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ABSTRACT OF THE THESIS

Estimating Controlled Direct Effects in Panel Data with Marginal Structural Models

by

Silvia Michelle Torres Pacheco

Master of Arts in Statistics

Washington University in St. Louis, 2019

When working with panel data, many researchers wish to estimate the direct effects of time-

varying factors on future outcomes. However, when a baseline treatment affects both the

confounders of further stages of the treatment and the outcome, the estimation of controlled

direct effects using traditional regression methods faces a bias trade-off between confound-

ing bias and post-treatment control. Drawing on research from the field of epidemiology, in

this thesis I present a marginal structural modeling (MSM) approach that allows scholars to

generate unbiased estimates of controlled direct effects. Further, I detail the characteristics

and implementation of MSMs, compare the performance of this approach under different

conditions, and discuss and assess practical challenges when conducting them. After pre-

senting the method, I apply MSMs to estimate the effect of wealth in childhood on political

participation, highlighting the improvement in terms of bias relative to traditional regression

models. The analysis shows that MSMs improve our understanding of causal mechanisms

especially when dealing with multi-categorical time-varying treatments and non-continuous

outcomes.
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Chapter 1

Introduction

In recent years, considerable progress has been made in providing methodological tools that

allow political scientists to better estimate the causal effects of treatments on outcomes.

However, in many cases, we are interested not in identifying the effect of a variable at one

period, but rather in assessing effects in a dynamic setting. We might, for instance, observe

units in multiple time periods and wish to estimate the independent effect of treatments

at each stage on some future outcome. In estimating these effects, researchers can better

understand not only how and why political phenomena are linked, but also the potential

consequences of changing a treatment of interest that varies through time. Yet, standard

tools in the literature are often ill suited for making valid causal claims in dynamic settings.

To provide some clarity to this discussion, consider the following example, which is de-

picted visually in Figure 1.1. Past research on political participation identifies wealth as a

key factor that influences citizens’ political participation (Almond and Verba 1989; Verba,

Nie and Kim 1978). Typically, scholars emphasize the effect of wealth in adulthood (mea-

sured through self-reported income of adult respondents) as a provider of resources that ease

participation (e.g., a car that helps a citizen to reach a polling station). However, a separate

question is how wealth in early stages of life (measured through the income of a citizen’s
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parents) can affect political participation independent of the effect of wealth in adulthood.

Finding such an effect would suggest that, for instance, children being raised in wealthier

homes receive a lifelong boost in terms of socialization, cognitive skills, or psychological

orientations towards politics that affect participation regardless of their own economic suc-

cess later in life (Beck and Jennings 1982; Brady, Verba and Schlozman 1995; Currie 2008).

Figure 1.1 shows a simplified version of this example and highlights this unmediated effect

through the bolded red arrows (path b and path a-d).

Figure 1.1: DAG showing the relationship between a time-varying treatment (wealth) and
outcome (political participation)

Parents’

Education

X(0)

Wealth in

Childhood

Z(0)

Baseline

stage

Wealth in

Adulthood

Z(1)

Intermediate

stage

Political

Participation
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Post-High School
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X(1)

ec
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Note: The bold paths represent the controlled direct effect of the baseline treatment (wealth in childhood)
on the outcome (political participation).

Although dynamic treatments in panel datasets abound in the political science literature,

applied scholars have thus far been given little guidance as to how to proceed in such settings.

Indeed, in situations such as the one depicted in Figure 1.1 traditional regression techniques

offer no way to consistently estimate causal effects. Specifically, researchers wishing to esti-

mate the effect of treatments at various time points in dynamic processes using traditional
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regression confront a bias trade-off between confounding bias and post-treatment bias. Con-

founding bias, sometimes termed omitted variable bias, results from failure to control for

important common causes of treatment and outcome when estimating causal effects—a con-

founder. Post-treatment bias arises from controlling for an intermediate variable that has

been affected by the treatment—a post-treatment variable.

The key to understanding this tradeoff is that in order to estimate the unmediated effect

of a treatment at the baseline stage (e.g., wealth in childhood/parents’ income), one must

simultaneously correctly estimate the effect of the treatment at intermediate stages (e.g.,

wealth/income in adulthood). Yet, to estimate the effect at the intermediate stage (path

e in Figure 1.1), researchers must either fail to account for important confounders (e.g.,

attending college) or include such confounders as “control” variables. The former approach

will induce confounding bias into our estimates by failing to control for a variable that

is causally prior to both income in adulthood and political participation. The latter will

introduce post-treatment bias by controlling for a variable that is itself affected by parents’

income. In such cases, both controlling for intermediate confounders and failing to control

for them will result in biased estimates.

While this problem has certainly not gone unrecognized in the broader statistics litera-

ture, these issues have received relatively little attention in political science. Some seemingly

plausible approaches, such as mediation analysis (Imai, Keele and Tingley 2010; Imai et al.

2011), are unsuited to handling the dynamic relationship between treatment and confound-

ing variables. Other approaches are more difficult to implement and offer little flexibility.

Structural nested mean models, as presented by Acharya, Blackwell and Sen (2016), for

instance, are only suitable when the outcomes are continuous.

In this article, I draw on research from the field of epidemiology (Hernán, Brumback and

Robins 2000; Robins, Hernán and Brumback 2000), to outline a marginal structural models

(MSMs) framework for estimating controlled direct effects of multi-valued treatments at

3



different time periods that is both easy to implement and suitable for use with several data

types. This class of models was introduced to political science by Blackwell (2013) and later

discussed by Imai and Ratkovic (2014). Still, their studies mainly focus on the estimation of

cumulative effects of dynamic treatments, and offer little discussion on the applicability of

these models to the estimation of controlled direct effects. Further, I extend previous work

by testing and addressing practical challenges of this method, such as the tools for weight

estimation, implications and use of weights, and consequences of the violation of the main

assumptions.

MSMs overcome the bias-tradeoff dilemma described above by using an inverse prob-

ability of treatment weighted (IPTW) estimator. This allows researchers to account for

confounders while avoiding directly controlling for post-treatment variables (Blackwell 2013;

Blackwell and Glynn 2014; Robins, Hernán and Brumback 2000). By estimating correct

weights, researchers are able to create pseudo-samples that are balanced with respect to

confounders and therefore allow for consistent estimation of causal quantities of interest.

Importantly, unlike previous methods in the political science literature, I present and de-

tail the implementation of MSMs to estimate controlled direct effects with multi-categorical

treatments as well as non-continuous outcomes.

In the next section, I define controlled direct effects and discuss the challenges that

researchers face when estimating them in a dynamic setting. I then provide an overview of

MSMs—and the assumptions that undergird them—and explain how they allow for unbiased

estimates of treatment effects. As part of this presentation, I not only detail important

elements of the implementation of these models but also provide guidance for the weighting

process, and for the cases in which assumptions are not fully fulfilled. The section also

includes a discussion of the advantages of MSMs over other alternatives, especially traditional

regression models. Finally, I present an application that compares the inferences reached by

MSMs and traditional models regarding the causes of political participation. This application
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focuses on the estimation of the controlled direct effect of wealth in childhood, as measured

by parents’ income, on political activism using a panel survey that spans over 30 years.
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Chapter 2

Controlled direct effects and bias

trade-off

To formally articulate the difficulty of estimating causal effects in a dynamic setting, I return

to the example depicted in Figure 1.1. We are interested in calculating the effect of wealth in

childhood on political participation that is not mediated by wealth in adulthood. The effect

of economic resources on political participation has been widely studied. However, recent

studies have recognized and focused on the cumulative and long term effects that economic

conditions in childhood may have on participation in later stages of life. For example, Ojeda

(Forthcoming) finds that it is possible to identify two participations gaps with different sizes

and implications: one that childhood economic history generates, and another caused by

income in adulthood.

For the illustration and application presented below, I measure wealth of an individual

using her own income, and her parents’ income.1 In Figure 1.1, this effect is represented by

the highlighted paths (a-d and b). Substantively, this will allow us to explore the impact

of early economic conditions on adult political participation independent of the level of

1Wealth is the treatment of interest in two different stages: childhood and adulthood. While “wealth”
can imply multiple factors, there is a strong correlation between wealth indexes and income (Córdova 2009).
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affluence later in life.2 In other words, if we could fix (or control) respondents’ income in

adulthood to a specific level, what would be the effect of changes in parents’ income on

adult political activity? This quantity is known as the controlled direct effect (CDE) which

I define formally below (Pearl 2001, 2011; VanderWeele 2009). This estimand is useful to 1)

understand the mechanism through which treatments affect the outcome, and 2) explore the

different effects that treatment regimes have on an outcome. The estimation of controlled

direct effects is relevant to address several social science questions: the analysis of the effects

of historical institutions on current economic and political conditions (e.g. “zoning” on

political participation), the study of issues related to public policy (e.g. the impact of welfare

programs on economic development), or the exploration of early conditions of citizens on their

current political attitudes and behavior.

2.1 Defining controlled direct effects

Our goal is to estimate the causal effect of a treatment Z (income) at different “stages” in

time. Although the model can be easily extended to allow for multiple stages, I focus on

only two stages of treatment: parents’ income (t = 0) and income in adulthood (t = 1). For

this discussion I assume that the measurement of wealth of an individual i, income,3 in both

stages can be either low (Z
(t)
i = 0), middle (Z

(t)
i = 1) or high (Z

(t)
i = 2).4 Finally, I assume

that the education of each subject’s parents and their level of post-High School education

are the sole confounders, which means that these variables are affecting both treatments and

2It is important to highlight that while this case considers a “sequence” of conceptually similar treatments,
researchers can also use this method for sequences of semantically different variables as long as they hold a
clear causal relationship (i.e. one precedes and affects the other).

3The categorization of a continuous variable such as income is a common practice in multiple fields. One
important reason is measurement. In order to decrease non-response and increase perceptions of privacy,
respondents generally choose their income from multiple categorical options defined by the researcher. Also,
conceptually, researchers are generally interested in the differences between levels of income rather than in
its unitary nature (Córdova 2009; Moore and Welniak 2000).

4Under the assumption that Z
(t)
i , X

(t)
i and Yi are sampled iid from a population, I treat them as random

and therefore avoid the subindex i.
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the outcome.

The outcome of interest is an individual’s level of political participation, denoted Y . Let

YZ(0)=a be the subject’s level of political participation if parents’ income (Z(0)) is set to a

value a. Thus, YZ(0)=0 represents the outcome when the respondent’s parents have a low

income, whereas YZ(0)=1 and YZ(0)=2 represent the response of the same respondent if her

parents’ income was medium and high respectively. Since only one of the possible values will

be observed for each individual, then two of the values of Y are potential outcomes while

the other is the observed outcome. Similarly, the intermediate treatment stage Z(1), income

in adulthood, can also take on three values. Therefore, let YZ(0)=a,Z(1)=b denote the level of

political participation of a subject if her parents’ income and income in adulthood were set

to values of a and b respectively.

With this notation, we define the CDE by “fixing” the second-stage of treatment to a

specific value (Pearl 2001; VanderWeele 2009). It is important to highlight that this “fix-

ing” assumes that the researcher has the capacity to artificially manipulate the intermediate

stages. In practice, the estimation of the CDE is especially useful for policy design and ex-

perimental settings where researchers have the chance of manipulating the treatment stages.

For example, Akee et al. (2018) manipulates the assignment of unconditional money transfers

at different stages of life to study the effect that income has on civic participation. Although

this option is not easily available for social scientists, and especially for those dealing with

observational data, this quantity is still useful to have a better understanding of the potential

outcomes that different treatment combinations generate. Controlled direct effects aid with

the operationalization and analysis of the core concept of causal inference: the definition and

modeling of counterfactuals. Therefore, the value of such estimand should not be underrated,

even in the cases where the manipulation of any of the treatment stages is not possible.
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We formally define the CDE as:

CDE = YZ(0)=a,Z(1)=b − YZ(0)=a′,Z(1)=b. (2.1)

Conceptually, the CDE estimand represents the effect of a treatment at a specific time period

while controlling the level of treatment at different stages. In this example, we are interested

in the CDE for the baseline treatment (t = 0). Of course, we cannot directly calculate the

CDE since the counterfactual values are not observed. However, with standard regularity

assumptions, we can provide an unbiased estimate of the CDE by calculating the average

controlled direct effect (ACDE)

ACDE = E(YZ(0)=a,Z(1)=b − YZ(0)=a′,Z(1)=b)

= E(YZ(0)=a,Z(1)=b)− E(YZ(0)=a′,Z(1)=b), (2.2)

where E(·) refers to the expectation over the individuals in the sample. This is simply the

difference between the average outcomes for units that received different treatments (a and

a′) at stage t = 0 while holding the second stage constant at b.

2.2 The bias trade-off

Although in theory the ACDE seems relatively straightforward to calculate, in practice it is

not. In fact, there is actually no way to correctly estimate the ACDE using standard regres-

sion techniques. The dilemma is the following: since we want to estimate the effect of the

treatment at each stage of the treatment sequence separately, we must estimate a coefficient

representing the effect of parents’ income and another one for the effect of income in adult-

hood. In order to generate unbiased estimates we must control for all confounders—the set

9



of variables that affect both the treatment and the outcome—in order to avoid confounding

bias. However, some of the confounding variables for the intermediate-level treatments are

themselves affected by the baseline treatment. Therefore, controlling for these covariates will

introduce post-treatment bias into our estimates (Elwert and Winship 2014; Montgomery,

Nyhan and Torres Forthcoming; Rosenbaum 1984; Rubin 1977). As a consequence, we have

a situation where both controlling for and not controlling for confounders will result in biased

estimates of the ACDE.

To make this tradeoff clearer, I return to the example depicted in Figure 1.1. In this

instance, the problematic variable is post-High School education. Why is it necessary to

include this variable in the model in the first place? The answer is that the assignment of

the treatment in observational studies is not random. In this example, both having a high

levels of wealth and political participation are dependent on other factors such as levels of

educational attainment. The implication of non-random assignment to treatment is that

the observed differences in the outcomes between treated and untreated groups cannot only

be attributed to the presence of the treatment but potentially also to inherent differences

between the two groups. Therefore, once we identify all confounders, a necessary step is

to account for this imbalance. In a standard regression, this would be done by including

education as a control variable.

However, including post-High School education as a control variable results in a differ-

ent problem: post-treatment bias. In our example, whether or not respondents seek post-

secondary education is itself caused (in part) by the baseline treatment (wealth in childhood).

In the language of causal inference, education is therefore a “collider” (Elwert and Winship

2014), and controlling for it in a regression will bias estimates of causal effects.

In summary, when confounders are affected by a baseline treatment we face an inevitable

bias trade-off: excluding problematic confounders leads to omitted variable bias, but in-

cluding them leads to post-treatment control bias. Although not always recognized, this
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trade-off and its consequences are frequently encountered in political science research. If we

are dealing with panel or longitudinal data, then it is natural to identify treatments varying

through time and complex interactions between those treatment stages and confounders that

are not static. In the next chapter, I explain how adopting a marginal structural modeling

framework allows us to address confounding bias without introducing post-treatment bias.

11



Chapter 3

Estimating CDE using marginal

structural models

Marginal structural models (MSMs) are a class of models used to estimate the causal effect

of time-varying treatments such as medicine prescription or medical procedures histories

(Hernán, Brumback and Robins 2001; Robins 1999a; Robins, Hernán and Brumback 2000).

Classic applications have focused on estimating the cumulative effects of these time-varying

treatments on future outcomes, and previous applications of MSM in political science focused

on estimating these cumulative effects (Blackwell 2013). My presentation below builds on

more recent work by researchers who have extended the MSM framework to also estimate

controlled direct effects and, under certain conditions, natural direct and indirect effects

(Nandi et al. 2012; VanderWeele 2009). I cover and detail cases where the treatment is

multi-valued and the outcome is non-continuous, to address questions relevant to political

science using panel survey data.

In general, MSMs are useful when dealing with cases where (1) the treatment takes few

values, (2) there exists a covariate that acts both as determinant of the outcome of interest

and as a predictor of an intermediate stage of treatment, and (3) past exposure to baseline
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treatment predicts subsequent levels of this covariate. As I reviewed above, the decision to

control or not control for these covariates inevitably leads to either confounding or post-

treatment bias. However, through an inverse probability of treatment weighted (IPTW)

estimator, MSMs provide unbiased estimates once we meet certain assumptions. The core

idea of these models is that through the weights estimated via IPTW, we create a “pseudo-

population” consisting of copies of each subject in the sample. This pseudo-population has

two important features: first, the probability of receiving the second stage of the treatment is

unconditional on the confounders affected by the baseline treatment eliminating the necessity

of controlling for them in the final model. And second, the potential outcomes are the same

as in the true population allowing the estimation of unbiased causal effects (Robins, Hernán

and Brumback 2000). The number of replicas in the pseudo-sample is calculated based

on the probability of observing a particular sequence of treatment conditional on relevant

confounders (Robins 1999a).

Before providing the details of the method, it is important to note that several pre-

vious scholars have applied models closely related to MSMs in political science. Perhaps

the earliest example is Glynn and Quinn (2010), who introduced and extended the IPTW

approach for estimating causal effects in a cross-sectional setting. After Blackwell (2013)

formally introduced MSMs to political science, Imai and Ratkovic (2015) generalized the

covariate balancing propensity score to dynamic settings to achieve a more balanced pseudo-

population. More recently, Samii, Paler and Daly (2017) applied the IPTW framework for

estimating causal effects using a machine learning approach for assigning treatment weights.

However, the method most closely related to the objective described here, the estimation of

CDE, are structural nested mean models (SNMMs), which were recently introduced to po-

litical science by Acharya, Blackwell and Sen (2016). I provide a brief discussion comparing

and contrasting the MSM and SNMM approaches for estimating controlled direct effects in

section 3.4 after I detail the model.
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3.1 Assumptions

Going back to our example, MSMs allow us to model levels of political activism of individuals

receiving each of the potential Parents’ income-Income in adulthood sequences: low-low,

low-middle, low-high, middle-low, middle-middle, middle-high, high-low, high-middle and

high-high. However, modeling these unconditional (or marginal) distributions requires the

fulfillment of two assumptions.

The first is the sequential ignorability condition, which guarantees the necessary statistical

exogeneity for the identification of causal effects (Robins 1999a).1 In essence, this assumption

is an extension of a general condition for the estimation of causal effects in single-stage

settings: controlling for confounders X(t) assures independence (
∐

) of the potential outcomes

YZ(0),Z(1),...,Z(T ) from the treatment Z(t). For the multi-stage setting, we need to meet this

same condition for each treatment stage. In our example, this would mean controlling for

education of the parents (denoted here as X(0)) to avoid confounding of parents’ income—the

first treatment stage Z(0). Formally,

YZ(0),Z(1)

∐
Z(0)|X(0). (3.1)

For the second stage, it is necessary not only to control for education of the parents, X(0),

and post-High School education, X(1), to avoid confounding bias, but also to include parents’

income, Z(0), as another confounder of wealth in adulthood, Z(1), and participation, Y . In

other words, the outcome needs to be independent of any stage in the treatment sequence,

1Note that if there are multiple confounders, the values of X(0) and X(1) are going to be in matrix form
rather than vectors.
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conditional on past confounders and treatments,2

YZ(0),Z(1)

∐
Z(1)|Z(0), X(0), X(1). (3.2)

The second assumption is the positivity assumption which states that a treatment value

should not be limited to a single level l of the control variables. Intuitively, this means

that all subjects in the sample must have a non-zero probability of getting exposure to the

different levels of treatment. In our example, the assumption implies that an individual that

did not attend college and whose parents had a low income should still have a non-zero

chance of receiving a middle or high income as an adult.3 Formally,

If Pr(Z(0) = z(0), (X(0), X(1)) = (x(0), x(1))) > 0, then (3.3)

Pr(Z(1) = z(1)|(X(0), X(1)) = (x(0), x(1)), Z(0) = z(0)) > 0. (3.4)

Once we meet these assumptions, we can use MSMs to estimate the ACDE.45

2We can define this assumption more generally as Y
Z
−→
(t)

∐
Z
−→
(t)|Z

−−−→
(t−1), X

−→
(t). Where→ indicates the treat-

ment or covariate regime up to the time indicated in parentheses.
3More generally, if Pr(Z

−−−→
(t−1) = z

−−−→
(t−1), X

−→
(t) = x

−→
(t)) > 0, then Pr(Z

−→
(t) = z

−→
(t)|X

−→
(t) = x

−→
(t), Z

−−−→
(t−1) =

z
−−−→
(t−1)) > 0.

4On the one hand, the fulfillment of the first condition can be difficult given that there is no technique
that allows us to diagnose the degree to which it is met. However, this is a classic (and necessary) assumption
in any causal analysis. Näıve regression estimators are not exempt from meeting the ignorability assumption
either. Furthermore, previous work by Blackwell (2013) and VanderWeele (2010) includes the development
of sensitivity analyses that allow us to assess the strength of the inferences made from MSMs. On the
other hand, the fulfillment of the positivity assumption can be difficult in cases where there is a continuous
treatment and confounders, and then alternatives like SNMMs are preferred (VanderWeele 2009).

5The simulations in the Appendix show how the bias and variance of the ACDE change depending on
mild to strong violations of these assumptions. See discussion below.
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3.2 Benefits of the pseudo-sample

MSMs aim to model the potential outcomes for the different sequences of treatment. This

strategy allows for the estimation of controlled direct effects. For example, consider the

following model:

E[YZ(0),Z(1) ] = α0 + α1Z
(0) + α2Z

(1). (3.5)

The ACDE in model 3.5 is the expected value of the differences in Y when Z(0) is 1 and

when Z(0) is 0, while fixing Z(1) to b. Then,

E[YZ(0)=1,Z(1)=b − YZ(0)=0,Z(1)=b] = α0 + α1 · 1 + α2 · b− (α0 + α1 · 0 + α2 · b)

= α1(1− 0) = α1. (3.6)

In other words, when the second treatment stage is set to b, the baseline stage has a causal

effect of α1 on the outcome. This estimation only holds if the differences we observe in Y

are only related to the treatment and not to other confounders. From previous chapters, we

know that in our example, as in all observational studies, this is not true. Wealth in each of

the two stages is not randomized: the levels of this “treatment” are not independent from

past economic conditions or education. The implication is that each income sequence has

different probabilities of being observed given the values of the confounding factors (e.g.,

a subject with a college degree is more likely to have a higher income than one that only

completed High School). MSMs use these probabilities to build weights that balance the

sample across treatment groups. The weights are the product of two components, one per

treatment stage, defined as follows:

W(t) = WZ(0) ×WZ(1) =
f(Z(0)|X(0))

f(Z(0))
× f(Z(1)|Z(0), X(0), X(1))

f(Z(1)|Z(0))
. (3.7)
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The numerator in each of the components of the W(t) term is the probability that an

individual received his own observed treatment at time t, Z(t), given his own past treatment

(up to t− 1) and covariate history up to point t (Robins 1999a). For example, in the income

example, the numerator of WZ(1) is simply the probability that an individual has her own

observed income in adulthood conditional on her observed parents’ income, and educational

attainment after High School.6 At the same time, the denominator is the probability that

a subject received her observed treatment at time t but only conditional on her treatment

sequence until t−1. In the example, the denominator of WZ(1) is the probability of observing

the actual income in adulthood but only conditional on parents’ income.7

Once we obtain these weights, we estimate the parameters in Equation 3.6 using a

weighted least squares regression in which each subject is given as a weight the inverse

of her corresponding W(t). For illustrative purposes we implement a weighted regression,

however the researcher has full flexibility to model the outcome as long as it is applied to

the weighted sample. Thus, the model can range from a simple weighted mean to a complex

non-parametric weighted model.8 The weighted model handles confounding while avoiding

explicit conditioning and post-treatment bias. How does weighting achieve this? Recall that

treatment sequences have different probabilities of being observed given the values of the con-

founders. By weighting, we are “leveling the field” and breaking the link between the second

treatment stage and its confounders: the problematic variables affected by the baseline treat-

ment. To have a more intuitive understanding of this, we can view the pseudo-population

6Note that if it is the beginning of the sequence, t = 0, then the numerator would only be conditional on
the confounders of Z(0) and Y . That is, f(Z(0)|X(0)).

7The denominator of this quantity can be replaced with another function of treatment history. This would
not affect the consistency or unbiasedness of the estimator. The numerator is introduced as a “stabilizer” of
weights in order to avoid extreme values. The efficiency of the estimator can be influenced by the decision for
the numerator. However, the selected function should not include the intermediate or confounding variables
in the model.

8The comparison of weighting methods used to model the outcome escapes the scope of this thesis.
However, as in any other study, researchers should select the appropriate modeling technique based on
a deep understanding of the data and full awareness of the assumptions and trade-offs that the different
methods convey.
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as a sample composed of each individual in the original population plus (W(t)−1− 1) copies

of themselves.

Consider the following hypothetical example based on the income case.9 The first panel of

Figure 3.1 shows the distribution of subjects in the original sample across the different levels

of parents’ income and adulthood income as well as education. Each human figure represents

1,000 individuals. Each cell represents a potential combination of income in childhood and

adulthood: low ($), middle ($$) or high ($$$). Furthermore, the level of post-High School

education is indicated by the hat and color of the figures: black symbols wearing a hat

attended college while gray figures did not. In this example, we assume that sequential

ignorability holds and, as the picture shows, the positivity assumption is met (there is at

least one human figure in all possible combinations of parents’ income, income in adulthood

and education).

Just by visual inspection, it is clear from the figure that the probability of, for example,

receiving a high income in adulthood is strongly determined by both levels of parents’ income

and education. Table A.1 presents the information by stratum and actual probabilities of

receiving a particular income in adulthood Z(1) given parents’ income and education.10 For

example, the probability of having a high income in adulthood if a subject has a high

income in childhood but does not attend college is 1,000/5,000=0.2 (bold cell over sum of

light-shaded cells in Column 7 of Table A.1). However, the probability of having a high

income in adulthood when parents’ income is high but the subject also attends college

is much higher, 6,000/10,000 = 0.6. In other words, we have unbalance across levels of

educational attainment. From Column 3 of Table 3.2 (labeled as “Original”), where we can

see a summary of these probabilities for all strata, we can conclude that income in adulthood

is not independent of levels of education, but that it acts as a confounder of this variable

9This example is based on one designed by Robins (1997).
10For sake of space, the table with the full set of strata is presented in the Appendix.
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Figure 3.1: Distribution of individuals based on treatment sequence (parents’ income and
income in adulthood) and confounder affected by treatment (post high-school education)

(a) Original population (b) Pseudo-population

Note: Each figure represents 1,000 individuals. Black figures with hat indicate that those subjects
attended college, while gray figures only completed high-school. The panels show the distribution
of respondents across treatment conditions.

and political participation.11

However, we can eliminate this unbalance by creating a pseudo-population based on copies

(or reductions) of the subjects in the original sample using the inverse of the weights W(t).

The column labeled as W(t)−1 in Table 3.2 presents this quantity and all the information

necessary to construct it. Based on this information we can build the pseudo-sample shown

in the second panel of Figure 3.1. We can now repeat the same exercise of calculating the

probabilities of having a high income in adulthood for the individuals in the new sample.

Column 4 of Table 3.2 (labeled as “Pseudo”) presents these new estimated probabilities. It

is important to highlight that while the calculation of these probabilities involved a simple

11If we ignore this confounder, the potential differences that we could observe in levels of political partic-
ipation between groups defined by the different levels of income could not be attributed to the effect of this
variable but to the differences in education levels.
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Table 3.1: Calculation of weights for each stratum in sample

Z(0) Z(1) X(1) f(Z(1)|Z(0)) f(Z(1)|Z(0), X(1)) W(t)−1
Original-pop

N
Pseudo-pop

N

0 0 0 0.6 0.706 0.85 12000 10200
0 0 1 0.6 0.462 1.3 6000 7800
0 1 0 0.3 0.235 1.275 4000 5100
0 1 1 0.3 0.385 0.78 5000 3900
0 2 0 0.1 0.059 1.7 1000 1700
0 2 1 0.1 0.154 0.65 2000 1300
...

...
...

...
...

...
...

...
2 0 0 0.2 0.4 0.5 2000 1000
2 0 1 0.2 0.1 2 1000 2000
2 1 0 0.333 0.4 0.833 2000 1667
2 1 1 0.333 0.3 1.111 3000 3333
2 2 0 0.467 0.2 2.333 1000 2333
2 2 1 0.467 0.6 0.778 6000 4667

Note: Z(0) is parents’ income where 0 is low, 1 is middle and 2 is high. Z(1) is income in adulthood where
0 is low, 1 is middle and 2 is high. X(1) is post-High School education where 0 is no college and 1 is college.
The full table with the probabilities and weights for the full set of treatment and covariate combinations can
be found in the Appendix.

Table 3.2: Probabilities of having a high income in adulthood

Original Pseudo

Z(0) X(1) Pr(Z(1) = 2|X(1), Z(0)) Pr(Z
(1)
p = 2|X(1)

p , Z
(0)
p )

Low income No college 0.059 0.1
Low income College 0.154 0.1

Middle income No college 0.2 0.233
Middle income College 0.267 0.233
High income No college 0.2 0.467
High income College 0.6 0.467

Note: Z(0) is parents’ income, Z(1) is income in adulthood and X(1) is post-high
education.

stratification approach, cases with multiple confounders will require more intensive modeling

techniques.12

Once we weight the sample, the probability of having a high income in adulthood is equal for

both levels of education within each parents’ income strata—the second treatment stage is

12Given that the unbiasedness of MSMs rely on an accurate estimation of the weights, different models
will lead to different estimations of ACDEs. A brief comparison of different modeling tools for the estimation
of weights is presented in Section 2.3.
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balanced within parents’ income and education groups. For example, a subject who did not

attend college and whose parents had a high income has a probability of having a high income

in adulthood of 2,333.33/5,000=0.467. Similarly, a subject that reports that her parents had

a high income but that attended college has a probability of 4,667/10,000=0.467 of having

a high income in adulthood. Thus, in the pseudo-population, the confounder X(1) does not

predict the treatment at t = 1 given the baseline treatment. Post-High School education is

no longer a confounder and we can assess the controlled direct effect of early income Z(0) on

political participation.

The last step of this process consists of fitting a weighted regression of the outcome

variable on both the baseline and intermediate treatments using the vector of weights

W(t)−1. Other covariates can be included in this regression but these have to be strictly

pre-treatment.13

3.3 Weighting: methods and implications

3.3.1 Estimation of weights

As I reviewed in the previous section, creating a balanced pseudo-sample involves an accurate

estimation of the probabilities of observing the multiple treatment sequences conditional on

covariate history. This implies an appropriate model specification of treatment assignment,

and a suitable method to estimate probabilities. A proper specification of both treatment

assignment and the relationship between confounders and treatment history is fundamental

for the fulfillment of the sequential ignorability assumption.

13This decision should be strongly motivated by substantive and theoretical knowledge of the question
under analysis, as well as by a deep understanding of the data. This is, if there are pre-treatment confounders,
they should be included as part of the weight estimation as in any other model aiming to support causal
claims. If fulfilled, the sequential ignorability assumption and subsequent weighting guarantee a pseudo-
random assignment of the treatment stages. Therefore, covariate adjustment is not necessary. However,
it tends to improve precision and reduce standard errors if the covariates are predictive of the outcome
(Miratrix, Sekhon and Yu 2013).
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In order to achieve this, as in any other study, researchers must have a deep understanding

of their data, and solid knowledge of the theoretical framework regarding the relationship

between their variables of interest. Further, the decision of how to model the multiple

components of the dynamic framework under analysis should consider elements such as the

number and nature of the variables under analysis, and the assumptions and trade-offs that

each modeling tool implies.

In general, the most common alternative to estimate the assignment of a particular multi-

category treatment sequence is a generalized linear model for categorical data. The simplicity

of the model is its most attractive feature, but the trade-off between parsimony and strong

predictive power that could potentially reduce bias has not been fully explored. Therefore,

in this section I present a comparison of three different approaches to estimate weights, and

an analysis that each of them yields when used in a MSM framework.

The main objective of this exercise is to compare the magnitude of the mean bias of the

estimates of the ACDEs that come from four different models: a näıve, or saturated model

that includes post-treatment covariates, and three MSMs using weights that were obtained

using three different methods – an ordered logistic regression (ologit), a generalized additive

model (GAM), and a random forest (RF). First, I simulate a dataset with n = 1, 000 where

the main outcome of interest is attendance of a rally (0=No, 1=Yes). The data includes two

relevant sequences of covariates: parents’ income and income in adulthood (the treatment

sequence), and whether parents and respondent attended college (the confounders sequence).

In this setup, college attendance of a subject acts as a confounder of income (second stage

of the treatment) and rally attendance, but is also affected by parents’ income (baseline

treatment). The parameters are tuned to purposely allow for the possibility of observing

samples in which the positivity assumption is not fulfilled. This is, there are combinations

of the sequence treatment and college attendance that do not have any observations.14 The

14The parameters and specification of the simulation are in the Appendix.
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idea behind this specification is to illustrate the advantages of MSMs over traditional models

even when one of the main assumptions that the former requires are mildly violated. Second,

I use this data to estimate and record the ACDEs from four different models: the saturated

or näıve model, and three MSMs that use weights calculated using ologit, GAM and RF

models. The specification of the outcome model is the following:

Pr(Y = 1|
−→
Z ) = logit−1(α0 +Z(0)β +Z(1)γ + (Z(0) × Z(1))δ) (3.8)

Using this setting, I simulate 500 datasets and for each of the four models I record the

differences between the estimated ACDEs and the true ones to obtain measures of bias.

Figure 3.2 presents the average bias for each model of the nine potential ACDEs. In this

figure, each corner of the polygon represents the mean difference between the true and

estimated average controlled direct effect of the baseline treatment on the outcome, when

fixing the intermediate treatment to a certain level. For example, CDE 1 represents the

difference in probabilities of attending a rally between subjects that had a middle income

in childhood (Z(0) = 1) and others that had low income in childhood (Z(0) = 0), when the

income in adulthood is fixed to low (Z(1) = 0). Further, the colored lines represent each of

the four different models: the näıve model, and the three MSMs.

The analysis confirms that all of the MSMs perform significantly better than the saturated

model (in blue), and provides useful information about the weighting methods and MSMs

in general. First, there are no substantive differences between the weighing methods. The

Random Forest shows a slightly better performance than the GAM or the ordered logit, but

it does not seem to be a substantive difference. This is due to the simplicity of the example,

where both the treatment assignment and outcome model are not complex. However, it is

worth noting that these differences might be higher in cases with larger sets of confounders,

more complex interactions and relationships between the variables, or where distributional

23



assumptions are harder to meet. For example Montgomery and Olivella (Forthcoming) show

that regression trees yield better estimates of probability of treatment sequences in cases

with multiple confounders, which in turn improve the pseudo-sample balance and the overall

performance of the MSM. Second, although the mean bias for all treatment sequences is very

close to zero, there are instances where this is not the case. Recall that the simulation setting

is purposely designed to allow for samples where the positivity assumption is not fulfilled.

In this case, although the expected bias is not zero, it 1) is small even under settings where

the positivity assumption is violated, and 2) performs better than traditional regressions

regardless of the method used for the weights estimation.

3.3.2 Practical considerations about weights

The act of weighting motivates multiple questions with potentially strong implications for

the estimation of ACDEs. How should we proceed if the weights are too large (or small)?

How do we account for uncertainty when estimating the weights? What implications does

weighting have in terms of variance? What is the correct “modeling approach” when dealing

with weighted samples? While all of these are important questions which merit thoughtful

answers, their discussion escape the scope of this piece. However, this section aims to serve

as a brief guide for researchers interested in the implementation of MSMs and a starting

point for further exploration of these topics.

First, it is common to encounter cases where the pseudo-sample is constructed using very

extreme weights. This occurs when the treatment and covariate combinations have very few

observations. Since the weighting process aims to “level and balance” the different treatment

and covariate sequences, then those with few individuals will be compensated with higher

weights for its members to “represent” those that we cannot observe. Extreme weights may

result in unstable estimators with high variance (Kang and Schafer 2007). To account for this

issue, researchers should consider trimming or truncating the weights, as well as assessing
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Figure 3.2: Mean bias of predicted probabilities by model
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Note: Each corner shows one of the nine possible treatment sequences. The axes
show the difference between true ACDE and the estimated ACDE by a given model:
CDE 1 = P(YZ(0)=1,Z(1)=0) - P(YZ(0)=0,Z(1)=0)
CDE 2 = P(YZ(0)=2,Z(1)=0) - P(YZ(0)=0,Z(1)=0)
CDE 3 = P(YZ(0)=2,Z(1)=0) - P(YZ(0)=1,Z(1)=0)
CDE 4 = P(YZ(0)=1,Z(1)=1) - P(YZ(0)=0,Z(1)=1)
CDE 5 = P(YZ(0)=2,Z(1)=1) - P(YZ(0)=0,Z(1)=1)
CDE 6 = P(YZ(0)=2,Z(1)=1) - P(YZ(0)=1,Z(1)=1)
CDE 7 = P(YZ(0)=1,Z(1)=2) - P(YZ(0)=0,Z(1)=2)
CDE 8 = P(YZ(0)=2,Z(1)=2) - P(YZ(0)=0,Z(1)=2)
CDE 9 = P(YZ(0)=2,Z(1)=2) - P(YZ(0)=1,Z(1)=2)

25



the sensitivity of the estimates to this alternative (mainly by exploring the changes in the

distribution of weights). Although these alternatives do not completely eliminate the bias,

they help to reduce it (Platt, Delaney and Suissa 2012) and also improve the variance of

the estimator. Another strategy is to restrict the analysis to cases with moderate weights.

While this will not lead to an unbiased estimate of the ATE or ACDE in the full sample,

it provides information about these effects among the population exposed to the treatment

combinations which in practice may be more realistic to observe (Platt, Delaney and Suissa

2012).

Second, it is important to consider that a consequence of the use of weights, regardless

of the method used to calculate them, is that it induces within-subject correlation (by

“duplicating” individuals), and therefore the standard error estimates reported by standard

programs may be invalid. To account for this issue users should use bootstrap methods

when assessing the reliability of the estimates (Hernán, Brumback and Robins 2000). It

is crucial that in order for the weights to remain useful, they must be estimated in each

bootstrapped sample. This will not only help to improve the estimation of standard errors,

but will partially ameliorate concerns related to the inclusion of uncertainty in the estimation

of weights. Current applications of MSMs do not include information on the uncertainty of

the predicted probabilities used for the derivation of the weights. Further studies should

address this issue in order to reach better inferences of the object under analysis.

3.4 Advantages and disadvantages of MSMs

MSMs overcome limitations that other tools like mediation analysis and structural nested

mean models have. For example, causal mediation analysis (Imai, Keele and Tingley 2010;

Pearl 2001) decomposes the total effect of a treatment on an outcome into direct and indirect

effects (Imai et al. 2011). However, when one of the confounders is affected by the baseline
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treatment, mediation analysis is not appropriate because its procedure requires modeling the

outcome as a function of treatment history and those problematic confounders affected by the

treatment. Therefore, by explicitly conditioning on them we induce post-treatment control

bias as explained above (Montgomery, Nyhan and Torres Forthcoming). More specifically,

this method estimates the values of the mediator (the intermediate treatment stage) based

on a model that includes relevant confounders and a baseline treatment. Then, the fitted

probabilities for each of the values of the treatment are used to predict the outcome. However,

for this second step, the model of the outcome includes all treatment stages and all relevant

confounders.

Another alternative for the estimation of the ACDE in dynamic settings is the structural

nested mean models (SNMMs) approach (Acharya, Blackwell and Sen 2016; Robins 1997,

1999b).15 SNMMs are a powerful alternative for the estimation of treatment effects especially

when the treatments are continuous or comprise a large number of categories (Vansteelandt,

Joffe et al. 2014). However, even though SNMMs have the great advantage of working for

any type of treatments and confounders, they cannot handle any type of outcome. Most

SNMMs cannot impose restrictions on the finite support of the outcome (Robins 1999b)

and are therefore unsuitable for the study of ordinal, multinomial, and count variables.16

Furthermore, SNMMs are less intuitive and accessible than MSMs and its core concept of

“balancing” the sample (Vansteelandt, Joffe et al. 2014). As Acharya, Blackwell and Sen

(2016) indicate, “when the treatment and mediator are binary or only take on a few values,

nonparametric or semi-parametric approaches exist to estimating the ACDE, reducing the

need for parametric models.” In summary, MSMs are accessible, straightforward and often

more suitable for the estimation of controlled direct effects when the treatment has few

15For this purpose, these models decompose the overall treatment effect into components that allow for
the identification of “demediated” effects.

16In their paper Acharya, Blackwell and Sen (2016) present the implementation of SNMMs for continu-
ous variables. Vansteelandt (2010) extends and elaborates on the application of SNMMs to dichotomous
outcomes.
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values.

MSMs have multiple strengths and advantages but also some weaknesses. First, even

though MSMs can theoretically handle any type of outcome and treatment variables, their

use is mainly restricted to categorical or binary treatments. The reason is that a large

number of values complicates the fulfillment of the positivity assumption. In cases where

the treatment is continuous SNMMs should be favored (Acharya, Blackwell and Sen 2016).

Further, MSMs estimates are sensitive to misspecification of the treatment assignment

model. This is due to the reliability of IPTW on the calculation of probabilities of treatment

sequences. However, there are alternatives that help to alleviate and diagnose this issue.

As reviewed in the previous section, there are multiple methods that might aid to achieve

more accurate weights in the presence of multiple covariates (Watkins et al. 2013). Fur-

ther, Imai and Ratkovic (2015) generalize the covariate balancing propensity score (CPBS)

methodology (Imai and Ratkovic 2014) to time-varying treatments and confounder settings

such that the covariate balance is improved in each stage. In addition, authors like Black-

well (2013); Robins (1997); VanderWeele (2010) have developed and implemented tools to

conduct sensitivity analysis in order to assess the robustness of the estimates of ACDEs in

multiple scenarios where the sequential ignorability assumption is violated.

Finally, although IPTW estimators remain unbiased even in cases with small samples,

the standard errors tend to be larger than in näıve models. Weights induce higher variance

and higher standard errors of the estimates under study (see simulations in Appendix).

Depending on each particular case and data, researchers should consider the bias-efficiency

trade-off when using MSMs (Westreich et al. 2012).
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Chapter 4

MSMs and controlled direct effects in

practice: the effect of parents’ income

on political participation

In this chapter I present an extension of the example outlined above regarding the CDE

of income in youth on political participation that is not mediated by income in adulthood.

This application illustrates the differences between MSMs and traditional regression models

in terms of inferences, and second, it extends the analysis of CDE to non-binary treatments

and non-continuous outcomes.

To illustrate the consequences that confounding and post-treatment bias have on results

and inferences, I compare the estimates from MSMs to two näıve models: the over control or

saturated model and the under control model. A common approach is to include all relevant

confounders in a regression regardless of whether these are affected by the treatment—the

over control model. A less common but still plausible practice is to avoid problematic

confounders and limit the analysis to the baseline and intermediate treatments—the under
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control model.1

Wealth is assumed to affect several factors in early stages of life, such as motivation,

abilities, skills, and favorable social environments. However, the causal effect of these early

economic conditions on political participation that is not mediated by economic status in

adulthood is understudied. Beck and Jennings (1982) attempted to estimate this effect

through traditional regression methods but, as I note above, this approach leads to biased

estimates.2

I aim to provide evidence that the CDE of parents’ income on participation is positive.

That is, if we set income in adulthood to a certain level (for example, by providing subsidies

or policies to “level” income), there would still be an effect of early economic conditions on

political participation. However, the magnitude and reliability of this effect varies depending

on the specific type of political activity that a subject pursues. While some activities require

actual monetary resources, others are more likely to require skills developed in early stages

of life (Verba and Nie 1972; Verba, Nie and Kim 1978). For example, Lipset (1960) finds

that middle-life practices contribute to the development of democratic political orientations

and these, in turn, are associated with engagement in activities such as rallies or protests.

However, other activities, such as donating to a campaign, are more likely to be influenced

solely by the availability of resources associated with income at the moment of the event

(e.g. money, time, transportation means, context).

The data to test these effects comes from the Youth-Parent Socialization Panel Study

(Jennings et al. 2005). This is a panel study in which a sample of students and their parents

were interviewed for four waves in 1965, 1973, 1982 and 1997. I use the models below to

1This model also includes strictly pre-intermediate treatment and outcome confounders. In the Appendix,
I illustrate the pernicious consequences of this practice and the benefits that MSMs imply via a simulation
exercise.

2Beck and Jennings (1982) use causal path analysis and find that there is a strong direct effect of parents’
SES (as measured by school achievement) on their child’s political participation in early adulthood. However,
they use an overall index of political participation and do not distinguish between activities.
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study two different outcomes measured in 1982: attending a political rally, and giving money

to a candidate or campaign.3 For the treatment sequence, I measure parents’ income, the

first stage, as the family income reported by each student’s parents in 1965. Income in

adulthood, the second stage, is the family income reported by the student in 1982. The

treatment variable is a 4-category variable (based on income quartiles) that ranges from low

to high income. The confounders of participation and income included in the model were

selected based on findings in the previous literature.4

I estimate the ACDE of income in youth on political participation using a stabilized

inverse-probability-weighted marginal structural model as described above. In brief, I fit a

weighted logistic regression model of the form:

Pr(Political eventi,1982 = 1) = logit(α0 + α1 Incomei,1965 + α2 Incomei,1982 + α3 Race + α4 Gender) (4.1)

for the events attending a rally and giving money to a campaign, where 1 indicates that the

respondent engaged in that activity in the period between 1973 and 1982.

I account for potential confounding of time-varying items by fitting the earlier models with

stabilized inverse probability weights of the form:

W−1t = w−1(1965) × w
−1
(1982) =

f(Z(1965)|X(1965))

f(Z(1965))
× f(Z(1982)|Z(1965), X(1965), X(1982))

f(Z(1982)|Z(1965))
, (4.2)

where f(·) is the inverse of the ordered categorical logistic regression to estimate probabilities.

The predicted probabilities for the numerator and denominator were assigned based on

the income category that each panelist reported.5 For example, the weight of an individual

3In 1982 respondents are in the “peak” of their adulthood. Therefore, we can obtain better measurements
and reach more generalizable conclusions than at other stages of adulthood.

4For the first treatment stage, these covariates include education of both mother and father, and race
and level of interest in politics of the head of the household. For the second stage, the confounders are the
student’s characteristics such as education, political interest, political efficacy and political knowledge as
indicators of political skills, motivations and self-confidence. For the full model, I include gender and race
of the student as “non-problematic” confounders given that income cannot affect these variables.

5For the weight estimation, model and bootstrapping I used my own code in R. Existing packages do not
handle treatments with multiple categories. The functions are available upon request. The weights were
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that belongs to the 3rd quartile of income in adulthood is based on the estimated probabilities

of belonging to that particular quartile conditional on different combinations of treatments

and covariates as specified in the numerator and denominator of each of the components of

Equation 12.

The weights estimated from Equation 12 aim to balance the second stage of the treatment,

income in adulthood, across confounders. Figure 4.1 shows that the weights lead to a more

balanced sample. This figure illustrates the difference in the standardized coefficients of the

confounders on income in adulthood in the original population (left side) and the pseudo-

population (right side). The figure shows that while in the original population all covariates

significantly predict levels of income in adulthood, in the pseudo-population, almost all of

these are no longer significantly associated with the latter. In other words, we successfully

“broke” the link between post-treatment confounders and treatment.

Table 4.1 presents the results for each of the two main outcomes of interest: attending a

rally and donating money. For comparison purposes, I implement three modeling strategies:

a weighted MSM model, an over control model that explicitly controls for all covariates

regardless of whether these are post-treatment, and a third under control model that excludes

relevant confounders.

There are significant differences in the magnitude and reliability of the coefficients. First, the

results from the MSM in Column 1 indicate that parents’ income has a reliable and positive

impact on the propensity of an individual to attend a rally once she is an adult.6 Being in the

third and fourth quartiles of parents’ income increases participation in a rally independent of

the effect of income in adulthood. However, the results from models 2 and 3 do not support

this finding. The over control and under control models indicate that belonging to the fourth

quartile of income in adulthood increases the probability of attending a rally, but they do

re-estimated in each of the 500 bootstrapped samples.
6The baseline category is the lowest income quartile (Quartile 1), so all interpretations of coefficients are

made with respect to this category.
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Figure 4.1: Balancing covariates
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not provide evidence for a similar effect of parents’ income.

Recall that MSMs, assuming that sequential ignorability holds, provide unbiased esti-

mates in contrast to the näıve models. That is, no matter the specification, if 1) there is

a confounder of treatment and outcome, and 2) at least one confounder is affected by the

treatment, then the results from models that over or under control will be incorrect. Fur-

thermore, intuitively and substantively, the results from the MSM are in line with theoretical

expectations: activities like a rally are less dependent on economic resources acquired in late

stages of life and more likely to be affected by other traits such as group consciousness (Miller

et al. 1981) or cross-cutting networks (Mutz 2002) that are influenced by socio-economic con-
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Table 4.1: Controlled direct effects of early income on participation

Attend a rally Donate money

MSM Over Under MSM Over Under
control control control control

(1) (2) (3) (4) (5) (6)

Parents’ income (1965)
Quartile 2 0.076 −0.020 −0.0005 0.011 −0.037 0.001

(0.046) (0.036) (0.036) (0.054) (0.037) (0.037)
Quartile 3 0.116 0.023 0.032 0.054 0.002 0.047

(0.053) (0.043) (0.042) (0.066) (0.042) (0.041)
Quartile 4 0.169 0.047 0.055 0.033 0.000 0.077

(0.086) (0.055) (0.049) (0.081) (0.053) (0.048)
Income Adulthood (1982)
Quartile 2 0.012 0.0002 0.047 −0.002 0.005 0.054

(0.055) (0.042) (0.041) (0.072) (0.038) (0.040)
Quartile 3 −0.051 −0.035 0.027 0.013 0.007 0.077

(0.062) (0.047) (0.051) (0.075) (0.045) (0.047)
Quartile 4 0.072 0.089 0.189 0.156 0.186 0.285

(0.068) (0.043) (0.043) (0.076) (0.045) (0.044)
N 966 966 966 964 964 964

Post-treatment controls? X X

Note: Coefficient estimates for covariates/controls omitted. Bolded coefficients reliable at more
than 95%. Controls include education of both mother and father, political interest and race of
the head of the household, student’s education, political efficacy, political interest and knowledge,
gender, and race. Regressions include gender and race of the student as strictly pre-treatment
covariates. Cut-points and constant terms omitted.

ditions in childhood. The results support the idea that even if all adults manage to close

the income gap, there would still be a pervasive effect of inequality on the propensity to

participate in rallies. However, the results of the traditional regression models fail to recover

this effect.

The results for the “Donate money” outcome are also consistent with theoretical expec-

tations. The effect of parents’ income that is not mediated by income in adulthood cannot

be distinguished from zero in any of the models considered. However, the effect of income

in adulthood is positive and reliable for the fourth income quartile. This suggests that the

contemporaneous effect of income in adulthood is more relevant in determining monetary

contributions to a candidate or a campaign than any other resources acquired in early stages.
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The factual resources that income provides, as well as other determinants such as the net-

work that the professional environment and higher income in adulthood might affect, impact

the likelihood of engaging in this activity.

Altogether, the results confirm the hypothesis that for certain activities, there is a positive

effect of parents’ income on political participation. Although the association of income in

adulthood and political participation has been widely supported by many authors, it is

important to isolate its effect from that of early economic conditions. Even though for certain

activities, such as donating money, the effect of income in adulthood proves to be stronger

(probably due to the necessity of resources provided by income in later stages to complete the

task), there are other activities such as attending a rally that are more influenced by other

traits and characteristics that are highly likely to be developed in (and shaped by) early

economic conditions. These effects are accurately captured and estimated through MSMs in

contrast to regression techniques that may lead us to substantively different conclusions.
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Chapter 5

Concluding remarks

The estimation of direct effects is increasingly receiving attention from scholars in multiple

fields. Disentangling causal paths is a strategy that has the potential to improve our un-

derstanding of a wide variety of political phenomena. Moreover, the analysis of complex

structures, such as those in which there are time-varying treatments and confounders, moti-

vates several research questions in multiple fields that can be answered with the estimation

of controlled direct effects. More generally, we can explore the effect of a baseline treatment

on an outcome, when we assume that the intermediate treatment stage is set to a partic-

ular level. For example, we may be interested in assessing the effect of zoning criteria on

political and community engagement that is not mediated by the area’s subsequent capital

gain, evaluating the effect of welfare support on approval ratings before and after a policy

reform, exploring contemporaneous implications of historical variables, or examining similar

dynamic relationships.

The analysis of these cases is challenging in methodological terms. The estimation of the

average controlled direct effect (ACDE) is complicated when there are time-varying treat-

ments and time-varying confounders affected by the treatment. In dynamic social settings,

we have reasons to believe that this is the rule rather than the exception. In this thesis, I
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explain the two sources of bias that we are likely to encounter when there are confounders

affected by the treatment: first, when these confounders are omitted from a regular regres-

sion, the causal effect of an intermediate stage cannot be identified due to confounding bias.

Nevertheless, controlling for those confounders may induce bias in the estimation of early

treatment stages due to post-treatment control. Under these settings, controlled direct ef-

fects cannot be estimated using conventional regression approaches because they do not solve

the trade-off between confounding and post-treatment control biases.

In order to solve this bias trade-off, I have used MSMs and IPTW estimators as an alter-

native for the estimation of the ACDE. Through the calculation of weights that “balance”

the marginal distributions of potential outcomes, MSMs account for confounding variables

while avoiding post-treatment control bias. I described MSMs’ characteristics and presented

a detailed description of their implementation especially when dealing with multi-valued

treatments. I also illustrated some of the differences in terms of bias between distinct meth-

ods for the weights estimation. After the application of this class of models to the analysis

of the effects of inequality on political outcomes, I examined the different estimates that we

can get from the MSM approach and other common näıve models that either under or over

control for problematic confounders. More specifically, the results show that the estimates of

the effect of parents’ income on participation from regular regression techniques differ from

those yielded by MSMs. This in turn has an impact on the inferences that we make. I found

that there is a positive effect of early income on activities such as attending a rally, that is

not mediated by income in adulthood. However, these conclusions are only reached through

the use of MSMs, the näıve model does not provide enough evidence to sustain these findings

and leads to substantively different inferences on this matter. Furthermore, I showed how

näıve models might lead to conclusions not supported by the literature such as a null effect

of economic conditions (both in childhood and adulthood) on turnout.

Despite the wide applicability and accessibility of MSMs, there are issues related to these
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models that motivate several further questions. Possibilities for future research include the

implementation of inverse probability of treatment and censored weighting estimators in

samples as a way of accounting for panel attrition. This would improve the efficiency and

accuracy of the estimates by taking into account a problem that is likely to affect the variables

under analysis: attrition and non-response. In summary, MSMs are a feasible alternative

when dealing with panel/time-series structures and time varying treatments. They offer a

straightforward method for the estimation of controlled direct effects, under a small number

of assumptions and can be implemented using off-the-shelf software. The application of this

method to political questions will certainly lead to a better understanding of the causal

associations that exist in the complex systems in which we live.
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Appendix A

Table A.1: From Table 1: Calculation of weights for each stratum in sample (full-table)

Z(0) Z(1) X(1) f(Z(1)|Z(0)) f(Z(1)|Z(0), X(1)) W(t)−1
Original-pop

N
Pseudo-pop

N

0 0 0 0.6 0.706 0.85 12000 10200
0 0 1 0.6 0.462 1.3 6000 7800
0 1 0 0.3 0.235 1.275 4000 5100
0 1 1 0.3 0.385 0.78 5000 3900
0 2 0 0.1 0.059 1.7 1000 1700
0 2 1 0.1 0.154 0.65 2000 1300
1 0 0 0.367 0.467 0.786 7000 5500
1 0 1 0.367 0.267 1.375 4000 5500
1 1 0 0.4 0.333 1.2 5000 6000
1 1 1 0.4 0.467 0.857 7000 6000
1 2 0 0.233 0.2 1.167 3000 3500
1 2 1 0.233 0.267 0.875 4000 3500
2 0 0 0.2 0.4 0.5 2000 1000
2 0 1 0.2 0.1 2 1000 2000
2 1 0 0.333 0.4 0.833 2000 1667
2 1 1 0.333 0.3 1.111 3000 3333
2 2 0 0.467 0.2 2.333 1000 2333
2 2 1 0.467 0.6 0.778 6000 4667

Note: Z(0) is parents’ income where 0 is low, 1 is middle and 2 is high. Z(1) is income in adulthood where
0 is low, 1 is middle and 2 is high. X(1) is post-High School education where 0 is no college and 1 is college.
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Simulation 1: comparison of bias between weight esti-

mation methods (Section 2.3)

To illustrate the average bias in the estimation of controlled direct effects by model, I simu-

lated 500 datasets, each of size n = 1, 000, with the following specification:

Baseline covariate: parents’ college attendance

X
(0)
i ∼ Bernoulli(1, 0.5)

Baseline treatment: parents’ income

Z
(0)
i ∼ Categorical(3,pi)

pi = (F (ηi1), F (ηi2)− F (ηi1), 1− F (ηi2))

F (ηik) =
exp(θk − ηik)

1 + exp(θk − ηik)

ηik = −2.5 + 1.5X
(0)
i + ui

ui ∼ N (0, 0.5)

(θ1, θ2) = (−1.25, 0.45)
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Covariate affected by baseline treatment: subject’s college atten-

dance

X
(1)
i ∼ Bernoulli(1, p

†
i )

p†i =
exp(−2.5 + 0.5X

(0)
i + 1.1Z

(0)
i + u†i )

1 + exp(−2.5 + 0.5X(0) + 1.1Z(0) + u†i )

u†i ∼ N (0, 0.35)

Second-stage treatment: subject’s income

Z
(1)
i ∼ Categorical(3,p∗i )

p∗i = (F (η∗i1), F (η∗i2)− F (η∗i1), 1− F (η∗i2))

F (η∗ik) =
exp(θ∗k − η∗ik)

1 + exp(θ∗k − η∗ik)

η∗ik = −3.5 + 0.2X
(0)
i + 1Z

(0)
i + 0.6X

(1)
i + u∗i

u∗i ∼ N (0, 0.5)

(θ∗1, θ
∗
2) = (−1.05, 0.65)

Outcome: participation in a rally

Yi ∼ Bernoulli(p+i )

p+i =
exp(η+i )

1 + exp(η+i )

η+i = −3 + 0.2X
(0)
i + 1.5Z

(0)
i + 0.4X

(1)
i + 0.2Z(1) + u+i

u+i ∼ N (0, 0.4)
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For this exercise, I calculated nine potential outcomes according to the multiple combinations

of the baseline and second-stage treatment values. The true controlled direct effects of the

baseline treatment are calculated for each individual using this framework. The results are

presented in Figure 3 in the manuscript.

Simulation 2

The following simulations illustrate the advantages that marginal structural models have

over saturated models that control for post-treatment confounders under several conditions.

I conduct three sets of simulations, each changing the value of one of the following

parameters while keeping the others constant: number of observations (n), the effect of

a covariate on the treatment sequence, X(0), and the effect of a confounder of treatment

and outcome affected by the baseline treatment. In each set I generate a set of variables

with the structure presented below: a baseline treatment stage with three values Z(0), a

binary covariate X(1) affected by the baseline treatment, an intermediate treatment stage

affected by both X(0) and Z(0), an outcome Y generated by all of these variables. The third

simulation also includes another binary covariate W (1) affected by the baseline treatment.

Covariates X(0), W (1) and X(1) confound the relationship between the outcome and the

treatment stages.

Baseline covariate

X
(0)
i ∼ Bernoulli(1, 0.4)
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Baseline treatment

Z
(0)
i ∼ Categorical(3,pi)

pi = (F (ηi1), F (ηi2)− F (ηi1), 1− F (ηi2))

F (ηik) =
exp(θk − ηik)

1 + exp(θk − ηik)

ηik = −2.5 + β1X
(0)
i + ui

ui ∼ N (0, 0.5)

(θ1, θ2) = (−1.25, 0.05)

When held constant β1 = 1.

Covariates affected by baseline treatment

X
(1)
i ∼ Bernoulli(1, p

†
i )

p†i =
exp(η†i )

1 + exp(η†i )

η†i = −2.5 + 0.5X
(0)
i + 1.1Z

(0)
i + u†i

u†i ∼ N (0, 0.035)

W
(1)
i ∼ Bernoulli(1, p‡i )

p‡i =
exp(η‡i )

1 + exp(η‡i )

η‡i = −2.5 + 0.5X
(0)
i − 1.5Z

(0)
i + u‡i

u‡i ∼ N (0, 0.035)
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Second-stage treatment

Z
(1)
i ∼ Categorical(3,p∗i )

p∗i = (F (η∗i1), F (η∗i2)− F (η∗i1), 1− F (η∗i2))

F (η∗ik) =
exp(θ∗k − η∗ik)

1 + exp(θ∗k − η∗ik)

η∗ik = −3.5 + β2X
(0)
i + 1Z

(0)
i + 0.6X

(1)
i + γ1W

(1)
i + u∗i

u∗i ∼ N (0, 0.5)

(θ∗1, θ
∗
2) = (−1.05, 0.65)

When held constant, β2 = 0.5 and γ1 = 0.6.

Outcome

Yi ∼ Bernoulli(p+i )

p+i =
exp(η+i )

1 + exp(η+i )

η+i = −3 + 0.2X
(0)
i + γ2W

(1)
i + 1.5Z

(0)
i + 0.4X

(1)
i + 0.2Z(1) + u+i

u+i ∼ N (0, 0.4)

When held constant, γ2 = 0.3.

The three sets of simulations have the main objective of comparing and analyzing the

biases in the estimation of controlled direct effects in situations where the sequential ignor-

ability and positivity assumptions required by MSMs are violated.

The first simulation varies the number of observations in the simulated datasets (from

60 to 2,000). The objective of this exercise is to explore the sample size properties of the
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IPTW estimator while also setting scenarios, such as those with very few observations,

where the positivity assumption is likely to be violated. When held constant in the rest of

the simulations, n = 1, 000.

The second simulation varies the effect of a confounder X(0) on the treatment assignment

(both the effect of X(0) on Z(0) [denoted by β1] and Z(1) [denoted by β2]). This exercise also

helps to illustrate the bias that arises in cases where the treatment assignment is heavily

unbalanced and therefore causing 1) certain covariate and treatment histories to be empty

and/or 2) to obtain extreme weights for some combinations of such variables.

Finally, the third simulation explores the magnitude and variance of the bias when the

researcher omits a confounder of the second stage of the treatment and the outcome. In the

simulation, I increase the importance of such confounder by varying the impact of W (1) on

the treatment Z(1) (denoted by γ1) and on the outcome Y (denoted by γ2).

In order to assess and compute the bias for each case, I generate a set of potential outcomes

to calculate the “true” controlled direct effects of Z(0) on Y . There are nine CDEs which

I present in Table A.2. Then, for each set of simulations I estimated the CDEs based on

the observed outcomes using two modeling strategies: a marginal structural model (MSM)

which implies a weighted regression of the outcome on the two treatments using weights

estimated through IPTW, and a saturated model which includes confounders affected by

the treatment. For illustrative purposes, weights were estimated using categorical logistic

regressions.

For each of the varying values of the parameters of interest, I simulate 400 datasets.

After collecting the relevant estimates of ACDEs from a MSM and a saturated model in

each dataset, I take the difference between such estimates and the true controlled direct

effects. These values represent a measure of bias. Figure A.1 below shows three panels with

the distributions of bias when estimating CDE number 1 using either a MSM or a saturated

model under different conditions. In each panel, the y-axis indicates the magnitude of the
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Table A.2: Simulated controlled direct effects

CDE YZ(0)=a,Z(1)=b − YZ(0)=a′,Z(1)=b

1 Y10 − Y00
2 Y20 − Y00
3 Y20 − Y10
4 Y11 − Y01
5 Y21 − Y01
6 Y21 − Y11
7 Y12 − Y02
8 Y22 − Y02
9 Y22 − Y12

bias in the estimation of CDE 1, while the upper and lower x-axes show the different values

that the parameter of interests take in each set of simulated datasets. The lines indicate the

mean bias: red and dashed for the saturated model, and bold and black for the MSM. The

gray areas indicate the 5th and 95th percentiles in the distribution of bias.

The results for the first simulation varying the sample size show that although MSMs

slightly overestimate the real CDE 1 in small samples (with around 60 to 100 observations),

the bias quickly converges to 0 and stays steady for large sample sizes. However, the estimate

of ACDE 1 using the saturated model remains biased even when sample size increases.

Controlling for the covariate affected by the baseline treatment originates this bias. Although

the average bias is close to 0 when implementing a MSM, it is important to consider that its

variance is 1) higher than the variance of bias from the saturated model, and 2) decreases at

the same time as sample size increases. In general, saturated models perform better in terms

of standard errors. A result that does not come as a surprise given the weighting process

involved in the estimation of ACDEs in a MSM framework.

The second simulation increases the importance of one of the pre-treatment covariates

affecting the assignment of both stages of treatment. Increasing the effect of X(0) on Z(0)

and Z(1) yields the following results. Under this setting, we find that, as expected, the

estimates of ACDE 1 using MSMs start unbiased when the effect of the covariate is 0 or
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about 0.5 (which once plugged in a the link function it represents a substantive effect in

terms of probabilities). When the effects increase, we observe that the average bias departs

from zero in both negative and positive directions. This bias, however, is still smaller than

the almost constant and negative bias in the estimates that a saturated model yield. Further,

we observe an increase in the variance of the bias distribution of MSMs as the effect of X(0)

becomes more important. And even in the case where the effect is zero, the variance of the

MSM bias is significantly larger than the one for the saturated model.

Finally, the third simulation shows the distributions of bias when a covariate affected

by the baseline treatment gets stronger AND when it is omitted from both the MSM and

saturated models. In this case, we observe that the estimator is nearly unbiased when

this effect is zero, but has a positive trend departing from zero. However, this bias is

consistently lower than the one yielded by the saturated model who shows a decreasing trend

in terms of bias. While it might appear counterintuitive, this trend can be explained by the

“accumulation” of different biases and the bias trade-off that was explained in Section 1 of

this text: while ignoring an increasingly strong confounder can have pernicious consequences

as the bold line in this simulation shows, including it may also be problematic. In this cases,

it seems that the bias generated by post-treatment control is higher than the confounding

bias, and therefore we observe a still biased but improving trend in the results.

The main conclusions that we derive from this exercise is that 1) MSMs perform signifi-

cantly better than saturated models in terms of bias, but 2) the variance of the bias of MSMs

suggests a less efficient estimator. This is consistent with the results found by Westreich et

al. 2012 in which they also conduct a set of simulations to compare bias, standard errors

and mean squared errors. The evaluation of whether the increased in variance that comes

from weighting is outweighed by the reduction in bias that MSMs offer heavily depends on

the particular characteristics of the study: the distribution of treatments, the effect of the

confounders, etc. For example, if the post-treatment confounder has a very small effect on
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the treatment sequence and outcome, then a small bias is preferred to large variances. How-

ever, the simulations above, conducted under different settings, suggest that the increased

variance associated with weighting versus over-adjusting is not too costly. As the graphs

show, the MSMs provide a much better coverage of the real estimates than saturated models

even at the tail of the bias distribution.

Figure A.1: Distribution of bias: MSMs vs saturated models
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Application

Data description

The sample framework of the Youth-Parent Socialization Panel is composed of senior High

School students in 1965. For this wave, the data comes from a nationally representative

sample of 1,669 students distributed across 97 public and nonpublic schools selected with

probability proportional to size. In the 1965 wave the parents of the students were also

interviewed. For the majority of the students, either one or both parents were interviewed.

However, for a small number of cases, no parent was interviewed. For the 1973, 1982 and

1997 waves, students were recontacted and resurveyed. Although most of the surveys were

completed face-to-face, a number of them in the follow-up waves were completed through

mail interviews and computer-assisted telephone interviews (CATI).

The confounders of political participation and income in youth are employment status

of the father, his occupation, education levels and place of birth, education of the mother,

foreign status and race of the parents, political interest and political efficacy of the father.

These measures were collected from the parents in 1965. Only in those cases were there was

no information available either from the mother or the father, I use the student’s answers

to those questions. For the confounders of the treatment and political outcome at t 6= 0, I

include occupation of the student, education level, labor force status, political interest, level

of confidence, political efficacy, gender and race. The last two are the only ones that do not

vary over time. All of these variables were collected for each of the waves in the study.

Wording

Outcome variables

• Attend a rally
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– Question: Have you gone to any political meetings, rallies, dinners, or other things
like that since 1973?

– Answers: Yes, No

• Donate money

– Question: Have you given any money or bought any stickers to help a particular
party, candidate, or group pay campaign expenses since 1973?

– Answer: Yes, No

Treatment variables

• Parents’ income: Quartiles based on the categories answered by student’s parents in
1965

– Question: About what do you think your total income will be this year for yourself
and your immediate family?

• Income in adulthood: Quartiles based on the categories answered by student in 1973

– Question: Please look at this page and tell me the letter of the income group that
includes the income of all members of your family living here in 1981 before taxes.
This figure should include salaries, wages, pensions, dividends, interest, and all
other income. If uncertain: what would be your best guess?
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