33% 15.80
V

7,7

1.27 1.48 1.76 58.96% 5.12
V

8,8

2.17 2.37 2.62 54.24% 7.86
V

9,9

5.87 6.48 7.20 56.85% 7.01
V

10,10

3.12 3.44 3.83 54.23% 6.47
V

11,11

0.98 1.22 1.47 58.57% 9.68
 0.06 0.09 0.07 57.63% 8.76
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Figure 1.6: Term Premium

This figure plots the term structure of the term premiums estimated from MA. The term premiums are computed based on

Equation (2.4.2). The relevant macro factors in the model are FFR, Hsal, IP, and TCU. The sample periods are from January

2001 to December 2017.
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monetary policy. As demonstrated by Kung (2015), more aggressive inflation targeting

reduces nominal risks, and it lowers the average nominal term spread. In recession, the

inflation targeting tends to be less aggressive, which increases nominal risks and results in a

higher term premium.

To quantify the role of relevant macro factors in determining the term premium, we

plot the posterior estimates of its time-varying components in Figure 1.8 based on Equation

(1.2.16). From the figure, we can see that the time-varying components are also more volatile

for longer maturities. In addition, Figure 1.9 presents the time series of the time-varying

component for the 60-month yield. Its dynamics appears to be counter-cyclical over time, as

its correlation with the IP growth is �0.31. Our findings indicate that the counter-cyclical

term premiums do not seem to be sufficiently explained by the level, slope, and curvature

factors. In periods of recessions, the relevant macro factors enable us to capture an increase

of the term premium, contributing to a steepening of the yield curve. Conversely, the relevant

macro factors contribute to a flattening of the yield curve by decreasing the term premium.
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Figure 1.7: 60-month Yield and its Term Premium

This figure plots the 60-month bond yield and its term premium estimated from MA. The relevant macro factors in the model

are FFR, Hsal, IP, and TCU. Shaded areas indicate the NBER recession periods and the sample periods are from January

2001 to December 2017.

Jan 2002 Jan 2005 Jan 2008 Jan 2011 Jan 2014 Jan 2017
Time

-2

0

2

4

6

(%
)

5-year bond yield
term premium

Consequently, it is important to incorporate the information of real activity measures that

can help properly capture the changes in risk premia.

1.5.6 Out-of-Sample Predictive Performance

We now evaluate the predictive ability of the model with relevant macro factors in terms of

out-of-sample yield curve density prediction. The predictive accuracy of density forecasts is

typically measured by the log predictive likelihood (PL), which is the sum of log posterior

predictive density (PD) evaluated at the realized yield curves. Suppose that R

o

T+1

denotes

the realized yield curve at time T + 1, and T

0

and T

1

indicate the starting and end dates

of the out-of-sample period, respectively. Then, the log PL of a particular model, M is

calculated as

logPL(M) = ⌃

T

1

T=T

0

log p(R

o

T+1

|Y,M),

and the PD, p(Ro

T+1

|Y,M), is defined as

p(R

o

T+1

|Y,M) =

Z
p(R

o

T+1

, ,⌃, L|Y,M)d( ,⌃,L)
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Figure 1.8: Time-varying Component of Term Premium Driven by m

t

This is a three-dimensional plot of the time-varying component of the term premiums driven by the macro factors. The

time-varying component is computed based on Equation (1.2.16). The relevant macro factors are FFR, HSal, IP, and TCU.

The sample periods are from January 2001 to December 2017.

120
-2

Jan 01

Maturity (Month)

60Jan 04

0

48

Time

Jan 07 36

(%
)

Jan 10 24

2

Jan 13 123Jan 16

4

=

Z
p(R

o

T+1

|Y,M, ✓,⌃,L,M)⇡( ,⌃,L|Y,M)d( , ⌃,L).

where L = {l
t

}T
t=1

is the time series of the latent factors.

The predictive density ordinate is obtained by simulation as

p(R

o
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n
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We consider four models in our out of sample forecasting comparison. The selected models
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Figure 1.9: Time-varying Component of Term Premium of 60-month Yield Driven
by m

t

This figure plots the time series of the time-varying component of the 60-month bond driven by the relevant macro factors.

The relevant macro factors are FFR, HSal, IP, and TCU. Shaded areas indicate the NBER recession periods and the sample

periods are from January 2001 to December 2017.
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are the best and second best models chosen by the marginal likelihood, the dynamic Nelson-

Siegel model from Diebold et al. (2006), which is denoted by M
DRA

, and the benchmark

model M
0

. In M
DRA

, no-arbitrage conditions are not imposed, and the macro factors are

CPI, FFR, and TCU. The out of sample period consists of the nine months starting from

January 2018 and ending in September 2018.

Using the log PLs of the models, we can compute the log predictive Bayes factor, which

is the log difference in the PL between two models. Figure 1.10 reports the cumulative

log predictive Bayes factors of the first three models in comparison with M
0

over time.

We can see that M
A

consistently outperforms the other models in terms of the out-of-

sample predictive density accuracy. The log PL difference can accumulate up to three at

the end of out-of-sample periods, showing that the model favored by marginal likelihood

also has advantage in out-of-sample prediction. Given that the shape of the yield curve is

determined by the three latent yield curve factors, this finding suggests that one-period-

ahead latent factors are driven by by the current relevant macro factors as well as by the
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current latent factors. Meanwhile, the second best model MB can only outperform M
0

for later periods of the sample, while M
DRA

offers little prediction gain given the data we

analyze here. This empirical finding demonstrates the importance of the relevant macro

factor choice in improving the prediction ability of macro-finance term structure models.

Figure 1.10: Cumulative Log Predictive Bayes Factor

This figure shows the sequences of the cumulative log predictive bayes factors with respect to the benchmark model, M
0

. The

blue solid line corresponds to MA, the red dashed line indicates MB , and the black dotted line denotes MRDA. The

out-of-sample data range from January 2018 to September 2018.
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1.6 Conclusion

In this paper, we introduce a Bayesian framework for selecting relevant macro factors in a

macro-finance affine term structure model. We show that the models with different set of

potentially relevant macro factors can be formulated by different zero restrictions on the

vector-autoregressive coefficient matrix, G. By comparing the restrictions on G in terms of

the marginal likelihood, we are able to ascertain the identity of the best supported relevant

macro factors. To implement this idea in practice, we propose an efficient MCMC algorithms

for estimation and marginal likelihood computation. Our empirical analysis based the U.S.

yield curve data suggest that the federal funds rate, industrial production, total capacity
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utilization and housing sales are the most relevant macro factors among the eight alternative

macro factors we consider.

We conclude by pointing out two possible extensions of our model and framework. First,

it would be interesting to allow for change-points in yield curve dynamics, as in Chib and

Kang (2013), with the aim of letting the number and components of the relevant macro

factors to change over time. Second, it would be worthwhile to allow the factor shock

variance-covariance matrix to change over time. Both extensions are challenging, and are

left for future research.
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Chapter 2

An Economic Evaluation of Unspanned

Macro Factors in Affine Term Structure

Model

2.1 Introduction

Both central banks and financial investors pay critical attention to term structure of interest

rates because the yield curve dynamics can shed light on both monetary policy and portfo-

lio management. While the linkage between predictive yield curve and macro-variables has

been widely documented in the literature(See Ludvigson and Ng (2009b),Cooper and Priest-

ley (2009), Greenwood and D.Vayanos (2014),and Cieslak (2015),etc.), there is so far little

evidence in support that such predictability could be used to improve investors’ economic

utility.

This paper contributes to the literature by raising the question of identifying which group

of relevant factors can best improve the forecasts of bond returns and generate economic gains

for the investors under an affine term structure framework. To address this, we adopt an
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idea similar to Chib et al. (2019) to group the macro factors into two categories: The first

category contains relevant macro factors that enter into the model while the second contains

unnecessary factors hypothesized to be redundant and do not enter into the model. We

will consider two main kinds of macro factors in current literature: representative macro

factors(Chib et al. (2019)) and macro factors generated using principle component (Ludvig-

son and Ng (2009b)). More specifically, Chib et al. (2019) considers 8 representative macro

factors while Ludvigson and Ng (2009b) considers 8 principle component macro factors gen-

erated from macro panel dataset. We will evaluate the macro factors in these two papers in

separate experiments. Because 8 candidate macro amounts to a trove of 28 = 256 competing

models. In each experiment, we can evaluate macro factors based on both statistical and

economic evaluations through an out-of-sample experiment and identify the best model(and

thus the best supported composition of macro factors) given 256 different specifications of the

model(different macro factors incorporated in the model). In addition, we can also compare

across two experiments to see what kind of macro factors(in our context either representative

macro factors or principle macro factors) will perform even better.

We demonstrate that the best model includes average hourly earning(AHE) federal fund

rate (FFR), consumer price index(CPI) and total capacity utility (TCU) corresponding to

macro dataset in Chib et al. (2019) while the best model includes principle component factors

F

1

(loads heavily on employment and output data),F
2

,(loads heavily on interest rate spreads)

and F

4

(loads on prices) corresponding to macro dataset in Ludvigson and Ng (2009b) .

Obviously, the set of relevant factors included in best models for two different datasets

resemble to each other, indicating that the most relevant factors are related to real economy,

interest rate and price level.

The statistical model comparison is conducted based on the posterior predictive likeli-

hood(PPL), which measures the predictive density accuracy of the yield curve. The data

used in the empirical study are U.S monthly yield curve data from January 1990 to Decem-
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ber 2017. The yield curves for the most recent 120 months(10 years) are predicted. We

repeat the predictive density simulation to compute the PPL by rolling the out-of-sample

period by one month and we obtain a sequence of 120 PPLs to examine whether the relative

predictive performance is consistent over these 120 out-of-sample periods. The two best

models corresponding to two different datasets(Chib, Kang, and Xie (2019) and Ludvigson

and Ng (2009b)) mentioned above, consistently exhibits the largest PPLs over the out-of-

sample periods among their competing models. In addition, we also find that the best model

corresponding to dataset in Chib, Kang, and Xie (2019) performs better (by a margin of

3� 5 in terms of log predictive likelihood) than that in Ludvigson and Ng (2009b).

In additional to statistical valuation, we investigate the economic value of the proposed

model. We analyze the portfolio choice problem for a Bayesian risk-averse investor. We

will use the certainty equivalent return(CER) to quantify the utility gain of taking differ-

ent groupings of relevant macro factors into account. As new observations arrive in every

time period, an investor with constant relative risk-aversion(CRRA) utility learns about

the parameters and factors via the Bayesian update. Then he or she updates the posterior

predictive joint distribution of bond returns accounting for uncertainties of parameters and

factors. Then the investor optimizes the portfolio by choosing each bond’s weight to achieve

maximized expected utility. The procedure is repeated in every time period. As the joint

density forecasts of bond returns are model-dependent, the optimal portfolio weights and

realized portfolio returns are model-dependent,too. Consequently, the CER differs across

models. A large CER implies the better portfolio performance and thus the model with the

largest CER is preferred in economic evaluation.

We compute and compare the realized CERs for the out-of-sample period, January 2008

to December 2017, among the competing models. Consistent with the prediction comparison

result, The two best models corresponding to the two datasets(Chib, Kang, and Xie (2019)

and Ludvigson and Ng (2009b)) mentioned above, consistently exhibits the largest PPLs
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over the out-of-sample periods among their competing models. In addition, we also find that

the best model corresponding to dataset in Chib et al. (2019) performs slightly better than

that in Ludvigson and Ng (2009b) (by a margin of 0.5� 1 in terms of CER).

The results of our empirical results show that incorporating representative macro factor

FFR,AHE,CPI and TCU in Chib, Kang, and Xie (2019) or principle component F
1

, F

2

, F

4

in

Ludvigson and Ng (2009b) into the affine term structure model generates both statistical and

economical gains. Furthermore, our empirical result shows that representative macro factors

in Chib, Kang, and Xie (2019) can bring slightly better economic gain when compared to

the principle component macro factor in Ludvigson and Ng (2009b).

Our paper is related to literature discussing bond return predictability and its economic

value. For example, some studies document significant in-sample predictability of trea-

sury bond excess returns for 2 � 5 year maturities by means of yield spreads(Campbell

and Shiller (1991)), a linear combination of forward rates(Cochrane and Piazzesi (2005))

or factors extracted from a cross section of macroeconomic variables(Ludvigson and Ng

(2009b)). Both Thornton and Valente (2012) and Sarno, Schneider, and Christian (2016)

show that return predictability may not necessarily generate significant economic gains but

Gargano, Pettenuzzo, and Timmermann (2017b) reconcile the contradiction by accounting

time-varying parameters and stochastic volatility. Building on this literature, our paper will

account the no-arbitrage condition and evaluate different macro factors under an arbitrage-

free term structure framework. Our paper also contributes to literature on macro-finance

term structure models such as Duffee (2002),Duffee (2011), Joslin et al. (2014) and Chib

et al. (2019),etc. Our paper extends to discuss the economic value of these models.

The remainder of the paper proceeds as follows. In Section 2.2 we describe the data that

is used in our empirical analysis. Section 3.2 illustrates our bond pricing model. Section

2.4 discusses detailed Bayesian estimation strategy and predictive likelihood computation

method used in this paper. Section 2.5 discusses how to measure portfolio performances.

41



Section 2.6 provides the empirical results, and concluding remarks are presented in Section

2.7.

2.2 Data

2.2.1 Bond Returns

Previous studies such as Cochrane and Piazzesi (2005) and Ludvigson and Ng (2009b) use

overlapping 12-month returns data and this overlap induces strong serial correlation in es-

timation residuals. to handle this issue, We follow Gargano, Pettenuzzo, and Timmermann

(2017a) to reconstruct the yield curve at the daily frequency starting from the parameters

estimated by Gurkaynaka, Sack, and Wright (2007). More specifically, the time t zero coupon

yield on a bond maturing in ⌧ periods, gets computed as:

y

t

(⌧ + 1) = �

0t

+ �

1t

1� exp(� ⌧

⌧

1

)

⌧

⌧

1

+ �

2t

(

1� exp(� ⌧

⌧

1

)

⌧

⌧

1

� exp(� ⌧
⌧

1

)) (2.2.1)

+�

3t

(

1� exp(� ⌧

⌧

2

)

⌧

⌧

2

� exp(� ⌧
⌧

2

)) (2.2.2)

The parameters (�

0

, �

1

, �

2

, �

3

, ⌧

1

, ⌧

2

) are provided by Gurkaynaka et al. (2007), who reports

daily estimates of the yield curve for the maturity range spanned by outstanding Treasury

securities.

In our paper, we consider 14 maturities:5, 6, 11, 12, 23, 24, 35, 36, 59

60, 83, 84, 119 and 120. The yield data for maturities 6, 12, 24, 36, 60 and 120 months provided

by the U.S treasury department. We construct the rest yields using 2.2.1. Among them,

the 5, 11, 23, 35, 59, 83 and 119 month maturities are used for the posterior estimation of the

parameters and we denote ⌧ -month bond yield such that

⌧ 2 ⌧
all

= {5, 11, 23, 59, 83, 119}
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When constructing bond portfolio, we invest in the (⌧ + 1)-period bonds with ⌧ 2 ⌧
all

, and

use the observed 6, 12, 24, 36, 60, 84 and 120 month bond yields to obtain the realized bond

return.

Figure 2.1 plots monthly bond returns for 6 month, 1 year, 2 year, 3 year, 5 year, 7 year

and 10 year maturities. All returns are pretty volatile during early 1990s and year 2007.

Table 2.1 presents summary statistics for the bond return. Returns on shorter maturities

tend to be right skewed and fat tailed. In addition, the volatility increases with the maturity

of bonds.

Figure 2.1: Bond Return

This figure shows time series of monthly bond returns (in annualized percentage terms) for maturities ranging from 6 months

to 10 years. Bond returns are computed in equation 2.4.4 Shaded areas indicate recession periods designated by the National

Bureau of Economic Research. The sample period is from January 1990 to December 2017.
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2.2.2 Macro factors

According to the literature, using macro factors as predictors for either yields or bond re-

turns can be contentious. It is because the information in the current yield curve could
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Table 2.1: Summary Statistics of bond returns

Bond returns are computed in equation 2.4.4 and the maturities range from 6 months to 10 years. The sample period is from

January 1990 to December 2017.

Maturity Mean St.dev Skewness Kurtosis min max
6-months 3.20 2.70 0.35 1.95 -0.68 9.85
1-year 3.57 3.54 0.64 2.79 -3.14 14.91
2-year 4.29 6.38 0.41 3.30 -14.89 23.9
3-year 4.95 9.78 0.12 3.30 -26.72 33.79
5-year 6.05 16.48 -0.08 3.43 -47.66 60.54
7-year 6.90 22.69 -0.08 3.85 -75.76 97.27
10 year 7.8 31.42 -0.04 4.63 -116.73 149.65

already subsumes the macro predictors of future yields or returns and macro variables can

be irrelevant when added to the model.

To resolve such an issue, we assume macro risk factors are unspanned just as models of

Joslin et al. (2014). their modeling of macro factors offers to explain why macro variables

could help predict yields and bond returns beyond the information contained in the yield

curve. Intuitively speaking, their models suggest that the effect of additional macro variables

on future short rates and expected future bond returns cancel out and leave the current yield

curve unaffected1 Such cancellation imply that these variables are "hidden" in bond yields

(therefore unspanned by the current yield curve) even though they can have predictive power

over the bond returns.

There are two main ways of constructing macro factors. one way is to incorporate repre-

sentative macro variables into the affine term structure models (such as Chib et al. (2019) and

Diebold et al. (2006)). The other way is to use dimension reduction method (such as prin-

ciple component) to generate macro factors from large panel of macro variables(Ludvigson

and Ng (2009b) and Piazzesi (2005)). Our paper will use both types of macro factors for

empirical study and the details are discussed in following sections.
1 current yield curve can be decomposed into two parts: future short rates and expected future bond

returns
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Table 2.2: Summary Statistics of Macro Factors(Chib et al. (2019))

Mean St.dev Skewness Kurtosis min max
AHE 2.89 0.75 0.05 2.01 1.12 4.32
CPI 2.44 1.27 -0.08 4.15 -2.01 6.18
IP 1.90 4.15 -1.92 8.34 -16.4 8.36
PCE 4.69 1.88 -1.81 8.54 -3.54 8.74
FFR 2.96 2.44 0.23 1.73 0.07 8.29
Unem 5.98 1.55 0.92 3.01 3.8 10
TCU 78.91 3.68 -0.67 3.51 66.8 85
HSal -0.21 18.83 -1.01 3.78 -62.38 52.22

Macro factors in Chib et al. (2019)

As mentioned in the last section, one way of constructing macro factors for term structure

model is to use representative macro variables directly. The advantage lies in that each

variable is explainable and has economic meaning while its disadvantage is that the macro

information can be limited by the number of incorporated macro variables.

Our choice of representative macro factors come from Chib et al. (2019). There are 8

candidate macro factors in this paper: two inflation measures, five real economic activity

factors, and one financial factor. The inflation measures are consumer price index (CPI) and

average hourly earning (AHE). The real activity is measured by industrial production (IP),

personal consumption expenditures (PCE), capacity utilization (CU), unemployment rate

(Unem), and housing sales (HSal). The federal fund rate (FFR) is a proxy of the financial

factor. Table 2.2 provides a summary statistics of the representative macro factors. Time

series of the macro factors are plotted in Figure 2.2. Obviously IP, PCE, TCU, Hsal, AHE,

and CPI are procyclical while Unem and FFR are countercyclical.
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Figure 2.2: Macro Factors(Chib et al. (2019))

This figure plots the 8 representative macro factors used in Chib et al. (2019). The data sample from January 1990 to

December 2011. Shaded areas indicate the NBER recession periods.Representative Macro Factors come from macro data set
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Macro factors in Ludvigson and Ng (2009b)

Ludvigson and Ng (2009b) proposes another way to construct macro factors by using prin-

ciple component. More specifically, Ludvigson and Ng (2009b) supposes T ⇥M panel of

macroeconomic variables {x
i,t

} generated by a factor model as follows:

x

i,t

= F

t

+ ✏

i,t

Then 8 factors are generated from a panel of 131 macroeconomic variables. Hence F

t

=

(F

t,1

, F

t,2

, F

t,3

, F

t,4

, F

t,5

, F

t,6

, F

t,7

, F

t,8

). According to Ludvigson and Ng (2009a), these factors

have economic intuition behind them: F
t,1

is a real activity factor that loads on employment

and output data; F
t,2

loads on interest rate spreads; while F

t,3

and F

t,4

load on prices; F
t,5
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Table 2.3: Summary Statistics of Macro Factors(Ludvigson and Ng (2009b))

Mean St.dev Skewness Kurtosis min max
F1 0.08 0.32 1.89 9.48 -0.47 1.88
F2 0.09 0.22 0.28 5.05 -0.72 1.18
F3 0.05 0.29 -0.26 6.58 -1.29 1.36
F4 -0.03 0.18 -0.45 3.42 -0.75 0.5
F5 -0.005 0.19 -0.28 3.07 -0.58 0.46
F6 -0.03 0.16 0.22 3.47 -0.57 0.52
F7 0.00 0.18 1.56 11.62 -0.50 1.26
F8 -0.03 0.14 -0.06 3.31 -0.47 0.37

loads on interest rates and spreads; F
t,6

loads predominantly on the housing variables; F
t,7

loads on measures of the money supply; F
t,8

loads on variables relating to the stock market.

Figure 2.3: Macro Factor (Ludvigson and Ng (2009b))

This figure plots the 8 principle component macro factors used in Ludvigson and Ng (2009b). Shaded areas indicate the

NBER recession periods. The data sample is from January 1990 to December 2011.
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Finally, the data used in our empirical analysis runs from January 1990 to December

2017. The data prior to that period is subject to a structural break, as Chib and Kang

(2013) discuss.
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2.3 Bond Pricing Model

As mentioned in the previous section, we are focusing on finding the relevant unspanned

macro factors that con convert return predictability into economic gains. Hence the arbitrage-

free affine term structure model with unspanned macro factors developed by Joslin et al.

(2014) and Duffee (2011) will be adopted for our analysis. In their model, factors f
t

at time

t, consisting of three yield curve factors l

t

: 3⇥ 1 (given by the first three principal compo-

nents of the yield curve), and macro economic factors m

t

: m ⇥ 1, are assumed to follow a

first-order Gaussian vector-autoregressive (VAR) process given by

f

t+1

= K +Gf

t

+ "

t+1

, "

t+1

⇠ N
�
0

(3+m)⇥1

,⌦

�

In our paper, we will form m

t

by a combination of macro factors .(macro factors are either

chosen from Ludvigson and Ng (2009b) or from Chib et al. (2019)) These factors determine

the one-period ahead stochastic discount factor (SDF) M

t+1

as

M

t+1

= exp

✓
�r

t

� 1

2

�

0
t

�

t

� �0
t

v

t+1

◆
(2.3.1)

where r
t

is the short rate that is assumed to be an affine function of l
t

, but not of m
t

, v
t+1

are

the iid factor shocks such that "
t+1

= ⌦

1/2

v

t+1

, where ⌦ = ⌦

1/2

⌦

1/20, and the time-varying

market price of factor risks �
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Joslin et al. (2014) model the role of m
t

in this way to ensure that the bond price for a ⌧

period bond at time t that satisfies the no-arbitrage condition

P

t

(⌧) = E
t

[M

t+1

P

t+1

(⌧ � 1)]

will depend just on lt, but not on m

t

. Technically, their modeling ensures that the macro-

factors are unspanned by the yield curve. Even though the macro-factors do not directly

affect the yield curve at t, Joslin et al. (2014) show that the macro factors, through their

influence on �

t

, influence the dynamics of the term-premium, and aid in forecasting future

values of the yield curve. Building on Joslin et al. (2014), we also require that the latent

factors can be identified as the level, slope, and curvature of the yield curve, and impose the

restrictions of Christensen et al. (2009) and Christensen et al. (2011).

Finally, by standard calculations given in Appendix .1, the bond prices that solve the no-

arbitrage condition are exponentially affine in the latent factors,

P

t

(⌧) = exp (�a(⌧)� b(⌧)

0
lt) ,

for any positive integer value of ⌧ , where a(⌧) is a scalar and b(⌧) is a l ⇥ 1 vector given by

the recursive difference equations,

a(⌧) = � + a(⌧ � 1)� 1

2

b(⌧ � 1)

0
⌦

ll

b(⌧ � 1)� b(⌧ � 1)

0
�

l

,

b(⌧) = � +G

Q0
ll

b(⌧ � 1) (2.3.2)

2.4 Prior-Posterior Analysis

Similar to Chapter 1, in order to estimate the affine term structure model, we first represent

the affine model in the following state space form:
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,

or, in matrix form, as

y

t

|f
t

, a,B,⌃ ⇠ N (a+B⇥ f

t

,⌃), (2.4.1)

where ⌃ = diag(�
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1

, �
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2

, .., �

2

N
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) is a (N+m)⇥1 diagonal matrix, I
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is the m⇥m identity

matrix,
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CA : (N +m)⇥ (l +m).

The transition equation of the state space model is simply given by the assumed factor

dynamics,

f

t+1

|f
t

, G,K,⌦ ⇠ N (K +Gf

t

,⌦ = V �V ), (2.4.2)

The prior distribution is developed by incorporating theoretically supported knowledge. In

particular, following Chib and Ergashev (2009), Abbritti et al. (2016) and Chib et al. (2019),

we incorporate in the prior distribution the belief that yield curve should be gently upward

sloping on average and persistent over time. We arrive at the prior by sampling prior similar

to analysis in Chapter 1. Since the main goal of this Chapter is to predict bond returns we

will focus on how to sample posterior of predictive yields and construct bond returns in this

section.
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2.4.1 Posterior Predictive Likelihood

We evaluate the predictive ability of the proposed model based on out-of-sample density

prediction. Predictive accuracy of density forecasts is typically measured by the log posterior

predictive likelihood (PPL), which is the sum of log posterior predictive density (PPD)

evaluated at the realized yield curves. m and n indicate the starting and end dates of the

out-of-sample, respectively. Suppose that yo

T+1

denotes the realized yield curve at time T+1.

Then, the log PPL of a particular model M is calculated as:

logPPL = ⌃

n�1

T=m�1

logp(y

o

T+1

|X,M),

and the PPD, p(yo

T+1

|X,M) is defined as:

p(y

o

T+1

|X,M) =

Z
p(y

o

T+1

, ,⌃, f |X,M)d( ,⌃, f)

=

Z
p(y

o

T+1

|X,M, ✓,⌃, f)⇡( ,⌃, f |X,M)d( ,⌃, f),

Since it is not possible to obtain the predictive density analytically, we rely on the numerical

integration. The PPD is obtained as the Monte Carlo averaging of p(yo

T+1

|X, ,⌃, f) over

the draws of ( ,⌃, f) from ( ,⌃, f)|X

p(y

o

T+1

|X) ⇡ 1

n

1

n

1X

g=1

p(y

o

T+1

|X, 

(g)

,⌃

(g)
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(g)

). (2.4.3)
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2.4.2 Predictive Bond Returns

Let P
T

(⌧) = exp(�⌧ ⇥ y

T

(⌧)) denotes the ⌧� period bond price at time T . Then, the bond

return of the (⌧ +1)� period bond at time T +1, y
T+1

(⌧ +1) is logP
T+1

(⌧)� logP

T

(⌧ +1),

which is equal to

R

T+1

(⌧ + 1) = (⌧ + 1)⇥ y

T

(⌧ + 1)� ⌧ ⇥ y

T+1

(⌧) (2.4.4)

Intuitively, by simulating predictive distribution of y
T+1

(⌧), we draw the posterior samples of

the bond returns. Let yT+1

(⌧

all

) is the N-dimensional vector of bond yields, and its predictive

distribution to be simulated is defined as p(yT+1

(⌧

all

)). The PPD can be obtained similar to

equation 2.4.3 which is as follows:

p(y

T+1

(⌧

all

)|X) ⇡ 1

n

1

n

1X

g=1

p(y

T+1

(⌧

all

)|X, 

(g)

,⌃

(g)

, f

(g)

).

( (g)

,⌃

(g)

, f

(g)) are the posterior draws from the gth MCMC cycles. It means that we can

jointly simulate one-period-ahead bond yields using the posterior draws of the MCMC cycle

for the factors and parameters. After sampling the predictive bond yields, we obtain the

predictive bond return according to Equation (2.4.4).

2.5 Out-of-Sample Portfolio Choice Evaluation

Following Kandel and Stambaugh (1996), we consider the portfolio choice problem with N

different maturities as well as the risk-free rate for a representative Bayesian investor. The

investor has a CRRA utility function:

U(!, R

T+1

) =

[1 + ⌃

N

i=1

R

T+1

(⌧

i

+ 1)� c⌃

N

i=1

(!

i

� !�1

0

)

2

]

1�⇢

1� ⇢
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where ⇢ is the CRRA coefficient, �1  !

i

 2 is the weight on the ith bond. ⌃N

i=1

!

i

= 1 and

let ! denotes the vector of weights: ! = {(!
i

)

N

i=1

}. We also denote !
0

= { 1

N

,

1

N

...

1

N

, } to be

the vector of equal weights. Intuitively, we take a simple portfolio with equal weights as the

benchmark, and incorporate a cost function of the deviations from benchmark c⌃

N

i=1

(!

i

�

!

�1

0

)

2, in the utility function. This cost function is necessary to take into account the utility

loss from the tracking errors(See Choi and Kang (2017)). This also enables us to prevent an

extreme allocation like ! = (1, 1, 1, 1,�1,�1,�1, 0, ) which can be occurred by a long-short

strategy. The cost coefficient, c is the marginal cost of adjusting the portfolios. Thus, the

larger c indicates less incentive to deviate from the previous period’s portfolio.

Let R

T+1

= (R

T+1

(⌧

i

+ 1))

N

i=1

be the vector of N bond returns realized at time T + 1.

⇡(R

T+1

|Y ,M) is the model-dependent predictive density of the bond returns, and

E[U(!, R

T+1

)|Y ,M] =

Z
U(!, R

T+1

)⇡(R

T+1

|Y ,M)dR

T+1

,

is the expected utility. We analyze the asset allocation in a single-period setting. The

investor maximizes the one-period-ahead expected utility by solving the optimal allocation

problem:

!

⇤
T,M

= argmax

!

E[U(!, R

T+1

)|Y ,M] (2.5.1)

with respect to the portfolio weights, !. However, the integral in the expected utility is not

analytically calculated. Instead, using the simulated posterior predictive bond return draws,

{R(g)

T+1

(⌧)}n1
g=1

and method of composition, we can numerically approximate the expected

utility as the following:

E[U(!, R
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Our bond portfolio optimization consists of two stages. The first stage is the posterior

bond return density simulaion. As new yield curve data arrive every month, the Bayesian

investor learns about the parameters and factors, and simulates the predictive bond from

an econometrician’s point of view accounting for uncertainties in parameter and factors. In

the second stage, the investor chooses portfolio weights to maximize the one-month-ahead

expected utility of Equation 2.5.1. These stages are repeated for each month.

We then economically evaluate and compare the prediction models in terms of the out-

of-sample portfolio performance. Because R

T+1

|Y ,M is model-specific, the optimal bond

portfolio weights, resulting realized portfolio return and the utility generated are also model-

specific,too. The utility gain from using a prediction model in the bond portfolio choice is

measured by CER as in the works of Johannes (2014). CER is the hypothetical risk freee

rate whose utility is equal to the expected utility of the uncertain portfolio return. In other

words, it is a certain return the risk-averse bond investor would trade for the risky bond

portfolio return here. For a particular model M, the empirical CER can be computed as:

CER(M) = [(1� ⇢)
⌃

n�1

t=m�1

U

⇤
t=1,M

n�m+ 1

]� 1 (2.5.3)

where R

0

t+1

is the realized individual bond returns, !⇤
t

= {!⇤
t, i}N

i=1

is the optimal portfolio

weights chosen at time t and

U

⇤
t=1,M = U(!

⇤
t

, R

0

t+1

)

is the realized utility at time t+ 1.
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2.6 Empirical Results

2.6.1 Competing Models

As mentioned in the previous we consider two datasets: one dataset contains 8 representa-

tive macro factors from Chib et al. (2019) while another dataset contains 8 macro factors

generated from a large macro panel data set in Ludvigson and Ng (2009b). We will consider

the combination of macro factors within each data set2. Since each candidate factor can be

either irrelevant or relevant, the total number of model specifications of affine term structure

models will be 2

8

= 256 in each dataset. Because it is often believed to be challenging

to outperform the non-predictable (NoPred) model which assumes that treasury yields are

not predictable , we include NoPred model in our competing models(See de Pooter (2007)).

In the following section, we will evaluate the alternative models in terms of out-of-sample

performance starting from January 2008 to December 2017, which amounts to 120 out-of-

sample periods. We will begin with statistical evaluation and then do economic evaluation

of different models.

2.6.2 Predictive Performance Comparison

Non-Predictable Model VS Yield-Only Model

In non-predictable model, we assume that each yield is predicted based on historical aver-

age independently. Figure 2.4 compares the predictive difference of non-predictable model

with respect to yield-only model M
0

. Obviously, yield-only affine term structure models can

behave significantly better than NoPred model, indicating Gaussian affine term structure

models can improve prediction accuracy compared to non-predictable model. Intuitively,

the log difference of predictive likelihood comes not only from a more accurate mean pre-
2there is no need to mix two datasets since there would be multicollinearity by doing this
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Figure 2.4: Log Posterior Predictive Likelihood Diffrences(NoPred VS Yield-
Only)

This figure shows the sequences of the 120 log PPLs obtained by the rolling windows. The benchmark model is yield-only

model M
0

and we plot the log predictive likelihood difference of non-predictable with respect to the benchmark model. Out

of sample period is from January 2018 to December 2017.
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dictive value but also from an overall more accurate predictive variance-covariance matrix.

Non-predictable model assumes independence across yields and thus would have a lower pre-

dictive likelihood. However, yield-only model, when making prediction for one specific yield,

incorporates a richer information– it not only extract information in that specific yield but

also the correlation with other yields.

Yield-Only Model VS Models with unspanned macro factors in Chib et al. (2019)

As mentioned before, we have two macro datasets and we will conduct two separate experi-

ments. In this section we evaluate macro factors in Chib et al. (2019). Figure 2.5 plots the

3 top models (the specifications of the model is listed in the Table 2.4) which outperform
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Table 2.4: Competing Models Summary(Chib et al. (2019))

m indicates the macro factor is included in the model while z indicates the macro factor is excluded from the model. M
0

denotes the model assuming no relevant macro factors. MA, MB and MC are the 3 best models outperforming M
0

in terms

of out-of-sample cumulative predictive likelihood. Out of sample period is from January 2018 to December 2017.

M
A

M
B

M
C

M
0

AHE m m z z
CPI m z m z
IP z m z z
PCE z z z z
FFR m m m z
Unem z z z z
TCU m z z z
HSal z z z z

yield-only model M
0

(until the last rolling window). Therefore macro factors from Chib

et al. (2019), when chosen carefully into the affine term structure model, can substantially

help improve forecasting accuracy relative to yield-only model. In addition, the followings

are worth noting:

First, the predictive gain over M
0

concentrates during the recession period starting from

January,2008 to December 2009. Such predictive gain becomes less significant when econ-

omy walks out of recession. This is consistent with the literature showing that either the

predictability of equity or bond returns is concentrated in economic recessions. Such finding

suggests that bond return predictability can be linked to cyclical variation.

Secondly, it should be noted that additional macro factors might not consistently outper-

form the yield-only models. Intuitively, unspanned macro factors might provide additional

information but they also increase model complexity, lowering the predictive power of the

model.

Thirdly, As shown in 2.4, A which include AHE, CPI,FFR and TCU as relevant macro

factors, performs the best. Intuitively, AHE and TCU can be related to real economic

activities; CPI can be related to price factors and FFR can be related to macro risks in

financial sector.

57



Figure 2.5: Log Posterior Predictive Likelihood Diffrences(Chib et al. (2019))

This figure shows the sequences of the 120 log PPLs obtained by the rolling windows. Benchmark model is M
0

and we plot

the cumulative log predictive likelihood difference of MA, MB and MC with respect to the benchmark model. Out-of-sample

period is from January 2008 to December 2018.
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Yield-Only Model VS Models with unspanned macro factors in Ludvigson and

Ng (2009b)

Similar to the analysis in the previous section, we now evaluate macro factors from Ludvigson

and Ng (2009b). Figure 2.6 plots the 3 top models (the specifications of the model is listed

in the Table 2.5) which outperform model M
0

(until the last rolling window). Similar to

macro factors in Chib et al. (2019), macro factors selected from Ludvigson and Ng (2009b)

can improve predictive accuracy of the yields. Furthermore, similar to the finding in previous

section, the predictive gain concentrates largely around 2008 economic recessions.

Finally, the best model include factors F
1

, F

2

, F

4

. Recall that F
1

resembles a real activity

factor that loads on employment and output data. F

2

loads on interest rate and spreads,

which could be related to financial sector. However, F
4

, which mainly loads on prices is also

included in the best model. Recall the best model corresponding to dataset in Chib et al.

(2019) include AHE, CPI,FFR and TCU. Obviously, the selected macro factors for best
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Table 2.5: Competing Models Summary(Ludvigson and Ng (2009b))

m indicates the macro factor is included in the model while z indicates the macro factor is excluded from the model. M
0

denotes the model assuming no relevant macro factors. MA, MB and MC are the 3 best models outperforming M
0

in terms

of out-of-sample cumulative predictive likelihood. Out of sample period is from January 2018 to December 2017.

M
A

M
B

M
C

M
0

F1 m m m z
F2 m m m z
F3 z z z z
F4 m z z z
F5 z m m z
F6 z z z z
F7 z m m z
F8 z z z z

model corresponding to either Ludvigson and Ng (2009b) or Chib et al. (2019) is similar to

each other.

2.6.3 Portfolio Performance

In this section we will consider whether additional macro variables can improve portfolio

performances. We will consider macro factors in Chib et al. (2019) and Ludvigson and Ng

(2009b) separately just as we did in the previous section. We will use CER as the criteria

for comparing the portfolio performance.

More specifically, we will calculate the CERs of the competing models for the two risk

aversion coefficient (⇢ = 2 or 5) and three cost efficients(c = 0.1 or 0.01) according to

Equation 2.5.3 where m is January 2008 and n is December 2017. We are interested in the

optimal allocation among the risky assets assuming that the weight on government bond

with one month to maturity is exogenously given.

We consider the following portfolio strategies: non-predictability strategy(NoPred model),

strategy based on yield-only model(M
0

), equally weighted portfolio strategy and strategies

based on macro-finance models that include macro factors from datasets either from Chib

et al. (2019) or Ludvigson and Ng (2009b). In total, we are considering 256 + 2 = 258 dif-
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Figure 2.6: Log Posterior Predictive Likelihood Diffrences(Ludvigson and Ng
(2009b))

This figure shows the sequences of the 120 log PPLs obtained by the rolling windows. Benchmark model is M
0

and we plot

the cumulative log predictive likelihood difference of MA, MB and MC with respect to the benchmark model. Out-of-sample

period is from January 2008 to December 2018.
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ferent kinds of portfolio strategies given the dataset. We include equally-weighted portfolio

strategy because it is shown in the literature that outperforming both strategies can be chal-

lenging 3 (See DeMiguel, Garlappi, and Uppal (2009)) and we want to evaluate the extent

to which utility would increase if the investor forms an optimal portfolio based on macro

information. We consider different investors’ preference(therefore different ⇢) because pre-

ferred model can differ depending on the investors’ preferences. A more risk averse investor

would prefer a model with accurate variance-covariance forecasts whereas a less risk-averse

investor who is mainly interested in expected returns would use a model offering accurate

point forecast.

Macro factors in Chib et al. (2019)

Table 2.6 reports selected annualized empirical CERs when the relative risk-aversion coeffi-

cient is 2 and 5 separately. The number in bold corresponds to the highest economic value

achieved among the 258 strategies. Following findings are noteworthy: First, the portfolio

strategy based on model MA, still delivers the best economic performance among all the

competing models given any combination of c and ⇢ considered here. Therefore both mea-

sures of method performance, the predictive likelihood and portfolio gains, identify MA as

the best performing specification.

Second, Portfolio strategies based on MB and MC do not necessarily outperform yield-

only model M
0

indicating that macro variables do not necessarily help improve economic

performance in an affine term structure models even they are able to help improve predictive

accuracy. Intuitively, recall Panel B in Figure 2.5 MB and MC’s cumulative predictive

likelihood relative to M
0

fluctuates over the periods. Such unstable forecasting performance

can bring lower utility over certain time and thus bring lower CER (which is the utility

averaged over time).
3Equally weighted portfolio strategy also indicates 0 transaction costs
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Third, table 2.6 shows that MA beats other strategies by a greater margin given a lower

c (lower transaction cost) and lower ⇢ (lower risk averse coefficient). For example, if the

transaction cost c is lowered to c = 0.01, MA beats M0 by a margin of 0.2 whereas it beats

M0 only by a margin of 0.1 when the transaction cost c = 0.1. Intuitively, a higher cost and

risk averse will drive the investors to track closer with the equal weight strategy. Therefore,

if the investors are more willing to take risk and care less about transaction cost, they will

benefit more from additional macro information in the MA strategy.

Fourthly, Figure 2.7 offers a different perspective on the portfolio formed from different

Table 2.6: Annualized Certainty Equivalence Returns(Chib et al. (2019))

This table reports the empirical CERs in percentage during out of sample periods. The first column reports the CRRA

coefficent ⇢ used in the calculation, the second column reports the model and 3� 5 columns report CER under different

transaction cost. Out-of-sample period is from January 2008 to December 2018.

CRRA coefficient model c = 0.1 c = 0.01

⇢ = 2

Equal Weight 2.74 2.74
NoPred 2.78 2.99

M
0

3.01 3.3
MA 3.2 3.5
MB 2.55 3.12
MC 2.88 2.9

⇢ = 5

Equal Weight 2.57 2.57
NoPred 2.59 2.47

M
0

2.81 3.11
MA 2.9 3.21
MB 2.24 2.79
MC 2.22 2.75

strategies. It shows the cummulative wealth for 4 portfolios based on equal-weighted strat-

egy(red solid line), M
0

(green dashed line),M
A

(blue dashed line),NoPred(Non-predictable)

strategy(purple dashed line). Both equal-weighted and non-predictable strategy performs

much worser than the other two strategies. M
A

generates the highest cumulative wealth for

nearly all the time periods. In addition, for most of the time periods, the cumulative wealth

curve generated by M
A

has a steeper upward trend than other strategies.
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Figure 2.7: Cumulative wealth of investors forming portfolios under different mod-
els(Chib et al. (2019))

This figure plots cumulative wealth for 4 different strategies during out of sample periods: equal-weighted strategy(purple

line), model M
0

(green dashed line), model MA(blue dashed line) and NoPred model(red solid line).Investors have relative

risk aversion coefficient ⇢ = 2 and cost c = 0.01.Out-of-sample period is from January 2008 to December 2018.

1.0

1.1

1.2

1.3

1.4

1.5

2008 2010 2012 2014 2016 2018
periods

do
lla

r v
al

ue

Cumulative Wealth

63



Figures 2.8 and 2.9 present the time series of the optimal portfolio weights over the

out-of-sample period of January 2008 to December 2017. It shows the optimal weights for

4 strategies: equally-weighted(red line),M
0

(green line),MA(blue line) and NoPred(purple

line) respectively. Because of the difference in predictive density forecasts, the different op-

timal allocations across the alternative models arise. First, as shown in these figures. For

example, strategy based on NoPred model deviate little from the equal-weighted portfolio

strategy whereas both M
0

and MA’s optimal allocations are different from the former two

strategies. Second, even though both investors’ portfolio strategy based on MA and M
0

vary a lot across time, strategy based on MA fluctuate even more (especially during 2008

recession). Intuitively, it is because investors using MA takes into account relevant macro

information, bringing additional adjustment for portfolio allocation in each period. Thirdly,

a lower risk averse coefficient and transaction cost would encourage investors to take into ac-

count additional macro information, therefore bringing a larger variation in portfolio weights

across time based on MA than on M
0

, (Seen from 2.9 and 2.8)

Macro factors in Ludvigson and Ng (2009b)

Table 2.7 reports selected annualized empirical CERs when the relative risk-aversion coeffi-

cient is 2 and 5 separately. The findings is similar to those in Table 2.6. For example, the

utility of investors who use MA will increase by a greater margin than other models given

a lower transaction cost and lower risk-aversion coefficient The best model based on macro

factors from Ludvigson and Ng (2009b) performs better(by a margin of around 0.6) than

the best model based on macro factors from Chib et al. (2019) in terms of CER. Figure 2.10

shows the accumulative wealth of different strategies. It can also be seen that MA under

Ludvigson and Ng (2009b) performs better than that under Chib et al. (2019). Intuitively,

on one hand, macro factors in Ludvigson and Ng (2009b) are generated from a large macro

panel dataset and might include a wider range of macro information. On the other hand,
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Figure 2.8: Optimal Bond Portfolio Weights:⇢ = 5 and c = 0.1(Chib et al. (2019))

This figure plots optimal portfolio weights for 4 cases during out of sample periods for ⇢ = 5 and c = 0.1:equal weights(red

line),M
0

(green line),model MA(blue line),NoPred(purple line). The out-of-sample periods is from January 2008 to December

2017.
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Figure 2.9: Optimal Bond Portfolio Weights:⇢ = 2 and c = 0.01(Chib et al. (2019))

This figure plots optimal portfolio weights for 4 cases during out of sample periods for ⇢ = 2 and c = 0.01:equal weights(red

line),M
0

(green line),model MA(blue line),NoPred(purple line).The out-of-sample periods is from January 2008 to December

2017
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it could be possible that some important additional information might be filtered out in

the process. In general given the data sample we consider here, principle component macro

factors can perform slightly better in terms of CER but performs relatively worse in terms

of cumulative returns than representative macro factors. In addition, Figures 2.11 and

Table 2.7: Annualized Certainty Equivalence Returns(Ludvigson and Ng (2009b))

This table reports the annualized empirical CERs in percentage over the out of sample period. The first column reports the

CRRA coefficent ⇢ used in the calculation, the second column reports the model 3� 5 columns report the CER under different

transaction cost. Out-of-sample period is from January 2008 to December 2018.

CRRA coefficient model c = 0.1 c = 0.01

⇢ = 2

Equal Weight 2.74 2.74
NoPred 2.78 2.99

M
0

3.01 3.4
MA 3.5 4.10
MB 2.55 2.99
MC 2.08 2.79

⇢ = 5

Equal Weight 2.57 2.57
NoPred 2.59 2.47

M
0

2.81 3.11
MA 3.35 3.81
MB 2.07 2.42
MC 2.10 2.33

2.12 present the time series of the optimal portfolio weights over the out-of-sample period of

January 2008 to December 2017. The pattern of bond portfolio allocation observed 2.9 and

2.8). Strategy based on MA incorporates additional macro information, induce investors to

make necessary adjustment in portfolio allocation compared to

2.6.4 How Unspanned macro factors help predict yield curve

As mentioned in previous section, unspanned macro factors supply additional information for

predicting yield curve indirectly through affecting latent factors: level, slope and curvature

factors. More specifically, the macro factors’ effects on latent factors can be captured by

certain coefficients on G matrix. To see the magnitude of the effect, we extract the relevant
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Figure 2.10: Cumulative wealth of investors forming portfolios under different
models(Ludvigson and Ng (2009b))

This figure plots optimal portfolio weights for 4 cases during out of sample periods for ⇢ = 5 and c = 0.1:equal weights(red

line),M
0

(green line),model MA(blue line),NoPred(purple line). The out-of-sample periods is from January 2008 to December

2017.
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Figure 2.11: Optimal Bond Portfolio Weights:⇢ = 5 and c = 0.1(Ludvigson and Ng
(2009b))

This figure plots optimal portfolio weights for 4 cases during out of sample periods for ⇢ = 5 and c = 0.1:equal weights(red

line),M
0

(green line),model MA(blue line),NoPred(purple line). The out-of-sample periods is from January 2008 to December

2017

0.100.120.140.160.18

2008 2010 2012 2014 2016 2018
periods

w
ei
gh
ts

6-month

0.12
0.14
0.16
0.18

2008 2010 2012 2014 2016 2018
periods

w
ei
gh
ts

12-month

0.12
0.14
0.16
0.18

2008 2010 2012 2014 2016 2018
periods

w
ei
gh
ts

24-month

0.13
0.14
0.15
0.16

2008 2010 2012 2014 2016 2018
periods

w
ei
gh
ts

36-month

0.12
0.14
0.16

2008 2010 2012 2014 2016 2018
periods

w
ei
gh
ts

60-month

0.100.120.140.160.18

2008 2010 2012 2014 2016 2018
periods

w
ei
gh
ts

84-month

0.08
0.12
0.16
0.20

2008 2010 2012 2014 2016 2018
periods

w
ei
gh
ts

120-month

68



Figure 2.12: Optimal Bond Portfolio Weights:⇢ = 2 and c = 0.01(Ludvigson and Ng
(2009b))

This figure plots optimal portfolio weights for 4 cases during out of sample periods for ⇢ = 2 and c = 0.01:equal weights(red

line),model 1(green line),model 12(blue line),NoPred(purple line). The out-of-sample periods is from January 2008 to

December 2017
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Figure 2.13: Posterior Density plots for selected parameters for MA (Chib et al.
(2019))

This figure plots the corresponding coefficients (in G matrix) capturing unspanned macro factors’ effects on latent factors.
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coefficients from the G matrix and plot the posterior density for these parameters. For our

purpose, we will use two best models corresponding to macro datasets in Ludvigson and Ng

(2009b) and Chib et al. (2019).

Figures 2.13 and 2.14 give the posterior densities of the corresponding coefficients that

capture unspanned macro factors’ effects on latent factors. More specifically, the 1 column

of each Figure (namely G

1,4

, G

1,5

,G
1,6

and G

1,7

) captures the macro factor’s effect on level

factor;the 2 column of each Figure (namely G

2,4

, G

2,5

,G
2,6

and G

2,7

) captures the macro

factor’s effect on slope factor; the 3 column of each Figure (namely G

3,4

, G

3,5

,G
3,6

and G

3,7

)

captures the macro factor’s effect on curvature factor. For example, G
3,7

indicates that 1

size of change in the macro factor will bring 0.1 size of change in the curvature factor.

It can be observed that the coefficient corresponding to the macro factor’s effect on slope
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Figure 2.14: Posterior Density plots for selected parameters for MA (Ludvigson
and Ng (2009b))

This figure plots the corresponding coefficients (in G matrix) capturing unspanned macro factors’ effects on latent factors.
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and curvature factor is generally greater than that on level factor4. Thus it can be inferred

that unspanned macro factors influence the predictive yields largely through affecting slope

and curvature factor rather than level factor. Such a finding is also consistent Ang and

Piazzesi (2001) and Wu (2001) that macro variables such as monetary policy might induce a

bigger change on slope rather than level of the yield curve. Intuitively in terms of predicting

yields, macro variables might be more useful in supplying additional information to predict

changes in slope and curvature of yield curve than in level of the yield curve.
4For example, the absolute value of G

3,7(corresponding to curvature factor) is around 0.12 while the
absolute value of G

1,7(corresponding to level factor) is only around 0.01
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2.7 Conclusion

In this paper, we introduce a detailed Bayesian framework for assessing the economic value

of macro-variables in a macro-finance affine term structure framework. Through an out-of-

sample experiment with macro dataset in Chib et al. (2019) and Ludvigson and Ng (2009b),

we investigate the bond return forecasting performance and bond portfolio strategies among

competing models which include different macro-variables. Regardless of the dataset we

use(either Chib et al. (2019) and Ludvigson and Ng (2009b)), the results show that the

predictive ability and bond portfolio of the macro-finance affine term structure models can

be substantially improved by incorporating relevant macro factors in real economic activity,

financial sector and price sector.5 In contrast , either ignoring relevant factor or including

irrelevant ones can lead to inaccurate forecasts and utility loss. In addition, given the data

sample we consider in Chapter 2, principle component factors perform slightly better than

representative factors in terms of certainty equivalence return (CER). Furthermore, we find

that macro factors supply additional information to predictive yields mainly through affecting

slope and curvature factors.

In the future, it is possible to incorporate other model specifications such as time-varying

factor loadings or stochastic volatility.

5More specifically, the best model corresponding to dataset in Chib et al. (2019) includes FFR,AHE,CPI
and TCU while the best model corresponding to dataset in Ludvigson and Ng (2009b) includes F

1

, F
2

, F
4

.
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Chapter 3

Comparsion of No-U-Turn Sampler and

TARB-MH for posterior sampling in

Guassian Affine Term Structure Models

3.1 Introduction

No-U-Turn sampler is a widely used automatically tuned Hanmiltonian Monte Carlo (HMC)

algorithm. In recent decades, No-U-Turn sampler(NUTS), or generally HMC, proves to

better perform the random walks Metro Hasting Sampling algorithm when the parame-

ters are highly correlated.(SeeNeal (2011) and Hoffman and Gelman (2014))it transforms

the problem of sampling from a target distribution into a problem of simulating Hamilto-

nian dynamics. Tailored randomized-blocking Metropolis-Hastings (TaRB-MH) is another

sampling algorithm, adopted by Chib and Ramamurthy (2010) and Chib et al. (2019) in

order to conduct an efficient posterior sampling of highly non-linear models such as dynamic

stochastic general equilibrium (DSGE) and Gaussian arbitrage-free affine term structure

models(GATSMs). However, whether No-U-Turn Sampler will be still effective dealing with
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complicated models such as GATSMs when compared to alternative algorithm TaRB-MH

remains unexplored.

The goal of this paper is to run a horse race between two sampling algorithms: TaRB-MH

and NUTS in a set of GATSMs. While there are several different versions of HMC algorithm,

we will focus on NUTS used in Hoffman and Gelman (2014) because NUTS gives a solid

scheme for automatically tuning the step size parameter ✏ and number of steps parameters l,

avoiding a dramatic drop in HMC’s efficiency because of a bad choice of these two parameters.

Furthermore, NUTS have been fully incorporated in the open-source Bayesian inference

package, Stan (Stan Development Team, 2013) and has been widely accepted and used since

then.

The specification of GATSMs we consider here are developed in Duffee (2011), Joslin et al.

(2014) and Chib et al. (2019). In order to give a through comparison between two algorithms,

we will consider both yield-only GATSMs and macro-finance GATSMs(incorporating macro

factors in the affine term stucture models). In order to make two algorithms comparable,

we impose informative prior adopted in Chib et al. (2019) to address the irregular likelihood

surface of high-dimensional and severely nonlinear with respect to the model parameters in

GATSMs.

According to our empirical experiments with the U.S. yield curve data from January

1990 to December 2017, the performance of TaRB-MH is far better than the NUTS in

two respects. First of all, the Markov chain based on the TaRB-MH method converges so

quickly to the target density compared to the NUTS. We find that the NUTS method is

highly likely to fail to converge in an GATSM because of the irregular posterior surface.

Second, the NUTS tends to generate much less efficient posterior draws for the parameters

and key quantities such as the term premiums and predictive yield curves. Thirdly, NUTS’

inefficiency in posterior sampling of GATSM becomes even more severe if adding more macro

factors in the model. Finally, we find NUTS’ inefficiency in posterior sampling of GATSMs
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is robust given different initial values.

The remainder of the paper is organized as follows. In Section 3.2 we present the frame-

work for affine term structure models and in Section 2.4 we describe details of prior-posterior

analysis. Section 3.4 provides the empirical comparison results from between HMC and

TaRB. Concluding remarks are presented in Section 2.7 and the Appendix contains supple-

mentary details omitted from the main text.

3.2 Framework

To compare the performance of HMC and TaRB in terms of affine term structure models,

we will focus on GATSMs developed in Duffee (2011) and Joslin et al. (2014). For Details

see Section 2 in Chapter 2.

In order to estimate the affine term structure model, we first represent the yield curve

model in the state space form similar to Chapter 2:
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denote the corresponding bond yields at time t. Then, given the vector of the observations at

time t denoted by y

t

= (R

0
t

, m

0
t

)

0
, the econometric model can be rewritten in vector-matrix
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form,

y

t

|f
t

, a,B,⌃ ⇠ N (a+B⇥ f

t

,⌃), (3.2.2)

The parameters need to be estimated would be in the factor dynamics, SDF, and pricing

error variances {K,G, V, �, �,�

l
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, .., �
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Similar to Chapter 1 and Chapter 2, we will sample {K,G, �

2

1

, �

2

2

, .., �

2

N

}using Gibbs

sampling. We will sample  = {V, �, �,�
l

,�

ll

,�

lm

} using either TaRB-MH or NUTS and

compare the performance of these two algorithms in the following section.

3.3 Posterior Sampling using NUTS

The goal of this paper is to compare the sampling performance of NUTS with that of TaRB-

MH. Since the posterior sampling of affine term structure using TaRB-MH (see for a detailed

description) is already extensively discussed previous chapters, in this section we will focus

on how to use NUTS for posterior sampling and compare it to TaRB-MH algorithm.

3.3.1 A brief description of HMC and NUTS

As discussed in Hoffman and Gelman (2014), NUTS is just a modified version of HMC. The

usual HMC introduces an auxiliary vector momentum variable r for model vector variable

 . r is drawn from standard normal distribution yielding the joint density:

p( , r) / exp(L( )� 1

2

r · r)

where L denotes the log likelihood (or log posterior) of the joint density of variables of interest

 and x · y denotes the inner product of vectors x and y. In physical terms as a fictitious

Hamiltonian system,  can be interpreted as particle’s position and r as the momentum of

the particle. L can be interpreted as a position-dependent negative potential energy function
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and r ·r as the kinetic energy of the particle. One can simulate the evolution over time of the

Hamiltonian dynamics of this system via leapfrog, which proceeds according to the updates:

r

t+✏/2

= r

t

+ ✏/25
 

L( 

t

)

 

t+✏

=  

t

+ ✏r

t+✏/2

r

t+✏

= r

t+✏/2

+ ✏/25
 

L( 

t+✏

)

where r

t and  t denote the values of momentum and position variable r and  at time t and

5
 

denotes the gradient with respect to  . The standard procedure for Hamiltonian Monte

Carlo is described in algorithm 1.

Algorithm 1 HMC algorithm to sample  
Precondition:  0, ✏, l, M ,L

1: for m 1 to M do
2: Sample r

0 from N(0, I)

3:  

m   

m�1

4: r

†  r

0

5:  

†   

m�1

6: for i 1 to l do
7: r

†, †  Leapfrog( †
, r

†
, ✏)

8: end for
9: With probability ↵ = min{1, exp(L( 

†
)� 1

2

r

†·r†)
exp(L( 

m�1

)� 1

2

r

0·r0)}:
10:  

†   

m

11: �r†  r

m

12: end for
13: function Leapfrog( †

, r

†
, ✏)

14: r

†  r + ✏/25
 

L( )

15:  

†   + ✏ 

†

16:  

†   + ✏/25
 

L( 

†
)

17: return  

†
, r

†

18: end function

However, as shown in Algorithm 1, a standard HMC requires that the user specify at

least two parameters: step size ✏ and a number of steps l to run the simulated Hamiltonian
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system. No-U-Turn Sampler(NUTS) we use in this paper (Details can be found in Hoffman

and Gelman (2014)) will automatically tune these parameters as shown in Algorithm 2. The

R codes for NUTS are available on https://github.com/kasparmartens/NUTS.

3.3.2 Difference between HMC and TaRB-MH

To compare HMC with TaRB-MH, we also present TaRB-MH in algorithm 2. While two

algorithms can be related to the original MH-algorithm, the key difference between two al-

gorithms lies in the generating proposal  † for each iteration of the Markov chain. More

specifically, HMC incorporates first-order gradient information in the proposal step and

jointly draw  and r mimicking a Hamiltonian dynamics. Once the proposal is drawn, it is

accepted or rejected in the usual MH step. The advantage of HMC, as mentioned in Robert

(2001) lies in the fact that Hanmiltonian can change very little during the Metropolis step

while possibly generating a very different value of  .

In contrast, TaRB belongs to a class of tailored multiple block MH algorithm discussed in

Chib and Greenberg (1995).TaRB enhance the MH approach by randomizing formation of

blocks in every iteration and generating tailored proposal density by optimization method

such as simulated annealing. As discussed in Chib and Ergashev (2009) and Chib and Ra-

mamurthy (2010), such enhancement would be particularly helpful in dealing with irregular

distribution, and also for localizing the proposal density far away from the current region to

permit large moves.

3.4 Comparison Results

The objective of this paper is to compare the between sampling efficiency between TaRB-

MH and HMC. In many affine term structure model literatures, the most of interests are on

the model parameters, factors, and model-implied key quantities such as term premium and
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Algorithm 2 No-U-Turn-Sampler  
Precondition:  0, ✏,M ,L

1: for m 1 to M do
2: Resample r

0 from N(0, I)

3: Resample u

0 from Uniform([0, exp(L( 

†
)� 1

2

r

† · r†)])
4: Initialize  �

=  

m�1

, r

�1

= r

0

, r

+

= r

0

, j = 0, 

m

=  

m�1

, n = 1, s = 1

5: while s=1 do
6: Choose a direction ⌫

j

from Uniform({-1,1}).
7: if nu

j

= �1 then
8:  

�,r�,�,�, 0
, n

0
, s

0  BuildTree( �
, r

�
, u, ⌫

j

, j, r

�
, ✏)

9: else
10:  

+,r+,�,�, 0
, n

0
, s

0  BuildTree( +

, r

+

, u, ⌫

j

, j, r

+

, ✏)
11: end if
12: if s

0
= 1 then

13: With probability min{1, n
0

n

}
14:  

0   

m�1

15: end if
16: n  n+ n

0

17: s  s

0
1[✓

+ � ✓� >= 0]⇥ 1[✓

+ � ✓+ >= 0]

18: j  j + 1

19: end while
20: end for
21: function BuildTree( ,r, u, v, j, ✏)
22: if j=0 then
23: Base case - take one leapfrog step in the direction ⌫
24: r

0 , 0  Leapfrog( , r†, ⌫✏)
25: n

0  1[u  exp( 

† � 1

2

r

† · r†)]
26: s

0  1[L( 

0
)� 1

2

r

† · r† � logu��
max

]

27: elseRecursion-implicitly build the left and right subtrees.
28:
29:  

�,r�,�,�, +

, r

+

, 

0
, n

0
, s

0  BuildTree( , r, u, v, j � 1, ✏)
30: if s

0
= 1 then

31: if ⌫ = �1 then
32:  

�,r�,�,�, +

, 

00
, n

00
, s

00  BuildTree( �
, r

�
, u, v, j � 1, ✏)

33: else
34:  

+,r+,�,�, 00
, n

00
, s

00  BuildTree( +

, r

+

, u, v, j � 1, ✏)
35: end if
36: With probability n

00

n

0
+n

00

37:  

0   

00

38: end ifreturn  

†
, r

†

39: end if
40: end function
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Algorithm 3 TaRB algorithm to sample  
Precondition:  0, M

for m 1 to M do
2: Randomly determine the number of blocks and their components in  , as  

1

,  

2

, ..,  

Bg

4: for l  1 to B

g

do
Maximize L( 

l

, �l

) w.r.t  
l

to obtain the mode, ¯

 

l

and compute the inverted negative
Hessians computed at the mode, V

¯

 l
.

6: Draw a proposal for  
l

, denoted by  †
l

, from the selected multivariate Student-t distri-
bution  †

l

s St

�
¯

 

l

, V

¯

�l
,15

�

With probability ↵ = min{1, L

(

 

†
1

, �1

|Y
)

L

⇣
 

(g�1)

1

, �1

|Y
⌘}:

8: �

†  �

m

end for
10: end for

Table 3.1: Candidate Models

The first column reports the model; The second column reports the macro factors incorporated in the model. The third

column reports the total size of the parameters and the last column reports the size of NUTS or TaRB.

Model macro factors size(Total) size(NUTS or TaRB)
M

0

None 28 10
M

1

FFR, CPI 53 20
M

2

FFR, CPI, IP, PCE 90 33

predictive yield curves. Hence, in this section we estimate the both yield-only affine term

structure models as well as affine term structure models incorporating macro factors.

We will use the yield and macro dataset mentioned in Chib, Kang, and Xie (2019).the

data runs from January 1990 to December 2017. To get a thorough comparison between

two different algorithms, we will consider 3 models in the our experiments. The details

for these models can be found in Table 3.1. More specifically, M
0

includes no macro fac-

tors and therefore is a yield-only model; M
1

includes 2 macro factors: Federal Fund Rate

(FFR) and Consumer Price Index (CPI). M
2

includes 4 macro factors: Federal Fund Rate

(FFR),Consumer Price Index (CPI),Personal Consumption Expenditure(PCE) and indus-

trial production (IP). As shown in Table 3.1, an increase in number of macro factors in the
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affine term structure models will increase the total number of parameters in the model (size

of the model) dramatically. Consequently, the size of parameters corresponding to NUTS or

TaRB increases as more macro factors are incorporated. Our biggest model M
2

includes up

to 90 parameters and 33 out of which will be sampled using NUTS or TaRB.

We compare the efficiency in terms of the inefficiency factor, defined as 1 + 2

P1
j=1

⇢(j)

where ⇢(j) is the autocorrelation function at lag j of each of simulated parameters over the

Markov chain. One can estimate the inefficiency factor as

1 +

400

199

200X

j=1

K(j/200)⇢̂(j). (3.4.1)

Then, ⇢̂(j) is the jth-order sample autocorrelation of the MCMC draws with K(·) repre-

senting the Parzen kernel (Kim, Shephard, and Chib (1998)). By definition, the smaller

inefficiency factor indicates the higher efficiency.

3.4.1 log posterior convergence

To compare the performances of TaRB-MH to NUTS, we compute the log posterior densities

over the MCMC draws from TaRB-MH and NUTS after the 1000 burn-in draws. Figure 3.1

plot the results for some selected MCMC iterations for M
0

. Obviously, both the Markov

chain based on TaRB and the NUTS converges. However, the target posterior NUTS con-

verges to has a much lower posterior likelihood. Figure 3.2 Figure 3.3 plot the results for

some selected MCMC iterations for M
1

and M
2

. The Markov chain based on TaRB con-

verges while the Markov chain based NUTS does not seem to converge even after 5000 draws.

Note that M
1

and M
2

incorporate macro factors into the model, adding to the complexity

and size of the model and making the posterior sampling based on NUTS even more difficult.
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Figure 3.1: Log posterior densities over MCMC iterations
This figures plot the log posterior densities (=log likelihood density + log prior density) over selected MCMC iterations for

M
0

after the 1000 burn-in draws.
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Figure 3.2: Log posterior densities over MCMC iterations
This figures plot the log posterior densities (=log likelihood density + log prior density) over selected MCMC iterations for

M
1

after the 1000 burn-in draws..
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Figure 3.3: Log posterior densities over MCMC iterations
This figures plot the log posterior densities (=log likelihood density + log prior density) over selected MCMC iterations for

M
2

after the 1000 burn-in draws.

3.4.2 Parameters

Tables 3.2, 3.3 and 3.4 present the summary of posterior distribution of the model parameters

and their inefficiency factors for M
0

,M
1

and M
2

. The burn-in size is 1,000, and the

MCMC size beyond the burn-in is set to be 5,000. The last two columns of the tables are

the inefficiency factors from the TaRB-MH and NUTS.

It can be seen from Table 3.2 that the TaRB-MH method simulates the parameters of M
0

more efficiently than the NUTS. More specifically,parameters �
l

,V and  are sampled using

TaRB-MH or NUTS–The inefficiency from TaRB is 5� 10 on average while the inefficiency

from NUTS is140 on average. Therefore TaRB-MH is much more efficient when sampling

the posterior of affine term structure models.

Table 3.3 and 3.4 describes the inefficiency comparison of NUTS and TaRB when macro

factors are included. TaRB-MH maintains lower inefficiency while NUTS’s sampling ineffi-

ciency becomes even higher. In addition, the sampling inefficiency of some parameters in G

and ⌃, which are sampled through Gibbs algorithm, is also greatly inflated by the inefficiency
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in NUTS part.

Figure 3.4 illustrates the posterior distribution for selected parameters in M
2

. The pa-

rameters are sampled either through NUTS or TaRB. It should be noted that risk parameters

such as �
l

can be difficult to estimate. Obviously, the posterior distributions of parameters

sampled through NUTS looks irregular and much tighter than those sampled through TaRB.

It could be because the draws from NUTS might be stuck in some local regions and fails to

visit other regions of the distribution, bringing a much higher sampling inefficiency compared

to TaRB.
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Figure 3.4: Posterior density plots for selected parameters for M
2

This figure plots the posterior density of selected parameters in M
2

sampled using either HMC(red) or TaRB(green). The

sample period is from January 1990 to December 2017.

3.4.3 Other Key Quantities

In the previous section, we discuss the sampling inefficiency of the parameters. It is also

interesting to examine whether TaRB will bring higher sampling efficiency to other key

quantities of bond pricing than NUTS. we will investigate the sampling efficiency of latent

factors, term premium and predictive yields in this section.
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Parameters TaRB HMC
2.5% mean 97.5% ineff. ineff.

G

1,1

0.90 0.99 1.01 1.2 6.4
G

2,2

0.81 0.92 1.01 2.3 5.4
G

3,3

0.83 0.90 0.94 1.5 8.5
�

1

-0.08 -0.07 -0.065 5.4 144.29
�

2

-0.22 -0.10 -0.01 9.4 142.08
�

3

-0.02 0.01 0.09 5.6 146.87
V

1,1

2.88 3.14 3.44 5.6 149.34
V

2,2

2.12 2.70 2.84 6.8 40.01
V

3,3

5.3 5.8 6.47 4.4 141.27
�

1

⇥ 1000 2.43 1.01 4.10 0.9 5.65
�

2

⇥ 1000 0.96 1.40 4.93 0.8 7.80
�

3

⇥ 1000 0.86 0.90 4.14 0.7 5.80
�

4

⇥ 1000 1.27 1.79 2.76 1.3 3.12
�

5

⇥ 1000 2.17 1.23 2.62 1.25 7.86
�

6

⇥ 1000 4.87 5.25 7.20 0.58 8.01
�

7

⇥ 1000 0.12 0.58 0.83 0.79 9.47
�

8

⇥ 1000 0.98 1.12 1.47 0.91 13.68
 0.07 0.09 0.10 3.14 136.2

Table 3.2: Posterior Summary for selected Parameters: M
0

Inefficiency comparison between No-U-Turn-Sampler (NUTS) and Random blocking scheme (TaRB-MH)
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Parameters TaRB HMC
2.5% mean 97.5% ineff. ineff.

G

1,1

0.86 0.95 0.99 1.9 4.1
G

2,2

0.82 0.94 1.01 1.3 3.4
G

3,3

0.81 0.88 0.92 1.0 8.2
G

4,4

0.79 0.84 0.94 0.98 3.4
G

5,5

0.83 0.93 0.94 1.4 6.8
�

1

-0.08 -0.07 -0.065 2.4 144.29
�

2

-0.3 -0.2 0.01 3.4 142.08
�

3

-0.05 -0.01 0.2 5.6 146.87
V

1,1

3.88 4.01 4.44 5.6 149.61
V

2,2

2.10 2.90 3.02 2.8 148.91
V

3,3

4.3 4.8 5.5 4.4 145.27
V

4,4

4.2 6.8 6.47 4.4 149.27
V

5,5

5.1 5.9 6.40 4.4 149.83
�

1

⇥ 1000 2.2 0.90 3.9 0.9 5.65
�

2

⇥ 1000 1.1 1.8 4.9 0.8 7.80
�

3

⇥ 1000 0.86 0.90 1.14 0.7 45.80
�

4

⇥ 1000 1.27 1.79 1.90 1.3 23.12
�

5

⇥ 1000 2.17 1.23 2.62 1.25 7.86
�

6

⇥ 1000 5.87 1.25 7.20 0.58 27.01
�

7

⇥ 1000 0.12 0.58 0.83 3.70 6.47
�

8

⇥ 1000 0.98 1.32 1.97 1.92 113.68
 0.04 0.079 0.12 5.14 132.2

Table 3.3: Posterior Summary for selected Parameters: M
1

Inefficiency comparison between Hamiltonian Monte Carlo (HMC) and Random blocking scheme (TaRB-MH). The sample

period is from January 1990 to December 2017.

First, Figures 3.5 report the sampling inefficiency of latent factors. Obviously, the TaRB-

MH method is superior to NUTS by a margin of more than 100 in terms of efficiency for all

model specifications we consider in our experiment.

Second, Figure 3.8 plots the sampling inefficiency of term premium of HMC and TaRB

for different model specifications. Again, it can be confirmed that the TaRB-MH method

simulates the term premium with the high efficiency while the NUTS’ sampling performance

is volatile and relatively inefficient. Third, Figure 3.8 plots the sampling inefficiency of

one-month-ahead predictive yields for different models. The inefficiency is comparable for
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Parameters TaRB HMC
2.5% mean 97.5% ineff. ineff.

G

1,1

0.86 0.95 1.04 1.9 4.1
G

2,2

0.82 0.88 0.92 1.8 3.4
G

3,3

0.84 0.88 0.93 1.7 8.2
G

4,4

0. 0.84 0.94 2.23 3.4
G

5,5

0.83 0.93 0.94 1.56 6.8
G

6,6

0.81 0.92 1.02 2.4 6.8
�

1

-0.09 -0.08 -0.07 14.4 121.29
�

2

-0.22 -0.11 -0.007 7.1 146.08
�

3

-0.045 0.001 0.05 8.6 138.1
V

1,1

2.83 3.01 3.44 15.6 146.61
V

2,2

2.10 2.67 2.94 11.8 147.91
V

3,3

5.03 5.46 5.92 10.4 145.6
V

4,4

2.7 3.01 3.28 10.59 148.27
V

5,5

4.1 4.4 4.85 9.48 142.83
V

6,6

0.9 1.04 1.19 13.45 149.83
�

1

⇥ 1000 2.2 0.90 3.9 0.9 9.65
�

2

⇥ 1000 2.7 3.2 3.7 0.7 7.53
�

3

⇥ 1000 2.86 2.90 3.14 01.3 44.38
�

4

⇥ 1000 3.27 4.29 5.33 1.3 23.12
�

5

⇥ 1000 0.96 1.1 1.29 0.96 7.86
�

6

⇥ 1000 0.87 1.25 2.20 0.58 9.01
�

7

⇥ 1000 0.88 1.02 1.18 2.50 58.47
�

8

⇥ 1000 0.72 0.84 0.98 1.92 44.68
 0.039 0.082 0.11 6.8 132.2

Table 3.4: Posterior Summary for selected Parameters: M
2

.
Inefficiency comparison between Hamiltonian Monte Carlo (HMC) and Random blocking scheme (TaRB-MH). The sample

period is from January 1990 to December 2017.

NUTS and TaRB at the very short end of the yield However, as the maturity increases, the

predictive yield simulated using draws from NUTS increase dramatically while the predictive

yield simulated using draws from TaRB stays low regardless of the yield maturity.

3.4.4 Robust Check on ✏

Even though NUTS automatically tune step size ✏ and trajectory length(l), we still have to

input an initial ✏(See from Algorithm 2) and the final empirical result might be still sensitive
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Figure 3.5: latent factors Inefficiency: M
0

Inefficiency comparison between the No-U-Turn-Sampler (NUTS) and Random blocking scheme (TaRB-MH)

to this initial value. The default ✏ in the original NUTS codes1is set to be 1. Therefore in

this section we will use M
0

as an example for robust check on initial value of ✏ and vary

the value of ✏ to see how the estimation inefficiency for NUTS parameters will change. As

we can see from Table 3.5, the inefficiency centers around 124 while the lowest inefficiency

would still be as high as 111.42 given ✏ = 0.8. Therefore we can conclude that our result

with respect to NUTS’ performance in estimating affine term structure models should be

robust with initial values we input.

3.5 Conclusion

This paper evaluates the posterior sampling performance of No-U-Turn sampler(NUTS)

algorithm and tailored randomized-blocking Metropolis-Hastings (TaRB-MH) in terms of

Gaussian Affine Term structure models. Even NUTS is often argued to be efficient in pos-
1check https://github.com/kasparmartens/NUTS
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Figure 3.6: latent factors inefficiency: M1
Inefficiency comparison of between the Hamiltonian Monte Carlo (HMC) and Random blocking scheme (TaRB-MH).

terior sampling of many models, our empirical experiments with the U.S. yield curve data

indicate that the TaRB-MH substantially outperforms the NUTS method in terms of the

convergence and efficiency in posterior sampling. Furthermore, Such a result is also robust

to different initial step size we input into the NUTS algorithm.
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Figure 3.7: latent factors inefficiency: M
2

Inefficiency comparison of between the Hamiltonian Monte Carlo (HMC) and Random blocking scheme (TaRB-MH).

Table 3.5: Robust check on initial value of ✏

We use NUTS to estimate M
0

and vary the initial value of ✏ to obtain different average inefficiency of parameters sampled

through NUTS. The burn-in size is 1000 and the size of posterior draws is 5000.

initial value of ✏ average inefficiency (NUTS part)
1.8 124.67
1.6 125.10
1.4 124.62
1.2 124.32
1 124.62
0.8 111.42
0.6 125.34
0.4 124.29
0.2 134.56
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Figure 3.8: Term structure of term premium Inefficiency
Inefficiency comparison between the No-U-Turn-Sampler (NUTS) and Random blocking scheme (TaRB-MH)
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Figure 3.9: Posterior predictive densities
Inefficiency comparison between the No-U-Turn-Sampler (NUTS) and Random blocking scheme (TaRB-MH)
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Appendix

.1 Arbitrage-free Bond Prices

In the class of affine term structure models, the ⌧ -period bond price at time t is assumed to

be exponentially linear to the latent factors,

P

t

(⌧) = exp [�a(⌧)� b(⌧)

0
lt] .

By the no-arbitrage restriction we have

exp [�a(⌧)� b(⌧)

0
lt] = exp [�� � �0

lt]EQ
t

[exp [�a(⌧ � 1)� b(⌧ � 1)

0
lt+1

]]

or

exp [�a(⌧)� b(⌧)

0
lt]

= exp


�� � �0

lt � a(⌧ � 1)� b(⌧ � 1)

0
[K

Q
l

+G

Q
ll

lt] +
1

2

b(⌧ � 1)

0
⌦

ll

b(⌧ � 1)

�
.

Therefore,

�a(⌧)� b(⌧)

0
lt = ��� a(⌧ � 1)� b(⌧ � 1)

0
K

Q
l

+

1

2

b(⌧ � 1)

0
⌦

ll

b(⌧ � 1)� (�

0
+ b(⌧ � 1)

0
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Q
ll
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t
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Matching coefficients on the left and right hands yields the recursive system for the coeffi-

cients a(⌧) and b(⌧),

a(⌧) = � + a(⌧ � 1) + b(⌧ � 1)

0
K

Q
l

� 1

2

b(⌧ � 1)

0
⌦

ll

b(⌧ � 1),

b(⌧) = � +G

Q0
ll

b(⌧ � 1),

where this system is initialized at a(0) = 0 and b(0) = 0

l⇥1

, given P

t

(0) = 1 for all t =

1, 2, .., T.

.2 Likelihood

Denote the history of the observations up to time t by F
t

= {y
i

}t
i=1

. Then, the likelihood is

given by the joint density of the observations,

p (Y|✓) =
TY

t=1

p(y

t

|F
t�1

, ✓),

Using the Kalman filter, the likelihood density at each data point can be obtained as

p(y

t

|F
t�1

, ✓) = N (y

t

|y
t|t�1

, V

t|t�1

),

where

E[f
t

|F
t�1
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t|t�1
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t�1|t�1

+K
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, ✓] = Q
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0
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,
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V ar[y

t

|F
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, ✓] = V

t|t�1
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B

0
+ ⌃,
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t

= Q
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0
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t|t�1

,
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t

, ✓] = f

t|t = f
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t|t = Q
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�K

t

BQ
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.

Notice that only the upper l⇥ l block of Q
t|t is non-zero, while the other blocks are all zeros,

because the macro factors are observed without errors. The initial factors, f
0

are unobserved

and assumed to follow its ergodic distribution given the parameters,

f

0

|F
0

, ⇠ N
�
f

0|0 = 0, Q

0|0
�
,

where Q

0|0 is the unconditional covariance matrix of f
t

such that

vec(Q

0|0) =
⇥
I

(l+m+z)

� (G⌦G)

⇤�1 ⇥ vec(⌦).

.3 Posterior Sampling Algorithm

The model parameters to be estimated reduce to

✓ = {, G, K

m

, K

z

, �, V, �, ⌃, �}.

To facilitate our discussion, we denote  ={GQ
ll

, K
m

, K
z

, �, �, ⌦, �}, and we have ✓ ={ , ⌃,

G}. Unlike ⌃ and G, the parameters in  can not be sampled by Gibbs-sampling, because

their full conditional distributions are not tractable. The target distribution to be simulated
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is the joint posterior distribution of the parameters and latent factors,

✓, {l
t

}T
t=1

|Y.

Using the posterior draws for the parameters and factors, we can infer the term premiums

and factor loadings.

In each MCMC iteration, they are updated in the order of  , {l
t

}T
t=1

, G, and ⌃. We use

the TaRB-MH of Chib and Ramamurthy (2010) to implement the sampling of  and Gibbs

sampling for G and ⌃. For sampling {l
t

}T
t=1

we employ the multi-move method of Carter

and Kohn (1994). We outline our MCMC algorithm as follows:

Algorithm 3: MCMC sampling

Step 0: Initialize the parameters,  (0), G(0), and ⌃(0)

, and set g = 1.

Step 1: At the gth MCMC iteration, draw  

(g) from  |Y, 

(g�1) as follows:

Step 1.(a): Randomly determine the number of blocks and their components in  ,

 

1

,  

2

, ..,  

Bg

where B

g

is the number of blocks at the gth MCMC iteration. Set l = 1.

Step 1.(b): Maximize

ln{p(Y| 
l

, �l

, G

(g�1)

,⌃

(g�1)

)⇥ ⇡( 
l

, �l

, G

(g�1)

,⌃

(g�1)

)}

w.r.t  
l

to obtain the mode, ¯

 

l

and compute the inverted negative Hessians com-

puted at the mode, V
¯

 l
.

Step 1.(c): Draw a proposal for  
l

, denoted by  

†
l

, from the selected multivariate
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Student-t distribution,

 

†
l

s St

�
¯

 

l

, V

¯

✓l
,15

�
.

Step 1.(d): Draw a sample, u from uniform distribution over [0, 1]. Then,  
l

is

updated as

 

l

=  

†
l

if u < ↵

⇣
 

(g�1)

l

, 

†
l

|y, �l

, G

(g�1)

,⌃

(g�1)

⌘

 

l

=  

(g�1)

l

if u � ↵

⇣
 

(g�1)

l

, 

†
l

|y, �l

, G

(g�1)

,⌃

(g�1)

⌘

Step 1.(e): l = l + 1, and go to Step 1.(b) while l  B

g

.

Step 2: Draw {l
t

}T
t=1

from {l
t

}T
t=1

|Y, 

(g),G(g),⌃(g) based on the Carter and Kohn method.

Step 3: Draw G

(g) from G|Y, {l
t

}T
t=1

, 

(g)

,⌃

(g).

Step 4: Draw ⌃

(g) from ⌃|Y, {l
t

}T
t=1

, 

(g)

, G

(g).

Step 5: g = g + 1, and go to Step 1 while g  n

0

+ n

1

. Then, discard the draws from the

first n

0

iterations and save the subsequent n
1

draws.

Now we discuss the posterior sampling algorithm in the order of  , {l
t

}T
t=1

, G, and ⌃.

.3.1  Sampling via TaRB-MH

Given the target distribution, the efficacy of the MH sampling depends on the way of grouping

parameters into multiple blocks and constructing proposal distributions. In each MCMC

cycle, sampling � consists of three steps. The first step is to randomly choose the number

of blocks and their components. These blocks are sequentially updated given the other

parameters. The second step is to construct Student-t proposal distribution of each block

using the output of stochastic optimization given the other parameters. The third step is to
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draw from the proposal distribution and update the block based on the MH algorithm. We

discuss each of the steps in details as follows.

Randomizing Blocks

In the gth MCMC iteration, the sampler begins by randomly grouping the parameters into

B

g

blocks

 

1

,  

2

, ...,  

Bg

with randomly selected components in each block. To maximize the efficacy in a high-

dimensional problem, we should simulate highly correlated parameters in one block and the

remaining parameters in separate blocks. However, when the likelihood is severely nonlin-

ear as shown in Equation (2.3.2), it is difficult to form appropriate fixed blocks a priori.

Randomizing blocking scheme is particularly valuable in this case. This blocking scheme

enables us to avoid the pitfalls from a poor choice of fixed blocks. We let the parameters in

� form random blocks and ⌃ form a fixed block since the full conditional distribution of ⌃

is tractable.

Algorithm 2: Randomizing blocks

Step 0: Let the number of the parameters denoted by n

 

= dim( ). Idx = (1, 2, .., n

 

)

0

is a n

 

⇥ 1 vector. Then, an one-to-one mapping between Idx and the parameters in

 exists such that  (Idx(j)) is the Idx(j)th parameter in  where Idx(j) is the jth

element of Idx.

Step 1: At the gth MCMC iteration, randomize the permutation of Idx and denote it by

Idx

⇤
.

Step 1(a): set i = 2, b = 1, and cp

0

= 1.

Step 1(b): draw u from Uniform (0, 1) .
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Step 1(c): if u > tp, then cp

b

= i and b = b+ 1.

Step 1(d): i = i+ 1 and go to Step 1(a) while i  n

✓

.

Step 2: B

g

= b is the number of blocks. For 1  j  B

g

� 1,

✓

j

= {✓(Idx⇤
(i))|cp

j�1

 i  cp

j

� 1}

is the jth block, and �
Bg = { (Idx⇤

(i))|cp
Bg�1

 i} is the last block.

Note that the average block size (i.e., the number of components in a block) is 1/(1� tp).

If the average block size is too small or too big, the efficacy of the MCMC simulation reduces.

In our Matlab toolbox, the default argument for tp is 0.8, so that the average block size is

set to be five. However, researchers are allowed to control tp depending on their preference.

This is appropriate according to our extensive empirical experiments. Once the number of

blocks and their components are randomly determined, then we update  by sequentially

iterating through those blocks with the help of the multiple-block MH algorithm (Chib and

Greenberg (1995)).

Block-wise Stochastic Optimization

The second stage is to construct a proposal distribution of the first block  
1

by finding the

global mode ( ¯ 
1

) of its full conditional density and the inverted negative Hessians computed

at the mode:

¯

 

1

= argmax

 

1

log{p(Y|�
1

, �1

)⇡( 

1

, �1

)} subject to { 
1

, �1

} 2 R, (.3.1)

V

¯

 

1

=

✓
�@

2

log{p(Y| ¯ 
1

, �1

)⇡(

¯

✓

1

, �1

)}
@ 

1

@ 

0
1

◆�1

, (.3.2)
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where  �l

is the parameters in  except ✓
l

. The key idea of our proposal distribution is

to approximate the full conditional distribution of the block by a multivariate Student-t

distribution. The first and second moments of the Student-t distributions are obtained from

the global mode and the Hessian computed at the global mode. The Student-t distributions

are informative enough to approximate the full conditional distribution of the parameters

when the posterior surface is irregular. In particular, using Student-t distribution rather

than normal distribution helps move from the global region to a local region and vice versa

because of its fat tail property.

In order to find the mode satisfying the restrictions on the parameters, we utilize a

simulated annealing algorithm combining the Newton-Raphson method. We refer to this op-

timizer as the SA-Newton method. Simulated annealing algorithms are a stochastic global

optimizer that is particularly useful in the presence of a multi-modality problem. In finding

the mode, we try with a high initial temperature and a relatively low temperature reduction

factor, which means that the temperature reduction is fast. Specifically, the initial tempera-

ture parameter and the temperature reduction factor are set to be five and 0.01, respectively.

Then, the probability of accepting a point with a lower function value that is proportional

to the current temperature is high, which helps move to another search regions with higher

function values. Once the simulated annealing stages are complete, the optimizer switches

to the Newton-Raphson method to converge to the mode quickly.

Once the stochastic optimizer is implemented, the probability of finding the global mode,

not a local mode, increases and there is a chance to find the global mode even when the

starting value is located near a local mode. This never happens when only deterministic

optimizations such as the Newton-Raphson method are used. Moreover, we set the total

number of simulated annealing stages to be two, so the search for the global mode through the

SA-Newton method is not quite extensive. Even if the maximum simulated annealing stage

is set to be three or larger, the efficacy gain is found to be marginal whereas the computing
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time substantially increases according to our comprehensive empirical experiments. In our

Matlab toolbox, users can try different simulated annealing parameters including the number

of stages, initial temperature, and temperature reduction factor.

Block-wise Metropolis-Hastings Algorithm

Now we move to the third stage. Using the mode and Hessian at the mode, we construct a

multivariate Student-t proposal distribution,

q ( 

1

| �1

) = St

�
 

1

| ¯ 
1

, V

¯

 

1

,15

�
.

where the St is a multivariate Student-t density with ⌫ = 15 degrees of freedom. Let the

proposal value, denoted by ✓†
1

, drawn from

 

†
1

⇠ St

�
¯

 

1

, V

¯

 

1

,15

�
.

Then, given the current value,  (g�1)

1

, this proposal value is accepted with the usual MH

probability of the move,

↵

⇣
 

(g�1)

1

, 

†
1

|Y, �1

⌘
= min

8
<

:1,

⇡

⇣
 

†
1

, �1

|Y
⌘

⇡

⇣
 

(g�1)

1

, �1

|Y
⌘
q

⇣
 

(g�1)

1

| �1

⌘

q

⇣
 

†
1

| �1

⌘

9
=

; (.3.3)

= min

8
<

:1,

p(Y| †
1

, �1

)⇡( 

†
1

, �1

)

p(Y| (g�1)

1

, �1

)⇡( 

(g�1)

1

, �1

)

q

⇣
 

(g�1)

1

| �1

⌘

q

⇣
 

†
1

| �1

⌘

9
=

; .

If the proposal is accepted, then  

(g)

1

=  

†
1

. Otherwise,  (g)

1

=  

(g�1)

1

. Note that if the

proposal value does not satisfy the restrictions on the parameters, then it is immediately

rejected because its prior density ⇡( †
1

, �1

) is zero.

The remaining blocks, ( 
2

,  

3

, ...,  

Bg) are sequentially updated within the MCMC itera-
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tion in the same manner as the first block. Chib and Ramamurthy (2010) have already shown

that the TaRB-MH method is scalable and reliable in cases of irregular likelihood/posterior

despite a relatively high computational burden in the application of dynamic stochastic

general equilibrium models.

.3.2 Latent Factor Sampling

Next, we sample the factors, {l
t

}T
t=1

given the data and parameters based on the multi-move

method, in which the factors are updated in one block.

Algorithm 3: Factor sampling

Step 1: Sample f

T

from N
�
f

T |T , QT |T
�

Step 2: For t = T � 1, T � 2, . . . , 1, sample x

t

from

f

t

|F
t

, f

t+1

, ✓ s N

�
f

t|ft+1

, Q

t|ft+1

�

where

f

t|ft+1

= f

t|t +Q

t|tG0
�
GQ

t|tG
0
+ ⌦

��1

�
f

t+1

�K �Gf

t|t
�
, (.3.4)

Q

t|ft+1

= Q

t|t �Q

t|tG
0 �
P

t+1|t
��1

G

Q

t|t. (.3.5)

The first l element of f
t

is the vector of latent factors, l
t

, and the last m+ z elements are

the observed factors at time t.

.3.3 G Sampling

Now we turn to the sampling of G. Suppose that Fa:b = (fa, fa+1

, .., fb)
0 is a (b � a + 1) ⇥

(l +m+ z) matrix. G

0

indicates the prior mean matrix of G, and G

v0

is the corresponding
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prior variance matrix of G. Then, G is updated from its full conditional distribution,

vec(G)|Y, {f
t

}T
t=1

, ✓ ⇠ N (vec(

ˆ

G), G

v

),

where G

v

= G

v0

⇥ ⌦�1 ⌦ (F

0
1:T�1

⇥ F

1:T�1

) and

vec(

ˆ

G) = G

v

⇥ (G

v0

⇥ vec(G

0

) + (⌦

�1 ⌦ F

1:T�1

)

0 ⇥ vec(F

2:T ).

.3.4 ⌃ Sampling

The full conditional distribution of the error variances is tractable. Given the factors, pa-

rameters, and data, the error variances are updated via inverse gamma distributions,

�

2

⌧i
|Y, {f

t

}T
t=1

, ✓ ⇠ IG((v
0

+ T ) /2, �

1,i

/2),

where �
1,i

=

P
T

t=1

(R

t

(⌧

i

)� a(⌧

i

)� b(⌧

i

)⇥ f

t

)

2

+ �

0

for i = 1, 2, .., N.

.4 Marginal Density Computation

By the identity in Equation (1.4.4), the log marginal likelihood can be expressed as

logm(Y) = log p(Y|✓⇤,⌃⇤
, G

⇤
) + log ⇡( 

⇤
,⌃

⇤
, G

⇤
)� log ⇡(✓

⇤
,⌃

⇤
, G

⇤|Y).

The first term is the likelihood evaluated at the mode and the second term can be directly

calculated according to our prior specification. The last term can be decomposed as

log ⇡( 

⇤
, G

⇤
,⌃

⇤|Y) = log ⇡(⌃

⇤|Y) + log ⇡(G

⇤|⌃⇤
,Y) + log ⇡( 

⇤|Y, G

⇤
,⌃

⇤
).
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In the above equation, the first term is the log marginal posterior density of ⌃⇤
, which is

numerically computed as

log ⇡(⌃

⇤|Y) =

NX

j=1

log ⇡(�

⇤2
j

|Y)

=

NX

j=1

 
1

n

1

GX

g=1

log ⇡(�
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(g)
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(g)
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!
,

where L ={l
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(g)
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(g)
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j

|v(g)
1

/2, �

(g)

1,j

/2),

and ( (g)

, v

(g)

1

, �

(g)

1,j

) are obtained from the gthe MCMC cycle. For the second term, we

simulate the reduced MCMC run, in which L, G, |Y,⌃

⇤ are sampled. Using the output

of the reduced run, we can compute the full conditional mean and variance of vec(G) (i.e.,

vec(

ˆ

G

(g)

), G

(g)

v

) over the reduced run cycles. Then, the second term is obtained as

log ⇡(G

⇤|⌃⇤
,Y) =

1

n

1

n

1X

g=1

log ⇡(G

⇤|Y, f

(g)
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(g)

,⌃

⇤
),

where

log ⇡

�
G

⇤|Y, f

(g)

, 

(g)

,⌃

⇤�
= N

⇣
vec(G

⇤
)|vec( ˆG(g)

), G

(g)

v

⌘
.

Finally, we compute the last term, log ⇡( ⇤|Y,⌃

⇤
, G

⇤
). Since  is sampled through the

TaRB-MH, we follow Chib and Ramamurthy (2010) and fix the number of blocks in the

posterior estimation step at the average number of blocks (say B). Then, we construct the

blocks,  
1

,  

2

, ...,  

B

where each block consists randomly chosen components from  . Then,

log ⇡( 

⇤|Y,⌃

⇤
, G

⇤
) can be decomposed as

log ⇡(✓

⇤|Y,⌃

⇤
, G

⇤
) = log ⇡( 

⇤
1

|Y,⌃

⇤
, G

⇤
) + log ⇡( 

⇤
2

|Y, 

⇤
1

,⌃

⇤
, G

⇤
)

...+ log ⇡( 

⇤
B

|Y, 

⇤
1

, 

⇤
2

, ... 

⇤
B�1

⌃

⇤
, G

⇤
).
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This conditional density computation is completed by each ordinate, ⇡( ⇤
b

|Y, 

⇤
b

, ... 

⇤
b�1

) for

b = 1, ..., B, where  ⇤
0

is empty.

As shown by Chib and Jeliazkov (2001), the simulation-consistent estimate of the bth

ordinate is given by

⇡̂( 

⇤
b

|Y,⌃

⇤
, 

⇤
1

, ... 

⇤
b�1

)

=

n

�1

1

P
n

1

g=1

↵( 

(g)

b

, 

⇤
b

|Y,⌃

⇤
, 

⇤
b�1

, 

b+1,(g)

)q( 

⇤
b

|Y,⌃

⇤
, 

⇤
b�1

, 

b+1,(g)

)

n

�1

1

P
n

1

j=1

↵( 

(g)

b

, 

⇤
b

|Y,⌃

⇤
, 

⇤
b�1

, 

b+1,(g)

),

with  
b�1

= ( 

1

, ..., 

b�1

) and  b+1

= ( 

b+1

, ..., 

B

). The denominator is the average accep-

tance rate with respect to the gth draws,  (g)

b

and  b+1,(g)

, generated from the conditional

distribution,  
b

, 

b+1|Y, 

⇤
b�1

. That is, these draws are obtained from the bth reduced

MCMC run, in which the parameters at the preceding blocks are sampled conditioned on

 

⇤
b�1

. On the other hand, the numerator is the conditional expectation of the product

measure,

↵( 

b

, 

⇤
b

|Y,⌃

⇤
, G

⇤
, 

⇤
b

)⇥ q( 

⇤
b

|Y,⌃

⇤
, G

⇤
, 

⇤
b�1

, 

b+1

).

Conveniently, draws from  

b+1|Y,⌃

⇤
, G

⇤
, 

⇤
b

are available from the calculation of the (b+1)st

stage numerator which are supplemented with draws from  

b

|Y,⌃

⇤
, G

⇤
, 

⇤
b�1

, 

b+1. In the

final stage, we generate n

1

posterior draws from  

B

|Y,⌃

⇤
, 

⇤
B�1

, and use them to compute

the denominator.

.5 Simulation Study

In our framework, a different collection of relevant macro factors correspond to different

zero restrictions on G

P, and hence, a different model. Therefore, comparing different models

in terms of the Bayesian model choice provides the means to identify the relevant macro
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Table 6: Model selection frequency based on 20 simulated datasets

Each simulation dataset consists of 300 periods of data. The first column reports the true relevant macro factors in the DGP.

The second column reports the frequency with which the true model has the highest marginal likelihood.

True relevant factors selection frequency by simulation
IP, PCE 65%
� 90%

factors. In this section, we use simulations to assess how well the framework performs in

identifying the relevant macro factors. The simulation studies are designed to mimic the

real world features of the factors in our setting. We will consider five candidate factors in

our simulation study: CPI, IP , PCE, FFR, TCU . We consider two true models in our

simulation study: one model includes IP and PCE as the relevant macro factor, while the

other includes no relevant macro factors. We compare the true model with other 31 models

and see whether the marginal likelihoods correctly picks the true one. To generate data from

the true models, we need to fix the parameters at the posterior mode to ensure that the

generated data on the yield curve and driving factors resemble real data. In our simulation

study, we simulate the model for 300 periods. We use the first 200 periods to train the prior

of 32 different models and then we use the recent 100 observations for the posterior sampling

and marginal likelihood computation.

Specifically, our simulation study consists of two stages. The first stage is to simulate

imaginary dataset, {ŷ
t

}T
t=1

, from the true models using the corresponding posterior parame-

ter mode, the measurement equation (3.2.2), and transition equation (2.4.2). In the second

stage, we use { ŷ

t

}T
t=1

to estimate and compare the marginal likelihoods of all 32 competing

models. These two stages are repeated 20 times.

The model selection frequencies for each true model are given in Table 6. The selection

of the true model by the marginal likelihood criterion is quite high. Even in cases with

two relevant factors, the frequency of selecting the correct model is about 65%. This is a

substantial improvement over picking a model at random, in which case the chance of finding
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the correct model would be just around 3%.
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