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ABSTRACT OF THE THESIS 

Spatial Navigation Ability as a Predictor of Increased Clinical Impairment 

by 

Taylor Hendershott 

Master of Arts in Psychological and Brain Sciences 

Washington University in St. Louis, 2019 

Professor Denise Head, Chair 

Professor Jeffrey Zacks 

Professor Brian Carpenter 

Spatial navigation deficits are observed in Alzheimer disease (AD) cross-sectionally, but 

prediction of longitudinal clinical decline has been less examined. Cognitive mapping (CM) was 

assessed in 95 participants and route Learning (RL) was assessed in 65 participants at baseline. 

Clinical progression over an average of 4.16 years was assessed using the Clinical Dementia 

Rating scale. Relative predictive ability of these tasks was compared to episodic memory, 

hippocampal volume and cerebrospinal fluid (CSF) biomarkers (ptau181/Aβ42 ratio). CM and RL 

were significant predictors of clinical progression (ps<.032). All measures, except RL-Learning, 

remained significant predictors with episodic memory in the models (ps<.048). CM interacted 

with the hippocampus and ptau181/Aβ42 in prediction (ps<.013). CM, RL and episodic memory 

evidenced strong diagnostic accuracy (AUCs=.894, .794 and .735, respectively) with CM 

tending to perform better than episodic memory (p=.056). Taken together the results suggest that 

baseline spatial navigation performance may be appropriate for assessing risk of clinical 

progression.

  

 



1 
 

Chapter 1: Introduction 
There is a current research emphasis on developing cognitive measures that are sensitive to 

preclinical Alzheimer disease (AD), which is associated with an increased risk of developing 

symptomatic AD (Jack et al., 2018; Vos et al., 2013). During preclinical AD, individuals are 

clinically normal but evidence AD-related pathological changes, determined using biomarkers 

for beta-amyloid deposition and neurofibrillary tangles (Bloom et al., 2014; Jack et al., 2018; 

Price et al., 2009; Price & Morris, 1999). Thus, preclinical AD is associated with decreased 

cerebrospinal fluid (CSF) Aβ42, increased CSF phosphorylated tau (ptau181), and elevations in 

Positron Emission Tomography (PET) measures of amyloid and tau (e.g., Brier et al., 2016; Roe 

et al., 2013). Additionally, smaller brain volumes have been reported in preclinical AD, 

including smaller hippocampal volumes (Bernard et al., 2014; Storandt et al., 2009; Gordon et 

al., 2016; but see Clark et al., 2018; Schoonenboom et al., 2008). Sensitive cognitive measures 

for the preclinical phase are important for determining trajectories of cognitive decline and 

response to intervention, as future disease modifying treatments may be most effective if 

administered during the earliest stages of AD (Garcia-Alloza et al., 2009). Considering the 

expense and/or invasiveness of current methods in identifying preclinical AD (i.e., lumbar 

puncture, PET), cognitive tasks may represent an opportunity for a more accessible and lower 

risk initial screening procedure (Jack et al., 2018).  

Existing methods for delineating cognitive deficits in mild cognitive impairment (MCI) and 

symptomatic AD tend to focus on traditional psychometric measures, with an emphasis on 

episodic memory. However, these may not be sufficiently sensitive to more subtle cognitive 

difficulties present in preclinical AD (Hedden et al., 2013; Loweinstein et al., 2018; Rentz et al., 

2013). There is emerging interest in targeting spatial navigation abilities that may prove more
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 sensitive to the preclinical phase than current psychometric measures used in identifying MCI 

and symptomatic AD (Ritchie et al., 2017; Weintraub et al., 2018). The interest in spatial 

navigation is consistent with amyloid and tau deposition, as well as volumetric declines, 

occurring early in brain regions that subserve this function (e.g., hippocampus, entorhinal cortex, 

inferior parietal lobule, precuneus) (Braak et al., 2015; Coughlan et al., 2018; Storandt et al., 

2009; Thal et al., 2002). 

Deficits in multiple aspects of spatial navigation are consistently observed in MCI and 

symptomatic AD (Lithfous et al., 2013; Coughlan et al., 2018), including impairments in both 

route learning and cognitive mapping. Route learning is based on an egocentric representation 

and a sequence of body-turns in relation to environmental features. Cognitive mapping involves 

navigating based on a world-centered representation that incorporates inter-relationships 

amongst environmental features. Route learning involves striatal circuits whereas cognitive 

mapping involves hippocampal circuits (de Bruin et al., 1997; Iaria et al., 2003; O'Keefe and 

Nadel, 1978). Importantly, recent work suggests that individuals in the preclinical AD continuum 

(i.e., low CSF Aβ42,) have differential deficits in cognitive map formation relative to route 

learning (Allison et al., 2016). This cognitive mapping task demonstrated high sensitivity (92%; 

57% specificity) in detecting the preclinical AD continuum (Allison et al., 2016), was more 

sensitive than a standard episodic memory task or route learning (Allison et al., 2016), and had 

strong psychometric properties (Allison et al., accepted).  

This past work was cross-sectional and longitudinal investigations are necessary to confirm the 

utility of spatial navigation tasks for predicting clinical progression. Thus, the current study 

examined whether spatial navigation tasks were significant predictors of clinical progression
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 with the hypothesis that the cognitive mapping task would be a more robust predictor than route 

learning. We also examined the relative predictive ability of these tasks in comparison to 

previously reported predictors of clinical progression, including AD biomarkers (CSF 

ptau181/Aβ42 ratio), hippocampal volume and standard measures of episodic memory. Lastly, we 

examined the diagnostic accuracy of the cognitive measures.
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Chapter 2: Method 

 

2.1 Participants 

Participants were recruited from the Knight Alzheimer Disease Research Center (ADRC) at 

Washington University and initially participated in previous studies on spatial navigation 

(Allison et al., 2016; Allison et al., accepted). A total of ninety-eight participants completed the 

cognitive mapping (CM) task and sixty-seven completed the route learning (RL) task. Three 

individuals who completed the CM task and two individuals who completed the RL task did not 

have longitudinal data. Thus, the final sample for the current study was ninety-five for the CM 

cohort and sixty-five for the RL cohort with sixty-three individuals who completed both tasks 

(see Tables 1 and 2 for sample descriptions). Three individuals were in both initial studies; data 

from initial administration are included here. 

Participants were screened for major medical conditions, including Parkinson’s disease, 

Huntington’s disease, stroke, seizures, and major head injury. Participants had normal vision or 

wore corrective lenses. Participants consented to participation in accordance with Washington 

University Human Research Protection Office guidelines.  

2.2 Clinical Dementia Rating Scale (CDR) 

The CDR global score was used to determine the absence or presence, as well as the severity, of 

dementia (CDR of 0=clinical normality; 0.5=very mild dementia; 1= mild dementia; 2=moderate 

dementia; 3=severe dementia; Morris, 1993). Clinical diagnosis of symptomatic AD for 

individuals with a CDR>0 is made in accordance with criteria reported by the NINCDS-ADRDA 

(McKhann et al., 1984). Individuals clinically diagnosed with AD at the Knight ADRC, 
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including those meeting MCI criteria, have AD pathology in 93% of cases (Berg et al., 1998; 

Storandt et al., 2006).   

The CDR-Sum of Boxes score (CDR-SB; range: 0-18) provides a more quantitative estimate of 

clinical impairment and is based on scores in six cognitive and functional domains (memory, 

orientation, judgment and problem solving, community affairs, home and hobbies, personal care) 

used to generate the global CDR score. The larger range of CDR-SB (vs. global CDR) score 

allows for increased precision and additional information regarding cognitive impairment, 

especially for mild impairment (Lynch et al., 2006; O'Bryant et al., 2010; Williams et al., 2013). 

In the current study, clinical progression was defined as: a) an increase in global CDR score from 

the time of the spatial navigation tasks to the most recent follow-up; and b) change in CDR-SB 

across measurement occasion. CDR global scores collected between baseline and most recent 

follow-up were not used in determining clinical progression.  

2.3 Virtual Navigation Tasks 

Administration of navigation tasks are described more fully in prior work (Allison et al., 2016; 

Allison et al., accepted). The experimental maze environments consisted of a series of 

interconnected hallways with landmarks and wallpapers that differed in color. A joystick was 

used to maneuver through the environment. Participants completed both practice and a 

visuomotor expertise test in separate virtual environments.  

2.3.1 Cognitive Mapping Task 

A CM task was administered in prior studies (Allison et al., 2016; Allison et al., accepted) using 

similar procedures with differences in administration noted below. Across both studies, the task 

involved learning and retrieval phases. There were three study-test trials during the learning 
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phase. During study, participants freely explored the environment for 7 (Allison et al., 2016) or 4 

minutes (Allison et al., accepted). Participants were then given a blank 2D map of the 

environment and asked to place Xs at landmark locations. The learning score (CM-Learning) 

was the average number of landmarks correctly recalled across trials (range=0-20 for Allison et 

al., 2016; range=0-18 for Allison et al., accepted). After a 10-minute (Allison et al., 2016) or 15-

minute delay (Allison et al., accepted), participants completed 12 (Allison et al., 2016) or 6 trials 

(Allison et al., accepted) in which they were presented with a picture of a landmark and 

instructed to navigate to the landmark using the shortest path possible as quickly as possible. The 

retrieval score (CM-Retrieval) was the average amount of time taken to find each landmark. 

Because of study differences, scores on the variables within each sample were standardized (z-

transformed) to obtain an estimate of each individual’s relative ranking. 

2.3.2 Route Learning Task 

The RL task included both learning and delayed retrieval phases (Allison et al. 2016). During the 

learning phase, participants followed the same route marked by arrows repeatedly for 5 minutes. 

Next, participants drew the learned path on a blank 2D map of the environment. The study-test 

trials were completed four times. The learning score (RL-Learning) was the average proportion 

of correctly drawn turns at intersections relative to the total number of intersections along the 

route over the four trials (range=0-1). After a 10-minute delay, participants traversed the 

designated route without arrows three times. The average amount of time taken to traverse the 

route across trials was the retrieval phase variable (RL-Retrieval). 

2.4 Episodic Memory Composite Score 

A memory composite was created using free recall from the Selective Reminding Task (Grober 

et al. 1988), immediate and delayed recall on the Logical Memory Test from the Wechsler 
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Memory Scale (Wechsler & Stone, 1973) or Wechsler Memory Scale-III (Wechsler, 1997), and 

total score on the Associate Learning Task from the Wechsler Memory Scale (Wechsler & 

Stone, 1973) or Wechsler Memory Scale-III (Wechsler, 1997). All test scores were standardized 

(z-scored); standardized scores for each participant were averaged to create the composite score. 

In the case of multiple versions of a test, raw scores from each subsample were standardized 

separately and then combined across data sets.  

2.5 CSF Collection and Processing   

CSF collection has been previously described (Fagan et al., 2006). All CSF samples were 

analyzed using next generation Elecsys electrochemiluminescent immunoassays for Aβ42 and 

ptau181 developed by Roche Diagnostics (Basel, Switzerland) and run on the automated Roche 

Cobas e 601 analyzer (Bittner, Zetterberg et al., 2016). Values for Aβ42 above 1,700 pg/ml have 

not been validated and are not to be used in clinical decision making. The ratio between ptau181 

and Aβ42 was used as the AD biomarker measure because it has been found to best map onto 

PET imaging results (Schindler et al., 2018). 

2.6 Structural MRI Acquisition and Processing  

MRI scans were acquired using one of two Siemens 3T scanners (TIM Trio: TE=3ms, 

TR=2400ms, TI=1000ms, FA=8°, 256x256 mm acquisition matrix, 1x1x1mm voxels; BioGraph 

scanner: TE=2.95ms, TR=2300ms, TI=900ms, FA=9°, 240x256 mm acquisition matrix, 

1x1x1.2mm voxels). The FreeSurfer image analysis suite v5.3 was used for image processing 

and delineation of regions of interest (Fischl et al., 2002). FreeSurfer implements an automated 

probabilistic labeling procedure where individual voxels in an image are assigned to a 

neuroanatomical label based on data from a manually labeled training set. Volumetric data 
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obtained through this procedure are highly correlated with manually generated volumes (Desikan 

et al., 2006; Fischl et al., 2002). The hippocampus was the region-of-interest for the current 

study. Volumes were summed across hemispheres and estimated intracranial volume was used to 

adjust volumes for body size differences using an analysis of covariance approach (Buckner et 

al., 2004).  

2.7 Computer Experience   

Using a Likert scale (0-7), participants self-reported their experience with computers, computer 

games and virtual reality games. A measure of total computer experience was created from the 

sum of experience scores (0-21). 

2.8 Health Composite   

A health composite (0-5) was created using the sum of past or present mild head trauma, heart 

problems, hypertension, diabetes and depression.  

2.9 Statistical Analyses  

2.9.1 General 

CM-Learning, CM-Retrieval, RL-Learning and RL-Retrieval variables were examined in 

separate models. When a spatial navigation variable was a significant predictor, previously 

established predictors were added to the model to assess whether there was unique variance 

explained by the spatial navigation variable. Established predictors (CSF ptau181/Aβ42, 

hippocampal volume or episodic memory composite) were examined in separate models. Age, 

sex, education and the health composite were covariates in all analyses. For logistic and linear 

mixed effects models, the learning variables were reverse scored so that higher scores reflected 

worse performance. Standardized variables were used in all analyses.  
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2.9.2 CDR Progression 

Logistic regression analyses were conducted using IBM SPSS Statistics 25. These analyses were 

used to determine whether baseline spatial navigation performance predicted global CDR 

progression (1=progression; 0=no-progression). Only episodic memory was additionally 

examined in these models considering the sample size issues with a categorical outcome.  

2.9.3 Longitudinal Change in CDR-SB 

Linear mixed effects models were used to determine whether spatial navigation performance 

predicted change in CDR-SB over time. These models were conducted using the nlme package 

(Pinheiro et al., 2018) in R version 3.5.1 (RStudio Team, 2005). Time (years in study) and 

intercept were random effects. The interaction between the spatial navigation variables and time 

were the independent variables of primary interest. In models examining relative predictive 

utility, the other predictor variable (i.e., CSF ptau181/Aβ42, hippocampal volume, episodic 

memory) and their interaction with time were added to the model. Finally, three-way interactions 

between CM variables, CSF ptau181/Aβ42 or hippocampal volume, and time were included in a 

model to examine whether there was moderation of any relationship observed between CM 

performance and CDR-SB progression. Three-way interactions were not conducted for RL 

variables due to the smaller sample size.   

Due to the heterogeneous baseline CDR status of participants (CDR=0-1), CM models predicting 

CDR-SB progression including only participants with CDR=0 at baseline (n=81) were examined 

in order to assess whether CM task performance may be a sensitive marker of the preclinical 

disease stage (see Tables 3 for sample description). These analyses were not conducted in the RL 

cohort due to the smaller sample size of CDR=0 at baseline participants (n=50). 
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2.9.4 Diagnostic Accuracy 

Receiver operating characteristic (ROC) analyses were conducted to assess diagnostic accuracy 

in predicting clinical progression according to global CDR for the sixty-three participants who 

completed CM, RL and episodic memory tasks. For these analyses, standardized composites 

were created combining the learning and retrieval phases within each task. In addition, the area 

under the curve (AUC) values were compared amongst the CM, RL and episodic memory 

composites using the method of DeLong, DeLong and Clarke-Pearson (1998) with the paired 

data option.  

2.9.5 Outliers 

Outliers were defined as values >3 STD from the group mean. All analyses were conducted with 

and without outliers. Unless otherwise specified, results were unchanged when outliers were 

removed. 
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Chapter 3: Results 
 

3.1 Cognitive Mapping: Global CDR Progression 

CM-Learning (OR=3.131, CI=1.376-7.123, p=.007) and CM-Retrieval (OR=2.950, 

CI=1.444-6.024, p=.003) significantly predicted clinical progression. These relationships 

remained with episodic memory added to the respective models (CM-Learning: OR=2.591, 

CI=1.007-6.667, p=.048; CM-Retrieval: OR=2.409, CI=1.104-5.257, p=.027). See 

Supplementary Table 1 for full regression results. 

3.2 Cognitive Mapping: Longitudinal Change in CDR-SB  

CM-Learning (β=.266, p<.001) and CM-Retrieval (β=.250, p=.002) significantly predicted 

clinical progression (Figure 1; Supplementary Tables 2, 3, 4). These relationships remained with 

episodic memory (CM-Learning: β=.216, p=.003; CM-Retrieval: β=.184, p=.021) and 

hippocampal volume (CM-Learning: β=.236, p=.004; CM-Retrieval: β=.233, p=.033) added to 

the respective models. Neither CM-Learning (β=.122, p=.197) nor CM-Retrieval (β=.123, 

p=.369) remained a significant predictor of clinical progression with ptau181/Aβ42 added to the 

respective models.  

Hippocampal volume significantly moderated the association of CM-Learning (β=-.276, p<.001) 

and CM-Retrieval (β=-.270, p=.002) with longitudinal CDR-SB progression (Figure 2). When 

outliers were removed, the ptau181/Aβ42 ratio also significantly moderated the association of CM-

Learning (without outliers: β=.309, p=.001; with outliers: β=.110, p=.194) and CM-Retrieval 

(without outliers: β=.355, p=.013; with outliers: β=.176, p=.190) with longitudinal progression 

(Figure 2). 
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3.3 Cognitive Mapping: Longitudinal Change in CDR-SB 

with Global CDR=0 at Baseline 

In this clinically normal at baseline sample, CM-Learning (β=.155, p=.024) was a significant 

predictor of clinical progression (Supplementary Table 5). This remained true when episodic 

memory (β=.151, p=.032) was added to the model. This relationship was no longer significant 

when ptau181/Aβ42 (β=.105, p=.222) or hippocampal volume (β=.101, p=.206) were added to the 

models. CM-Retrieval (β=.121, p=.196) was not a significant predictor of clinical progression in 

this sample (Supplementary Table 6).  

3.4 Route Learning: Global CDR Progression 

RL-Learning (OR=3.293, CI=1.307-8.298, p=.011) and RL-Retrieval (OR=6.301, CI=1.941-

20.461, p=.002) significantly predicted clinical progression (Supplementary Table 7). RL-

Retrieval remained a significant predictor when episodic memory was added to the model 

(OR=4.781, CI=1.341-17.045, p=.016), but RL-Learning did not (OR=1.911, CI=.631-5.792, 

p=.252). 

3.5 Route Learning: Longitudinal Change in CDR-SB 

RL-Learning (β=.202, p=.032) and RL-Retrieval (β=.467, p<.001) significantly predicted CDR-

SB progression (Figure 1; Supplementary Tables 8 and 9). RL-Learning did not remain a unique 

predictor in models with episodic memory (β=.015, p=.886), hippocampus (β=.040, p=.714) or 

ptau181/Aβ42 (β=.143, p=.086). Conversely, RL-Retrieval remained a significant predictor of 

CDR-SB progression when episodic memory (β=.377, p<.001), hippocampus (b=.464, p<.001) 

or ptau181/Aβ42 (β=.482, p<.001) were added to the model. 
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3.6 Diagnostic Accuracy 

The AUCs for CM, RL and episodic memory were all significant (Figure 3; Table 4). The AUCs 

for CM and RL were not significantly different (χ2=1.59, p=.207). The AUC for RL was not 

significantly different than the AUC for episodic memory (χ2=.91, p=.339). There was a non-

significant trend for the AUC for CM to be significantly higher than the AUC for memory 

(χ2=3.67, p=.056). 
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Chapter 4: Discussion 
 

This longitudinal study examined whether tasks assessing the ability to form, retain and use a 

cognitive map or the ability to learn and retrieve a novel route predicted clinical progression. 

While a previous cross-sectional investigation observed a significant deficit in CM, but not RL, 

in individuals in the preclinical AD continuum (Allison et al., 2016), the current results indicated 

that both CM and RL were significant predictors of global CDR and CDR-SB progression. 

Furthermore, the prior work (Allison et al., 2016) found that the CM task evidenced significantly 

greater diagnostic accuracy than RL, whereas there was not a significant difference between the 

tasks in the current study. The differences across studies could in part relate to the inclusion of 

individuals with symptomatic AD in the present study as deficits in both CM and RL were 

observed in symptomatic AD at baseline (Allison et al., 2016; for reviews, see Coughlan et al., 

2018; Lithfous et al., 2013). Thus, although CM tasks may be preferable for detecting preclinical 

AD cross-sectionally, when examining clinical progression using a group of individuals with 

varying levels of cognitive impairment (i.e., from clinical normality to symptomatic AD), 

baseline performance on either CM or RL tasks may serve to predict later progression of the 

disease.  

Our findings are generally consistent with prior investigations examining the ability of spatial 

navigation tasks to predict clinical progression in clinically normal individuals, as well as those 

with MCI and symptomatic AD (Serino, Morganti, Colombo, & Riva, 2018; Verghese, Lipton, 

& Ayers, 2017; Wood et al., 2016; but see Weniger et al., 2011). Of note, these previous studies 

mainly utilized CM tasks for assessing spatial navigation, whereas the current study examined 

the ability of both CM and RL to predict progression. Not only did our tasks predict clinical 
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progression, but CM-Learning, CM-Retrieval and RL-Retrieval all predicted clinical progression 

with episodic memory included in the models. There was also a strong trend for overall CM 

performance to demonstrate greater diagnostic accuracy for CDR progression compared to 

episodic memory, which is consistent with prior findings demonstrating that CM was better than 

episodic memory at discriminating clinically normal from preclinical AD continuum individuals 

cross-sectionally (Allison et al., 2016). Additionally, when examining models only containing 

participants with CDR=0 at baseline, CM-Learning remained a significant predictor of clinical 

progression. Importantly, when episodic memory was added to this model, CM-Learning 

remained a significant predictor of clinical progression, but episodic memory did not. These 

findings together suggest that relative to standard psychometric tasks of memory, spatial 

navigation tasks, particularly CM tasks, could be useful indicators for risk of clinical 

progression, including during the preclinical phase.  

While the CM task was a significant predictor of CDR-SB progression when hippocampal 

volume was added to the models, the CM task was not a unique predictor with CSF ptau181/Aβ42 

in the models. Both measures interacted with hippocampal volume and with CSF ptau181/Aβ42 in 

predicting progression. Thus, individuals with deficits in CM, in addition to elevated AD 

pathology or reduced hippocampal volume, evidenced the greatest degree of clinical progression. 

In contrast, having only elevated AD pathology, reduced hippocampal volume or lower CM 

performance were each associated with slower progression over time. Thus, not only may CM 

measures be useful in prediction in isolation, but they may have added value when used in 

conjunction with hippocampal volume and/or AD biomarkers. 

Regarding RL, retrieval phase performance did provide unique predictive value relative to 

hippocampal volume or CSF ptau181/Aβ42. Furthermore, it was a significant predictor of CDR-
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SB progression, whereas episodic memory was not significant when both were in the same 

model. However, the learning phase was not a unique predictor in any of the models with the 

previously established predictors. There was some indication of a ceiling effect during the 

learning phase, which may have limited it as a predictor relative to other measures (20% with a 

score above 96%). Importantly, overall RL performance did not evidence significantly greater 

diagnostic accuracy compared to the episodic memory composite. The latter finding in particular 

does place limits on the utility of the current RL task compared to the CM task in predicting 

clinical progression. Furthermore, the psychometric properties of RL have yet to be established, 

whereas recent work has established strong psychometric properties of CM (Allison et al., 

accepted). 

Limitations of this study include that there was an insufficient number of clinically normal 

individuals who converted to AD over the course of the study to fully examine whether spatial 

navigation measures predict conversion (i.e., n=7 of 81 for CM; n=6 of 50 for RL). In addition, 

the smaller size of the samples with both RL and either CSF or MRI precluded robust estimation 

of the 3-way interactions with time. Lastly, the sample consisted of highly educated individuals, 

which limits the generalizability of the results. 

Collectively, current findings indicate that baseline CM and RL performance were associated 

with future clinical progression. These findings highlight the potential utility of spatial 

navigation tasks as assessment tools for identifying risk of progression to more advanced stages 

of dementia. Measures of CM may be particularly useful considering the evidence that these may 

be more powerful than standard episodic memory measures. Future work should examine 

whether the spatial navigation tasks predict conversion from the preclinical AD phase to 

symptomatic AD with a sufficiently large sample of converters. In addition, longitudinal 
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investigations of spatial navigation performance would be important in order to determine 

change over time in this critical skill.  
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Tables and Figures 
 

Table 1. Sample characteristics: cognitive mapping task 

Notes. CDR=Clinical Dementia Rating scale; m=mean; sd=standard deviation. Time in 

study=years between baseline assessment and most recent CDR. At baseline, 81 participants 

were CDR=0, 10 were CDR=0.5, and 4 were CDR=1. Among the 17 decliners, 7 went from 

CDR=0 to CDR>0, 6 went from CDR=0.5 to CDR=1, 1 went from CDR=0.5 to CDR=2, 3 went 

from CDR=1 to CDR=2; *p<.05 difference between no progression and yes progression groups. 

N=67 from Allison et al., 2016; N=28 from Allison et al., accepted). Participants had CSF 

(M=.87, range=-1.97-1.68) and MRI (M=.90, range=-2.00-1.99) collection within 2 years of the 

cognitive mapping condition and memory assessment within 1.02 years (M=.47, range=.101-

1.02). 

 
 
 

 
Total Sample No Progression  Yes Progression  

N 95 78 17 

Gender (M/F) 49/46 39/39 10/7 

Age (years) (M, SD)* 72.10 (8.40) 70.60 (7.86) 78.94 (7.52) 

Age range 50-90 50-85 66-90 

Education (years) (M, SD) 16.57 (2.38) 16.40 (2.44) 17.19 (2.07) 

Education (range) 12-21 12-21 13-20 

Health Composite (M, SD)* .77 (.82) .67 (.77) 1.24 (.90) 

Time in study (years) (M, SD) 4.16 (1.84) 4.11 (1.86) 4.04 (1.83) 

Time in study (range) 1.02-7.07 1.19-7.07 1.02-7.02 

Number CDR follow ups (M, SD) 4.40 (1.84) 4.35 (1.97) 5.00 (1.84) 

Number CDR follow ups (range) 2-8 2-8 2-8 

Episodic Memory (M, SD) .04 (.86) .13 (.69) -.65 (1.09) 

Hippocampus (cm3) (N, M, SD)  74; 739 (111) 64; 759 (97) 10; 613 (114) 

ptau181/Aβ42 (N, M, SD) 64; .026 (.022) 57; .023 (.019)  7; .049 (.031)  
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Table 2. Sample characteristics: route learning task 

 

 
Notes. CDR=Clinical Dementia Rating Scale; M=mean; SD=standard deviation. Time in 

study=years between baseline assessment and most recent CDR. At baseline, 50 participants 

were CDR=0, 10 were CDR=0.5, and 5 were CDR=1. Among the 17 decliners, 6 went from 

CDR=0 to CDR>0, 6 went from CDR=0.5 to CDR=1, 1 went from CDR=.5 to CDR=2, 4 went 

from CDR=1 to CDR=2; *p<.05 difference between no progression and yes progression groups. 

N=65 from Allison et al., 2016). Participants had CSF (M=.72, range=-1.97-1.66) and MRI 

(M=.90, range=-2.15-2.03) collection within 2.15 years of the route learning condition and 

memory assessment within 1 year (M=.42, range=.11-.92). 

 
 
 
 
 
 

 
Total Sample No Progression  Yes Progression  

N 65 48 17 

Gender (M/F) 32/33 21/27 11/6 

Age (years) (M, SD)* 71.98 (9.35) 69.60 (8.82) 78.71 (7.48) 

Age (range) 50-90 50-85 66-90 

Education (years) (M, SD) 16.35 (2.38) 16.04 (2.41) 17.31 (2.09) 

Education range 12-20 12-20 12-20 

Health Composite (M, SD)* .85 (.85) .69 (.80) 1.29 (.85) 

Time in study (years) (M, SD)* 4.95 (1.60) 5.26 (1.37) 4.06 (1.91) 

Time in study (range) 1.02-7.07 1.19-7.07 1.02-7.07 

Number CDR follow ups (M, SD) 5.00 (1.83) 5.19 (1.72) 4.47 (2.07) 

Number CDR follow ups (range) 2-8 2-8 2-8 

Episodic Memory (M, SD)* -.03 (.88) .19 (.72) -.65 (.99) 

Hippocampus (cm3) (N, M, SD)*  49; 725 (131) 38; 763 (106) 11; 593 (127) 

ptau181/Aβ42 ratio (N, M, SD) 41; .023 (.018) 34; .018 (.011) 7; .044 (.028) 
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Table 3. Sample characteristics: cognitive mapping task with CDR=0 at baseline 

Notes. CDR=Clinical Dementia Rating scale; m=mean; sd=standard deviation. Time in 

study=years between baseline assessment and most recent CDR. Among the 7 converters, 2 went 

from CDR=0 to CDR=.5, 3 went from CDR=0 to CDR=1, and 2 went from CDR=0 to CDR=2; 

*p<.05 difference between no conversion and yes conversion groups. N=53 from Allison et al., 

2016; N=28 from Allison et al., accepted). Participants had CSF (M=.87, range=-1.97-1.68) and 

MRI (M=.92, range=-2.00-1.99) collection within 2 years of the cognitive mapping condition 

and memory assessment within 1.02 years (M=.48, range=.101-1.02). 

 
 
 
 
 
 
 
 

 
Total Sample No Conversion  Yes Conversion  

N 81 74 7 

Gender (M/F) 40/41 37/37 3/4 

Age (years) (M, SD)* 71.11 (7.73) 70.43 (7.59) 78.29 (5.47) 

Age range 50-84 50-84 70-84 

Education (years) (M, SD) 16.59 (2.40) 16.53 (2.41) 17.21 (2.38) 

Education (range) 12-21 12-21 13-20 

Health Composite (M, SD)* .72 (.81) .65 (.77) 1.43 (.98) 

Time in study (years) (M, SD) 4.35 (1.84)  4.24(1.85) 5.48 (1.49) 

Time in study (range) 1.33-7.07 1.33-7.07 3.05-7.02 

Number CDR follow ups (M, SD) 4.54 (1.86) 4.45 (1.81) 5.57 (2.23) 

Number CDR follow ups (range) 2-8 2-8 2-8 

Episodic Memory (M, SD) -.18 (.63) -.20 (.60) .01 (.89) 

Hippocampus (cm3) (N, M, SD)  68; 756 (92) 63; 760 (87) 5; 711 (138) 

ptau181/Aβ42 (N, M, SD) 62; .025 (.02) 57; .023 (.019)  5; .046 (.030)  
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Table 4. ROC analyses 

 Cognitive Mapping Route Learning Memory 

AUC (SE) .894 (.041) .794 (.067) .735 (.080) 

p-value <.001 .001 .006 

Youden Index .687 .517 .496 

Sensitivity 1.00 .600 .600 

Specificity .687 .917 .896 

Notes. AUC=area under the curve; SE=standard error. 
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Supplementary Table 1. Logistic regression results: cognitive mapping task 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 Odds Ratio 95% CI p 

Base Model 

Age 3.799 1.435-10.059 .007 

Gender 1.187 .281-5.009 .815 

Education 1.590 .761-3.321 .217 

Health 1.458 .784-2.712 .234 

CM-Learning 3.131 1.376-7.123 .007 

    

Episodic Memory Model 

Age 4.177 1.278-13.658 .018 

Gender 2.925 .490-17.473 .239 

Education 1.988 .803-4.921 .137 

Health 1.771 .820-3.824 .146 

CM-Learning 2.591 1.007-6.667 .048 

Memory 3.555 1.535-8.233 .003 

    

Base Model 

Age 5.297 1.690-16.603 .004 

Gender 1.944 .440-8.590 .380 

Education 2.136 .936-4.872 .071 

Health 1.624 .861-3.063 .134 

CM-Retrieval 2.950 1.444-6.024 .003 

    

Episodic Memory Model 

Age 5.191 1.464-18.411 .011 

Gender 4.511 .703-28.964 .112 

Education 2.730 .998-7.465 .050 

Health 2.110 .975-4.565 .058 

CM-Retrieval 2.409 1.104-5.257 .027 

Memory 3.535 1.499-8.332 <.001 
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Supplementary Table 2. Linear mixed model results: cognitive mapping - learning phase 

 Beta t p 

Base Model 

Age .491 2.276 .025 

Gender -.146 -.383 .703 

Education -.146 -.768 .444 

Health -.304 -1.504 .136 

Time .290 4.125 <.001 

CM-Learning .260 1.296 .198 

Time x CM-Learning .266 3.635 <.001 

    

CSF ptau181/Aβ42 Ratio Model 

Age .129 .730 .468 

Gender -.208 -.764 .448 

Education .075 .580 .564 

Health -.105 -.683 .497 

Time .220 2.774 .006 

CM-Learning -.077 -.408 .685 

ptau181/Aβ42 -.054 -.315 .754 

CM-Learning x ptau181/Aβ42 -.102 -.697 .489 

Time x CM-Learning .122 1.296 .197 

Time x ptau181/Aβ42 .281 3.186 .002 

Time x ptau181/ Aβ42 x CM-Learning .110 1.304 .194 

    

Hippocampal Volume Model 

Age .047 .240 .811 

Gender -.319 -1.210 .231 

Education -.023 -.175 .861 

Health -.037 -.274 .785 

Time .237 3.393 <.001 

CM-Learning -.092 -.552 .583 

Hippocampus -.448 -2.719 .008 

CM-Learning x Hippocampus -.034 -.220 .826 

Time x CM- Learning .236 2.963 .004 

Time x Hippocampus -.335 -4.687 <.001 

Time x Hippocampus x CM-Learning -.276 -4.185 <.001 

    

Episodic Memory Model 

Age .566 3.084 .003 

Gender .485 1.440 .154 

Education -.051 -.313 .755 

Health -.102 -.595 .554 

Time .280 4.166 <.001 
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CM-Learning -.087 -.473 .637 

Memory 1.158 5.710 <.001 

Time x CM-Learning .216 2.982 .003 

Time x CM-Memory .228 2.760 .006 
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Supplementary Table 3. Linear mixed model results: cognitive mapping - retrieval phase 

 Beta t p 

Base Model 

Age .474 2.472 .015 

Gender .092 .267 .790 

Education -.078 -.469 .640 

Health -.265 -1.480 .143 

Time .290 4.042 <.001 

CM-Retrieval .793 4.582 <.001 

Time x CM- Retrieval .250 3.215 .002 

    

CSF ptau181/Aβ42 Ratio Model 

Age .152 .864 .392 

Gender -.249 -.894 .375 

Education .086 .675 .502 

Health -.080 -.529 .599 

Time .193 2.147 .033 

CM- Retrieval -.027 -.110 .913 

ptau181/Aβ42 -.169 -.778 .440 

ptau181/Aβ42 x CM-Retrieval .059 .246 .807 

Time x CM-Retrieval .123 .901 .369 

Time x ptau181/Aβ42 .240 2.120 .036 

Time x ptau181/Aβ42 x CM-Retrieval .176 1.316 .190 

    

Hippocampal Volume Model 

Age .110 .630 .531 

Gender -.268 -1.145 .256 

Education .006 .052 .959 

Health -.042 -.357 .722 

Time .194 2.550 .012 

CM-Retrieval .106 .573 .569 

Hippocampus -.371 -2.323 .023 

CM-Retrieval x Hippocampus -.360 -2.164 .034 

Time x CM-Retrieval .233 2.150 .033 

Time x Hippocampus -.277 -3.541 <.001 

Time x Hippocampus x CM-

Retrieval -.270 -3.118 .002 

    

Episodic Memory Model 

Age .517 3.140 .002 

Gender .605 1.995 .049 

Education -.028 -.197 .845 

Health -.089 -.575 .567 
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Time .281 4.075 <.001 

CM- Retrieval .525 3.116 .003 

Memory .947 4.892 <.001 

Time x CM-Retrieval .184 2.320 .021 

Time x CM-Memory .220 2.558 .011 
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Supplementary Table 4. Linear mixed model results: cognitive mapping –  

ptau181/Aβ42 without outliers 

 Beta t p 

CSF ptau181/Aβ42 Ratio Model – CM-Learning 

Age .127 .724 .472 

Gender -.158 -.576 .567 

Education .044 .332 .741 

Health -.091 -.590 .557 

Time .212 2.895 .004 

CM-Learning -.054 -.279 .781 

ptau181/Aβ42 -.070 -.404 .688 

ptau181/Aβ42 x CM-Learning -.116 -.564 .575 

Time x CM-Learning .145 1.672 .097 

Time x ptau181/Aβ42 .324 3.957 <.001 

Time x ptau181/Aβ42 x CM-Learning .309 3.322 .001 

    

CSF ptau181/Aβ42 Ratio Model – CM-Retrieval 

Age  .152 .876 .385 

Gender -.188 -.672 .505 

Education .080 .632 .530 

Health -.010 -.065 .948 

Time .176 2.052 .042 

CM-Retrieval -.012 -.048 .962 

ptau181/Aβ42 -.170 -.767 .446 

ptau181/Aβ42 x CM-Retrieval .088 .312 .756 

Time x CM-Retrieval .165 1.259 .210 

Time x ptau181/Aβ42 .248 2.310 .022 

Time x ptau181/Aβ42 x CM-Retrieval .355 2.527 .013 
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Supplementary Table 5. Linear mixed model results: CDR=0 at baseline, CM-Learning  

 Beta t p 

Base Model 

Age .094 1.393 .168 

Gender .036 .405 .687 

Education -.074 -1.711 .091 

Health -.094 -2.039 .045 

Time .164 2.635 .009 

CM-Learning -.103 -1.204 .233 

Time x CM-Learning .155 2.275 .024 

    

CSF ptau181/ Aβ42 Ratio Model 

Age .058 .697 .489 

Gender .025 .243 .809 

Education -.078 -1.581 .120 

Health -.115 -1.977 .053 

Time .198 2.729 .007 

CM-Learning -.103 -.920 .362 

ptau181/Aβ42 -.125 -1.247 .218 

Time x CM-Learning .105 1.226 .222 

Time x ptau181/Aβ42 .244 2.930 .004 

    

Hippocampal Volume Model 

Age .084 1.007 .318 

Gender .050 .507 .614 

Education -.096 -1.874 .066 

Health -.101 -1.951 .056 

Time .180 2.538 .012 

CM-Learning -.046 -.447 .657 

Hippocampus .163 1.445 .154 

Time x CM-Learning .101 1.270 .206 

Time x Hippocampus -.185 -2.263 .025 

    

Episodic Memory Model 

Age .106 1.579 .119 

Gender .076 .825 .412 

Education -.076 -1.754 .084 

Health -.083 -1.806 .075 

Time .169 2.607 .010 

CM-Learning -.117 -1.313 .193 

Memory .082 .633 .529 

Time x CM-Learning .151 2.165 .032 

Time x CM-Memory .026 .263 .793 
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Supplementary Table 6. Linear mixed model results: CDR=0 at baseline, CM-Retrieval 

 Beta t p 

Base Model 

Age .098 1.502 .137 

Gender .063 .732 .467 

Education -.070 -1.702 .093 

Health -.086 -1.934 .057 

Time .165 2.491 .014 

CM-Retrieval -.007 -.059 .953 

Time x CM- Retrieval .121 1.298 .196 
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Supplementary Table 7. Logistic regression results: route learning task 

 Odds Ratio 95% CI p 

Base Model 

Age 5.439 1.705-17.349 .004 

Gender 1.389 .266-7.258 .697 

Education 2.578 1.072-6.204 .034 

Health 1.439 .666-3.109 .355 

RL-Learning 3.293 1.307-8.298 .011 

    

Episodic Memory Model 

Age 5.101 1.401-18.571 .013 

Gender 5.015 .535-46.987 .158 

Education 3.536 1.247-10.029 .018 

Health 1.904 .754-4.803 .173 

RL-Learning 1.911 .631-5.792 .252 

Memory 4.104 1.223-13.772 .022 

    

Base Model 

Age 9.614 1.965-47.040 .005 

Gender 1.557 .246-9.875 .638 

Education 3.677 1.157-11.682 .027 

Health 1.762 .673-4.612 .249 

RL-Retrieval 6.301 1.941-20.461 .002 

    

Episodic Memory Model 

Age 12.684 1.892-85.018 .009 

Gender 7.632 .474-123.011 .152 

Education 4.862 1.398-16.909 .013 

Health 2.399 .748-7.699 .141 

RL-Retrieval 4.781 1.341-17.045 .016 

Memory 3.904 .946-16.117 .060 
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Supplementary Table 8. Linear mixed model results: route learning – learning phase 

 Beta t p 

Base Model 

Age .671 2.303 .025 

Gender -.378 -.759 .451 

Education -.274 -1.167 .248 

Health -.652 -2.401 .020 

Time .387 4.228 <.001 

RL-Learning .602 2.356 .022 

Time x RL-Learning .202 2.159 .032 

    

CSF ptau181/Aβ42 Ratio Model 

Age .049 .184 .855 

Gender -.406 -1.069 .293 

Education .113 .616 .542 

Health -.205 -.910 .369 

Time .264 3.465 <.001 

RL-Learning .398 1.912 .064 

ptau181/Aβ42 -.139 -.690 .495 

Time x RL-Learning .143 1.730 .086 

Time x ptau181/Aβ42 .408 5.229 <.001 

    

Hippocampal Volume Model 

Age -.123 -.429 .670 

Gender -.478 -1.222 .228 

Education -.141 -.737 .465 

Health -.397 -1.835 .074 

Time .354 3.779 <.001 

RL-Learning .374 1.775 .083 

Hippocampus -.837 -3.265 .002 

Time x RL-Learning .040 .367 .714 

Time x Hippocampus -.464 -4.108 <.001 

    

Episodic Memory Model 

Age .774 3.158 .003 

Gender .556 1.192 .238 

Education -.115 -.573 .569 

Health -.402 -1.728 .089 

Time .370 4.353 <.001 

RL-Learning -.205 -.828 .411 

Memory -1.719 -5.695 <.001 

Time x RL-Learning .015 .143 .886 

Time x Memory .388 2.993 .0031 
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Supplementary Table 9. Linear mixed model results: route learning – retrieval phase 

 Beta t p 

Base Model 

Age .975 3.623 <.001 

Gender -.489 -1.022 .311 

Education -.193 -.857 .395 

Health -.670 -2.569 .013 

Time .382 5.182 <.001 

RL-Retrieval 1.004 4.142 <.001 

Time x RL-Retrieval .467 5.230 <.001 

    

CSF ptau181/Aβ42 Ratio Model 

Age -.020 -.071 .944 

Gender -.335 -.804 .427 

Education .143 .735 .467 

Health -.219 -.905 .372 

Time .346 4.890 <.001 

RL-Retrieval .075 .197 .845 

ptau181/Aβ42 -.067 -.321 .750 

Time x RL-Retrieval .482 4.033 <.001 

Time x ptau181/Aβ42 .374 5.444 <.001 

    

Hippocampal Volume Model 

Age -.117 -.402 .690 

Gender -.635 -1.602 .117 

Education -.134 -.686 .497 

Health -.440 -1.967 .056 

Time .383 4.708 <.001 

RL-Retrieval .284 1.014 .316 

Hippocampus -.901 -3.363 .002 

Time x RL-Retrieval .464 3.737 <.001 

Time x Hippocampus -.286 -2.830 .005 

    

Episodic Memory Model 

Age .951 4.027 <.002 

Gender .358 .779 .439 

Education -.088 -.445 .658 

Health -.440 -1.900 .063 

Time .376 5.120 <.001 

RL-Retrieval .443 1.741 .087 

Memory 1.253 4.311 <.001 

Time x RL-Retrieval .377 3.693 <.001 

Time x RL-Memory .166 1.593 .113 
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