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Abstract of the Thesis

Variational Inference for Quantile Rgression
by
Bufei Guo
A.M. in Statistics
Washington University in St. Louis, 2019.

Professor Nan Lin, Chair

Quantile regression (QR) (Koenker and Bassett, 1978), is an alternative to classic lin-
ear regression with extensive applications in many fields. This thesis studies Bayesian
quantile regression (Yu and Moyeed, 2001) using variational inference, which is one of
the alternative methods to the Markov chain Monte Carlo (MCMC) in approximating
intractable posterior distributions. The lasso regularization is shown to be effective in
improving the accuracy of quantile regression (Li and Zhu, 2008). This thesis developed
variational inference for quantile regression and regularized quantile regression with the
lasso penalty. Simulation results show that variational inference is a computationally

more efficient alternative to the MCMC, while providing a comparable accuracy.
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1. Introduction

Regression is a technique used to explain the relationship between explanatory variable
X = [x1,...,X,] and a response variable y. Least square estimation (LSE) is one of the
widely used methods, that targets the conditional expectation E(y|X = [xi,...,X,]).
When heterogeneity is present in the random error, it provides an inadequate descrip-
tion of the distribution of response variable y as only the average relationship between
X and y is considered. Quantile regression(QR) was first introduced by Koenker and
Bassett (1978), which provides an alternative to least square estimator, especially for the
linear model with non-Gaussian errors. QR is able to provide a more complete descrip-
tion of the relationship between the explanatory variables and the response by modeling
the conditional distribution y|X = [xi,...,X,]at different quantiles. Oftentimes, QR
gives comparable estimation accuracy as the least square method under Gaussian errors
and provides a more robust alternative when the “outliers” in the model are difficult to
identify. QR has a broad application in many fields like survival analysis (Koenker and
Geling, 2001), financial economics (Bassett and Chen, 2001) and environmental modeling

(Pandey and Nguyen, 1999).



1.1 Bayesian quantile regression

Consider X = [x1,...,Xy], where x; = (2;1,...,%;,) is the explanatory variable and
y = (y1,...,Yn)" is the response variable. The pth (0 < p < 1) conditional quantile of y;

given x; is defined as
Qp(yilxi) = xiB,,

where 3, € R* is the vector of coefficients. The pth (0 < p < 1) quantile regression

estimator of 3 is the solution to the quantile regression minimization problem given by

min > o, — X0, (11)
i=1
where p,(-) is an asymmetrix loss function,

pp(u) = u(p —I(u < 0)), (1.2)

and I(-) is the indicator function. Equivalently, we can write (1.2) as

_ ul+2p—1u
pp(u) = 9 :

Figure 1.1 shows the loss functions at three different quantiles, namely p = 0.25, 0.50 and

0.75.
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Figure 1.1. Loss function in (1.2) at different quantiles

Regularization, e.g. lasso (Tibshirani, 1996), is also adapted in QR to prevent over-fitting
and improve prediction when the explanatory variables are high-dimensional (Li et al.,
2010). This problem can be modified as an optimization over the quantile functions
fi=x;8, i=1,...,n for

pr(yz‘ - fz) + )‘Hqua

where f = (fi,..., fn) and || - ||, is the gth norm (Abeywardana and Ramos, 2015). For
example, when ¢ = 1, this is the lasso penalty.

In Bayesian quantile regression, the coefficient 3, is sampled from its posterior distri-
bution using the random walk Metropolis-Hastings algorithm (Yu and Moyeed, 2001) or
Gibbs samplers (Tsionas, 2003). Li et al. (2010) studied Bayesian regularized quantile
regression with the group lasso and elastic net penalty. Yu and Moyeed (2001) proposed

that QR can be incorporated into Bayesian inference framework by assuming the error



terms follow the asymmetric Laplace distribution (ALD). Based on the ALD distributed
error assumption, the likelihood function of B8 can be constructed, then its posterior

distribution can be derived using Bayes’ theorem.

Asymmetric Laplace distribution

The probability density function (pdf) of an asymmetric Laplace distribution (ALD) is

defined as

flapop) = PP oy (—(‘” S (e u)]) ae(coom) (1)

where 0 < p < 1 is the skewness parameter, ¢ > 0 is the scale parameter, and p € R

is the location parameter. The distribution ALD (z;p,o,p) has mean E(x) = p1(1__2§)
and variance Var(z) = 11)_2(2ffj)’;2. The corresponding CDF and quantile function are,
respectively,
pexp (2 (z —mu)), z < p,
F(z;p,0,p) = (1.4)
l—-(1-plexp(~2(x—p), =>upn,
and

[ eXP (fplog(%)) , 0<z<yp,

F(x;p,0,p) = (1.5)

,u—%log(—ﬁ), p<x<1.
As the pth quantile of the ALD distribution equals to the location parameter pu, i.e.

FYx;p,0,p)|e=p = p, the ALD is used as the error distribution in quantile regression

models (Yu and Moyeed, 2001).
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Figure 1.2. Density of ALD with p =50, 0 = 1, and p = (0.25, 0.5, 0.75)

The ALD can also be represented as a the mixture of an exponential and a normal
distribution (Reed and Yu, 2009). If a variable ¢ follows the ALD in (1.3), we can

represent € as a location-scale mixture of normal distributions given by

€=0z+71zu, (1.6)

where

1.1.1 Quantile regression under the asymmetric Laplace distributed error

Consider the model

yi=x8, +e, i=1,....n (1.7)



where 7; € R is the response variable, x; € R¥ is the explanatory variable, B, € R is
the regression parameter for the pth quantile and ¢; ~ ALD(0, o, p) is the error term. By

representing ¢; as in (1.6), Equation (1.7) can be rewritten as

yi = x,8, + 0z + 1oz, i=1,...n, (1.8)

where u; ~ N(0,1) and z; follows the exponential distribution with rate o, e.g., exp(o).

Both 6 and 7 are constants with

From (1.8), y; also follows an asymmetric Laplace distribution with location parameter
X;Bp, scale parameter o and asymmetry parameter p, e.g., ALD(x;3,,0,p). The con-
ditional distribution of y; given z; is a normal distribution with mean xi3, — 0z; and
variance 72z;. The conditional density of y = (y1,...,y,)" given z = (z1,...,2,) and B,

is

(yi — X;ﬁp - 9%)2> ' (1.9)

2722

F(318,.2) o (T2 ) exp (—H;-;l

Connection with Gibbs sampling

The conditional distribution p(z;|z_;, 3,,y) is known as the full conditional in MCMC
(Casella and George, 1992). The approximating density function in quantile regression
can be derived from the full conditional distribution of variables in Gibbs sampling. We
will first review quantile regression using Gibbs sampling which iteratively samples from

the full conditional distributions.



Gibbs sampling for quantile regression

We first consider the model in (1.8). First we consider the quantile regression with the

scale parameter o fixed at ¢ = 1. Let the prior distribution be

B, ~ N(ppo, Xpo)s 2z ~ exp(1). (1.10)

The full conditional density of 3, can be shown as (Kozumi and Kobayashi, 2011)

ﬂp|Y7Z ~ N(,upa Ep)a (111)
where
-1 - XX -1
5t = Z 2, 5 (1.12)
& Xi(yi - 921‘) _
Ky = Zp ( — 2, T Epol.upo> - (1.13)
i=1 v

The full conditional density of z;,7 = 1,...,n is a generalized inverse Gaussian distribu-

tion(Kozumi and Kobayashi, 2011)

ly. By ~ GIG (5,01, b), (1.14)
where
ai:2+f_—z and biz(yi:_#p)é (1.15)
The pdf of a generalized inverse Gaussian distribution is given by
f(p,a,b) = (a/b)" P! eXp(—l(ax +b/x)),a>0,b>0,p€R, (1.16)

- 2K,(Vab) 2
where K, (-)is the Bessel function of the third type. Next we extend our discussion to the

more general case by treating o as an unknown variable and a prior is assigned to . The

prior distribution for 3, is the same as (1.11)

By ~ N0, Xpo), (1.17)

7



and a prior was given to o

g~ IG(mo,n(]), (118)

where IG(+) is the inverse gamma distribution. Similar to the previous situation, the
posterior for B, and z is the same as (1.11) and (1.14) respectively. The full conditional

density for ¢ is then given by
U|Y7/8p7z ~ ]G(mp7np)7 (119)

where

Then the algorithm of Gibbs sampler iterates between the full conditional distribution
of B, given y, z, o, the full conditional distribution of z; given y, 8,, o, and the full

conditional distribution of o given y, 3

> Z. But this process can be time consuming

when the parameter space is high dimensional and the data set is large.

Gibbs Sampling for quantile regression with the lasso penalty

The lasso regularization on quantile regression is brought up in Li and Zhu (2008), where

the Li-norm penalty (lasso) is added to the minimization problem

n k
min} _pp(y; = Xi8) + Ay |8
=1 1=1

Li et al. (2010) proposed an equivalent Bayesian formulation to the problem by putting

a Laplace prior with mean zero and scale -,7 =1,...,m on 3
Ly Aj
p(Bylo N) = ][ T exn(=—8;1), (1.20)
j=1



which leads to the posterior distribution

PB,Iy.0.2) o exp(== S oyl = x18,) — 22 S 15 (1.21)
i=1 j=1

where \;’s are the regularization parameter for corresponding regression coefficients ;.

Aj

We put an inverse gamma prior on ¢ and a gamma prior on 7; = 25, j=1,...,m. Let

s = (s1,...,sx) and the prior of B, can be further written as

k

s s
p8,jox) =TT % e (215

];l (1.22)
1] oo () oo ()
= exp| —=——) =exp| — ds;.
i1 Jo ams; 2s;) 2 2
Then the full conditional distribution of 8; is N(fi;,©7), with
5,1 ¢ -1
i =05 —5 > igTiE (1.23)
oT? =
and
1 n
~—2 2 1, -1
i=1
where
k
yi,j =Y — 02@ — Z xi,lﬁl- (125)
I=1,I#j

The full conditional distribution of z; follows the same distribution as the previous case

in (1.14), which is GIG(3, &, b;), with

and
7 (yi — x; )2



The full conditional distribution for s; is given by

p(sily. 2, 8,55, 7.17°) o< p(B;ls5)p(s51m%)
(1.28)

_ 1 _
o s, 2 exp{ =5 (s + 515}

which is GIG(3, 72, 37). The full conditional distribution for ¢ is also an inverse gamma

distribution IG(m,n), with

m = 3n + my, (1.29)
and
3 . (y: — xiB, — 02)*
i =mng+ ;_1 (2 + = ) (1.30)

The full conditional distribution of 1? follows a gamma distribution with shape parameter

¢+ 1 and rate parameter % Z§:1 si + d, which is given by

p(’ly,z,8,,s,0) o p(s|n*)p(n*)

2\ ktc—1 2 = sy (131
o (1) exp{—n <23+d>},

Jj=1

where ¢ and d are constants given in the joint prior distribution of 7 and 7>

T ~ 7 exp(—€7) (%) exp(—dn?). (1.32)

1.1.2 Variational inference

Variational inference is one of the popular methods to approximate intractable or difficult-
to-compute posterior distributions p(y|-) with an approximate posterior distribution ¢(y).
Compared with MCMC such as Gibbs sampling, variational inference tends to be faster
while achieves comparable prediction especially when dealing with large-scale data sets
(Blei et al., 2016).

10



The idea of variational inference is to approximate the conditional density of latent vari-
ables given observed variables using optimization. Let x = (xy,...,2,) be the set of
observed variables and z = (z1, ..., 2z,) be the set of latent variables. The joint density
of x and z is p(x,z). In the case that the conditional distribution p(z|x) is not directly
tractable, variational inference provides an alternative approach by approximating the
conditional distribution p(z|x) using a tractable distribution ¢*(z) € ©, where © is the
family of densities over the latent variables. All density functions ¢(z) € © are candidate
approximations to p(z|x). By solving the optimization problem, one can try to find the
member in O that is the closest to p(z|x) in the Kullback-Leibler (KL) distance (Blei

et al., 2016)

q(z) = argminKL(q(z||p(z|X))), (1.33)
9(z€Q)

where KL(¢(z)||p(z|x)) is the Kullback-Leiler distance between the posterior distribution

p(z]x) and the candidate distribution ¢(z) in the family ©. It is defined as

KL(q(z||p(zx))) = E(log q(z)) — E(log p(z[x)), (1.34)

which is always non-negative (van Erven and Harremos, 2014). Wang and Blei (2018)
gave the asymptotic properties of variational inference by proving that the posterior den-
sity given by variational inference converges to the KL minimizer of a normal distribution
centered at the truth. Zhang and Gao (2017) proved that the upper bound of the conver-
gence rate, at which the variational posterior ¢*(z) converges to the true posterior p(z|x)
is given by

&+ int plVKL(g()lp(ebe), (1.3)

N q(z)€®

11



where €2 is the rate of convergence of the posterior distribution p(z|x). The second

) (n)

term is the variational approximation error with respect to © under p(()n , where p; "’ is
the process that generates all the x;’s. If ¢(z) equals to the exact posterior distribution

p(z]x), the second term will be zero. The convergence rate will be the convergence rate

of the posterior distribution given by MCMC. In general, the second term in (1.35)

1 .
— inf p"KL(q(z)||p(z|x))
z)€O

T g(
is dominated by the first term €2 in (1.35). Variational inference does not require the
sampling process required in MCMC and Gibbs sampling. Hence, it provides computa-
tional advantages without violating the asymptotic property of estimators in large-scale

data set situations.

12



2. Variational inference for quantile regression

2.1 Algorithm of variational Bayes

Numerical implementation of the variational inference, the CAVI (coordinate ascent vari-
ational inference) algorithm in Blei et al. (2016), is closely related to Gibbs sampling.
In each iteration, CAVI optimizes every parameter sequentially, while keep others fixed.
Finally, a local optimum is reached. Consider the model with parameter vector (latent
variable) @ and observed variable y. Bayesian inference is based on the posterior density

function

p(@ly) =

(2.1)

Let ¢(-) be an arbitrary density function over the density family ©. The logarithm of the

marginal likelihood function satisfies

log p(y) = log p(y) / q(0)de

{
— /q(ﬂp>z) log {(q}(,b—;;)z} dB,dz + /q( . z) log {%} dB,dz
{

(2.2)

13



where 6 = (8,,2) and ¢(-) € © is the candidate distribution used to approximate p(-).

The above inequality holds because the second integral in (2.2)

/ 4(8,,7)log {%} dB,dz, (2.3)

is the KL distance between ¢(8,,z) and p(8,,zly), which is always non-negative by
definition (Kullback and Leibler, 1951). The equality holds if and only if ¢(8,,2z) =
p(B,,2]ly). Under this special case, the estimation of variational inference will coincide
with the estimation given by Gibbs sampling. Recall from Equation (1.33), that the goal
of variational inference is to find the distribution ¢(-) that is closest to the conditional
distribution p(@]y) in KL distance. According to (2.2), minimizing the KL distance in

(2.3) between ¢(8,,2) and p(B,,z|y) is equivalent to maximizing the lower bound

L= / 4(83,,2)log {%} 4B, dz. (2.4)

In variational inference, the assumption of the complexity of the density family © deter-
mines the complexity of optimization problem. In the mean-filed variational family (a.k.a.
naive mean approach) (Blei et al., 2016), where the latent variables @ are assumed to be
mutually independent and governed by distinct factors in the variational density ¢(6;), is

used to approximate the conditional distribution p(6;|y,0_;). e.g.

where each latent variable 6; is governed by its own variational factor. One can also

use other approximations such as generalized mean field (Blei et al., 2016), in which the

14



parameters of interest are divided into groups and the parameters inside each group are

allowed to be dependent. e.g.

Hq e 05)

In this thesis, we adopt the mean-field variational family approach, by assuming indepen-
dence between latent variables 3, and z. Then the log-likelihood function can be written

as

p(y. B, 2)

a8 st 0n = [ a8, e oM O

9(B,)a(z)
_ / 4(8,)a(z) log{p(y|B,,2)}dB,dz

}dB,dz

p(8,)
4 / 0(8,) x5 )8,

p(2)
+ [ ata)oa( 52 e

where ¢(+) is the candidate density from the density family ©. Consider the jth variable
zj in the latent variable z. The conditional density of z; conditioning on all other latent

variables and observed variables is

p(Zj’Z—jﬁ /Bpa Y)a

where z_; = (z1,...,2j-1,%j+1,.-.,%,). Then one can fix all other variational factors in

z_;, and maximize the lower bound of this conditional distribution with respect to the

—j»
density of z;. The optimal q;-‘(zj) € ©; is proportional to the exponential of the expected

log conditional density (Blei et al., 2016)

q" () o< exp(E_;(log p(z;]y, z)))- (2.6)

The latent variables are updated successively using (2.6). The iteration stops when the
difference between two sequential lower bound is negligible. i.e., smaller than a prespec-

15



ified tolerance level.

Algorithm: (CAVI)

Stepl Initialize ¢(@)

Step2 Update q(2;)*, j=1,...,n and ¢(8,) by

q*(2j) < exp(E_;(log p(z;]y, z—;))),

4(Bp) o exp(E,(log p(Byly, 2)))

Step3 Update the lower bound L, repeat step 2 and 3 until the change in L is negligible.

2.2 Variational inference for quantile regression without regularization

We start from the simplest case, where the scale parameter is fixed at ¢ = 1. Then only
B, and z need to be updated in the iterations of variational inference.

The optimal approximation density function ¢*(3,) is given by

q(Bp) o exp(E,(log p(Byly, 2z)))

16



with

~1
1 XiX]
lozp(B,ly. ) = — | log(2m) + log | det (Z z,+2p01>

=1

+ const.
(2.7)
The expectation of log p(8,|y,z) is with respect to z;, where z; follows the generalized

inverse Gaussian distribution GIG(%, g, by, ), With

V bQiK3/2< V aQ'qui)
]E(ZZ) = >
\/ aqz‘Kl/?( V aqiqu')

E(l) - \/a_qz'K3/2(\/ aqibQi) _ i’

Zi B \/b_qu1/2(\/ aqibQi) by,

and

Vb,
E(ln z) = In Tq + (% In K,(\/agby,),
[y,

7

where K, (-) is the Bessel function with order p. The approximation of the expectations

could be used for simplicity in some situations (Abeywardana and Ramos, 2015), with

E(z) = 4| %, (2.8)



and

E(2) = E - (2.9)

In general the exact values of these expectations are preferred, as the approximated
value might cause convergence problems. e.g., the value of the lower bound sometimes
diverges if the approximated values are used. The expectation of the logarithm of the

full conditional density logp(8,|y,z) is

& 191 9 —
E,(log p(Byly. 2)) = (3" “WE() — 3 i+ Syl

: T2 2 :
i=1 =1
Loxxax o 1o (2.10)
- §ﬂp(z 72 E(Z_) +250)8, ’
i=1 v
+ const.

Taking exponential of the expectation E,(log p(Bply,z)), we then see that the density

function of ¢(3,) is for the multivariate normal distribution N(zug, 3,), with

-1
"L X% 1 _
Y, = (Z 5 (Z) + zpol) , (2.11)

and

1y =%, (Z S E (z—) = —%i+ zpolupo) . (2.12)

i=1 =1

The pdf of q(z;)’s are calculated in a similar manner as

q(z) x exp(Eg, (log P(z]y, 8,))), (2.13)
where
1 1
logp(zly, B,) = ) log(z;) — E(aizi + b;/z;) + const. (2.14)

18



The expectation of the log conditional density logp(zy, 3,) with respect to 3, follows

the GIG distribution

q(zi) ~ GIG( , gy b, (2.15)
with
92
Gy =2+, (2.16)
and
2 _ 2 iX/- + X/ ! + X X;
bqi _ yz Y 'Ll’l‘q T2’L(l’l‘ql"’q Q) ) (217)

The p, and X, in (2.17) are the mean and variance of ¢(8,), which are given in (2.11)

and (2.12). From (2.4), the lower bound is given by

E(logp(y|6)) + E(log(p(8))) — E(log(q(0))), (2.18)

with @ = (z,,). Then the lower bound [ is
= [ aa(8,) lox (v(yi. 8,)) dzdb, + [ 4(2) 1o (o(2)/a(2)) da
+ [ a(8,) Yos(o(8,)/a(8,))as, -

= Eq2).08,) 108 ((¥12, 8,)) + Eq(z) log(p(2)) — Eq)log(q(2))

+Ey,) og(p(B,)) — Eq(s,) log(9(8B,))-

The variational inference algorithm when o =1 is

Algorithm 1:

Stepl Initialize mean p, and covariance matrix %,

Step2 Repeat Steps 3-5 if the absolute change in lower bound | > ¢, where ¢ is the tolerance
given, e.g. t = 1075,

19



Step3 Update parameters in ¢(z). q(z;) ~ GIG(%, g, by, ), where
02

A, =24+ —
qi 7_27

- Y7 — 2y, + X (p py + Xg)X;
"= .

7 7_2

Step4 Update parameters in ¢(3,). ¢(8,) ~ N(ig, %), where

p

"L XX, 1 , B
PINES (E = (;)—i—zpo)
i=1 '

- XiYi 1 —~ 0 -1
% (Z 2 E (;) LR upo) -
i=1 v

=1

Hq
Stepd Update lower bound [
= Ey)q08,) (Y12 8,) + Eq(z) log(p(2)) — Ey()log(g(2))

+Eqys,) log(p(B,)) — Eqg,) log(q(B,))

When the scale parameter o is taken into account, similar as the case in Gibbs sampling,
a prior distribution of o is assumed and we update the value of 3, z and o successively
in the iteration of variational inference. The approximation distribution of 3, z and o

are given by

q(B,) ~ Nty Xq), (2.20)
4(2;) ~ GIG(ay,.by,), (2.21)

and
4(0) ~ IG(my, n,), (2.22)
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with

and

ng = N + ZE(%) + N.
i=1

The Q in Equation (2.24) is given by

n

Q= ("B - Y o)

=1 =1

The M is Equation (2.26) is given by

M = 7 — 2y;X,p, + X (g + Xg)X;.

The N in Equation (2.28) is given by

/

Algorithm 2:

)

_|_

Q2

2

E(ZZ)

(2.23)

(2.24)
(2.25)
(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

Stepl Initialize mean g, and covariance matrix 3.

Step2 while absolute change in lower bound [ > ¢, t is the tolerance given, e.g. t = 107°.
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Step3 Update parameters in ¢(z), using q(z;) ~ G]G(%, g;, by, )-
Step4 Update parameters in q(3,), using q(8,) ~ N(pg, Xq).
Step5 Update parameters in ¢(o), using ¢(o) ~ IG(mg, ng).

Step6 Update the lower bound [

2.3 Variational inference for quantile regression with the lasso penalty

The approximation density function ¢(-) is calculated using the same method given in

Section (2.2)
1(6:) ox exp(Eg_(lo p(61]6_.))). (2.32)

where 0_; is the vector of variables without the ¢th variable 6;. The density function of

q(B;) follows the normal distribution

N(j1g,00). (2.33)

with

E(1/z) + E(1/s)), (2.34)

ey = W2, (E(l/a) > <yE< )_e_z%]%m% ())) (2.35)

where E(1/0) = % with m, and n, given in (2.44) and (2.45). The density function of

and

q(z;) follows the generalized inverse Gaussian

GIG( g by,), (2.36)
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with

and

(v2 — 2yxip, + <E(B,8,)x)E(L)
T2 .

b_:

qi

The density functions of ¢(s;) and ¢(n?) follow the generalized inverse Gaussian
Lo o
GIG(§777qj7 qj>7

and the Gamma distribution

"L E(s;)
G J
amma (k‘+c, E 5 +d> ,
J=1
respectively, with

k+c

2 2

nq» = E(” ) = kE  E(s;) )
’ D1 g T d

and
2 2 2 2

The density function of ¢(¢) follows the inverse Gamma distribution

IG(mg,ny),
with
mg = 3n + my,
and
" 02 E(y; — x;8 )2 1 E(y; — x;8)
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(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)



Algorithm 3:

Stepl

Step2

Step3

Step4

Stepb

Stepb

Step7

Step8

Initialize parameters in the prior distribution, including mg, ng, ¢ and d.
Initialize mean g, and covariance matrix ;.

Update parameters in ¢(o), using ¢(o) ~ IG(mg, n,).

Update parameters in ¢(s;), using q(s;) ~ GIG(5, 7, 52 ).

Update parameters in ¢(n?), using q(n?) ~ Gamma(k + c, 2521 E(;j) +d).

Update parameters in ¢(z), using ¢(z;) ~ GIG(%, ag,, by,)-
Update parameters in ¢(3,), using q(3;) ~ N(pg;,wy;)-

Update the lower bound [, if the difference between two consecutive [ is bigger than

the tolerance level specified, repeat Steps 3 ~ 8.
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3. Simulation studies

We compare the variational inference with the Gibbs sampling method in terms of accu-
racy and speed using simulated data. CPU time is used to measure the speed of different
algorithms and predictive mean squared error (MSE) is used to measure the accuracy. As-
suming independent and identically (i.i.d) distributed errors, we conduct the simulation

using the following models.
1. Sparse case with Gaussian noise: 3, = (3,1.5,0,0,2,0,0,0),¢; ~ N(0,0.6%).

2. Dense case with Gaussian noise: 3 = (0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85), ¢; ~
N(0,0.62).

3. Very sparse case with Gaussian noise: 83 = (2,4,0,...,0),¢ ~ N(0,0.6?).
——

10
4. High-dimensional: 8; = (2,...,2,0,...,0,3,...,3), ¢ ~ N(0,0.6%)
e N N —
40 40 40
For first three models, we set the sample size n equal to 1000. And the sample size for the
last model is 50. In model 1~3 we run the regression using variational inference without
the lasso penalty (Algorithm 2). And variational inference with the lasso penalty is
applied in the high-dimensional case. Gibbs sampling are applied in all four cases for
comparison. Fig. 3.1 and Fig. 3.2 show the CPU time and predictive MSE using varia-

tional inference and Gibbs sampling under different quantiles, respectively.

The Gibbs sampling on qunatile regression is conducted using the bayesQR function in R
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Figure 3.1. CPU time at different quantiles
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Figure 3.2. Predictive MSE at different quantiles
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package bayesQR (Benoit and den Poel, 2017). In the sparse and dense case, variational
inference has a comparable speed compared with Gibbs sampling, but variational infer-
ence maintains a lower MSE. Variational inference tends to need more time for extreme
quantiles. In the very sparse case and the case when predictor is more than sample size,
variational inference spends less time than quantile regression but has a slightly larger
MSE. Variational inference could be used as a faster alternative to Gibbs sampling when
the dimension of the predictor is high, while provides a comparable accuracy in terms of
MSE. We also compare the number of iterations needed to converge using quantile re-
gression with the lasso penalty and Gibbs sampling under quantile p = {0.25,0.5,0.75}.
The results are shown in Fig. 3.3 and Fig. 3.4. It shows that the two methods take
almost the same number of iterations to converge. However, turning points of variational
inference usually occur before that in Gibbs sampling, which indicates that the declining

of MSE in variational inference is usually faster in the first few iterations.
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Figure 3.3. Iteration trajectories of variational inference and Gibbs sampling

29



MSE

MSE

Very Sparse Case, p=0.25 Very Sparse Case, p=0.50 Very Sparse Case, p=0.75

2 1 —— Variational Inference 2 1 —— Variational Inference 2 1 —— Variational Inference
- - Gibbs Sampling - - Gibbs Sampling - - Gibbs Sampling
o o o
— - -
U
H w w
! 2] 2]
b = =
'
w | 0 | 0 |
o o o
o o o
c c c
T T T T T T T T T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Number of Iterations Number of Iterations Number of Iterations
High—-dimensional case, p=0.25 High—-dimensional case, p=0.50 High—dimensional case, p=0.75
0 0 [Te)
- —— Variational Inference - —— Variational Inference - —— \Variational Inference
- - Gibbs Sampling - - Gibbs Sampling - - Gibbs Sampling:l
1 [ '
| | !
i v
o | R o | o |
il LT N — —
ST 1
S 1 o A w w
T "‘p \; u’,'.“ g 0 n
{ Ih i ';.ﬂ't nof e = =
b E e
wo | [N, gl Wy 0 _| ' J 0 _|
© 'I‘H“' ”ﬂll" ‘v‘" ’ © |k "'In"i;i , o
[ [}
b o i, w8 e
' wead T e b
v Vs oy
v
o o o
o o o
T T T T T T T T T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Number of Iterations Number of Iterations Number of Iterations

Figure 3.4. Iteration trajectories of variational inference and Gibbs sampling
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4. Conclusions

This thesis derive the variational inference algorithm for quantile regression with and
without the lasso regularization. Simulated studies show that, in comparison with Gibbs
sampling, variational inference has a faster MSE declining within few iterations. Usually
variational inference could maintain a comparable accuracy with Gibbs sampling. In
very sparse data sets and the case when predictor is more than sample size, variational

inference could usually perform better without sacrificing significant accuracy.

31



REFERENCES

S. Abeywardana and F. Ramos. Variational inference for nonparametric bayesian quan-

tile regression. pages 1686-1692, 2015.

G. Bassett and H.-L. Chen. Portfolio style: Return-based attribution using quantile

regression. Empirical Economics, 26:293-305, 2001.

D. Benoit and D. V. den Poel. bayesqr: A Bayesian approach to quantile regression.

Journal of Statistical Software, 76(7):1-32, 2017.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for

statisticians. arXiv e-prints, 2016.

G. Casella and E. I. George. Explaining the Gibbs sampler. The American Statistician,

46(3):167-174, 1992,

R. Koenker and G. Bassett. Regression quantiles. Econometrica, 46(1):33-50, 1978.

R. Koenker and O. Geling. Reappraising medfly longevity: A quantile regression survival

analysis. Journal of the American Statistical Association, 96(454):458-468, 2001.

H. Kozumi and G. Kobayashi. Gibbs sampling methods for Bayesian quantile regression.

Journal of Statistical Computation and Simulation, 81(11):1565-1578, 2011.

32



S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of Mathe-

matical Statistics, 22(1):79-86, 03 1951.

Q. Li, R. Xi, and N. Lin. Bayesian regularized quantile regression. Bayesian Analysis,

5(3):533-556, 09 2010.

Y. Li and J. Zhu. L1-norm quantile regression. Journal of Computational and Graphical

Statistics, 17(1):163-185, 2008.

G. R. Pandey and V.-T.-V. Nguyen. A comparative study of regression based methods

in regional flood frequency analysis. Journal of Hydrology, 225:92-101, 1999.

C. Reed and K. Yu. A partially collapsed Gibbs sampler for Bayesian quantile regression.

01 2009.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society, 58(1):267-288, 1996.

E. Tsionas. Bayesian quantile inference. Journal of Statistical Computation and Simu-

lation, 73(9):659-674, 2003,

T. van Erven and P. Harremos. Renyi divergence and Kullback-Leibler divergence. IEEE

Transactions on Information Theory, 60(7):3797-3820, 2014.

Y. Wang and D. M. Blei. Frequentist consistency of variational Bayes. Journal of the

American Statistical Association, pages 1-15, 2018.

K. Yu and R. A. Moyeed. Bayesian quantile regression. Statistics €& Probability Letters,
54(4):437-447, 2001.

33



F. Zhang and C. Gao. Convergence rates of variational posterior distributions. arXiv

e-prints, 2017.

34



	Variational Inference for Quantile Rgression
	Recommended Citation

	tmp.1555725613.pdf.nhxNX

