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Abstract 

Activation of Toll-like Receptor 3 Translates to Long-term Post-viral Lung Disease 

by 

Xinyu Wang 

Doctor of Philosophy in Biology & Biomedical Sciences 

Immunology 

Washington University in St. Louis, 2019 

Professor Michael Holtzman, Chair 

Chronic obstructive lung disease (COPD) causes substantial human and economic costs 

both in the US and worldwide. To identify the molecular mechanisms to allow for targeted therapies 

for COPD, we developed a high-fidelity mouse model of chronic lung inflammation using the 

natural rodent pathogen Sendai virus (SeV). While nucleic acid-sensing pattern recognition receptors 

are important for innate immune responses to viral pathogens, there have been few studies 

investigating their role in the context of chronic disease. Here we show that Toll-like receptor 3 

(Tlr3) signaling is required for the development of chronic lung disease in a postviral mouse model. 

Activation of Tlr3 in inflammatory monocyte-derived dendritic cells (moDCs) is necessary for the 

development of chronic lung disease. moDCs form an immune cell niche that drives epithelial 

alveolar type II cell (AT2) proliferation and interleukin-33 (Il33) expression. Il33 then leads to 

activation of downstream effector immune cells that produce a chronic inflammatory disease 

phenotype. 
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Introduction 

Chronic obstructive lung disease (COPD) is one of the leading causes of death in the US, 

behind only cancer and heart disease. As of 2014, an estimated fifteen million people in the US have 

been diagnosed with COPD, with an annual health care cost of $32 billion, projected to increase to 

$50 billion by 2020. Despite the substantial human and economic costs associated with COPD, 

existing therapies using bronchodilators, inhaled corticosteroids, and phophodiesterase-4 inhibitors 

are often inadequate for treating severe or refractory COPD patients.  

COPD, which is broadly defined as irreversible impairment of airflow in the lungs, is staged 

based on the severity of decrease in forced expiratory volume in one second (FEV1). COPD often 

manifests with chronic bronchitis and emphysema, which can over time lead to chronic respiratory 

failure. Worldwide, smoking is the most frequent cause of COPD, although only 20 – 25% of 

smokers develop the disease, and those who do vary greatly in disease severity and progression. 

Furthermore, a fraction of COPD cases cannot be attributed to smoking. (Holtzman et al., 2002; 

Jackson et al., 2008; Sigurs et al., 2005). Although COPD is a chronic disease that develops in 

adulthood, recent evidence has emerged suggesting that the origins of COPD may arise much 

earlier. One early study looking at thousands of individuals in the UK found a very close correlation 

between childhood respiratory disease and mortality from COPD fifty years later (Shaheen et al. 

1995).  

Cessation of smoking often does not stop progression of disease. Inflammation in COPD 

involves self-amplifying loops that lead to persistent mucus cell metaplasia, alveolar apoptosis, and 

lung remodeling by extracellular matrix proteases. Recruitment of inflammatory cells such 

neutrophils, macrophages, lymphocytes, and other innate immune cells contribute to lung 
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dysfunction and alveolar injury. 

Bacterial and viral infections are one of the most common causes of COPD exacerbations. 

RNA viruses such as RSV and influenza can activate PAMPs and lead to inflammatory gene 

transcription through IRF3/7 and NF-kB. RNA analogs such as polyI:C have been shown to 

synergize with cigarette smoke to amplify emphysema and airway fibrosis in mice (Kang et al. 2008). 

COPD is a complex disease process that is likely a combination of both genetic 

predispositions and external factors. There is an intricate interplay, much of which is still not well-

understood, between lung epithelial cells and immune cells, that allow for exposure to stimuli such 

cigarette smoke and respiratory viruses to cause the development of chronic disease. Identifying 

both the critical timing window during which this disease process sets in as well as the pathologic 

mechanisms that lead to it is essential to developing targeted therapies. 

 

Modeling Acute and Chronic Airway Disease in Mice 

Role of iNKT cells and macrophages in chronic airway disease 

To identify the pathologic mechanisms that would allow for more directed therapeutic 

intervention, we have developed a high-fidelity mouse model of chronic lung inflammation. In this 

model, a natural rodent pathogen that is known as Sendai virus (SeV) is used in place of the human 

pathogen (RSV). SeV is able to replicate efficiently in mice and produce both severe acute illness and 

subsequent chronic obstructive lung disease that is typical of the pathologic process found in 

humans (Walter et al., 2002). The acute illness is characterized by an increase in viral titers that peaks 

between 3 and 5 days post-infection (dpi), along with accompanying loss of body weight. Monocytic 

and neutrophilic inflammation is prominent during this time period but by 7 dpi, the virus is mostly 
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cleared as a result of the adaptive immune system, and animals are able to recover their weight. 

However, animals begin developing chronic lung pathology after 21 dpi and by 49 dpi, there is 

pronounced mucus cell metaplasia of the large airways, inflammatory cell infiltrate, neo-

bronchiolization, and airway hyper-reactivity, all characteristic of COPD symptoms in humans. 

Furthermore, this disease never seems to resolve and persists for the lifetime of the animal. 

In previous work using this model system, we determined that postviral airway disease 

depends on the persistent activation of an innate immune axis wherein invariant natural killer T 

(iNKT) cells direct lung macrophages towards Il13 production and alternative, or M2 polarization 

(Table 1. Kim et al., 2008).  Both CD4-/- and CD8-/- mice continued to develop chronic airway 

disease, but op/op mice or clodronate-treated mice did not. This mechanism for disease was 

unexpected, since the adaptive immune response was generally thought to underlie chronic 

inflammatory diseases. More recently, we found that heterozygous mice that carry an osteocalcin-

driven Csf1 transgene (wt/opT) showed a reduction in lung monocyte-macrophage populations at 49 

dpi that correlated with reduced induction of Il13 expression and mucus cell metaplasia. Survival of 

lung macrophages depended on the production of soluble Trem2 protein (sTrem2) (Wu et al. 2015). 

This innate immune axis also appears relevant to human disease since increased numbers of 

invariant NKT (iNKT) cells and Il13-expressing M2 macrophages are found in the lungs of humans 

with severe asthma or COPD (Agapov et al., 2009; Byers and Holtzman, 2010; Chupp et al., 2007; 

Molet et al., 2005). 

 

Role of epithelial cells in development of lung pathology 

Airway epithelial cells (AECs) are one of the first cells to respond to environmental stimuli 

and studies have shown that they play an important role in mediating immune cell infiltration in 
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asthma and COPD (Walter et al. 2001, Byers et al. 2013).  AECs express a broad arrangement of 

pattern recognition receptors such as the Toll-like receptors (TLRs), RIG-I-like receptors (RLRs) 

and NOD-like receptors (NLRs). Exposure to allergens, cigarette smoke, or nucleic acids from 

viruses can activate downstream signaling leading to expression of interferon-stimulated genes and 

inflammatory cytokines. Recent studies have shown that a basal progenitor population of AECs 

upregulate expression of Il33 after viral infection, which in turn can drive Il13 expression that 

contributes to chronic lung inflammation (Brett et al. 2013). Il33 expression is also increased in 

patients with COPD, which supports this hypothesis. 

Identifying how epithelial and immune cell PRR activation interact and lead to the 

development of chronic airway disease is critical for developing targeted therapies. In this study we 

seek to characterize in detail the effect of one such PRR, Toll-like receptor 3 (Tlr3), and its role on 

the driving viral-induced long-term lung disease. 

 

Tlr3 expression and signaling 

 Tlr3 was first identified as a sensor for the double-stranded RNA analog polyI:C and 

induced both NF-kB-mediated gene expression and type I interferons (Alexopoulou et al. 2001). 

Furthermore, Tlr3 was found to have distinct roles compared to the dsRNA-activated kinase PKR. 

PKR was found to be important for sensing cytoplasmic RNA from viral infection whereas Tlr3 was 

important for sensing extracellular RNA (Carpentier et al. 2007). In unstimulated cells, Tlr3 is 

located in the endoplasmic reticulum, where UNC-93b regulates its trafficking to the endosome. 

Acidification of endosomes is required for Tlr3 dimerization, and subsequent phosphorylation of 

Tyr759 and Tyr858 located on the cytoplasmic domain (Wang et al. 2010, Kim et al. 2008, de Bouteiller 

et al. 2005). Tyrosine phosphorylation is required for recruiting Toll-interleukin-1 receptor domain-
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containg adaptor protein interferon-B (Trif), the adaptor protein that mediates downstream signaling 

(Sakar et al. 2007).  Recent studies have also suggested the Tlr3 can be phosphorylated by c-Src, 

epidermal growth factor receptor (Egfr), phosphoinositide 3-kinase (PI3K), and Bruton’s tyrosine 

kinase (Btk) (Johnson et al. 2006, Yamashita et al. 2012, Sun et al. 2012, Lee et al. 2012). However, 

the role of these kinases in mediating Tlr3 signaling still needs to be elucidated.  

 Trif associates in a complex with tumour necrosis factor receptor-associated factor 3 (Traf3), 

Traf family member-associated with NFkB activation binding kinase (Tbk1) and IkB kinase e 

(IKKe), which leads to IRF-mediated gene transcription. Trif also recruits protein kinase receptor-

interaction protein 1 (RIP1) and Traf6, which in turn recruit Tab2, Tab3, and Tak1 to mediate 

activation of the IKK complex and MAPK pathway. Thus, Tlr3 signaling through Trif can result in 

type I IFN production through Irf3, inflammatory gene transcription through NFkB and AP-1, and 

cell death through Rip1 activation. 

Recently, it has been reported that Tlr3 can also signal independently of Trif (Yamashita et 

al. 2012). Upon binding to dsRNA, Tlr3 was able to signal through the proto-oncogene c-Src, and 

affected cell migration and proliferation. Another report studying coxsackievirus B3 myocarditis 

found that Trif-deficient mice had significantly worse disease than Tlr3-deficient mice (Abston et al. 

2012). 

In addition to being activated by viral replication intermediates, Tlr3 has also been reported 

to recognize endogenous RNA released from necrotic cells and thus may function as a damage-

associated molecular pattern recognition receptor (Kariko et al. 2004, Cavassani et al. 2008). 

Interestingly, human patients with genetic deficiency of Tlr3 are more susceptible to herpes simplex 

virus 1 (HSV-1)-induced encephalitis, suggesting that Tlr3 has a non-redundant function in 

controlling HSV-1 infection in the CNS. 



6 
 

Deletion of Tlr3 has been shown to be beneficial in some mouse models of respiratory viral 

infections. Tlr3-/- mice had decreased acute inflammatory response to rhinovirus, influenza A (IAV), 

and respiratory syncitial virus (RSV), suggesting that Tlr3 may contribute to over-activation of pro-

inflammatory genes after viral infection (Wang et al. 2011, Le Goffic et al. 2006, Groskreutz et al. 

2006). 

The objective of this dissertation is to identify the role Tlr3 plays in mediating both the acute and 

chronic inflammatory response to SeV. By understanding the immunologic mechanism and critical 

timing window by which a beneficial antiviral inflammatory response can be transformed into a 

pathologic one, we hope to be able to highlight pathways that will allow for developing novel 

therapies for the treatment of COPD.
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Summary of Chapters 

 

 

Chapter 1: Characterization and identification of immune pathways leading to chronic lung 

disease in Tlr3-deficient animals 

a. Characterization of chronic lung inflammation in Tlr3-deficient animals 

b. Characterization of chronic lung inflammation in Trif-deficient animals   

 

 

 

Chapter 2: Understanding the mechanism by which acute inflammatory cells contributes to 

chronic disease 

a. Investigating the role of Tlr3 on recruiting inflammatory immune cells 

b. Investigating the role of monocyte-derived dendritic cells on chronic lung disease 
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Chapter 1: Characterization and Identification of Immune 

Pathways Leading to Chronic Lung Disease in Tlr3-deficient 

Animals 

Tlr3 deficiency results in reduced chronic lung disease 

Due to previous work in our lab that highlighted the importance of innate immune-driven 

pathology in chronic lung disease after viral infection, we asked whether Tlr3 deficiency affected the 

development of chronic postviral lung disease. We found that chronic lung inflammation was 

markedly attenuated in Tlr3-/- mice compared to wildtype control mice, with decreased induction of 

Il13 gene expression at 49 dpi, reduced mucus cell metaplasia (reflected in decreased Muc5ac gene 

expression and immunostaining in the airway epithelium) and reduced alternative polarization of 

lung macrophages as evidenced by decreased levels of Arg1 gene expression (Fig. 1a). Tlr3-/- mice 

also had significantly decreased levels of Il33 expression relative to WT controls at both the mRNA 

and protein level (Fig. 1b). Il33 has previously been shown to be a critical cytokine upregulated in 

lung epithelial cells after SeV infection that drives downstream inflammatory immune cell function 

(Byers et al. 2013). To ask whether the difference in our observed Il33 expression was localized to 

epithelial cells, we sorted lung epithelial cells using flow cytometry (Fig. 1c) and compared levels of 

Il33 in the epithelial compartment to the immune and endothelial compartments. We found that 

Il33 in wildtype mice was exclusively increased in the epithelial compartment at 49 dpi, consistent 

with prior published results, and that this increase did not occur in Tlr3-/- mice (Fig. 1d). On 

histology, Tlr3-/- mice also had significantly decreased lung pathology relative to WT controls at 49 

dpi, as evidenced by decreased PAS positivity, hematoxylin signal, and Muc5ac immunostaining (Fig. 

1e, f). In contrast, Tlr7, Tlr9, and Mda5 deficiency had no significant effect on the development of 

chronic lung disease, despite the fact that these three PRRs are also activated by viral nucleic acids 
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(Fig. S1). These results indicate that Tlr3 has a unique function in the development of chronic lung 

disease that is not shared with other viral PRRs. 

 

Tlr3 is not necessary for mounting an antiviral response to SeV, but plays a role in recruiting acute 

inflammatory cells to the lung. 

We next asked whether Tlr3 affected the acute antiviral and inflammatory response to SeV 

infection. We found that Tlr3-/- mice had significantly less body weight loss after viral infection, 

though the peak body weight loss which occurs at 7-8 dpi was similar to WT controls (Fig. 2a). Tlr3 

deficiency had no effect on viral titers after SeV infection (Fig. 2b) or on induction of type I 

interferons and expression of interferon inducible genes (Fig. 2c). 

Histologically, Tlr3-/- mice displayed less inflammation after infection, with fewer cells 

infiltrating into the airways at 5 dpi as evidenced by decreased hematoxylin staining relative to WT 

controls (Fig. 3a, b). Lung DCs can be divided into two subtypes: conventional dendritic cells 

(cDCs) which arise from a common DC precursor, and monocyte-derived DCs (moDCs), which 

arise from tissue monocytes. cDCs are further divided into Batf3-dependent CD103+ cDCs and 

Irf4-dependent CD11b+ cDCs. Like cDCs, moDCs are characterized by their surface expression of 

CD11c and CD11b, but unlike cDCs, they also express the macrophage marker CD64. We found 

that at baseline, moDCs were a rare population the lung, but they were rapidly increased after SeV 

infection and peak at 12 dpi (Fig. 3c). CD11b+ cDCs and CD103+ DCs were also increased after 

infection, but they made up a far lower fraction of the overall DC population compared to moDCs. 

Inflammatory myeloid cells have been previously reported to express Ccr2 and to better 

study this, we analyzed myeloid populations in Cx3cr1GFP/+/Ccr2RFP/+ reporter mice at 12 dpi. We 
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found that lung moDCs, CD11b+ cDCs, and monocytes strongly express both Ccr2 and Cx3cr1 

while neutrophils and alveolar macrophages do not express these receptors (Fig. 3d). To study 

whether there were decreased numbers of Ccr2-positive cells, we developed a 64Cu-labeled peptide 

that binds specifically to Ccr2 (ECL1i) to allow us to track recruitment of cells that express Ccr2 

into the lung using positron emission tomography. We found that while Ccr2 signal in wildtype mice 

peaked at 12 dpi, the increase was much lower in Tlr3-/- mice at this time point (Fig. 3e). 

Trif deficiency does not ameliorate chronic lung disease 

Most of the published literature has reported Trif as being the primary downstream adapter 

protein for Tlr3, and unlike other TLRs, Tlr3 is not known to signal through MyD88. As a result, it 

was surprising when we found that Trif deficiency resulted in a very different outcome in the 

development of chronic lung disease compared to Tlr3 deficiency. 

 Acutely, Trif-/- mice showed no difference in weight loss or viral titers after SeV infection 

compared to wildtype animals (Fig. 4a, b). Unlike Tlr3-/- mice, Trif-/- mice did not show any decrease 

in inflammatory cell infiltration relative to WT controls at 5 dpi as evidenced by hematoxylin 

staining (Fig. 4c, d). Using 64Cu-labeled Ccr2 peptide, we were able to compare the intensity of Ccr2 

signal in the lungs of Trif-/- to Tlr3-/- animals at 12 dpi. Tlr3-/- animals showed a signal reduction in 

signal intensity in the lung as we had shown previously, but Trif-/- mice did not (Fig. 4e). 

Furthermore, we did not see a reduction in lung myeloid populations at 12 dpi by flow cytometry 

(Fig. 4f). At 49 dpi, Trif-/- mice showed no reduction in levels of Il13, Muc5ac, or Il33 expression 

compared to WT mice (Fig. 4g). Similarly on histology, Trif-/- mice did not show any reduction in 

PAS or hematoxylin signal in the lung at 49 dpi (Fig. 4h, i). These results indicate that the 

inflammatory effect of Tlr3 was not mediated through Trif signaling. 
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Chapter 2: Understanding the Mechanism by which Acute 

Inflammatory Cells Contribute to Chronic Disease 

 

Tlr3 expression is upregulated on multiple lung myeloid populations after viral infection, and Tlr3 

expression on monocyte-derived dendritic cells.is critical for driving chronic lung disease 

Inflammatory monocytes recruited during acute tissue inflammation can differentiate into 

resident macrophages or dendritic cells. To ask where Tlr3 is expressed, we sorted lung DC and 

macrophage populations from SeV-UV treated and SeV-infected wildtype mice (Fig. 5a). We found 

that baseline Tlr3 expression in SeV-UV treated mice was highest in CD103+ DCs, though at 5 dpi, 

Tlr3 was most significantly upregulated in tissue monocytes, moDCs, and CD11b+ DCs. 

Interestingly, epithelial cells also showed an increase in Tlr3 mRNA levels at 5 dpi (Fig. 5b). Staining 

for intracellular Tlr3 protein showed a consistent pattern to mRNA levels (Fig. 5c). In all the cell 

populations we studied, Tlr3 expression returned to baseline levels after 12 dpi, suggesting that the 

increase at 5 dpi was primarily an acute response to viral infection.   

To investigate whether moDCs had a functional role in the pathogenesis of chronic disease, 

we adoptively transferred primary lung moDCs from donor mice into recipient Tlr3-/- mice. To 

obtain sufficient numbers of DCs, we sorted cells from the lungs of donor mice at 12 dpi. Recipient 

mice received 1*106 cells intranasally and were infected with SeV 24 hrs after adoptive transfer. 

Lungs were then analyzed at 49 dpi for the development of chronic lung disease (Fig. 6a). Adoptive 

transfer of wildtype moDCs into Tlr3-/- mice was able to reconstitute chronic lung disease as 

evidenced by restoration of PAS and hematoxylin signal (Fig. 6b, c) as well Muc5ac immunostaining 

at 49 dpi to levels comparable to wildtype control mice that were given intranasal PBS (Fig. 6d, e). 
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Interestingly, transfer of Tlr3-/- moDCs was not able to restore chronic lung disease, suggesting that 

Tlr3 expression on moDCs was necessary for their functional activation. 

Bone marrow-derived dendritic cells (BMDCs) generated in vitro using GM-CSF have been 

reported to functionally resemble moDCs. To ask whether BMDCs could also reconstitute chronic 

disease in Tlr3-/- mice, we cultured BMDCs from uninfected WT and Tlr3-/- donor mice, and 

transferred them to Tlr3-/- recipients a day before SeV infection (Fig. 7a). Transfer of BMDCs 

showed a similar effect to primary moDC transfer, and WT cells were able to restore chronic lung 

disease while Tlr3-/- cells were not (Fig. 7b, c). 

To ask whether transfer of tissue monocytes, the precursor cell to moDCs, could also 

restore chronic disease in Tlr3-/- mice, we compared the effect of transferring primary moDCs sorted 

from donor mice at 12 dpi to primary tissue monocytes sorted from the same donor mice at 12 dpi. 

Lungs of recipient mice were analyzed at 21 dpi, which is an earlier timepoint in the development of 

chronic postviral disease. Surprisingly, while transfer of WT moDCs was able to restore PAS and 

hematoxylin signal in the lungs of Tlr3-/- recipient mice, transfer of WT tissue monocytes was not, 

suggesting that differentiation into moDCs before transfer was necessary in order to have a 

functional effect on the development of chronic disease (Fig. 8a, b). 

 We showed earlier that both tissue monocytes and moDCs expressed surface Ccr2. We 

assessed whether deletion of Ccr2, which would block recruitment of these cells into the lung, 

would affect disease outcome. We infected Ccr2-/- mice with SeV and found that tissue monocyte 

recruitment at 5 dpi was almost completely absent (Fig. 9a). However, Ccr2-/- mice lost significantly 

more body weight than control animals and exhibited increased mortality to SeV infection. (Fig. 9b). 

We found a similar effect on survival using a previously characterized Ccr2-blocking antibody (MC-

21) between infection and 5 dpi (data not shown). This suggested that at least some Ccr2-positive 
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cells are needed for adequate control of viral replication and the complete absence of these cells was 

detrimental to survival. Given that Ccr2 is also expressed on DCs, NK cells, and T cells (Kim et al. 

2001, Egan et al. 2009, Hohl et al. 2009), it is possible that the inability to recruit these cells delays 

the adaptive response, and causes problems in clearing the virus. This is supported by the fact that 

both antibody treated mice and Ccr2-/- mice continue to lose weight after 7 dpi, but wildtype mice 

are able to recover (Fig. 9c). In contrast, Tlr3-/- mice do not have increased weight loss or mortality 

after SeV infection and only specific myeloid subsets which may be dispensable for viral clearance 

are decreased in these mice. 

 

Monocyte-derived dendritic cells directly induce AT2 cell proliferation in vivo 

Given that epithelial cell-derived Il33 is decreased in Tlr3-/- mice, and evidence that Il33 

expression is predominantly localized to type II alveolar cells (AT2) (Byers et al. 2013, Llop-Guevara 

et al. 2014), we asked whether Tlr3-/- deficiency affected AT2 cell numbers after SeV infection using 

surfactant protein C (Sftpc) staining. In WT controls, AT2 cell counts decreased at 5 dpi, reflecting 

apoptosis/lysis from viral infection. However, AT2 cells were repopulated by 21 dpi and 

substantially increased at 49 dpi. Interestingly, this increase did not occur in Tlr3-/- mice, and cell 

numbers remained near baseline levels even at 49 dpi (Fig. 10a).  

 To assess whether moDCs played a role in AT2 cell proliferation, we quantified Sftpc 

staining in Tlr3-/- mice that were adoptively transferred with WT or Tlr3-/- lung moDCs. Transfer of 

WT moDCs restored AT2 numbers to WT levels at 49 dpi, while transfer of Tlr3-/- moDCs partially 

restored AT2 cell numbers (Fig. 10b). These results suggest that while moDCs appear to be 

important in inducing AT2 proliferation, Tlr3 expression in moDCs may be dispensable in that 

regard and may instead play a role in their functional activation.  
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 To address this issue, we asked whether moDCs could directly induce Il33 expression in 

airway epithelial cells. We sorted EpCAM+ cells from naïve uninfected WT mice and cultured them 

ex vivo with moDCs purified from WT or Tlr3-/- mice at 12 dpi. We found that while WT moDCs 

were able to induce upregulation of Il33 expression in this culture system, Tlr3-/- moDCs were not 

able induce significant increases Il33 gene expression in naïve epithelial cells (Fig. 10c). 
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Discussion 

We have shown that Tlr3 is critical for chronic lung disease that develops after viral 

infection. Tlr3 seems to be a unique PRR in this regard, in that it is dispensable for viral clearance, 

but instead contributes to a pathological inflammatory response to SeV. This response is mediated 

by the recruitment of inflammatory monocytes that subsequently differentiate into CD64high CD11c+ 

moDCs, which constitute a large proportion of inflammatory cells by 12 dpi. These moDCs appear 

to be critical in driving AT2 cell proliferation, and in turn may also directly induce Il33 expression 

from airway epithelial cells. To our knowledge this is the first observed induction of an innate PRR 

that drives chronic post-viral lung disease and we have identified a novel immune cell niche that 

contributes to airway pathology (Fig. 11). 

We did not observe an effect of Tlr3 deficiency on type I interferon induction, likely due to 

functional redundancy between Tlr3 and RLR/MAVS pathways in upregulating antiviral genes. 

Indeed, other studies have reported that RIG-I, and not Tlr3, is necessary for the antiviral response 

to Sendai virus. It is difficult to track Tlr3 activation in vivo, but recent reports have indicated that 

Tlr3 can also be activated by endogenous RNA released from necrotic cells (Kariko et al., Cavassani 

et al.). It is possible that RNA released from the turnover of cells during the acute inflammatory 

response, as well as replicating virus itself, provides a stimulus to activate Tlr3 signaling. 

Upregulation of Tlr3 expression on lung myeloid and epithelial cells appears to be transient, peaking 

at 5 dpi but returning to baseline levels by 12 dpi. Although this does not rule out continued 

activation of Tlr3 in these cells, expression correlates with the timecourse of viral titer, suggesting 

that cells are directly responding to SeV infection. 

Interestingly, Trif-/- mice did not show reduced lung pathology compared to WT controls at 

49 dpi and showed no reduction in Muc5ac or Il33 expression. Both Trif-/- and Tlr3-/- animals used 
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for this study had been backcrossed to B6 animals for at least ten generations, so the result was not 

due to a difference in genetic background. Trif-deficiency also affects signaling through Tlr4, and it 

is unknown how loss of Tlr4 signaling may influence disease progression in our model. Trif has been 

reported to be a negative regulator of MyD88-dependent activation of dendritic cells (Seregin et al. 

2011). Furthermore, it has recently been reported that Tlr3 can signal through a Trif-independent 

pathway (Yamashita et al. 2012). Thus, there are several possible explanations why the Trif-/- 

phenotype is different from Tlr3-/- mice. Our results provide evidence that despite being part of the 

same signaling pathway, these proteins play very different roles and Trif-deficiency is not 

functionally synonymous with Tlr3-deficiency in vivo. 

Recently it has been reported that Ccl2 expression leads to moDC recruitment in an RSV 

model (Goritzka et al.) although few studies have looked at the role these cells play in chronic 

COPD models. In our model, we found that lung moDCs peak at 12 dpi, and may produce a 

proliferative and/or survival signal to alveolar type II cells. moDCs, also known as Tip-DCs or 

inflammatory DCs, have also been reported to activate effector CD8 T cells and promote Th2 cell-

mediated immunity (Plantinga et al. 2013). Adoptive transfer of moDCs was able to completely 

reconstitute chronic lung disease in Tlr3-/- mice, as well as restore AT2 cell numbers and lung Il33 

levels, suggesting a common cellular mechanism. GM-CSF induced BMDCs, which are 

phenotypically similar to moDCs, were also able to restore mucus cell metaplasia and lung disease in 

Tlr3-/- animals. Transfer of tissue monocytes, however, did not have this effect, suggesting that 

donor monocytes may not fully differentiate into moDCs once taken out of their microenvironment 

and transferred into a foreign host. Our results indicate that moDCs are functionally important for 

the development of chronic disease, but we cannot rule out the potential contribution of other 

myeloid populations to the development of chronic disease such as CD11b+ and CD103+ DCs. 
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Further studies are needed to elucidate how depletion of specific subsets of lung DCs cells influence 

disease outcome. 

Both lung moDCs and GM-CSF cultured BMDCs are heterogeneous populations, and it 

remains a possibility that there are functional differences among subsets of these cells. Indeed, AT2 

cells themselves are also heterogeneous, and there may be a subset of epithelial cells that responds to 

signals released by the immune cell niche. Future studies using single-cell RNA sequencing to tease 

apart these populations will be very exciting. 
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Figures 
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Fig. 1. TLR3 is required for chronic airway disease after viral infection. (a) Levels of Il13, Muc5ac, 

and Arg1 mRNA in lungs from wild-type (WT) and Tlr3–/– mice at 49 days post-infection (dpi) with 

SeV or SeV-UV. (b) Levels of Il33 mRNA and protein in lungs from WT and Tlr3–/– mice at 49 dpi 

with SeV or SeV-UV. (c) Flow cytometry analysis of EpCAM+ epithelial cells, CD31+ endothelial 

cells, and CD45+ immune cells at 49 dpi with SeV or SeV-UV. (d) Levels of Il33 mRNA in cell 

populations from (a) in Tlr3–/– and WT control mice after infection with SeV or SeV-UV. (e) 

PAS/hematoxylin staining and Muc5ac immunostaining of lungs from WT and Tlr3–/– mice at 49 

dpi with SeV or SeV-UV. Scale bars = 500 µm (low mag) and 250 µm (high mag). (f) Quantification 

of PAS and colorized hematoxylin staining and Muc5ac immunostaining. For (a-b, e-f), values are 

mean ± SEM for 5 mice; values are representative of 3 separate experiments. 
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Fig. S1. Effect of other viral PRRs on chronic lung disease. mRNA levels of Il13 and Muc5ac in Tlr7-

/-, Tlr9-/-, MDA5-/- and Tlr3-/--MDA5-/- double knockout mice. * P< 0.05 versus SeV-UV and ** P< 

0.05 versus WT. 
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Fig. 2. Effect of Tlr3 on viral replication. (a) Body weights from WT and Tlr3–/– mice after 

administration of intranasal SeV and SeV-UV. (b) Viral titers at indicated time points after SeV 

infection from WT and Tlr3–/– mice. (c) Expression of type I interferons and Irf7 at 3 dpi in WT and 

Tlr3–/– mice. For (a-c), values are mean ± SEM for 5 mice; values are representative of 3 separate 

experiments. 
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Fig. 3. Tlr3-mediated acute inflammation. (a) Representative PAS/Hematoxylin-stained sections of 

airway from WT and Tlr3–/– mice at 5 dpi with SeV or SeV-UV. Scale bars = 500 µm (low mag) and 

250 µm (high mag). (b) Quantification of hematoxylin staining. (c) Cell counts of myeloid 

populations from WT and Tlr3–/– mice at indicated timepoints. (d) Expression of CX3CR1-EGFP 

and CCR2-RFP on myeloid populations at 12 dpi on Cx3cr1EGFP/+/Ccr2RFP/+ reporter mice compared 

to wildtype controls and proportion of indicated cell populations as a percent of all CCR2-RFP 

positive cells. (e) Axial (top) and contralateral (bottom) PET scans showing lung uptake of 64Cu-

labeled peptide (ECL1i) targeted against Ccr2 at 12 dpi. Timecourse of tracer uptake comparing 

Tlr3–/– and wildtype animals is shown on the right. Cell counts from purified whole lung populations 

at 5 dpi. For (a-c, e), values are mean ± SEM for 3 mice; for (a-c), values are representative of 3 

separate experiments. 
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Fig. 4. TRIF is not required for development of acute or chronic lung disease. (a) Body weights for 

Trif–/– and WT control mice after infection with SeV or SeV-UV. (b) Levels of SeV NP RNA in 

lungs from the same strains of mice after infection with SeV. (c) PAS/Hematoxylin staining of lung 

sections from the same strains of mice at 5 dpi with SeV or SeV-UV. Scale bars = 500 µm (low mag) 

and 250 µm (high mag). (d) Quantification of colorized hematoxylin staining. (e) Flow cytometry 

counts of immune cell populations at indicated time points. (f) PET scans showing lung uptake of 

64Cu-labeled peptide (ECL1i) targeted against Ccr2 at 12 dpi. (g) Levels of Il13, Muc5ac, and Il33 

mRNA in lungs from WT and Trif–/– mice at 49 days post-infection. (h) PAS-hematoxylin staining of 

lung sections from Trif–/– mice at 49 dpi with SeV or SeV-UV. Scale bars = 500 µm (low mag) and 

250 µm (high mag) (i) Quantification of PAS and colorized hematoxylin staining at 49 dpi from (h). 

For (a-g), values are mean ± SEM for 5 mice; for (h) photos are representative of 3 separate 

experiments.  
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Fig. 5. Site of Tlr3 expression and activation after viral infection. (a) Flow cytometry analysis of 

lung myeloid cell populations (tissue monocytes (Tissue mono), moDCs, CD11b+ DCs, 

CD103+DCs, alveolar macrophages (Alv mac), eosinophils, and epithelial cells) in WT and Tlr3–/– 

mice after infection with SeV-UV or SeV. (b) Levels of Tlr3 mRNA for cell populations from (a) at 

indicated times after SeV infection. (c) Flow cytometry analysis of intracellular Tlr3 for cell 

populations from (a) at indicated times after SeV infection. For (b), values are mean ± SEM for 5 

mice. * P< 0.05 versus SeV-UV.  
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Fig. 6. Adoptive transfer of wildtype moDCs restores chronic disease in Tlr3-/- mice. (a) Schematic 

of moDC adoptive transfer from donor mice to recipient mice. (b) PAS-hematoxylin staining of 

lung sections at 49d after SeV infection from Tlr3-/- mice that were transferred with either WT or 

Tlr3-/- moDCs prior to SeV infection. Control WT and Tlr3-/- mice were transferred with PBS. (c) 

Quantification of PAS staining and colorized hematoxylin staining. (d)Muc5ac immunostaining of 

WT and Tlr3-/- mice at 49 d after SeV infection. (e) Quantification of Muc5ac immunostaining. For 

(b, d) Scale bars = 500 µm (low mag) and 250 µm (high mag) For (c, e), values are mean ± SEM for 

5 mice. 
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Fig. 7. Adoptive transfer of wildtype BMDCs restores chronic disease in Tlr3-/- mice. (a) Schematic 

of BMDC adoptive transfer from donor mice to recipient mice. (b) PAS-hematoxylin staining of 

lung sections at 49d after SeV infection from Tlr3-/- mice that were transferred with either WT or 

Tlr3-/- BMDCs prior to SeV infection. Control WT and Tlr3-/- mice were transferred with PBS. Scale 

bars = 500 µm (low mag) and 250 µm (high mag) (c) Quantification of PAS staining and colorized 

hematoxylin staining. Values are mean ± SEM for 5 mice. 
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Fig. 8. Adoptive transfer of tissue monocytes does not reconstitute chronic disease. (a) PAS-

hematoxylin staining of lung sections at 49d after SeV infection from Tlr3-/- mice that were 
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transferred with either WT moDCs or tissue monocytes prior to SeV infection. Control WT and 

Tlr3-/- mice were transferred with PBS. Scale bars = 500 µm (low mag) and 250 µm (high mag) (b) 

Quantification of PAS staining and colorized hematoxylin staining. Values are mean ± SEM for 5 

mice. 
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Fig. 9. Effect of Ccr2 blockade on acute disease and DC recruitment (a) Whole lung monocyte 

numbers from Ccr2-/- mice at 5 dpi. (b) Survival curves and (c) body weight timecourse of Ccr2-/- 

animals after SeV infection. 
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Fig. 10. Tlr3 expression on moDCs is required for AT2 cell proliferation after viral injury. (a) Sftpc 

immunostaining of WT and Tlr3-/- lung sections at indicated time points. (b) Quantification of 

Sftpc+ cells as percentage of all DAPI+ cells. (c) Sftpc immunostaining of lung sections at 49 dpi 

from Tlr3-/- mice that were adoptively transferred with WT or Tlr3-/- moDCs. (d) Quantification of 
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Sftpc+ cells from (c). (e) Il33 mRNA levels from co-culture of WT or Tlr3-/- naïve epithelial cells 

with moDCs from WT or Tlr3-/- mice sorted at 12 dpi. For (a-c) scale bars = 250 µm.  
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Fig. 11. Schematic for Tlr3 in the development of chronic lung disease. Viral RNA activates Tlr3 

signaling in DCs. Trif-mediated signaling leads to subsequent chemokine-dependent recruitment of 

monocytes into the lung. In addition, an unknown non-canonical TLR3 signaling pathway drives 

expansion AT2 cells and may also directly induce Il33 expression in AT2 cells. Il33 that is released 

activates downstream immune cells (ILC2, tissue monocytes, and iNKT cells) to drive Il13 

production. In turn, Il13 polarizes macrophages towards type 2 (amplified by sTREM-2) and mucus 

production in airway epithelial cells that is characteristic of chronic airway disease  
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Methods 

 

Mouse generation and inoculation 

We purchased 6- to 8-week-old wild-type C57BL/6J mice from Jackson Laboratory. We obtained 

Tlr3–/–, Tlr9–/–, and MDA5–/– mice from M. Colonna (Washington University, St. Louis, MO), Tlr7–/– 

mice from R. Flavell (Yale University, New Haven, CT), and Cx3cr1EGFP/+Ccr2RFP/+ from M. Miller 

(Washington University, St. Louis, MO). All mouse strains were fully backcrossed onto the 

C57BL/6 genetic background. We used SeV (Sendai/52, Fushimi strain) to inoculate mice 

intranasally with virus (1 x 105 pfu per mouse) or an equivalent amount of ultraviolet light (UV)-

inactivated virus or PBS as described previously (Walter et al., 2001). The Animal Studies Committee 

of the University approved all experimental protocols.  

RNA analysis 

We purified RNA from homogenized lung tissue using Trizol Reagent (Invitrogen) or from isolated 

cells with the RNeasy mini kit (Qiagen), and generated cDNA with the High-Capacity cDNA 

Archive kit (Applied Biosystems). We quantified target mRNA and viral RNA levels using real-time 

PCR assay with specific fluorogenic probe-primer combinations and Fast Universal PCR Master Mix 

systems (Applied Biosystems). Samples were assayed on the 7500 Fast Real-Time PCR System 

(Applied Biosystems). Levels of specific gene expression were normalized to Gapdh mRNA levels.  

RNA was then subjected to gene expression analysis using Illumina Mouse-6 V2 BeadChip 

(Illumina). In brief, mRNA isolated from purified cells was amplified and biotinylated using the 

Ambion Illumina TotalPrep Kit. Hybridization and scanning, including background correction, was 

performed according to the manufacturer’s instructions using BeadStudio 3.0 software (Illumina). 
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Microarray normalization and statistical analysis was performed using packages from the 

Bioconductor project executed in the R programming environment [Gentlemen]. Data were 

transformed using a variance stabilizing transform [Lin], followed by normalization using robust 

spline normalization as implemented in the lumi package [Du]. 

Cell isolation and staining 

Lung cell suspensions were prepared from lung tissue subjected to digestion buffer (containing 

collagenase, hyaluronidase, and DNAse I) for 45 min at 37°C before treatment with ACK buffer to 

remove red blood cells. The isolated cells were purified using FACS with a MoFlo high-speed flow 

cytometer (Dako Cytomation) and after FcR blockade, were analyzed for expression of surface 

markers using a FACSCalibur (BD Biosciences) and FACS-based isolation of cells was performed 

using Moflo (DAKO-Cytomation) and iCyt Synergy (Sony) . We used the following anti-mouse 

antibodies: anti-CD11b (eBioscience), anti-Ly6G (BD), anti-Ly6G (BD), anti-F4/80 (eBioscience), 

anti-CD11c (BD), anti-SiglecF (BD), anti-CD45 (BD), anti-CD64 (BD), anti-CD326 (BD), anti-

CD31 (BD). Specific combinations of mAbs were chosen to identify lung tissue monocytes (SSClow, 

Ly6G-, F4/80+, CD11b+), interstitial macrophages (SSChigh, CD11c-, Ly6G-, SiglecF-, F4/80+, 

CD11b+), alveolar macrophages (SSChigh, CD11c+, Ly6G-, SiglecF+, F4/80+, CD11b-), neutrophils 

(SSChigh, CD11c-, F4/80-, CD11b+, Ly6G+), eosinophils (SSChigh, CD11c-, Ly6G-, SiglecF+, F4/80+, 

CD11b+), epithelial cells (CD45-, CD31-, CD326-), endothelial cells (CD45-, CD31+, CD326-) and 

NKT cells (TCR+ CD1d-α-GalCer tetramers). We obtained the APC-labeled α-GalCer-analog 

(PBS57)-loaded CD1d tetramer from the NIH Tetramer Facility. Dendritic cell subsets were 

identified as the following: CD103+ DCs (Ly6G-, CD11c+, SiglecF-, CD64-, CD103+, CD11b-), 

CD11b+ DCs (Ly6G-, CD11c+, SiglecF-, CD64-, CD11b+), and monocyte-derived DCs (Ly6G-, 
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CD11c+, SiglecF-, CD64+, CD11b+). Cells were counted using FACS and fluorescent counting beads 

(CountBright; Life Technologies) 

Immunohistochemistry. 

Lung tissue was fixed with 10% formalin, embedded in paraffin, cut into 5 μm sections and placed 

on charged slides. Prior to staining, sections were deparaffinized in Fisherbrand® CitroSolv® 

(Fisher), hydrated, and heat-treated with antigen unmasking solution (Vector Laboratories, Inc). The 

following primary antibodies were used for immunostaining: anti-Muc5ac (Fisher; clone 45M1), anti-

mouse IL-13 (R&D Systems), anti-Sftpc (Abcam). Sections were incubated in AlexaFluor 488 or 

594-conjugated secondary antibodies and counterstained with DAPI-containing mounting media 

(Vector Labs), before quantification using ImageJ software from the NIH as described previously 

(Kim et al., 2008).  

 

ELISA 

Lung tissues were homogenized in T-PERTM Tissue Protein Extraction Reagent (Fisher) with 

protease inhibitor cocktail (cOmplete; Roche) and HaltTM phosphatase inhibitor cocktail (Fisher) 

using a rotor homogenizer (Tissue-Tearor; Biospec Products). Levels of IL-33, Ccl2 and Ccl7 were 

measured using Duoset ELISA kits (R&D systems) and Instant ELISA kits (eBioscience), 

respectively and normalized to total lung protein. 

 

Adoptive transfer 

Bone marrow derived dendritic cells (BMDCs) were cultured in RPMI in 10% FBS and 20 ng/mL 

recombinant mouse GM-CSF (Peprotech) for 8 d at 37 °C. Half of the media was changed on day 3 

and day 6. For adoptive transfer, cultured BMDCs or moDCs that were FACS-purified from mice at 



45 
 

12 d after SeV infection were delivered intranasally (1 x 106 cells in 30 µl of PBS) to recipient mice as 

described previously (Grayson et al., 2007; van Rijt et al., 2005). Control recipient mice were treated 

with PBS alone. Mice were infected with SeV 24 hrs after adoptive transfer. 

Synthesis and 64Cu radiolabeling of DOTA-ECL1i. 

ECL1i (DLeu-Gly-DThr-DPhe-DLeu-DLys-DCys) (1.562 mg, 0.2 µmol) and maleimido-mono-

amide-DOTA (1.573 mg, 0.2 µmol) (Macrocyclics) conjugation was performed in pH 7.4 phosphate 

buffer at 4ºC overnight. The crude conjugate was purified by HPLC to reach 99% chemical purity 

and characterized by mass spectrometry, which confirmed the presence of one DOTA per peptide 

(M+ calculated 1306.65, found: 1306.69, ABI 4700 MALDI TOF-TOF).  DOTA-ECL1i (10 µg, 7.66 

nmol) was incubated with 64Cu (2 mCi) in 50 µL of 0.1 M pH 5.5 NH4OAc buffer at 43 ºC for 1 

hour, with a yield of 95.6% ± 2.8% (n=12). The specificity activity of 64Cu-DOTA-ECl1i was 

determined as 261 ± 7.6 µCi/nmol. 

Co-culture 

We purified lung epithelial cells and lung moDCs using FACS (BD FACSAria IIu). We then 

incubated the cells together in 96 round bottom wells (5 104 epithelial cells/well and 2.5 * 105 

moDCs/well) for 48 hrs at 37C in MTEC/Plus media without EGF (DMEM:F-12, 15 mM HEPES, 

3.6 mM sodium bicarbonate, 4 mM L-glutamine, 100 u/ml penicillin/streptomycin, 0.25 ug/ml 

fungizone, 10 ug/ml insulin, 5 ug/ml transferrin, 0.1 ug/ml cholera toxin, 30 ug/ml bovine pituitary 

extract, 10% FBS. We isolated cellular RNA for real-time PCR assay of Il33 mRNA and collected 

cell supernatants for the corresponding protein concentrations of cytokines using ELISA (R&D 

Systems).  
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CCR2 blockade 

We treated animals with MC-21 antibody (gift from Dr. Matthias Mack) or IgG2b isotype control 

antibody (ThermoFisher) intraperitoneal for 5 days (10 μg/mouse/day). 

Statistical analysis 

All data are presented as mean ± SEM and are representative of at least three independent 

experiments. Unpaired student’s t test and one and two way analysis of variance were used to assess 

statistical significance between means. Significance threshold was set at p<0.05. 
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