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ABSTRACT OF THESIS 

Individual Differences in Verbal and Visuospatial Learning Efficiency 

 

by 

Thomas Spaventa 

Master of Arts in Psychological & Brain Sciences 

Washington University in St. Louis, 2019 

Professor Kathleen B. McDermott, Chair 

 

There is a great deal of variability in how quickly people learn and how long they remember 

information. Zerr and colleagues (2018) found a robust and stable relationship between an 

individual’s rate of learning and the durability of their memory, with faster learners tending to 

retain more after a delay. The relationship between the rapidity and longevity of learning was 

characterized as learning efficiency. The present study extends these findings by testing whether 

learning efficiency generalizes across divergent verbal and visuospatial tasks. An ancillary aim 

was to assess learning efficiency using a continuous measure that can capture fine-grained 

individual differences in learning. Participants (N = 112) learned and recalled Lithuanian-English 

word pairs and object locations using a multi-trial cued recall paradigm. Estimates of 

individuals’ learning efficiency generalized across tasks, suggesting that this construct may tap 

into a domain-general ability. Additionally, the spatial precision of recalled object locations 

correlated with both the speed and durability of learning, indicating that continuous measures 

may also be used to evaluate the efficiency of learning.  
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Chapter 1: Introduction 
 

 People differ markedly in their ability to learn and remember information. Whereas some 

absorb and retain the names of new acquaintances, the finer points of a story, and the dates of 

upcoming appointments with astonishing facility, others experience frequent memory failures. 

Such individual differences in memory can not only lead to prosaic day-to-day differences in 

recall, such as differences in the ability to remember shopping list items at the grocery store, but 

can also produce differences that have more severe consequences in educational and vocational 

settings. For example, a student that learns sluggishly may fail class exams, and an employee 

with poor memory may not be able to meet the demands of their job. 

Individual differences in memory have been an area of interest to psychologists for over a 

century. Ebbinghaus (1885/2013) observed “how differently do different individuals behave in 

this respect! One retains and reproduces well; another poorly” (p. 155). Since then, theorists and 

experimentalists have worked to characterize the myriad ways that learners vary and identify 

sources of this variance (see Bors & MacLeod, 1996; Unsworth, 2019 for reviews). This thesis 

more specifically addresses individual differences in rate of learning and retention, the relation 

between these two attributes, and the extent to which this relation generalizes across verbal and 

visuospatial domains. 

 

1.1    Do Faster Learners Retain More? 
 A recurring question in memory research has been whether initial speed of learning is 

related to the amount of information remembered over time (Gillette, 1936; Underwood, 1954; 

Zerr, 2017). That is, do faster learners retain more than their slower counterparts? The simplicity 

of this inquiry belies the complexity of addressing it.  Gillette (1936) identified three common 

approaches to investigating the association between learning rate and retention. The first, dubbed 
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the method of Equal Amount Learned, has participants learn a fixed amount of material. 

Participants are tested on the material repeatedly until they correctly recall all of it on a single 

test, and the variable of interest is the number of tests required to reach this criterion. A 

shortcoming of this procedure is that it induces overlearning by reexposing learners to material 

that has previously been successfully recollected. The second method, the method of Equal 

Opportunity to Learn, grants participants a fixed time to learn material, and the quantity of 

material retained after a delay is now the dependent measure. The critical flaw of this method is 

that it fails to equate initial learning, which artifactually inflates the correlation between learning 

speed and retention. Finally, the third procedure, and the one espoused by Gillette, is the method 

of Adjusted Learning.  

 Pioneered by Woodworth (1914), the method of Adjusted Learning ensures that all tested 

items are learned, but unlike the method of Equal Amount Learned, it also prevents overlearning 

by dropping items that are correctly recalled from subsequent tests (see Underwood, 1954 for a 

dissenting view). Using this paradigm with number-picture pairs, Gillette (1936) found that 

quicker learners retained more. Half a century later, Kyllonen and Tirre (1988) employed a 

variation of the method of Adjusted Learning on a large sample (N = 685) of Air Force recruits; 

echoing Gillette’s results, it was once again the fastest learners that retained the most. 

  

1.2    Learning Efficiency 
 Recently, Zerr et al. (2018) used the method of Adjusted Learning and Lithuanian-

English word pairs to examine individual differences in learning ability. Lithuanian words were 

selected as cues because they are unfamiliar to most English speakers, and because Lithuanian 

belongs to a different language family from Romance languages that are commonly taught in 

schools. The novelty of Lithuanian reduces the influence of prior knowledge differences between 
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learners, which have been found to account for variability in associative learning (Hundal & 

Horn, 1977; Kyllonen, Tirre, & Christal, 1991). Zerr et al. (2018) measured three indicators of 

learning performance: words recalled on an initial test, the number of tests required to recall all 

word pairs, and recall on a final, delayed test. All three measures were found to robustly 

intercorrelate, leading Zerr and colleagues to combine the measures into a composite Learning 

Efficiency Score, with efficient learning defined as learning that is both fast and enduring. 

Learning Efficiency Scores were stable across days (r = .68) and even over a three-year period (r 

= .70), suggesting that this measure represents a trait-like ability.  

 In a related study, Zerr and McDermott (2019) investigated whether learning efficiency 

generalizes to visuospatial material. In addition to learning Lithuanian-English word pairs, 

participants also learned Chinese character-English word paired associates. Chinese characters 

are logograms, making it especially difficult for English speakers to form verbalizable 

associations with them. Nevertheless, those who learned the Chinese-English pairs fastest tended 

to also retain the most, and performance on this task positively correlated with Lithuanian-

English performance. This outcome suggests that learning efficiency generalizes beyond verbal-

verbal paired associates, and that more efficient learners may have a retentive advantage even 

with material that does not readily lend itself to mnemonic strategies.  

 The present study aimed to further establish the generalizability of learning efficiency by 

using an even more divergent visuospatial task: object location learning. On this task, 

participants view the locations of common household objects within a circle and later attempt to 

recall these locations precisely. This object locations task was selected for two principle reasons. 

First, remembering object locations is important for everyday functioning (e.g., finding keys in a 

home or a car in a large parking lot). Thus, this task may capture differences in visuospatial 
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learning that relate to real-world behavior. Second, recording the spatial precision of recalled 

locations enables a continuous rather than a binary accuracy measure to be used. Because 

memories are not just recollected in an ‘all-or-none’ manner but can vary in their fidelity, 

continuous measures provide a fine-grained index of the quality of recollection (Harlow & 

Donaldson, 2013; Harlow & Yonelinas, 2016; Richter, Cooper, Bays, & Simons, 2016). 

  

 1.3    Precision of Visual Long-term Memory 
Subjectively, we all share the experience of being able to recollect memories with 

intricate detail in some instances (“I left my wallet on the top left corner of the coffee table”) and 

imprecisely in others (“My umbrella is somewhere in the house”). This intuition is supported by 

a body of research showing that memories do indeed vary in their precision. Research on the 

visual precision of memories originated in the working memory community. In an early 

experiment, participants were shown colored squares and, after a brief delay, asked to match the 

color of a specific square using a color wheel (Zhang & Luck, 2008). Using this procedure in 

combination with mixture models to decompose error arising from guesses and imprecise 

recollections, it was found that the precision of visual working memory varies independently of 

working memory capacity.  

Over the past decade, continuous-report tasks have been adapted to study the precision of 

visual long-term memory. It has been known since at least the 1970s that the capacity of visual 

long-term memory is vast (Standing, 1973). More recently, Brady, Konkle, Alvarez, and Olivia 

(2008) tested the long-term storage capacity of memory for visual details. Participants viewed 

pictures of 2,500 objects with the goal of remembering them for a future test. Afterwards, they 

were shown these target images alongside closely matched foils that subtly differed (e.g., a half 

and a quarter of a melon) and attempted to identify the image they had seen previously. 
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Astonishingly, target images were correctly recognized 87% of the time. In a follow-up study, 

Brady, Konkle, Gill, Olivia, and Alvarez (2013) more directly tested the fidelity of visual long-

term memory. Using a similar continuous-report procedure to Zhang and Luck (2008), but with 

real-world objects rather than squares, they found that long-term memory has a similar lower-

bound to its precision as does working memory. Although recollection accuracy for object color 

dropped precipitously after a delay, the color precision of objects that were correctly recalled 

was comparable to the precision measured in a working memory condition.  

This line of research has been extended to examine the precision of spatial memories. 

Harlow and Donaldson (2013) created a “positional response accuracy” task wherein participants 

learned to associate words with locations on the circumference of a circle. They found that, as is 

the case for memories of color, spatial recollection accuracy is separable from precision. 

Moreover, introspective judgments of spatial fidelity track objective measures of spatial error on 

a trial-by-trial basis, which bolsters the theoretical validity of precision being a distinct construct 

(Harlow & Yonelinas, 2016). Employing a similar task in a multi-trial learning paradigm, Lew, 

Pashler, and Vul (2016) found that precise object location memories developed quickly and 

endured even after a one-week retention interval. Collectively, these results indicate that memory 

for precise details is capacious, quick forming, robust to delays, and empirically dissociable from 

recall or recognition success. 

  

1.4    The Present Study 
 As reviewed above, people dramatically differ in how efficiently they learn and retain 

information. The primary goal of the present study is to test whether learning efficiency 

generalizes across verbal and visuospatial learning. This experiment tested individuals’ ability to 

learn and remember verbal and visuospatial paired-associates. Participants learned English 
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translations of Lithuanian words on the verbal task and the locations of objects within a circle on 

the visuospatial task. A multi-trial, iterative cued-recall paradigm with dropout of correctly 

recalled items (i.e., the method of Adjusted Learning) was used in both cases. It is hypothesized 

that if learning efficiency reflects domain-general processes, performance across the two tasks 

will positively correlate.    

Chapter 2: Main Experiment 
 

2.1    Method 
 

2.1.1    Participants 
 Two-hundred and sixteen participants were recruited from the Amazon Mechanical Turk 

(MTurk) marketplace and consented in accordance with the guidelines of the Washington 

University Human Research Protection Office. To incentivize completion of the entire study, 

participants received a flat rate of $12 for successfully completing both study tasks or for 

exceeding 25 test blocks on either task, at which point the study was terminated prematurely. A 

total of 104 participants were excluded from analyses, including 31 for failing to complete both 

tasks, 17 for having prior knowledge of or exposure to the Lithuanian language, 3 for reporting a 

learning disability, 2 for exhibiting no learning on at least 4 consecutive blocks at the beginning 

of a task, 1 participant who reported a neurological condition, and 1 for refreshing the webpage 

during a task. At the end of each task, participants were asked whether they had written down 

any information or taken pictures of the stimuli to help on the memory tests, and it was 

emphasized that receiving compensation was not contingent on their responses. An additional 49 

participants were excluded for reporting doing so.  

The final sample of 112 participants (47 female) included in analyses were between 19 

and 66 years of age (M = 34.7, SD = 9.9) and had completed between 12 and 24 years of 
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education (M = 14.7, SD = 2.1). Ninety-one participants self-reported being Caucasian, 8 Asian, 

7 Black/African American, 4 multiracial, and 1 American Indian/Alaska Native; of these, 10 

were Hispanic. All participants had learned English before age 5, reported normal or corrected-

to-normal vision, and resided in the continental U.S. or a U.S. territory (Fig. A1).  

Recently, concern over the integrity of studies conducted using MTurk samples has 

grown in the research community (Dennis, Goodson, & Pearson, 2018). Specifically, two threats 

have been identified: contamination from automated “bots” that respond to surveys, and the use 

of virtual private servers to mask the true location of participants, which undermines 

conventional geographic screening methods. To ensure data integrity, IP addresses and 

geolocations of all participants were checked for duplication, a telltale sign of virtual private 

server usage.  Furthermore, responses to open-ended questions in the post-task questionnaires 

were carefully screened for signs of automation, such as being irrelevant, incoherent, or overly 

vague. Using these criteria, no participants were flagged as users of virtual private servers or 

automated software. 

 

2.1.2    Design 
The experiment assessed the degree to which learning efficiency generalizes across 

learning domains (verbal and visuospatial associative learning). Participants completed two tasks 

sequentially: a Lithuanian-English task that involved learning the English translations of 

Lithuanian words, and a task that required learning the locations of objects. Task order was 

counterbalanced across participants. 

  

2.1.3    Stimuli 
 In the Lithuanian-English task, stimuli included 28 Lithuanian-English paired associates, 

a subset of items used in prior norms (Grimaldi, Pyc, & Rawson, 2010; Zerr et al., 2018). Each 
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pair consisted of a Lithuanian noun and its English translation (e.g., LIETUS – RAIN; refer to 

Table A1 for the complete set). Lithuanian is an ideal language to use to investigate paired-

associate learning because it is unfamiliar to most native English speakers, belongs to a separate 

language family from English and Romance languages that are commonly taught in school (thus 

minimizing the occurrence of cognates and false friends), and contains the same alphabet as 

English, obviating transliteration difficulties (Nelson & Dunlosky, 1994; Zerr et al., 2018). All 

typographic ligatures and diacritical marks were removed from Lithuanian words to ensure that 

they could be encoded with English phonology (Nelson et al., 2016). Selected English words had 

a concreteness rating between 500 and 700 per the MRC Psycholinguistic Database (Coltheart, 

1981). Additionally, the English words ranged from 3-8 characters in length (M = 4.5), 1-2 

syllables (M = 1.2), and 6.8-11.6 logarithmic frequency (M = 10.1) as computed by the English 

Lexicon Project Database (Balota et al., 2007). Lithuanian words ranged from 4-9 characters in 

length (M = 6.2) and contained 2-4 syllables (M = 2.6). Word pairs were presented in all 

capitalized black letters using sans-serif, 27-point font on a white background.  

Stimulus presentation code was adapted with permission from Zerr and McDermott 

(2019) and was written using jsPsych, a Javascript library for running behavioral experiments in 

a web browser (de Leeuw, 2015).  

In the object locations task, images of 28 everyday objects were presented within a circle 

(Fig. 1; Fig. 2A). To mitigate confusability, objects were chosen to be semantically and 

perceptually distinct. Images were obtained from a stock image website, www.freeimages.com, 

and from Google Images. They were exported as 60 ✕ 60 pixel JPEGs and cropped tightly to 

reduce excess white space at the periphery. For each participant, the center x- and y-coordinates 

of objects were randomly generated, with the constraint that objects not overlap with each other, 
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the circumference of the circle, or a 50 ✕ 50 pixel fixation cross at the circle center. The circle 

measured 900 pixels in diameter. The object locations task program was modified from custom 

Javascript code provided by Timothy Lew that was used in Lew, Pashler, and Vul (2016). 

  

 

Figure 1. The 28 objects used in the object locations task. From top left to bottom right: boot, 

die, hat, chair, camera, fan, clock, key, bowl, comb, teapot, glasses, bag, lamp, bike, toaster, 

suitcase, mailbox, scissors, helmet, book, coin, umbrella, headphones, cake, plant, sponge, apple. 

 

2.1.4    Procedure 
 Participants completed the Lithuanian-English and object locations tasks (hereby 

abbreviated to LET and OLT, respectively) in sequence, with task order counterbalanced across 

participants. The LET consisted of three phases: initial study, iterative cued-recall tests, and a 

delayed final test. Participants were first informed that they would be presented with a list of 28 

Lithuanian words paired with their English translations and were instructed to learn these for 

later cued-recall tests. Subsequently, during the initial study phase, the word pairs were displayed 

one at a time for 5 s each and separated by a 1 s interstimulus interval (ISI). Presentation order of 

the word pairs was randomized for each participant. After each had been shown once, 

participants completed an iterative series of cued-recall tests. The word pairs were rerandomized 

before each test block to negate serial memory processing and item order effects. A Lithuanian 

cue was provided (e.g., VANDUO) and the corresponding English translation needed to be typed 

(e.g., WATER) within 5 s. Responses were deemed correct if either the full English word or at 

least the first three correct letters (but no incorrect ones) were provided. For instance, if 

VANDUO were the cue, WAT, WATE, or WATER would be marked correct, but not SWAT or 
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WATT. After 5 s, irrespective of the accuracy of the response, the correct English translation 

was shown for 1 s. Each trial within a test block was padded with a 1 s ISI. Lithuanian cues that 

were correctly answered were dropped from subsequent test blocks, and testing proceeded until 

every word pair had been correctly recalled exactly once. Thus, as more words were translated 

accurately, future test blocks became shorter and tested only those word pairs that had been 

previously missed. This single-trial dropout procedure features a crucial quality that makes it 

desirable for multi-trial testing. Namely, it ensures that each item is correctly recalled precisely 

one time, thereby preventing overlearning, which is a manipulation that is known to boost 

retention (Driskell, Willis, & Cooper, 1992). Moreover, it equates participants in number of 

correct recalls for each test item (but see Kyllonen & Tirre, 1988 for a discussion of the 

complexities of equating learning across people).  

 Participants performed 30 seconds of simple arithmetic problems involving two operands 

(e.g., 43 – 12 = ?) between test blocks to occupy working memory and prevent rehearsal of the 

word pairs. Iterative testing terminated once criterion was reached (i.e., all word pairs had been 

recalled once). To limit the maximum task duration and avoid severe cognitive fatigue, 

participants who failed to reach criterion within 25 test blocks automatically exited the study 

prematurely and were compensated for their time. Following the recall tests, participants who 

had reached criterion restudied all 28 word pairs for 5 s each as in the initial study phase, 

although in a newly randomized order. They then played 60 s of the puzzle game Tetris before 

completing a final cued-recall test that contained all 28 Lithuanian-English pairs. This final test 

was identical to the first test block in all respects. Finally, participants responded to a post-task 

Likert-type questionnaire that assessed subjective task difficulty, effort, focus, and strategy use. 
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To encourage honest responding, it was repeatedly emphasized that answers would not affect 

compensation.  

The object locations task (OLT) was structured analogously to the LET, with an initial 

study phase, iterative cued-recall tests until criterion was reached, and a final test. In the study 

phase, participants viewed 28 object images located within a circle in sequence. They were 

instructed to remember each object location, with the name of each object displayed in the top 

left (Fig. 2A). Each object was presented for 5 s. Pilot testing showed that the OLT generally 

took longer to complete than the LET, and so ISIs were omitted from the OLT in the interest of 

time. In the main testing phase, participants were cued to recall the location of each object 

indicated by an image and name in the top left (Fig. 2B). To respond, they clicked a location 

within the circle and a 50-pixel diameter crosshair immediately appeared at the selected location. 

Participants were granted 5 s to respond to each object. Response accuracy was assessed by 

whether the crosshair overlapped with the object image. Because the objects were square 60 ✕ 

60 pixel images and the crosshair was modeled as a round object, the distance threshold for 

correct responses varied depending on the position of the clicked location relative to the object. 

If the clicked location was perfectly orthogonal to the center of the object image, the threshold 

was 55 pixels; if the clicked location was perfectly diagonal to the object center, the threshold 

was approximately 67 pixels. After a location was clicked, the true location of the object 

appeared for 1 s. Feedback for response accuracy was conveyed via the color of the crosshair, 

which turned red for incorrect and blue for correct responses (Fig. 2C and 2D).  
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Figure 2. Trial sequence for the object locations task. (A) Participants are instructed to 

remember the locations of objects in the training phase. (B) During testing, participants are cued 

to recall each object. (C) Feedback for incorrect responses was provided in the form of a red 

crosshair at the clicked location. (D) A correct response was designated with a blue crosshair. 

 

  As in the LET, objects that were correctly recalled once were dropped from subsequent 

testing blocks, and testing proceeded until all object locations were dropped. Thirty seconds of 

addition and subtraction problems were interleaved between test blocks to prevent maintenance 

of object locations in working memory. Once criterion was reached (correct recall of each object 

location precisely one time), participants restudied all object locations as in the initial study 
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phase and then played Tetris for 60 s. A final cued-recall test of all 28 object locations was 

administered; this test was identical to the first test block. After completing the OLT, participants 

answered a post-task questionnaire, distinct from the one administered after the LET, that 

collected basic demographic information and probed subjective task difficulty, subjective 

performance, effort, focus, and strategy use.  

 Because participants completed the study within their own web browser rather than in a 

lab setting, display size, display resolution, and viewing distance were not controlled. However, 

participants were barred from using smartphones or tablets, and they were instructed to 

maximize their browser window to ensure they could see the totality of the circle and all stimuli. 

   

2.2    Results 
 In the present analysis, efficient learning is defined as learning that is both fast and 

durable. Mirroring the approach taken by Nelson et al. (2016) and Zerr et al. (2018), it is 

operationalized as a composite of three measures: the number of items correctly recalled on Test 

1, the number of tests required to reach criterion performance, and the number of items correctly 

recalled on the Final Test. These three subcomponents of learning efficiency were z-score 

standardized and averaged together to yield a Learning Efficiency Score (LES) for each task. 

Tests to Criterion was reverse scored in this calculation as higher scores indicate slower, and 

therefore less efficient, learning.  

   Descriptive statistics for both the Lithuanian-English and Object-Locations tasks (LET 

and OLT) are presented in Table 1. Consistent with pilot data collected in the lab, learning object 

locations proved more difficult than learning Lithuanian words. Comparing the LET to the OLT, 

participants recalled more words than objects in the initial test, MD = 4.0, t(111) = 6.84, p < .001, 

CI95 =  [2.8, 5.2], took fewer tests to reach criterion performance, MD = -6.6, t(111) = -15.65, p < 
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.001,  CI95 =  [-7.4, -5.8],  and exhibited greater recall on the final test, MD = 7.6, t(111) = 13.95, 

p < .001, CI95 =  [6.5, 8.7].  

From the beginning of the initial study phase to the end of the final recall test, including 

instructions presented between phases and the 60 s Tetris game, participants spent an average of 

23.8 minutes on the LET (SD = 6.0, range = 14.6-41.9) and 22.9 minutes on the OLT (SD = 5.2, 

range = 13.4-36.3). Despite taking nearly twice as many tests to reach criterion on the OLT 

compared to the LET, a Wilcoxon Signed-ranks test revealed that time on task did not 

significantly differ between the tasks, MD = 0.9, Z = -0.51, p = .30. This discrepancy is likely 

attributable to trial timing differences. Whereas LET test trials advanced every 5 s and were 

separated by a 1 s ISI, OLT trials advanced as soon as a response was made or after 5 s if no 

response was given, with an average trial time of 2080 ms (SD = 974), and had no ISI. Total time 

on task highly correlated with tests to criterion on both the LET, r = .87, p < .001, CI95 = [.81, 

.91], and the OLT, r = .81, p < .001, CI95 = [.74, .87].        

Table 1 Descriptive statistics of the learning efficiency metrics for the Lithuanian-English and 

object locations tasks.  

Task Measure Mean Median SD Min Max 

Lithuanian-English 

Test 1 Recall 9.0 8.0 6.0 1 24 

Tests to Criterion 6.6 6.0 2.8 2 16 

Items to Criterion 83.5 75 36.7 34 212 

Final Test Recall 19.6 20 5.6 2 28 

Object Locations 

Test 1 Recall 5.0 4 3.2 0 15 

Tests to Criterion 13.2 12 4.2 6 25 

Items to Criterion 152.8 144.5 54.2 55 360 

Final Test Recall 12.0 12.0 4.1 3 22 

Final Test Error (Pixels) 119.7 110.2 45 50.0 228.5 
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No effects of task order were found on any of the learning efficiency measures. 

Participants who completed the Lithuanian-English task first did not perform significantly 

differently than those who completed it second. Specifically, scores did not differ on Lithuanian 

Test 1, MD = -1.71, M-W U = 1280, p = .095, Lithuanian Tests to Criterion, MD = 0.56, M-W U 

= 1778, p = .21, Lithuanian Final Test, MD = -1.37, M-W U = 1335, p = .18, objects Test 1, MD = 

-0.21, M-W U = 1556, p = .96, objects Tests to Criterion, MD = 0.29, M-W U = 1581, p = .93, or 

objects Final Test, MD =  -0.79, t(111) = -1.02 , p = .31. 

 

2.2.1    Participant Characteristics 
 LE Scores did not relate to either participant age or years of education on either the 

Lithuanian or objects tasks (ps > .05). Welch two sample t-tests indicated that learning efficiency 

did not differ between males and females on the Lithuanian, t(108.49) = 0.08, p = .94, and 

objects tasks, t(94.93) = -0.47, p = .64. 

 

2.2.2    Avoidance of Ceiling Effects 
Memory measures designed to assess individual differences are threatened by ceiling 

effects, which attenuate variability and reduce the reliability and validity of a test (Uttl, 2005). A 

key advantage of the LET over widely used standardized memory measures such as the Weschler 

Memory Scales, Rey Auditory Verbal Learning Test, and the California Verbal Learning Test is 

that it is calibrated for healthy, young adults to sidestep this source of measurement error (Zerr et 

al., 2018). Accordingly, a precondition to examining the generalizability of learning efficiency is 

to verify that the LET and OLT data are not compromised by a restricted range.    

Uttl (2005) advises that a test is not overly burdened by ceiling effects when the mean of 

a measure is at least 1.5 standard deviations from the maximum score. The maximum or 

optimum possible scores for the learning efficiency subcomponents are 28 items recalled on Test 



 16 

1, 1 Test to Criterion, and 28 items recalled on the Final Test. On the LET, the Test 1 and Tests 

to Criterion measures satisfied the >1.5 SD heuristic, with mean scores 3.2 and 2.0 SD from the 

optimum. The Final Test mean narrowly met this standard at 1.5 SD from ceiling. Five 

participants (4.4%) recalled all 28 words on the Final Test. The OLT, being a comparatively 

more challenging task, was completely devoid of ceiling effects. Test 1, Tests to Criterion, and 

Final Test means were 7.2, 2.9, and 3.9 SD, respectively, off ceiling. 

 

2.2.3    Relation Between Learning Rate and Retention 
 All learning efficiency submeasures were intercorrelated in the LET, replicating past 

findings (Becker, 2018; Nelson et al., 2016; Zerr et al., 2018). Participants who recalled more on 

the initial test learned the Lithuanian-English pairs more quickly as indexed by Tests to 

Criterion, r = -.65, p < .001, CI95 = [-.75, -.53] (Fig. 3B). Performance on the initial test tracked 

retention on the final test, r = .44, p < .001, CI95 = [.28, .58] (Fig. 3C). Critically, faster learners 

retained more on the final test, r = -.69, p < .001, CI95 = [-.77, -.57] (Fig. 3D). 
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Figure 3. Faster learners retained more in the Lithuanian-English task. (A) Learning curves are 

plotted for each participant. The fastest learners, represented by the red traces, tended to recall 

the most at final test. TTC = Tests to Criterion. (B-D) The three submeasures of learning 

efficiency, Test 1 recall, Tests to Criterion, and Final Test recall, robustly intercorrelate with 

each other. Shaded regions indicate 95% confidence intervals. 

   

The same overall pattern of associations was found for the object locations task. 

Participants who recalled more objects on the initial test reached criterion more quickly, r = -.36, 

p < .001, CI95 = [-.51, -.19] (Fig. 4B) and had better retention on the final test, r = .52, p < .001, 

CI95 = [.37, .65] (Fig. 4C). As in the LET, faster learners remembered more on the final test, r =  

-.53, p < .001, CI95 = [-.65, -.38] (Fig. 4D). The complete correlation matrix of the learning 

efficiency measures is presented in Table 2. 
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Figure 4. Faster learners retained more in the object locations task. (A) Learning curves are 

plotted for each participant. The fastest learners, represented by the red traces, tended to recall 

the most at the final test. TTC = Tests to Criterion. (B-D) The three submeasures of learning 

efficiency, Test 1 recall, Tests to Criterion, and Final Test recall, robustly intercorrelate with 

each other. Shaded regions indicate 95% confidence intervals. 

 

Table 2 Correlation matrix of the learning efficiency measures for verbal and visuospatial tasks. 

Variable 1 2 3 4 5 6 7 8 

Lithuanian-English         

1  Test 1 Recall         

2  Tests to Criterion -.65**        

3  Final Test Recall .44** -.69**       

4  LES .82** -.91** .83**      

Object Locations         

5  Test 1 Recall .19* -.24* .30** .29**     

6  Tests to Criterion -.14 .23* -.25** -.24* -.36**    

7  Final Test Recall .18 -.24* .33** .29** .52** -.53**   

8  LES .21* -.29** .37** .34** .78** -.78** .85**  

9  Final Test Error -.21* .26** -.35** -.32** -.50** .43** -.82** -.73** 
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Note. * indicates p < .05. ** indicates p < .01. LES = Learning Efficiency Score. Correlations are 

reported as Pearson’s correlation coefficients. Correlations of the same metrics between the LET 

and OLT, representing the generalizability of learning efficiency, are highlighted in blue.  

 

2.2.4    Generalizability of Learning Efficiency 
 A central question of the present study is whether learning efficiency generalizes across 

learning domains. To what extent are fast and retentive verbal learners also fast and retentive 

visuospatial learners? Learning performance as indexed by the learning efficiency submeasures 

correlated across tasks (Fig. 5A-C), including Test 1 recall, r = .19, p = .04, CI95 = [.009, .37], 

Tests to Criterion, r = .23, p = .017, CI95 = [.04, .39], and Final Test recall, r = .33, p < .001, CI95 

= [.16, .49]. The overall Learning Efficiency Scores (LES), the average of the three z-score 

standardized submeasures, also correlated across tasks, r = .34, p < .001, CI95 = [.17, .49] (Fig. 

5D).  

 Although observed between-task correlations are small to medium effects according to 

conventional interpretations of effect sizes in the social sciences (Cohen, 1992; Ferguson, 2009), 

that there is a consistent relationship in learning performance across tasks with divergent 

demands is itself informative.  
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Figure 5. Learning efficiency generalizes across the Lithuanian-English and object locations 

tasks. Each of the learning efficiency submeasures, along with Learning Efficiency Scores 

themselves, correlate between the two tasks. Shaded regions indicate 95% confidence intervals. 

 

2.2.5    Reliability of Learning Efficiency 
 To reliably detect effects in experimental research, cognitive tasks should exhibit low 

between-participant variability. This is because in experimental paradigms, between-participant 

variability is a nuisance factor that masks group differences.  Antithetically, in correlational 

research it is necessary to have a high ratio of between-participant to within-participant (or 
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between-measure) variability to reliably measure individual differences. The Intraclass 

Correlation Coefficient (ICC) can be used to quantify the degree to which different measures 

reliably rank-order people (Hedge, Powell, & Sumner, 2017). Another interpretation of the ICC 

is the proportion of total variance accounted for by between-participant variability, expressed as 

a value ranging from 0 to 1. An ICC of 1 reflects complete between-participant variability and no 

variability between measures, while an ICC of 0 reflects no between-participant variability but 

high variability between measures.  

 To assess the reliability between the Lithuanian-English and object locations learning 

efficiency estimates, a two-way random ICC (corresponding to model type ICC2k from Shrout 

and Fleiss, 1979) was calculated for participants’ LE Scores from the two tasks. Refer to Field 

(2005) and Koo and Li (2016) for an in-depth discussion of ICC models. The ICC function from 

the R package psych (Version 1.8.12; Revelle, 2018) was used. The computed ICC between the 

two tasks was .51, F(2, 111) = 2.05, p < .001, CI95 = [.29, .66], indicating that approximately half 

of the variance in learning efficiency across the two measures is attributable to between-

participant variability. Thus, participants’ learning efficiency generalizes to a large degree even 

across two highly disparate tasks. 

  

2.2.6    Trials to Criterion 

Tests to Criterion is a somewhat coarse measure of learning rate. In principle, two 

participants could reach criterion after the same number of tests yet complete a substantially 

different number of individual trials. To illustrate this point, imagine two learners, A and B, who 

both reach criterion after five tests (Table 3). Learner A recalls 24 items on Test 1 but only a 

single item on subsequent tests; conversely, learner B recalls only 8 items on Test 1 but 5 items 

on Tests 2-5. Both learners reach criterion after the same number of tests, but learner B takes 
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over twice as many trials to do so and views more instances of individual items. Thus, Trials to 

Criterion is a more granular measure than Tests to Criterion because it better captures variability 

in learning rate across tests within a participant.  

 In the Lithuanian-English task, learners who reached criterion after fewer trials had 

greater Test 1 performance, r = -.78, p < .001, CI95 = [-.84, -.69] (Fig. 6A), and retained more on 

the Final Test, r = -0.62, p < .001, CI95 = [-.72, -.49] (Fig. 6B). Similarly, in the object locations 

task, Trials to Criterion correlated with Test 1, r = -.64, p < .001, CI95 = [-.74, -.52] (Fig. 7A), 

and with Final Test, r = -.58, p < .001, CI95 = [-.69, -.45] (Fig. 7B). Although the correlation 

values differ compared to those computed using Tests to Criterion, the direction of the 

associations remain consistent, reinforcing the finding that faster learners retain more. This result 

is not surprising given that Trials to Criterion is highly correlated with Tests to Criterion on both 

the LET, r = .92, p < .001, CI95 = [.89, .95], and the OLT, r = .86, p < .001, CI95 = [.80, .90]. 

Although these two measures of learning speed can diverge in principle, in practice they 

correspond closely. 

Table 3 Items recalled and trials completed per test for two hypothetical participants. 

 Learner A Learner B 

 Items Recalled Trials Completed Items Recalled Trials Completed 

Test 1 24 28 8 28 

Test 2 1 4 5 20 

Test 3 1 3 5 15 

Test 4 1 2 5 10 

Test 5 1 1 5 5 

Total 28 38 28 78 
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Figure 6. The Trials to Criterion measure correlates with the other learning efficiency 

submeasures in the Lithuanian-English task. Shaded regions indicate 95% confidence intervals. 

 

 
Figure 7. The Trials to Criterion measure correlates with the other learning efficiency 

submeasures in the object locations task. Shaded regions indicate 95% confidence intervals. 

 

 

2.2.7    Spatial Precision 
 To succeed on the object locations task, participants needed to associate objects with 

precise spatial coordinates. Spatial precision, operationalized as the Euclidean distance in pixels 

between selected and target coordinates for each object, is a more fine-grained measure of 

learning and retention than a binary correct/incorrect classification. A participant may have 

repeatedly missed an object’s location yet nevertheless progressively become more precise 
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across blocks as they refined their spatial representation. This subthreshold learning can only be 

captured by precision data and not accuracy (correct/incorrect). 

 Averaging across participants, responses were more precise on the Final Test (Mdn = 

255.0) compared to Test 1 (Mdn = 110.2), Z = -9.2, p < .001 (Fig 8.). See Figure A2 for the trial 

distributions of precision on Test 1 and the Final Test and Figure A3 for across-participant block 

means of precision. The improvement in precision from the first to final test varied considerably 

between participants (M = 129.9, SD = 64.7) (Fig. 9).  

 

Figure 8. Responses to object locations become more precise on the Final Test relative to Test 1 

on average. Error bars represent the standard error. 
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Figure 9. Spaghetti plot showing change in the precision of object location responses between 

Test 1 and the Final Test across all participants. Lines are colored such that red represents a 

greater improvement and blue a lesser improvement. 

 

 Final Test error, in pixels, was found to correlate with Test 1 recall, r = -.50, p < .001, 

CI95 = [-.63, -.35] (Fig. 10A), Tests to Criterion, r = .43, p < .001, CI95 = [.27, .57] (Fig. 10B), 

and Final Test recall, r = -.82, p < .001, CI95 = [-.88, -.75], suggesting that it may be another 

viable measure to characterize learning efficiency. Additionally, Final Test error weakly to 

moderately correlated with the Lithuanian learning efficiency metrics, further buttressing the 

generalizability of learning efficiency across domains (Table 2).  

 One potential limitation of the precision measure is that, because trials automatically 

advanced to the next object after five seconds, participants could selectively not respond to 

objects whose locations they were unsure of. Such selective responding would artificially inflate 
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precision scores. However, an inspection of the data suggest that this concern is unwarranted. 

Across all participants, the mean non-response rate for all trials was 2.4% (SD = 4.9%). On the 

final test specifically, responses were provided for an average of 27.8 (SD = 0.94) out of 28 

objects. When the number of objects responded to on the final test was included as a covariate to 

the previously reported correlations between Final Test error and the other learning efficiency 

submeasures, the magnitude of the correlations did not decrease.    

Figure 10. Precision on the final test of the object locations task correlates with the number of 

objects recalled on Test 1 and Tests to Criterion. Shaded regions indicate 95% confidence 

intervals. 

 

2.2.8    Learning Strategies 
 Differences in learning strategy selection and application across participants may be one 

of the factors that accounts for the association between learning rate and retention. Do efficient 

learners systematically rely on learning strategies more than less efficient ones? Are there 

particular strategies that high performers gravitate towards? To shed light on these and related 

questions, participants responded to a Likert-type questionnaire interrogating their strategy use 

after the Lithuanian-English task. The learning strategy questions were taken from Zerr (2017) 

and were originally adapted from McDaniel and Kearney (1984). The complete question list is 

presented in Table 4. 
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Table 4 Lithuanian-English learning strategy questions. 

Strategy Question M (SD) 

Keyword 

How often did you think of an English word that looked similar 

to the Lithuanian word, and used that similar-looking English 

word to remember the other English word? 

2.8 (1.1) 

Other Language 
How often did you think of a word in a different language to 

link to the Lithuanian and English word? 
1.7 (1.0) 

Physical 
How often did you construct sentences to associate the word 

pairs that described what you physically saw? 
2.4 (1.4) 

Repetition 

How often did you repeat the two words in a pair together over 

and over (either in your head or out loud) to commit them to 

memory? 

3.6 (1.2) 

Failure 
How often did your various strategies not work for helping you 

learn the word pairs? 
2.9 (0.8) 

None 
How often did you struggle or have difficulty trying to come up 

with a strategy for learning the word pairs? 
3.1 (1.0) 

Perseverance 

If a strategy did not work the first time for a certain word pair, 

how often did you keep using that same strategy for that word 

pair? 

2.9 (1.1) 

Switch 

If a strategy did not work the first time for a certain word pair, 

how often did you switch strategies to something else for that 

word pair? 

2.9 (1.1) 

Note. Strategy questions are from Zerr (2017) and were originally adapted from McDaniel and 

Kearney (1984). 1 = Never; 2 = Rarely; 3 = Sometimes; 4 = Usually; 5 = Always. 

 

 Participants reporting that their strategies did not work more frequently performed worse 

on the Lithuanian-English task, rS = -.51, p < .001, CI95 = [-.64, -.36] (Fig. 11A). Similarly, those 

who struggled to come up with a strategy more often had lower scores, rS = -.59, p < .001, CI95 = 

[-.70, -.46] (Fig. 11B). Additionally, answers to the strategy Failure and None questions 

correlated, rS = .66, p < .001, CI95 = [.53, .77], implying that participants who struggled to come 

up with strategies tended to use less effective ones and/or implemented them less effectively.  

Curiously, the Physical strategy (constructing sentences that described what was 

physically seen) was the only strategy that related to overall task performance, rS = .20, p = .035, 

CI95 = [.006, .38] (Fig. 11C). Reliance on the keyword method, other languages as mediators, or 

repetition was not related to learning efficiency (ps > .05). Contrary to expectations, those who 
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claimed to persevere with ineffective strategies did not do worse, and participants reporting 

frequent strategy switching exhibited no advantage. Perseverance scores were negatively 

correlated with Switch scores, rS = -.69, p < .001, CI95 = [-.82, -.54], indicating that participants 

were attending to the questionnaire sufficiently to not provide identical answers to opposite 

questions.     

 
Figure 11. (A and B) Participants who had difficulty finding or implementing effective strategies 

had lower LE Scores on average. (C) The only strategy associated with task performance was the 

Physical strategy. 

 

 Strategy differences were also assessed for the object locations task. Participants were 

asked to describe any strategies or techniques they used to learn the object locations. Because 

responses were unstructured and open-ended, a different set of analyses were used than with the 

Lithuanian-English strategy data. As an initial exploratory procedure to identify common 

strategies, and in order to examine whether high efficiency learners reported using different 

approaches than their low efficiency counterparts, a unigram and bigram (i.e., single and double 

word) frequency analysis was conducted, which was adapted from the n-gram analysis reported 

in Selmeczy and Dobbins (2014).  

 From the 112 participant sample, 108 supplied a typed description of the strategies they 

employed.  The average response length was 23.8 words (SD = 24.4), and response length was 

not significantly associated with object Learning Efficiency Scores, rS = .17, p = .07. To prepare 
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the text for analysis, spelling errors were manually corrected and contractions were expanded 

(e.g., “didn’t” was changed to “did not”). All subsequent text processing was done using the R 

package tidytext (Version 0.2; Silge & Robinson, 2016). Each participant’s typed response was 

tokenized into its constituent unigrams and bigrams. Punctuation was stripped and words were 

converted to lowercase to facilitate aggregation. In the unigram analysis, stop words (e.g., “I”, 

“the”, “of”, etc.) were then removed using the SMART, snowball, and onix lexicons. 

Additionally, inflectional endings were truncated so that only the base form of words were 

included, a process known as lemmatization. For example, “strategies” was simplified to the 

singular “strategy,” and “remembered” and “remembering” were reduced to the simple present 

tense form “remember.” Morphological derivations (e.g., “location” and “locate”) were not 

combined to conserve lexical category. Stop words and inflected forms were preserved in the 

bigram analysis because they might contain important contextual information and could be 

distributed differently across high and low efficiency learners. To limit the influence of 

individual differences in verbosity, duplicated instances of unigrams and bigrams were counted 

only once per participant.  

 The most frequently used words are displayed in Figure 12. Unsurprisingly, terms 

germane to the task (“object”, “location”, “item”, “circle”, “position”) and its objective 

(“remember”, “memorize”) feature prominently in participants’ responses. More informative is 

the occurrence of words associated with specific strategies, including “clock” and “repeat”. Does 

usage of any of these words discriminate between high and low efficiency learners? A one 

proportion Z-test was used to determine whether the distribution of each n-gram across 

efficiency levels reliably differed. Specifically, word frequency was compared between learners 

scoring in the top and bottom quartiles on the objects task. Positive z-scores indicate that the 
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word occurred more often in top learners, whereas negative z-scores reflect greater usage among 

bottom learners. The results of this analysis for both unigrams and bigrams are reported in Table 

5. Because the word frequency analysis is exploratory, uncorrected ps are reported. To limit the 

number of comparisons, n-grams occurring fewer than five times across top and bottom learners 

were omitted. 

 
Figure 12. Unigram frequency counts of the most common words for high and low efficiency 

learners. 

 

Table 5 Unigram and bigram analysis for top and bottom learners. 

n-gram Top 25% Bottom 25% z p 

  Unigrams   

position 5 0 2.24 .025 

close 6 1 1.89 .059 

time 10 4 1.60 .109 

clock 8 4 1.15 .248 

object 16 11 0.96 .336 

remember 16 11 0.96 .336 

item 4 2 0.82 .414 

strategy 7 6 0.28 .782 

circle 3 3 0.00 1.000 
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Table 5 (cont.) 
    

n-gram Top 25% Bottom 25% z p 

memorize 3 4 -0.38 .705 

location 5 10 -1.29 .197 

repeat 1 4 -1.34 .180 

   

Bigrams 

  

they were 7 0 2.65 0.008 

did not 7 1 2.12 0.034 

so i 6 1 1.89 0.059 

to remember 15 7 1.71 0.088 

i did 4 1 1.34 0.180 

i really 4 1 1.34 0.180 

remember where 4 1 1.34 0.180 

where they 4 1 1.34 0.180 

remember the 5 2 1.13 0.257 

the objects 5 2 1.13 0.257 

just tried 7 4 0.9 0.366 

a clock 4 2 0.82 0.414 

the items 4 2 0.82 0.414 

i tried 11 9 0.45 0.655 

i was 3 2 0.45 0.655 

to memorize 3 2 0.45 0.655 

try to 3 2 0.45 0.655 

tried to 17 15 0.35 0.724 

to the 5 4 0.33 0.739 

of the 5 5 0.00 1.000 

the object 4 4 0.00 1.000 

the circle 3 3 0.00 1.000 

object was 2 3 -0.45 0.655 

i just 5 7 -0.58 0.564 

in my 1 4 -1.34 0.180 

trying to 1 5 -1.63 0.102 

 

Thresholding at an alpha level of .05, the only n-grams that occurred significantly more 

frequently in top relative to bottom learners were the unigram “position” and the bigrams “they 

were” and “did not.” No n-grams were used significantly more frequently by low efficiency 

learners. After adjusting p-values for multiple comparisons using the false discovery rate 

procedure (Benjamini & Hochberg, 1995), no significant differences remain.  
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The n-gram analysis may have failed to detect differences between the responses of high- 

and low efficiency learners due to the relatively low frequency counts of the n-grams. 

Additionally, a simplistic n-gram comparison is not sensitive to semantics that may be conveyed 

across complex word strings or lengthy, idiosyncratic descriptions of a particular strategy. In 

order to capture the holistic meaning of the provided answers, the responses of all participants 

were read, from which a set of nine ad hoc strategy categories were created. Descriptions of and 

exemplar responses from each strategy category are listed in Table 6. 

Table 6 Ad hoc learning strategy categories. 

Strategy Description Example Response Count 

Track with 

Cursor 

Following and hovering over 

object locations with the mouse 

cursor  

“I followed the items with my 

pointer so I could get a good feel 

for where the objects were.” 

7 

Complex 

Associations 

Creating complex spatial or 

semantic associations with 

objects 

“The apple is high on a tree and 

it was at the top of the circle.” 
5 

Clock 

Relating object locations to the 

positions of analogue clock 

numerals 

“If an object were at the bottom, 

it would be near 6 o’clock.” 
19 

Spatial 

Grouping 

Grouping objects that cluster 

close to one another  

“I tried to group items together 

that were in the same area in 

order to have a rough estimate of 

where items were located.” 

8 

Relate to Other 

Object 

Locations 

Relating object locations in 

reference to other object 

locations  

“I tried to pinpoint the objects 

according to where they were 

from one another.” 

4 

Coordinate 

System or 

Cardinal 

Points 

Using a non-clock based 

geometric coordinate system, 

cardinal points, or other 

directional markers to remember 

the object locations 

“I tried to just remember if an 

object was close to the middle or 

close to the outer ring. Or I 

would say to myself, ‘clock 

center top.’” 

8 

Repetition 
Repeatedly visualizing object 

locations 

“I kept repeating the locations in 

my head.” 
7 

Other Miscellaneous strategies  
“I tried to associate close objects 

to a letter.” 
21 

None No strategy  
“Just tried to remember where 

they were.” 

45 
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Each response was classified as belonging to one or more categories, with the exception 

of Other and None responses which were assigned those labels exclusively. Fifty-six participants 

reported using a single strategy, ten used two strategies, one used three, and forty-five used no 

strategy or did not provide a response. Participants using the Track with Cursor strategy 

outperformed those using no strategy, MD = 0.92, t(7.12) = 2.54, p = .038,  CI95 =  [0.07, 1.77], 

as did those relying on Complex Associations, MD = 0.86, t(5.00) = 2.67, p = .044, CI95 =  [0.03, 

1.68]. Mean Learning Efficiency Scores on the objects task for users of each strategy are 

presented in Figure 13. Additionally, Wilcoxon rank sum tests indicated that participants relying 

on the Follow with Cursor, Complex Associations, and Grouping strategies recalled the object 

locations more precisely on the final test relative to those who used no strategy, ps < .05 (see 

Figure A5).  

 

Figure 13. Participants relying on the Follow with Cursor and Complex Associations strategies 

outperformed those reporting no strategies. Error bars represent the standard error.  
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2.2.9    Response Latencies 

 One factor that is hypothesized to underlie some of the individual variability in learning 

efficiency is working memory capacity (WMC), and especially attentional control components of 

working memory (Becker, 2018; Nelson et al., 2016; Zerr et al., 2018). On both free and cued 

recall tasks, high WMC individuals typically exhibit shorter response times on correct recall 

trials relative to their low WMC counterparts (Unsworth & Engle, 2007). It is believed that 

higher WMC enables more contextually-irrelevant information to be discarded during long-term 

memory searches, reducing the size of search sets and therefore speeding up retrieval times 

(Shipstead, Lindsey, Marshall, & Engle, 2014; Unsworth & Engle, 2007). If WMC variability 

accounts for a portion of learning efficiency differences, this may be reflected in faster response 

latencies on correct trials for highly efficient learners.  

For the Lithuanian-English task, response times (RTs) were operationalized as the 

interval, in milliseconds, between the presentation of a Lithuanian cue word and the initial 

keystroke of the English target. Object locations task RTs were defined as the interval between 

presentation of the object image and the selection of the object location. A potential concern with 

collecting behavioral data online is that response times may not be recorded accurately or 

reliably. However, although it has been found that Javascript-based programs add approximately 

25 ms to response time measurements relative to conventional, offline experimental software 

(e.g., MATLAB’s Psychophysics Toolbox), Javascript does not affect the variability of response 

time distributions (de Leeuw & Motz, 2016). To preclude outliers from unduly influencing 

analyses, the following removal procedure was carried out: first, responses with latencies below 

200 ms were filtered out for being probable anticipatory responses. Following this, RTs were z-

score standardized within participants. Finally, trials with standardized RTs more than three 
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standard deviations from a participant’s mean were removed, after which RTs were 

restandardized. 

For correct responses on the Final Test of the Lithuanian task, the mean of mean 

participant RTs was 2090 ms (SD = 536). A Wilcoxon signed rank test revealed that this was 

significantly faster than the RTs for incorrect responses, MD = -992 ms, Z = -8.05, p < .001. 

Learning Efficiency Scores negatively correlated with correct trial response times such that for 

every one standard deviation increase in LE Score, RTs decreased by 127 ms on average, r = -

.11, p < .001. By contrast, Learning Efficiency Scores were positively correlated with incorrect 

trial response times such that for every one standard deviation increase in LE Score, RTs 

increased by 138 ms on average, r = .11, p = .018. Efficient learners’ greater error latencies may 

reflect their propensity to continue searching memory longer in the absence of retrieval success 

(MacLeod & Nelson, 1984).  

On the Final Test of the object locations task, the mean of mean participant RTs was 

lower for correct than incorrect trials, MD = -78, Z = -4.15, p < .001. Learning Efficiency Scores 

were weakly positively correlated with RTs for both correct, r = .06, p = .042, and incorrect 

trials, r = .08, p < .001. In contrast with the Lithuanian task, on the objects task the association 

between learning efficiency and correct RTs is at best equivocal and at worst contradicts the 

hypothesized result of more efficient learners having reduced latencies. A potential explanation 

for the unexpected direction of this association is that, in accordance with Fitts’ law (Fitts, 1954), 

it takes longer to make a controlled motor movement to a smaller target area. Participants may 

have taken slightly longer to position their cursors when they more precisely recalled a location. 

Indeed, across all test trials precision weakly but significantly correlated with participant-
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standardized RTs such that more precise responses had longer latencies, r = -.04, p < .001. The 

extra time required to make a precise response may have washed out retrieval speed differences. 

  

2.2.10    Self-Assessments 
 Subjective focus ratings were not associated with LE Scores on the Lithuanian, rS = .08, p 

= .39, or objects tasks, rS = .05, p = .62. Similarly, subjective effort was not related to overall 

Lithuanian performance, rS = .13, p = .18, or objects performance, rS = -.02, p = .82. However, 

subjective difficulty negatively correlated with Lithuanian LE Scores, rS = -.54, p < .001, and 

objects LE Scores, rS = -.21, p = .026, with participants rating a task as more difficult doing 

worse. To probe metacognitive awareness, participants were asked to rate their performance on 

the objects task on a 1-5 rating scale that ranged from “significantly below average” to 

“significantly above average”; subjective performance ratings were not collected for the 

Lithuanian task. Subjective performance correlated positively with actual performance, rS = .49, 

p < .001, indicating that participants’ self-assessments were reasonably well calibrated. 

 

Chapter 3: Discussion 
 The main aim of this project was to test whether learning efficiency generalizes across 

verbal and visuospatial learning. In a 112 person sample, learning efficiency measures correlated 

between Lithuanian-English and object locations paired associates tasks, consistent with the 

hypothesis that learning efficiency is a domain-general ability. As in prior work (Nelson et al., 

2016; Zerr et al., 2018), measures of initial learning, tests-to-criterion, and final retention were 

robustly related within tasks. Critically, these variables also positively correlated across tasks, as 

did Learning Efficiency Scores, a standardized average of those measures. 

 

 



 37 

3.1    Why Does Learning Efficiency Generalize? 
 A natural follow-up question to ask is what underlying mechanisms account for the 

domain-generality of learning efficiency. Zerr and colleagues (2018, 2019) have proposed that 

attentional control, usage of learning strategies, and prior knowledge may explain variation in 

learning efficiency. Let us consider each of these in turn and whether their relation to efficient 

learning is supported by the present findings.   

 Even when partialing out related factors such as working memory capacity, multiple 

studies have found that long-term memory abilities are related to, albeit not completely 

subsumed by, attentional control (Shipstead et al., 2014; Unsworth, 2019; Unsworth & Engle, 

2007; Unsworth & Spillers, 2010). It is believed that during encoding, heightened attentional 

control is required to attend to the to-be-learned information and inhibit external or internally 

generated distractors. Meanwhile, during retrieval attentional control modulates the specificity of 

search processes. Individuals with greater attentional control capabilities are thought to be better 

at filtering out irrelevant contextual cues (e.g., associations, timing and spatial context) and are 

therefore better able to hone in on cues that promote retrieval success. On the other hand, people 

with lesser attentional control resources fail to adequately focus on target items, diminishing the 

efficacy of encoding, and retrieve more irrelevant contextual cues. Less refined retrieval of cues 

in turn generates proactive interference that reduces recall success. Indeed, Kyllonen and Tirre 

(1988) found that slow learners were especially susceptible to interference. The variance shared 

between attentional control, encoding, and retrieval processes may partially explain the 

correlation between speed of learning and retention as well as the domain generalizability of 

learning efficiency. 

 The current study did not include attentional control tests, and so the question of whether 

attentional control underlies differences in learning efficiency cannot be definitively answered. 
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However, response time latencies offer partial support for this hypothesis. Participants with 

greater Learning Efficiency Scores recalled correct Lithuanian translations more quickly on 

average. That said, on the objects task the correlation between retrieval speed and learning 

efficiency was equivocal, although that may be an artifact of the motor response requirements of 

the task.  

 Another factor that may explain the generalizability of learning efficiency is strategy use. 

Usage of effective strategies at encoding and retrieval is strongly related to recall on a range of 

memory tasks (Dunlosky, Hertzog, & Powell-Moman, 2005; McDaniel & Kearney, 1984; 

Unsworth, 2019; Zerr, 2018). In paired associates recall tasks, mediators linking cues and targets 

are particularly effective (McDaniel & Kearney, 1984). As discussed by Dunlosky et al. (2005), 

people can differ in whether they spontaneously generate mediators, the quality of the mediators 

that they generate, whether they are able to recall the right mediators, and whether they 

appropriately decode mediators. Deficiencies in any of these steps could lead to poor learning 

and retention across various memory tasks. Thus, it may be that more efficient learners generate 

mediators more consistently at encoding, use higher quality mediators, and later recall and 

decode these mediators more successfully during retrieval.  

 The importance of strategy use for efficient learning is supported by the presence and 

sophistication of responses to the strategy questionnaire in this study. On average, participants 

who struggled to come up with strategies or who reported that their strategies did not work 

performed worse on the Lithuanian-English task. Additionally, participants that failed to 

generate strategies more frequently also tended to report less success when they did generate 

strategies. However, aside from the Physical strategy, no strategies correlated with overall task 

performance. One possibility is that, because strategy use was queried at the end of the task using 
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a self-report questionnaire rather than on every trial, participants failed to accurately report 

which strategies they used and to what extent they relied on them. Alternatively, perhaps 

participants used strategies that were not reflected in the questionnaire. 

 On the objects task, the only strategies that were related to higher Learning Efficiency 

Scores were the Follow with Cursor and Complex Associations strategies. It is surprising that the 

Clock and Coordinates strategies were not correlated with higher performance as these were 

anticipated to be the most effective on this task. It may be that using these strategies effectively 

requires extensive practice or that they only provide a benefit when used appropriately. For 

example, remembering that the Apple was positioned at 7 o’clock is not a sufficiently precise 

description of the location to recall it accurately. Instead, participants would need to remember 

that the Apple was located at 7:30 o’clock and three-quarters of the way to the circle’s 

circumference.  

 A third potential mechanism of learning efficiency variability is differences in general 

knowledge. Kyllonen and Tirre (1988) found that general knowledge predicted unique variance 

on a battery of long-term memory tasks. In a follow-up experiment, Kyllonen et al. (1991) found 

that general knowledge predicted paired associates recall, and that the magnitude of this 

correlation increased with longer study times, presumably because high-knowledge individuals 

were afforded enough time to use their knowledge to generate effective associations. Reinforcing 

the importance of knowledge, Hundal and Horn (1977) found that crystalized intelligence 

correlated with paired associates learning. Both the Lithuanian-English and the object locations 

tasks were explicitly designed to minimize the influence of prior knowledge. Nonetheless, well 

informed participants may have used their knowledge repositories to generate better associations 

or to generate associations more quickly, facilitating encoding and retrieval alike.  
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 Other variables that may underlie learning efficiency include processing speed (Kyllonen 

et al., 1991; Zerr et al., 2018), interest, and motivation (Unsworth, 2019). Unexpectedly, and in 

contrast to Nelson et al. (2016), demographic characteristics such as age did not relate to learning 

efficiency. 

 

3.2    Limitations and Future Directions 
  A logical extension to the current study would be to test whether learning efficiency 

extends to other types of memory tasks such as free recall or recognition tests. Using the logic of 

the multitrait-multimethod matrix (Campbell & Fiske, 1959), if learning efficiency is a unique 

construct, it should not merely reflect shared method variance but rather an underlying trait that 

is dissociable from the tasks used to measure it. If performance still correlates across task type, 

this would rule out the possibility that learning efficiency solely reflects a general paired 

associates factor.  

A limitation of the present study is that both the Lithuanian-English and the object 

locations tasks contained words in the cues. Future research should use non-verbalizable cues 

and targets to minimize the influence of prior vocabulary knowledge or language ability. To test 

whether learning efficiency is modality independent, future studies should also use stimuli from 

other sensory domains (e.g., sounds, haptic stimuli).  

A novel contribution of this project is that spatial precision, a continuous index of spatial 

learning, was found to be associated with both visuospatial and verbal learning efficiency 

measures. Such continuous measures of memory fidelity have the advantage of tracking 

subthreshold learning that is not captured by binary recollection accuracy scores. The additional 

granularity provided by these tasks could afford greater sensitivity in detecting individual 

differences in memory ability, which could be valuable for studying populations with mild 
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deficits or that are in the incipient stages of cognitive decline. In addition to the continuous 

visual measures reported here, continuous verbal measures have been developed that could be 

used in future studies (Lew et al., 2016). Future work should seek to determine and develop the 

clinical utility of these methods.  

Precision in the present study was defined as the Euclidean distance between selected and 

target object locations. It should be noted that this definition differs from prior work where 

precision was statistically decomposed into three sources using mixture models: error arising 

from random guessing, misassociations, and imprecision (Lew, et al., 2016). Thus, future 

research could use measures of precision that account for guessing and misassociations.  

To more systematically investigate the underlying mechanisms of learning efficiency, an 

individual-by-treatment interaction experimental approach could be employed (Kane & Miyake, 

2008). For example, to assess the role that strategy use plays in learning efficiency, high and low 

efficiency learners could receive strategy training. If effective strategy usage boosts learning 

efficiency, there should be a main effect of strategy training that raises Learning Efficiency 

Scores. More interestingly, we might also expect an individual-by-treatment interaction in which 

low efficiency learners benefit more than high efficiency learners who may use strategies more 

skillfully by default.  

Ultimately, a better understanding of individual differences in how quickly people learn 

and how long they remember may enable the creation of new assessments and interventions to 

aid learners. To this end, future work should determine whether and how learning efficiency 

measures relate to real-world learning outcomes such as classroom grades, and whether targeted 

interventions can improve performance both in the lab and in applied settings. 
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Appendix 

Table A1. Lithuanian-English word pairs and concreteness ratings. 

Lithuanian English Concreteness 

Obuolys Apple 620 

Tvartas Barn 614 

Vonia Bath 600 

Tiltas Bridge 623 

Pastatas Building 589 

Pyragas Cake 624 

Puodelis Cup 539 

Durys Door 606 

Bugnas Drum 602 

Akis Eye 634 

Zuvis Fish 597 

Plaukas Hair 583 

Raktas Key 612 

Riteris Knight 579 

Koja Leg 626 

Turgus Market 551 

Pienas Milk 670 

Burna Mouth 568 

Nafta Oil 581 

Augalas Plant 594 

Lietus Rain 600 

Ziedas Ring 593 

Kambarys Room 566 

Muilas Soap 598 

Laiptelis Stair 558 

Gatve Street 579 

Stalas Table 604 

Vanduo Water 616 
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Figure A1. Map of participant locations. All participants resided within the continental U.S. or a 

U.S. territory. Locations are plotted using latitude and longitude coordinates extracted from the 

Qualtrics survey data and are approximations derived by comparing IP addresses to a location 

database.   
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Figure A2. Histograms comparing the distribution of spatial precision on the object locations 

task on Test 1 and the Final Test across all trials. Precision improves by the Final Test. 

 
Figure A3. The learning curve of spatial precision indicates that participants progressively 

learned the object locations. The curve displays the across-participant mean precision of each test 

block relative to the final block in the Tests to Criterion phase. Error bars are standard errors of 

the mean.  
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Figure A4. Recall precision of object locations on the final test binned by reported strategy. 

Participants relying on the Complex Associations, Follow with Cursor, and Grouping strategies 

recalled objects more precisely than participants without a strategy. Error bars represent standard 

errors. 
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