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A major outstanding problem in condensed matter physics is the nature of the glass

transition, in which a rapidly cooled liquid can bypass the transition into a crystalline state

and the liquid structure is "frozen-in" due to kinetic arrest. To characterize the fundamental

features behind this transition the liquid, both in the high temperature (equilibrium) and

supercooled state, needs to be better understood. By examining the relationship between

structure and dynamics a better characterization of the liquid state and a determination of

the mechanisms that are ultimately important for the formation of the glass can be gained.

In this dissertation, elastic X-ray and inelastic neutron diffraction measurements (made us-

ing the electrostatic levitation technique), coupled with both reverse Monte Carlo (RMC)

and molecular dynamics (MD) simulations are presented. These studies detail important

connections between the structure and dynamics that may aid in the understanding of the

glass transition. The RMC technique, which is a common method for obtaining plausible

atomic configurations from diffraction data, is examined to determine the properties that

are reliable when using few diffraction measurements as constraints. The liquid bond length,

obtained from X-ray diffraction measurements and associated RMC simulations, is examined

using the nearest-neighbor distance distribution. These studies demonstrate that the local

structure is related to the liquid fragility, a measure of temperature dependence of viscosity,

xvii



through the thermal expansion coefficient. An analysis of the X-ray diffraction data also

demonstrates that a crossover from Arrhenius to super-Arrhenius temperature dependence

of the viscosity at a temperature (TA) can be related to the onset of an accelerated devel-

opment of a well-defined next-nearest neighbor length scale. Finally, new measurements of

the dynamic pair correlation function obtained from inelastic neutron scattering studies of

a Pt − Zr metallic liquid, combined with molecular dynamics simulations, show that above

TA the viscosity is controlled by atoms leaving or joining a local cluster. Taken together,

these three results give a coherent picture that relates structure and dynamics in equilibrium

supercooled liquids.
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Chapter 1: Introduction

The fact that some liquids form glasses more easily upon cooling than others remains a

fundamental question in condensed matter physics. Metallic glasses, and other amorphous

solids in general, have many superior properties over those of crystalline systems, such as high

corrosion resistance, strength, and hardness [1]. Because of this, metallic glasses have many

promising uses, including some biomedical applications [2]. This dissertation will contribute

to the understanding of metallic liquids and their transition to glasses, by examining the

link between structure and dynamics in the equilibrium and supercooled liquid. However,

to accomplish this it is necessary to first review the relevant literature on metallic liquids,

glasses, and the glass transition. The remaining sections of this chapter will give a general

overview of the structure of liquids and glasses, explore the dynamics of the equilibrium and

supercooled liquid, discuss fragility as a link between structure and dynamics, and finally

discuss the use of containerless processing for studying supercooled liquids.

1.1 Overview of Glass and Liquid Structure

Structurally, liquids and glasses are extremely similar [3], especially when compared to the

large differences with gas or crystalline systems. Crystalline systems exhibit a characteristic

atomic Long range order (LRO) where a unit cell is repeated across some periodic lattice.

Figure 1.1 gives a schematic comparison of atomic positions in a hexagonal close packed

crystalline system and a metallic glass (bonds are indicated by overlapping grey circles). The

difference between the two systems is quite clear. Though glasses do not exhibit the LRO

typical of crystalline systems they do exhibit marked Short range order (SRO) (typically

icosahedral short range order (ISO) in metallic liquids and glasses [4]). The schematic

diagram shows some SRO since each atom on average has ∼ 6 nearest neighbors. Some

1
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Figure 1.1: Schematic two-dimensional representation of the order in crystal and glass
systems. The left shows a crystalline system with a hexagonal lattice. The right shows a
glassy system.

clusters even exhibit Medium range order (MRO). If Fig 1.1 were to include a panel for the

liquid system it would be, for all intents and purposes, indistinguishable from the glass.

A common way to examine the structure from scattering experiments and simulations is

to use the pair correlation function g(r), defined as

g(r) = 1
4πNρ0r2

∑
i

∑
j 6=i

δ(r − rij) , (1.1)

where N is the number of atoms, ρ0 is the number density, rij ≡ |ri − rj| is the magnitude

of the distance from atom i to atom j and δ is the Dirac delta function. By definition

this function gives the likelihood for finding atoms at a given distance from each other.

The likelihood is exhibited by peaks and valleys where a more intense peak signals a larger

likelihood of finding atoms at that distance. The function is normalized so that there is

no correlation for g(r) = 1. From this we would expect to find sharp intense peaks in

the crystalline systems, while both the liquid and glass should show more diffuse peaks and,

likely, be rather similar (Figure 1.2). The Fourier transform of g(r) called the static structure
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Figure 1.2: Example plots of crystal, amorphous, and liquid pair distribution functions
and corresponding static structure factors.

factor, S(q),

S(q) = 4πρ0

∫
(g(r)− 1) sin(qr)

qr
r2dr , (1.2)

which contains complementary information in the inverse space. The structure factor is

proportional to the intensity measured in diffraction experiments. As the temperature of

the liquid is lowered the peaks, in both g(r) and S(q), sharpen and intensify, indicating that

the glass (which can in terms of the structure be thought of as a low temperature liquid) is

more ordered than the corresponding liquid. Also, the second peak of S(q) begins to develop

a shoulder in the high temperature liquid, which becomes exaggerated in the glass (this has

been linked to ISO [5, 6] and is discussed in more in Chapter 5).

Icosahedral short range order was first suggested by Frank [7] to explain the ability

to supercool metallic liquids. He hypothesized that the icosahedron was the energetically

preferred local structure in metallic liquids and essentially poisoned the formation of a local

order that is compatible with a crystal structure. While many studies have confirmed the
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presence of ISO in many metallic liquids [5, 8], not all metallic liquids prefer this ordering [9].

Since icosahedra have 5-fold rotational symmetry they are unable to tile three-dimensional

space, precluding the possibility of LRO. Due to the inability to tile the entire space with the

energetically preferred structure the system exhibits frustrated behavior (which is discussed

in the next section).

1.2 Supercooled Liquids

As a liquid is cooled atoms become less mobile and the viscosity, η, increases by over

12 to 15 orders of magnitude as the glass transition temperature, Tg, is approached. The

glass transition temperature is defined as the temperature at which the viscosity reaches

1012 Pa s. This definition, while convenient, is functional and does not coincide with a phase

transition in the supercooled liquid [3, 10]. Rather it coincides, roughly, to the point at which

the dynamics become slow enough that the atomic reconfigurations necessary to maintain

equilibrium (i.e. dissipate shear stress) upon further cooling, cannot keep up and ergodicity,

on say the laboratory time scale, is broken.

In light of this extreme change, in viscosity, it is informative to examine the dynamic

correlation functions of the supercooled liquid. The mean square displacement trajectories,

〈δr2(t)〉, obtained from Molecular Dynamics (MD) simulations are shown in Fig. 1.3 for

temperatures spanning the high temperature liquid down into the supercooled regime. At

first atoms exhibit a simple ballistic motion at short times (<100 fs) which changes to diffusive

motion in the long-time limit. However, as the liquid is cooled atoms tend to become stuck

after the ballistic regime, i.e. after collisions, without appreciable motion. This caging

effect, where multiple collisions keep the atoms contained, acts to delay the onset of diffusive

motion. As the liquid is cooled further diffusive motion is delayed even longer until diffusion

no longer occurs on simulation timescales. A similar type of decay (initial ballistic decay, β

relaxation, followed by a plateau and a final decay,α-relaxation) is exhibited in other dynamic
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[Å

2
]

T
em

p
era

tu
re

〈δr2(t)〉 ∼ v2t2

〈δr2(t)〉 ∼ 6Dt

Figure 1.3: Example log-log plot of the mean square displacement, 〈δr2(t)〉, of an atom
in a liquid spanning the high temperature regime and the supercooled liquid. The mean
square displacement shows caging effects, i.e. plateauing, characteristic of the impending
glass transition.

correlation functions and is a signature of glassy behavior [3].

Many theories attempting to explain the glass transition exist (i.e. mode coupling, p-

spin, Adam-Gibbs Di Marzio etc.); these are discussed in Cavagna’s review article [3]. We

will focus here instead on only the Frustration Limited Domain theory (FLDT)[11, 12], since

it produces a useful [13, 14] relation for the viscosity and it uses the earlier idea of metallic

liquids being frustrated systems. In FLDT it is assumed that the liquid has a locally preferred

structure (LPS), different from that of the crystal, and that the system would crystallize at

a second order critical point at TA (T ∗ in the original work [11]). The crystallization is,

however, prevented due to frustration coming from the incompatibility of the LPS with

LRO. Though the frustration kills the phase transition at TA, it is assumed that it still

controls much of the physics for the system. Since the LPS is energetically favorable small

domains will try to maintain this order while the system forces breaks in the ordering, of size

ξ(T ), to relieve the system frustration. Above TA the system exists freely in the disordered

liquid, while as the temperature is lowered below TA the size of the domains ξ(T ) grows and
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causes the rapid slowdown in the system dynamics. The temperature TA then denotes the

change from Arrhenius to super-Arrhenius behavior in dynamical properties like viscosity.

FLDT predicts the following form for the viscosity:

η(t) = η0 exp
(
E∞
kBT

+ TA
T

(
1− T

TA

)z
Θ(TA − T )

)
(1.3)

where the first term E∞
kBT

gives the Arrhenius contribution and the second the super-Arrhenius

modification. In FLDT theory the fast β relaxation is associated with relaxations within a

FLD while α relaxation is associated restructuring of the FLD. This indicates that coopera-

tion over longer length scales becomes necessary to relax the liquid, starting at the crossover

TA.

A schematic representation of the viscosity (using Eq. 1.3 as a basis) and the large

variability of behaviors it exhibits for different liquids upon cooling is shown in Fig. 1.4.

This type of plot, showing log10(η) as a function of Tg/T is called an Angell plot [15]. The

Angell plot naturally introduces the property of fragility, which is a measure of the deviation

from the constant activation energy or Arrhenius behavior when cooling the liquid. This

property will be discussed more thoroughly in the next section.

1.3 Linking Structure and Dynamics

As mentioned previously, fragility is the deviation of viscosity from Arrhenius behavior.

Liquids with small deviations are considered strong while systems showing a super Arrhenius

behavior are fragile. Figure 1.4 shows a schematic representation of two extreme cases for

strong and fragile liquids, as well as an intermediate regime where metallic liquids are found.

The fragility can be quantified by the slope of the viscosity curve on an Angell plot at Tg:

m = d log10(η)
d(Tg/T )

∣∣∣∣
T=Tg

. (1.4)
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This has long been the most common method for determining liquid fragility, but is not

applicable to systems that are unable to form a glass. Further, since this dissertation focuses

on the liquid it is also not applicable. A popular (but unfortunate) choice that is also used

for fragility comes from the Vogel-Fulcher-Tammann (VFT) fit equation

η = η0e
D∗T0
T−T0 (1.5)

where η0 is the high temperature limit of viscosity, T0 is the temperature where the viscosity

diverges, and D∗ is the fragility parameter. The use of the VFT equation is unfortunate,

since the choice of T0 and the range which is chosen greatly affects the fragility parameter and

can give incorrect values. Several other fragility parameters exist, all based on intersecting

the Angell plot of viscosity with a line and using the scaled temperature at the intersection

to construct the fragility parameter [16–18].

Another connection between structure and dynamics comes from recent MD calculations

that have examined the fundamental excitation of the atomic cluster [19–21]. A central atom

and all of its neighbors, all atoms within a radial distance d of the central atom, are tracked

as a function of time. A local configuration excitation (LCE) occurs when an atom crosses

the cutoff distance, either leaving or joining the cluster (Fig. 1.5). The average time for such

an excitation to occur is called the local configuration time, τLC . These studies show that

τLC ≈ τM for T > TA where τM , the Maxwell time, is the shear stress decorrelation time and

TA is the Arrhenius crossover temperature defined previously. The authors argue that the

LCEs then are the fundamental excitation controlling the relaxation time of dynamics (i.e.

viscosity). In the previous section FLDT predicted that cooperative motion occurs above the

crossover temperature TA which appears to be corroborated by the studies presented here.

A combined experimental and MD examination of this study is presented in Chapter 6.

The last structure-dynamics relation discussed here is through the Adam-Gibbs rela-
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Time

τLC

Figure 1.5: Two-dimensional illustration of a local configuration excitation. The config-
uration on the left show a central atom and its nearest-neighbors all located within some
distance cutoff of the central atom. After a time interval τLC has passed one of the local
atoms has passed the cutoff distance and is not considered part of the cluster anymore.

tion [22]

η = η0 exp
(

B

TSc(t)

)
, (1.6)

where B is a constant and Sc(t) is the temperature-dependent configurational entropy. Com-

paring this relation with the VFT relation (Eq. 1.5), we see that D∗ ∼ 1/Sc indicating an

inverse relationship between fragility and configurational entropy. This is a simple structure-

dynamics connection implying that strong liquids are better ordered [23].

It is also informative to compare the configurational entropy to Eq. 1.3 from FLDT,

which builds on the well-known Potential Energy Landscape (PEL) [24] (Fig. 1.6). Using the

Adam-Gibbs relation and FLDT the configurational entropy decreases linearly in the high

temperature liquid, above the landscape’s many peaks and valleys, but begins to rapidly

decrease as T decreases below TA. At TA the system starts to appreciably interact with

the PEL by choosing a basin. This corresponds to the FLD growing and the number of

configurations being reduced, indicating that correlations are being maintained within the

domains (β relaxation). To switch basins (i.e. α relaxation) a reorientation of the FLDs is

9



Introduction

Figure 1.6: Schematic diagram of the potential energy landscape for a fragile glass forming
liquid. Energy barriers for the fast β transition and slow α transition are shown. Figure
reprinted with permission from [25]

needed. This shows the freezing out occurring in the glass transition corresponding to the

reduction of the number of FLDs and the increasing of size of the remaining domains

1.4 Containerless Processing

As previously mentioned the supercooled liquid is accessible only if heterogeneous nu-

cleation sites are removed. It should be noted that homogeneous nucleation, which is due

to thermal density fluctuations, will still lead to crystallization, but typically at a deep su-

percooling. The reactivity of metallic liquids is another source of concern when studying

them. If a container is used to hold the liquid it is likely that it will act as a heterogeneous

nucleation site and/or alloy with the liquid of interest. To circumvent these issues the sample

container can be removed entirely and the sample is levitated. This has the added benefit

of reducing the background signal, if there is clear line-of-sight to the sample, for diffraction

measurements.

10
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Through the years several levitation techniques have been introduced and used to study

liquids; these methods are briefly mentioned here but-in depth comparisons can be found

elsewhere [26–28]. Acoustic levitation [29] uses focused sound waves to levitate samples in a

three-dimensional potential well. This method typically is only used on lower density sam-

ples, since the pressure needed to levitate dense samples is likely to deform and fragment

the liquid droplet. Aerodynamic levitation [30] uses a jet of gas to counteract gravity and

levitate the sample, which can then be heated using high-powered lasers. This method has

two major drawbacks: the sample typically does not float very far above the gas nozzle

limiting the scattering window and the flow of gas can cause large temperature gradients. A

combination of these two techniques however (aero-acoustic levitation [31]) shows consider-

able improvement on the limitations of each method. Electromagnetic Levitation (EML) [32]

uses radio-frequency electromagnetic fields for levitation. Since levitation is coupled to heat-

ing, the eddy (Foucault) currents that heat the sample also levitate it via Lenz’s law, the

temperatures that can be examined are limited. Furthermore, since the coils must surround

the sample the available scattering window for diffraction measurements is reduced.

The technique used in this dissertation is Electrostatic Levitation (ESL) [33] (discussed

in more detail in Chapter 2), which uses a pair of electrodes with a large negative potential

difference to induce a positive surface charge on the sample surface causing levitation via

coulomb attraction. Compared to the techniques previously mentioned ESL has a smaller

scattering background than EML and aerodynamic levitation. The temperature, which is

controlled via heating lasers, has a larger range than for EML and a smaller temperature

gradient than for aerodynamic levitation. While EML can only be used on metallic systems,

ESL can be used on any material that can sustain a surface charge. From this list it would

seem that either ESL or aero-acoustic levitation are the best options, but both suffer from

an increased complexity that can make levitation difficult. For instance, upon heating in

ESL surface charge can be carried off by the evaporation of contaminants, which destabilizes

levitation. This can be countered, however, by recharging the sample via the photoelectric

11
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effect using a Vacuum ultraviolet (VUV) source. This method has been used successfully for

many X-ray and neutron diffraction studies [5, 34–36] and thermophysical measurements [37–

40] (to list a few).

1.5 Summary

This chapter covered the background needed for the following chapters and framed this

work in the context of a larger recent push to understand the relation between structure and

dynamics in metallic liquids. Descriptions of experimental and simulation techniques and the

analysis of the obtained data obtained in this dissertation are discussed in Chapter 2. Molec-

ular dynamics calculations are presented in Chapter 3 to examine the reliability of Reverse

Monte Carlo simulations, which are frequently used to determine the atomic structure from

diffraction measurements. Chapter 4 uses both molecular dynamics and X-ray diffraction

measurements to show that the thermal expansion coefficient in metallic liquids is deter-

mined from the expansion of nearest neighbor atoms, in contrast with recent claims. X-ray

diffraction measurements are presented in Chapter 5, which demonstrate that the dynamic

crossover temperature, TA, is related to an acceleration of the growth of a length scale that is

on the order of next-nearest-neighbors. Chapter 6 presents equilibrium and supercooled INS

and viscosity measurements for Zr80Pt20 and shows that at high temperatures the Maxwell

relaxation time equals the local configuration time, providing experimental confirmation of

recent MD predictions experimentally concerning the origin of the high temperature viscos-

ity.
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Chapter 2: Experimental, Simulation, and Anal-

ysis Methods

The large scale of the experiments presented in this thesis made it necessary for many

group members and collaborators to be involved in the data acquisition, analysis, and prepa-

ration of samples. This included: A. K. Gangopadhyay, A. J. Vogt, C. E. Pueblo, M. L.

Johnson, M. Sellers, R. Dai, D. Quirinale (Iowa State University/Oak Ridge National Lab-

oratory), D. Van Hoesen, and Z. Wang (University of Tennessee Knoxville). The follow-

ing sections describe the methods for sample preparation (Sec. 2.1), the setup of both the

BESL and NESL (Sec. 2.2), thermophysical properties characterization (Sec.2.3), neutron

and X-ray diffraction theory, analysis, and experiments (Sec. 2.4), and simulation details

and analysis (Sec. 2.5).

2.1 Sample Preparation

Master ingots (1-2.5 g) were prepared from high purity elemental source material (typ-

ically obtained from Alfa Aesar, now Fischer Scientific). The source material, to prevent

surface oxidation, was stored in a glove box filled with 99.998% argon atmosphere and were

only retrieved prior to weighing and arc-melting. The necessary mass of source material for

element i, mi, is given by

mi = xiMi∑N
j xjMj

mI (2.1)

where xi andMi are the atomic percent and molar mass, respectively, of the i-th element, N

is the number of elements and mI is the total mass of the master ingot. The source material

was weighed using a Mettler Toledo AB54/FACT mass balance, which has a precision of

±0.1 mg or nominally, for a 1 g ingot, 0.009-0.05 atomic percent (see Fig 2.1b).
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Figure 2.1: a.) Photograph of the arc-melter: (1.) is the Ti50Zr50 getter, (2.) is the
tungsten tip attached to the vacuum feedthrough, (3.) a Zr70Ni20Al10 ingot material prior
to arc-melting, and (4.) a trough for holding the sample material. b.) A plot of the nominal
error in the atomic percent as a function of ingot mass due to the error of the mass balance
for Zr80Pt20.
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The measured material was placed on a water-cooled copper hearth with the highest

melting temperature element or the largest piece of material (if the highest melting temper-

ature element is considerably smaller) placed on top (nearest to the tungsten tip from which

the arc is struck) as shown in Fig. 2.1a. The arc-melting chamber was then evacuated to

5.0× 10−6-5.0× 10−5 Torr(typically 15-30 min) and back-filled with high purity (99.999%)

Ar. This pump and refill cycle was repeated three times to further reduce the oxygen

content prior to arc-melting. After the final cycle the chamber was back-filled with Ar to

approximately 600 Torr.

The arc, powered by a Miller Synchrowave 250DX arc-welding power source connected to

the tungsten tip through a vacuum feedthrough, was initially struck over the copper hearth

before melting a Ti50Zr50 ((1.) in Fig. 2.1a) getter, which was held molten for approximately

60 sec to further reduce the oxygen concentration. The material for each ingot was then

melted by holding the arc over it and circling (to increase mixing) for 30-60 sec. After all

ingots had been melted, the arc was extinguished and the tungsten tip was used to flip the

ingots. After flipping the sample the arc was struck again, the Ti50Zr50 getter was melted,

and each ingot re-melted. This flipping and re-melting procedure, which also increases mixing

of the material, was repeated 2-3 times. The mass of the final ingot was then measured to

assess the mass loss of the ingot and its possible compositional shift. If the shift in the atomic

composition, determined by assuming the mass loss was due to a single element, was more

than 0.05 atomic percent the ingot was rejected. More information about the arc-melter

setup and procedure can be found in earlier publications [1, 2].

The ingots were subsequently crushed and portions were used to create samples for the

Washington University Beamline Electrostatic Levitator (WU-BESL) measurements of vis-

cosity, density and X-ray diffraction, as well as for Neutron Electrostatic Levitator (NESL)

neutron diffraction experiments. The BESL samples are typically 30-90 mg while the NESL

samples are 300-400 mg. The samples made from this method were re-melted by arc-melting

following the previously outlined procedure, except the samples are melted a single time for
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fractions of a second to produce more spherical samples. If the required samples are large

enough, as with neutron scattering experiments, the sample can be made directly without

the need for making and crushing the master ingot. This alternative method gives a better

control on the sample composition since mixing of the ingot is no longer a concern (if it is

indeed an issue). However, only larger samples should be made this way since, as seen in

Fig. 2.1b, the nominal error in the atomic percent is increased as "ingot" mass decreases.

Where "ingot" mass is a stand-in for the total sample mass. Even smaller pieces of the

crushed ingot, 10-30 mg, were used for Differential Thermal Analysis (DTA) experiments.

2.2 Setup of Electrostatic Levitators

Since the liquid’s structure and thermophysical properties are the main interest of this

dissertation the Electrostatic Levitation (ESL) technique [3] is used to examine the high tem-

perature and supercooled liquid by non-contact measurements. The Washington University

Beamline Electrostatic Levitator (WU-BESL) was used to obtain viscosity, density, thermal

expansion coefficient, and X-ray diffraction data while the Neutron Electrostatic Levitator

(NESL) was used for inelastic, quasielastic, and elastic neutron diffraction. This section

describes the setup of each of these facilities for the experiments mentioned in Sec. 2.4.

2.2.1 WU-BESL Setup

The Washington University Beamline Electrostatic Levitator (WU-BESL) facility uses

six electrodes (two pairs of lateral and one pair of vertical electrodes) to levitate and position

the samples in a high-vacuum (10−7 Torr) chamber. This pressure is obtained using a Pfeiffer

Vacuum turbo pump for the Vacuum ultraviolet (VUV) lamp and an Osaka Vacuum turbo

pump for the main chamber, each backed with a scroll pump. The lateral electrodes, which

are made of stainless steel, are used to maintain a stable levitation position and are attached

via a vacuum feedthrough to amplifiers that are able vary the potential difference between
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Figure 2.2: (Left) Current (September 2018) setup of the Washington University Beam-
line Electrostatic Levitator (WU-BESL). Photograph courtesy of Mark Sellers. (Right)
Schematic diagram of the WU-BESL setup for the layout of instruments and optics used
for noncontact measurements and levitation as of September 2018. Updated from the dia-
gram in [4].

the pairs by ±3 kV. The vertical electrode pair, which are made from copper, consists of

a grounded bottom electrode and a negatively charged curved top electrode powered by a

high-voltage amplifier that is able to vary the potential difference between 0-−20 kV. The

curvature of the top electrode was designed to give increased stability in the lateral direction

without sacrificing significant vertical stability. These competing effects and the design of

the electrodes are discussed in [4, 5].

The position of the levitated sample is tracked by examining the shadow of the sample

cast onto two orthogonal position sensitive detectors (PSDs). The PSDs and sample are

illuminated with two high-intensity LEDs (455 nm in the x-direction and 530 nm in the y and

z-direction see Fig. 2.2). The signal from the PSDs, which contains positional information,

is passed to a target computer that determines the movement of the sample and adjusts the

voltages on the electrodes, via the amplifiers, to adjust the sample position and stabilize it

using a feedback algorithm [6]. The position of the sample can be adjusted to a minimum

of 10 µm with the current setup.

22



Experimental, Simulation, and Analysis Methods

Samples are heated with a fiber-coupled diode laser (980nm, 50W continuous maximum

power output); there are plans to upgrade to a 100W laser in the future. As the samples

are heated surface contaminants and impurities trapped in grain boundaries are evaporated,

which decrease the surface charge. Instability and even loss of the sample can occur due

to large discharges. The high-intensity VUV lamp is used to maintain the charge on the

sample and is necessary for the initial heating and melting. At high enough temperatures

thermionic emission is typically sufficient to recharge the samples, which allows the VUV

source to be shuttered off. This also helps extend the life of the VUV source as it prevents

the deposition of evaporated metals, which could contaminate the source.

Temperatures were recorded via two pyrometers: a Process Sensors Metis MI18 MB8

single color pyrometer with a range of 160-800 ◦C operating at a 1.89 µm wavelength, and a

Process Sensors Metis MQ22 two color ratio pyrometer with a range of 600-2300 ◦C, operating

at 1.4 µm and 1.64 µm wavelengths. For the ratio pyrometer, which was of primary interest

for these studies, an initial value for the emissivity was set to approximate the sample tem-

perature. The value of the ratio of the emissivity for each wavelength was then calibrated in

post-processing by matching a known thermal signature. Typically the solidus temperature,

Ts, was chosen because samples exhibited long isothermal plateaus. More information about

this setup and the correction can be found elsewhere [7, 8].

The WU-BESL was designed to be transportable for X-ray diffraction experiments. In

these instances, the levitator and its components are packed into wooden crates and trans-

ported to the Advanced Photon Source (APS) located at Argonne National Laboratory

(ANL) to be installed, for the experiments considered in this thesis, on beamline 6-ID-D,

which provides a large flux of high-energy X-rays. Upon arrival the front plate and the

window where the high-speed camera is usually mounted (see Fig. 2.2) are replaced with

thin Beryllium windows, which has a smaller scattering cross section than the typical view-

ports, giving a smaller background in the X-ray diffraction data. On the X-ray beam entry

port, inside the chamber, a small tungsten collimator is placed to further reduce background
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scattering.

A beam stop, supplied by the beamline scientist, is placed directly in front of the beryllium

window, which most recently consisted of a plastic with a steel screw in the location of the

beam. Ideally the detector, typically an amorphous Si flat-panel GE Revolution 41-RT

detector, would be placed level with the chamber but this is not always the case. To correct

for the tilt of the detector and obtain the detector distance polycrystalline Si standards are

routinely scanned and the well-known Si diffraction rings are fit.

2.2.2 NESL Setup

The Neutron Electrostatic Levitator (NESL) facility [9] is a high vacuum environment

optimized for simultaneous temperature and time-of-flight neutron diffraction measurements

on levitated samples, which are typically metallic liquids. The NESL was designed to

be integrated on to the Nanoscale-Ordered Materials Diffractometer (NOMAD), the Wide

Angular-Range Chopper Spectrometer (ARCS), and the Cold Neutron Chopper Spectrome-

ter (CNCS) beamlines at the Spallation Neutron Source (SNS) located at Oak Ridge National

Laboratory (ORNL), for elastic, inelastic, and quasielastic neutron diffraction measurements,

respectively. Due to the geometry of each beamline and the desire to optimize the unob-

structed scattering window available the optical signals required for processing and levitation

were mounted vertically on a keystone, which sits above the detector well (Fig. 2.3). Due

to this mounting all signals are bounced off of silvered mirrors to reach the sample position

(Fig. 2.4).

Sample levitation and processing in the NESL is very similar to that in the WU-BESL.

The NESL uses six electrodes (three pairs of electrodes) to levitate and position samples in

a high vacuum environment 10−7 Torr, measured by a Pfeiffer PKR261 cold cathode vacuum

gauge mounted on the keystone. This pressure was attainable using a Pfeiffer HiPace 700

turbomolecular pump on the main chamber and a Pfeiffer HiPace 80 turbomolecular pump

on the VUV system each backed by a rough pump. All electrodes in the NESL are made of
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Figure 2.3: Rendering of the Neutron Electrostatic Levitator (NESL) showing how the
NESL is mounted at the SNS. Since the components are mounted on the keystone to reach
the sample signals must be bounced off of mirrors. Image from [2]
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Figure 2.4: (Left) Schematic diagram showing the electrode assembly, sample catcher,
and mirror platforms. The scattering path and neutron beam are shown for comparison.
[Reprinted with permission from [2]].(Right) Top-view of the NESL components vertically
mounted to the keystone with the incident neutron beam and scattering windows. For clarity
lasers are colored while in reality they are all red or outside the visible spectrum.

aluminum (gadolinium is also available) rather than stainless steel to reduce any scattering

signal from the electrodes. The lateral electrodes are attached via a vacuum feedthrough to

amplifiers able to vary the potential difference, between the pairs, by ±5 kV. The vertical

electrode pair consists of a grounded bottom electrode and a negatively charged curved top

electrode powered via a high-voltage amplifier that is able generate a potential difference as

high as −30 kV.

The position of the levitated sample was tracked using a pair of Helium-Neon (HeNe)

positioning lasers, which are arbitrarily denoted as red and blue (see Fig. 2.4), rather than

high-intensity LEDs. This is because the LEDs will diverge along the long path from the

keystone to the sample. The laser beams are passed through fiber-coupled beam expanders

to reduce the power and allow the beam to completely eclipse the sample. The position of

the sample can then be tracked and adjusted using a similar feedback control algorithm as

for the BESL (mentioned previously).

Samples are heated via two fiber-coupled diode lasers (980 nm, 110 W continuous maxi-

mum power output) denoted (again arbitrarily) as yellow and white (Fig. 2.4). The lasers
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aimed at opposite sides of the sample to more evenly heat it, reducing the uncertainty in the

temperature measurements. A single Process Sensors Metis MQ22 two-color ratio pyrome-

ter (500-2000 ◦C) was used to measure the temperature. Although the same correction for

temperature measurements mentioned for the WU-BESL is used to correct these tempera-

ture measurements, it was noticed that over the longer acquisition times necessary for the

neutron diffraction that the temperature would drift. This drift was caused by a shifting of

the sample position relative to the pyrometer and could be corrected for by measuring the

melt plateau both before and after the isothermal hold.

2.3 Thermophysical Property Characterization

2.3.1 Density and Thermal Expansivity

The density of the liquid samples was measured using the shadow method [10]. The

shadow of the sample was cast using the high-intensity amber LED and was recorded us-

ing a Pixelink PLB74IG CMOS camera, as shown in Fig.2.2. An edge detection algorithm

was used to determine the radius of the sample and, assuming the samples were spherically

symmetric, the volume was calculated. Grade 3 tungsten carbide spheres (3/32 ± 2 × 10−5

inches diameter) were used to calibrate the pixel to volume conversion. The density was then

obtained by dividing the calculated volume by the measured mass. By collecting video data

during free cooling cycles, where the heating laser is off, density data can be obtained contin-

uously from the high temperature liquid until the sample recalescences (the rise in the sample

temperature during crystallization) in the supercooled liquid. The thermal expansivity (or

similarly the linear expansivity, β = α/3) was obtained from

α = 1
V

dV
dT (2.2)
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where V is the sample volume. The details of this procedure and analysis can be found

elsewhere [4, 8, 11].

2.3.2 Viscosity

The viscosity was measured using the oscillating drop technique [12, 13], where a sinu-

soidal perturbing voltage was applied to the top and bottom electrodes. This signal forced

oscillations in the sample which, were recorded with a Pixelink PL-B74IG CMOS camera

(1500fps). The decay time for the oscillations, once the perturbing signal is removed, is

related to the viscosity. More detail can be found elsewhere [4, 8, 11].

2.4 Diffraction Experiments

This section gives details on the diffraction experiments that are presented in this disser-

tation for both INS and X-ray diffraction. The methods for analysis are also detailed in the

corresponding sections.

2.4.1 Inelastic Neutron Scattering Experiments

Analysis and Corrections

The main goal of the INS experiments is to obtain the Van Hove correlation function,

G(r, t), which describes the decay of the real space correlations of atoms with time. To do

this, the scattering intensity I(q, E) must be related to the dynamic structure factor S(q, E),

which is the Fourier transform of G(r, t). The relation between the partial differential cross

section, d2σ
Ωω , which is the ideal scattering intensity, and S(q, E) can be derived using Fermi’s

golden rule and the Fermi pseudo-potential [14–17] giving:

d2σ

dΩdω = Nb2k2

k1
S(q, ω) (2.3)
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where k2 is the magnitude of the scattered wave vector, k1 is the magnitude of the incident

wave vector, N is the number of scattering particles, and b is the neutron scattering length.

From this relation we can immediately see that a measurement of the scattering intensity,

in principal, is a measurement of the Van Hove correlation function.

It still remains to reduce our scattering intensity to the partial differential cross section.

A standard reduction is provided by the beamline scientist for ARCS, which effectively

converts the measured intensity data to the partial differential cross section. This analysis

is done using the MANTID[18] software where an xml file is created to give commands

for the reduction process. An example of an xml reduction file is shown in Appendix A.

MANTID needs two source beam parameters, the incident energy Ei and the time it takes

the peak in the neutron pulse to leave the moderator t0, which are usually obtained during

the experiment. However, since the NESL has an internal beam stop these values must be

obtained from the beamline scientist. After the standard MANTID reduction the data is

normalized by the proton charge, corrected for detector efficiency, multiplied by ki/kf , and

converted to the differential cross section.

To convert the obtained partial differential cross section to S(q, E) a normalization factor

is needed. One method for doing this is to scan a vanadium sample at the same incident

energy, reduce the scattering data to the partial differential cross section, and integrate

along the energy to obtain a scale factor. This method can be followed to normalize the data

within approximately 30%. Our method is instead to normalize the static structure factor

S(q) obtained from

S(q) ≡ F (q, 0) =
∫
S(q, E)dE , (2.4)

where F (q, t) is the time Fourier transform of S(q, E), so that limq→∞ S(q)→ 1.

Due to the momentum/energy relation for neutrons the range of energy transfer is limited

for each momentum transfer value. To obtain enough data to perform the Fourier transforms

for G(r, t) then becomes a contest of whether the resolution needs to be high or the region of

integration needs to be larger. Figure 2.5 shows the kinematically allowed region for various
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Figure 2.5: The restriction of the q, E-space where points enclosed by the curves are
attainable for some choice of scattering angle. This is a result of k2

i ∝ E where ki is the
magnitude of the incident wave vector and E is the energy.

incident energies that are typical ranges for inelastic and quasielastic scattering studies.

Experiments

The Wide Angular-Range Chopper Spectrometer (ARCS) beamline [19, 20], which is a

time-of-flight Fermi chopper spectrometer located at the Spallation Neutron Source (SNS)

at Oak Ridge National Laboratory (ORNL), is designed to provide high neutron flux for

inelastic neutron scattering (INS) experiments. The incident energy (Ei = 20-1500 meV)

of the neutron beam is selected by delaying two upstream Fermi choppers, high speed ro-

tating neutron-absorbing slats, with respect to the neutron pulse. A massive array of 3He

linear position sensitive detectors line the sample chamber providing −28-135◦ of coverage

and recording both the energy of the incoming neutron and the time-of-flight. The energy

resolution of the INS measurements at the elastic line is 3− 5% of the incident energy. A T0

chopper is designed to block the prompt radiation pulse of neutrons from the target, but by

dephasing this chopper with respect to the pulse the spectrometer can be operated in "white

beam" mode where the full spectrum of neutrons are available. This mode is used to collect
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vanadium scattering data, which is used to correct for detector efficiency.

To obtain the INS data the NESL samples (300-400 mg) are levitated and melted. Several

free cooling cycles are done to clean up the sample and give a thermal signature for correcting

the pyrometer reading, as mentioned previously. The sample is then heated to the desired

temperature and scanned. At 20 meV this takes approximately 2 h, though the amount of

time necessary will vary with the incident energy. Scans of the empty chamber scan and of

solid vanadium are performed at the same incident energy to remove the chamber profile

and perform a normalization to real units, respectively.

The experiments performed for this dissertation at ARCS are summarized in Table 2.1.

The first experiment ARCS2015 was the commissioning run for the NESL at the ARCS

beamline. The data presented in this dissertation, however, is only from the final scattering

experiment ARCS2017. Through the course of these experiments it was determined that a

higher energy resolution (≥0.5 meV) was necessary to resolve the first peak in S(q, E) for

the analysis in Chapter 6. The remaining data could be used to increase the q, E-range,

which would increase the reliability of the Fourier transforms to obtain G(r, t). However,

care would need to be taken to better understand the resolution function of the spectrometer.

This analysis was performed in the ipython notebook INS_Analysis.ipynb, which is discussed

in Appendix A.

Experiment Dates Samples Incident
Energy meV

Temperature
Range K

ARCS2015 2015/10/09 -
2015/10/16 Cu50Zr50

50, 80, 120,
150 −100 ≤ ∆T ≤ 150

ARCS2016 2016/03/08 -
2016/03/15

Zr80Pt20 50, 120, 200 −150 ≤ ∆T ≤ 300
Vit106 50 50 ≤ ∆T ≤ 150

Zr64Ni36 50, 120 −50 ≤ ∆T ≤ 200

ARCS2017 2017/05/02 -
2017/05/09

Zr80Pt20 20, 50 −150 ≤ ∆T ≤ 350
Cu50Zr50 20, 50 −150 ≤ ∆T ≤ 150

Table 2.1: Summary of inelastic neutron scattering (INS) experiments at the Wide
Angular-Range Chopper Spectrometer (ARCS) beamline. ∆T = T − Tm where Tm is the
melting temperature.
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2.4.2 Wide Angle X-ray Diffraction Measurements

Analysis and Corrections

To obtain the static structure factor, S(q), and the pair-distribution function, g(r), from

the measured diffraction data many standard corrections were required. The analysis of all

WAXS data was done using an in-house LabVIEW software written by James Bendert [4,

21] and later modified by Mark Johnson [2]. As mentioned previously, the tilt and position of

the detector was determined and corrected for by fitting to the diffraction rings of a levitated

polycrystalline silicon standard. The liquid diffraction data exhibit the same isotropic rings,

but are more diffuse than the polycrystalline samples(Fig.2.6).

Due to the isotropic and homogenous nature of the studied liquids the diffraction patterns

are azimuthally symmetric (Fig. 2.6). To reduce the error in the diffraction measurements

an average can be taken over the azimuthal angle, φ. The angular averaged intensity is then

converted to momentum transfer

q = 4π sin (θ)
λ

, (2.5)

where λ is the incident X-ray wavelength and θ is the scattered angle.

The measured scattering intensity, Iraw, recorded for a sample is corrected for artifacts,

dark current, and pixel efficiency using

Icorrected = Γ (Iraw − Idark − (Iempty − Iemptydark)) (2.6)

where Idark is the intensity recorded with the secondary shutter closed, Iempty is the intensity

recorded with no sample in the beam path, Iemptydark is the intensity with no sample and the

secondary shutter closed, and Γ is the detector gain map. This corrected intensity is used
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Figure 2.6: Schematic diagram of diffraction in a transmission geometry on an area
detector. The data shows an exaggerated scattering angle for clarity and is overlaid on
BESL2016 data for Zr80Pt20 at 1227 ◦C.

to obtain the coherent scattering cross section via

dσc
dΩ = N

∮
dφ Γ (dA/dΩ) Icorrected

(V ′/V )OP (1 + I2/I1) − n
inc − F (2.7)

where F is the fluorescence, dA/dΩ accounts for the difference in intensity between detector

coordinates and solid angle coordinates, ninc accounts for Compton scattering, V ′/V cor-

rects for self-absorption, I2/I1 accounts for multiple-scattering, O is oblique incidence, P is

the polarization, and N converts from pixel units to electron units. These corrections are

discussed in detail elsewhere [2, 4, 22].

For the purpose of this analysis all of these corrections are performed using the in-house

analysis software previously mentioned. The structure factor, S(q), is then obtained from

the coherent scattering cross section via

S(q) =
dσ
dΩ + 〈f(q)〉2 − 〈f(q)2〉

〈f(q)〉2 (2.8)
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where f(q) is the atomic form factor and 〈. . .〉 denotes an average over the atomic species.

The atomic form factors, which are strongly q-dependent, can be calculated from the fitting

parameters listed in [23]. After obtaining the static total structure factor the pair distribution

function can be obtained by a Fourier transform:

g(r) = 1 + 1
2π2rρ0

∫ ∞
0

q(S(q)− 1) sin(qr)dq (2.9)

Another correction is performed in the calculation of g(r), which removes excess curvature

in S(q) and places the data on an absolute scale. This correction is performed using an

in-house LabView program written by Mark Johnson and is discussed elsewhere [2].

The following subsections give specific details about the experiments that have been

analyzed for and used in this dissertation. Table 2.2 gives a quick summary of important

parameters for each BESL experiment that follows. More information on most of these

experiments can be found elsewhere [2].

Experiment Energy [keV] Beam Size
[mm]

Number of
Pixels

Pixel Size
[µm]

Nominal
Working
Distance

[mm]
BESL2007 129.3 0.7× 0.7 1024× 1024 400× 400 793
BESL2010 129.69 0.7× 0.7 1024× 1024 400× 400 912
BESL2013 129.34 0.7× 0.7 2048× 2048 200× 200 565
BESL2016 131.737 0.7× 0.7 2048× 2048 200× 200 565

Table 2.2: Summary of X-ray diffraction experiment parameters for experiments performed
at the Advanced Photon Source (APS) located at Argonne National Laboratory (ANL).

BESL2007

Though denoted as a BESL run, this experiment was actually performed using the

NASA/Marshall Space Flight Center ESL. Here samples were processed in a similar manner

as described previously with a diode laser in a vacuum chamber (10−7 Torr). The temperature

was measured with two optical pyrometers with a 0.676 µm (Si) or 1.2-1.4 µm (In−Ga−As)

wavelength range. The scattering data was collected using a MAR3450 image plate. For
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more information on this experiment see [24].

BESL2010

During August 2010 the WU-BESL was used on station 6-ID-D at the APS for scat-

tering studies on metallic liquids. High energy X-rays (E =129.69 keV, λ =0.095 604Å)

were scattered from the levitated samples in the transmission geometry with a beam size of

0.7 mm× 0.7 mm. Much of the temperature data from this experiment (∼ 43%), however,

is contaminated by cross talk from the heating laser and pyrometer, causing a depressed

temperature reading while the laser was on and a spike in temperature when the laser was

turned off as shown in Fig 2.7. Correcting the temperature data is therefore extremely dif-

ficult. If the sample recalesces to the melting temperature (i.e. it does not crystallize to

a metastable phase or hypercool) the temperature may be matched to that value and the

data could be salvaged. However, it is difficult to know when this is the case a priori. It

is estimated that this issue affected ∼ 43% of the temperature data with the spikes ranging

from 5-50 K.

BESL2013

For three weeks in June 2013 the WU-BESL was installed at station 6-ID-D at the APS for

scattering studies on metallic liquids and amorphous ribbons. For the liquid samples, the high

energy X-ray (E =129.34 keV, λ =0.095 86Å) beam (size 0.7 mm× 0.7 mm) was scattered

from the levitated samples in the transmission geometry. An amorphous Si flat-panel GE

Revolution 41-RT detector was used to measure the scattered X-rays with a nominal sampling

time of 1-8 Hz. The detector size was set to 2048 pixels × 2048 pixels, where each pixel

was 200 µm× 200 µm. The sample-to-detector distance, nominally 565 mm, was regularly

calibrated using levitated polycrystalline Si standards and found to be ∼551 mm.

Dark measurements were obtained, by closing the secondary shutter, for 5 sec immedi-

ately preceding and proceeding the data acquisition from the sample. Between samples an
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Figure 2.7: An example temperature profile spike that occurs after the heating laser is
turned off. This indicates that the laser is feeding into the pyrometer and corrupting the
temperature reading.

empty chamber was taken for 20 sec. Each liquid sample was scanned for 10-20 sec for each

isothermal hold.

BESL2016

Between 06/13/2016 and 07/05/2016 the WU-BESL was installed at station 6-ID-D

at the APS for scattering studies on metallic liquids and bulk cast metallic glasses. The

available beamtime for this experiment was divided between three groups from Washington

University in Saint Louis, Iowa State University and Seoul National University. The following

details represent the conditions during the WASHU portion of the beamtime. High energy

X-rays (E =131.737 keV, λ =0.094 114 9Å) were scattered from the levitated samples in the

transmission geometry with a beam size of 0.7 mm× 0.7 mm. An amorphous Si flat-panel

GE Revolution 41-RT detector was used to measure the scattered X-rays with a nominal

sampling time of 1-2 Hz. The detector size was set to 2048 pixels × 2048 pixels, where

each pixel was 200 µm× 200 µm. The sample-to-detector distance, nominally 565 mm, was
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regularly calibrated using levitated polycrystalline Si standards and found to be ∼551 mm.

Three sets of data were obtained for each liquid sample: step hold, free cool, and slow

cool. For step hold data, the samples were held at a target temperature and scanned for

∼20 s at 1 Hz. The secondary shutter was kept closed for the first 10 s of the scan to provide

dark measurements for the sample. For free cool acquisitions the sample was scanned at 2 Hz

while cooling with the laser off. Acquisition was continued past recalescence of the sample

to obtain crystalline data as well. For slow cool acquisitions the sample was scanned at 1 Hz

while cooling was controlled by lowering the laser power incrementally.

Care must be taken when correcting the data from this experiment due to some noticeable

artifacts. First the beam stop was slightly misaligned with the incoming beam. While still

eliminating most of the signal from the transmitted beam there is an asymmetric increase

in intensity. Currently the bad pixel map applied to the image is able to eliminate effects

arising from this artifact, which is also at very low q. The other main artifact comes from the

misalignment with the tungsten collimator, which produces very faint asymmetric diffraction

rings. These rings, though typically occurring near the peak in the structure factor, are able

to be mostly subtracted out by the empty chamber correction.

2.5 Simulations and Analysis

Diffraction experiments provide useful, but angular averaged, information about the

atomic positions making interpretations about the local topology and atomic dynamics dif-

ficult to obtain. Two forms of simulations were performed to obtain a better understanding

of the underlying system: classical Molecular Dynamics (MD) and Reverse Monte Carlo

(RMC) simulations. Both of these methods will be discussed further in this section.
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2.5.1 Classical Molecular Dynamics Simulations

Classical MD simulations generate particle positions and velocities by solving Hamilton’s

equations of motion. The system Hamiltonian is determined from a semi-empirical inter-

atomic potential, which is typically constructed to reproduce some experimental properties

(see [25] for example). It is assumed then that with a reliable semi-empirical potential the

microscopic details from the simulated system will reflect the microscopic interactions of the

actual system. All MD simulations in this dissertation used Embedded Atom Method (EAM)

[26–28] potentials, which approximate many-body effects with an effective charge density.

Due to the complexity of the potentials it is not possible to solve Hamilton’s equations an-

alytically, so a numerical integrator is needed to determine atomic positions and velocities.

The velocity Verlet integrator algorithm [15], which solves Hamilton’s equations using a fi-

nite difference approach, is used for all simulations in this dissertation. Furthermore, each

simulation used isothermal-isobaric ensembles (NPT, P = 0) with periodic boundary con-

ditions where the temperature is set to desired values and controlled via the Nosé-Hoover

thermostat [29, 30].

All classical Molecular Dynamics (MD) simulations for this dissertation were performed

using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [31] soft-

ware on a high-performance computing cluster located in the physics department at Wash-

ington University in St. Louis. Appendix ?? gives a list of the samples simulated for this

dissertation. Appendix B gives a short guide with example code for running simulations.

The following subsections detail the quantities calculated from the MD simulations.

Calculating Viscosity and Maxwell Time

The viscosity of a simulated liquid can be calculated in several ways (see the LAMMPS

manual for examples). Either a non-equilibrium approach is followed, where typically the

fluid is intentionally sheared and the velocity is tracked, or an equilibrium approach is used,
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which is explained here (this section follows the method outlined by R. Soklaski [32]). In

the latter method η is related to the atomic stress tensor through the Green-Kubo [15]

formula. This formula is shown below using the extension of this method derived by Daivis

and Evans [33], which allows the use of the off-diagonal elements of the stress tensor leading

to increased statistics:

η = V

10kBT

∫ ∑
i,j

〈Pij(t)Pij(0)〉 dt . (2.10)

Here V is the volume, T is the temperature, 〈. . .〉 denotes the autocorrelation function

(ACF), and Pij is a combination of atomic level stresses given by

Pij = σij + σji
2 − δij

3
∑
k

σkk , (2.11)

where σij is the ij-th element of the atomic stress tensor and ij spans all values of the tensor

rather than just the off-diagonal elements. The stress tensor is calculated by summing the

atomic quantities:

σij = 1
V

∑
α

mαvαi vαj +
∑
β>α

Fαβ
i

(
rα − rβ

)
j

 , (2.12)

where mα is the mass, vα is the velocity, rα is the position of atom α. Fαβ
i is the force

atom α exerts on atom β in the i−th Cartesian coordinate direction. The ACF for Pij was

computed using fast Fourier transforms according to the Weiner-Khinchin theorem:

〈Pij(t)Pij(0)〉 = IFFT [FFT [Pij]FFT [Pij]∗] , (2.13)

where IFFT and FFT are the inverse and forward fast Fourier transforms and ∗ indicates

complex conjugation. The Maxwell time, τM , was then computed from the viscosity using

τM = η/G∞ where G∞ is the infinite frequency shear modulus given by

G∞ = V

kbT

〈
P 2
ij(0)

〉
. (2.14)
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Figure 2.8: The normalized stress ACF (left) as a function of time for Zr80Pt20 at 1500 K.
The KWW fit function (dashed line) is shown and fit to the region where 〈σij(t)σij(0)〉

〈(σij(0))2〉 <

0.2. The viscosity (right) obtained from the stress ACF and from replacing the data where
〈σij(t)σij(0)〉
〈(σij(0))2〉 < 0.05 with the KWW fit values (dashed line) as a function of time.

The time integral in Eq.2.10 is strongly affected by noise [34] in the long time limit, which

typically means one must pick a finite time plateau value for the viscosity, making it fairly

arbitrary. To better approximate the value of η the long time tail of the normalized stress

ACF (where 〈σij(t)σij(0)〉
〈(σij(0))2〉 < 0.2) is fit with the Kohlrausch-Williams-Watts (KWW) stretched

exponential function as previously suggested [35]. This fit value is then used instead of the

stress ACF for a smaller region ( 〈σij(t)σij(0)〉
〈(σij(0))2〉 < 0.05) to reduce this noise. This analysis for

both the normalized stress ACF and viscosity is shown in Fig. 2.8.

The viscosity data in Chapter 6 and Chapter 4 (not shown) is calculated using this

method. The analysis was done in the Jupyter notebooks Viscosity_Computation.ipynb

and Viscosity_Plotting_PostProcessing.ipynb that were written and maintained by Robert

Ashcraft.
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Calculating Static and Dynamic Pair Correlation Functions

The distinct, Gd(r, t), and self, Gs(r, t), Van Hove correlation functions are calculated

from

Gs(r, t) = 1
N

〈
N∑
i=1

δ(r− ri(t) + ri(0))
〉

(2.15)

Gd(r, t) = 1
N

〈
N∑
i=1

N∑
i 6=j

δ(r− ri(t) + rj(0)
〉

(2.16)

where ri(t) is the position of atom i at time t. A schematic representation of the calculation

of Gd(r, t) and Gs(r, t) and the resulting curves are shown in Fig. 2.9. Only atoms that are

within a cutoff of half the box length were used. To increase statistics a moving windowed

average over 1000 to 10000 configurations and window size of 1000 to 2000 was used. Gd(r, t)

and Gs(r, t) were calculated between each distinct atomic type using a parallel python script

on the physics department high-performance computing cluster. Due to the larger computa-

tional requirement for the dynamic pair correlations the number of configurations averaged

over is smaller than for the static pair correlation function (∼ 20000 configurations). How-

ever, comparing the t = 0 dynamic value to the static function still gives good agreement.

2.5.2 Reverse Monte Carlo Simulations

The Reverse Monte Carlo [36] (RMC) method is one of several techniques used to deter-

mine the 3D atomic structure from 1D diffraction data. In this method an initial configura-

tion of atoms is generated and atom positions are adjusted until agreement with the input

constraint data is reached. The input constraint data typically consists of one or more TSFs,

PSFs, TPCFs, PPCFs, Extended X-ray Absorption Fine Structure (EXAFS) measurements

or even traditional MD simulations [37, 38]. The χ2 is calculated to measure the agreement
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Figure 2.9: A schematic diagram of the calculation of the distinct, Gd(r, t), and self,
Gs(r, t), Van Hove correlation functions at two times t0 and t1 (t1 > t0) for a liquid with
two atomic types represented by the shaded hard sphere radius region around each atom.
The atom enclosed in the small red region is the central atom for the calculations. The
blue hatched region shows a distance that would be used for the pair, distinct, distance
calculations. The arrow indicates the motion of the central atom between t0 and t1. The
lower figure shows the self (dashed) and the distinct (solid) correlation functions for the two
times t0(black) and t1 (red).
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between the constraints and the atomic configuration. This is given by

χ2
i =

∑
k

(
X
′
i(k)−X0

i (k)
)2

σ2
i (k) , (2.17)

whereX0
i (k) represents the i-th constraint at location k (in general either momentum transfer

or position), X ′i(k) is the RMC calculated value corresponding to the i-th constraint, and

σ2
i (k) is the reliability of the i-th constraint at location k. To minimize the χ2 a random

atom is moved, according to some user defined distance cutoff, in a random direction. The

χ2 is then computed for this new configuration,χ2
New , and compared to the χ2 for the old

configuration, χ2
Old. If χ2

New < χ2
Old the move is accepted. If χ2

New > χ2
Old the move is accepted

with a Boltzmann probability. Given enough time the atomic configuration will converge to

a structure consistent with all input constraints.

The number of constraints input into an RMC simulation will determine the reliability

of the output atomic configuration. For instance to fully describe a system with n elements

n(n+ 1) constraints are needed to obtain elementally resolved information. In general fewer

constraints used in an RMC simulation will give less reliable configurations. The reliability

of minimally constrained reverse Monte Carlo (mcRMC) simulations, where only the TPCF

is used, is discussed in Chapter 3.

The RMCs in Chapters 3 and 4 were performed using the RMC++ [39] software. Atoms

were randomly generated using a python script Random.py written and maintained by Robert

Ashcraft. The number density was used to determine the size of the simulation cell. Each

simulation was run in parallel for a total of approximately 30-120 computational hours.

Minimum elemental cutoff distances, which are approximated from the low-r side of g(r),

and swapping of elements (typically 10% of the generated moves) was used to decrease the

convergence time. The convergence of a simulation is assumed when both the χ2 and its

change with time are suitably small, as shown in Fig. 2.10. Since RMC simulations are not

unique, as many configurations can generate indistinguishable structure factors. Multiple
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Figure 2.10: Example plot of the χ2 divided by the number of data points, n, from RMC
for MD simulated Cu50Zr45Al5 liquid. Error bars are calculated from averaging over the
different RMC simulations.

simulations were therefore run for each composition to generate statistical ensembles. An

example input file for an RMC simulation is given in Appendix C. A list of all the systems

that have been simulated using RMC for this dissertation can be found in Appendix ??.

2.5.3 Voronoi Analysis

Voronoi tessellation analysis [40] is a method of characterizing the local topography

around an atom by enclosing each atom in a three-dimensional polyhedron. An atoms

Voronoi Polyhedron (VP) is constructed by extending line segments from this atom to all

the surrounding atoms within some cutoff distance, which is typically larger than the next-

nearest-neighbor distance. Normal bisecting planes are placed equidistant from each atom

and extended in space. The intersection of all these planes then forms the central atom’s VP.

This is the same procedure used in crystalline systems to obtain the Wigner-Seitz cell [41].

Due to the difficulty in visualizing a three-dimensional Voronoi tessellation a two-dimensional

case is shown in Fig. 2.11.

For dense systems with atoms of differing sizes the above procedure can cause the bi-

secting plane to intersect the larger atom rather than being placed between the atoms [42]
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Figure 2.11: (Left) An example Voronoi tessellation. Each blue point represents an atom
while the orange lines are the associated Voronoi polygon. (Right) The sample Voronoi
tessellation with the atomic radii shown as well.

(Fig. 2.11). To fix this common error radical Voronoi tessellation [43, 44] was developed in

which the placement of the bisecting plane is weighted by the size of each atom. This forces

the bisecting plane farther from the larger atom but the tessellation is no longer guaranteed

to fill the space.

The VP produced from this procedure can be described via the Voronoi Index (VI)

which is a list of the number of faces with a given number of edges typically of the form

〈n3n4 . . . ni . . .〉 where ni is the number of faces with i number of edges. Since Voronoi

tessellation characterizes the entire space many other interesting quantities can be computed

from the procedure, such as the polyhedron volume (V ), the surface area (SA), asphericity

(S3/(36πV 2)), coordination number, and nearest-neighbor distance.

In this dissertation, the python library pyvoro which is a python entry point to the

Voro++ library was used to perform the Voronoi tessellations on both RMC and MD atomic

configurations in Chapters 3 and 4. To perform the radical Voronoi tessellation the elemen-

tal Goldschmitt radii [45] were used. Custom python code was developed to process the

tessellated data to remove small faces as discussed in Chapter 4.
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Chapter 3: Assessing the Reliability of Mini-

mally Constrained Reverse Monte Carlo Sim-

ulations for Model Metallic Liquids

This chapter has been published on the arXiv [1] in collaboration with K. F. Kelton and is

awaiting submission to a peer-reviewed journal. It has been adapted to be consistent with the

formatting in this dissertation. The author’s contributions include performing the Molecular

Dynamics (MD) and Reverse Monte Carlo (RMC) simulations, analyzing the resulting data,

and writing the manuscript. All authors contributed in drafting the results.

3.1 Introduction

The Reverse Monte Carlo (RMC) method [2, 3] is a common technique used to obtain

3D atomic structures for liquids and glasses using data obtained from X-ray diffraction or

neutron scattering measurements. In this method, atom positions in an atomic ensemble

are adjusted using a Monte Carlo algorithm to give the best match to the total structure

factor (TSF) or total pair correlation function (TPCF) derived from the scattering data.

For an alloy containing n elements, the typical number of structural constraints necessary

is n(n+ 1)/2. In practice, however, it is generally difficult to experimentally measure these,

particularly for samples containing more than two elements. Instead the information is

frequently obtained from ab. initio [4] or molecular dynamics (MD) simulations and is

typically in the form of partial pair correlation functions (PPCFs) [5]. Attempts have also

been made for a combined procedure, simulating the system using MD then performing RMC

with experimental data, or incorporating the interatomic potential functions in the RMC
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code [6]. Often, however, RMC fits are made to only the TSF or TPCF. These fits will give

the most random structure consistent with the experimental scattering data and will lack

elementally resolved information. The validity of this approach is therefore questionable.

Previous studies have examined the reliability of the RMC method for MD-generated

structures for elemental [7, 8] and binary [9–11] systems, typically constraining the fit with

all the measured PPCFs. The results of these studies typically suggest that the RMC method

can accurately recreate the atomic structure of the system. This is based on an examination

of the RMC structure using metrics including Voronoi tessellation [12, 13](the most common),

bond angle distribution [14], and Honeycutt-Anderson analysis[15]. However, in at least one

study it is found that the RMC generated structure can be considerably more disordered

than the MD-generate one.

Here, the case most often used for the analysis of experimental data will be considered, i.e.

where the RMC is constrained with only the TPCF, termed hear as a minimally constrained

reverse Monte Carlo (mcRMC) simulation. The reliability of the atomic structures generated

by these mcRMC simulations and how that reliability depends on the temperature and the

number of elements are examined. To examine the latter, three systems (Zr, Cu50Zr50,

and Cu50Zr45Al5) are simulated at several temperatures using classical MD. The TPCF is

calculated from each simulation and used as input to mcRMC simulations. The atomic

configurations from both the mcRMC and MD simulations are then compared using Voronoi

tessellation.

3.2 Simulations and Analysis Methods

3.2.1 Molecular Dynamics Simulations

The TPCFs were obtained from MD simulations using the LAMMPS [16] software em-

ploying embedded atom method [14] (EAM) potentials for Zr [17], Cu50Zr50 [18], and

Cu50Zr45Al5 [19]. All compositions were simulated with 15,000 atoms under the NPT
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(P = 0) ensemble with periodic boundary conditions. The Nosé -Hoover thermostat [20,

21] was used to equilibrate each system at each target temperature before data collection.

The atomic configuration for each system was randomly initialized and evolved in the high

temperature liquid before cooling (3 − 8 × 109K/s) to each target temperature. To reach

equilibrium the system was evolved for 5 − 15ns.(3,000,000 MD time steps), depending on

the values of the temperature and composition. Each PPCF, gαβ(r), was then calculated by

averaging over 15,000 snapshots of the system using (see [14])

gαβ(r) = N

4πr2ρNαNβ

Nα,Nβ∑
i,j=1

δ(r − |~rij|) (3.1)

where N is the number of atoms, ρ is the number density, ~rij is the distance from atom i

to atom j, and Nα and Nβ are the number of α and β atoms, respectively. The TPCF was

calculated within the Faber-Ziman [22] formalism

g(r) =
∑
α

∑
β

cαcβbαbβ

〈b〉2
gαβ(r) (3.2)

where cα is the atomic concentration and bα is the neutron scattering length for element α

and gαβ is the PPCF between elements α and β. While the case of neutron scattering is

assumed for the analysis presented here, the approach could be directly extended to X-ray

scattering if q-dependent atomic scattering factors were used

The viscosity of each liquid was calculated using the Green-Kubo formula [23]. The

viscosity exhibits a crossover from near-Arrhenius to super-Arrhenius temperature behavior

at the temperature TA. Since it is difficult to calculate the melting temperature from MD

simulations, TA was used as the scaling temperature, because it is readily computed

3.2.2 Reverse Monte Carlo Simulations

As discussed, minimally constrained reverse Monte Carlo simulations are carried out by

taking an input configuration of atoms and input TPCF, changing the input configuration
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by randomly moving an atom in a random direction and then computing the mcRMC values

of the TPCF for this new configuration. This is then compared with the MD-generated

TPCF using the χ2 as a measure of the goodness of fit,

χ2 =
∑
i

[
gRMC(ri)− g(ri)

]2
σ2 (3.3)

σ is the reliability of the data set. The random move is accepted if the χ2 is reduced and

is accepted with a Boltzmann probability if the χ2 is increased. This procedure is repeated

until the χ2 is minimized.

The mcRMC simulations were run using the RMC++ [24] software. Each mcRMC

simulation started with a random configuration of 10,000 atoms confined to a cubic box with

periodic boundary conditions, with the box dimensions consistent with the number density

predicted from the MD results. The Hard-sphere cutoff distances were determined from the

value of r where each respective PPCF trended to 0 on the low-r side of the main peak. Ten

separate simulations were run at each temperature to generate more reliable distributions

from the Voronoi tessellation. Each simulation was run in parallel for 30-45 computational

hours depending on the resulting χ2. Convergence of the mcRMC was assumed when both

the value and the change with time of the χ2 was suitably small (χ2 < 10).

3.2.3 Voronoi Tessellation

The Voronoi tessellation divides the atomic configuration into Voronoi polyhedral (VP)

cells, each consisting of a central atom and the space closer to this atom than any other. The

VP is constructed as the collection of perpendicular bisecting planes between the central atom

and all neighboring atoms; the planes form the faces of the VP. It has been shown [25] that for

atoms of different radii the standard Voronoi tessellation technique can lead to significant

errors. The radical Voronoi tessellation [26, 27] was therefore used for the Cu50Zr50 and

Cu50Zr45Al5 simulations. This technique weights the placement of the bisecting planes by the
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radii of the central and neighbor atoms. Another potential error that is common in Voronoi

tessellation is the occurrence of exceptionally small faces and edges, which arise from more

distant atoms [28]. The effect of removing these faces and edges is not currently investigated

but may lead to broader distributions for nearest-neighbor distance and coordination number

in both the MD and mcRMC.

The Voronoi tessellation was carried out using a Python extension of the VORO++[29,

30] code. The Goldschmidt radii [31] were used for the radical Voronoi tessellation. The

VP can be described by the Voronoi index (VI), 〈n3, n4, n5, . . .〉, where ni is the number

of i-edged faces. Both the geometric coordination number (CN), number of faces, and the

nearest-neighbor distance (NND), distance between atoms that share faces, were calculated.

Finally, the volume and surface area of each VP were used to calculate the asphericity

parameter, α = S3/(36πV 2), which gives a measure of how similar the VP is to a sphere

(α = 1) or a given regular polyhedron (α = 1.32503 for a regular dodecahedron).

3.2.4 L1 Histogram Distance

The L1, or Taxicab/Manhattan, distance was used to compare the similarity of the distri-

butions obtained from the Voronoi tessellation. Other metrics such as the Bhattacharyya[32]

or Hellinger [33] distance give similar but systematically larger results. The L1 distance is

given by

L1(X,Y) = 1
2

n∑
i

|xi − yi| (3.4)

where X and Y are probability vectors (i.e. ∑xi = 1) and the factor of 1/2 is included for

normalization. By definition it is easy to see L1 = 0 for identical distributions and L1 = 1

for distributions that have no overlap. This metric, therefore, gives a unique measure on the

reliability of RMC to reproduce distributions from the MD atomic structure.
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3.3 Results and Discussions

The mcRMC fits (averaged over ten simulations) are compared in Fig 3.1 with the MD

TPCFs for representative temperatures of each composition. The fits are extremely good,

indicating that the generated structures should be a good approximations to the atomic

configurations in the MD data. However, as mentioned, chemical ordering was not be re-

produced well for both Cu50Zr50 and Cu50Zr45Al5 because only a single constraint was used.

Only examples at intermediate temperatures are shown since the χ2 for each composition

appears to be temperature dependent. This is likely due to the random nature of the RMC

algorithm; the RMC algorithm gives the most disordered configuration consistent with the

input constraints. Since the high temperature data are inherently more disordered they are

easier to fit than the lower temperature data resulting in a lower χ2, although the variation

in the χ2 with temperature is relatively small.

The L1 distances for each of the previously discussed parameters obtained from the

Voronoi tessellation procedure are shown in Fig. 3.2. These each give in a general sense

a property of the VP associated with the tessellation. By comparing their values between

RMC and MD, they can give an indication of reliability. The Voronoi volume gives the

general size of the space that is allocated to each atom. The asphericity gives information

about the general distribution of atoms about the central atom by considering its size. Both

the coordination number and Voronoi index give similar information about the distribution,

but irrespective of geometric size and with varying degrees of sensitivity. Lastly, the nearest-

neighbor distance gives information on the distance between the polyhedra.

3.3.1 Volume

The Voronoi volume is arguably one of the most easily reproducible properties considered

here since it is determined by the input number density, simulation volume, and hard sphere

radii. However, because the mcRMC simulation is constrained solely with the TPCF it is
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Figure 3.1: Representative plots of the RMC fit (circles) to MD data (line) for (a) Zr , (b)
Cu50Zr50 , and (c) Cu50Zr45Al5 at 2500, 2000 and 1500K, respectively. The difference curve
(dashed line) for each data set is also included to emphasize the level of agreement.
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Figure 3.2: L1 (Manhattan) distance between mcRMC and MD distributions of near-
est neighbor distance (NND), coordination number(CN), asphericity parameter (ASPH),
Voronoi index (VI), and volume (VOL) for (a) Zr,(b) Cu50Zr50, and (c) Cu50Zr45Al5. The
darkness of the shading indicates the temperature [K] where black is low and white is high.
The L1 distance is normalized between 0 and 1 where 0 indicates two identical distributions
and 1 indicates no overlap in the distributions.

58



Assessing the Reliability of mcRMC Simulations for Model Metallic Liquids

unable to accurately allocate the proper volume to each element. This is shown in Fig 3.3,

where the Voronoi volume distribution is shown for each composition and temperature.

While the Zr liquid is reproduced well the alloy liquids are not. The Cu50Zr50 and Cu50Zr45Al5

liquids have two and three peaks, respectively, one for each element. These peaks are distinct

in the structure obtained from the MD but are broadened and overlapping for the mcRMC

structure. This difference, which is directly related to the use of only the TPCF constraint,

is the cause of the large L1 distance observed in Fig. 3.2 and the unreliability of the Voronoi

volume in minimally constrained systems. However, if the Voronoi tessellation fills space the

average Voronoi volume should be the reciprocal of the number density indicating that the

average volume should still be a reliable parameter, as shown in Fig. 3.4. While the details of

the atomic distribution might be unreliable the average properties of the distribution could

still be useful.

3.3.2 Asphericity

Asphericity has been used to examine the shape of the VP in liquid water, where it was

noted that the volume is not correlated with α and that it approaches the value of ice upon

cooling the liquid [34]. In a similar fashion asphericity is used here to see how the shape of

the VPs change with cooling and how well the mcRMC recreates the shape of the VPs. As

shown in Fig. 3.5 for Cu50Zr50 there are two distinct peaks in the MD (a) compared to the

mcRMC (b). This is a consequence of failing to resolve the elemental differences, since the

two elements have significantly different distributions, and results in the relatively large L1

distance (Fig. 3.2). Only the data for Cu50Zr50 are shown here but similar trends are found

in the other liquids. As observed in Fig. 3.5, the majority of the distribution is in the region

1.25 < α < 1.75 for both the MD and mcRMC data. This corresponds to shapes that are

close to that of a regular dodecahedron (α = 1.325) but the regular octahedron (α = 1.654)

is also present. While the mcRMC fails to recreate the elemental resolved properties, worse

than for the volume distribution, it does give the correct bounds for the asphericity.
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Figure 3.3: Frequency of Voronoi volume from MD (top row) and mcRMC (bottom row)
for each composition. The temperatures [K] are indicated by shading (light is high and dark
is low) and indicated on the right side of each curve. Each distribution is offset for clarity.
Note that the distributions for mcRMC and MD match well for Zr but not for Cu50Zr50 and
Cu50Zr45Al5. Higher temperature distributions are broader for both mcRMC and MD.
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Figure 3.4: Ratio (MD/mcRMC) of average Voronoi polyhedra volume for Zr (square),
Cu50Zr50 (circle), and Cu50Zr45Al5 (diamond) versus temperature, normalized to the Arrhe-
nius crossover temperature TA. This ratio should be equal to one (dashed gray line).

Upon cooling the average asphericity decreases toward the value of the regular dodecahe-

dron (among others). This is the case for all liquids studied because the magnitudes of their

asphericities are similar. The ratio of the average MD to average mcRMC values (Fig.3.6)

shows that the mcRMC fails to recreate the average properties of the VP shape distribution,

both in magnitude and temperature dependence, except for Zr where only the magnitude

is marginally different. This result for Zr is likely due to the increased disorder from the

mcRMC simulation.

3.3.3 Voronoi Index and Coordination Number

The VI is perhaps the most commonly used parameter to describe the local environment

from a Voronoi tessellation. It is also the least general of the parameters discussed here, since

it describes average properties of groups of VPs rather than system-wide average properties.

Ash shown earlier in Fig 3.2, the VI has a relatively large L1 distance for all compositions.

The Zr VI L1 distance is, however, surprising due to the anomalous temperature dependence.
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Figure 3.5: Histogram frequency for asphericity for Cu50Zr50 from (a) MD and (b) mcRMC.
Each line indicates a different temperature; the curves are offset for clarity.
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Figure 3.6: Ratio (MD/mcRMC) of the asphericity parameter for Zr (square), Cu50Zr50
(circle), and Cu50Zr45Al5 (diamond) versus temperature normalized to the Arrhenius
crossover temperature TA. If the mcRMC analysis recreated the MD configurations per-
fectly the ratio should be one (dashed line).

It is also interesting to note that even for Zr the relatively large L1 distance of the VI indicates

that the population of VIs do not properly reflect that in the MD data, even with a fully

constrained system. One contributing factor to this anomalous increase is the increase of

VPs that are only present in either the mcRMC or the MD results, which in general increases

with temperature. The total percentage attributable to these factors at high temperatures

can be as large as %20 (Fig. 3.7). However, for Zr the temperature dependence of these

factors is not enough to change the temperature dependence, which points to another factor.

Whether this is a true effect or is an artifact is still under investigation.

The use of any single VI to determine agreement between the methods is difficult since

different systems will in general prefer different structures. If the VI definition is extended to

allow for fractional numbers of faces an "average" VP can be constructed for each simulation.

No physical meaning is attached to the fractional numbers of faces; rather it provides another

measure of mcRMC reproducibility of the atomic environment. Performing this analysis on

the three compositions studied here and then comparing the average VPs from mcRMC and
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Figure 3.7: The percent of the Voronoi index L1 distance for Zr as a function of temperature
that is due to polyhedra only in RMC (square) and only in MD (circle).

MD gives extraordinarily low L1 distances (Fig.3.8) that are in-line with the values for the

NND (Fig. 3.2). In this sense the average atomic environment is reproduced quite well from

mcRMC. However, a distinct dependence on the number of elements is observed, indicating

that while the average atomic environment is reproduced well the addition of more types of

atoms, even in small amounts, decreases the reliability of the mcRMC. This is not surprising

since the amount of missing information for the mcRMC increases with the addition of more

elements. To our knowledge, however, this analysis is the only one that shows such clear

evidence of this effect.

The CN is included because of its strong relation to the VI. However, it suffers from the

same issues as the volume and many other parameters. The mcRMC is unable to allocate the

proper space for different types of atoms, causing the distribution of CNs to lie somewhere

between the elemental distributions. This is also the cause of the relatively large L1 distance

as shown in Fig. 3.2.
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Figure 3.9: Nearest-neighbor distance histograms for both the MD (solid line) and mcRMC
(dashed line) simulations of Cu50Zr45Al5 at T = 900K. The histogram frequency is normalized
so that it sums to one. Only the lowest temperature distribution for Cu50Zr45Al5 is shown
because it has the largest differences for all of the compositions and temperatures examined.

3.3.4 Nearest-neighbor Distance

In addition to the volume the NND is the other most easily reproducible parameter

from RMC, since the input TPCF data is inherently related to this distance through the

radial distribution function. Even when using the TPCF as a single constraint the RMC

simulation should give a reliable distribution for the NND on average, although chemical

effects and elementally resolved distances will still be absent. This reliability is reflected in

the low L1 distance shown in Fig. 3.2. The L1 distance is the smallest of any parameter

considered regardless of the number of elements or temperature. As shown in Fig. 3.9 good

agreement is found between MD and mcRMC, even for the worst case examined. Reverse

Monte Carlo simulations tend to place atoms at marginally larger distances compared to the

MD-generated structures, which is a consequence of the lack of input elemental and chemical

information. However, the increased distance is asymmetric, since the low distance side is

constrained by the hard-sphere cutoffs.
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Since the L1 distance is small both the average atomic position (bond length) should

be well characterized by the RMC simulation. However, due to the asymmetric change in

distance the bond length will have a modified temperature dependence compared to that

from the MD simulation. A possible solution to this is to instead consider the median bond

length as a measure of central tendency, which is less affected by this increased asymmetry.

The ratios of MD to mcRMC ratio for both the median and mean NND are shown in Fig. 3.10

for all compositions. In Fig. 3.10a the average NND for Cu50Zr50 and Cu50Zr45Al5 shows a

different temperature dependence between the mcRMC and MD results. The effect of the

RMC placing atoms at larger distances at lower temperatures is to depress the actual change

which can be seen in the broadening of the first peak in TPCFs from scattering studies [35].

Furthermore, the median NND (Fig. 3.10b) shows relatively no temperature dependence for

all compositions and a slightly reduced amplitude in comparison to the average value. This

would indicate that even with no other constraints the NND distribution and even more so

its median are reliable.

3.4 Summary

In the present study atomic structures created from molecular dynamics (MD) simula-

tions for three different liquids were used to explore how well reverse Monte Carlo (RMC) fits

to the MD-generated pair correlation functions reproduce the atomic structures. The worst

case (also generally the one used to fit experimental data) was examined, using only the

measured total pair correlation function to constrain the RMC fits (termed here a mcRMC

analysis). An in-depth analysis of the Voronoi tessellation for the structures obtained from

the MD and mcRMC was made by examining the distributions and measures of central ten-

dency of the Voronoi volume, asphericity, Voronoi index, coordination number, and nearest-

neighbor distance using the L1 distance as a metric of similarity. While the mcRMC is able

to reproduce some properties of each distribution, the structures were generally not well
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reproduced. That the fit properties were questionable raises doubts about the use of RMC

for systems that are not fully constrained and the validity of more demanding properties of

the configuration (i.e. network analysis). However, the predicted mean volume and median

nearest neighbor distances were better predicted, indicating that mcRMC can be reliably

used to analyze experimental data to obtain these quantities. The temperature dependence

of the distribution similarities was also examined. In general even for the fully constrained Zr

liquid, the L1 distance increases as the temperature decreases, indicating that the mcRMC

results become less reliable. Extending these results to multicomponent systems such as

metallic glasses, which are more likely to be constraint deficient, calls into question the reli-

ability of mcRMC results. Further the glasses are generally more ordered than the liquids.

Since the structure obtained from RMC simulations are the most disordered ones consistent

with the scattering data, it is not possible to obtain a clear picture of the order except for

in an averaged sense.
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Chapter 4: Estimates of bond length and ther-

mal expansion coefficients from x-ray scatter-

ing experimental data using reverse Monte Carlo

simulations

This chapter has been published on the arXiv [1] in collaboration with K. F. Kelton and is

awaiting submission to a peer-reviewed journal. It has been adapted to be consistent with the

formatting in this dissertation. The author’s contributions include performing the Molecular

Dynamics (MD) and Reverse Monte Carlo (RMC) simulations, analyzing the resulting data,

and writing the manuscript. The authors and other group members contributed to acquiring

the X-ray diffraction data and the resulting analysis. All authors contributed in drafting the

results.

4.1 Introduction

The static structure factor, S(q), and the related pair distribution function, g(r), obtained

from experimental scattering data are routinely used to deduce the linear thermal expansion

coefficient,

β = 1
3V

dV
dT , (4.1)

where V is the volume, for crystalline systems by tracking the position of the first peak

as a function of temperature. Following the same method, some studies in metallic liquids

have shown an anomalous contraction of the first peak in g(r) with increasing temperature,

indicating a negative thermal expansion coefficient. However, values of β obtained from
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direct measurements of the volume have been positive [2, 3]. To explain this difference, it

was suggested that the coordination number decreased with increasing temperature, forming

stronger bonds between the atoms and a decrease in the atomic separation. However, later

studies determined that the contraction was likely due to a failure to account for the asym-

metry of the nearest-neighbor distance (NND) distribution [4–7]. This asymmetry of the

NND distribution is a consequence of the redistribution of neighboring atoms to typically

larger distances due to the anharmonicity of the interatomic potential. It has also been also

suggested that due to the complex interplay of the partial pair correlation functions it is

unlikely that reliable data for β can be obtained from the g(r) for the liquid.

One of these studies [5] suggested a promising approach using a skew normal distribution

(SND) to fit the first peak of the total radial distribution function,

R(r) = g(r)
4πr2ρ

, (4.2)

where ρ is the number density. This gives an effective nearest neighbor distribution that

accounts for the increasing skewness, bypassing many of the issues arising with the use

of peak positions. From the fit the mean bond length can be identified and tracked with

temperature to obtain an approximate value for β. However, as the authors point out this

approach is not without flaws. For multi-component alloys the main peak in g(r) will contain

multiple partial pair correlation functions that may not be well described by a single SND.

One option would be to fit each partial g(r) with a SND and then sum them with the usual

weighting factors (e.g. Faber-Ziman[8] coefficients) to obtain the total g(r). This would then

give an effective total NND distribution. Experimentally, however, it is typically difficult to

obtain the needed information on all the pair correlation functions to perform this type of

analysis.

Here a more detailed examination of the NND distribution is presented that is based on

RMC and MD modeling using a Voronoi tessellation. The main conclusion is that unlike g(r)

75



Estimates of bond length and thermal expansion coefficients from x-ray data

the robust measures of central tendency for the NND distribution are well behaved, exhibiting

only expansion, and give reliable information about the linear thermal expansion coefficient.

Furthermore, it is shown that the rate of expansion obtained from the NND distribution is

equal to the rate obtained from direct volume measurements. This calls into question a recent

proposal that liquid fragility [9] (a measure of the deviation of the temperature dependence

of the activation energy of the viscosity) is related to the temperature dependence of the

peak positions of the 3rd and 4th peak positions in g(r) [10]. Finally, the results presented

here give more evidence of the local nature of fragility, which was recently reported [11].

4.2 Experimental and Analysis Methods

4.2.1 Experimental Methods

Equilibrium and supercooled liquid structural data was obtained at the Advanced Photon

Source at Argonne National Laboratory on beamline 6ID-D using the beamline electrostatic

levitation (BESL) technique. Density and thermal expansion measurements were made from

video images of levitated samples back-lit by a high-intensity LED. The details of these

experimental methods can be found elsewhere [2, 12–15].

4.2.2 Molecular Dynamics Simulations

Molecular dynamics (MD) simulations were made for 10 compositions using the LAMMPS

[16] software. Some simulations employed the GPU package of LAMMPS [17–19]. Each sim-

ulation consisted of 15,000 atoms contained in a cubic box with periodic boundary conditions

in the NPT (P = 0) ensemble. The Nosé-Hoover thermostat was used to equilibrate each

system at each temperature before data collection. Ten configurations were used to obtain

statistics on the NND distribution.
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4.2.3 Reverse Monte Carlo Simulations

Reverse Monte Carlo simulations were made for 34 metallic liquids using the RMC++ [20]

software. Structure factors, S(q), obtained from X-ray scattering experiments were used as

the only constraint. Reverse Monte Carlo simulations perform a minimization of the χ2

given by

χ2 =
∑
i

[S ′(q)− S(q)]
σ2 (4.3)

where S ′(q) is the structure factor calculated from the RMC atomic configuration, S(q) is

the experimental data, and σ is the reliability of the data set. This minimization is achieved

by moving atoms, which are chosen randomly, in a random direction and computing the new

χ2 from this configuration. If the χ2 is reduced the move is accepted while if the χ2 increases

the move is accepted according to a Boltzmann probability. This procedure is then repeated

until the χ2 is minimized.

The reliability of such minimally constrained simulation has been examined in a recent

study (Chapter 3). To generate sufficient statistics and determine error in the Voronoi tes-

sellation each liquid was simulated seven times. Each RMC simulation consisted of 10,000

randomly generated atoms in a cubic box whose size is consistent with the experimental

number density of the liquid, using periodic boundary conditions. Minimum cutoff distances

and swapping positions between atoms of different elements were used to improve the con-

vergence time. Convergence was assumed when both the magnitude and the change with

time of the χ2 were sufficiently small.

4.2.4 Voronoi Tessellation

Voronoi tessellation was performed on each RMC configuration using a Python extension

of the Voro++[21, 22] software. The Voronoi tessellation procedure can lead to significant

errors when systems with different sized atoms are considered [23]. To account for this rad-

ical Voronoi tessellation [24, 25] was used for all systems containing multiple elements. In
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this method, the distance to each bisecting plane is weighted by the radius of each atom;

the Goldschmidt radii [26] were used for this weighting. Another error common to Voronoi

tessellation is the occurrence of exceptionally small faces and edges, compared to the polyhe-

dron average, which occur from slightly more distant atoms [27]. These more distant atoms

tend to exaggerate the skewness of the "true" nearest-neighbor distribution. To attempt

to account for this effect, small-faces were removed using a percentage of the system poly-

hedron average face area as the cutoff. Repeating this removal for multiple values gives a

determination of the reliability of the final results.

A more robust method for removing more distant nearest neighbors was developed using

Gaussian mixtures modeling (GMM), which is a fuzzy clustering algorithm. This method

assumes that the NND and face area data are composed of two Gaussian distributions coming

from only the more distant "artifact" atoms and the "true" nearest neighbors. The data is then

clustered into groups according to the probability of inclusion in each distribution. Using

the Scikit-learn Python library [28] a single Voronoi tessellation was fit. This fit was then

used to predict which distribution each NND and face area pair belong to for the remaining

Voronoi tessellations. This method, though more reasonable than a strict cutoff using face

area, is still only approximate. Other clustering algorithms that are not mode-seeking and

that allow for different size and covariance of clusters could also be used.

4.3 Results and Discussions

As mentioned in the preceding section a Voronoi tessellation often creates polyhedra

with abnormally small faces. Figure 4.1 shows a typical distribution of the area of the faces

of a Voronoi polyhedron and a typical Voronoi polyhedron which with a small face. Two

distinct features are observed in the distribution, a peak corresponding to the larger-size

faces representative of the typical NND and one corresponding to smaller faces, which come

from more distant atoms. Although a clear minimum between the two peaks is observed here,
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Figure 4.1: Representative probability density for polyhedron face area for Zr80Pt20 at
T = 1191K. A schematic illustration of a Voronoi polyhedron that contains a small face is
shown. The dashed line indicates an area cutoff using a fraction (here 0.3) of the average
polyhedral face area.

providing an obvious choice for a cutoff, this is not always the case. Even for cases where there

is an appreciable separation between the two peaks, the minimum becomes less prominent

as the temperature of the system increases. Atoms are able to sample smaller and larger

distances more frequently consistent with the anharmonicity of the interatomic potential.

Since the overlap of these two distributions is significant, separating the two distributions

becomes is non-trivial. A typical method for determining which faces to remove is to use a

fraction of the average polyhedron face area, however the cutoff value from this method is

arbitrary.

A less subjective method to separate the distributions (mentioned previously) is to use

GMM, in which one Gaussian is centered on the "artifact" atoms and the other represents

the true distribution of NNDs and face areas. Figure 4.2 shows a representative plot using

the GMM method for the case of only two cluster centers and two features. The dashed lines

are log-likelihood contour curves showing the probability of inclusion in each probability
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Figure 4.2: Representative hexbin plot for polyhedral face areas and nearest-neighbor
distances for Zr80Pt20 at T = 1191K. The ’x’ marks the centers of each Gaussian cluster.
The dashed lines indicate the log-likelihood probability of being from a given distribution
(dark shading indicates a high likelihood).

distribution and the crosses mark the centers of the distributions. This method does a good

job of separating the distributions, but there are some limitations. By using a mixture of

Gaussians the underlying NND distribution that is deduced is assumed to be Gaussian. How-

ever, this distribution is known to be inherently asymmetric due to the anharmonicity of the

interatomic potential. It is also clear that the data points do not recreate the log-likelihood

curves exactly, again indicating that a Gaussian distribution is not the best assumption. Fi-

nally, this method will tend to underestimate the skewness since the prediction uses a simple

maximum probability to ascertain inclusion in a cluster, meaning that farther atoms will not

be included. By including more features (i.e. polyhedron face perimeter etc.) in the GMM

it might be possible to better determine the true NND distribution. However, care needs to

be employed when increasing the number of features for multi-component systems, since the

different atom types may cause unexpected clustering. In this case it may be necessary to

isolate elements even for RMC simulations where chemical effects are not reproduced well.
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Figure 4.3: Plot of a representative, Zr80Pt20 nearest-neighbor distance distribution at
T = 1191K (left) using each cutoff method (shading darkest to lightest): removing A < 0.0,
A < 0.15〈A〉, A < 0.30〈A〉, (where A is the polyhedron face area) and using the Gaussian
mixtures modeling. The radial distribution function (dashed line, right axis) is also shown
for comparison.

A representative NND distribution is shown in Fig. 4.3 using each of the examined cutoff

methods.

The linear expansion coefficients estimated from the GMM and fractional cutoff analyses,

βMean, are shown as a function of the linear expansion coefficient measured from the volume

change, βVolume in Fig. 4.4. A strong correlation between these expansion coefficients exists,

regardless of the method used to remove small faces, and even for the case when no faces

were removed. This indicates, in contrast to recent claims[5, 7], that the expansivity can be

deduced from the structural data with proper modeling. No more information is required

other than that used to obtain g(r). It is also important to note that the slope of the best fit

line approaches unity if a sufficient number of faces are removed, indicating that the rate of

expansion of the first shell is commensurate with that of the bulk. Since the local neighbor

configurations expand as the same rate as the volume expansion, it is reasonable to conclude

that all higher order coordination shells will expand at this rate as well.

From an examination of the peak positions in G(r) = 4πrρ[g(r) − 1] a recent study
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Figure 4.4: A comparison of the linear expansion coefficient from the mean of the nearest-
neighbor distance distribution (βMean) with that obtained from direct measurements of the
volume (βVolume) evaluated at the liquidus temperature. The values for βMean obtained for
removing no faces (circle), faces where A < 0.15〈A〉 (square), faces where A < 0.30〈A〉
(pentagon) and faces using the Gaussian mixture modeling (diamond). The dashed line
shows the case of βMean = βVolume as a guide for the eye.
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concluded that the fourth coordination shell is correlated with kinetic fragility [10]. Rather

than tracking g(r), G(r) was examined since less information is required to obtain that

quantity. However, G(r) still exhibits the same asymmetric skewing as g(r), raising doubts

about the reliability of the conclusions drawn. In light of the results presented here, the lack

of correlation with coordination shells lower than the fourth, especially the first coordination

shell, is likely a result of not tracking the NNDs in the proper way. It is not surprising to

find a correlation with higher order shells when using these weaker metrics for the central

tendency, since the distribution of atoms tends to be less skewed for higher order coordination

shells, since atoms are distributed more symmetrically (at longer distances the interatomic

potential is more symmetric). If each coordination shell expands at the same rate then all of

the metrics,m(Vi−j)
str andm(ri)

str used in the previous study reduce to the volume change between

Tg (the glass transition temperature) and 0K or 1/3 of this value, respectively, extrapolated

from the liquid which is a statement that the expansivity is related to the fragility as in [29].

The expansion coefficients for the best case shown in Fig. 4.4, i.e. removing faces with

area less than 30% of the average face area, are listed in Table 4.1. The linear expansion

coefficient calculated from the median and mode of the NND distribution are also listed.

Since both the median and the mean use the entire distribution to give a measure of the

central tendency it is not surprising that they give consistent estimates of an expansion, while

the mode can give both expansion and contraction. The mode then tracks the behavior of

the peak position of g(r), technically R(r) the radial distribution function. This analysis

supports the conclusion of others [4, 7] who claim that the anomalous contraction previously

reported fails to consider the increased skewness and deviation from Gaussian behavior.

In particular, we see that it is dangerous to infer changes in the local configuration using

the peak position for either g(r) or R(r), since they are not consistent estimators of the

underlying atomic distribution.

Composition Liquidus
(K)

βMean
(10−5K−1)

βMedian
(10−5K−1)

βMode
(10−5K−1)

β (10−5K−1)

Al 933 3.6(0.1) 3.1(0.1) -3.0(1.0) 3.65(0.09)
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†Al [30] 926 4.6(0.4) 4.0(0.3) 0.61(0.2) 4.4(0.2)
†Cu [30] 1353 2.6(0.4) 2.0(0.2) 0.41(0.1) 3.1(0.2)
Cu30Zr30Ti40 1113 1.78(0.03) 1.5(0.04) 0.37(0.9) 1.945(0.001)
Cu46Zr54 1198 1.94(0.02) 1.61(0.02) 0.15(0.5) 2.2169(0.0007)
Cu47Zr47Al6 1180 2.04(0.03) 1.84(0.03) 2.0(2.0) 2.236(0.001)
Cu50Zr42.5Ti7.5 1152 2.14(0.02) 2.02(0.01) 6.0(1.0) 2.43(0.001)
Cu50Zr45Al5 1173 2.117(0.008) 2.07(0.03) 7.0(1.0) 2.394(0.001)
Cu50Zr50 1222 2.01(0.02) 1.8(0.04) 3.0(1.0) 2.328(0.002)
†Cu50Zr50 [31] 1222 1.79(0.02) 1.63(0.02) 1.8(0.3) 1.78(0.01)
Cu60Zr20Ti20 1127 2.55(0.02) 2.44(0.02) 0.069(0.3) 2.751(0.001)
Cu64Zr36 1200 2.69(0.01) 2.9(0.01) 0.086(0.3) 2.906(0.003)
Ge 1211 3.76(0.03) 3.87(0.03) 1.8(0.6) 3.72(0.002)
LM601 1157 1.83(0.02) 1.4(0.05) -0.33(0.8) 2.115(0.002)
Ni 1728 2.84(0.06) 2.4(0.2) 2.0(2.0) 2.82865(3e-05)
†Ni [32] 1728 4.4(0.5) 3.4(0.3) 0.28(0.2) 4.0(0.2)
Ni59.5Nb40.5 1448 1.81(0.04) 1.75(0.05) 0.39(0.3) 2.03(0.002)
†Ni62Nb38 [33] 1523 2.62(0.07) 2.54(0.03) 1.0(0.1) 2.66(0.03)
Pd82Si18 1081 2.25(0.02) 1.23(0.02) -2.2(0.3) 2.472(0.002)
Pt 2041 1.66(0.04) 1.5(0.2) -2.1(0.9) 1.656(0.006)
†Pt [34] 1890 1.69(0.02) 1.734(0.009) -0.344(0.01) 1.54(0.03)
†Si() 1687 1.46(0.04) 1.4(0.05) 50.0(20.0) 1.42(0.06)
†Ta [35] 3290 0.858(0.03) 0.755(0.03) 0.2(0.1) 1.03(0.02)
Ti 1941 1.8(0.03) 1.82(0.04) 1.5(0.5) 1.9151(0.0001)
†Ti [36] 1918 1.67(0.02) 1.65(0.03) 1.88(0.07) 1.47(0.02)
Ti38.5Zr38.5Ni23 1126 1.57(0.02) 1.05(0.02) -0.94(0.4) 1.7603(0.0008)
Ti40Zr10Cu30Pd20 1189 2.38(0.03) 2.09(0.04) -0.62(0.5) 2.514(0.002)
Ti40Zr10Cu36Pd14 1185 2.27(0.06) 2.03(0.04) -0.072(0.2) 2.52(0.08)
Ti45Zr45Ni10 1543 1.66(0.09) 1.2(0.1) -3.0(2.0) 1.645(0.003)
Vit105 1093 1.57(0.03) 0.94(0.04) -0.57(0.6) 1.825(0.002)
Vit106 1123 1.53(0.02) 0.841(0.04) -1.2(0.4) 1.734(0.001)
Vit106a 1125 1.47(0.03) 0.833(0.03) -0.29(0.3) 1.7199(0.0007)
Zr 2128 1.42(0.01) 1.38(0.02) -0.15(0.8) 1.52(0.003)
†Zr [37] 2109 1.92(0.07) 1.67(0.04) 1.1(0.1) 1.79(0.04)
Zr50Ti50 1823 1.65(0.02) 1.47(0.02) 0.47(0.5) 1.825(0.001)
Zr56Co28Al16 1241 1.53(0.02) 0.733(0.02) -1.8(0.5) 1.797(0.001)
Zr57Ni43 1433 1.41(0.02) 1.01(0.04) -0.91(0.6) 1.731(0.001)
Zr59Ti3Ni8Cu20Al10 1145 1.47(0.02) 0.825(0.02) -0.72(0.2) 1.661(0.001)
Zr60Ni25Al15 1248 1.36(0.06) 0.612(0.04) -0.59(0.8) 1.622(0.003)
Zr62Ni8Cu20Al10 1145 1.57(0.02) 0.832(0.03) -1.1(0.2) 1.777(0.001)
Zr64Ni25Al11 1212 1.37(0.02) 0.597(0.04) -0.66(0.6) 1.635(0.001)
Zr65Al7.5Cu17.5Ni10 1170 1.45(0.02) 0.763(0.02) -0.66(0.3) 1.655(0.001)
Zr75.5Pd24.5 1303 1.417(0.009) 1.04(0.02) -0.59(0.5) 1.574(0.0008)
Zr80Pt20 1450 1.39(0.02) 1.17(0.02) 0.23(0.3) 1.3692(0.0005)
†Zr80Pt20 [38] 1450 1.58(0.03) 1.41(0.05) 1.8(0.2) 1.64(0.02)
Zr82Ir18 1513 1.36(0.02) 1.09(0.03) -0.8(0.6) 1.424(0.001)

84



Estimates of bond length and thermal expansion coefficients from x-ray data

Table 4.1: Data for the linear expansion coefficient, β, for each composition using the mean,
median, and mode of the nearest-neighbor distance distribution (removing faces with area
A < 0.3〈A〉), where 〈A〉 is the average face area, and the value from volumetric measurements
evaluated at the liquidus temperature (melt for elementals and phase diagram values for MD
systems which were not previously calculated). Error estimates are listed in parentheses. (†)
denotes compositions which were simulated using MD.

4.4 Conclusion

The primary result of this study shows that to understand the change in the bond length

as a function of temperature the nearest-neighbor distance distribution and robust measures

of central tendency (such as the mean or median) should be considered, rather than g(r) or

any of its various forms that have typically been used. It is also shown that in agreement

with recent studies [4, 6, 7] failing to account for the asymmetry of the NND distribution,

but instead tracking the mode of the distribution, is the reason for the previously reported [2,

3] anomalous contraction. The thermal expansion coefficient is shown to be directly related

to the shift in the mean of the NND distribution, and that the rate of expansion in the bulk

is likely equal to the expansion in the NND. This calls into question the methods used in a

recent study that correlates the shift in the peak positions and volumetric dilation with the

kinetic fragility [10].
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Chapter 5: A Possible Structural Signature of

the Onset of Cooperativity in Metallic Liquids

This chapter has been published in The Journal of Chemical Physics in collaboration

with R. Dai and K. F. Kelton [1] and has been adapted to be consistent with the formatting

for this dissertation. The author’s contributions include reduction of some scattering data,

programming and creation of analysis techniques for determining TA, and determination of

initial correlation for a small subset of the examined data. A majority of the writing and

final analysis was performed by R. Dai. The scattering data was collected during BESL2016

with the help of C.E. Pueblo, D. Van Hoesen, M. Sellers, N. A. Mauro, A. K. Gangopadhyay

and S. Chen.

5.1 Introduction

Upon cooling, all liquids show an astounding increase in the shear viscosity, changing by

more than 15 orders of magnitude from its value at the melting temperature to that at the

glass transition temperature, Tg. Of basic interest is the existence of a crossover temperature

for the shear viscosity near the liquidus temperature. While the viscosity has an Arrhenius

temperature dependence at high temperature [2, 3], this changes to super-Arrhenius behavior

with decreasing temperature. The temperature at which this crossover occurs is defined as

TA (see Fig 5.1). Recent molecular dynamics simulations suggest that this corresponds to

the temperature at which structural rearrangements become cooperative [4, 5]. Above TA,

rearrangements within individual clusters are independent of surrounding clusters. Below

TA, the atoms "communicate" beyond nearest neighbors, with multiple clusters beginning to

rearrange cooperatively in the liquid’s response to shear [6]. Molecular dynamics simulations
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and experimental data suggest that TA is the starting point for the glass transition. The

transition is complete at the glass transition temperature, Tg, which is approximately one-

half the value of TA in metallic liquids [7].

While a correlation between liquid/glass dynamics and structure has been suggested [8–

12],the structural changes are typically so small that a clear demonstration of the role of

structure in the dynamical crossover remains elusive, but there is some evidence. Fragility

is a common measure of liquid dynamics, with "strong" liquids showing an approximately

Arrhenius behavior (constant activation energy) from the liquids temperature to Tg and

"fragile" liquids showing a sharp increase in the activation energy upon approaching Tg [13].

Recent experimental studies [14] have demonstrated a connection between the rate of struc-

tural ordering of the liquids near Tg and the fragility by extrapolating features of the X-ray

structure factor, S(q), to Tg. also X-ray scattering measurements as a function of tempera-

ture in a Pd42.5Cu30Ni7.5P20 liquid [8]suggest a connection between the formation of chemical

short-range order and the rapid non-Arrhenius increase in viscosity. Studies in NI-Nb liquids

also argue that chemical ordering is correlated with the liquids dynamics [15].

Recent Molecular simulations of Cu64Zr36 indicate [6] that the result of the cooperative

rearrangements is the growth of extended structural order. They also predict the existence

of a structural crossover that underlays the dynamical one. However, no experimental evi-

dence that directly connects the dynamical crossover with a crossover in the length scale of

structural ordering exists.

In the present study, experimental evidence is presented for a structural crossover under-

lying the dynamical one in several metallic liquids. The dynamical crossover temperature,

TA, was determined from the viscosity measurements using the Washington University Beam-

line Electrostatic Levitator (WU-BESL) [16].Structural ordering beyond nearest neighbors

is reflected in the acceleration of the growth in intensity of a low-q sub-peak in the second

peak of the liquid structure factor, obtained from high-energy X-ray scattering studies using

WU-BESL at the Advanced Photon Source. The results presented strengthen the validity of
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a connection between the structure and dynamics in liquids and offer the first experimental

evidence of the MD predictions for a growing length scale for structural ordering and the

super-Arrhenius behavior of the shear viscosity.

5.2 Experimental Procedure

Master ingots of the desired alloy compositions of approximately 1 g each were prepared

by arc-melting high-purity elements in the proper ratio on a water-cooled hearth in a high-

purity (99.999%) Ar environment. A Ti-Zr getter located close to the alloy was first melted

to further reduce the oxygen concentration in the chamber. To ensure a homogeneous com-

position of the ingot, the ingot was flipped and re-melted, a process that was repeated

four times. The mass loss during alloy melting was controlled to less than 0.1% to ensure

proper composition. Any ingots having a greater mass loss were discarded. Samples for ESL

processing (30-60 mg) were prepared by re-melting portions of the master ingots.

The containerless processing environment of WU-BESL eliminates the sources of hetero-

geneous nucleation from a container. This allows the liquids to be cooled considerably below

their melting temperatures (supercooled) before crystallization occurs [16] making physical

property measurements of the supercooled liquids possible. The ESL samples (2.0-4.0 mm

in diameter) were levitated under high vacuum (10−7 Torr) using three pairs of orthogonal

electrodes and electrostatic fields of 0-2.5 MV m−1 [16] The location of the levitated sample

was tracked from the shadow of a back-lit sample [using two orthogonal high-intensity light-

emitting diodes (LEDs)] onto two orthogonal position sensitive detectors (PSDs). Using this

information, the voltages of the electrodes were adjusted to maintain the position of the

sample using a gain-scheduled control algorithm [16]. During the experiment, the sample

was heated by a 50 W diode laser. The temperature of the sample was measured by a Process

Sensors Metis MQ22 two-color ratio pyrometer, using wavelengths of 1.40 and 1.64 µm [17].

The temperatures were calibrated by matching the uncorrected solidus temperature to the
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sample’s true solidus temperature as determined by DTA [17]. A more detailed discussion

of WU-BESL can be found elsewhere [16].

The viscosity of the supercooled liquids was measured as a function of temperature using

the oscillating drop technique [18]. A small sinusoidal voltage signal was added to the ver-

tical levitation voltage to modulate the levitation field near the liquid’s resonant frequency,

inducing a l = 2 spherical harmonic mode of the liquid sample. After the driving signal was

removed, the sample surface acted as an underdamped harmonic oscillator, with a decay

constant (τ) inversely proportional to the viscosity (η) [19] by

η = ρr2

5τ (5.1)

where ρ is the sample density and r is the radius. The volume of the sample was also measured

as a function of temperature using a digital monochrome camera to record the image of a

back-lit sample (using a high intensity LED) through a telocentric lens [20]. Knowing the

mass of the sample, the density is readily obtained as a function of temperature.

High-energy X-ray (E =131.7 keV,λ =0.094 114 9Å) scattering data were obtained in a

transmission geometry from levitated liquids to a momentum transfer, q, of 15Å, using a GE

Revolution 41-RT amorphous Si flat-panel X-ray detector. Diffraction patters were measured

during isothermal holds over a wide temperature range; scattering data were collected for

15-20 s at each temperature step. The sample to detector distance, tilt angle, and detector

center were calibrated using polycrystalline Si samples placed at the same position as the

levitated sample. The scattering data were processed by applying a pixel efficiency gain

map, masking bad pixels, averaging the images during the isothermal holds, and subtracting

the detector dark current and scattering background [21]. The images were corrected [21,

22] for sample geometry, polarization, absorption, Compton scattering contributions, fluores-

cence, oblique incidence, inelastic scattering, and multiple scattering using in-house analysis
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packages written in LabVIEW. The total structure factors were calculated using

S(q) = I(q)−∑n
i=1 ci|fi(q)|2

|∑n
i=1 cifi(q)|2

+ 1 (5.2)

where I(q) is the corrected diffraction intensity, ci is the atomic fraction of each species, and

fi(q) is the q-dependent atomic form factor for each species. The sums were taken overall

species and an isotropic and statistically homogeneous atomic distribution was assumed.

5.3 Results and Discussion

Following the procedure outlined in the section title Experimental Procedure, the vis-

cosity was measured as a function of temperature for a range of metallic liquids. The

highest temperature for which viscosity measurements could be made were limited by the

vapor pressures of the samples and the ability to excite only the l = 2 mode [23], while

the lowest temperature were limited by the ability to excite oscillations in the sample. The

high-temperature viscosities of all the liquids measured followed an Arrhenius temperature

dependence. This changed to a super-Arrhenius dependence as the liquids was supercooled,

in agreement with the results from precious studies [7, 24, 25].

Since the crossover from Arrhenius to super-Arrhenius behavior is gradual, determining

the temperature (TA) where this first begins to happen is difficult. A universal curve [7]

model was recently proposed to fit the viscosity of a wide range of metallic liquids and to

allow a determination of TA. However, this uses the viscosity data for Vit106a to determine

the functional form of the curve for other metallic liquids, which may not be correct. Also,

the determination of some of the parameters in the model is somewhat subjective. Here,

we introduce a model-independent approach to determine TA. The viscosity data were first

sorted by their temperature values (from highest to lowest) and the logarithm of the viscosity

was plotted as a function of inverse temperature. The linearity of these reduced data was then

tracked by the R2 value of a linear fit as low temperature data points were removed from the
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Figure 5.1: Typical example of the behavior of liquid viscosity data, on a log-scale, as
a function of inverse temperature, showing a departure from Arrhenius behavior on cooling
below TA. The inset shows the fit residual. Reproduced with permission from [7]. Copyright
2015 Springer Nature.
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fit. As observed in the inset of Fit. 5.1, the R2 value increases as the low temperature viscosity

data points are sequentially removed. If the Arrhenius crossover temperature is within the

temperature range of the fit, R2 should either go through a maximum or approach a limiting

value (≈ 1). Typically, the R2 goes through a maximum because of the variance of the

viscosity data in the Arrhenius region. The point at which a maximum occurs or a limiting

value is reached is defined to be TA. To both estimate the error in TA and incorporate the

error in our viscosity measurements, a resampling method was employed. Each data point is

assumed to be the average of a Gaussian distribution with a full width at half maximum that

is proportional to the error in the viscosity. A resampled version of the data is extracted from

these distributions and then binned so that it can be analyzed by the method just described.

Carrying out this procedure many time(≈ 7500) gives a distribution of TA values. From

this distribution, a mean and standard deviation are calculated to be used as the measured

value and standard error of TA, respectively. This is illustrated in Fig. 5.2 for a Zr56Co28Al16

liquid. The TA distribution is shown in red in the same plot. The method used is closely

related to a block bootstrapping routine.

As mentioned earlier, recent studies suggest that the crossover behavior in the viscosity is

correlated with a growing structural length scale in the liquid. To investigate this, structural

changes in the liquids were measured as a function of temperature from high-energy X-ray

scattering experiments. The scattering data were collected during isothermal holds from

∼200 K above their respective liquidus temperatures down to temperatures at which the

samples crystallized. As for the viscosity measurements, the highest temperatures were

limited by the vapor pressure of the sample. However, the lowest temperature for collecting

scattering data was limited by the time to crystallize, not the magnitude of the viscosity. This

allowed structural studies to be made on more deeply supercooled liquids than was possible

for viscosity measurements. The total structure factors were derived from the scattering data

following the procedure outlined in the section title Experimental Procedure. As expected,

the peaks in S(q) sharpened and grew in intensity with decreasing temperature, reflecting
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Figure 5.2: Typical data of the logarithm of the high-temperature viscosity as a function
of inverse temperature (black solid squares, error bars are one standard deviation), showing
a deviation from an Arrhenius temperature dependence below TA, as well as the distribution
of TA (red histogram).
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Figure 5.3: Structure factors of the equilibrium and supercooled Cu50Zr42.5Ti7.5 liquid
(Tl =1152 K). The inset shows the development of the low-q feature in the second peak with
decreasing temperature.

an overall ordering of the liquid. Of particular note is the second peak of S(q) [designated as

S2(q) from here on] which develops a feature on the low-q side of the peak with decreasing

temperature, causing the peak to appear as two overlapping peaks (for a typical example

see Fig. 5.3.

Earlier MD studies have indicated that the onset of super-Arrhenius behavior in the

viscosity is due to the growth of the ordering in the liquid [4]. The intensity data for the low-q

and high-q sub-peaks in S2(q) was fit using two Gaussian functions (see the supplementary

material), representing two overlapping peaks. As shown in Fit 5.4, this fitting procedure

gives a good representation of the growth of the two features in the experimental data.

taking the Cu50Zr45Al5 liquid as an example (Fig 5.5) in the high-temperature liquid, the

amplitude of the low-q sub-peak increases linearly with decreasing temperature but begins

to accelerate below a specific crossover temperature (here designated as TS). Although the
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Figure 5.4: Typical example of the fits of the low-q and high-q sub-peaks to the second
peak of the liquid structure factor, S2(q)/ The two Gaussian sub-peaks are indicated (blue
squares for the low-q sub-peak and green circles for the higher-q sub-peak). The red line is
the corrected S2(q), with the baseline and offset obtained from the fits to the two Gaussian
sub-peaks subtracted; the fit to this is shown by the black hexagonal symbols.
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Figure 5.5: The intensity of the low-q sub-peak in S2(q) (solid black squares) as a function
of temperature showing an acceleration below TS, which is determined by the piecewise linear
function (red line).

temperature dependence of the amplitude below TS is not linear over a wide temperature

range, it is approximately linear over a small temperature range near TS. As shown in

Fig 5.5, then, piecewise linear functions can be used to provide reasonable values for the

crossover temperature. While the combined error for the values obtained include errors in

the calculation of the total structure factor from the scattering data, the fitting of S2(q)

using two Gaussian functions, and the determination of the crossover temperature with two

piecewise linear functions, the large temperature interval between the isothermal holds is

usually the dominant error in determining TS.

Figure 5.6 shows the correlation between the values of TA, and TS (determined from

the procedure described in the previous section) for several different metallic alloy liquids.

Clearly TA and TS are strongly correlated, with the slope of a linear fit to these data equal

to 0.93 ± 0.17. While the large amount of data as a function of temperature allowed TA
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Figure 5.6: The correlation between the crossover temperature (TS)obtained from mea-
surements of the growth in intensity of the low-q sub-peak in S2(q) and that obtained from
the viscosity measurements (TA). The alloy compositions corresponding to the numbers are
Cu46Zr54 (1),Cu50Zr42.5Ti7.5 (2), Cu50Zr45Al5 (3), Cu50Zr40Ti10 (4), Cu50Zr50 (5), Cu64Zr36
(6), LM601 (7), Vit105 (8), Zr56Co28Al16 (9), and Zr82Ir18 (10).

to be obtained from the viscosity following the procedure discussed earlier, this was not

possible for TS due to the fewer temperature data for the X-ray diffraction studies. However,

fitting the viscosity data using two piecewise linear functions gave nearly the same correlation

between TA and TS as shown in Fig. 5.6. This significant correlation suggest that the onset

of an accelerated growth of the amplitude of the low-q sub-peak in S2(q) with decreasing

temperature is a structural signature of TA.

It should be pointed out, however, that although TA and TS clearly are correlated, the

magnitude of TS is always a little lower than the TA obtained from viscosity data. At this

time, the reasons for this are not clear, The differences may arise because the viscosity is very

sensitive to structural changes, with the viscosity varying by over 15 orders of magnitude from

the liquidus temperature to Tg. Although the viscosity data discussed here were measured
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over a narrower temperature range, their values still increased by more than one order

of magnitude. By comparison, the measured structure changes are very small across the

accessible supercooled temperature range [26],making it difficult to determine a deviation in

the linear evolution of the structure with temperature until it is sufficiently far below the TA

value obtained from the viscosity measurements. It was possible to observe these changes

at all is due to the use of containerless processing and a high-intensity synchrotron X-ray

source. The lack of a container greatly increased the signal-to-noise level in the scattering

experiments and limited the influence of heterogeneous nucleation, allowing measurement to

be made to deeper supercooling.

Similar features in S2(q) were identified in earlier studies of a Ti39.5Zr39.5Ni21 liquid [27].

The analysis of those data assumed that icosahedral clusters were dominant in establishing

the local order of the liquid. The high-q feature was identified as arising from the center-to-

vertex bonds (nearest-neighbor bonds), and the low-q feature was identified as arising from

the vertex-to-vertex bonds (next-nearest-neighbor bonds). Since the intensity of the high-q

feature increased little with decreasing temperature, it was argued that the nearest-neighbor

bonds were already established at very high temperatures. Since Ni populated the centers

of the clusters with Ti/Zr on the vertices, this was reasonable given the strong bonding of

Ti/Zr with Ni. With decreasing temperature, the number of next-nearest-neighbor bonds

increased, causing the growth of the low-q feature. Like the experimental studies of the

Ti39.5Zr39.5Ni21 liquid, MD studies of Cu-Zr liquids and glasses show that the fundamental

clusters have an icosahedral or icosahedral-like symmetry [28–31]. These conclusions are

also in agreement with the results of RMC fit for Cu46Zr54 liquids [32], which showed that

the next-nearest-neighbor ordering accelerates with decreasing temperature and is associated

with an increasing intensity of the low-q side of S2(q). By contrast, the high-q side is only

weakly temperature dependent. Another MD study of Cu64Zr36 shows that the cooperative

rearrangements that began at TA induce the growth of domains of locally preferred structure

(LPS)s, establishing connections between isolated clusters [6].
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All of these studies focused on a dominant icosahedral cluster. Detailed studies of X-ray

and neutron scattering data for metallic liquids (see Zr80Pt20 and Zr77Rh23 as two exam-

ples [22]) have shown that the liquid structure is often characterized by several local cluster

types, not all of which have icosahedral symmetry. However, the general conclusion reached

in the experimental and MD studies remains. Regardless of the cluster symmetry, the low-q

feature emerges from ordering beyond the nearest-neighbors [27, 33–35]. It is likely that

at TA the cooperative rearrangements prefer the connection of the LPSs, as was shown in

Cu64Zr36. Above TA, the rearrangement within the LPS is sufficient to relax the liquid [4,

5]. Below TA, the LPSs act cooperatively [4, 5]. The rearrangements of larger regions of

the liquid with decreasing temperature increase the activation energy for flow and manifest

as the onset of super-Arrhenius behavior in the viscosity [6]. Based on the MD studies in

Cu64Zr36, with decreasing temperature, the coherence length of the ordered regions increases,

eventually leading to a percolation of the LPSs that results in the glass transition. In a real

sense, then, the process that leads to the glass transition starts at TA, which for metallic

liquids is approximately 2Tg [7].

The growing amplitude of the low-q feature in S2(q), signaling order growing beyond

the nearest neighbors, is the first experimental evidence of the structural signature of the

dynamical crossover at TA predicted by MD studies of metallic liquids. This lends validity to

the MD predictions and more generally establishes a strong connection between the structure

and dynamics.

5.4 Summary and Conclusions

In summary, a possible structural signature of the dynamical crossover in metallic liquids

at high temperature was experimentally confirmed based on coordinated shear viscosity

measurements and high-energy X-ray scattering experiments. From the viscosity data, the

dynamical crossover at TA was determined by the change from Arrhenius to super Arrhenius
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temperature dependence. Upon cooling, a low-q feature develops in the second peak of the

static structure factor S(q), which indicates ordering beyond nearest neighbors. Like the

viscosity, the rate of increase in amplitude of this feature has a crossover behavior at a

temperature TS. The strong correlation between TA and TS is the experimental evidence for

the connection between structural ordering and the dynamical behavior in the supercooled

liquids and provides the first confirmation of recent predictions from molecular dynamics

studies. Why the structural crossover occurs at a lower temperature than the dynamical

crossover is not totally clear. It may simply be due to the difficulty of measuring the very

small changes in structure that accompany the larger dynamical changes. However, this

needs further study, addressing questions of the possible universality of the difference, the

effect of cooling rate, etc.
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Chapter 6: Experimental determination of the

temperature-dependent Van Hove function in

a Zr80Pt20 liquid

This chapter has been published on the arXiv [1] in collaboration with Z. Wang, D. L.

Abernathy, T. Egami, and K. F. Kelton and has been submitted to a peer-reviewed journal.

It has been adapted to be consistent with the formatting in this dissertation. The author’s

major contributions include performing the Molecular Dynamics (MD) simulations, devising

and programming analysis techniques, and collecting inelastic neutron scattering (INS) data.

All authors contributed to devising analysis techniques and in drafting the results.

6.1 Introduction

The viscosity, η, of liquids shows common behavior among various disparate groups of

liquids [2]. At high temperatures it follows an Arrhenius temperature dependence with a

constant activation energy. But below a certain temperature, the viscosity crossover temper-

ature, TA, it becomes super-Arrhenius. Kivelson [3] first showed that the viscosity of various

liquids can be scaled into one curve as a function of T/TA (TA = T ∗ in their work). TA is

also the temperature below which the mode-coupling becomes appreciable [4, 5]. The fun-

damental time-scale for viscosity is the Maxwell relaxation time, τM = η/G∞, where G∞ is

the infinite-frequency shear modulus . Recent molecular dynamics (MD) studies of metallic

liquids suggest that for T > TA, τM is approximately equal to τLC , the lifetime of the atomic

bond [5–7].

To evaluate this relationship inelastic neutron scattering measurements were made on
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liquid Zr80Pt20. To access the supercooled state and to avoid contamination all measurements

were made with the liquid held in a containerless environment in high vacuum using the

Neutron Electrostatic Levitator (NESL) facility [8] located at the Spallation Neutron Source

(SNS). The results were converted into the time-dependent pair-distribution function, i.e. the

Van Hove function [9], G (r, t), which allowed a study of the spatial and temporal correlations

of the atoms. Due to experimental difficulties, studies of the Van Hove function in the past

have been largely limited to computer simulations. Only in a few cases have measurements

of G (r, t) been made in metallic liquids at the melting temperature [10], and for water by

inelastic x-ray scattering [11, 12]. While τLC cannot be measured directly from experiment,

new MD results discussed here show that it can be related to the decay time of the first peak

area in the distinct part of the Van Hove function, Gd (r, t). A comparison of the activation

energies of τV H and τM confirms the prediction that both have an Arrhenius temperature

dependence and the same activation energy. To our knowledge, this is the first significant

experimental evidence indicating that local structural rearrangements underlie the dynamical

behavior of high temperature metallic liquids.

6.2 Methods

Measurements of the high temperature properties of liquid metals such as Zr are often

plagued by sample reactivity and oxygen contamination. These are minimized by processing

the liquids without a container in a high vacuum environment using the technique of elec-

trostatic levitation [13]. The viscosity measurements were made with the Washington Uni-

versity Beamline Electrostatic Levitator (WU-BESL) facility [14]; the experimental methods

are discussed elsewhere [15, 16]. Inelastic neutron scattering measurements were made at

Oak Ridge National Laboratory (ORNL) on the Wide Angular-Range Chopper Spectrome-

ter (ARCS) [17] beamline at the SNS. The samples were processed in high vacuum using the

NESL facility, which is optimized for both elastic and inelastic time-of-flight (TOF) neutron
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scattering studies [8]. The TOF inelastic neutron diffraction measurements on the levitated

liquid samples were made with the incident energy Ei= 20meV. Due to the kinematic restric-

tions inherent to inelastic neutron scattering experiments, however, the maximum q range

for this incident energy is restricted to q < 6Å−1. Though this restricted q-range can intro-

duce termination ripples in the spatial Fourier transform to obtain the Van Hove correlation

function, the increased energy resolution was deemed to be more important for the data

needed. The procedure for analyzing the data is only briefly described here; a more detailed

description will be given in a future publication.

The MD simulations were performed with the LAMMPS software [18] using the Zr-Pt

embedded atom [19] (EAM) potential developed by H. Sheng [20]. The Zr80Pt20 system

was simulated with 15000 atoms under the NPT ensemble (P=0) with periodic boundary

conditions. The Nosé-Hoover thermostat [21, 22] was used to equilibrate the system at a

target temperature for 15ns before data collection. The Maxwell time was calculated from

the atomic level stress using the Green-Kubo formula (see [23] for example). The method for

computing the Van Hove time is the same as for the experimental data which is discussed

later. Additional details of the MD simulation are provided in the supplemental material

(Appendix D).

6.3 Results and Discussion

The steps to obtain the dynamic structure factor S(q, E) include the conversion of the

TOF data to energy and momentum transfer, a physical normalization factor, the assump-

tion of detailed balance and a correction for the resolution of the spectrometer. The initial

conversion used a standard reduction routine employing the MANTID [24] software. The

required source beam parameters [25] for this reduction were obtained from previous cal-

ibration experiments, since they could not be measured in the NESL studies due to the

presence of an internal beam-stop. For normalization, the condition that S(q) → 1 as
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q → ∞ was enforced, using the S(q) obtained from the intermediate scattering function,

F (q, t). This normalization was checked by comparing the S(q) obtained here with one ob-

tained from earlier neutron and x-ray diffraction data. Detailed balance was used to extend

the negative energy transfer data into regions that are inaccessible in the positive energy

transfer region. A typical S(q, E) obtained after these corrections is shown in Fig. 6.1a.

Since F ′(q, t) = F (q, t)R(t), where F ′ is the measured and F is the true intermediate scat-

tering functions and R is the resolution function, the true intermediate scattering function

can be obtained by dividing the measured signal with the resolution function. The resolu-

tion function was obtained from inelastic scattering measurements from vanadium at room

temperature and was Fourier-transformed to the time domain.

The intermediate scattering function, F (q, t), is obtained by a Fourier transform of S(q, ω)

F (q, t) =
∫ ∞
−∞

S(q, ω)eiωtdω (6.1)

The self (Fs(q, t)) and distinct (Fd(q, t)) parts of the intermediate scattering function, which

describe single particle and collective density fluctuations respectively, are extracted by as-

suming that the self-part has a Gaussian form, i.e. Fs(q, t) = A(t) exp(−w(t)q2) [10], where

the decay parameter, w(t), and the amplitude, A(t) are fitting parameters. The Gaussian

approximation comes from expressions for the self-part of the Van Hove correlation function,

Gs(r, t), which has a Gaussian dependence in r in both the hydrodynamic and free-particle

limits [26, 27]. For intermediate times, which are of interest here, the Gaussian approxi-

mation should still be a good approximation [27, 28]. The distinct Van Hove correlation

function is obtained from the Fourier transform of Fd(q, t)

Gd(r, t)− 1 = 1
2π2ρ

∫ ∞
−∞

Fd(q, t)
q

r
sin(qr)dq (6.2)

where ρ is the number density for the sample. A representative example of Gd(r, t) obtained

from the data is shown in Fig. D.1. At t = 0, Gd(r, 0) is equal to the equal-time (snapshot)
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Figure 6.1: Inelastic neutron scattering data for Zr80Pt20 at 1833K with Ei = 20meV. (a)
The dynamic structure factor, S(q, E) correcting for physical normalization (S(q) → 1 as
q →∞) and detailed balance. (b) The distinct Van Hove correlation function, Gd(r, t)− 1,
with the same corrections and the correction for the resolution function.
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Figure 6.2: (Color online) The normalized integrated peak intensity N(t)/N(0) versus
time plotted for each temperature (K). The data is fit (dashed lines) out to 2.0 ps. using
the stretched-exponential function (Eq.6.4). For clarity calculated error bars are shown for a
select number of times but are representative of errors for all points of a given temperature.

pair-density function, g(r). The integrated peak intensity is computed for each temperature

from

N(t) =
∫
D

4πr2ρ(Gd(r, t)− 1)dr (6.3)

where D is the positive region of the first intense peak of the integrand. Because Gd(r, t)

decays to unity at large t, Gd(r, t) = 1 provides the baseline to define the density fluctu-

ation. N(t) is proportional to the dynamic coordination number, and reflects the average

decorrelation fime for atoms located near the first peak of Gd(r, t). The decorrelation time

is the time for an atom initially located near the central atom to begin to diffuse away. This

time is a function of the distance that an atom is from the central atom’s initial position.

It also depends on the local structure, which can be quite varied [29]. Since the exponential
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decay time for each atom is different, the overall decay of N(t) could be described by a

Kohlrausch-Williams-Watts (KWW) stretched exponential function [30],

y(t) = exp
(
−(t/τ)β

)
(6.4)

where τ is the time constant and β is the stretching factor. From MD simulations and a

recent study on water [12] N(t) is expected to have two decay rates; one is due to ballistic

motion and another one describes the changes in the configuration of the nearest-neighbors,

the opening of the cage. However, due to the limited energy range of these experiments

for Zr80Pt20 it was not possible to determine the decay rate in the ballistic region. The

normalized peak intensity N(t)/N(0) is shown in Fig. D.4. The initial decay in N(t)/N(0),

t < 0.1ps, is due to ballistic motion and is only weakly dependent on temperature. As

t → ∞ it is expected that N(t)/N(0) → 0 as the correlations between the initial position

are lost. The data show plateaus at longer times; these are artifacts from the resolution

function correction (see supplemental material in Appendix D) and are not fit to the KWW

expression. The ballistic region is not well described by the single KWW expression. The

dashed lines in Fig. D.4 are fits to the KWW expression, which describes well the data

beyond 0.1ps for all temperatures studied.

As mentioned earlier, the local configuration time, τLC cannot be obtained directly from

the experimental data. However, our MD simulations show that τLC is related to a measur-

able quantity called here the Van Hove time, τV H , which is the long decay time corresponding

to the configuration of nearest-neighbors in the first peak in Gd(r, t). The experimental value

of the Van Hove time was obtained from the mean relaxation time of the KWW function fit

to the data, 〈τr〉 = τ
β
Γ( 1

β
) ≡ τV H . The results from the MD simulations shown in Fig. 6.3

indicate that τLC ≈ τV H/3.6 for T > TA. Since the ratio is approximately constant for

T/TA > 1.2 the activation energy for τV H will be the same as for τLC . For water τLC was

approximately equal to τV H (τ2 in their work) [12]. Since metallic liquids have more nearest
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Figure 6.3: The ratio of the Van Hove time, τV H , to the local configuration time, τLC , as a
function of temperature normalized to TA ≈ 1750K from MD simulations of liquid Zr80Pt20.
τV H/τLC ≈ 3.6 for T > TA.
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neighbors than does water (∼ 13 for metallic liquids and 4 for water), the ratio τV H/τLC

should reflect this difference.

As shown in Fig. 6.4a, τV H obtained from the scattering data shows an Arrhenius temper-

ature dependence for TA/T > 1, as indicated by the previous MD simulations for the related

local configuration time, τLC [7]. The results from the MD studies indicate that τLC remains

Arrhenius far below TA. Based on the results in Fig. 6.3, τV H should become super-Arrhenius

below this temperature, as suggested by the data in Fig 6.4b. The activation energy for τV H

(and from Fig. 6.3, for τLC ) above TA is 750±90meV. As shown in Fig. 6.4b, the activation

energy for the measured viscosity above TA is 730±30meV. Within experimental error, then,

these activation energies are equal, indicating that the energy barrier is the same for each

process. Furthermore, approximating τM from the viscosity (not shown) and comparing to

τLC we find that τM ≈ τLC . This provides experimental evidence that the MD predictions [6,

7] are correct, i.e. showing that the atomic rearrangements that determine τV H (and τLC)

are controlling the viscosity at high temperatures.

6.4 Conclusion

In summary, the time dependent pair distribution function (distinct Van Hove function,

Gd (r, t)) was obtained as a function of temperature from inelastic neutron scattering data for

equilibrium and supercooled Zr80Pt20 liquids made in a containerless environment. Molec-

ular dynamics simulations showed that the relaxation time of the of the positive peak area

in Gd (r, t) (defined as the Van Hove time, τV H ) is related to the local configuration time,

τLC , and has the same temperature dependence above the crossover temperature, TA. A

comparison of the experimental neutron scattering and viscosity data show that the activa-

tion energy of τV H and that of the Maxwell time, τM are equal to within experimental error,

strongly suggesting that they are governed by the same process . To our knowledge this is the

first experimental evidence for a key prediction from recent MD studies for metallic liquids,
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Figure 6.4: (Color online) (a) Van Hove time and (b) viscosity data for liquid Zr80Pt20
versus inverse temperature normalized to the Arrhenius crossover temperature determined
from the viscosity (TA = 1450K). The best fit lines for the activation energy are shown;
the slopes give an activation energy of 730meV for the viscosity and 750meV for τV H . The
error bars shown for τV H are 3σ and are calculated from the error in the fit parameters from
Eq. 6.4.
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which indicate that local structural excitations underlie the viscosity at high temperature.
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Chapter 7: Summary and Conclusion

This dissertation has examined, through both experimental and Molecular Dynamics sim-

ulation techniques, the relationship between the dynamics and structure in the equilibrium

and supercooled liquid. These studies were aimed at developing a better understanding of

the liquid state in an attempt to eventually understand why some liquids more easily form

glasses than others. To this end, high quality X-ray and neutron diffraction and thermo-

physical property measurements were made in the equilibrium and supercooled liquid using

the containerless processing technique. The major results from these studies are summarized

below.

In Chapter 3 Molecular Dynamics (MD) simulations were performed on three model

systems (Zr, Cu50Zr50, and Cu50Zr45Al5) to obtain the atomic configuration and g(r). Cor-

responding Reverse Monte Carlo simulations were conducted using the g(r) found as the

only input constraint, termed in this thesis as minimally constrained reverse Monte Carlo

(mcRMC) simulations. The mcRMC atomic configurations were then compared to the orig-

inal MD configurations using the Voronoi tessellation technique to characterize the local

atomic environment. The results of an analysis in terms of the Voronoi index, nearest-

neighbor distance, asphericity, volume and coordination number were compared using the

L1 histogram distance. In general, it was found that the distributions of the Voronoi index,

asphericity, volume and coordination number are not well reproduced, especially if the sys-

tem contains more than one atomic species. However, the average properties of the system

were typically reproduced, although in most cases the temperature dependence of the pa-

rameters, when compared to the original MD values, were not consistent. This study was

meant to mimic the use of mcRMC simulations from X-ray or neutron diffraction experi-

ments with a realistic number of constraints, and thus examines the reliability of the mcRMC

for experimental data.
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In Chapter 4 Reverse Monte Carlo (RMC) simulations of X-ray diffraction data obtained

using the Electrostatic Levitation (ESL) technique and Molecular Dynamics (MD) simula-

tion data were presented to examine the recent reports of anomalous thermal contraction,

based on a more robust measure of the nearest-neighbor distances. Previous studies have

attempted to examine the average atomic position using the peak position in g(r). This

amounts to using the mode of the nearest-neighbor distribution, which fails to account for

the inherent skewness, due to the anharmonicity of the interatomic pair potential, and in-

creasing skewness with increasing temperature of the nearest-neighbor distance distribution.

Using the results of the reliability of mcRMC from Chapter 3 to obtain the nearest-neighbor

distances, distributions were computed from a Voronoi tessellation of the mcRMC and MD

configurations. The central tendency, mean and median, of these distributions were then

tracked as a function of temperature to extract the thermal expansion coefficient. It was

found that the thermal expansion coefficient obtained using only the nearest-neighbor dis-

tance correlates with the bulk volumetric measurements and the rates of expansion were

similar. This provides strong evidence that all higher order coordination shells likely expand

at the same rate. These two results taken together call into question the interpretation of

results by other who claim that fragility is related to only longer range (third and fourth

coordination shell) correlations. Our work exhibits the local nature of fragility.

In Chapter 5 the results from X-ray diffraction and viscosity measurements using the

Electrostatic Levitation (ESL) technique were combined to examine the structure dynamics

connection in the equilibrium and supercooled liquid. The viscosity measurements were

examined using a bootstrapping routine, where the viscosity data is resampled within error

to obtain multiple measurements of the Arrhenius crossover temperature TA so that the error

could be estimated. The X-ray diffraction data is reduced to obtain the static structure

factor, S(q), which is the momentum space equivalent of the pair distribution function, g(r).

The second peak of S(q) exhibits marked changes with temperature, developing a shoulder

on the high-q side. This peak was fit with two Gaussian functions, and the height of the low-
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q peak was tracked with temperature. This sub-peak, which is commonly associated with

the next-nearest neighbor distance, exhibited an accelerated growth at a temperature TS

which is correlated with, but always lower, than TA. Though the reason for TS < TA is still

an open question, the connection between the two is clear evidence of a structure-dynamics

connection.

In Chapter 6 inelastic neutron scattering (INS) measurements using the Electrostatic

Levitation (ESL) technique and Molecular Dynamics (MD) simulations of Zr80Pt20 were

presented. These results confirm that local configurational excitations (corresponding to the

time, τLC , that it takes to change the coordination number of a local cluster by one) control

the liquid viscosity, as predicted in recent MD studies. In the INS measurements the dynamic

structure factor, S(q, ω) was obtained and a new analysis method was developed to reduce the

diffraction data. After basic instrument corrections S(q, ω) was Fourier transformed to obtain

the intermediate scattering function, F (q, t), where a physical normalization, i.e. forcing

F (q, 0) ≡ S(q)→ 1 as q →∞, is applied. To obtain only the coherent (distinct) scattering

data, which contains the pair correlations, an approximation to the incoherent (self) data

was fitted to the full signal and subtracted out. This result was Fourier transformed to

obtain the distinct dynamic pair correlation function, Gd(r, t), also known as the distinct

Van Hove correlation function. The area under the first peak in Gd(r, t), which can be

related to τLC , was tracked, yielding the Van Hove time, τV H , and the activation energy

of this was determined. The Van Hove time, multiplied by a scale factor determined from

MD simulations, was equal in both temperature dependence and magnitude, to the Maxwell

relaxation time (obtained from the viscosity). This confirms that the high temperature liquid

is controlled by local structural excitations. Furthermore, since the Maxwell time becomes

super Arrhenius as the liquid is cooled while the configurational excitations remain Arrhenius

a crossover occurs in the viscosity, where cooperativity or longer range interactions begin.

A clear and extensive connection between established that spans from the equilibrium

to the supercooled liquid. While the results presented here do not expressly connect to
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the glass transition they do aid in understanding the liquid and the changes that begin to

occur in both structure and dynamics at the crossover temperature TA, and which appear

to culminate in the glass transition. They make it clear that a deeper understanding of

the structure-dynamics relationship at high temperature is key to understanding the glass

transition and the ability to predict glass formation.
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Appendix A: Inelastic Neutron Analysis Guide

This appendix gives an overview of the steps needed to produce the distinct Van Hove

correlation function, Gd(r, t), from inelastic neutron scattering (INS) data taken at the Wide

Angular-Range Chopper Spectrometer (ARCS) beamline located at Oak Ridge National Lab-

oratory (ORNL). This method has been discussed briefly in Chapter 6, but it is informative

to give a more complete description along with the code used. A complete diagram of the

analysis is shown in Fig. D.2.

A.1 Analysis and Methods

The first step, after acquiring the data, is to use a standardized time-of-flight direct-

geometry spectrometer (DGS) data reduction routine in MANTID [1]. A manual for the

DGS reduction can be found on the ORNL website (https://neutrons.ornl.gov/sites/

default/files/mantid-dgs-data-reduction-for-users-5-03.pdf) and is performed on

the Oak Ridge National Laboratory (ORNL) analysis server (https://analysis.sns.gov/).

An XML file is created and run within an ipython environment (in the command line run

"ipython") using the command "run -i dgsreductionmantid *.xml" where * is replaced

with the name of the user created XML file. An example XML file is shown in Fig. A.2 for

the data collected during scan 95531 from ARCS2017.

Most options shown in this file will not change between runs or even experiments and are

mentioned in more detail in the dgsreduction guide. Some of the more important parameters

are briefly mentioned here. "runs" determines the dataset that will be reduced from the XML

files."save" sets save options, where iofqearray is the most important because it is used in

the following analysis. The incident neutron energy is set with the "efixed" command while

the time delay for the peak of the neutron pulse from the moderator is set with "t0". These
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Acquire INS Data

MANTID DGS reduction

IVanadium(q, E) IEmpty(q, E) ISample(q, E)

Background CorrectionBackground Correction

I ′(q, E)

F (q, t)R(t)

Resolution Correction

F ′(q, t)

F ′
s(q, t) F ′

d(q, t)

Gs(r, t) Gd(r, t)

Separate self
and distinct

parts

Fourier
Transform
(q → r)

Write XML script

Detailed Balance

Fourier Transform
(E → t)

Fourier Transform
(E → t),

average over
q, and optional
detailed balance

Fit S(q) = αF (q, t = 0) to force
F (q, t = 0) → 1 as q → ∞

Figure A.1: A detailed flow chart for the evaluation of inelastic neutron scattering data
acquired at the ARCS beamline. Blue boxes indicate calculations that combine data or set
spacing where care needs to be taken to ensure common spacing.
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Figure A.2: An example XML file reducing the data for run 95531. Many of the lines in
this file are default values and will not need to be changed.

two parameters are linked and must be changed together. They are not directly available

from scattering with the NESL but can be obtained from the beamline scientist. If they

are poorly set a noticeable shift in the location of the elastic line from Ei = 0 will occur.

"calce" tells the reduction routine to calculate the incident energy which must be set to

false. The "vanruns" parameter under the calibration section is the white beam vanadium

calibration scan run number. The energy range should typically go to ±Ei though more

data is available in on the neutron energy gain side (E < 0). The maximum q value is set

by the kinematic restrictions of INS scattering as discussed in Chapter 2. The q-spacing

should be ∼0.5-1.0% of the maximum q on the elastic line. The E-spacing should be ∼1.0%

of the incident energy. The remaining parameters are either self-explanatory, default values,

or available in the dgsreduction guide.

The dgs analysis must be run for the sample, vanadium and empty scans changing the

run numbers as needed in the XML file (the rest of the parameters should be the same). The

vanadium reduction is only needed if the resolution function of the spectrometer is going to

be approximated from the vanadium scattering profile. The empty scattering is necessary
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Figure A.3: Output DGS reduction for a typical liquid sample (right) and empty chamber
(left). The empty chamber only produces a scattering signal near the maximum energy
transfer (Ei = 50meV).

to eliminate scattering from the sample environment (the NESL in this case). However,

scattering from the NESL and other background is extremely small compared to the sample

except at the limit of neutron energy loss (E ≈ Ei). If this region is removed the background

correction can be effectively omitted. The background compared to the sample signal can

be seen in Fig A.3. The need for a background correction increases at lower incident energy

as the signal at the maximum energy transfer begins to impinge on the inelastic scattering

from the sample.

The scattering intensity output from the DGS reduction is given by

I(q, E) = Φ
ε

k1

k2
I0(q, E) ∗R(q, E) , (A.1)

where I0(q, E) is the ideal scattering intensity, R(q, t) is the resolution function of the spec-

trometer, ε is the detector efficiency, Φ is the flux of incident neutrons (using proton charge),
k1
k2

is the ratio of the incoming to outgoing wave number and ∗ signifies the convolution oper-

ation. This is proportional to the dynamic scattering factor (S(q, E)), again convoluted with
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the resolution function. To perform the remaining corrections, the output file containing the

scattering intensity is transferred from the ORNL analysis server to a local computer. The

data can be transferred using the Cyberduck SFTP program (instructions are included on

the analysis server login page). The remaining corrections and analysis are performed via

python using a Jupyter notebook (INS_Analysis.ipynb) for interactive plotting and changing

of input parameters. The line numbers referenced within this section refer to the code for

the analysis located in the next section.

The first correction applied to both the vanadium and sample scattering data is the

background correction (i.e. IS(q, E)− IE(q, E)) (lines 88-105,472). As mentioned previously

this correction can be omitted if the chosen incident neutron energy is high enough. This

would mean that Ei would need to be larger than the extent of the required inelastic signal

by approximately 5 meV. Other than the intense scattering signal near Ei the background

scattering for the NESL is extremely low (again see Fig. A.3).

The next correction applied to the scattering intensity is detailed balance (lines 107-

156,473), which is a result of the equal probability of a neutron losing or gaining energy as

a result of the scattering interaction. The correction is given by:

S(q, E) = S(q,−E)e−
E
kbT , (A.2)

where S(q, E) is replaced with proportional scattering intensity from the DGS reduction

routine. This factor is used to extend the range of data in the positive energy transfer region

and is only applied to locations where data is missing. Several options are available when

using detailed balance: symmetrizing the data with respect to the positive or negative energy

transfer and filling in missing data (as it done here). Figure A.4 shows the DGS reduced

I(q, E) data and the data with both the detailed balance factor applied and corrected for

background scattering.

The intensity data with the background and detailed balance corrections is then Fourier
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Figure A.4: Example INS data before (left) and after (right) the detailed balance cor-
rection. The empty chamber correction was used to remove the scattering signal near
Ei = 20meV.

transformed (lines 179-227,474) to obtain the intermediate scattering function

F (q, t) =
∫
S(q, ω)e−iωtdω , (A.3)

where E = ~ω. The energy range available for the Fourier transform is dependent on the

chosen incident energy but the region may be extended using the detailed balance factor

and by using more of the negative energy transfer region (this region is not limited like the

positive energy transfer). The Fourier transformed data is shown in Fig. A.5. Due to the

shape of the input data nothing past the maximum q value on the elastic line is usable and

the data becomes less trustworthy as q → 0.

Up until this point the data has consisted of a convolution of the resolution function

and the true scattering intensity. After the Fourier transform this is instead a product of

the resolution function (as a function of time) and the scattering intensity. If the resolution

function is determined (lines 283-305) then it can be divided out to obtain the true scattering

signal. The left branch of Fig. D.2 shows the reduction of the vanadium scattering data to
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Figure A.5: Representative plot of the intermediate scattering function (F (q, t)) obtained
by Fourier transforming the dynamic structure factor (S(q, E)).

obtain the resolution function, which is similar to the data reduction except the vanadium

data is averaged over q and detailed balance is not applied. It is assumed that the vanadium

scatters completely incoherently giving just the incident beam profile and that the resolution

function (and vanadium) are independent of q. This last assumption is the more tenuous of

the two but still holds if the vanadium data is truncated to a small enough region in q, E-

space. The resolution function and the resolution function corrected intermediate scattering

function (lines 476-479) are shown in Fig. A.6. The resolution function for ARCS is still

not well understood and this approximate form causes the intermediate scattering function

data to exhibit long time correlations, which is not expected in the liquid state. A better

understanding of the resolution function is necessary to obtain more high quality data.

The final correction to be applied to the scattering data is the normalization factor (lines

307-361, 480), which puts the intensity into real units. This factor can be found from the

vanadium scattering data but here the behavior of S(q) as q → ∞ is used instead. A

multiplicative factor is needed to place the long-q limit of S(q) to one. A complication

arises from the truncated q-space typical of these INS experiments. To reduce the arbitrary
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Figure A.6: (Left) Resolution function obtained from the vanadium scattering data as a
function of time. (Right) Representative intermediate scattering function corrected for the
resolution function. The resolution function causes the long time limit data to drastically
increasing.

choice of the scale factor, previously measured X-ray and neutron (preferred) static structure

factors, S(q), at similar temperatures are used to fit the scale factor (S(q) = αF (q, t = 0)).

A representative result of this procedure is shown in Fig. A.7.

To separate the self and distinct parts (lines 363-420,481) of the intermediate scattering

function a modified version of the method developed by Dahlborg et al. [2] is used. The

fitting function which describes the self part is given by:

Fs(q, t) = Ate
−wtq2 (A.4)

where At the amplitude and wt the width are time dependent fitting parameters. A com-

plication again arises from the small q-range available in these experiments. The fitting

function does not have a very large region of the tailing behavior to fit to which will cause

the fitting function to over fit the main peak in F (q, t) and the low q region. To account for

this a fictitious error is added to the fitting routine which weights the higher q region more

strongly (an arbitrary choice of an exponential weighting in q was used). The relevant errors

and fitting is shown in Fig. A.8.

Finally, the Fourier transform from q → r is performed (lines 229-281, 482) to obtain the
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Figure A.7: Example of fitting F (q, t = 0) INS data to S(q) from previously measured
X-ray diffraction. This fitting method is used to force F (q, t = 0) to approach one at high-q
giving a multiplicative normalization factor. The scale factor from this analysis is α = 0.888.
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Figure A.8: Plot of F (q, t) at two times t =0.2 ps and t =1.5 ps with modified error bars.
The data is fit to a Gaussian function using the modified error bars (orange) emphasize the
long q tail and without error bars (green).
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Figure A.9: A representative distinct Van Hove correlation function.

distinct Van Hove correlation function. This Fourier transform is given by

Gd(r, t)− 1 = 1
2πρ

∫
Fd(q, t)

q

r
sin(qr)dq , (A.5)

where ρ is the sample density. An example distinct Van Hove correlation function is shown

in Fig. A.9.

A.2 Python Code

The previous section documented the corrections and analysis performed to obtain the

distinct Van Hove correlation function from INS data. This section gives the code developed

which performs the corrections after the DGS reduction. The included code is written as

a standard python script but it is better to run it in an interactive environment (such as

a Jupyter notebook). There is currently no output/saving feature included by default but

could easily be added by using the pandas package DataFrame saving methods.

1 ’ ’ ’ This code u s e s the output f i l e ( io fqecolumn ) o f the MANTID dgs r e d u c t i o n r o u t i n e to o b t a i n the s e l f and
d i s t i n c t p a r t s o f the Van Hove c o r r e l a t i o n f u n c t i o n . The remaining c o r r e c t i o n s ( namely a background

c o r r e c t i o n , d e t a i l e d balance , r e s o l u t i o n f u n c t i o n c o r r e c t i o n , and a n o r m a l i z a t i o n s c a l e f a c t o r ) are
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performed . The i n t e r m e d i a t e s c a t t e r i n g f u n c t i o n i s then s p l i t i n t o the s e l f and d i s t i n c t p a r t s and
F o u r i e r transform to o b t a i n the Van Hove c o r r e l a t i o n f u n c t i o n . C o n s i s t e n t with Python 2 . 7 . 1 5 .

2 Written by : Robert A s h c r a f t ’ ’ ’
3
4 from glob import glob
5 import numpy as np #1 . 1 4 . 3
6 import pandas as pd #0 . 2 3 . 0
7 from f u n c t o o l s import p a r t i a l
8 from s c i p y import i n t e g r a t e #1 . 1 . 0
9 from numba import n j i t #0 . 3 8 . 0

10 from l m f i t import Parameters , f i t _ r e p o r t , minimize #0 . 9 . 1 0
11 from s c i p y . i n t e r p o l a t e import s p l r e p , s p l e v #1 . 1 . 0
12
13 #P l o t t i n g Options
14 import m a t p l o t l i b . pyplot as p l t
15 from m a t p l o t l i b import t i c k e r , cm
16 import m a t p l o t l i b . c o l o r s as mcolors
17 from m a t p l o t l i b import r c
18 r c ( ’ f o n t ’ ,∗∗{ ’ f a m i l y ’ : ’ sans−s e r i f ’ , ’ sans−s e r i f ’ : [ ’ H e l v e t i c a ’ ] } )
19 r c ( ’ t e x t ’ , u s e t e x=F a l s e )
20 r c ( ’ axes ’ , l a b e l s i z e =20)
21 r c ( ’ y t i c k ’ , l a b e l s i z e =16)
22 r c ( ’ x t i c k ’ , l a b e l s i z e =16)
23 p l t . r c ( ’ axes ’ , t i t l e s i z e =20)
24 p l t . rcParams [ " f i g u r e . f i g s i z e " ] = [ 1 0 , 1 2 ]
25
26 d e f makevariable ( s t a r t , end , s p a c i n g ) :
27 ’ ’ ’ Creates an e v e n l y spaced array s t a r t i n g at s t a r t and ending c l o s e s t to end given the s p a c i n g
28 IN :
29 s t a r t : s t a r t i n g l o c a t i o n ( f l o a t )
30 end : maximum ending l o c a t i o n ( f l o a t )
31 s p a c i n g : v a r i a b l e s p a c i n g ( f l o a t )
32 OUT:
33 var : v a r i a b l e array (numpy array o f f l o a t ) ’ ’ ’
34
35 var = np . arange ( s t a r t , end+spacing , s p a c i n g )
36 var = np . around ( var , d e c i m a l s =2)
37 var = var [ var<=end ]
38 r e t u r n ( var )
39
40 d e f readdata ( f ) :
41 ’ ’ ’ Reads the data f i l e f f o r ( io fqecolumn format from dgs r e d u c t i o n ) f o r the momentum
42 t r a n s f e r ( q ) , energy t r a n s f e r (E) , data ( I ( q , E) ) , and e r r o r ( e r r ( q , E) ) i n the format below .
43 IN :
44 f : f i l e path ( s t r i n g )
45 FILE FORMAT:
46 Number−of−E Number−of−Q
47
48 q1
49 q2
50 . . .
51 qN
52
53 E1
54 E2
55 . . .
56 EN
57
58 I ( q1 , E1) I ( q2 , E1) . . . I (qN , E1)
59 I ( q1 , E2) . . .
60 . . . . . .
61 I ( q1 ,EN) . . .
62
63 e r r ( q1 , E1) e r r ( q2 , E1) . . . e r r (qN , E1)
64 e r r ( q1 , E2) . . .
65 . . . . . .
66 e r r ( q1 ,EN) . . .
67 OUT:
68 q : momentum t r a n s f e r array (numpy array o f f l o a t )
69 E : energy t r a n s f e r array (numpy array o f f l o a t )
70 data : i n t e n s i t y DataFrame ( pandas DataFrame o f f l o a t )
71 e r r o r : i n t e n s i t y e r r o r DataFrame ( pandas DataFrame o f f l o a t ) ’ ’ ’
72
73 s i z e s = pd . read_csv ( f , del im_whitespace=True , nrows =1,names=[ ’ E s i z e ’ , ’ q s i z e ’ ] )
74 q = pd . read_csv ( f , del im_whitespace=True , sk iprows =2, nrows=s i z e s . l o c [ 0 , ’ q s i z e ’ ] , names=[ ’ q ’ ] )
75 q = q . l o c [ : , ’ q ’ ] . v a l u e s
76 q = np . around ( q , d e c i m a l s =2)
77 E = pd . read_csv ( f , del im_whitespace=True , sk iprows=2+s i z e s . l o c [ 0 , ’ q s i z e ’ ] , nrows=s i z e s . l o c [ 0 , ’ E s i z e ’ ] , names

=[ ’E ’ ] )
78 E = E . l o c [ : , ’E ’ ] . v a l u e s
79 E = np . around (E, d e c i m a l s =2)
80 data = pd . read_csv ( f , del im_whitespace=True , sk iprows=3+s i z e s . sum ( 1 ) [ 0 ] ,
81 nrows=s i z e s . l o c [ 0 , ’ E s i z e ’ ] , names=q )
82 data . index=E
83 e r r o r s = pd . read_csv ( f , del im_whitespace=True , sk iprows=3+s i z e s . sum ( 1 ) [0 ]+ s i z e s . l o c [ 0 , ’ E s i z e ’ ] ,
84 nrows=s i z e s . l o c [ 0 , ’ E s i z e ’ ] , names=q )
85 e r r o r s . index=E
86 r e t u r n ( q , E, data , e r r o r s )
87
88 d e f EmptyCorrection ( emptypath , data , e r r o r s ) :
89 ’ ’ ’ Reads the emtpy data and c o r r e c t s the smaple data from the empty
90 IN :
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91 emptypath : path to the empty data ( s t r i n g )
92 data : I ( q , E) data f o r the sample ( pandas DataFrame o f f l o a t )
93 e r r o r s : I ( q , E) e r r o r data f o r the sample ( pandas DataFrame o f f l o a t )
94 OUT:
95 c o r r d a t a : Empty c o r r e c t e d data ( pandas DataFrame o f f l o a t )
96 c o r r e r r : Empty c o r r e c t e d data e r r o r ( pandas DataFrame o f f l o a t ) ’ ’ ’
97
98 i f emptypath != None :
99 q , E, datae , e r r o r s e = readdata ( emptypath )

100 c o r r d a t a = data−datae
101 c o r r e r r = np . s q r t ( np . square ( e r r o r s )+np . square ( e r r o r s e ) )
102 e l s e :
103 c o r r d a t a = data
104 c o r r e r r = e r r o r s
105 r e t u r n ( corrdata , c o r r e r r )
106
107 d e f d e t a i l e d B a l a n c e (Temp, data , e r r o r s , Temperr=None , Ecut=None ) :
108 ’ ’ ’ Performs the d e t a i l e d balance c o r r e c t i o n on the input data and e r r o r s u s i n g temperature Temp
109 IN :
110 Temp : sample temperature ( f l o a t )
111 data : I ( q , E) data ( pandas DataFrame f l o a t )
112 e r r o r s : I ( q , e ) e r r o r s ( pandas DataFrame f l o a t )
113 Temperr : [ o p t i o n a l ] e r r o r i n sample temperature ( f l o a t )
114 Ecut : [ o p t i o n a l ] r e g i o n to e x c l u d e from d e t a i l e d balance c a l c u l a t i o n [ Ecut , Emax ] ( f l o a t )
115 OUT:
116 dbdata : I ( q , E) with d e t a i l e d balance ( pandas DataFrame f l o a t )
117 d b e r r o r s : I ( q , E) e r r o r s with d e t a i l e d balance ( pandas DataFrame f l o a t ) ’ ’ ’
118
119 kb = 0.0861733 #meV/ Kelvin
120 E = data . index . v a l u e s
121 dbdata = data . copy ( deep=True )
122 d b e r r o r s = e r r o r s . copy ( deep=True )
123 i f Ecut !=None :
124 dbdata . l o c [ s l i c e ( Ecut , None ) , : ] = np . nan
125 i f Temperr i s None :
126 f o r i i n E [ E<0]:
127 ind = dbdata . l o c [− i , : ] . i s n u l l ( )
128 dbdata . l o c [− i , ind ] = dbdata . l o c [ i , ind ]∗np . exp(− i /( kb∗Temp) )
129 d b e r r o r s . l o c [− i , ind ] = d b e r r o r s . l o c [ i , ind ]∗np . exp(− i /( kb∗Temp) )
130 e l s e :
131 f o r i i n E [ E<0]:
132 ind = dbdata . l o c [− i , : ] . i s n u l l ( )
133 dbdata . l o c [− i , ind ] = dbdata . l o c [ i , ind ]∗np . exp(− i /( kb∗Temp) )
134 y = np . s q r t ( np . square ( d b e r r o r s . l o c [ i , ind ] / dbdata . l o c [ i , ind ] )+np . square ( ( i ∗Temperr ) /( kb∗Temp∗Temp) ) )
135 d b e r r o r s . l o c [− i , ind ] = dbdata . l o c [− i , ind ]∗ y
136 r e t u r n ( dbdata , d b e r r o r s )
137
138 @nj it
139 d e f t r a p z e ( y , x , yerr , i r e=True ) :
140 ’ ’ ’ T r a p e z o i d a l i n t e g r a t i o n r o u t i n e which i n c l u d e s an e r r o r c a l c u l a t i o n
141 IN :
142 y : f ( x ) v a l u e s to i n t e g r a t e over (numpy array o f f l o a t )
143 x : x v a l u e s f o r the i n t e g r a l (numpy array o f f l o a t )
144 y e r r : e r r o r v a l u e s f o r f ( x ) (numpy array o f f l o a t )
145 i r e : s e t s e r r o r s to be independent and random ( boolean )
146 OUT:
147 s / 2 . 0 : t r a p e z o i d a l i n t e g r a t i o n o f y over x ( f l o a t )
148 e : e r r o r o f the i n t e g r a t i o n ( f l o a t ) ’ ’ ’
149
150 yind = np . i s f i n i t e ( y )
151 i f np . any ( ~ yind ) :
152 y = y [ yind ]
153 x = x [ yind ]
154 y e r r = y e r r [ yind ]
155 y e r r i n d = np . i s f i n i t e ( y e r r )
156 i f np . any ( ~ y e r r i n d ) :
157 y e r r [ ~ y e r r i n d ] = 0. 02∗y [ ~ y e r r i n d ]
158 s = 0 . 0
159 e = 0 . 0
160 f o r i i n range ( 1 , l e n ( x ) ) :
161 xval = x [ i ]−x [ i −1]
162 yval = y [ i ]+y [ i −1]
163 z = xval∗yval
164 s += z
165 i f i r e :
166 y v a l e r r = np . s q r t ( np . square ( y e r r [ i ] )+np . square ( y e r r [ i −1]) )
167 z e r r = np . abs ( xval )∗ y v a l e r r
168 e += np . square ( z e r r )
169 e l s e :
170 y v a l e r r = y e r r [ i ]+ y e r r [ i −1]
171 z e r r = np . abs ( xval )∗ y v a l e r r
172 e += z e r r
173 i f i r e :
174 e = np . s q r t ( e ) / 2 . 0
175 e l s e :
176 e = e / 2 . 0
177 r e t u r n ( s / 2 . 0 , e )
178
179 @nj it
180 d e f FTe_E2t ( data , e r r o r s , q , E, t , Eregion , i r e ) :
181 ’ ’ ’ F o u r i e r transfrom o f S ( q , E) data to F( q , t )
182 IN :
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183 data : S ( q , E) data (numpy qn by En array o f f l o a t )
184 e r r o r s : S ( q , E) e r r o r data (numpy qn by En array o f f l o a t )
185 q : momentum t r a n s f e r data (numpy array o f f l o a t )
186 E : energy t r a n s f e r data (numpy array o f f l o a t )
187 t : time data (numpy array o f f l o a t )
188 Eregion : bounds f o r energy t r a n s f e r r e g i o n ( array o f f l o a t )
189 i r e : c a l c u l a t e e r r o r s as independent and random ( boolean )
190 OUT:
191 f t d a t a : F( q , t ) F o u r i e r transformed data (2D numpy array o f f l o a t )
192 f t e r r o r s : F( q , t ) e r r o r data (2D numpy array o f f l o a t ) ’ ’ ’
193
194 hbar = 0.658212 #meV∗ps
195 M,N = data . shape
196 L = l e n ( t )
197 f t d a t a = np . z e r o s ( ( L ,N) )
198 f t d a t a e r r = np . z e r o s ( ( L ,N) )
199 Einds = np . where ( (E<=Eregion [ 1 ] ) &(E>=Eregion [ 0 ] ) ) [ 0 ]
200 x = E [ Einds ] / hbar
201 y = data [ Einds , : ]
202 y e r r = e r r o r s [ Einds , : ]
203 f o r i i n range (L) :
204 f o r j i n range (N) :
205 z = np . cos ( x∗ t [ i ] ) ∗y [ : , j ]
206 z e r r = np . abs ( np . cos ( x∗ t [ i ] ) )∗ y e r r [ : , j ]
207 f t d a t a [ i , j ] , f t d a t a e r r [ i , j ] = t r a p z e ( z , x=x , y e r r=z e r r , i r e=i r e )
208 r e t u r n ( f t d a t a , f t d a t a e r r )
209
210 d e f FTEt_wrapper ( data , e r r o r s , q , E, t , Eregion , i r e ) :
211 ’ ’ ’ Performs the F o u r i e r Transform energy to time and p l a c e s the output i n a pandas dataframe
212 IN :
213 data : S ( q , E) data (numpy qn by En array o f f l o a t )
214 e r r o r s : S ( q , E) e r r o r data (numpy qn by En array o f f l o a t )
215 q : momentum t r a n s f e r data (numpy array o f f l o a t )
216 E : energy t r a n s f e r data (numpy array o f f l o a t )
217 t : time data (numpy array o f f l o a t )
218 Eregion : bounds f o r energy t r a n s f e r r e g i o n ( array o f f l o a t )
219 i r e : c a l c u l a t e e r r o r s as independent and random ( boolean )
220 OUT:
221 f t d a t a : F( q , t ) F o u r i e r transformed data ( pandas DataFrame o f f l o a t )
222 f t e r r o r s : F( q , t ) e r r o r data ( pandas DataFrame o f f l o a t ) ’ ’ ’
223
224 f t d a t a , f t e r r o r s = FTe_E2t ( data . values , e r r o r s . values , q , E, t , Eregion , i r e )
225 f t d a t a = pd . DataFrame ( f t d a t a , index=t , columns=q )
226 f t e r r o r s = pd . DataFrame ( f t e r r o r s , index=t , columns=q )
227 r e t u r n ( f t d a t a , f t e r r o r s )
228
229 @nj it
230 d e f FTe_q2r ( data , e r r o r s , t , q , r , qregion , i r e ) :
231 ’ ’ ’ F o u r i e r transfrom o f F( q , t ) data to G( r , t )
232 IN :
233 data : F( q , t ) data (numpy 2D array o f f l o a t )
234 e r r o r s : F( q , t ) e r r o r data (numpy 2D array o f f l o a t )
235 t : time data (numpy array o f f l o a t )
236 q : momentum t r a n s f e r data (numpy array o f f l o a t )
237 r : p o s i t i o n data (numpy array o f f l o a t )
238 q r e g i o n : bounds f o r momentum t r a n s f e r r e g i o n ( array o f f l o a t )
239 i r e : c a l c u l a t e e r r o r s as independent and random ( boolean )
240 OUT:
241 f t d a t a : G( r , t ) F o u r i e r transformed data (2D numpy array o f f l o a t )
242 f t e r r o r s : G( r , t ) e r r o r data (2D numpy array o f f l o a t ) ’ ’ ’
243
244 M,N = data . shape
245 L = l e n ( r )
246 f t d a t a = np . z e r o s ( (M, L) )
247 f t e r r o r s = np . z e r o s ( (M, L) )
248 qinds = np . where ( ( q<=q r e g i o n [ 1 ] ) &(q>=q r e g i o n [ 0 ] ) ) [ 0 ]
249 x = q [ qinds ]
250 y = data [ : , q inds ]
251 y e r r = e r r o r s [ : , q inds ]
252 f o r i i n range (L) :
253 f o r j i n range (M) :
254 z = x∗np . s i n ( x∗ r [ i ] ) ∗y [ j , : ] / r [ i ]
255 z e r r = np . abs ( x∗np . s i n ( x∗ r [ i ] ) / r [ i ] ) ∗ y e r r [ j , : ]
256 f t d a t a [ j , i ] , f t e r r o r s [ j , i ] = t r a p z e ( z , x=x , y e r r=z e r r , i r e=i r e )
257 f t d a t a = f t d a t a / ( 2 .∗np . p i ∗np . p i )
258 f t e r r o r s = f t e r r o r s / ( 2 .∗np . p i ∗np . p i )
259 r e t u r n ( f t d a t a , f t e r r o r s )
260
261 d e f FTqr_wrapper ( data , e r r o r s , t , q , r , qregion , dens , denserr , i r e ) :
262 ’ ’ ’ Performs the F o u r i e r Transform momentum t r a n s f e r to p o s i t i o n and p l a c e s the output i n a pandas

dataframe
263 IN :
264 data : F( q , t ) data (numpy 2D array o f f l o a t )
265 e r r o r s : F( q , t ) e r r o r data (numpy 2D array o f f l o a t )
266 t : time data (numpy array o f f l o a t )
267 q : momentum t r a n s f e r data (numpy array o f f l o a t )
268 r : p o s i t i o n data (numpy array o f f l o a t )
269 q r e g i o n : bounds f o r momentum t r a n s f e r r e g i o n ( array o f f l o a t )
270 dens : Sample d e n s i i t y ( f l o a t )
271 d e n s e r r : e r r o r i n sample d e n s i t y ( f l o a t )
272 i r e : c a l c u l a t e e r r o r s as independent and random ( boolean )
273 OUT:
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274 f t d a t a : G( r , t ) F o u r i e r transformed data (2D numpy array o f f l o a t )
275 f t e r r o r s : G( r , t ) e r r o r data (2D numpy array o f f l o a t ) ’ ’ ’
276
277 f t d a t a , f t e r r o r s = FTe_q2r ( data . values , e r r o r s . values , t , q , r , qregion , i r e )
278 f t g d a t a = pd . DataFrame ( f t d a t a , index=t , columns=r ) / dens
279 f t g e r r o r s = np . abs ( f t d a t a / dens )∗np . s q r t ( np . square ( f t e r r o r s / f t d a t a )+np . square ( d e n s e r r / dens ) )
280 f t g e r r o r s = pd . DataFrame ( f t g e r r o r s , index=t , columns=r )
281 r e t u r n ( f t g d a t a , f t g e r r o r s )
282
283 d e f ResFunc ( path , emptypath , temp , t , Eregion , qregion , vanEcut , i r e ) :
284 ’ ’ ’ Creates the r e s o l u t i o n f u n c t i o n from vanadium data ( empty c o r r e c t e d )
285 IN :
286 path : path f o r the vanadium s c a t t e r i n g data ( s t r i n g )
287 emptypath : path f o r the empty s c a t t e r i n g data ( s t r i n g )
288 temp : temperature f o r d e t a i l e d balance [ not c u r r e n t l y used ] ( f l o a t )
289 t : time data (numpy array o f f l o a t )
290 Eregion : energy r e g i o n to F o u r i e r transform over ( array o f f l o a t )
291 q r e g i o n : momentum t r a n s f e r r e g i o n to F o u r i e r transform over ( array o f f l o a t )
292 vanEcut : energy r e g i o n to l i m i t d e t a i l e d balance [ not c u r r e n t l y used ] ( f l o a t )
293 i r e : c a l c u l a t e e r r o r s as independent and random ( boolean )
294 OUT:
295 f t d a t a : F( q , t ) vanadium r e s o l u t i o n data ( pandas DataFrame o f f l o a t )
296 f t e r r o r s : F( q , t ) vanadium r e s o l u t i o n data e r r o r s ( pandas DataFrame o f f l o a t ) ’ ’ ’
297
298 q , E, data , e r r o r s = readdata ( path )
299 data , e r r o r s = EmptyCorrection ( emptypath , data , e r r o r s )
300 data = data . l o c [ s l i c e ( Eregion [ 0 ] , Eregion [ 1 ] ) , s l i c e ( q r e g i o n [ 0 ] , q r e g i o n [ 1 ] ) ]
301 e r r o r s = e r r o r s . l o c [ s l i c e ( Eregion [ 0 ] , Eregion [ 1 ] ) , s l i c e ( q r e g i o n [ 0 ] , q r e g i o n [ 1 ] ) ]
302 q = data . columns . v a l u e s
303 E = data . index . v a l u e s
304 f t d a t a , f t e r r o r s = FTEt_wrapper ( data , e r r o r s , q , E, t , Eregion , i r e )
305 r e t u r n ( f t d a t a , f t e r r o r s )
306
307 d e f Normalize_fqt ( sqpath , q l i m i t s , fqt , f q t e r r , v e r b o s e=F a l s e ) :
308 ’ ’ ’ Performs the n o r m a l i z a t i o n to r e a l u n i t s o f the sample data u s i n g p r e v i o u s l y measured S ( q ) data
309 IN :
310 sqpath : path f o r the S ( q ) data ( s t r i n g )
311 q l i m i t s : l i m i t s f o r the range i n q−space ( array o f f l o a t )
312 f q t : I n t e m e d i a t e s c a t t e r i n g f u n c t i o n to f i t ( pandas DataFrame o f f l o a t )
313 f q t e r r : Error i n i n t e r m e d i a t e s c a t t e r i n g f u n c t i o n ( pandas DataFrame o f Float )
314 v e r b o s e : Turn on to p l o t f i t and p r i n t f i t r e p o r t ( boolean )
315 OUT:
316 normfqt : I n t e r m e d i a t e s c a t t e r i n g f u n c t i o n with norm f a c t o r a p p l i e d ( pandas DataFrame o f f l o a t

)
317 n o rm fq te r r : Error i n new I n t e r m e d i a t e s c a t t e r i n g f u n c t i o n ( pandas DataFrame o f f l o a t )
318 norm : Normal izat ion f a c t o r ( f l o a t )
319 normerr : Error i n n o r m a l i z a t i o n f a c t o r ( f l o a t ) ’ ’ ’
320
321 d e f r e s i d u a l n o r m ( pars , x , y0 , data=None , eps=None ) :
322 # F i t t i n g f u n c t i o n y=A∗F( q , t =0)
323 p a r v a l s = pars . v a l u e s d i c t ( )
324 amp = p a r v a l s [ ’amp ’ ]
325 model = y0∗amp
326 i f data i s None :
327 r e t u r n ( model )
328 i f eps i s None :
329 r e t u r n ( model−data )
330 r e t u r n ( ( model−data ) / eps )
331
332 d e f norm_value ( sqpath , x , y , yerr , v e r b o s e=F a l s e ) :
333 ’ ’ ’ Performs the f i t t i n g to determine the n o r m a l i z a t i o n f a c t o r by u s i n g a s p l i n e on the S ( q ) data
334 to match the F( q , t =0) p o i n t s . ’ ’ ’
335 sqdata = pd . read_csv ( sqpath , del im_whitespace=True , sk iprows =4, index_col =0, u s e c o l s = [ 0 , 1 , 2 ] , names=[ ’ q ’ , ’

Sq ’ , ’ Err ’ ] )
336 s p l i n e r e p = s p l r e p ( sqdata . index . values , sqdata . l o c [ : , ’ Sq ’ ] , s =0)
337 y s p l i n e = s p l e v ( x , s p l i n e r e p , der =0)
338
339 params = Parameters ( )
340 params . add ( ’amp ’ , va lue =1.0)
341 out = minimize ( res idualnorm , params , a r g s =(x , y ) , kws={ ’ data ’ : y s p l i n e , ’ eps ’ : y e r r })
342 i f v e r b o s e :
343 f i g , ax1 = p l t . s u b p l o t s ( f i g s i z e =(10 ,10) )
344 ax1 . p l o t ( x , y s p l i n e , l a b e l= ’ $S ( q ) $ Data ’ )
345 ax1 . p l o t ( x , r e s i d u a l n o r m ( out . params , x , y ) , l i n e s t y l e= ’ none ’ , marker= ’ . ’ , l a b e l= ’ F i t t e d $F ( q , 0 ) $ Data ’ )
346 ax1 . a x h l i n e ( y =1.0 , xmin =0.0 ,xmax=1.0 , l i n e s t y l e= ’−− ’ , c o l o r= ’ black ’ )
347 ax1 . s e t _ y l a b e l ( r ’ $S ( q ) $ ’ )
348 ax1 . s e t _ x l a b e l ( r ’Momentum Transfer , q [ $\mathrm{\AA}^{−1}$ ] ’ )
349 ax1 . l e g e n d ( f o n t s i z e =20)
350 p l t . show ( )
351 p r i n t ( f i t _ r e p o r t ( out ) )
352 r e t u r n ( out . params [ ’amp ’ ] . value , out . params [ ’amp ’ ] . s t d e r r )
353
354 ind = f q t . index . v a l u e s [ 0 ]
355 x = f q t . l o c [ ind , s l i c e ( q l i m i t s [ 0 ] , q l i m i t s [ 1 ] ) ] . index . v a l u e s
356 y = f q t . l o c [ ind , s l i c e ( q l i m i t s [ 0 ] , q l i m i t s [ 1 ] ) ] . v a l u e s
357 y e r r = f q t e r r . l o c [ ind , s l i c e ( q l i m i t s [ 0 ] , q l i m i t s [ 1 ] ) ] . v a l u e s
358 norm , normerr = norm_value ( sqpath , x , y , yerr , v e r b o s e=v e r b o s e )
359 normfqt = f q t ∗norm
360 no rm fq t er r = np . abs ( normfqt )∗np . s q r t ( np . square ( f q t e r r / f q t )+np . square ( normerr /norm ) )
361 r e t u r n ( normfqt , normfqterr , norm , normerr )
362
363 d e f s e p a r a t e _ f q t ( fqt , f q t e r r , t , q , q l i m i t s ) :
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364 ’ ’ ’ Performs the f i t t i n g to s e p a r a t e the s e l f and d i s t i n c t p a r t s o f the i n t e r m e d i a t e s c a t t e r i n g f u n c t i o n
365 IN :
366 f q t : I n t e r m e d i a t e s c a t t e r i n g f u n c t i o n to be f i t ( pandas DataFrame o f f l o a t )
367 f q t e r r : Error i n i n t e r m e d i a t e s c a t t e r i n g f u n c t i o n ( pandas DataFrame o f f l o a t )
368 t : array o f time v a l u e s (numpy array o f f l o a t )
369 q : array o f momentum t r a n s f e r v a l u e s (numpy array o f f l o a t )
370 q l i m i t s : l i m i t s f o r the q−r e g i o n ( array o f f l o a t )
371 OUT:
372 f s q t : S e l f i n t e r m e d i a t e s c a t t e r i n g f u n c t i o n ( pandas DataFrame o f f l o a t )
373 f s q t e r r : e r r o r i n the s e l f i n t e r m e d i a t e s c a t t e r i n g f u n c t i o n ( pandas DataFrame o f f l o a t )
374 f d q t : D i s t i n c t i n t e r m e d i a t e s c a t t e r i n g f u n c t i o n ( pandas DataFrame o f f l o a t )
375 f d q t e r r : e r r o r i n the d i s t i n c t i n t e r m e d i a t e s c a t t e r i n g f u n c t i o n ( pandas DataFrame o f f l o a t )
376 widthdat : array o f width f i t parameter v a l u e s (numpy array o f f l o a t )
377 ampdat : array o f amplitude f i t parameter v a l u e s (numpy array o f f l o a t ) ’ ’ ’
378
379 d e f r e s i d u a l ( pars , x , data=None , eps=None ) :
380 # F i t t i n g f u n c t i o n y = A∗exp(−w∗x ^2)
381 p a r v a l s = pars . v a l u e s d i c t ( )
382 amp = p a r v a l s [ ’amp ’ ]
383 width = p a r v a l s [ ’ width ’ ]
384 model = amp∗np . exp(−width∗x∗x )
385 i f data i s None :
386 r e t u r n ( model )
387 i f eps i s None :
388 r e t u r n ( model−data )
389 r e t u r n ( ( model−data ) / eps )
390
391 params = Parameters ( )
392 params . add ( ’amp ’ , value =1.0 , vary=True )
393 params . add ( ’ width ’ , va lue =1.0E−1,min =0.0)
394
395 M,N = f q t . shape
396 f s q t = np . z e r o s ( [M,N] )
397 f s q t e r r = np . z e r o s ( [M,N] )
398 x = f q t . l o c [ t [ 0 ] , s l i c e ( q l i m i t s [ 0 ] , q l i m i t s [ 1 ] ) ] . index . v a l u e s
399 widthdat = np . z e r o s ( [ l e n ( t ) , 2 ] )
400 ampdat = np . z e r o s ( [ l e n ( t ) , 2 ] )
401 f o r n , i i n enumerate ( t ) :
402 y = f q t . l o c [ i , s l i c e ( q l i m i t s [ 0 ] , q l i m i t s [ 1 ] ) ] . v a l u e s
403 y e r r = np . exp(−x / 2 . 0 ) #Forces f i t t i n g to long q t a i l
404 out = minimize ( r e s i d u a l , params , a r g s =(x , ) , kws={ ’ data ’ : y , ’ eps ’ : y e r r })
405 A = out . params [ ’amp ’ ] . va lue
406 Aerr =out . params [ ’amp ’ ] . s t d e r r
407 w = out . params [ ’ width ’ ] . va lue
408 werr = out . params [ ’ width ’ ] . s t d e r r
409 widthdat [ n , : ] = [ w, werr ]
410 ampdat [ n , : ] = [A, Aerr ]
411 f s q t [ n , : ] = r e s i d u a l ( out . params , q )
412 t r y :
413 f s q t e r r [ n , : ] = np . abs ( f s q t [ n , : ] ) ∗np . s q r t ( np . square ( Aerr /A)+np . square ( q∗q∗werr )−2.∗q∗q∗out . covar

[ 1 , 1 ] /A)
414 except TypeError :
415 f s q t e r r [ n , : ] = np . abs ( f s q t [ n , : ] ) ∗np . s q r t ( np . square ( Aerr /A)+np . square ( q∗q∗werr ) )
416 f s q t = pd . DataFrame ( f s q t , index=t , columns=q )
417 f s q t e r r = pd . DataFrame ( f s q t e r r , index=t , columns=q )
418 f d q t = fqt−f s q t
419 f d q t e r r = np . s q r t ( np . square ( f q t e r r )+np . square ( f s q t e r r ) )
420 r e t u r n ( f s q t , f s q t e r r , fdqt , f d q t e r r , widthdat , ampdat )
421
422 d e f g e t _ g s r t ( width , amp , t , r ) :
423 ’ ’ ’ C a l c u l a t e s the s e l f Van Hove c o r r e l a t i o n f u n c t i o n a n a l y t i c a l l y from f i t parameters
424 IN :
425 width : array o f width f i t parameter v a l u e s (numpy array o f f l o a t )
426 amp : array o f amplitude f i t parameter v a l u e s (numpy array o f f l o a t )
427 t : array o f time v a l u e s (numpy array o f f l o a t )
428 r : p o s i t i o n data (numpy array o f f l o a t )
429 OUT:
430 g s r t : S e l f Van Hove f u n c t i o n ( pandas DataFrame o f f l o a t )
431 g s r t e r r : e r r o r i n the s e l f Van Hove f u n c t i o n ( pandas DataFrame o f f l o a t ’ ’ ’
432
433 M,N = ( l e n ( t ) , l e n ( r ) )
434 g s r t = np . z e r o s ( [M,N] )
435 g s r t e r r = np . z e r o s ( [M,N] )
436 f o r i i n range (M) :
437 g s r t [ i , : ] = amp [ i , 0 ] ∗ np . exp(−( r∗ r ) /(4∗width [ i , 0 ] ) ) / ( 4 .∗np . p i ∗width [ i , 0 ] ) ∗∗ ( 3 . / 2 . )
438 g s r t e r r [ i , : ] = g s r t [ i , : ] ∗ ( ( r∗r−6.∗width [ i , 0 ] ) /(4∗np . square ( width [ i , 0 ] ) ) )∗width [ i , 1 ]
439 g s r t = pd . DataFrame ( g s r t , index=t , columns=r )
440 g s r t e r r = pd . DataFrame ( g s r t e r r , index=t , columns=r )
441 r e t u r n ( g s r t , g s r t e r r )
442
443 ################################ INPUTS #####################################
444 path = ’H: \ \ ARCS2017\\20180612 _Zr80Pt20_wRes\\ ’
445 #∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Empty Chamber Input Options ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗#
446 emptypath = None
447
448 #∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Vanadium Input Options ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗#
449 vanpath = path+ ’ 20180330 _Vanadium_run_number_95518_iofqearray . dat ’
450 vantemp = 2 9 5 . #Vanadium temperature i n Kelvin
451 vanECut = 1 0 . 0 #High energy c u t o f f f o r vanadium
452
453 #∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Sample Input Options ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗#
454 datapath = path+ ’ 20171002 _Zr80Pt20_20meV_plus_350C_run_number_95534_iofqearray . dat ’
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455 temp = 1560.+273. #Sample temperature i n Kelvin
456 temperr = 4 8 . #Error i n sample temperature
457 Ecut = 1 5 . 0 #High energy c u t o f f f o r the sample
458 t = makevariable ( 0 . 0 , 3 . 0 , 0 . 0 2 )
459 r = makevariable ( 0 . 1 , 1 5 . 0 , 0 . 0 5 )
460 Eregion = [ −6 0 . 0 , 6 0 . 0 ] #Region i n energy space to use
461 q r e g i o n = [ 1 . 5 , 5 . 5 ] #Region i n q space to use
462 dens = 0.04436 #Number d e n s i t y i n atoms/Angstrom ^3
463 d e n s e r r = 0 .0 2∗ dens #Number d e n s i t y e r r o r
464 i r e = True
465
466 #∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Normal izat ion Options ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗#
467 sqpath = ’H: \ \ BESL2016\\ Zr80Pt20 \\ Step_Hold \\ Curvature_Corrected \\

STL16059_Increment_1_Step_1544C_11_19_peaks . S_sm . S . dat ’
468 q l i m i t s = [ 1 . 5 , 5 . 5 ] #Limits f o r S ( q ) should be the same as q r e g i o n
469
470 #∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Actual A n a l y s i s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗#
471 q , E, data , e r r o r s = readdata ( datapath )
472 data , e r r o r s = EmptyCorrection ( emptypath , data , e r r o r s )
473 dbdata , d b e r r o r s = d e t a i l e d B a l a n c e ( temp , data , e r r o r s , temperr , Ecut )
474 fqtdata , f q t e r r o r s = FTEt_wrapper ( dbdata , d b e r r o r s , q , E, t , Eregion , i r e )
475 res , r e s e r r = ResFunc ( vanpath , emptypath , vantemp , t , [ − 6 0 . , 1 5 . ] , [ 1 . 0 , 2 . 5 ] , vanECut , i r e=True )
476 r e s e r r = np . nanstd ( res , a x i s =1)
477 r e s = np . nanmean ( res , a x i s =1)
478 f q t r e s = f q t d a t a . d i v i d e ( res , a x i s =0)
479 f q t r e s e r r = np . abs ( f q t r e s )∗np . s q r t ( np . square ( f q t e r r o r s / f q t d a t a ) . add ( np . square ( r e s e r r / r e s ) , a x i s =0) )
480 normfqtres , n o r m f q t r e s e r r , norm , normerr = Normalize_fqt ( sqpath , q l i m i t s , f q t r e s , f q t r e s e r r , v e r b o s e=True )
481 f s q t , f s q t e r r , fdqt , f d q t e r r , widthdat , ampdat = s e p a r a t e _ f q t ( normfqtres , n o r m f q t r e s e r r , t , q , q l i m i t s )
482 gdrt , g d r t e r r = FTqr_wrapper ( fdqt , f d q t e r r , t , q , r , qregion , dens , denserr , i r e )
483 g s r t , g s r t e r r = g e t _ g s r t ( widthdat , ampdat , t , r )
484 g t r t , g t r t e r r = FTqr_wrapper ( normfqtres , n o r m f q t r e s e r r , t , q , r , qregion , dens , denserr , i r e )
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Appendix B: Guide to LAMMPS

This appendix gives a brief overview of how to run Large-scale Atomic/Molecular Mas-

sively Parallel Simulator (LAMMPS) [1] simulations on the Physics department high-performance

computing (HPC) and details the code already developed to compute common quantities.

For more in depth questions about LAMMPS see the manual (https://lammps.sandia.

gov/doc/Manual.html). It should be immediately noted that the code developed here to

analyze the MD data has not been optimized for speed and memory management but was

created out of necessity and could benefit from this optimization. Section B.1 details how

to run simulations on the HPC, section B.2 details some Python code to analyze the simula-

tion data for common quantities and Section B.3 lists systems which I have simulated using

LAMMPS.

B.1 Running Simulations on the HPC

This section provides details on running a LAMMPS simulation on the Washington Uni-

versity physics department HPC. Table B.1 contains links and descriptions for programs and

repositories, which are useful for accessing the cluster and running LAMMPS simulations in

general. Subsection B.1.1 gives information about running LAMMPS on the HPC cluster

while subsection B.1.2 gives example LAMMPS input code for various simulations.

Name Link Description

LAMMPS https://lammps.
sandia.gov/

Main LAMMPS website with links
for the manual, tutorials, program

downloads, and more.

NIST Potential
Repository

https://www.
ctcms.nist.gov/

potentials/

Contains LAMMPS style potentials
for EAM simulations
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H. Sheng
Potential
Repository

https:
//sites.google.

com/site/
eampotentials/

Contains LAMMPS style potentials
for EAM simulations made by H.

Sheng

OVITO https:
//ovito.org/

Ovito is an analysis and
visualization program particularly
useful for analysis of LAMMPS

dump files

Anaconda
https:

//www.anaconda.
com/download/

Python package manager and data
science platform

Cyberduck https:
//cyberduck.io/

Used as an SFTP file transfer
protocol to move files to and from

the HPC sever.

PuTTY https://www.
putty.org/

Popular SSH client useful for
windows users

Table B.1: This table contains a summary of useful links for running LAMMPS simulations
and analyzing/visualizing the output.

B.1.1 LAMMPS and HPC Guide

The physics department HPC consists of 19 networked computing nodes which is acces-

sible via an SSH client, e.g. PuTTY. A list of these computing nodes can be found on the

physics department intranet but it is sufficient to remember a single node. An account is

necessary to log in to the cluster and can be set up by contacting the Scientific Supervisor of

Computing, who at the time of writing this is Sai Iyer. Once an account is created one can log

in using PuTTY by launching the program and directing it to the host name io.wustl.edu,

or any other node, and port 22. This will then prompt the user for the username and pass-

word. If not using PuTTY the user needs to preemptively specify the username by typing

ssh usernameio.wustl.edu. This will log you into the io cluster node.

LAMMPS is a demanding program that will require most of the resources of the cluster

node so it is pertinent to select one which is mostly idle. To determine which nodes are

potentially idle use the hpcload command, which prints a list of the nodes, CPUs, RAM,

and load over three different intervals. The load column is of interest in determining which
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Figure B.1: Example of logging into the physics department HPC cluster using my user-
name ashcraftr. The command hpcload is run to examine the load on all nodes on the
cluster. Ganymede (red) shows a rather high and sage (green) shows a low load (compared
to the CPUs column). Sage is then chosen and logged in to.

nodes are idle. The load is nominally around 0 indicating the node is idle while a load

greater than this indicates the node is in use (typically a number near the CPUs column

value indicates the node is completely in use but values above the number of CPUs is

possible). Changing to a new node can be done using the ssh command from the current

terminal, i.e. ssh sage.wustl.edu will change the current node to sage. Chose the node

with the lowest load and ssh to it. These steps are shown in Fig. B.1

Once logged into a node with low load you need to check that there are either no programs

running or that there are very few. It could be the case that there are many programs running

but which only exhibit a high load briefly, which would be detrimental to running LAMMPS.
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Figure B.2: Example of the htop command which lists many properties of the current
nodes current processes. The current process is highlighted in blue, the green highlighted
text gives the column headers for the lower part of the terminal, and the green box at the
top shows the location of the CPU usage.

Running the command htop gives a lot of information about what is running and who is

running it on the node. A typical idle node is shown in Fig. B.2. To contrast the idle node a

busy node would have many processes listed by one or several users and will typically have

higher values for the CPUs at the top of the screen (green box). To exit this screen use the

F10 key (options are listed at the bottom of the screen). If the terminal looks like Fig. B.2

it is likely a good choice to run your simulations on.

If the current node is determined to be good you need to navigate to the file which you

want to run LAMMPS in and which contains the LAMMPS input file (discussed in the

next subsection). This is done with the typical Linux change directory command, i.e. cd

/grad/username/directory/. The mpi module used to run LAMMPS in parallel needs

to be loaded with the command module load mpi/openmpi-x86_64. Finally, before

running LAMMPS a screen environment should be created with screen -S screen_name,
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where screen_name is a user chosen identifier. This creates an environment similar to

the previous terminal that can be exited without killing the process in the terminal. The

screen is exited using ctrl+a+d and can be rejoined using the terminal command screen

-R screen_name. If the screen name is forgotten a list of current screens on the node can

be printed to the screen using the command screen -ls. To close a screen completely type

exit in the screen terminal. Other information about the screen environment can be found

online in various locations.

Running a LAMMPS simulation in the previously setup screen environment is done with

the commandmpirun -np n_cpus -in in.* where in.* is the name of the input LAMMPS

file. The flag -np signifies that the following number is the number of CPUs (n_cpus) to

use to run the LAMMPS simulation. The input file name is preceded by the flag -in. The

input file needs to be placed in the current directory typically using an SFTP program, i.e.

Cyberduck, to move the file onto the cluster. After running this command LAMMPS should

start printing information to the screen and creating any files requested in the simulation

along with the log.lammps file, which contains all the information printed to the screen.

B.1.2 LAMMPS Input Codes

The code shown in Listing B.1 creates a simulation box with periodic boundary conditions

of the given size where the units are defined by the metal LAMMPS unit system. The

NiZr_Mendelev_2012.eam.fs potential is used for the Zr and Ni atoms. Atoms are randomly

filled in the simulation region using the specified proportions and random seed numbers. A

file temp.txt is created which stores some thermostyle variables. An energy minimization

routine is run to reduce the magnitude of the force applied to close atoms at the beginning

of the simulation (no dynamics are run at this step). The system is evolved at a relatively

high temperature for a short time before being cooled at a specified rate. Binary files used

to restart the simulation from the given time step are saved periodically during cooling so

any temperature can be restarted and simulated quickly.
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1 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− I n i t i a l i z a t i o n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 u n i t s metal #Def ine the u n i t s to use i n the s i m u l a t i o n
3 boundary p p p #Set a l l the boundarys f o r the s i m u l a t i o n c e l l to be p e r i o d i c
4 atom_style atomic #D e f i n e s the s t y l e o f s i m u l a t i o n to run ( d e f a u l t a t t r i b u t e s f o r atoms )
5 t i m e s t e p 0 . 0 0 5 #D e f i n e s d e f a u l t time s t e p i n u i n t s d e f i n e d by metal
6 r e g i o n Box block −38 38 −38 38 −38 38 #Creates a r e g i o n ( c a l l e d Box ) i n the s i m u l a t i o n c e l l
7 create_box 2 Box #Creates a s i m u l a t i o n c e l l f o r the r e g i o n Box c o n t a i n i n g 2 atom types
8
9 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Atom D e f i n i t i o n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 p a i r _ s t y l e eam/fs #S e t s the p a i r p o t e n t i a l s t y l e to EAM/FS
11 p a i r _ c o e f f ∗ ∗ / g r a d / a s h c r a f t r / P o t e n t i a l s / N i Z r _ M e n d e l e v _ 2 0 1 2 . e a m . f s Ni Zr #S e t s the p a i r c o e f f i c i e n t s

u s i n g the f i l e s p e c i f i e d
12 create_atoms 1 random 5400 475652 Box #Creates 5400 atoms i n Box o f type 1 u s i n g a random g e n e r a t i o n

scheme
13 create_atoms 2 random 9600 5678 Box #Creates 9600 atoms i n Box o f type 2 u s i n g a random g e n e r a t i o n

scheme
14
15 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− S e t t i n g s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 v a r i a b l e Temperature equal temp #Creates a v a r i a b l e to s t o r e temp
17 v a r i a b l e TimeStep equal s t e p #Creates a v a r i a b l e to s t o r e s t e p
18 v a r i a b l e Volume equal v o l #Creates a v a r i a b l e to s t o r e v o l
19 v a r i a b l e Density equal d e n s i t y #Creates a v a r i a b l e to s t o r e d e n s i t y
20 v a r i a b l e s equal s t r i d e (100000 ,1130000 ,30000) #Creates a v a r i a b l e u s i n g the s t r i d e f u n c t i o n
21
22 run_style v e r l e t #S e t s the time i n t e g r a t o r to use the v e l o c i t y−V e r l e t a l g o r i t h m
23 thermo 100 #Compute and p r i n t thermo v a r i a b l e s every t h i s many t i m e s t e p s
24 f i x thermo_print a l l p r i n t 100 " ${TimeStep} ${ Temperature } ${Volume} ${ Density }" append Temp.txt t i t l e " "

s c r e e n no #P r i n t s t h e r m o s t y l e v a r i a b l e s to Temp.txt
25
26 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Runs S im ul a t i on −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
27 minimize 0 . 0 0 . 0 500 500 #Performs an energy minimizat ion by moving atoms ( needed to reduce o v e r l a p )
28
29 r e s t a r t v_s r e s t a r t . ∗ . c o o l i n g #Create r e s t a r t f i l e s at t i m e s t e p s d e f i n e d by the v a r i a b l e s d e f i n e d above
30 f i x Thermostat a l l npt temp 3000 3000 0 . 5 i s o 0 0 5 . 0 #Create a thermostat with the npt ensemble s e t t i n g

temperature i n i t i a l and f i n a l and p r e s s u r e
31 run 100000 upto #Run the s i m u l a t i o n upto the s t a t e d t i m e s t e p
32
33 f i x Thermostat a l l npt temp 3000 100 0 . 5 i s o 0 0 5 . 0 #Create a thermostat with the npt ensemble s e t t i n g

temperature i n i t i a l and f i n a l and p r e s s u r e
34 run 1000000 #Run the s i m u l a t i o n f o r the s t a t e d number o f t i m e s t e p s

Listing B.1: An example input file, in.ZrNi_Initial, for an initial LAMMPS simulation of
Zr64Ni36 liquid.

In Listing B.2 one of these restart files (in particular the one located closest to 2000 K) is

read in and the simulation restarted and run for a relatively long time (order of nanoseconds).

This simulation makes another restart file at the end which contains, if the time was long

enough, the steady state liquid system. This is checked by examining the time dependence

of thermostyle variables.

1 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− I n i t i a l i z a t i o n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 r e a d _ r e s t a r t r e s t a r t . ∗ . c o o l i n g remap #Reads the r e s t a r t f i l e with the h i g h e s t t i m e s t e p value i n p l a c e

o f ∗
3 p a i r _ s t y l e eam/fs #One o f the o p t i o n s the r e s t a r t f i l e does not keep
4 p a i r _ c o e f f ∗ ∗ / g r a d / a s h c r a f t r / P o t e n t i a l s / N i Z r _ M e n d e l e v _ 2 0 1 2 . e a m . f s Ni Zr #S e t s the p a i r c o e f f i c i e n t s

u s i n g the f i l e s p e c i f i e d
5 t i m e s t e p 0 . 0 0 5 #D e f i n e s d e f a u l t time s t e p i n u i n t s d e f i n e d by metal
6
7 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− S e t t i n g s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 v a r i a b l e CurrentTemp equal 2000 #Creates a v a r i a b l e to s t o r e 2000
9 v a r i a b l e Temperature equal temp #Creates a v a r i a b l e to s t o r e temp

10 v a r i a b l e TimeStep equal s t e p #Creates a v a r i a b l e to s t o r e s t e p
11 v a r i a b l e Volume equal v o l #Creates a v a r i a b l e to s t o r e v o l
12 v a r i a b l e Density equal d e n s i t y #Creates a v a r i a b l e to s t o r e d e n s i t y
13
14 run_style v e r l e t #S e t s the time i n t e g r a t o r to use the v e l o c i t y−V e r l e t a l g o r i t h m
15 thermo 100 #Compute and p r i n t thermo v a r i a b l e s every t h i s many t i m e s t e p s
16 f i x thermo_print a l l p r i n t 100 " ${TimeStep} ${ Temperature } ${Volume} ${ Density }" append Temp.txt t i t l e " "

s c r e e n no #P r i n t s t h e r m o s t y l e v a r i a b l e s to Temp.txt
17
18 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Runs S im ul a t i on −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 f i x Thermostat a l l npt temp ${CurrentTemp} ${CurrentTemp} 0 . 5 i s o 0 0 5 . 0 #Create a thermostat with the

npt ensemble s e t t i n g temperature i n i t i a l and f i n a l and p r e s s u r e
20 run 3000000 #Run the s i m u l a t i o n f o r the s t a t e d number o f t i m e s t e p s
21
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22 w r i t e _ r e s t a r t r e s t a r t . r e l a x e d . $ {CurrentTemp} #Write a r e s t a r t f i l e at the end o f the s i m u l a t i o n

Listing B.2: An example input file, in.ZrNi_relaxation, for the relaxation step of a
LAMMPS simulation which continues the simulation started in Listing B.1.

Listing B.3 restarts a relaxed simulation and runs dynamics for a shorter amount of time

and saves out dump files. These files contain all the information input on line 14, which in

this case are the x, y, z atomic positions, atom id, and the atom element. The element is also

changed to match the element name rather than using a numeric identifier. These dump files

are then typically analyzed to determine structural and dynamic information. The length of

the run and the value of the time step determine which dynamics can be examined in the

subsequent analysis.

1 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− V a r i a b l e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 v a r i a b l e CurrentTemp equal 3000 #Creates a v a r i a b l e to s t o r e 3000
3
4 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− I n i t i a l i z a t i o n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 r e a d _ r e s t a r t r e s t a r t . r e l a x e d . $ {CurrentTemp} remap #Reads the r e s t a r t f i l e
6 p a i r _ s t y l e eam/fs #One o f the o p t i o n s the r e s t a r t f i l e does not keep
7 p a i r _ c o e f f ∗ ∗ /grad/ashcraftr/NiZr_Mendelev_2012.eam.fs Ni Zr #S e t s the p a i r c o e f f i c i e n t s u s i n g the

f i l e s p e c i f i e d
8 r e s e t _ t i m e s t e p 0 #Resets the t i m e s t e p to 0
9 t i m e s t e p 0 . 0 0 2 #D e f i n e s d e f a u l t time s t e p i n u i n t s d e f i n e d by metal

10
11 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− S e t t i n g s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 run_style v e r l e t #S e t s the time i n t e g r a t o r to use the v e l o c i t y−V e r l e t a l g o r i t h m
13
14 dump cfgDump a l l custom 100 p o s i t i o n . ∗ . c f g i d element x y z #Dumps s p e c i f i e d v a r i a b l e s to an output f i l e

where ∗ i s the t i m e s t e p
15 dump_modify cfgDump pad 6 #Pads t i m e s t e p o f dump f i l e
16 dump_modify cfgDump element Ni Zr #Saves atom elements as s t r i n g s i n s t e a d o f numbers
17
18 thermo 100 #Compute and p r i n t thermo v a r i a b l e s every t h i s many t i m e s t e p s
19
20 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Run Si mu la t io n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 f i x Thermostat a l l npt temp ${CurrentTemp} ${CurrentTemp} 0 . 5 i s o 0 0 5 . 0 #Create a thermostat with the

npt ensemble s e t t i n g temperature i n i t i a l and f i n a l and p r e s s u r e
22 run 100000 #Run the s i m u l a t i o n f o r the s t a t e d number o f t i m e s t e p s

Listing B.3: An example input file, in.ZrNi_cfg, which saves configuration data files from
a LAMMPS simulation. This restarts the simulation performed in Listing B.2.

The above LAMMPS code is a subset of the code written for simulations done in this

thesis which should give a good start to most liquid simulations. More code has been written

for simulating the viscosity (using the Green-Kubo method), the mean-square-displacement,

the local cluster time, structural analysis using Voronoi tessellation, the velocity autocor-

relation function, the self intermediate scattering function, and the specific heat. Code for

these can be easily developed or can be provided upon request.
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B.2 Analyzing Output With Python

Listing B.4 contains an analysis script which can be used to calculate the static partial

pair distribution function. This particular version creates the first images of all the data

and uses this to calculate the PPCF to a larger distance. This python code is included to

give an idea of how the analysis of output LAMMPS data can be accomplished using python

on the HPC cluster. Analysis code has been developed for viscosity, structural analysis

using Voronoi tessellation, dynamic pair correlation function, local cluster time, mean-square

displacement, static structure factor, static pair correlation function, and specific heat. These

are available on request.

1 from m u l t i p r o c e s s i n g import Pool
2 from math import f l o o r
3 from c o l l e c t i o n s import Counter
4 import numpy as np
5 import m a t p l o t l i b . pyplot as p l t
6 from glob import glob
7 import i t e r t o o l s
8 from datet ime import datet ime
9 from t i m e i t import d e f a u l t _ t i m e r as t imer

10 import m a t p l o t l i b . pyplot as p l t
11 from f u n c t o o l s import p a r t i a l
12 import pandas as pd
13 from numba import n j i t
14
15 d e f ReadPosit ion ( f ) :
16 ’ ’ ’ Function used to read a dump f i l e output from LAMMPS which has the format :
17 . . . . . . . . . . . . . . . . . . . . . . . .
18 ITEM: TIMESTEP
19 100
20 ITEM: NUMBER OF ATOMS
21 15000
22 ITEM: BOX BOUNDS pp pp pp
23 −3.0422290969884543 e+01 3.0422290969884543 e+01
24 −3.0422290969884543 e+01 3.0422290969884543 e+01
25 −3.0422290969884543 e+01 3.0422290969884543 e+01
26 ITEM: ATOMS i d element x y z
27 10148 Nb −26.819 −26.0555 −26.1943
28 . . . . . . . . . . . . . . . . . . . . . . . .
29 Input : f − F i l e path to dump f i l e
30 Output : data − pandas DataFrame c o n t a i n i n g index , atom types , and a l l p o s i t i o n s
31 L − S im ul at i on box l e n g t h from LAMMPS dump f i l e ’ ’ ’
32 names = ( ’Atom_Type ’ , ’X ’ , ’Y ’ , ’Z ’ )
33 data = pd . read_csv ( f , sk iprows =9, del im_whitespace=True , names=names , index_col =0)
34 data . sort_index ( i n p l a c e=True )
35 data . set_index ( np . arange ( 0 , l e n ( data ) ) )
36 L = pd . read_csv ( f , sk iprows =5, del im_whitespace=True , u s e c o l s = [ 1 ] , nrows =1,names= ’L ’ ) [ ’L ’ ] [ 0 ]
37 r e t u r n ( data , L)
38
39 d e f Make_Images ( data , L) :
40 ’ ’ ’ Creates a l l f i r s t images ( 2 7 ) o f the LAMMPS p o s i t i o n data and appends to a new pandas DataFrame .
41 Input : data − pandas DataFrame c r e a t e d by ReadPosit ion f u n c t i o n
42 L − S i z e o f s i m u l a t i o n box ( s c a l a r r e a l ) output by ReadPosit ion f u n c t i o n
43 Output : df images − pandas DataFrame c o n t a i n i n g o r i g i n a l data and a l l f i r s t images ’ ’ ’
44 images = [ np . array ( i ) f o r i i n i t e r t o o l s . product ( [ 1 . , 0 . , − 1 . ] , r e p e a t =3) ]
45 df images = [ ]
46 f o r i i n images :
47 copy_for_image = data . copy ( )
48 copy_for_image . l o c [ : , ( ’X ’ , ’Y ’ , ’Z ’ ) ] = copy_for_image . l o c [ : , ( ’X ’ , ’Y ’ , ’Z ’ ) ]+2∗L∗ i
49 df images . append ( copy_for_image )
50 df images = pd . concat ( dfimages , ignore_index=True )
51 r e t u r n ( df images )
52
53 d e f atom_type_conversion ( data ) :
54 ’ ’ ’ Creates the c o n v e r s i o n mapping f o r atom types to i n t e g e r s . Also the i n v e r s i o n back from i n t e g e r s to

atoms
55 i s output . F i n a l l y a l l combinations o f atomic types a re c r e a t e d and output .
56 Input : pandas DataFrame o f atomic p o s i t i o n s and types
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57 Output : c o n v e r s i o n − d i c t i o n a r y o f { ’ atom_i ’ : n_i}
58 i n v e r s i o n − d i c t i o n a r y o f {n_i : ’ atom_i ’}
59 p a r t i a l s − array o f atom combinations [ [ n_0 , n_0 ] , [ n_0 , n_1 ] , . . . ] ’ ’ ’
60 u n i q u e v a l u e s = data . l o c [ : , ’Atom_Type ’ ] . value_counts ( )
61 c o n v e r s i o n = { j : i f o r i , j i n enumerate ( u n i q u e v a l u e s . index . v a l u e s ) }
62 i n v e r s i o n = {v : k f o r k , v i n c o n v e r s i o n . i t e r i t e m s ( ) }
63 p a r t i a l s = np . array (map( l i s t , l i s t ( i t e r t o o l s . product ( c o n v e r s i o n . v a l u e s ( ) , r e p e a t =2) ) ) )
64 r e t u r n ( c o n v e r s i o n , i n v e r s i o n , p a r t i a l s )
65
66 d e f convert_atom_type ( data , c o n v e r s i o n ) :
67 ’ ’ ’ Converts the Atom_Type column i n the pandas DataFrame to i n t e g e r v a l u e s a c c o r d i n g to c o n v e r s i o n
68 Input : data − pandas DataFrame output from ReadPosit ion f u n c t i o n
69 c o n v e r s i o n − d i c t i o n a r y from atom_type_conversion f u n c t i o n c o n t a i n i n g s t r to i n t c o n v e r s i o n

r u l e s
70 Output : data − pandas DataFrame with Atom_Type column m o d i f i e d to i n t e g e r v a l u e s ’ ’ ’
71 f o r atom_type , atom_num i n c o n v e r s i o n . i t e r i t e m s ( ) :
72 data . l o c [ data . l o c [ : , ’Atom_Type ’]==atom_type , ’Atom_Type ’ ] = atom_num
73 data . l o c [ : , ’Atom_Type ’ ] = data . l o c [ : , ’Atom_Type ’ ] . v a l u e s . astype ( i n t )
74 r e t u r n ( data )
75
76 d e f center_atoms ( ixyz , L) :
77 ’ ’ ’ Finds the most c e n t r a l atoms ( e q u i v a l e n t to the o r i g i n a l , non−image , data ) w i t h i n the new array
78 c o n t a i n i n g the images and r e t u r n s an array o f index v a l u e s .
79 Input : i x y z − pandas DataFrame o f image p o s i t i o n data output from convert_atom_type f u n c t i o n
80 L − S i z e o f s i m u l a t i o n box ( s c a l a r r e a l ) output by ReadPosit ion f u n c t i o n
81 Output : c ind − numpy array o f c e n t r a l atom i n d i c e s ’ ’ ’
82 xyz = i x y z . l o c [ : , ( ’X ’ , ’Y ’ , ’Z ’ ) ] . v a l u e s
83 cind = np . where ( np . a l l ( xyz<L , a x i s =1)&np . a l l ( xyz>−L , a x i s =1) ) [ 0 ]
84 r e t u r n ( c ind )
85
86 d e f hist_params ( low , L , s p a c i n g ) :
87 ’ ’ ’ Creates the histogram bin parameters
88 Input : low − f l o a t f o r the low value o f the d i s t a n c e histogram
89 L − S i z e o f s i m u l a t i o n box ( s c a l a r r e a l ) output by ReadPosit ion f u n c t i o n
90 s p a c i n g − f l o a t f o r the d i s t a n c e s p a c i n g and histogram bin s p a c i n g
91 Output : nbins − i n t e g e r f o r number o f b i n s
92 l i m i t s − array o f f l o a t f o r l i m i t s o f the d i s t a n c e data ’ ’ ’
93 h i = np . f l o o r (L/ s p a c i n g )∗ s p a c i n g
94 modhi = np . f l o o r ( ( hi−low ) / s p a c i n g )∗ s p a c i n g+low
95 nbins = i n t ( np . f l o o r ( ( hi−low ) / s p a c i n g ) )
96 l i m i t s = np . array ( [ low , modhi ] )
97 r e t u r n ( nbins , l i m i t s )
98
99 d e f min_hist_params ( a l l f i l e s , low , s p a c i n g ) :

100 ’ ’ ’ Determines the minimum s i z e o f the histogram l i m i t s and b i n s n e c e s s a r y
101 Input : a l l f i l e s − l i s t o f paths f o r a l l c o n f i g u r a t i o n f i l e s to be read
102 low − f l o a t f o r the low value o f the d i s t a n c e histogram
103 s p a c i n g − f l o a t f o r the d i s t a n c e s p a c i n g and histogram bin s p a c i n g
104 Output : nbins − i n t e g e r f o r number o f b i n s
105 l i m i t s − s m a l l e s t array o f f l o a t f o r l i m i t s o f the d i s t a n c e data ’ ’ ’
106 s i z e = [ ]
107 f o r f i n a l l f i l e s :
108 data , L = ReadPosit ion ( f )
109 s i z e . append (L)
110 s i z e = np . array ( s i z e )
111 nbins , l i m i t s = hist_params ( low , s i z e . min ( ) , s p a c i n g )
112 r e t u r n ( nbins , l i m i t s )
113
114 d e f data_matrix ( c o n v e r s i o n , nbins ) :
115 ’ ’ ’ Creates a t h r e e d i m e n s i o n a l array f o r s t o r a g e o f the histogram d i s t a n c e data
116 Input : c o n v e r s i o n − d i c t i o n a r y o f { ’ atom_i ’ : n_i}
117 nbins − i n t e g e r f o r number o f b i n s
118 Output : mat − NxNxM s i z e d matrix o f f l o a t s ’ ’ ’
119 mat = np . z e r o s ( ( l e n ( c o n v e r s i o n ) , l e n ( c o n v e r s i o n ) , nbins ) )
120 r e t u r n ( mat )
121
122 @nj it
123 d e f p a r t i a l _ h i s t o g r a m ( atom_types ,XYZ, cind , l i m i t s , nbins , mat , p a r t i a l s ) :
124 ’ ’ ’ Creates the histogram o f p a r t i a l p a i r c o r r e l a t i o n d i s t a n c e s
125 Input : atom_types − numpy array o f atom types
126 XYZ − numpy array o f f l o a t s f o r atomic p o s i t i o n s
127 cind − numpy array o f c e n t r a l atom i n d i c e s
128 l i m i t s − array o f f l o a t f o r l i m i t s o f the d i s t a n c e data
129 nbins − i n t e g e r f o r number o f b i n s
130 mat − NxNxM s i z e d matrix o f f l o a t s
131 p a r t i a l s − array o f atom combinations [ [ n_0 , n_0 ] , [ n_0 , n_1 ] , . . . ]
132 Output : mat − NxNxM s i z e d matrix o f f l o a t s c o n t a i n i n g the ppcf data
133 r − numpy array o f f l o a t s f o r the r a d i a l d i s t a n c e ’ ’ ’
134 f o r i i n c ind :
135 d i s t = np . s q r t ( np . square (XYZ−XYZ[ i ] ) . sum( a x i s =1) )
136 f o r j i n range ( l e n ( p a r t i a l s ) ) :
137 m = p a r t i a l s [ j , 0 ]
138 n = p a r t i a l s [ j , 1 ]
139 i f atom_types [ i ]==m:
140 p d i s t = d i s t [ np . where ( atom_types==n ) [ 0 ] ]
141 counts , b i n s = np . histogram ( p d i s t , b i n s=nbins , range=l i m i t s )
142 mat [m, n ] += counts
143 dr = np . d i f f ( b i n s )
144 N = l e n ( c ind )
145 f o r i i n range ( l e n ( p a r t i a l s ) ) :
146 a = p a r t i a l s [ i , 0 ]
147 b = p a r t i a l s [ i , 1 ]
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148 Na = ( atom_types [ c ind]==a ) . sum ( )
149 Nb = ( atom_types [ c ind]==b ) . sum ( )
150 mat [ a , b ] = mat [ a , b ] / ( 4 . 0∗ np . p i ∗Na∗Nb∗dr )
151 r = b i n s [:−1]+ dr / 2 . 0
152 mat = mat /( r∗ r )
153 r e t u r n ( mat , r )
154
155 d e f wrapper_func ( c o n v e r s i o n , l i m i t s , nbins , p a r t i a l s , f ) :
156 ’ ’ ’ Function which r e a d s and a n a l y z e s a s i n g l e f i l e to determine the p a r t i a l p a i r c o r r e a l t i o n histogram
157 Input : c o n v e r s i o n − d i c t i o n a r y from atom_type_conversion f u n c t i o n c o n t a i n i n g s t r to i n t c o n v e r s i o n

r u l e s
158 l i m i t s − array o f f l o a t f o r l i m i t s o f the d i s t a n c e data
159 nbins − i n t e g e r f o r number o f b i n s
160 p a r t i a l s − array o f atom combinations [ [ n_0 , n_0 ] , [ n_0 , n_1 ] , . . . ]
161 f − s t r i n g f o r c o n f i g u r a t i o n f i l e path
162 Output : mat − NxNxM s i z e d matrix o f f l o a t s c o n t a i n i n g the ppcf data
163 b i n s − numpy array o f f l o a t s f o r the r a d i a l d i s t a n c e ’ ’ ’
164 data , L = ReadPosit ion ( f )
165 data = convert_atom_type ( data , c o n v e r s i o n )
166 i x y z = Make_Images ( data , L)
167 cind = center_atoms ( ixyz , L)
168 mat = data_matrix ( c o n v e r s i o n , nbins )
169 mat , b i n s = p a r t i a l _ h i s t o g r a m ( i x y z . l o c [ : , ’Atom_Type ’ ] . values ,
170 i x y z . l o c [ : , ( ’X ’ , ’Y ’ , ’Z ’ ) ] . values ,
171 cind , l i m i t s , nbins , mat , p a r t i a l s )
172 mat = ( ( 2 . 0∗L) ∗∗3 . 0 ) ∗mat
173 r e t u r n ( mat , b i n s )
174
175 d e f aggregate_data ( a l l _ d a t a ) :
176 ’ ’ ’ C a l c u l a t e s the mean value o f the d i s t a n c e and p a r t i a l p a i r c o r r e l a t i o n f u n c t i o n . The e r r o r i n gr
177 i s c a l c u l a t e d from the standard d e v i a t i o n
178 Input : a l l _ d a t a − array c o n t a i n i n g output from wrapper_func f o r a l l f i l e s examined
179 Output : r . mean ( 0 ) − numpy array f o r mean d i s t a n c e v a l u e s
180 gr . mean ( 0 ) − numpy array f o r mean ppcf data
181 gr . std ( 0 ) − numpy array f o r the standard d e v i a t i o n o f the ppcf data ’ ’ ’
182 gr = np . array ( [ i [ 0 ] f o r i i n a l l _ d a t a ] )
183 r = np . array ( [ i [ 1 ] f o r i i n a l l _ d a t a ] )
184 r e t u r n ( r . mean ( 0 ) , gr . mean ( 0 ) , gr . std ( 0 ) )
185
186 d e f prepare_output ( r , ppcf , ppcf_err ) :
187 ’ ’ ’ Prepares the f i n a l data to be p l a c e d i n t o a pandas dataframe which can be used to output
188 the data
189 Input : r − numpy array o f f l o a t c o n t a i n i n g d i s t a n c e v a l u e s
190 ppcf − numpy array o f f l o a t c o n t a i n i n g ppcf data
191 ppcf_err − numpy array o f f l o a t c o n t a i n i n g e r r o r s f o r the ppcf data
192 Output : output − pandas DataFrame c o n t a i n i n g a l l input data ’ ’ ’
193 output = [ r ]
194 names = [ ’ r ’ ]
195 f o r i i n p a r t i a l s :
196 output . append ( ppcf [ i [ 0 ] , i [ 1 ] ] )
197 names . append ( i n v e r s i o n [ i [ 0 ] ] + i n v e r s i o n [ i [ 1 ] ] )
198 output . append ( ppcf_err [ i [ 0 ] , i [ 1 ] ] )
199 names . append ( i n v e r s i o n [ i [ 0 ] ] + i n v e r s i o n [ i [ 1 ] ] + ’ _err ’ )
200 output = pd . DataFrame ( np . array ( output ) . T, columns=names )
201 r e t u r n ( output )
202
203 #−−−−−−−−−−−−−−−−−−−−− Input Parameters −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
204 Temp = ’ 2000 ’ #Temperature f o r the data being analyzed
205 inpath = os . getcwd ( )+ ’ / ’ #Set path to the c u r r e n t d i r e c t o r y
206 poolnum = 4 #Number o f CPUs to use
207 s p a c i n g = 0 . 0 2 #Spacing o f histogram data
208 low = 0 . 0 1 #S m a l l e s t d i s t a n c e to c o n s i d e r i n the histogram
209
210 #−−−−−−−−−−−−−−−−−−−−− Program S t a r t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
211 i f __name__ == ’__main__ ’ :
212 p = Pool ( poolnum )
213 a l l f i l e s = glob ( inpath+ ’ p o s i t i o n . ∗ . c f g ’ ) [ : 4 ]
214 #P re p er a to r y items
215 data , L = ReadPosit ion ( a l l f i l e s [ 0 ] )
216 c o n v e r s i o n , i n v e r s i o n , p a r t i a l s = atom_type_conversion ( data )
217 func = p a r t i a l ( wrapper_func , c o n v e r s i o n , l i m i t s , nbins , p a r t i a l s )
218 #Obtaining the data
219 a l l _ d a t a = p . map( func , a l l f i l e s )
220 p . c l o s e ( )
221 p . j o i n ( )
222 r , ppcf , ppcf_err = aggregate_data ( a l l _ d a t a )
223 output = prepare_output ( r , ppcf , ppcf_err )
224 output . to_csv ( ’ t e s t . dat ’ , sep= ’ \ t ’ , header=F a l s e )

Listing B.4: An example Partial Pair Correlation Function (PPCF) analysis script which
operates on LAMMPS dump files.
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B.3 Simmulated Systems

Composition Potential Number of
Atoms

Temp Range
[K] Calculated Quantities

Al100 [2] 15000 1000-2500 TPCF
Cu100 [2] 15000 1000-2500 TPCF

Cu46Zr54 [3] 15000 500-3000 PPCF, PSF
Cu50Zr45Al5 [4] 15000 1900-3000 PPCF, SACF

Cu50Zr50 [3] 15000 500-3000 PPCF, PSF, DPPCF,
SACF, MSD, SISF

50000 1500-3000 PPCF
Cu64Zr36 [3] 15000 500-3000 PPCF, SACF
Ni100 [5] 15000 1000-4000 TPCF, SACF

Ni62Nb38 [6] 15000 500-3000 PPCF, SACF
Pt100 [7] 15000 1000-3500 TPCF
Si100 † 15000 2000-4000 TPCF
Ta100 [8] 15000 1500-4500 TPCF, SACF, MSD
Ti100 [9] 15000 1200-3500 TPCF

Zr100 [10] 15000 1500-5000 TPCF, TSF, MSD,
SACF

Zr64Ni36 [5] 15000 500-3000 PPCF, SACF

Zr80Pt20 [11] 15000 1000-4000 PPCF, PSF, SISF,
MSD, SACF

Table B.2: This table contains a summary of all the Molecular Dynamics (MD) simulations
performed for this dissertation (and associated studies) and summarizes the obtained data.
† this simulation was done using a PdSi potential from Howard Sheng’s potential repository:
https://sites.google.com/site/eampotentials/.
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Appendix C: Reverse Monte Carlo

This appendix summarizes the Reverse Monte Carlo (RMC) calculations using the RMC++

[1] software used in this thesis that were done on the Physics Department high-performance

computing cluster. All of the input files and constraints are available upon request.

Composition Target
Dataset Constraint Number of

Atoms
Temperature
Range [K]

Al100 BESL2016 TSF 10000 940-1160
Cu30Zr30Ti40 BESL2016 TSF 10000 980-1396
Cu46Zr54 BESL2016 TSF 10000 926-1373

Cu47Zr47Al6 BESL2016 TSF 10000 947-1362
Cu50Zr42.5Ti7.5 BESL2016 TSF 10000 874-1351
Cu50Zr45Al5 BESL2016 TSF 10000 939-1351
Cu50Zr45Al5 MD[2] TPCF 10000 900-2000
Cu50Zr50 BESL2016 TSF 10000 962-1349
Cu50Zr50 MD[3] TPCF 10000 1000-3000

Cu60Zr20Ti20 BESL2016 TSF 10000 959-1398
Cu64Zr36 BESL2016 TSF 10000 1016-1362
Ge100 BESL2013 TSF 10000 1180-1533
LM601 BESL2016 TSF 10000 982-1397
Ni100 BESL2007 TSF 10000 1486-1726

Ni59.5Nb40.5 BESL2016 TSF 10000 1396-1757
Pd82Si18 BESL2016 TSF 10000 944-1365
Pt100 BESL2007 TSF 10000 1736-1926
Ti100 BESL2007 TSF 10000 1655-1982

Ti38.5Zr38.5Ni23 BESL2016 TSF 10000 1043-1519
Ti40Zr10Cu30Pd20 BESL2016 TSF 10000 926-1343
Ti40Zr10Cu36Pd14 BESL2016 TSF 10000 938-1419

Ti45Zr45Ni10 BESL2016 TSF 10000 1378-1540
Vit105 BESL2016 TSF 10000 1034-1406
Vit106 BESL2016 TSF 10000 971-1413
Vit106a BESL2016 TSF 10000 979-1452
Zr100 BESL2016 TSF 10000 1813-2151
Zr100 MD[4] TPCF 10000 1700-5000

Zr50Ti50 BESL2016 TSF 10000 1556-1913
Zr56Co28Al16 BESL2016 TSF 10000 1103-1487
Zr57Ni43 BESL2016 TSF 10000 1279-1599

Zr59Ti3Ni8Cu20Al10 BESL2016 TSF 10000 989-1400
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Zr60Ni25Al15 BESL2016 TSF 10000 1232-1472
Zr62Ni8Cu20Al10 BESL2016 TSF 10000 942-1405
Zr64Ni25Al11 BESL2016 TSF 10000 972-1412

Zr65Al7.5Cu17.5Ni10 BESL2016 TSF 10000 989-1412
Zr75.5Pd24.5 BESL2016 TSF 10000 1085-1592
Zr80Pt20 BESL2016 TSF 10000 1191-1930
Zr82Ir18 BESL2016 TSF 10000 1273-1683

Table C.1: This table contains a summary of all the Reverse Monte Carlo (RMC) simula-
tions performed for this dissertation. A summary of the simulations is also provided.
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Appendix D: Supplemental Material for Chap-

ter 6

D.1 Experimental Information

Master ingots of Zr80Pt20(1-2g, using purity Zr (99.97%) and Pt (99.997%)) were first

prepared by arc-melting on a water-cooled hearth in a high purity (99.999%) Ar atmosphere.

To further reduce the oxygen concentration in the atmosphere, a Ti-Zr getter was melted

prior to arc-melting the ingots. Both the ingot and the getter were held molten for 60

sec. This procedure was repeated three times, flipping the samples between melting to

further increase mixing. The ingots were subsequently crushed and portions were used

to create smaller spherical samples for viscosity ( 45 mg) and inelastic neutron scattering

measurements ( 350 mg).

The inelastic neutron scattering samples were levitated in the NESL and heated to the de-

sired temperatures using two fiber-coupled diode lasers (980nm,110W continuous maximum

power output) that were focused on opposite sides of the samples to reduce the temperature

gradient. The sample temperature was measured using a single Process Sensors Metis MQ22

two-color ratio pyrometer. To obtain sufficient statistics, the samples were held for 1.5-

2hrs. at each temperature while inelastic scattering measurements were made. Occasionally

it was not possible to maintain levitation of the same sample for the full time duration, in

which case a different sample was used to obtain the remaining data and the two scattering

data sets were combined. The temperature data were corrected after processing by using

the solidus temperature as a point of reference. A more detailed discussion of this technique

can be found elsewhere [1].
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D.2 Molecular Dynamics Simulation

The MD simulations reported in this publication were made using the Washington Uni-

versity in St. Louis Physics department high performance computing cluster. The atoms in

the simulation were initialized to random locations. The system was then allowed to relax

to remove overlapping atoms and evolved for 0.5ns to obtain a structure more like that of

the liquid. The temperature in the simulation was decreased at a rate of 7 × 1011 K/s and

they system was subsequently equilibrated at each target temperature for 15ns. After these

initial steps the Van Hove correlation function (G(r, t)), and the viscosity (η) were obtained.

D.2.1 Van Hove Function

The distinct Van Hove correlation function is given by:

Gd(r, t) =
∑
α,β

cαcβbαbβ[∑
γ cγbγ

]Gαβ
d (r, t) (D.1)

where cα is the concentration and bα is the scattering length of element α. The sum αβ

ranges over all atomic pairs. Gαβ
d (r, t) is the partial distinct Van Hove correlation function

given by

Gαβ
d (r, t) = N

ρNαNβ

Nα∑
i

Nβ∑
i 6=j
〈δ(r − ri(0) + rj(t))〉, (D.2)

where Nα is the number of atoms of α and ρ is the number density. Structural data used to

calculate Gd(r, t) was collected for 10ps. A typical Gd(r, t) calculated from MD is shown in

Fig. D.1.
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Figure D.1: A representative distinct Van Hove correlation function, (Gd(r, t)−1) obtained
from the MD simulations. The temperature was set to 1850K for this simulation.
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D.2.2 Viscosity Calculation

As mentioned in the publication the viscosity was calculated using the Green-Kubo for-

mula and the method derived by Daivis and Evans [2]:

η = V

10kBT

∫ ∑
i,j

〈Pij(t)Pij(0)〉 dt (D.3)

where V is the volume, T is the temperature in absolute units, and Pij is given by

Pij = σij + σji
2 − δij

3
∑
k

σkk (D.4)

where σij is the ij-th element of the atomic stress tensor, with ij spanning all values of

the tensor. The atomic stress tensor was recorded for 4 ns. at each temperature. The

autocorrelation function for Pij was computed using fast Fourier transforms according to the

Weiner-Khinchin theorem:

〈Pij(t)Pij(0)〉 = IFFT [FFT [Pij]FFT [Pij]∗] (D.5)

where IFFT and FFT are the inverse and forward fast Fourier transforms and ∗ indicates

complex conjugation. From the viscosity the Maxwell time, τM , was computed using τM =

η/G∞ where G∞ is the instantaneous shear modulus given by

G∞ = V

kbT

〈
P 2
ij(0)

〉
(D.6)

D.2.3 Local Configuration Time

The local configuration time, τLC , is the time it takes for an atom to leave the local

cluster (i.e. the coordination number to increase or decrease by 1). This has been known

only by simulation so far [3–5], and is further discussed in [6]. Here the local configuration
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I(q, E) S(q, E) F (q, t) G(r, t)

Apply normalization factors

Standard instru-
ment reduction

Detailed Balance

1. Fourier Transfrom
E → t

2. Force lim
q→∞

S(q) → 1

3. Resolution Correc-
tion

4. Separate Self and
Distinct Parts

Fourier Transform q → r

Figure D.2: A flowchart which describes a simplified data reduction method for inelastic
neutron scattering measurements. Curved boxes indicate the functions while square boxes
correspond to an analysis technique applied to the function or used to obtain the function.

time was calculated from the decay of N(t) as defined by Eqs. 3 and 6.4 in the text. By

simulation we found that the decay time of N(t), τV H , is 3.6τLC above TA. Note that the

full coordination number is defined by

NC = 4πρ
∫ r2

r1
g (r) r2dr (D.7)

where r1 and r2 define the first peak of g(r). N(t) corresponds to about 1/4 of NC , but its

decay time is related to τV H . The results shown in Fig. 6.3 in the paper indicate that τV H

3.6τLC . This allows to determine τLC directly from the dynamics of the Van Hove function.
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Figure D.3: The resolution function calculated from the Fourier transform of the vanadium
sample normalized to its value at t = 0ps. The value and error are computed from the mean
and standard deviation, respectively, assuming that F (q, t) is q-independent.

D.3 Data Analysis

Figure D.2 gives a schematic diagram of the data reduction procedure some of which

is outlined in the paper. All analysis apart from the standard instrument reduction, per-

formed using the MANTID software, is performed using an in-house Python script. For the

current analysis the resolution function (discussed later) is applied to the total intermediate

scattering function F (q, t) but could be applied to the Van Hove correlation function G(r, t)

without significant changes.

As mentioned in the publication the resolution function is obtained from the scattering

profile of a polycrystalline sample of vanadium. It is assumed that the vanadium scatters

completely incoherently so that the result is the neutron beam profile convoluted with the
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Figure D.4: A Comparison of the normalized decay function N(t)/N(0) obtained from
the INS experiments at T = 1833K using the resolution function correction (top curve) and
without the resolution correction (bottom curve).

resolution of the detectors (i.e. S ′(q, E) = S(q, E) ∗ R(q, E)). It is also assumed that the

resolution function is independent of q which should be approximately true for small energy

transfer about |E| < 10meV (see [7] Fig.4 for an example vanadium scattering profile) or

for a sufficiently small q-range. To approximate the resolution function only the restricted

section of the vanadium data 1.0 < q < 2.5Å−1 was used. The calculated resolution function

given by the Fourier transform of the I(q, E) data is shown in Fig. D.3.

Figure D.4 shows a comparison between the data for N(t)/N(0) obtained from the

inelastic neutron scattering experiments both with the resolution function correction and

without. A noticeable effect coming from the resolution function correction is an elongation

of the long time tail of the decay (i.e. the plateauing mentioned in the paper). This is an

artifact, arising from an incomplete knowledge of the true resolution function for the beam
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line. To account for this effect the decay data is only fit with the KWW function out to 2ps

corresponding to when the resolution function decays to approximately 1/e. The minimum

time which can be considered in this experiment, set by the maximum energy transfer 20meV,

is ∼ 0.2ps

D.4 References

[1] J. C. Bendert et al. Temperature Calibration for Optical Pyrometry in Containerless

Systems Using Differential Scanning Calorimetry: Application to Cu100−xZrx x = 45−

50). International Journal of Thermophysics 35,9-10 (2014). doi: 10.1007/s10765-

014-1660-y.

[2] P. J. Daivis and D. J. Evans. Comparison of constant pressure and constant volume

nonequilibrium simulations of sheared model decane. The Journal of Chemical Physics

100,1 (1994). doi: 10.1063/1.466970.

[3] R. Soklaski et al. A locally preferred structure characterises all dynamical regimes of

a supercooled liquid. Philosophical Magazine 96,12 (2016). doi: 10.1080/14786435.

2016.1158427. arXiv: 1502.01739.

[4] T. Iwashita, D. M. Nicholson, and T. Egami. Elementary Excitations and Crossover

Phenomenon in Liquids. Physical Review Letters 110,20 (2013). doi: 10 . 1103 /

PhysRevLett.110.205504.

[5] T. Iwashita and T. Egami. Local energy landscape in a simple liquid. Physical Review

E 90,5 (2014). doi: 10.1103/PhysRevE.90.052307.

[6] T. Egami. Elementary excitation and energy landscape in simple liquids. Modern

Physics Letters B 28,14 (2014). doi: 10.1142/S0217984914300063.

166

https://doi.org/10.1007/s10765-014-1660-y
https://doi.org/10.1007/s10765-014-1660-y
https://doi.org/10.1063/1.466970
https://doi.org/10.1080/14786435.2016.1158427
https://doi.org/10.1080/14786435.2016.1158427
https://arxiv.org/abs/1502.01739
https://doi.org/10.1103/PhysRevLett.110.205504
https://doi.org/10.1103/PhysRevLett.110.205504
https://doi.org/10.1103/PhysRevE.90.052307
https://doi.org/10.1142/S0217984914300063


Supplemental Material for Chapter 6

[7] J. Y. Y. Lin et al. MCViNE - An object oriented Monte Carlo neutron ray tracing

simulation package. Nuclear Instruments and Methods in Physics Research, Section

A: Accelerators, Spectrometers, Detectors and Associated Equipment 810, (2016). doi:

10.1016/j.nima.2015.11.118. arXiv: arXiv:1504.02776v1.

167

https://doi.org/10.1016/j.nima.2015.11.118
https://arxiv.org/abs/arXiv:1504.02776v1

	Linking Structure and Dynamics in Metallic Liquids: A Combined Experimental and Molecular Dynamics Approach
	Recommended Citation

	List of Figures
	List of Tables
	List of Abbreviations
	Acknowledgements
	Abstract
	Introduction
	Overview of Glass and Liquid Structure
	Supercooled Liquids
	Linking Structure and Dynamics
	Containerless Processing
	Summary
	References

	Experimental, Simulation, and Analysis Methods
	Sample Preparation
	Setup of Electrostatic Levitators
	WU-BESL Setup
	NESL Setup

	Thermophysical Property Characterization
	Density and Thermal Expansivity
	Viscosity

	Diffraction Experiments
	Inelastic Neutron Scattering Experiments
	Wide Angle X-ray Diffraction Measurements

	Simulations and Analysis
	Classical Molecular Dynamics Simulations
	Reverse Monte Carlo Simulations
	Voronoi Analysis

	References

	Assessing the Reliability of Minimally Constrained Reverse Monte Carlo Simulations for Model Metallic Liquids
	Introduction
	Simulations and Analysis Methods
	Molecular Dynamics Simulations
	Reverse Monte Carlo Simulations
	Voronoi Tessellation
	L1 Histogram Distance

	Results and Discussions
	Volume
	Asphericity
	Voronoi Index and Coordination Number
	Nearest-neighbor Distance

	Summary
	References

	Estimates of bond length and thermal expansion coefficients from x-ray scattering experimental data using reverse Monte Carlo simulations
	Introduction
	Experimental and Analysis Methods
	Experimental Methods
	Molecular Dynamics Simulations
	Reverse Monte Carlo Simulations
	Voronoi Tessellation

	Results and Discussions
	Conclusion
	References

	A Possible Structural Signature of the Onset of Cooperativity in Metallic Liquids
	Introduction
	Experimental Procedure
	Results and Discussion
	Summary and Conclusions
	References

	Experimental determination of the temperature-dependent Van Hove function in a Zr80Pt20 liquid
	Introduction
	Methods
	Results and Discussion
	Conclusion
	References

	Summary and Conclusion
	Inelastic Neutron Analysis Guide
	Analysis and Methods
	Python Code
	References

	Guide to LAMMPS
	Running Simulations on the hpc
	lammps and hpc Guide
	lammps Input Codes

	Analyzing Output With Python
	Simmulated Systems
	References

	Reverse Monte Carlo
	References

	Supplemental Material for Chapter 6
	Experimental Information
	Molecular Dynamics Simulation
	Van Hove Function
	Viscosity Calculation
	Local Configuration Time

	Data Analysis
	References


