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ABSTRACT OF THE DISSERTATION

Essays on Econometrics and Rational Choice

by

Junnan He

Doctor of Philosophy in Economics

Washington University in St. Louis, 2019

Professor Werner Ploberger, Chair

Decision and choice theory is a topic of interest in both econometrics and microeconomic

theory. We contribute to the theory of decision under both contexts, that is, the theory of

model selection in econometrics, and the theory of rational decision in microeconomics.

There is a long-lasting theoretical interest in model selection. More recently, research

on sparse estimators, a class of estimation methods that select and estimate important

parameters simultaneously, has been the central focus on model selection. The methods

become especially relevant when the problem is of high-dimensional nature. Theoretically,

sparse methods can perform well when the true data generating process (DGP) is assumed to

have a low-dimensional structure. But empirically, a sparse estimator can be outperformed

by some dense estimators when this assumption does not hold. In Chapter 1, we propose a

test of sparsity for linear regression models. Our null hypothesis is that the number of non-

zero parameters does not exceed a small preset fraction of the total number of parameters.

It can be interpreted as a family of Bayesian prior distributions where each parameter equals

zero with a large probability. For the alternative, we consider the case where all parameters

are nonzero and of order 1/
√
p for all p number of parameters. Formally, the alternative is

a normal prior distribution, the maximum entropy prior with the mean being zero, and the

variance determined by the ANOVA identity. We derive a test statistic using the theory of

ix



robust statistics. This statistic is minmax-optimal when the design matrix is orthogonal and

can be used for general design matrices as a conservative test.

Sometimes, there is a natural ordering in which the importance among the parameters is

arranged. Typical examples are the representation of a function by series or the estimation

of a spectrum by a long autoregressive process. Chapter 2 and Chapter 3 are devoted

to the analysis under this framework. In Chapter 2, we adapt concepts of the classical

Hajek-Blackwell-Lecam theory to develop a theory of asymptotically optimal estimation

of the parameters. In many of these cases, maximum likelihood estimators do not exist,

and hence there is no canonical candidate for a good estimator. We define suitable loss

functions for the estimation error, which allows us to uniquely characterize some estimators.

In estimation procedures, it is quite common to assume higher order differentiability or

smoothness conditions of the parameters. We construct some simple prior distributions that

force the parameters to obey the smoothness conditions. We show that the class of shrunken

sieve estimators is asymptotically efficient. I.e. the sieve estimator is multiplied with a

matrix that shrinks the estimates towards zero, analogous to Ridge regressions or Bayesian

estimators in a linear model.

In Chapter 3, we show that, in linear models with increasing dimension, the estimator re-

sulting from the maximization of Akaike’s Information Criterion is asymptotically equivalent

to some Bayesian estimators. The family of prior distributions that generates our estimators

is normal, defined on the space of all sequences, and is characterized by an exponential decay

of the variance for the higher order components of the parameter.

The last two Chapters are devoted to decision theory in microeconomics. In contrast to

the decision theory in econometrics where the loss (utility) function is predefined, the focus of

microeconomics is to recover a well-defined preference (utility). A well-defined or a rational

preference is one that satisfies certain consistency axioms. The most notable consistency

axiom is arguably the transitive axiom. The most studied transitivity axiom in the stochastic

x



choice literature is the strong stochastic transitivity (SST). However, individual choice data

often violate SST while conforming to moderate stochastic transitivity (MST). Chapter 4

focuses on the analysis of this axiom and its relevance to recovering the underlying preference.

Our first theorem shows that a binary choice rule satisfies a slightly stronger version of the

MST postulate, which we call MST+, if and only if it can be represented by a moderate utility

model (MUM). Choices in the MUM are a function of utility difference divided by a distance

metric, which determines the degree of comparability of the options. Our second theorem

introduces the moderate expected utility model (MEM) and shows how our parameters can

be identified from the choice data over lotteries.

Sometimes the choice data do not even satisfy the weakest form of transitivity and vi-

olate other classical axioms such as the independence of irrelevant alternatives. The main

source of such observations comes from contextual choices. Chapter 5 is devoted to ra-

tionalizing such choice behaviors. We build a choice model with a fixed underlying utility

function and explain contextual choices with a novel information friction: the agent’s percep-

tion of the options is affected by an attribute-specific noise. Under this friction, the agent

obtains useful information when additional options are introduced. Therefore, the agent

chooses contextually, exhibiting intransitivity, joint-separate evaluation reversal, attraction

effect, compromise effect, similarity effect, and phantom decoy effect. Nonetheless, because

the noise is attribute-specific and common across alternatives, the agent chooses perfectly

rationally whenever there is clear dominance between options.
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Chapter 1

A Test for Sparsity

1.1 Introduction

The increase in availability of data has boosted a fast growing literature on variable selection.

The main question in the literature is to find, in the vast number of different combinations,

a small set of variables that can sufficiently explain the response variable. An estimator

that contains many zeros in the estimated coefficients is called a sparse estimator. Such

estimators include but not limited to AIC (Akaike, 1974), BIC (Schwarz, 1978), LASSO

(Tibshirani, 1996), SCAD (Fan and Li, 2001), Elastic Net (Zou and Hastie, 2005) etc. When

the data generating process (DGP) is sparse, i.e. when the response is only significantly

affected by a diminishing fraction of the variables, many sparse estimators can consistently

find the important variables and estimate them efficiently (Meinshausen and Buhlmann,

2006; Zhao and Yu, 2006; Zhang and Huang, 2008).

However, it is known that a sparse estimator does not always dominate a non-sparse

one. If the underlying DGP is not sparse, using a sparse method may result in inefficient

estimates. Tibshirani (1996) observed in simulations that, when the DGP is dense, i.e.

“a large number of small effects”, the sparse estimator LASSO is significantly less efficient

1



Figure 1.1: Dimension of Selected Models
In each graph, we simulate 1000 times the regression model Y = Xβ + u and estimate the LASSO with the tuning parameter

determined by optimizing the BIC (Zou, Hastie and Tibshirani, 2007). Then we plot the histogram of the number of non-zero

coefficients estimated. The design matrix is always simulated from a multivariate standard normal and u ∼ N (0, 1). On the

left penal, β = (2, 1, 1, 1, 1, . . . , 2, 1, 1, 1, 1)/
√

50 is a vector of length 50 and the number of observation is n = 200. On the right

penal, β = (2, 1, 1, 1, 1, . . . , 2, 1, 1, 1, 1)/
√

100 is a vector of length 100 and the number of observation is n = 500.

than the ridge regression, a dense estimator. Apart from the loss in efficiency, consistency

can also be compromised. When applied to a dense DGP, sparse estimators can be selection

inconsistent by selecting significantly too few variables. Figure 1.1 shows that LASSO selects

a very low dimensional model when the true DGP is dense. While all variables have non-

zero coefficients in both simulations, 40% of the estimated models are of dimension less

than four in the first panel, and 51% in the second panel. The typical problems for many

sparse estimators is that they are too liberal by selecting too many irrelevant variables when

the number of irrelevant regressors diverges in a sparse DGP (Chen and Chen, 2008). In

contrast, the above simulation shows when the DGP is dense, sparse methods are likely too

stringent.

In this paper, we provide a test to distinguish whether the DGP is sparse or dense for

linear regression models.1 The test can be used as a validation or diagnostics before or after
1We focus the analysis on the linear regression framework because it is the most popular statistical tool,

and many sparse estimation techniques were first proposed for the regression context.For nonlinear problems,
when the log-likelihood is sufficiently smooth, many estimators (e.g. maximum likelihood) can be locally
approximated by a linear estimator. Generalizations to these problems are possible but outside the scope of

2



applying sparse estimators. One can interpret our test as a test between two families of

Bayesian priors. The null hypothesis is a large set of prior distributions that each coefficient

of interest is zero with high probability, and the alternative hypothesis is the prior that

each coefficient is of the same magnitude. In comparison to pure Bayesian techniques such

as Giannone, Lenza and Primiceri (2017), our null hypothesis consists of a large family of

sparse data generating processes. Hence when the null is rejected, it is not subject to the

specification of the prior distribution.

There is a need for determining the data sparsity when choosing between a dense estima-

tor and a sparse estimator because economic variables may not have a sparse DGP. Giannone

et al. (2017) used a Bayesian approach to estimate the model dimensions for a number of

regressions with economic variables. Their posterior distributions were found to concentrate

in high dimensional models for all the macroeconomic and financial examples in their paper.

If the underlying DGP is dense, applying a dense estimator such as the ridge estimation is

more efficient (see e.g., Hsu, Kakade and Zhang, 2014).

Informally, our procedure works in the following way. Let n and p respectively be the

number of observations and the number of parameters to be estimated. Suppose p < n while

both n, p are allowed to diverge to infinity. The test statistic summarizes the number of

coefficients estimated to be significantly far away from zero. Since the OLS is
√
n consistent,

all but a few estimated coefficients are close to zero of magnitude 1/
√
n under the null.

When the alternative is true, the estimated coefficients are the sum of their values plus

the estimator noise, hence they are of magnitude
√

1/p+ 1/n. We borrow techniques from

robust statistics to distinguish this difference between a smaller distribution with outliers

and a wider distribution without outliers.

The organization of the paper is as follow. We formally introduce the hypotheses in the

next section. The test statistic is derived in Section 3. The rejection region of the test is

this paper.

3



Figure 1.2: Histogram of Estimated Coefficients
The histogram of the standardized estimated values from a single regression. We standardize the OLS estimates of the model

Y = Xβ + u where u ∼ N (0, 6) and X is simulated from multivariate normal with correlation ρ(xi, xj) = 0.3|i−j|. The true

parameter β is of dimension 100 and all but the first 10 entries are 0. The first 10 entries of β are 2’s. The curve is a standard

normal density super-imposed to the histogram.

simulated. The simulation method and a sufficiency result on asymptotic consistency is given

in Section 4. We discuss issues related to implementation of the test in Section 5. Section

6 describes some simulation results and Section 7 provides two empirical applications of the

test. Lengthy proofs are postponed to the appendix.

1.2 The Hypotheses

Consider the classical linear regression model

Y = Xβ + u

where X is independent from ui where ui ∼iid N (0, σ2) for i = 1, . . . , n. The dimensions of

Y and β are respectively n and p, both diverging to infinity. Without loss of generality we

assume that Y and X are standardized to have mean zero and variance 1.

Our null hypothesis can be thought of a large family of prior distributions each describes

β as a sparse vector. Let F be the set of all p dimensional distributions over the reals in Rp.

4



Formally, the null hypothesis

H0(ε) : ∀i, βi = ziγi

(γ1, . . . , γp) ∼ F for some distribution F ∈ F ;

zi is independent Bernoulli with success probability ε.

In other words, each βi = 0 whenever zi = 0, which has probability 1 − ε. When zi 6= 0,

βi = γi which can be drawn from any distribution over the reals. When we have a fixed

dispersed distributions F , the distribution for β is similar to a so-called “spike-and-slab”

prior in Mitchell and Beauchamp (1988). Nonetheless, F can be an arbitrary distribution

including a Dirac-delta measure, in which case each βi is either 0 or a fixed constant, which

may be better described as a “spike-and-spike” prior.

The above null hypothesis can be interpreted as a family of Bayesian priors for the vector

β given the knowledge that “about at least 1 − ε fraction of the entries in β are zero”.

Since βi = 0 with probability 1− ε, each such prior is rather informative about the location

of each βi. Naturally the alternative hypothesis should describe the contrary, a lack of

information about the precise location. To this end, we take the alternative to be a maximum

entropy distribution (see e.g. Jaynes, 1968). Imposing homogeneity and symmetry, each βi

is independent and identically distributed around zero. We take the second moment of the

βi’s by the ANOVA identity E[Y ′Y ] = E[β′X ′Xβ] + E[u′u], or equivalently

Var[Y ] =
1

n
E[β′X ′Xβ] + σ2.

These conditions pin down the alternative prior distribution for β. Formally,

Ha : ∀i, βi ∼iid N
(

0,
1− σ2

p

)
.

5



Under this alternative, not only all βi’s are non-zero, but also nearly all parameters are

of order 1√
p
. Hence this prior can naturally be interpreted as a hypothesis that there is

a large number of small effects. Moreover, under the alternative hypothesis, the optimal

estimator for square-loss is exactly a ridge regression estimator. This is in accordance with

the observation that that the ridge regression is more efficient for a dense DGP.

1.3 The Test Statistic

Assuming the matrix X ′X is invertible, we derive a test statistic that bases on the OLS

estimates.2 The OLS estimator has variance σ2(X ′X)−1. Let the ith diagonal element

of the matrix (X ′X/n)−1 be s2
i , and the respective positive square-root be si. Our test

statistics come from the following intuitive observation. We standardize the estimated values

to
√
n

σsi
β̂i, so that the sequence of normalized estimated values have the same marginal variance

conditional on β. When β is sparse, all but a few of the entries are zero. If we remove the

indices i’s where βi 6= 0, the remaining estimated values all centers around 0 with variance

1.

As shown in Figure 1.1, other than a few
√
n

σsi
β̂i’s for which βi 6= 0, most other entries

of normalized β̂ lies under the standard normal density. Under some regularity conditions,

Azriel and Schwartzman (2015) Theorem 1 shows that the empirical distribution of the

estimated values, i.e.
√
n

σsi
β̂i for which βi = 0, converges to the standard normal distribution.

In our context, when the null is true, the (standardized) estimated vector can be thought of

a normal vector with a few outliers. This allows us to interpret our null to be the following.

Each
√
n

σsi
β̂i is drawn from a standard normal with 1 − ε probability, and with ε probability,

it is drawn from an arbitrary unknown distribution. To put differently, the estimated values

as random draws from a distribution in the epsilon-contamination neighborhood of standard
2For discussions about the case p > n, refer to Section 5.
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normal distribution, as defined in Huber (2004). Hence a natural test statistic for the above

hypotheses is the robust test for epsilon-contaminated neighborhood.

Before deriving the test statistics, we first examine the marginal distribution for β̂i under

both the null and the alternative. Under the H0(ε), it is easy to derive that β̂i equals in

distribution to the following distribution

β̂i =d (1− zi)ui
si√
n

+ ziγi

where ui ∼ N (0, σ2). Therefore, β̂i follows N (0, σ2s2
i /n) with 1 − ε probability, and with ε

probability following some arbitrary distributions. For this reason, we say that under H0(ε),

β̂i is a random variable in the ε-contaminated neighborhood of N (0, σ2s2
i /n). On the other

hand, under the Ha we have

∀i, β̂i =d N
(

0,
1− σ2

p
+ σ2s2

i /n

)
.

To derive a likelihood-ratio type statistic for β̂i under the null and the alternative, we start

with the likelihood ratio without ε-contamination. This likelihood ratio between N (0, 1−σ2

p
+

σ2s2
i /n) and N (0, σ2s2

i /n) is proportional to

exp

− x

2
(

1−σ2

p
+ σ2 s

2
i

n

) +
x

2σ2 s
2
i

n

 .

Since the ratio is monotonically increasing in x, the normal variable squared, it is without

loss of generality that we analyze only the squared variables according to Huber (2004).

Denote by P0 the cumulative distribution function (CDF) of the square of the N (0, σ2s2
i /n)

variable, and by Pa the square of the N (0, 1−σ2

p
+ σ2s2

i /n) variable.3 Observe that both P0

and Pa are CDFs of some χ2
1 variables with different scaling factors. Write their respective

3We suppress the index i here for simplicity.
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densities as

p0(x)dx =
e
− x

2σ2s2
i
/n√

2πσ2(s2
i /n)x

dx and pa(x)dx =
e−

x
2v

√
2πvx

dx

where v = 1−σ2

p
+ σ2s2

i /n.

Every element in the ε-contamination neighborhood of P0 can be written as (1−ε)P0 +F ′

where F ′ is a distribution over [0,∞). Since under the null, β̂i follows an ε-contaminated

N (0, σ2, s2
i /n), we have

β̂2
i ∼ Q where Q is a CDF on [0,∞) such that Q(x) ≥ (1− ε)P0(x) ∀x ≥ 0.

For convenience, in the following of this section, we denote by H0(ε) the set of distributions

{Q is a CDF on [0,∞)|Q(x) ≥ (1− ε)P0(x)}.

As in Huber (2004), within H0, we choose the following distribution represented by density

q0

q0(x) =


(1− ε)p0(x) for x ≤ x∗

cpa(x) for x > x∗

for some constants x∗ and c such that
∫
q0 = 1 and pa(x∗)

q0(x∗)
= 1

c
. The next lemma shows

that for each si, there is a unique pair of x∗i and ci that satisfies these restrictions. The x∗i

would serve as a cut-off value to determine if β̂2
i is “too large”. For each β̂i, the log-likelihood

ratio statistic between pa and q0 is
(

1
2σ2s2i /n

− 1
2v

)
min{β̂2

i , x
∗
i } up to a deterministic constant.

We take the following normalization of the average statistic over i ∈ {1, . . . , p} as our test
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statistic.

T :=
1

p

p∑
i=1

(1− σ2)n

(1− σ2)n+ σ2s2
i p
×min{ β̂2

i

σ2s2
i /n

,
x∗i

σ2s2
i /n
},

where x∗i solves

erf

(√
x

2σ2s2
i /n

)
+

√
vi

σ2s2
i /n

exp

((
1

vi
− 1

σ2s2
i /n

)
x

2

)
erfc

(√
x∗

2vi

)
=

1

1− ε
.

The following Lemma describes the asymptotics of these cut-off values.

Lemma 1. Let v := 1−σ2

p
+ σ2s2/n. When v > σ2s2/n

(1−ε)2 , there is a unique pair of x∗ and c

that simultaneously solves the equations
∫
q0 = 1 and pa(x∗)

q0(x∗)
= 1

c
, and x∗ satisfies

x∗

σ2s2/n
≤ σ2s2p+ (1− σ2)n

(1− σ2)n
ln

(
vn

s2σ2

4

π

(
1− ε
ε

)2
)
.

Let p, s2, σ2 and ε be functions in n. Suppose ε→ 0, and for some constants κ1, κ2 ∈ (0, 1),

κ1 < σ2 < κ2, and for some constants κ3 > 0, ps2

n
ln 1

ε
< κ3. Then the solution x∗ is bounded

below by
σ2s2p+ (1− σ2)n

(1− σ2)n
ln

(
vn

s2σ2

(
1− ε
ε

)2

C

)
≤ x∗

σ2s2/n
,

whenever C is some constants independent of p, s2, σ2, ε and n.

From now on, we define x∗i to be the solution of the equation

(1− ε) erf

(√
x

2σ2s2
i /n

)
+ (1− ε)

√
vi

σ2s2
i /n

e

(
1
vi
− 1

σ2s2
i
/n

)
x
2 erfc

(√
x∗

2vi

)
= 1,

where vi := 1−σ2

p
+ σ2s2

i /n. When the solution does not exists, we set x∗i = 0.
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1.4 Rejection Regions and Asymptotic Consistency

Recall that in the test statistic

T :=
1

p

p∑
i=1

(1− σ2)n

(1− σ2)n+ σ2s2
i p
×min{ β̂2

i

σ2s2
i /n

,
x∗i

σ2s2
i /n
},

each term in the sum is derived from the likelihood ratio between the densities pa and q0

for β̂i under the alternative and the null respectively. Since the null contains a family of

distributions each β̂i, the choice of the density q0 is not arbitrary. Huber (2004) showed

that this particular choice ensures that the likelihood ratio between pa and q0 is a max-min

statistic for each β̂i. In particular, when the design matrix is orthogonal, β̂i are independent

conditional on β. In this case the test statistic T is max-min optimal.

The exact distribution of T under the null is difficult to express, however the following

result allows us to simulate the rejection region.

Theorem 2. Under H0(ε), T is first order stochastically dominated by

S :=
1

p

p∑
i=1

(1− σ2)n

(1− σ2)n+ σ2s2
i p
×
(

(1− zi) min{e2
i ,

x∗i
σ2s2

i /n
}+ zi

x∗i
σ2s2

i /n

)
,

where zi ∼iid Bernoulli(ε) and

e ∼ N

(
0, diag

(√
n

s2
1

, . . . ,

√
n

s2
p

)
(X ′X)−1diag

(√
n

s2
1

, . . . ,

√
n

s2
p

))
.

In particular, this first order stochastic upper bound is tight.

Therefore, a proper alpha level of the test can be defined as the region T ≥ tα, where

Pr(S ≥ tα) ≤ α. This region can be simulated. The order of the rejection region can be

easily bounded using the Markov’s inequality.

10



Proposition 3. The random variable S is of order

Op (E[S]) ≤ Op

(
1 +

ε

p

p∑
i=1

x∗i
σ2s2

i /n

)
.

Proof. Observe that

S =
1

p

p∑
i=1

(1− σ2)n

(1− σ2)n+ σ2s2
i p
×
(

(1− zi) min{e2
i ,

x∗i
σ2s2

i /n
}+ zi

x∗i
σ2s2

i /n

)

≤1

p

p∑
i=1

(e2
i + zi

x∗i
σ2s2

i /n
).

Let Σ be the covariance matrix for e, we have

E
p∑
i=1

e2
i =E[e′e] = E[e′Σ−1/2ΣΣ−1/2e] = p.

for the trace of Σ is p. The rest of the proposition follows directly from Markov’s inequality.

Usually asymptotic consistency means a test rejects the null with probability approaching

1 as n diverges. However, since we allow both p and the design matrix (hence s2
i ’s) to vary

with n, the asymptotic consistency of this test means the rejection probability approaches 1

for a sequence of null and alternatives. In particular, the sequence of null is a sequence of

models that are asymptotically sparse. Since p can increase as n increases, the number of

non-zero coefficients in the sequence of models can potentially increase as a result. However

we need to avoid the pathological case where the number of non-zero coefficients increases

faster than n. Following Meinshausen and Buhlmann (2006), Zhao and Yu (2006) and Huang

et al. (2008), we assume the fraction of non-zero coefficients goes to zero, and the number

of non-zero coefficients grows at a rate less than one. Mathematically, we define asymptotic

sparsity as follow.
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Condition 4. As n increases, there exist constants α1 > 0, α2 ∈ [0, 1) such that ε = α1n
α2−1.

This condition has implication for the test statistic under the null. The cut-off values are

implicitly affected by the above assumption.

Proposition 5. Let n→∞, if there exists a positive constant κ such that n
ps2i
≥ κ for all i,

then Condition 4 implies that there exists c1 and c2 such that 0 < c1 < c2 and for all i,

c1 lnn ≤ x∗i
σ2s2

i /n
≤ c2 lnn.

And hence S = Op(1 + εc2 lnn) = Op(1) asymptotically.

Since under the null, S dominates the test statistic, therefore Condition 4 implies the

test statistic under the null is of finite order. To obtain a consistency, we can show that

the test statistic diverges to infinity under the alternative when some sufficiency condition

holds. One sufficient condition is that

nλ

p
≥ κ lnn

where λ is the minimal eigenvalues of X ′X/n. Since X ′X/n is a normalized, its minimal

eigenvalue can be thought of as a measure of multiple-colinearty of the design matrix. The

above condition requires the effective number of observations per coefficient diverges slowly.

Theorem 6. Let the minimal eigenvalues of X ′X/n be λ. Suppose there exists some constant

κ > 0 such that nλ
p
≥ κ lnn always holds. Suppose Condition 4 holds. Then under Ha, T

diverges to ∞ in probability as n, p→∞. Hence the test is consistent.

12



1.5 Further Discussions

In this section, we discuss three questions related to the application of the test. They include

the cases when σ2 is unknown, when p > n and the choice of ε.

1. Unknown σ2.

When σ2 is unknown, we can plug in the residual mean-squared error σ̂2 from OLS

estimates. The plug-in test statistics is then

T̂ :=
1

p

p∑
i=1

(1− σ̂2)n

(1− σ̂2)n+ σ̂2s2
i p
×min{ β̂2

i

σ̂2s2
i /n

,
x̂∗i

σ̂2s2
i /n
},

where x̂∗i solves (1− ε) erf

(√
x

2σ̂2s2i /n

)
+ (1 − ε)

√
v̂i

σ̂2s2i /n
e

(
1
vi
− 1

σ̂2s2
i
/n

)
x
2 erfc

(√
x∗

2v̂i

)
= 1, and

v̂i = 1−σ̂2

p
+ σ̂2s2

i /n. An application of Theorem 2 shows that under the null, the above test

statistic is 1st order dominated by the following random variable.

S ′ :=
1

p

p∑
i=1

(1− σ̂2)n

(1− σ̂2)n+ σ̂2s2
i p
×
(

(1− zi) min{e2
i

σ2

σ̂2
,

x̂∗i
σ̂2s2

i /n
}+ zi

x̂∗i
σ̂2s2

i /n

)

where zi ∼iid Bernoulli(ε), e ∼ N (0,∆(X ′X)−1∆) for ∆ := diag

(√
n
s21
, . . . ,

√
n
s2p

)
. Since

σ2 is unknown, the rejection region is simulated from the random variable

Ŝ :=
1

p

p∑
i=1

(1− σ̂2)n

(1− σ̂2)n+ σ̂2s2
i p
×
(

(1− zi) min{e2
i ,

x̂∗i
σ̂2s2

i /n
}+ zi

x̂∗i
σ̂2s2

i /n

)
.

The following sufficiency result shows the difference between S ′ and Ŝ can be asymptotically

negligible.

Proposition 7. Let Ŝ and S ′ be defined as above. We have Ŝ−S′√
V ar(Ŝ)

→ 0 as both ε and
p
nλ
→ 0.

2. p > n.

13



For problems involving a data set where p > n, our test can be used as a post-selection

test. Under the null hypothesis of a sparse DGP, one can split the data into two disjoint sub-

sets perform any desired screening procedures to the first subset. For example, the Dantzig

selector (Candes and Tao (2007)) and Sure Independence Screening (Fan and Lv (2008))

can be used to screen all the important variables while reduces the number of parameters to

less than the number of observations. Methods to obtain a
√
n-consistent estimate for σ2 is

available in the literature as well.4 Our test can be subsequently applied to the second part

of the data.

3. Choice of ε.

If one has some preconception about which sparsity level to test for, one can fix such ε

level and perform the test. When there is little preconception about the sparsity level, our

test can be turned into a confidence set about the sparsity of the underlying model. See

empirical application section for more detail.

1.6 Simulations

In this section we report the results of some simulation experiments. In each subsection we

simulate datasets from the following model

Y = Xβ +N (0, σ2)

for various sizes and number of observations. In all of them, the covariates xi (i = 1, . . . , n)

is simulated from a p dimensional multivariate normal where p is the dimension of β.
4See Reid et al. (2016) for a survey and comparison of these estimators.
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1.6.1 Simulation Under Alternative 1

In this simulation, we repeat the same setting as in Figure 1.1. β is fixed at the same levels

respectively when the number of observations is 200 and 500. We simulate X from standard

multivariate normal and the residual is standard normal N (0, 1) resulting in a signal to noise

ratio of roughly 1.6. For each level of ε, we simulate the data and perform the test 500 times

and report the rejection rate below.

Table 1.1: Rejection probabilities for various ε values
ε 0.1 0.2 0.3 0.4 0.5 0.6

p=50, n=200 100% 100% 100% 97.5% 80.4% 12.5%
p=100, n=500 100% 100% 100% 100% 100% 82.6%

1.7 Empirical Application

1.7.1 Application I

We apply our test to the a cross country growth data set. In the data subset, there are

observation on 135 countries each with observation of 67 characteristics plus the response

variable, GDP growth rate from 60 to 96. Since there are many missing observations in the

data, we apply our test to only a subset of the sample. We use the subset of the sample

where there is no missing observations on the following 18 variables
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East Asian dummy (EAST) African dummy (SAFRICA)

Primary schooling 1960 (P60) Latin American dummy (LAAM)

Investment price (IPRICE1) Fraction GDP in mining (MINING)

GDP 1960 (log) (GDPCH60L) Spanish colony (SPAIN)

Fraction of tropical area (TROPICAR) Years open 1950-1994 (YRSOPEN)

Population density coastal 1960’s (DENS65C) Fraction Muslim (MUSLIM00)

Malaria prevalence in 1960’s (MALFAL66) Fraction Buddhist (BUDDHA)

Life expectancy in 1960 (LIFE060) Ethnolinguistic fractionalization (AVELF)

Fraction Confucian (CONFUC) Government consumption share 1960’s (GVR61)

which are a number of economic and political factors, geographical and historical dum-

mies, and several demographic characteristics that were described as potential important

factors in explaining long-run GDP growth in Sala-I-Martin et al. (2004). There are 94

observations that have no missing observations in the above listed variables. These countries
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or regions are

Algeria Benin Botswana Burkina Faso

Burundi Cameroon Cent’l Afr. Rep. Congo

Egypt Ethiopia Gabon Gambia

Ghana Kenya Lesotho Liberia

Madagascar Malawi Mali Mauritania

Morocco Niger Nigeria Rwanda

Senegal Somalia South Africa Tanzania

Togo Tunisia Uganda Zaire

Zambia Zimbabwe Canada Costa Rica

Dominican Rep. El Salvador Guatemala Haiti

Honduras Jamaica Mexico Nicaragua

Panama Trinidad & Tobago United States Argentina

Bolivia Brazil Chile Colombia

Ecuador Paraguay Peru Uruguay

Venezuela Bangladesh Hong Kong India

Indonesia Israel Japan Jordan

Korea Malaysia Nepal Pakistan

Philippines Singapore Sri Lanka Syria

Taiwan Thailand Austria Belgium

Denmark Finland France Germany, West

Greece Ireland Italy Netherlands

Norway Portugal Spain Sweden

Switzerland Turkey United Kingdom Australia

New Zealand Papua New Guinea
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Many economic models focus analyses on a couple of factors and their relation with long-

run growth. For example Sala-I-Martin et al. (2004) focuses their arguments on primary

schooling enrollment, investment price and initial GDP levels. Therefore, in this numerical

exercise we will set the sparsity parameter to be ε = 3/18, interpreted as whether the

variation in longrun growh can be sufficiently explained by 3-variable (linear regression)

model. We simulate 10k random draws from the upperbound distribution of the null (see

Thm 7). The 5% rejection is defined as the upper 5% quantile of the simulated sample. The

test statistic calculated from the data is above the 5% quantile and has a p-value of less

than 1.7%. Hence we reject the null that the cross country long run GDP growth can be

explained by a (three factors or fewer) sparse linear model, and accept the alternative that

a non-sparse model of multiple (18) small effects is better supported by the data.

It might be interesting to know which variables pass our robust thressholds. They are Pri-

mary schooling enrollment in 1960, initial GDP level 1960, investment price, life expectancy

in 1960 and fraction of GDP in mining. One can interpret it as an indication that these

variables may be more important than others in determining long run GDP growth.

Although we set the benchmark case to be ε = 3/p from a modelling perspective, it would

be interesting to see how the test would conclude if we apply a less strict sparsity parameter.

To this end we report the p-values for several different sparsity below.

ε× p 1 2 3 4 5 6 7 8 9 10 11 12

p-value (%) 0.2 0.9 1.6 1.8 2.2 2.6 3.4 3.9 5.1 5.6 17.2 57.2

The above p-values shows strong evidence for at least 9 non-zero variables, indicating

that the underlying DGP is not sparse. Nonetheless, it does not contradicts the proposal

of Sala-I-Martin et al. (2004) that primary schooling, initial GDP level and investment

prices are very important factors. It suggest that long-run GDP growth is a complex high

dimensional object that is affected by many different country-level characteristics.
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1.7.2 Application II

Ludvigson and Ng (2009, 2010) found that the excess return of U.S. government bonds is

predictable using macroeconomic fluctuations. They found that macroeconomic fundamen-

tals contain information about risk premia beyond those embedded in bond market data. In

this section, we apply our test to their prediction problem. The macro-factor data is taken

from the updated data file is provided on Ludvigson’s website. The eight factors, f1, . . . , f8

each have different interpretations based on their loading of the sample series. According

to Ludvigson (2009), f1 is the factor of economy activity in real-terms; f2 loads on interest

rate spreads; f3 and f4 are price factors; f5 is mainly a combination of interest rates (but

not so much of interest rate spreads); f6 loads on housing; f7 on money supply; and f8 loads

mainly on stock-related series. The response variable r(n)
t+1, the continuously compounded

(log) excess return on an n-year discount bond in year t+ 1, is also taken from Ludvigson’s

website. The response data span from 2-year excess return to 5-year excess return. Due to

the availability of the response series and the lag-12 month regression, we have in total 468

observations.

Following their papers, we regress r(n)
t+1 on CPt, the forward rate factor used in Cochrane

and Piazzesi (2005), and the eight macro factors plus their interaction terms up to the third

order. In other words, as predictors we have CP, f1, . . . f8 and all of the fi×fj, and fi×fj×fk

where 1 ≤ i ≤ j ≤ k ≤ 8, totaling to 109 predictors. Ludvigson and Ng (2009) uses BIC

and searched through low dimensional models, and conclude that the best model consists of

CP, f1, f
3
1 , f3, f4 and f5. Our test results for excess return for different periods are reported

below.

Overall, the 5% level test rejects extremely sparse models. The 95% confidence interval

varies, covering from as less as models with dimensions ≥ 7, to as much as models of

dimensions ≥ 5. The size of the model found by Ludvigson and Ng (2009) barely lies in
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Table 1.2: p-values (%) for various sparsity levels
ε× p 1 2 3 4 5 6 7 8 9 10 11

response: r(2)
t+1 0.4 1.1 2.3 2.9 4.0 4.2 5.3 6.1 6.9 8.8 10

response: r(3)
t+1 0.2 0.4 0.9 2.5 2.9 3.4 6.5 6.9 8.1 10.6 13.4

response: r(4)
t+1 0.1 0.7 2.3 3.6 5.0 7.0 9.7 11 14 15 16.7

response: r(5)
t+1 0.2 0.8 2.6 4.9 8.3 11 14 17 20 23 25

these confidence intervals. A closer examination of the confidence interval also indicate that

the longer the maturity of the Treasury bonds, the sparser the regression model becomes.

Potentially short term returns can be affected by more factors whereas in the longer terms,

only the most important facts has lasting effects. Nonetheless, our test supports the use of

a sparse model to predict such excess returns.
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Chapter 2

Optimal Estimation when the Parameter

Space is of Infinite Dimension

Coauthored with Werner Ploberger

2.1 Introduction

There is a vast literature on nonparametric estimators, but relatively less is known about their

optimality properties. In the seminal paper, Andrews (1991) investigated a lot of estimators

for their asymptotic variances. Essentially the problem is to estimate the long-term variance

of the score process. Right at the beginning of his paper, he states that "Currently the

consistency of these estimators has been established, but their relative merits are unknown".

Since then, much progress has been made. An overview of recent developments can be found

in Gine and Nickl (2016), and Armstrong and Kolesar (2018). In this paper, we apply the

methodology similar to that in Ploberger and Phillips (2003, 2012) to derive admissible

estimators in general non-parametric settings.

In the case of finite dimensions, a well-established theory of "optimal" estimation is
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developed by Le Cam, Blackwell and Hayek (cf. van der Vaardt, 2000; Strasser, 1996). This

theory allows a characterization of the maximum-likelihood estimator as "best estimator"

compared to a large class of competing estimators. In this paper, we investigate the case

of a infinite dimensional parameter space. The theory of finite dimensional case does not

immediately generalize, since the maximum-likelihood estimator is usually not well-defined

in infinite-dimensional settings. When it is defined, there are examples where the maximum

likelihood estimator is inconsistent.

We assume that our parameter space Θ is a subset of the RN , where N = {1, 2, . . .} is

the set of all natural numbers. So our parameters θ are sequences,

θ = (θ1, θ2, . . .) .

We assume that we have given a squence of data - at time n, our information is contained in

the σ-algebra Fn and for each θ a measure Pθ on the σ-algebra F ⊇ σ-algebra Fn. Although

this formulation seems different from many problems in nonparametric estimations, any

classical nonparametric models can be formulated within this framework. By Interpreting

the θi as Fourier coefficients, our methodology can be applied in any problems of estimating

reasonable functions. As examples, consider three traditional nonparametric problems.

• General models for stationary Gaussian process.

Assume that the data yt are generated by an infinite autoregressive process

yt =
∑
k≥1

γkyt−k + ut,

where ut is Gaussian white noise uncorrelated with yt−i. Let the spectral density f be
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the parameter of interest. Then

f(exp(iλ)) =

∣∣∣∣ σ2
u

1−
∑

k≥1 γk exp(ikλ)

∣∣∣∣2.
So our parameter θ = (θ1, θ2, ..) = (σ2

u, γ1, γ2, . . .), and it is easy to set up the likelihood

as a function of θ.

• Nonparametric regression with Gaussian errors.

Assume for simplicity the case of a single scalar regressor xt, which takes values in a

fixed interval. Without limitation of generality, let this interval equals [0, π]. Let yt be

the dependent variable. Consider the model

yt = f(xt) + ut

where the ut are i.i.d. G(0, σ2). The function f can be written as a Fourier series

f(x) =
∞∑
n=0

γn cos(nx).

Again, our parameter θ = (θ1, θ2, ..) = (σ2
u, γ0, γ1, . . .), and the likelihood can be written

down accordingly.

• Density estimation.

Assume there is a sample of i.i.d random variables Xi, taking values in an interval [a, b]

and one tries to estimate the density f . Suppose ln f is a square integrable function.

Then one can choose a complete orthonormal set of functions ϕn (e.g. trigoniometric

functions), and write

ln f(.) = C (γ1, . . .) +
∑

γnϕn(.).
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where C(., . . .) is chosen in such a way that
∫

exp(ln f) = 1, and thus is a function of

the γn. Then our θ = (θ1, θ2, ..) = (γ1, . . .), and we can define a likelihood accordingly.

In all of the examples given above, the parameter vector θ, is related to a function. In

nonparametric problems, it is often assumed that the function is smooth, i.e. differentiable

up to a certain order or more. If the parameters are Fourier coefficients, then differentiability

of the underlying function is determined by the decay of the coefficients. I.e. if (θ1, θ2, . . . )

represents the Fourier coefficients of the function

f(ω) =
∑

θkexp(ikω),

then the Fourier coefficients of the mth derivative f (m) equal (. . . , imkmθk, . . . ). Hence for

f (m) to be square-integrable, ∑
θ2
kk

2m <∞. (2.1)

So imposing growth conditions on the coefficients is essentially equivalent to the require-

ments of varying degrees of smoothness of the underlying function. We will assume that

the prior distributions on the set of parameters are essentially independent Gaussian distri-

butions with expectations zero and variances c2
k, where c2

k converges to zero. Consequently,

parameters with larger index will be very small.

2.2 Main Theorems

Our primary goal is the estimation of θ, and define criteria to compare estimators, and

especially finding the “best” estimator. We will use an adaption of a technique used quite

often in the finite dimensional context. In order to find the asymptotically optimal estimator,

one first establishes that the posterior distribution is asymptotically G(θ̂, Σ̂), and thereby

simplifying the problem. When the Gaussianity is established, it almost follows that θ̂ is the
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“optimal” estimator. The importance of “conditional Gaussianity" was first recognized by

Kim(1998). Ploberger and Phillips (2012) utilized this property to characterize estimator in

cases of stochastic information matrices.

Our first task is to establish that the posterior distribution is asymptotically normal. To

do so, we need only a few more than the standard assumptions.

First of all let us assume that the conditional log-likelihoods

`t(θ) = ln pθ(xt|xt−1, ...)

are 3 times differentiable, all have uniformly bounded second moments, and the requirements

for all the CLTs for scores and information-matrix-type theorems are fulfilled. Furthermore,

we assume that the eigenvalues of the expected information matrix are bounded from above

and below. We argue that this is quite a plausible requirement, since it guarantees that all

unidimensional restrictions of the parameter (i.e. curves of parameters) allow for standard

ML estimation. Furthermore we assume that the “long-run” variances for all the derivatives

of the log-likelihood are uniformly bounded.

Heuristically, for large n the average of n such expression differs from its expectation by

O(1/
√
n). We also assume that for some bounded “neighborhood” O of the parameter,

Eθ

(
sup
θ∈O

∣∣∣∣ ∂3`t(θ)

∂θi∂θj∂θk

∣∣∣∣) ≤M (2.2)

We do not want to assume that the parameter space Θ is the whole RN This may be

inconvenient. Consider e.g. the case of z-transforms of autoregressive parameters. The

parameters have to be such that there are no zeroes in or on the unit circle. It would be very

inconvenient to describe this set of these parameters directly. We will later on describe some

of the assumptions of the parameter set. We assume, however, that our parameterspace is
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an open set in a topology where consistent estimation of the parameter θ is possible.

We construct our prior distribution by starting with a product of Gaussian distributions

with zero mean and variances c2
i . The support of theses measures is, however, the whole

space RN. So we have to restrict our prior distribution to our parameter space Θ. Let

C−1 = diag(c2
i ). To exclude trivial cases, we assume that

G(0, C−1)(Θ) > 0.

Let us suppose that

k8ck = o(1). (2.3)

This condition is a bit stringent. Essentially we assume that the function describing the

parameter θ is differentiable eight times, a bit extreme even for nonparameterics. However

it should be possible to reduce the smoothness requirements to a reasonable form. We will

be rather wasteful when we compute bounds for matrices with increasing dimensions. Let

us now define

(An)i,j =

(
n∑
t=1

∂2`t(θ̂)

∂θi∂θj

)
.

Then we have the following theorem.

Theorem 8. Assume the above conditions are met. Let Πn be the posterior distribution of

the parameter θ, and let θ̂n be the ML-estimator for first n1/7 entries, holding the rest zero.

Then the total variation of the difference between Πn and G((An + C)−1Anθ̂n, (An + C)−1)

converges to zero in probability with respect to Pn.

The Πn depends on data, and is a random probability measure onRN. It can be seen that

the “mean” of the posterior distribution is not the ML-estimator, but some kind of “shrinkage

estimator”. We can think of the estimator as a linear combination of ML-estimator and

prior mean, which we have set to zero. Moreover, it can be seen that (An + C)−1Anθ̂n is
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asymptotically equivalent to the penalized ML estimator that maximizes

∑
lt(θ)− θ′Cθ/2. (2.4)

The proof is very technical, and is postponed to the appendix. Any Bayesian estimator,

especially the conditional mean of a parameter is admissible by construction. The conditional

mean of a parameter is evidently the estimator with minimum variance. However, our

estimator is not exactly the Bayesian estimator, but only so asymptotically. Hence it is not

even known if the expectation of the estimator exists.

Let us take an arbitrary estimator θ̃ and some matrices Bn (which select the components

we are interested in) and consider the quadratic distance

Q(θ̃) = (θ − θ̃)′BnB
′
n(θ − θ̃).

Typical examples includes

• Bn projects on finitely many components of θ: finitely many parameters;

• B′n = (1,1,...): Sum of parameters, “long-term” parameters. It now would be natural

to try to minimize “average” Q(θ̃) over all estimators.

The main problem is the fact that for many estimators, Q(θ̃) may have very nice asymp-

totic properties, but the expectation does not exist, or would be hard to compute. Typical

examples are the usual ML estimators for finite-dimensional parameters. The estimation

errors are asymptotically normal, but the exact moments are often unknown. Therefore we

classify estimators according to

Ef(Q(θ̃)),

where E is the expectation wrt to prior(s) and f is from a class of "squashing function".
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Each of such function is bounded, but the class should be large enough to approximate the

identity function.

A "Classical Example" is Le Cam theory. A function φ(.) defined on a finite dimensional

vector space is called “bowl-shaped” if it is bounded and its level-sets are symmetric and

convex. In this context, Anderson’s lemma (cf. Strasser, 1995) guarantees that the expec-

tations of all bowl-shaped functions of estimation errors are minimized by the mean of the

asymptotic normal distribution. In fact, Anderson’s lemma allows us our next asymptotic

result. Let b = (b1, b2, . . . ) be a sequence that

∑
b2
k/ck <∞. (2.5)

The difference of the posterior distribution of b′θ and G(b′(An + C)−1Anθ̂n, b
′(An + C)−1b)

converges to zero. Let

σn =
√
b′(An + C)−1b. (2.6)

Then the posterior distribution of

b′θ − b′(An + C)−1Anθ̂n (2.7)

converges to a standard normal. Now let f(.) be a “bowl shaped” function defined over the

real line. We have the following theorem.

Theorem 9. Let µ̂n = b′(An + C)−1Anθ̂n, where b satisfies (5). Let σn be defined as (6).

Then for any “bowl shaped” function f and any other estimator µ̃n, we have

lim sup
n→∞

Ef((µ̂n − b′θ)/σn)− Ef((µ̃n − b′θ)/σn) ≤ 0.

Hence the best estimator for b′θ is b′(An+C)−1Anθ̂n. For the next result, we use a specific
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class of loss functions but allow for more general “scaling matrices”.

Let f : [0,∞)→ [0,∞) be “completely monotone”, i.e. differentiable infinitely often, and

(−1)kf (k)

is negative. Typical examples include exp(−sx), a
b+cxa

, and f(x) = ax
x+a

for arbitrary a > 0.

Let

An :=
∑(

∂`

∂θ

)(
∂`

∂θ

)′
≈ −

∑ ∂2θ

∂θ2
.

Then we call Bn “reasonably normed" if and only if

tr(B′n(An + C)−1Bn) = O(1).

Furthermore, observe that

B′n(An + C)−1Bn

= B′n
√
C
−1

(
√
C
−1
An
√
C
−1

+ I)−1
√
C
−1
Bn.

We are now ready to state and prove the following theorem.

Theorem 10. Assume that total variation of the difference between the posterior distribution

for the parameter θ and G(θ̂, (An + C)−1) converges to zero for some estimator θ̂. Let θ̃ be

an arbitrary estimator. Then the following propositions are equivalent.

1. For “ reasonably normed” Bn, (θ̃− θ̂)′BnB
′
n(θ̃− θ̂) does not converge to 0 stochastically

wrt Pn

2. For one (nontrivial) of our loss functions f

lim
(
Ef(Qn(θ̃))− Ef(Qn(θ̂))

)
> 0.
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3. For all of our loss functions f ,

lim
(
Ef(Qn(θ̃))− Ef(Qn(θ̂))

)
> 0.

Proof: The structure of completely monotonic functions is well known. Bernstein’s The-

orem (cf. Bernstein (1928)) guarentees that every completely monotonic function f can be

written as

g(x) =

∫ ∞
0

exp(−sx)dµ(x).

Hence it suffices to analyse

En exp(−sQn(θ̃))− En exp(−sQn(θ̂))

Observe that

θ̃ − θ = (θ̃ − θ̂) + (θ̂ − θ)

and therefore

exp(−sQn(θ̃)) = exp(−(θ̃ − θ̂)′sBnB
′
n(θ̃ − θ̂)) (2.8)

exp(−(θ̃ − θ̂)′2sBnB
′
n(θ̃ − θ̂))

exp(−(θ̃ − θ)′sBnB
′
n(θ̃ − θ))

Now compute

En(exp(−sQn(θ̃))/X1, ...Xn).

The first factor of exp(−sQn(θ̃)) is X1, ...Xn measurable and therefore can be taken outside

of the conditional expectation.

Moreover, the conditional expectation of a function of θ is exactly the expectation with
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respect to the posterior distribution.

We did assume that the difference of the posterior and normal with expectation θ̂ and

variance (An + C)−1 converges to zero. Since all the function involved are bounded, we

can asymptotically replace the posterior with the normal. For easier manipulation of the

infinite-dimensional matrices, observe that (An+C)−1 =
√
C
−1

(
√
C
−1
An
√
C
−1

+I)−1
√
C
−1
.

Then the integral of the exponentiated quadratic expression wrt a Gaussian can be cal-

culated in closed form, as in the finite dimensional case.

The integral for the two factors

exp((θ̃ −ˆ̃)′(sBnB
′
n)(An + 2sBnB

′
n + C)−1(sBnB

′
n)(θ̃ −ˆ̃)/2)

can be reduced to

√
det(
√
C
−1
An
√
C
−1

+ I)/ (2.9)√
det(
√
C
−1
An
√
C
−1

+ I +
√
C
−1
Bn

√
C
−1

). (2.10)

Since we assumed that the diagonal elements of C−1 decrease rapidly, the corresponding

determinants are well defined even if An and Bn are infinite matrices. See Lang (1993) for a

detailed reference to the trace class operators.

Now observe that En exp(−sQn(θ̃)) is asymptotically equivalent to the product of

exp(−(θ̃ − θ̂)′sBnB
′
n(θ̃ − θ̂))+ (2.11)

exp((θ̃ − θ̂)′(sBnB
′
n)(An + 2sBnB

′
n + C)−1(sBnB

′
n)(θ̃ − θ̂)/2) (2.12)
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and √
det(
√
C
−1
An
√
C
−1

+ I)√
det(
√
C
−1
An
√
C
−1

+ I +
√
C
−1
Bn

√
C
−1

)

. (2.13)

The second factor does not depend on (θ̃ − θ̂), and hence represents En exp(−sQn(θ̂)). The

first one is equal to

exp(−(θ̃ − θ̂)′Hn(θ̃ − θ̂)),

where

Hn = sBnB
′
n − (sBnB

′
n)(An + 2sBnB

′
n + C)−1(sBnB

′
n)/2,

which is positive definite. Hence the expectation is smaller than 1 if θ̃ − θ̂ are different.

The first factor depends on Bn, our norming of Bn guarantees that Hn does not vanish

asymptotically.

2.3 Conclusing Remarks

The theorems here establish some asymptotic optimality properties of a “shrunken” ML-

estimator. The restrictions on the parameter are quite severe. We have to assume that, if

the parameter is interpreted as a function, this function has to be differentiable 8 times. We

believe that future research will make it possible to relax this rather stringent requirement.

Another promising line of research are empirical Bayesian methods. Assuming the ck e.g.

to be of the form An−γ. Theoretically, with an astronomical amount of data, one should be

able to estimate A and γ consistently. Obviously this is not realistic for many applications.

Nevertheless, this raises the questions what kind of inference on the hyper-parameters is

possible.

Another venue are priors where the ck decay exponentially. Preliminary results indicate

that the resulting estimators are sieve estimators with sieve length proportional to the loga-
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rithm of time. More interestingly, this optimal length of the sieve would also be achieved by

using AIC or BIC. Hence this theory could be used to derive optimality results for standard

techniques of inference. Moreover, doing so also highlights the strong and possibly weak

points of these techniques.
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Chapter 3

Optimal Model Dimension through the

AIC

Coauthored with Werner Ploberger

3.1 Introduction

In the case of finite-dimensional parameters, the theory of optimal estimation is already

well established and the theory is well presented in textbooks like van der Vaardt (2000) and

Strasser (1996). However, there is no comprehensive theory of optimal estimators in the case

of infinite number of estimators. One of the classical optimality results is that of Shibata

(1973), which shows under some mild regularity conditions, the AIC criterion (Akaike, 1973)

chooses the best estimator among sieve estimators.

In this paper, we show the equivalence between a class of Bayesian estimators and the

AIC selection of sieve estimators. We make very strong assumptions on the class of prior

distributions. Suppose the parameters are drawn from such a prior distribution, the best

estimator is then simply the estimator that minimizes posterior risks given the data. There-
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fore when such priors are appropriate, through the equivalence results, the AIC estimator

is asymptotically optimal among all other estimators. Many papers in the literature have

justified certain information criterion based on a Bayesian rationale. Such as the Bayesian

Information Criterion (Schwarz, 1978) and the Posterior information criterion (Phillips and

Ploberger, 1994). Our paper differs from these literature because our prior distribution is

not dismissible asymptotically.

Consider the linear model of the following form

y(t) = x(t)′β + u(t),
1

where the data is generated in the following way. There is a constant λ ∈ (0, 1) such that

β(i) ∼ N (0, λi) independent over i, and β(i) does not vary with t. The random error term u(t)

is iid N (0, 1). We assume that there are a number of regressors x(t) = {x(t,n)}n=1,... and they

are taken as given. Let the X be an T ×n matrix with orthogonal columns, and each column

has Euclidean norm
√
T . The number of regressors n is diverging in T that n = O(

√
T ). We

call the dth model the one that include all the first d regressors Xd. Our main result shows

that asymptotically, the AIC optimal model choose the − lnT/ lnλ-th model. If n grows

slower than − lnT/ lnλ, our result implies the largest model is the best model.

The assumptions on the design matrix can be naturally satisfied in several applications.

For example, in estimating non-linear function using higher order polynomials, one can apply

the Gram-Schmidt process to X and obtain a set of orthogonal regressors of polynomials in

increasing degree. As an other example, in factor models, usually the factors are estimated

as principal components, which are orthogonal regressors. The principal components are

also ordered naturally according to their variances.

The family of prior distributions is the following data generating process.
1We use subscript parathesis X(t) to indicate the tth item in the vector. If we use a subscript Xt without

parenthesis, it means the sub-vector consisting of the 1st to tth item.
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3.2 AIC and the OLS regression problem

We use the simple OLS estimator, when we select the first d regressors, the estimator is

(Xd′Xd)
−1Xd′Y .

and the AIC for d regressors is defined to be T
2

ln(σ̂2(d)) + d where σ̂2(d) is simply the MLE

estimator of the error when d regressors are included into the regression. Hence

σ̂2(d) =
1

T
(Y −Xd(Xd′Xd)

−1Xd′Y )′(Y −Xd(Xd′Xd)
−1Xd′Y )

=
1

T
((I − Projd)(Xnβn + u)) ′ ((I − Projd)(Xnβn + u))

=
1

T
(βn′Xn′Proj⊥d Xnβn + u′Proj⊥d u− 2u′Proj⊥d Xnβn)

Where Projd := Xd(Xd′Xd)
−1Xd and Proj⊥d := I − Projd. It follows from the orthogo-

nality of X that

Xn′Proj⊥d Xn = T

 0d ∗

∗ 1n−d


where the 0d represents a d× d zero matrix and 1n−d is an (n− d)× (n− d) identity matrix.

Hence

σ̂2(d) =
n∑

i=d+1

β2
(i) +

1

T

T∑
i=d+1

u2
(i) −

2

T
u′Proj⊥d Xnβn.

2

We observe that
2 Since u is a standard normal vector, we can specify the coordinate in whichever way we want, hence

the subscript (i) picks the dimensions that is exactly in the basis of Proj⊥d and should not be confused with
the subscript of the β. Hence for example, au′Proj⊥d u− u′Proj⊥d+Cu is the sum of n− d independent χ2(1)
random variables scaled by (a− 1) plus another C independent χ2(1) random variables.
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• since β(i) is normal of variance λi, β2
(i) is a χ

2
1 distribution scaled by a factor λi, therefore

it has mean λi and variance 2λ2i.

• Moreover, each u2
(i) is a χ

2
1 random variable hand has expectation 1 variance 2.

• Denote 2
T
u′Proj⊥d Xnβn by ε(d). It has expectation 0, whether one takes βn fixed or

not. Hence its variance is simply

4

T 2
E
[
βn′Xn′Proj⊥d uu′Proj⊥d Xnβn

]
.

When we take βn as given and take expectation over u, we get the conditional variance

given βn. When we take expectation over β and u we get the unconditional variance.

They are respectively

4

T

n∑
i=d+1

β2
(i) and

4

T

n∑
i=d+1

λi =
4

T

1− λn−d

1− λ
λd+1.

3.2.1 Comparing asymptotic AIC(d) and AIC(d + C) when d :=

− lnT/ lnλ

We want to give a bound on the probability that for a fixed large C, the probability that AIC

is minized at d+C as T →∞. Such probability is bounded above by limT→∞ Pr(AIC(d) ≥

AIC(d+C)). It is easy to see that AIC(d) ≥ AIC(d+C) for some constant C if and only

if

σ̂2(d) ≥ e2C/T σ̂2(d+ C),

In other words

n∑
i=d+1

β2
(i) +

1

T

T∑
i=d+1

u2
(i) − ε(d) ≥ e2C/T

(
n∑

i=d+C+1

β2
(i) +

1

T

T∑
i=d+C+1

u2
(i) − ε(d+ C)

)
.
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We rewrite it with a normalization T/C on both hand sides and get

T

C

d+C∑
i=d+1

β2
(i)

≥T
C

(e2C/T − 1)

(
n∑

i=d+C+1

β2
(i) +

1

T

T∑
i=d+C+1

u2
(i)

)
− 1

C

d+C∑
i=d+1

u2
(i)

− T

C
e2C/T ε(d+ C) +

T

C
ε(d)

The expectation of LHS is

T

C

d+C∑
i=d+1

λi =
T

C
λd+1 1− λC

1− λ
=
λ

C

1− λC

1− λ

when we plug in d := − lnT/ lnλ. The variance of LHS is

T 2

C2

d+C∑
i=d+1

2λ2i = 2
T 2

C2
λ2d+2 1− λ2C

1− λ2
= 2

(
λ

C

)2
1− λ2C

1− λ2

when we plug in d := − lnT/ lnλ. Hence the LHS is of order O( 1
C

).

On the other hand, the RHS has expectation

e2C/T − 1

C

(
T

n∑
i=d+C+1

λi + (T − d− C)

)
− 1

=
e2C/T − 1

C

(
Tλd+C+1 1− λn−d−C

1− λ
+ T − d− C

)
− 1

→ 2

T

(
λC+1 1− λn−d−C

1− λ
+ T − d− C

)
− 1→ 1

by first plug in d := − lnT/ lnλ and take T →∞.

The variance of RHS is bounded by the following term multiplied by 2 (to take care of
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the covariances)

(
e2C/T − 1

C

)2
(
T 22

n∑
i=d+C+1

λ2i +
T∑

i=d+C+1

2

)
+

d+C∑
i=d+1

2

C

+

(
T

C

)2

e4C/TV ar[ε(d+ C)] +

(
T

C

)2

V ar[ε(d)]

→ 4

T 2

(
2λ2C+2 1− λ2(n−d−C)

1− λ
+ 2(T − d− C)

)
+

2

C

+

(
T

C

)2

e4C/T 4

T

1− λn−d−C

1− λ
λd+C+1 +

(
T

C

)2
4

T

1− λn−d

1− λ
λd+1

→ 2

C
+

4

C2

1− λn−d−C

1− λ
λC+1 +

4

C2

1− λn−d

1− λ
λ

by first plug in d := − lnT/ lnλ and take T →∞.

It can be seen that LHS is of order O( 1
C

). The first two terms in the RHS equals 2− χ2(C)
C

which is a Chi-square C degree of freedom variable multiplied by a factor of −1/C and then

translated two units to the right. The last two terms is of order O( 1
C

). Moreover, it is clear

that the above limits are uniform for all C ∈ [0, n] as long as n/T → 0.

Therefore, for any large enough C ≤ n, the probability that LHS ≥ RHS is approximately

Pr(0 ≥ 2− 1/Cχ2(C)) = Pr(χ2(C) > 2C)

=

∫ ∞
2C

1

2C/2Γ(C/2)
xC/2−1e−x/2dx

=
Γ(C/2, C)

Γ(C/2)

≤dC/2− 1e!
bC/2− 1c!

e−C
dC/2−1e∑
k=0

Ck

k!

≤2e−C
dC/2−1e∑
k=0

Ck

k!
≤ 2e−C

C/2√
πC

(
e

2

)C/2
=

√
C

π
(2e)−C/2,

where we used properties of the incomplete Gamma function3 and Stirling’s approxi-
3 Weisstein, Eric W., "Incomplete Gamma Function", MathWorld. (equation 2)
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mation. Hence we conclude that as T → ∞ the probability that d + C minimizes AIC is

bounded by
√

C
π

(2e)−C/2 for all large C.

3.2.2 Comparing asymptotic AIC(d) and AIC(d − C) when d :=

− lnT/ lnλ

On the other hand, we want to give a bound on the probability that for a fixed large C, the

probability that AIC is minized at d− C as T →∞. Such probability is bounded above by

limT→∞ Pr(AIC(d) ≥ AIC(d− C)).

AIC(d) ≥ AIC(d− C) if and only if e2C/T σ̂2(d) ≥ σ̂2(d− C). Apply the scaling λC−1T

to both hand sides, we rewrite the inequality in the following way:

λC−1

[
T (e2C/T − 1)

(
n∑

i=d+1

β2
(i) +

1

T

T∑
i=d+1

u2
(i)

)
−

d∑
i=d−C+1

u2
(i)

]

− λC−1Te2C/T ε(d) + λC−1Tε(d− C)

≥λC−1T
d∑

i=d−C+1

β2
(i)

Expectation of LHS is

λC−1

[
T (e2C/T − 1)

(
n∑

i=d+1

λi +
1

T
(T − d)

)
− C

]

=λC−1

[
2C

(
λd+1 1− λn−d

1− λ
+
T − d
T

)
− C

]
→λC−1C

when we take d = − lnT/ lnλ and then take T → ∞. The variance of LHS is bounded by
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two times the following:

λ2C−2

[
(T (e2C/T − 1))2

(
n∑

i=d+1

2λ2i +
1

T 2
2(T − d)

)
+ 2C

]

+ λ2C−2

[
(T (e2C/T ))2 4

T
λd+1 1− λn−d

1− λ
+ T 2 4

T
λd−C+1 1− λn−d+C

1− λ

]
→λ2C−24C2

(
2
λ2

T 2

1− λ2n−2d

1− λ
+

2(T − d)

T 2

)
+ 4λ2C−1 1− λ2n−2d

1− λ
+ 4λC−1 1− λn−d+C

1− λ

→4λ2C−1 1

1− λ
+ 4λC−1 1

1− λ

when we take d = − lnT/ lnλ and then take T →∞. Hence the LHS is of order O(λC/2)

Now consider RHS, it can be seen that

RHS = λC−1T
d∑

i=d−C+1

β2
(i) > λC−1Tβ2

(d−C+1) ∼ χ2(1)

after taking d = − lnT/ lnλ.

Hence it can be seen that for any fixed large C, the probability that LHS≥RHS is bounded

above by the probability that LHS≥ χ2(1). This is approximately

Pr(λC/2 > χ2(1)) =

∫ λC/2

0

1√
2Γ(1/2)

x−1/2e−x/2dx ≤
∫ λC/2

0

x−1/2dx = λC/4

for all large C. Hence we conclude that as T → ∞ the probability that d − C minimizes

AIC is bounded by λC/4 for all large C.

3.3 The Bayesian problem

Our Bayesian problem can be formulated in a slightly more general case of the infinite dimen-

sional space. However since there is no density function available in infinite dimensional sit-

uations, finding the posterior measure in infinite dimensional space requires Radon-Nikodym
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derivative. A general treatment of the subject can be found in Stuart (2010).

The standard result gives that the posterior mean vector of β is

β̂ := Σ1/2
(
Σ1/2X′XΣ1/2 + I

)−1
Σ1/2X′(Xβ + u)

Let Q := Σ1/2
(
Σ1/2X′XΣ1/2 + I

)−1
Σ1/2, then β̂ = QX′(Xβ + u).

and the posterior variance covariance

Eposterior[(β − β̂)′(β − β̂)] = Σ1/2(Σ1/2X′XΣ1/2 + I)−1Σ1/2.

Since X′X = TI, β̂(i) = Tλi

Tλi+1
β(i) + λi

Tλi+1
X(i)′u. For any given i, the second term goes to

0 as T →∞ since X(i) and u are not dependent. On the other hand Tλi

Tλi+1
is approximately

1 for large T and small i, and approximately 0 for large i. It can be easily check that

the first term is approximately β(i) for the first − lnT/ lnλ − C coordinates, and they are

approximately 0 for i ≥ − lnT/ lnλ+C for some C depends only on λ. This shows that the

AIC from the previous section would select approximately the same number of regressors

asymptotically.

3.4 Asymptotic equivalence

3.4.1 l2 equivalence

Let β̃ be the AIC estimate and β̂ be the bayesian estimate. Then we have the following two

theorems.

Theorem 11. Under our assumptions, we have

Eu||β̃ − β̂||22 = o
(
Eu||β − β̂||22

)
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e.g. the difference between the estimators is a magnitude smaller than the estimation error.

For some d∗ is optimally chosen by AIC between 1, 2, . . . , n, it is readily seen that

β̃ = (Xd∗ ′Xd∗)
−1Xd∗ ′(Xβ + u) and β̂ = QX′(Xβ + u)

Notice that the two estimates is of different dimensions, β̃ has d∗ non-trivial dimensions and

we would fill the remaining dimensions with 0. Notice that by definition, Q is a diagonal

matrix. Hence we can write Qd∗ be the top left d∗ × d∗ square submatrix and Qd∗+ be the

(n− d∗)× (n− d∗) be the submatrix at the bottom right cornor. Hence

β̂d∗ = Qd∗X′d∗(Xβ + u) and β̂d∗+ = Qd∗+X′d∗+(Xβ + u).

And therefore, ||β̃ − β̂||22 = ||β̃ − β̂d∗||22 + ||β̂d∗+||22.

Proof. We can expand the expression and get

||β̃ − β̂||22 =||β̃ − β̂d∗||22 + ||β̂d∗+||22

=||(Xd∗ ′Xd∗)
−1Xd∗ ′(Xβ + u)−Qd∗X′d∗(Xβ + u)||22 + ||Qd∗+X′d∗+(Xβ + u)||22

≤||((Xd∗ ′Xd∗)
−1 −Qd∗)Xd∗ ′Xβ||22 + ||Qd∗+X′d∗+Xβ||22

+ ||((Xd∗ ′Xd∗)
−1 −Qd∗)Xd∗ ′u||22 + ||Qd∗+X′d∗+u||22

=
d∗∑
i=1

(
β(i)

1 + Tλi

)2

+
n∑

i=d∗+1

(
Tλiβ(i)

1 + Tλi

)2

+ ||((Xd∗ ′Xd∗)
−1 −Qd∗)Xd∗ ′u||22 + ||Qd∗+X′d∗+u||22

The third and the fourth term can be separated into the norm contributed from the first
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d∗ terms in u and the remaining terms. i.e.

||((Xd∗ ′Xd∗)
−1 −Qd∗)Xd∗ ′u||22 + ||Qd∗+X′d∗+u||22

=u′Xd∗
(
(Xd∗ ′Xd∗)

−1 −Qd∗
)2
Xd∗ ′u+ u′Xd∗+Q

2
d∗+Xd∗+′u

Take any C = ln ln d for d := − lnT/ lnλ, by our previous analysis, we have that d − C <

d∗ < d+ C as T →∞. Hence for T large enough, we can bound the above expression by

||((Xd∗ ′Xd∗)
−1 −Qd∗)Xd∗ ′u||22 + ||Qd∗+X′d∗+u||22

<u′Xd+C

(
(Xd+C ′Xd+C)−1 −Qd+C

)2
Xd+C ′u+ u′X(d−C)+Q

2
(d−C)+X(d−C)+′u

Taking expectation over u the above expression can be expressed in terms of trace, i.e.

from E[uu′] = I we have

=tr
((

(Xd+C ′Xd+C)−1 −Qd+C

)2
Xd+C ′E[uu′]Xd+C

)
+ tr

(
Q2

(d−C)+X(d−C)+′E[uu′]X(d−C)+

)
=

d+C∑
i=1

(
1

T
− λi

1 + λiT

)2

T +
T∑

i=d−C+1

Tλ2i

(1 + λiT )2

≤
d+C∑
i=1

1

T (Tλi + 1)2
+

T∑
i=d−C+1

λ2iT

≤
d+C∑
i=1

λ−i

T 2
+ Tλ2d−2C+2 1− λT−d+C

1− λ

=λ−1 1

T 2

λ−dλ−C − 1

λ−1 − 1
+ Tλ2dλ−2Cλ2 1− λT−d+C

1− λ

Since λd = 1/T and λC = (ln d)lnλ, the above expression becomes

λ−1

λ−1 − 1

(ln d)− lnλ

T
− λ−1

λ−1 − 1

1

T 2
+

(ln d)−2 lnλ

T

1− λT−d+C

1− λ
= O

(
(ln d)−2 lnλ

T

)
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Therefore,

Eu||β̃ − β̂||22 =
d∗∑
i=1

(
β(i)

1 + Tλi

)2

+
n∑

i=d∗+1

(
Tλiβ(i)

1 + Tλi

)2

+ Eu||((Xd∗ ′Xd∗)
−1 −Qd∗)Xd∗ ′u||22 + Eu||Qd∗+X′d∗+u||22

≤
d+C∑
i=1

(
β(i)

1 + Tλi

)2

+
n∑

i=d−C

(
Tλiβ(i)

1 + Tλi

)2

+O

(
(ln d)−2 lnλ

T

)

≤
d+C∑
i=1

(
β(i)

Tλi

)2

+
n∑

i=d−C+1

(
Tλiβ(i)

)2
+O

(
(ln d)−2 lnλ

T

)

for large enough T . The first term has mean 1
T 2λ

−1 λ−d−C+1−1
λ−1−1

= O
((ln d)− lnλ

T

)
and variance

2
T 4λ

−2 λ−2d−2C−1
λ−2−1

= O
((ln d)−2 lnλ

T 2

)
, hence the first term is of order O

((ln d)− lnλ

T

)
. The second term

has mean T 2λ3dλ−3Cλ3 1−λ3(n−d+C)

1−λ3 = O
((ln d)−3 lnλ

T

)
and variance 2T 4λ6dλ−6Cλ6 1−λ6(n−d+C)

1−λ6 =

O
((ln d)−6 lnλ

T 2

)
, hence the second term is of order O

((ln d)−3 lnλ

T

)
. Therefore we conclude that

Eu||β̃ − β̂||22 ≤ O

(
(ln d)− lnλ

T

)
+O

(
(ln d)−3 lnλ

T

)
+O

(
(ln d)−2 lnλ

T

)
= O

(
(ln d)−3 lnλ

T

)
.

On the other hand, we can get a Chi-square lower bound by comparing the first d∗ terms

in the true parameter β and AIC estimate β̃.

||β̃ − β||22 ≥||(Xd∗ ′Xd∗)
−1Xd∗ ′(Xβ + u)− βd∗||22

=u′Xd∗(Xd∗ ′Xd∗)
−1(Xd∗ ′Xd∗)

−1Xd∗ ′u

≥u′Xd−C(Xd−C ′Xd−C)−1(Xd−C ′Xd−C)−1Xd−C ′u,

hence the lower bound follows some scaled Chi-square distribution of d−C degree of freedom.
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Taking expectation over u we have

Eu||β̃ − β||22 ≥Eu[u′Xd−C(Xd−C ′Xd−C)−1(Xd−C ′Xd−C)−1Xd−C ′u]

=tr((Xd−C ′Xd−C)−1Xd−C ′Eu[uu′]Xd−C(Xd−C ′Xd−C)−1)

=
d− C
T

Therefore

Eu||β̃ − β̂||22 = o(Eu||β̃ − β||22)

as T → ∞. We have therefore shown that β̂ and β̃ are asymptotically equivalent under l2

norm.

3.4.2 Equivalence under linear projections

Not only the global distance between the two estimators is smaller than the estimation

error, this is also true for many of the linear projections of the estimator. For all vectors B,

B′(β − β̂)) is normal. We show that for all vectors B satisfying some restrictions B′(β̃ − β̂)

is of smaller order than the standard deviation of B′(β − β̂)). For this to hold, we need to

require that the components of B = (b(i))
∞
i=1 are all of the same order of magnitude.

Definition 12. We say the partial sum of a sequence Sn :=
∑n

i=1 b
2
i is of slow growth if for

any constant C

lim
n→∞

Sn+C

Sn
= 1.4

Theorem 13. If B = (b(i))
∞
i=1 whose squared partial sum is of slow growth, then B′(β̃ − β̂)

is of smaller order than the standard deviation of B′(β − β̂).
4 Kapoor and Nautiyal (1981) studied classes of functions of various speeds of growth, our definition of

slow growth here satisfies the more general hypothesis (H, ii) in their paper, but not necessarily the more
restrictive ones (H, iii)− (H, v).
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Recall that we have

β̃ − β̂ =



. . .

1
1+λiT

β(i) + 1
1+λiT

1
T

(X′u)(i)

. . .

− Tλj

1+λjT
β(j) − λj

1+λjT
(X′u)(j)

. . .


and β − β̂ =


. . .

1
1+λkT

β(k) − λk

1+λkT
(X′u)(i)

. . .



where 1 ≤ i ≤ d∗ < j ≤ n and 1 ≤ k ≤ n.

When B′ = (b1, b2, . . .) is just a row vector, consider B′(β − β̂), it follows a mean zero

normal distribution with variance

n∑
i=1

((
bi

1 + λiT

)2

λi +

(
λibi

1 + λiT

)2

T

)
≥

d∑
i=1

(
λibi

1 + λiT

)2

T

≥O
(

1

T

) d∑
i=1

b2
i

hence B′(β − β̂) is of order greater or equal to O
(

1√
T

)√∑d
i=1 b

2
i for d := − lnT/ lnλ.

To prove the theorem, we will show that B′(β̃−β̂) = o

(√∑d
i=1 b

2
i

T

)
under the assumption

that
∑n

i=1 b
2
i is of slow growth. Before we present the proof, we first prepare the following

lemma.

Lemma 14. Suppose Sd :=
∑d

i b
2
i is of slow growth, then for any λ ∈ (0, 1), and any constant

C, and n such that limd→∞ d/n→ 0, the following limits hold as d→∞:

∑d+C
i=1 b2

iλ
d+C−i∑d

i=1 b
2
i

→ 0; and
∑n−d+C

j=1 b2
j+d−Cλ

j∑d
i=1 b

2
i

→ 0.
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Proof. To establish the first limit, observe that for any λ ∈ (0, 1)

λ× λk−i = λk+1 + (1− λ)
k∑

j=k−i+1

λj.

Hence

∑d+C
i=1 b2

iλ
d+C−i∑d

i=1 b
2
i

=

∑d+C
i=1 b2

iλ
d+C+1

λSd
+

(1− λ)
∑d+C

i=1 b2
i

∑d+C
j=d+C−i+1 λ

j

λSd

=
Sd+Cλ

d+C+1

λSd
+

(1− λ)
∑d+C

j=1

∑d+C
i=d+C−j+1 b

2
iλ

j

λSd

The first term goes to 0 as d→∞. The second term can be decomposed into two parts

∑d+C
j=1

∑d+C
i=d+C−j+1 b

2
iλ

j

Sd

=

∑K
j=1

∑d+C
i=d+C−j+1 b

2
iλ

j

Sd
+

∑d+C
j=K+1

∑d+C
i=d+C−j+1 b

2
iλ

j

Sd

≤
∑K

j=1 λ
j(Sd+C − Sd+C−K)

Sd
+

∑d+C
j=K+1 λ

j
∑d+C

i=d+C−j+1 b
2
i

Sd+C

Sd+C

Sd

≤
∑K

j=1 λ
j(Sd+C − Sd+C−K)

Sd
+

(
d+C∑

j=K+1

λj

)
Sd+C

Sd
.

For any fixedK, the first term goes to 0, the second term can be arbitrarily small by choosing

K large enough and that Sd+C
Sd
→ 1. This establishes the first limit.

To obtain the second limit, observe the following identity

λj = λk+1 + (1− λ)
k∑
i=j

λi.
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Therefore

∑n−d+C
j=1 b2

j+d−Cλ
j∑d

i=1 b
2
i

=

∑n−d+C
j=1 b2

j+d−Cλ
n−d+C+1

Sd
+

(1− λ)
∑n−d+C

j=1 b2
j+d−C

∑n−d+C
i=j λi

Sd

≤λn−d+C+1Sn
Sd

+
(1− λ)

∑n−d+C
i=1

∑i
j=1 b

2
j+d−Cλ

i

Sd

≤λn−d+C+1Sn
Sd

+
(1− λ)

∑K
i=1

∑i
j=1 b

2
j+d−Cλ

i

Sd
+

(1− λ)
∑n−d+C

i=K+1

∑i
j=1 b

2
j+d−Cλ

i

Sd

≤λn−d+C+1Sn
Sd

+
(1− λ)

∑K
i=1 λ

i(SK+d−C − Sd−C)

Sd
+

(1− λ)
∑n−d+C

i=K+1 λ
iSi+d−C

Sd

For any fixed K the second term goes to 0 as d → ∞ due to the slow growth assumption.

Now observe that

Sk = Sd

k−d∏
i=1

Sd+i

Sd+i−1

,

by the slow growth assumption, there exists d such that if d > d, Sd
Sd−1
≤ λ−1/2. Let k > d > d,

then

Sk ≤ Sdλ
−(k−d)/2.

Hence by choosing any K > C, the first and the third term is bounded by

λn−d+C+1Sn
Sd

+

∑n−d+C
i=K+1 λ

iSi+d−C

Sd

≤λn−d+C+1λ−(n−d)/2 +
n−d+C∑
i=K+1

λiλ−(i−C)/2

where the first term goes to 0 as n, d→∞ since d/n→ 0. The second term can be arbitrarily

small by choosing K large enough. This completes the proof.

Now we proceed to the proof of Theorem 3.
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Proof. Observe that B′(β̃ − β̂) can be separated into four terms. We will show that each of

the four terms is of order o
(√

Sd
T

)
.

|B′(β̃ − β̂)| ≤
d∗∑
i=1

| bi
1 + λiT

β(i)|+
d∗∑
i=1

| bi
1 + λiT

1

T
(X′u)(i)|

+
n∑

j=d∗+1

| bjTλ
j

1 + λjT
β(j)|+

n∑
j=d∗+1

| bjλ
j

1 + λjT
(X′u)(j)|

where the d∗ is determined optimally by AIC.

The First Term

Consider the first term, to show that it is of order o
(√

Sd
T

)
, we need to show that for

any M > 0 and for any ε > 0 arbitrarily small, there exists T such that if T > T ,

Pr

(√
T

Sd

d∗∑
i=1

| bi
1 + λiT

β(i)| > M

)
< ε.

From Section 2.1, we know that for any given large C,

Pr

(
d∗∑
i=1

| bi
1 + λiT

β(i)| >
d+C∑
i=1

| bi
1 + λiT

β(i)|

)
≤ δC

for some fixed δ ∈ (0, 1), d := − lnT lnλ as T →∞. For convenience, denote
∑d∗

i=1 |
bi

1+λiT
β(i)|

by Σ∗ and
∑d+C

i=1 |
bi

1+λiT
β(i)| by ΣC .

Pr

(√
T

Sd
Σ∗ > M

)

= Pr

(
{
√
T

Sd
Σ∗ > M}

⋂
{Σ∗ > ΣC}

)
+ Pr

(
{
√
T

Sd
Σ∗ > M}

⋂
{Σ∗ ≤ ΣC}

)

≤Pr
(
Σ∗ > ΣC

)
+ Pr

(√
T

Sd
ΣC > M

)
≤ δC + Pr

(√
T

Sd
ΣC > M

)
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Hence it is sufficient to show that Pr
(√

T
Sd

ΣC > M
)
goes to 0 for any C,M . Since ΣC is a

positive random variable, by markov inequality,

Pr

(√
T

Sd
ΣC > M

)
≤

√
T
Sd
E[ΣC ]

M

Since ΣC is a sum of half-normal random variable. We can calculate their expectations.

E[ΣC ] ≤
√

2

π

d+C∑
i=1

|bi|λi/2

λiT

=

√
2

π

λ−(d+C)/2

T

d+C∑
i=1

|bi|λ(d+C−i)/2

≤
√

2

π

λ−C/2√
T

√√√√∑d+C
i=1 b2

iλ
(d+C−i)/2∑d+C

i=j λ
(d+C−j)/2

d+C∑
j=1

λ(d+C−j)/2

=

√
2

π

λ−C/2√
T

√√√√d+C∑
i=1

b2
iλ

(d+C−i)/2

√
1

1− λ1/2

where we applied quadratic mean inequality to get the second inequality. Therefore

Pr

(√
T

Sd
ΣC > M

)
≤

√
T
Sd
E[ΣC ]

M

≤
√

2

π

√
1

1− λ1/2

λ−C/2

M

√∑d+C
i=1 b2

iλ
(d+C−i)/2

Sd

which goes to 0 by Lemma 1. Therefore, Pr
(√

T
Sd

Σ∗ > M
)
is arbitrarily small for any M

as T →∞. This shows the first term is of order o
(√

Sd
T

)
.

Other terms

For other terms, we can use similar arguments as above, by observing all the following
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probabilities are exponentially small in C. I.e. by Section 2, for all T large enough, there

exists a fixed δ ∈ (0, 1) such that

Pr

(
d∗∑
i=1

| bi
1 + λiT

1

T
(X′u)(i)| >

d+C∑
i=1

| bi
1 + λiT

1

T
(X′u)(i)|

)
≤ δC ;

Pr

(
n∑

j=d∗+1

| bjTλ
j

1 + λjT
β(j)| >

n∑
j=d−C+1

| bjTλ
j

1 + λjT
β(j)|

)
≤ δC ;

Pr

(
n∑

j=d∗+1

| bjλ
j

1 + λjT
(X′u)(j)| >

n∑
j=d−C+1

| bjλ
j

1 + λjT
(X′u)(j)|

)
≤ δC .

In addition, observe that

E

[
d+C∑
i=1

| bi
1 + λiT

1

T
(X′u)(i)|

]
≤
√

2

π

λ−C√
(1− λ)T

√√√√d+C∑
i=1

b2
iλ

d+C−i;

E

[
n∑

j=d−C+1

| bjTλ
j

1 + λjT
β(j)|

]
≤
√

2

π

λ−C/2√
(1− λ1/2)T

√√√√n−d+C∑
j=1

b2
j+d−Cλ

j/2;

E

[
n∑

j=d−C+1

| bjλ
j

1 + λjT
(X′u)(j)|

]
≤ E

[
n∑

j=d−C+1

|bjλj(X′u)(j)|

]

≤
√

2

π

λ−C√
(1− λ)T

√√√√n−d+C∑
j=1

b2
d−C+jλ

j.

All these expectations go to 0 after multiplied with
√

Sd
T
, hence by similar arguments for the

first term, all four terms are of order o
(√

Sd
T

)
.

We therefore conclude that

(β̃ − β̂)′BB′(β̃ − β̂) = o
(

(β − β̂)′BB′(β − β̂)
)

for all B of finite number of columns and each column B(i) satisfies the slow growth condition,

i.e.
∑n

j=1B
2
(ij) is of slow growth in n.
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3.5 Conclusion

We have shown that the AIC model selection would select approximately the same number of

parameters as the Bayesian method. The interpretation is that suppose the information we

have about the data generating is as described in the introduction, then given our knowledge

about the decreasing nature of the β(i)’s, our best estimator would be the bayesian estimator

β̂. However usually we cannot know the exact rate of decrease in the β(i)’s, and hence there is

usually no way of constructing such bayesian estimator in practice. The above analysis shows

that we do not need such a bayesian estimator because applying the AIC to sieve estimators

results in a good approximation to the Bayesian estimator. Therefore it is optimal compared

to every other estimator.

Moreover, although we have analyzed when σ2(β(i)) = λi for λ ∈ (0, 1), it can be seen

that the above argument carries through as long as σ2(β(i)) is decreasing even faster than

exponentially in i. Hence AIC is approximately the best estimator as long as the prior

knowledge for β(i) indicates an at least exponentially decreasing variances in i.
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Chapter 4

Moderate Expected Utility

Coauthored with Paulo Natenzon

4.1 Introduction

Consider a decision maker who is most likely to choose option x in a binary comparison

against y, and, in turn, most likely to choose option y in a binary comparison against z.

Denoting by ρ(x, y) the probability of choosing x over y and by ρ(y, z) the probability of

choosing y over z, we have

ρ(x, y) ≥ 1/2 and ρ(y, z) ≥ 1/2. (4.1)

A simple test of the transitivity of the decision maker’s choices may require the decision

maker to choose x most often in a binary comparison against z,

If (4.1) holds, then ρ(x, z) ≥ 1/2. (WST)

59



This basic postulate is known as weak stochastic transitivity. WST is the most permissive

condition under which an analyst may obtain a coherent ranking over the choice options

from binary choice data.

A more stringent transitivity criterion which is well-studied in the literature is strong

stochastic transitivity :

If (4.1) holds, then ρ(x, z) ≥ max {ρ(x, y), ρ(y, z)} . (SST)

Choice models that satisfy SST (such as the classic Logit model) are typically simple to

analyze but fail to accommodate many empirically relevant phenomena.

In this paper, we consider a less studied, intermediate condition calledmoderate stochastic

transitivity :

If (4.1) holds, then ρ(x, z) ≥ min {ρ(x, y), ρ(y, z)} . (MST)

As we show in this paper, MST allows for many empirically relevant choice patterns ruled

out by SST, and yet has significantly more empirical bite than WST.

Our main contribution is to characterize a family of parametric models of individual

choice that generates the entire range of observable choice behavior that satisfies MST. This

family can prove useful in applications where SST is violated, while at the same time allowing

the analyst to make sharper predictions out of sample than WST models.

Our main results are two representation theorems for choice behavior that exhibits a

moderate degree of transitivity. First, we write a slight strengthening of MST,

If (4.1), then


ρ(x, z) > min {ρ(x, y), ρ(y, z)}

or

ρ(x, z) = ρ(x, y) = ρ(y, z)

(MST+)

which we call moderate stochastic transitivity plus, or MST+.
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Theorem 18 shows that binary choice behavior over a finite set of alternatives satisfies

MST+ if and only if it can be represented by a moderate utility model (MUM). A binary

choice rule ρ is a MUM if there exists a utility function u and a distance metric d such that,

for all x 6= y,

ρ(x, y) = F

(
u(x)− u(y)

d(x, y)

)
(MUM)

where F is a strictly increasing transformation with F (t) = 1 − F (−t) for all t ∈ R. The

MST and MST+ postulates were formulated by [5] and [16], while the MUM formula was

proposed by [20]. Hence, the equivalence that we establish in Theorem 18 answers a question

that has been open for several decades.

In a MUM, the decision maker’s ability to discriminate between a pair of options x and

y depends on the difference in value u(x)−u(y) and on the dissimilarity of the options given

by the distance d(x, y). Note the role of the distance metric d: for a given difference in value

u(x)− u(y), larger values of the distance d(x, y) drive choice probabilities closer to 1/2. In

other words, more dissimilar options are more difficult to compare. The abstract metric d

does not have to be the standard metric of Euclidean space: in applications, d takes the

form of a statistical distance between random variables, angular distance between vectors in

multi-attribute settings, and so on. In Section 4.6, we show that specific functional forms

of u, d and F yield several familiar models from the discrete choice estimation literature.

These particular instances of MUM (such as the probit model with correlated shocks) were

developed as practical solutions to address violations of SST observed in data. Hence, our

Theorem 1 determines the empirical content of a class of models that have demonstrated

relevance in applications.

We next turn to the important question of measurement. Under what conditions can the

analyst separately measure utility and dissimilarity from observed choices? In Theorem 21,

we provide an answer by enriching the domain of choice options to include lotteries over the
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alternatives. By imposing continuity, linearity, and convexity assumptions, in addition to

MST+, our moderate expected utility model (MEM) characterization identifies (i) a unique

von Neumann-Morgenstern expected utility function over lotteries; (ii) a norm, induced by

an inner product on the relevant linear space, that is unique up to two scaling factors; and

(iii) a monotonic transformation F that is unique up to the same two scaling factors.

Section 4.6 relates our representation results to the existing literature. We show that

the MUM nests several classic binary choice models as special cases. Some special cases of

the MUM are also instances of the random utility model (RUM). We show that, despite

having a non-empty intersection, neither the MUM nor the RUM nest each other. Likewise,

we show that the MEM characterized in Theorem 21 neither nests nor is nested in the

random expected utility model studied by [17]. We conclude with a discussion of the possible

extensions of our model to incorporate choices over more than two options.

4.2 Moderate stochastic transitivity

Let Z be a finite set of choice options. A (binary, stochastic) choice rule on Z is a function

ρ : Z2 → [0, 1] such that ρ(x, y) +ρ(y, x) = 1 for every x, y ∈ Z. The number ρ(x, y) denotes

the probability that the decision maker selects option x in a binary comparison against y.

Let ∧ and ∨ denote the min and max operators, respectively, so that a ∧ b = min{a, b}

and a ∨ b = max{a, b}. The two most commonly studied notions of transitivity for binary

choice data are weak stochastic transitivity (WST) and strong stochastic transitivity (SST):

(WST) ρ(x, y) ∧ ρ(y, z) ≥ 1/2 =⇒ ρ(x, z) ≥ 1/2

(SST) ρ(x, y) ∧ ρ(y, z) ≥ 1/2 =⇒ ρ(x, z) ≥ ρ(x, y) ∨ ρ(y, z)

In this paper we focus on a less studied, intermediate form of transitivity called moderate

stochastic transitivity (MST):
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(MST) ρ(x, y) ∧ ρ(y, z) ≥ 1/2 =⇒ ρ(x, z) ≥ ρ(x, y) ∧ ρ(y, z)

The definitions clearly imply that SST ⇒ MST ⇒ WST. Our main results characterize the

set of choice rules that satisfy a slightly stronger version of MST, namely

(MST+) ρ(x, y)∧ρ(y, z) ≥ 1/2 =⇒ ρ(x, z) > ρ(x, y)∧ρ(y, z) or ρ(x, z) = ρ(x, y) = ρ(y, z).

The strengthening is the key to obtain our representation results. Note, however, that

the only difference between MST and MST+ is that the knife-edge case

ρ(x, y) ∨ ρ(y, z) > ρ(x, z) = ρ(x, y) ∧ ρ(y, z)

is allowed by MST but ruled out by MST+. Hence, MST and MST+ are empirically indis-

tinguishable: no finite amount of data allows an analyst to tell them apart.

Choice models that satisfy a moderate degree of transitivity in the form of MST or MST+

are convenient for two reasons. First, moderate transitivity holds in many applications in

which the more restrictive SST condition is violated. Hence, a choice model that satisfies

MST/MST+ but allows for violations of SST may provide the flexibility that is needed to

accommodate empirically relevant choice phenomena. Second, MST/MST+ are significantly

more restrictive than WST, and restricting the analysis to models that satisfy this stronger

postulate results in greater out-of-sample predictive power.

The classic Example 15, below, provides the intuition for why violations of SST must be

expected when some pairs of alternatives are easier to compare than others.

Example 15 (attributed to L. J. Savage, adapted from [35]). An individual has a difficult

time comparing a trip to Paris, denoted P and a trip to Rome, denoted R, so that she is

equally likely to pick either option ρ(P,R) = 1/2. The individual still has trouble deciding

if the trip to Paris is enhanced by a e 5 bonus, denoted by P+. In other words, ρ(P+, R)

is still approximately 1/2. But when pressed to decide between the two Paris trip options,
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the individual clearly prefers the bonus, so that ρ(P+, P ) is close to 1. SST requires that

ρ(P+, R) ≥ ρ(P+, P ) which is intuitively violated in this case, while MST+ only requires the

more plausible inequality ρ(P+, R) > ρ(P,R).

The lesson we glean from Savage’s Example 15 is that utility values cannot be the only

factor determining the difficulty of comparing two options. A small monetary bonus makes

the choice comparison between the two Paris trips very easy. The same monetary bonus

has negligible impact, however, on the difficulty of comparing a trip to Paris and a trip to

Rome. An important consequence is that models in which choice probabilities depend solely

on utility (such as the classic Logit model) fail to capture this intuitively plausible behavior.

Savage’s Example 15 was anticipated in the context of the theory of consumer choice

by [16]. [6] provides perhaps the earliest empirical demonstration of this intuition in an

experimental setting, while [37] provide the first clear empirical demonstration of this idea

in psychology. The evidence for systematic violations of SST in individual choices is very

robust. Reviewing some of this evidence, [27] note that “weak and moderate stochastic

transitivity are often satisfied, although a few exceptions have been noted”, while “[s]trong

stochastic transitivity is frequently violated.” Figures 4.2 and 4.2, below, illustrate how ease

of comparison drives violations of SST in individual choice experiments with human and

non-human subjects alike.

Relaxing SST to MST/MST+ allows the analyst to address the range of empirical phe-

nomena illustrated by the examples above. At the same time, MST/MST+ retain signifi-

cantly more empirical bite than WST. To see this, suppose the choice rule ρ on Z satisfies

WST. Enumerate the n options in Z = {x1, x2, . . . , xn} in such a way that ρ(xi, xj) ≥ 1/2

whenever i ≤ j. For the sake of simplicity, let us assume that choice probabilities differ

whenever possible, so that the set {ρ(x, y) ∈ [0, 1] : x 6= y} has maximum cardinality with

n(n− 1) elements.

When Z = {x1, x2, x3} has three alternatives, WST allows ρ to have six strict orderings.
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Figure 4.1: Binary choice frequencies violate SST but satisfy MST

[32] recorded thousands of choices by 21 male Caltech undergraduates using simple lotteries (p,m) that pay m dollars with

probability p in the lab. A high risk lottery h and a low risk lottery ` were fine-tuned to each individual to be approximately

indifferent, (i.e., equally likely to be chosen in a binary comparison). Slightly perturbed versions of h and ` were then offered

for comparison against several types of ‘decoy’ lotteries. Figure 4.2 depicts the relative location of two decoy lotteries 1 and

2 with respect to h and `. Decoy lottery 1 dominates ` and was chosen 95% of the time against ` but only 78% of the time

against h. Thus, choice frequencies violate SST in the direction 1→ `→ h. Decoy lottery 2, on the other hand, is dominated

by ` and was chosen 4% of the time against ` and 33% of the time against h. Hence, choice frequencies also violate SST in the

direction h→ `→ 2. It is easy to verify that MST+ holds in both cases.
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Figure 4.2: Binary choice frequencies violate SST but satisfy MST in [23].

[23] recorded hundreds of mating decisions by female túngara frogs. Female túngara frogs choose mates based on the sound of

their call. Figure 4.2 shows how the calls of the three male options A, B and C were differentiated along two attributes. In the

binary choice data, option B is chosen in 63% of the trials against A; option A is chosen in 84% of the trials against C; and

option B is chosen in 69% of the trials against C. Choices therefore satisfy MST+ but violate SST.
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MST+, which is equivalent to MST in this case, rules out the last two of the six strict

orderings, where ρ(x1, x3) < ρ(x2, x3) ∧ ρ(x1, x2). Let #WST (n) = [n(n− 1)/2]! denote the

number of strict orderings allowed byWST when Z has n options, and likewise, let #MST (n)

denote the number of strict orderings allowed by MST+. The ratio #MST (n)/#WST (n)

can be interpreted as a measure of the restriction imposed on observable choice data by

MST+ compared to WST. In the case n = 3 we just showed the ratio #MST (3)/#WST (3)

is equal to 2/3. This ratio decreases to less than 1/4 when n = 4 and less than 1/17 when

n = 5. In fact, the ratio is arbitrarily small when n is large:

Proposition 16. limn→∞#MST (n)/#WST (n) = 0.

We prove Proposition 16 in the Appendix. For completeness, we also show in the Ap-

pendix that the ratio between #SST (n) and #MST (n) goes to zero when n is large. To

summarize, a model that covers the range of choice behavior allowed by MST+ is useful in

two ways: first, it provides the flexibility that is needed to deal with empirical violations

of SST. Second, it imposes significant restrictions out of sample —allowing the analyst to

make sharper predictions— than the more lenient WST. We describe such a model in the

next section.

4.3 Moderate utility model

A choice rule ρ on a finite set Z is a moderate utility model (MUM) if there is a utility

function u : Z → R, a distance metric d : Z2 → R+ and a strictly increasing function F ,

such that for all x 6= y,

ρ(x, y) = F

(
u(x)− u(y)

d(x, y)

)
(4.2)

where F satisfies F (t) = 1−F (−t) for all t. The utility u represents the value of each option.

It is easy to see that ρ(x, y) ≥ 1/2 if and only if u(x) ≥ u(y) for any x, y ∈ Z. The distance d
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can be interpreted as a measure of the dissimilarity of the objects; for a given fixed difference

in utility, more dissimilar objects are harder to compare. The ratio [u(x)−u(y)]/d(x, y) can

be interpreted as the strength of preference for option x over option y, while the function F

maps strength of preference to choice probabilities.

The MUM formula is proposed in [20]. Taking the distance d in (4.2) to be the special

case of the discrete metric d(x, y) = 1 if x 6= y and d(x, x) = 0 for all x, we obtain the classic

Fechnerian utility model as a special case

ρ(x, y) = F (u(w)− u(x))

in which the ability to discriminate between x and y depends solely on the difference between

the values of x and y [7, 9, 12, 14]. The role of a non-trivial distance metric d in a MUM is

to make the choice probabilities of options that are more difficult to compare closer to 1/2.

A non-trivial distance metric d gives the MUM the flexibility that is needed to deal

with empirical violations of SST. For example, consider how the MUM accommodates the

choices over trips in Example 15. Let the trip to Paris and the trip to Rome have utility

u(P ) = U(R) = 0, and let the trip to Paris with the e 5 bonus have utility u(P+) = 1.

Let the distance metric be given by d(P, P+) = ε > 0 and d(P,R) = d(P+, R) = 1/ε > 0.

Finally, let F = Φ be the standard Gaussian cdf. Applying (4.2) we have ρ(P,R) = 1/2,

ρ(P+, P ) = Φ(1/ε) and ρ(P+, R) = Φ(ε). Taking ε > 0 small, we obtain ρ(P+, P ) close to

one and ρ(P+, R) close to 1/2 as desired. The dissimilarity of the two Paris trip options is

small according to the metric d, which makes them easy to compare. The Rome option is

very dissimilar from the other options according to d and therefore difficult to compare.

A MUM can also address examples in Figure 4.2 and 4.2 by explicitly mapping the

abstract utility u and distance d to the attribute space depicted in Figures 4.2 and 4.2. It is

important to note that d can differ from the standard Euclidean distance. For example, [21]
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relate the difficulty of comparing two options to the angular distance between the vectors of

their observable attributes. For instance, options 1 and ` in Figure 4.2 form a small angle

with respect to the origin, so that d(1, `) is small, while options 1 and h form a wider angle

with respect to the origin, so that d(1, h) is large. Hence, a decision maker may ascribe to

h and ` the same utility values, and yet have an easier time comparing 1 to ` than to h.

Similarly, options A and C are much closer in angular distance than options B and C in

Figure 4.2. Options A and B may be close in value, but frogs find option C much easier to

compare to A than to B. Hence, a MUM can address both situations in which the ease of

comparison involves dominance (Figure 4.2) and non-dominance (Figure 4.2) in the attribute

space. The next example is perhaps the most familiar special case of a MUM in the discrete

choice estimation literature.

Example 17. A concrete example of a MUM used in the discrete choice estimation literature

is the binary probit model, first proposed by [34]. In a probit model there is a Gaussian

vector X = (X1, . . . , Xn), each coordinate Xi corresponding to an option xi ∈ Z, such that

ρ(xi, xj) = P{Xi > Xj} for all xi, xj ∈ Z. Note that

ρ(xi, xj) = P

{
Xi −Xj − E[Xi −Xj]√

Var(Xi −Xj)
>

E[Xi −Xj]√
Var(Xi −Xj)

}
= Φ

(
E[Xi −Xj]√
Var(Xi −Xj)

)

which is a special case of (4.2) when u(i) = E[Xi] is the utility function, d(i, j) =
√

Var(Xi −Xj)

is the distance metric (once we rule out perfectly correlated variables), and F = Φ is the cdf

of the standard Gaussian distribution.

[20] proposed the MUM definition (4.2) and showed that all MUMs satisfy MST. In our

first characterization theorem, below, we show that MUMs also satisfy the stronger MST+

condition. In fact, we show that MST+ is both necessary and sufficient for a choice rule to

be a MUM.
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Theorem 18. A choice rule ρ on a finite Z is a MUM if and only if it satisfies MST+.

We prove Theorem 4.2 in the Appendix. Necessity is shown in two steps: first, we show

every MUM satisfies MST (this is the step already proved by [20]). Then, we show that

a MUM must also satisfy MST+. For sufficiency, we explicitly construct the utility u and

distance d; we show that d satisfies the properties of a metric (the key property being the

triangle inequality); and we show that an ordinal representation with u and d holds:

ρ(w, x) ≥ ρ(y, z) if and only if
u(w)− u(x)

d(w, x)
≥ u(y)− u(z)

d(y, z)
(4.3)

Then, it is straightforward to find a transformation F such that the cardinal representation

of equation (4.2) holds.

It is easy to see why the stronger MST+ is needed in Theorem 1 instead of MST. Suppose

ρ(x, y) > ρ(y, z) = ρ(x, z) ≥ 1/2. A MUM representation would require

u(x)− u(y)

d(x, y)
>
u(y)− u(z)

d(y, z)
=
u(x)− u(z)

d(x, z)
,

which in turn would imply a violation of the triangle inequality:

d(x, z) =
u(x)− u(y) + u(y)− u(z)

u(y)− u(z)
d(y, z) > d(x, y) + d(y, z).

To obtain the identification of the MUM parameters, in the next section we enrich the

choice domain to include all lotteries over the finite set Z. With a finite set of options,

however, an analyst who observes ρ still obtains some ordinal information about u and d:

Proposition 19. Let ρ be a MUM with parameters (u, d, F ). Then

1. ρ(x, y) ≥ 1/2 if and only if u(x) ≥ u(y);

2. ρ(x, y) > ρ(x, z) > ρ(y, z) ≥ 1/2 implies d(x, y) < d(x, z).
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Proof. From the MUM formula (4.2) it follows that ρ(x, y) > 1/2 if and only if [u(x) −

u(y)]/d(x, y) > 0 if and only if u(x) > u(y) proving (i). Suppose the assumption in item

(ii) holds. Then, item (i) implies u(y) ≥ u(z) hence u(x)− u(y) ≤ u(x)− u(z). The MUM

formula (4.2) implies [u(x)−u(y)]/d(x, y) > [u(x)−u(z)]/d(x, z), hence d(x, z) > d(x, y).

Item (i) in Proposition 19 shows choices in a MUM reveal a complete and transitive

ranking over the options represented by the utility parameter u. Item (ii) shows how every

violation of SST is explained by the distance parameter d. To illustrate, consider the choice

data from Figure 4.2. By (i) and (ii) in Proposition 19, the analyst concludes that any MUM

that generates this data must satisfy u(B) > u(A) > u(C) and d(A,C) < d(B,C). Likewise,

every MUM that generates the data in Figure 4.2 must satisfy u(1) > u(`) = u(h) > u(2),

d(2, `) < d(2, h) and d(1, `) < d(1, h).

It is worth noting that the inequalities d(A,C) < d(B,C), d(2, `) < d(2, h) and d(1, `) <

d(1, h) revealed by choice data agree with the inequalities an analyst would obtain by ap-

plying the standard Euclidean distance to measure the dissimilarity of the options in the

space of observable attributes in both Figure 4.2 and Figure 4.2. In empirical applications,

however, non-Euclidean distance functions —such as angle distance— may provide an even

better fit than the standard Euclidean distance when the analyst maps the abstract distance

parameter in the MUM model to the space of observable attributes.1

4.4 Moderate expected utility model

We continue to let Z be a finite set of objects and we extend the domain of choice alternatives

to the set of all lotteries over Z, denoted by ∆. We identify ∆ with the n − 1 dimensional

simplex {x ∈ [0, 1]n : x1 + · · · + xn = 1}. The function U : ∆ → [0, 1] is an expected
1For a concrete example of the use of a non-Euclidean distance in applications see [21]. For the possible

pitfalls that may arise when relating the abstract parameters to the attribute space, see the analysis of the
issue of monotonicity in [1].

71



utility function if it is linear and onto. A choice rule ρ : ∆2 → [0, 1] is a moderate expected

utility model (MEM) if there exist an expected utility function U , a norm ‖·‖ induced by an

inner product, and a strictly increasing and continuous transformation F , such that, for any

lotteries x 6= y in ∆,

ρ(x, y) = F

(
U(x)− U(y)

‖x− y‖

)
. (4.4)

Example 20. For a concrete example of a MEM, extend the binary probit model of Exam-

ple 17 to the set of lotteries over the finite set Z by letting

ρ(x, y) = P{X ′x > X ′y} = Φ

(
u′x− u′y√

(x− y)′Λ′Λ(x− y)

)

where u = E[X] is the mean and Λ′Λ = Var(X) is the covariance matrix of the Gaussian

vector X. This decision maker is a (random) expected utility maximizer, and her Bernoulli

index is given by the random vector X. This model is a special case of (4.4), where U(x) = u′x

is the linear transformation given by the mean vector u, F = Φ is the cdf of the standard

Gaussian distribution, and the norm ‖·‖ is induced by the inner product 〈x, y〉 = xΛ′Λy.

Every MEM satisfies MST+. This can be shown by repeating the argument for a MUM

in the proof of Theorem 4.2. Compared to the MUM, however, the MEM is defined in the

richer domain of lotteries contained in a linear vector space; it imposes linearity on the utility

function U ; and it requires the distance metric to be a norm induced by an inner product.

These assumptions carry additional testable implications beyond MST+.

First, the requirement that U is onto [0, 1] implies that a MEM cannot be constant, that is

ρ(x, y) > 1/2 for some lotteries x, y. Second, every MEM is continuous at every point in the

domain except along the diagonal {(x, x) ∈ ∆2 : x ∈ ∆}. Third, every MEM is linear, that is,

for all 0 < α < 1 and any lotteries x, y, z ∈ ∆ we have ρ(x, y) = ρ(αx+(1−α)z, αy+(1−α)z).

And finally, every MEM ρ is convex, that is, whenever ρ(x, y) = 1/2 and ρ(x, z) = ρ(y, z) >
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1/2 for some x 6= y, we have ρ (x/2 + y/2, z) > ρ(αx+ (1− α)y, z) for all α 6= 1/2.

Continuity and linearity are familiar postulates from the random choice literature [see,

for example, 17], while convexity deserves some discussion. As in Example 15, suppose an

individual is equally likely to choose a trip to Paris (P) and a trip to Rome (R) so that

ρ(P,R) = 1/2. Suppose, moreover, that she is more likely to choose either trip over a trip to

London (L), and that both Paris and Rome beat London with the exact same probability,

that is, ρ(P,L) = ρ(R,L) > 1/2. The convexity postulate requires that, among all the

lotteries αP + (1 − α)R that give a trip to Paris with probability α and a trip to Rome

with probability 1− α, the even coin-flip (α = 1/2) be the most likely lottery to be chosen

in a binary comparison against London. In particular, the even coin-flip between Paris and

Rome must be chosen more often against the trip to London than either Paris or Rome for

sure.

In the context of a MEM, the convexity postulate can be interpreted as saying that the

dissimilarity metric d must be strictly convex. To see this, note that, to address the example,

above Paris and Rome must have the same value u(P ) = u(R). In fact, under linearity all

lotteries αP + (1 − α)R have the same value. Note also that Paris and Rome must have

the same degree of dissimilarity to London: d(P,L) = d(R,L). As we change α, the value

of the options does not change; any change in the choice probability ρ(αP + (1 − α)R,L)

must come from the dissimilarity d. Hence, the convexity postulate says that, whenever

d(P,L) = d(R,L) holds, we must have d(P/2 +R/2, L) < d(αP + (1− α)R,L).

Our next Theorem shows that these assumptions, in addition to MST+, are necessary

and sufficient for a choice rule to be a MEM.

Theorem 21. ρ is a MEM iff it is non-constant, continuous, linear, convex, and MST+.

We prove Theorem 21 in the Appendix. Necessity is straightforward. To prove sufficiency,

we first show that ρ has a unique linear extension to the n− 1 dimensional hyperplane that
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contains ∆. Transitivity, linearity and continuity allow us to invoke a standard result to

obtain the expected utility function U . The indifference sets I(y) := {x ∈ ∆ : U(x) =

U(y)} are then parallel hyperplanes of dimension n − 2. To construct the norm, we fix

one indifference set I, and one lottery ȳ with U(x) > U(ȳ) for all x ∈ I, as illustrated in

Figure 4.4. The bulk of the work is showing that the contour sets {x ∈ I : ρ(x, ȳ) ≥ α} must

be compact, convex, dilations of one another, and centrally symmetric around the point x̂

that maximizes x 7→ ρ(x, ȳ) on I. Then, we take one such contour set to be the unit ball

that defines the norm in the n− 2 dimensional subspace parallel to I. We use the convexity

postulate and a characterization of inner product spaces to show that this norm comes from

an inner product. We then extend this inner product in one more dimension to obtain the

MEM representation.

In the MEM representation, the expected utility U turns out to be unique, while the

norm ‖·‖ and the transformation F are unique up to two scaling factors:

Proposition 22. Suppose (U1, ‖·‖1, F1) is a MEM representation of ρ, and let the constant

T := F−1
1 (maxx,y ρ(x, y)). Then (U2, ‖·‖2, F2) represents the same MEM if, and only if,

U2 = U1 = U , [ker(1) ∩ ker(U)]⊥2 = [ker(1) ∩ ker(U)]⊥1, and there exist A,B > 0 such that:

1. ‖x‖2 = A‖x‖1 for all x ∈ ker(1) ∩ ker(U),

2. ‖x‖2 = B‖x‖1 for all x ∈ [ker(1) ∩ ker(U)]⊥, and

3. F2(t) = F1

(
ATt√

T 2+(A2−B2)t2

)
for all −T/B ≤ t ≤ T/B.

We prove Proposition 22 in the Appendix. The uniqueness of the utility U up to an affine

transformation comes from the standard vNM expected utility representation result. Full

uniqueness comes from our normalization requiring that U is a function onto [0, 1].

Both norms ‖·‖1 and ‖·‖2 and their respective inner products 〈·, ·〉1 and 〈·, ·〉2 are defined

on the n− 1 dimensional subspace ker(1) = {(x1, . . . , xn) ∈ Rn : x1 + · · ·+ xn = 0}. The set
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ker(1)∩ ker(U) is a subspace of ker(1) of dimension n− 2, composed by vectors of the form

x− y with U(x) = U(y). The orthogonal complement of this set, denoted [ker(1) ∩ ker(U)]⊥

is therefore a single-dimensional subspace of ker(1). Proposition 22 says this orthogonal

complement must be the same according to both inner products.

Items (i)–(iii) in Proposition 22 say the norm ‖·‖ and the transformation F are unique

up to two scaling factors A,B > 0. The constant A > 0 rescales the norm along the n − 2

dimensional subspace ker(1) ∩ ker(U), while the constant B > 0 rescales the norm along its

single dimensional orthogonal complement [ker(1) ∩ ker(U)]⊥. It is easy to see that since

F1

(
U(x)− U(y)

‖x− y‖1

)
= ρ(x, y) = F2

(
U(x)− U(y)

‖x− y‖2

)

we must have, for each x 6= y,

F−1
2 (ρ(x, y)) =

‖x− y‖1

‖x− y‖2

× F−1
1 (ρ(x, y))

that is, F2 can be obtained from F1 by rescaling each point in the domain of F1 by the ratio

of the two norms. Item (iii) shows explicitly how one obtains F2 from F1 and the values of

A,B > 0. In particular, when A = B > 0 we have F2(t) = F1(t/A) for all t.

To provide some intuition for the existence of the two scaling factors A,B > 0, consider

two lotteries x, x′ on the same indifference plane I and a lottery ȳ with lower utility, as shown

in Figure 4.4. Suppose ρ(x, ȳ) > ρ(x′, ȳ). In the representation, we have the inequality

U(x)− U(ȳ)

‖x− ȳ‖
>
U(x′)− U(ȳ)

‖x′ − ȳ‖

Let x̂ be the projection of ȳ onto the indifference plane I. By orthogonality of the projection,
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we have ‖x− ȳ‖2 = ‖x− x̂‖2 + ‖x̂− ȳ‖2 and ‖x′ − ȳ‖2 = ‖x′ − x̂‖2 + ‖x̂− ȳ‖2, and hence

U(x)− U(ȳ)

‖x− ȳ‖
>
U(x′)− U(ȳ)

‖x′ − ȳ‖
⇔ ‖x− ȳ‖ < ‖x′ − ȳ‖

⇔ ‖x− x̂‖2 + ‖x̂− ȳ‖2 < ‖x′ − x̂‖2 + ‖x̂− ȳ‖2

⇔ A2‖x− x̂‖2 +B2‖x̂− ȳ‖2 < A2‖x′ − x̂‖2 +B2‖x̂− ȳ‖2

where A > 0 rescales the norm of the components parallel to I and B > 0 rescales the norm

of the components orthogonal to I. It is easy to see that the inequality is maintained for

any A,B > 0. Hence, the rescaling preserves the ordinal representation for ρ(·, ȳ) on the

indifference plane I for any A,B > 0. By linearity, it preserves the ordinal representation in

the entire domain of ρ. To preserve the cardinal representation, we must adjust F accordingly

using the same factors A,B > 0 as stated in item (iii) of Proposition 22.

We can also describe how the two scaling factors work in terms of the inner product that

generates the norm. The inner product can be written as 〈x, y〉 = xMy where M is a n× n

matrix. Since the inner product is defined on the n− 1 dimensional subspace ker(1), we can

always find a matrix M with zeroes on the last row and the last column:

M =

 M̃ 0

0’ 0

 (4.5)

where M̃ is a symmetric, positive definite matrix of dimension n−1 by n−1. An implication

of Proposition 22 is that, if the analyst fixes F in the MEM representation, then the utility

U and the matrix M̃ in (4.5) are uniquely pinned down. In particular, when F = Φ is

the standard Gaussian distribution, the parameters of the binary probit over lotteries in

Example 20 are point-identified with the covariance matrix written as in (4.5).
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4.5 The connection between MEM and MUM

Recall that a MUM is defined on a finite set of options Z = {x1, . . . , xn}, while a MEM

is defined on the richer set ∆ of lotteries over Z. For convenience, we abuse notation and

use the same symbol xi to denote a degenerate lottery in ∆ which gives prize xi ∈ Z with

probability one. We say that a MEM representation (U, ‖·‖, F ′) is an extension of a MUM

representation (u, d, F ) to ∆ when U(xi) = u(xi) for each xi ∈ Z, d(xi, xj) = ‖xi − xj‖ for

each xi, xj ∈ Z and F ′(t) = F (t) for each t in the domain of F . In this case, we also say

that (u, d, F ) is a restriction of the MEM representation (U, ‖·‖, F ′) to Z.

Every MUM representation obtained as a restriction of a MEM satisfies three properties.

First, u inherits the normalization from U . Since U is onto [0, 1], we must have

min
z∈Z

u(z) = 0 and max
z∈Z

u(z) = 1. (4.6)

Second, d inherits the following property from ‖·‖:

n∑
i=1

n∑
j=1

d(xi, xn)2αiαj < 0 for all 0 6= α ∈ Rn with α1 + · · ·+ αn = 0. (4.7)

Letting D be the symmetric n×n matrix with entry (i, j) given by the square of the distance

between xi and xj, equation (4.7) says the quadratic form α′Dα restricted to α ∈ ker(1)

must be negative definite. Too see why (4.7) holds, let yi = xi− xn for each i = 1, . . . , n− 1
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and note that y1, . . . , yn−1 belong to ker(1), the domain of ‖·‖. Therefore, we have

−1

2

n∑
i=1

n∑
j=1

d(xi, xn)2αiαj =
1

2

n−1∑
i=1

n−1∑
j=1

αiαj
[
d(xi, xn)2 + d(xj, xn)2 − d(xi, xj)2

]
=

1

2

∑
i

∑
j

αiαj
(〈
yi, yi

〉
+
〈
yj, yj

〉
−
〈
yi − yj, yi − yj

〉)
=
∑
i

∑
j

αiαj
〈
yi, yj

〉
= ‖α1y

1 + · · ·+ αn−1y
n−1‖2 > 0.

[31] shows condition (4.7) has a geometric interpretation: it holds if and only if it is possible

to map the n options in Z to the extreme points of a polytope of dimension n−1 in Euclidean

space, in which the length of each vertex [xi, xj] is equal to d(xi, xj).

Finally, F clearly inherits continuity from F ′. As it turns out, these three necessary prop-

erties are also sufficient for the existence of a MEM extension when the MUM represented

by (u, d, F ) satisfies positivity, that is, when ρ(x, y) > 0 for all x, y ∈ Z:

Proposition 23. Let (u, d, F ) be a MUM representation of ρ > 0 on Z. There exists a

MEM extension of (u, d, F ) to ∆ if and only if u satisfies (4.6), d satisfies (4.7), and F is

continuous.

We established necessity above, and we prove sufficiency in the Appendix.

4.6 Related literature

[26] presented the MST postulate and attributed its formulation to [5, 6] and [16]. [5, 6]

formulated restrictions on the distribution of tastes in a population of standard rational

consumers. He showed the choice probabilities generated by consumers randomly drawn

from the population satisfy MST if and only if those restrictions hold. [16] studied the
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testable implications of his ‘threshold model’ [15] in a classical demand setting and showed

that the model satisfies the slightly stronger MST+ postulate. As far as we are able to

determine, Corollary 6 in Georgescu-Roegen [16, p. 161] is the first and only time that

MST+ appeared in the literature before. Georgescu-Roegen [16, p. 160] also anticipated

L. J. Savage’s Example 15, explaining why it is natural to expect SST to be violated in a

classical demand setting.

[20] proposed the definition (4.2) of a MUM, proved that every MUM satisfies MST, and

left open the question of sufficiency. Our Theorem 18 answers the question posed by Halff

by showing that, while MST is not sufficient for a choice rule to be a MUM, the slightly

stronger MST+ condition is both necessary and sufficient.

The psychological foundations of the MUM formula can be traced back to [12] and [34].

The idea that the (dis)similarity of the alternatives should play the role captured by the

distance metric in the MUM formula has been proposed in [37], [10], and [21]. A related

literature highlights the non-metric nature of similarity judgements [see 36] and explores the

role of similarity in intransitive choices [see 30].

The MUM characterized in Theorem 18 generalizes several nested models of stochas-

tic binary choice in the literature, as shown in Figure 4.6. The most restrictive model in

Figure 4.6 is the binary Logit model in which choice probabilities are given by the formula

ρ(x, y) =
eu(x)

eu(x) + eu(y)
=

1

1 + e−[u(x)−u(y)]
(4.8)

for some utility function u : Z → R. [24] showed formula (4.8) is equivalent to the product

rule

(PR) ρ(x, y)ρ(y, z)ρ(z, x) = ρ(x, z)ρ(z, y)ρ(y, x)

which can be interpreted as saying that the probability of observing a choice cycle in the

direction x � y � z � x is always equal to the probability of observing a choice cycle in
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the opposite direction. [24] obtains this equivalence under the mild assumption of positivity,

which requires that ρ(x, y) > 0 for all x, y.

A generalization of formula (4.8) is the Fechnerian utility model from psychophysics where

ρ(x, y) = F (u(x)− u(y)) (4.9)

for some utility function u : Z → R and some strictly increasing F : R→ (0, 1). The testable

implications of formula (4.9) are well studied (see [9] and references therein). A result in [14]

shows the Fechnerian formula is equivalent, under positivity, to the postulate of acyclicity.

This postulate rules out cycles of the form ρ(wi, xi) ≥ ρ(yi, zi) for all i = 1, . . . , n with at least

one strict inequality, whenever {wi, xi} = {yf(i), zf(i)} and wi = yg(i) for some permutations

f, g : {1, . . . , n} → {1, . . . , n}.

Formula (4.9) can be further generalized to simple scalability [22] which requires

ρ(x, y) = F (u(x), u(y)) (4.10)

for some utility function u and a real valued function F which is strictly increasing in the

first argument and strictly decreasing in the second. [37] showed that simple scalability is

equivalent to positivity and a slightly stronger version of SST:

(SST+) ρ(x, y) ∧ ρ(y, z) ≥ 1/2 =⇒ ρ(x, z) ≥ ρ(x, y) ∨ ρ(y, z), and

ρ(x, y) ∧ ρ(y, z) > 1/2 =⇒ ρ(x, z) > ρ(x, y) ∨ ρ(y, z)

which, compared to the original SST postulate, imposes the additional requirement that a

strict inequality in the hypothesis entails a strict inequality in the conclusion.

It can be seen immediately by inspecting the formulas that (4.8) ⇒ (4.9) ⇒ (4.10). To

see that the simple scalability model (4.10) is nested in MUM, note that SST+ immediately

implies MST+. The failure of the reverse implications is also easily seen by examples.
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[9] considered an additional postulate, not shown in Figure 4.6, called the quadruple

condition:

(QC) ρ(w, x) ≥ ρ(y, z) if and only if ρ(w, y) ≥ ρ(x, z)

In a setting where Z is infinite, and under an additional stochastic continuity assumption,

[9] showed that QC implies the Fechnerian utility model (4.9). It is also immediate from

the definitions that a Fechnerian utility model (4.9) satisfies QC. When Z is finite, however,

our next example shows that QC, while necessary, is not sufficient for ρ to be a Fechnerian

utility model.

Example 24. Let Z = {1, 2, 3, 4, 5} and let ρ be a choice rule on Z with

1 > ρ(5, 1) > ρ(5, 2) > ρ(4, 1) > ρ(4, 2) > ρ(3, 1) >

ρ(5, 3) > ρ(4, 3) > ρ(3, 2) > ρ(5, 4) > ρ(2, 1) > 1/2

Verifying that ρ satisfies QC is tedious but straightforward. This ρ does not admit a Fech-

nerian representation as in (4.9), since ρ(5, 4) > ρ(2, 1) and ρ(3, 1) > ρ(5, 3) would imply

u(5)− u(4) + u(3)− u(1) > u(2)− u(1) + u(5)− u(3) and the representation would require

ρ(3, 2) > ρ(4, 3), a contradiction.

QC is easily seen to imply SST+. Suppose ρ(x, y) ∧ ρ(y, z) ≥ 1/2. Then QC and

ρ(y, z) ≥ 1/2 = ρ(x, x) imply ρ(y, x) ≥ ρ(z, x) and hence ρ(x, z) ≥ ρ(x, y). Also, QC and

ρ(x, y) ≥ 1/2 = ρ(z, z) imply ρ(x, z) ≥ ρ(y, z) and hence ρ(x, z) ≥ ρ(x, y) ∨ ρ(y, z). The

same argument with strict inequalities in the hypothesis implies a strict inequality in the

conclusion and SST+ obtains. The converse implication fails, as our next example shows.

Example 25. Let Z = {1, 2, 3, 4} and let ρ be a choice rule on Z with

1 > ρ(4, 1) > ρ(4, 2) > ρ(3, 1) > ρ(2, 1) > ρ(4, 3) > ρ(3, 2) > 1/2
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which is clearly satisfies SST+ but fails QC, since ρ(4, 2) > ρ(3, 1) but ρ(4, 3) < ρ(2, 1).

As Figure 4.6 shows, the MUM formula subsumes several models in the literature as

special cases. In the other direction, note that by relaxing the triangle inequality property of

the metric d in MUM, one obtains a more general model that is equivalent to WST. Hence,

the empirical bite of the triangle inequality property of d in the MUM is exactly equal to

the gap between WST and MST.

Several familiar discrete choice models used to address violations of SST in the literature

are particular instances of MUM. Example 17 shows the classic multinomial probit is a

MUM. The Bayesian probit model [28] restricted to binary choice is equivalent to a probit

model, and therefore a MUM. Another example, below, is the elimination-by-aspects model

proposed by [35].

Example 26 (Tversky’s EBA). The choice rule ρ on a finite Z is an elimination-by-aspects

(EBA) rule if there exist a mapping A that takes each option x ∈ Z to a set of aspects A(x)

that x possesses, and a measure m over the set of all aspects such that

ρ(x, y) =
m [A(x)]−m [A(y)]

m [A(x) \ A(y)] +m [A(y) \ A(x)]
.

Every EBA is a MUM with u(x) = m[A(x)] for all x ∈ Z, d(x, y) = m [A(x) \ A(y)] +

m [A(y) \ A(x)] and F given by the strictly increasing function F (t) = 1/2 + t/2.

Probit and EBA are also instances of the random utility model (RUM). A choice rule ρ

on a finite Z is a RUM if there exists a probability measure µ over the strict orderings on

Z such that ρ(x, y) equals the probability under µ of the event in which x beats y. [3] and

[11] characterize the set of RUMs in an abstract setting of choice options when choice data

for all finite menus is available. A review of the literature that tackles the characterization

of binary choice RUMs is provided by [13]. Example 17 shows the MUM and RUM families

have a non-empty intersection. Next, we show that neither MUM nor RUM nest each other.
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Example 27. We slightly modify an example given in [8] to obtain a choice rule that is a

MUM but not a RUM. Let Z = {1, 2, 3, 4, 5, 6}, let 0 < ε < 3/46 and let the choice rule ρ on

Z be given by

ρ(4, 5) = ρ(4, 6) = ρ(2, 5) = ρ(2, 3) = ρ(1, 6) = ρ(1, 3) = 1− ε

ρ(2, 6) = ρ(1, 5) =
1

2
+ ε

ρ(2, 4) = ρ(1, 4) = ρ(3, 5) = ρ(3, 6) =
1

2
+
ε

2

ρ(3, 4) = ρ(1, 2) = ρ(5, 6) =
1

2
+
ε

3

It is straightforward to verify that ρ satisfies MST+. Now suppose ρ is a RUM generated

by the probability µ on the set of strict orderings over Z. Since ρ(2, 3) = ρ(4, 6) = 1 − ε,

the probability of the event {2 � 3} ∩ {4 � 6} is larger or equal to 1 − 2ε. By transitivity,

the event {2 � 3} ∩ {3 � 4} ∩ {4 � 6} is contained in the event {2 � 6}. Hence the event

{3 � 4} ∩ {6 � 2} has at most probability 2ε. By the same reasoning, {3 � 4} ∩ {5 � 1}

has at most probability 2ε. And likewise {6 � 2} ∩ {5 � 1} has at most probability 2ε.

Since µ is a probability, this implies ρ(3, 4) + ρ(5, 1) + ρ(6, 2) ≤ 1 + 6ε. But instead we have

ρ(3, 4) + ρ(5, 1) + ρ(6, 2) = 3/2− 5ε/3 > 1 + 6ε and therefore ρ cannot be a RUM.

A converse example based on the well-known Condorcet paradox shows that RUM models

can violate MST+. Let µ assign equal probability to three strict orderings x � y � z,

y � z � x and z � x � y over the options x, y and z. Then the binary choice rule ρ generated

by µ has ρ(x, y) = ρ(y, z) = ρ(z, x) = 2/3 which violates WST, and therefore also violates

MST+. Similarly, some recent models proposed in the random choice literature including the

random consideration set rule [25], the attribute rule [18], the single-crossing random utility

rule [2], the deliberately stochastic choice rule [4] and the focus-then-compare procedure [29]

can be easily verified to violate WST and therefore, their binary choice restrictions are not
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nested by MUM.

In the richer set of lotteries, [17] introduce the random expected utility model: they

characterize the choice behavior of an agent who is an expected utility maximizer with a

stochastic Bernoulli index. In our Theorem 21, we impose the same linearity and continuity

assumptions employed by [17], specialized to the binary choice domain. Let REM denote

any binary choice rule that is obtained as the restriction of a random expected utility model

to the domain of binary menus. The relationship between our MEM and REM mirrors the

relationship between MUM and RUM: neither model nests the other.

First, it is straightforward to construct a REM that violates WST in the same spirit as

the Condorcet paradox example above. By Theorem 21, this behavior cannot be accounted

for by a MEM. On the other hand, consider the MUM in Example 27. The proof of Theo-

rem 18 provides a constructive proof to obtain a MUM representation (u, d, F ) for the ρ in

Example 27. It is a straightforward exercise to verify that the metric d constructed in this

manner satisfies condition (4.7). By Proposition 23, this ρ can be extended to a MEM. This

MEM is obviously not a REM, for otherwise, its restriction to Z would be a RUM.
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I

ȳ

x̂ x′

x

Figure 4.3: Illustration of the construction of the norm in the proof of Theorem 21.

All lotteries in the affine subspace I are stochastically indifferent to x̂. Every lottery x in I is chosen with probability strictly

larger than 1/2 against ȳ. The maximum choice probability ρ(·, ȳ) is obtained at lottery x̂. The depicted contour sets in I given

by {z ∈ I : ρ(z, ȳ) ≥ α} are concentric ellipsoids centered at x̂. We take one of these ellipsoids to be the unit ball that defines

the norm on the n− 2 dimensional subspace parallel to I.
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Observable Properties Models

Moderate
Transitivity+

Moderate
Utility

Strong
Transitivity+

(and Positivity)

Simple
Scalability

Acyclicity
(and Positivity)

Fechnerian
Utility

Product Rule
(and Positivity) Logit

Theorem 1

Tversky and Russo (1969)

Fudenberg et al. (2015)

Luce (1959)

Figure 4.4: Relationship between models and postulates

Relationship between models and postulates on choice probabilities for binary stochastic choice over a finite set of options. A

double arrow (↔) indicates equivalence while an arrow (7→) indicates implication in the direction of the arrow and failure of

implication in the opposite direction.
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Chapter 5

Rational Contextual Choices under

Imperfect Perception of Attributes

5.1 Introduction

Classically, rationality is defined through consistency axioms. Under consistency, rational

preferences are transitive and independent of contexts, usually representable by utility func-

tions. However, empirical research has long found violations of different aspects of consis-

tency. For example, intransitivity was spotted as early as in [42] and more recently evidence

is discussed in [33]. Other research suggesting contextual dependence includes [18], [31]

and [16]. Here, by context dependence or contextual choices we refer the following type

of intuitive observations. In different choice problems involving objects x or y, the choice

probabilities of x and of y differ in such a way that suggests the decision maker evaluates the

objects differently. For instance, in [18] and [31], experimenters offer the subjects two choice

problems. One involves only two options x and y and the other includes a third choice z.

They find that the inclusion of z can reverse the relative frequency between choosing x and

y, even though z itself is rarely chosen (attraction effect) or listed as unavailable (phantom
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decoy effect). Another example is joint-separate valuation reversal (hence forth j-s reversal)

in [16]. It is found that when the willingness to pay for each of x and y is elicited sepa-

rately, x can be valued higher than y, but when elicited together, x becomes inferior to y.

Intransitive choices can also be interpreted as a type of contextual dependence.

Within the rational choice literature, some contextual choice effects, such as the similarity

effect ([44]), attraction effect ([18]) and compromise effect ([37]), can be explained (see e.g.

[13], [20], [12], [26]). However, other contextual choice effects such as the phantom decoy

effect ([31]), j-s reversal ([16]) and stochastic intransitivity ([42]) have not yet been explained

in a classically rational framework.1

Our paper proposes a rational choice model that systematically predicts the aforemen-

tioned experimental findings. With a novel informational friction, our model generically

exhibits both the stochastic intransitivity and the j-s reversal when there are trade-offs be-

tween attributes in the options, as is observed in data. Under a quite general noise structure

and without assuming any parametric utility functions, our model predicts the decoy choice

pattern, a comparative static that captures the attraction effect, the phantom decoy effect

and the compromise effect.2 Our model is relatively rigid because it does not explain the

phenomena through calibrating free parameters. Instead, the phenomena are generic to

the model. For example, no parametrization of the model accomodates the opposite of the

compromise effect.3 Apart from capturing these contextual choices, our general model also

predicts that classical rational choice holds for a family of choice problems where there is

no trade-off between attributes among the alternatives. Hence we also identify a subclass of
1The term “phantom decoy effect” is used differently here than in [26]. Here, it refers to a situation where

an unavailable third option that is asymmetrically dominating, i.e. better than the target in all attributes
but worse than the competitor in some attributes, increases the attractiveness of the target. Such results
are found in [31] and later in [15], [28], [29] and [14] etc.

2In our model, these three different effects share the same underlying mechanism. This is similar in vein
to the suggestion in [15], that the attraction effect and the phantom decoy effect may have the same cause.

3The compromise effect ([37]) finds that the option with moderate attribute levels becomes more popular
when an alternative with extreme attributes is introduced. The “reversed phenomenon”, not permitted by
our model, would be when the moderate option becomes less popular instead.
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choice problems where violations of the classical model does not occur.

Our novel information friction is that the decision maker faces a systematic noise in the

perception of attributes. Each option x has precise attribute levels x∗ over which the agent’s

utility function is defined. However the agent cannot observe these precise attributes, but

a noisy signal X|x∗. The noise is systematic in the sense that, conditional on the true

attributes, the noisy signals across different alternatives are correlated. Therefore, although

the distribution of X|x∗ is unchanged, the agent makes different inference about x∗ when

she is presented with different alternatives. For example, in the choice problem {x,y}, the

agent observes the signals X, Y but not the actual attribute levels x∗ and y∗. She forms a

posterior belief, say about x∗, conditional on the signals X, Y . When she faces the choice

problem {x, z}, the posterior belief about x∗ is conditional on X,Z. These two posterior

beliefs about x∗ are generally different, and so are the posterior expected utilities of x in

{x,y} and in {x, z}. Then intuitively, even if the agent is (stochastically) indifferent both

in the choice problem {x,y} and in the problem {x, z}, she would not be indifferent about

{y, z}. In otherwords, the (stochastic) indifference curves can cross. Intransitivity is then a

consequence of crossing indifference curves.

For the rest of the paper, we impose a specific type of correlated noise termed imper-

fect perception of attributes. Namely, the noisy signal is common across objects but may

be idiosyncratic across attributes. Precisely, there is an attribute-specific error term (i.e.

common across items) perturbing the perceived attribute levels of each item while keeping

the relative differences unchanged. Under this noisy signal, if the agent over-perceives an

attribute in an object, she over-perceives the same attribute in other objects. Although this

error term directly induces a change in the utility levels, it is not equivalent to adding a

common error term directly to the utilities. A common shock to the utilities will result in

the classical rational choice model and no contextual choice occurs. In fact, our Proposition

30 shows that our model does not satisfies monotonicity, and hence cannot be interpreted
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as any random utility model. A detailed discussion about the general framework and the

empirical motivation of the information friction is provided in section 2.

The assumption of imperfect perception is intuitively sensible because correlated signal

arises easily in perception tasks. Imagine in choosing apartments, an agent is looking for

one with abundant natural light. She visits two apartments on the same day, and sees that

apartment x is brighter than y. Although the agent does not know how bright the apart-

ments typically are (i.e. she does not observe x∗,y∗), she can use the visits as noisy signals

for comparison. The noisy signals may not be accurate about the typical brightness in the

apartments, but their difference can clearly indicates which room is typically brighter. After-

all, the agent is seeing both apartments at roughly the same time, under the same weather.

There is naturally a common component in the noisy signals. The same intuition holds in

perceiving other attributes such as noisiness of the neighborhood, length of commuting time

etc. Such uncertainty in perception can also arise when the agent is learning about attributes

measured in scientific units. The technical units can be difficult to interpret precisely, and

over (under) interpreting a unit can lead to over (under) perceived attribute levels among the

alternatives. In general, imperfect perception arises whenever the agent believes that there

can be a common component in the uncertain perception of attributes. We will elaborate

more on this assumption in section 2.

This imperfect perception causes a contrast effect in each attribute in the perception

of a Bayesian agent. The contrast effect is a well-known psychological phenomenon that

refers to the strengthening or weakening of the perception about any attribute when the

object is contrasted with surrounding objects of different levels in the same attribute.4 To

illustrate with the apartment example, suppose that the agent on the same day also visited

another apartment z that is much brighter than both x and y. The Bayesian agent infers it

is unlikely for any apartment to be so bright on every day, implying an upward bias in the
4See e.g. [36] and [30] page 38 - 41.
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common component of all the signals. Hence after visiting the apartment z, the agent revises

downwards the perceived brightness of x and y. The judgements about other attributes of

the apartments can also be affected similarly. For example, an apartment can be perceived

as quieter in the presence of a really noisy one.

When the agent’s preference is determined by a single attribute monotonically, this con-

trast effect is inconsequential: she always chooses to maximize (or minimize) that attribute

in the model.5 However, if her preference involves at least two attributes, a different set of

competing alternatives can simultaneously affect the perception of two attributes differently

(increase one and decrease another). Hence the same two options can have different posterior

utility when contrasted with different sets of alternatives.

The compromise effect is one such example. Suppose in choosing apartments, the agent

faces a trade-off between natural lighting and quietness. She prefers better lighting as well as

a quieter living place. As before, she observes correlated signals X and Y in both attributes

of the two apartments {x,y}. Suppose x has good natural lighting but some sound of

cars from the street can be heard, whereas y has a gloomy interior but it is very quiet.

Suppose the agent is inclined to choose y between the two. Now introduce a third option z

that is even brighter than x but is also much noisier. As explained previously, conditional

on X, Y and Z, the (posterior) perceived brightness levels for both x and y are lower

than those conditional on only X and Y (the contrast effect in perception of light). And

similarly, with the additional signal Z the (posterior) perceived quietness for both x and y

also increase. Now, reducing the perceived brightness of x and y affects both apartments

negatively, but more so for y because of diminishing marginal utility in lighting. And

increasing the perceived quietness of x and y affects both apartments positively, but more

so for x, due to the diminishing marginal utility in quietness. Consequently, x has a higher

expected utility level relative to y after z is introduced.
5I.e, if the agent only cares about lighting, she always chooses the brightest apartment with certainty.
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Besides the assumption of imperfect perception, Bayesian rationality is also an important

component of our model. If there is no updating at all, presenting the alternative z will not

affect the preference between x and y. We use Bayesian updating because it is the rational

benchmark in modeling information and learning. Despite the reliance of our model on

Bayesian rationality, we do not claim that in reality people perform sophisticated Bayesian

updating and calculates posterior expectations. Instead, we interpret the model as an as-if

representation of the decision process. Nonetheless, the analysis of this as-if channel does

parallel some intuitive explanations of contextual choices as illustrated above.

We organize the paper as below. The next section presents the general set up. In

section 3, we apply a parametric special case of the model to explain intransitive choices, j-s

reversal, and the compromise effect in detail. The analysis of the general model is presented

in section 4, where the decoy choice pattern and the choice problems for which the agent

exhibit classical rational choice are studied. Section 5 contains some further discussion. All

proofs are contained in the appendix.

5.1.1 Related Literature

This paper contributes to the literature on rationalizing contextual choices by proposing a

new and more disciplined informational channel that complements exisiting explanations.

[20] studies a consumer-retailer game where the set of alternatives conveys information in

equilibrium. In contrast, the our model focuses on a pure single agent decision environment

when market interaction is not of major concern. Our paper is closer related to [12] and [26]

in this sense, but the information structures differ. [12] assumes that the choice contexts do

not provide different information. But because the incentive to acquire information depends

on contexts, the agent eventually uses different (acquired) information in decision making.

Different from [12], we do not study a model of information acquisition. Instead, we show how

learning under a relatively general family of exogeneous information structure can predict
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different contextual effects. However, because we do not model the information acquisition

process, our channel is less relevant when the acquisition is of main consideration in the

problems such as choice overload. [26] studies a transitive model where Bayesian updating

is applied to the probit model ([13]). Different in nature, the uncertainty in our model lies

in the more premitive attribute space. As a result, we explain different contextual choices,

such as intransitivity, j-s reversal and the phantom decoy effects.

5.2 The Model, its Assumptions and Motivations

In the empirical research on contextual choices, choice problems consists of several options,

each with a description in two or more different attributes. Therefore, we take the primitives

of our model to be the attributes of each object. In particular, we use Rn for n ≥ 2 to

represent the attribute space. The attributes of each item x is represented as a vector

x∗ := (x∗1, . . . , x
∗
n) in the space, with each coordinate given by the corresponding attribute

level. The vector x∗ is not directly observed by the agent. In many of the experiments,

contextual choices are observed as long as there are two different attributes. Therefore we

restrict our discussion to R2 in this paper for mathematical simplicity.6

In accordance with the classical theory, the agent is assumed to be rational in two senses.

Firstly, she has a fixed preference over the attribute space that can be represented by a vNM

utility function u : R2 → R. Following classical consumer theory, we assume that the utility

function is monotonic over R2, and the marginal utilities are decreasing. In other words, the

two attributes are both goods so that the utility function displays insatiability along each

axis. Other standard assumptions from consumer theory include diminishing returns and

weak complementarity between attributes. We call a preference standard if it displays these

properties.
6The mechanisms for the main theorems can be extended to higher attribute dimensions.
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Assumption 1 (Standard Preference). The decision maker’s preference over distributions

on R2 can be represented by a vNM utility function u : R2 → R that is differentiable,

increasing (i.e. u1 > 0, u2 > 0), and exhibits decreasing marginal sensitivity (i.e. u11 <

0, u22 < 0) and weak complementarity (i.e. u12 ≥ 0 ). Any utility function representing a

standard preference is called a standard utility function.

Secondly, she is Bayesian rational with a prior belief over R2. The prior distribution

represents the agent’s anticipation about the attribute levels before she observes any choice

alternatives. We endow the agent with a normal prior distribution. Without loss of general-

ity, we can translate and scale the attribute space and let the prior mean be the origin and

the prior variance be Ω :=

1 r

r 1

 for some correlation coefficient r ∈ (−1, 1).7 We adopt

the conventional definition of Bayesian rationality, that is when the agent observes noisy

signals, she chooses the object that maximizes posterior expected utility conditional on the

signal.8

Assumption 2 (Normal-Bayesian Rationality). The decision maker is Bayesian with a

normal prior N (0,Ω) and maximizes posterior expected utility.

Next, our main assumption proposes that there is noise in the perception of each attribute.

The noise is only specific to the attribute’s perception, hence is common across alternatives.

We use capital letters (i.e. X = (X1, X2)) to denote the noisy signal of each object’s attribute

location. For example, in the choice set {x,y}, the attribute levels x∗,y∗ are perceived as

X = x∗+ ε and Y = y∗+ ε with the same vector ε.9 This implies that it is easier to perceive

relative differences in attributes among the items, i.e. X − Y = x∗ − y∗, but more difficult
7Such a correlation can arise when, for example, the two attributes are price and quality. One can

interpret r < 0 as the agent having a prior belief that a good price is associated with low quality.
8See e.g. [35].
9Our model predictions only change marginally if we relax the assumption so that X = x∗+ ε+ εx where

εx is a small i.i.d. noise for each object x.
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to perceive the absolute locations x∗ and y∗ in the attribute space. One way to interpret

of this assumption is that the noise is a random anchoring effect for in each attribute.

As a consequence, the agent over-perceive (or under perceive) the same attribute in every

alternatives. Such a form of noisy perception is supported in experimental findings in [2],

where they found participants underestimated the same attribute of several different objects

(or overestimated all of them) if they were “anchored”. As is summarized in their paper

“we show that consumers’ absolute valuation of experience goods is surprisingly arbitrary

. . . we also show that consumers’ relative valuations of different amounts of the good appear

orderly.”

In some experiments, the attributes of each choice object are measured in technical units

and described numerically. Nonetheless, there are experimental evidence suggesting that even

when these descriptions are displayed in scientific units, the subjects are not able to perceive

the numerical information precisely. For example, [2] finds that reading the volume of noise

in units does not provide more information about the loudness than actually hearing the

noise. It is intuitive to see that technical units of measurements can be difficult to interpret.

And due to such difficulty, the precise measurements can only serve as noisy indicators

of the attribute levels. For example, [20] argues that in choosing a personal computer, a

decision maker usually cannot evaluate precisely in utils a given set of measurements in

megahertz, gigabytes or other technical units. In general, depending on the decision maker’s

intuitive understanding of the technical units, the agent may under or over perceive the

attribute levels even if they are described numerically. To further illustrate this point, in

our apartments choice example, suppose the agent is also concerned with the safety of the

respective neighborhoods. She can obtain a signal of this attribute by consulting the last-

year crime statistics published by the same authority.10 Even though for each neighborhood,

this attribute is measured in simple units as “number of crimes per year per ten thousand
10E.g. local police department and city websites, or the Uniform Crime Reports by FBI in US.
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people”, it is still a noisy signal in the perspective of the agent, because for example, it is not

clear how strict the definition of crime is in this context. The signal can be an exageration

(understatement) for all neighborhoods if the local authority applies a broader (narrower)

definition of crime than the agent understands. In general, our modeling of the noisy signal

can arise as long as the agent thinks there can be uncertainty in her understanding of the

unit of measurements. Formally, our imperfect perception assumption is as follows:

Assumption 3 (Imperfect Perception). For any n alternatives {x1, . . . ,xn} each with at-

tributes x1∗, . . . ,xn∗ ∈ R2, the agent receives signals X1, . . . , Xn where X i − xi∗ = ε for all

i. The noise term ε ∼ N (0, T−1) is normal with variance matrix

T−1 =

 1/t21 R/(t1t2)

R/(t1t2) 1/t22

 for some
1

t21
+

1

t22
> 0, and some R ∈ (−1, 1).

The usual assumption of normal noise is also conjugate to the normal prior. The spec-

ification that ε is common for all i can be expressed as a noise that is perfectly correlated

across objects. If we relax the perfect correlation to high correlations, the change in model

prediction is only marginal because the choice probability is continuous in the noise covari-

ances. We allow the standard deviations in two attributes to differ as long as one of them is

strictly positive (i.e. 1
t21

+ 1
t22
> 0) even though one of them can be zero (e.g. t1 = ∞). The

assumption also allows the noise across attributes to have a non-zero correlation in R.11

We now summarize the notation used in the paper. Different letters denote different al-

ternatives. Letters with an asterisk denote the true attribute levels of an object in R2. When

there are more than 3 alternatives the superscripts (i.e. x1∗,x2∗, . . . etc.) are used. Capital

letters denote the initial noisy perception by the agent. Calligraphic letters (i.e. X ,Y ,Z)

are reserved for the agent’s posterior belief about the true attributes. Subscripts distinguish
11Such a correlation can arise when attributes are closely related, such as the sugar content and calories

in a soft drink, one might expect a correlation in the noise across these attributes.
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the respective attribute-dimensions for a given vector. Choice behavior is a function that

specifies the choice probability of an object when it is presented in a set of alternatives for

which a subset is not available. We use the notation C(x, {x1,x2, . . . ,xi, (xi+1, . . . ,xi+j)})

to denote the choice probability of x from the set {x1 . . .xi+j} in which {xi+1, . . . ,xi+j}

are unavailable. A C(., .) that assigns a probability for any x in every nonempty finite set

of alternatives S, with any S ′ ( S specifying the unavailable objects, is called the choice

behavior of an agent. The choice behavior satisfies

i∑
k=1

C(xk, {x1,x2, . . . ,xi, (xi+1, . . . ,xi+j)}) = 1.

5.3 A Parametric Special Case

In this section, we illustrate the stochastic intransitivity, the j-s reversal and the compromise

effect with the following parametric settings. We take the simple exponential utility function

u : R2 → R

u(x1, x2) = −e−3x1 − e−3x2 .

For the noise structure, we consider the simple case that the first attribute is perfectly

perceived, and there is noise only in the perception of the second attribute. In other words,

the noise has no variance in the first attribute,

ε ∼ N

0,

0 0

0 1


 .

For simplicity, we take the agent’s prior distribution be the standard bivariate normal cen-

tered at the origin.
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5.3.1 Violation of Weak Stochastic Transitivity

Weak stochastic transitivity refers to the proposition that if C(x, {x,y}) > 0.5 and C(y, {y, z}) >

0.5, then C(x, {x, z}) > 0.5. Early evidence of intransitive choices can be found in [42], and

more recently [33]. Some evidence discussed in the two papers suggests that weak transitivity

can be violated when there is no clear domination among x,y, z. In this subsection, a deci-

sion maker is said to display intransitivity if there are x,y, z such that the choice behavior

C satisfies C(x, {x,y}) > 0.5 and C(y, {y, z}) > 0.5, and C(z, {x, z}) > 0.5. In our model,

intransitivity is a consequence of crossing stochastic indifference curves.

Due to the randomness ε in the information, the choice between any two objects x and

y depends on their fixed attribute levels x∗,y∗ and the realization of ε. Hence given the

attribute levels, we can determine the probability of choice, i.e. C(x, {x,y}), from the

distribution of ε. We say x is stochastically indifferent to y (writes x ∼ y) if

C(x, {x,y}) = 0.5.

Similarly, the stochastic indifference curve of x is the set of alternatives that that are stochas-

tically indifferent to x. On the space of attributes, this set of alternatives corresponds to the

following set of attributes {y∗ ∈ R2|x ∼ y}.

Let us consider two alternatives x,y such that x∗1 > y∗1 and y∗2 > x∗2. When is x chosen

over y? Since the agent is Bayesian rational, she chooses x whenever the posterior expected

utility of x is greater than that of y. Under the notation, the posterior beliefs about x∗ and

y∗ are respectively the random variables X|X, Y and Y|X, Y . So x is chosen over y if and

only if

E[u(X )|X, Y ] > E[u(Y)|X, Y ].

We obtain the posterior belief from Bayesian updating, using the fact that X − x∗ =
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Y − y∗,

X1|X, Y = x∗1, and X2|X, Y ∼ N
(

1

3
(2X2 − Y2),

1

3

)
.12

The belief about the first attribute X1|X, Y is equal to the true attribute level, because

there is no noise in this dimension. The belief about the second attribute exhibits contrast

effect. If y is very good in the second attribute (i.e. if Y2 is very large), then in contrast, x

is perceived to be very poor in the second attribute (i.e. then 1
3
(2X2 − Y2) is very small).

Substituting the belief into the expected utility formula gives x is chosen over y if and only

if

E[u(X )|X, Y ] = −e−3x∗1 − e−(2X2−Y2)+3/2 > −e−3y∗1 − e−(2Y2−X2)+3/2 = E[u(Y)|X, Y ].13

To obtain the choice probability, we substitute in the equality that X − x∗ = Y − y∗ = ε

and get

−3

2
+ ln

(
e−3y∗1 − e−3x∗1

ey
∗
2−2x∗2 − ex∗2−2y∗2

)
> −ε2.

Since the ε2 ∼ N (0, 1), the choice probability can be expressed using the normal c.d.f Φ,

C(x, {x,y}) = Φ

(
−3

2
+ ln

(
e−3y∗1 − e−3x∗1

ey
∗
2−2x∗2 − ex∗2−2y∗2

))
.

For interpretation, first recall that x∗1 > y∗1 and y∗2 > x∗2. Therefore, both e−3y∗1 − e−3x∗1

and ey∗2−2x∗2 − ex∗2−2y∗2 are positive. Moreover, since both Φ and ln are increasing functions,

the choice probability is increasing in x∗1 and x∗2, and decreasing in y∗1 and y∗2. Intuitively,

the agent is more likely to choose x if the true attribute levels of x improves, less so if the
12 Similarly Y1|X,Y = y∗1, and Y2|X,Y ∼ N

(
1
3 (2Y2 −X2),

1
3

)
.

13This expression E[u(X )|X,Y ] = −e−3x∗
1 − e−(2X2−Y2)+3/2 can be interpreted as follow. The utility

from the first attribute is clear due to perfect perception. We have mentioned the contrast effect influences
perception, and hence the expected utility through (2X2 − Y2). The better Y2 is, the smaller the expected
utility for x. The constant in the exponent of the second term comes from the uncertainty. Because X2|X,Y
is normally distributed, e−3X2 is log-normal, and its expectation involves a constant from the variance of
X2|X,Y .
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attributes of y becomes more desirable.14

The indifference curve can be traced out using the definition C(x, {x,y}) = 0.5. Because

Φ(0) = 0.5, we have x ∼ y if and only if

0 = −3

2
+ ln

(
e−3y∗1 − e−3x∗1

ey
∗
2−2x∗2 − ex∗2−2y∗2

)
.

Any x and y with attributes satisfying the above equation are stochastically indifferent.

The horizontal asymptote comes from the noise-
less perception in attribute one. For example,
consider an alternative w that is indifferent to x.
If w∗1 is large and positive, E[u(W)|X,W ] =
− exp(−3w∗1) − E[exp(−3W2)|X,W ] ≈
−E[exp(−3W2)|X,W ]. So intuitively, w ∼ x
requires −E[exp(−3W2)|X,W ] to be close to the
expected utility of x. This restricts w∗2 close to a
constant. On the other hand, if w∗1 is negative,
then − exp(−3w∗1) is a non-negligible negative
number. In order to keep the indifference, a larger
w∗2 is require to compensate for this negative
utility.
Another observation is that the indifference curve
of y is steeper than that of x when the first attribute
is lacking. This is a result of noisy perception in
the second attribute and the contrast effect that fol-
lows. To interpret the difference, notice that y is
strong in attribute two while x is lacking. When an
alternative w is evaluated in the context of x, its
second attribute is perceived as better compared to
x. However, in the context of y, the same attribute
level would appear less strong because y is strong in
attribute two. Hence if w∗1 < y∗1, a much stronger
w∗2 is require for w to be comparable to y than to
x.

Figure 5.1: Crossing Stochastic Indifference Curves
14We will show that if x∗1 > y∗1 and y∗2 > x∗2 does not hold, the dominating option will be chosen with

probability 1 in next section.
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Generically, if x ∼ y, their indifference curves cross. For illustration, we let x∗ = (3, 0)

and y∗ = (3 − 1
3

ln(1 − e9/2 + e27/2), 3) and check that x ∼ y. As shown in Figure 5.1, the

red dots are the corresponding true attribute levels, and the indifference curve of x is the

solid curve, whereas the one of y is dashed. The two curves intersects at x∗ and y∗. The

curves are indistinguishable for large values in first attribute. Because the curves are distinct,

intransitivity can occur when we cansider any z with attributes in the shaded area. As in

Figure 5.1, z∗ is to the left of the y-curve and the right of the x-curve. So C(y{y, z}) > 0.5

and C(x{x, z}) < 0.5. But as readily seen, slight improving x∗ in either attribute will cause

C(x{x,y}) > 0.5. Thereby strictly violating weak transitivity. The example is itself a proof

of the following existence result.

Proposition 28. Suppose there is imperfect perception in one of the attributes. There exists

a normal-Bayesian rational agent with a standard preference who displays intransitivity.

5.3.2 Joint-Separate Valuation Reversal

The phenomena refers to the following type of observations that the average willingness

to pay (valuations) for two alternatives reverse in different contexts. As recorded in an

experiment of Hsee (1996), the subjects (as company owners) were asked for their willingness

to pay to hire different job candidates as programmers. Candidate x has a college GPA of

4.9 out of 5 and has written 10 programs in the computer language KY. Candidate y has a

GPA of 3.0 from the same school, and has written 70 similar programs in the same language.

When the subjects were asked to evaluate x alone, the average willingness to pay was about

32.7k dollars; when asked to evaluate y alone, the average willingness to pay was about

26.8k. However, when the two candidates were presented together, the inequality between

the amounts reversed. The average willingness to pay for x in the presence of y became

31.2k, while that of y became 33.2k. With abuse of notation, we denote by $(x) and $(y)
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the average willingness to pay for x and y in dollars, and denote by $(x|x,y) the average

willingness to pay for x in the presence of y, and $(y|x,y) for y in the presence of x. A

decision maker is said to display j-s reversal if there are x,y such that both $(x) > $(y) and

$(x|x,y) < $(y|x,y) holds.

In the experiment, the two attributes are the GPAs and programing experience. Since

GPA is familiar to most people and relatively easy to interpret with a known scale, we take

it to be the noiseless attribute. The programing experience, although explicitly measured

in numbers of programs written, is more difficult to interpret. It is not clear how advanced

the computer language KY is, and how difficult it is to write programs in. Hence we take

this attribute to be confounded with imperfect perception. To demonstrate the reversal,

we need a pair of x and y such that x∗1 > y∗1 and x∗2 < y∗2, and that $(x) > $(y) and

$(x|x,y) < $(y|x,y) hold simultaneously. In this subsection, we use the average posterior

expected utility as a proxy for average willingness to pay. That is, $(x) is understood as

the average posterior expected utility of x in {x}, $(y) that of y in {y}, and $(x|x,y) and

$(y|x,y) that of x and of y in {x,y}.

When there is only one option, the posterior is based only on its own signal. From

noiseless perception, X1|X = x∗1. Standard bayesian update gives X2|X ∼ N (1
2
X2,

1
2
). Hence

the average posterior expected utility is

$(x) := EX [EX2 [−e−3x∗1 − e−3X2|X]] = −e−3x∗1 − e−
3
2
x∗2+ 27

8 .

A similar expression holds for y. On the other hand, when there are two options, through

similar analysis as previous subsection, we have

$(x|x,y) := EX,Y [EX2 [−e−3x∗1 − e−3X2|X, Y ]] = −e−3x∗1 − e−(2x∗2−y∗2)+2.
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Also, a similar expression holds for $(y|x,y). Hence the two inequalities $(x) > $(y) and

$(x|x,y) < $(y|x,y) become


−e−3x∗1 − e− 3

2
x∗2+ 27

8 > −e−3y∗1 − e− 3
2
y∗2+ 27

8

−e−3x∗1 − e−(2x∗2−y∗2)+2 < −e−3y∗1 − e−(2y∗2−x∗2)+2.

There are many pairs of alternatives that satisfy both inequalities. For illustration, we let

x∗ be (3, 0) as in the previous subsection, and Figure 5.2 plots the shaded region where both

inequalities are satisfied. The dashed curve is the boundary defined by the first inequality,

and the solid curve is the one by the second. Any y with attributes y∗ in the shaded region

is an example of the desired reversal.

Figure 5.2: Joint-Separate Valuation Reversal
The solid curve is the set of all attributes that have the same average posterior utility as x in
a binary choice problem, and therefore naturally looks similar to the stochastic indifference curve
of x in Figure 5.1. The dash line in 5.2 has a vertical asymptote, which is determined through
−e−3×3 − e−

3
2
×0+ 27

8 = −e−3y∗1 − e−
3
2
y∗2+ 27

8 ≈ −e−3y∗1 for large values of y∗2.
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This mechanism that causes the reversal is intuitive. An y that is bad in the first attribute

receives low valuation in separate valuation. And because the utility function is concave and

the perception is noisy, a strong second attribute does not effectively increase the overall

valuation. However, in joint valuation, there is a clear contrast in the second attributes of x

and y. Under the contrast, x is perceived as much worse off, and y much better off, resulting

in the reversal. The above example is itself a proof of the following existence result.

Proposition 29. Suppose there is imperfect perception in one of the attributes. There exists

a normal-Bayesian rational agent with standard preference who displays j-s reversal.

5.3.3 Illustrating Ternary Choices Through the Compromise Effect

The compromise effect involves choice problems of two and three options. As in Figure

5.3, suppose there is a binary choice problem with options x,y where x is better than y

in the first attribute but y is better in the second. The compromise effect ([37]) refers to

introducing a third z in or near the region C where z∗ seems extremely favorable in the

first attribute but extremely unfavorable in the second one. Empirically, at the introduction

of z, people are generally led to choose the “compromising option” x, increasing its choice

frequency. Mathematically, let the initial choice set be {x,y} and the expanded choice

set be {x,y, z} where z∗1 > x∗1 > y∗1 and y∗2 > x∗2 > z∗2 . The compromise effect refers to

C(x, {x,y, z}) > C(x, {x,y}) for all z “inferior enough”.

Let Pr denote the probability measure for ε. We have seen previously that

C(x, {x,y}) = Pr (E[u(X )|X, Y ] > E[u(Y)|X, Y ]) = Pr

(
ε2 >

3

2
− ln

(
e−3y∗1 − e−3x∗1

ey
∗
2−2x∗2 − ex∗2−2y∗2

))
,

(5.1)

Similarly, we can also express the ternary probability as

C(x, {x,y, z}) = Pr
({

E[u(X )|X, Y, Z] > E[u(Y)|X, Y, Z]
}
∩
{
E[u(X )|X, Y, Z] > E[u(Z)|X, Y, Z]

})
,
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where the first term in the intersection is the event that x is perceived better than y,

{E[u(X )|X, Y, Z] > E[u(Y)|X, Y, Z]} = {ε2 >
3

2
− 4

3
ln

(
(e−3y∗1 − e−3x∗1)

e−
3
4

(3x∗2−y∗2−z∗2 ) − e− 3
4

(3y∗2−x∗2−z∗2 )

)
},

(5.2)

and the second the event that x is perceived better than z,

{E[u(X )|X, Y, Z] > E[u(Z)|X, Y, Z]} = {ε2 <
3

2
− 4

3
ln

(
e−3x∗1 − e−3z∗1

e−
3
4

(3z∗2−x∗2−y∗2) − e− 3
4

(3x∗2−y∗2−z∗2 )

)
}.

(5.3)

In these two events, both fractions inside the logarithm are positive, because z∗1 > x∗1 > y∗1

and y∗2 > x∗2 > z∗2 . It is clear that both sets are monotonic in the attributes of x, the better

the attributes for x are, the larger the event that x is the most preferred. Through a similar

rationale, it is intuitive to see in Equation 5.3 that the event that x is preferred to z is

monotonically decreasing in the attributes of z.

More subtle is the influence of attributes of z on the preference between x and y. From

Equation 5.2, it is clear that the first attribute of z does not affect the preference between

x and y. This is because the first attribute is noiseless. The second attribute is not. The

(main component of the) perceived second attribute of x is 3x∗2 − y∗2 − z∗2 .15 Hence the

term −e− 3
4

(3x∗2−y∗2−z∗2 ) is (the main component of) the posterior utility of x in the second

attribute. A weak attribute level of z∗2 contrast with that of x, increasing its perceived level

as well as the posterior utility level. Therefore, x appears more appealing in the context

of an undesirable z. Similarly, such an undesirable z also increases the posterior utility of

y. However, y∗2 > x∗2 and so y is more satiated than x in the second attribute. Hence

the increase in perceived levels benefits x more. Mathematically, in attribute two, both the

posterior utility −e− 3
4

(3y∗2−x∗2−z∗2 ) of y and that −e− 3
4

(3x∗2−y∗2−z∗2 ) of x increases as z∗2 decreases,
15The posterior belief is X2 ∼ N ( 14 (3X2 − Y2 − Z2),

1
4 ).
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but the gap

e−
3
4

(3x∗2−y∗2−z∗2 ) − e−
3
4

(3y∗2−x∗2−z∗2 ) =− e−
3
4

(3y∗2−x∗2−z∗2 ) −
(
−e−

3
4

(3x∗2−y∗2−z∗2 )
)

=
(
−e−

3
4

(3y∗2−x∗2) − (−e−
3
4

(3x∗2−y∗2))
)

exp(
3

4
z∗2)

decreases. Therefore, from Equation 5.2, a low z∗2 reduces the gap, and makes it more likely

that x is preferred to y.

To show that the compromise effect occurs, we take the limit that z∗1 → x∗1 from the right

and see from Equation 5.3 that x is perceived better thant z with probability approaching

1. I.e. Pr
({

E[u(X )|X, Y, Z] > E[u(Z)|X, Y, Z]
})
→ 1 as z∗1 ↘ x∗1. Moreover, for z∗2 small

enough, the event in Equation 5.2 becomes a superset than the event in Equation 5.1. I.e.

Pr
({

E[u(X )|X, Y, Z] > E[u(Y)|X, Y, Z]
})

> C(x, {x,y}) for z∗2 small enough. Therefore

C(x, {x,y, z}) > C(x, {x,y}) for inferior enough z. We have just proved the following result.

Proposition 30 (The Compromise Effect). Assume the parametrization in this section. For

any x,y with x∗1 > y∗1 and x∗2 < y∗2,there exists δ > 0 and D ∈ R such that for all z with

z∗1 − x∗1 ∈ (0, δ) and z∗2 < D, the inequality C(x, {x,y, z}) > C(x, {x,y}) holds.

The result above points out an important distinction between our model and a large

class models that satify Monotonicity (also called Regularity). This include the class of all

random utility models (see e.g. [4] and [8]). In the random utility framework, the utility

of the options x,y, z are real-valued random variables Ux, Uy, Uz, i.e. measurable functions

from a probability space to R. The decision maker chooses x if and only if the event

{Ux > Uy and Ux > Uz} is realized. A very general random utility model allows Ux, Uy, and

Uz to be correlated in arbitrary ways. Nonetheless it always holds that

{Ux > Uy} ⊆ {Ux > Uy and Ux > Uz}, and hence C(x, {x,y}) < C(x, {x,y, z}).
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According to Proposition 30, our model directly violate this property, and hence it cannot

be reinterpreted as any random utility model.

Through a similar mechanism, our model also capture two other effects in Figure 5.3.

The phantom decoy effect ([31]) occurs in the situation when z is positioned near the area

P . Usually, the phantom alternative is better than x in first attribute and no worse than

x in the second. Also, it is worse than y in the second attribute. In experimental settings,

the subjects are told that such z is unavailable to choose and hence the agent has to choose

from {x,y}. Empirically, the phantom decoy increases the frequency of choosing x.16 The

attraction effect ([18]) corresponds to introducing a third option z∗ in or near the region A

in Figure 2. In general, z needs to be inferior to x in the second attribute, and no better in

the first. In addition, z needs to be better than y in the first attribute. Empirically, such a

third option itself is hardly chosen.

Because our model predicts these two effects through a similar channel, it is suggestive

that, at least there are some commonality among the effects, as observed by [15]. Here, we

omit their formal proofs because they will be covered under the decoy choice pattern in the

next section. Nonetheless, a proof of the attraction effect (phantom decoy effect) parallels the

following intuition. Suppose there is imperfect perception in the second (first) attribute. Let

x,y be as before. x is inferior in the second attribute and y is inferior in the first attribute.

Now introduce the third object z that is is extremely bad in the second attribute (good in

the first attribute). In comparison, z in A (P ) makes both x and y seem better in the second

attribute (worse in the first attribute) than before. Such a change makes x relatively more

favorable (less repulsive) since y was already good enough in the second attribute (barely

acceptable in the first attribute) at the outset.
16See e.g. [31], [15], [28], [29] and [14] etc.
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5.3.4 Remarks on the Parametric Model

In this section, we have illustrated intransitivity, the valuation reversal and the compromise

effect through a parametric model. However we want to emphasize that the illustrated

channel is not limited to the parameter chosen. In fact, similar calculation walks through

with any utility function u(x) := u(x1, x2) = −eγx1 − eρx2 where γ, ρ < 0, and any noise

distributed as ε ∼ N

0,

1/t21 0

0 1/t22


, ti ∈ (0,∞] where one of the ti’s can be infinite.

Moreover, we also want to remark that given any family of parametrized utility functions,

the parameters can be estimated easily from choice data. For example, in our parametriza-

tion, the choice probability for any binary problem is given analytically below.

Lemma 31. For any x,y where x∗1 > y∗1 and y∗2 > x∗2, the parametric model in the subsection

gives C(x, {x,y}) = Φ (θ(γ, ρ,x∗,y∗, t)), where Φ is the standard normal c.d.f. function and

θ(γ, ρ,x∗,y∗, t) is defined as

θ :=
1√(

ρ
√
t2

2+t22

)2

+
(
γ
√
t1

2+t21

)2

 γ2

2(2 + t21)
− ρ2

2(2 + t22)
+ ln

exp
(
γ

(t21+1)y∗1−x∗1
2+t21

)
− exp

(
γ

(t21+1)x∗1−y∗1
2+t21

)
exp

(
ρ

(t22+1)x∗2−y∗2
2+t22

)
− exp

(
ρ

(t22+1)y∗2−x∗2
2+t22

)
 .

When an attribute becomes noiseless (i.e. t1 →∞), the above Lemma reduces to Equa-

tion 5.1. We have seen previously that an x with better attributes results in a higher θ and

higher C(x, {x,y}), and the reverse holds for y. Because x∗1 > y∗1, and γ is the preference

parameter in the first attribute, a larger γ2 implies the first attribute is more decisive, and

hences more likely to choose x.

As the Lemma specifies choice probabilities in terms of parameters, it can be used to

estimate exponential utility functions when there are observations for different menus. When

the parameters are estimated, the model can be used to predict choice probabilities in new

menus. Here, we need to point out an implicit assumption similar to that in [22] is adopted.
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To maintain empirical identifiability and avoid excessive degrees of freedom, the definitions

and measurements of the attributes must be determined before fitting the model to data.

They should not be free parameters but part of the data that the model seeks to explain.17

Although the complex expression can be useful for experimenters, the agent in the model

does not evaluate this complicated algebra before making the choice. She simply chooses

the choice item that maximizes her expected utility while being completely unaware of the

choice probabilities her actions generate.

5.4 The General Results

We have now shown that our simple parametric model can explain and predict several

contextual choice effects. These results are not the outcomes of model flexibility. On the

contrary, the model is quite rigid in the sense that these types of contextual effects have to

occur even without the parametric assumptions. One can view these as testable implications

of the model. We first define the term “decoy choice pattern”, as an abstraction of the

attraction, compromise, and phantom decoy effect. We will then show that the general

model predicts the decoy choice pattern under the general class of preferences and prior-

signal distributions as described in section 2. We also show that although the model captures

several contextual effects, the model also predicts classical rational choice behavior under

some specific type of menus, and hence there are other rationality constraints on what the

model can accomodate.
17While it is easier to satisfy this procedure in marketing experiments where the attributes of each object

are specified by the experimenter, it is sometimes difficult to include other relevant attributes in real life
decision-making processes. For example, when shopping (online or in person), individuals may base their
decisions on attributes that are not listed on the product descriptions. For example, decisions may be made
based on the retailer’s customer service, which is usually not listed in the product labels. Hence it is difficult
to account for these influences.
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5.4.1 The Decoy Choice Pattern

The next definition is relevant to the phantom decoy effect, the compromise effect and the

attraction effect. We start with a binary choice problem with x,y where x is better than

y in the first attribute but y is better in the second, as shown in Figure 5.3. As discussed

previously, a third object z in the lower right corner of Figure 5.3 generally increases the

choice probability of x. Due to symmetry, it is also true empirically that a z in the upper left

corner of the same Figure 5.3 will increase the choice probability of y (e.g. a compromise

effect where y is the compromising option). These empirical effects share a commonality

that z is either unavailable (as a phantom decoy) or rarely chosen (as in the compromise

effect or attraction effect). We can reasonably conjecture that both the attraction effect

and the compromise effect will remain qualitatively unchanged when the third option z is

unavailable. We summarize these observation as follow. An unavailable third option z to the

upper left area of the attribute space increases the choice probability of y, and if the third

option is to the lower right area of the space, it increases the choice probability of x. We

call this comparative statics the decoy choice pattern.

Definition 32. The choice behavior is said to display the decoy choice pattern if there exists

a vector ∆ ∈ R2 with ∆1 > ∆2, such that for any x,y, z, z′ with attributes in R2 satisfying

x∗1 > y∗1, x∗2 < y∗2 and z′∗ = z∗+ ∆, the inequality C(x, {x,y, (z)}) ≤ C(x, {x,y, (z′)}) holds.

Our model predicts the decoy choice pattern, which is an empirically testable implication

in two ways. First, when there are at least two attributes under consideration, the agent

does not satisfy the Luce’s IIA over menus described in the decoy choice pattern. Second,

the agent violates Luce’s IIA in a specific way. E.g. making x the compromising option in

the experiments does not reduce the choice probability of x.

Theorem 33. Any normal-Bayesian rational agent with standard preference and imperfec-

tion perception displays the decoy-choice pattern.
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Figure 5.3: Areas for the phantom decoy effect (P ), the compromise effect (C) and the
attraction effect (A)

Observe that the theorem is a sufficiency result. Intuitively, it states that if z′∗ is to the

right or to the bottom of z∗, such a z′ affects the choice probability of x more positively

than z does. Another interesting implication of the theorem is that the attraction effect and

the compromise effects should still exist even when z is unavailable. Since z is infrequently

chosen in experiments, such a prediction is reasonable to expect, but distinct for our model.

Other choice models usually do not consider an unchoosable options.
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5.4.2 Rational Content in the Model

We have seen previously that when there is a trade-off between the alternatives, i.e. some

alternatives are better in the first attribute while others are better in the second, contextual

choices arise in the model. A natural question is what would the model predict when such

a trade-off is absent. Intuitively, if we are given two alternatives x and z where z∗ > x∗, a

rational agent should always choose z due to the monotonicity of the utility function.18 The

prediction of our model fits this intuition. Since the error ε in perception is the same for each

of x and z, the perturbed signal X = ε+x∗ and Z = ε+z∗ preserves the inequality: Z > X.

A Bayesian rational agent can hence correctly infer the inequality and choose optimally.

Theorem 34. For any {x, z} with x∗, z∗ ∈ R2, a normal-Bayesian rational agent with

standard preference and imperfect perception chooses z with probability 1 if z∗ > x∗.

It is clear that the above theorem predicts the following intuitive choice effect described

and observed in [43] and [44]. Consider an individual that is choosing between a trip to Paris

(x) and a trip to Rome (y). If she is interested to see both places and doesn’t have a strong

preference for one over the other, let’s say the choice probability for Paris (x) would be 1/2.

Now if we offer the individual a new choice problem with two alternatives, a trip to Paris (x)

or a trip to Paris plus a $1 bonus (z), he would probably not hesitate to choose the option

with the extra dollar. In other words, choosing z over x is of probability 1. However, if we

offer him a third choice problem that consists of a trip to Paris plus $1 and a trip to Rome,

it is intuitive that the choice probability should still be roughly 1/2.

An implication of the above theorem is that transitivity holds deterministically for a set

of choice objects such that each one is dominated or dominates one another. Therefore, viola-

tion of weak stochastic transitivity can only happen when the alternatives do not dominates

each other. We state this result formally and proof is immediate.
18The vector inequality z∗ > x∗ means z∗1 ≥ x∗1 and z∗2 ≥ x∗2 with at least one inequality being strict.
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Corollary 35. Suppose x,y, z have attributes x∗ > y∗ > z∗, then 1 = C(x, {x,y}) =

C(y, {y, z}) = C(x, {x, z}) > 1/2.

The Theorem 34 can also be generalized to the following statement. When S = {x1, . . . ,xn}

is the choice set involving multiple options, if xi is dominated in the set S, then C(xi, S) = 0.

In other words, objects are chosen with positive probability only when they are on the “at-

tribute possibility frontier”. This is a rationality condition that the agent has to satisfy, and

it rules out many other types of irrational choice behaviors.

An interesting question would be if similar result holds for j-s reversal as well? The

answer is not straight forward. The following Corollary follows immediately from the proof

of Theorem 34.

Corollary 36. For any {x, z} with x∗ < z∗ ∈ R2, it holds that $(x|x, z) < $(z|x, z).

However, it does not follow that $(x) < $(z) if x∗ < z∗ when the correlations r and R

are not restricted. To illustrate the intuition, consider the apartment choice problem and

the two attributes are convenience and safty. Suppose the agent values both attributes, and

she holds the prior that the two attributes are negatively correlated: a convenient location

is usually less safe, and a safe location is farther away and hence less convenient on average.

Let x and z be two apartments that are exactly of the same safty level, but z is more

convenient, i.e., x∗ < z∗. It clearly holds $(x|x, z) < $(z|x, z) in a joint valuation. However

the agent cannot observe this comparison in the separate valuations. If she sees only z, due

to the prior, seeing how convenient z is causes her to believe that z is not very safe. If

she values safty much more than convenience, her valuation for $(z) can be low. On the

other hand, if she sees only x, since x is not particularly convenient, her posterior easily

trust the safty of the location. As a result, her valuation for $(x) can be decent. In this

case, $(x) > $(z) is still allowed by our model. To see this numerically, let the prior be
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0,
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 and the noise be ε ∼ N (0, I2). A signal X = (0, 0) would result

in the posterior belief X|X ∼ N

0, 1
15

 7 −2

−2 7


−1. A dominating signal Z = (1, 0)

would result in the posterior belief Z|Z ∼ N


 7/15

−2/15

 , 1
15

 7 −2

−2 7


−1. If the utility

function values the second attribute a lot more than the first attribute, it is possible that

E[u(Z)|Z] < E[u(X )|X].

5.4.3 Limiting Noise Structure

As shown is Proposition 30, our model does not satisfy Monotonicity, a fundamental prop-

erty of all random utility models. Despite this difference, one interesting question might

be whether such non-Monotonic predictions disappear in some limiting parameters of our

model. For example, if the noise in the signal goes to zero, does our model converge to some

well-known models? We discuss below that as the noise term becomes small, our model

approximates the well-known conditional probit model of [13]. Because [13]’s model is a ran-

dom utility model, it satisfies Monotonicity. We also remark that because the conditional

probit model can explain the similarity effect, a corollary of this subsection is that our model

can also explain the similarity effect.

Again, restrict our discussion to the exponential utility functions so that u(x1, x2) =

−eγx1 − eρx2 . Given a finite choice set S = {x1, . . .xn}, the posterior belief of the ith

alternative under imperfect perception is

X i|X1, . . . Xn ∼ N

(
(T + nΩ−1)−1

(
TX i + nΩ−1X i −

n∑
j=1

Ω−1Xj

)
, (T + nΩ−1)−1

)
.
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When the noise variance converges to zero, i.e. T−1 → 0, the posterior belief X i|X1, . . . Xn

is approximately N (X i, T−1) = N (xi∗+ε, T−1). When the utility function is smooth enough

near xi∗, we approximate the expected utility using the utility of the expected attributes

E[u(X )|X1, . . . Xn] ≈ u(xi∗ + ε)

which is already a random utility model. To see this approximates the [13] under the expo-

nential utility function, write

u(xi∗ + ε) = −eγ(xi∗1 +ε1) − eρ(xi∗2 +ε2) ≈ u1(xi∗1 ) + u2(xi∗2 ) + β1u1(xi∗1 ) + β2u2(xi∗2 ),

where we have used the first order approximation at xi∗ with the notation that u1(x1) =

−eγx1 , u2(x2) = −eρx2 and β1 = γε1, β2 = ρε2. It is clear that the form of the approximation

coincide with equation (3.6) in [13].

5.5 Discussion and Conclusion

We present a rational choice model with a novel information friction that leads to contextual

choices. By rationality, we refer to the bench mark that there is a fixed underlying utility

function which can be estimated given idealized data (e.g. Lemma 31). There are two

key assumptions. Firstly, there is an attribute specific perception noise that is positively

correlated across alternatives. Secondly, the decision maker chooses to maximize Bayesian

posterior expectation over the fixed utility function. We show generically that the model

predicts the compromise effect, the attraction effect and the phantom decoy effect, and the

existence of choice cycles and j-s reversal.

To explain certain contextual choices through maximizing (posterior expected) utility,

it is sometimes necessary for the (posterior expected) utility to depend on contexts. When
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such dependence is abscent, such as in the random utility framework in [4] and [8], effects

violating monotonicity are not allowed. This includes a vast amount of models such as [41],

[23], [43] and [13] and more recently, [11].

Our model departs from the random utility framework because the (posterior expected)

utility depends on the choice set. This dependence comes from Bayesian learning of each

alternative’s underlying attributes through a noisy signal. The distribution of the noisy

signals is exogeneously given and not context dependent. This independency is in the same

sense as in a random utility model where the random utilities themselves are not context

dependent, even though only the ones in the menu is realized. In our model, the agent

observe only the signals from alternatives that are in the menu. The posterior belief given

the signals is, however, endogeneously dependent on the menu due to the specification of

the noise distribution. This mechanism not only provide us the necessary dependence (of

belief) on contexts to explain data, but also distinguishes ourselves from the class of reference

dependent models. By reference dependent models, we refer to ones in which utilities are

directly assumed to depend on menu, such as [37], [45], [47], [21], [3], [27] and [40] among

many others. Because of the fixed underlying preference u(.), our model can be used to

perform welfare analysis, and identify choices that are potentially mistakes (i.e. failure to

maximize the underlying u(.)) due to information frictions.

Our model provides one simple mechanism that is relevant for several contextual effects.

In reality, it is likely that there are also other mechanisms at play and are not captured in our

model. Imagine for example, all three options are presented simultaneously, but each time

the availability is limited to a subset of the three. Our model does not allow intransitivity

nor compromise effect to happen in these choice problems. In general, our model predicts

that after seeing the set of all alternatives then restricting the choice set to any pairs, the

resulting ordering will be the same as when the agent is asked to rank all alternatives at

sight. This can be potentially inconsistent with certain empirical phenomena, such as the
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the choice overload ([19]).19 Intuitively, because our information structure is exogeneouly

fixed and does not change in different contexts, it is assuming the agent can learn as much

information as available. Therefore, our model is not relevant when the main mechanism is

likely driven by the agent’s limited information capacity. A more plausible mechanism then

is likely to cover endogeneous attention. See [12] for one such approach in explaining choice

overload.

Similarly, our model do not cover limited memory. After the agent has seen {x,y, z},

the same choice behavior is predicted for the choice set {x,y, (z)} where z is shown but not

available, and the choice set {x,y} where z is removed. This does not explain the findings

in [38] that the choice probability of x (the target) is significantly reduced following the

removal of z, although it does not recover fully to the level for which z was never shown.

One way to model such an observation is to assume that the agent partially forgets what

she has learned when the stimuli are removed. Due to the limited scope we do not discuss

in detail the modeling of forgetfulness in this paper.

There are many papers in the literature explaining different contextual choices. Such as

the drift diffusion models in neuroscience (see e.g. [32], [5], [49], [48] and [10], and [9] for a

survey), and extensions or variations of Luce’s logit model (see e.g. [25], [1] [34] and [7]).

We have also previously discussed [20] and [26] in earlier sections. Most of these models

do not study attributes as primitives. In contrast, because our model fundamentals are the

attributes, we have the advantage to naturally make strong predictions for clearly dominating

alternatives as in Theorem 34.

19Thanks for pointing out by the associate editor and the referees.

120



Bibliography

[1] Aguiar, V. 2015. Stochastic choice and fuzzy attension. working paper

[2] Ariely, D., G. Loewenstein, D. Prelec. 2003. ‘Coherent Arbitrariness’: Stable Demand
Curves Without Stable Preferences”. The Quarterly Journal of Economics 118, 73-106.

[3] Bordalo, P., N. Gennaioli, A. Shleifer. 2013. Salience and consumer Choice. Journal of
Political Economy.

[4] Block, H.D. and Marschak, J. 1960. Random orderings and stochastic theories of re-
sponses. in Contributions to probability and statistics. I. Olkin, S. Ghurye, W. Hoeffding,
W. Madow and H. Mann (Eds.). pp 97-132.

[5] Busemeyer, J.R. J.T. Townsend. 1993. Decision Field Theory: A Dynamic-Cognitive
Approach to Decision Making in an Uncertain Environment, Psychological Review 100
432-459.

[6] de Clippel, G. and E. Kfir. 2012. Reason-based choice: a bargaining rationale for the
attraction and compromise effects Theoretical Economics, 7 125-162.

[7] Echenique, Saito, Tserenjigmid. 2015. The Perception Adjusted Luce Model working
paper

[8] Falmagne, J.C. 1978. A Representation Theorem for Finite Random Scale System. it
Journal of Mathematical Psychology, 18, 52-72

[9] Fehr, E., and A. Rangel. 2011. Neuroeconomic Foundations of Economic Choice-Recent
Advances. Journal of Economic Perspectives 25 3-30.

[10] Fudenberg,D., P. Strack, T. Strzalecki. 2015. Stochastic choice and optimal sequential
sampling working paper

[11] Gul, F., P. Natenzon and W. Pesendorfer. 2014. Random Choice as Behavioral Opti-
mization. Econometrica 82 1873-1912.

[12] Guo, L. 2016. Contextual Deliberation and Preference Construction. Management Sci-
ence 62 2977-2993

121



[13] Hausman, J.A. D.A. Wise. 1978. A Conditional Probit Model for Qualitative Choice:
Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences. Econo-
metrica

[14] Hedgcock, W., A.R. Rao and H.A. Chen. 2009. Could Ralph Nader’s Entrance and Exit
Have Helped Al Gore? The Impact of Decoy Dynamics on Consumer Choice. Journal of
Marketing Research

[15] Highhouse, S. 1996. Context-dependent selection: The effects of decoy and phantom job
candidates. Organizational Behavior and Human Decision Processes 65 68-76.

[16] Hsee, C. K. 1996. The evaluability hypothesis: An explanation of preference reversals
between joint and separate evaluations of alternatives. Organizational Behavior and Hu-
man Decision Processes 67 247-257.

[17] Hsee, C. K., G. F. Loewenstein, S. Blount and M. H. Bazerman. 1999. Preference
reversals between joint and separate evaluations of options: A review and theoretical
analysis. Psychological Bulletin 125 576-590.

[18] Huber, J., J. W. Payne, C. Puto. 1982. Adding asymmetrically dominated alternatives:
Violation of regularity and similarity hypothesis. Journal of Consumer Research

[19] Iyengar S.S., Lepper M.R. (2000) When choice is demotivating: Can one desire too
much of a good thing? J. Personality Soc. Psych. 79 (6): 995-1006.

[20] Kamenica, E. 2008. Contextual inference in markets: On the informational content of
product lines. American Economic Review 98 2127-2149

[21] Koszegi, B., Rabin, M. 2006. A model of reference-dependent preferences. Quarterly
Journal of Economics

[22] Koszegi, B., Szeidl, A. 2013. A Model of Focusing in Economic Choice.Quarterly Journal
of Economics 53-104

[23] Luce, R. D. 1959. Individual Choice Behavior: a Theoretical Analysis, Wiley New York.

[24] Manzini, P., Mariotti, M. 2007. Sequentially Rationalizable Choice. American Economic
Review 97. No. 5

[25] Masatlioglu, Y., D. Nakajima, E.Y. Ozbay. 2012 Revealed attention. The American
Economic Review 102 2183-2205.

[26] Natenzon, P. 2016. Random Choice and Learning. Working paper

[27] Ok E. A., P. Ortoleva, G. Riella. 2015. Revealed (P)Reference Theory. AMERICAN
ECONOMIC REVIEW 105 299-321.

122



[28] Pettibone, J. C., D. H. Wedell. 2000. Examining Models of Nondominated Decoy Effects
across Judgment and Choice. Organizational Behavior and Human Decision Processes 81
No.2 300-328.

[29] Pettibone, J. C., D. H. Wedell. 2007. Testing Alternative Explanations of Phantom
Decoy Effects. Journal of Behavioral Decision Making 20 323-341

[30] Plous, Scott (1993). The Psychology of Judgment and Decision Making. McGraw-Hill.
38-41.

[31] Pratkanis, A. R., P. H. Farquhar. 1992. A brief history of research on phantom alter-
natives: Evidence for several empirical generalization about phantoms. Basic and applied
social psychology 13 103-122

[32] Ratcliff, R. 1978. A Theory of Memory Retrieval. Psychological Review 85 59-108.

[33] Rieskamp, J., J. R. Busemeyer, B. A. Mellers. 2006. Extending the bounds of rationality:
evidence and Theories of preferential choice Journal of Economic Literature

[34] Ravid, D. 2015. Focus, Then Compare working paper.

[35] Savage, L. J. (1954). The Foundations of Statistics. Wiley, New York.

[36] Schwarz, N., and Bless, H. (1992). Scandals and the Public’s Trust in Politicians: As-
similation and Contrast Effects. Personality and Social Psychology Bulletin, 18, 574-579.

[37] Simonson, I. 1989. Choice Based on Reasons: The Case of Attraction and Compromise
Effects. Journal of Consumer Research 16 158-174

[38] Sivakumar, K., J. Cherian. 1995. Role of product entry and exit on the attraction effect.
Marketing Letters 6, 45-51.

[39] Soltani, A., B. De Martino, C. Camerer. 2012. A RangeNormalization Model of Context-
Dependent Choice: A New Model and Evidence. PLoS computational biology 8

[40] Tserenjigmid, G. 2016. Choosing with the Worst in Mind: A Reference-Dependent
Model. working paper

[41] Thurstone, L.L., 1927. Psychophysical analysis. The American Journal of Psychology
38 368-389.

[42] Tversky, A. 1969. Intransitivity of Preferences. Psychological Review 76 (1), 31-48.

[43] Tversky, A. 1972. Elimination by Aspects: A Theory of Choice. Psychological Review
79 281-299.

[44] Tversky, A., J.E. Russo. 1969. Substitutability and similarity in binary choices. Journal
of mathematical Psychology 1-12.

123



[45] Tversky, A., I. Simonson. 1993. Context-Dependent Preferences Management Science
39 (10) 1179-1189.

[46] Wedell, D. H. 1991. Distinguishing among models of contextually induced preference
reversals. Journal of Experimental Psychology: Learning, Memory, and Cognition 17 (4)
767-778.

[47] Wernerfelt, B. 1995. A rational reconstruction of the compromise effect: Using market
data to infer utilities. Journal of Consumer Research 627-633.

[48] Woodford, M. 2014. Stochastic choice: An optimizing neuroeconomic model The Amer-
ican Economic Review 104 495-500.

[49] Usher, M., J. L. McClelland. 2004. Loss aversion and inhibition in dynamical models of
multialternative choice. Psychological review 111

124



Appendix A

Additional Proofs

A.1 A Test for Sparsity

A.1.1 Proof of Lemma 1

Proof. We devide the proof into three steps. The first step is to show there is a unique

solution. The second step is to construct an upperbound and the third step is to construct

a lower bound.

Step 1. We show the set of equations have a unique solution. Observe that pa(x)
q0(x)

is now

increasing in x and reaches maximum 1/c on [x∗,∞). Let v := 1−σ2

p
+ σ2s2/n. The relation

between x∗ and c can be solved from pa(x∗)
q0(x∗)

= 1
c
to be

exp

(
x∗

2σ2s2/n
− x∗

2v

)
=

1− ε
c

√
v

σ2s2/n
.

So there is an inverse relationship between x∗ and c. Substituting into
∫
q0 = 1 we get

∫ x∗

0

(1− ε)p0(t)dt+ (1− ε)
√

v

σ2s2/n
e

(
1
2v
− 1

2σ2s2/n

)
x∗
∫ ∞
x∗

pa(t)dt = 1.
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By differentiating the LHS with respect to x, we see that the LHS becomes

(1− ε) e
− x

2σ2s2/n√
2πσ2(s2/n)x

− (1− ε)
√

v

σ2s2/n
e

(
1
2v
− 1

2σ2s2/n

)
x e−

x
2v

√
2πvx

+(1− ε)
√

v

σ2s2/n
e

(
1
2v
− 1

2σ2s2/n

)
x

(
1

2v
− 1

2σ2s2/n

)∫ ∞
x

pa(s)ds

=(1− ε)
√

v

σ2s2/n
e

(
1
2v
− 1

2σ2s2/n

)
x

(
1

2v
− 1

2σ2s2/n

)∫ ∞
x

pa(s)ds < 0,

because v > σ2s2/n.

Since the LHS of the equation is decreasing in x, in order for a solution to exist, it is

necessary that when x = 0 we have LHS > 1. In otherwords,

1− ε >
√
σ2s2/n

v
⇒ v >

σ2s2/n

(1− ε)2
.

This is guarrenteed when ε→ 0.

Before step 2, we observe from the x∗ equation that

(1− ε)
∫ x∗

0

e−t/(2σ
2s2/n)√

2πσ2(s2/n)t
dt+ (1− ε)

√
v

σ2s2/n
e

(
1
v
− 1
σ2s2/n

)
x∗
2

∫ ∞
x∗/v

e−t/2√
2πt

dt = 1

⇒(1− ε)
∫ √

x∗
2σ2s2/n

0

2√
π
e−t

2

dt+ (1− ε)
√

v

σ2s2/n
e

(
1
v
− 1
σ2s2/n

)
x∗
2

∫ ∞
√

x∗
2v

2√
π
e−t

2

dt = 1

⇒(1− ε) erf

(√
x∗

2σ2s2/n

)
+ (1− ε)

√
v

σ2s2/n
e

(
1
v
− 1
σ2s2/n

)
x∗
2 erfc

(√
x∗

2v

)
= 1.

where erfc(x) := 2√
π

∫∞
x
e−t

2
dt and erf(x) := 1− erfc(x).

Step 2. We now construct an upper bound. To construct the upperbound for x∗, we first

substitute the following into the LHS of the above equation

x =
vσ2s2/n

(1− σ2)/p
ln
(vn
s2

a

σ2

)
=
σ2s2

n

σ2s2p+ (1− σ2)n

(1− σ2)n
ln
(vn
s2

a

σ2

)
,
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where a depends on ε and is to be determined later. We have

LHS =(1− ε) erf

(√
1

2
(1 + ξ) ln (a(1 + 1/ξ))

)
+ (1− ε)a−1/2 erfc

(√
1

2
ξ ln (a(1 + 1/ξ))

)

where ξ = σ2

1−σ2
ps2

n
. Since LHS is monotonically decreasing in x, it suffices to show that

for certain a, LHS < 1. Then we conclude that the solution for x∗ would be less than

this value. In the following, we use the following bounds for the function erfc derived from

Formula 7.1.13 of Abramowitz and Stegun (1964). When x ≥ 0,

2√
π

e−x
2

2x+
√

2
≤ 2√

π

e−x
2

x+
√
x2 + 2

< erfc(x) ≤ 2√
π

e−x
2

x+
√
x2 + 4/π

<
1√
π

e−x
2

x
,

and in particular, it is well-known that erfc(x) ≤ 2√
π
e−x

2 for x ≥ 0.

LHS

1− ε
= erf

(√
1

2
(1 + ξ) ln (a(1 + 1/ξ))

)
+ a−1/2 erfc

(√
1

2
ξ ln (a(1 + 1/ξ))

)

≤1− 2√
π

exp
(
−1

2
(1 + ξ) ln (a(1 + 1/ξ))

)
√

2 + 2
√

1
2

(1 + ξ) ln (a(1 + 1/ξ))
+ a−1/2 2√

π
exp

(
−1

2
ξ ln (a(1 + 1/ξ))

)

=1− a−1/22√
π

(1 + 1/ξ)−1/2 exp
(
−1

2
ξ ln (a(1 + 1/ξ))

)
√

2 + 2
√

1
2

(1 + ξ) ln (a(1 + 1/ξ))
+
a−1/22√

π
exp

(
−1

2
ξ ln (a(1 + 1/ξ))

)
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Now let a satisfy a−1/2 × 2√
π

= ε
1−ε , i.e. a = 4

π

(
1−ε
ε

)2, and get

LHS

1− ε
=1−

ε exp
(
−1

2
ξ ln (a(1 + 1/ξ))

)
(1− ε)

(1 + 1/ξ)−
1
2

√
2 + 2

√
1
2

(1 + ξ) ln (a(1 + 1/ξ))

+
ε exp

(
−1

2
ξ ln (a(1 + 1/ξ))

)
(1− ε)

=1 +
ε exp

(
−1

2
ξ ln (a(1 + 1/ξ))

)
(1− ε)

1− (1 + 1/ξ)−
1
2

√
2 + 2

√
1
2

(1 + ξ) ln (a(1 + 1/ξ))


Since a > 1 for all ε small enough and ξ > 0, we have

exp

(
−1

2
ξ ln (a(1 + 1/ξ))

)
≤ 1, and 0 <

(1 + 1/ξ)−
1
2

√
2 + 2

√
1
2

(1 + ξ) ln (a(1 + 1/ξ))
< 1,

and therefore

LHS <(1− ε)(1 +
ε

1− ε
) = 1.

Hence we conclude that

x∗

σ2s2/n
≤ σ2s2p+ (1− σ2)n

(1− σ2)n
ln

(
vn

s2σ2

4

π

(
1− ε
ε

)2
)
.

Step 3. Now we establish an lowerbound for x∗. To do this, we show that by substituting

in

x =
vσ2s2/n

(1− σ2)/p
ln
(vn
s2

a

σ2

)
=
σ2s2

n

σ2s2p+ (1− σ2)n

(1− σ2)n
ln
(vn
s2

a

σ2

)
,

for some other values of a (depending on ε) than before, we have LHS > 1 asymptotically.
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As before, we start with

LHS

1− ε
= erf

(√
1

2
(1 + ξ) ln (a(1 + 1/ξ))

)
+ a−1/2 erfc

(√
1

2
ξ ln (a(1 + 1/ξ))

)

≥1− 1√
π

exp
(
−1

2
(1 + ξ) ln (a(1 + 1/ξ))

)√
1
2

(1 + ξ) ln (a(1 + 1/ξ))
+ a−1/2 erfc

(√
1

2
ξ ln (a(1 + 1/ξ))

)

=1− a−
1
2

√
π

(1 + 1/ξ)−
1
2

exp
(
−1

2
ξ ln (a(1 + 1/ξ))

)√
1
2

(1 + ξ) ln (a(1 + 1/ξ))
+ a−

1
2 erfc

(√
1

2
ξ ln (a(1 + 1/ξ))

)

≥1− a−
1
2

√
π

(1 + 1/ξ)−
1
2

exp
(
−1

2
ξ ln (a(1 + 1/ξ))

)√
1
2

(1 + ξ) ln (a(1 + 1/ξ))
+
a−

1
2

√
π

exp
(
−1

2
ξ ln (a(1 + 1/ξ))

)
√

2/2 +
√

1
2
ξ ln (a(1 + 1/ξ))

=1 +
a−

1
2

√
π
e−

1
2
ξ ln(a(1+1/ξ))

 1
√

2/2 +
√

1
2
ξ ln (a(1 + 1/ξ))

− (1 + 1/ξ)−
1
2√

1
2

(1 + ξ) ln (a(1 + 1/ξ))


=1 + a−

1
2

(1+ξ) e
− 1

2
ξ ln(1+1/ξ)

√
π

 1
√

2/2 +
√

1
2
ξ ln (a(1 + 1/ξ))

− ξ

(1 + ξ)
√

1
2
ξ ln (a(1 + 1/ξ))


=1 + a−

1
2

(1+ξ) e
− 1

2
ξ ln(1+1/ξ)

√
π

√
1
2
ξ ln (a(1 + 1/ξ))− ξ

√
2/2(√

2/2 +
√

1
2
ξ ln (a(1 + 1/ξ))

)
(1 + ξ)

√
1
2
ξ ln (a(1 + 1/ξ))

=1 + a−
1
2

(1+ξ) e
− 1

2
ξ ln(1+1/ξ)

√
π

1(√
2/2 +

√
1
2
ξ ln (a(1 + 1/ξ))

)
(1 + ξ)

1− 1√
1
ξ

ln (a(1 + 1/ξ))

 .

Pick an arbitrary small δ ∈ (0, 1), and let a−
1
2

(1+κ) :=
(

ε
1−ε

)1−δ. In other words, a :=
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(
1−ε
ε

) 2(1−δ)
1+κ > 1 for any ε < 1/2. Since ξ ≤ κ, we have

a−
1
2

(1+ξ) e
− 1

2
ξ ln(1+1/ξ)

√
π

1(√
2/2 +

√
1
2
ξ ln (a(1 + 1/ξ))

)
(1 + ξ)

1− 1√
1
ξ

ln (a(1 + 1/ξ))


≥a−

1
2

(1+κ) e
− 1

2
κ ln(1+1/κ)

√
π

1(√
2/2 +

√
1
2
κ ln (a(1 + 1/κ))

)
(1 + κ)

1− 1√
1
κ

ln (a(1 + 1/κ))


=

ε

1− ε

(
1− ε
ε

)δ
e−

1
2
κ ln(1+1/κ)

√
π

1(√
2/2 +

√
1
2
κ ln (a(1 + 1/κ))

)
(1 + κ)

1− 1√
1
κ

ln (a(1 + 1/κ))


>

ε

1− ε
as ε→ 0

since
√

ln a =
√

2(1−δ)
1+κ

ln
(

1−ε
ε

)
= o

((
1−ε
ε

)δ) as ε→ 0. Therefore LHS >
(
1 + ε

1−ε

)
(1− ε) =

1 for all ε small enough.

This shows that for any δ ∈ (0, 1)

x∗

σ2s2/n
≥ σ2s2p+ (1− σ2)n

(1− σ2)n
ln
( vn

s2σ2
a
)
,

where a :=
(

1−ε
ε

) 2(1−δ)
1+κ .

A.1.2 Proof of Theorem 2

Proof. By definition,

diag

(√
n

σ2s2
1

, . . . ,

√
n

σ2s2
p

)
β̂ =d e+ diag

(√
n

σ2s2
1

, . . . ,

√
n

σ2s2
p

)
β
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where e is as defined above and βi = ziγi where γi ∼ F for some F ∈ F . Consider the i-th

term in the test statistic

min{ β̂2
i

σ2s2
i /n

,
x∗i

σ2s2
i /n
}.

Under the null hypothesis, conditional on zi = 0, βi = 0 for βi = ziγi. And

min{ β̂2
i

σ2s2
i /n

,
x∗i

σ2s2
i /n
} = min{e2

i + 2ei

√
n

σ2s2
i

βi +
β2
i

σ2s2
i /n

,
x∗i

σ2s2
i /n
}

=(1− zi) min{e2
i ,

x∗i
σ2s2

i /n
}+ zi

x∗i
σ2s2

i /n
.

On the other hand, conditional on zi = 1, we have

min{ β̂2
i

σ2s2
i /n

,
x∗i

σ2s2
i /n
} ≤ x∗i

σ2s2
i /n

= (1− zi) min{e2
i ,

x∗i
σ2s2

i /n
}+ zi

x∗i
σ2s2

i /n
.

Since this holds for each i = 1, . . . , p, we conclude that under H0(ε), T ≤1st S.

To see the bound is tight, consider in H0(ε) a sequence of {Fk}k∈N ⊆ F that diverges to

infinity: for all k ∈ N, Fk(k)− Fk(−k) = 0 . For each i = 1, . . . , p, conditional onzi = 0,

min{ β̂2
i

σ2s2
i /n

,
x∗i

σ2s2
i /n
} = (1− zi) min{e2

i ,
x∗i

σ2s2
i /n
}+ zi

x∗i
σ2s2

i /n

as before. Conditional on zi = 1, min{ β̂2
i

σ2s2i /n
,

x∗i
σ2s2i /n

} converges in probability to x∗i
σ2s2i /n

=

(1 − zi) min{e2
i ,

x∗i
σ2s2i /n

} + zi
x∗i

σ2s2i /n
for β2

i = γ2
i converges in probability to infinity along the

sequence Fk. Since such a convergence holds for all i = 1, . . . , p, the statistics T converges

in distribution to S along Fk.

A.1.3 Proof of Proposition 5

We first introduce a lemma.

131



Lemma 37. Let the minimal eigenvalues of X ′X/n be λ and let the ith diagonal entry of

(X ′X/n)−1 be s2
i . Then 1 ≤ s2

i ≤ 1/λ for all i = 1, . . . , p.

Proof. Let λi for i = 1, . . . , p be the eigenvalues of X ′X/n. Write the eigenvalue decompo-

sition as

X ′X/n = QΛQ′

where Λ = diag(λ1, . . . , λp). The ii-th entry of X ′X/n is 1 =
∑p

j=1Q
2
ijλj. Similarly for

(X ′X/n)−1 = QΛ−1Q′, we have s2
i =

∑p
j=1Q

2
ij/λj. By the inequality of weighted harmonic

mean and arithmetic mean, we have

1

s2
i

=
1∑p

j=1Q
2
ij/λj

≤
p∑
j=1

Q2
ijλj = 1.

The other inequality follows from Schur-Horn Theorem (see Schur (1923) and Horn (1957))

that 1/λ ≥ maxi{s2
i }.

Now we proceed to the proof of Proposition 5.

Proof. On one hand,by Lemma 1,

x∗i
σ2s2

i /n
≥ ln

(
vin

s2
iσ

2

(
1− ε
ε

) 2(1−δ)
1+κ

)
≥ 2(1− δ)

1 + κ
ln

1

ε
≥ c1 lnn

for some c1 > 0.

On the other hand, by Lemma 1, we have

x∗i
σ2s2

i /n
= O

(
ln

(
vin

s2
iσ

2

(1− ε)2

ε2

))
≤ O

(
ln

((
1− σ2

σ2

n

p
+ 1

)
1

ε2

))
= O(lnn),

where in the inequality we used s2
i ≥ 1 from the Lemma 37, and in the last equality we used

the assumption of asymptotic sparsity.
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A.1.4 Proof of Theorem 6

We need to first prepare a lemma. This lemma may be of interest in its own. It states that

the empirical distribution of β̂2
i /vi converges to the cdf of the χ2

1 distribution.

Lemma 38. Let the minimal eigenvalues of X ′X/n be λ and let vi = 1−σ2

p
+

σ2s2i
n

. Suppose

there exists some constant κ > 0 such that nλ
p
≥ κ. Then under the alternative, the empirical

distribution of β̂2
i /vi converges to the cdf of χ2

1 as p(n)→∞.

Proof. Since under the alternative, the asymptotic distribution for β̂ is

β̂ ∼ N
(

0,
1− σ2

p
Ip×p + σ2(X ′X)−1

)
.

Under scaling by D := diag
(
v
−1/2
1 , . . . , v

−1/2
p

)
, the distribution becomes

Dβ̂ ∼ N
(

0, D

(
1− σ2

p
Ip×p + σ2(X ′X)−1

)
D

)
.

It is clear that in the above variance matrix, all entries on the main diagonal are 1. Let the

minimal eigenvalues of X ′X/n be λ, it is clear that for any δ > 0,

D

(
1− σ2

p
Ip×p + σ2(X ′X)−1

)
D ≤D

(
1− σ2

p
+
σ2

nλ

)
Ip×pD

≤1− σ2 + σ2/κ

1− σ2
Ip×p.

Let the eigenvalues of the variance matrix of Dβ̂ be r1, . . . rp. The normalized Frobenius

norm of the above variance matrix is given by

||D
(

1− σ2

p
Ip×p + σ2(X ′X)−1

)
D||2 :=

1

p

(
p∑
i=1

r2
i

)1/2

≤ 1

p

(
p∑
i=1

(
1− σ2 + σ2/κ

1− σ2

)2
)1/2

→ 0

as p→∞. Now we apply Theorem 1 of Azriel and Schwartzman (2015), and conclude that
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the empirical distribution of the entries of Dβ̂ converges to the standard normal, and hence

the empirical distribution of β̂2
i /vi converges to χ2

1 as n, p→∞.

Now we proceed to the proof of Theorem 6.

Proof. We have seen that Lemma 37 implies s2
i p/n ≤ 1/κ. Let vi := 1−σ2

p
+

σ2s2i
n

. There

exists a constant K0 > 0, such that

T =
1

p

p∑
i=1

(1− σ2)n

(1− σ2)n+ σ2s2
i p
×min{ β̂2

i

σ2s2
i /n

,
x∗i

σ2s2
i /n
}

≥1

p

p∑
i=1

K0 min{ β̂2
i

σ2s2
i /n

,
x∗i

σ2s2
i /n
}

≥1

p

∑
β̂2
i
vi
≥
x∗
i
vi

K0
x∗i

σ2s2
i /n
≥ 1

p

∑
β̂2
i
vi
≥
x∗
i
vi

K0c1 lnn.

Since Lemma 1 and Lemma 37 implies there exists constant K1 that for all i,

x∗i
vi
≤ σ2

1− σ2

p

nλ
ln

((
1 +

(1− σ2)nλ

σ2p

)
4

π

(
1− ε
ε

)2
)

≤K1
p

nλ
ln

(
1 +

(1− σ2)nλ

σ2p

)
+K1

p

nλ
lnn

≤K1/κ as
p

nλ
ln

(
1 +

(1− σ2)nλ

σ2p

)
→ 0

by the Condition 4 and the assumption that nλ
p
≥ κ lnn. Therefore

T ≥ 1

p

∑
β̂2
i
vi
≥K1/κ

K0c1 lnn→ Pr(χ2
1 ≥ K1/κ)K0c1 lnn→∞,

where 1
p

∑
β̂2
i
vi
≥K1/κ

1→ Pr(χ2
1 ≥ K1/κ) by Lemma 38. Since we have shown previously that

the test statistics under the null is of order Op(1), the proof is complete.
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A.1.5 Proof of Proposition 7

Before proving the proposition, we need to prepare the following lemma.

Lemma 39. Let c1, c2 be two positive constants, and the random vector (x, y)t ∼ N (0,M)

where M :=

1 ρ

ρ 1

. For any c1, c2 ≥ 0, we have Cov (min{x2, c1},min{y2, c2}) ≥ 0.

Proof. The density of (x, y) can be written as

f(x)f(y|x) =
exp

(
−1

2
x2
)

√
2π

exp
(
−1

2
(y−ρx)2

1−ρ2

)
√

2π(1− ρ2)

By definition,

Cov
(
min{x2, c1},min{y2, c2}

)
=E

[
min{x2, c1} ×min{y2, c2}

]
− E[min{x2, c1}]E[min{y2, c2}]

=

∫
R

exp
(
−1

2
x2
)

√
2π

min{x2, c1}
∫
R

min{y2, c2}
exp

(
−1

2
(y−ρx)2

1−ρ2

)
√

2π(1− ρ2)
dydx− E[min{x2, c1}]E[min{y2, c2}]

=

∫
R

min{x2, c1}
∫
R

min{(
√

1− ρ2s+ ρx)2, c2}dΦ(s) dΦ(x)− E[min{x2, c1}]E[min{y2, c2}]

=

∫
R

min{x2, c1}h(x)dΦ(x)−
∫
R

min{x2, c1}dΦ(x)

∫
R

min{y2, c2}dΦ(y)

where Φ is the standard normal c.d.f., and h(x) :=
∫
R min{(

√
1− ρ2s+ ρx)2, c2}dΦ(s). It is

clear that h(x) = h(−x), we can write h(x) = h(
√
x2). So with a change of variable x2 = t,

we have

Cov
(
min{x2, c1},min{y2, c2}

)
=

∫
R

min{t, c1}h(
√
t)dχ2

1(t)−
∫
R

min{t, c1}dχ2
1(t)

∫
R

min{t, c2}dχ2
1(t)
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where χ2
1 is the Chi-square c.d.f of one degree freedom. Since we have

∫
R h(
√
t)dχ2

1(t) =∫
R2 min{y2, c2}f(x)f(y|x)dydx =

∫
R min{y2, c2}dΦ(y), Chebyshev’s sum inequality implies

Cov (min{x2, c1},min{y2, c2}) > 0 as long as if h(
√
t) is an increasing function in t for t > 0.

To see h(
√
t) is indeed increasing, observe that if s is a standard normal random vari-

able, then
(
s+ ρ√

1−ρ2

√
t

)2

follows a noncentral Chi-squared distribution χ2
1

(
ρ2t

1−ρ2

)
with

noncentrality parameter ρ2t
1−ρ2 . Since the noncentrality parameter has the monotone likeli-

hood ratio property, it follows that for any 0 ≤ t1 < t2, the distribution χ2
1

(
ρ2t2
1−ρ2

)
first order

stochastically dominates the distribution χ2
1

(
ρ2t1
1−ρ2

)
. Since

h(
√
t) :=

∫
R

min{(
√

1− ρ2s+ ρ
√
t)2, c2}dΦ(s) = E[min{(1− ρ)s′, c2}]

where s′ :=
(
s+ ρ√

1−ρ2

√
t

)2

is some χ2
1

(
ρ2t

1−ρ2

)
random variable. Hence h(

√
t) is increasing

in t.

Now we can proceed to the proof.

Proof. Since for each i, (1−σ̂2)n

(1−σ̂2)n+σ̂2s2i p
is bounded above by 1, |Ŝ − S ′| ≤ 1

p

∑p
i=1 e

2
i |σ

2

σ̂2 − 1|.

Since σ̂2 is
√
n-consistent, |Ŝ − S ′| is of order 1/

√
n using Cauchy Schwarz.

For the rest of the proof, it suffices that to show that V ar(Ŝ) is of order at least 1/p. For

i = 1, . . . , p, denote Si := (1−σ̂2)n

(1−σ̂2)n+σ̂2s2i p
×
(

(1− zi) min{e2
i ,

x̂∗i
σ̂2s2i /n

}+ zi
x̂∗i

σ̂2s2i /n

)
. By definition

V ar(Ŝ) = 1
p2

∑p
i,j=1Cov(Si, Sj). When i 6= j, we have
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(
(1− σ̂2)n

(1− σ̂2)n+ σ̂2s2
i p
× (1− σ̂2)n

(1− σ̂2)n+ σ̂2s2
jp

)−1

Cov(Si, Sj)

=Cov

(
(1− zi) min{e2

i ,
x̂∗i

σ̂2s2
i /n
}+ zi

x̂∗i
σ̂2s2

i /n
, (1− zj) min{e2

j ,
x̂∗j

σ̂2s2
j/n
}+ zj

x̂∗j
σ̂2s2

j/n

)
=Cov

(
(1− zi) min{e2

i ,
x̂∗i

σ̂2s2
i /n
}, (1− zj) min{e2

j ,
x̂∗j

σ̂2s2
j/n
}
)

=Cov

(
min{e2

i ,
x̂∗i

σ̂2s2
i /n
}, min{e2

j ,
x̂∗j

σ̂2s2
j/n
}
)
≥ 0

where the last inequality follows from Lemma 39. Therefore

V ar(Ŝ) =
1

p2

p∑
i,j=1

Cov(Si, Sj) ≥
1

p2

p∑
i

V ar(Si).

Since for some δ > 0, x̂∗i
σ̂2s2i /n

is uniformly bounded away from 0 for all ε ∈ (0, δ) by Lemma 1.

And as maxi{s2i p}
n

is bounded above, we have (1−σ̂2)n

(1−σ̂2)n+σ̂2s2i p
bounded away from zero uniformly

over i. Therefore V ar(Si) ≥ C for some constant C > 0. Hence V ar(Ŝ) ≥ 1
p2

∑p
i=1C = C

p
.

This completes the proof.

A.2 Optimal Estimation when the Parameter Space is of

Infinite Dimension

A.2.1 Proof of Theorem 8

Proof. Let us define k(n) = n1/7, and let us for θ ∈ RN define by θ[k] the vector

θ[k] = (θ1, ...θk, 0, ..., 0).
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Let us first observe that by integrating successively, we can conclude from (2.2) that, perhaps

for a different M ,

Eθ

(
sup
θ∈O

∣∣∣∣∂`t(θ)∂θi

∣∣∣∣) ≤M (A.1)

Then we have

sup
θ∈O

∣∣∣∣∣
n∑
t=1

`t(θ)−
n∑
t=1

`t
(
θ[k(n)]

)∣∣∣∣∣ ≤ ∑
m>k(n),1≤t≤n

θm sup
θ∈O

∣∣∣∣∂`t(θ)∂θi

∣∣∣∣ (A.2)

and

E
∑

m>k(n),1≤t≤n

|θm| sup
θ∈O

∣∣∣∣∂`t(θ)∂θi

∣∣∣∣ ≤ const
∑

m>k(n),1≤t≤n

cmM (A.3)

≤ const
∑

m>n1/7,1≤t≤n

o(1)m−8M = o(1),

Hence the probability measures of θ and θ[k(n)] are asymptotically equivalent: The difference

of the logarithms converges to zero in probability uniformly on O; hence the ratio converges

to 1. So let us analyze `t
(
θ[k(n)]

)
as a function of θ.

Let us first analyze the ML-estimator. Since θ[k(n)] only contains finitely many parame-

ters, we can use the classical approach for linearization of the first order condition:

0 =
∑

`
(1)
t (θ[k(n)]) +

∑
`

(2)
t (θ[k(n)])(θ̂ − θ[k(n)]) +Rn(θ̂ − θ[k(n)]),

where Rn is the remainder term of the Taylor series expansion. With some tedious, but

elementary calculations, we can show that (with ||.|| denoting the usual matrix norm)

E|| 1
n

∑
`

(2)
t (θ[k(n)])− 1

n
E
∑

`
(2)
t (θ[k(n)])||, (A.4)

P [||Rn|| ≤ const · k3(θ̂ − θ[k(n)])]→ 1,
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and for all ε > 0, we can find a C(ε) so that

P [||
∑

`
(1)
t (θ[k(n)])|| <

√
k ·
√
n · C(ε)] > 1− ε.

Since we did assume that the information matrix 1
n
E
∑
`

(2)
t (θ[k(n)]) is well conditioned,

we can conclude that

(
√
n/
√
k)(θ̂ − θ[k(n)] −

(∑
`

(2)
t (θ[k(n)])

)−1∑
`

(1)
t (θ[k(n)])→ 0 (A.5)

(where the convergence is to be understood to be in probability) and when utilizing (A.4)

(
√
n/
√
k)(θ̂ − θ[k(n)])remains OP (1) (A.6)

An was defined as
∑
`

(2)
t (θ̂). Using a third-order Taylor series expansion, and again using

the fact that we assumed the information matrix to be well-conditioned, we may conclude

that for all η > 0

P
[
(1− η)E

∑
`

(2)
t (θ[k(n)]) <

∑
`

(2)
t (θ̂) < (1 + η)E

∑
`

(2)
t (θ[k(n)])

]
→ 1 (A.7)

We now have all the tools to compute posterior distribution. The posterior distribution

is a random probability measure on Θ, and the density of this measure is proportional to the

likelihood function. Let us denote this measure by Πn. Then Πn is measurable with respect

to Fn ( the information available at time n). and is a measure defined on the σ-algebra I

of the measurable subsets of Θ. Let Dnn be events from Fn × I. Then define the random

variables ∆n by:

Let

∆n(ω) = πn({θ : (ω, θ) ∈ Dn})
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It is quite easy to show that ∆n are random variables: It is trivial if Dn is a product set

itself, and then apply a monotone-class argument. Then, trivially

P (Dn) = E(∆n).

Si uf P (Dn) → 1, E(∆n) → 1, too. As 0 ≤ ∆n ≤ 1,∆n → 1 stochastically, too. Hence for

all ε > 0 we can find Fn ∈ Fn with P (Fn) > 1− ε so that for ω ∈ Fn

∆n(ω) = Πn({θ : (ω, θ) ∈ Dn}) ≥ 1− ε.

So if we have given a sequence of events with probability converging to one. Then - auto-

matically - the projections of this set will have - except for events from Fn with arbitrary

small probabilities - conditional probabilities arbitrarily near to one.

Let us now come back to our original problem, namely analyzing the poste- rior distri-

bution. First of all let us observe that we postulated that our parame- ter can be estimated

consistently. So we have estimators -Fn valued functions -θ̃n which converge to the true

parameter. So P [θ̃n ∈ O(θ)] → 1, where O is the bounded neighbourhood we used in (2.2)

and (A.1). Hence we can conclude that

Πn[O(θ)]→ 1. (A.8)

in probability.

In principle, Πn(.) should be easy to construct. We know that the density is proportional

to the likelihood, and we did derive some simplifying approx- imations to the likelihood.

Our first problem is the normalizing factor. We would have to integrate the likelihood over

the whole parameter space, which is inconvenient. When we use relations like (A.8), we can

limit our averaging to e.g. O(θ). For all ε > 0, for n large enough there exist sets Fn ∈ Fn
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with P (Fn) ≥ 1− ε and for ω ∈ Fn, Πn[O(θ)](ω) ≥ 1− ε. So with Π denoting the prior on

Θ we have
dΠn

dΠ
=

exp(
∑
`t(θ))∫

exp(
∑
`t(θ))dΠ(θ)

.

For ω ∈ Fn, however, Πn[O(θ)](ω) ≥ 1− ε. Hence

∫
O(θ)

dΠn

dΠ
dΠ ≥ 1− ε,

and therefore ∫
O(θ)

exp(
∑
`t(θ))dΠ∫

exp(
∑
`t(θ))dΠ

≥ 1− ε.

Since the ration on the LHS is bounded by 1, we may conclude that

lim

∫
O(θ)

exp(
∑
`t(θ))dΠ∫

exp(
∑
`t(θ))dΠ

= 1

which implies that

lim

∫
O(θ)c

exp(
∑
`t(θ))dΠ∫

exp(
∑
`t(θ))dΠ

= 0

Therefore we can conclude that total variation of the difference between Πn and the

random measure Π
(1)
n defined by its with density

IO(θ) exp(
∑
`t(θ))dΠ∫

IO(θ) exp(
∑
`t(θ))dΠ

n

converges to zero.

Let us now define the random measure Π
(2)
n to have the density

IO(θ) exp(
∑
`t(θ

[k]))dΠ∫
IO(θ) exp(

∑
`t(θ[k]))dΠ

n

Then (A.2),(A.3) imply that the total variation of the difference converges to zero.
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Now lets construc events of probability converging to one based on equation (A.5),(A.6)

and (A.7). What we want to do is to approximate

∑
`t(θ

[k])

by its second order Taylor approximation around θ̂n. First observe that in (A.6) implies that

P
(

[θ̂n ∈ O(θ)]
)
→ 1.

We can apply our technique again to this sequence of events and construct measure Π
(3)
n with

the corresponding densities: this way we guarentee that θ̂n is in O(θ), so all our functions

are differentiable. Next we analyze (10):

(√
n/
√
k
)

(θ̂ − θ[k(n)]) remains Op(1).

An equivalent formulation of this statement is: for any sequence Bn ↑ ∞ define the events

Sn =
[
||
(√

n/
√
k
)

(θ̂ − θ[k(n)])|| ≤ Bn

]

Then P (Sn) = 1.

Then we have, again, we can construct measures Π
(4)
n for which our density equals

IS exp(
∑
`t(θ

[k]))dΠ∫
IS exp(

∑
`t(θ[k]))dΠ

n.

For this density, however, we can use a Taylor series expansion with θ̂ as base value

∑
`t(θ

[k]) =
∑

`t(θ̂ − (θ[k] − θ̂))′
(∑

`
(2)
t (θ̂)

)
(θ[k] − θ̂))/2 + rn
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where

rn ≤
∑

sup
θ∈O
|∂

3`t(θ)

∂θiθjθk
|max |(θ[k] − θ̂))i|max |(θ[k] − θ̂))j|max |(θ[k] − θ̂))k|.

Then for θ[k] ∈ Sn,

E|rn| ≤
(
E sup

θ∈O
|∂

3`t(θ)

∂θiθjθk
|
)
nB3 k

3/2

n3/2
= B3

n

n3/(2×7)

n1/2
= B3

nn
−4/14.

So choosing

Bn = o(n1/14)

guarentees that E|rn| → 0.

Hence we can again construct Π
(5)
n , being asymptotically equivalent to Πn, with density

ISn exp(
∑
`t(θ̂) + (θ[k] − θ̂)′P ′k

(∑
`

(2)
t (θ̂)

)
Pk(θ

[k] − θ̂)/2)∫
ISn exp(

∑
`t(θ̂) + (θ[k] − θ̂)′P ′k

(∑
`

(2)
t (θ̂)

)
Pk(θ[k] − θ̂)/2)dΠ

∑
`t(θ̂) does not depend on θ so the corresponding term exp(

∑
`t(θ̂)) cancels out. Fur-

thermore, observe that

θ[k] = Pkθ.

where Pk is the matrix describing projection to the first k components of a vector. As θ̂ only

contains k components, we have

θ̂ = Pkθ̂

. Hence we can write our density as

ISn exp((θ − θ̂)′P ′k
(∑

`
(2)
t (θ̂)

)
Pk(θ − θ̂)/2)∫

ISn exp((θ − θ̂)′P ′k
(∑

`
(2)
t (θ̂)

)
Pk(θ − θ̂)/2)dΠ
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which looks very much like a Gaussian density. The only problem is the factor ISn . We

know that this factor converges to 1 so it is sufficient to establish that the measure with

density
exp((θ − θ̂)′P ′k

(∑
`

(2)
t (θ̂)

)
Pk(θ − θ̂)/2)∫

exp((θ − θ̂)′P ′k
(∑

`
(2)
t (θ̂)

)
Pk(θ − θ̂)/2)dΠ

is

G

((
C −

∑
`

(2)
t (θ̂)

)−1 (∑
`

(2)
t (θ̂)

)
θ̂,
(
C −

∑
`

(2)
t (θ̂)

)−1
)

and

G

((
C −

∑
`

(2)
t (θ̂)

)−1 (∑
`

(2)
t (θ̂)

)
θ̂,
(
C −

∑
`

(2)
t (θ̂)

)−1
)(

SCn
)
→ 0.

Where SCn is the complememt of Sn. Both are tedious but elementary calculations with

normal random variables. so we will omit these proofs.

A.3 Moderate Expected Utility

A.3.1 Proof of Proposition 16

Let Z be a finite set with n alternatives enumerated x1, x2, . . . , xn. Consider the set of choice

rules ρ on Z which satisfy WST with ρ(xi, xj) ≥ 1/2 whenever i ≤ j and for which the set

{ρ(x, y) ∈ [0, 1] : x 6= y} has maximum cardinality with n(n − 1) elements. Each such ρ

induces a strict ordering �ρ of the n(n + 1)/2 pairs Pn := {(xi, xj) : n ≥ i > j ≥ 1} given

by (xi, xj) �ρ (xk, x`) if and only if ρ(xi, xj) > ρ(xk, x`). This set of choice rules ρ induces

#WST (n) = [n(n− 1)/2]! different strict orderings �ρ on Pn.

MST and MST+ allow the same number of different strict orderings over Pn which we

denote #MST (n). Now consider the addition of alternative xn+1 to the set Z.

144



Lemma 40. #MST (n+ 1) ≤ [n(n− 1)/2 + 1]n #MST (n)

Proof. Take a single strict ordering over Pn compatible with MST. There are multiple ways to

extend this strict ordering to incorporate the new pairs (x1, xn+1), (x2, xn+1), . . . , (xn, xn+1)

and obtain a strict ordering over Pn+1 that is still compatible with MST. Since the original

ordering has n(n−1)/2 pairs, there are n(n−1)/2+1 different positions to include (xn, xn+1).

In this way we obtain n(n − 1)/2 + 1 different strict orderings, all of which respect MST.

The total number of strict orderings over Pn ∪ {(xn, xn+1)} that satisfy MST is therefore

[n(n−1)/2+1] #MST (n). Now we take one such strict ordering and extend it to incorporate

a second pair (xn−1, xn+1). This pair can in principle be added into n(n− 1)/2 + 2 different

positions, but placing it in the very last position would violate MST, since MST requires

ρ(xn−1, xn+1) > min{ρ(xn−1, xn), ρ(xn, xn+1)}. The total number of strict orderings over

Pn ∪ {(xn, xn+1), (xn−1, xn+1)} which satisfy MST must therefore be smaller or equal to

[n(n− 1)/2 + 1]2 #MST (n). A simple inductive argument completes the proof.

Lemma 41. limn→∞

[∏n
k=1

n(n−1)/2+k
n(n−1)/2+1

]
= e

Proof. The result can be shown by verifying that, for each n,

(
1 +

1

n

)n−1

≤

[
n∏
k=1

n(n− 1)/2 + k

n(n− 1)/2 + 1

]
≤
(

1 +
1

n

)n

and taking the limit as n→∞. We leave the details to the reader.

Lemma 40 implies that

#MST (n+ 1)

#WST (n+ 1)
≤ #MST (n)

#WST (n)

[n(n− 1)/2]!

[n(n+ 1)/2]!
[n(n− 1)/2 + 1]n

=
#MST (n)

#WST (n)

[
n∏
k=1

n(n− 1)/2 + 1

n(n− 1)/2 + i

]
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and by Lemma 41 the last expression in brackets goes to 1/e when n goes to infinity, where

e ≈ 2.718 is the base of the natural logarithm. Hence for all n sufficiently large the ratio

#MST (n + 1)/#WST (n + 1) is less than half of the ratio #MST (n)/#WST (n), which

completes the proof.

Finally, we prove the additional claim, stated after Proposition 16, that

lim
n→∞

#SST (n)/#MST (n) = 0.

The choice probability ρ(x1, xn) must be the highest choice probability in every ρ that sat-

isfies SST. For each strict ordering of choice probabilities satisfying SST, there exist at least

n− 2 strict orderings which violate SST but satisfy MST: for each k = 2, 3, . . . , n− 1 change

the value of ρ(x1, xn) to be equal to max{ρ(x1, xk), ρ(xk, xn)} − ε for ε > 0 sufficiently

small. It is immediate to see that each resulting ranking violates SST. To see that MST still

holds, note that every inequality required by SST holds except those involving ρ(x1, xn).

In addition, SST implies that for each k, j = 2, . . . , n − 1, max{ρ(x1, xk), ρ(xk, xn}) >

min{ρ(x1, xj), ρ(xj, xn}) hence for ε small we have ρ(x1, xn) > min{ρ(x1, xj), ρ(xj, xn)}.

Thus, #SST (n)/#MST (n) ≤ 1/(n− 1)→ 0 when n→∞.

A.3.2 Proof of Theorem 18

For necessity, assume there exist u, d and F satisfying (4.2), and assume ρ(x, y) ≥ 1/2 and

ρ(y, z) ≥ 1/2. If it were the case that ρ(x, z) < min{ρ(x, y), ρ(y, z)}, then by (4.2) and the
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triangle inequality property of d it would follow that

u(x)− u(z) < d(x, z) min

{
u(x)− u(y)

d(x, y)
,
u(y)− u(z)

d(y, z)

}
≤ [d(x, y) + d(y, z)] min

{
u(x)− u(y)

d(x, y)
,
u(y)− u(z)

d(y, z)

}
≤ d(x, y)

u(x)− u(y)

d(x, y)
+ d(y, z)

u(y)− u(z)

d(y, z)

= u(x)− u(z)

which is a contradiction. Hence, it must be the case that ρ(x, z) ≥ min{ρ(x, y), ρ(y, z)}.

This first step of the necessity was also shown by [20].

Now suppose we have equality ρ(x, z) = min{ρ(x, y), ρ(y, z)}. We consider the case

min{ρ(x, y), ρ(y, z)} = ρ(x, y), while the remaining case is analogous and left to the reader.

Representation (4.2) and the triangle inequality imply

u(x)− u(y) + u(y)− u(z) = u(x)− u(z)

= d(x, z)

[
u(x)− u(y)

d(x, y)

]
≤ [d(x, y) + d(y, z)]

[
u(x)− u(y)

d(x, y)

]
= u(x)− u(y) + d(y, z)

[
u(x)− u(y)

d(x, y)

]
.

Subtracting u(x)− u(y) from both sides we obtain

u(y)− u(z)

d(y, z)
≤ u(x)− u(y)

d(x, y)

and therefore (4.2) yields ρ(x, y) = ρ(y, z) = ρ(x, z) as desired.

For sufficiency, suppose ρ satisfies MST+. In particular, ρ satisfies WST, and hence, by

letting x < y if and only if ρ(x, y) ≥ 1/2, we obtain a complete and transitive relation < over
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the finite set of options Z. The relation < induced by ρ divides the n alternatives in Z into

k ≤ n indifference classes. Therefore, there exists a utility function u : Z → {1, . . . , k} that

is onto and represents <, that is, u(x) ≥ u(y) if and only if x < y if and only if ρ(x, y) ≥ 1/2.

Let Y := {{x, y} ⊂ Z : ρ(x, y) 6= 1/2}, and let m be the cardinality of the set {|ρ(x, y)−

1/2| : {x, y} ∈ Y }. Partition the set Y into m disjoint sets Y1 ∪Y2 ∪ · · · ∪Ym = Y such that

for any two pairs {w, x} and {y, z} in Y we have {w, x} ∈ Yi and {y, z} ∈ Yj with i ≥ j if

and only if |ρ(w, x)− 1/2| ≤ |ρ(y, z)− 1/2|. Thus, the pairs in Y1 have the highest value of

|ρ(x, y)− 1/2|, while the pairs in Ym have the lowest value of |ρ(x, y)− 1/2| among the pairs

in Y .

The result is trivial when Z has n ≤ 2 alternatives so suppose n ≥ 3. Define a constant

C = (n− 1)[n(n−1)/2+1] > 0 and define the sequence D1, D2, . . . , Dm by:

D1 = 0;Dj = (n− 1)j−2 for j = 2, . . . ,m.

Let d : Z × Z → [0,∞) be defined as follows:

d(x, y) =


0, if x = y

C, if x 6= y and ρ(x, y) = 1/2

(C/2 +Dj) |u(x)− u(y)| , if {x, y} ∈ Yj

(A.9)

From the definition (A.9) it is immediate that d satisfies (i) d(x, y) ≥ 0; (ii) d(x, y) = 0 if and

only if x = y; and (iii) d(x, y) = d(y, x) for all x, y ∈ Z. To show that d is a metric, it remains

to verify the triangle inequality: d(x, z) ≤ d(x, y) + d(y, z). The inequality trivially holds

when any two options among x, y, z are equal. Consider three distinct options x, y, z ∈ Z.

Case 1: u(x) = u(y) = u(z). By the definition of u we have ρ(x, y) = ρ(y, z) = ρ(x, z) =

1/2. By the definition of d we have d(x, z) = C < 2C = d(x, y) + d(y, z).
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Case 2: u(x) 6= u(y) = u(z). The definitions of u and d imply

d(x, y) + d(y, z)− d(x, z) = (C/2 +Di) |u(x)− u(y)|+ C − (C/2 +Dj) |u(x)− u(z)|

= (Di −Dj) |u(x)− u(z)|+ C

≥ −(n− 1)m−2(n− 1) + C

= (n− 1)[n(n−1)/2+1] − (n− 1)m−1

> 0

where the last inequality follows from the fact that we defined m to be the cardinality

of {|ρ(x, y)− 1/2| : {x, y} ∈ Y } which is smaller or equal to n(n− 1)/2.

Case 3: u(y) 6= u(x) = u(z). The definitions of u and d imply

d(x, y) + d(y, z)− d(x, z) = (C/2 +Di) |u(x)− u(y)|+ (C/2 +Dj) |u(y)− u(z)| − C

= (C +Di +Dj) |u(y)− u(z)| − C

≥ 0.

Case 4: u(z) 6= u(x) = u(y). The inequality follows from the same argument as in Case 2.

Case 5: u(x) > u(y) > u(z). By the definition of u we have {x, y} ∈ Yi, {y, z} ∈ Yj, and

{x, z} ∈ Y`, for some i, j, `. The definition of d implies

d(x, y) + d(y, z)− d(x, z) = (C/2 +Di) |u(x)− u(y)|+ (C/2 +Dj) |u(y)− u(z)|

− (C/2 +D`) |u(x)− u(y) + u(y)− u(z)|

= (Di −D`) |u(x)− u(y)|+ (Dj −D`) |u(y)− u(z)|

The definition of u implies ρ(x, y) > 1/2 and ρ(y, z) > 1/2. By MST+ we have either
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ρ(x, y) = ρ(y, z) = ρ(x, z) or ρ(x, z) > min{ρ(x, y), ρ(y, z)}. The first case implies

Di = Dj = D` above and therefore d(x, y) + d(y, z) − d(x, z) = 0. The second case

implies D` < max{Di, Dj}. If D` ≤ min{Di, Dj} then both (Di −D`) and (Dj −D`)

above are positive and the desired inequality holds. It remains to show the inequality

holds when min{Di, Dj} < D` < max{Di, Dj}, which implies

d(x, y) + d(y, z)− d(x, z) ≥ (max{Di, Dj} −D`) 1 + (min{Di, Dj} −D`) (n− 2)

≥ (n− 1)`−1 − (n− 1)`−2 + [0− (n− 1)`−2](n− 2)

= 0.

Case 6: u(x) > u(z) > u(y). By the definition of u we have {x, y} ∈ Yi, {y, z} ∈ Yj, and

{x, z} ∈ Y`, for some i, j, `. The definition of d implies

d(x, y) + d(y, z)− d(x, z) = (C/2 +Di) [u(x)− u(z) + u(z)− u(y)]

+ (C/2 +Dj) [u(z)− u(y)]− (C/2 +D`) [u(x)− u(z)]

= (Di −D`) [u(x)− u(z)] + (C +Di +Dj) [u(z)− u(y)]

≥
(
0− (n− 1)m−2

)
(n− 2) + (C + 0 + 0) 1

= −(n− 1)m−1 + (n− 1)m−2 + (n− 1)n(n−1)/2+1

> 0.

Case 7: u(y) > u(x) > u(z). By the definition of u we have {x, y} ∈ Yi, {y, z} ∈ Yj, and
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{x, z} ∈ Y`, for some i, j, `. The definition of d implies

d(x, y) + d(y, z)− d(x, z) = (C/2 +Di) [u(y)− u(x)]

+ (C/2 +Dj) [u(y)− u(x) + u(x)− u(z)]

− (C/2 +D`) [u(x)− u(z)]

= (C +Di +Dj) [u(y)− u(x)] + (Dj −D`) [u(x)− u(z)]

> 0.

Case 8: u(y) > u(z) > u(x). Similarly to Case 7, we have

d(x, y) + d(y, z)− d(x, z) = (C +Di +Dj) [u(y)− u(z)] + (Di −D`) [u(z)− u(x)]

> 0.

Case 9: u(z) > u(x) > u(y). Similarly to Cases 7 and 8, we have

d(x, y) + d(y, z)− d(x, z) = (C +Di +Dj) [u(x)− u(y)] + (Dj −D`) [u(z)− u(x)]

> 0.

Case 10: u(z) > u(y) > u(x). Since d(x, y) + d(y, z) ≤ d(x, z) if and only if d(y, x) +

d(z, y) ≤ d(z, x), the inequality follows from the same argument as in Case 5.

By Cases 1 to 10 above, d satisfies the triangle inequality and is therefore a metric. Now, we

verify that the utility u and the metric d constructed above provide an ordinal representation

for ρ as in (4.3). First, ρ(w, x) ≥ ρ(y, z) > 1/2 if and only if ρ(w, x) > 1/2, ρ(y, z) > 1/2,

and |ρ(w, x) − 1/2| ≥ |ρ(y, z) − 1/2|, if and only if u(w) > u(x), u(y) > u(z), d(w, x) =
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(C/2 +Di)[u(w)− u(x)], d(y, z) = (C/2 +Dj)[u(y)− u(z)], and i ≤ j, if and only if

u(w)− u(x)

d(w, x)
=

1

C/2 +Di

≥ 1

C/2 +Dj

=
u(y)− u(z)

d(y, z)
> 0.

Second, ρ(w, x) ≥ 1/2 ≥ ρ(y, z) if and only if u(w)− u(x) ≥ 0 ≥ u(y)− u(z) if and only if

u(w)− u(x)

d(w, x)
≥ 0 ≥ u(y)− u(z)

d(y, z)
.

And, finally, 1/2 > ρ(w, x) ≥ ρ(y, z) if and only if ρ(w, x) < 1/2, ρ(y, z) < 1/2, and

|ρ(w, x)− 1/2| ≤ |ρ(y, z)− 1/2|, if and only if u(w) < u(x), u(y) < u(z), d(w, x) = (C/2 +

Di)[u(x)− u(w)], d(y, z) = (C/2 +Dj)[u(z)− u(y)], and i ≥ j, if and only if

0 >
u(w)− u(x)

d(w, x)
= − 1

C/2 +Di

≥ − 1

C/2 +Dj

=
u(y)− u(z)

d(y, z)

hence the ordinal representation (4.3) holds. Finding a strictly increasing F such that the

cardinal representation (4.2) holds is then straightforward and left to the reader.

A.3.3 Proof of Theorem 21

To show necessity, let U : ∆ → [0, 1] be linear and onto, let ‖·‖ be a norm defined on

the subspace {x ∈ Rn : x1 + · · · + xn = 0} and which is generated by an inner product

‖x‖ =
√
〈x, x〉, and let F be a strictly increasing and continuous transformation such that

the MEM representation (4.4) holds.

First, ρ must be non-constant since U is onto. Second, ρ must be continuous outside the

diagonal since (i) U is linear; (ii) ‖·‖ is a norm hence ‖x− y‖ > 0 whenever x 6= y; and (iii)
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F is continuous. Third, ρ must be linear since

ρ(αx+ (1− α)z, αy + (1− α)z) = F

(
U(αx+ (1− α)z)− U(αy + (1− α)z)

‖αx+ (1− α)z − [αy + (1− α)z]‖

)
= F

(
α[U(x)− U(y)]

α‖x− y‖

)
= ρ(x, y)

whenever 0 < α < 1 and x 6= y, and the equality holds trivially when x = y. Finally, we show

that ρ must be convex. Suppose ρ(x, y) = 1/2 and ρ(x, z) = ρ(y, z) > 1/2. By (4.4) we have

U(x) = U(y) > U(z) and ‖x − z‖ = ‖y − z‖. The linearity of U and U(x) = U(y) > U(z)

imply that x− z and y − z are not collinear. Thus the Cauchy-Schwartz inequality implies

−1 <
〈x− z, y − z〉
‖x− z‖‖y − z‖

< 1.

Since ‖x− z‖ = ‖y − z‖, we have the equality

‖αx+ (1− α)y‖2

‖x− z‖‖y − z‖
= 1 + 2(α2 − α)

(
1− 〈x− z, y − z〉
‖x− z‖‖y − z‖

)

where the right hand side can be easily verified to have a strict minimum at α = 1/2. Thus

the mapping α 7→ ‖αx + (1 − α)y‖ also has a strict minimum at α = 1/2 and by (4.4) the

choice rule ρ must be convex.

To show sufficiency, let the non-constant choice rule ρ on ∆ be linear, continuous (outside

the diagonal), convex, and satisfy MST+. First, we show that ρ has a unique linear extension

to the n− 1 dimensional hyperplane H that contains ∆.

Lemma 42. ρ has a unique linear extension to H = {(x1, . . . , xn) ∈ Rn : x1 + · · ·+xn = 1}.

Proof. Let ρ′ and ρ′′ be two linear extensions of ρ and let x, y ∈ Rn with x1 + · · · + xn =

y1 + · · · + yn = 1. Let z = (1/n, . . . , 1/n) ∈ ∆. Take 0 < α < 1 sufficiently small such that
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0 < αxi + (1− α)/n < 1 and 0 < αyi + (1− α)/n < 1 for each i. Then αx+ (1− α)z ∈ ∆,

αy + (1− α)z ∈ ∆ and, by linearity,

ρ′(x, y) = ρ′(αx+ (1− α)z, αy + (1− α)z)

= ρ(αx+ (1− α)z, αy + (1− α)z)

= ρ′′(αx+ (1− α)z, αy + (1− α)z)

= ρ′′(x, y)

hence ρ′ and ρ′′ must be equal.

From this point on, we identify ρ with its unique linear extension. Define the relation

<⊂ ∆×∆ by x < y if and only if ρ(x, y) ≥ 1/2. Since ρ satisfies MST+, this < is complete

and transitive. By linearity and continuity, < satisfies all the vNM axioms and admits an

expected utility representation. Since ρ is non-constant, there is a unique linear function

U : Rn → R which represents < with U(∆) = [0, 1].

For each lottery x, let I(x) := {y ∈ H : ρ(x, y) = 1/2} denote the set of lotteries that

are stochastically indifferent to x. Note that I(x) is an affine subspace of dimension n − 2.

Since ρ is non-constant, there exist x̄, ȳ ∈ ∆ with ρ(x̄, ȳ) > 1/2. By linearity, ρ is entirely

determined by the values of the mapping x 7→ ρ(x, ȳ) for x ∈ I(x̄). For each 1/2 < p ≤ 1 let

B(p) := {x ∈ I(x̄) : ρ(x, ȳ) ≥ p} be the upper contour set of elements that are stochastically

indifferent to x̄ and that are chosen over ȳ with probability greater or equal to p.

Lemma 43. B(p) is convex for all 1/2 < p ≤ 1.

Proof. Let x, x′ ∈ B(p) and let 0 < α < 1. Since I(x̄) is an affine subspace, αx+ (1−α)x′ ∈

I(x̄). Linearity implies ρ(αx+(1−α)x′, αȳ+(1−α)x′) = ρ(x, ȳ) ≥ p. Linearity also implies

ρ(αȳ + (1 − α)x′, ȳ) = ρ(x′, ȳ) ≥ p. Then, MST+ implies ρ(αx + (1 − α)x′, ȳ) ≥ p and

therefore αx+ (1− α)x′ ∈ B(p).
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Lemma 44. B(p) is compact for all 1/2 < p ≤ 1.

Proof. B(p) is closed by continuity. Let | · | denote the standard Euclidean metric, not

necessarily equal to the metric we are going to construct for the representation. If B(p) were

not bounded, there would exist a sequence x(k) in B(p) with |x(k)− ȳ| ≥ k for all k ∈ N. For

each k, by linearity ρ(ȳ+ (x(k)− ȳ)/|x(k)− ȳ|, ȳ) = ρ(x(k), ȳ) ≥ p. By Bolzano-Weierstrass

the sequence ȳ + (x(k)− ȳ)/|x(k)− ȳ| would have a subsequence converging to some z 6= ȳ.

By the linearity of U we would have U(z) = U(ȳ) and ρ(z, ȳ) = 1/2, contradicting continuity.

Hence B(p) must be bounded and therefore compact.

Lemma 45. The mapping x 7→ ρ(x, ȳ) has a unique maximizer x̂ on I(x̄).

Proof. Since ρ(x̄, ȳ) > 1/2 we have B(p) 6= ∅ for some p > 1/2. Since ρ is continuous outside

the diagonal, the mapping x 7→ ρ(x, ȳ) is continuous on I(x̄). B(p) is compact by Lemma 44,

hence the maximum ρ(x̂, ȳ) = p̄ is attained at some x̂ ∈ B(p). Hence B(p̄) is not empty,

and by the previous lemmas it is compact and convex. Since ρ is convex, B(p̄) must be a

singleton.

For the rest of the proof, we denote by x̂ the unique maximizer of x 7→ ρ(x, ȳ) on I(x̄).

Lemma 46. x ∈ I(x̄) and ρ(x, ȳ) = p implies ρ(2x̂− x, ȳ) = p.

Proof. The statement trivially holds if x = x̂, so suppose x 6= x̂. First note 2x̂ − x =

x̂ + (x̂ − x) ∈ I(x̄). If ρ(2x̂ − x, ȳ) < p, since x 7→ ρ(x, ȳ) is continuous in the segment

[x̂, x̂ + (x̂ − x)], by the intermediate value theorem we have ρ(x′, ȳ) = p for some x′ in the

open segment (x̂, 2x̂ − x). But then since x̂ is the unique maximizer in I(x̄) it is also the

unique maximizer in the segment [x, x′]. Since x̂ 6= x/2 + x′/2 this contradicts the fact

that ρ is convex. Hence we must have ρ(2x̂ − x, ȳ) ≥ p. The same argument shows that

ρ(2x̂− x, ȳ) ≤ p.
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Recall that x̂ is the unique maximizer ρ(x̂, ȳ) = p̄ on I(x̄). Let B = B(p) − x̂ for some

fixed p ∈ (1/2, p̄). We first define an auxiliary norm ‖·‖B on the n− 2 dimensional subspace

I(x̄)− x̂ using B as the unit ball.

Lemma 47. ‖x‖B := inf{λ ≥ 0 : x ∈ λB} is a norm on I(x̄)− x̂.

Proof. The Minkowski functional ‖·‖B defined above is a norm when B is a symmetric,

convex set such that each line through zero meets B in a non-trivial, closed, bounded segment

[33]. By definition ‖x‖B ≥ 0 for all x. Moreover, if ‖x‖B = 0 then x ∈ λB for all λ > 0

and therefore x = 0. Now for each α ≥ 0 we have x ∈ λB if and only if αx ∈ αλB and

therefore α‖x‖B = ‖αx‖B. Lemma 46 implies x ∈ λB if and only if −x ∈ λB and therefore

‖x‖B = ‖−x‖B. To verify the triangle inequality, note that B is closed by Lemma A.5, and

therefore x/‖x‖B ∈ B for all x. B is also convex by Lemma A.4, and therefore

x+ x′

‖x‖B + ‖x′‖B
=

(
‖x‖B

‖x‖B + ‖x′‖B

)
x

‖x‖B
+

(
‖x′‖B

‖x‖B + ‖x′‖B

)
x′

‖x′‖B
∈ B.

Thus, ∥∥∥∥ x+ x′

‖x‖B + ‖x′‖B

∥∥∥∥
B

≤ 1

and the triangle inequality ‖x+ x′‖B ≤ ‖x‖B + ‖x′‖B holds.

Lemma 48. If p̄ ≥ p ≥ q > 1/2 then B(p) = x̂+ λ [B(q)− x̂] for some 0 ≤ λ ≤ 1.

Proof. MST+ implies that, for any x 6= x̂ in B(p), the function α 7→ ρ(αx̂ + (1 − α)x, ȳ)

is strictly increasing for 0 ≤ α ≤ 1. It suffices to show that if ρ(x1, ȳ) = ρ(x2, ȳ) for

x1, x2 ∈ I(x̄) and 0 < α < 1, then ρ(αx1 + (1− α)x̂, ȳ) = ρ(αx2 + (1− α)x̂, ȳ). To see that

equality must hold, suppose instead that we had ρ(αx1 + (1−α)x̂, ȳ) < ρ(αx2 + (1−α)x̂, ȳ).

Continuity implies ρ(βx2 + (1 − β)x̂, ȳ) = ρ(αx1 + (1 − α)x̂, ȳ) for some 0 < α < β < 1.
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Figure A.3.3 provides an illustration. Letting

z1 = x1 +
β(1− α)

β − α
(x2 − x1)

z2 = x1 + x2 − z1

z3 = 2x̂− z1

z4 = αx1 + βx2 + (2− α− β)x̂− z1

we have that the line segment [z1, z2] contains the line segment [x1, x2]; the line segment

[z1, z4] contains the line segment [αx1 + (1− α)x̂, βx2 + (1− β)x̂] and

z1/2 + z2/2 = x1/2 + x2/2

z1/2 + z3/2 = x̂

z1/2 + z4/2 = (βx2 + (1− β)x̂)/2 + (αx1 + (1− α)x̂)/2

so that, by convexity, we must have the equalities

ρ(z1, ȳ) = ρ(z2, ȳ) = ρ(z3, ȳ) = ρ(z4, ȳ) = r.

for some 1 ≥ r > 1/2. Now note that

0 <
2αβ

α + β
<

2αβ

α + α
= β < 1

and let

y =

(
2αβ

α + β

)
z2 +

(
1− 2αβ

α + β

)
z3.

Since B(r) is convex, by Lemma 43, we must have ρ(y, x̄) ≥ r. On the other hand, it is
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straightforward to verify the equality

z4 = γy + (1− γ)z1

where

γ =
(1− α + 1− β)(α + β)

2β(1− α) + 2α(1− β)
∈ (0, 1)

and by convexity we must have ρ(y, x̄) < r, a contradiction.

Lemma 49. ‖·‖B is Euclidean, i.e., ‖x‖B =
√
〈x, x〉B where 〈·, ·〉B is an inner product.

Proof. We use a characterization of inner product spaces by [19], who showed that a normed

linear space is an inner product space if and only if

∥∥∥∥1

2
x+

1

2
y

∥∥∥∥ ≤ ‖αx+ (1− α)y‖ whenever ‖x‖ = ‖y‖ = 1 and 0 ≤ α ≤ 1. (A.10)

If ‖x‖B = ‖y‖B = 1 then x, y are on the boundary of B, hence ρ(x + x̂, ȳ) = ρ(y + x̂, ȳ) =

p > 1/2 and ρ(x+ x̂, y + x̂) = 1/2. Since ρ is convex, for each 0 ≤ α ≤ 1 we must have

ρ(αx+ (1− α)y + x̂, ȳ) ≤ ρ(x/2 + y/2 + x̂, ȳ)

thus αx + (1 − α)y is on the boundary of B(q) − x̂ and x/2 + y/2 is on the boundary of

B(q′)− x̂ for some q ≤ q′. By Lemma 48, the norm ‖·‖B satisfies (A.10).

Now we extend the inner product 〈·, ·〉B on the n − 2 dimensional subspace I(x̄) − x̂

obtained in the last Lemma to an inner product 〈·, ·〉 on the n − 1 dimensional subspace

H − x̂. Let v1, . . . , vn−2 be an orthonormal base for the subspace I(x̄) − x̂ endowed with

〈·, ·〉B. Let vn−1 := x̂− ȳ and for every 1 ≤ i, j ≤ n−1 let 〈vi, vj〉 = 0 if i 6= j and 〈vi, vj〉 = 1

if i = j. We let the norm be induced by this inner product ‖x‖ :=
√
〈x, x〉 for all x ∈ H− x̂.
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x̂

xα

xβ

x1

x2

z1

z3

z2

z4
y

Figure A.1: Illustration of the proof of Lemma 48.

All lotteries shown are chosen fifty-fifty against each other in binary comparisons. Each lottery is also chosen with probability

strictly larger than one-half against a lottery x̄ (not shown). Lotteries x1 and x2 are each chosen with probability p against x̄.

Lotteries xα = αx1 + (1 − α)x̂ and xβ = βx2 + (1 − β)x̂ are each chosen with probability q against x̄. When α < β, the line

through x1 and x2 must cross the line through xα and xβ at a point z1. The convexity postulate implies z1, z2, z3, z4 must

each be chosen against x̄ with the same probability r. But lottery z4 is in the interior of the triangle formed by z1, z2, z3,

yielding a contradiction to the convexity postulate.
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Lemma 50. U and ‖·‖ provide an ordinal representation of ρ, that is, for any w 6= x and

y 6= z we have

ρ(w, x) ≥ ρ(y, z)⇐⇒ U(w)− U(x)

‖w − x‖
≥ U(y)− U(z)

‖y − z‖
.

Proof. First, suppose ρ(w, x) ≥ ρ(y, z) > 1/2. Then w � x, y � z and since U represents <

we have U(w) > U(x) and U(y) > U(z). Let

w′ = ȳ +
U(x̂)− U(ȳ)

U(w)− U(x)
(w − x)

y′ = ȳ +
U(x̂)− U(ȳ)

U(y)− U(z)
(y − z)

and note that w′, y′ ∈ H. Since U is linear, U(w′) = U(y′) = U(x̄) and hence w′, y′ ∈ I(x̄).

By the linearity of ρ, ρ (w′, ȳ) = ρ(w, x) ≥ ρ(y, z) = ρ (y′, ȳ). Hence ‖w′ − x̂‖B ≤ ‖y′ − x̂‖B.

By construction, x̂− ȳ is orthogonal to I(x̄)− x̂, and therefore

‖w′ − ȳ‖2 = ‖w′ − x̂+ x̂− ȳ‖2

= ‖w′ − x̂‖2 + ‖x̂− ȳ‖2

≤ ‖y′ − x̂‖2 + ‖x̂− ȳ‖2

= ‖y′ − ȳ‖2

Thus

∥∥∥∥ U(x̂)− U(ȳ)

U(w)− U(x)
(w − x)

∥∥∥∥ = ‖w′ − ȳ‖ ≤ ‖y′ − ȳ‖ =

∥∥∥∥U(x̂)− U(ȳ)

U(y)− U(z)
(y − z)

∥∥∥∥
which implies

U(w)− U(x)

‖w − x‖
≥ U(y)− U(z)

‖y − z‖
.

Next, suppose ρ(w, x) ≥ 1/2 ≥ ρ(y, z) with w 6= x and y 6= z. Then U(w) ≥ U(x) and
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U(z) ≥ U(y) which implies

U(w)− U(x)

‖w − x‖
≥ 0 ≥ U(y)− U(z)

‖y − z‖
.

Finally, suppose 1/2 > ρ(w, x) ≥ ρ(y, z). Then ρ(z, y) ≥ ρ(x,w) > 1/2 and the desired

inequality follows from the first step.

Reversing the argument to show that

U(w)− U(x)

‖w − x‖
≥ U(y)− U(z)

‖y − z‖
=⇒ ρ(w, x) ≥ ρ(y, z)

is straightforward and left to the reader.

Lemma 51. The image of ρ is an interval [1− p̄, p̄].

Proof. As we noted before, linearity implies ρ is entirely determined by the values of the

mapping x 7→ ρ(x, ȳ) for x ∈ I(x̄). Hence, ρ achieves its maximum at p̄ = ρ(x̂, ȳ). Linearity

of ρ also implies ρ is entirely determined by the values of the mapping x 7→ ρ(x, ȳ) for x

in a unit sphere around ȳ. The continuity of ρ outside the diagonal implies x 7→ ρ(x, ȳ) is

continuous on the unit sphere around ȳ. The result then easily follows from the intermediate

value theorem.

To construct F , we first define an auxiliary function f : [1− p̄, p̄]→ R. Let f(1/2) = 0.

For each t 6= 1/2, let f(t) = [U(x) − U(y)]/‖x − y‖ for any x, y such that ρ(x, y) = t.

By Lemma 50 and Lemma 51, the function f is well defined. To see that the image of f

must be a compact interval in R, take any lottery x 6= x̂ with U(x) = U(x̂). Then we have

U (x̂+ t(x− x̂))−U(ȳ) = U(x̂)−U(ȳ) for all t > 0 and ‖x̂+t(x−x̂)− ȳ‖ ≥ t‖x−x̂‖−‖x̂− ȳ‖

which goes to infinity when t goes to infinity. Hence [U (x̂+ t(x− x̂))−U(ȳ)]/‖x̂+t(x−x̂)−ȳ‖

goes to zero when t goes to infinity. Thus and the image of f is the compact interval [−T, T ],

where T = [U(x̂)−U(ȳ)]/‖x̂− ȳ‖. By Lemma 50 f is strictly increasing and has an inverse.
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Repeating the argument in the proof of Lemma 51 shows f is continuous. Leting F = f−1

be the continuous inverse of f , it follows that (U, ‖·‖, F ) is a MEM representation of ρ.

A.3.4 Proof of Proposition 22

Let x̄, ȳ, x̂ be defined exactly as in the proof of Theorem 21. Let (U, ‖·‖, F ) be a MEM

representation of ρ as in (4.4), and let 〈·, ·〉 be the inner product that induces the norm.

Lemma 52. 〈x− x̂, x̂− ȳ〉 = 0 for all x with ρ(x, x̂) = 1/2.

Proof. This holds by construction for the particular representation obtained in the proof of

Theorem 21, and now we show it holds for every representation. When x = x̂ the statement

is obviously true. Suppose x 6= x̂. By Lemma 46 ρ(x, ȳ) = ρ(2x̂−x, ȳ). By the representation

(4.4) it must be ‖x− ȳ‖ = ‖2x̂− x− ȳ‖. Hence

‖x− x̂‖2 + 2〈x− x̂, x̂− ȳ〉+ ‖x̂− ȳ‖2 = 〈x− ȳ, x− ȳ〉

= 〈2x̂− x− ȳ, 2x̂− x− ȳ〉

= ‖x− x̂‖2 + 2〈x− x̂, ȳ − x̂〉+ ‖x̂− ȳ‖2

which implies 4〈x− x̂, x̂− ȳ〉 = 0 and we are done.

Lemma 53. ρ(x, x̂) = ρ(x′, x̂) = 1/2 and ρ(x, ȳ) = ρ(x′, ȳ) implies ‖x− x̂‖ = ‖x′ − x̂‖.

Proof. By the representation (4.4) we must have ‖x − ȳ‖ = ‖x′ − ȳ‖. By Lemma 52,

〈x− x̂, x̂− ȳ〉 = 〈x′ − x̂, x̂− ȳ〉 = 0. Thus,

‖x− x̂‖2 + ‖x̂− ȳ‖2 = ‖x− ȳ‖2 = ‖x′ − ȳ‖2 = ‖x′ − x̂‖2 + ‖x̂− ȳ‖2

and therefore ‖x− x̂‖ = ‖x′ − x̂‖ as desired.
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To prove necessity, suppose (U1, ‖·‖1, F1) and (U2, ‖·‖2, F2) are two MEM representations

of the same choice rule ρ. By the definition of MEM, both norms ‖x‖1 =
√
〈x, x〉1 and

‖x‖2 =
√
〈x, x〉2 are induced by inner products. The two norms and their respective inner

products are defined on the linear subspace ker(1) := {x ∈ Rn : x1 + · · ·+ xn = 0}.

It is easy to see that the expected utility function U2 = U1 = U is unique by the

requirement that it is linear and that U(∆) = [0, 1].

Let x̂, ȳ continue to denote the same elements fixed above. Consider any x ∈ ker(1) in

the null space of U , that is U(x) = 0. Since x ∈ ker(1) we have x + x̂ ∈ H, where H is

the hyperplane containing ∆. By linearity, we may assume without loss of generality that

x+x̂ ∈ ∆. Since U(x+x̂) = U(x)+U(x̂) = U(x̂), the representation implies ρ(x+x̂, x̂) = 1/2.

Lemma 52 implies

〈x, x̂− ȳ〉1 = 〈(x+ x̂)− x̂, x̂− ȳ〉1 = 0 = 〈(x+ x̂)− x̂, x̂− ȳ〉2 = 〈x, x̂− ȳ〉2 .

Thus, every vector x in the null space of U is orthogonal to x̂ − ȳ according to both inner

products. In other words, ker(U)⊥1 = ker(U)⊥2 is the single dimensional subspace of ker(1)

given by {α(x̂− ȳ) ∈ ker(1) : α ∈ R}.

To show (i), fix a lottery z 6= x̂ with ρ(z, x̂) = 1/2 and let A := ‖z − x̂‖2/‖z − x̂‖1 > 0.

Now take any x with U(x) = U(x̂). To show that ‖·‖2 = A‖·‖1 on the null space of U , it

suffices to show that ‖x − x̂‖2 = A‖x − x̂‖1. This clearly holds if x = x̂ so suppose x 6= x̂.

Let q = ρ(x, ȳ) and p = ρ(z, ȳ). Lemma 45 implies p, q < p̄ = ρ(x̂, ȳ). Suppose wlog p ≥ q.

By Lemma 48 B(p) = x̂+λ[B(q)− x̂] for some 0 ≤ λ ≤ 1. Since p < p̄ it must be 0 < λ ≤ 1.

Then ρ(λx+ (1− λ)x̂, ȳ) = p = ρ(z, ȳ). By Lemma 53 we have

‖x̂+ λ(x− x̂)− x̂‖2 = ‖z − x̂‖2 = A‖z − x̂‖1 = A‖x̂+ λ(x− x̂)− x̂‖1
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hence λ‖x− x̂‖2 = λA‖x− x̂‖1 and since λ > 0 we obtain ‖x− x̂‖2 = A‖x− x̂‖1 as desired.

Since ker(U)⊥ is single-dimensional, (ii) must hold with B := ‖x̂− ȳ‖2/‖x̂− ȳ‖1.

To see that (iii) holds, for each x with U(x) = U(x̂), define t(x) := [U(x)−U(ȳ)]/‖x−ȳ‖2.

Lemma 52 and items (i) and (ii) above imply

‖x− ȳ‖2
2 = ‖x− x̂‖2

2 + ‖x̂− ȳ‖2
2 = A2‖x− x̂‖2

1 +B2‖x̂− ȳ‖2
2.

Let T := F−1(maxx,y ρ(x, y)) = F−1(p̄) = [U(x̂) − U(ȳ)]/‖x̂ − ȳ‖1. Substituting and rear-

ranging we obtain for each x with U(x) = U(x̂),

‖x− x̂‖2
1

‖x̂− ȳ‖2
1

=
T 2 −B2t(x)2

A2t(x)2
.

And finally, by linearity of ρ for each 0 < t ≤ T/B we have t = t(x) for some x with

U(x) = U(x̂) thus

F2(t) = F2(t(x)) = ρ(x, ȳ)

= F1

(
U(x)− U(ȳ)

‖x− ȳ‖1

)
= F1

(
U(x̂)− U(ȳ)√

‖x− x̂‖2
1 + ‖x̂− ȳ‖2

1

)

= F1

 T√
‖x−x̂‖21
‖x̂−ȳ‖21

+ 1


= F1

 T√
T 2−B2t(x)2

A2t(x)2
+ 1


= F1

(
ATt√

T 2 + (A2 −B2)t2

)
,

and the results follows since F2(t) = 1− F2(−t).
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Sufficiency is straightforward and left to the reader.

A.3.5 Proof of Proposition 23

Necessity is shown in the main text. For sufficiency, suppose (u, d, F ) is a MUM representa-

tion where u satisfies (4.6), d satisfies (4.7) and F is continuous. Let x1, . . . , xn denote the

n degenerate lotteries in ∆. Since u satisfies (4.6), without loss of generality we can assume

that u(x1) = 1 and u(xn) = 0. Let U : ∆→ [0, 1] be given by U(x) =
∑n

i=1 u(xi)xi for each

lottery x = (x1, . . . , xn) in ∆. Then U is automatically linear and onto.

To define the norm, note the n − 1 vectors x1 − xn, x2 − xn, . . . , xn−1 − xn are linearly

independent and span ker(1). We define an inner product on ker(1) by letting

〈
xi − xn, xk − xn

〉
:=

1

2

[
d(xi, xn)2 + d(xk, xn)2 − d(xi, xk)2

]
for each i, k = 1, . . . , n− 1 and extending it to ker(1) by linearity. To see that 〈·, ·〉 is indeed

an inner product, note that condition (4.7) implies the quadratic form

(α1, . . . , αn−1) 7→ 1

2

n−1∑
i=1

n−1∑
k=1

[
d(xi, xn)2 + d(xk, xn)2 − d(xi, xk)2

]
αiαk

is positive definite and hence 〈x, x〉 = 0 implies x = 0. We let ‖x‖ :=
√
〈x, x〉 be the norm
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on ker(1) induced by this inner product. Then for each i, k = 1, . . . , n− 1 we have

‖xi − xk‖2 =
〈
xi − xk, xi − xk

〉
=
〈
xi − xn + xn − xk, xi − xn + xn − xk

〉
=
〈
xi − xn, xi − xn

〉
+
〈
xn − xk, xn − xk

〉
− 2

〈
xi − xn, xk − xn

〉
= d(xi, xn)2 + d(xk, xn)2 −

[
d(xi, xn)2 + d(xk, xn)2 − d(xi, xk)2

]
= d(xi, xk)2

and ‖xi − xn‖2 = (1/2) [d(xi, xn)2 + d(xi, xn)2 − d(xi, xi)2] = d(xi, xn)2 as desired.

A.4 Rational Contextual Choices under Imperfect Per-

ception of Attributes

A.4.1 Proof of Lemma 31

Proof. Proof of Lemma 31 We calculate directly the expected utility

E[u(X )|X, Y ] =E
[
−eγX1 − eρX2|X, Y

]
=− exp

(
γ

(t21 + 1)X1 − Y1

2 + t21
+ γ2 1

2(2 + t21)

)
− exp

(
ρ

(t22 + 1)X2 − Y2

2 + t22
+ ρ2 1

2(2 + t22)

)
=− exp

(
γ

(t21 + 1)x∗1 − y∗1 + t21ε1
2 + t21

+ γ2 1

2(2 + t21)

)
− exp

(
ρ

(t22 + 1)x∗2 − y∗2 + t22ε2
2 + t22

+ ρ2 1

2(2 + t22)

)

where the second equality is due to the normally distributed exponents. The third equality

is due to the identities x∗ + ε = X, y∗ + ε = Y . Similarly,

E[u(Y)|X, Y ] =− exp

(
γ

(t21 + 1)y∗1 − x∗1 + t21ε1
2 + t21

+ γ2 1

2(2 + t21)

)
− exp

(
ρ

(t22 + 1)y∗2 − x∗2 + t22ε2
2 + t22

+ ρ2 1

2(2 + t22)

)
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Hence given x∗,y∗ and ε, the agent would choose x over y iff E[u(X )|X, Y ] > E[u(Y)|X, Y ].

Suppose x∗1 > y∗1 and y∗2 > x∗2, then we see that x is chosen over y iff

exp

(
γ2

2(2 + t21)
− ρ2

2(2 + t22)

) exp
(
γ

(t21+1)y∗1−x∗1
2+t21

)
− exp

(
γ

(t21+1)x∗1−y∗1
2+t21

)
exp

(
ρ

(t22+1)x∗2−y∗2
2+t22

)
− exp

(
ρ

(t22+1)y∗2−x∗2
2+t22

) ≥ exp

(
ρt22ε2
2 + t22

− γt21ε1
2 + t21

)
.

(†)

Since x∗1 > y∗1 and y∗2 > x∗2, we can take natural-log on both hand sides of (†) to obtain the

following equivalent condition

γ2

2(2 + t21)
− ρ2

2(2 + t22)
+ ln

exp
(
γ

(t21+1)y∗1−x∗1
2+t21

)
− exp

(
γ

(t21+1)x∗1−y∗1
2+t21

)
exp

(
ρ

(t22+1)x∗2−y∗2
2+t22

)
− exp

(
ρ

(t22+1)y∗2−x∗2
2+t22

)
 ≥ ρt22ε2

2 + t22
− γt21ε1

2 + t21
.

Notice that RHS follows a normal distribution N
(

0,
(

ρ
2+t22

)2

t2 +
(

γ
2+t21

)2

t1

)
. We can

standardize both hand side by multiplying 1/

√(
ρ
√
t2

2+t22

)2

+
(
γ
√
t1

2+t21

)2

. Hence x∗ is chosen over

y∗ iff some standard normal random variable Z is below the threshold θ defined below:

θ(γ, ρ,x∗,y∗, t) :=
1√(

ρ
√
t2

2+t22

)2

+
(
γ
√
t1

2+t21

)2

 γ2

2(2 + t21)
− ρ2

2(2 + t22)
+ ln

exp
(
γ

(t21+1)y∗1−x∗1
2+t21

)
− exp

(
γ

(t21+1)x∗1−y∗1
2+t21

)
exp

(
ρ

(t22+1)x∗2−y∗2
2+t22

)
− exp

(
ρ

(t22+1)y∗2−x∗2
2+t22

)
 .

A.4.2 Proof of Theorem 33

Proof. Proof of Theorem 33 It suffices to show that under our assumptions, for every real-
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ization of ε the following inequality holds

E[u(X )|X, Y, Z + ∆]− E[u(Y)|X, Y, Z + ∆] > E[u(X )|X, Y, Z]− E[u(Y)|X, Y, Z].

Conditional on X, Y, Z, the posterior for X is

Pr(X|X, Y, Z) ∝ exp

(
−X

′Ω−1X
2

)
exp

(
−Y

′Ω−1Y
2

)
exp

(
−Z

′Ω−1Z
2

)
exp

(
−(X −X )′T (X −X )

2

)
× 1{X−X=Y−Y=Z−Z}

∝ exp

(
−1

2

[
X ′
(
3Ω−1 + T

)
X − 2

(
TX − Ω−1(Y + Z − 2X)

)′X ])
∝ exp

(
−1

2

(
X −

(
3Ω−1 + T

)−1 (
TX − Ω−1(Y + Z − 2X)

))′ (
3Ω−1 + T

) (
X −

(
3Ω−1 + T

)−1 (
TX − Ω−1(Y + Z − 2X)

)))

So we denote the above posterior distribution of X|X, Y, Z by N
(
µ(x∗;y∗, z∗, ε), Ω̂

)
,

where

µ(x∗;y∗, z∗, ε) :=
(
3Ω−1 + T

)−1 (
Tx∗ + Tε− Ω−1(y∗ + z∗ − 2x∗)

)
=
(
3Ω−1 + T

)−1 (
TX − Ω−1(Y + Z − 2X)

)
,

and Ω̂ :=
(
3Ω−1 + T

)−1
.

Denote the density of X|X, Y, Z ∼ N (µ,Ω) by φ(X − µ,Ω). The posterior expected utility

is therefore

E[u(X )|X, Y, Z] =

∫
R2

u(X )× φ
(
X − µ(x∗;y∗, z∗, ε), Ω̂

)
dX

=

∫
R2

u(s + µ(x∗;y∗, z∗, ε))× φ
(
s, Ω̂

)
ds.

Similarly,

Y|X, Y, Z ∼ N
(
µ(y∗;x∗, z∗, ε), Ω̂

)
.
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Because

µ(x∗;y∗, z∗, ε) :=Ω̂
(
Tx∗ + Tε− Ω−1(y∗ + z∗ − 2x∗)

)
=µ(y∗;x∗, z∗, ε)− (y∗ − x∗),

we have

E[u(Y)|X, Y, Z] =

∫
R2

u(s + (y∗ − x∗) + µ(x∗;y∗, z∗, ε))× φ
(
s, Ω̂

)
ds.

Recall that µ(x∗;y∗, z∗, ε) = Ω̂Tx∗ + Ω̂Tε − Ω̂Ω−1y∗ − Ω̂Ω−1z∗ + 2Ω̂Ω−1x∗. Substitute in

z′∗ := z∗ + ∆ for z∗ we have

E[u(X )|X, Y, Z + ∆]− E[u(Y)|X, Y, Z + ∆]

=

∫
R2

u(s + µ(x∗;y∗, z∗ + ∆, ε))× φ
(
s, Ω̂

)
ds−

∫
R2

u(s + (y∗ − x∗) + µ(x∗;y∗, z∗ + ∆, ε))× φ
(
s, Ω̂

)
ds

=

∫
R2

[
u
(
s + µ(x∗;y∗, z∗, ε)− Ω̂Ω−1∆

)
− u

(
s + (y∗ − x∗) + µ(x∗;y∗, z∗, ε)− Ω̂Ω−1∆

)]
× φ

(
s, Ω̂

)
ds.

Since u is standard, and y∗1 < x∗1, and y∗2 > x∗2, if −Ω̂Ω−1∆ ∈ (−∞, 0) × (0,∞), i.e. the

second quadrent, then

u
(
s + µ(x∗;y∗, z∗, ε)− Ω̂Ω−1∆

)
− u

(
s + (y∗ − x∗) + µ(x∗;y∗, z∗, ε)− Ω̂Ω−1∆

)
>u (s + µ(x∗;y∗, z∗, ε))− u (s + (y∗ − x∗) + µ(x∗;y∗, z∗, ε))

for all s and ε. When we integrate out s, we have E[u(X )|X, Y, Z+∆]−E[u(Y)|X, Y, Z+∆] >

E[u(X )|X, Y, Z]− E[u(X )|X, Y, Z] for every realization of ε.

Therefore, one sufficient condition is that −Ω̂Ω−1∆ ∈ (−∞, 0)× (0,∞). If this condition
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holds, we have −Ω̂Ω−1∆ = w for some w1 < 0, and w2 > 0. In order to show the decoy

choice patter, we just need to show there exists ∆ with ∆1 > ∆2 such that this condition

holds.

Recall that we had normalized Ω so that for some r ∈ (−1, 1),

Ω =

1 r

r 1


and the noise has variance

T−1 =

 1/t21 R/(t1t2)

R/(t1t2) 1/t22

 .
We can calculate

Ω−1 =

 1/(1− r2) −r/(1− r2)

−r/(1− r2) 1/(1− r2)

 and T =

t1 0

0 t2


 1/(1−R2) −R/(1−R2)

−R/(1−R2) 1/(1−R2)


t1 0

0 t2

 ;

It follows that

∆ =− ΩΩ̂−1w = −Ω(3Ω−1 + T )w = −(3I + ΩT )w

=−


3 0

0 3

+

1 r

r 1


t1 0

0 t2


 1/(1−R2) −R/(1−R2)

−R/(1−R2) 1/(1−R2)


t1 0

0 t2



w1

w2


=−

3 +
t21−t1t2rR

1−R2

t22r−t1t2R
1−R2

t21r−t1t2R
1−R2 3 +

t22−t1t2rR
1−R2


w1

w2


Since w1 < 0, and w2 > 0, the sufficient condition to holds when ∆ is some positive linear
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combinations of the two vectors

{

3(1−R2) + t21 − t1t2rR

t21r − t1t2R

 ,−
 t22r − t1t2R

3(1−R2) + t22 − t1t2rR

}.
And the decoy choice pattern holds when there exists such a ∆ with ∆1 > ∆2. In other

words, the decoy choice pattern holds if


3(1−R2) + t21 − t1t2rR > t21r − t1t2R

or

−(t22r − t1t2R) > −(3(1−R2) + t22 − t1t2rR),

⇔


3(1−R2) > (r − 1)(t21 + t1t2R)

or

3(1−R2) > (r − 1)(t22 + t1t2R).

Because r, R ∈ (−1, 1) and t1, t2 > 0, it is impossible for both t1 + t2R < 0 and t2 + t1R < 0

to hold simultaneously. Therefore the decoy choice pattern holds.

A.4.3 Proof of Theorem 34

Proof. Proof of Theorem 34 As before, we start with the Bayesian posterior

Pr(X|X,Z) ∝ exp

(
−X

′Ω−1X
2

)
exp

(
−Z

′Ω−1Z
2

)
exp

(
−(X −X )′T (X −X )

2

)
× 1{X−X=Z−Z}

= exp

(
−1

2

[
X ′
(
2Ω−1 + T

)
X − 2

(
TX − Ω−1(Z −X)

)′X . . . ])
∝ exp

(
−1

2

(
X −

(
2Ω−1 + T

)−1 (
TX − Ω−1(Z −X)

))′ (
2Ω−1 + T

)
(X − . . . )

)
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Therefore, the posterior inference for x∗ is

X|X,Z ∼N
((

2Ω−1 + T
)−1 (

TX − Ω−1(Z −X)
)
,
(
2Ω−1 + T

)−1
)

=N
((

2Ω−1 + T
)−1 (

Tx∗ + Tε− Ω−1(z∗ − x∗)
)
,
(
2Ω−1 + T

)−1
)

:=N
(
µ(x∗; z∗, ε), Ω̂

)

Similarly, Z|X,Z ∼ N
(
µ(z∗;x∗, ε), Ω̂

)
. Observe that they have the same variance, and that

µ(z∗;x∗, ε)− µ(x∗; z∗, ε)

=
(
2Ω−1 + T

)−1 (
Tz∗ + Tε− Ω−1(x∗ − z∗)

)
−
(
2Ω−1 + T

)−1 (
Tx∗ + Tε− Ω−1(z∗ − x∗)

)
=z∗ − x∗ > 0.

Therefore the posterior inference distribution for z∗ is that for x∗ translated by the vector

z∗ − x∗ > 0. Since standard preference is increasing in both attributes, we have for every

ε ∈ R2

E[u(X )|X,Z] < E[u(Z)|X,Z].

Hence the rational agent chooses z over x with probability 1.
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