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Abstract of the dissertation 

A Neural Network for Uncertainty Anticipation and Information Seeking 

by 

J. Kael White 

Doctor of Philosophy in Biology and Biomedical Sciences 

Neurosciences 

Washington University in St. Louis, 2019 

Assistant Professor Ilya E. Monosov, Chair 

 

In a world flooded with ‘click bait’, ‘alternative facts’, and ‘fake news’ one’s ability to 

seek out, discern, and value information is of utmost importance. Although contemporary 

phenomena, these cultural ills take advantage of an evolutionarily-preserved drive for humans 

and nonhuman animals to monitor for and pursue opportunities to gain information. Indeed, in a 

natural environment where rewards are scarce and can be risky, animals often seek sensory cues 

as a source of information about future outcomes. Interestingly, humans and nonhuman animals 

will seek sensory information that provides advance information that predicts an outcome even 

when this information does not influence the event outcome or may even come at a cost to the 

eventual reward. This willingness to ‘pay’ for information, despite being unable to impact task 

outcome, indicates that the information itself has intrinsic value to subjects. But how and where 

in the brain are opportunities to learn new information about uncertain events signaled? How 

does the brain guide behavior towards pursuing this information? Elucidating these mechanisms 

would expand our understanding of how information seeking interacts with primary reward 
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seeking in naturalistic environments and could further inform theories of attention, learning, and 

economic decision-making. 

Here, I demonstrate that connected regions of the anterior cingulate cortex (ACC), 

striatum, and pallidum contain neurons whose activity is selectively modulated by the presence 

and levels of outcome uncertainty. I describe the response of these neurons, many of which 

anticipate the resolution of uncertainty about an outcome— including when it is resolved through 

the animal seeking advance information. Finally, I demonstrate that the neural activity within 

areas of basal ganglia in this ‘uncertainty circuit’ causally contributes to information-seeking 

behaviors observed in nonhuman primates. This work demonstrates that connected regions of the 

brain previously associated with responses to primary rewards and motivation also contain a 

mechanism for anticipating uncertainty resolution and directing behaviors towards pursuing 

information that reduces uncertainty about upcoming events.  
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Chapter 1: Introduction to the dissertation 

To begin this chapter, I provide an overview of information-seeking behaviors in human 

and nonhuman animals and how these behaviors might be useful in an uncertain world. 

Thereafter, I describe the role of the striatum in contributing to motivated and reward-related 

behaviors and as an integrator of cortical and midbrain signals. I then provide an overview of the 

organization of cortico-basal ganglia loops and the role of these networks in motivating animal 

behavior. Finally, I describe the connectivity and functions of connected areas of ACC and basal 

ganglia; I detail their roles signaling reward uncertainty and motivating reward-related behaviors 

and explain why this network is a good candidate for the signaling of upcoming uncertainty 

resolution and information availability. In sum, I will present an argument that these brain 

regions- already heavily implicated in motivating behavior towards primary reward- are ideal 

candidate regions for the investigation of the mechanisms by which the brain anticipates 

uncertainty resolution and drives behavior towards pursuing information about upcoming 

rewards.  

1.1 Animals exist in an uncertain world and are motivated to reduce uncertainty through 

seeking information 

 We live in an uncertain world in which outcomes are variable, choices are risky, and the 

future is not often predicted with precision. Therefore, humans and other animals accurately 

estimating and reducing uncertainty can increase success in maximizing rewarding outcomes. 

Uncertainty can arise from a number of sources.1 For example, someone could be uncertain 

about the past because of imperfections in memory, or uncertain about the current state of the 

world because of noisy or limited senses, such as imperfections in vision. This thesis will focus 
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primarily on outcome uncertainty, which arises when an animal is unsure about which events- or 

outcomes- will occur in the future. A common source of outcome uncertainty- and one which 

will be investigated extensively within this thesis- is that of economic risk, where the possible 

outcomes, timing, and probabilities of an outcome in a given situation are understood by the 

subject, but where the outcome itself remains unknown until the animal experiences the outcome 

event.2,3  

For example, although one may understand the (dismally low) odds of winning in a 

lottery system such as the Powerball, the outcome of a ticket remains uncertain until when the 

numbers for the winner are drawn. Contrast this with an envelope that contains a dollar amount 

equal to the average yield of the lottery ticket (e.g.: $2.00). Where both objects share an expected 

value, the ticket has a degree of uncertainty (is risky) where the envelope has none (is safe). 

Humans and nonhuman animals often have strong preferences for choosing between certain and 

uncertain outcomes. For example, a gambling person might tend to choose the lottery ticket (risk 

seeking) while a more conservative person might tend to choose the envelope (risk averse). 

How uncertainty guides behavior in humans and nonhuman animals is an interesting and 

ongoing topic of research in the fields of neuroscience, psychology, and economics. For 

example, uncertainty about an outcome can enhance learning2–6, promote risk-seeking3,7, and 

influence choice behavior1,2,4,8 and emotional state.1,9 Consistent with these observations of 

uncertainty’s diverse influence on behavior, subsequent studies demonstrated that many brain 

regions are modulated by uncertainty.  For example, human fMRI studies indicated that multiple 

regions of the brain, including the striatum10,11 and many areas of the neocortex12–14, are 

modulated by outcome uncertainty. Single-unit recordings indicated that the activity of 

individual neurons across the brain is modulated by reward uncertainty15–22. Although these 
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studies offer insight into how activity in different brain regions is modulated by uncertainty, the 

field has yet to determine the neural mechanisms by which the brain anticipates uncertain 

outcomes, values uncertain rewards, and drives behaviors towards reducing uncertainty about the 

future.  

How is it that uncertainty about the future can be reduced? By obtaining information 

about an outcome in advance, animals can resolve uncertainty about an outcome prior to it 

occurring. Take, as an example, the risk-seeking gambler from above: imagine that she pulls the 

lever on a slot machine in which the symbols spin for 10 seconds before their identities are 

revealed and the outcome (i.e.: a win or a loss) occurs. In this scenario she would be in a state of 

uncertainty about the outcome until the symbols stop spinning and it occurs. Alternatively, 

imagine if the machine contained a button that, when pressed, would reveal the identity of the 

symbols immediately but the outcome would only occur 10 seconds after the lever was pulled. In 

this second situation uncertainty was resolved at an earlier timepoint through the delivery of 

advance information about the outcome. Importantly, the timing and the outcome of the gamble 

is constant across these scenarios; the only difference between them is that uncertainty was 

resolved in the latter at an earlier timepoint. 

 Pioneering behavioral experiments demonstrated that animals often prefer uncertain 

outcomes to be resolved at an early timepoint and will preferentially exhibit ‘observing 

responses’ which provide information about upcoming reinforcing outcomes.23 This research has 

been replicated in subjects ranging from pigeons, to rats, to nonhuman primates23–28 and suggests 

that animals across a wide range of species readily learn these observing behaviors. Indeed, in 

the field of economics, for example, similar preferences for this early information in human 

subjects were reported across a number of studies.29–31 That is, when given the option to reveal 
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the outcome of an uncertain situation, humans will choose to do so at the earliest possible 

moment, even when this information cannot be used to impact the outcome or give the subject 

any advantage in the task. Interestingly, this desire is strong enough that both humans31 and 

nonhuman primates28 will exchange a portion of their upcoming reward in order to obtain this 

advance information about task outcome.  

Despite the prevalence of these observing and information-seeking behaviors, the neural 

mechanisms that drive and maintain them remain unclear. One proposal is that these behaviors 

are supported by neural circuits that overlap with those that underlie conventional reward-

seeking behaviors.26 It is suggested that midbrain dopamine neurons, for example, are important 

for reward learning and motivated behavior.32–36 The activity of many of these neurons transmits 

a reward prediction error (RPE).35,37 An RPE is a signal of the difference between the expected 

value of an outcome and the delivered value of an outcome. RPE signals within the brain could 

contribute to computing the value of rewarding actions and reinforce actions that maximize 

primary rewards over a period of time.32,33 Such a signal could contribute substantially to 

learning, memory, and motivated behaviors.34  Although RPE-based reinforcement learning has 

the power to explain much of what motivates animals to pursue primary rewards37–39, behaviors 

that show preference for this advance information would not be predicted by this model. 

Consider a secondary cue that gives information about a coin toss: a 50/50 chance of either a 

positive or negative outcome. Because the chances of this cue providing a positive RPE is the 

same as it providing a negative RPE, the secondary cue-seeking behavior would not be 

reinforced as the overall RPE would be neutral. Although multiple models have been 

proposed27,40–42 to explain this gap in our understanding, the exact mechanisms that support these 

behaviors remain unclear. 
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 A recent study26 looking at midbrain dopamine neurons reported a similar response to 

advance information. Much like RPEs with primary rewards, ‘information prediction errors’ 

(IPEs) were higher when there was more information about outcome than expected and lower 

when there was less information about outcome than expected. Other information-related 

patterns of response are also observed in other motivational brain areas, including one of the 

major inputs to midbrain dopamine neurons, the lateral habenula27 as well as areas of 

neocortex.28 Taken together with the behavioral preferences for information seen in both human 

and nonhuman animals, these findings support the idea that the brain might use overlapping 

neural systems to motivate the pursuit of primary rewards and the pursuit of information about 

upcoming rewards.  

Despite the importance of uncertainty resolution and information seeking to everyday life, 

the mechanisms that underlie these behaviors remains largely unknown. Where and how does the 

brain represent levels of uncertainty and availability of information? Further, which brain area or 

areas are capable of motivating animals to reduce uncertainty and seek information? 

1.2 The striatum has a demonstrated role in reward-evaluation, reward-seeking, and other 

motivated behaviors 

The striatum is the primary input structure of a set of subcortical structures known as the 

basal ganglia and has long been considered an integrator43–47 of glutamatergic signals from 

cortex48–50 and dopaminergic signals from the midbrain.51–54 Of particular interest to this 

integration are medium spiny neurons (MSNs), which make up the vast majority of neurons 

found in the striatum and are a major target of midbrain dopamine neurons. The excitatory 

response of the MSNs to cortical input is modulated by  dopamine as well as by the activity of 

largely inhibitory populations of local interneurons.55–57 Within the striatum, synapses from 
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cortical inputs are preferentially contacted by projections from midbrain dopamine neurons 

relative to those that originate from thalamus.55 These synaptic interactions are thought to 

underlie the roles of the striatum in supporting motivated, reward-related behaviors. 

A large and growing body of literature has identified reward-related signals in the 

striatum and broadly implicates its role in motivational and reward-related behaviors. For 

example, early human PET experiments found increased levels of the neurotransmitter dopamine 

in subjects both with the stimulation of primary food reward58 as well as rewarding epochs in a 

video game.59 Later fMRI experiments verified that the striatum responds while subjects learned 

and anticipated rewarding outcomes60–64 and that these responses could be influenced by varying 

the properties of these rewards, such as reward magnitude and timing.62,65–67 Similarly, 

physiological recordings within the dorsal regions of this structure have demonstrated that 

activity in this region represents the anticipation68,69 and delivery70,71 of primary reward, action-

dependent rewards72–75, and that it contains signals capable of directing an animal’s gaze towards 

rewarding outcomes.76–79 In line with these findings, studies that manipulated striatal activity 

found that doing so changes reward-driven behaviors in a number of ways. Lesions and 

inactivations of the striatum yielded strong effects, including changes in reward-choice 

behaviors80,81, and learning and habituation.82–84  Injection of muscimol, a GABAA agonist into 

striatum resulted in decreases in reward-learning85, choice86, and feeding behaviors80,81 and 

resulted in decreased performance in reward-related tasks, as well as slower response times to 

preferred rewards.80,85 Additionally, pharmacologically manipulating activity in separate regions 

of striatum resulted in different effects during interactions with rewards.87 In sum, these studies 

suggest that neuronal activity within the striatum is not only modulated by the presence and 

properties of reward, but that it also causally influences reward-driven action. 
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1.3 Cortico-basal ganglia networks contribute to and refine motivated behaviors  

Projections from the frontal cortex to the striatum are organized and are thought to often 

follow stereotyped functional and topographical pathways.45,50,88,89 An early anatomical study 

suggested90 that these pathways compose closed “loops” from specific regions of cortex, to basal 

ganglia, to thalamus, and back to cortex. In this way, partially overlapping inputs from the cortex 

are integrated and refined along the progression of the circuit and “funneled” back into a single 

area of cortex. Activity across these circuits is segregated to specific areas with sensory, motor, 

or associative functions.90 These neural circuits  provide the framework for cortico-striatal 

interactions that could contribute widely to reward seeking and motivated behaviors.  

 Additionally, these closed loops explain observed similarities in function between 

anatomically-connected areas of cortex and striatum. For example, there are established 

projections91–94 from motor, pre-motor, and somatosensory cortex to caudal dorsolateral striatum. 

Activity in this region of striatum contributes to sensorimotor behaviors, such as learned and 

innate sequential actions95–99, motor learning and planning72,100–104, and habit formation.72,105–107 

Similarly, projections from orbitofrontal and medial prefrontal cortex broadly innervate areas of 

rostromedial dorsal striatum as well as ventral striatum.46,89,92,108 These areas of striatum 

contribute to goal-directed behaviors109–111 and reward learning112–115 and, further, dysregulation 

of these areas and their connections have been implicated in a number of mental illnesses.116–121 

Projections from additional areas of prefrontal cortex, such as the dorsolateral and medial 

prefrontal cortex- including areas of ACC- project broadly to rostrodorsal striatum.48,122–124 This 

innervation could provide signals that influence more cognitive processes, such as working 

memory125–130 and behavioral flexibility.131–134 Taken together, the connections that compose the 

broad networks of cortico-striatal projections create a rough topographical organization between 
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cortex and the striatum that contributes broadly to a wide-ranging repertoire of motivated 

behaviors. 

Although projections from cortex to striatum have often been considered parallel and 

segregated along this topographical map, there is growing evidence to suggest that the loops that 

they form are more overlapped than previously understood.46,50,135,136 The processes by which 

information is exchanged across these circuits is believed to be at least partially dependent on 

cross-over connections that exist within and downstream of the basal ganglia.136–139 These 

integrating nodes across cortico-basal ganglia loops that convey different properties of a situation 

could underlie evaluation of more complex object-outcome relationships than entirely segregated 

networks. In line with this concept, both associative and cognitive signals63,101,107,109,114,140,141 

have been reported broadly throughout areas of the striatum that were believed at one point to be 

largely dedicated to motor functions. Overall, it is currently understood that networks that 

encompass regions of cortex and basal ganglia contribute broadly to motivated behaviors, 

particularly to those which are directed at rewarding outcomes.  

1.4 Signals related to uncertain rewards are present in anatomically-connected regions of 

cortex and basal ganglia that motivate behavior towards primary rewards 

In order for the brain to promote information-seeking behaviors, neural mechanisms 

which monitor uncertainty should be tightly linked to those which underlie motivational 

processes. The striatum plays a key role in reward-seeking and motivational behaviors and as 

such might be an ideal candidate to fulfill this role. But where in the striatum might we expect to 

find uncertainty-related activity? Drawing inspiration from the cortico-basal ganglia loops 

discussed previously, it would likely be a region of striatum that share connections with areas of 

cortex and other areas of basal ganglia which have strong responses to uncertainty. In this way, 
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this region of striatum could process uncertainty signals from cortex and project them further 

into the basal ganglia to drive behavior. 

 Recently, single-unit recordings of neurons in ACC determined that largely separate 

populations of neurons respond to appetitive and aversive uncertain outcomes.15 The mostly 

excitatory activity of different populations of these neurons signaled information about the 

uncertainty of  juice rewards and air-puff punishments. These findings compliment the 

demonstrated role of ACC in the control of cognitive functions and motivated behaviors aimed at 

both optimizing rewards142–146 and avoiding punishments.147–149 Supporting this role are 

observations that the ACC contains individual neurons which respond to the presence of 

rewarding stimuli in ways which correspond to both the value of rewards144–146,150 and the 

effort151–153 required to obtain it. In line with these findings are hypotheses which suggest that 

ACC contributes to value-based decision-making behaviors.143–145 A growing number of human 

imaging studies also reported higher-order signals related to learning and exploration, which are 

oftentimes related to the expectation of uncertain outcomes4,9,154,155  

A recent study has identified a subset of neurons within VP that responded selectively to 

uncertainty. These cells showed a strong and consistent decrease in their firing before the 

delivery of uncertain rewards.16 This study contributes to other proposals that areas of pallidum- 

particularly the ventral extent of the structure- are implicated in the mechanisms of reward and 

motivation. For example, self-stimulation studies reported that animals will repeatedly press a 

lever for pallidal stimulations156–158 and that injection of bicuculline, a GABAA antagonist, 

resulted in increased food consumption.159–161 Conversely, lesion studies found that damaging 

areas of ventral pallidum (VP) resulted in failures to eat and drink in rodents162–164, indicating 

that the structure has a role in hedonic drive. Interestingly, one study of the ventral pallidum 
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found that lesioned animals not just reduce, but reverse, their pursuit of reward.163 Clinical 

studies in humans with damaged pallidum found that a patient once addicted to alcohol and other 

drugs no longer experienced cravings and reported a depressive mood and a generally 

despondent demeanor165; similarly, a second patient with damage to an overlapping area reported 

the inability to feel strong emotions and a general lack of motivation following the lesion.166  

But is there a striatal link between these cortical and basal ganglia uncertainty signals?  

Specific and overlapping areas of the dorsal striatum receive both glutamatergic projections from 

ACC and share mutual GABAergic connections with the ventral pallidum.46,48,50 Interestingly, 

these areas of ACC and pallidum are also highly overlapped with those where uncertainty-

responsive cells were reported.15,16 Could it be that these regions of the dorsal striatum contain a 

mechanism for signaling levels of reward uncertainty? Further, might this interconnected 

network of brain structures, some of which have a demonstrated role in predicting uncertain 

outcomes and motivating behavior towards primary rewards, contribute to an animal’s 

motivation to seek information about uncertain rewards? 

1.5 Summary 

 For a brain area or areas to be implicated in motivating behaviors towards seeking 

information, they must not only monitor the environment for levels of uncertainty surrounding 

future events, but also anticipate when information that resolves this uncertainty is available. 

Further, it must be demonstrated that interrupting the activity of these areas causally reduces 

information-seeking behaviors. In the following chapters we will describe the experimental 

results of testing areas of ACC and basal ganglia for responses to outcome uncertainty and 

anticipation of information about upcoming outcomes. In Chapter 2 we report a selective and 

anticipatory response to uncertain reward delivery within the striatum, specifically regions of 
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caudate nucleus and putamen which border the internal capsule (icbDS). We interrogate this 

response further across various reward schedules and task conditions. We continue with Chapter 

3 where we describe and compare the responses of anatomically-connected regions of ACC and 

basal ganglia (icbDS and VP) to reward uncertainty. We then test the response of each area when 

advance information about uncertain outcomes is available to determine if these areas are 

anticipating the delivery of uncertain outcomes, or if their response is to uncertainty resolution 

more broadly. Thereafter, we investigate looking behaviors which are associated with 

uncertainty and information-seeking and demonstrate that pharmacological manipulation of areas 

of this putative ‘information-seeking’ circuit results in decreased information-seeking biases. In 

sum, we identify a novel neural network which participates in signaling the resolution of reward 

uncertainty across multiple modalities and demonstrate that the activity of this network causally 

contributes to information-seeking behaviors in primates. 
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Chapter 2: Neurons in the primate dorsal striatum signal the 

uncertainty of object–reward associations 

Adapted from: 

J. Kael White & Ilya E. Monosov 

Neurons in the primate dorsal striatum signal the uncertainty of object-reward associations. 

Nature Communications, 2016. Article number: 12735 doi: 10.1038/ncomms1273 

 

To learn, obtain reward and survive, humans and other animals must monitor, approach 

and act on objects that are associated with variable or unknown rewards. However, the neuronal 

mechanisms that mediate behaviors aimed at uncertain objects are poorly understood. Here we 

demonstrate that a set of neurons in internal-capsule bordering regions of the primate dorsal 

striatum, within the putamen and caudate nucleus, signal the uncertainty of object–reward 

associations. Their uncertainty responses depend on the presence of objects associated with 

reward uncertainty and evolve rapidly as monkeys learn novel object–reward associations. 

Therefore, beyond its established role in mediating actions aimed at known or certain rewards, 

the dorsal striatum also participates in behaviors aimed at reward-uncertain objects. 

2.1 Introduction 

To survive, humans and other animals must act on objects that have been previously 

associated with certain or reliable rewards.107,167,168 However, learning, foraging and decision-

making also require animals to monitor, approach and act on objects associated with variable or 

unknown rewards4,18,155,169, even when the mean reward value of such uncertain objects is lower 

than that of other objects.1,170,171 To date, the mechanisms that direct behavior towards uncertain 

objects are not well understood. 

Expected (or certain) reward-driven behaviors are in part dependent on the caudate–

putamen complex73–75, also called the dorsal striatum (DS). In primates, the caudate nucleus in 
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particular has recently been shown to contain multiple mechanisms for directing gaze at objects 

associated with high reward values.76–79 Here we asked if the primate DS also contains a 

mechanism to support behavior aimed at objects associated with outcome uncertainty. 

Our experiments showed that a subset of neurons, mostly in the internal-capsule bordering 

regions of the DS (icbDS), was preferentially activated by visual objects associated with reward-

uncertain outcomes. Furthermore, the icbDS reward-uncertainty responses greatly depended on 

the presence of visual objects associated with reward uncertainty because they were reduced 

when the object was removed before the uncertain outcome was delivered. These uncertainty 

responses occurred when subjects were presented with objects that were associated with 

uncertain either due to the subjects’ lack of knowledge or due to known uncertainty (also called 

risk3,172) but carried no spatial or specific object information. Finally, during object–reward 

associative learning, icbDS neurons’ uncertainty responses evolved rapidly as monkeys learned 

novel object–reward associations.  

Our experiments suggest that uncertainty-sensitive neurons in the primate DS may play 

important roles in object-based behaviors under uncertainty. 

2.2 Materials and methods 

2.2.1 General procedures  

Two adult male rhesus monkeys (Macaca mulatta) were used for the neurophysiology 

experiments in the DS (Monkeys B who is 6 years old; and Monkey W who is 5.25 years old). 

All procedures conformed to the Guide for the Care and Use of Laboratory Animals and were 

approved by the Washington University Institutional Animal Care and Use Committee. A plastic 

head holder and plastic recording chamber were fixed to the right side of the skull under general 

anesthesia and sterile surgical conditions. The chambers were tilted laterally by 35° and aimed at 
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the anterior portion of the striatum. After the monkeys recovered from surgery, they participated 

in the behavioral and neurophysiological experiments. 

2.2.2 Data acquisition  

While the monkeys participated in the behavioral procedures we recorded single neurons 

in the right DS. The recording sites were determined with 1 mm-spacing grid system and with 

the aid of magnetic resonance images (3 T) obtained along the direction of the recording 

chamber. This magnetic resonance imaging-based estimation of neuron recording locations was 

aided by custom-built software (PyElectrode). Single-unit recording was performed using glass-

coated electrodes (Alpha Omega). The electrode was inserted into the brain through a stainless-

steel guide tube and advanced by an oil-driven micromanipulator (MO-97A, Narishige). Signal 

acquisition (including amplification and filtering) was performed using Alpha Omega 44 kHz 

SNR system. Action potential waveforms were identified online by multiple time-amplitude 

windows with an additional template-matching algorithm (Alpha-Omega). Neuronal recording 

was restricted to single neurons that were isolated online. Neuronal and behavioral analyses were 

conducted offline in Matlab (Mathworks, Natick, MA). 

Eye position was obtained with an infrared video camera (Eyelink, SR Research). 

Behavioral events and visual stimuli were controlled by Matlab (Mathworks, Natick, MA) with 

Psychophysics Toolbox extensions. Juice, used as reward, was delivered with a solenoid delivery 

reward system (CRIST Instruments). Juice-related anticipatory licking during the CS epoch was 

measured and quantified using previously described methods.17 

2.2.3 Behavioral tasks 

2.2.3.1 Reward-probability and reward-amount procedure (experiment 1) 
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The reward-probability and reward-amount behavioral procedure consisted of two blocks, 

a reward-probability block and a reward-amount block (Figure 2.1). In the reward-probability 

block, three visual fractal CSs were followed by a liquid reward (0.25 ml of juice) with 100, 50 

and 0% chance, respectively. In the reward-amount block, three CSs were followed by a liquid 

reward of 0.25, 0.125 and 0 ml, respectively. Thus, the expected values of the three CSs matched 

between the probability and amount blocks. To control for neuronal object preference, we used 

two fractal sets (that is, for every CS there were two different fractals). 

Each trial started with the presentation of a green trial-start cue at the center. The 

monkeys had to maintain fixation on the trial-start cue for 1 s; then the trial-start cue disappeared 

and one of the three CSs was presented pseudo randomly. After 2.5 s, the CS disappeared, and 

juice (if scheduled for that trial) was delivered. The monkeys were not required to fixate on the 

CSs. In each trial, the CS could appear in three locations: 10° to the left or to the right of the 

trial-start cue, or in the center. One block consisted of 18 trials with fixed proportions of trial 

types (each of the three CSs appears three times each block, 9/18 trials total). 

In the remainder of the trials in each block (9/18), the monkeys chose amongst the task 

CSs. Each trial started with the presentation of a purple trial-start cue at the center, and the 

monkeys had to fixate it for 0.5 s. After the monkey fixated on the trial start cue for 0.5 s, a 

choice array was presented consisting of two fractals used in the Pavlovian procedure (shown in 

Figure 2.1A). The monkey had to continue to fixate until the trial start cue disappeared (0.5 s). 

Monkeys then made saccadic eye movements to their preferred reward-associated fractals and 

fixated them for 0.75 s to indicate their choices. Then, the unchosen stimulus disappeared, and 

the monkeys waited for 1 s to receive the scheduled outcome (associated with their chosen 

fractal). 
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The inter-trial intervals ranged from 3 to 6 s. Approximately one in five inter-trial 

intervals contained uncued events (chosen randomly). These could be either a juice reward alone 

(0.25 ml) or an ∼70 dB 0.15 s auditory white noise burst paired with a brief change in screen 

color (same duration as the auditory stimulus). 

Neuronal recordings did not begin until the monkeys chose the CSs associated with 

higher expected value over CSs associated with lower expected value >90% of the time. The 

monkeys’ knowledge of the CSs was further confirmed when we measured the monkeys’ licking 

behavior. The magnitude of licking was correlated to the reward value of the fractals in the 

reward-probability block (P<0.001; Spearman’s rank correlation) and the reward-amount blocks 

(P<0.001; Spearman’s rank correlation). 

2.2.3.2 Five reward-probability and reward-amount procedure (experiment 2) 

The reward-probability and reward-amount behavioral procedure consisted of two blocks, 

a reward-probability block and a reward-amount block. The trial structure was the same as in 

experiment 1. However, here the reward-probability block contained five objects associated with 

five probabilistic reward predictions (0, 25, 50, 75 and 100% of 0.25 ml of juice) and a reward-

amount block that contained five objects associated with 100% reward predictions of varying 

reward amounts (0.25, 0.1875, 0.125, 0.065 and 0 ml).17,18 One block consisted of 20 trials with 

fixed proportions of trial types (each of the five CSs appears four times each block). 

2.2.3.3 Trace reward-probability procedure (experiment 3) 

The temporal structure of this procedure was the same as in probability-amount 

procedure (experiment 1). The trace procedure contained four possible distinct CS fractals. The 

first two CSs were associated with 100% (CS 1) and 50% (CS 2) chance of 0.25 ml of juice. 

These CSs remained on the screen for 2.5 s and were followed by the scheduled reward outcome. 
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(same as in experiment 1). The other two CSs were also associated with 100% (CS 3) and 50% 

(CS 4) chance of 0.25 ml of juice but were only presented for 1 s. This was followed by a 1.5 s 

trace period, during which the screen did not contain any stimulus. The trace period was 

followed by the scheduled reward outcome. Therefore, in both trace and non-trace conditions, 

monkeys experienced two types of reward predictions (certain and uncertain) and experienced 

outcome delivery in 2.5 s after the initial CS presentation. 

2.2.3.4 Object learning procedure (experiment 4) 

Instead of using previously conditioned object fractals, monkeys were exposed to three 

novel CSs associated with 100, 50 and 0% chance of reward delivery. The task design and 

temporal structure of the trials were the same as in probability-amount procedure (experiment 1). 

However, the interleaved choice trials were choice trials amongst the three novel fractals. 

2.2.3.5 Appetitive-aversive procedure 

The procedure consisted of two alternating blocks: appetitive and aversive.15 In the 

appetitive block, three visual fractal CSs were followed by a liquid reward (0.4 ml of juice) with 

100%, 50% and 0% chance, respectively. In the aversive block, three visual fractal CSs were 

followed by an air puff with 100%, 50% and 0% chance, respectively. Airpuff (∼35 psi) was 

delivered through a narrow tube placed 6–8 cm from the monkey’s face. Temporal structure of 

the trials was the same as in other procedures, but here monkeys were not required to fixate the 

trial start cue. Each block consisted of 12 trials with fixed proportions of trial types (100%, four 

trials; 50%, four trials; 0%, four trials). 

2.2.4 Data processing and statistics 

Spike-density functions were generated by convolving spike times with a Gaussian filter 

(σ=50 ms). To display single neuron examples (Figs 1a, 3a, and 4a) spike-density functions were 
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generated by convolving spike times with a 100 ms Gaussian filter. A neuron was defined as 

uncertainty sensitive if its responses varied across the four possible reward predictions (100% 

0.25, 50% 0.25, 100% 0.125 and 0 ml of juice) (Kruskal–Wallis test, P<0.01; analysis window: 

100 ms after CS presentation until outcome) and if its response to the uncertain CS (50%) was 

significantly stronger or weaker than its responses to both 100 and 0% reward CSs (two-tailed 

rank-sum test; P<0.01). The same analysis window was used to study neuronal activity during 

the CS epoch in Figure 2.2C. 

To normalize task-event-related responses, we subtracted baseline activity (the last 

500 ms of the inter-trial interval) from the activity during the task-event-related measurement 

epoch. All statistical tests were two-tailed. For comparisons between two task conditions for 

each neuron, we used a rank-sum test, unless otherwise noted. For comparisons between two task 

conditions across the population average we used a paired signed-rank test, unless otherwise 

noted. Statistical threshold throughout this study is P<0.01 unless otherwise noted. 

To assess the sensitivity of individual uncertainty-selective striatal neurons to task-related 

variables in Experiment 1 (Figure 2.2C), we obtained their response indices (difference between 

neuronal responses to two conditions divided by their sum). To assess CS spatial location 

sensitivity, we compared responses to the 50% CS when it was shown 10° to the right versus 10° 

to the left of center. To assess object-feature sensitivity, we compared responses to two distinct 

50% CS fractal objects. Reward-value sensitivity was assessed by comparing neuronal responses 

to 100% 0.25 ml CS versus 0.125 ml CS. Reward-context sensitivity was assessed by comparing 

CS activity in certain reward trials (100% 0.25 and 0.125 ml CS trials) versus no reward trials. 

Uncertainty sensitivity was assessed by comparing responses to 50% reward CSs with 100% 

reward CSs. Reward prediction error sensitivity was assessed by comparing reward versus no-
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reward responses after the 50% reward prediction (in the 250 ms window after the outcome). 

Neuronal responses during experiments 2–4 were measured in the last 500 ms before the trial 

outcome. 

To calculate receiver-operating characteristic (ROC) that assessed neuronal 

discrimination of uncertainty, we compared spike-density functions of 100% reward CS trials 

and 50% reward CS trials. The analysis was structured so that receiver-operating characteristic 

area values >0.5 indicate that the activity in the 50% reward CS trials is greater than in the 100% 

reward CS trials values <0.5 indicate that the activity in the 100% reward CS trials is greater than 

in the 50% reward CS trials. 

2.3 Results 

2.3.1 DS neurons selectively signal reward uncertainty 

To test if the primate DS contains neurons that are preferentially activated by visual 

objects associated with reward-uncertain outcomes, we recorded 141 single neurons from DS 

while two monkeys (B, n=103 neurons; W, n=38 neurons) participated in a behavioral procedure 

that was composed of two distinct blocks: a reward-probability block, in which three visual 

conditioned stimuli (CSs) predicted a 0.25 ml juice reward with 100, 50 and 0% chance; and a 

reward-amount block, in which three CSs predicted 0.25, 0.125 and 0 ml of juice (experiment 1, 

Figure 2.1A). For each block, we used two fractal sets that could appear in one of three spatial 

locations. Monkeys’ knowledge of the task was tested with interleaved choice trials (Methods), 

and neuronal recordings did not begin until the monkeys chose the CSs associated with higher 

expected value over CSs associated with lower expected value >90% of the time (Figure 2.1B). 

Uncertainty-sensitive neurons were defined as those that varied their responses across the 

task CSs (Kruskal–Wallis test; P<0.01) and displayed significantly stronger responses to the 
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50% CS than to both 100 and 0% reward CSs or weaker responses to 50% CS than to both 100 

and 0% reward CSs (two-tailed rank-sum tests; P<0.01). We found that 45/141 neurons, mostly 

in the internal-capsule bordering regions of the striatum, were selectively activated by reward 

uncertainty (n=19 in monkey W; n=26 in monkey B). 0/141 neurons were selectively suppressed 

by uncertainty. An example uncertainty-sensitive (U+) neuron’s CS responses are shown in 

Figure 2.1C. Its activity increased following the presentation of the CS that predicted 0.25 ml of 

juice reward with 50% chance until the uncertain outcome was delivered and the uncertainty was 

resolved. This example neuron did not strongly respond to other CS objects or task events. 
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Figure 2.1: (A) Experimental procedure for experiment 1. (B) Monkeys’ choice behavior in 

experiment 1. Choice percentage of a single reward-probability CS (x-axis) versus all the other 

reward probability CSs (red). Choice percentage of a single reward-amount CS (x-axis) versus 

all the other reward-amount CSs (black). Data compiled from 5602 trials. (C) Responses of a 

single uncertainty selective (U+) neuron in the internal capsule bordering region of the striatum 

to the presentation of six fractal objects (shown above rasters) associated with certain and 

uncertain predictions of juice reward. Dark blue raster plots indicate the activity in 50% CS trials 

in which reward was omitted.  
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All U+ neurons exhibited roughly similar responses (Figure 2.2A,B). On average, they 

were strongly activated by the presentation of the CS that predicted 0.25 ml of juice reward with 

50% chance. This activation was most often a ramp-like increase in activity, which continued 

until the uncertain outcome was delivered and the uncertainty was resolved (Figure 2.2A).  

Amongst single neurons, 44/45 U+ neurons responded more strongly to the CS object 

associated with 50% chance of 0.25 ml of juice than to the CS object associated with 0.125 ml of 

juice (Figure 2.2B) even though these CSs were associated with the same expected reward value. 

Further neuron-by-neuron analyses revealed that amongst the task features of experiment 

1, U+ neurons were consistently sensitive to reward uncertainty and to reward context (that is, 

difference between trials in which reward was possible versus trials in which rewards would not 

be delivered). This is shown in Figure 2.2C and in Supplementary Figure 2.2 for DS U+ neurons 

in caudate and putamen, separately. Most single U+ neurons did not encode information about 

expected values (defined as the difference between responses to objects associated with 0.25 and 

0.125 ml of juice), spatial- and object-feature parameters (Figure 2.2C), or aversive outcomes 

(Supplementary Figure 2.3). However, 24/45 U+ neurons discriminated reward-associated CSs 

from CSs associated with no outcome delivery (Figure 2.2C, this reward-related enhancement 

can also be observed in the average activity in Figure 2.2A). Also, on average, U+ neurons 

responded to the delivery of expected/certain rewards with a weak but consistent phasic 

excitation (Figure 2.2A; P<0.05; sign-rank test). The observations in Figure 2.2 indicate that 

while U+ neurons were preferentially dedicated to signaling reward uncertainty, they were also 

sensitive to reward context (or expectation) and reward delivery. 

While U+ neurons did not encode the locations of CS objects, thus far, it was unknown if 

they respond before or during saccades aimed at reward uncertain objects. To assess this further, 
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we studied the dynamics of U+ uncertainty selectivity during choice trials. We found that, on 

average, U+ uncertainty selectivity emerged after the monkeys fixated the object associated with 

reward uncertainty (Supplementary Figure 2.4). Therefore, U+ neurons did not trigger saccades 

aimed at reward-uncertain objects. 
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Figure 2.2: (A) Average responses of 45 U+ neurons to different reward predictions in the 

reward-probability and reward-amount procedure. Shaded region represents standard error. The 

inset shows proportion of neurons (of 45 U+ neurons and of all 141 striatal neurons) displaying 

uncertainty selectivity during the CS epoch in time. (B) CS responses of 45 U+ neurons for 

different reward predictions in the reward-probability and reward-amount procedure (normalized 

to the maximum CS response; from 0 to 1). In all, 44/45 neurons had the highest response for the 

50% CS. (C) Sensitivity indices (Methods) for 45 striatal uncertainty-selective neurons for 

different behavioral/task variables. Asterisk above the histogram indicates significant deviation 

from 0 (P<0.01; sign-rank test). Significant individual neuron indices (P<0.01; Wilcoxon rank-

sum test) are grey. The number of significant indices is indicated near the histogram. 
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Overall, the results of experiment 1 showed that the DS contains a subpopulation of 

neurons with striking sensitivity to objects associated with reward uncertainty. However, several 

important questions about these neurons remained unclear. First, are they sensitive to the level of 

uncertainty in a graded manner?17,18 Second, do U+ neurons signal internal states related to the 

expectation of reward or are their uncertainty responses dependent on external cues or objects? 

Third, can U+ neurons support object learning under uncertainty? To answer these important 

questions, we selectively recorded from U+ neurons in the DS in experiments 2–4. 

2.3.2 DS neurons are sensitive to the level of reward uncertainty 

To test if U+ neurons were sensitive to the level of reward uncertainty, in experiment 2, 

we recorded 20 U+ neurons (14 in monkey B and 6 in monkey W) in a behavioral procedure in 

which monkeys experienced a reward-probability block that contained five objects associated 

with five probabilistic reward predictions (0, 25, 50, 75 and 100% of 0.25 ml of juice), and a 

reward-amount block that contained five objects associated with 100% reward predictions of 

varying reward amounts (0.25, 0.1875, 0.125, 0.065 and 0 ml of juice).15,16 The expected values 

of the five CSs in the probability block matched the expected values of the five CSs in the 

amount block. Reward-uncertainty neurons in DS were identified during online screening as 

neurons that responded to any of the uncertain conditioned stimuli (25, 50 or 75% reward). The 

same preselection criteria were used in subsequent experiments in this study and in our previous 

reports.17,18 

An example U+ neuron’s responses to the 10 CS objects are shown in Figure 2.3A. It 

responded most strongly to the presentation of the 50% CS object, and less strongly to the 

presentation of the 25 and 75% CS objects. Moreover, it did not respond to the presentation of 

objects associated with certain reward predictions (0 and 100% reward CS objects and CS 
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objects in the reward-amount block). A similar result can be observed across the population of 

U+ neurons (Figure 2.3B,C). U+ neurons’ average response was strongest for the presentation of 

the 50% CS object. Their responses were weaker for 25 and 75% reward-associated CS objects. 

On average, there was no significant difference between their responses to the 25% versus 75% 

CS objects, which have the same level of uncertainty but different expected values. Furthermore, 

as in experiment 1, during the reward-amount block, the neurons discriminated objects 

associated with rewards from objects associated with no reward (Figure 2.3C, black trace). In 

sum, experiment 2 showed that U+ neurons were sensitive to the levels of reward uncertainty. 
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Figure 2.3: (A) Responses of a single uncertainty selective (U+) neuron to the presentation of 10 

fractal objects associated with certain and uncertain predictions of juice reward. (B) Average 

responses of 20 U+ neurons in the reward-probability block (left) and reward amount block 

(right). (C) Average normalized responses of 20 U+ neurons for probability (red) and amount 

(black) CSs. Asterisks indicate differences between CSs (**P<0.01; *P<0.025; paired sign-rank 

test). The inset shows the single neuron’s CS responses for different reward predictions in the 

reward-probability block (normalized to the maximum CS response; from 0 to 1). Numbers 

above the inset indicate the number of cells that exhibited the greatest response for 25, 50 or 75% 

CSs; 60% of the neurons exhibited greatest response for 50% reward CS. 
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2.3.3 U+ neurons are found most often in internal capsule-bordering regions of DS and are 

likely medium spiny neurons 

The location of all recorded U+ neurons is shown in Figure 2.4A. U+ neurons were most 

often found within the anterior–dorsal putamen and caudate nucleus regions that bordered the 

internal capsule (Figure 2.4A, Supplementary Figures 2.1-2.2), prominently in the anterior 

putamen. In addition to reconstructing neuron location by recording sites and depths, we further 

verified their location using structural MRI. Following the successful recording of a U+ neuron, 

the electrode was temporarily fixed at the recording site and its tip’s location in the target area 

was imaged (Figure 2.4B). We refer to this brain area as the icbDS. The low baseline discharge 

rate of U+ neurons (mostly <1 spikes per s; Figure 2.4C) suggests that they are medium spiny 

neurons70,74,77,173,174—the chief output neurons of the striatum. 
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Figure 2.4: (A) Estimated locations of 45 U+ neurons (red dots) in the internal capsule bordering 

striatum shown on two coronal slices. Ranges of the neurons on each slice and the distance of 

each slice from the center of the anterior commissure (AC) are indicated. Black dots indicate 

other recorded neurons. Insert is the histogram of recording locations along the anterior-posterior 

axis. (B) A coronal T1 magnetic resonance (MR) image taken with a tungsten electrode at the 

location of an identified U+ neuron. (C) Histogram of baseline firing rates of recorded neurons. 

Inset shows spike duration (trough-to-trough) for all U+ neurons (left), non-uncertainty-selective 

putative medium spiny neurons (neurons with a baseline firing rate of < 3 spikes/second), and 

non-uncertainty-selective putative cholinergic interneurons (CHAT) neurons (neurons with a 

baseline firing rate >= 3 spikes/second). Error bars indicate standard errors. Single neuron data 

points are shown as scatters. Asterisks indicate significant differences (Wilcoxian rank sum test; 

p < 0.05). 
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2.3.4 icbDS uncertainty responses are object-dependent 

The results of experiments 1 and 2 are consistent with two possible scenarios. First, U+ 

responses may signal internal states related to reward expectation, particularly with the 

expectation of uncertain rewards. A second scenario is that U+ responses may signal the 

uncertainty of the object–reward associations, rather than the internal state associated with 

reward uncertainty. To distinguish between these alternatives, monkeys were presented with four 

CSs (experiment 3). Two distinct CSs were associated with 100 and 50% chances of reward and 

were kept on the experimental presentation screen for 2.5 s, until the time of the trial outcome 

(same trial structure as in Figure 2.1A). Two other CSs were also associated with 100 and 50% 

chances of reward and were present on the screen for 1 s and outcomes were delivered in 1.5 s 

after the removal of the CSs (the 1.5 s period during which the CS is not present is referred to as 

a trace period). Therefore, for all CSs, reward was delivered 2.5 s after CS onset. Monkey 

performance indicated that they understood the procedure and were similarly motivated by trace 

and no-trace 50% reward predictions (Supplementary Figure 2.5). 

We identified U+ neurons in icbDS and recorded their activity in this paradigm (n=32 

neurons; 11 in monkey W and 21 in monkey B). An example U+ neuron is shown in Figure 

2.5A. This neuron robustly discriminated 50% reward-associated CS object (uncertain condition) 

from the 100% reward-associated CS object (P<0.01; rank-sum test). Surprisingly, the removal 

of the uncertain CS (trace condition) before the outcome was delivered completely abolished its 

uncertainty selectivity (Figure 2.5A, green and blue traces). Similar results were found for most 

of the U+ neurons (Figure 2.5B). The discriminability of striatal uncertainty signals was greatly 

diminished when the uncertain object was not present at the time of the outcome (Figure 2.5C). 

Many U+ neurons’ uncertainty signals were completely abolished (Figure 2.5B,C). These results 
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indicate that U+ neurons’ reward-uncertainty responses are related to the presence of the 

uncertain object. 
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Figure 2.5: (A) Responses of a single U+ neuron to 100 and 50% reward predictions without a 

trace period (CS objects remained until the outcome) (black and red), and with a trace period (CS 

objects disappeared after 1 s) (green and blue). (B) In all, 22/32 neurons displayed significant 

differences in reward-uncertainty responses across the no-trace and trace conditions (red; rank-

sum test; P<0.01; 26/32 were significant with a 0.05 threshold). All significant changes were 

reductions of uncertainty responses. Normalization was performed by subtracting 100% CS 

responses from 50% CS responses (for trace and no-trace conditions, separately). (C) Single 

neuron (insets above) and population reward-uncertainty discriminability was greatly diminished 

in the trace condition. AUC, area under receiver-operating characteristic curve. 
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In the basal forebrain (particularly in its medial regions), some neurons also signal reward 

uncertainty with ramp-like responses17, however, additional experiments revealed that their 

uncertainty-selective signals persist during the same trace-conditioning procedure used to study 

U+ neurons (Supplementary Figure 2.5). Consistent with this observation, other reward-related 

signals are preserved during trace conditioning in brain regions that are interconnected with the 

basal forebrain, such as in the dorsal raphe175 and in the amygdala.176 These observations suggest 

that basal forebrain and related limbic structures signal values and uncertainty of internal states 

(perhaps somewhat independently of the external environment), whereas the U+ neurons in the 

basal ganglia signals are related to the presence of cues associated with reward uncertainty. 
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Figure 2.6: (A) Single neuron’s responses (shown as single trial rasters) to the presentation of 

three novel objects shown in the order of the monkey’s experience (bottom to top). (B) Binned 

neuronal population response across learning (30 learning sessions, 30 neurons) shown 

separately for 100, 50 and 0% reward-associated novel objects. Asterisks indicate significant 

variance across the three conditions (P<0.01; Kruskal–Wallis test). Neuronal responses are 

shown separately for Pavlovian and choice trials in Supplementary Figure 2.6. (C) Monkeys’ 

choices during learning. Proportion of choices of the higher-valued fractal CS objects during 

randomly interleaved choice trials (binned like neuronal activity in B). **P<0.01, *P<0.05 (sign-

rank test assessing difference between bins). 
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2.3.5 icbDS uncertainty responses are rapidly shaped by learning 

The previous data prompted us to assess how U+ neuronal responses are shaped by the 

learning of novel object–reward associations (experiment 4). Thus far, we had tested the 

responses of U+ neurons to reward uncertainty arising from knowledge about reward variability 

associated with 50% reward CSs (also called known-uncertainty or risk). However, if uncertain 

object–reward signals in the DS contribute to object learning, then U+ neurons should also signal 

uncertainty that is due to a lack of previous object–outcome associations (also called ambiguity)- 

an uncertainty that can be identified and resolved by learning. To test this, we recorded the 

activity of identified U+ neurons in a Pavlovian procedure in which three novel fractals were 

used as CSs associated with 100, 50 and 0% reward probabilities (n=30 neurons; 11 in monkey 

W and 19 in monkey B). One example U+ neuron is shown in Figure 2.6A. At the start of 

learning, this neuron showed a strong increase in response to all the novel CSs. As the CSs were 

repeatedly experienced, the neuronal activity started to decrease for certain CSs (0 and 100%) 

and remained roughly the same for the reward-uncertain CS (50% reward prediction). The 

population of 30 U+ neurons shows a similar pattern (Figure 2.6B and Supplementary Figure 

2.6). The neuronal responses to certain object–reward associations decreased as the monkeys 

learned (Figure 2.6C). These results demonstrated that U+ neurons signal object–reward 

uncertainty of unknown or novel objects and that the DS uncertainty responses can be rapidly 

shaped by learning, even within a single experimental session. 

2.4 Discussion  

In the caudate–putamen complex we found a population of neurons that signal 

uncertainty of object–reward associations. These U+ neurons were often found in the icbDS. 
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Their uncertainty-selective responses depended on the presence of objects associated with 

reward uncertainty and evolved rapidly as monkeys learned novel object–reward associations. 

Which brain regions supply reward uncertainty signals to U+ neurons? Their average location in 

the striatum may provide a clue. U+ neurons were most often found within the anterior putamen 

and caudate regions that bordered the internal capsule, prominently in the anterior putamen. 

icbDS receives inhibitory inputs from the ventral pallidum177, where some neurons are inhibited 

by reward uncertainty (Supplementary Figure 2.7).16 Given the uncertainty-excitatory responses 

of many icbDS neurons (Figure 2.2), we hypothesize that the inhibition of pallidal neurons by 

uncertainty may open a gate, so that U+ neurons can selectively respond to cortical inputs 

carrying sensory information about objects90,108 and about their reward value or uncertainty.20 

Although precisely which cortical regions send uncertainty and other signals to U+ neurons 

remains to be assessed, recent work has demonstrated the presence of reward-uncertainty 

responsive cells within regions of anterior cingulate cortex (ACC).15 Notably, areas of DS that 

overlap with where we report these U+ neurons receive excitatory inputs from this region of 

ACC.48,49,50(p) The differences in response to uncertainty of ACC and icbDS, however, have yet 

to be assessed. 

The task responses of striatal U+ neurons differentiated them from reward uncertainty-

selective neurons in the anterodorsal septum and the medial basal forebrain. For example, during 

object learning, anterodorsal septal uncertainty-selective neurons responded preferentially to 

knowledge-based uncertainty (often called risk), after monkeys learned the uncertain stimulus–

response association.18 In contrast, during a similar object-learning task, U+ neurons responded 

strongly to novel stimuli, whose conditioned stimulus–unconditioned stimulus relationship was 

not yet learned (Figure 2.6). Unlike U+ neurons, medial basal forebrain reward uncertainty-
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sensitive neurons slowly learned to discriminate between certain and uncertain reward-predicting 

objects.17 This slow learning was not correlated with the fast time course of the monkeys’ 

object–reward associative learning. 17 These data are consistent with the observation that there 

are no known connections from the medial basal forebrain or septum to the striatum and suggest 

that U+ neurons belong to a mostly distinct system for signaling uncertainty of objects that may 

be particularly well suited to contribute to object learning. 

It is noteworthy that U+ neurons did not encode all types of uncertainty, or only 

uncertainty.3,18 First, they did not respond to uncertainty about punishments. Second, on average, 

they discriminated reward-associated CSs from reward-unassociated CSs (Figure 2.2A,C). In 

fact, similar reward-related tonic activity shifts were observed in other neurons that encode 

reward uncertainty.15,16 It remains to be tested whether they are due to context value (or 

relevance), or if they are due to uncertainty that could exist even during the expectation of 

‘certain’ rewards (for example, due to errors in the estimation of reward timing). Third, U+ 

neurons’ uncertainty responses were abolished by the removal of the CS before the trial outcome 

(during trace conditioning). This suggests that striatal U+ neurons’ responses depended on the 

presence of the uncertain CS object. This finding further differentiated striatal U+ neurons from 

uncertainty-enhanced neurons in the medial basal forebrain whose uncertainty selectivity 

persisted when the CS object was removed before the trial outcome (Supplementary Figure 2.5). 

Our study in monkeys and a previous human brain-imaging study10 suggest that icbDS is 

a prominent node for processing information about reward uncertainty. However, it is possible 

that there are other striatal mechanisms for signaling uncertainty, and/or for integrating 

uncertainty with stimulus-feature information, movement kinematics and values.178,179 Indeed, 

different areas of the primate striatum learn and signal values in distinct manners73,76,78,79,106,178–
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181 to support their different roles in action, decision-making, and learning and 

memory.48,49,73,76,77,79,90,106,178,179,182 How uncertainty guides computations across different striatal 

subregions must therefore be an important direction of future studies. Objects in the environment 

are important because they signal rewards or dangers, or because they represent an opportunity 

to learn and change one’s state. In this study, we showed that the basal ganglia signals reward 

uncertainty of object–reward associations—a critical variable for monitoring and learning from 

objects. These results demonstrate a novel role for internal-capsule bordering putamen and 

caudate in controlling behaviors in uncertain contexts. 

2.5 Supplementary material 
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Supplementary Figure 2.1: Supplementary information about the location of U+ neurons 

(A) Estimated locations of U+ neurons (red dots) in the internal capsule bordering striatum 

shown on two coronal slices for each monkey. Formatting, anterior-posterior ranges of the 

neurons on each slice, and the distance of each slice from the center of the anterior commissure 

(AC) are as in Figure 2.4. (B) Three dimensional scatters of neuronal locations relative to the 

center-top of the AC. Red dots – U+, Black dots – other recorded striatal neurons, small black 

dots – neurons that were encountered (but not recorded) during experiments to map the extent of 

the caudate and putamen and to verify locations of the internal capsule and AC. Inset – locations 

of recorded neurons from two monkeys shown in two planes (medial-lateral versus dorsal-

ventral) relative to the center-top of the AC. 95% confidence ellipse (red) around the U+ neurons 

includes 44 U+ neurons and 65 other recorded striatal neurons; 13 of those 65 neurons displayed 

significant correlations with the expected reward values of the CSs (correlations were assessed as 

relationship between the size of expected rewards in the reward amount block and neuronal 

activity during the CS epoch; Spearman’s rank correlations; p<0.05; tested using a permutation 

test; 10,000 shuffles). (C) U+ neurons shown for two monkeys separately (magenta and blue) 

relative to the center-top of the AC. Each plot compares two different anatomical planes. 95% 

confidence ellipses of the two monkeys in all planes were highly overlapped. 
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Supplementary Figure 2.2: Sensitivity indices comparing U+ neurons in the putamen versus 

caudate nucleus. Sensitivity indices (same as in Figure 2.2) are shown separately for putamen 

and caudate U+ neurons. There were no significant differences between neuronal task-responses 

amongst populations of putamen and caudate U+ neurons (ns; Wilcoxon rank sum test).  
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Supplementary Figure 2.3: U+ neurons’ responses in the Appetitive-Aversive procedure. For 

each neuron (indicated by a circle; n=15; Monkey B), we plotted the differences in response 

magnitude between 50% reward CS and 100% reward CS (x-axis) and between 50% CS and 0% 

reward CS responses (y-axis). The responses in the appetitive and aversive blocks are shown 

separately (left and right). Filled circles indicate neurons that displayed significant variability 

across the 3 reward (left) or punishment (right) predicting CSs (Kruskal-Wallis test; p<0.01) 
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Supplementary Figure 2.4: U+ neurons’ responses during choice. (A) Choice-trial structure (left) 

and the monkeys’ choice behavior (right). Monkeys made a choice between two CSs among the 

six well-learned CSs (three indicating reward amounts, and three indicating reward 

probabilities). The inset shows the proportion of trials the monkeys chose 0, 0.125, 50% 0.25, 

and 0.25 CSs over all other CSs. (B) Average normalized neuronal responses of U+ neurons 

during choice trials sorted by the monkeys’ choices. Specifically, neuronal activity was sorted 

into trials in which the monkey chose the object associated with 0.25 ml of juice, (black), the 

object associated with 50% of 0.25 ml of juice (red), or 0.125 ml of juice (blue). Asterisks above 

task epochs indicate statistical differences amongst the 3 trial types (first Kruskal Wallis test 

p<0.01 across three trial types, then Wilcoxon rank sum tests; p<0.01; inset shows the meanings 

of asterisk color). Normalization was done by subtracting the average activity during trial start 

fixation epoch.   
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Supplementary Figure 2.5: Trace conditioning: behavior and comparison of striatum and basal 

forebrain U+ neurons’ responses (A) Licking behavior of two monkeys during trace conditioning 

(measured from CS presentation to outcome). The licking behavior during 50% reward trace and 

non-trace trials was not significantly different (p>0.05). Asterisks indicate significant differences 

(p<0.05; Wilcoxon rank sum test). Error bars denote standard error. (B) Comparison between 

ramping uncertainty selective neurons in the icbDS and the medial basal forebrain (BF). Average 

normalized responses of icbDS U+ neurons (left; n = 32) and BF uncertainty selective neurons 

(right; n=17) during trace and no-trace conditions. Responses are shown for 100% (black) and 

50% (red) CSs separately. Asterisk denotes significant change (sign rank test; p<0.05). (C) 

Uncertainty response % change (trace versus no-trace) for icbDS and BF. Asterisk denotes 

significant difference (Wilcoxon rank sum test; p<0.05).  
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Supplementary Figure 2.6: U+ neurons’ responses during learning for Pavlovian and choice 

trials. Binned neuronal population response across learning (30 learning sessions) shown 

separately for 100, 50, and 0% reward associated novel objects. Asterisks indicate significant 

variance across the three conditions (p<0.05; Kruskal-Wallis test).  
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Supplementary Figure 2.7: The ventral pallidum as one source of uncertainty signals in the 

striatum. The ventral pallidal regions are known to send inhibitory projections to icbDS. These 

regions contain uncertainty-suppressed neurons (Ledbetter, Chen, Monosov, 2016; Journal of 

Neuroscience). Here, we present a schematic of a hypothetical gating of icbDS by pallidal inputs. 

When the pallidum is inhibited by uncertainty, cortical inputs can further shape and drive the 

icbDS response. We recorded the activity of 23 uncertainty-sensitive neurons in the ventral 

pallidum while two monkeys (B and W) experienced familiar/over-trained CSs associated with 

0, 25, 50, 75, and 100 % chance of reward delivery (same as in Experiment 2). 18 neurons were 

suppressed by uncertainty, 5 were enhanced. Consistent with the proposed circuit, we found that 

the average CS responses of the 18 VP uncertainty-suppressed neurons (blue) form 

approximately an inverted mirror image of the response function of icbDS U+ neurons (shown in 

yellow). ** - p < 0.01 (sign rank test); * - p<0.025 (sign rank test). 
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Chapter 3: A primate neural network that controls 

information seeking 

Adapted from: 

J. Kael White*, Ethan S. Bromberg-Martin*, Kaining Zhang, Julia Pai, Sarah H. Heilbronner, 

Suzanne N. Haber, Ilya E. Monosov. A neural network for information seeking. (in review) 

 *denotes shared first authorship and equal contribution to the manuscript 

 

 

Humans and other animals often express a strong desire to know the uncertain rewards 

their future has in store, even when there is no way to use this information to influence the 

outcome.23,26,28,29,31,171,183 However, while much is known about how the brain predicts rewards 

after information has been received184, it is unknown how the brain predicts information itself, 

and how such neural predictions motivate information seeking behavior. Here we show that 

neurons in a network of interconnected subregions of the primate anterior cingulate cortex and 

basal ganglia predict the moment of gaining information about uncertain future rewards. We 

demonstrate that animals preferentially direct their gaze at objects that resolve uncertainty and 

that pharmacological disruptions of this network reduce the motivation to seek information. 

These findings demonstrate a novel cortico-basal ganglia mechanism responsible for motivating 

actions to resolve uncertain situations by seeking knowledge about the future. 

3.1 Introduction 

Stimuli do not often predict outcomes with absolute certainty. As such, humans and 

nonhuman animals have evolved complex nervous systems which can make predictions about 

future outcomes and adjust behaviors to seek information that can resolve uncertainty about 

these predictions. By seeking information that reduces uncertainty about the future, animals can 

maximize the value of interacting with environmental objects. Therefore, a mechanism for 
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signaling when uncertainty surrounding an outcome will be resolved and for directing behavior 

towards seeking information that reduces uncertainty could be useful in complex environments. 

Information-seeking behavior has been demonstrated in a range of species. Interestingly, 

findings in both humans185 and nonhuman primates26–28 demonstrated that the brain screens for 

opportunities to resolve uncertainty by obtaining information. Further, these representations are 

present in areas of the brain implicated in reinforcement learning and motivational control26,27 

and signals in these areas produce information prediction errors26 much like the reward 

prediction errors which in-part guide reward-seeking behaviors.34,186–188 Interestingly, advance 

information about the delivery of future reward is valued enough that humans31 and nonhuman 

animals28 will sacrifice levels of this reward in order to obtain this information. Despite its 

importance to survival and its value to human and nonhuman subjects alike, little is known about 

how and where in the brain information is valued and where information-seeking behaviors are 

promoted. 

Insight into how this may be accomplished comes from research investigating how the 

brain promotes reward-seeking behaviors. The brain has populations of neurons which encode 

RPEs35,37 and help guide behaviors towards primary rewards.32,36,189 The activity of these cells is 

sustained from when the reward is first predicted and ramps to the expected time of reward 

delivery.184 In many cases, these reward prediction signals were directly linked to online reward-

seeking behavior; the strength of these signals are correlated to reward-seeking behaviors77,190–192 

and disrupting the signals alters reward seeking.193,194 

But what are the requirements for a neural network to motivate behavior towards 

information-seeking behavior? It must (A) monitor the level of uncertainty about future events, 

(B) anticipate the time when information will become available to resolve the uncertainty, and 
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(C) causally motivate behavior to obtain information. Here we demonstrate that these criteria are 

met by an anatomically interconnected network comprising three areas of the primate brain: 

ACC and two subregions of the basal ganglia (BG), the internal-capsule-bordering portion of the 

dorsal striatum (icbDS) and the anterior pallidum including anterior globus pallidus and the 

pallidum (Pal). 

3.2 Materials and methods 

3.2.1 General procedures 

Four adult male rhesus monkeys (Macaca mulatta) were used for behavioral, recording, 

and inactivation experiments (Animals B, R, Z, and W). All procedures conformed to the Guide 

for the Care and Use of Laboratory Animals and were approved by the Washington University 

Institutional Animal Care and Use Committee. A plastic head holder and plastic recording 

chamber were fixed to the skull under general anesthesia and sterile surgical conditions. The 

chambers were tilted laterally by 35-40° and aimed at the anterior cingulate and the anterior 

regions of the basal ganglia. After the animals recovered from surgery, they participated in the 

experiments.  

3.2.2 Data acquisition 

While the animals participated in the behavioral tasks we recorded single neurons in the 

anterior cingulate cortex, internal capsule-bordering regions of the dorsal striatum, and anterior 

pallidum including the ventral pallidum and the anterior-most part of the globus pallidus internal 

segment. Electrode trajectories were determined with 1 mm-spacing grid system and with the aid 

of MR images (3T) obtained along the direction of the recording chamber. This MRI-based 

estimation of neuron recording locations was aided by custom-built software (PyElectrode195). In 

addition, in order to further verify the location of recording sites, after a subset of experiments 
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the electrode was temporarily fixed in place at the recording site and the electrode tip’s location 

in the target area was verified by MRI (Figure 3.1). 

Single-unit recording was performed using glass-coated electrodes (Alpha Omega). The 

electrode was inserted through a stainless-steel guide tube and advanced by an oil-driven 

micromanipulator (MO-97A, Narishige). Signal acquisition (including amplification and 

filtering) was performed using Alpha Omega 44 kHz SNR system. Action potential waveforms 

were identified online by multiple time-amplitude windows with an additional template matching 

algorithm (Alpha-Omega). Neuronal recording was restricted to single neurons that were isolated 

online. Neuronal and behavioral analyses were conducted offline in Matlab (Mathworks, Natick, 

MA). 

Eye position was obtained with an infrared video camera (Eyelink, SR Research). 

Behavioral events and visual stimuli were controlled by Matlab (Mathworks, Natick, MA) with 

Psychophysics Toolbox extensions. Juice, used as reward, was delivered with a solenoid delivery 

reward system (CRIST Instruments). Juice-related licking was measured and quantified using 

previously described methods.15  

3.2.3 Behavioral tasks 

We analyzed data recorded from several behavioral tasks which can be grouped into three 

major categories: standard uncertainty tasks, information viewing task (used for recording), and 

information seeking task (used for inactivations). 

3.2.3.1 Standard uncertainty tasks  

These tasks are described in detail in previous work.15,18 They each used a distinct set of 

fractal visual CSs with different associated outcomes. However, they all shared the following 

general outline. Animals were presented with a small white circular trial start cue at the center of 
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the screen. In some tasks animals were required to fixate the trial start cue for a fixed duration 

(typically 0.5-1 s) for the trial to continue; if they failed to fulfill this requirement within a grace 

period (typically 5 s) the trial would be considered an error, they would receive a timeout, and 

the trial would repeat. In other tasks animal were not required to fixate the trial start cue; it was 

simply shown for a fixed duration (typically 1 s). After the trial start period, the trial start cue 

disappeared and a fractal visual conditioned stimulus (CS) appeared on the screen for a fixed 

duration (2.5 s). The CS was randomly positioned at one of three locations: the center of the 

screen, the left side of the screen, or the right side of the screen (at 10 or 12.5 degrees 

eccentricity). In some sessions only the left and right locations were used. Animals were not 

required to gaze at or interact with the CS in any way. At the end of the CS period, the CS 

disappeared and simultaneously the trial’s outcome was delivered. Finally, there was an inter-

trial interval during which the screen was blank (typically randomized between 1-8 s, with 

different durations for different animals and tasks). In some sessions, a small fraction of inter-

trial intervals included the unexpected presentation of different salient events, which could be 

appetitive (juice), aversive (an airpuff, ~35 psi, delivered through a narrow tube placed ~6-8 cm 

from the face15), or audiovisual (an auditory tone sounding and the screen flashing white).  

The standard uncertainty tasks primarily differed in their CSs, outcomes, and block structure: 

- Task A15: Trials were presented in two distinct blocks. In the Probability block, there 

were five CSs associated with 0, 25, 50, 75, and 100% probabilities of 0.25 mL juice. In 

the Amount block, there were five CSs associated with 100% probability of 0, 0.0625, 

0.125, 0.1875, and 0.25 mL juice. Hence for each CS in the Probability block there was a 

matched CS in the Amount block that was associated with an identical mean amount of 

juice, but for which the outcome was certain rather than probabilistic. Each block 
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consisted of 20 trials (4 presentations of each of its 5 CSs, shuffled in a randomized 

order). The two blocks were presented repeatedly in an alternating manner, with each 

block continuing until its 20 trials were correctly completed and then immediately 

transitioning into the other block. 

- Task B16: Same as task A, except it used three Probability CSs (0, 50, 100%) and the 

three corresponding Amount CSs (0, 0.125, 0.25 mL), and each block consisted of 6 or 9 

trials (2 or 3 presentations of each of its 3 CSs). In some sessions, blocks also included 

interleaved choice trials in which two CSs were presented and animals were allowed to 

choose between them with a saccade; our analysis here is of non-choice trials. 

- Task C15: Trials were presented in two distinct blocks. In the Appetitive block, there were 

three CSs associated with 0, 50, and 100% probabilities of 0.4 mL juice. In the Aversive 

block, there were three CSs associated with 0, 50, and 100% probabilities of airpuffs. 

Each block consisted of 12 trials (4 presentations of each of its 3 CSs). 

- Task D15: There were 9 CSs. Four CSs were associated with 25, 50, 75, and 100% 

probabilities of 0.4 mL juice. Four other CSs were associated with 25, 50, 75, and 100% 

probabilities of airpuff. One final CS was associated with no outcome (i.e. 0% probability 

of both reward and airpuff). The CSs were presented in a pseudorandom order. 

- Task E: Three CSs were associated with 0, 50, and 100% probabilities of 0.25 mL juice. 

The CSs were presented in a pseudorandom order. 

3.2.3.2 Information viewing task  

This task began with the appearance of a small circular trial start cue at the center of the 

screen which animals were required to fixate for a fixed duration (typically 0.5 or 1 s). The trial 

start cue then disappeared and was followed in succession by a CS that was displayed for a fixed 
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duration (typically 1 s), which was then replaced by a cue at the same location that was displayed 

for a fixed duration (typically 2 s). The cue then disappeared, and simultaneously the outcome 

was delivered. The trial then completed with a 1 s inter-trial interval. The CSs were presented 

randomly on either the left or right side of the screen (10 degrees eccentricity). There were three 

Info CSs that yielded juice reward (0.25 mL) with 0, 50, and 100% probabilities, and were 

followed by one of two informative cues whose color indicated the trial’s outcome (Figure 

3.3A). There were three analogous Noinfo CSs that also yielded juice reward with 0, 50, and 

100% probabilities, but which were followed by one of two non-informative cues whose colors 

were randomized on each trial and hence did not convey any information about the trial’s 

outcome (Figure 3.3A). In some sessions Noinfo CSs were followed by a single non-informative 

visual cue. There was no apparent difference in behavior or neural activity between sessions with 

one or two non-informative cues; hence their data was pooled. The 6 total CSs were presented in 

a pseudo-random order.  

3.2.3.3 Information seeking task  

This task also began with animals fixating a trial start cue for a fixed duration, followed by a 

CS presented randomly on either the left or right side of the screen.  However, the trial start cue 

remained visible for a fixed duration after CS onset during which animals were required to 

maintain fixation on the trial start cue (typically for 1 s in animal B, 0.25 s in animal R, and 0.5 

or 1 s in animal Z). Fixation breaks were treated as errors: the screen went blank, there was a 1-2 

s penalty delay period, and then the trial repeated from the beginning. After the fixation period, 

the trial start cue disappeared, and animals were free to move their eyes. The task then detected 

the first moment when animals gazed at the CS, defined as the eye position entering a square 

window centered on the CS (i.e. when horizontal and vertical eye positions were within 4° of the 
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center of the CS). If animals gazed at an Info CS it was immediately replaced with the 

appropriate informative cue; if they gazed at a Noinfo CS it was immediately replaced with a 

non-informative cue; if they did not gaze at a CS, no cue was shown. Importantly, regardless of 

their gaze behavior, all stimuli disappeared and the outcome was delivered at the same, fixed 

time after CS onset on all trials in the session (typically 3 s). Thus, gazing at the CS gave animals 

access to the cues but did not give them earlier access to the juice reward. In the version of the 

information seeking task used for inactivation experiments and controls, there were only two CSs 

– an Info CS and a Noinfo CS – that were both associated with 50% probability of 0.25 mL juice 

reward. By ensuring that the probability, amount, and timing of juice reward were identical for 

all CSs on all trials, we minimized the possibility that gaze behavior to the CSs could be 

influenced by different reward expectations or reward prediction errors induced by CS onset.  

In some sessions, neurons recorded using the information viewing task were also recorded in 

interleaved trials or in separate blocks with a version of the information seeking task. These 

information seeking trials were indicated to the animal by a distinct green color of the trial start 

cue (Figure 3.7A). These trials also used six CSs: Info and Noinfo CSs associated with 0, 50, and 

100% reward probability. These six fractal CSs on information seeking trials were visually 

identical to the analogous six fractal CSs used for information viewing trials. Information-related 

neural responses in these information seeking trials were typically similar to activity in 

information viewing trials (e.g. activity ramping up to the time the informative cue would 

become available and to the time a non-informed outcome would be delivered). Note, however, 

that the task design of information seeking trials induced a link between gaze and receipt of 

information: gaze behavior was not completely ‘free’ because it was required if the animal 

wanted to produce the cue, and the cue appeared with variable timing depending on the animal’s 
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behavior. Therefore, to be conservative, data from the information seeking trials was only 

included in our analysis of information signals (Figure 3.4) in a small number of neurons for 

which no data from information viewing trials was available (n=4 ACC neurons in monkey Z). 

Analysis of neural activity in Figure 3.2 and Supplementary Figures 3.1-3.2 uses data from 

all neurons recorded using standard uncertainty tasks in which CSs were associated with all five 

reward probabilities (tasks A and D). Analysis of neural activity during information tasks (Figure 

3.4) uses data from neurons recorded using an information task. 

3.2.4 Muscimol injections  

On muscimol injection sessions, a 33-gauge cannula was inserted through a 23-gauge 

guide tube into a grid hole and to a depth previously identified to be in icbDS or Pal and to 

contain information-related neurons (Supplementary Figure 3.3). The other end of the cannula 

was connected to a 10 µL Hamilton syringe. Behavioral data from the information seeking task 

were collected in blocks of 70-150 correct trials. Before the injection we collected a ‘pre-

injection’ behavioral data set from the animal performing the information seeking task, typically 

for one block (median: 96 correct trials, standard deviation: 24, range: 48-164). After recording 

the baseline data, we used a manual syringe pump (Stoelting) or automated syringe pump 

(Harvard Apparatus) to inject muscimol dissolved in saline. Muscimol concentrations were 8 

mg/mL, injection rates were typically 0.1 µL/min (range: 0.09-0.2), and injection volumes 

ranged from 1.0-2.5 µL in icbDS and 0.545-1.4 µL in Pal. After each injection we collected a 

‘post-injection’ behavioral data set (median: 303 correct trials, standard deviation: 157, range: 

43-839). All pre- and post-injection blocks of data were included in our analysis regardless of the 

animal’s response times or other gaze behavior, as long as the animal remained engaged in the 

task (i.e. generally initiating trials quickly and performing them correctly). On two sessions pre-
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injection data from the same day was not available, so we used the first block of behavioral data 

collected from the same animal on days immediately before or after the session to obtain a 

comparable baseline. On saline injection control sessions, the same procedure was followed 

except that only the saline vehicle was injected (with the same volumes previously used for 

muscimol injections). On sham control sessions, the same procedure was followed (including 

pauses in procedure to simulate setting up the cannula, advancing the cannula, performing the 

injection, etc.), except no cannula was inserted and no injection was given. 

3.2.5 Data analysis  

Neurons recorded in the standard uncertainty tasks were included in our dataset if they 

showed significant responsiveness to uncertainty (activity on uncertain reward CS trials 

significantly different from both 0% reward CS trials and 100% reward CS trials, rank-sum tests, 

both p < 0.05 and both differences with the same sign). For this purpose, activity was measured 

in a broad time window encompassing the CS period to avoid making any assumptions about the 

time course of neural responses (0.1-2.5 s after CS onset). The neuron’s sign of uncertainty 

coding was defined as +1 if its ROC area for discriminating between uncertain reward CS trials 

vs pooled data from 0% and 100% reward CS trials was > 0.5, and defined as -1 if its ROC area 

was < 0.5. Similarly, to avoid making any assumptions about the nature or time course of 

information-related signals, all neurons recorded in the information tasks were included in our 

dataset if they were classified online as potentially uncertainty responsive based on their activity 

on Noinfo trials or during any other uncertainty-related task. The neuron’s sign of uncertainty 

coding was defined in the same manner as in standard uncertainty tasks, using activity from 

Noinfo trials in a 0.5 s window before outcome onset. 
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Neural activity was converted to normalized activity as follows. Each neuron’s spiking 

activity was smoothed with a causal exponential kernel (mean = 30 ms) and then z-scored and 

sign-normalized using the following procedure. The neuron’s average activity timecourse 

aligned at CS onset was calculated for each condition (defined here as each combination of CS 

and cue). These average activity timecourses from the different conditions were all concatenated 

into a single vector, and its mean and standard deviation were calculated. Henceforth, all future 

analyses converted that neuron’s firing rates to normalized activity by (1) subtracting the mean 

of that vector, (2) dividing by the standard deviation of that vector, (3) multiplying by the 

neuron’s sign of uncertainty coding. Thus, normalized activity of +1 in a given task condition 

means that the neuron’s firing rate deviated away from its average firing rate in the same 

direction that it responded to uncertainty, by an amount equivalent to 1 SD of its overall 

distribution of average firing rates during the task. 

Neural uncertainty signals were calculated in specific time windows (e.g. pre-cue, pre-

outcome, etc.) as the ROC area for distinguishing activity on uncertain reward CS trials (25, 50, 

and 75%) from pooled data from 0% and 100% certain reward trials. In the information viewing 

task uncertainty signals were calculated separately for Info and Noinfo trials. To visualize their 

timecourses, they were calculated on neural activity at millisecond resolution after activity was 

smoothed with a gaussian kernel (SD = 50 ms) and sign-normalized based on the neuron’s sign 

of uncertainty coding on Noinfo trials in a 0.5 s pre-outcome window (Figure 3.4). The Info Cue 

Anticipation Index was defined as the difference between its uncertainty signal for Info and 

Noinfo trials in a 0.5 s pre-cue time window. Hence the index was positive if a neuron had a 

higher uncertainty signal in anticipation of Info CSs, and negative if a neuron had a higher 

uncertainty signal in anticipation of Noinfo CSs. The Uncertain Outcome Anticipation Index was 
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defined as the difference between its uncertainty signals computed on two different time 

windows on Noinfo trials: a 0.5 s pre-outcome window, and a 0.5 s post-cue window (0.15-0.65 

s after cue onset). Hence the index was positive if a neuron’s uncertainty signal grew more 

positive between the cue and outcome, and negative if it grew more negative between the cue 

and outcome. Neurons were classified as information-responsive if their Info Cue Anticipation 

Index was significantly different from 0 (p < 0.05, permutation tests conducted by comparing the 

index calculated on the true data to the distribution of indexes calculated on 20000 permuted 

datasets that shuffled the assignment of trials to Info and Noinfo conditions). Neurons were 

classified as having a significant Uncertain Outcome Anticipation Index using the analogous 

permutation test (p < 0.05, shuffling the assignment of data to the post-cue and pre-outcome time 

windows). For analysis of information-oriented gaze behavior, the same two indexes were 

calculated for each neuron except that instead of using neural data they used the behavioral gaze 

data (equal to 1 for milliseconds when the animal’s gaze was classified as being in the stimulus 

window and 0 otherwise). Finally, to plot the timecourse of uncertainty signals from the 

population including neurons with different signs of uncertainty coding, the normalized 

uncertainty signal (Figure 3.4F) was defined as the ‘absolute’ ROC area, i.e. as 0.5 + 

|Uncertainty signal – 0.5|. Thus if the uncertainty signal was excitatory (> 0.5) it was left intact, 

while it was flipped to become > 0.5 if it was inhibitory (< 0.5). 

Latency of uncertainty coding. Each neuron’s smoothed normalized activity aligned at CS 

onset was further smoothed with a 101 ms causal boxcar kernel and then tested at each 

millisecond after CS onset for whether it met the following criteria: (1) highly significant ROC 

area for distinguishing pooled data from uncertain reward CSs from the certain 0% reward CS (p 

< 0.005), (2) highly significant ROC area for distinguishing pooled data from uncertain reward 
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CSs from the certain 100% reward CS (p < 0.005); (3) both ROC areas have the same ‘sign’ (i.e. 

both > 0.5 indicating activation by uncertainty or < 0.5 indicating inhibition by uncertainty). A 

neuron’s uncertainty coding latency was defined as the first millisecond after which it met these 

criteria for at least 24 consecutive milliseconds. See Supplementary Figure 3.1 for the latencies 

and full ROC timecourses in all neurons with detected latencies. This method was chosen to 

produce latencies that resemble those seen in raw traces of neural activity, but the same key 

result (i.e. Pal having shorter latency than ACC and icbDS) was found with other latency 

detection methods (e.g. different smoothing methods, significance criteria, required number of 

consecutive time bins,etc). Each area’s latency was defined as the 1st percentile of its distribution 

of single neuron latencies, and areas were compared by testing whether the difference between 

their latencies was significantly different from that expected by chance (p < 0.05, permutation 

test, conducted by comparing the latency difference calculated on the true data to the distribution 

of latency differences calculated on 20000 permuted datasets that shuffled the assignment of 

neurons between the two areas being compared). 

Rough vs graded uncertainty coding. In standard uncertainty tasks, a neuron’s rough 

uncertainty activity was calculated as the difference in normalized activity between pooled data 

from all uncertain reward CSs and pooled data from the certain 0% and 100% reward CSs. Its 

graded uncertainty activity was calculated as the difference in normalized activity between data 

from the uncertain 50% reward CS and pooled data from the uncertain 25% and 75% reward 

CSs. Neurons were classified as having significant graded uncertainty coding if their graded 

uncertainty activity was significantly different from 0 (p < 0.05, rank-sum test). Areas were 

classified as having graded uncertainty coding if the number of neurons with significant graded 

coding was significantly different from chance levels (p < 0.05, binomial test). 
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Quantification of information seeking behavior during inactivations. Response times 

(RTs) were computed online and used to determine when the CS was replaced by the cue, 

defined as the time between the ‘go’ signal (i.e. the trial start cue’s disappearance) and the gaze 

entering the response window around the CS. To improve the accuracy of RT measurements for 

our offline analysis, RTs were recomputed offline using response windows that were corrected 

for session-to-session variability in eye tracker settings using the procedure described above (i.e. 

centering the window on the observed peak gaze location separately for each CS location and 

each session). We then analyzed the RTs from all correctly performed trials in which the animal 

made a response and there was at least rough agreement between the online and offline RTs (i.e. 

within 0.2 s of each other). These criteria were met by nearly all correctly performed trials 

(n=17968/18035; 99.6%). We then quantified the information seeking bias using an Infobias 

Index based on the mean RTs for the Info and Noinfo CSs: 

Infobias Index = (Noinfo RT – Info RT) / (Noinfo RT + Info RT) 

The Infobias Index was computed separately for each session, and separately for each of 

the 2 x 2 combinations of time in session (pre- vs post-injection) and CS location relative to 

injection site (contralateral vs ipsilateral). We then derived two additional measures. For session 

and each CS location, we defined the change in Infobias index as the difference between post-

injection and pre-injection Infobias indexes. We defined the change in Infobias laterality as the 

difference between the changes in Infobias Index for the contralateral and ipsilateral sides. 

To test whether icbDS and Pal inactivations affected information seeking behavior 

(Figure 3.7C), we computed the mean change in Infobias index and tested whether it was 

significantly different from zero (p < 0.05, permutation test conducted by comparing the true 

mean change in Infobias Index to the distribution of mean changes in Infobias Index computed 
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on 20000 permuted datasets in which pre- and post-injection data were shuffled with each other). 

For pooled data from all inactivation sessions and for control sessions (Figure 3.7C) we used the 

same procedure, except to be conservative we included an additional correction for the different 

numbers of sessions of each type that were collected from each animal, by using weighted means 

such that each animal’s data was weighted by the number of inactivation sessions that animal 

contributed to the dataset. The same key results were obtained in uncorrected data (significant 

change in contralateral Infobias Index during inactivation sessions, p = 0.0015; no significant 

change in Control sessions, p = 0.8786; inactivation sessions significantly different from control 

sessions, p = 0.0243). 

To test how inactivations interfered with information seeking behavior, we analyzed RTs 

separately for Info and Noinfo CSs. RTs were normalized by z-scoring all RTs separately for 

each session and CS location. The mean normalized RT was then calculated for each 

combination of session, time in session (pre- or post-injection), and CS type (Info or Noinfo CS). 

Then for each session and CS type we calculated the change in mean normalized RT (post-

injection – pre-injection). Finally, we tested whether the RT changes for each CS type were 

different from 0 (signed-rank test on per-session normalized RT changes), and whether the RT 

changes for the two CS types were different from each other (signed-rank test on per-session 

difference between normalized RT changes for the two CS types). 

3.3 Results 

3.3.1 Anatomically-connected regions of ACC, icbDS, and Pal contain ramping neurons 

that signal reward uncertainty 

To identify neural networks that are selectively responsive to reward uncertainty, we 

presented monkeys with fractal visual conditioned stimuli (CSs) predicting the delivery of a 
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future juice reward with 0%, 25%, 50%, 75%, and 100% probabilities8,19 while recording across 

areas of ACC, icbDS, and Pal (Figure 3.1). All three areas contained numerous neurons that were 

strongly activated or inhibited by all the CSs that cued uncertain rewards (Figure 3.2A; Figure 

3.2B, cyan, blue, turquoise; 25%, 50%, and 75% reward CSs). These responses were primarily 

excitatory in ACC and icbDS and often inhibitory in Pal (Figure 3.2A).  The average responses 

consisted of sustained ramping to the moment when the uncertain outcome would occur (Figure 

3.2A,B). Importantly, unlike conventional reward-related neurons in these areas15,16, these 

neurons were more responsive to reward uncertainty than reward value; their responses were 

substantially lower for the CSs that cued certain outcomes, even though they had the highest and 

lowest values in the task (black, 100%, certain reward; gray, 0%, certain no-reward; Figure 

3.2A-C). Furthermore, many of these neurons responded to uncertainty in a graded manner8: they 

responded most in the condition with maximal uncertainty (50% reward), less in conditions with 

intermediate uncertainty (75% and 25% reward), and least in conditions with no uncertainty 

(100% and 0% reward).15 Specifically, neurons with a significantly greater average response to 

the 50% CS than to the 75 and 25% CSs were found in all three areas (Figure 3.2D, dark blue; p 

< 0.05, signed-rank test), with much greater prevalence than expected by chance (p < 0.001 in 

each area, binomial tests), and were significantly more prevalent than the opposite response 

pattern (Figure 3.2D, cyan;  p < 0.05 in each area, binomial tests).  
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Figure 3.1: (A) MRIs were taken immediately after recording uncertainty coding neurons with 

the electrode still in place. Shown are coronal views in which the electrode track is visible as a 

black ‘shadow’ on the MRI; the yellow arrow indicates the location of the electrode tip. Top: 

recording site in ACC, at a location symmetrical to the ACC in the opposite hemisphere. Middle: 

recording site in icbDS, at a location intermediate between the body of the caudate and putamen. 

Bottom: recording site in Pal, with the tip adjacent to the ventral boundary of the anterior 

commissure. Abbreviations: cc, corpus callosum; vmPFC, ventromedial prefrontal cortex; Cd, 

caudate; Pu, putamen; ac, anterior commissure; Nb, nucleus basalis. (B) Reconstruction of 

recording sites in ACC (top), icbDS (middle), and Pal (bottom). Circles indicate locations of 

neurons that responded to uncertainty with significant excitation (black) or inhibition (white). 

Structures are shown in the coronal plane. Neurons are projected onto the nearest shown plane; 

text indicates the range of neuron locations.  
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The network refined its uncertainty signals over time. Uncertainty signals emerged 

markedly earlier in Pal (Figure 3.2A, arrows; Supplementary Figures 3.1,3.2; significantly 

shorter latency in Pal than ACC and icbDS, both p < 0.001, permutation tests) but this initial 

signal did not yet encode the graded level of uncertainty (i.e. similar activity for 25, 50, and 

75%; Supplementary Figure 3.2). Uncertainty signals later emerged in both ACC and icbDS at 

roughly similar latencies (Figure 3.2A; Supplementary Figure 3.1; no significant latency 

difference, p = 0.11), and those two areas first significantly encoded the graded level of 

uncertainty, doing so before Pal (50 > 25,75%, Figure 3.2A; Supplementary Figure 3.2). These 

results indicate that a rapid but rough Pal uncertainty signal is followed by a slower, graded 

signal in cortico-striatal areas. Further, these results match the precise anatomical tracers 

performed by our collaborators in the Dr. Suzanne Haber Laboratory outlined in detail in the full 

manuscript from which this chapter was adapted.  
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Figure 3.2: (A) Example responses to the uncertainty task from neurons in ACC (top), icbDS 

(middle), and Pal (bottom). The ACC and icbDS neurons have excitatory ramping activity up to 

the time of uncertain reward: strongest for highly uncertain rewards (blue, 50%), strong for 

moderately uncertain rewards (turquoise colors, 25% and 75%), and weak or absent for certain 

outcomes (black, 100%; gray, 0%). The Pal neuron has similar ramping activity with an 

opposite, inhibitory direction of response. Top of panel: times of each spike (dots) on each trial 

(rows). Bottom of panel: smoothed firing rate for each CS. (B) The population average 

normalized activity of uncertainty coding neurons in each area ramps up to the time of the 

uncertain outcome. Shaded areas are ± 1 SE. Arrow, dashed line, and text indicate each area’s 

latency of uncertainty coding. Gray area below x-axis is the pre-outcome analysis time window. 

(C) Population average pre-outcome normalized activity is well fitted with a second-order 

polynomial function of reward probability (gray lines; shaded areas are ± 1 bootstrap SE) 

indicating an inverted-U relationship between reward probability and neural responses, as 

expected for uncertainty coding. (D) Graded coding of reward uncertainty. Histograms show 

each neuron’s difference in normalized activity between CSs with high (50%) vs. moderate 

(25,75%) reward uncertainty. Arrows indicate the mean. Colored neurons have significantly 

differential activity. In all areas, more neurons are significantly more active for high uncertainty 

(blue) than moderate uncertainty (turquoise). *** indicates more neurons than expected by 

chance (p ≤ 0.001). 
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3.3.2 Many uncertainty-selective neurons across this network anticipate uncertainty 

resolution through the delivery of advance information 

Our findings thus far identify an interconnected cortico-BG network that signals reward 

uncertainty with ramping anticipatory activity. This raises a few key questions: what event is the 

network anticipating? Most crucially, does the network anticipate the moment of receiving an 

uncertain outcome per se, or the moment of receiving information to resolve the uncertainty? 

To answer these questions, we designed a task to separate the time of receiving 

information from the time of receiving the outcome (information viewing task, Figure 3.3A). On 

each trial the monkey was shown a fractal CS that indicated that a reward would be delivered in 

3 seconds with 100%, 50%, or 0% probability. There were two types of CSs. Informative CSs 

(Info CSs) were followed after 1 second by an informative visual cue whose color indicated the 

upcoming outcome (e.g. orange → reward, gray → no reward). Non-informative CSs (Noinfo 

CSs) were followed by a non-informative cue whose color was randomized on each trial and 

hence did not indicate the upcoming outcome. Importantly, there was no way for animals to use 

the information to control or influence the outcome. Thus, neurons that simply anticipate 

uncertain rewards should respond differently during the Info and Noinfo 50% reward CSs, 

because only the Noinfo 50% outcome is uncertain at the time of delivery (Figure 3.3C). 

However, neurons that anticipate information should activate specifically in advance of the time 

when the animal expects to be informed of the outcome, which occurs at different times on Info 

and Noinfo trials: on Info trials information is delivered after 1 second by the informative cue 

(Figure 3.3C, red arrow), while on Noinfo trials the animal is first informed of the outcome after 

3 seconds by receiving the outcome (juice delivery or omission) at the end of the trial (Figure 

3.3C, blue arrow). 
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Figure 3.3: (A) Information viewing task. On Info CS trials, CSs predict 100, 50, or 0% reward, 

and are followed by an informative cue that indicates the outcome with certainty. On Noinfo CS 

trials, analogous CSs are followed by one of two non-informative cues that are randomized and 

hence leave the outcome uncertain until it is delivered at the end of the trial. (B) Left: Mean 

fraction of trials of each type in which a lick was detected in the 500 ms before cue onset. Data 

are from n=18 sessions in which licking was measured and there was reliable differential licking 

that distinguished 100% reward from 0% reward trials. Licks occurred before the cue on ~5% or 

fewer trials, indicating that animals had little or no expectation that juice would be delivered at 

the time of the cue. Notably, the Info 50% reward CS evoked intense gaze and neural activity in 

anticipation of the informative cue (Fig 3), but evoked near-zero licking, indicating that the 

information-related behavior and neural activity cannot be accounted for by expectation of juice 
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reward. If anything, there was slightly but significantly less licking for the Info 50% reward CS 

than for the other Info CSs. There were significant but small differences in licking between some 

other conditions as well (Noinfo 50% vs 0%, p = 0.005; Info 50% vs 0%, p = 0.001; Info 50% vs 

100%, p = 0.032). Right: Same as left, for the 500 ms before outcome delivery. Licks occurred 

on a large fraction of trials, indicating that animals expected juice to be delivered at the time of 

the outcome. Licking was generally consistent with the mean reward in each condition. On 

Noinfo trials licking significantly increased with reward probability (100% > 50%, p = 0.003; 

50% > 0%, p = 0.044; signed-rank tests). On Info trials licking was significantly greater after 

reward was cued than after no-reward was cued, both for trials in which reward was initially 

uncertain (50%→reward > 50%→no reward, p = 0.001) and trials when reward was initially 

certain (100% > 0%, p < 0.001). (C) Left: if neurons ramp to the receipt of information, they 

should also ramp to informative cues on Info trials (red). Right: if neural uncertainty signals 

simply anticipate uncertain juice delivery, they should only ramp up to uncertain outcomes on 

Noinfo trials (blue). 
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Indeed, the cortico-BG network contained a substantial population of neurons that 

anticipated the receipt of information to resolve reward uncertainty. We quantified each neuron’s 

uncertainty signal using the ROC area for using its firing rate to distinguish trials with uncertain 

rewards vs certain rewards (50% vs 100% and 0%). We then calculated an “Info Cue 

Anticipation Index” defined as its uncertainty signal during the last 0.5 sec of the Info CSs (just 

before an informative cue) minus its uncertainty signal during the same time window for the 

Noinfo CSs (just before a non-informative cue). Neurons with significant Info Cue Anticipation 

Indexes were highly prevalent in all three areas of the network (Figure 3.4D,E; 47%, 54%, and 

50% of recorded neurons in ACC, icbDS, and Pal (n=9/19, 13/24, and 21/42, respectively); more 

than expected by chance, all p < 0.05, binomial tests).  

Importantly, as expected for an information-anticipatory signal, the same neurons that 

anticipated informative cues on Info trials also commonly anticipated uncertain outcomes on 

Noinfo trials, and did so in similar manners. For example, the icbDS neuron in Figure 3.4A was 

strongly activated on uncertain reward trials in advance of both informative cues (top, red) and 

uninformed outcomes (bottom, blue), while the Pal neuron in Figure 3.4B was inhibited in 

advance of these task events. To quantify this, we defined an analogous “Uncertain Outcome 

Anticipation Index” as the change in a neuron’s uncertainty signal from the beginning to the end 

of the cue period on Noinfo trials. This index was significant in a substantial number of single 

neurons in all three areas (21%, 63%, and 31% of neurons in ACC, icbDS, and Pal; more 

neurons than expected by chance in all areas, binomial tests, all p < 0.05) and was most prevalent 

in icbDS (higher fraction of significant neurons in icbDS than ACC or Pal, both p < 0.05, 

binomial tests). There was a strong correlation between the two neural anticipation indexes (rank 

correlation = 0.45, p < 0.001, Figure 3.4E). That is, many neurons, especially in ACC and icbDS, 
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were activated in anticipation of receiving information from both cues and outcomes, while other 

neurons, especially in Pal, were inhibited for both. Thus, when examining neurons whose 

uncertainty signals on Noinfo trials significantly anticipated the outcome, the average timecourse 

of their uncertainty signals on Info trials bore a strong resemblance to a hypothetical 

information-anticipatory signal (Figure 3.3C, Figure 3.4F; similar results for all three areas, 

Supplementary Figure 3.4).  
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Figure 3.4: (A) An example icbDS neuron had strong ramping activity anticipating the time of 

receiving information about uncertain rewards: the informative cue on Info trials (top, red) and 

outcome delivery on Noinfo trials (bottom, blue). This activity was greatly reduced or absent 

when the outcome was certain (black, gray). (B) An example Pal neuron had a similar response 

pattern but with ramping inhibition instead of excitation. (C) Differential uncertainty signals 
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emerge in anticipation of informative cues. Each row is a neuron, and the color at each time 

point indicates the difference between its uncertainty signals on Info vs Noinfo trials. Color 

indicates sign of coding (red: more positive uncertainty signal for Info; blue: more negative 

uncertainty signal for Info; color bar indicates scale). (D) Information-anticipatory activity was 

significantly present in approximately half of uncertainty-related neurons in each area. *** 

indicates significantly more neurons than expected by chance, p < 0.001. (E) Correlated 

anticipation of the two reward-informative task events. Many neurons have significant 

Informative Cue Anticipation Indexes (red, y-axis), Uncertain Outcome Anticipation Indexes 

(blue, x-axis), or both (purple). The two indexes are highly correlated; text indicates rank 

correlation and its p-value. ACC, icbDS, and Pal neurons are indicated by triangles, squares, and 

circles. Black line is a linear fit with type 2 regression. (F) The population average uncertainty 

signal from neurons with ramping uncertainty signals on Noinfo trials (blue) closely resembles 

Hypothesis 2: they also have strong ramping activity on Info trials that anticipates the time of 

viewing the informative cue (red). Error bars are ± 1 SE. Gray areas are the time windows for 

calculating the indexes of cue anticipation (pre-cue window) and outcome anticipation (post-cue, 

pre-outcome windows). 
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3.3.3 Monkeys preferentially direct their gaze towards objects associated with uncertainty  

Given the cortico-BG network’s strong information-predictive signal, we next asked 

whether information predictions evoke information seeking behavior in monkeys. Since 

monkeys, like humans, scan uncertain environments for information with their eyes15,26,171, we 

hypothesized that monkeys may anticipate information by directing their gaze to objects in their 

environment associated with the uncertainty to be resolved. Consistent with previous work, we 

found that monkeys licked in anticipation of juice rewards (Figure 3.3B) and that their gaze was 

attracted to visual objects based on their expected reward value (Figure 3.5A, 100% CS > 0% CS 

(black > gray), informative reward cue > no-reward cue (dark red > light red)). 

Strikingly, however, monkeys’ gaze was even more strongly attracted to objects based on 

their uncertainty, especially in the moments before receiving information to resolve that 

uncertainty. On Info trials, monkeys could anticipate receiving information during the Info 50% 

reward CS as they awaited the upcoming informative cue (Figure 3.5A, red arrow). Monkeys 

were substantially more likely to gaze at the Info 50% reward CS than all other CSs (signed-rank 

tests, all p < 0.001). Importantly, this attraction of gaze was specifically related to upcoming 

information rather than to reward value or uncertainty per se. Monkeys gazed at the Info 50% 

reward CS more than at the Noinfo 50% reward CS, which was associated with exactly the same 

reward value and uncertainty but was not followed by information (Figure 3.5B), and more than 

at the 100% reward CSs, which were associated with double the reward value but had no 

uncertainty to resolve (Figure 3.5A,B). Furthermore, this intense gaze at the Info 50% reward CS 

occurred despite near-zero licking, indicating that animals were anticipating the delivery of 

information, not juice reward (Figure 3.3B).  
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Figure 3.5: (A) Monkey’s gaze on Noinfo trials is attracted to objects in anticipation of outcome 

delivery Lines indicate the probability at each millisecond that the animal gazes at the stimulus. 

Shaded areas indicate ± 1 SE (most too small to see). On uncertain 50% reward trials monkeys 

gazed less at the CS than on 100% reward trials, but while viewing the non-informative cues 

their gaze ramped up in anticipation of the outcome until it became greater on uncertain 50% 

than on 100% reward trials. (B) Monkeys’ gaze on Info trials is attracted to CSs in anticipation 

of receiving informative cues about uncertain rewards. Same format as (A). Monkeys gazed 

more at the 100% CS (black) than the 0% CS (gray), but gazed most of all at the uncertain 50% 

CS (red) which could be followed by informative cues indicating either reward (dark red) or no 

reward (pink). *, **, *** indicates p < 0.05, 0.01, 0.001. Monkeys’ gaze at reward cues then 

ramped up to the time of reward delivery, while gaze at no-reward cues was minimal. (C) 

Uncertainty-related gaze behavior in each animal significantly anticipated informative cues (y-

axis) and uncertain outcomes (x-axis). Same format as Fig 3.4E, but analyzing gaze instead of 

neural activity. Colors indicate animals; light dots are single sessions; dark dots are means ± 1 

SE  
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Similarly, on Noinfo trials, monkeys could anticipate receiving information at the end of 

the cue period as they awaited the upcoming reward delivery or omission (Figure 3.5B, blue 

arrow). Again, at that time the monkeys gazed at the cue more during Noinfo 50% reward trials 

than all other conditions (all p < 0.001), even 100% reward trials that had double the reward 

value (Figure 3.5A,B). They did so even though the upcoming information about the outcome 

was delivered through a non-visual modality (receipt of juice or no juice), and even though 

100%, 50%, and 0% Noinfo trials all used exactly the same set of visual cue stimuli; they gazed 

at those cues most avidly on Noinfo 50% reward trials when they were associated with an 

uncertain reward, and did so specifically in the moments before the uncertainty was going to be 

resolved. These monkeys also behaved consistently in standard uncertainty-related tasks that 

lacked informative cues (essentially treating all trials as Noinfo because no cues were available). 

Thus, when we analyzed monkeys’ gaze behavior in the same way that we analyzed neural 

spiking activity, we found that all monkeys had significantly positive Info Cue Anticipation and 

Uncertain Outcome Anticipation indexes, indicative of information-anticipatory behavior (Figure 

3.5C, all p < 0.001, signed-rank test). Next, we compared neuronal activity preceding 

information delivery when the monkeys’ gaze was on the stimulus compared to when the gaze 

was off of the stimulus. We found that neural information signals were present even at moments 

when the monkeys’ gaze was away from the stimuli, but were significantly enhanced during 

matched time points from other trials when the monkeys’ gaze was off the stimulus. This was 

true in both the information and standard uncertainty tasks (Figure 3.6). 

This data suggested that the cortico-BG network’s information signals could be well 

suited to motivate the animal’s information-oriented behavior – a hypothesis we next tested 

through direct pharmacological disruption. 
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Figure 3.6: Mean normalized activity before receipt of information is enhanced when gaze is on 

the stimulus (dark dots/lines) compared to when gaze is off the stimulus (light dots/lines), 

especially for intermediate reward probabilities when reward is uncertain. Error bars are ± 1 SE; 

asterisks indicate significance. 
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3.3.4 Pharmacologically inactivating areas of BG that contain uncertainty-selective neurons 

causally decreases information-seeking behaviors 

Given these findings, we hypothesized that information-predictive neurons in the basal 

ganglia have a causal role in motivating gaze shifts to gain information. If so, then temporarily 

inactivating the basal ganglia subregions that contain these neurons should impair the motivation 

to seek information. We therefore trained monkeys to perform a task in which gaze shifts were 

required to gain information (information seeking task, Figure 3.7A). Monkeys fixated a spot of 

light and then continued to fixate during a delay period while a 50% reward CS was presented on 

either the left or right side of the screen. After the fixation point disappeared (‘go’ signal) the 

monkey was free to gaze in any manner they chose. On trials with an Info CS, gazing at the CS 

caused it to be immediately replaced by an informative cue indicating the trial’s outcome (reward 

or no reward). On trials with a Noinfo CS, gazing at the CS caused it to be replaced by a non-

informative cue. Importantly, the monkeys’ gaze at the CS allowed them to gain information 

about the outcome but did not allow them to influence the outcome itself in any way (i.e. the 

outcome always occurred a fixed time after the ‘go’ signal regardless of whether and how they 

gazed at the CS). In addition, we used a fixed-duration delay period between CS onset and the go 

signal to allow animals to anticipate the moment when information would become available. 

Indeed, animals had strongly anticipatory behavior, at times shifting their gaze onto the CS at 

short latencies before they could have perceived and reacted to the ‘go’ signal (Figure 3.7B, 

response times (RTs) < 50 ms). Monkeys were highly motivated to seek information, shown by 

their much faster RTs to shift their gaze onto Info CSs than Noinfo CSs (Figure 3.7B). We 

quantified the response bias favoring the info CSs with an “Infobias Index” (Figure 3.7B) which 
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was significantly positive in every session for every animal (n=43/43 sessions, all p < 0.05, 

permutation tests). 
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Figure 3.7: (A) Information seeking task. Monkeys were shown a CS, waited for a ‘go’ signal, 

and then were allowed to gaze at it. Gazing at an Info or Noinfo CS caused it to be replaced with 

an appropriate informative or non-informative cue. Regardless of whether or when animals 

gazed at the CS, the outcome was delivered a fixed time after CS onset. (B) RT distribution for 

animal B. The animal had much faster RTs for Info trials (red, mean = 144 ms) than Noinfo trials 

(blue, mean = 239 ms). The animal often anticipated the time that information would become 

available, as indicated by the prevalence of anticipatory saccades especially on Info trials (e.g. 

RTs < 50 ms). This histogram includes all data that was collected when inactivations were not 

being performed. It shows n=1962/1966 (99.8%) of those RTs; not visible are four outliers from 

Noinfo trials (RT = 0.741, 0.748, 1.326, 1.335 s). Text indicates the equation for the Infobias 

Index. (C) Muscimol inactivation effect on RTs to contralateral CSs, quantified as the change in 

Infobias Index (after– before). There are significant reductions in Infobias Index for icbDS 

inactivations (green), Pal inactivations (blue), and all inactivations (black), but not control 

sessions (gray). *, **, *** indicate p < 0.05, 0.01, 0.001. Error bars are ± 1 SE. (D) Cumulative 

distributions showing each session’s inactivation effect on the Infobias Index for contralateral 

CSs. Inactivation sessions consistently reduce the information bias while control sessions do not. 

 

 

 

 

 

 

 



79 

  

Consistent with the lateralized functions of basal ganglia circuitry196,197, we predicted that 

unilateral inactivations would reduce information seeking behavior directed toward objects in 

contralateral space. Indeed, unilateral injections of muscimol, a GABAA agonist, into either 

icbDS or Pal in the vicinity where information-anticipatory neurons were recorded caused the 

information seeking response bias to be significantly reduced in contralateral space (Figure 

3.7C,D; icbDS, n=9 sessions, p = 0.028; Pal, n=8 sessions, p = 0.031; all inactivations, n=17, p = 

0.001; permutation tests; see Supplementary Figures 3.3 for injection sites and effects in each 

session). No significant change was observed in a control dataset consisting of sham and saline 

injections (Figure 3.7C, gray, n=26 sessions, p = 0.93). In addition, inactivations had no 

significant effect on information seeking for ipsilateral CSs (all p > 0.4, Supplementary Figure 

3.5). Thus, relative to control sessions, inactivations caused the information seeking bias to 

become lateralized – significantly shifted away from the contralateral side (p = 0.019, 

Supplementary Figure 3.5). 

We further investigated the mechanism by which icbDS and Pal activity promote 

information seeking. Our data suggest that icbDS and Pal have reciprocal inhibitory connections 

and tend to encode information predictions in opposite manners, with icbDS neurons activated 

and Pal neurons commonly inhibited (Figures 3.2,3.3). We therefore hypothesized that icbDS 

and Pal activity have opposite influences on motivated gaze behavior, such that information-

oriented gaze shifts are motivated by icbDS activity and suppressed by Pal activity. The icbDS is 

primarily active during the Info CS, so inactivation should slow gaze shifts to the Info CS while 

leaving responses to the Noinfo CS relatively intact. Conversely, Pal is normally inhibited during 

the Info CS, so inactivation should leave responses to the Info CS relatively intact while 

speeding gaze shifts to the Noinfo CS. Both of these predictions were borne out in the data. 



80 

  

Inactivation of icbDS slowed gaze shifts to the Info CS but did not significantly change RTs to 

the Noinfo CS (Supplementary Figure 3.6B, left, Info CS p = 0.0003, Noinfo CS p = 0.64, rank-

sum tests; significantly different changes for Info vs Noinfo, p = 0.0081, permutation tests). 

Conversely, inactivation of Pal speeded gaze shifts to the Noinfo CS but did not significantly 

change RTs to the Info CS (Supplementary Figure 3.6B, center, Info CS p = 0.17, Noinfo CS p = 

0.001; significantly different changes for Info vs Noinfo, p = 0.0046). Thus, icbDS activity 

motivated gaze shifts to gain information, while Pal activity suppressed motivation to gaze at 

objects that would not yield information. 

Importantly, these inactivation effects on information seeking were not caused by 

generalized effects on overall motivation to perform the task, which could potentially be affected 

by inactivation of striatum and pallidum circuitry involved in primary reward seeking 

behavior.198–202 Specifically, icbDS inactivations slowed RTs to the Info CS without reducing 

measures of general motivation, while Pal inactivations speeded RTs to the Noinfo CS without 

increasing measures of general motivation (Supplementary Figure 3.7). If anything, Pal 

inactivations speeded RTs to the Noinfo CS in spite of a modest reduction in general motivation 

to perform the task (Supplementary Figure 3.7), consistent with similar reductions of motivation 

from previous Pal inactivations.198–201  

3.4 Discussion 

Our work demonstrates the existence of a neural network responsible for motivating 

actions to resolve uncertain situations by seeking knowledge about future rewards. Previous 

studies identified cortical and basal ganglia networks that make conventional predictions about 

when future rewards are available and motivate behavior to seek those rewards.2,184,196,203 Indeed, 

our monkeys had strong tendencies to gaze at visual stimuli based on their reward value. 
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However, the novel ACC-icbDS-Pal neurons we report here have relatively little response to 

reward value, and hence their primary function is not likely to be control of such reward value-

oriented behavior. Instead, they have a quite distinct function: they predict when information will 

become available to resolve reward uncertainty and motivate gaze behavior to obtain that 

information. This information seeking gaze behavior can be even more potent than the attraction 

of gaze to primary reward: our monkeys gazed much more avidly at the CS that provided 

informative cues than at any other stimulus, even CSs and cues that were associated with double 

its expected reward value. Our data show that this information seeking gaze behavior is very 

similar to activity observed in the cortico-BG network. 

Our data is crucial evidence for theories of reward learning, overt attention, and 

economic  decision making, which propose that objects and events in the world are assigned 

salience both by neural systems that track primary reward value and its uncertainty170,179,204,205, 

and by a system that anticipates information to resolve uncertainty.26,29,206–208 Furthermore, our 

data demonstrates a neural mechanism through which information seeking can compete and 

interact with primary reward to drive ongoing behavior.28,171,209,210  

In fact, information seeking goes hand-in-hand with primary reward seeking in natural 

environments. Most experimental studies of reward seeking begin with the presentation of a cue 

stimulus (or an environmental context) that tells the subject what reward to predict and what 

actions are needed to obtain it. However, rewards in natural environments can be scarce and 

uncertain, and fully predictive reward cues rarely come for free or materialize from thin air. In 

these situations, organisms must first seek and obtain information about the rewards that are 

available in their environment; only then can they predict the value of those rewards and use that 

value to motivate reward seeking behavior. In this sense, the cortico-BG network for information 
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seeking may be critical to ensure that organisms seek out the reward-related cues in their 

environment that are necessary for the proper operation of the well-known networks that predict 

and seek primary rewards.2,184,196,203,210 Indeed, information-related neurons in all three areas 

were intermixed with other neurons that encoded the reward value of stimuli and 

outcomes2,184,196,203,210, indicating that information- and reward-related neurons are well-

positioned to support each other’s computations. 

While information-anticipatory signals were present in all three areas of the cortico-BG 

network, each area also had distinct features suitable for unique contributions to information 

seeking. Notably, fluctuations in ACC information signals were the earliest predictor of future 

behavior. ACC information signals changed several hundred milliseconds before gaze shifts, 

while BG signals changed more proximally to behavior. This finding supports and extends 

theories that ACC is especially important for motivating behavioral shifts to explore available 

prospects and learn their reward value and other properties211–213, tracking their level of 

uncertainty and how it evolves over time as beliefs are updated in response to surprising 

outcomes4,212,214–218, and using this information to decide how to control future cognition and 

behavior.212,219 In particular, while it is well acknowledged that the ACC needs to receive a broad 

array of reward- and uncertainty-related information to perform these functions209,219, our data 

indicates that the ACC is not merely a passive recipient of this information; rather, the ACC is 

tightly linked to the emergence of motivational drive to actively seek out that information from 

the environment.  

In addition, our findings indicate that information seeking behavior is motivated by a BG 

circuit mechanism that is analogous but distinct from the BG circuits that motivate conventional 

reward-seeking behavior. There are two key parallels. First, behavior-related fluctuations in BG 
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information signals follow fluctuations in cortex and are proximal to behavioral gaze shifts. This 

is consistent with classic theories of cortico-BG circuits90 and work on cortex-striatum 

interactions220–222 suggesting that cognitive and motivational signals can be computed in cortex 

and then sent to BG where they are processed and used to guide behavior. Second, the specific 

functions of each BG subregion in information seeking are consistent with classical BG circuit 

motifs: notably, icbDS and Pal neurons commonly encode information signals with opposite 

signs and these areas have opposite causal influences on behavior, such that icbDS activity 

speeds gaze shifts to gain information while Pal activity slows gaze shifts that will not provide 

information. This resembles analogous findings for BG areas involved in primary reward 

seeking: antagonizing D1 receptors in visuomotor dorsal striatum slows gaze shifts to gain large 

juice rewards87, while inactivation of Pal speeds gaze shifts to gain small juice rewards.199  

Importantly, however, the BG mechanisms underlying physical reward- and information-

oriented behavior are at least partially distinct at the neuronal and behavioral levels: (1) when 

animals avidly gazed at the Info CS in anticipation of viewing the informative cue, they had 

near-zero licking behavior, indicating that they were not anticipating juice reward; (2) the 

cortical and BG neurons we identified that are linked to information-anticipatory behavior 

primarily anticipated the moment of gaining information, not the moment of gaining juice 

reward; and (3) inactivation effects on information seeking could not be explained as a result of 

generalized effects on juice reward seeking. Thus, this cortico-BG network appears to be 

specially focused on online information seeking behavior. This is in contrast to other BG circuits 

and interconnected areas involved in reward prediction errors and reinforcement, which 

commonly encode information and primary reward in a common currency.26,28 In addition, 

whereas classical theories of cortico-BG circuits that classify Pal as an output structure90,223, our 
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data extends previous results201 by showing that Pal in fact responds earliest to uncertainty-

related events. This is consistent with theories that BG rapidly selects salient stimuli to guide 

future behavior.224,225 Our data supports a scenario in which (A) Pal first signals a rapid, rough 

assessment of reward uncertainty; (B) ACC and icbDS first signal the precise graded level of 

uncertainty; and (C) the resulting representation of uncertainty ramps up to the time of its 

resolution by information, and drives ongoing information seeking behavior. 

Given the link between the ACC-icbDS-Pal network and information seeking behavior, 

variations in the network’s activity could be responsible for the natural variations in information 

seeking behavior that are commonly found across individuals185,210,216 and tasks.226,227 In the 

same vein, it is notable that ACC and BG are implicated as sites of dysfunction and targets for 

treatment in human disorders of motivated behavior (such as obsessive-compulsive 

disorder228,229, Parkinson’s disease230, and drug addiction58) that are known to affect reward- and 

uncertainty-related behavior.231–236 Our results raise the possibility that these disorders and 

treatments may also affect the motivation to seek information about future events. While this has 

been little studied, there is evidence that Parkinson’s disease reduces the motivation to gather 

information needed for upcoming decisions237 and impairs learning from early access to 

information about uncertain outcomes238 Taken together, our work provides a foundation for 

understanding the neural network mechanisms by which information is detected, predicted, and 

used to motivate behavior. 

3.5 Supplementary material 
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Supplementary Figure 3.1: (A) Cumulative distribution of latencies for all single neurons 

recorded during standard uncertainty tasks that had detected latencies of uncertainty coding. 

Circles, dashed vertical lines, and text indicate the estimated population latency of uncertainty 

coding in each area (error bars are ± 1 bootstrap SE). Uncertainty signals emerge first in Pal, 

followed by ACC and icbDS at similar latencies. (B) Heat map of uncertainty coding over time 

for the neurons in (A). Top: ACC; middle: icbDS; bottom: Pal. Each row is a neuron. Black dots 

indicate the detected latency of uncertainty coding. Color indicates the neuron’s uncertainty 



86 

  

coding at each time during the task (red = more active for uncertain than certain CSs, blue = less 

active for uncertain than certain CSs, white = no uncertainty coding). Uncertainty coding for is 

quantified based on the ROC area for using the neuron’s activity to discriminate between 

uncertain vs certain CSs. For this latency analysis we conservatively calculate the uncertainty 

coding at each time point as the least extreme of two ROC areas: one for discriminating all 

uncertain CSs from the 100% reward CS, and the other for discriminating all uncertain CSs from 

the 0% reward CS. Uncertainty coding is predominantly excitatory in ACC, almost exclusively 

excitatory in icbDS, and predominantly inhibitory in Pal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



87 

  

 

 

Supplementary Figure 3.2: In order to directly compare rough and graded uncertainty-related 

activity, they are both quantified here in terms of normalized activity. (A) Population average 

rough uncertainty signal for each area, defined as the difference in mean normalized activity 

between uncertain CSs (25%,50%, and 75%) and certain CSs (0% and 100%). The shaded area is 

± 1 SE. Asterisks indicate significant differences from 0 (signed-rank test, p < 0.05). Consistent 

with the latency analysis in Fig S1, the rough uncertainty signal reaches significance first in Pal 

and later in ACC and icbDS. (B) Population average graded uncertainty signal in each area, 

defined as the difference in mean normalized activity between the maximally uncertain CS 

(50%) and the moderately uncertain CSs (25% and 75%). There is a trend for a graded 

uncertainty coding at all time points in all areas, but it grows and reaches significance first in 

ACC and icbDS, and later in Pal. Thus, while rough uncertainty coding emerges first in Pal, 

graded uncertainty coding becomes prevalent first in ACC and icbDS. 
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Supplementary Figure 3.3: (A) Reconstructed 3D coordinates of each neuron in the dataset, 

shown for all areas (indicated by colors) and all animals (indicated by symbols; see legend). 

Coordinates are relative to the midline, superior tip of the anterior commissure (AC). Top shows 

coordinates in the horizontal plane. Bottom shows coordinates in the coronal plane. The three 

areas where uncertainty-responsive neurons were found were clearly anatomically distinct from 

each other, and were located in similar, overlapping locations in all animals. (B) Same as (A) 

with an overlay showing the reconstructed coordinates of the injection sites. Colors indicate area 

(icbDS or Pal) and substance (muscimol or saline; see legend). The injection sites for icbDS and 

Pal were clearly distinct from each other and overlapped the locations of uncertainty-responsive 

neurons in their respective areas. The injection sites for saline overlapped with the injection sites 

for muscimol in the same area. 
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Supplementary Figure 3.4: Same as Fig 3.2G,H, plotted separately for each area. (A,C,E) Same 

as Fig 2H for each area. The average uncertainty signal of neurons that had a significant ramping 

uncertainty activity measured only using Noinfo trials (i.e. cells with a significant Uncertain 

Outcome Anticipation Index, p < 0.05, permutation test). Note that these neurons are selected 

solely based on their activity anticipating the outcome on Noinfo trials. Even so, in all areas 

these populations show a strong uncertainty signal in the same direction anticipating the cue on 

Info trials. Thus, these neural populations had information-anticipatory activity resembling the 

theoretical pattern in Fig 2G. (B,D,F) Same as Fig 2G for each area. Best-fit lines from type 2 

regression are plotted for all areas with significant correlations (p < 0.05); arrows are plotted for 

all areas with significant mean indexes different from 0 (p < 0.05). All areas show coding 

indexes consistent with information-anticipatory activity, though in different manners due to the 

different signs of neural coding in icbDS vs ACC and Pal. icbDS shows an especially strong 

pattern of information-anticipatory activity. icbDS neurons only encode uncertainty with a 
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positive sign, and nearly all neurons are in the upper right quadrant, indicating positive 

anticipation of both informative cues and uncertain outcomes (mean Info Cue Anticipation Index 

= +0.27, mean Uncertain Outcome Anticipation Index = +0.24; both significantly greater than 0, 

signed-rank tests, both p < 0.0001). These two indexes are generally consistent across neurons 

with relatively low variability so there is no significant correlation between them (rho = -0.27, p 

= 0.195). By contrast, ACC and Pal populations included subsets of neurons with different signs 

and variable strengths of uncertainty coding in standard uncertainty tasks (Fig S1). As a result, 

information-anticipatory activity should not necessarily lead to non-zero population average 

indexes, but should result in the two indexes being correlated, indicating that individual neurons 

anticipate both informative cues and uncertain outcomes in similar manners. Indeed, in both 

areas there is a strong and significant correlation such that cells with a more positive Info Cue 

Anticipation Index also have a more positive Uncertain Outcome Anticipation Index (ACC: p = 

0.018; Pal: p = 0.015) – the same pattern seen in Fig 2I for the population of all uncertainty-

responsive neurons across the network. 
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Supplementary Figure 3.5: (A) Mean Infobias Index in each animal. All animals had 

significantly positive Infobias Indexes in the mean over all sessions shown here and in all 

individual sessions (n=43/43; all p < 0.05, permutation tests). (B) No apparent change in Infobias 

Indexes for ipsilateral CSs. Same format as Fig 4C, but for ipsilateral CSs. There is no 

significant change resulting from inactivations and no significant difference between 

inactivations and control. (C) Inactivations change the laterality of information seeking behavior 

relative to control sessions. Inset: cumulative distributions of change in infobias laterality for 

inactivations (black) and controls (gray). Change in infobias laterality was quantified as: (change 

in Infobias Index for contralateral CSs) – (change in Infobias Index for ipsilateral CSs). Bar plot: 

difference in the change in infobias laterality between inactivations and controls. Error bars are ± 

bootstrap SE. The change in infobias laterality was more negative for inactivations than controls 

(p = 0.019, permutation test), indicating that information seeking behavior was shifted away 

from the contralateral side relative to controls. 
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Supplementary Figure 3.6: (A) Predictions: the two BG areas should influence information 

seeking in distinct manners, such that icbDS inactivation slows RTs to obtain information (left, 

Info CS, red), Pal inactivation speeds RTs that will not obtain information (middle, Noinfo CS, 

blue), and controls have no effect (right). (B) Inactivation results, quantified by comparing 

normalized RTs (Methods) for the Info CS (red) and Noinfo CS (blue) before vs. after 

inactivation. icbDS inactivation slowed RTs to the Info CS without any significant effect on 

Noinfo RTs (left); Pal inactivation speeded RTs to Noinfo CS without any significant effect on 

Info RTs (middle); control sessions had no significant effect on RTs to either CS (right). Error 

bars are ± 1 SE. 
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Supplementary Figure 3.7: Inactivation effects on general motivation and reward responsiveness. 

We quantified the animal’s motivation to perform the task using two conventional measures of 

general motivation: the response time to initiate a trial by fixating on the fixation point on 

correctly performed trials and the probability of making an error during the trial (C). To 

summarize these measures and gain statistical power to detect any potential small effect of 

inactivation on motivation, we created a composite Motivation Index (A,B) pooling these 

measures by z-scoring each measure within each animal, averaging the two measures within each 

session, and then flipping its sign (so that positive Motivation Index indicates higher motivation 

to perform the task). 
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Chapter 4: Conclusion 

 Neuroscientists, psychologists, and economists alike have long reported that humans and 

nonhuman animals often prefer to resolve uncertainty about the future at the earliest possible 

timepoint. This preference is strong enough that humans and nonhuman primates are willing to 

sacrifice an amount of upcoming reward in order to obtain information about uncertain 

outcomes, even if this information does nothing to change the value or timing of the outcome. 

These findings suggest that the information about uncertain outcomes itself has motivational 

value. In this thesis, we drew inspiration from the large body of research which identifies and 

describes how the brain monitors, predicts, and motivates behaviors toward pursuing primary 

rewards. Prior studies detailed diverse cortico-BG networks which contribute to these reward-

seeking behaviors. Despite the importance of reward-related information to survival, there 

remain expansive gaps in there literature as to how the brain motivates behaviors towards 

uncertainty resolution through information seeking.  

 Here we presented two studies which expand our understanding of signals within the 

primate brain that underlie reward uncertainty processing and may play a direct role in 

motivating information-seeking behaviors: 

 In the first study we identified a population of neurons within specific, internal capsule-

bordering regions of the dorsal striatum which selectively respond to objects  associated with 

uncertain outcomes. We found that the response of these neurons was selective only to uncertain 

rewarding outcomes and not punishing ones and that it discriminated between objects which 

predicted different levels of reward uncertainty. We reported that this activity was largely object-

presence-dependent and could be reduced by removing the object prior to outcome delivery and 

that it evolved rapidly as animals learned the value of new object-outcome associations.  
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 Working with our collaborators in the Dr. Suzanne Haber Laboratory, we were able 

determine the locations of projection sites from ACC to icbDS, as well as between areas of 

icbDS and pallidum. The regions that project or receive inputs from icbDS contained uncertainty 

and information anticipation signals similar to icbDS.  

 In the second study we interrogated the response of single neurons across an identified 

neural network which spans areas of cortex and BG and found that this activity motivates 

information-seeking behaviors that resolve uncertain outcomes. First, we confirmed the existence 

of neurons whose activity was modulated by reward uncertainty in areas of ACC, icbDS, and 

pallidum. We then demonstrated that a significant portion of neurons in each of these three areas 

‘shifted’ their uncertainty-anticipatory signal to task epochs where uncertainty was resolved by 

the delivery of advance information, rather than by the task outcome itself. Moreover, we found 

that each brain area had distinct characteristics in its information-anticipatory signal and that the 

sign of each signal is congruent with observed anatomy between these structures. We 

demonstrated that during uncertainty monkeys preferentially direct their gaze at objects 

associated with gaining information to resolve uncertainty, looking more frequently at these 

objects in the time preceding uncertainty resolution. This behavior is much like the observed 

changes in uncertainty-related activity in the ACC, icbDS, and pallidum neurons. Finally, we 

demonstrated that monkeys shift their gaze faster  towards objects which give information about 

uncertain outcomes and that differences between reaction times to informed and non-informed 

objects can be altered by disrupting the activity of BG members of this network. By inactivating 

areas of either the DS or pallidum, we were able to decrease information-seeking bias by 

differentially influencing reaction time towards informative and non-informative secondary cues. 
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Following inactivations in DS, subjects were slower to shift their gaze towards informative cues 

where inactivations in pallidum resulted in faster gaze shifts towards non-informative cues.  

 In natural environments reward-seeking and information-seeking behaviors are often 

performed in conjunction with one another; animals must first seek out information about 

primary rewards within their environment and then act to pursue those rewards. The level of 

uncertainty in a situation is a crucial variable for determining when information is necessary and 

when it can be learned from objects within an environment. Our research sheds light on the 

mechanisms by which similar brain areas- and even similar network structure motifs- that 

motivate behaviors towards pursuing primary rewards also motivate behavior towards seeking 

information to resolve uncertainty about those rewards.  

 Within the BG, for example, previous studies identified contrasting roles of the dorsal 

striatum and pallidum in guiding behavior towards primary rewards of different sizes. When DS 

activity was disrupted, animals’ gazes were slower to shift towards objects which gave large 

rewards.87 Conversely, inactivations within pallidum produced faster reaction times to objects 

which gave small rewards.199 Here, we reported corresponding effects, but which are specific to 

information-seeking preferences rather than reward size.  

Our findings also provide insight into the internal circuitry of the BG more broadly. The 

striatum is typically considered an input nucleus of the BG and the pallidum an output nucleus, 

suggesting that a signal within the BG would emerge first within the striatum and then later in 

pallidum. Instead, we report that generalized uncertainty signals emerge first in pallidum and 

later in icbDS and ACC. These findings support more recent theories that implicate the BG in 

rapid responses to objects in an environment that can influence future interactions with these 

objects.231,232 Indeed, we observed that uncertainty responses in pallidum were very fast to 
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emerge, but that these responses lacked information on specific levels of uncertainty predicted by 

an object. In contrast, later signals in ACC and icbDS contained a refined signal of uncertainty, 

which significantly discriminating between objects and differentiated between levels of 

uncertainty. This supports popular concepts of ACC, which suggest its importance in foraging 

and exploration, combining cognitive and motivational variables.4,154,155 These integrated signals 

could then be projected  to the BG to guide behaviors through known pathways.46–49   

  Clinically, there are large gaps in our understanding of both how emotion and cognition 

are impacted by uncertain states and how the brain alters behaviors during information-seeking 

to reduce these states. As a result, mental states associated with mis-evaluation or intolerance of 

uncertainty in a patient’s life, such as generalized anxiety disorder238,239, obsessive-compulsive 

disorder239–241, and impulsive risk-taking242–244, remain inadequately treated. Indeed, studies 

suggested that disease states such as these could, at least in part, be driven by pathology in the 

striatum and related cortico-BG pathways. Furthermore, diseases which disrupt normal function 

of the striatum have noted consequences on a patient’s ability to accurately gauge levels of 

uncertainty and risk in their daily lives.245,246 Bettering our understanding of how the brain 

responds to uncertain states and how these states might drive behaviors towards seeking 

information to reduce this uncertainty could help to develop more precise interventions for these 

ailments. 

 Ultimately, this work identifies novel mechanisms by which the brain anticipates 

uncertainty and motivates behavior towards seeking information to resolve it. It demonstrates 

that information-driven behaviors can be reduced by disrupting these mechanisms.  Our findings 

add to the field’s understanding of interactions within basal ganglia and across cortico-basal 

ganglia network motifs and offers insight into how the brain might use analogous cortico-basal 
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ganglia networks to motivate the concurrent information-seeking and reward-seeking behaviors 

necessary for survival in our complex and uncertain world. 
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