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Abstract of the Thesis

Variational Inference for Quantile Rgression

by

Bufei Guo

A.M. in Statistics

Washington University in St. Louis, 2019.

Professor Nan Lin, Chair

Quantile regression (QR) (Koenker and Bassett, 1978), is an alternative to classic lin-

ear regression with extensive applications in many fields. This thesis studies Bayesian

quantile regression (Yu and Moyeed, 2001) using variational inference, which is one of

the alternative methods to the Markov chain Monte Carlo (MCMC) in approximating

intractable posterior distributions. The lasso regularization is shown to be effective in

improving the accuracy of quantile regression (Li and Zhu, 2008). This thesis developed

variational inference for quantile regression and regularized quantile regression with the

lasso penalty. Simulation results show that variational inference is a computationally

more efficient alternative to the MCMC, while providing a comparable accuracy.

vi



1. Introduction

Regression is a technique used to explain the relationship between explanatory variable

X = [x1, . . . ,xn] and a response variable y. Least square estimation (LSE) is one of the

widely used methods, that targets the conditional expectation E(y|X = [x1, . . . ,xn]).

When heterogeneity is present in the random error, it provides an inadequate descrip-

tion of the distribution of response variable y as only the average relationship between

X and y is considered. Quantile regression(QR) was first introduced by Koenker and

Bassett (1978), which provides an alternative to least square estimator, especially for the

linear model with non-Gaussian errors. QR is able to provide a more complete descrip-

tion of the relationship between the explanatory variables and the response by modeling

the conditional distribution y|X = [x1, . . . ,xn]at different quantiles. Oftentimes, QR

gives comparable estimation accuracy as the least square method under Gaussian errors

and provides a more robust alternative when the “outliers” in the model are difficult to

identify. QR has a broad application in many fields like survival analysis (Koenker and

Geling, 2001), financial economics (Bassett and Chen, 2001) and environmental modeling

(Pandey and Nguyen, 1999).
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1.1 Bayesian quantile regression

Consider X = [x1, . . . ,xk], where xi = (xi,1, . . . , xi,n)′ is the explanatory variable and

y = (y1, . . . , yn)′ is the response variable. The pth (0 < p < 1) conditional quantile of yi

given xi is defined as

Qp(yi|xi) = x′iβp,

where βp ∈ Rk is the vector of coefficients. The pth (0 < p < 1) quantile regression

estimator of β is the solution to the quantile regression minimization problem given by

min
β

n∑
i=1

ρp(yi − x′iβ), (1.1)

where ρp(·) is an asymmetrix loss function,

ρp(u) = u(p− I(u < 0)), (1.2)

and I(·) is the indicator function. Equivalently, we can write (1.2) as

ρp(u) =
|u|+ (2p− 1)u

2
.

Figure 1.1 shows the loss functions at three different quantiles, namely p = 0.25, 0.50 and

0.75.

2



−4 −2 0 2 4

0.
0

0.
5

1.
0

1.
5

2.
0

x

lo
ss

 fu
nc

tio
n

p=0.50
p=0.25
p=0.75

Figure 1.1. Loss function in (1.2) at different quantiles

Regularization, e.g. lasso (Tibshirani, 1996), is also adapted in QR to prevent over-fitting

and improve prediction when the explanatory variables are high-dimensional (Li et al.,

2010). This problem can be modified as an optimization over the quantile functions

fi = xiβ, i = 1, . . . , n for
n∑
i=1

ρp(yi − fi) + λ||f ||q,

where f = (f1, . . . , fn) and || · ||q is the qth norm (Abeywardana and Ramos, 2015). For

example, when q = 1, this is the lasso penalty.

In Bayesian quantile regression, the coefficient βp is sampled from its posterior distri-

bution using the random walk Metropolis-Hastings algorithm (Yu and Moyeed, 2001) or

Gibbs samplers (Tsionas, 2003). Li et al. (2010) studied Bayesian regularized quantile

regression with the group lasso and elastic net penalty. Yu and Moyeed (2001) proposed

that QR can be incorporated into Bayesian inference framework by assuming the error

3



terms follow the asymmetric Laplace distribution (ALD). Based on the ALD distributed

error assumption, the likelihood function of β can be constructed, then its posterior

distribution can be derived using Bayes’ theorem.

Asymmetric Laplace distribution

The probability density function (pdf) of an asymmetric Laplace distribution (ALD) is

defined as

f(x;µ, σ, p) =
p(1− p)

σ
exp

(
−(x− µ)

σ
[p− I(x ≤ µ)]

)
, x ∈ (−∞,∞), (1.3)

where 0 < p < 1 is the skewness parameter, σ > 0 is the scale parameter, and µ ∈ R

is the location parameter. The distribution ALD (x;µ, σ, p) has mean E(x) = 1−2p
p(1−p)

and variance Var(x) = 1−2p+2p2

p2(1−p)2 . The corresponding CDF and quantile function are,

respectively,

F (x;µ, σ, p) =


p exp

(
1−p
σ

(x−mu)
)
, x ≤ µ,

1− (1− p) exp
(
− p
σ
(x− µ)

)
, x > µ,

(1.4)

and

F−1(x;µ, σ, p) =


µ exp

(
σ

1−p log(x
p
)
)
, 0 ≤ x < p,

µ− σ
p

log
(
−1−x

1−p

)
, p < x ≤ 1.

(1.5)

As the pth quantile of the ALD distribution equals to the location parameter µ, i.e.

F−1(x;µ, σ, p)|x=p = µ, the ALD is used as the error distribution in quantile regression

models (Yu and Moyeed, 2001).

4
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Figure 1.2. Density of ALD with µ = 50, σ = 1, and p = (0.25, 0.5, 0.75)

The ALD can also be represented as a the mixture of an exponential and a normal

distribution (Reed and Yu, 2009). If a variable ε follows the ALD in (1.3), we can

represent ε as a location-scale mixture of normal distributions given by

ε = θz + τ
√
zu, (1.6)

where

θ =
1− 2p

p(1− p)
and τ 2 =

2

p(1− p)
.

1.1.1 Quantile regression under the asymmetric Laplace distributed error

Consider the model

yi = x′iβp + εi, i = 1, . . . , n (1.7)

5



where yi ∈ R is the response variable, xi ∈ Rk is the explanatory variable, βp ∈ Rk is

the regression parameter for the pth quantile and εi ∼ ALD(0, σ, p) is the error term. By

representing εi as in (1.6), Equation (1.7) can be rewritten as

yi = x′iβp + θzi + τ
√
σziui, i = 1, . . . n, (1.8)

where ui ∼ N(0, 1) and zi follows the exponential distribution with rate σ, e.g., exp(σ).

Both θ and τ are constants with

θ =
1− 2p

p(1− p)
and τ 2 =

2

p(1− p)
.

From (1.8), yi also follows an asymmetric Laplace distribution with location parameter

xiβp, scale parameter σ and asymmetry parameter p, e.g., ALD(x′iβp, σ, p). The con-

ditional distribution of yi given zi is a normal distribution with mean xiβp − θzi and

variance τ 2zi. The conditional density of y = (y1, . . . , yn)′ given z = (z1, . . . , zn)′ and βp

is

f(y|βp, z) ∝ (Πn
i=1z

− 1
2

i ) exp

(
−Πn

i=1

(yi − x′iβp − θzi)2

2τ 2zi

)
. (1.9)

Connection with Gibbs sampling

The conditional distribution p(zj|z−j,βp,y) is known as the full conditional in MCMC

(Casella and George, 1992). The approximating density function in quantile regression

can be derived from the full conditional distribution of variables in Gibbs sampling. We

will first review quantile regression using Gibbs sampling which iteratively samples from

the full conditional distributions.

6



Gibbs sampling for quantile regression

We first consider the model in (1.8). First we consider the quantile regression with the

scale parameter σ fixed at σ = 1. Let the prior distribution be

βp ∼ N(µp0,Σp0), zi ∼ exp(1). (1.10)

The full conditional density of βp can be shown as (Kozumi and Kobayashi, 2011)

βp|y, z ∼ N(µp,Σp), (1.11)

where

Σ−1
p =

n∑
i

xix
′
i

τ 2zi
+ Σ−1

p0 , (1.12)

µp = Σp

(
n∑
i=1

xi(yi − θzi)
τ 2zi

+ Σ−1
p0 µp0

)
. (1.13)

The full conditional density of zi, i = 1, ..., n is a generalized inverse Gaussian distribu-

tion(Kozumi and Kobayashi, 2011)

zi|y,βp ∼ GIG(
1

2
, ai, bi), (1.14)

where

ai = 2 +
θ2

τ 2
and bi =

(yi − x′iβp)2

τ 2
. (1.15)

The pdf of a generalized inverse Gaussian distribution is given by

f(p, a, b) =
(a/b)p/2

2Kp(
√
ab)

xp−1 exp(−1

2
(ax+ b/x)), a > 0, b > 0, p ∈ R, (1.16)

where Kp(·)is the Bessel function of the third type. Next we extend our discussion to the

more general case by treating σ as an unknown variable and a prior is assigned to σ. The

prior distribution for βp is the same as (1.11)

βp ∼ N(µp0,Σp0), (1.17)

7



and a prior was given to σ

σ ∼ IG(m0, n0), (1.18)

where IG(·) is the inverse gamma distribution. Similar to the previous situation, the

posterior for βp and z is the same as (1.11) and (1.14) respectively. The full conditional

density for σ is then given by

σ|y,βp, z ∼ IG(mp, np), (1.19)

where

mp = 3n+m0

np = n0 +
n∑
i=1

(zi +
(yi − x′iβp − θzi)2

2τ 2zi
)

Then the algorithm of Gibbs sampler iterates between the full conditional distribution

of βp given y, z, σ, the full conditional distribution of zi given y, βp, σ, and the full

conditional distribution of σ given y, βp, z. But this process can be time consuming

when the parameter space is high dimensional and the data set is large.

Gibbs Sampling for quantile regression with the lasso penalty

The lasso regularization on quantile regression is brought up in Li and Zhu (2008), where

the L1-norm penalty (lasso) is added to the minimization problem

min
β

n∑
i=1

ρp(yi − x′iβ) + λ

k∑
i=1

|βi|.

Li et al. (2010) proposed an equivalent Bayesian formulation to the problem by putting

a Laplace prior with mean zero and scale σ
λj
, j = 1, . . . ,m on β

p(βp|σ,λ) =
k∏
j=1

λj
σ

exp(−λj
σ
|βj|), (1.20)

8



which leads to the posterior distribution

p(βp|y, σ, z) ∝ exp(− 1

σ

n∑
i=1

ρp(yi − x′iβp)−
λj
σ

k∑
j=1

|βj|), (1.21)

where λj’s are the regularization parameter for corresponding regression coefficients βj.

We put an inverse gamma prior on σ and a gamma prior on ηj =
λj
σ
, j = 1, . . . ,m. Let

s = (s1, . . . , sk) and the prior of βp can be further written as

p(βp|σ,λ) =
k∏
j=1

λj
σ

exp

(
−λj
σ
|βj|
)

=
k∏
j=1

∫ ∞
0

1
√
aπsj

exp

(
−
β2
j

2sj

)
η2
j

2
exp

(
−
η2
j sj

2

)
dsj.

(1.22)

Then the full conditional distribution of βj is N(µ̃j, ω̃
2
j ), with

µ̃j = ω̃2
j

1

στ 2

n∑
i=1

yi,jxi,jz
−1
i , (1.23)

and

ω̃−2
j =

1

στ 2

n∑
i=1

x2
i,jz
−1
i + s−1

j , (1.24)

where

yi,j = yi − θzi −
k∑

l=1,l 6=j

xi,lβl. (1.25)

The full conditional distribution of zi follows the same distribution as the previous case

in (1.14), which is GIG(1
2
, ãi, b̃i), with

ãi =
θ2

στ 2
+

2

σ
, (1.26)

and

b̃j =
(yi − x′iβp)

2

στ 2
. (1.27)

9



The full conditional distribution for sj is given by

p(sj|y, z,βp, s−j, τ, η2) ∝ p(βj|sj)p(sj|η2)

∝ s
−1/2
k exp{−1

2
(η2sj + β2

j s
−1
j )},

(1.28)

which is GIG(1
2
, η2
j , β

2
j ). The full conditional distribution for σ is also an inverse gamma

distribution IG(m̃, ñ), with

m̃ = 3n+m0, (1.29)

and

ñ = n0 +
n∑
i=1

(zi +
(yi − x′iβp − θzi)2

2τ 2zi
). (1.30)

The full conditional distribution of η2 follows a gamma distribution with shape parameter

c+ 1 and rate parameter 1
2

∑k
j=1 sk + d, which is given by

p(η2|y, z,βp, s, σ) ∝ p(s|η2)p(η2)

∝ (η2)k+c−1 exp

{
−η2

(
k∑
j=1

sk
2

+ d

)}
,

(1.31)

where c and d are constants given in the joint prior distribution of τ and η2

τ, η2 ∼ τψ−1 exp(−ξτ)(η2)c−1 exp(−dη2). (1.32)

1.1.2 Variational inference

Variational inference is one of the popular methods to approximate intractable or difficult-

to-compute posterior distributions p(y|·) with an approximate posterior distribution q(y).

Compared with MCMC such as Gibbs sampling, variational inference tends to be faster

while achieves comparable prediction especially when dealing with large-scale data sets

(Blei et al., 2016).

10



The idea of variational inference is to approximate the conditional density of latent vari-

ables given observed variables using optimization. Let x = (x1, . . . , xn) be the set of

observed variables and z = (z1, . . . , zm) be the set of latent variables. The joint density

of x and z is p(x, z). In the case that the conditional distribution p(z|x) is not directly

tractable, variational inference provides an alternative approach by approximating the

conditional distribution p(z|x) using a tractable distribution q∗(z) ∈ Θ, where Θ is the

family of densities over the latent variables. All density functions q(z) ∈ Θ are candidate

approximations to p(z|x). By solving the optimization problem, one can try to find the

member in Θ that is the closest to p(z|x) in the Kullback-Leibler (KL) distance (Blei

et al., 2016)

q∗(z) = argmin
q(z∈Q)

KL
(
q(z||p(z|x))

)
, (1.33)

where KL(q(z)||p(z|x)) is the Kullback-Leiler distance between the posterior distribution

p(z|x) and the candidate distribution q(z) in the family Θ. It is defined as

KL
(
q(z||p(z|x))

)
= E(log q(z))− E(log p(z|x)), (1.34)

which is always non-negative (van Erven and Harremos, 2014). Wang and Blei (2018)

gave the asymptotic properties of variational inference by proving that the posterior den-

sity given by variational inference converges to the KL minimizer of a normal distribution

centered at the truth. Zhang and Gao (2017) proved that the upper bound of the conver-

gence rate, at which the variational posterior q∗(z) converges to the true posterior p(z|x)

is given by

ε2n +
1

n
inf

q(z)∈Θ
p

(n)
0 KL(q(z)||p(z|x)), (1.35)

11



where ε2n is the rate of convergence of the posterior distribution p(z|x). The second

term is the variational approximation error with respect to Θ under p
(n)
0 , where p

(n)
0 is

the process that generates all the xi’s. If q(z) equals to the exact posterior distribution

p(z|x), the second term will be zero. The convergence rate will be the convergence rate

of the posterior distribution given by MCMC. In general, the second term in (1.35)

1

n
inf

q(z)∈Θ
p

(n)
0 KL(q(z)||p(z|x))

is dominated by the first term ε2n in (1.35). Variational inference does not require the

sampling process required in MCMC and Gibbs sampling. Hence, it provides computa-

tional advantages without violating the asymptotic property of estimators in large-scale

data set situations.

12



2. Variational inference for quantile regression

2.1 Algorithm of variational Bayes

Numerical implementation of the variational inference, the CAVI (coordinate ascent vari-

ational inference) algorithm in Blei et al. (2016), is closely related to Gibbs sampling.

In each iteration, CAVI optimizes every parameter sequentially, while keep others fixed.

Finally, a local optimum is reached. Consider the model with parameter vector (latent

variable) θ and observed variable y. Bayesian inference is based on the posterior density

function

p(θ|y) =
p(y,θ)

p(y)
. (2.1)

Let q(·) be an arbitrary density function over the density family Θ. The logarithm of the

marginal likelihood function satisfies

log p(y) = log p(y)

∫
q(θ)dθ

=

∫
q(βp, z) log

{
p(y,βp, z)/q(βp, z)

p(βp, z|y)/q(βp, z)

}
dβpdz

=

∫
q(βp, z) log

{
p(y,βp, z)

q(βp, z)

}
dβpdz +

∫
q(βp, z) log

{
q(βp, z)

p(βp, z|y)

}
dβpdz

≥
∫
q(βp, z) log

{
p(y,βp, z)

q(βp, z)

}
dβpdz,

(2.2)

13



where θ = (βp, z) and q(·) ∈ Θ is the candidate distribution used to approximate p(·).

The above inequality holds because the second integral in (2.2)

∫
q(βp, z) log

{
q(βp, z)

p(βp, z|y)

}
dβpdz, (2.3)

is the KL distance between q(βp, z) and p(βp, z|y), which is always non-negative by

definition (Kullback and Leibler, 1951). The equality holds if and only if q(βp, z) =

p(βp, z|y). Under this special case, the estimation of variational inference will coincide

with the estimation given by Gibbs sampling. Recall from Equation (1.33), that the goal

of variational inference is to find the distribution q(·) that is closest to the conditional

distribution p(θ|y) in KL distance. According to (2.2), minimizing the KL distance in

(2.3) between q(βp, z) and p(βp, z|y) is equivalent to maximizing the lower bound

L =

∫
q(βp, z) log

{
p(y,βp, z)

q(βp, z)

}
dβpdz. (2.4)

In variational inference, the assumption of the complexity of the density family Θ deter-

mines the complexity of optimization problem. In the mean-filed variational family (a.k.a.

naive mean approach) (Blei et al., 2016), where the latent variables θ are assumed to be

mutually independent and governed by distinct factors in the variational density q(θi), is

used to approximate the conditional distribution p(θi|y,θ−i). e.g.

q(θ) =
n∏
i=1

q(θi),

where each latent variable θi is governed by its own variational factor. One can also

use other approximations such as generalized mean field (Blei et al., 2016), in which the

14



parameters of interest are divided into groups and the parameters inside each group are

allowed to be dependent. e.g.

q(θ) =
n∏
i=1

q(θi1 , . . . , θim).

In this thesis, we adopt the mean-field variational family approach, by assuming indepen-

dence between latent variables βp and z. Then the log-likelihood function can be written

as∫
q(βp, z) log{

p(y,βp, z)

q(βp, z)
}dβpdz =

∫
q(βp)q(z) log{

p(y|βp, z)p(βp)p(z)

q(βp)q(z)
}dβpdz

=

∫
q(βp)q(z) log{p(y|βp, z)}dβpdz

+

∫
q(βp) log{

p(βp)

q(βp)
}dβp

+

∫
q(z) log{p(z)

q(z)
}dz,

(2.5)

where q(·) is the candidate density from the density family Θ. Consider the jth variable

zj in the latent variable z. The conditional density of zj conditioning on all other latent

variables and observed variables is

p(zj|z−j,βp,y),

where z−j = (z1, . . . , zj−1, zj+1, . . . , zn). Then one can fix all other variational factors in

z−j, and maximize the lower bound of this conditional distribution with respect to the

density of zj. The optimal q∗j (zj) ∈ Θj is proportional to the exponential of the expected

log conditional density (Blei et al., 2016)

q∗(zj) ∝ exp(E−j(log p(zj|y, z−j))). (2.6)

The latent variables are updated successively using (2.6). The iteration stops when the

difference between two sequential lower bound is negligible. i.e., smaller than a prespec-
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ified tolerance level.

Algorithm: (CAVI)

Step1 Initialize q(θ)

Step2 Update q(zj)
∗, j = 1, . . . , n and q(βp) by

q∗(zj) ∝ exp(E−j(log p(zj|y, z−j))),

...

q(βp) ∝ exp(Ez(log p(βp|y, z)))

Step3 Update the lower bound L, repeat step 2 and 3 until the change in L is negligible.

2.2 Variational inference for quantile regression without regularization

We start from the simplest case, where the scale parameter is fixed at σ = 1. Then only

βp and z need to be updated in the iterations of variational inference.

The optimal approximation density function q∗(βp) is given by

q(βp) ∝ exp(Ez(log p(βp|y, z)))
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with

log p(βp|y, z) = −1

2

log(2π) + log

det

(
n∑
i=1

xix
′
i

τ 2zi
+ Σ−1

p0

)−1


− 1

2
(βp − µp0)′

(
n∑
i=1

xix
′
i

τ 2zi
+ Σ−1

p0

)
(βp − µp0)

= −1

2
log

det

(
n∑
i=1

xix
′
i

τ 2zi
+ Σ−1

p0

)−1


− 1

2
β′p

(
n∑
i=1

xix
′
i

τ 2zi
+ Σ−1

p0

)
βp

+ β′p

(
n∑
i=1

xi(yi − θzi)
τ 2zi

+ Σ−1
p0 µp0

)

− 1

2

(
n∑
i=1

xi(yi − θzi)
τ 2zi

+ Σ−1
p0 µp0

)′( n∑
i=1

xix
′
i

τ 2zi
+ Σ−1

p0

)−1( n∑
i=1

xi(yi − θzi)
τ 2zi

+ Σ−1
p0 µp0

)

+ const.

(2.7)

The expectation of log p(βp|y, z) is with respect to zi, where zi follows the generalized

inverse Gaussian distribution GIG(1
2
, aqi , bqi), with

E(zi) =

√
bqiK3/2(

√
aqibqi)

√
aqiK1/2(

√
aqibqi)

,

E(
1

zi
) =

√
aqiK3/2(

√
aqibqi)√

bqiK1/2(
√
aqibqi)

− 1

bqi
,

and

E(ln zi) = ln

√
bqi√
aqi

+
∂

∂p
lnKp(

√
aqibqi),

where Kp(·) is the Bessel function with order p. The approximation of the expectations

could be used for simplicity in some situations (Abeywardana and Ramos, 2015), with

E(zi) =

√
bqi
aqi
, (2.8)

17



and

E(
1

zi
) =

√
aqi
bqi
− 1

bqi
. (2.9)

In general the exact values of these expectations are preferred, as the approximated

value might cause convergence problems. e.g., the value of the lower bound sometimes

diverges if the approximated values are used. The expectation of the logarithm of the

full conditional density log p(βp|y, z) is

Ez(log p(βp|y, z)) = β′p(
n∑
i=1

xiyi
τ 2

E(
1

zi
)−

n∑
i=1

θ

τ 2
xi + Σ−1

p0 µp0)

− 1

2
β′p(

n∑
i=1

xix
′
i

τ 2
E(

1

zi
) + Σ−1

p0 )βp

+ const.

(2.10)

Taking exponential of the expectation Ez(log p(βp|y, z)), we then see that the density

function of q(βp) is for the multivariate normal distribution N(µq,Σq), with

Σq =

(
n∑
i=1

xix
′
i

τ 2
E
(

1

zi

)
+ Σ−1

p0

)−1

, (2.11)

and

µq = Σq

(
n∑
i=1

xiyi
τ 2

E
(

1

zi

)
−

n∑
i=1

θ

τ 2
xi + Σ−1

p0 µp0

)
. (2.12)

The pdf of q(zi)’s are calculated in a similar manner as

q(zi) ∝ exp(Eβp
(logP(zi|y,βp))), (2.13)

where

log p(zi|y,βp) = −1

2
log(zi)−

1

2
(aizi + bi/zi) + const. (2.14)
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The expectation of the log conditional density log p(zi|y,βp) with respect to βp follows

the GIG distribution

q(zi) ∼ GIG(
1

2
, aqi , bqi), (2.15)

with

aqi = 2 +
θ2

τ 2
, (2.16)

and

bqi =
y2
i − 2yix

′
iµq + x′i(µqµ

′
q + Σq)xi

τ 2
. (2.17)

The µq and Σq in (2.17) are the mean and variance of q(βp), which are given in (2.11)

and (2.12). From (2.4), the lower bound is given by

E(log p(y|θ)) + E(log(p(θ)))− E(log(q(θ))), (2.18)

with θ = (z,βp). Then the lower bound l is

l =

∫
q(z)q(βp) log

(
p(y|z,βp)

)
dzdβp +

∫
q(z) log (p(z)/q(z)) dz

+

∫
q(βp) log(p(βp)/q(βp))dβp

= Eq(z),q(βp) log
(
(y|z,βp)

)
+ Eq(z) log(p(z))− Eq(z)log(q(z))

+ Eq(βp) log(p(βp))− Eq(βp) log(q(βp)).

(2.19)

The variational inference algorithm when σ = 1 is

Algorithm 1:

Step1 Initialize mean µq and covariance matrix Σq.

Step2 Repeat Steps 3-5 if the absolute change in lower bound l ≥ t, where t is the tolerance

given, e.g. t = 10−5.
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Step3 Update parameters in q(z). q(zi) ∼ GIG(1
2
, aqi , bqi), where

aqi = 2 +
θ2

τ 2
,

bqi =
y2
i − 2yix

′
iµq + x′i(µqµ

′
q + Σq)xi

τ 2
.

Step4 Update parameters in q(βp). q(βp) ∼ N(µq,Σq), where

Σq =

(
n∑
i=1

xix
′
i

τ 2
E
(

1

zi

)
+ Σ−1

p0

)−1

µq = Σq

(
n∑
i=1

xiyi
τ 2

E
(

1

zi

)
−

n∑
i=1

θ

τ 2
xi + Σ−1

p0 µp0

)
.

Step5 Update lower bound l

l = Eq(z),q(βp)(y|z,βp) + Eq(z) log(p(z))− Eq(z)log(q(z))

+Eq(βp) log(p(βp))− Eq(βp) log(q(βp))

When the scale parameter σ is taken into account, similar as the case in Gibbs sampling,

a prior distribution of σ is assumed and we update the value of βp, z and σ successively

in the iteration of variational inference. The approximation distribution of βp, z and σ

are given by

q(βp) ∼ N(µq,Σq), (2.20)

q(zi) ∼ GIG(aqi , bqi), (2.21)

and

q(σ) ∼ IG(mq, nq), (2.22)
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with

Σq =

(
n∑
i=1

xix
′
i

τ 2
E
(

1

zi

)
E
(

1

σ

)
+ Σ−1

p0

)−1

, (2.23)

µq = Σq

(
QE

(
1

σ

)
+ Σ−1

p0 µp0

)
, (2.24)

aqi =

(
2 +

θ2

τ 2

)
E
(

1

σ

)
, (2.25)

bqi =
M

τ 2
E
(

1

σ

)
, (2.26)

mq = 3n+m0, (2.27)

and

nq = n0 +
n∑
i=1

E(zi) + N. (2.28)

The Q in Equation (2.24) is given by

Q = (
n∑
i=1

xiyi
τ 2

E(
1

zi
)−

n∑
i=1

θ

τ 2
xi). (2.29)

The M is Equation (2.26) is given by

M = y2
i − 2yix

′
iµq + x′i(µqµ

′
q + Σq)xi. (2.30)

The N in Equation (2.28) is given by

N =
n∑
i=1

M

2τ 2
E
(

1

zi

)
−
θ(yi − x′iµp)

τ 2
+

θ2

2τ 2
E(zi). (2.31)

Algorithm 2:

Step1 Initialize mean µq and covariance matrix Σq.

Step2 while absolute change in lower bound l ≥ t, t is the tolerance given, e.g. t = 10−5.
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Step3 Update parameters in q(z), using q(zi) ∼ GIG(1
2
, aqi , bqi).

Step4 Update parameters in q(βp), using q(βp) ∼ N(µq,Σq).

Step5 Update parameters in q(σ), using q(σ) ∼ IG(mq, nq).

Step6 Update the lower bound l

2.3 Variational inference for quantile regression with the lasso penalty

The approximation density function q(·) is calculated using the same method given in

Section (2.2)

q(θi) ∝ exp(Eθ−i
(log p(θi|θ−i))), (2.32)

where θ−i is the vector of variables without the ith variable θi. The density function of

q(βj) follows the normal distribution

N(µqj , ωqj), (2.33)

with

ω−2
qj

=
E(1/σ)

τ 2

n∑
i=1

x2
i,jE(1/zi) + E(1/sj), (2.34)

and

µqj = ω2
qj

(
E(1/σ)

τ 2

n∑
i=1

xi,j

(
yiE

(
1

zi

)
− θ −

k∑
l=1,l 6=j

xi,lµqjE
(

1

zi

)))
, (2.35)

where E(1/σ) = mq

nq
with mq and nq given in (2.44) and (2.45). The density function of

q(zi) follows the generalized inverse Gaussian

GIG(
1

2
, ãqi , b̃qi), (2.36)
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with

aqi =

(
θ2

τ 2
+ 2

)
E
(

1

σ

)
, (2.37)

and

bqi =
(y2
i − 2yix

′
iµq + x′iE(βpβ

′
p)xi)E( 1

σ
)

τ 2
. (2.38)

The density functions of q(sj) and q(η2) follow the generalized inverse Gaussian

GIG(
1

2
, η2
qj
, β2

qj
), (2.39)

and the Gamma distribution

Gamma

(
k + c,

k∑
j=1

E(sj)

2
+ d

)
, (2.40)

respectively, with

η2
qj

= E(η2) =
k + c∑k

j=1
E(sj)

2
+ d

, (2.41)

and

β2
qj

= E(β2
j ) = µ2

qj
+ ω2

qj
. (2.42)

The density function of q(σ) follows the inverse Gamma distribution

IG(mq, nq), (2.43)

with

mq = 3n+m0, (2.44)

and

nq = n0 +
n∑
i=1

{(
1 +

θ2

2τ 2

)
E(zi) +

E(yi − xiβp)
2

2τ 2
E
(

1

zi

)
− E(yi − xiβ)

τ 2
θ

}
. (2.45)
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Algorithm 3:

Step1 Initialize parameters in the prior distribution, including m0, n0, c and d.

Step2 Initialize mean µq and covariance matrix Σq.

Step3 Update parameters in q(σ), using q(σ) ∼ IG(mq, nq).

Step4 Update parameters in q(sj), using q(sj) ∼ GIG(1
2
, η2
qj
, β2

qj
).

Step5 Update parameters in q(η2), using q(η2) ∼ Gamma(k + c,
∑k

j=1
E(sj)

2
+ d).

Step6 Update parameters in q(z), using q(zi) ∼ GIG(1
2
, ãqi , b̃qi).

Step7 Update parameters in q(βp), using q(βj) ∼ N(µqj , ωqj).

Step8 Update the lower bound l, if the difference between two consecutive l is bigger than

the tolerance level specified, repeat Steps 3 ∼ 8.
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3. Simulation studies

We compare the variational inference with the Gibbs sampling method in terms of accu-

racy and speed using simulated data. CPU time is used to measure the speed of different

algorithms and predictive mean squared error (MSE) is used to measure the accuracy. As-

suming independent and identically (i.i.d) distributed errors, we conduct the simulation

using the following models.

1. Sparse case with Gaussian noise: β1 = (3, 1.5, 0, 0, 2, 0, 0, 0), εi ∼ N(0, 0.62).

2. Dense case with Gaussian noise:β2 = (0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85), εi ∼

N(0, 0.62).

3. Very sparse case with Gaussian noise: β3 = (2, 4, 0, . . . , 0︸ ︷︷ ︸
10

), εi ∼ N(0, 0.62).

4. High-dimensional: β4 = (2, . . . , 2︸ ︷︷ ︸
40

, 0, . . . , 0︸ ︷︷ ︸
40

, 3, . . . , 3︸ ︷︷ ︸
40

), εi ∼ N(0, 0.62)

For first three models, we set the sample size n equal to 1000. And the sample size for the

last model is 50. In model 1∼3 we run the regression using variational inference without

the lasso penalty (Algorithm 2). And variational inference with the lasso penalty is

applied in the high-dimensional case. Gibbs sampling are applied in all four cases for

comparison. Fig. 3.1 and Fig. 3.2 show the CPU time and predictive MSE using varia-

tional inference and Gibbs sampling under different quantiles, respectively.

The Gibbs sampling on qunatile regression is conducted using the bayesQR function in R
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Figure 3.1. CPU time at different quantiles
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Figure 3.2. Predictive MSE at different quantiles
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package bayesQR (Benoit and den Poel, 2017). In the sparse and dense case, variational

inference has a comparable speed compared with Gibbs sampling, but variational infer-

ence maintains a lower MSE. Variational inference tends to need more time for extreme

quantiles. In the very sparse case and the case when predictor is more than sample size,

variational inference spends less time than quantile regression but has a slightly larger

MSE. Variational inference could be used as a faster alternative to Gibbs sampling when

the dimension of the predictor is high, while provides a comparable accuracy in terms of

MSE. We also compare the number of iterations needed to converge using quantile re-

gression with the lasso penalty and Gibbs sampling under quantile p = {0.25, 0.5, 0.75}.

The results are shown in Fig. 3.3 and Fig. 3.4. It shows that the two methods take

almost the same number of iterations to converge. However, turning points of variational

inference usually occur before that in Gibbs sampling, which indicates that the declining

of MSE in variational inference is usually faster in the first few iterations.
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Figure 3.3. Iteration trajectories of variational inference and Gibbs sampling
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Figure 3.4. Iteration trajectories of variational inference and Gibbs sampling
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4. Conclusions

This thesis derive the variational inference algorithm for quantile regression with and

without the lasso regularization. Simulated studies show that, in comparison with Gibbs

sampling, variational inference has a faster MSE declining within few iterations. Usually

variational inference could maintain a comparable accuracy with Gibbs sampling. In

very sparse data sets and the case when predictor is more than sample size, variational

inference could usually perform better without sacrificing significant accuracy.
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