
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

Arts & Sciences Electronic Theses and 
Dissertations Arts & Sciences 

Spring 5-15-2019 

A Q-analogue and a Symmetric Function Analogue of a Result by A Q-analogue and a Symmetric Function Analogue of a Result by 

Carlitz, Scoville and Vaughan Carlitz, Scoville and Vaughan 

Yifei Li 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Li, Yifei, "A Q-analogue and a Symmetric Function Analogue of a Result by Carlitz, Scoville and Vaughan" 
(2019). Arts & Sciences Electronic Theses and Dissertations. 1765. 
https://openscholarship.wustl.edu/art_sci_etds/1765 

This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open 
Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an 
authorized administrator of Washington University Open Scholarship. For more information, please contact 
digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/art_sci_etds
https://openscholarship.wustl.edu/art_sci_etds
https://openscholarship.wustl.edu/art_sci
https://openscholarship.wustl.edu/art_sci_etds?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1765&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1765&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci_etds/1765?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1765&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


WASHINGTON UNIVERSITY IN ST. LOUIS

Department of Mathematics

Dissertation Examination Committee:

John Shareshian, Chair

Renato Feres

Michael Ogilvie

Martha Precup

Laura Escobar Vega

A Q-analogue and a Symmetric Function Analogue of a Result by Carlitz, Scoville and

Vaughan

by

Yifei Li

A dissertation presented to

The Graduate School of

Washington University in

partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

May 2019

St. Louis, Missouri



Table of Contents

Page

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Chapter 1 : Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Poset and Hasse diagram . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 The order complex and (co)homology of a poset . . . . . . . . . . 5

1.2.3 Segre product posets . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.4 The symmetric group and group representations . . . . . . . . . . 9

Chapter 2 : A Symmetric Function Analogue . . . . . . . . . . . . . . . . 13

2.1 The Space of Symmetric Functions and characteristic map . . . . . . . . 13

2.2 The product Frobenius characteristic map . . . . . . . . . . . . . . . . . 18

2.3 A symmetric function analogue . . . . . . . . . . . . . . . . . . . . . . . 23

Chapter 3 : q-analogue of a result by Carlitz, Scoville, and Vaughan . . 27

3.1 Introduction — Carlitz, Scoville, and Vaughan’s result . . . . . . . . . . 27

3.2 A q-analogue of Carlitz, Scoville, and Vaughan’s result . . . . . . . . . . 28

3.3 An alternative proof of Carlitz, Scoville, and Vaughan’s result . . . . . . 35

Chapter 4 : The Connection of Two Analogues . . . . . . . . . . . . . . . 36

4.1 Specialization of Symmetric Functions . . . . . . . . . . . . . . . . . . . 36

4.2 The Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

ii



List of Figures

Figure Page

1.1 Hasse diagram of the subset lattice B3 . . . . . . . . . . . . . . . . . . . . . 4

1.2 Order complex of B̄3, 4(B̄3) ∼= S1 . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 An EL-labeling of B2(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

iii



Acknowledgments

I would like to express my sincere gratitude to my advisor John Shareshian for his

guidance and support. His encouragement and valuable advise kept me moving forward

during difficult times. I would like to thank him for being so patient and detail oriented

when sharing his time and knowledge. He has been an inspiration to me to become a

better person and a better mathematician.

I would like to thank Professor Rachel Roberts, Laura Escobar Vega, Martha Precup,

Sheila Sundaram, Renato Feres, and John McCarthy for their advice and help. I would

like to thank Mary Ann for those reminders that helped me keep things on track, especially

during the two years when I am away from St. Louis.

To Wei, Yiqian, and Tim, thank you for being my good friends and sharing your

wisdom on life. To my parents, my husband Cheng, and my baby boy Garrett, thank

you for all the joy you bring me. I love you all.

Yifei Li

Washington University

May 2019

iv



Dedicated to My Family.

v



Abstract of the Dissertation

A Q-analogue and a Symmetric Function Analogue of a Result by Carlitz, Scoville and

Vaughan

by

Li, Yifei

Doctor of Philosophy in Mathematics,

Washington University in St. Louis, 2019.

Professor John Shareshian, Chair

We derive an equation that is analogous to a well-known symmetric function identity:∑n
i=0(−1)ieihn−i = 0. Here the elementary symmetric function ei is the Frobenius char-

acteristic of the representation of Si on the top homology of the subset lattice Bi, whereas

our identity involves the representation of Sn×Sn on the top homology of Segre product

of Bn with itself. We then obtain a q-analogue of a polynomial identity given by Carlitz,

Scoville and Vaughan through examining the Segre product of the subspace lattice Bn(q)

with itself. We recognize the connection between the Euler characteristic of the Segre

product of Bn(q) with itself and the representation on the homology of Segre product of

Bn with itself by recovering our polynomial identity from specializing the identity on the

representation of Sn × Sn.
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Chapter 1

Introduction

1.1 Motivation and Introduction

Poset (partially ordered set) topology is not only fundamental to many aspects of

combinatorics, but it also brings together other branches of mathematics such as com-

mutative algebra, geometry, group theory, representation theory, and topology. This

thesis studies poset topology and related representation theory. In particular, we study

the representation of the symmetric group on the homology of certain posets that admit

edge-lexicographical labelings (EL-labeling in short). Those posets are called EL-shellable

posets.

The theory of shellability was first introduced by Schläfli in the nineteenth century

for computing the Euler characteristic of a convex polytope [10], and was then widely

used in enumerative combinatorics in the late twentieth century (Björner [1], Stanley

[15]). A shelling of a simplicial complex is a methodical way of gluing maximal faces

together in a well-behaved manner. A poset whose order complex admits a shelling is

called a shellable poset and an EL-labeling gives a shelling of the poset. A shelling of

P gives useful information about its combinatorial, algebraic and topological properties.

Björner’s work [1] gives an understanding of the homotopy type of a shellable poset,

which is a wedge of spheres. Later, Björner and Wachs’ work [3] on edge-lexicographical

labeling identifies a set of maximal chains of such a poset with those spheres.
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The symmetric group Sn is the group of permutations on the set of n numbers [n] :=

{1, 2, ..., n}. We study the EL-shellable posets that have an Sn action. This action induces

a representation of Sn on the reduced homology group of the poset. Then the Frobenius

characteristic maps a representation of Sn to a homogenous degree n symmetric function.

Symmetric functions provide a very convenient way to describe representations of the

symmetric groups, hence are very helpful in studying representations.

The introductory Chapter 1 also provides basic definitions and simple examples of a

few fundamental concepts that are required to understand this thesis.

In Chapter 2, we define the product Frobenius characteristic map, which takes a

representation of Sn × Sn to a symmetric function in two sets of variables. This map

serves as a useful tool in studying representations of Sn×Sn. We prove that this map is a

homomorphism of rings, which is also a key feature of the usual Frobenius characteristic

map. Then we derive an analogue of a well-known symmetric function identity, which

involves the representation of Sn on top homology of the Boolean algebra. Our analogue

involves the representation of Sn×Sn on the homology of the Segre product of the Boolean

algebra with itself.

In Chapter 3, we present our initial finding, Theorem 3.2.8, a q-analogue of a result

given by Carlitz, Scoville, and Vaughan. Their result gives a combinatorial interpretation

of the coefficients of the reciprocal J0 Bessel function. Carlitz, Scoville and Vaughan

proved that those coefficients count the number of pairs of permutations of Sn with no

common ascent. Bessel functions are solutions to Bessel differential equations. Our q-

analogue provides a combinatorial interpretation of the coefficients of the reciprocal J
(1)
0

q-Bessel function. They count the number of maximal chains whose labels are pairs

of permutations of Sn with no common ascent in the Segre product of the subspace

2



lattice with itself. The Segre product of of subspace lattice with itself contains pairs of

subspaces with the same dimension. Those coefficients are the Euler characteristic of this

Segre product poset.

Lastly, we have a short Chapter 4 demonstrating the relation of the two analogues we

obtained in Chapter 2 and 3.

1.2 Preliminaries

1.2.1 Poset and Hasse diagram

A partially ordered set (poset) is a set P together with a binary relation≤ satisfying

the following axioms:

• For all x ∈ P , x ≤ x (reflexivity).

• If x ≤ y and y ≤ x, then x = y (antisymmetry).

• If x ≤ y and y ≤ z, then x ≤ z (transitivity).

Different from totally ordered set, two elements in a poset may be incomparable.

A simple but interesting example, which we will use to illustrate various concepts, is

the Boolean algebra. The Boolean algebra Bn is the collection of all subsets of [n] :=

{1, 2, ..., n} ordered by containment. So {1, 3} ≤ {1, 2, 3}, but {1, 3} and {1, 2} are not

comparable.

Two elements x, y ∈ P have an upper bound u ∈ P if u satisfies x ≤ u and y ≤ u.

We call u a least upper bound (or join) of x and y, if u is an upper bound of x and

y, and every upper bound v of x and y satisfies u ≤ v. The join of x and y (if exist)

is unique and is denoted x ∨ y. The greatest lower bound (or meet) of x and y is

defined dually and denoted x ∧ y.

3



123

12 13 23

1 2 3

∅

Figure 1.1. Hasse diagram of the subset lattice B3

A poset is called a lattice if every pair of its elements has a join and a meet. A finite

lattice clearly has a bottom (smallest) element and a top (largest) element, which are

usually written as 0̂ and 1̂ respectively. The Boolean algebra Bn is a lattice with 0̂ = ∅

and 1̂ = [n]. We will also refer to Bn as the subset lattice. A poset with a top element

1̂ and a bottom element 0̂ are said to be bounded. We define the bounded extension of

P as P̂ := P ∪ {0̂, 1̂}. Note that 0̂ and 1̂ are added even if P already has a bottom or a

top element.

A finite poset P can be represented by a Hasse diagram. Each element of P is a

vertex in in the Hasse diagram of P . Let x, y ∈ P and x < y. If no element z ∈ P satisfies

x < z < y, then we say that x is covered by y and write x <· y. This cover relation is

represented in the Hasse diagram by an edge connecting vertices x and y. Figure 1.1 is

the Hasse diagram of a small Boolean algebra B3. This thesis concerns only finite posets.

All posets appearing here after will be assumed to be finite.

Totally ordered subsets of a poset P are called chains. In figure 1.1, the chain

∅ <· 1 <· 12 <· 123 is an example of a chain that is maximal in B3. The length l(c)

of a finite chain c is defined to be #c − 1. The rank of a finite poset P is max{l(c) :

4



c is a maximal chain of P}. When every maximal chain of P is of the same length n, we

call P a graded poset of rank n. The subset lattice B3 is then graded of rank 3. For a

graded poset of rank n, we can define a unique rank function ρ : P −→ [n] ∪ {0} that

satisfies:

• ρ(0̂) = 0,

• for x, y ∈ P and x <· y, ρ(y) = ρ(x) + 1.

The Boolean algebra Bn has a natural rank function that tells us the cardinality of each

subset of [n]. A good place to learn more about poset structures is R. Stanley’s book

[16].

1.2.2 The order complex and (co)homology of a poset

To study the topology of a poset, we study the topology of a certain simplicial complex

associated with the poset. An abstract simplicial complex 4 [21] on a finite vertex

set V is a nonempty collection of subsets (each subset is called a face or a simplex) of

V such that

• every vertex in V is an element of 4

• if G ∈ 4 then every subset of G is also an element of 4.

For every poset P , the order complex of P , denoted by 4(P ), can be realized in Rn

using a geometric simplicial complex whose vertices are elements of P and faces are chains

of P . It is important to note that every geometric simplicial complex is homeomorphic

to the geometric realization of the order complex of some poset, thus studying the order

complexes does not restrict us to a small subclass of topological spaces. The vertices and
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faces in the order complex can be seen geometrically, hence we can study its topological

properties. More details on simplicial complexes can be found in [21] and [12]. Let B̄n

denote Bn − {∅, [n]}. The geometric realization of 4(B̄n) is in fact homeomorphic to a

simple and beautiful geometric object, the (n− 2)-sphere Sn−2. See figure 1.2.

12 13 23

1 2 3

B̄3

2

23

3131

12

4(B̄3)

Figure 1.2. Order complex of B̄3, 4(B̄3) ∼= S1

Given a face F ∈ 4, the dimension of F , denoted dimF , is |F | − 1. The maximal

faces are called facets. In the case of a order complex of a poset, the dimension of a face

in the complex is the length of the associated chain. When the poset is graded of rank,

all facets of its order complex are of the same dimension. Such simplicial complexes are

said to be pure.

The homology of a poset P is the simplicial homology of the topological space

4(P ). Usually when studying poset topology, we are interested in the reduced simplicial

homology of a poset. In this thesis, we will only deal with reduced homology groups

and will just call them homology groups for convenience. Now let us introduce those

concepts in terms of chains of the poset. For a more in depth understanding of simplicial

homology, please refer to Algebraic Topology by Allen Hatcher [7].

Let k be a field or the ring of integers. The jth chain space of a poset P is defined

as follows:

Cj(P ; k) := k−module freely generated by j-chains (chains of length j) of P.

6



Elements of Cj(P ; k) are of form
∑
i

αici, where α ∈ k and ci’s are j-chains of P . for a

j-chain (x1 < ... < xj+1), define the boundary map ∂j : Cj(P ; k) −→ Cj−1(P ; k) by

∂j(x1 < ... < xj+1) =

j+1∑
i=1

(−1)i(x1 < ... < x̂i < ... < xj+1),

where the hat x̂i means omitting the vertex xi. Then we extend ∂j by linearity. We can

easily check that ∂j−1∂j = 0. The cycle space Zj(P ; k) is defined to be kernel of ∂j and

the boundary space Bj(P ; k) is the image of ∂j+1. Define the homology of the poset

P in the jth dimension by

H̃j(P ; k) := Zj(P ; k)/Bj(P ; k).

An open interval (s, t) of P is the set of all element u ∈ P such that s < u < t. The

cohomology of a poset is defined using a coboundary map δj : Cj(P ; k) −→ Cj+1(P ; k)

such that for all chains x1 < ... < xj,

δj(x1 < ... < xj) =

j+1∑
i=1

(−1)i
∑

x∈(xi−1,xi)

(x1 < ...xi−1 < x < xi < ... < xj),

where x0 = 0̂ ∈ P̂ , xj+1 = 1̂ ∈ P̂ , and (xi−1, xi) is an open interval of P . The co-

cycle space is defined as Zj(P ; k) := kerδj and the coboundary space is defined as

Bj(P ; k) := imδj−1. Similar to the homology group, the cohomology of the poset P in

the jth dimension is

H̃j(P ; k) := Zj(P ; k)/Bj(P ; k).

Given a simplicial complex 4 and F ∈ 4, let 〈F 〉 := {G : G ⊆ F}. Then 4 is

said to be shellable if its facets can be arranged in a linear order F1, F2, . . . , Ft such

that
(⋃k−1

i=1 〈Fi〉
)
∩ 〈Fk〉 is a pure and (dimFk − 1)-dimensional for all k = 2, . . . , t. This

ordering of facets is a shelling of 4. If 4(P ) is shellable, we say P is shellable.

Shellable posets have the homotopy type of wedges of spheres (See Björner and Wachs

[3]). In this case, its homology H̃j(4;Z) and cohomology H̃j(4;Z) are the same and

7



both are isomorphic to Zri , where ri is the number of spheres of dimension i [21]. The

homology H̃n−2(B̄n) is therefore Z. The rich and interesting topological properties of

4(P ) provide strong motivation for studies on poset topology.

1.2.3 Segre product posets

New posets can be formed using existing posets. Given posets P and Q, the direct

product of P and Q is the poset P × Q on the set (x, y) : x ∈ P and y ∈ Q with the

poset relation (x, y) ≤ (u, v) if only if x ≤ u in P and y ≤ v in Q. Posets studied in this

thesis are a form of product poset, called the Segre product of posets.

Definition 1.2.1 (A full definition can be found in [4]) Let P be a pure poset with a rank

function ρ, then the Segre product poset of P with itself, denoted by P ◦ρ P , is defined

to be the induced subposet of the product poset P×P consisting of the pairs (x, y) ∈ P×P

such that ρ(x) = ρ(y).

One important concept in algebra and poset topology is Cohen-Macaulayness. Cohen-

Macaulay posets have very nice structures. In particular, Cohen-Macaulay posets have

reduced homology groups concentrated in the top dimension as they are homotopic to a

wedge of spheres [1]. The next result follows from Theorem 1 in Björner and Welker [4].

Proposition 1.2.2 Let P be a pure poset. Let ρ : P −→ N be the rank function of

P . If P is Cohen-Macaulay over the field k, then the Segre product poset P ◦ρ P is

Cohen-Macaulay over k.

In this thesis, P is either the subset lattice Bn or the subspace lattice Bn(q). Both

poset are pure with a rank function. The subspace lattice Bn(q) will be introduced later.

Because of the Cohen-Macaulayness of Bn ◦ρBn and Bn(q)◦ρBn(q), those posets are well

8



behaved, which motivated us to investigate the representation of Sn×Sn on the reduced

homology of Bn ◦ρ Bn and related Whitney homology groups.

1.2.4 The symmetric group and group representations

The symmetric group Sn is the group of permutations on a set of n objects. It is

customary to use the set [n] := {1, 2, ..., n} of n numbers. A common way to write out

a permutation is the one line notation. That is, for σ ∈ S4, σ = 2314 means σ(1) = 2,

σ(2) = 3, σ(3) = 1, and σ(4) = 4. We will only use the one line notation in this thesis for

its simplicity and correspondence with labelings of poset chains, which we will introduce

later.

A matrix representation of an abstract group can give us better understanding of the

group. Let Matd denote the set of all d× d matrices with entries in C. Let GLd be the

complex general linear group of degree d, which is the group of all invertible (with respect

to multiplication) matrices in Matd.

Definition 1.2.3 [13] A matrix representation of a group G is a group homomor-

phism

X : G −→ GLd.

Equivalently, to each g ∈ G is assigned X(g) ∈Matd such that

1. X(e) = I the identity matrix, and

2. X(gh) = X(g)X(h) for all g, h ∈ G.

The representation has degree, or dimension d.

For a matrix representation X of a group G, we define the character χ of X by

χ(g) = trX(g),

9



where tr denotes the trace of a matrix and g ∈ G. The character is a key information of

a representation. The following are some properties of characters (see Proposition 1.8.5

in Sagan[13]):

1. Let d =dimX, then χ(e) = d.

2. Elements in the same conjugacy class of G have the same character value.

Let us look at a simple example, the defining representation of the symmetric group

Sn. Let σ ∈ Sn, define X(σ) = (xi,j)n×n such that

xi,j =


1 if σ(j) = i,

0 otherwise.

It can be checked easily that the character value of σ is the number of points fixed by

σ. Permutations of the same cycle type are in the same conjugacy class of Sn and they

clearly have the same number of fixed points.

Now expand on the idea of Matrix representations. Matrices are essentially linear

transformations. We can also represent elements of a group G by linear transformations

of some vector space. For a vector space V , let GL(V ) denote the general linear group of

V , i.e. the set of all invertible linear transformations of V to itself. The group GL(V ) is

in fact isomorphic to GLd for d = dimV .

Definition 1.2.4 (Sagan [13]) Let V be a vector space and G be a group. Then V is a

G-module if there is a group homomorphism

ρ : G −→ GL(V ).

Equivalently, V is a G-module if there is a multiplication, gv, of elements of V by elements

of G such that

10



1. gv ∈ V ,

2. g(cv + dw) = c(gv) + d(gw),

3. (gh)v = g(hv), and

4. ev = v

for all g, h ∈ G; v,w ∈ V ; and scalars c, d ∈ C.

Each group homomorphism gives a G-module, which is a representation of G. When

the group G is clear in the context, we will often omit G and just use “module” for short.

The character of a G−module V is the character of a matrix representation obtained by

choosing a basis for V . Though many matrix representations can correspond to one G-

module V , the matrices representing the same element g will be conjugates of each other,

hence their trace will be the same. The character of a G-module is then well-defined.

A key result of group representations is that we can break up large representations into

smaller representations. The ones that cannot be broken up further are called irreducible

representations. Let V be a G-module. A submodule of V is a subspace W that is closed

under the action of G, i.e., w ∈ W ⇒ gw ∈ W for all g ∈ G. If W is a submodule of V ,

we write W ≤ V .

Theorem 1.2.5 (Maschke’s Theorem, see Chapter 8 in James and Liebeck[9] and The-

orem 1.5.3 in Sagan[13]) Let G be a finite group and let V be a nonzero G-module. Then

V = W (1) ⊕W (2) ⊕ · · · ⊕W (k),

where each W (i) is an irreducible G-submodule of V .

11



Maschke’s Theorem is a fundamental result in representation theory, which signifies that

every nonzero G-module is a direct sum of irreducible G-submodules. There are far-

reaching consequences of Maschke’s Theorem. For an in depth study on representations

of the symmetric group, please see the two texts from B. Sagan[13], and G. James and

A. Kerber[8].
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Chapter 2

A Symmetric Function Analogue

2.1 The Space of Symmetric Functions and characteristic map

Essentially, symmetric functions are power series invariant under the action of all

symmetric groups. In this section, we will provide the definition and some well-known

bases of the space of symmetric functions.

Consider an infinite set of variables x = {x1, x2, x3, . . . }. Define the formal power

series ring to be

C[[x]] := {
∑
n≥0

anx
n : an ∈ C for all n}.

It is a ring with the usual addition and multiplication. We are not concerned with the

convergence of those series because we will never substitute a value for xi. The term

formal is used to indicate that fact. The terms of a power series in C[[x]] are monomials

of forms xλ1i1 x
λ2
i2
xλ3i3 ...x

λl
il

. The degree of such a monomial is n given n =
∑

i λi. For a

formal power series f(x) ∈ C[[x]], if every monomial in f(x) has degree n, we say that

f(x) is homogeneous of degree n.

Given a permutation σ of N, let σ act on f(x) ∈ C[[x]] by permutating the indices of

the variables. That is

σf(x1, x2, x3, . . . ) = f(xσ(1), xσ(2), xσ(3), . . . ).

13



A function that is invariant under such action of all permutations of N is called a sym-

metric function.

The expression n =
∑

i λi, in fact, gives a partition of n. A partition is any sequence

λ = (λ1, λ2, . . . , λr, . . . )

of non-negative integers and finitely many non-zero terms satisfying:

λ1 ≥ λ2 ≥ · · · ≥ λr ≥ . . . .

We do not distinguish two sequences that only differ by the number of zeros in the end.

The positive terms λi of the sequence are called parts of a partition λ. The length of

λ, denoted by l(λ), is the number of parts, and the weight of λ, denoted by |λ|, is the

sum
∑

i λi. If |λ| = n, we say λ is a partition of n or λ partitions n, and we denote this

by λ ` n.

Sometimes we need to know the number of parts of the same size, then it is convenient

to write a partition λ in the following way:

λ = (1m12m2 . . . rmr . . . ),

where mi is the number of parts of λ that equal i. The number mi is called the multi-

plicity of i in λ. For example (2, 1, 1) is a partition of 4, and we write (2, 1, 1) as (211)

or (122) for simplicity.

Given a partition λ = (λ1, λ2, . . . , λl), the monomial symmetric function corre-

sponding to λ is

mλ = mλ(x) =
∑

xλ1i1 x
λ2
i2
. . . xλlil ,

summed over all distinct monomials with exponents λ1, . . . , λl. For example,

m(21) = x21x2 + x1x
2
2 + x21x3 + x1x

2
3 + x22x3 + x2x

2
3 + . . . .

14



When λ ` n, mλ is homogeneous of degree n. Clearly, the monomials mλ are fixed under

the action of any symmetric group.

Definition 2.1.1 The ring of symmetric functions is

Λ = Λ(x) = Cmλ,

which is the vector space spanned by all the mλ.

It is easy to verify that Λ is in fact a subring of C[[x]]. We can decompose Λ as

Λ = ⊕n≥0Λn,

where Λn is the space spanned by degree n monomial symmetric functions mλ.

Proposition 2.1.2 The set {mλ : λ ` n} forms a basis for Λn, the space of homogeneous

degree n symmetric functions. The dimension of Λn is the number of partitions of n.

Proof The mλ are independent.

We will now introduce three more bases for Λn.

Definition 2.1.3 For an integer r ≥ 1, the r-th elementary symmetric functions

er is the sum of all square-free monomials of degree r. That is

er = m(1r) =
∑

i1<i2<···<ir

xi1xi2 . . . xir .

The r-th complete homogeneous symmetric functions is the sum of all monomials

of degree r. That is

hr =
∑
λ`r

mλ =
∑

i1≤i2≤···≤ir

xi1xi2 . . . xir .

The r-th power sum symmetric function is the sum of r-th powers of all variables.

That is

pr = m(r) =
∑
i≥1

xri .

We define e0 = h0 = p0 = 1.

15



For example, when r = 2,

e2 = x1x2 + x1x3 + x2x3 + x1x4 + x2x4 + . . . ,

h2 = x21 + x22 + x1x2 + x23 + x1x3 + x2x3 + x24 + . . . ,

p2 = x21 + x22 + x23 + . . . .

Definition 2.1.4 For each partition λ = (λ1, λ2, . . . ), define

eλ = eλ1eλ2 . . . ,

hλ = hλ1hλ2 . . . ,

pλ = pλ1pλ2 . . . .

Theorem 2.1.5 (Theorem 4.3.7 in Sagan[13], and for a more detailed treatment see

Macdonald[11] and Stanley [17] chapter 7.) The following sets are bases for Λn the space

of homogeneous degree n symmetric functions.

1. {eλ : λ ` n}.

2. {hλ : λ ` n}.

3. {pλ : λ ` n}.

Symmetric functions provide a convenient way of describing representations of the

symmetric group. One of the properties of representations is that their character values

are constant on each conjugacy class of the group. We call functions, that are constant

on conjugacy classes, class functions. The conjugacy classes of a symmetric group Sn

are determined by cycle types of its elements. Elements having the same cycle type are

in the same class. Each cycle type corresponds to a partition of n. For instance, given

16



σ = (12)(34)(5) ∈ S5 written in cycle notation, the cycle type of σ is (221), which is a

partition of 5. For an element σ ∈ Sn with cycle type µ ` n, we write type(σ) = µ. We

now have that each partition of n corresponds to a conjugacy class of Sn.

Let Rn be the space of class functions on Sn. Given a partition µ = (1m12m2 . . . ) of

n, zµ :=
∏i=n

i=1 i
mimi!.

Definition 2.1.6 The (Frobenius) characteristic map is chn : Rn −→ Λn defined by

chn(χ) =
∑
µ`n

z−1µ χµpµ,

where χµ is the value of χ on the class µ and pµ is the power sum symmetric function.

A very important basis for Λn is the Schur functions. Schur functions sλ are the

Frobenius characteristics of irreducible Sn-modules (see Sagan [13] and Stanley [17] chap-

ter 7). Here we will not give a definition of the Schur functions as there are many ways

to define them using different approaches, and Schur functions are not used in the main

theorems of this thesis.

Now consider R = ⊕nRn. Let ch = ⊕chn. Let V and W be representations of Sm

and Sn with characters f and g. Then f ⊗ g is the character of V ⊗ W . Define the

induction product f ◦ g as

f ◦ g = f ⊗ g ↑Sm+n

Sm×Sn .

A fundamental property of the characteristic map is the following:

Proposition 2.1.7 (Stanley [17, Proposition 7.18.2]) The Frobenius characteristic map

ch : R −→ Λ is a bijective ring homomorphism, i.e., ch is one-to-one and onto, and

satisfies

ch(f ◦ g) = ch(f)ch(g).

17



The significance of ch being a ring isomorphism is that now we can have products of

characters. The induction product is the ring operation. Notice that while the tensor

product f ⊗ g is a character of Sm × Sn, the induction product f ◦ g is a character of

Sm+n.

The Frobenius characteristic map is often used to study a representation of the sym-

metric group. For instance, let Sn act on the top homology of the proper part of the

boolean algebra, B̄n := Bn−{0̂, 1̂}. This action induces a representation of Sn. Let χ be

the character of this representation. Then

ch(χ) = en,

where en is the elementary symmetric function (See Example 1.3 in Sundaram [19]).

2.2 The product Frobenius characteristic map

In this section we define a product Frobenius characteristic map to help understand

representations of Sn × Sn. Let us consider two sets of variables x = (x1, x2, ...) and

y = (y1, y2, ...).

We use Λ(x) = ⊕nΛn(x) and Λ(y) = ⊕nΛn(y) to denote the the rings of symmetric

functions in variables (x1, x2, ...) and (y1, y2, ...) respectively.

Definition 2.2.1 Let χ be a class function on Sm × Sn. The product Frobenius charac-

teristic map ch : R×R −→ Λ(x)× Λ(y) is defined as:

ch(χ) =
∑

(µ,λ)`(m,n)

z−1µ z−1λ χ(µ,λ)pµ(x)pλ(y), (2.2.1)

where χ(µ, λ) is the value of χ on the class (µ, λ) and pµ, pλ are power sum symmetric

functions. The class (µ, λ) is indexed by a partition µ of m and a partition λ of n that

tell us the cycle shapes of elements of Sm and Sn respectively.
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The irreducible representations of Sm × Sn are of the form A(i) ⊗ B(j), where A(i)

and B(j) are each irreducibles of Sm and Sn respectively (Sagan [13, Theorem 1.11.3]).

A representation V of Sm × Sn can then be decomposed into a sum of irreducibles of

Sm × Sn.

Proposition 2.2.2 Let V , a representation of Sm×Sn, have the following decomposition:

V =
⊕
i,j

cijA
(i)⊗B(j), where A(i)’s and B(j)’s are irreducible representations of Sm and Sn

respectively and cij are non-negative integers. Then the product Frobenius characteristic

of V is

ch(V ) =
∑
i,j

cijch
m(A(i))(x)chn(B(j))(y).

Here chm(A(i))(x) is the usual Frobenius characteristic of A(i) in the variable x and

chn(B(j))(y) is defined similarly.

Proof Let χ denote the character of V . Let χAi and χBj be the characters of A(i) and

B(j) respectively. Then χ =
∑

i,j cijχ
Ai ⊗ χBj. Definition 2.2.1 gives us

ch(V ) =
∑

(µ,λ)`(m,n)

z−1µ z−1λ χ(µ, λ)pµ(x)pλ(y).

The character χ(µ, λ) =
∑

i,j cij
(
χAi ⊗ χBj(µ, λ)

)
by [13, Corollary 1.9.4]. And χAi ⊗

χBj(µ, λ) = χAiµ χ
Bj
λ due to [13, Theorem 1.11.2]. Then

ch(V ) =
∑

(µ,λ)`(m,n)

z−1µ z−1λ
∑
i,j

cijχ
Ai
µ χ

Bj
λ pµ(x)pλ(y)

=
∑
i,j

ci,j

(∑
µ`m

z−1µ χAiµ pµ(x)
)(∑

λ`n

z−1λ χBjλ pλ(y)
)

=
∑
i,j

ci,jch
m(A(i))(x)chn(B(j))(y).
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Because the product Frobenius characteristic map is basically an extension of the

usual (Frobenius) characteristic map, we keep the notation ch for product Frobenius

characteristic map even though ch was previously defined to be⊕nchn in various literature

(Sagan [13], Stanley [17]). The meaning of ch will be clear in the given context.

Remark 2.2.3 Given V a representation of Sm with character f and W a representation

of Sn with character g, let V = ⊕iaiA(i) and W = ⊕jbjB(j) be their decompositions into

irreducibles. It can be easily verified that the product Frobenius characteristic ch(f ⊗g) =

ch(f)(x)ch(g)(y). It is a symmetric function in Λm × Λn, while the usual Frobenius

characteristic ch(f ◦ g) = ch(f)(x)ch(g)(x) is a symmetric function in Λm+n.

We would like the product Frobenius characteristic map to be a homomorphism of rings

as well. Given a class function ψ on Sk × Sl and a class function φ on Sm × Sn, ψ ⊗ φ

is a class function on (Sk × Sl) × (Sm × Sn). We want to produce a class function on

Sk+m × Sl+n.

Definition 2.2.4 For ψ and φ as given above, we define the induction product ψ ◦ φ to

be ψ ⊗ φ ↑Sk+m×Sl+n

(Sk×Sl)×(Sm×Sn).

The following proposition will show that this induction product is a ring operation

that makes R×R into an algebra.

Proposition 2.2.5 Assume given ψ a class function on Sk × Sl, and φ a class function

on Sm×Sn. The product Frobenius characteristic map ch : R×R −→ Λ(x)×Λ(y) is an

algebra isomorphism, i.e., ch is one-to-one and onto, and satisfies

ch(ψ ◦ φ) = ch(ψ)ch(φ).

Before proving this proposition, we need to first establish a lemma:
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Lemma 2.2.6 If f is a class function on Sk × Sm and g is a class function on Sl × Sn,

then

f ⊗ g ↑Sk+m×Sl+n

(Sk×Sm)×(Sl×Sn)= f ↑Sk+m

Sk×Sm ⊗g ↑
Sl+n

Sl×Sn .

Proof Suppose Sk×Sm < Sk+m has coset representatives {s1, s2, ..., sq}, q =
(
k+m
k

)
, and

Sl × Sn < Sl+n has coset representatives {t1, t2, ..., tr}, r =
(
l+n
l

)
. Then {(si, tj)}, i ∈ [q],

j ∈ [r], is a set of coset representatives for (Sk × Sm)× (Sl × Sn) < Sk+m × Sl+n. Given

H ≤ G and a class function φ on H, define φ◦ to be the class function on G such that

φ◦(σ) = φ(σ) if σ ∈ H and φ◦(σ) = 0 if σ /∈ H. For the class functions f and g given in

the lemma, we have (f ⊗ g)◦ = f ◦ ⊗ g◦. For (σk+m, σl+n) ∈ Sk+m × Sl+n,

f ⊗ g ↑Sk+m×Sl+n

(Sk×Sm)×(Sl×Sn) ((σk+m, σl+n)) =
∑
i,j

(f ⊗ g)◦
(
(s−1i , t−1j )(σk+m, σl+n)(si, tj)

)
=
∑
i

f ◦(s−1i σk+msi)
∑
j

g◦(t−1j σl+ntj)

= f ↑Sk+m

Sk×Sm (σk+m)g ↑Sl+n

Sl×Sn (σl+n)

= f ↑Sk+m

Sk×Sm ⊗g ↑
Sl+n

Sl×Sn ((σk+m, σl+n)).

The second and fourth equalities come from [13, Theorem 1.11.2].

Proof of Proposition 2.2.5

Since the Frobenius characteristic map is bijective, so is the product Frobenius char-

acteristic map. It is sufficient to show that the map is a homomorphism. Suppose

ψ =
∑
i,j

aijψ
(i)
k ⊗ ψ

(j)
l with ψ

(i)
k ’s and ψ

(j)
l ’s are irreducible characters of representations
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of Sk and Sl respectively. Similarly, φ =
∑
u,v

buvφ
(u)
m ⊗ φ

(v)
n . For any σk ∈ Sk, σl ∈ Sl,

ωm ∈ Sm, and ωn ∈ Sn, as above, we have

ψ ⊗ φ
(
(σk, σl), (ωm, ωn)

)
=
(∑

i,j

aijψ
(i)
k (σk)ψ

(j)
l (σl)

)(∑
u,v

buvφ
(u)
m (ωm)φ(v)

n (ωn)
)

=
∑
i,j,u,v

aijbuvψ
(i)
k (σk)φ

(u)
m (ωm)ψ

(j)
l (σl)φ

(v)
n (ωn)

=
∑
i,j,u,v

aijbuv(ψ
(i)
k ⊗ φ

(u)
m )⊗ (ψ

(j)
l ⊗ φ

(v)
n )(σk, ωm, σl, ωn).

Thus, ψ ⊗ φ =
∑

i,j,u,v aijbuv(ψ
(i)
k ⊗ φ

(u)
m )⊗ (ψ

(j)
l ⊗ φ

(v)
n ). So

ψ ◦ φ = ψ ⊗ φ ↑Sk+m×Sl+n

(Sk×Sl)×(Sm×Sn)

=
∑
i,j,u,v

aijbuv(ψ
(i)
k ⊗ φ

(u)
m )⊗ (ψ

(j)
l ⊗ φ

(v)
n ) ↑Sk+m×Sl+n

Sk×Sm×Sl×Sn

=
∑
i,j,u,v

aijbuv(ψ
(i)
k ⊗ φ

(u)
m ) ↑Sk+m

Sk×Sm ⊗(ψ
(j)
l ⊗ φ

(v)
n ) ↑Sl+n

Sl×Sn

=
∑
i,j,u,v

aijbuv(ψ
(i)
k ◦ φ

(u)
m )⊗ (ψ

(j)
l ◦ φ

(v)
n )
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by Lemma 2.2.6. Now take the product Frobenius characteristic of both sides of the

above equation. For clarity, we keep track of variables x and y. By Remark 2.2.3 and

then Proposition 2.1.7 we get

ch(ψ ◦ φ)(x, y) =
∑
i,j,u,v

aijbuvch(ψ
(i)
k ◦ φ

(u)
m )(x)ch(ψ

(j)
l ◦ φ

(v)
n )(y)

=
∑
i,j,u,v

aijbuvch(ψ
(i)
k )(x)ch(φ(u)

m )(x)ch(ψ
(j)
l )(y)ch(φ(v)

n )(y)

=
∑
i,j

aijch(ψ
(i)
k )(x)ch(ψ

(j)
l )(y)

∑
u,v

buvch(φ(u)
m )(x)ch(φ(v)

n )(y)

= ch(ψ)(x, y)ch(φ)(x, y)

2.3 A symmetric function analogue

Using the product Frobenius characteristic map, we derive an equation that is

analogous to a well-known symmetric function identity (see Stanley [17, equation (7.13)]):

for n ≥ 1,
n∑
i=0

(−1)ieihn−i = 0.

The thing to note is that the elementary symmetric function ei is the Frobenius char-

acteristic of the representation of Si on the top homology of B̄i (see the example in the

end of section 2.1). Our analogue will involve the representation of Sn × Sn on the top

homology of the proper part of Segre product poset Bn ◦ρn Bn.

In the proof of the following theorem, we used Whitney homology technique, which

was introduced by Sundaram [19] for pure posets and then generalized by Wachs [20] for

semipure posets.
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Theorem 2.3.1 For the subset lattice Bn with rank function ρn, let Pn be the proper

part of the Segre product poset Bn ◦ρn Bn. Write Sn for the symmetric group on [n].

The action of Sn × Sn induces a representation on the reduced top homology of Pn. Let

ch(H̃n−2(Pn)) be the product Frobenious characteristic of this representation. Then

n∑
i=0

(−1)ihn−i(x)hn−i(y)ch(H̃i−2(Pi)) = 0, (2.3.1)

where hk’s are the complete homogeneous symmetric functions.

Proof Let Q be Pn ∪ 0̂, which is Cohen-Macaulay. We consider the Whitney homology

of Q as discussed in Sundaram [19]. The action of Sn×Sn on Q induces a representation

of Sn × Sn on the reduced top homology of Q and its Whitney homology groups. From

the work of Sundaram on Whitney homology (Sundaram [18, 19], Wachs [21]), we know

that

H̃n−2(Pn) ∼=Sn×Sn

n−1⊕
r=0

(−1)n−1+rWHr(Q).

Let x be a rank r element of Q. Then the stabilizer of x is the young subgroup

(Sr×Sn−r)× (Sr×Sn−r). We can view the Whitney homology groups as representations.

The poset Q is Cohen-Macaulay and has a bottom element 0̂, the Whitney homology of

Q is defined to be

WHr(Q) =
⊕

x∈Qr/(Sn×Sn)

H̃r−2(0̂, x) ↑Sn×Sn

(Sr×Sn−r)×(Sr×Sn−r)
,

where Qr is the set of rank r elements in Q and Qr/(Sn × Sn) is a set of orbit

representatives (see Lecture 4.4 in Wachs’ Poset Topology [21]). The action of Sn × Sn

on Qr is transitive. So the contribution of the rth Whitney homology to H̃n−2(Pn) is the

induced representation H̃r−2(0̂, x) ↑Sn×Sn

(Sr×Sn−r)×(Sr×Sn−r)
for any x in Qr. The open interval

(0̂, x) is isomorphic to the poset Pr. We then have
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H̃n−2(Pn) ∼=Sn×Sn

n−1⊕
r=0

(−1)n−1+rH̃r−2(Pr) ↑Sn×Sn

(Sr×Sn−r)×(Sr×Sn−r)
.

Taking the product Frobenius characteristic of both sides of the above equation,

ch(H̃n−2(Pn)) =
n−1∑
r=0

(−1)n−1+rch
(
H̃r−2(Pr) ↑Sn×Sn

(Sr×Sn−r)×(Sr×Sn−r)

)
. (2.3.2)

Now we would like to relate ch(H̃r−2(Pr)) with the product Frobenius characteristic

of the representation induced to Sn×Sn. Let ψr be the character of the (Sr×Sr)-module

H̃r−2(Pr). Write 1Sn−r×Sn−r for the character of the trivial representation of Sn−r × Sn−r.

When viewing H̃r−2(Pr) as a (Sr × Sn−r) × (Sr × Sn−r)-module, its character equals

ψr ⊗ 1Sn−r×Sn−r (Sagan, [13, Theorem 1.11.2]). Let ψr ◦ 1Sn−r×Sn−r denote the induction

product of ψr and 1Sn−r×Sn−r . Then

H̃r−2(Pr) ↑Sn×Sn

(Sr×Sn−r)×(Sr×Sn−r)
= ψr ⊗ 1Sn−r×Sn−r ↑Sn×Sn

(Sr×Sn−r)×(Sr×Sn−r)

= ψr ◦ 1Sn−r×Sn−r .

It follows from Proposition 2.2.5 that the product Frobenius characteristic

ch(ψr ◦ 1Sn−r×Sn−r) = ch(ψr)ch(1Sn−r×Sn−r).

Thus, equation (2.3.2) becomes

ch(H̃n−2(Pn)) =
n−1∑
r=0

(−1)n−1+rch(H̃r−2(Pr))ch(1Sn−r×Sn−r)

=
n−1∑
r=0

(−1)n−1+rch(H̃r−2(Pr))ch(1Sn−r)(x)ch(1Sn−r)(y).

(2.3.3)

It is known that the Frobenius characteristic of the trivial representation of Sn is

hn (See Equation (7.85) in Stanley [17]). Multiplying both sides of equation (2.3.3) by

(−1)n−1, we get
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(−1)n−1ch(H̃n−2(Pn)) =
n−1∑
r=0

(−1)rch(H̃r−2(Pr))hn−r(x)hn−r(y).

Finally, we conclude that

n∑
i=0

(−1)ihn−i(x)hn−i(y)ch(H̃i−2(Pi)) = 0.

Theorem 2.3.1 was motivated by our initial finding, which we will present in the

next chapter. Our initial finding can be seen as a specialized case of equation (2.3.1),

suggesting the truth of Theorem 2.3.1.
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Chapter 3

q-analogue of a result by Carlitz, Scoville, and

Vaughan

3.1 Introduction — Carlitz, Scoville, and Vaughan’s result

Consider the power series f(z) =
∞∑
n=0

(−1)n
zn

n!n!
and define the numbers ω0, ω1, ω2,...by

1

f(z)
=
∞∑
n=0

ωn
zn

n!n!
. It follows quickly from the definition that

n∑
k=0

(−1)k
(
n

k

)2

ωk = 0. (3.1.1)

Given σ ∈ Sn a permutation of [n] := {1, 2, . . . , n}. We call i ∈ [n− 1] an ascent of σ if

σ(i) < σ(i+ 1). Carlitz, Scoville and Vaughan [5] proved that the number ωk in equation

(3.1.1) is the number of pairs of permutations of Sk with no common ascent. For example,

ω2 = 3. The three pairs of permutations of [2] with no common ascent written in one-line

notation are (12, 21), (21, 12), (21, 21). The Bessel function J0(z) is essentially f(z2) (See

Section 1.2 in Gasper and Rahman [6]). Carlitz, Scoville and Vaughan’s result provided a

combinatorial interpretation of the coefficients ωk in the reciprocal Bessel function, which

in turn, gives a method to compute those coefficients.
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Recall that [n]q := qn−1 + qn−2 + ...+ 1 is the q-analogue of the natural number n and

[n]q! :=
n∏
i=1

[i]q. Then the q-analogue of

(
n

k

)
is

[
n

k

]
q

:=
[n]q!

[k]q![n− k]q!
. For a permutation

σ ∈ Sn, the inversion statistic is defined by

inv(σ) := |{(i, j) : 1 ≤ i < j ≤ n and σ(i) > σ(j)}|.

In this chapter we will prove the following q-analogue of Carlitz, Scoville and Vaughan’s

result. Let Dn denote the set {(σ, ω) ∈ Sn × Sn | σ and ω have no common ascent}.

Define Wi(q) =
∑

(σ,ω)∈Di
qinv(σ)+inv(ω), then

n∑
i=0

[
n

i

]2
q

(−1)iWi(q) = 0. (3.1.2)

Put F (z) =
∞∑
n=0

(−1)n
zn

[n]q![n]q!
. The function F

(
( z
2(1−q))

2
)

is the q-Bessel function

J
(1)
0 (z; q). The q-Bessel functions were first introduced by F. H. Jackson in 1905 and

can be found in later literature (see Gasper and Rahman [6]). By Equation (3.1.2),

the polynomials Wn(q) satisfy
1

F (z)
=
∞∑
n=0

Wn(q)
zn

[n]q![n]q!
. We have thus found a com-

binatorial meaning for coefficients of the reciprocal q-Bessel function 1/J
(1)
0 (z; q), and a

formula for computing those coefficients. The coefficient Wn(q) is in fact the reduced

Euler characteristic of the Segre product poset Bn(q) ◦ρ Bn(q).

3.2 A q-analogue of Carlitz, Scoville, and Vaughan’s result

Recall the definition of Bn(q). Let q be a prime power and Fq be the finite field of q

elements. Consider the n-dimensional vector space Fnq and its subspaces, then Bn(q) is

the lattice of those subspaces ordered by inclusion. The poset Bn(q) is a geometric lattice

whose every subspace is a span of its atoms (Stanley [16, Example 3.10.2]). It is graded

with a rank function ρ(W ) := the dimension of the subspace W .
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An edge labeling of a bounded poset P is a map λ : E(P ) −→ Σ, where E(P )

is the set of edges of the Hasse diagram of P and Σ is some poset. A maximal chain

c = (0̂ <· x1 <· · · · <· xt <· 1̂) is increasing if λ(0̂, x1) < λ(x1, x2) < · · · < λ(xt, 1̂) in

Σ, and decreasing if λ(0̂, x1) ≥ λ(x1, x2) ≥ · · · ≥ λ(xt, 1̂) in Σ. A chain c is associated

with a word

λ(c) = λ(0̂, x1)λ(x1, x2) · · ·λ(xt, 1̂).

If λ(c1) lexicographically precedes λ(c2), we say that c1 lexicographically precedes c2 and

we denote this by c1 <L c2. Let us review the definition of an EL-labeling of a poset.

Definition 3.2.1 (Björner and Wachs [2, Definition 2.1]) An edge labeling is called an

EL-labeling (edge lexicographical labeling) if for every interval [x, y] in P ,

(1) there is a unique increasing maximal chain c in [x, y], and

(2) c <L c
′ for all other maximal chains c′ in [x, y].

It is well known that Bn(q) admits an EL-labeling (See [21, Exercise 3.4.7]). The

lexicographic ordering of all maximal chains in an EL-labeling gives a shelling order of

all facets of the order complex. A poset that admits an EL-labeling is shellable. Here

we describe a specific EL-labeling of Bn(q), which we will use to prove our results, in the

following steps:

1. For a 1-dimensional subspace X of Fnq (an atom of Bn(q)), let x, a row vector, be

a basis element of X. Let A denote the set of all atoms of the subspace lattice Bn(q).

We define a map f : A −→ [n], f(X) = the index of the right most non-zero coordinate

of x. For example, in B3(3), if X = span of {< 1, 0, 1 >}, Y = span of {< 2, 1, 0 >},

f(X) = 3 and f(Y ) = 2.

2. For X any subspace of Fnq , let A(X) denote the set of atoms whose span is X.

Let Y be an element of Bn(q) that covers X, then A(Y ) ⊃ A(X). Denote the set
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Span{< 1, 0 >} Span{< 0, 1 >} Span{< 1, 1 >}

1 2 2

2 1 1

∅

Figure 3.1. An EL-labeling of B2(2)

f(A(Y ))\f(A(X)) by L. Let ρ be the rank function of Bn(q), which is defined by the

dimensions of the subspaces. Because ρ(Y ) − ρ(X) = 1, the set L, which is a subset of

[n], must have exactly one element. This number is the new dimension added to Y . And

that will be the label of the edge (X, Y ).

Example 3.2.2 Figure 3.1 is an edge labeling of the subspace lattice B2(2) following the

rules described above. We will show in the following proposition that this labeling is an

EL-labeling.

Proposition 3.2.3 The edge labeling described above is an EL-labeling on the subspace

lattice Bn(q).

Proof Edges in the same chain cannot take duplicate labels since Fnq is n-dimensional

and any maximal chain must take all labels in {1, 2, . . . , n}. Let [X, Y ] be a closed

interval in Bn(q). All maximal chains of [X, Y ] will take labels from the set L :=

f(A(Y ))\f(A(X)). Let 0 < a1 < a2 < · · · < al ≤ n be all the elements of L. For each i,

1 ≤ i ≤ l, there is a 1-dimensional subspace Vi of Fnq with f(Vi) = ai and Vi ∨X, the join

of Vi and X, is in [X, Y ]. The chain c = (X <· X ∨V1 <· · · · <· X ∨V1 ∨V2 ∨ · · · ∨Vl = Y )

is an increasing maximal chain of [X, Y ]. Any other 1-dimensional subspace V ′i satisfying
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f(V ′i ) = ai and X ∨ V1 ∨ · · ·Vi−1 ∨ V ′i ∈ [X, Y ] must equal X ∨ V1 ∨ · · · ∨ Vi. Since there

is only one way to arrange the ai’s increasingly, c satisfies definition 3.2.1 condition (1).

Suppose there is another maximal chain c′ = (X = W0 <· W1 <· · · · <· Wl = Y ). Let

f(A(Wi))\f(A(Wi−1)) = bi for all i ∈ [l]. Let k, 1 ≤ k ≤ l, be the smallest integer such

that bk 6= ak. We know that bk must be in L and bk 6= a1, a2, . . . , ak. Also a1, a2, ..., ak are

the smallest k elements of L arranged increasingly. It follows immediately that bk > ak.

Therefore condition (2) in the definition of EL-labeling is also satisfied.

Under this EL-labeling, each maximal chain of the subspace lattice Bn(q) can then

be identified with a permutation σ of Sn. See section 3.1 for the definition of inversion

statistic inv(σ).

Lemma 3.2.4 The number of maximal chains of Bn(q) assigned label σ ∈ Sn is qinv(σ).

Proof Let σ ∈ Sn, for each 1-dimensional subspace of Fnq , we can take the vector whose

right most non-zero coordinate is 1 as its basis element. For each i ∈ [n−1], let inv(σ(i))

denote the number of pairs (i, j) such that 1 ≤ i < j ≤ n and σ(i) > σ(j). The number

of ways to choose an atom W1 such that the edge (0,W1) takes label σ(1) is qinv(σ(1)).

Let k ∈ [n], assume the chain 0 <· W1 <· ... <· Wk−1, has label σ(1)σ(2)...σ(k − 1). For

each i ∈ [k − 1], pick an atom Vi ∈ A(Wk−1) with f(Vi) = σ(i) and vi the basis element

of Vi. The vectors v1, v2, ..., vk−1 are linearly independent hence form a basis of Wk−1.

In order for the edge (Wk−1,Wk) to take label σ(k), Wk needs to be the join of Wk−1 and

an atom whose basis element, call it vk, has 1 on the σ(k)th coordinate and all 0’s after

the σ(k)th coordinate. Then v1, v2, ..., vk will form a basis for Wk. So we need to find

the number of ways to choose a vk that each results in a distinct Wk.
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The vector eσ(k) =< 0, ..., 0, 1, 0, ...0 > who has 1 on the σ(k)th coordinate and 0

everywhere else certainly is a choice for vk. For each j, such that 1 ≤ k < j ≤ n

and σ(k) > σ(j), the edge label σ(j) comes after σ(k) in this chain label σ. So Wk−1

has no vectors whose right most non-zero coordinate is the σ(j)th. And the σ(j)th

coordinate appears before the σ(k)th in a vector. So varying the σ(j)th coordinate of

eσ(k) will produce new vectors that are not in the span of {v1, ..., vk−1, eσ(k)}. There

are inv(σ(k)) choices for j, and for each j, there are q choices for the value of the

jth coordinate. Each choice will produce a distinct vk that is linearly independent of

v1, v2, . . . , vk−1, thus a distinct Wk. Therefore for any given chain 0 <· W1 <· ... <· Wk−1

assigned label σ(1)σ(2)...σ(k − 1), there are qinv(σ(k)) choices for Wk such that the edge

(Wk−1,Wk) takes label σ(k). Hence the number of maximal chains assigned label σ is∏i=n
i=1 q

inv(σ(i)) = q
∑i=n

i=1 inv(σ(i)) = qinv(σ).

The following theorem from Björner and Wachs is essential to connecting the permu-

tations of Sn with the Segre product poset Bn(q) ◦ρ Bn(q):

Theorem 3.2.5 (Björner and Wachs [3, Theorem 4.1], see also Wachs [21, Theorem

3.2.4]). Suppose P is a poset for which P̂ admits an EL-labeling. Then P has the homo-

topy type of a wedge of spheres, where the number of i-spheres is the number of decreasing

maximal (i+ 2)-chains of P̂ .

Now consider the Segre product of Bn(q) with itself. Denote the proper part of this

Segre product by Pn(q). Using the EL-labeling of Bn(q) described right after definition

3.2.1, the Segre product poset Bn(q) ◦ρBn(q) admits an edge-labeling in which the labels

are ordered pairs from the poset [n]× [n]. A label (i, j) ∈ [n]× [n] ≤ (k, l) if and only if

i ≤ k and j ≤ l. It is easy to verify that this labeling of Bn(q) ◦ρBn(q) is an EL-labeling.

The decreasing chains are labeled with pairs of permutations with no common ascent.
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Given a pair of permutations (σ, ω), the number of decreasing maximal chains assigned

label (σ, ω) is qinv(σ) · qinv(ω) from Lemma 3.2.4. Recall that Dn denotes the set of pairs

of permutations (σ, ω) ∈ Sn ×Sn with no common ascent. We immediately arrive at the

following proposition:

Proposition 3.2.6 Let Wn(q) be the total number of decreasing maximal chains of Bn(q)◦ρ

Bn(q). Then

Wn(q) =
∑

(σ,ω)∈Dn

q(inv(σ)+inv(ω)).

Remark 3.2.7 The Segre product poset Bn(q)◦Bn(q) is the q-analogue of the Segre prod-

uct poset Bn◦Bn, agreeing with the formal definition of a q-analogue in R. Simion’s paper

[14]. She showed that the q-analogue of an EL-shellable poset is also EL-shellable. This

particular EL-labeling of Bn(q) ◦ Bn(q) provided intuition and a combinatorial interpre-

tation for Wn(q).

Theorem 3.2.8 Let Pn(q) be the proper part of the Segre product poset Bn(q) ◦ρ Bn(q).

Let
[
n
i

]
q

be the q-analogue of
(
n
i

)
and Wn(q) be the total number of decreasing maximal

chains of Bn(q) ◦ρ Bn(q). Then

n∑
i=0

[
n

i

]2
q

(−1)iWi(q) = 0. (3.2.1)

Proof The poset Pn(q) is pure. By Theorem 3.2.5, Pn(q) has the homotopy type of

a wedge of (n − 2)-spheres, and the number of decreasing maximal (n − 2)-chains is

the number of spheres. Then following from Proposition 3.2.6, Wn(q) is the number of

n− 2-dimensional faces of Pn(q) and the reduced Euler characteristic of 4(Pn(q)) is

χ̃(∆(Pn(q))) = (−1)nWn(q). (3.2.2)
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We know that the Möbius number of a poset is the same as its reduced Euler Character-

istic by Philip Hall’s theorem (Stanley [16, Proposition 3.8.6]), which gives us

µ
P̂n(q)

(0̂, 1̂) = (−1)nWn(q) = χ̃(∆(Pn(q))). (3.2.3)

On the other hand, by the definition of the möbius function,

µ(0̂, 1̂) = −
∑

0̂≤x<1̂

µ(0̂, x).

Each x in Pn(q) is a subspace of Fnq × Fnq , which is the product of two k-dimensional

subspaces X1, X2 of Fnq for some k with 0 ≤ k < n. But the intervals [0̂, X1] and

[0̂, X2] are isomorphic to the poset Bk(q), hence µ(0̂, x) is just µ
P̂k(q)

(0̂, 1̂), where Pk(q) =

Bk(q) ◦ρ Bk(q) \ {0̂, 1̂}. The number of k-dimensional subspaces of Fnq is
[
n
k

]
q

(Stanley

[16, Proposition 1.7.2]), the q-analogue of
(
n
k

)
. So the number of distinct x = (X1, X2)

where X1 and X2 are k-dimensional subspaces is
[
n
k

]2
q
. Therefore we have

µ
P̂n(q)

(0̂, 1̂) = −
n−1∑
i=0

[
n

i

]2
q

µ
P̂i(q)

(0̂, 1̂) = −
n−1∑
i=0

[
n

i

]2
q

(−1)iWi(q).

Consequently,
n∑
i=0

[
n

i

]2
q

(−1)iWi(q) = 0.

By Proposition 3.2.6, Wi(q) =
∑

(σ,ω)∈Di
q(inv(σ)+inv(ω)) is the number of decreasing max-

imal chains of Pi(q), where Di denotes the set of pairs of permutations (σ, ω) ∈ Si × Si

with no common ascent.

Corollary 3.2.9 The Euler characteristic of the Segre product of the subspace lattice

Bn(q) ◦ρ Bn(q) is (−1)nWn(q).

Proof See equation (3.2.2) in the proof of theorem 3.2.8.

34



3.3 An alternative proof of Carlitz, Scoville, and Vaughan’s result

In [5], Carlitz, Scoville and Vaughan gave the coefficients ωk of the reciprocal of

the Bessel function J0(z) a combinatorial explanation. They showed that ωk is the

number of pairs of k-permutations with no common ascent. When letting q = 1 in

our q-analogue (3.2.1), the subspaces of Fnq become subsets of {1, 2, ..., n}. The value

Wn(1) =
∑

(σ,ω)∈Dn
1inv(σ)+inv(ω) simply counts the number of pairs of permutations of [n]

with no common ascent, i.e. ωn. We then obtain the above result from Carlitz, Scoville

and Vaughan.

The proof of theorem 3.2.8 can also be easily adapted to an alternative proof of Carlitz,

Scoville and Vaughan’s result (3.1.1) by changing Bn(q) to Bn, using Pn instead of Pn(q)

to denote the Segre product, and recognizing that the intervals in the alternating sum for

the Möbius number of P̂n are isomorphic to smaller subset lattices Bi’s. Carlitz, Scoville

and Vaughan’s proof in [5] included general cases where occurrences of common ascent

are allowed. Our proof provides a less technical approach by utilizing Björner and Wachs’

work on shellability and poset homology [3].
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Chapter 4

The Connection of Two Analogues

4.1 Specialization of Symmetric Functions

Let ps : Λ −→ Q[q] be the stable principal specialization. For a symmetric func-

tion f(x1, x2, x3, . . . ), ps(f) is defined to be f(1, q, q2, ...). A summary of the specializa-

tions of different bases for the symmetric functions can be found in Stanley’s Enumerative

Combinatorics vol. 2 [17, proposition 7.8.3]. Consider a symmetric function f in two sets

of variables (x1, x2, ...) and (y1, y2, ...). We take the stable principal specialization of f in

each set of variables, that is substituting (1, q, q2, ...) for both (x1, x2, ...) and (y1, y2, ...).

The product Frobenius characteristic of the Sn × Sn-module H̃n−2(Pn) is a symmetric

function in two sets of variables. Then it is natural to ask what we can say about its

specialization. It turns out that ps(ch(H̃n−2(Pn))) has an interesting relation with the

Euler characteristic of the Segre product poset Bn(q) ◦ρ Bn(q).

4.2 The Connection

Recall that Pn is the proper part of the Segre product of the subset lattice Bn with

itself. The product Frobenius characteristic of the Sn×Sn-module H̃n−2(Pn) has an innate

connection with Wn(q). The following theorem provides an equation that connects the

stable principal specialization of ch(H̃n−2(Pn)) and the Euler characteristic Wn(q).

36



Theorem 4.2.1 Let Pn be the proper part of Segre product Bn◦ρBn and Sn the symmetric

group. The action of Sn × Sn on Bn ◦ Bn induces a representation on the reduced top

homology of Pn. Let (−1)nWn(q) be the Euler characteristic of the Segre product Bn(q)◦ρ

Bn(q). For a symmetric function f in two sets of variables x = (x1, x2, . . . ) and y =

(y1, y2, . . . ), the stable principal specialization ps(f) specializes both xi and yi to qi−1.

Then

ps(ch(H̃n−2(Pn))) =
Wn(q)

n∏
i=1

(1− qi)2
, (4.2.1)

where ch(V ) is the product Frobenius characteristic of a Sn × Sn-module V .

Proof We will use induction. The base cases n = 2 and n = 3 can be verified by hand.

ps(ch(H̃0(P2))) =
q2 + 2q

(1− q)2(1− q2)2
=

W2(q)

(1− q)2(1− q2)2

and

ps(ch(H̃1(P3))) =
q6 + 4q5 + 6q4 + 6q3 + 2q2

(1− q)2(1− q2)2(1− q3)2
=

W3(q)

(1− q)2(1− q2)2(1− q3)2
.

Assume that the statement is true for Pi, i = 1, ..., n−1. Now let us consider the reduced

top homology of Pn. Equation (2.3.1) gives us a way to express ch(H̃n−2(Pn)) in terms

of the product Frobenius characteristic of smaller posets. That is

ch(H̃n−2(Pn)) =
n−1∑
i=0

(−1)n−1+ihn−i(x)hn−i(y)ch(H̃i−2(Pi)) (4.2.2)

Then we take the stable principal specialization of both sides of equation (4.2.2). We

know from Stanley’s Enumerative Combinatorics vol. 2 that ps(hn) =
∏n

i=1
1

1−qi [17]. It

follows from our induction hypothesis that
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ps(ch(H̃n−2(Pn))) =
n−1∑
i=0

(−1)n−1+ips(ch(H̃i−2(Pi)))
n−i∏
j=1

1

(1− qj)2

=
n−1∑
i=0

(−1)n−1+i
Wi(q)∏i

k=1 (1− qk)2

n−i∏
j=1

1

(1− qj)2

=
1∏n

k=1 (1− qk)2
·
n−1∑
i=0

(−1)n−1+iWi(q)

∏n
j=i+1 (1− qj)2∏n−i
j=1 (1− qj)2

=
1∏n

k=1 (1− qk)2
·
n−1∑
i=0

(−1)n−1+iWi(q)

[
n

i

]2
q

.

(4.2.3)

Finally, using the identity involving the Euler characteristic Wn(q) given in Theorem

3.2.8, we obtain

ps(ch(H̃n(Pn))) =
Wn(q)∏n

j=1 (1− qj)2
.

When we take the stable principal specialization of Equation (2.3.1) in Theorem 2.3.1,

we obtain Equation (3.2.1) in Theorem 3.2.8 and Equation (4.2.1) in Theorem 4.2.1.

Therefore we can view the symmetric function analogue identity (2.3.1) as a generalization

of our q-analogue identity (3.2.1) to a symmetric group representation result.
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