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 Glioblastoma multiforme (GBM) represents the most common primary brain tumor among 

adults. Despite surgical resection and aggressive chemoradiotherapy regimens, the current 2- and 

5-year survival rates are only 27% and 9.8%, respectively. The low survival stems from the poor 

response to conventional therapy and underscores the critical need to develop new therapeutic 

approaches for GBM treatment. The high recurrence rate observed in GBM is in part attributed to 

the hypoxic (poorly oxygenated) tumor microenvironment. Hypoxic tumor conditions have been 

shown to increase metastasis, promote angiogenesis, and confer resistance to chemotherapy and 

radiation.  

 Hypoxic tissues are inherently radiation resistant due to a diminished oxygen enhancement 

effect. Additionally, limited diffusion of oxygen and small molecules to hypoxic tissues mitigates 

the efficacy of chemotherapeutics. Therefore, due to its unique mechanism of cell death, boron 

neutron capture therapy (BNCT) has the potential to become an alternative treatment modality for 

cancer patients where radiation and chemotherapy have fallen short. However, before the full 

clinical potential of BNCT is realized, there is a dire need to either develop novel tumor-targeted 

compounds or improve the localized delivery of existing BNCT agents. The work outlined in this 
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dissertation aims to address both these needs. First, a series of novel boronated compounds have 

been synthesized capable of targeting the hypoxic (and often therapy resistant) tumor 

microenvironment. Second, the local tumor delivery of several boronated agents has been 

improved utilizing a thermal sensitive liposome delivery system.   

 BNCT utilizes the nuclear fission reaction that occurs when a boron-10 isotope (10B) captures 

a neutron. Upon 10B neutron capture, the resulting unstable 11B isotope undergoes a nuclear fission 

reaction (10B(n,α,γ)7Li ) to release an alpha particle (4He), lithium-7 (7Li) ion and gamma radiation. 

The generated particles have a limited path length of approximately 5-10 microns, thereby 

localizing the cytotoxic effect. Therefore, the biggest treatment hurdle for BNCT is the 

requirement to preferentially deliver boron to the tumor with minimal accumulation in the 

surrounding normal tissue. Therefore, we hypothesized that the hypoxic tumor microenvironment 

could be exploited to improve preferential delivery of boronated compounds to the tumor. 

 To begin the dissertation, a novel boronated 2-nitroimidazole derivative (B-381) has been 

synthesized in a single step reaction. It has long been recognized that 2-nitroimidazole derivatives 

have preferential retention in hypoxic cells compared to normoxic cells. Therefore, we 

hypothesized that B-381 would have preferential retention in hypoxic glioma cells by exploiting 

the unique metabolism and retention of 2-nitroimidazoles in hypoxia. Towards this end, the 

cellular uptake of B-381 in D54 glioma cells was evaluated in vitro and in vivo compared to 4-

borono-L-phenylalanine (BPA), the most commonly investigated agent in BNCT clinical trials. 

Unlike BPA, B-381 illustrated preferential retention in hypoxic glioma cells compared to normoxic 

glioma cells in vitro. In vivo, B-381 illustrated significantly higher long-term tumor retention 

compared to BPA, with 9.5-fold and 6.5-fold higher boron levels at 24 and 48 h, respectively. 
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While these initial studies supported the unique retention of B-381 in hypoxic cells, it was desirable 

to improve the total boron content delivered to the tumor. 

 To further improve total boron content delivered to the tumor, thermal sensitive liposomes 

(TSLs) were investigated. A DPPC/DSPC/DSPE-PEG2000 /Cholesterol TSL was designed capable 

of having a stable drug payload at 37°C while releasing >90% of the drug payload at 42°C. 

Therefore, by locally inducing mild hyperthermia in vivo (42-43oC), it is possible to trigger a 

localized release of boronated drug within the tumor vasculature. Using both B-381 and BPA, 

TSLs can significantly improve tumor boron delivery at 42°C compared to normal tissue 

temperature (37°C). 

 In summary, B-381 is effectively administered as both a free agent or incorporated into a 

thermal sensitive liposome formulation. B-381 represents a new class of BNCT agents in which 

their selectivity to tumors is based on a hypoxic tumor metabolism. Further studies are warranted 

to evaluate boronated 2-nitroimidazoles as well as boron-containing thermal sensitive liposomes 

for future BNCT clinical trials. 
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Chapter 1: Introduction to Neutron Capture Therapy 

1.1 Mechanism of Boron Neutron Capture Therapy 

 Boron neutron capture therapy (BNCT) is an emerging cancer treatment modality that utilizes 

the neutron capture reaction of boron-10 (10B) and subsequent nuclear fission reaction to produce 

cellular death (1-4). BNCT has the capability to provide the regional selectivity of radiation 

therapy with significantly less destruction to surrounding healthy tissue. This principle is 

obtainable because BNCT utilizes a lower energy neutron beam compared to the traditional higher 

energy x-ray or gamma particles used in ionizing-radiation therapy (4). Since the neutron beam is 

non-ionizing in nature, primarily only tissues that contain neutron absorbing isotopes (such as 10B) 

will undergo nuclear fission and subsequent tissue destruction. Boron has a neutron-capture cross 

section that is three orders of magnitude greater than other common nuclei in the body (2). 

Additionally, because the neutron beam alone does not cause significant cellular death, the neutron 

beam field can be extended to irradiate the tissue surrounding the tumor to help eradicate micro 

residual disease and subsequent tumor recurrence or metastasis (5). Therefore, assuming adequate 

neutron beam penetration, the efficacy of BNCT is primarily limited by the selective tumor 

accumulation of boron containing agents. 

 Traditionally BNCT utilized a lower energy thermal neutron beam (En < 0.5 eV) which 

facilitated the neutron capture and fission reaction of 10B (6). However, in order to increase neutron 

beam penetration depth, clinical practice has adapted using an epithermal neutron beam (0.5 eV < 

En < 10 keV)(4, 7). The higher energy neutron beam is clinically significant because it increases 

neutron beam penetration through the skull and thick tissues. Upon 10B neutron capture, the 

resulting unstable 11B isotope undergoes a nuclear fission reaction (10B(n,α,γ)7Li ) to release an 
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alpha particle (4He),  lithium-7 (7Li) ion and gamma radiation corresponding to 2.31 MeV (94% 

of time) or 2.79 MeV (6% of time) (Figure 1) (6). The breadth of cell destruction is limited by the 

path lengths of the aforementioned linear energy transfer particles, typically 5-9 microns (6). It is 

important to note that BNCT does result in a background dose of radiation administered to non-

boron containing tissues. This is a direct result of low linear energy transfer gamma rays (a direct 

result of neutron capture by tissue hydrogen atoms) and high linear energy transfer protons 

(resulting from either the scattering of fast neutrons or from neutron capture by nitrogen atoms) 

(6).   

 

Figure 1. Nuclear fission reaction of 10B atom. Schematic representation of tumor destruction by BNCT 

after tumor cell containing 10B is irradiated with neutrons. 

 For BNCT to become a viable therapeutic option, the radiation dose delivered to the tumor 

must exceed the background radiation healthy tissue receives from non-specific neutron 

absorption. The efficacy of BNCT primarily depends on the selective accumulation of boron in 

the tumor tissue compared to the surrounding healthy tissue and blood. Generally the following 

requirements must be satisfied for a successful BNCT agent (1-4, 6, 8-10): (1) A tumor 10B 

concentration of at least 10 μg boron/g of tumor; (2) Selective tumor/normal tissue (T/N) and 

tumor/blood (T/B) concentration ratios above 3:1; and (3) Minimal systemic cytotoxicity and rapid 

clearance from blood and normal tissue.  

Tumor Pre-treated 

with 
10

B agent 

Neutron Capture 

by 
10

B atom 

Tumor Death from 

Nuclear Fission 
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 BNCT has potential to be an alternative (or adjunct) treatment modality for different cancers 

such as glioblastoma multiforme (GBM) (11-22), melanoma brain metastases (11, 23), 

adenocarcinoma liver metastases (24-29), hepatocellular carcinoma (30) and recurrent head and 

neck cancer patients (31-35)(9). The vast majority of patients diagnosed with the aforementioned 

malignancies undergo palliative care options. To put the severity of these diagnoses into 

perspective, consider the 2- and 5- year survival rates of newly diagnosed GBM are 27% and 9.8%, 

respectively (36). High grade glioma patients enrolled in recent BNCT clinical trials have 

demonstrated that BNCT is tolerated well, has comparable (or fewer) side effects than 

conventional radiation therapy, typically requires only 1-2 treatment sessions, and the median 

survival times are comparable to standard of care (radiation and temozolomide treatment) (14, 37). 

Clinical findings such as this encourage further investigation of BNCT as a therapeutic option. 

However, the suboptimal T/B and T/N ratios commonly achieved with BPA and BSH treatments 

requires development of more selective agents (2). This introduction summarizes the recent 

advances in boron delivery methods and reemphasizes the dire need for more selective boron 

delivery agents.  

1.2 Alternative Isotopes for Neutron Capture Therapy 

The ability to capture neutrons is not exclusive to boron. The second most commonly 

investigated atom for neutron capture therapy is gadolinium (157Gd), with limited investigation of 

lithium (6Li) and uranium (235U). The probability that a given nucleus will capture thermal neutrons 

is known as the neutron capture cross section (σth)((38)). Neutron capture cross section is measured 

in barns (1 b = 10-28 m2). 10B has a cross section σth = 3,835 whereas 157Gd has a higher σth = 

259,000. While it may seem more desirable to use 157Gd due to its larger cross section and its dual 

use as MRI contrast, its biological effectiveness is limited.  
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Gadolinium neutron capture therapy (GdNCT) is an alternative neutron capture therapy 

modality which uses gadolinium-157 (157Gd)(2). For the 157Gd neutron capture reaction, the 

majority of the energy is released as long range gamma radiation, while 0.63% of the time this 

emission occurs as Auger and conversion electrons (39). If gadolinium is incorporated or near 

deoxyribonucleic acid (DNA), the generated Auger electrons can enhance the cytotoxic effect 

through double strand breaks. However, this represents a challenge for drug delivery as gadolinium 

must be delivered to the nucleus to be biologically effective. In contrast, because boron undergoes 

a distinct nuclear fission reaction and produces an alpha particle, boron bound to the cell surface, 

in the cytoplasm or in the nucleus can elicit a cytotoxic effect. 

 The efficacy of GdNCT and BNCT has been compared in the treatment of several canine 

cancer models (40). For canine oral melanoma, BNCT achieved full tumor regression in 78% of 

dogs (N = 14), compared to only 44% in the GdNCT treatment arm (N = 14). In the setting of 

osteosarcoma, both BNCT (N = 1) and GdNCT (N = 8) treatment arms illustrated full tumor 

progression. While further studies with GdNCT agents are clearly needed, this dissertation will 

focus on tumor targeting strategies for BNCT agents.  

1.3 Neutron Beam Sources: from Nuclear Reactor to Linear 

Accelerator 

As the name implies, BNCT requires a neutron source to irradiate the tumor field. Boron-

containing cells at the time of treatment that fall within the irradiation field will generate high 

energy alpha and lithium particles in situ, causing localized cellular cytotoxicity. Due to the 

nonionizing nature of the neutron beam, the irradiation treatment field can be considerably larger 

than conventional radiotherapy because normal tissue will absorb neutrons less than the tumor 

(this assumes a modest tumor/normal tissue uptake ratio > 3 of the boronated drug)(38). Since 
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normal organs may also accumulate boron nonspecifically, the neutron beam is collimated to 

minimize nonspecific tissue injury.  

One of the biggest hurdles to BNCT translation is availability of a neutron source. Neutron 

beams can be produced from a nuclear research reactor, particle accelerators or 252Cf (Californium-

252)(7, 38). Many of the clinical studies for BNCT have been restricted to a nuclear reactor facility 

for neutron beam production. These sites included Brookhaven and MIT in the United States, the 

Tsing Hua Open-pool Reactor (THOR) in Taiwan, and the RA-6 reactor at the Bariloche Atomic 

Center (Argentina)(38). The restriction to treat patients at a nuclear reactor facility greatly hinders 

its translational potential.  

Traditionally, the reactor core of a nuclear reactor is the primary source of neutrons. In order 

to produce a suitable neutron beam for patient treatment however, neutrons exiting the reactor core 

must first pass through a beam shaping assembly (Figure 2)(41). This consists of a moderator, 

reflector, thermal neutron filter, gamma filter and collimator. The moderator, usually consisting of 

FluentalTM (Al 30% + AlF369% + LiF 1%) or heavy water, is used to slow fast neutrons into the 

epithermal region. Surrounding the moderator is the reflector, often composed of lead or graphite. 

This serves to redirect neutrons that have been scattered in the moderator medium but have not  

reached epithermal energy levels. Neutrons will next pass through a thermal neutron filter 

 
Figure 2. Neutron beam shaping assembly. Diagram of beam shaping assembly for neutron beam, 

adopted from (41). 
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 (Cadmium or Gadolinium) and subsequently a gamma filter (Lead or Bismuth). Finally, a lead 

collimator may be used to produce the final beam dimensions. 

While nuclear reactors were initially used to generate a thermal neutron beam, modifications 

were made to produce epithermal beams. The transition from thermal to epithermal neutron beams 

are more suitable to treat deep-seated tumors due to their improved penetration depth of 8-10 cm 

(7).  For BNCT, an epithermal neutron beam (energy range 0.5 eV to 10 keV) should ideally have 

a minimum beam intensity of 109 epithermal neutrons cm-2s-1 (7). While increasing the intensity 

may be desirable to shorten treatment times, this will also increase beam contaminants such as fast 

neutrons (energy > 10 keV). Fast neutrons will produced high LET protons and can damage normal 

tissue in the treatment field.   

Modern advancements using particle-accelerators can facilitate neutron beam production in a 

hospital setting. The company Neutron Therapeutics currently uses a 2.6 MeV electrostatic proton 

accelerator and a rotating, solid lithium target for generating neutrons. Coupled to the beam 

shaping assembly, this can be housed in a hospital setting.   

1.4 Early BNCT Clinical Trials 

The potential of BNCT for cancer therapy was recognized early by Locher in 1936, and the 

first patients with malignant glioma treated at the Brookhaven Graphite Research Reactor (United 

States) began in 1951 (38). From the years 1951-1961, 63 patients were treated in a series of 

clinical studies at either Brookhaven or Massachusetts Institute of Technology. At the time, 5 

independent cohorts of patients received BNCT treatment and their median survival times (96 

days, 97 days, 147 days, 3 months, and 5.7 months) where comparable to conventional radiation 

therapy at the time. Most concerning is that numerous patients had treatment complications, some 

fatal, which ultimately ceased further studies in the United States. Side effects included: 
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untreatable radiodermatoses of the scalp, postoperative infection of irradiation field, cerebral 

edema, and perivascular fibrosis.  

The preliminary BNCT clinical studies failed due to several limitations. The biggest limitation 

was the lack of a tumor specific agent. The preliminary studies used borax and sodium pentaborate, 

neither of which have any tumor selectivity. This attributed to significant non-specific 

accumulation in normal tissue (blood, brain, and skin) and can explain the observed side effects 

(42). An equally important limitation was the availability of only a thermal neutron beam. Thermal 

neutrons have a low penetration depth, which biased more of the neutron dose being received by 

the skin, and a substantially lower dose actually penetrated to the tumor. With the advent of 

epithermal neutron beams, penetration depth was extended to approximately 9 cm for soft tissue 

(38). 

After cessation of BNCT studies in the United States, the baton was passed to Japan. It was 

here that the introduction of two boronated compounds renewed interest in the BNCT field. The 

first, disodium mercaptoundecahydro-closo-dodecaborate Na2B12H11SH (BSH, sodium 

borocaptate) was investigated by Hiroshi Hatanka starting in 1968 (38). Additionally, in 1987, 

Mishima reported the used of p-boronophenylalanine (BPA) for the treatment of superficial 

melanoma. It was these pioneers that provided the most extensively studied BNCT agents to date.  

1.5 Current BNCT Agents: BPA and BSH 
  

 BPA and BSH are the most extensively investigated agents in BNCT clinical trials, 

traditionally utilized in the treatment of melanoma and glioblastoma multiforme, respectively 

(Figure 3) (2, 4, 43). Since the 10B isotope only has a natural abundance of 19.9%, BNCT agents 

must be enriched with 10B during synthetic preparations to be maximally effective. The following 

sections highlight the preclinical and clinical progress made with BPA and BSH.  
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1.5.1 Boronophenylalanine (BPA) 

 The L-BPA enantiomer structurally resembles the amino acid L-phenylalanine, and is used 

clinically due to its higher accumulation in cancer cells compared to the D-enantiomer or racemic 

mixture (Figure 3) (44). Due to the poor solubility of BPA in water, BPA is often administered as 

a BPA-fructose adduct (45). However, the short shelf life of BPA-fructose after preparation makes 

clinical administration challenging (46). There is a well-established tradeoff between 

hydrophilicity of BPA agents and their cytotoxicity (with increasing water solubility there is a 

marked decrease in BPA derivative cytotoxicity in melanoma cells) (45). Although hydrophilic 

BPA will increase solubility and enable intravenous (i.v.) administration, this will decrease its 

blood-brain barrier (BBB) penetration (6).  

 The accumulation of BPA in cancer cells relies on the higher metabolic rate in these cells. BPA 

is also structurally analogous to tyrosine, which is a precursor for melanin synthesis (47); therefore, 

use of BPA in melanoma treatment relies on the principle that melanoma cells will have higher 

melanin synthesis (6). An additional mechanism proposes that BPA is taken up through the L-type 

amino acid transporter (47, 48). This system can transport neutral amino acid analogs containing 

aromatic side chains (49). Since human L-type amino acid transport 1 expression is upregulated in 

a wide range of cancers (including brain tumors), this allows agents like BPA to preferentially 

accumulate in cancerous tissues compared to surrounding normal tissues (36, 50). Additionally, 

BPA may preferentially accumulate in brain tumors compared to normal parenchyma due to a 

compromised BBB integrity within the tumor vasculature (12). Since BPA uptake is largely an 

active process, subpopulations of quiescent cancer cells may have lower BPA uptake, thereby 

decreasing BNCT efficacy (22).   
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Figure 3. Small molecule agents for BNCT. L-boronophenylalanine (BPA) and sodium borocaptate 

(BSH) have been the most extensively studied agents clinically. L-3,4-dihydroxyphenylalanine (L-DOPA), 

L-tyrosine and mannitol have all been utilized to improve BPA and BSH tumor uptake. 4-borono-2-18F-

fluoro-phenylalanine (18F-BPA) has been studied as a dual modality PET/BNCT agent. The following small 

molecules have all been proposed as novel BNCT agents: 5-dihydroboryl-2′-deoxyuridine (DBDU), 5-(1-

o-carboranyl)-2′-deoxyuridine (CDU), 1-amino-3-boronocyclopentanecarboxylic acid (ABCPC), 3-

carboranyl thymidine derivative (N5-2OH), tetra-(4-nido-carboranylphenyl) porphyrin (H2TCP), nido-

carboranyl 5-thio-D-glucopyranose and nido-carboranyl deoxyriboside. 
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 The biodistribution of BPA in GBM, melanoma, and head and neck cancer patients achieved 

T/B ratios ranging from 1.1 – 3.6 (11-14), T/N ratios of 1.1 – 2.9  (11, 14, 35), and tumor boron 

levels in the range of 1.8 – 34.8 ppm (11, 12, 14, 16, 35). This data illustrates that more selective 

and targeted agents are urgently needed for patients. 

1.5.2 Sodium borocaptate (BSH) 

 BSH is an anionic carborane derivative and is administered as a sodium salt (Figure 3). Due 

to its anionic nature, BSH is thought to preferentially accumulate in brain tumors compared to 

normal parenchyma because of BBB disruption unique to the tumor (27, 51, 52), and in contrast 

to BPA, BSH accumulates passively and not by active transport (22). Early studies of BSH have 

noted that boron levels in normal brain are sometimes not even detectable (53). An additional 

notable difference is BSH contains 12 boron atoms per molecule while BPA contains only a single 

boron atom. Therefore, given an equal molar accumulation of BSH and BPA within a tumor, BSH 

will have delivered a 12-fold higher concentration of boron atoms compared to BPA, thereby 

facilitating the > 10 ppm 10B levels required for effective BNCT. However, their administration is 

limited because of poor water solubility and cytotoxicity (54). 

 The biodistribution of BSH achieved T/B ratios ranging from 0.9 ± 0.4 to 1.2 ± 0.4, T/N ratios 

in the range of 0.7 ± 0.1 to 3.6 ± 0.6, and boron levels in the tumor ranged from 0.7 – 84.2 ppm 

(19, 27, 31). Again, this data illustrates that more selective agents are urgently needed.  

1.5.3 Techniques to Improve BPA and BSH Uptake in Cancer Cells 

  

 Since there is a precedent of using BPA and BSH in clinical trials, techniques that increase 

their delivery to a tumor are a desirable concept. One common strategy is the pretreatment of cells 

with an amino acid analog such as L-3,4-dihydroxyphenylalanine (L-DOPA) (Figure 3). L-DOPA 
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is structurally similar to BPA, and both of these molecules may enter the cell through the L-type 

amino acid transport system (48). It is presumed that this transport system utilizes a substrate 

coupled antiport (exchange) mechanism (48). Therefore, pretreatment with a specific amino acid 

such as L-DOPA can improve the subsequent accumulation of BPA via this antiport mechanism 

(L-DOPA is exchanged for intracellular uptake of BPA). This mechanism has been validated with 

in vitro and in vivo studies using C6 glioma cells. Pretreatment of C6 glioma bearing rats with L-

DOPA increased the BPA uptake in the tumor 2.7-fold higher than the BPA-only treated group, 

while accumulation in normal brain tissue did not vary significantly between the two groups (48). 

 In addition to L-DOPA, pretreatment of rat 9L gliosarcoma cells with L-tyrosine (Figure 3) 

resulted in a near 2-fold increase in BPA tumor uptake (47). While pretreatment with L-tyrosine 

increased uptake, simultaneous administration of BPA and L-tyrosine resulted in decreased BPA 

uptake. These results further support that an antiport mechanism can be utilized to improve BPA 

tumor accumulation.  

 Another technique used to improve boron accumulation in tumors is BBB disruption by a 

hyperosmotic agent such as mannitol (Figure 3). Intracarotid administration of BSH or BPA to 

F98 glioma-bearing rats, resulted in T/N ratios of 8.2 ± 1.3 and 5.9 ± 2.0, respectively; but when 

combined with BBB disruption by mannitol, the BSH and BPA T/N ratios increased to 12.3 ± 4.7 

and 7.5 ± 4.3, respectively (55). Subsequent studies illustrated that co-administration of BPA or 

BSH with mannitol increased mean survival time of F98 glioma rats (56, 57). However, disruption 

of the BBB by mannitol has nonspecific effects and may be limited since this technique can also 

promote boron uptake in healthy brain tissue (58). Focused ultrasound techniques may be an 

alternative strategy to improve BPA uptake compared to traditional BBB disruption strategies (58).

 In addition to improving tumor uptake of boronated compounds, an optimal response to BNCT 
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depends critically on performing the neutron irradiation at the time of maximal boron accumulation 

(or highest T/N ratio). One of the biggest limitations to BNCT is the ability to reliably determine 

when maximal boron accumulation has occurred in a patient (especially considering the variability 

that exists between patients). This challenge can potentially be overcome by positron emission 

tomography (PET) guided BNCT using a dual modality agent. The main advantage of a dual 

modality agent for BNCT is the ability to monitor the real-time boron accumulation within the 

patient’s tumor. One example of a dual modality BNCT agent is 4-borono-2-18F-fluoro-

phenylalanine (18F-BPA), a radiolabeled derivative of BPA (Figure 3). In head and neck cancers, 

18F-BPA uptake significantly correlated with the uptake of 18F-fluorodeoxyglucose (59).  

Tumor/normal tissue ratios ranging from 1.5 to 7.8 have been reported with 18F-BPA 

administration for numerous tumor types (malignant gliomas, malignant melanomas and various 

head and neck cancers) (60). Furthermore, 18F-BPA has been shown to be preferentially taken up 

by L-type amino acid transporter 1 in human glioblastoma cells (49). Inhibition experiments 

demonstrated that BPA administration significantly decreased 18F-BPA uptake, indicating 18F-

BPA may be a suitable imaging agent to estimate BPA uptake in glioma patients (49). A myriad 

of strategies for the radio halogenation of boron clusters has been reported previously (3). PET-

guided BNCT has the potential to determine whether a patient will even benefit from BNCT, and 

this ultimately redefines the selection criterion of candidates for clinical trials (60).  

1.6 Development of Novel BNCT Agents 
  

 With the modest T/N ratios achieved with BPA and BSH administration, the necessity for new 

boron delivery methods is obvious. The following sections aim to overview novel boron delivery 

systems and their relative advantages and limitations (summarized in Table 1).  
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Table 1. Summary of novel boron delivery systems for BNCT 

 

1.6.1 Nucleoside and Carbohydrate Analogs  

 Boronated deoxyribose derivatives have been investigated as a novel approach to improve 

boron uptake in tumor cells due to their higher metabolic activity (61).  These agents are a primary 

substrate for human thymidine kinase-1 and achieve their tumor selectivity through subsequent 

phosphorylations which entraps them intracellularly (62). The first designed agents consisted of a 

boronic acid moiety or a carborane cage structure attached to the C-5 position of 2’-deoxyuridine 

(Figure 3) (62). A more recent generation of nucleoside derivatives are 3-carboranyl thymidine 
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analogs, in which the carborane group is attached with a linker to the N-3 position of thymidine 

(62). Barth et al have demonstrated superior drug uptake of the 3-carboranyl thymidine derivative 

N5-2OH compared to BPA with glioma in vivo biodistribution studies (Figure 3) (63). With 

convection-enhanced delivery (a catheter is used to deliver drug into the tumor) BPA achieved 

boron tumor levels of 68.3 ± 17.9 ppm, while N5-2OH achieved levels of 40.7 ± 11.3 ppm. 

However, N5-2OH accumulated more selectively (T/N = 8.5) compared to BPA (T/N = 3.6).  

 In addition to thymidine analogs, Hosmane et al. have synthesized and evaluated a series of 

carborane-appended 5-thio-D-glucopyranose (64) and deoxyribose derivatives (61) as promising 

BNCT agents (Figure 3). Previous generations of carbohydrate boron carriers commonly link the 

carborane moiety to the carbohydrate core using a glycosidic linkage; however, under physiologic 

conditions this linkage is susceptible to hydrolysis. To circumvent this stability concern, 

carborane-appended derivatives of 5-thio-D glucopyranose (a non-metabolized carbohydrate) and 

deoxyribose (containing a carbon-carbon linkage between the carborane and carbohydrate) have 

been evaluated (65). While both nido-carborane and closo-carborane carbohydrate derivatives 

were prepared with each scaffold, it was determined that nido-carborane derivatives were 

significantly less cytotoxic compared to their closo-carborane counterpart. Further studies with the 

nido-carborane derivatives of 5-thio-D-glucopyranose and deoxyribose illustrated preferential 

accumulation of these agent in hepatocarcinoma (SK-Hep1), prostate cancer (DU-145) and bladder 

carcinoma (T-24) models compared to BPA, BSH or BPA/BSH treatments (65). Additionally, 

treatment of a murine squamous cell carcinoma cell line (SCC-VII) with nido-compound 

illustrated a lower survival fraction compared to BPA after neutron irradiation. Further studies 

with carborane-appended carbohydrates may warrant clinical trials with these agents.  



  

15 

 

 Carboranes linked to a DNA binding unit have also been explored as a novel boron delivery 

vehicle (54). DNA targeting is achieved by the interaction of a 5,6,7-trimethoxyindole moiety with 

DNA, analogous to its function in the anticancer agent duocarmycin A (54). Several 

hydroxymethylcarborane compounds were synthesized, and the two most promising derivatives 

had cytotoxicity values (ED50) of 32 and 42.5 µM in human bronchial carcinoma cells (A549) and 

7.5 and 10 μM in B-16 human melanoma cells. Treatment of B-16 cells with 10 μM of either 

hydroxymethylcarborane compound resulted in maximal intracellular boron levels of 2.3 and 3.7 

ppm per 107 cells after just three hours. In contrast, a 1000 μM BPA solution required a 24 h 

incubation to achieve comparable levels (3.1 ppm per 107 cells) (54). Numerous other classes of 

boronated DNA-binding molecules have been explored (3). 

 Overall, 3-carboranyl thymidine analogs and carborane-appended carbohydrate derivatives 

have the potential advantage of intra-nuclear accumulation (DNA incorporation) that may lower 

dosing requirements for effective BNCT. Additionally, the Warburg effect indicates that most 

tumors will have increased uptake of carbohydrates compared to surrounding healthy tissue (65). 

However, one disadvantage of these agents is that their intracellular trapping is likely mediated 

through human thymidine kinase-1 phosphorylation; since human thymidine kinase-1 activity is 

cell cycle dependent, the treatment response may also be cell cycle dependent (6, 62). 

1.6.2 Unnatural Amino Acids 

 It has been observed that boron derivatives of cyclic amino acids preferentially accumulate in 

GBM and metastatic melanoma tumors compared to BPA (66). While decreasing the ring size (6-

, 5-, and 4-membered) of cyclic amino acids has been associated with increased tumor selectivity, 

the overall mechanism for tumor selectivity of unnatural amino acids is still largely unknown (67). 

The most promising candidate, 1-amino-3-boronocyclopentanecarboxylic acid (ABCPC, Figure 
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3), has been shown to achieve a T/B ratio of 8, T/N ratio of 21, and achieved intracellular boron 

accumulation in cancer cells of 28 ± 7 ppm in a B-16 melanoma mouse model (37, 66). 

Additionally, ABCPC is capable of penetrating the nucleus and delivering twice as much boron to 

T98G human glioblastoma cells compared to BPA (66). Similarly, treatment of F98 glioma bearing 

rats with ABCPC achieved a T/N ratio of 5 between infiltrating tumor cells and contiguous normal 

brain, and this level of selectivity is significant since previous studies with BPA report infiltrating 

tumor/normal brain tissue ratios of 1.5-2.0:1 (37).  

 The advantage of the unnatural amino acids is that their ability to penetrate the nucleus may 

lower dosing requirements for effective BNCT and provide a high T/N ratio; however, the 

disadvantage is that it delivers only a single boron atom per molecule. 

1.6.3 Porphyrins 

 In addition to their application in photodynamic therapy as a photosensitizer, porphyrins have 

been conjugated to boron-rich moieties for BNCT applications (68). One such porphyrin, tetra-(4-

nido-carboranylphenyl) porphyrin (H2TCP), contains 36 boron atoms per molecule (Figure 3)(69). 

H2TCP accumulates in tumors via leaky vasculature (70) and has an endosomal pattern of 

distribution (71). Using a B16F1 melanoma mouse model, H2TCP treatment has been evaluated 

against BPA-fructose (72). Intra-tumoral injection of H2TCP achieved a T/N ratio of 

approximately 6 with an associated tumor boron level of ~ 60 ppm. In comparison, i.v. 

administration of H2TCP resulted in a T/N ratio slightly above 1 with tumor boron levels of 6 ppm. 

For either route of H2TCP administration (intra-tumoral or i.v.), subsequent neutron irradiation 

resulted in a 5-6 day delay in tumor growth, but the most significant growth delay was observed 

in the BPA-fructose treatment arm.   
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 Porphyrins offer the advantages of high water solubility, minimal cytotoxicity, a high percent 

boron composition, and their concentration levels in biological systems can be determined by 

relatively simple spectrophotofluorimetric analysis (72). However, one disadvantage is that 

porphyrins administered via an i.v. route may not be able to achieve intracellular boron levels >20 

ppm for effective BNCT. In addition to BNCT, H2TCP has demonstrated efficacy in photodynamic 

therapy and thus this agent should be investigated further as a potential BNCT/photodynamic 

therapy combination treatment regimen.  

1.6.4 Antibody-Dendrimer Conjugates 

 Monoclonal antibodies (mAbs) specific for epidermal growth factor receptor (EGFR) have 

been investigated for the treatment of GBM due to the upregulation of EGFR in human GBM 

cancer cells. Two EGFR mAbs were utilized for a BNCT study: Cetuximab binds to the 

extracellular domain of human EGFR, thereby competitively inhibiting epidermal growth factor 

from binding, whereas mAbs L8A4 specifically recognizes the oncogenic variant EGFRvIII (and 

not wildtype EGFR) (73). For BNCT, each of these mAbs were conjugated to a boronated 

dendrimer, which was formed by conjugating methylisocyanato polyhedral borane anion 

Na(CH3)3NB10H8NCO to the terminal amino groups of a polyamidoamine dendrimer (Figure 4) 

(74). The boronated antibodies Cetuximab and L8A4 were administered via convection-enhanced 

delivery to F98 rat gliomas (a 1:1 composition of EGFR wildtype and EGFRvIII expressing glioma 

cells were used to reflect patient tumor heterogeneity). Co-administration of both Cetuximab and 

L8A4 achieved a T/N ratio of 9.9 and boron levels of 24.4 μg/g in tumor tissue (73, 75). Equally 

important, boron levels were undetectable in the blood (<0.5 μg/g). Rats with a composite tumor 

(F98EGFR + F98EGFRvIII) that received both mAbs and subsequent neutron irradiation had a median  
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Figure 4. Example of monoclonal antibody targeting in BNCT. Monoclonal antibody (Cetuximab or 

L8A4) conjugated to a boronated polyamidoamine dendrimer.  

survival time of 55 days; in contrast, rats that received only Cetuximab or L8A4 had median 

survival times of 38 and 36 days, respectively. This illustrates the importance of combination 

therapy with both antibodies for a heterogeneous glioma expressing both EGFR and EGFRvIII. 
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 The advantages of boron-mAb conjugates are their high T/N selectivity and T/B ratios. 

However, one limitation is that systemic administration of mAbs will result in poor brain tumor 

uptake due to their limited ability to cross the BBB (76). 

1.6.5 Cationic Polymers 

 Boronated cationic polymers have been used to target colon cancer polyps in a rat model. The 

polymers were administered locally by direct perfusion of the polymer solution into the colon 

lumen (77). The boronated copolymer (Figure 5) was constructed from 3 simple monomeric 

subunits: acrylamide forms the backbone of the polymer and was used to improve the aqueous 

solubility, N-acryloyl-diaminoethane served as the cationic moiety and allowed the polymer to 

accumulate in the negative cell surface space of the polyp, while aminophenylboronic acid was the 

boron source.  
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Figure 5. Boronated copolymer for use as a BNCT agent. The cationic copolymer contains a ratio of 

acrylamide (backbone), aminophenylboronic acid (boronated monomer), and N-acryloyl-diaminoethane 

(cationic monomer).  

 The copolymer achieved polyp to surrounding tissue boron ratios of 6.57 ± 2.05, corresponding 

to boron levels of 88.5 ± 15.1 ppm in polyp tissue. In contrast, administration of free 

aminophenylboronic acid had a poor T/N selectivity of 1.23 ± 0.82. An equally important finding 

was that boron levels detected in the blood, lymph nodes, kidney, liver and spleen were 

significantly lower after copolymer administration compared to free aminophenylboronic acid, due 

to the low non-specific uptake of polymer in these tissues. Such a boron delivery system easily 
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satisfies the tumor selectivity and intracellular boron level requirements for successful BNCT 

therapy. 

 Polymers have multiple advantages that make them a suitable boron delivery system for 

BNCT. First, copolymers can deliver a high boron load to the tumor, while having lower non-

specific systemic distribution when administered directly to the intestinal tract. Second, the 

pharmacokinetics of a copolymer can be finely tuned by adjusting the ratio of the monomers that 

make up the copolymer. Additionally, copolymers may be linked to various targeting moieties to 

help improve their T/N ratio selectivity. The main disadvantage of polymers is that with systemic 

administration polymers may accumulate in filtrating organs and have low penetration across the 

BBB in the case of treating glioma. 

1.6.6 Cell-Membrane Penetrating Peptides 

 Although agents like BSH are desirable for BNCT due to their high percent boron composition, 

BSH does not readily cross the cell membrane (78). To overcome the poor intracellular 

accumulation of BSH, a cell-membrane penetrating peptide (CPP) was tethered to a peptide 

dendrimer containing BSH molecules (BSH-dendrimer-CPP, Figure 6) (78). In vitro studies using 

U87 glioma cells showed that treatment with BSH alone yielded intracellular boron levels of 15.9 

ng 10B/106 cells. In contrast, treatment with the BSH-dendrimer-CPP reached boron levels of 

5623.7 ng 10B/106 cells, a drastic increase in intracellular accumulation of BSH. This improved 

cellular uptake is in part attributed to the positively charged arginine rich portion of the CPP (11 

arginine residues long) which is thought to promote intracellular accumulation of anionic BSH. 

Additionally, in vivo studies using U87 glioma cells injected into the striatum of nude mice 

followed by BSH-dendrimer-CPP i.v. injection in the tail vein showed preferential accumulation 



  

21 

 

of BSH only in the tumor center and edge; BSH-dendrimer-CPP was not detected in the normal 

brain area on high magnification by confocal microscopy (78). 

 

Figure 6. Cell-membrane penetrating peptide for BNCT. Schematic representation of BSH containing 

dendrimer with a cell-membrane penetrating peptide. 

 The advantage of a CPP is that it improves the uptake of agents with a high percent boron 

composition that typically have poor intracellular accumulation; however, a CPP may cause 

nonspecific uptake in other organs, which is undesirable during neutron irradiation. 

1.6.7 Liposomes 

 

 Liposomes have been investigated as potential delivery vehicles for BNCT. Liposomes are 

closed phospholipid bilayers that can encapsulate a drug of interest (Figure 7) (79). Even without 

cell targeting, liposomes can improve drug delivery and reduce cytotoxicity of select agents (i.e. 

Doxorubicin) (79). Like nanoparticles, the liposome surface can also be modified to include 

targeting moieties. Liposomes are believed to accumulate within tumors because of local 

vasculature leakage known as the enhanced permeability and retention (EPR) effect (36, 79). A 
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majority of solid tumors have a defective blood vessel architecture coupled to an extensive 

production of vascular permeability factors (80, 81). This combination contributes to the EPR 

effect and facilitates the transport of macromolecules into the tumor. Specifically, macromolecules 

greater than 40 kDa can selectively leak out from tumor vessels and thereby are retained in the 

tumor tissue (80). Intra-tumoral liposomal accumulation relies significantly on the EPR effect. 

Phosphatidylcholine and dimyristoylphosphatidylcholine liposomes have recently been 

investigated for delivering the bis-nido-carborane dequalinium salt (B18C34N4H64) (82). This 

carborane is a delocalized lipophilic cation, and it is reported to selectively accumulate in the 

mitochondria of a tumor cell. These liposomes exhibited suitable stability (zeta potentials of -10 

mV) and encapsulation of the bis-nido-carborane in a liposome significantly reduced its 

cytotoxicity compared to its free administration in U87 glioma cells.   

 

Figure 7. Illustration of boron-loaded liposome. Positively charged liposomes loaded with boron 

containing molecules. 
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 Liposomal efficacy of delivering the carborane agents o-closocarboranyl β-lactoside (LCOB) 

and 1-methyl-o-closocarboranyl-2-hexylthioporphyrazine (H2PzCOB) with varying liposomal 

compositions using cationic, anionic, and zwitterionic lipid formulations has also been investigated 

(83). Boron accumulation in DHD/K12/TRb rat colon carcinoma and B16-F10 murine melanoma 

cells was assessed by alpha spectrometry compared to BPA. While BPA treatment alone of DHD 

and B16-F10 cells showed uptake ratios of 0.07 and 0.2 respectively, cationic liposomes loaded 

with LCOB had uptake ratios of 4 and 20, respectively. Furthermore, cationic liposomes 

containing H2PzCOB had an uptake ratio near 10 in DHD cells, indicating improved uptake 

compared to cationic LCOB liposomes in this cell line. Cationic liposomes had superior uptake 

compared to their anionic and zwitterionic counterparts, presumably due to their preferable 

interaction with a negatively charged mammalian membrane.  

 While liposome encapsulation can improve the delivery of BNCT agents, only a limited 

amount of boron can be contained within the liposome interior. To increase the potential boron 

payload to tumors, Hawthorne et al have designed a liposome system containing boron not only 

in the aqueous core but also in the bilayer membrane (84). The ammonio derivative Na3[1-(2’-

B10H9)-2-NH3B10H8] is encapsulated into the aqueous core, while the liposome bilayer contains 

the lipophilic agent K[nido-7-CH3(CH2)15-7,8-C2B9H11]. After i.v. administration (2 injections 24 

hours apart) of these liposomes into BALC/c mice containing EMT6 tumors (mouse mammary 

adenocarcinoma), a T/B ratio of 5.68 with a tumor boron concentration of 43 ppm was obtained 

96 hours post-injection. These liposomes have also shown promising potential in a hamster cheek 

pouch oral cancer model (85).   

 Liposomal encapsulation of BNCT agents offers several potential advantages. Liposomes can 

improve the uptake and selectivity of delivering boron to tumors; additionally, drugs with poor 
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water solubility can be more suitable for administration within a liposome formulation. However, 

liposomes may have limited clinical potential for brain tumors because of size constraints. Only 

liposomes with diameters less than approximately 40 nm are able to penetrate the BBB adequately; 

liposomes larger than 100 nm may be taken up by macrophages and may be trapped in filtrating 

organs (86).  

1.6.8 Nanoparticles 

  

 Recent studies have investigated using nanoparticles (NPs) as a boron delivery system. Boron 

agents can be readily incorporated into nanoparticles via surface adsorption, encapsulation or 

direct covalent linkage (87).  Analogous to liposomes, NPs rely significantly on the EPR effect for 

tumor accumulation. NPs may accumulate and be utilized to treat GBM and other brain tumors 

due to the compromised integrity of the BBB (88).  

 Boron phosphate NPs linked to folic acid have been proposed as a novel strategy for boron 

delivery (Figure 8). Non-functionalized boron phosphate NPs induced erythrocyte hemolysis and  

 
Figure 8. Nanoparticles for BNCT applications. Boron phosphate nanoparticles functionalized with folic 

acid and gold nanoparticles functionalized with PEG and carborane. 
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platelet aggregation, while these same NPs functionalized with folic acid did not exemplify 

significant hemolysis or platelet aggregation, suggesting these NPs can be a suitable boron delivery 

system (87). Additionally, the cytotoxicity of boron phosphate NPs containing folic acid was 

compared to BPA in both DHD rat colon adenocarcinoma and UMR rat osteosarcoma. It was 

determined that these NPs had comparable cytotoxicity to BPA and thus should be strongly 

considered as a new carrier for BNCT (87). 

 Carboranes linked to polyethylene glycol coated gold NPs may benefit from polyethylene 

glycol’s enhanced permeability and retention effects (89, 90). Gold NPs were assembled starting 

with azido-terminated gold NPs followed by “click” chemistry with the corresponding PEG-alkyne 

(2000 MW) and carborane-alkyne (Figure 8) (89). The aforementioned NPs have hydrodynamic 

diameters ranging between 10-16 nm, thereby satisfying therapeutic size requirements; typically 

NPs less than 10 nm in diameter are freely filtered by the glomerulus, whereas NPs > 100 nm are 

removed by macrophages (89, 90). The aforementioned NPs strategies have promise as potential 

BNCT agents.  

 Similar to liposomes, the advantage of NPs loaded with boron is improved intracellular uptake 

and selectivity to tumors; however, NPs may have limited clinical potential for brain tumors 

because they are unable to penetrate the BBB adequately, and they may be trapped in filtrating 

organs.  

 One of the main barriers facing drug delivery with particulate delivery vehicles such as 

liposomes and NPs is uptake by the reticuloendothelial system (RES). Uptake of particles by the 

RES is in part mediated by the liver, spleen and lungs (91). Increasing particle hydrophobicity or 

size is often correlated with increased uptake by the RES. Macrophage mediated clearance of 

particles can be minimized by creating particles with a hydrophilic surface and a diameter less than 
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100 nm (92). Coating particles with hydrophilic polymers and regulating particle size are some 

strategies used to overcome uptake by the RES. 

1.7 Summary of Current BNCT Agents 

 BNCT agents have made considerable advances since the initial BNCT studies utilizing boric 

acid as the boron carrier. Although BPA and BSH are approved agents for BNCT clinical trials, 

their modest T/N ratios encourage the development of more selective agents. Improving the T/N 

ratio not only indicates a more selective agent, but this critical factor should minimize off target 

tissue damage and translate into prolonged patient survival. Boron-containing liposomes, 

polymers, monoclonal antibodies and nanoparticles are just a few of the presented strategies that 

can be used to improve BNCT efficacy. Patient populations must be carefully selected for BNCT 

trials, and it is vital that the pharmacokinetics of the boron agent are well known on a patient-to-

patient basis. To insure maximal therapeutic response, neutron irradiation should occur during the 

peak T/N ratio. To assist this goal, agents that are readily detectable in patients with noninvasive 

methods (i.e. imaging modalities) may play a prominent role in future BNCT studies. With the 

current precedent of using co-administration of BPA and BSH in clinical trials, one must consider 

this principle and apply it to our next generation agents. Most importantly, BNCT may achieve the 

best clinical results in combination with surgical resection and/or chemotherapy. BNCT remains a 

viable treatment modality that warrants further investigation to help provide answers for those 

affected by cancers with no answer.     
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Chapter 2: Development of a Hypoxia Targeted Agent 

for BNCT 

2.1 Introduction 

 Boron neutron capture therapy (BNCT) is an emerging treatment modality with the potential 

to minimize side effects and improve GBM patient survival (4). BNCT utilizes the neutron capture 

reaction of boron-10 (10B) and its subsequent nuclear fission reaction to produce cellular death 

(93). After a 10B atom absorbs a neutron, the resulting unstable 11B isotope undergoes a nuclear 

fission reaction releasing an alpha particle, lithium-7 ion and gamma radiation (6). The path 

lengths of these newly generated linear energy transfer particles are typically 5-9 microns, thereby 

localizing the cytotoxic effect (6). Additionally, the cytotoxic effect is further localized since the 

nuclear fission reaction will only occur in boron-containing cells that fall within the neutron 

irradiation field.  

 Unlike radiation therapy, BNCT uses a non-ionizing neutron beam for irradiation. Therefore, 

if boron selectively accumulates in the tumor and minimally in the surrounding tissue, the off-

target radiation effects common to traditional radiation therapy will be mitigated in BNCT. To 

date, L-boronophenylalanine (BPA) and sodium borocaptate (BSH) are the most commonly 

investigated BNCT agents in clinical studies. The challenge in developing an efficacious BNCT 

agent is to achieve adequate tumor/normal tissue (T/N) and tumor/blood concentration ratios 

(ideally greater than 3:1). Not only must an agent have a preferential tumor accumulation, it must 

also have limited systemic cytotoxicity. 
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2.1.1 Background on BNCT Treatment of Glioblastoma Multiforme 

  As of 2014, cancer is the second leading cause of death in the United States, contributing to 

595,930 deaths (94). Historically with BNCT, glioblastoma multiforme (GBM) was the most 

common studied patient population. With an incidence rate of 3 per 100,000 people, GBM is the 

most common primary brain tumor in adults and represents approximately 50% of all gliomas (95) 

(96). A glioma is any tumor derived from glial cells, which are supportive cells of the nervous 

system. Gliomas may be classified as an astrocytoma (astrocyte derived), ependymoma 

(ependymal derived) or oligodendrogliomas (oligodendrocyte derived)(97). GBM is a grade IV 

astrocytoma, and has a rapid disease progression. The median overall survival for GBM is 12-18 

months, and less than 10% of patients are alive 5 years post-diagnosis (95).    

 The current standard of care for GBM is macroscopic tumor resection, followed by radiation 

therapy with concomitant and adjuvant temozolomide (15, 98). The efficacy of temozolomide + 

radiotherapy was compared to radiotherapy only in a phase III trial conducted by the European 

Organization for Research and Treatment of Cancer (EORTC) and National Cancer Institute of 

Canada Clinical Trials Group (NCIC).  The combination of radiotherapy + temozolomide resulted 

in an improved 2-year overall survival of 27.2% compared to 10.9% for radiotherapy alone (15, 

98). After 5 years, overall survival for the combined group was 9.8%, and was 1.9% for 

radiotherapy only (36). Despite this hallmark study, there is still much room for improving patient 

survival. Even with therapy, patients experience a high recurrence rate of approximately 90% (99). 

The efficacy of XRT is limited by damage to surrounding normal brain tissues when irradiating 

the brain tumor externally. Additionally, the dosing and efficacy of chemotherapy is limited by 

systemic toxicity to organs and tissues. 
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 High grade glioma patients enrolled in recent BNCT clinical trials have confirmed that BNCT 

is tolerated well and has comparable (or fewer) side effects than conventional XRT (14, 37). 

However, the median survival times of these trials was comparable to the standard of care (XRT 

and temozolomide). BPA and BSH typically have T/N ratios < 3 clinically which limits their 

therapeutic efficacy (93). These results emphasize the need to develop novel compounds with 

higher tumor specificity and improved T/N ratios.   

 Cancer is an ever evolving complex disease, comprised of environmental and genetic risk 

factors. There are 6 key biological hallmarks of cancer, as summarized by Hanahan and Weinberg 

(100). These are: resisting cell death, sustaining proliferative signaling, evading growth 

suppressors, activating invasion and metastasis, enabling replicative immortality and inducing 

angiogenesis. In addition to these factors, the importance of the tumor microenvironment, 

particularly hypoxia, is coming to light as a key factor contributing to tumor treatment resistance 

and relapse.  

GBM tumors are highly proliferative (101, 102) with an extremely poor clinical prognosis even 

with aggressive therapy (36, 98). Like many solid tumors, the GBM primary tumor has a rapidly 

growing blood supply. GBM has a heterogeneous tumor microenvironment that has been shown 

to have areas with different oxygenation levels which reflect unique metabolic patterns (103). 

Highly oxygenated regions (close proximity to blood vessels) are characterized with fast tumor 

proliferation and oxidative metabolism (61), while hypoxic regions (with low oxygenation) are 

characterized by low proliferation and reductive metabolism (104). Hypoxic conditions in GBM 

tumors have been shown to decrease cell proliferation (105), induce metastasis (106), promote 

angiogenesis (107), and confer resistance to chemotherapy (108) and XRT (109). Resistance has 

been attributed to the development of a subpopulation of cancer stem-like cells (110) that 
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contribute to relapse in GBM (111, 112). A better understanding of tumor hypoxia may create new 

treatment opportunities.  

2.1.2 Role of Tumor Hypoxia in Radiation and Chemotherapy Resistance 

The main component of Earth’s atmosphere is Nitrogen (78%), with oxygen being the second 

most abundant component (21%). Due to vascular and metabolic differences between organs, 

healthy tissues have a normal range of oxygen tensions (pO2). A tissue is considered normoxic if 

the physiologic pO2 is between 4.6-9.5%. While brain only has a pO2 of 4.6%, the kidney cortex 

has a pO2 of 9.5%. By comparison, low oxygen tensions resulting from an abnormal tumor 

vasculature results in hypoxic cells, with oxygen tension of 1-2% (113). While a tumor will consist 

of both hypoxic and normoxic cells, it is the hypoxic tumor microenvironment that has significant 

clinical implications to treatment resistance. 

The hypoxic tumor microenvironment contributes to both chemotherapy and radiation therapy 

resistance. The simplest explanation of chemotherapy resistance can be described by considering 

diffusion. Due to an abnormal vascular network, oxygen diffusion is decreased to hypoxic niches 

throughout the tumor. Like oxygen, chemotherapeutics therefore will have diminished diffusion 

to certain hypoxic regions. Therefore, if the effective concentration of chemotherapy is never 

achieved, the cell will survive treatment. While the bulk (normoxic) tumor may initially respond 

favorably to therapy, the residual disease stemming from the hypoxic tumor microenvironment 

may ultimately contribute to relapse and disease progression.  

For many cancer patients, chemotherapy is just a single component of their therapy. Many 

patients with a solid tumor will also receive radiation therapy. Radiation therapy (XRT) utilizes 

ionizing radiation to induce single and double strand breaks in DNA. If sufficient DNA damage 

occurs, the cell will undergo apoptosis. Interestingly, oxygen enhances the efficacy of radiation, 
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which is known as the oxygen enhancement effect. Oxygen is a potent radiosensitizer, and its 

presence will generate additional DNA damaging free radicals. Therefore, hypoxic cells with a 

low oxygen content are intrinsically radiation resistance - a higher radiation dose is required to 

effectively kill a hypoxic tissue compared to its normoxic counterpart, which is commonly 

described as an oxygen enhancement ratio (Radiation dose in hypoxia/Radiation dose in 

normoxia)(114).  

While both the limited diffusion of chemotherapy, in addition to a decreased oxygen 

enhancement effect from radiation can promote tumor survival, there are numerous genetic 

changes that play an equally important role in tumor hypoxia (Figure 9) (104). The cellular 

response to hypoxia is mediated by a family of transcription factors known as hypoxia-inducible 

factors (HIF). In response to HIF signaling in hypoxia, both glycolytic and vascular endothelial 

growth factor pathways are upregulated thereby promoting tumor survival. Additionally, hypoxic 

cells may have increased expression of drug efflux proteins such as P-glycoprotein (PgP), also 

known as multidrug resistance protein 1. Hypoxic cells have an increased mutation rate, and some 

drugs (such as bleomycin) require oxygen for their mechanism of action. Furthermore, hypoxic 

 
Figure 9. Hypoxia-mediated mechanisms of therapeutic resistance. In response to a hypoxic cellular 

environment, numerous biochemical changes contribute to chemotherapy and radiation resistance. 
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cells may have decrease cellular proliferation (quiescence). All of these factors, in addition to the 

continually mutating cancer genome contribute to therapeutic resistance.    

The induction of a hypoxic tumor microenvironment can primarily be explained by two 

alternative hypotheses. Tumor hypoxia may be the result of either insufficient vascular supply to 

the tumor (outgrowing its supply) or arise from structural abnormalities in tumor vasculature 

networks compared to normal vessels. As a tumor continues to grow, it is accompanied by 

neoangiogenesis - the rapid proliferation of new blood vessels. For some solid tumors, the tumor 

growth will exceed this rate of angiogenesis, resulting in a tumor that has essentially outgrown its 

blood supply and has an insufficient vascularization density (114). If metabolic demands for 

oxygen exceed the available delivery from nearby vasculature, a hypoxic tumor microenvironment 

will develop. With increasing distance from a tumor blood vessel, both the delivery of oxygen and 

chemotherapeutics can be impaired (115). This creates a hypoxic tumor microenvironment that is 

resistant to treatment and may contribute to relapse in patients.   

An alternative hypothesis of tumor hypoxia states that structural changes, and not the actual 

vasculature distribution, are responsible for induction of tumor hypoxia. Therefore, it is not that 

the tumor has “outgrown” its vascular supply, but rather the tumor vasculature that is present does 

not function normally (116). Tumor blood vessels are immature, tortuous and hyperpermeable. 

While normal tissue has a clear blood vessel hierarchy (arteriole � capillary � venule), this 

structural hierarchy is lost in a tumor and instead is a randomized distribution of vessels. Not only 

is the vessel distribution and hierarchy abnormal, but these vessels do not work as efficiently in 

the tumor. Tumor vessels are hyperpermeable since they are not consistently lined by smooth 

muscle. This increased leakiness directly results in higher interstitial fluid pressure, which creates 

a barrier for diffusion of both oxygen and chemotherapeutics. The increased interstitial fluid 
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pressure is especially relevant in the context of glioblastoma, in which the tumor is confined within 

the skull. Additionally, vessels that may have normal endothelium often have impaired flow due 

to their tortuous path and inconsistent diameter.  

With its clear clinical impact, the need to study tumor hypoxia in the laboratory setting was 

evident. A typical cell culture incubator has an atmospheric composition of oxygen (21%), CO2 

(5%) and nitrogen (74%) with controlled humidity at 37°C (Figure 10). To treat cells under 

general hypoxia (1-2% O2), a hypoxia chamber is utilized that displaces oxygen by use of 

additional nitrogen gas. Therefore hypoxic in vitro conditions will consist of oxygen (1%), CO2 

(5%) and nitrogen (94%) with controlled humidity at 37°C. Aside from cell culture within a 

hypoxic chamber, tumor hypoxia may be induced chemically with cobalt (II) chloride. 

 

Figure 10. Comparison of normoxia and hypoxic incubators. Atmospheric composition of normoxic 

and hypoxic incubators used for in vitro studies. 

In order to verify hypoxia mediated chemotherapy and radiation resistance in house, D54 

glioma cells were studied in vitro. D54 cells incubated in either normoxia (21% O2) or hypoxia 

(1% O2) were treated with temozolomide (0-500 µM) for 96 hours. Cell viability was then assessed 

using MTT assay. While temozolomide concentrations are effective in normoxia, there is a 



  

34 

 

profound increase in cell survival in the hypoxia treatment group (Figure 11 left). This is likely 

attributed to the decreased cellular proliferation observed in hypoxia which eliminates the 

mechanism of action of temozolomide. Similarly, D54 cells exposed to increasing doses of 

ionizing radiation showed a marked resistance in hypoxia compared to normoxia (Figure 11 right).  

 

Figure 11. Chemotherapy and radiation resistance in hypoxia. Hypoxia-mediated resistance of D54 

glioma cells to temozolomide treatment (left) or radiation therapy (right).  

2.1.3 Molecular Probes of Tumor Hypoxia 

 

 With the realization that tumor hypoxia can adversely affect treatment outcomes, the need for 

clinical probes of tumor hypoxia arose. Being able to monitor the extent of tumor hypoxia can help 

in predicting patient treatment response. Patients with more extensive hypoxia may be less likely 

to respond favorably to radiation therapy. Oxygen levels in tissue may be probed physically by a 

polarographic oxygen electrode, or assessed through biopsy and immunohistochemistry. While 

electrode measurements were formally the gold standard, this is an invasive technique, which has 

limited clinical potential and introduces potential sampling error by reoxygenating the tissue 

during the measurement. Therefore, efforts have focused on studying tumor hypoxia by genetic 

and molecular markers. Tumor hypoxia can be assessed by endogenous (already present naturally 
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in the body) or exogenous markers (small molecules administered that preferentially accumulate 

in hypoxic tissue).  

 At the genetic level, assessing the upregulation of endogenous markers HIF-1α and carbonic 

anhydrase IX (CA IX) is reflective of tumor hypoxia (117). HIF-1α is a major transcription factor 

that regulates genes for angiogenesis, glucose metabolism, metastasis and cell survival (113). In 

response to tumor hypoxia, energy production is shifted towards anaerobic glycolysis (this shift is 

even present in aerobic tumor cells). This is associated with increasing levels of lactic acid, the 

metabolic end-product of anaerobic glycolysis. To assist in maintaining the extracellular pH, the 

activity of CA IX is upregulated (118). The contributions of HIF-1α and CA IX are critical for 

tumor survival and confer resistance to chemotherapy and radiation.  

 While endogenous markers are more suitable for laboratory studies, the need for exogenous 

markers of hypoxia were evident for either immunohistochemistry staining of biopsies or clinical 

imaging (PET scan). The most well studied exogenous marker of cellular hypoxia is pimonidazole 

(sold under tradename Hypoxyprobe-1). Pimonidazole is a 2-nitroimidazole derivative, and its 

unique metabolism and retention in hypoxic cells has long been recognized (Figure 12) (114, 119). 

Pimonidazole is freely diffusible across the cell membrane, and therefore it will diffuse into 

normoxic and hypoxic tissues. However, the fate of pimonidazole metabolism is dependent on the 

oxygen tension within the cell. If oxygen is abundant in a normoxic cell, the nitro functional group 

will remain in its most oxidized state (Figure 12, red arrow). Even if a NO2
- radical forms, it will 

readily be oxidized back to a NO2 group if oxygen is present. Therefore, pimonidazole will 

eventually diffuse out of the cell and be cleared by hepatic and renal mechanisms. However, in the 

setting of tumor hypoxia (Figure 12, blue arrows), the nitro group can first form a free radical 

(NO2
-), which is subsequently reduced further to a hydroxylamine (NHOH group) or even amine  
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Figure 12. Mechanism of 2-nitroimidazole accumulation in hypoxic cells. Unique mechanism of 

pimonidazole metabolism in a normoxic (red arrow) or hypoxic cellular environment (blue arrows) leading 

to formation of protein conjugates.  

(NH2). This represents a dramatic shift in the electronics of the aromatic ring system. With the 

replacement of an extremely electron withdrawing group (NO2) with an electron donating group 

(NH2), thiol containing proteins in the cell (i.e. glutathione) can now react and trap the agent inside 

as a protein conjugate. Therefore, pimonidazole that enters a hypoxic cell will be fully reduced 

and trapped as a protein conjugate, where as in a normoxic cell pimonidazole will remain in its 

oxidized form and will be readily cleared. 

 Carlin et al have reported a nice example of pimonidazole uptake using a subcutaneous murine 

xenograft (120). As evident from the H&E stain, you can appreciate a hypoxic and necrotic center 

in the tumor without visual markers of hypoxia (Figure 13 A). When using a vascular perfusion 

marker Hoechst 33342, it can be appreciated that the periphery of the tumor has adequate 
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vascularization and is presumably normoxic, while the center of the tumor has less perfusion and 

is likely hypoxic (Figure 13 B). As shown with pimonidazole administration before sacrifice, 

followed by staining with pimonidazole monoclonal antibody, there is significant uptake of this 

hypoxic marker in the less perfused tumor center (Figure 13 C).  

 
Figure 13. Immunohistochemical staining with pimonidazole. Subcutaneous mouse xenograft (SQ20b) 

sectioned and compared by a.) H&E stain, b.) Hoechst 33342 vascular perfusion marker, c.) binding of 

monoclonal antibody to pimonidazole and d.) composite image of a-c. Modified from Carlin S et al (120). 

Based on the success of pimonidazole immunohistochemical staining, the potential to modify 

the 2-nitroimidazole scaffold for PET applications was realized. Around 2011, 18F-

fluoromisonidazole (18F-FMISO) was considered the clinical gold standard agent for hypoxia PET 

probes (Figure 14). Sharing the 2-nitroimidazole aromatic system common to pimonidazole, its 

mechanism of accumulation is analogous. A distinct structural class of exogenous hypoxia PET 

agents is 64Cu-diacetyl-bis(N(4)-methylthiosemicarbazone (64Cu-ATSM). Like pimonidazole and 

18F-FMISO, 64Cu-ATSM is a lipophilic agent that can freely cross the cell membrane (Figure 14). 

Unlike 18F-FMISO, the PET active isotope is chelated in 64Cu-ATSM. When 64Cu-ATSM enters 

a hypoxic cell, the Cu(II)-ATSM complex is reduced to an unstable Cu(I)-ATSM complex (in 

D 
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normoxia, the complex remains in its more oxidized Cu(II) state)(114). Following this reduction, 

Cu(I) becomes dissociated and is trapped by intracellular copper chaperone proteins. Once again, 

we observe that reductive chemical processes are favored in the hypoxic environment, and can 

lead to the preferential retention of a PET isotope in a hypoxic cell compared to normoxic cells.  

 
Figure 14. Clinical PET agents for monitoring tumor hypoxia. 18F-FMISO and 64Cu-ATSM have 

distinct mechanisms for targeting a hypoxic tumor microenvironment and are used for PET imaging. 

Cu-ATSM accumulates 2-9 times faster in hypoxic cells compared to normoxic cells (cell line 

dependent). In a small cohort of non-small cell lung cancer patients receiving radiation therapy, 

the tumor/muscle (T/M) uptake ratio of Cu-ATSM was evaluated in 14 patients by PET imaging. 

(121, 122). Patients that responded to chemotherapy (5 complete, 3 partial) had an average 64Cu-

ATSM uptake ratio 1.5 ± 0.4. In comparison, 6 patients that did not respond to radiation had a 

mean 64Cu-ATSM T/M ratio of 3.4 ± 0.8. This indicates that the tumor/muscle ratio of Cu-ATSM 

 uptake may predict therapeutic response. However, to date, there is still a discrepancy with 

whether 18F-FMISO or 64Cu-ATSM is the more reliable predictor of tumor hypoxia (120). The 

future evolution of hypoxic PET tracers can be adapted for intensity-modulated radiation therapy. 

Co-registering hypoxia PET tracer images to CT scan images will guide radiation therapy. Areas 

of pronounced hypoxia need to receive a higher dose of radiation since there is a diminished 

oxygen enhancement effect (123). 
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 In summary, the clinical significance of tumor hypoxia created the need for non-invasive 

imaging techniques to probe tissue oxygenation. We have observed that a hypoxic tumor 

microenvironment is chemotherapy and radiation resistant, and a more hypoxic tumor typically 

has a poorer clinical prognosis. Therefore, the ability to target this hypoxic and often therapy-

resistant region would clearly be desirable for cancer treatment, and the development of agents 

that target hypoxic regions is warranted.  

2.2 Hypothesis – Targeting Hypoxic Microenvironment 

 It has long been recognized that 2-nitroimidazole derivatives are capable of selectively 

accumulating in hypoxic cells (124, 125). In this dissertation, we hypothesized that a boronated 2-

nitroimidazole derivative would preferentially accumulate in the tumor while sparing the 

surrounding (normoxic) healthy tissue, thereby improving the boron T/N ratio (Figure 15). 

Additionally, this is desirable since hypoxic cells tend to be more resistant to chemotherapy and 

radiation. Herein we present the chemical synthesis and biological evaluation of the boronated 2- 

   
Figure 15. Targeting hypoxic tumor microenvironment. Hypothesis that the hypoxic tumor 

microenvironment can be targeted with boronated 2-nitroimidazole derivatives. 
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nitroimidazole derivative B-381. This derivative had low toxicity and a preferential accumulation 

in hypoxic glioma cells, making it a suitable candidate for future BNCT studies. In the future, the 

2-nitroimidazole scaffold may even be suitable for modification with multi-boronated derivatives.  

2.3 Materials and Methods 

2.3.1 Reagents and Cell Culture  

 All synthetic reagents for the chemical synthesis were purchased from Sigma Aldrich (St. 

Louis, MO). Glioma (D54 and U87) and hippocampus (HT22) cell lines were a kind gift from Dr. 

Dinesh Thotala (Department of Radiation Oncology, Cancer Biology Division, Washington 

University in Saint Louis School of Medicine). All cell lines were cultured in Dulbecco’s Modified 

Eagle’s Medium (DMEM, Corning CellGro, Mediatech, Manassas, VA) supplemented with 20% 

fetal bovine serum (FBS, Gibco, Life Technologies, Grand Island, NY), 2 mmol/L of L-glutamine, 

100 U/mL Penicillin and 100 μg/mL Streptomycin (CellGro, Mediatech, Manassas, VA). Before 

plating, cells were washed with phosphate-buffered saline (PBS, Corning CellGro, Mediatech, 

Manassas, VA), trypsinized with 0.05% Trypsin-EDTA 1x (Gibco, Life Technologies, Grand 

Island, NY), spun for 5 minutes (1000 RPM) and resuspended in fresh DMEM media. Peripheral 

blood mononuclear cells (PBMCs) were isolated from pheresis leukopaks from the Siteman 

Cancer Center (Washington University in Saint Louis). Red Blood Cell Lysis Buffer 1x 

(BioLegend, San Diego, CA) was added to whole blood, gently vortexed and incubated at room 

temperature for 15 minutes (protected from light). PBMCs were washed with PBS and 

resuspended in fresh DMEM media. For normoxic conditions, cells were cultured at 37°C (5% 

CO2) in a NuAire water jacket incubator (Plymouth, MN). For hypoxic conditions, cells were 

cultured at 37oC with 0.5% O2 concentration in a hypoxic chamber (Coy Laboratory Products, 

Grass Lake, MI).  
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2.3.2 Synthesis of Boronated 2-nitroimidazole Derivative B-381  

 Piperidine-4-boronic acid pinacol ester hydrochloride (73 mg, 0.296 mmol) was dissolved in 

saturated sodium bicarbonate solution (1 mL). Ethanol (50 mL) was added, mixed for several 

minutes, followed by addition of sodium sulfate (until no clumping was observed). This mixture 

was filtered and transferred to a 100 mL round bottom flask. Thereafter 1-(2,3-Epoxypropyl)-2-

nitroimidazole (50 mg, 0.296 mmol) was added and the mixture refluxed for 5 h. After the starting 

material was consumed, the mixture was concentrated on a rotary evaporator. Methanol was added 

to the crude oil resulting in precipitation of the product B-381 (IUPAC name: 1-(2-nitro-1H-

imidazol-1-yl)-3-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)piperidin-1-yl)propan-2-ol). 

The precipitate was isolated and the chemical structure was confirmed by liquid chromatography-

mass spectrometry and proton nuclear magnetic resonance (1H-NMR) spectroscopy. The 

molecular weight of the product was confirmed to be 381 g/mole, giving rise to the compound 

abbreviation B-381.  

2.3.3 Cell Viability Assay 

 Cell viability was assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) assay as described previously (126). Briefly, HT22, PBMCs, D54 and U87 cell lines 

were cultured in normoxia (21% O2) or hypoxia (0.5% O2) and treated for 24 h or 72 h with B-381 

or BPA (0, 0.01, 0.1, 1, 10, 100 µM). After treatment, MTT solution was added for 3 h followed 

by the addition of 10% sodium dodecyl sulfate solution. The absorbance was read the following 

day at 570 nm using a plate reader.   
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2.3.4 HPLC Assay for Detection of B-381  

 B-381 was analyzed using high performance liquid chromatography (HPLC, Agilent 1100 

series, Santa Clara, CA) with a reverse phase C-18 column (Agilent Zorbax Eclipse XDB C18), at 

a flow rate of 1 mL/min and operating pressure range of 70-85 Barr. An acetonitrile gradient 

containing 0.1% trifluoroacetic acid was used as the mobile phase: the gradient was increased from 

0 to 10% acetonitrile (from time 0 to 7 minutes) and then decreased back to 0% acetonitrile (from 

time 7 to 14 minutes). A calibration curve was formed by plotting the area under curve (AUC) of 

the B-381 HPLC peak (at retention time = 5 min, λ = 330 nm) for the concentration range of B-

381 (0 to 10 µg/mL). The linear correlation for the curve had a R2 = 1, with a limit of detection 

approximately 0.1 μg/mL. B-381 has a wavelength of maximum absorbance of λmax = 330 nm 

(Supplementary Figure 1).   

2.3.5 Cellular uptake of B-381 in vitro  

 PBMCs, D54, U87 or HT22 cells (1 x 106 cells/well) were cultured overnight under normoxia. 

The following day, cells were incubated in normoxic or hypoxic conditions for 4 h in serum free 

media, then B-381 was added with a final concentration of 10 μg/mL for 48 h. Additionally, B-

381 solution was added to wells with no cells to serve as a no-cellular uptake control. It was 

observed that the AUC remained constant for this control over the experimental timeline. Media 

samples were collected from each well at 0 and 48 h, and analyzed by the aforementioned HPLC 

assay for B-381 concentration. Percent uptake of B-381 was calculated as % Uptake = 

[(AUCControl-AUCSample)/AUCControl]*100. 
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2.3.6 Cellular uptake of BPA in vitro 

      PBMCs, D54, U87 or HT22 cells (1 x 106 cells/well) were cultured overnight under normoxia. 

The following day, cells were incubated in normoxic or hypoxic conditions for 4 h in serum free 

media, then BPA was added with a final concentration of 10 μg/mL for 48 h. Also, BPA solution 

was added to wells with no cells to serve as a no-cellular uptake control. Media samples were 

collected from each well at 0 and 48 h, and then were digested with concentrated nitric acid for 

two days. Samples were diluted with deionized water to a final acid concentration of 5% (v/v) and 

were filtered through a 0.22 micron polyethersulfone syringe filter (DiKMA Technologies, Lake 

Forest, CA) and analyzed using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-

OES, Optima 7300 V series, Perkin Elmer, Waltham, MA). Samples were analyzed for boron 

content (λ = 249.677 nm) against a calibration curve of boron standards of 0, 5.2, 15.625, 31.25, 

62.5, 125 and 250 parts per billion (ppb) prepared from a 10 parts per million boron standard 

solution (Inorganic Ventures, Christiansburg, VA). BPA percent uptake was calculated as % 

Uptake = [(BoronControl-BoronSample)/BoronControl]*100.          

2.3.7 Tumor Retention of BPA and B-381 in vivo  

 Approval for all animal studies was obtained from the Ethical Committee for Animal 

Experiments at Washington University in St. Louis Medical School. Athymic Nude-Foxn1nu mice 

(N=10, females, 6 week old) were obtained from Envigo (Indianapolis, IN). Mice were 

anesthetized with ketamine/xylazine and bilaterally injected with 3.5 x 106 D54 glioma cells under 

the skin of each hindlimb (two injections per mouse). Two weeks post-injection both tumors were 

palpable under the skin. The mice were split into control (N=1) or treatment (N=9) groups. Each 

mouse in the treatment group was anesthetized and received two intra-tumoral injections: the left 

tumor received BPA (23.3 mg/kg mouse, equivalent to 0.02 mmol boron/mouse) while the right 
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tumor received B-381 (42.9 mg/kg mouse, equivalent to 0.02 mmol boron/mouse). Mice were 

sacrificed at 8 (N=3), 24 (N=3) and 48 (N=3) h post-injection, and tumors were excised, weighed 

and digested in concentrated nitric acid. Samples were diluted with deionized water to a final acid 

concentration of 5% (v/v) and analyzed by ICP-OES for boron content which was normalized to 

tumor weight (reported as ng of boron/g of tumor (ppb)).  

2.3.8 B-381 in vivo Biodistribution  

 Five (N=5) athymic Nude-Foxn1nu mice were subcutaneously injected with 3.5 x 106 D54 

glioma cells in their back. When the subcutaneous tumors were approximately 0.5 cm3, four mice 

each received a 200 µL intravenous (i.v.) tail vein injection of B-381 (dose 100 mg/kg in 10% w/v 

captisol solution). The fifth mouse did not receive an injection and was used as control. After 24 

h, the mice were anesthetized, blood samples were collected, and the tumors were resected. Blood 

and tumor samples were weighed and digested in nitric acid. After diluting to a final acid 

concentration of 5% (v/v) with deionized water, samples were analyzed for boron concentration 

by ICP-OES and normalized to blood or tumor mass. 

2.3.9 B-381 Plasma half-life  

 Six C57BL/6 mice (N=6) were injected intravenously with B-381 (50 mg/kg in 10% w/v 

captisol). Blood was collected from the mice under anesthesia using a submandibular bleeding 

technique (127) at 5 min, 1, 2, 4, 6 and 24 h (n ≥ 3 for each time point). The blood samples were 

weighed, digested in nitric acid and analyzed by ICP-OES for boron concentration (normalized to 

mass of each blood sample). 
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2.4 Results 

2.4.1 Synthesis and characterization of boronated nitroimidazole derivative B-

381 

 In an effort to design a BNCT agent capable of targeting the hypoxic tumor microenvironment, 

a facile 1-step synthesis of a boronated 2-nitroimidazole derivative was devised. In short, 

commercially available piperidine-4-boronic acid pinacol ester and 1-(2,3-epoxypropyl)-2-  

 

Figure 16. Synthesis and characterization of boronated 2-nitroimidazole B-381. Chemical synthesis 

(A), mass spectrum (B) and 1H nuclear magnetic resonance spectrum in deuterated chloroform (C) of B-

381 (IUPAC name: 1-(2-nitro-1H-imidazol-1-yl)-3-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)piperidin-1-yl)propan-2-ol).  
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nitroimidazole were refluxed in anhydrous ethanol to generate the boronated 2-nitroimidazole 

derivative termed B-381 (Figure 16 A). The resulting product had a corresponding mass to 

charge (m/z) ratio of 381.6 (Figure 16 B), and the structure was further validated by 1H-NMR 

spectroscopy (Figure 16 C, Supplementary Figure 2) and 13C-NMR (Supplementary Figure 

3). It is important to note that neutralization of the piperidine HCl salt with sodium bicarbonate is 

necessary to prevent undesired epoxide ring opening by the chloride ion. The chloride ion will 

out compete the secondary amine on the piperidine ring and will attack the primary carbon of the 

epoxide. Chloride will prevent the formation of B-381 and instead the predominate product will 

be a chloride opened epoxide with a m/z = 206 (Supplementary Figure 4).    

2.4.2 The effect of B-381 and BPA on viability of normoxic and hypoxic cells in 

vitro 

 We next evaluated the effect of B-381 compared to the extensively studied BNCT agent BPA 

on cell viability. In normoxia (21% O2) B-381 illustrated minimal cytotoxicity in all cell lines 

evaluated (D54, U87, HT22 and PBMCs) up to concentrations of 100 µM (Figure 17 A). The 

cytotoxicity profile of B-381 was nearly identical under hypoxia (0.5% O2) (Figure 17 B). By 

comparison, BPA showed minimal cytotoxicity at concentrations up to 100 µM in all cell lines 

evaluated in both normoxic (Figure 17 C) and hypoxic (Figure 17 D) conditions. Additionally, 

the long-term cytotoxicity of B-381 was evaluated in normoxia and hypoxia for the D54 cell line. 

Even after a 72 h treatment of B-381 with concentrations of 100 µM, no cytotoxicity was observed 

(Supplementary Figure 5). Furthermore, even concentrations of 1.5 mM does not reach IC50 

values for B-381 (Supplementary Figure 5). 
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Figure 17. The effect of B-381 and BPA on viability of normoxic and hypoxic cells in vitro. The effect 

of a 24 h treatment with B-381 (A and B) and BPA (C and D) on the viability of PBMCs from healthy 

subjects, hippocampal cell line HT22, and glioma cell lines D54 and U87 when cultured in normoxia (A 

and C) and in hypoxia (B and D). Viability was analyzed using MTT assay normalized to untreated control. 
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2.4.3 Cellular uptake of B-381 and BPA in normoxic and hypoxic cells in vitro 

 A reverse phase HPLC assay was developed to assess the in vitro cellular uptake of B-381. B-

381 had a retention time of 5 minutes (Figure 18 A) and exhibited a linear dynamic range between 

0-10 μg/mL with a R2 = 1 (Figure 18 B). Cells were treated for 48 h with 10 μg/mL of B-381 

under normoxia (PBMCs, HT22, D54 and U87) or hypoxia (D54 and U87). Percent uptake was 

calculated by comparing the AUC values for B-381 in media aliquots at 0 and 48 h time points. 

Additionally, the AUC for B-381 was stable for 48 hours when incubated in only cell culture media 

(to insure the change in AUC was not a result of drug degradation)(Supplementary Figure 6).   

 B-381 had a low cellular uptake of < 5 % after 48 h in all cell lines treated under normoxic 

conditions (PBMCs, HT22, D54 and U87). By contrast, D54 and U87 glioma cell lines treated 

under hypoxia had significantly higher B-381 uptake of 21% and 25%, respectively (Figure 18 

C). Subsequently the in vitro cellular uptake of BPA was evaluated using ICP-OES. Boron 

standards between 0-250 ppb had a linear dynamic range with a R2 = 0.9992 (Figure 18 D). Using 

10 μg/mL of BPA under normoxia (PBMCs, HT22, D54 and U87) or hypoxia (D54 and U87), 

BPA had a low percent uptake of approximately < 5% in all conditions evaluated (Figure 18 E). 

These results indicate that B-381 preferentially accumulates in hypoxic glioma cells compared to 

BPA.  
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Figure 18. Cellular uptake of B-381 and BPA in normoxic and hypoxic cells in vitro. Representative 

HPLC chromatogram for B-381 on a C-18 column with a 0-10% acetonitrile gradient (containing 0.1% 

trifluoroacetic acid) in water over 7 minutes with a retention time = 5 min (λ = 330 nm) (A). Calibration 

curve of B-381 for HPLC cellular uptake study (B). Cellular uptake of B-381 in normoxic PBMCs from 

normal subjects, normoxic hippocampal cell line HT22, and in normoxic and hypoxic glioma cell lines D54 

and U87 (C). Calibration curve of BPA for detection of boron using ICP-OES (D). Cellular uptake studies 

of BPA in normoxic PBMCs from normal subjects, normoxic hippocampal cell line HT22, and in normoxic 

and hypoxic glioma cell lines D54 and U87 (E). 
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2.4.4 In vitro mechanistic study of B-381 accumulation in hypoxic cells 

 In order to further confirm that B-381 has preferential uptake in hypoxic glioma cells, an in 

vitro cell sorting experiment was performed. Preliminary experiments in house validated a robust 

increase in pimonidazole uptake in D54 cells incubated in hypoxia (1% O2) compared to normoxic 

controls (Supplementary Figure 7). We investigated whether the anti-pimonidazole antibody 

could recognize B-381, but there did not appear to be cross-reactivity of the antibody. Therefore, 

a cell sorting experiment was planned that would sort hypoxic and normoxic cells based on their 

pimonidazole labeling, and then boron content would be determined to assess B-381 uptake.  

 To accomplish this, D54 glioma cells were cultured in normoxia (21% O2) or hypoxia (1% O2) 

and treated with B-381 followed by addition of pimonidazole. Following treatment, cells were 

trypsinized, fixed with 70% ethanol and treated with anti-pimonidazole monoclonal antibody. 

Thereafter the normoxic and hypoxic cell populations were mixed, to simulate the heterogeneous 

tumor microenvironment present from an in vivo sample. Using the Siteman cell sorting facility, 

the lowest 5% (dim) and highest 5% (bright) FITC positive populations were collected (Figure 19 

a). The dim population is representative of normoxic cells, because they demonstrate low uptake 

of the hypoxia marker pimonidazole. In contrast, the bright population represents the most hypoxic 

cells, since the 2-nitroimidazole derivative has formed intracellular protein conjugates. After cell 

sorting, 500,000 normoxic (dim) and 500,000 hypoxic (bright) cells were collected. It was clear 

after sorting that the populations were truly enriched, with a 40-fold higher MFI in the bright 

population compared to the dim population (Figure 19 b).  

 The normoxic and hypoxic enriched cell populations were then microwave digested in 5% 

nitric acid and analyzed for boron content by ICP-OES. The hypoxic enriched population (high 

anti-Pimonidazole FITC signal intensity) had a boron content of 19.9 ppb, while the normoxic 
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enriched population had a signal of 1.5 ppb (Figure 19 c). Therefore B-381 has a 13.2-fold higher 

uptake in hypoxic cells compared to normoxic cells. Since B-381 and pimonidazole share the 2-

nitroimidazole structural motif, this data supports that B-381 accumulates analogous to 

pimonidazole in hypoxic cells due to the formation of protein conjugates.  

 
Figure 19. In vitro cell sorting of normoxic and hypoxic glioma cells. a.) Cell sorting gating for normoxic 

(dim) and hypoxic (bright) D54 cells based on anti-Pimonidazole FITC signal b.) Post cell-sorting 

illustrated a 40-fold higher MFI for hypoxic (bright) cells compared to normoxic (dim) cells c.) Boron 

content in dim (anti-Pimonidazole FITC low) and bright (anti-Pimonidazole FITC high) enriched cell 

populations determined by ICP-OES. 

2.4.5 Tumor retention, biodistribution and pharmacokinetics of B-381 in vivo 

 To eliminate the biodistribution and metabolic components associated with B-381 

administration, an intra-tumoral injection of B-381 was compared to BPA to verify the tumor 

retention of B-381 due to its presumed formation of protein conjugates in a hypoxic 

microenvironment. A D54 glioma xenograft mouse model was utilized to compare the in vivo 

tumor accumulation of B-381 and BPA. Mice containing bilateral hindlimb D54 glioma tumors 

were injected intra-tumorally with equimolar concentrations of BPA or B-381. Following 

injection, mice were sacrificed at 8, 24 or 48 h. Tumors were excised, digested and boron 
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concentration was determined with ICP-OES. The tumor concentration of BPA and B-381 was 

nearly identical 8 h post-injection (1,595 ± 274 ppb and 1,130 ± 152 ppb, respectively, Figure 20 

A). However, at 24 and 48 h post-injection, the concentration of BPA was almost undetectable. In 

contrast to BPA, the tumor demonstrated a long-term retention of B-381, with 9.5-fold and 6.4-

fold higher boron levels at 24 and 48 h, respectively.   

 Following the observed preferential hypoxic tumor accumulation of B-381 in vivo (Figure 20  

 
Figure 20. Tumor retention, biodistribution and pharmacokinetics of B-381 in vivo. (A) Tumor boron 

concentration analyzed by ICP-OES after intra-tumoral injection of left tumor with BPA (23.3 mg/kg 

mouse, equivalent to 0.02 mmol boron/mouse) and intra-tumoral injection of right tumor with B-381 (42.9 

mg/kg mouse, equivalent to 0.02 mmol boron/mouse).(B) Biodistribution of boron 24 h after intravenous 

injection of 100 mg/kg B-381 into D54 glioma bearing mice, sacrificed 24 h post-injection and boron 

content determined by ICP-OES.(C) Pharmacokinetic analysis of boron blood levels after intravenous 

injection of 50 mg/kg of B-381 using naïve mice analyzed by ICP-OES. 
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A), the biodistribution of B-381 was investigated. Five (N=5) athymic nude mice containing 

subcutaneous D54 glioma tumors were treated with B-381. Four mice received an i.v. injection of 

B-381, while the fifth mouse did not receive an injection and was used as a control. After 24 h, the 

boron content in tumor and blood was determined by ICP-OES. B-381 had preferential tumor 

accumulation, in which average tumor boron levels were 89.9 ± 18.9 ppb, while blood levels were 

34.2 ± 8.0 ppb (Figure 20 B). This correlated to a tumor/blood ratio of 2.6.   

 An in vivo pharmacokinetic study was performed to determine the plasma half-life (T1/2) for 

B-381. In brief, C57BL/6 mice received an i.v. injection of B-381. Blood was collected at 5 min, 

1 h, 2 h, 4 h, 6 h and 24 h post-injection, and boron levels were determined by ICP-OES (Figure 

20). Immediately following i.v. injection, a maximal boron level of 3,205 ± 458 ppb was detected 

(time = 5 min). Based on first order elimination kinetics, it was determined that B-381 was quickly 

eliminated from the blood with a T1/2 = 2.09 h.   

2.5 Discussion 

 BNCT is a promising therapeutic approach based on the nuclear fission reaction of boron that 

is triggered by neutron irradiation. The resulting intracellular production of high-energy alpha 

particles can target tumor cells for destruction while having less off-target associated cytotoxicity 

compared to XRT and chemotherapy (4, 93). However, the potential of BNCT to have a targeted 

tumoricidal effect is limited by the ability of a boronated agent to accumulate specifically in the 

tumor (ideally T/N > 3). Clinical trial agents BPA and BSH in glioma have suffered from poor 

tumor selectivity, with T/N ratios of 1.1 – 2.9 for BPA (11, 14, 35) and 0.7 - 3.6 for BSH (19, 27, 

31). Therefore, in order to improve the therapeutic potential of BNCT, there is an urgent need to 

develop novel boronated tumor selective compounds.  



  

54 

 

 To improve tumor selectivity in the setting of glioma, we envisioned that the hypoxic tumor 

microenvironment could be exploited as a targeting strategy. Hypoxic tumor cells contribute to  

chemotherapy (108) and XRT (109) resistance. Various factors such as increased expression of 

drug efflux pumps, decreased cell proliferation and oxygen-dependent cytotoxicity all play 

important factors in hypoxia-mediated drug resistance (104). It was previously shown that these 

hypoxic areas have more reductive rather than the normal-cell oxidative metabolism (104), and we 

hypothesized that this property could be used to specifically target these tumor regions.  

  It has long been recognized that 2-nitromidazole derivatives can selectively accumulate in 

hypoxic cells. The most recognized 2-nitroimidazole derivative is pimonidazole, which is a gold-

standard immunohistochemical marker of hypoxia (128). In hypoxia, the nitro functional group 

undergoes a series of reductions and is converted to an amine (119). This makes the nitroimidazole 

ring susceptible to forming intracellular protein conjugates with thiol-containing proteins such as 

glutathione, which in turn causes accumulation of the nitroimidazole derivative in hypoxic cells. 

In an oxygen rich (normoxic) environment, the nitro functional group remains in its oxidized form, 

thereby preventing the formation of the aforementioned protein conjugates. This differential 

metabolism in normoxic versus hypoxic cells has been utilized to develop a PET imaging agent 

for hypoxic tumor regions. 18F-Fluoromisonidazole is a clinically used fluorinated-2-

nitroimidazole PET agent for monitoring tumor hypoxia in glioma patients (129). Therefore, we 

hypothesized that synthesizing a boronated 2-nitromidazole derivative should be able to deliver 

boron preferentially to hypoxic glioma cells.   

 Herein we report the synthesis of B-381, which is a novel boronated derivative of 2-

nitroimidazole (Figure 16 A). B-381 is readily synthesized utilizing a one-step reaction with 

commercially available precursors and is easily purified as a precipitate in methanol. After 
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precipitation, B-381 has a clear mass spectrum (Figure 16 B) with a single major peak observed 

on the HPLC chromatogram (Figure 16 A). Consistent with the structure of B-381, we observed 

a characteristic singlet peak in the 1H-NMR spectrum (integrating to 12 protons) that is a result 

of 4 methyl groups found in the pinacol ester group. Additionally, the aromatic region contained 

2 nitroimidazole ring protons, while the remaining NMR peaks in the aliphatic region accounted 

for the final 14 protons (Figure 16 C, Supplementary Figure 2, Supplementary Figure 3). 

 In order to be a suitable drug candidate for BNCT, the boronated agent must have low systemic 

cytotoxicity (93). Dose-limiting toxicities could prevent sufficient tumor boron levels being 

reached which are required for BNCT to achieve a therapeutic effect. The cytotoxicity profile of 

B-381 in both normoxia and hypoxia is analogous to routinely studied BPA, and concentrations 

up to 100 µM can be studied with minimal cytotoxicity (Figure 17). Additionally, B-381 exhibited 

a superior cytotoxic profile compared to BSH, which has an IC50 value of 2.5 µM (130).  

 While BPA and BSH are the most extensively studied BNCT agents, their suboptimal T/N 

ratios observed in patients (usually T/N < 3) limits the efficacy of BNCT (93). An ideal BNCT 

agent would have minimal systemic cytotoxicity, and most importantly, selective tumor 

accumulation with a T/N ratio of 3:1 or greater (1-4, 6, 8-10). In vitro cellular uptake studies 

demonstrate that B-381 selectively accumulated in a hypoxic tumor environment. Specifically, B-

381 accumulated 4.1-fold higher in hypoxic D54 and 8.6-fold higher in hypoxic U87 cells 

compared to their normoxic controls (Figure 18 C). Additionally, compared to HT22, cellular 

uptake of B-381 in hypoxic D54 and U87 translated into T/N ratios of 4.4 and 5.3, respectively. 

On the other hand, the clinically used compound BPA showed very low uptake of boron in the 

cells, and showed poor tumor selectivity (Figure 18 E). The level of B-381 tumor selectivity 

satisfies requirements for effective BNCT and should be adequate to minimize off-target side 
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effects to normal brain cells. Furthermore, the tumor selectivity of B-381 is higher than clinical 

T/N ratios achieved with BPA and BSH, which commonly have a  T/N ratio  between 0.7 – 3.6 

(11, 14, 19, 27, 31, 35).  

 Intra-tumoral injection of B-381 in vivo showed that it was selectively retained in the tumor 

significantly longer than BPA. While tumor boron levels were almost undetectable in the tumor at 

24 and 48 h post-injection of BPA, B-381 had significantly longer tumor retention with values at 

24 h similar to boron levels at 8 h (Figure 20 A). These results may be a direct result of B-381 

forming intracellular protein conjugates in the hypoxic tumor microenvironment, which would be 

consistent with the in vitro results and with the known mechanism of 2-nitroimidazole compound 

accumulation. The long-term retention of B-381 can offer a clinical advantage compared to BPA, 

providing a longer therapeutic window for neutron irradiation.  

 In addition to the selective tumor retention, the tumor/blood ratio is an important factor to 

demonstrate selective uptake in the tumor and prevent damage to normal blood vessels during 

BNCT. To determine the tumor/blood ratio of B-381, mice received an i.v. injection of B-381 and 

boron levels were detected in the tumor and blood 24 h post-injection. We found that B-381 

accumulated in the tumor against the concentration gradient, in which the tumor boron level was 

about 3-fold higher than the blood. These findings again indicate that B-381 is a good candidate 

for use in BNCT. However, we observed relatively low levels of tumor boron accumulation 

following i.v. injection of B-381, which can be attributed to fast elimination of the drug from the 

plasma. Therefore, we performed a pharmacokinetic analysis of B-381 following i.v. injection 

which found that it was quickly eliminated from the plasma (T1/2 = 2.09 h). Thus, it is not surprising 

that the tumor boron content was lower following the i.v. injection. This is a classic drug delivery 

problem, where a drug is effective in the tumor environment but suffers from poor 
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pharmacokinetics. Therefore, to maximize its anti-tumor efficacy, B-381 can benefit from a drug 

delivery system that reduces pharmacokinetic elimination and improves tumor delivery. This will 

be explored further in Chapter 3.  

2.6 Conclusions  

 In conclusion, we have reported the synthesis and preliminary biological evaluation of B-381 

as a novel agent for BNCT. B-381 had minimal cytotoxicity, preferentially accumulated in hypoxic 

cells, and demonstrated longer tumor retention in an in vivo glioma model compared to BPA. It 

achieved significant tumor/normal tissue ratios as well as tumor/blood ratios which satisfy the 

requirements for selective and successful BNCT. However, due to the shorter half-life of B-381, 

the free administration of B-381 could benefit from frequent dosing intervals or continuous 

infusion in future studies. B-381 presents a new class of BNCT agents in which their selectivity to 

tumors is based on tumor metabolism and biology. Future studies are warranted to synthesize 

similar compounds with better pharmacokinetics, or for the development of drug delivery systems 

to improve boron delivery to the tumor environment.   

2.7 Future Directions - Synthesis of multi-boronated derivatives B-

346 and B-403 

 Improving in vivo tumor boron delivery can be accomplished using two strategies. The first 

strategy includes optimizing delivery of B-381 with a drug delivery system. B-381 will be 

incorporated into a thermal sensitive liposome, and hyperthermia will be used to trigger local 

release in the tumor. This will be the focus of Chapter 3.  

 The second strategy is to investigate multi-boronated 2-nitroimidazole derivatives. Multi-

boronated 2-nitroimidazole derivatives will have the potential to deliver a higher boron payload 
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per molecule. Two additional multi-boronated derivatives have been synthesized for future studies 

in the laboratory (Table 2). 

Table 2. Synthesized mono- and multi-boronated 2-nitroimidazole derivatives for BNCT studies. 

 
  

 The first multi-boronated derivative B-346 would increase the boron payload to 10 boron 

atoms per molecule, compared to just a single boron atom in B-381. A simple one-step synthesis 

was devised. Commercially available m-carborane-1-thiol will undergo a nucleophilic substitution 

reaction with 1-(2,3-Epoxypropyl)-2-nitroimidazole (Figure 21). After reacting in ethanol at room  

 

Figure 21. Synthesis of B-346. Synthesis (top) and LC-MS (bottom) of multi-boronated derivative B-346. 

For clarity, gray spheres in the carborane cage are carbon, while remaining atoms are boron. 
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temperature, the desired product B-346 precipitated overnight and is readily isolated by filtration. 

A unique isotope signature is present in the mass spectrum due to the abundance of boron-10 and 

boron-11 isotopes (Figure 21). 1H-NMR is consistent with the B-346 structure, which contains 1 

pair of aromatic protons (consistent with the 2-nitroimidazole ring) and a broad multiplet resulting 

from the carborane cage protons (Supplementary Figure 8).    

 A second multi-boronated agent B-403 was envisioned. This derivative introduced an amine 

linker connecting the carborane moiety to the nitroimidazole scaffold. The proposed synthesis of 

B-403 consisted of 3 steps (Figure 22). The presence of the amine functional group could facilitate 

drug loading in the future by improving water solubility.  

N
H

O

O Br

tert-Butyl N-(3-bromopropyl)carbamate

1.0 equiv.

HS
CHCl3, TEA, overnight

= Carbon

m-carborane-1-thiol

SN
H

O

O

Boc-Protected Linker

SH2N

DCM
TFA

N

N NO2

O

N

N NO2

SN

 

Figure 22. Synthetic route for B-403. Overview of multi-boronated derivative B-403 synthetic route. For 

clarity, gray spheres in the carborane cage are carbon, while remaining atoms are boron. 

 The synthetic route to B-403 is slightly more challenging since the starting materials are not 

UV active at 254 nm and cannot readily be monitored by thin layer chromatography. Therefore, 

reactions were monitored using LC-MS (Gradient of 5/95 acetonitrile:water (0.05% TFA) to 95/5 

over 5 minutes with a 1 minute hold at the end on a C18 column). The first step of the synthesis is 
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a nucleophilic substitution reaction with m-carborane-1-thiol and tert-Butyl N-(3-

bromopropyl)carbamate to form a Boc-protected linker (Figure 23 a). The resulting Boc-protected 

linker is produced in near quantitative yield. Triethylamine (TEA) and overnight conditions are 

needed for the complete consumption of tert-Butyl N-(3-bromopropyl)carbamate starting material. 

After reacting several hours, the presence of unreacted tert-Butyl N-(3- bromopropyl)carbamate  

 
Figure 23. Synthesis of Boc-protected linker for B-403 synthesis: a.) Reaction conditions for synthesis 

of Boc-protected linker. b.) Several hours after starting reaction there is unconsumed starting material by 

LC-MS. Tert-Butyl N-(3-bromopropyl)carbamate has a retention time of 3.6 minutes and characteristic 

bromine isotope pattern. c.) The product has a retention time of 5.2 minutes and a complex bromine isotope 

pattern resulting from 10 boron atoms (note parent compound m/z 334.5 not observed due to fragmentation 

and loss of t-butyl (-57) and CO2 (-44).  

a. 

b. 

c. 
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starting material can readily be identified by its characteristic bromine isotope pattern (Figure 23 

b). When the reaction is complete, the major peak on the HPLC chromatogram has a retention 

time of 5.2 minutes with a complex bromine isotope pattern produced by 10 boron atoms (Figure 

23 c). Notably, the desired product m/z = 334 is not observed on the LC-MS. This is a result of the 

easily fragmented Boc protecting group, which upon ionization will fragment and lose t-butyl (-

57 mass units) and CO2 (-44 mass units). Therefore m/z peaks of 277 and 233 are present due to 

the loss of CO2 and t-butyl from the parent compound.  

After synthesis of the Boc-protected amine linker, the Boc group was removed by using excess 

trifluoroacetic acid (60 equivalents) in dichloromethane (Figure 24 a) in quantitative yield. 

 
Figure 24. Synthesis of free-amine linker for B-403 synthesis. a.) Boc-deprotection of amine linker is 

2nd step of B-403 synthesis. b.) LC-MS of incomplete deprotection. c.) LC-MS of completed deprotection. 

d.) Both starting material (Boc-protected linker) and product (free amine linker) have predominant peak of 

m/z = 233, but the peak m/z = 277 is only present from fragmentation of the Boc group.   

a. 

b. 

c. 

d. 

200 300 400 m/z 
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While the Boc-protected starting material has a retention time of 5.2 minutes, the free amine 

product has a new retention time of 3.3 minutes (Figure 24 b, c). However, both of these 

compounds will have the predominate peak m/z = 233.3 present. Upon closer examination, the 

free amine linker mass spectrum does not have a peak at m/z = 277 (Figure 24 d). The presence 

of this peak is only generated due to fragmentation of the t-butyl group which is only present in 

the starting material. It is also logical that the free amine (more polar) will travel faster through a 

reverse phase column.  

The final step of the B-403 synthesis utilized the free amine linker to open the epoxide 

functional group of the 2-nitroimidazole (Figure 25 a). The reaction was allowed to reflux in a 

minimal amount of chloroform overnight. The desired product B-403 should actively absorb at 

254 nm due to presence of an aromatic system. The HPLC chromatogram of the crude reaction 

mixture revealed an asymmetric tail to the peak found at 3.3 minutes (Figure 25 b). The presence 

of both m/z = 233 and m/z = 403 at this retention time indicated that residual starting material (free 

amine) and product traveled similarly through the column (Figure 25 c). The reaction mixture was 

purified using normal phase column chromatography (10% methanol in dichloromethane), and the 

resulting LC-MS indicated pure B-403 (Figure 25 d). The structure was also confirmed by 1H-

NMR spectroscopy (Supplementary Figure 9).  

 Future studies with multi-boronated derivatives B-346 and B-403 have the potential to greatly 

increase tumor boron content. This is achievable because each molecule delivers 10 boron atoms, 

compared to just a single boron atom for B-381 or BPA. Future in vitro and in vivo studies can 

assess delivery of these agents as either a free drug or encapsulated into a thermal sensitive 

liposome.  
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Figure 25. Final synthetic step for B-403 synthesis. a.) Final reaction of B-403 synthesis. b.) HPLC 

chromatogram of B-403 reaction mixture before column chromatography. Note that starting material and 

product have an identical retention time of 3.3 minutes indicated by the asymmetric tail on mass spec 

ionization chromatogram c.) Before column purification, the crude reaction mixture contained a mixture of 

free amine starting material (m/z = 233.5) and desired product (m/z = 403). d.) After column purification 

only the desired product m/z = 403 was present. 

   

  

a. 

b. 

c. 

d. 
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Chapter 3: Investigation of Thermal Sensitive 

Liposomes for improving delivery of boronated agents 

3.1 Introduction 

Chapter 2 highlighted that initial in vivo studies with intra-tumoral injection of B-381 

demonstrated a long-term retention (9.5-fold higher at 24 hours) compared to an equimolar dose 

of BPA (Figure 20 A). When D54 glioma cells were sorted into normoxic (low pimonidazole 

uptake) and hypoxic (high pimonidazole uptake) populations, B-381 had a 13.2-fold higher drug 

concentration in hypoxic cells compared to normoxia. However, in vivo studies with i.v. 

administration of B-381 resulted in lower tumor boron concentration (~100 ppb, Figure 20 B). A 

follow up pharmacokinetic study verified that B-381 is cleared from the plasma rather quickly 

with a 2 hour half-life (Figure 20 C). To improve delivery of B-381, thermal sensitive liposome 

(TSL) formulations were investigated for two reasons: 1.) to enhance the plasma half-life of B-

381 and 2.) to improve tumor boron content via localized drug release triggered by hyperthermia. 

3.1.1 History of Thermal Sensitive Liposomes 

Liposomes are closed phospholipid bilayers that have long been recognized for their ability to 

improve drug delivery while minimizing off target cytotoxicity. Recently thermal sensitive 

liposomes have been designed to have a stable drug payload at physiologic temperature (37oC) but 

engineered to have high permeability under mild hyperthermia (42-43oC). Administration of a 

thermal sensitive liposome will enhance drug delivery to a hyperthermic region due to increased 

blood flow, improved vascular permeability and localized drug release at the tumor site (131). 

Additionally, hyperthermia will improve tissue diffusion which is traditionally restricted from high 

interstitial fluid pressure (this is even more pronounced when a tumor is confined to the cranium 

like glioblastoma).  



  

65 

 

The use of TSLs is an emerging field, with doxorubicin loaded TSLs being one of the more 

thoroughly studied systems (135, 136). ThermoDox (Celsion) is a TSL formulation of doxorubicin 

currently in Phase III clinical trials for non-resectable hepatocellular carcinoma. Patients with a 

single, 3-7 cm lesion treated with radiofrequency ablation (temperatures > 42°C) + ThermoDox 

showed a 2.1 year higher overall survival compared to patients only receiving radiofrequency 

ablation (Figure 26).  

 

Figure 26. Benefit of ThermoDox added to radiofrequency ablation (RFA). Subgroup analysis of 

ThermoDox Phase II clinical trial demonstrated increase in overall survival. Figure from 

http://celsion.com/thermodox/.  

3.1.2 Mechanism of TSL Drug Release  

Thermal sensitive liposomes are designed to have highest permeability in a mild hyperthermic 

range (41-43°C). Previously reported doxorubicin TSL formulations consisted of a 80:15:5 molar 

ratio of DPPC/DSPC/DSPE-PEG2000 (135). The TSL permeability and subsequent release of 

hydrophilic drugs is highest under mild hyperthermia (41-43oC) because the major component of 

the liposome formulation, DPPC, has a melting phase transition temperature (Tm) of 41.4 °C (137). 

This represents the phase transition of the phospholipid going from a solid gel-like state to a more 
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disordered liquid-crystalline state (135, 136). The molar ratio of phospholipids and their respective 

Tm values will affect the membrane permeability at a given temperature. In this previously reported 

doxorubicin formulation, DSPC (Tm = 54.9 °C) is added to minimize baseline release at 

physiological temperature (37°C), and DSPE-PEG2000 increases blood circulation time by 

decreasing uptake by the reticuloendothelial system (137).  

 When TSLs are incubated at temperatures below the Tm, the membrane has low permeability, 

and hydrophilic drugs in the aqueous core will not be significantly released. This is because at the 

lower temperature, the phospholipids are in a more ordered state and it is difficult for a hydrophilic 

drug to pass through a hydrophobic bilayer (Figure 27, left panel). The maximum permeability of 

the TSL occurs when the temperature = Tm
 (Figure 27, center panel). At Tm, there is a significant  

 
Figure 27. Temperature dependence of thermal sensitive liposome permeability. Thermal sensitive 

liposomes have the highest permeability at a temperature equal to the phase transition temperature Tm of 

the major phospholipid component of the formulation. Figure adopted from (135, 136). 
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phase transition from the gel-like state to the liquid-crystalline state. This creates packing defects 

in the liposome membrane, which creates pores for maximal drug release (135, 136). Although 

counterintuitive, increasing the temperature above Tm does not increase permeability further 

(Figure 27, right panel). At higher temperatures, the packing defect at phase boundaries (gel-like 

versus liquid-crystalline) is diminished. 

3.1.3 Passive and Active Drug Loading of TSLs  

Drugs may be incorporated into either the liposome phospholipid bilayer or the aqueous core. 

Drugs that are lipophilic are suitable for incorporation into the lipid bilayer which is mediated by 

van der Waals forces (the presence of substituents such as long alkyl chains can further enhance 

bilayer incorporation). Drugs that are loaded into the aqueous core may be loaded via passive or 

active processes (136). Passive drug loading is diffusion driven, whereas active drug loading 

allows accumulation of a drug against its concentration gradient (Figure 28). A nice illustration 

provided by Kneidl et al outlines the active loading of doxorubicin compared to the passive loading 

of gemcitabine into liposomes. Using an established pH gradient across the liposome bilayer 

(aqueous core pH = 4, bulk solution pH = 7), the amine functional group of doxorubicin will be 

neutral at pH =7 but will become protonated at pH = 4. The protonation of doxorubicin has a two-

fold effect (Figure 28). First, the protonated, charged drug will no longer be able to freely diffuse 

across the liposome bilayer, so it is essentially trapped inside. Second, the protonated form of 

doxorubicin is removed from the equilibrium equation (Le Chatelier’s principle) which allows 

additional diffusion of another free amine form of doxorubicin into the liposome. This is the key 

component that allows doxorubicin to accumulate against its concentration gradient. In 

comparison, passive loading of a drug such as gemcitabine is diffusion limited (Figure 28). Since 
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gemcitabine freely diffuses across the liposome bilayer, the concentration will equilibrate and 

depend on the bulk solution concentration.  

 
Figure 28. Active and passive drug loading of liposomes. Liposomal drug loading can be an active or 

passive process. Active loading of doxorubicin against its concentration gradient (left) and passive loading 

of gemcitabine which is diffusion limited (right)(136). 

3.2 Hypothesis - First Application of TSLs in BNCT  

The most extensively evaluated agent in BNCT clinical trials is 4-borono-L-phenylalanine 

(BPA), commonly administered intravenously as a BPA fructose adduct (BPA-f). This boronated 

phenylalanine derivative has minimal systemic cytotoxicity but has limited ability to accumulate 

preferentially in a tumor (usually a tumor/normal tissue ratio < 3) (138). The hurdle of optimal 

tumor drug delivery has long been recognized in the BNCT field and numerous strategies to 

improve delivery such as nanoparticles, liposomes, and monoclonal antibodies have shown 

promise (138). Chapter 2 presented the synthesis and evaluation of B-381, which is able to target 

the hypoxic (and often therapy resistant) glioma tumor microenvironment (139). In a hypoxic 

microenvironment (pO2 < 10 mm Hg) 2-nitroimidazole derivatives form intracellular protein 

conjugates leading to preferential accumulation (124, 125).  

Despite the development of liposomal formulations for BNCT (137), to date, the efficacy of 

thermal sensitive liposomes (TSLs) have not been evaluated in the BNCT field. Based on 

successful drug candidates like ThermoDox, in addition to the well-known benefit of liposomal 

drug formulations, we hypothesized that a thermosensitive liposome containing BPA-f will have 
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superior drug delivery compared to free drug. Transient induction of mild hyperthermia (42 °C) at 

the tumor site will promote local liposomal drug release from a thermal sensitive liposome. 

Furthermore, we hypothesized that delivery of previously reported B-381 would have superior 

long-term tumor retention compared to BPA-f due to the unique intracellular protein conjugation 

common to 2-nitroimidazole derivatives.  

 

3.3 Materials and Methods 

3.3.1 Reagents  

 All chemical reagents were purchased from Sigma Aldrich (St. Louis, MO) unless explicitly 

stated otherwise. 2-nitroimidazole derivative B-381 was synthesized in house (139). Phospholipids 

1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-

phosphocholine (DSPC), and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-

[amino(polyethylene glycol)-2000] (ammonium salt) (DSPE-PEG2000) were purchased from 

Avanti Polar Lipids (Alabaster, AL). BPA fructose adduct (BPA-f) was prepared fresh according 

to a previously published protocol before liposome loading (140). 

3.3.2 Liposome Synthesis and Characterization  

General Liposome Synthesis: Liposomes were prepared using thin-film hydration followed 

by microextrusion at 60oC (Avanti Mini Extruder)(Supplementary Figure 10). To prepare lipid 

films, the desired phospholipid formulation (60 total mg) was dissolved in 5 mL chloroform and 

concentrated on a rotatory evaporator at 40°C at 280 revolutions per minute. It is imperative that 

the lipid film is kept under vacuum for a minimum of 20 minutes before removing (residual 

chloroform vapors will dissolve lipid film). The dry lipid film is then rehydrated for 1 hour at 280 

rpm (60oC) with the desired pre-warmed buffer (see below). Following rehydration, each liposome 
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mixture is microextruded at 60oC using 200 nm and 100 nm polycarbonate membranes 

sequentially. Liposome suspensions were ultracentrifuged at 39,000 rpm for 2 hours (4°C) and 

resuspended in 150 mM NaCl and 20 mM HEPES solution (pH = 7 adjusted with NaOH). Average 

particle size, polydispersity index and zeta potential were determined by dynamic light scattering 

measurements (Malvern Zetasizer Nano ZS). Encapsulation efficiency was determined by 

doxorubicin fluorescence intensity or ICP-OES boron analysis. 

Doxorubicin Loaded TSL (Dox-TSL): A cholesterol-free (0 mole %) doxorubicin TSL 

(Dox-TSL) was prepared according to previously reported molar ratio of 80:15:5 

DPPC/DSPC/DSPE-PEG2000 respectively (135). Additionally, a novel doxorubicin loaded non-

thermal sensitive liposome (Dox-Non-TSL) was synthesized with a 0:95:5 DPPC/DSPC/DSPE-

PEG2000 molar ratio to serve as a temperature-independent liposome control. Doxorubicin was 

actively loaded using a pH gradient method. For doxorubicin TSLs, the lipid film was rehydrated 

for 1 hour at 280 rpm (60oC) with 5 mL of 300 mM sodium citrate (adjusted to pH = 4 with HCl). 

After synthesizing Dox-TSL containing sodium citrate buffer (pH=4), the TSLs are 

ultracentrifuged and resuspended in 1 mL of HEPES buffer (pH = 7) containing doxorubicin (1 

mg/mL) and incubated for 1 hour at 39°C. Doxorubicin encapsulation efficiency was determined 

from doxorubicin fluorescence intensity in supernatant compared to a volume normalized 

resuspension of Dox-TSL. 

B-381 Loaded TSL (B-381-TSL): B-381 loaded TSLs containing 0, 10, 20 and 30 mole % 

cholesterol (B-381-TSL) with DPPC/DSPC/DSPE-PEG2000/cholesterol molar ratios of 80:15:5:0, 

71:14:5:10, 64:12:4:20, 56:10:4:30, respectively, were also evaluated. B-381 drug loading with 

passive and active techniques was investigated. Passive drug loading was attempted using two 

methods. This first method dissolved B-381 (1 or 5 mg) along with the phospholipids in 
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chloroform during lipid film preparation, which was then rehydrated with PBS. The second and 

more successful method resuspended the lipid film with a 300 mM sodium citrate (pH=4) solution 

containing 40 mg/mL of B-381. Active drug loading of B-381 was also investigated using the 

previous doxorubicin pH gradient loading method. For this, the lipid film was rehydrated for 1 

hour at 60°C with sodium citrate buffer (pH = 4), microextruded, ultracentrifuged and then 

resuspended in HEPES buffer (pH = 7) containing 3 mg/mL of B-381.  After incubating for 1 hour 

at 39°C, the liposomes were ultracentrifuged and resuspended in drug-free HEPES. To determine 

B-381-TSL encapsulation efficiency, ICP-OES was used to determine volume normalized boron 

content in the resuspended liposomes compared to the removed supernatant boron level from the 

various methods. 

BPA-f Loaded TSL (BPA-f-TSL): BPA-f loaded TSL (BPA-f-TSL) containing 0 or 10 mole 

% cholesterol with DPPC/DSPC/DSPE-PEG2000/cholesterol molar ratios of 80:15:5:0 and 

71:14:5:10 were synthesized. A non-thermal sensitive liposome loaded with BPA-f (BPA-f-Non-

TSL) was synthesized with a 0:85:5:10 DPPC/DSPC/DSPE-PEG2000/cholesterol molar ratio to 

serve as a negative control. For BPA-f TSL, only a passive drug loading technique was 

investigated. Using 1 mL of a freshly prepared BPA-f solution (30 mg/mL in pH = 7 water) (140), 

the lipid film was resuspended for 1 hour at 60°C. After microextrusion and ultracentrifugation, 

the liposome was resuspended in drug-free HEPES (pH=7). Encapsulation efficiency was also 

determined using ICP-OES boron analysis. 

3.3.3 Determining Doxorubicin TSL Content  

A calibration curve of doxorubicin standards was prepared. Doxorubicin fluorescence intensity 

was determined using a plate reader (Excitation: 482 nm; Emission: 594 nm). Fluorescence 
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intensity of resuspended Dox-TSL was compared to a volume normalized fluorescence intensity 

of the residual supernatant from the drug loading method.  

3.3.4 Determining Boron Content in TSLs or Tissue  

 For water bath and HIFU release experiments, boronated drug release from thermal and non-

thermal liposome formulations was analyzed using Inductively Coupled Plasma Optical Emission 

Spectrometry (ICP-OES, Optima 7300 V series, Perkin Elmer, Waltham, MA). Dialysate sample 

aliquots were diluted with 18 megaohm water and contained 5% nitric acid (v/v). Samples were 

analyzed for boron content (λ = 249.677 nm) against a calibration curve of boron standards in 5% 

nitric acid between 0 and 250 parts per billion (ppb) prepared from a 10 parts per million boron 

standard solution (Inorganic Ventures, Christiansburg, VA). For in vivo experiments, tumor and 

organs were resected, weighed, and digested using a MARS 6 Microwave Digestion System (CEM 

Corporation, Matthews, NC). All samples were then brought to a normalized final volume of 4 mL 

containing 5% nitric acid (v/v). Control organs were utilized to establish baseline signal for each 

organ type, and final reported boron levels were normalized to organ mass. 

3.3.5 Water bath release experiments  

 In general, 500 µL aliquots of liposome stock solution were transferred inside of a 14 kDa 

Dialysis Membrane (6.4 mm x 10 mm, Ward’s Science, ON, Canada). The dialysis bag was placed 

in 50 mL of PBS buffer at either 37oC or 42oC and 100 µL aliquots were collected at various time 

points (Supplementary Figure 11). The dialysate aliquots were resuspended to a final volume of 

3 mL in 5% nitric acid and analyzed for boron content by ICP-OES. The dialysis bag contents 

were mixed into the bulk volume at the end of the experiment and used as a 100% control to 

determine % release.  
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3.3.6 HIFU release experiments  

 A small cylindrical plexiglass chamber was designed in house capable of holding 500 µL of 

liposome solution without attenuating ultrasound waves (Supplementary Figure 12 A). The top 

and bottom cylindrical opening was sealed with Tegaderm allowing transmission of HIFU waves 

through the sample chamber while retaining sample volume. The sample chamber was completely 

filled without air bubbles, and was submerged in a degassed water bath. The HIFU focus was 

aligned directly in the center of the chamber, and real-time thermocouple measurements of sample 

chamber verified mild hyperthermia (42-43o C) was maintained during a 10, 30 or 60 minute 

treatment period (Supplementary Figure 12 B). Following treatment, the 500 µL liposome 

aliquot was removed, centrifuged at 39,000 rpm, and the resulting liposome pellet and supernatant 

were volume normalized and boron content was determined by ICP-OES for determining percent 

drug release  

3.3.7 In Vivo Tumor Implantation  

 Approval for all animal studies was obtained from the Ethical Committee for Animal 

Experiments at Washington University in St. Louis Medical School. D54 Glioma cell line was a 

kind gift from Dr. Dinesh Thotala (Department of Radiation Oncology, Cancer Biology Division, 

Washington University in Saint Louis School of Medicine). Prior to in vivo implantation, cells 

were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Corning CellGro, Mediatech, 

Manassas, VA) supplemented with 20% fetal bovine serum (FBS, Gibco, Life Technologies, 

Grand Island, NY), 2 mmol/L of L-glutamine, 100 U/mL Penicillin and 100 μg/mL Streptomycin 

(CellGro, Mediatech, Manassas, VA).  

 Prior to in vivo implantation, cells were washed with phosphate-buffered saline (PBS, Corning 

CellGro, Mediatech, Manassas, VA), trypsinized with 0.05% Trypsin-EDTA 1x (Gibco, Life 
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Technologies, Grand Island, NY), spun for 5 minutes (1000 RPM) and resuspended in fresh 

DMEM media and Matrigel (Corning) according to manufacturer protocol. Athymic Nude-

Foxn1nu mice (N=10, female, 6 weeks old) obtained from Envigo (Indianapolis, IN) were 

anesthetized with ketamine/xylazine and bilaterally injected with Matrigel solution under the skin 

of each hindlimb (two injections per mouse, 1.5 x 106 D54 cells per tumor). Mice were grown to 

an average tumor size of 300 mg and were clearly palpable to facilitate isolated heating of just 1 

tumor per mouse. 

3.3.8 In Vivo Comparison of BPA-f, BPA-f-TSL and BPA-f-Non-TSL with or 

without hyperthermia  

 The mice were split into control (N=1) or 3 treatment groups: BPA-f free drug (N=3), BPA-f-

TSL (N=3) or BPA-f-Non-TSL (N=3). Mice were anesthetized and positioned under tygon tubing 

(Inner Diameter = 0.375 inches) connected to a water bath circulator maintained at 43oC with a 

high flow rate (Supplementary Figure 13 A). The tygon tubing contained a series of three 1 cm2
 

openings sealed with a single layer of TegadermTM (3M) to facilitate heat transfer while preventing 

leaks (Supplementary Figure 13 B). This facilitated heating 3 mice simultaneously. Mice were 

positioned carefully to only heat their left tumor while the right tumor served as control 

(Supplementary Figure 13 C). The variability between mice was minimized since each mouse 

had a hyperthermia-treated (43oC) and control (37oC) tumor. A thermometer placed against the 

hyperthermia window remained stable at 42-43oC over the treatment period to validate stable 

heating and prevent reaching thermoablative temperatures > 45oC. Mice were exposed to a 5 

minute pre-hyperthermia heating period prior to tail vein injections of either BPA-f free drug, 

BPA-f TSL, and BPA-f Non-TSL (normalized to have equimolar boron content). After 30 minutes 

of hyperthermia exposure, blood was collected and mice were immediately sacrificed for organ 
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collection. All excised tissues were weighed, digested with microwave digestion system, diluted 

with deionized water to a final acid concentration of 5% (v/v) for ICP-OES analysis.  

3.3.9 In Vivo Retention of BPA-f and B-381 TSL Formulations  

 

 Twelve (N=12) athymic nude-Foxn1nu mice containing bilateral D54 glioma flank tumors were 

split into 2 treatment groups receiving equimolar boron injections of either BPA-f TSL (N=6) or 

B-381 TSL (N=6). All mice were subjected to 5 minutes of hyperthermia, followed by tail vein 

injection of liposomes and 30 minutes of hyperthermia exposure. For each treatment group, 3 mice 

were sacrificed immediately after hyperthermia treatment (t = 30 minutes) while 3 mice were not 

sacrificed for 24 hours post-treatment. Blood and organs were collected, weighed and analyzed by 

ICP-OES for boron content. 

3.4 Results & Discussion 

3.4.1 Drug release from Dox-TSL 

 Before thoroughly studying BPA-f and B-381 TSLs, it was desirable to validate the 

temperature dependent release from the previously reported Dox-TSLs (135). The release of 

doxorubicin from Dox-TSL (80:15:5 DPPC/DSPC/DSPE-PEG2000 molar ratio) and Dox-non-TSL 

(0:95:5 DPPC/DSPC/DSPE-PEG2000 molar ratio) was compared in a dialysis experiment (Figure 

29). With the omission of DPPC, the Dox-non-TSL formulation should not exhibit a thermal 

sensitive release since DSPC has a Tm of 54.9oC, well above mild hyperthermia temperatures 

(therefore permeability will be low, Figure 27).  

 The encapsulation efficiency of doxorubicin using the sodium citrate loading method was 67% 

for the TSL formulation. Dox-TSL and non-TSL liposome aliquots (500 µL) were transferred to  
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Figure 29. Temperature dependent release of doxorubicin from Dox-TSL and Dox-Non-TSL 

formulations. Liposome aliquots were incubated in a closed 14 kDa dialysis membrane at 37°C or 42°C.  

14 kDa dialysis membranes and incubated at 37oC or 42oC. Doxorubicin release was determined 

by monitoring average fluorescence intensity in the dialysate at 0.25, 1, 3, and 19 h (Figure 29). 

Doxorubicin fluorescence intensity (λEx: 482 nm; λEm: 594 nm) was measured in the dialysate 

overtime. The Dox-TSL formulation had significant doxorubicin release at 42oC but had minimal 

release at 37oC. As expected, the non-TSL containing a higher DSPC content eliminated thermal 

sensitivity and had minimal release at 37oC and 42oC. 

 Additionally, the thermal effect of heating on liposome size (Figure 30 a) and polydispersity 

(Figure 30 b) was evaluated by exposing the Dox-TSL formulation to heating at 21, 37, 42, and 

60oC. Liposome particle size and polydispersity remain stable even after heating at 60oC for 1 

hour. This data supports that mild hyperthermia causes a transient increase in membrane 

permeability, but does not significantly cause liposome aggregation or degradation, which would 

be reflected by changes in average particle size and polydispersity. 
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Figure 30. Thermal sensitive liposome size and polydispersity stable with heating. a.) Change in TSL 

average diameter as a function of heating time at 21, 37, 42 or 60 °C. b.) Change in TSL polydispersity 

index as a function of heating time at 21, 37, 42 or 60 °C.  

3.4.2 Passive Loading of B-381 into TSL Lipid Bilayer 

Following synthesis of the preliminary Dox-TSL, various drug loading strategies were 

investigated to incorporate B-381 into a TSL. To determine B-381 drug loading, the encapsulation 

efficiency was determined after the TSL synthesis. In general, the liposome mixture was 

ultracentrifuged, and the supernatant and liposome pellet were volume normalized. Both 

components were acidified with 5% HNO3 and boron content was determined by ICP-OES.  

Two passive loading methods of B-381 were investigated. First, B-381 was dissolved in 

chloroform along with the phospholipids during formation of the lipid film. The lipid film was 

then rehydrated with PBS and B-381 could be passively incorporated into the liposome bilayer. 

This strategy was not largely successful, and resulted in encapsulation efficiencies of 0.75% and 

6.9% (for 1 and 5 mg of B-381 added to lipid film, respectively (Figure 31)). Additionally, 

attempting to dissolve B-381 into PBS subsequently used to rehydrate the lipid film resulted in 

equally poor encapsulation (0.6%). This is not surprising because of the poor water solubility of 

B-381. To improve the encapsulation efficiency, active drug loading methods were investigated. 
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Figure 31. Initial drug loading of B-381 into thermal sensitive liposome. Summary of B-381 passive 

and active loading encapsulation efficiencies into thermal sensitive liposomes.  

3.4.3 Active Loading of B-381 into TSL Aqueous Core with pH gradient  

In order to improve B-381 loading efficiency, a pH gradient loading method was utilized (135). 

To create a liposomal pH gradient, the liposome was synthesized using a sodium citrate buffer 

adjusted to pH = 4. After centrifugation, the liposome was resuspended in a neutral HEPES buffer 

(pH = 7.4) which contained B-381. Following incubation at 39oC for 1 hour, an encapsulation 

efficiency of 20% was obtained, correlating to a boron liposome content of 71 ppb boron/mg of 

lipid (Figure 31). This liposome formulation (B-381-TSL-active) was investigated further with a 

preliminary in vivo pilot study.   

 In a preliminary pilot study, mice with bilateral subcutaneous D54 glioma tumors were 

investigated. After i.v. tail vein injection of B-381-TSL-active (100 µL, 644 ng of boron), one 

tumor was immediately heated with HIFU for 30 minutes, while the contralateral tumor served as 

a control. Tumors were excised, microwave digested in nitric acid and analyzed by ICP-OES. For 

both the HIFU treated and control tumor, boron detection was barely above the limit of detection 
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for the instrument (Figure 32). Additionally, the 100 µL liposome injnection was also analyzed as 

a positive control, and only had a boron signal of 214.7 ppb (644 ng of boron/ 3 g water for 

analysis). Therefore, the boron payload of the liposome needs to be increased for adequate in vivo 

detection.  

 

Figure 32. Pilot in vivo study with B-381 thermal sensitive liposome.  Pilot in vivo study of B-381 TSL-

active formulation using a bilateral D54 glioma xenograft model in which one tumor received 30 minutes 

of HIFU while the other tumor served as control.  

 Various changes to the B-381 loading process were attempted to increase the liposome boron 

content (from 71 ppb boron/mg of lipid). The liposome loading process was repeated using a 250 

mM ammonium sulfate gradient, a super concentrated B-381 stock for drug loading (10 mg/mL) 

and different loading temperatures for 1 hour (39, 43, 50 and 60°C)(Figure 33). The most efficient 

encapsulation efficiency of 3% was achieved at 39°C, but the boron content in the TSL was only 

modestly improved to 86 ppb boron/mg of lipid. Furthermore, if the incubation time at 39°C was 

increased > 12 hours, the boron content only increased to 93 ppb boron/mg of lipid.  
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Figure 33. Drug loading efficiency of B-381 as a function of temperature. Alternative active drug 

loading method of B-381 into TSL using an ammonium sulfate gradient with 1 hour incubation at the 

following temperatures. 

3.4.4 Passive Loading of B-381 into TSL Aqueous Core 

 Previously a pH gradient loading method achieved 20% B-381 encapsulation efficiency in the 

thermal sensitive liposome. However, increasing the boron content further for in vivo applications 

using the pH gradient method proved challenging because of its limited solubility in HEPES buffer 

(~10 mg/mL). Since B-381 had limited solubility in HEPES buffer (~10 mg/mL), the solubility of 

B-381 in sodium citrate buffer was investigated. B-381 is readily soluble in sodium citrate buffer 

at 40 mg/mL. Therefore, a super concentrated solution of B-381 was added directly to the lipid 

film during liposome synthesis, thereby passively entrapping the drug in the aqueous core. While 

the encapsulation efficiency is lower (~5%), the liposome boron content is approximately 10-fold 

higher using this passive loading method compared to the previous pH gradient loading method. 

Additionally, since the BPA fructose adduct (BPA-f) is one of the main clinically investigated 

BNCT agents, this agent was also investigated in a TSL formulation. Therefore, the primary 
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liposome formulations investigated in the remainder of this chapter were passively loaded with B-

381 or BPA-f.  

3.4.5 Characterization of Optimized TSLs 

 After the preliminary loading studies, it was determined that the highest boron content could 

be achieved by passively loading B-381 and BPA-f. To stabilize baseline release at physiologic 

temperature, our optimized B-381-TSL and BPA-f-TSL formulations included 10 mole % 

cholesterol, giving a final 71:14:5:10 molar ratio of DPPC/DSPC/DSPE-PEG2000/cholesterol 

(Figure 34). The necessity to include 10% cholesterol is outlined in the following section. Using 

lipid film rehydration with aqueous solutions of either BPA-f (30 mg/mL) or B-381 (40 mg/mL), 

these agents were passively entrapped in the aqueous core (Figure 34). Unbound drug was 

removed by centrifugation, and BPA-f-TSL, BPA-f-Non-TSL and B-381-TSL formulations were 

characterized by DLS (Figure 34). The liposome formulations have a narrow size range between 

133.6 to 143.9 nm, with polydispersity indices between 0.034 and 0.052 indicating a homogenous 

population. Encapsulation efficiencies were < 5% which is anticipated for a passive loading 

method. Using ICP-OES, the final boron content in the liposome stocks ranged from 1317-1801 

ppb, which was used to insure equimolar boron doses for in vivo studies. This is a marked 

improvement over the B-381-TSL that was loaded by the pH gradient method and only had a signal 

of 214.7 ppb (Figure 32). 
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Figure 34. Liposome Synthesis and Characterization. a.) Optimized phospholipid molar ratios for 

thermal (TSL) and non-thermal sensitive liposome (non-TSL) formulations; b.) Illustration of a TSL 

containing boronated drug in aqueous core c.) Liposome size, polydispersity index (PDI), zeta potential, 

encapsulation efficiency and boron content of liposomes used for in vivo studies.  

3.4.6 Temperature Dependent Release from Optimized TSLs 

 After characterizing the TSL and non-TSL formulations, the release of B-381 was evaluated 

with the cholesterol free B-381-TSL (Figure 35 A). After just 10 minutes of heating at 42oC, 

almost 100% the B-381 content is released, with no significant increase at 60 minutes. In contrast, 

40% of the B-381 total dose is released after 10 minutes of heating at 37oC, with an increase to 

50% at 60 minutes. Furthermore, it was observed that 10 or 60 minutes of HIFU exposure 

(regulating temperature between 42-43oC) was equally effective for drug release, which is practical 



  

83 

 

for clinical translation compared to heating with a water bath. Despite the preferential drug release 

observed at 42oC, it was undesirable to have 40% release at physiologic temperature.  

 To decrease the baseline B-381 release at physiologic temperature, the incorporation of 

cholesterol in the formulation was evaluated after 10 minutes of heating at 37 or 42 °C (Figure 35  

 

Figure 35. Water Bath and HIFU Triggered Drug Release from TSLs. a.) B-381 release from thermal 

sensitive liposome after water bath or HIFU exposure for 10 or 60 minutes. b.) Effect of varying cholesterol 

composition on B-381 release from thermal sensitive liposome after 10 minute water bath exposure at 37 

or 42 °C. c.) Effect of cholesterol stabilization on BPA-Fructose thermal sensitive liposome after 30 minute 

water or HIFU exposure. d.) Dialysis release study of BPA-f formulation over time. 
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B). 10, 20 and 30 mole % cholesterol was compared to the cholesterol free formulation. The 

optimal formulation contained 10 mole % cholesterol, which reduced physiologic release to 20% 

at 37oC while remaining thermal sensitive at 42oC (releasing ~90% of B-381 payload). B-381 

formulations that contained 20 and 30 mole % cholesterol demonstrated decreased thermal 

sensitivity. Therefore, the B-381-TSL containing 10 mole % cholesterol was chosen for in vivo 

studies.  

 The role of cholesterol was also evaluated in the BPA-f TSL formulation (Figure 35 C). After 

30 minutes of water bath incubation at 42oC, approximately 85% BPA-f was released from 0% 

cholesterol formulation while 77% release was observed for 10 mole % cholesterol. At 37 °C, the 

cholesterol free formulation had 28% release, while this was decreased to 19% for the 10 mole % 

cholesterol formulation. Therefore, the 10 mole % BPA-f formulation was chosen for in vivo 

studies.  Additionally, 30 minutes of HIFU exposure with a temperature range of 42-43oC was 

equally effective at drug release in both formulations. Finally, drug release from the 10 mole % 

BPA-f-TSL formulation was evaluated over a 72 hour dialysis release experiment (Figure 35 D). 

After 2.5 hours, nearly 90% of the BPA-f content is released at 42oC. In contrast, only 

approximately 10% of BPA-f content is released after 72 hours at 37oC. This represents a near 9-

fold higher drug release in mild hyperthermia compared to physiologic temperature. For in vivo 

applications, the drug release is much more rapid, as these experiments require longer time points 

since BPA-f is diffusing across the dialysis membrane.  

3.4.7 In Vivo Analysis of B-381 and BPA-f TSLs  

 After finding 10 mole % cholesterol stabilizes drug release at 37oC but remains temperature 

sensitive at 42oC, the BPA-f-TSLs and B-381-TSLs were evaluated in vivo. Athymic nude mice 

contained bilateral D54 glioma tumors on their right and left flank (2 tumors/mouse)(Figure 36 
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A). Mice were positioned carefully so only the left tumor would be heated against a hyperthermia 

treatment window attached to a water circulator designed in house (Supplementary Figure 13). 

After 5 minutes of pre-hyperthermia treatment, mice were injected via tail vein with equimolar 

boron content of BPA-f free drug, BPA-f-TSL, and BPA-f-non-TSL (Figure 36 B). After a 30 

minute exposure to hyperthermia (43oC), blood was collected and mice were sacrificed. For free 

drug administration, there was not a significant difference in BPA-f tumor uptake at 37 °C (341 

ppb) compared to 42 °C (216 ppb). In contrast, BPA-f-TSL showed an 8.4-fold higher 

accumulation at 42 °C (692 ppb) compared to the 37 °C side (82.2 ppb). This indicates that drug 

is rapidly released on the hyperthermia treated tumor side, and there is not a significant 

accumulation due to EPR effect on the 37 °C side given the short experimental time point of 30 

minutes. 

 In comparison to free administration of BPA-f, the TSL formulation has a 3.2-fold higher 

accumulation when comparing hyperthermia treated tumors. Finally, BPA-f-non-TSL 

administration resulted in no detectable signal at 37oC and a signal of only 104 ppb on the 

hyperthermia treated side. This is consistent with water bath experimental data (Figure 29) where 

the non-TSL liposome does not exhibit increased permeability at 43oC. Furthermore, the non-TSL 

formulation indicates that the improved drug delivery observed with BPA-f-TSL is indeed due to 

hyperthermia triggered release, and is not just simply a result of improved accumulation due to the 

EPR effect. In addition to tumor boron levels, biodistribution of all 3 drug vehicles was also 

evaluated (Figure 36 C). While free BPA-f is rapidly cleared from the circulation 30 minutes post-

administration, both BPA-f-TSL and BPA-f-Non-TSL have prolonged circulation. This data 

further supports that the TSL formulation locally released BPA-f whereas the non-TSL did not  
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Figure 36. In Vivo Comparison of BPA-f, BPA-f TSL and BPA-f Non-TSL with or without 

hyperthermia. a.) Experimental setup for achieving local tumor hyperthermia: b.) Tumor boron content 

after 30 minute hyperthermia (43oC) treatment following i.v. injection of BPA-f free drug, BPA-f TSL or 

BPA-f non-TSL compared to contralateral control tumor (37oC) c.) Biodistribution of BPA-f free drug, 

BPA-f TSL or BPA-f non-TSL after 30 minute hyperthermia treatment. d.) Average tumor boron content 

1 or 24 h post-hyperthermia treatment with BPA-f TSL. e.) Average tumor boron content 1 or 24 h post-

hyperthermia treatment with B-381 TSL.  
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since both liposome formulations have approximately a blood concentration of 1500 ppb at t = 30 

minutes. There is no significant difference between the 3 conditions in whole body distribution 

among the other organs evaluated. 

 For the final in vivo experiment, we hypothesized whether B-381 TSL would have a long-term 

retention compared to BPA-f. Since BPA-f is an amino acid analog, it does not have a mechanism 

for long term retention. However, 2-nitroimidazole derivatives such as B-381 can form 

intracellular protein conjugates in hypoxic cells. Therefore, groups of 3 mice were administered 

BPA-f-TSL or B-381-TSL and sacrificed at 1 or 24 h post-injection. Mice were subjected to 

equivalent hyperthermia conditions as the previous in vivo experiment and contained 2 tumors 

each. While BPA-f-TSL administration at 1 hour had a high signal in the hyperthermia treated 

tumor (692 ppb), this level dramatically decreased at 24 hours to 126 ppb (a near 80% decrease) 

(Figure 36 D). In contrast, hyperthermia treated tumors in the B-381 TSL treatment group had a 

signal of 160 ppb at 1 h, and had an equivalent signal 24 h post-injection (Figure 36 E). Therefore, 

this near 100% retention of B-381 supports the formation of intracellular protein conjugates. This 

is favorable for BNCT treatment by possibly allowing a later time point for neutron irradiation. 

This will provide time for nonspecific boron to clear from the blood and other organs while still 

remaining in the tumor at a later time point.  

 

 3.5 Conclusions 

 Two novel thermal sensitive liposome formulations have been prepared and show promise for 

future BNCT studies. Both B-381 and BPA-f have been passively loaded into TSLs formulation. 

Each formulation exhibits a nice temperature dependent release: each TSL releases ~90% of the 

drug payload at 42oC with only 10-20% release at 37oC. Furthermore, in vivo studies have 
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confirmed that local hyperthermia treatment of a tumor result in improved delivery of BPA-f 

compared to physiologic 37°C controls. Delivery of B-381 TSLs demonstrate a long-term 

retention at 24 hours compared to BPA-f TSLs. This is likely a result of the hypoxic tumor 

microenvironment, and is consistent with our mechanistic understanding of B-381 accumulation 

as outlined in Chapter 2. Future studies with B-381 and BPA-f are clearly warranted. Perhaps the 

greatest potential is administration of a liposome containing both B-381 and BPA-f. This should 

adequately target both normoxic and hypoxic tumor cells and sensitize them to neutron irradiation. 

Most importantly, it is the hope that this translates into improved tumor cytotoxicity and prolonged 

survival for the patient.  
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Chapter 4: Dissertation Conclusion 

 The therapeutic potential of boron neutron capture therapy was long-recognized in 1936 by 

Locher. During the decades to follow, the progression of BNCT would be hampered by non-tumor 

specific agents and inadequate thermal neutron sources. With the advent of the epithermal neutron 

beam and its generation using modern day linear accelerators, the need for tumor specific BNCT 

agents has never been greater. The work presented in this dissertation has provided several 

strategies to meet this need.   

 First, a novel boronated 2-nitroimidazole derivative (B-381) has been synthesized capable of 

targeting the hypoxic tumor microenvironment. B-381 is minimally cytotoxic and represents a new 

class of BNCT agents in which their selectivity to tumors is based on a hypoxic tumor metabolism. 

In vivo, B-381 has demonstrated a 9.5-fold higher long-term tumor retention compared to BPA. 

Additionally, several multi-boronated derivatives B-346 and B-403 have been prepared for future 

investigation. 

 Second, thermal sensitive liposomes have demonstrated to be an efficacious delivery system 

of either B-381 or BPA-f. Thermal sensitive liposomes boast a higher boron content and a localized 

tumor delivery triggered by hyperthermia. Compared to administration of the free agent in vivo, 

BPA-f-TSLs deliver a 3.2-fold higher boron content when comparing hyperthermia treated tumors. 

Furthermore, drug delivery to the hyperthermic region is highly localized. Mice that contained 

bilateral tumors and received BPA-f TSLs showed an 8.4-fold higher accumulation at the 

hyperthermic treated tumor (42 °C) compared to unheated controls (37 °C). 

 Further studies are warranted to evaluate boronated 2-nitroimidazoles as well as boron-

containing thermal sensitive liposomes for future BNCT clinical trials. Boronated agents like B-

381 offer a distinct therapeutic advantage because of their long-term tumor retention and their 
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ability sensitize the hypoxic (and often therapy resistant) cell population to BNCT. Further 

advances in BNCT can help combat the progression of cancer.  
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Appendix  

 
Supplementary Figure 1. Determining the wavelength of maximum absorbance for B-381 (λmax = 330 

nm). Non-specific absorbance below 300 nm is attributed to the 96-well plate. 
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Supplementary Figure 2: 1H-NMR of 2-nitroimidazole derivative B-381 in deuterated chloroform. B-381 

was purified as a precipitate from methanol.  

 
Supplementary Figure 3. 13C-NMR of 2-nitroimidazole derivative B-381 in deuterated chloroform. B-381 

was purified as a precipitate from methanol. 
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Supplementary Figure 4. a.) Initial epoxide ring opening with piperidine-4-boronic acid pinacol ester HCl 

and 1-(2,3-Epoxypropyl)-2-nitroimidazole b.) LC-MS does not contain desired product m/z of 381 but 

shows a predominate peak at m/z 206.4. c.) m/z = 206 peak can be attributed to the chloride ion rapidly 

opening the epoxide ring which was introduced inadvertently since piperidine-4-boronic acid is sold as an 

HCl salt.  

 

 

 
Supplementary Figure 5. D54 Glioma cells treated with millimolar B-381 concentrations for 24 hours 

(left) or for 96 hours at micromolar concentrations (right).  
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Supplementary Figure 6. Representative chromatogram of serum free DMEM without (left) and with B-

381 (right). B-381 has a characteristic retention time at 4.1 minutes with a strong absorbance at 330 nm.  

 

 

 

 
Supplementary Figure 7: D54 cells were cultured in normoxia (21% O2) or hypoxia (1% O2) and treated 

with pimonidazole. Normoxic and hypoxic cells were fixed with 70% ethanol and stained with FITC-anti-

pimonidazole monoclonal antibody. Some normoxic cells were utilized as unstained control. 
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Supplementary Figure 8: 1H-NMR of 2-nitroimidazole derivative B-346 in deuterated acetone. B-346 was 

purified as a precipitate from ethanol.  

 

Supplementary Figure 9: 1H-NMR of 2-nitroimidazole derivative B-403 in deuterated methanol. B-403 

was purified by normal phase flash chromatography (10% methanol/90% dichloromethane). 
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Supplementary Figure 10: Schematic diagram for thermosensitive liposome synthesis in a 

microextruder. 

 
Supplementary Figure 11. Water bath release studies with thermal sensitive liposomes at 37°C or 42°C.  
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Supplementary Figure 12. Experimental setup for HIFU Release Studies. a.) Sample chamber holder 

for HIFU TSL release experiments b.) Real-time thermocouple measurement indicating HIFU treatment 

could maintain stable hyperthermia temperatures (42oC). 

 
Supplementary Figure 13. Mild Hyperthermia Treatment Device for Mice. a.) Water circulator was 

used to maintain water temperature of 43oC b.) Illustration of hyperthermia window – a thin layer of 

Tegaderm allows heat transfer to tumor. c.) Left tumor is receiving hyperthermia treatment while right 

contralateral tumor is at physiologic temperature. d.) Illustration of left tumor that was exposed to 30 minute 

hyperthermia treatment. e.) Illustration of right tumor that did not receive hyperthermia treatment. 
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