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Abstract of the Dissertation 

Singing as a Therapeutic Technique to  

Improve Gait for People with Parkinson Disease 

by 

Elinor Clare Harrison 

Doctor of Philosophy in Movement Science 

Washington University in St. Louis, 2018 

Professor Gammon Earhart, Chair 

 
 

Gait impairment is common in older adults and even more prevalent for people with Parkinson 

disease (PD). Gait dysfunction is often characterized by reductions in speed, step frequency, and 

step length. In addition, decreased ability to regulate step length and step frequency may 

contribute to increased gait variability, making walking less stable and increasing risk for falls. 

As gait deficits are often resistant to drug therapy, there is a need to find alternative therapies that 

improve mobility. Rhythmic cueing in the form of listening to music is effective at enhancing 

walking for people with PD, helping people lengthen strides and increase velocity. However, 

research on rhythmic facilitation of movement has been limited to external cues and it is 

unknown if self-generated rhythmic cues, such as singing, may provide the same or greater 

benefit. This projects described in this dissertation are among the first to examine the effects of 

singing on walking and may reveal a novel, low-cost, non-invasive, accessible and adaptable 

therapeutic technique to normalize gait in PD. 
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In order to study the effects of internal cues on movement patterns in PD, we conducted four 

experiments (chapters 2-5). In the first experiment (chapter 2), we tested the feasibility of singing 

as a cueing technique by comparing it to traditional external cueing and to dual-task walking. We 

showed that while a dual task slowed and destabilized gait, singing while walking did not have 

this detrimental effect. In fact, singing did not negatively affect velocity, cadence, or stride 

length, and it positively impacted measures of gait variability. These results indicated that 

singing is not only feasible for people with PD but that it may hold potential to improve gait 

stability.  

Buoyed by the results of our pilot study, we then set out to examine how best to administer 

singing as a therapeutic technique to elicit the most benefit for people with PD. In experiment 

two (chapter 3), we assessed the differential effects of internal and external cueing techniques on 

basic walking as well as more challenging gait situations. We tested both forward walking, 

commonly considered an automatic motor pattern, and backward walking, which tends to reveal 

more pronounced gait impairment and is related to fall risk. We included people with PD and a 

healthy control group to provide additional insight into how the role of beat impairment in PD 

may differentially affect task performance. Our results showed that internal cueing was 

associated with improvements in gait velocity, cadence, and stride length in the backward 

direction, and reduced variability in both forward and backward walking. In contrast, external 

cues minimally benefitted gait characteristics and detrimentally affected gait variability. We also 

confirmed that people with PD may exhibit greater improvement than their healthy counterparts, 

particularly in more challenging gait situations such as backward walking.  

In experiment three (chapter 4), we investigated how different cue rates might alter responses in 

healthy controls and people with PD. In order to test this, we assessed cued walking conditions at 
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tempos above, at, and below preferred gait cadence. We also added a second internal cueing 

condition of mental singing, in which participants sang in their heads, to determine if it could 

elicit the same benefits as singing aloud. The results indicated that mental singing was more 

effective than overt singing at eliciting gait improvement, which renders this technique more 

practical for everyday use. When done at rates of 10% above preferred cadence, mental singing 

allowed people to increase velocity while simultaneously reducing variability and gait 

asymmetry.  

In our final experiment (chapter 5), we sought to compare the same cued conditions using motion 

capture technology in order to determine if rhythmic cues can improve movement quality as well 

as spatiotemporal gait features. In our assessment of lower extremity sagittal plane joint angles, 

we showed that cues may combat downregulation of movement amplitude by increasing range of 

motion at all lower limb joints. These increases in movement amplitude may be associated with 

longer strides and reduced stride-to-stride variability. We were able to distinguish some key 

features that may predict likelihood of responding positively to internal cueing techniques, such 

as freezing status, fall history, and prior musical experience. The results indicate that internal 

cues may benefit a range of people with PD, even those at risk of more debilitating gait 

impairments such as falling or freezing of gait, and that those with prior musical experience are 

most likely to respond.  

Taken together, these results provide compelling evidence that internal cues are a promising 

therapeutic technique that may transform gait rehabilitation for older adults as well as people 

with PD. The experiments detailed herein contribute to a burgeoning field of literature 

concerning rhythm processing and are among the first to examine singing as a cueing technique 

for people with PD.
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Chapter 1: Introduction 

1.1 Parkinson Disease 

Parkinson disease (PD) is the second most common neurodegenerative disorder in the United 

States affecting 1% of the population over the age of 651. Diagnosed prevalence exceeds one 

million Americans and is expected to reach 9.3 million worldwide by the year 20302. The 

significant social and economic burden of PD was estimated at over $14 billion in 2010,  or 

$22,800 per patient per year1, and will continue to escalate as the elderly population grows over 

the next few decades.  

The neuropathological underpinnings of PD involve formation of α-synuclein-containing Lewy 

bodies and loss of dopaminergic neurons in the substantia nigra pars compacta, spreading to 

cortical regions as the disease progresses3. Dopaminergic depletion in PD disrupts the 

corticostriatal balance and leads to excessive inhibitory output from the basal ganglia and 

significant motor dysfunction4. Motor symptoms typically manifest after 30% loss of nigral 

dopaminergic neurons and are clinically represented by four cardinal signs: tremor, rigidity, 

bradykinesia, and postural instability5. Motor impairments in PD restrict functional independence 

and are a major cause of morbidity and mortality6–8. 

As PD is a multi-system brain disease affecting various non-dopaminergic transmitter systems, 

concurrent non-motor, cognitive, and autonomic impairments may also develop9. In spite of 

significant interindividual heterogeneity and varied phenotypes, most people with PD experience 

asymmetrical onset localized to the upper extremities that eventually progresses to affect overall 

mobility with frequently debilitating effects on gait and balance10.  
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No available treatments are proven to cure or slow disease progression, so continual refinement 

of therapeutic techniques targeted at alleviating motor symptoms is crucial11. Treatment 

strategies that offer to improve quality of life, functional independence, and reduce caregiver 

burden may have a measurable impact12. Walking is one of the most challenging motor 

impairments for people with PD but also one that is highly amenable to treatment options13. 

Therefore, a common goal of rehabilitation efforts in this population is to improve locomotor 

function.  

 

1.2  Gait impairment  

1.2.1 Gait impairment in aging populations 

Gait impairment due to aging is prevalent, affecting a third of the population over 70 years of 

age14, and represents a major cause of falls in the elderly15. Deteriorating walking performance 

may reflect diminished muscle strength, balance control, movement efficiency, and endurance16. 

Gait speed is an important marker of overall health, as reductions in self-selected gait speed due 

to aging can predict adverse events, future disability, healthcare utilization, and even mortality17. 

Decreased speed in older adults is often accompanied by shorter step lengths, increased step 

width, and prolonged double support, which are likely compensatory strategies to avoid falls and 

reduce the energetic cost of walking18.  

1.2.2  Gait impairment in PD 

Since the prevalence of PD increases with age, many people with PD may already be 

experiencing gait dysfunction due to aging at the time of disease diagnosis19. Gait impairment, 

then, may be compounded in those who also experience neurological decline. In  PD, the 
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stereotypical short, shuffling gait is characterized by even more marked reductions in speed, step 

frequency, and step length, than their age-matched controls20,21. Other PD-specific impairments 

include forward flexed posture, reduced arm swing, longer time spent in double limb support, 

and axial rigidity. The primary deficit to gait disturbance in PD is commonly considered to be 

insufficient step length generation, which is related to deficient amplitude scaling10,22. Shortened 

strides contribute to other continuous gait disturbances such as reduced speed and increased 

support time, with less time spent in the swing phase of gait. In order to compensate for smaller 

strides, step frequency can increase leading to an abnormal stride length-cadence relationship22.  

Further contributing to the dysfunction is marked postural instability. While slight changes in 

balance are noticeable early in the disease, considerable postural instability can emerge as the 

disease progresses, resulting in impairments in balance and gait23,24. Reduced gait speed is also a 

clinical marker in PD that correlates to disease severity, loss of mobility, fall risk, and mood 

disorder25.  

1.2.3 Gait variability 

Though the systems that regulate gait are highly accurate and fine-tuned, natural gait fluctuations 

occur over time and from one stride to the next. Therefore, measurements of gait characteristics 

such as speed, stride length, and cadence, are inadequate to fully understand walking 

performance. Gait variability is a quantifiable measure of altered walking performance that is 

strongly indicative of overall stability. Measures of temporal gait variability, such as stride time 

and single support time, may provide an assay of neurodynamics26 whereas measures of spatial 

variability, such as stride length, may reflect variability in amplitude scaling and force 

production27. Both temporal and spatial measures of variability are associated with functional 
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status and clinical outcomes and are highly predictive of falls in the elderly28 and people with 

PD7.  

Numerous factors can influence gait variability, including neural control, muscle function, 

postural control, cardiovascular alterations, and mental health. In healthy older adults, multiple 

physiological changes may compound to increase “neuromotor noise” and, in turn, stride-to-

stride variability 29. Healthy older adults, thus, exhibit increased gait variability independent of 

walking speed which may reflect diminished balance control30,31 and further increase the risk of 

falls10.  

For people with PD, fluctuations between strides are even more pronounced. Multiple studies 

show that people with PD exhibit temporal and spatial variability up to two times higher than 

controls32 and that the degree of variability correlates with disease severity33. Impaired ability to 

maintain a steady gait rhythm can cause decreased symmetry between sides and reduced bilateral 

coordination34. Decreased ability to regulate step length and step frequency may contribute to 

increased gait variability, rendering walking less efficient and more unstable35,36. 

Combined, these characteristics lead to an unstable gait pattern that puts people at risk of injury. 

Falls occur in 40-70% of people with PD7. Recurrent falls are particularly disabling and may 

contribute to increased fear of falling, social isolation, and reduction in activity8. People with PD 

have a nine times greater risk of recurrent falls compared to their healthy counterparts37 and are 

3.2 times more susceptible to hip fracture38. In fact, 25% of patients with PD will sustain a hip 

fracture within 10 years of being diagnosed39, and average survival is reduced to approximately 7 

years once recurrent falls are present40. Rehabilitation programs and therapeutic interventions 

can provide important tools to help improve gait stability and reduce the risk of falls. 
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1.3  Beat impairment and gait rhythmicity in PD 

The disordered gait patterns of people with PD described above are likely related to 

neurodegeneration of brain regions that regulate movement timing and rhythm. Basal ganglia 

degeneration is linked to impaired beat perception, as people with PD have difficulty 

discriminating beat-based rhythms41–44. Beat impairment may impact movement since specific 

motor network regions, such as the basal ganglia, cerebellum, premotor cortex, and 

supplementary motor area are also responsible for rhythm processing45,46. Neurodegeneration of 

these motor regions may disrupt the internal regulation of movement amplitude and timing in PD 

and lead to a loss of gait rhythmicity, or the ability to maintain a steady gait rhythm. While 

maintaining gait rhythmicity is an automatic and effortless process in healthy individuals, for 

people with PD, this may become attention-demanding and worsen during performance of 

unrelated secondary tasks47. Less rhythmic gait is naturally more variable and less efficient, and 

may contribute to freezing of gait or falls48,49. 

 

1.4  Rhythmic auditory cueing in PD 

In spite of beat impairment, people with PD are capable of using external auditory cueing to 

compensate for loss of internal timing mechanisms. This may be possible because sensory-motor 

coupling, or the ability to drive motor action by auditory information, appears to be intact in 

people with PD46. Traditional auditory cueing, in which participants walk to a metronome beat or 

to the beat of a song, is an effective strategy to improve gait and restore gait rhythmicity46,50,51. 

Instructing people with PD to match footfalls to external rhythms typically increases gait speed 

and elicits larger, more uniform steps51–56. Notably, a recent meta-analysis concluded that 
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auditory cues are more effective at increasing velocity, cadence, and stride length than other cue 

types, such as visual or attentional55. 

The mechanisms by which auditory cues work are not fully understood, but one theory posits 

that cueing replaces the defective internal timing mechanism within the basal ganglia with an 

external template to which people can match their movement51,53,54. The remarkable ability to 

time-lock movement to an external auditory pulse is known as entrainment. In humans, 

entrainment is possible across different sensory modalities, allowing information integration and 

facilitating complex coordination between activities57. Matching rhythmic movement to sounds 

is possible via auditory-motor coupling, or the tight anatomical and functional coupling between 

auditory and motor cortices.  

In PD, auditory-motor coupling remains possible, in spite of neurodegeneration in nearby 

cortical and subcortical circuits. Bypassing the areas within the brain that are affected by PD in 

favor of alternative unaffected pathways may reduce reliance on defective automatized basal 

ganglia processes and thereby enhance motor performance46. A current popular theory supposes 

that enhanced activity in cerebello-thalamo-cortical circuitry during auditory cueing may 

compensate for malfunctioning cortico-basal ganglia circuitry58,59. Increased cerebellar 

activations during motor tasks that are predictive60 or coupled to external stimuli61–63 support this 

theory. Alternatively, activation of brain areas involved in rhythm perception and movement may 

additively combine and lead to increased activation of the motor network, thereby facilitating 

pre-existing movement patterns by matching them to sound48,49. 
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1.5 Limitations of external auditory cueing 

While external auditory cueing through music is widely established as an effective tool to 

improve gait in PD, it has noteworthy limitations. One is that the benefits do not persist without 

the presence of a cue 64,65 and the need for an external device to provide constant stimulation 

reduces accessibility in everyday situations. Another is that individuals do not all respond the 

same to external cues, and we do not know how much beat impairment or other factors may 

contribute to these differential effects41,66. Furthermore, most external cues are set at a fixed 

tempo, whereas adaptive cueing techniques that synchronize to an individual’s walking speed are 

more effective67–70. These limitations may explain why people with PD do not report using 

external cues as a strategy to improve gait71 and support the need to explore alternative cueing 

techniques.   

 

1.6  Singing in PD 

Using one’s own voice presents one such alternative that has thus far been unexplored. This is 

surprising given the abundant rationale for testing such a technique. Studies of singing in aging 

and neurological conditions show far-ranging benefits including improved physiology, reduced 

pain thresholds, and increased social bonding72. Singing also causes endorphin release and has 

positive effects on cognition and mood in patient populations73–76. Such benefits can take effect 

quickly as enhancements are seen immediately after group singing of either familiar and 

unfamiliar songs77. In PD, group singing can improve mood, quality of life, and emotional 

wellbeing73,77. Participation in performing arts also provides psychosocial benefits that may 

counteract social isolation and reduced activity levels, common in PD78,79. Considering the high 
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prevalence of neuropsychiatric disturbances in PD--with about 35% of patients experiencing 

depression80 that correlates to cognitive impairment and quality of life81--such improvements are 

not to be taken lightly. 

Evidence also suggests that benefits of singing may extend beyond speech to improvements in 

motor control78. Self-generated vocal cues enhance upper extremity movement in people with 

PD, resulting in faster and smoother reaching movements82. Vocalizations may enhance lower 

body movement as well, as people with PD report using singing to aid with gait initiation and 

maintenance, particularly in challenging gait situations83. Motor benefits conferred by active 

music-making (such as singing) rather than passive music listening may be related to movement 

“vigor” or eagerness to move 76. While synchronizing movement to music may induce an arousal 

effect that makes movement faster, larger, and more vigorous84 and may lead to greater motor 

network activation85, it is possible that synchronizing movement to one’s own voice may elicit 

an even stronger motor response.  

For people with PD, singing may be a particularly promising technique because it is uniquely 

accessible. While an estimated 80% of people with PD will develop voice and speech problems 

at some point86, singing ability may be retained much longer. In a study using blind raters to 

assess vocal function, raters could distinguish between controls and people with PD during 

speaking but not singing tasks83. Thus, individuals with PD who exhibit speech dysprosody show 

no decrements in singing prosody83. This accounts for the common use of singing in this 

population to target hypophonia, or vocal softness, a common PD symptom. Previous reports 

show that singing elicits improvements in speech intelligibility, vocal intensity, and respiratory 

function87,88.  
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Given the abundant rationale for utilizing singing as a therapeutic tool to aid gait in PD and the 

inherent deterrents of external auditory cues, in Aim 1, we sought to test singing as compared to 

more traditional cueing techniques such as listening to music.  In order to capture gait 

improvement in PD, we assessed primary outcome measures of gait velocity, cadence, and stride 

length, as well as secondary measures of gait variability, including step time, single support time, 

and step length. 

 

1.7  Dual task paradigms 

In Aim 1, we also compared singing to a verbal dual task paradigm, known to cause gait 

decrement. Dual task (DT) walking paradigms are commonly used as an assay of motor 

automaticity. Automaticity refers to the ability to perform movements without directing attention 

to the details. Automatic activities such as gait require minimal cognitive resources and are 

resistant to interference. This accounts for our ability to walk and talk on a cell phone without 

falling over. This activity, though automatic for healthy adults, can require significant attentional 

and cognitive resources for people with PD. Under dual task conditions, the secondary task 

consumes available resources, resulting in degradation of primary task performance. An 

alternative theory suggests that these detrimental dual task effects on gait are actually due to 

faulty task prioritization in PD89,90. This suggests that healthy adults, when required to perform a 

cognitive task while walking, tend to increase attention allocation to gait in order to maintain 

upright balance, whereas people with PD divide attentional resources equally between tasks, 

thereby degrading performance of both47.  
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The neural correlates of automaticity support the idea that automatic activities require fewer 

cognitive resources. Decreased activity in frontal, parietal, premotor, supplementary motor, and 

cerebellar areas during automatic tasks suggests more efficient processing requiring fewer 

attentional resources91,92. Increased connectivity between motor areas such as the cingulate motor 

area, supplementary motor areas, putamen, and cerebellum, may reflect enhanced synaptic 

strength during the automatic process93–96.  

Impaired automaticity in PD implicates dopaminergic degeneration in the basal ganglia, which 

likely impairs cognitive, as well as motor, circuits. Impaired executive function in PD is 

associated with degenerated circuits projecting to the dorsolateral prefrontal cortex, an area 

known to be involved in attentional set shifting ability97,98 and response inhibition and conflict 

resolution99. Increased cortical activity during balance and gait tasks for people with PD suggest 

that more cognitive resources are required to compensate for deficient automatic motor 

control100,101. Dopaminergic involvement is also confirmed by improvement in dual task 

conditions in patients on medication102.  

Gait impairments in PD are exacerbated under DT conditions that require concurrent motor and 

cognitive skills. Negative effects on balance, gait, and other functional activities are well 

known90. Reductions in velocity, stride length, and cadence are commonly reported103–105, as are 

detrimental effects on variability, symmetry, and rhythmicity103,106–108. Auditory cues can 

improve dual task gait characteristics, implying that cues can reduce the attentional demands of 

walking and free up cognitive resources to devote to secondary task performance47,109.  

Given the correlation between basal ganglia degeneration and impaired automaticity, as well as 

known detrimental effects of secondary tasks on PD gait, we compared auditory cueing 
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techniques to typical dual task paradigms in Aim 1. The goal of this comparison was to 

determine if cueing would divide attentional resources, reflected in gait decrement, in the same 

way that a dual task condition would, or if cueing would facilitate attentional reallocation, 

reflected in gait improvement. 

 

1.8  Backward walking 

Whereas forward walking addresses automatic locomotor circuits, backward walking represents 

a more complex gait scenario that may pose particular risks for people with PD. Backward 

walking is characterized by slower velocity, a wider base of support, decreased cadence, shorter 

stride lengths, and substantial increases in variability110. This gait pattern is more pronounced for 

the elderly111 and especially problematic for people with PD. Furthermore, moving in the 

backward direction is a common cause of falls and injury23,111,112.  

Previous reports showed that both healthy adults and people with PD reduce velocity and stride 

length during backward walking111,113. These differences in backward as compared to forward 

walking are particularly pronounced in people with PD, regardless of medication status, and 

reflect diminished balance control and propensity to fall when perturbed in the backward 

direction114. Detrimental effects of dual-task conditions reflect the especially challenging nature 

of backward walking which is more negatively impacted by a secondary task than is forward 

walking111,115. Therefore, in Aim 2, we addressed both forward and backward walking to 

determine if rhythmic cues had the same effect on more challenging, complex gait situations and 

those that are more automatic. We used a similar protocol to compare the effects of singing aloud 

and listening to music.  
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1.9  Optimal cue rate 

Previous PD research suggests that changing cue tempo to a percentage above or below preferred 

cue rate can elicit greater improvements in gait velocity and stride length than cueing at preferred 

cadence; however, these findings are not consistent and the effects of tempo changes on gait 

variability are less well known and similarly mixed. Increasing cue rate to up to 125% of 

preferred walking cadence may elicit substantial improvements in gait velocity, cadence, and 

stride length51,116–118 while also improving variability of stride time and swing time53. Decreasing 

cue rate, on the other hand, may be better suited to increasing stride length119 but may worsen 

step length variability120 and stride time variability121,122. This suggests that using slower cue 

rates to improve stride length may come at the expense of increasing gait variability. As both 

slow walking and increased variability are independently related to gait instability, slow gait 

speed may induce a qualitative change in gait control that degrades stability123. Previous reports 

also indicate that patients respond differently to different cue rates119. More work is required to 

determine optimal rate of cueing based on what gait parameters are targeted and taking into 

account individual patient characteristics.   

Therefore, in Aim 3, we explored the effects of auditory cues at tempos faster and slower than 

preferred cadence. We used cues of 10% above or below preferred, as these tempos have shown 

the most frequent benefit in studies of external cueing53,124. 

 

1.10 Mental singing 

A potential criticism of singing aloud as a therapeutic technique to improve gait is that it may be 

embarrassing in public settings and not practical for all participants. One prior study of mental, 
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covert singing showed improvements in motor timing85,125, but precise gait characteristics have 

not been measured using this technique. While this suggests that people with PD might be able to 

utilize covert singing as effectively as overt singing for gait entrainment, such a leap requires 

considering the mechanistic overlaps between auditory perception, auditory imagery, and 

imagined song production. 

Neuropsychological studies suggest a mechanistic overlap between auditory perception and 

auditory imagery. Musical imagery recruits auditory cortical areas, primarily A2, even in the 

absence of sound126, and cerebral blood flow increases have been recorded in the superior and 

middle temporal gyri127. Hemodynamic response functions of perceived and imagined sounds 

overlap128 as do alpha band response profiles129. 

Auditory imagery and perception also share an ability to engage the motor network, accounting 

for their shared ability to influence movement. Neuroimaging studies suggest that moving to 

imagined music engages the same areas of the motor network as moving to perceived music, 

though to differing degrees85,130. This is obvious to anyone who has ever caught herself tapping 

to a beat when a song gets stuck in her head. Synchronization studies have shown that tapping 

along to imagined music improves timing accuracy of perceived rhythms85,131, which may reflect 

the proposed benefit of mental imagery in generating anticipatory images that enable temporal 

precision and movement economy132. 

Mental singing, however, goes a step beyond musical imagery to a more explicit imagining of 

action involving both auditory and kinesthetic forms of imagery. In the last two years, surging 

interest in cross-pollination between neuroscientists and artists have resulted in famous singers 

such as Renee Fleming and Sting undergoing fMRI scans while singing both overtly and 
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covertly. The results of these scans confirm that music perception and imagined vocal production 

recruit similar neural substrates and activate similar clusters of brain regions133,134.  

Taken together, this evidence suggests that imagined singing may activate the same processes 

involved in auditory perception and may facilitate sensorimotor synchronization in gait in the 

same way that it does in the upper extremity. Thus, in Aim 3, we broadened our conditions to 

include mental singing, in order to determine if producing sound was necessary to benefit from 

internal cueing techniques. This condition was also included to increase acceptability among a 

broader range of people. 

 

1.11 Gait kinematics in PD 

Surprisingly few studies to date report how spatiotemporal gait deficits in PD relate to movement 

quality as assessed by gait kinematics. Of those that do, the over-arching conclusions reveal that 

reduced spatiotemporal parameters correspond to reductions in lower limb joint movement 

relative to controls, further confirming PD as a central amplitude regulation disorder20,135. 

Distinctive kinematic features include flat foot contact, reduced hip extension in stance, knee 

flexion in swing, and plantarflexion at toe-off136–138. Sagittal plane gait kinematics are important 

because they predict kinetic features as well. Thus, the impact of reduced movement amplitude 

in PD occurs in conjunction with kinetic gait abnormalities, as people with PD exhibit reduced 

vertical force production during both push-off at the ankle and pull-off at the hip139,140.  

Reduced joint excursions persist in spite of anti-Parkinsonian medication21,140 but can be 

improved through subthalamic nucleus stimulation141 as well as cueing techniques. Visual142, 
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auditory117,143, and attentional cues144 elicited improvements in PD biomechanics by increasing 

movement amplitudes at different points throughout the gait cycle. In order to shed light on the 

biomechanics underlying spatiotemporal gait changes observed in our previous three Aims, in 

Aim 4, we explored the effect of cues on gait kinematics in PD.  

 

1.12 Freezing of Gait 

Aside from the previously mentioned continuous gait disturbances in PD, freezing of gait (FOG) 

is an episodic gait disturbance affecting about half of people with PD. FOG has been defined as a 

“brief, episodic absence or marked reduction of forward progression of the feet despite the 

intention to walk”145. Commonly described by patients as “the sensation of your feet being glued 

to the floor”, FOG is particularly incapacitating and can significantly affect activity level146 and 

quality of life147. These short cessations of gait are more prevalent in advanced stages of the 

disease and are commonly provoked during gait initiation, turning, and passing through 

doorways147. As FOG is highly unpredictable and develops independently of the other cardinal 

symptoms of PD148, its etiology remains a mystery149.  

However, people who experience FOG, or “freezers” (hereafter, FOG+),  do show abnormalities 

in gait patterns that manifest outside of transitory freezing episodes and that may contribute to 

likelihood of experiencing FOG. Decreased stride length150, increased step time variability151 and 

increased cadence during turns152, for instance, all correlate to greater incidence of FOG. Such 

correlations between FOG and gait dysfunction fit into a conceptual model of FOG suggesting 

that multiple seemingly independent gait impairments may interact simultaneously153. When 

these combined impairments cross a critical threshold of gait deterioration, a FOG episode is 
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triggered. This theoretical framework would imply that improving independent elements of gait 

could potentially reduce the likelihood of crossing this threshold and therefore reduce risk of 

FOG.  

An alternative theory proposes FOG as a deficit in automaticity, suggesting that freezers exhibit 

malfunctioning of frontostriatal circuitry causing a breakdown in automatic motor patterns to a 

greater extent than non-freezers154. According to this theory, FOG episodes may be more likely 

to occur when attention is allocated elsewhere and there is increased reliance on the BG to 

control rhythmic movement. This theory also implies that cueing might be beneficial to people 

with FOG as they may help restore gait automaticity and rhythmicity119,155.  

In Aim 4, we explored differences between freezers and non-freezers to see if response to cues 

differed between these two subtypes of PD.  

 

1.13 Rationale for studies 

Overall, the proposed work will contribute to a burgeoning field of literature concerning beat 

impairment in PD, potentially shedding light on rhythmic and motor processing in healthy and 

diseased populations that underlie the use of auditory cueing. Our research may also provide 

people with gait dysfunction due to aging or neurological decline with a novel form of cueing to 

improve gait through the use of internally-generated cueing in the form of singing or imagined 

singing. 

In Aim 1, we compared gait during singing, singing to music, listening to music, and dual-

tasking, measuring basic gait features of velocity, cadence, stride length, and gait variability. We 
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assessed each cueing technique relative to uncued walking to determine differential effects of 

cue type relative to baseline. We expected that singing may provide similar benefit to gait 

velocity and cadence as listening to music and that it would not cause gait detriment as a verbal 

dual-task condition does. 

In Aim 2, we compared gait while singing versus listening to music in forward and backward 

walking to assess the effects of cueing techniques on both automatic walking and more 

challenging gait situations. A healthy control group was tested to provide additional insight into 

the role of beat impairment in PD and how it may differentially affect task performance. We 

expected that people with PD would gain more benefit than their healthy counterparts.  

In Aim 3, we compared internal and external cueing techniques at tempos faster and slower than 

preferred pace in order to learn how to optimize this tool for people with PD. Comparisons of 

velocity, cadence, stride length, and gait variability extend past research showing more extreme 

gait improvements at different tempos as compared to preferred-pace cueing. We expected 

increased cue tempos to elicit the most positive response. We also added a condition of mental 

singing, or singing in one’s head, to increase acceptability and effectiveness in everyday life. We 

expected mental singing to provide similar benefits to singing aloud.  

In Aim 4, we explored the effects of singing, mental singing, and listening to music, on 

movement quality as assessed by two-dimensional (2-D) kinematic analysis. We hoped that this 

different methodology might capture more qualitative aspects of walking performance and give 

us deeper understanding of how the internal cueing techniques affect joint motion. We expected 

that sagittal-plane gait kinematics would improve via cueing and that internal cueing would show 

greater changes in angle excursions and range of motion than external cueing.  
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1.14 Specific Aims 

AIM 1:  Determine the effects of singing, compared to traditional cueing and dual-tasking, 

on forward walking in people with PD.   

Hypothesis 1:  Singing while walking will be as effective as traditional cueing for improving gait 

velocity, cadence, and stride length in people with PD. In contrast, a verbal dual-task will 

reduce gait velocity and increase gait variability.  

AIM 2:  Determine the effects of singing vs. listening to music on forward and backward 

walking in people with and without PD.  

Hypothesis 2:  Singing will be more effective than listening to music at improving both forward 

and backward gait. Gait will improve more in people with PD while singing aloud compared to 

controls.   

AIM 3: Determine the effects of mental singing and cue tempo on forward walking for 

people with and without PD.  

Hypothesis 3: Increasing cue tempo to 110% of preferred cadence will increase velocity and 

cadence and reduce stride length and variability relative to cueing at preferred cadence. In 

contrast, decreasing cue tempo to 90% of preferred cadence will decrease velocity and cadence 

and increase stride length and variability relative to cueing at preferred cadence. Mental singing 

will be as effective as singing aloud at improving gait characteristics. 

AIM 4: Determine the effects of singing and imagined singing on 2D gait kinematics in 

people with PD.   
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Hypothesis 4: In people with PD, ankle, knee, and hip joint angle ROM in the sagittal plane will 

increase during cued gait, and these increases will be greater with singing and imagined singing 

versus listening to music.  
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Chapter 2: The feasibility of singing to 

improve gait in Parkinson disease  
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2.1 Abstract 
Brain regions important for controlling movement are also responsible for rhythmic processing. 

In Parkinson disease (PD), defective internal timing within the brain has been linked to impaired 

beat discrimination, and may contribute to a loss of ability to maintain a steady gait rhythm. Less 

rhythmic gait is inherently less efficient, and this may lead to gait impairment including reduced 

speed, cadence, and stride length, as well as increased variability. While external rhythmic 

auditory stimulation (e.g. a metronome beat) is well-established as an effective tool to stabilize 

gait in PD, little is known about whether self-generated cues such as singing have the same 

beneficial effect on gait in PD. Thus, we compared gait patterns of 23 people with mild to 

moderate PD under five cued conditions: uncued, music only, singing only, singing with music, 

and a verbal dual-task condition. In our single-session study, singing while walking did not 

significantly alter velocity, cadence, or stride length, indicating that it was not excessively 

demanding for people with PD. In addition, walking was less variable when singing than during 

other cued conditions. This was further supported by the comparison between singing trials and a 

verbal dual-task condition. In contrast to singing, the verbal dual-task negatively affected gait 

performance. These findings suggest that singing holds promise as an effective cueing technique 

that may be as good as or better than traditional cueing techniques for improving gait among 

people with PD. 

 

2.2 Introduction 

In Parkinson disease (PD), basal ganglia degeneration has been linked to impaired beat 

processing, as people with PD have difficulty discriminating beat-based rhythms1-3. This beat 

impairment may impact movement since brain regions involved in rhythm processing, such as 
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the basal ganglia, cerebellum, premotor cortex, and supplementary motor area, are also 

responsible for motor function4. Neurodegeneration in these motor regions may disrupt the 

internal regulation of movement amplitude and timing in PD and lead to a loss of gait 

rhythmicity (i.e., ability to maintain a steady gait rhythm). While maintaining gait rhythmicity is 

an automatic and effortless process in healthy individuals, for people with PD, this becomes 

attention-demanding and is particularly impaired during performance of secondary tasks5. Less 

rhythmic gait is naturally more variable and less efficient, and may contribute to freezing of gait 

or falls6,7.  

Music is well-established as an effective cueing technique to improve gait and restore gait 

rhythmicity4,8,9. Traditional auditory cueing, in which participants walk to a metronome beat or 

to the beat of a song, typically increases gait speed and elicits larger, more uniform steps6,9-11. 

This technique, however, is challenging to implement consistently outside of the clinic because it 

requires use of an external device and headphones. The burden of wearing this device may 

prevent patients from using it regularly, particularly during short walking bouts in the home 

where falls commonly occur. Singing, on the other hand, requires nothing but one’s own voice. 

Additionally, most external cueing devices are set at a fixed tempo and incapable of adapting to a 

person’s varying cadence, thereby reducing effectiveness in the real world. One’s voice, in 

contrast, may be easily adapted to any circumstance, and may even help cue challenging gait 

situations such as step initiation, turning, or freezing. External cueing techniques have 

inconsistent carry-over effects, as the benefits of cueing are not always retained once the device 

is removed. Singing, however, is an active process that may cause melodies to get stuck in 

people’s heads and therefore may have longer lasting effects. Although external cueing devices 
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may be effective at improving gait, they are not a perfect tool, and therefore, there is a need to 

find accessible and adaptive alternatives to traditional cueing techniques12. 

The purpose of our study was to determine if people with PD could generate their own cues 

through singing and if this novel cueing technique could improve gait in the same way that 

traditional cueing techniques do. Among the potential benefits of this technique are that it could 

be used at any time and in any place, without the need for a device to play music, and that it can 

be customized to match one’s cadence. Past research on imagined singing suggests the potential 

of singing to improve gait in PD and confirms that internal generation of musical cues is possible 

in PD and other neurological disorders13-15. However, no studies to date directly measure the 

effects of singing on gait parameters that have typically shown improvement with external 

cueing. Therefore, we developed a single-session protocol to test feasibility of singing as a tool 

to improve gait. We hypothesized that singing would stabilize gait in the same way that music 

does. We expected that singing would be as effective as traditional cueing at improving velocity, 

cadence, and stride length in PD, and that it would decrease gait variability as traditional cueing 

does. To assess the attentional demands of singing while walking, we also included a dual-task 

condition known to divide resources and cause gait decrement. We predicted that this verbal 

dual-task would be detrimental to gait, whereas singing would not.   
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2.3 Methods 

2.3.1. Participants 

Twenty-three individuals with PD were recruited from a convenience sample of people who 

were participating in a separate study16 at Washington University School of Medicine (Table 

2.1). Inclusion criteria were (1) a diagnosis of idiopathic PD, as determined by a board certified 

neurologist using diagnostic criteria for ‘definite PD17, (2) ability to ambulate independently 

indoors for short distances without an assistive device, (3) absence of other neurologic disorder 

or dementia as measured by a minimum MMSE score of 2418, (4) absence of orthopedic injury or 

other comorbidity affecting gait, and (5) adequate vision and hearing (with or without a hearing 

aid). All participants gave informed consent to perform experimental procedures approved by the 

Human Research Protection Office at Washington University School of Medicine. 

 

Table 2.1. Participant Demographics. 
N (male) 23 (13) 
Age 69.5 (7.6) 
MDS-UPDRS-III 30.5 (11.8) 
Hoehn & Yahr II(10)  

II.5(10)  
III(3) 

Years since Diagnosis 3.8 (4.2)  
MMSE, median (range) 29 (24,30) 

Values are standard deviations (SD) ± SEM, except where noted. 
 
 

2.3.2 Experimental Protocol 

Participants were tested in the ‘on’ state (i.e., they had taken anti-Parkinson medication within 

the previous 2.5 hours) to maximize relevance to everyday walking conditions. Participants 

performed all walking trials on a 5m instrumented, computerized GAITRite Walkway (CIR 
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Systems, Inc., Franklin, NJ). For all trials, participants were instructed to begin walking prior to 

reaching the GAITRite and to continue walking once off the mat to minimize acceleration and 

deceleration effects. An initial trial where participants were instructed to walk at their 

comfortable speed was used to determine each participant’s preferred cadence. This cadence was 

used to adjust song tempo to match each individual’s comfortable pace. Although cueing is often 

assessed using cues set to 110% of preferred cadence, we chose to use preferred cadence for this 

feasibility study to simplify task demands. For these musically-cued conditions, the cue was 

administered in the form of an instrumental version of “Row, Row, Row Your Boat” via a laptop 

no further than 10 m from the participant at any time during walking. Song tempo was adjusted 

for each individual using Audacity (The Audacity Team, 

audacity.sourceforge.net/download/) open source audio editing software. The song was chosen 

for its familiarity, as singing a life-long familiar melody results in better consolidation and higher 

retention 19 and because improvements in velocity and stride length have been seen in people 

with PD when synchronizing to a highly familiar song20. The particular instrumental version was 

selected for its high beat saliency, which enabled participants to more easily find the beat and 

sing along21. Follow-up interviews confirmed that all participants were able to hear the music 

and knew the melody and lyrics.   

Participants completed three walking trials in each of five conditions as described below and 

were instructed to begin each trial when ready. Dual-task data were collected first as this was 

required as part of the study protocol for the larger trial. All other conditions were randomized to 

eliminate any training effects.   
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1. Uncued:  This condition was used to represent ‘normal’ walking and provided a point of 

comparison for the other conditions. Participants were asked to walk at their preferred walking 

speed when given the signal to go. This occurred in silence as no cueing was present.  In 

instances where the UNCUED condition came after a condition in which music played, 

participants were instructed not to think of the previously heard song as they walked.   

2. Music only (MUS): Our music-only condition represents traditional cueing techniques in 

which music was playing and participants were asked to walk to the beat. Once the song was 

turned on for each trial, participants were told to take as long as needed to listen to the song, pick 

out the beat and begin walking. 

3. Singing only (SING): Participants were asked to sing aloud while walking without music 

playing. In the absence of an external cue, participants were required to internally generate and 

produce the music to cue their walking. Therefore, this condition represented the novel cueing 

technique in which we were most interested.  

4. Singing along with music (MUS+SING): Participants were asked to walk to the beat of the 

music while singing along. Instructions for this condition were the same as for the MUS 

condition except that participants were now asked to sing aloud to the music. This condition was 

included to capture the potentially additive effect of listening to music while also singing.  

5. Verbal dual-task condition (DT): This is a commonly used dual task in which participants 

were asked to walk at preferred speed while generating as many words as possible that began 

with different letters of the alphabet (H, L, T). Participants were given instructions on this task 

and a letter was given just before they began walking so they did not have time to think of words 
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in advance. At the end of the walkway, they turned around and repeated the protocol with the 

next letter.  

Additional Measures:  Disease severity was assessed by a trained physical therapist using the 

Movement Disorders Society Unified Parkinson’s Disease Rating Scale Motor Subscale 3 

(MDS-UPDRS III) and Hoehn and Yahr staging (H&Y), the New Freezing of Gait Questionnaire 

(nFOGq) was used to assess freezing, and the Mini-mental Status Exam (MMSE) was used to 

assess cognition. Beat processing impairment was assessed by the Beat Alignment Test (BAT). 

 

2.3.3 Data Analysis 

IBM SPSS Statistics 22 was used for all statistical analyses. For each participant, data were 

averaged across the three trials of each condition. Normalized velocity, cadence, stride length, 

and variabilities of step time, single support time, and stride length were compared across 

conditions using one-way repeated measures ANOVAs. Variabilities were calculated as the 

standard deviation of each trial and then averaged across trials. Comparisons between the single 

initial trial used to determine preferred cadence and the three uncued trials were not statistically 

significant, and therefore we used the average of uncued trials to represent baseline. Post-hoc 

pairwise comparisons were used as appropriate, and Bonferroni corrections were used to correct 

for multiple comparisons. Statistical significance was set at p<0.05.  
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2.4 Results  

2.4.1. Normalized velocity, cadence, and stride length 

Cueing in the form of MUS, SING, or MUS+SING did not alter velocity, cadence, or stride 

length relative to UNCUED (Figure 2.1). DT, however, elicited significant decreases in 

normalized velocity (F(4,19)=16.418, p<.001), cadence (F(4,19)=7.04, p=.001), and stride length 

(F(4,19)=10.115, p<.001) compared to all other conditions (Table 2.2). 
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Figure 2.1. Gait characteristics across 4 conditions as percent change from UNCUED walking. 
Error bars represent ± SEM.  * denotes p<.001 where DT was worse than all other conditions. 
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Table 2.2 Measures of gait velocity, stride length, and cadence across all 5 conditions. 

  UNCUED MUS SING MUS+SING DT 

Velocity (cm/sec) 123.97 (18.99) 126.65 (23.74) 124.87 (29.92) 124.92 (24.29) 101.75 (20.77)* 

Stride Length (cm) 131.4 (16.9) 134.7 (20.2) 130.4 (18.4) 131.9 (20.7) 118.1 (18.8)* 

Cadence (steps/min) 113.6 (9.7) 113.1 (10.3) 115.3 (9.6) 113.9 (10.6) 104.0 (14.3)* 

  Values are means +/- SD.  * denotes p<.001 where DT was worse than all other conditions. 

 

2.4.2. Variability of step time, single support time, and step length 

Variability measures revealed greater differences between cueing techniques. SING closely 

resembled UNCUED in that it showed minimal variability across all measures. Variability was 

significantly lower for SING compared to MUS+SING and DT for step time (F(4,19)=7.172, 

p=.008, F(4,19)=7.172, p=.003, respectively) and single support time (F(4,19)=6.806, p=.031, 

F(4,19)=6.806, p=.004, respectively). Step length revealed a similar but non-significant trend in 

which SING was less variable than other cued conditions. MUS+SING was associated with 

higher gait variability than all other cued conditions and this was significant for step time when 

compared to UNCUED (F(4,19)=6.806, p=.045) (Figure 2.2). The DT condition was the most 

variable of all five conditions. For step time, DT was more variable than UNCUED 

(F(4,19)=7.172, p=.003), MUS (F(4,19)=7.172, p=.021), and SING (F(4,19)=7.172, p=.003).  

For single support time, DT was more variable than UNCUED (F(4,19)=6.806, p=.003) and 

SING (F(4,19)=6.806, p=.004) (Table 2.3).  



44 
 

 
Figure 2.2. Gait variability across 4 conditions as compared to UNCUED walking. Data 
represent standard deviations ± SEM.  * denotes significance of p<.05.   
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Table 2.3. Measures of gait variability across 5 conditions.   

  
UNCUED MUS SING MUS+SING DT 

Step time SD 0.018 (.005)* 0.020 (.008)* 0.018 (.005)*# 0.024 (.007) .034 (.018) 
Single support time SD 0.015 (.005)* 0.018 (.006) 0.015 (.003)*# 0.020 (.007) 0.026 (.013) 
Step length SD 2.517 (0.548) 3.041 (0.750) 2.894 (0.953) 3.167 (1.271) 3.624 (1.130) 

Values are standard deviations (SD) ± SEM. Significance is set at p<0.05. * denotes significantly 
better than DT.  # denotes significantly better than MUS+SING.    

 

2.5 Discussion 

In this study, we explored a novel cueing technique to improve gait in PD by singing a song 

oneself rather than listening to a song, as in traditional cueing techniques. Our primary finding is 

that singing at a tempo matching comfortable gait pace may improve gait variability while not 

causing other gait decrements. The absence of gait decrements during singing trials indicates that 

singing while walking was not excessively demanding for people with PD. This was further 

supported by the comparison to a verbal dual-task condition which negatively affected gait 

performance, whereas singing did not. In addition, singing while walking produced less 

variability than other cueing techniques. Variability is a valuable marker of overall gait 

performance that reflects gait unsteadiness and dyscontrol. People with PD have increased gait 

variability which reflects reduced automaticity of walking22. Stride-to-stride fluctuations related 

to both stride time and stride width are sensitive measures that correlate more closely to fall risk 

than other elements of gait23. Therefore, decreasing gait variability may be even more important 

than increasing gait speed or distance. Our results suggest that singing holds promise as a cueing 

technique that may be as beneficial as traditional cueing techniques for improving gait in PD. 

Singing is already widely used as a therapeutic technique for voice rehabilitation in PD because 

it targets hypophonia, a common PD symptom, and elicits improvements in speech intelligibility, 
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vocal intensity, and respiratory function24,25. However, it is not known if the benefits of singing 

may extend beyond speech to improvements in motor control. External auditory cueing through 

music is widely established as an effective tool to stabilize gait in PD4,9. The musical cue may 

work by replacing the defective internal timing mechanism within the basal ganglia with an 

external template to which people can match their movement9,10. By contrast, little is known 

about whether singing can serve the same purpose or if impaired beat processing would preclude 

people with PD from either creating an internal template through song or synchronizing 

movement to it.   

 We expected some of our participants would be unwilling or unable to sing aloud; however, all 

participants sang aloud with apparent ease. Ability to do the task was likely not attributable to 

musical experience, as only nine participants reported having any musical training. In addition, 

our participants were a subset of a larger sample that showed impaired beat processing as 

compared to controls26, confirming past reports among people with PD27. Our results support the 

idea that, in spite of this deficiency, people with PD can internally generate music and use it as a 

cue to guide movement, as was shown previously in a study in which imagined singing was used 

to improve motor timing in people with PD13.  

When comparing singing trials to the verbal dual-task condition, we noted significant differences 

in all gait measures. Word generation created a dual-task effect that slowed and destabilized gait. 

This corroborated previous studies where gait impairment was exacerbated during a concurrent 

speaking task in people with PD28,29. Dividing limited cognitive and motor resources between 

complex activities is known to disrupt gait automaticity and increase stride-to-stride variability5. 
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Our finding that singing did not negatively affect gait suggests that singing a rhythmic and 

familiar song may not divide resources in the same way as speaking.   

When comparing cueing techniques, we noted that walking to music, either while listening, as in 

traditional cueing, or while singing along, increased variability of temporal and spatial gait 

parameters. These increases were not byproducts of changes in speed, cadence, or stride length, 

as these measures were unchanged. In the singing only condition, by contrast, no music was 

present so participants did not have to match their singing or footsteps to an external source. 

Higher variability in the musically-cued conditions may reflect the extra attentional resources 

required to synchronize even simple, automatic movements to sound14. Thus, participants may 

have had an easier time walking to the beat when they were able to generate the song themselves 

than when they had to synchronize to music. Another possibility is that active music-making 

(such as singing) may confer greater motor benefits than passive music listening30 by affecting 

movement “vigor” or eagerness to move. While synchronizing movement to music induces an 

arousal effect that makes movement faster, larger, and more vigorous31 and can lead to greater 

motor network activation14, synchronizing movement to one’s own voice may elicit an even 

stronger motor response, or at least a more precisely timed one.  

Singing may hold other benefits over external auditory cueing. Studies suggest that adaptive cues 

that synchronize to an individual’s walking speed are more effective than set-tempo cues, and 

singing, similarly, can be altered to fit any situation12. Singing also creates a longer-lasting 

memory trace over spoken words, resulting in improved memory consolidation and retention32. 

Our participants reported that the song got “stuck in their heads”, possibly reflecting carry-over 

benefits and supporting the theory that singing mentally after singing aloud allows rhythm recall 
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and facilitates movement33. Singing may also be useful in challenging gait situations that cause 

freezing, as one’s voice can easily be turned on and off as needed. Six participants in our sample 

were identified as freezers, and some of them suggested singing might be helpful during freezing 

episodes. This is promising as auditory cueing has been shown to benefit freezers and non-

freezers alike34,35. Singing, therefore, may be feasible for a wide variety of patients in a variety of 

situations. 

 Several limitations of our study are noted. One is that our singing and dual-task paradigms were 

not equally demanding, as participants sang a familiar song but spoke a word-generation task 

that likely required higher cognitive effort. Another is that we took no explicit measures of 

attention, so we cannot know how division of resources differs when synchronizing movement to 

endogenous cues versus heard cues. Also, since we tested only one version of one song, we 

cannot rule out the possibility that another song, or one without lyrics, may have elicited a 

different response. A potential criticism of this technique is that singing aloud may not be 

preferred to wearing an external cueing device for people who experience gait difficulty in public 

settings. Therefore, future work should examine the possibility that imagined singing, or a 

combined training program that included both audible and mental singing, could ameliorate gait 

in the same way as singing aloud. 

In conclusion, singing positively affected gait variability while having no detrimental effect on 

velocity, cadence, or stride length. Whereas traditional cueing techniques require the use of 

external devices that typically do not adapt to one’s cadence and do not convey long-lasting 

benefits in their absence, singing can be easily implemented anytime, anywhere, without the 

need for significant training, and could therefore be translated into practice quite expeditiously. 
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There is a strong need for inexpensive, non-invasive, and widely accessible interventions to 

address gait impairments in PD. Singing holds promise as a useful alternative to traditional 

cueing techniques to regulate gait in PD. Further study is warranted to determine the effect of 

singing tempo on gait, how long the effects of singing last, and who is most likely to benefit 

from this novel technique. 
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Chapter 3: Internal cueing improves gait 

more than external cueing in healthy adults 

and people with Parkinson disease 
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3.1  Abstract 
Walking can be challenging for aging individuals and people with neurological disorders such as 

Parkinson disease (PD). Gait impairment characterized by reduced speed and higher variability 

destabilizes gait and increases the risk of falls. External auditory cueing provides an effective 

strategy to improve gait, as matching footfalls to rhythms typically increases gait speed and 

elicits larger steps, but the need to synchronize to an outside source often has a detrimental effect 

on gait variability. Internal cueing in the form of singing may provide an alternative to 

conventional gait therapy. In the present study, we compare the effects  of internal and external 

cueing techniques on forward and backward walking for both people with PD and healthy 

controls. Results indicate that internal cueing was associated with improvements in gait velocity, 

cadence, and stride length in the backward direction, and reduced variability in both forward and 

backward walking. In comparison, external cueing was associated with minimal improvement in 

gait characteristics and a decline in gait stability. People with gait impairment due to aging or 

neurological decline may benefit more from internal cueing techniques such as singing as 

compared to external cueing techniques. 

 

3.2  Introduction 
Age-related gait disorders affect a third of the population over 70 years of age1 and cause people 

to walk slower with less stability. Reduced gait speed in older adults is a sensitive marker of 

overall health and can predict adverse events, such as falls, and future disability2,3. Two-thirds of 

gait disorders are related to neurological decline4 and are exacerbated in movement disorders 

such as Parkinson disease (PD). PD is characterized by bradykinesia, rigidity, and postural 

instability, all of which contribute to walking difficulty5. Compared to age-matched controls, 

people with PD experience accelerated gait decline as evidenced by reductions in speed, step 
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frequency, and step length. In addition to these basic gait deficits, people with PD exhibit 

substantial increases in gait variability6 which may reflect diminished balance control7 and a 

disruption of internal timing mechanisms within the brain. Gait variability is a strong indicator of 

overall stability8-10, worsens with disease severity, and may lead to a loss of mobility and 

independence11,12. When moving in the backward direction, as is common in everyday life, gait 

impairment is more pronounced and more likely to contribute to fall risk13-15. Hence, a major 

focus of gait therapy is to reduce gait variability in order to stabilize walking and reduce the risk 

of falls. 

External auditory cueing through music is widely established as an effective tool to normalize 

gait disturbance16-18. For people with PD, matching one’s footfalls to the beat of a song can 

restore gait to levels closer to those of healthy controls16,17,19,20. Rhythmic cues allow predictable 

mapping of motor output onto stable auditory templates via a process called “entrainment” that 

enables people to anticipate the next beat and step on it. Musical cues are superior to other types 

of cues at increasing velocity and stride length19 though they are more effective after a period of 

training21 and for those with more severe gait impairment22. 

In spite of evidence supporting the efficacy of rhythmic auditory cues for improving certain gait 

characteristics17,23-26, recent research suggests that synchronizing footfalls to external rhythmic 

cues detrimentally effects gait variability27. External cues require adjusting every step in order to 

synchronize, and this increased cognitive load may have the undesirable effect of increasing gait 

variability, particularly for older adults or neurological patients who are more likely to 

experience cognitive decline28. Internal cueing through singing, on the other hand, eliminates the 

need to entrain to an external source. Instead, a rhythm generated and produced via the vocal 

system is then adopted by the locomotor system to produce rhythmic motion of the legs. This 
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method may allow for greater coupling between systems, potentially reducing attentional load 

and enhancing stability.  

Singing is already used for vocal rehabilitation in PD because, in spite of speech degradation, 

singing ability is preserved29-31. Evidence also suggests that the benefits of singing may extend 

beyond speech to improvements in motor control32 as singing may engage a vocal sensorimotor 

loop involving both perceptual and motor planning components33. For example, self-generated 

vocal cues enhance upper extremity movement in people with PD, resulting in faster and 

smoother reaching movements34. Vocalizations are also likely to enhance lower body movement, 

as people with PD report using singing to aid with gait initiation and maintenance, particularly 

during challenging gait situations such as moving backwards and turning35. Despite abundant 

evidence supporting the use of singing to improve walking in aging and neurologic populations, 

previous research is mostly limited to the use of external cueing for gait rehabilitation. 

In this study, we examined the effects of internal cueing, in the form of singing, versus external 

cueing, in the form of listening to music, on gait in people with and without PD. We addressed 

both forward walking, which engages automatic locomotor circuits, and backward walking, 

which represents a more challenging gait situation. We hypothesized that both external and 

internal musical cueing would improve backward walking more than forward walking in all our 

participants, and that internal cueing would be more effective at reducing gait variability over 

external cueing. We also expected to see the greatest benefit from cueing in people with PD, 

followed by older adults and finally younger adults.  
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3.3  Methods 

3.3.1 Participants 

A total of 90 participants, thirty (15 male) in each group (young control (YC), older control 

(OC), and Parkinson disease (PD)) took part in this study (Table 3.1). PD participants were 

recruited from the Movement Disorders Center at Washington University School of Medicine. 

Healthy controls were recruited via emails, social media, and flyers in and around the 

Washington University School of Medicine campus as well as through the Research Participant 

Registry through the Volunteers for Health database managed by Washington University School 

of Medicine. Age criteria for young controls were 18-35 whereas older controls were ≥ 50. PD 

participants were ≥50 years of age and had a neurological diagnosis of “definite PD”, as 

previously described36 and based upon established criteria37.  

 

Table 3.1. Participant Demographics.      
Young control 

(YC) 

Older control 

(OC) 

Parkinson disease 

(PD) 

N (male) 30(15) 30(15) 30(15) 

Age, yrs 25.8(±2.8) 64.9(±7.2) 65.8(±6.5) 

MDS-UPDRS-III - - 24.9(±10.27) 

MMSE, median (range) 30(28,30) 30(27,30) 29(24,30) 

LEDD, mg - - 933(±658) 

Years since dx  - - 5.77(±3.79) 

Musical experience, yrs 4.43(±3.39) 4.42(±6.02) 7.77(±11.45) 

Values represent mean ±SD, except where noted. MDS-UPDRS, Movement Disorder Society 
Unified Parkinson Disease Rating Scale.  MMSE, Mini Mental Status Examination.  LEDD, 
Levodopa Equivalent Daily Dose. 
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All participants had vision corrected to 20/40 or better, were able to stand independently for at 

least 30 minutes, and had no evidence of dementia (MMSE ≥ 26). Participants were excluded for 

any history of neurological deficit (aside from PD), orthostatic hypotension, or prior deep brain 

stimulation surgery. One participant in the OC group was excluded for cognition as evidenced by 

an MMSE score of below 24 and an additional participant was recruited as a replacement. 

Participants provided informed consent before participating and were compensated for their time. 

The protocol was approved by the Human Research Protection Office at Washington University 

School of Medicine, and the methods were carried out in accordance with the approved 

guidelines. Prior to testing, participants were assessed via the following questionnaires: the New 

Freezing of Gait Questionnaire (nFOGq), the Fall History questionnaire, and the Betts’ 

Questionnaire upon Mental Imagery (BQMI). The Movement Disorders Society Unified 

Parkinson’s Disease Rating Scale (MDS-UPDRS) was used to assess disease severity. Sub-

sections I (non-motor symptoms), II (motor aspects of daily living), and III (motor sign severity) 

were administered and scored by trained staff.  

3.3.2. Experimental Protocol 

Participants in the PD group were tested in the “on” state (i.e., they had taken their anti-

Parkinson medication within the previous 2 hours) to maximize relevance to everyday walking26 

and to optimize gait performance38. All walking trials were performed on a 5m instrumented, 

computerized GAITRite Walkway (CIR Systems, Inc., Franklin, NJ). Three baseline trials 

(UNCUED) were collected in both forward and backward walking to capture each participant’s 

comfortable walking features. Participants then completed three walking trials in each of the 

conditions below in both forward and backward directions. Condition order and walking 

direction within each condition were randomized and counterbalanced to eliminate any training 
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effects. In order to control cadence across conditions, participants always heard the music 

immediately prior to walking.  

1. MUSIC: Participants listened to one verse of the song and then began walking to the beat of 

the song while the song looped for the duration of the walking trial. This condition is similar to a 

beat-synchronization paradigm and replicates traditional external cueing techniques. 

2. SING: Participants listened to one verse of the song, but then the music stopped and they 

began singing aloud and walking to the beat of their singing. In this condition, no external source 

provided a cue while they walked, so participants had to generate the cue themselves. 

For all cued conditions (both MUSIC and SING), we used an instrumental version of “Row, row, 

row your boat” that was designed with a salient beat that participants could readily detect. All 

participants were familiar with the melody and lyrics and sang the song without difficulty. The 

musical cue was administered from a laptop connected to speakers no farther than 10 m from the 

participant during walking and at an audible volume. Song tempo was adjusted maintaining key 

consistency via Audacity open source audio editing software (The Audacity Team, 

audacity.sourceforge.net/) to match preferred cadence in each direction, as determined from the 

baseline trials. Cue rate was set to 100% of preferred cadence of each direction so as not to 

complicate task demands, particularly for backward walking.  

Data Analysis 

Statistical analyses were done using IBM SPSS Statistics 24. For each participant, data were 

averaged across the three trials of each condition. Gait characteristics (velocity, cadence, and 

stride length) and variability (coefficients of variation for stride length, stride time, and single 

support time) were compared in two separate analyses, one for each walking direction. 
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Normalized velocities were calculated as velocity/average leg length (cm/s/leg length) and 

coefficients of variation (CV) were calculated as the ((standard deviation/mean) x 100) for each 

person in each condition. As we were only interested in how cueing affected these measures, we 

ran analyses on each variable as it compared to the UNCUED condition. Hence, gait 

characteristics were expressed as a percent change from UNCUED and gait variabilities were 

expressed as a change in CV from UNCUED. Mixed model repeated measures ANOVAs with 

between-subject factor of group and within-subject factor of condition were used to assess 

differences, and Tukey-corrected post-hoc pairwise comparisons were used as appropriate. 

Statistical significance was set at α=.05. 

 

3.4  Results 

3.4.1 Gait characteristics 

A. Differences between conditions. 

In forward walking, there was an overall effect of condition (F(1,87)=6.978, p<.001) with 

univariate tests showing a significant increase in cadence for SING versus MUSIC 

(F(1,87)=15.121, p<.001). (Figure 3.1, Table 3.2).  

In backward walking, there was an overall effect of condition (F(1,87)=8.396, p<.001) with 

univariate tests showing that participants walked faster (F(1,87)=10.868, p=.001) with higher 

cadence (F(1,87)= 22.523, p<.001) in SING as compared to MUSIC. 

B. Differences between groups. 

There were no significant differences between groups in forward walking gait characteristics.  
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In backward walking, there was a significant between-subject effect of group for velocity 

(F(2,87)=3.552, p=.033) and stride length (F(2,87)=5.744, p=.005). Regardless of condition, 

pairwise comparisons indicated that the PD group showed a more robust response to cueing than 

the YC group as evidenced by their greater percent change in velocity (p=.010) and their greater 

percent change in stride length (p=.001). The OC group also showed a greater percent change in 

stride length as compared to the YC group (p=.028). There were no significant interactions, 

indicating that all groups responded similarly to cueing.  
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Figure 3.1. Gait characteristics shown as a percent change from Uncued walking compared 
across groups for forward and backward walking. All bars represent means ± SEM. Horizontal 
significance bars indicate an overall effect of conditionwhereas vertical significance bars indicate 
an overall effect of group. * indicates p<.01. # indicates p<.05 
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3.4.2 Gait variability 

A. Differences between conditions. 

In forward walking, all participants walked with less variability in SING than in MUSIC, as 

evidenced by a significant main effect of condition (F(1,87)=14.564, p<.001) (Figure 3.2). This 

was significant for CVs of stride length (F(1,87)=20.039, p<.001), stride time (F(1,87)=27.623, 

p<.001), and single support time (F(1, 87)=10.673, p=.002). 

For backward walking, participants walked with less variability in SING than in MUSIC, as 

there was a main effect of condition (F(1, 87)=3.035, p=.034). This was significant for CVs of 

stride length (F(1,87)=5.498, p=.021), stride time (F(1,87)=5.793, p=.018), and single support 

time (F(1,87)=6.825, p=.011).  

B. Differences between groups. 

There were no significant differences between groups in forward walking variability.  

In backward walking, there was a significant main effect of group for stride time (F(2, 

87)=4.525, p=.014). Pairwise comparisons revealed that the OC group (p=.004) and the PD 

group (p=.05) had significantly less variability regardless of condition than the YC group. There 

were no significant interactions. 
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Figure 3.2. Coefficients of variation compared across groups for forward and backward walking. 
All bars represent means ± SEM. Horizontal significance bars indicate an overall effect of 
condition, whereas vertical significance bars indicate an overall effect of group. * indicates 
p<.01.  # indicates p.05. 
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3.5  Discussion 

In this study, we examined the effects of internal versus external cues on forward and backward 

walking in three groups of people: healthy young, healthy older, and people with PD. The results 

support our hypotheses, that internal cueing in the form of singing may be more beneficial to gait 

than external cueing. The results also confirm that people with PD exhibit greater improvement 

than their healthy counterparts39 and may stand to gain the most benefit from internal cueing 

techniques, particularly in challenging gait situations such as moving in the backward direction.  

One of our primary results was that singing increased cadence in both walking directions. In 

backward walking, this increase in cadence led to higher velocity as well. External cues, in 

contrast, did not have a significant effect on gait speed, cadence, or stride length on forward 

walking and had a lesser effect than internal cues on backward walking. This is in accordance 

with previous studies of forward walking showing only small effects of external cues at preferred 

walking tempos40,41 and with a recent review revealing generalized small effects on velocity and 

cadence in cueing without training20. During MUSIC, the cadence was set by the cue, and as we 

explicitly told participants to synchronize to it, they did not stray far from baseline. In SING, by 

contrast, with no outside source dictating the song tempo, participants tended to increase their 

cadence as they sang.  

One possible explanation for this is that active music-making (such as singing) may confer 

greater motor benefits than passive music listening42 by tapping into reward circuitry and 

affecting movement “vigor,” both of which are compromised in PD. Endorphin and oxytocin 

release during singing has positive effects on motivation and may translate into higher motor 

output42-45. Singing is also known to activate motor regions in the brain including the primary 
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motor cortex, the basal ganglia, thalamus, and cerebellum46,47, which may additively combine 

with motor activation during locomotion. While synchronizing movement to music may induce 

an arousal effect that makes movement faster, larger, and more vigorous48, synchronizing 

movement to one’s own voice may lead to even greater overall motor network activation and, 

hence, higher cadence49.   

We also noted that, in relation to baseline, external cues had a detrimental effect on forward-

walking variability. This supports previous work showing that, for healthy young adults with low 

baseline variability, external cues tend to perturb normally-functioning internal cueing 

mechanisms and interfere with gait stability50-53. Similarly, older adults do not benefit when 

constrained by external cues, as gait variability is either unaffected19 or increased with cues at 

preferred cadence51,53,54. Cues at tempos below55 or above39 preferred cadence also increase gait 

variability24,51. 

For people with PD, preferred cadence cues have shown no effect24,54 or increases in 

variability55, even after training22. Reductions in variability have been reported, but only for 

faster tempos and after a brief period of training56. The sum of these studies shows that 

isochronous external cues lend only a minor benefit to gait characteristics and may come at the 

price of sacrificing temporal stability, particularly for those with more impaired baseline gait.  

In contrast, singing did not negatively affect gait variability. In forward walking, internal cues 

did not cause gait decrement, and in backward walking, internal cues elicited greater reductions 

in variability than external cues. The effectiveness of internal cues over external cues in 

decreasing gait variability may be partially explained through several speculations detailed 

below.  
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While external rhythms rely on auditory-motor coupling within the brain to perceive sensory 

stimuli and match body movement to them, internal rhythms utilize what we will refer to as 

vocal-motor coupling. As humans are capable of entrainment within both the vocal and motor 

systems, it is possible that matching one system’s output to that of another through self-

generated cues allows for greater stability. Entrainment of one system to another within the same 

body may reduce attentional load and facilitate motor synchronization. Additively combining 

motor output from two effectors within one individual may reduce variability in a central timing 

process that results in lower movement variability. For instance, a bimanual advantage makes 

tapping with two hands less variable than tapping with only one57.  

A similar mechanism may be at play when a motor effector matches a vocal effector. Skills in 

motor synchronization and singing are strongly linked, as the neuronal networks that support 

sensorimotor translation in both partly overlap58. Aligning speech to movement enhances verbal 

processing and facilitates temporal predictions, as information at expected times is processed 

more efficiently59. Furthermore, concurrent rhythmic vocalizations can reduce variability of 

whole-body movement, which suggests that moving and vocalizing as a coordinative structure 

causes mutual stabilization between systems60. As seen through the lens of an internal model, 

feedforward control during singing masks auditory feedback and allows singers to continuously 

phonate without processing each note before continuing. By canceling out reafferent signals to 

the auditory cortex, singing may reduce reliance on real-time auditory feedback that is necessary 

with external cues, thereby increasing predictability and decreasing motor variability61.  

Better synchronization when singing may also be related to our bias for hearing the human voice, 

or a “vocal advantage.” This postulates that it is easier to match stimuli to personal motor 

representations that are recognized as biologically possible. The voice is a highly salient stimulus 
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that causes enhanced arousal62, greater pupil dilation63, and greater activation in the sensorimotor 

cortex64 in listeners as compared to non-vocal melody perception. The dorsal auditory stream, 

which connects the auditory and motor cortices, has stronger connectivity when participants 

listen to singing-voice versus non-vocal music, facilitating matching between perceived sounds 

and motor representations65, and sung melodies are better encoded than instrumental melodies, 

resulting in faster auditory processing66. Faster processing and stronger dorsal stream 

connectivity may enable motor improvement during vocally-produced sounds as well.  

Notably, the PD group exhibited the largest response from internal cueing. This implies that, in 

spite of basal ganglia degeneration linked to internal timing deficiencies67-70, people with PD 

were not only capable of internally generating rhythms through singing but were also able to 

match their movement to it. Beat impairment in PD is thought to impact movement as specific 

motor network regions, such as the basal ganglia, cerebellum, premotor cortex, and 

supplementary motor areas, are also responsible for rhythm processing16,71. Neurodegeneration 

of these motor regions may disrupt the internal regulation of movement amplitude and timing in 

PD and lead to an inability to control automatic locomotor rhythm70. For people with PD, for 

whom disease-related decreases in striatal dopamine affect excitatory input to the putamen, 

external cues are thought to reduce reliance on putamen activity by compensating for impaired 

internal timing mechanisms72. Singing may achieve the same end by rerouting temporal 

sequencing from the impaired basal-ganglia-thalamocortical network to other brain areas, such as 

the spared cerebellar-thalamocortical network, which regulates perceptual and motor timing, or 

the premotor cortex (PMC), an area known to upregulate its activity during explicit cues to 

synchronize to a beat73,74.  
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Furthermore, the same features of singing that underscore its therapeutic benefit to dysarthric 

speech may also explain the motor benefit we witnessed. In continuous voicing that occurs when 

singing, increases in phonation time and syllable lengthening lead to greater connectedness 

between words. This fluency-enhancing effect on speech may translate to motor impairments as 

well. As people with PD who experience vocal softness, hoarseness, and slurring when they 

speak are able to maintain tempo and interval variability when they sing75, increased vocal 

fluency during singing may similarly encourage motor fluidity and reduce movement 

variability31.  

One limitation of this study is that we only tested one version of one song, and other musical 

choices might affect gait parameters differently48,52. Our participants had only mild-moderate 

disease severity, and, as external cues tend to improve gait variability for patients with greater 

disease progression54 or freezing of gait76, our technique should be tested on a broader spectrum 

of individuals. Another limitation is that all walking trials were tested on a short walkway, and 

some research suggests that older adults require several steps to attune to acoustic stimuli77 and 

choose different speed strategies over longer distances78. Although habitual walking tends to 

occur in short spurts, future work should explore this technique over longer distances. Lastly, as 

participants were never required to begin singing without hearing the song first, we do not know 

how this technique would translate to everyday life in which people would self-initiate their own 

singing. Future work should address internal cueing techniques using both beat-continuation and 

beat-initiation paradigms.  

This study is the first to our knowledge to compare internal and external cues on walking 

performance in healthy adults and people with PD and to explore the effects of cueing on 

backward walking. While effective in laboratory settings16-18, external cueing has limitations that 
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reduce its applicability to the real world. Carry-over effects are limited, so a device is required to 

provide constant stimulation17,79. Fixed-tempo rhythmic cues do not readily adapt to ever-

changing environmental surroundings and are less effective than variable cues that oscillate in 

accordance with human gait80-82.  Perhaps most importantly, people with PD do not report using 

external cues in their daily lives35.  

Our results indicate that internal cueing through singing may be more useful than external cueing 

techniques for people who experience gait dysfunction from aging or neurological decline. 

Future work should examine different cue rates to potentially elicit stronger responses and 

explore rhythmic ability and musical training to elucidate who best responds to this technique. 

Mental singing, or singing in one’s head, should also be tested to discover if it is necessary to 

produce sound in order to gain benefit from singing as a cue. As external cueing is useful to a 

wide range of people with health conditions, from Alzheimer’s to multiple sclerosis to cerebral 

palsy, internal cueing may also hold benefit for myriad populations. Ultimately, a singing 

intervention study should be undertaken to begin to transfer this technique into a clinical setting 

to make it accessible to patients and carry-over effects should be tested to explore whether 

vocalizations enhance motor memory64. 
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4.1  Abstract 
Background and Purpose: Previously, we showed that internal cues (such as singing) produce 

similar motor benefits as external cues (such as listening to music) for people with Parkinson 

disease (PD). This study takes that research further by exploring how singing—either aloud or 

mentally—at different tempos can ameliorate gait, and it offers insight into how internal cueing 

techniques may enhance motor performance for older adults and people with PD.  

Methods: 60 participants (30 female) were recruited; half had PD and half were healthy age-

matched controls. Participants completed walking trials involving external and internal cueing 

techniques at 90, 100, and 110% of preferred cadence. The effects of different cue types and 

rates were assessed in a repeated-measures cross-sectional study by comparing gait 

characteristics (velocity, cadence, stride length) and variabilities (coefficients of variation of 

stride length, stride time, single support time). 

Results: All participants modified their cadence and stride length during cued conditions, 

resulting in changes in gait velocity closely reflecting expected changes based upon cue rate. 

External cueing resulted in increased gait variability, whereas internal cueing decreased gait 

variability relative to uncued walking. Variability decreases were most significant during mental 

singing at tempos at or above preferred cadence.  

Discussion and Conclusions: Matching movement to one's own voice improves gait 

characteristics while reducing gait variability for older adults and people with PD. Optimizing 

the use of internal cues to facilitate movement is an important step towards more effectively 

meeting the needs of people with gait disorders related to aging or neurological disease. 
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4.2 Introduction 
Parkinson disease (PD), the second most common neurodegenerative disorder, can cause 

debilitating effects on gait that may contribute to increased falls and decreased quality of life1. 

Dopamine depletion within the substantia nigra of the basal ganglia leads to malfunctioning of 

temporal control mechanisms, which disrupts both movement timing and amplitude2,3. This 

affects walking ability; people with PD tend to walk slower and with less stability. Reductions in 

gait speed are typically attributed to a combination of shorter step lengths and decreased step 

frequency and indicate a decline in overall health in both aging and patient populations4. 

Increased gait variability, characterized by inconsistent step timing and reduced step symmetry, 

is considered a measure of dyscontrol, arrythmicity, and instability5. Hence, slower, more 

variable gait in PD may contribute to diminished stability and increase the risk of falls6.  

External auditory cueing through music can normalize gait speed for people with PD. By 

creating an external template to which people can align their footfalls, auditory cues impose a 

walking cadence that, presumably, reduces reliance on defective internal timing mechanisms and 

increases motivation, thereby increasing walking speed7. However, the need to synchronize to an 

external source can have detrimental effects on gait variability that may outweigh any benefits. 

Furthermore, some researchers have discouraged the use of external cueing devices in everyday 

life as they distract from other environmental stimuli and impose unnatural rhythms on 

inherently adaptable gait patterns8,9. 

Our previous work showed that overt singing improve gait in PD and healthy controls more than 

passively listening to music. Singing constitutes an internal cue that utilizes vocal-motor 

coupling to match one’s movement to one’s own voice. We saw that this form of internal cueing 

particularly aids gait variability, reducing the need to synchronize to an outside source10. As 
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singing ability is preserved in PD, this technique is easily accessible to this population11. 

However, singing aloud may be embarrassing in public settings and not practical for all 

participants. In this study, we extended our past research to explore the use of mental singing, or 

singing in one’s head, which has improved motor timing in one prior study, though precise gait 

characteristics were not measured12. 

Here, we also sought to optimize internal cueing techniques by determining what cue rates are 

most effective. Previous research suggests that cues administered at tempos above or below 

preferred walking cadence may either improve or degrade measures of gait, but inconsistent 

methods and results leave this an open source of debate13–22. We hypothesized that mental 

singing would be as effective as singing aloud at improving gait for all participants and that 

greater effects would be seen with increased cue tempos. We included both people with PD and 

healthy controls to better understand how disrupted rhythmic processing in PD might hinder the 

efficacy of internal cueing techniques. 

 

4.3  Methods 

4.3.1 Participants 

A total of 60 participants, thirty (15 male) in each of two groups – healthy controls and people 

with Parkinson disease (PD) – took part in this study (Table 4.1). Group size was determined by 

power analysis based on preliminary data10. Participants with PD were recruited from the 

Movement Disorders Center at Washington University School of Medicine. Healthy controls 

were recruited via the Research Participant Registry through the Volunteers for Health database 

managed by Washington University School of Medicine and via emails, social media, and flyers 

in and around the Washington University School of Medicine campus. All participants were ≥ 50 
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years of age, and participants with PD had a neurological diagnosis of “definite PD”, as 

previously described and based upon established criteria23,24. 

 

Table 4.1. Participant Demographics.   
 

Controls PD 

N (male) 30(15) 30(15) 
Age, yrs 64.9(±7.2) 65.8(±6.5) 
MDS-UPDRS-III - 24.9(±10.27) 

MMSE, median (range) 30(27,30) 29(24,30) 

Years since dx  - 5.77(±3.79) 
LEDD, mg - 933(±658) 

Musical experience, yrs 4.42(6.02) 7.77(11.45) 

BQMI  1.68(0.57) 2.12(0.68) 
Values represent mean ±SD, except where noted. 
MDS-UPDRS, Movement Disorder Society Unified Parkinson Disease Rating 
Scale.  MMSE, Mini Mental Status Examination.  LEDD, Levodopa Equivalent 
Daily Dose. BQMI, Betts’ Questionnaire upon Mental Imagery (auditory portion 
only). 

 
 
 
All participants were able to stand independently for at least 30 minutes and had no evidence of 

dementia (MMSE ≥ 26). We excluded people with history of neurological deficit (aside from 

PD), orthostatic hypotension, or deep brain stimulation surgery. One healthy control was 

excluded for cognition (MMSE < 26) and an additional participant was recruited. 

All participants provided informed consent prior to testing and were compensated for their time. 

The protocol was approved by the Human Research Protection Office at Washington University 

School of Medicine. The Movement Disorders Society Unified Parkinson’s Disease Rating Scale 

(MDS-UPDRS) was used to assess disease severity. Sub-sections I (non-motor symptoms), II 

(motor aspects of daily living), and III (motor sign severity) were administered and scored by 
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certified staff. Additional questionnaires included the New Freezing of Gait Questionnaire 

(nFOGq) and the Fall History questionnaire. Auditory imagery was assessed using the Betts’ 

Questionnaire upon Mental Imagery (BQMI), which uses a 7-point vividness scale, with 1 

indicating high imagery ability and 7 indicating low imagery ability25. We collected only the 

auditory imagery portion of the test and calculated an average for each participant. Information 

on past musical experience was recorded.  

 

4.3.2 Experimental Protocol 

Participants with PD were tested in the “on” state as determined by self-report during the MDS-

UPDRS Part III evaluation to capture their normal walking condition. A 5 m instrumented, 

computerized GAITRite Walkway (CIR Systems, Inc., Franklin, NJ) recorded walking trials. 

Three baseline trials (UNCUED) were used to assess each participant’s comfortable walking 

characteristics. All participants then completed three blocks of cued trials trials at 90%, 100% 

and 110% of preferred walking cadence. The block of trials cued at 100% of preferred cadence 

was always completed first followed by blocks at either 90% or 110% of preferred cadence, the 

order of which was randomized and counterbalanced. Within each block, the randomized 

conditions were: 

 

1. MUSIC: Music was playing and participants were asked to walk to the beat of the song. This 

represents typical external cueing techniques. Participants listened to one verse of the song and 

began walking when they were ready, similar to a beat-synchronization paradigm. The song 

looped throughout the duration of the trial. 
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2. SING: Participants were asked to sing aloud while walking. In this condition, no external 

source provided a cue while they walked, so participants generated the cue themselves. 

Participants listened to one verse of the song and then began walking as soon as the music 

stopped. 

3. MENTAL: Participants were asked to sing in their heads without moving their lips or 

producing overt sound. As in the SING condition, participants listened to one verse of the song 

and then began walking when the music stopped. 

 

All conditions were cued using an instrumental version of “Row, Row, Row your Boat” designed 

with a salient beat that could be readily detected by participants. Everyone was familiar with the 

lyrics and melody of the song and able to sing it without difficulty. The musical cue was 

administered from a laptop connected to speakers no farther than 10 m from the participant 

during walking and at an audible volume. Song tempo was adjusted based upon each individual’s 

preferred walking cadence while maintaining key consistency using Audacity open source audio 

editing software (The Audacity Team, audacity.sourceforge.net/). 

 

4.3.4. Statistical Analysis 

Statistical analyses were done using IBM SPSS Statistics 24. For each participant, data were 

averaged across the three trials of each condition. Gait characteristics (velocity, cadence, and 

stride length) and variability (coefficients of variation for stride length, stride time, and single 

support time) were compared in three separate analyses, one for each cue tempo. Coefficients of 

variation (CV) were calculated as the ((standard deviation/mean) x 100) for each person in each 
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condition. As we were only interested in how cueing affected these measures, we ran analyses on 

each variable as it compared to the UNCUED condition. Hence, gait characteristics were 

expressed as a percent change from UNCUED and gait variabilities were expressed as a change 

in CV from UNCUED. Gait asymmetry (GA) was calculated for each condition at each tempo 

based on previous reports as: GA= 100 x ln (swing ratio)26. Swing ratio was defined as the ratio 

of the mean left and right swing times with the larger value in the numerator. Mixed model 

repeated measures ANOVAs with between-subject factor of group and within-subject factor of 

condition were used to assess differences, and Tukey-corrected post-hoc pairwise comparisons 

were used as appropriate. Differences between groups in auditory imagery ability were assessed 

via independent t-test. Statistical significance was set at α=.05. 

 

 

4.4  Results 

4.4.1 Gait Characteristics 

 

Cueing at 90% of preferred cadence: Mauchley’s test of sphericity was not met, thus, adjusted 

multivariate and univariate (Greenhouse-Geisser) statistics are reported (Figure 4.1, Table 4.2). 

There was a within-subject effect of condition (F(6,230)=4.754, p<.001) with univariate tests 

showing an effect of condition on cadence (F(1.74,100.67)=6.348, p=.004) and stride length 

(F(1.76,102.09)=5.179, p=.01). Pairwise comparisons indicated cadence was higher for SING 

than MUSIC (p=.022) or MENTAL (p=.006), and stride length was higher for MUSIC than for 

SING (p=.027). 
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Cueing at 100% of preferred cadence:  There was a within-subject effect of condition 

(F(6,53)=4.025, p=.002) with univariate tests showing an effect of condition on cadence 

(F(2,58)=7.927, p=.001). Pairwise comparisons indicated cadence was higher for SING than for 

MUSIC (p=.031) or MENTAL (p=.002). 

 

Cueing at 110% of preferred cadence:  Mauchley’s test of sphericity was not met for stride 

length, thus, adjusted multivariate and univariate (Greenhouse-Geisser) stats are reported. In the 

multivariate model, there was a main effect of condition (F(6,230)=6.882, p<.001). Univariate 

tests showed an effect of condition on cadence (F(1.93,111.89)=19.952, p<.001) and stride 

length (F(1.73, 100.32)=7.428, p=.002). Pairwise comparisons, corrected for multiple 

comparisons, showed cadence was higher for MUSIC (p<.001) and SING (p=.001) than for 

MENTAL, and stride length was higher in MENTAL than MUSIC (p=.001).  
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4.4.2. Gait Variabilities 

Cueing at 90% of preferred cadence: Mauchley’s test of sphericity was not met for cadence, 

thus, adjusted multivariate and univariate (Greenhouse-Geisser) stats are reported (Figure 4.2.). 

In the multivariate model, there was a main effect of condition (F(6, 230) = 6.096, p<.001. 

Univariate tests showed an effect of condition on stride length CV (F(1.790, 103.846)=12.981, 

p<.001), stride time CV (F(1.732, 100.48)=12.165, p<.001), and single support CV (F(1.882, 

109.16)=14.85, p<.001). Pairwise comparisons, corrected for multiple comparisons, showed 

stride length variability was higher for MUSIC compared to SING (p=.024) and MENTAL 

(p<.001), stride time variability was higher for MUSIC compared to SING (p=.005) and 

MENTAL (p<.001), and single support time variability was higher for MUSIC compared to 

SING (p=.001) and MENTAL (p<.001). 

 

Cueing at 100% of preferred cadence: Mauchley’s test of sphericity was not met, thus 

adjusted multivariate and univariate (Greenhouse-Geisser) stats are reported. In the multivariate 

model, there was a main effect of condition (F(6,230)=7.805, p<.001). Univariate tests showed 

an effect of condition on stride length variability (F(1.56, 90.34)=9.250, p=.001), stride time 

variability (F(1.69, 98.04)=16.76, p<.001), and single support time variability (F(1.62, 

93.86)=15.14, p<.001). Pairwise comparisons, corrected for multiple comparisons, showed stride 

length variability was higher for MUSIC compared to SING (p=.002) and MENTAL (p=.01), 

stride time variability was higher for MUSIC compared to SING (p=.002) and MENTAL 

(p<.001), and single support time variability was higher for MUSIC compared to SING (p=.032) 

and MENTAL (p<.001) and for SING compared to MENTAL (p=.002).  
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Cueing at 110% of preferred cadence:  The multivariate test showed a main effect of condition 

(F(6,230)=4.179 (p=.001). Univariate tests showed an effect of condition on stride length CV 

(F(2,116)=5.525, p=.005), on stride time CV (F(2,116)=8.185, p<.001), and on single support 

time CV (F(2,116)=5.856, p=.004). Pairwise comparisons showed stride length variability was 

higher for MUSIC compared to MENTAL (p=.003), stride time variability was higher for 

MUSIC compared to SING (p=.015) and MENTAL (p<.001), and single support time variability 

was higher for MUSIC (p=.006) and SING (p=.019) compared to MENTAL. The multivariate 

test also showed an interaction between group and condition (F(6,230)=2.302, p=.035). 

Univariate tests showed this interaction was significant for stride length (F(2,116)=5.19, p=.007) 

indicating that people with PD lowered their stride length variability during MENTAL more than 

controls.  

 

4.4.3 Gait Asymmetry 

Univariate tests showed a main effect of group at each tempo: 90% (F(1,58)=26.42, p<.001), at 

100% (F(1,58)=15.59, p<.001), and at 110% (F(1,58)=20.00, p<.001)( Table 4.2). There were no 

differences between conditions at any tempo.  

 

4.4.4 Auditory Imagery Ability 

Controls ranked their auditory imagery abilities lower (better) than PD participants 

(F(2,58)=2.579, p=.013) (Table 4.1). Bivariate correlations of auditory imagery and changes in 

gait variabilities during MENTAL were not significant. 
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Figure 4.2. Gait Variabilities. Coefficients of variation compared across groups for three tempos: 
90%, 100%, and 110% of preferred walking cadence. All bars represent means ± SEM. 
Horizontal significance bars indicate an overall effect of condition, whereas vertical significance 
bars indicate an overall effect of group. * indicates p<.01.  # indicates p<.05. 
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Table 4.2. Means and standard deviations of gait characteristics and variabilities by 
condition and cue rate, averaged across participants for each group. 

GAIT CHARACTERISTICS Control baseline TEMPO 90% 100% 110% 

Velocity (cm/s) 133.9 (15.0) music 120.9 (15.2) 136.1 (13.3) 144.6 (18.0) 

    sing 121.6 (16.5) 135.3 (14.5) 145.3 (18.2) 

    mental 122.4 (17.9) 133.8 (16.8) 144.9 (18.7) 

Cadence (steps/min) 112.1 (6.0) music 104.3 (6.9) 113.3 (6.7) 120.2 (7.4) 

    sing 106.0 (6.8) 114.4 (7.6) 120.0 (8.2) 

    mental 106.1 (7.4) 112.6 (7.7) 118.4 (8.0) 

Stride length (cm) 143.5 (15.3) music 139.0 (13.3) 144.3 (12.1) 144.3 (15.3) 

    sing 137.4 (14.0) 142.1 (13.2) 145.3 (14.6) 

    mental 138.0 (14.7) 142.7 (13.9) 146.6 (14.3) 

GAIT VARIABILITIES   TEMPO 90% 100% 110% 

Stride length SD 3.1 (0.9) music 4.4 (1.7) 3.9 (1.7) 3.3 (1.2) 

    sing 3.5 (1.5) 3.3 (1.3) 3.3 (1.3) 

    mental 2.9 (1.1) 3.5 (2.0) 3.4 (1.3) 

Stride time SD 0.02 (0.01) music 0.03 (0.02) 0.02 (0.01) 0.02 (0.008) 

    sing 0.02 (0.01) 0.02 (0.01) 0.02 (0.001) 

    mental 0.02 (0.01) 0.02 (0.01) 0.02 (0.005) 

Single support time SD 0.01 (0.004) music 0.02 (0.01) 0.02 (0.007) 0.01 (0.004) 

    sing 0.01 (0.004) 0.01 (0.003) 0.01 (0.005) 

    mental 0.01 (0.005) 0.01 (0.004) 0.01 (0.003) 

Gait Asymmetry 1.81 (1.7) music 1.74 (1.1) 1.81 (1.3) 1.67 (1.3) 

    sing 1.87 (1.6) 1.56 (1.2) 1.24 (1.0) 

    mental 1.59 (1.3) 1.58 (1.4) 1.62 (0.9) 

GAIT CHARACTERISTICS PD baseline TEMPO 90% 100% 110% 

Velocity (cm/s) 123.6 (15.1) music 109.7 (18.3) 124.1 (16.2) 134.5 (19.5) 

    sing 109.0 (18.0) 124.9 (20.4) 135.2 (23.4) 

    mental 110.6 (18.4) 124.1 (16.6) 132.5 (20.4) 

Cadence (steps/min) 110.9 (7.8) music 101.9 (8.9) 111.1 (7.7) 120.4 (8.5) 

    sing 103.8 (9.8) 112.7 (8.6) 118.6 (9.1) 

    mental 103.3 (9.3) 110.9 (7.6) 115.5 (8.9) 

Stride length (cm) 134.1 (15.6) music 129.0 (16.3) 134.2 (15.7) 134.2 (17.0) 

    sing 126.1 (15.8) 133.0 (17.2) 136.6 (18.7) 

    mental 128.4 (15.9) 134.5 (16.1) 137.5 (16.6) 

GAIT VARIABILITIES   TEMPO 90% 100% 110% 

Stride length SD 3.6 (1.7) music 4.5 (1.6) 5.3 (3.1) 4.3 (1.8) 

    sing 3.7 (1.6) 3.3 (1.2) 3.7 (1.2) 

    mental 3.4 (1.2) 3.4 (1.7) 3.1 (1.4) 

Stride time SD 0.02 (0.01) music 0.03 (0.01) 0.03 (0.01) 0.02 (0.01) 

    sing 0.03 (0.01) 0.02 (0.01) 0.02 (0.01) 

    mental 0.03 (0.01) 0.02 (0.01) 0.02 (0.01) 

Single support time SD 0.01 (0.004) music 0.02 (0.01) 0.02 (0.007) 0.01 (0.01) 

    sing 0.02 (0.01) 0.01 (0.005) 0.01 (0.004) 

    mental 0.02 (0.01) 0.01 (0.004) 0.01 (0.004) 

Gait Asymmetry 3.87 (2.8) music 3.45 (2.2) 2.85 (2.1) 3.53 (2.2) 

   sing 3.73 (2.2) 3.12 (2.3) 3.22 (2.8) 

    mental 3.57 (2.5) 3.13 (2.4) 3.04 (2.5) 
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4.5  Discussion 
In this study, we expanded our past research on internal cueing to explore the effects of both 

overt and covert singing as well as different cue rates on gait in healthy controls and participants 

with PD. The primary objectives of this research were to determine if mental singing could elicit 

similar gait improvement as singing aloud and if changing tempo from preferred walking 

cadence might generate greater benefits. Our results supported our hypotheses that mental 

singing was as effective, if not more so, as overt singing at improving gait for all participants. 

This renders this technique more clinically relevant for people who would not be comfortable 

walking down the street while singing aloud. Our results also support the use of cues at faster 

tempos than preferred as they increased velocity, cadence, and stride length while also 

decreasing gait variability. 

Our primary result is that internal cues were superior to external cues at reducing gait variability 

(GV). Whereas external cues increased nearly all measures of GV from baseline, internal cues 

generally decreased GV, particularly at tempos at or above preferred cadence. Adverse effects on 

GV when synchronizing to isochronous external cues have been reported previously in both 

healthy older adults and people with PD13,14,16,27,28. Here, internal cues reduced GV more than 

external cues for all participants, which we partially attribute to eliminating the need to 

synchronize to an external source. Without the need to constantly adjust footfalls to match 

external cues, coordinating steps to one’s own vocal cues via a mechanism of vocal-motor 

coupling may reduce motor variability.  

Counter to our expectation that people with PD would gain more benefit from internal cues than 

controls, both groups responded similarly across conditions. The efficacy of internal cueing 

techniques for people with PD may relate to the remarkable preservation of singing ability in 
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spite of speech degradation, as people with PD who experience speech dysprosody show no 

similar decrements in singing11. Ability to maintain song tempo, rhythm, interval variability, and 

overall fluency, may relate to greater bilateral activation, especially in the right superior temporal 

gyrus, during overt singing compared to speaking29. 

While singing reduced GV more than external cues, mental singing elicited even greater 

improvements in gait. Perhaps, by eliminating the need to create and monitor sound, participants 

were able to direct more attentional resources to walking14. Elements of vocalization such as 

respiratory kinematics, word formation, and monitoring aural feedback, unnecessary when 

mental singing, potentially simplified task demands and enabled more efficient movement.  

The benefit of mental singing may also relate to the multimodal nature of the task, which 

requires integration of motor, kinesthetic, and auditory imagery capabilities. Even in the absence 

of sound, imagined music recruits auditory areas of the brain and broad regions of the motor 

network. Motor regions implicated in auditory imagery, such as the premotor cortices and 

supplementary motor areas, enable motor anticipation by facilitating action preplanning, 

movement selection, and sequencing30–32. As auditory imagery alone can improve amplitude and 

timing of hand taps, it may not be necessary to produce sound in order to utilize vocal-motor 

coupling, as evidenced by GV reductions seen in our participants33. Movement, thus, may benefit 

from being entrained to vocalizations regardless of if they are produced overtly or simply 

imagined. 

Sensorimotor synchronization ability likely relies on auditory imagery skill, and, while motor 

imagery vividness and accuracy is generally well-preserved in PD and can improve with cueing, 

less is known about auditory imagery ability34,35. In our sample, PD participants reported higher 
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(worse) auditory imagery vividness than controls, though both groups reported better than 

normative averages. Gait improvement in the PD group in spite of lower auditory imagery 

capabilities is likely not related to their overall higher musical experience, which was driven 

primarily by two people with extensive experience and not statistically different. Instead, it may 

reflect increased activation of cortical and subcortical structures implicated in PD during 

anticipatory auditory imagery36. 

Another possibility is that internal cues may bypass rhythmic centers of the brain typically 

affected by neurodegeneration, thereby allowing patients to reroute through unaffected areas. 

Internal cues may bypass a dysfunctional subcortical loop connecting the basal ganglia, SMA 

and thalamus in favor of a cerebellar-thalamo-cortical loop that serves as a compensatory 

network known to be more active during self-paced rather than external movements37,38. 

As loss of gait rhythmicity is associated with impaired rhythmic processing in the basal ganglia, 

we wondered if gait asymmetry (GA) showed similar improvements as GV. GA in our sample 

was higher in our participants with PD than in our controls, which was expected because 

maintaining symmetric interlimb coordination is less automatic in pathological gait disorders and 

indicative of increased instability and higher risk of freezing of gait39. Whereas GA typically 

worsens with cognitive loading, auditory cues in our study caused no decrement to GA. Some 

conditions, in fact, elicited small improvements in GA, the largest being for the PD group while 

mental singing. Though non-significant, evidence suggests that this reduction (from 3.87 to 3.04) 

may be sufficient to reduce risk of freezing of gait and falls26,39.  

In terms of tempo differences, our results suggest that increased cue rates provide more benefit to 

gait than cues at or below preferred cadence17–21. External musical cues at 110% of preferred 
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cadence elicited near 10% changes in velocity and cadence, which were expected as they were 

set by the cue. Internal cues did not elicit the same change in cadence. Without a cue present, 

participants may have reverted back to a pace that more closely matched their preferred walking 

cadence or to a tempo of song that was more natural to sing. The latter may reflect a propensity 

to retrieve familiar songs at previously-encoded absolute tempos when singing aloud or 

imagining well-known songs40,41. 

In spite of less substantial changes in cadence during internal versus external cues, we observed 

no significant differences in velocity between cueing conditions. This indicates that participants 

achieved velocity changes during internal cueing by altering both stride length and cadence. 

Particularly while mental singing at 110%, participants achieved higher gait speeds by taking 

longer strides, which may be useful in PD to counteract tendencies to shorten strides and 

festinate.42 

Faster cue rates also benefitted GV, which may relate to an overall increase in stability when 

moving faster or to improved synchronization due to a preference for neural entrainment at 

certain beat frequencies16,43,44. Optimal frequencies of neural entrainment (2Hz) for movement 

synchronization accuracy correspond closely to cadence rates in our study of approximately 120 

steps/min in both groups at the faster cue rate45. In contrast to research suggesting that reducing 

speed may allow for longer stride lengths or improved variability due to a speed-stride length 

trade-off, we saw no benefit from the slower cue rate22. Slower walking speeds may constitute a 

more challenging gait condition that results in increased variability and worsened bilateral 

coordination43,46. 
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In an effort to assess the impact of gait improvement elicited by internal cueing, we compared 

our mental singing condition at 110%, the condition in which we saw the greatest benefit to GV, 

to recent research addressing meaningful gait changes in older adults47. The changes in velocity 

that we saw (8.9 cm/s for PD and 11.0 cm/s for controls) are similar to meaningful change values 

seen in older adults (10.4 cm/s) and between moderate and large effect sizes (6 and 10 cm/s, 

respectively) in PD (Table 4.2)47,48. Measures of variability, too, compare to values deemed 

meaningful in older adults, as we saw a reduction in stride length standard deviation of 0.5 cm in 

PD, which falls within the range of small to substantial changes for step length standard 

deviations (0.24-0.61 cm). These comparisons lead us to believe that the increases in gait speed 

and reductions in variability seen during internal cueing are clinically meaningful and could 

contribute to decreases in fall risk.  

A few limitations should be considered. During the mental singing condition, we monitored lip 

movement and audible vocalizations but not laryngeal movements, so small sub-glottal 

movements may have contributed to motor output. Also, the auditory imagery scale we used only 

covers environmental sounds and alternative tests may be better-suited to assess musical imagery 

ability in the future49. Lastly, up to 40 footfalls may be necessary to capture reliable estimates of 

GV, so future studies should assess gait over longer periods of time44. 

 

4.5.1  Conclusions 

The results of this research indicate that older adults and people with PD may gain greater 

benefit from internal versus external cueing techniques, the latter of which are commonly 

prescribed and seemingly detrimental to gait variability. In contrast, internal cues allow people to 

increase gait velocity while simultaneously reducing stride-to-stride variability, which may 
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ultimately contribute to overall gait stability and reduction of fall risk. Internal cues may also be 

useful for reducing gait asymmetry in other populations, as a recent study showed improvements 

in velocity, cadence, and stride length after a single session of mental singing in patients with 

post-stroke hemiplegia50. Here, we showed that mental singing provides more benefit to gait 

variability than singing aloud which makes internal cueing more practical for everyday use. 
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Chapter 5: Internal and external auditory 

cues enhance gait kinematics for people with 

Parkinson Disease 
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5.1 Abstract 
Internal cueing techniques, such as singing or mental singing, may provide greater benefit to gait 

for people with Parkinson disease than external cueing techniques, such as listening to music, by 

eliminating the need to match an external source. Mental singing, in particular, can improve 

spatiotemporal features such as gait variability, but the effects on gait kinematics are unknown. 

In this study, we sought to compare the effects of different rhythmic cued conditions on lower 

limb movement trajectories. Using motion capture, we assessed sagittal plane joint angles at the 

hip, knee, and ankle across 35 participants with PD. We also explored differences between 

participants who responded positively and those that received less benefit from cued conditions. 

Our results indicate that rhythmic cues can improve range of motion and that people with PD 

who experience falls or freezing of gait are generally able to utilize internal cueing techniques to 

improve their walking.  Furthermore, previous musical experience may influence likelihood of 

response. These results provide important insight into how novel internal cueing techniques may 

benefit gait stability in PD, potentially reducing the risk of debilitating incidents, such as freezing 

of gait or falls.  

 

5.2 Introduction 

Parkinson disease (PD) is a neurological disorder caused by progressive loss of dopaminergic 

neurons within the basal ganglia, a region of the brain known to help regulate movement size and 

timing. Overall reductions in movement amplitude and generalized slowness of movement 

contribute to gait impairment, which typically consists of reduced speed, shorter stride lengths, 

and increased cadence and double support time. Neurodegeneration of the rhythm processing 

centers within the basal ganglia can further disrupt the rhythmic nature of walking, leading to 



105 
 

more variable gait timing and increasing the risk of falls1,2. Nearly 50% of people with PD will 

develop a debilitating phenomenon known as freezing of gait (FOG) as the disease progresses, 

which can further exacerbate gait variability and unsteadiness3. Since people with PD report 

walking difficulty as a primary concern4, rehabilitation efforts commonly focus on improving 

gait.  

Pharmacological and surgical treatments do not adequately address gait impairments in PD, but 

targeted interventions such as rhythmic auditory stimulation (RAS), in which participants match 

steps to external cues, can be effective. Myriad studies of external cueing effects on 

spatiotemporal gait parameters have shown consistent improvement in gait velocity and stride 

length5; however, growing evidence shows that these improvements may come at the expense of 

increasing stride-to-stride variability6–8. Recent research from our lab showed that internal cueing 

in the form of singing or mental singing may convey similar benefits as external cues while also 

improving gait variability for people with PD9. The natural extension of this research was to 

explore the effects of internal cueing on gait kinematics to determine if movement quality may 

also benefit from this technique.  

Kinematic studies of PD gait verified that reduced spatiotemporal parameters correspond to 

reductions in lower limb joint movement relative to controls and persist in spite of anti-

Parkinsonian medication10,11. Distinctive kinematic features include flat foot contact, reduced hip 

extension in stance, knee flexion in swing, and plantarflexion at toe-off12–14. Normalization of 

movement trajectories with the use of visual cues suggests that cues can alter motor strategies12, 

but few studies to date have explored the effects of auditory cues on gait kinematics, in spite of 

their superiority to other cue types15. While metronome cues induce increases in lower limb 
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movement trajectories16,17 no studies that we know of report the effects of musical cues, which 

provide additional motivation and are considered optimal for gait training18. Furthermore, people 

with PD exhibit varied responses to external cues19, but little information presently exists 

regarding what factors contribute to likelihood of a positive response to internal cues. While 

some have suggested that internal cues may be particularly suited to people with PD who 

experience more profound gait impairments such as freezing of gait (FOG), the use of internal 

cues has not been explored in this population20.  

The purpose of this study was to compare gait kinematic profiles during different rhythmic 

cueing techniques for people with PD. We analyzed sagittal plane movement during gait while 

walking to music, constituting an external cue, and while walking and singing or mentally 

singing, constituting an internal cue. We showed previously that internal cues elicited greater 

benefit to spatiotemporal gait parameters. Thus, we hypothesized that internal cues, and 

particularly mental singing, would also improve kinematic measures, resulting in overall 

increases in lower limb joint trajectories over externally cued conditions. Additionally, we 

sought to assess qualitative differences between responders and non-responders during internally 

cued conditions to determine who may be more likely to respond. We hypothesized that people 

who experience more impaired gait, as evidenced by a history of freezing episodes or falls, and 

those with some degree of musical experience might respond more positively to internal cues 

than others. 
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5.3 Methods 

5.3.1 Participants 

All participants had diagnosed idiopathic PD with mild-moderate disease severity as evidenced 

by Hoehn & Yahr (H&Y) scores of 2-3 (Table 5.1). Inclusion criteria were: a) able to stand 

independently for at least 30 minutes, b) normal peripheral neurological function, c) no history of 

vestibular disease, d) no evidence of dementia (Mini Mental State Examination (MMSE) ≥ 24). 

Participants were excluded if they had any of the following: a) any serious medical problem 

aside from PD, b) previous abnormal brain scan, c) deep brain stimulation surgery, d) diagnosis 

of peripheral neuropathy, or e) use of dopamine-blocking medication. All participants were 

recruited as part of a larger study, and only those with a body mass index (BMI) < 30 who were 

naïve to the cued conditions were included in the present analysis. Of 56 participants in the 

larger study, 35 met all inclusion criteria for this analysis.    

Participants were recruited through the Movement Disorders Clinic at Washington University 

School of Medicine in St. Louis, Missouri and from the local chapter of the American Parkinson 

Disease Association. The study was approved by the Human Research Protection Office at 

Washington University School of Medicine, and all participants provided written informed 

consent prior to data collection and were compensated for their time. 
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Table 5.1. Participant demographics.     

 All Non-freezer (FOG-) Freezer (FOG+) 

N (male) 35 (21) 24 (14) 11 (7) 

Age, yrs 67.17 (9.04) 67.92 (9.81) 65.55 (7.24) 
Years Since Diagnosis 4.92 (4.82) 3.57 (3.34) 7.86 (6.30) 
MDS-UPDRS-III 28.69 (11.21) 27.33 (11.62) 31.64 (10.14) 
MMSE, median (range) 29 (25,30) 29 (25,30) 29 (27,30) 
Baseline Velocity, m/s 1.15 (0.18) 1.19 (0.17) 1.06 (0.17) 
Musical Experience, yrs 9.24 (13.94) 11.18 (16.95) 5.67 (4.84) 
BQMI, median (range) 4 (2,7) 4 (0,5) 3.5 (0,5) 
NFOG-Q, median (range) 12 (0, 26) 0 (0) 12 (4,26) 
Fall Status (fallers, nonfallers) 11, 24 6, 18 5, 6 

Values represent mean ± SD, except where noted. MDS-UPDRS, Movement Disorder Society 
Unified Parkinson Disease Rating Scale. MMSE, Mini Mental Status Examination. BQMI, 
Betts’ Questionnaire Upon Mental Imagery. NFOG-Q, New Freezing of Gait Questionnaire. 

 

5.3.2 Experimental Protocol 

Participants were tested in the ‘ON’ state of their anti-Parkinson medication in order to increase 

relevance of assessment conditions to daily walking in everyday life. All participants completed 

a behavioral assessment prior to kinematic assessment. Questionnaires included the New 

Freezing of Gait Questionnaire (NFOG-Q), the Fall History Questionnaire, the auditory portion 

of the Betts’ Questionnaire Upon Mental Imagery (BQMI), and questions about prior musical 

experience. Disease severity was assessed using the Movement Disorder Society Unified 

Parkinson Disease Rating Scale (MDS-UPDRS III)21. Three initial walking trials, measured on a 

5-meter instrumented walkway (GAITRite, CIR Systems, NJ), were used to assess self-selected 

walking cadence in order to tailor the cue tempo to each individual.  

5.3.3 2D Motion Capture 

Sagittal-plane kinematic data were collected using an 8-camera Hawk Digital RealTime system 

by Motion Analysis (Motion Analysis Corporation, Santa Rosa, CA) with a 100Hz sampling 

rate. Participants were provided form-fitting clothing to wear along with their own shoes. Fifty-



109 
 

three reflective markers (20mm diameter) were placed on bony prominences including: T12, L5, 

bilateral PSIS, ASIS, iliac crests, greater trochanters, medial and lateral femoral condyles, tibial 

tuberosities, medial and lateral tibial malleoli, 1st and 5th metatarsophalangeal joints, first toe, and 

1” above the floor on the heel. The thigh and shank were tracked using plates with four evenly-

spaced markers mounted 3.5” above the lateral condyle of the femur and 6” above the lateral 

condyle of the tibia.  

5.3.4 Procedure 

An initial static trial was collected in order to design a model for each individual. Six medial 

markers were removed prior to the walking trials. For each condition, participants walked 

diagonally across a 10’x10’x10’ capture volume. The cue was administered from a laptop 

connected to speakers no farther than 10m from the participant during walking to ensure 

audibility. The song “Row, row, row your boat” was used for cueing so that participants would 

be familiar with the melody and lyrics and able to sing it without difficulty. This particular 

instrumental version was designed with an easily detectable, salient beat9. The song tempo was 

adjusted to 110% of each participant’s self-selected walking cadence while maintaining key 

consistency using Audacity open source audio editing software (The Audacity Team, 

audacity.sourceforge.net/).  

An UNCUED condition occurred first in which participants walked at their comfortable pace in 

silence. Three randomized cued conditions followed: 

1. MUSIC: Participants were instructed to walk to the beat of the musical cue. 

Participants were asked to listen to the song one time through and begin walking on 

the second round.  The music was playing during walking. 
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2. SING: Participants were instructed to listen to the musical cue one time and then 

begin walking while singing out loud at the tempo they just heard. The music was not 

playing during walking. 

3. MENTAL: Participants were instructed to listen to the musical cue one time and then 

begin walking in silence while singing in their heads. They were not allowed to move 

their lips or produce overt sound.  The music was not playing during walking. 

 

5.3.5. Data Processing 

Motion capture data were pre-processed in Cortex (version 1.1.4, Motional Analysis 

Corporation, CA) and imported into Visual3D (version 6, C-Motion, MD). Three gait trials in 

each condition were processed for analysis. A low-pass Butterworth 6Hz filter was used to 

smooth the kinematic data, and hip, knee, and ankle joint angles and spatiotemporal measures 

were extracted. Gait cycles were defined by heel strikes, which were calculated by the velocity 

of the toe marker in relation to the pelvis using a previously validated method22. No differences 

were noted between sides, so left and right gait cycles were combined and a minimum of six 

cycles was used for each participant within each condition. Joint trajectories were normalized to 

percent of gait cycle, and range of motion for each joint was calculated as the difference between 

maximum and minimum values during the gait cycle.   

5.3.6 Statistical Analysis 

IBM SPSS (version 24, IBM, NY) was used for all analyses. Differences between conditions for 

gait characteristics (velocity, cadence, stride length; stride time, double limb support time 

(DLST), stride width), gait variabilities (stride time, stride length, and single support time 

coefficients of variation (CV) calculated as the ((standard deviation/mean)x100) for each 
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participant in each condition), joint range of motion (ROM) and angle at initial contact (IC) (for 

the hip, knee, and ankle) were analysed using repeated measures MANOVAs. Sphericity was 

assessed with Mauchly’s test of sphericity, and Greenhouse-Geisser corrections were used when 

necessary. Tukey-corrected post-hoc pairwise comparisons were used as appropriate. Extreme 

outliers (≥3 interquartile ranges from mean) were winsorized. Participants were classified as 

“fallers” if they self-reported one or more falls in the six months prior to testing. The first question 

of the NFOG-Q, “Did you experience freezing episodes in the past month?” was used to divide 

participants into freezers and non-freezers. We based likelihood of responding to internal cues on the 

MENTAL condition because it showed the greatest mean increase in hip ROM. Participants who 

improved by more than 1 standard deviation (SD) above the mean change (> 2.1°) were 

classified as “responders” and everyone else was classified as a “non-responder”. Pearson Chi-

Square tests assessed demographic differences between responders and non-responders. 

Statistical significance was set at α=.05.  

 

5.4 Results 

5.4.1 Basic Spatiotemporal Gait Features 

There was a within-subject effect of condition (F(9, 306)=7.328, p<.001) with univariate tests 

showing an effect of condition on velocity (F(1.84, 62.72)=10.876, p<.001), cadence (F(3, 

102)=31.551, p<.001), and stride length (F(1.989, 67.623)=3.753, p=.029) (Table 5.2). Pairwise 

comparisons indicate that velocity (all p<.015) and cadence (all p<.001) were higher for all cued 

conditions over UNCUED, and stride length showed a similar trend, with strides being longer for 

MENTAL (p=.062) and SING (p=.071) over UNCUED. There was a within-subject effect of 

condition (F(9,306)=7.94, p<.001) with univariate tests showing an effect of condition on stride 
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time (F(3,102)=33.686, p<.001), double limb support time (DLST, F(3,102)=13.933, p<.001), 

and stride width (F(3,102)=2.861, p=.041). Pairwise comparisons indicate that stride time 

(p<.001) and DLST (all p<.002) were lower for all cued conditions over UNCUED, and stride 

width showed a similar trend, with strides being narrower for MUSIC (p=.088) and SING 

(p=.10).  
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Table 5.2. Spatiotemporal and Kinematic Gait Variables.     

 Uncued Music Sing Mental  

Gait Characteristics 
    

Speed (m/s) 1.15(0.18) 1.26 (0.24)* 1.25 (0.21)*  1.26 (0.23)* 
Cadence (steps/min) 110.05 (7.81) 117.35 (11.37)* 115.53 (10.49)*  115.74 (10.13)* 
Stride Time (s) 1.1 (0.08) 1.03 (0.10)*  1.05 (0.09)* 1.04 (0.09)* 
Stride Length (m) 1.26 (0.19) 1.30 (0.20) 1.30 (0.18)*  1.31 (0.19)* 
DLST (%GC) 33.6 (2.42) 32.34 (2.77)* 32.52 (2.45)* 32.78 (2.59)* 
Stance Time (%GC) 66.84 (1.19) 66.19 (1.36)* 66.31 (1.25)* 66.39 (1.19)* 
Swing Time (%GC)  33.16 (1.19) 33.81 (1.36) 33.69 (1.25) 33.61 (1.19) 
Stride Width (m) 0.14 (0.02) 0.13 (0.02) 0.13 (.03) 0.13 (0.03) 

     

Gait Variabilities     

Stride Time CV 1.90 (0.86) 2.30 (1.31) 2.06 (0.84) 1.57 (0.49)*# 
Stride Length CV 1.51 (0.78) 1.65 (0.90) 1.57 (0.66) 1.52 (0.60) 
Single Support Time CV 2.70 (1.03) 3.13 (1.48) 2.82 (0.96) 2.59 (0.76) 
Stride Width CV 11.82 (5.16) 11.05 (5.81) 12.84 (5.70) 11.01 (5.96) 

 
    

Hip     
Flexion at IC (°) 32.68 (7.63) 33.98 (8.05)* 33.69 (7.70)* 33.90 (7.89)* 
Peak Hip Extension (°)  -4.6 (8.97)  -5.20 (9.13)*  -5.38 (9.11)*  -5.48 (9.00)* 
Peak Hip Flexion (°) 32.68 (7.63) 33.98 (8.05)* 33.69 (7.70)* 33.90 (7.89)* 
Mean ROM Sagittal Plane (°) 37.27 (5.76) 39.18 (6.13)* 39.07 (6.29)* 39.38 (6.56)* 

     
Knee     
Flexion at IC (°) 8.42 (5.33) 9.91 (5.49)* 9.62 (6.30) 9.72 (5.73)* 
Peak Knee Extension (°) 7.71 (5.14) 8.84 (5.10)* 8.32 (5.29) 8.42 (4.85) 
Peak Knee Flexion (°) 70.42 (5.18) 71.28 (5.63)* 71.25 (5.24)* 71.45 (5.11)* 
ROM Sagittal Plane (°) 62.71 (5.83) 62.44 (5.17) 62.93 (5.31) 63.02 (5.02) 

     
Ankle     
Dorsiflexion at IC (°) 7.79 (3.15) 8.52 (3.24)* 8.19 (3.17) 8.47 (3.19)* 
Peak Dorsiflexion (°) 21.67 (3.67) 21.52 (4.25) 21.52 (3.99) 21.53 (4.04) 
Peak Plantarflexion (°)  -6.28 (5.59)  -6.81 (6.93)  -6.69 (6.54)  -7.19 (6.28) 
ROM Sagittal Plane (°) 27.95 (4.69) 28.34 (5.00) 28.20 (4.96) 28.72 (4.93) 

Values represent mean ± SD across all participants. * indicates significant difference from 
UNCUED. # indicates significant difference from MUSIC and SING. DSLT, double limb 
support time. CV, coefficient of variation. IC, initial contact. ROM, range of motion. 
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5.4.2 Gait Variability 

There was a within-subject effect of condition (F(9, 306)=2.223, p<.001). Univariate tests 

showed an effect of condition on stride time variability (F(3, 102)=5.04, p=.003) with similar 

trends showing an effect of condition on single support time variability (F(3, 102)=2.509, 

p=.063) and on stride width variability (F(3, 102)=2.602, p=.056). Pairwise comparisons indicate 

that stride time variability in MENTAL was lower than MUS (p=.005) and SING (p=.013).  

5.4.3 Ranges of Motion  

There was a within-subject effect of condition (F(9, 306)=4.188, p<.001) for total joint ROM 

(Figure 5.1).  Univariate tests showed an effect of condition on total hip ROM (F(3, 

102)=11.647, p<.001).  Pairwise comparisons indicated increased ROM in all cued conditions 

compared to UNCUED (all p<.003).  

5.4.4 Joint Angles at Initial Contact 

There was a within-subject effect of condition (F(9, 306)=4.847, p<.001)(Figure 5.1). Univariate 

tests showed an effect of condition on hip flexion (F(2.387, 81.168)=9.612, p<.001), knee 

flexion (F(1.882, 63.973)=6.212, p=.004), and ankle dorsiflexion (F(2.392, 81.313)=5.497, 

p=.004) at initial contact (IC). Pairwise comparisons indicated that hip flexion at IC was higher 

for all cued conditions than UNCUED (all p<.004), knee flexion at IC was higher for MUS 

(p=.035) and MENT (p=.039) than UNCUED, and ankle dorsiflexion was higher for MUS 

(p=.044) and MENT (p=.019) than UNCUED. In SING, knee flexion at IC showed a trend 

towards being higher than UNCUED (p=.085). 
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Figure 5.1. Joint angle trajectories for the hip, knee, and ankle show data averaged across 35 
participants and normalized to the gait cycle. Fine dotted lines represent ± standard deviation. 
Dotted lines represent joint excursions during UNCUED walking. All cued conditions show 
similar patterns of slight expansion in both directions revealing increases in overall range of 
motion (ROM) and greater flexion/dorsiflexion at initial contact (IC) at the start of the gait cycle. 



116 
 

5.4.5 Responders and non-responders 

From our sample of 35 participants, 16 were classified as “responders” based on improvement in 

hip ROM in MENTAL. “Non-responders” included 17 participants who showed minimal 

change, falling within ±1 SD of the mean change, and 2 participants who substantially decreased 

their hip ROM more than 1 SD from the mean change. Ten of 15 participants with some musical 

experience were “responders” as opposed to only 6 of 20 participants with no musical experience 

(p=.031). Based on this parameter, 7 of 11 freezers and 7 of 11 fallers (not all the same 

participants) responded positively.  

5.4.6 Effects of Cueing in People with and without FOG 

A sub-analysis comparing FOG+ to FOG- revealed some differences based on freezing status 

(Figure 5.2). There was an interaction between condition and freezing status (F(9, 297)=1.67, 

p=.096) with univariate tests showing an effect on velocity (F(1.928, 63.609=2.437, p=.097) and 

on stride length (F(2.155, 71.123)=4.363, p=.014). Pairwise comparisons showed that FOG- 

increased velocity more in SING (p=.043) and MENTAL (p=.028) than UNCUED, whereas 

FOG+ increased velocity in all cued conditions (all<.004) over UNCUED and in MUS over 

SING (p=.022). Only FOG+ showed a differential effect of condition on stride length with 

strides being longer in all cued conditions (all p<.006) than in UNCUED.  

The multivariate test showed a between-subject effect of freezing status on joint angles at initial 

contact (F(3,31)=3.697, p=.022) with univariate tests showing an interaction between condition 

and freezing status on hip flexion at initial contact (F(3,99)=2.769, p=.046) and knee flexion at 

initial contact (F(1.976, 65.201)=3.234, p=.046). Pairwise comparisons showed that FOG- 

increased hip flexion at initial contact in MENTAL (p=.03) over UNCUED, whereas FOG+ 

increased hip flexion at initial contact in all cued conditions (all p<.039) over UNCUED.  
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Figure 5.2. Angle-angle plots representing mean joint trajectories for the hip, knee, and ankle 
plotted against one another. Dotted lines represent joint excursions during UNCUED walking 
and solid lines represent joint excursions during cued conditions. Bright colored lines represent 
FOG+ (n=11) and lighter colored lines represent FOG- (n=24). Shifted plots in A and B reveal 
disparate hip angles at initial contact, with freezers exhibiting higher hip flexion than non-
freezers. Greater divergence from UNCUED walking among FOG+ indicates more robust 
responses to cueing for freezers.   
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5.5 Discussion 
In this study, we explored the effects of internal and external auditory cues on gait kinematics of 

people with PD. The motion capture data we collected largely mirror recent spatiotemporal data 

from our lab showing a greater benefit of internal cues, such as singing or mental singing, than 

external cues, such as listening to music, on PD gait. We observed that all rhythmic cues 

examined can effectively increase gait speed, cadence, and stride length, but only internal cues 

reduce gait variability as well. Here, we additionally show beneficial effects of cues on multi-

joint limb excursions. Although we were surprised to see no significant differences in gait 

kinematics between cued conditions, we were encouraged that all auditory cues increased joint 

angle trajectories from uncued walking. These results indicate that people with PD can use both 

external and internal auditory cues to enhance spatiotemporal and kinematic movement 

parameters. 

The stereotypical shuffling gait pattern commonly seen in PD can be traced to several key 

impairments throughout the gait cycle. At the outset, an absence of heel rocker at foot strike 

causes initial contact to occur closer to the forefoot than the heel23. Impaired foot strike angle 

and abnormal foot loading can reduce force generation13, stride length24, and gait speed 23. 

Inability to properly execute heel-to-toe roll further decreases time spent in stance, and therefore, 

gait stability14. During toe-off, reduced ankle plantarflexion and reduced hip extension can also 

contribute to shortened strides25.  

Previous work showed that various cueing techniques can improve these impairments. 

Attentional strategies to focus on heel strike can cause an immediate increase in ankle 

dorsiflexion26. Visual cues that require participants to step over floor markers can increase ROM 
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and step length1. Auditory cues improve step preparation27 and improve spatiotemporal gait 

parameters largely due to increases in hip flexion16,17, similar to improvements we observed here.  

Similarly, we saw the largest changes in ROM at the hip, but cues increased ROM at all joints.  

lncreased ankle dorsiflexion at initial contact may indicate a more effective stepping strategy that 

could reduce shuffling and improve stability at the beginning of the gait cycle. Cueing also 

increased ankle plantarflexion at toe-off. Improved foot lift during the swing phase has been 

shown to increase clearance of toes from the ground which may enable longer strides25 and 

reduce the risk of tripping4. In our study, peak ankle plantarflexion was highest in the MENTAL 

singing condition and accompanied by the greatest amount of knee flexion during the swing 

phase. Such alterations to joint trajectories, though slight, may help elongate swing times, 

increase push-off, and improve forward propulsion.  

Our results support the use of cueing to improve two other markers of postural instability and fall 

risk in PD: stride width and double support time. Increased width in base of support is associated 

with poor balance control and fear of falling28 and prolonged time spent in double support is 

considered a compensatory strategy for gait instability29. The decreased time spent in stance 

observed here supports past work showing that auditory cueing may normalize the subdivision 

between stance and swing phases16.  

Increases in spatiotemporal and kinematic variability are well-documented in neuropathic gait 

and sensitively predict fall risk in people with PD30. Gait variability in PD may relate to 

inconsistent muscle activation31, deficient neuromuscular patterning12, or loss of rhythmicity in 

automatic movements6. Corroborating other studies9,16, MUSIC increased (worsened) nearly all 

measures of gait variability while MENTAL singing improved temporal variability measures. In 
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contrast to our past work showing a minor benefit of singing aloud, in this study, SING increased 

variability, suggesting that singing aloud may be less beneficial than singing in one’s head. 

Although we previously showed improvements in spatial variability with internal cues, here we 

found no benefit to stride length variability. However, all measures of variability reported herein 

should be considered in light of limitations to calculating variability from so few strides32.  

The improvements we saw in ROM were less substantial than some previously reports (increased 

hip ROM of 6-10°, for instance12,16,17), although some individuals within our sample did respond 

to this extent. Smaller mean effects may be attributed to the mild disease severity of our sample, 

leaving less room for improvement. We may also have seen greater effects had we offered more 

instruction or training, and future studies should include an intervention to train participants on 

how to effectively utilize internal cueing techniques. Higher cadences in externally versus 

internally cued conditions suggest that, while participants were capable of matching footfalls to 

imposed tempos, they tended to revert back to preferred cadence once the external signals were 

removed.    

As people with PD greatly differ in their response to auditory cues, we sought to determine who 

was more likely to respond31. It is noteworthy that, from our sample of 35 participants, 16 were 

classified as “responders”, displaying increases in hip ROM between 2-9°, while 18 showed 

minimal response to cueing. For these “non-responders”, cueing did not significantly alter joint 

motion nor spatiotemporal gait variables. Only 1 participant substantially decreased hip ROM in 

MENTAL, which corresponded to a decrease in stride length and an increase in cadence. This 

participant appeared to significantly shorten strides—and thereby reduce hip movement—in 

order to match the song tempo, which supports recommendations to individually tailor cue rates 
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in order to optimize stride length31. Analyses of responders and non-responders suggest that 

internal cueing techniques, even when done without training, are unlikely to cause significant 

gait detriment and have a near 50% chance of improving overall movement trajectories.  

Our observation that participants with musical experience responded better to internal cueing 

corroborates previous reports that some degree of musical training or rhythmic skill may 

improve the likelihood of responding to musical cues31. This may be particularly useful in mental 

singing as it requires maintaining a beat in silence. We also noted that a majority freezers and 

fallers, who typically exhibit higher gait impairment33, responded positively to internal cues. 

While both FOG+ and FOG- successfully increased their cadence, only FOG+ also lengthened 

strides, increased ROM, and reduced variability to a greater extent than FOG-. Though these 

enhancements in FOG+ may merely reflect lower baseline values with more room for 

improvement, they suggest, in contrast to past work, that cueing may hold an immediate benefit 

for people with PD who experience FOG+34. Hence, internal cues hold promise to improve 

movement for people at risk of FOG and falls, and future studies may explore this more in depth.  

In this study, we showed that people with PD can utilize both external and internal musical 

cueing techniques to gain immediate benefit to movement quality and that mental singing may be 

more effective than other cued conditions. While cues can improve both spatiotemporal and 

kinematic gait parameters, as evidenced by increases in velocity, cadence, stride length, and joint 

angle trajectories, only mental singing can also decrease gait variability, which is an important 

marker of overall gait stability. Previous musical experience may improve the likelihood of 

benefitting from internal cues, and people with PD who experience freezing of gait may receive 

even greater benefit than those who do not. Mental singing holds promise as an effective 
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alternative to external rhythmic cueing that may improve movement quality and increase stability 

for people with PD.  
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Chapter 6: Conclusion 

 “Every disease is a musical problem; every cure is a musical solution.” –Novalis 

These words of the early Romantic German poet Novalis reflect the long-held belief, 

documented in nearly every culture across time, that science and art combined hold the power to 

heal. For brain diseases such as Parkinson disease (PD), no cure currently exists, but music can 

indeed serve as a solution of sorts. While pharmacological and surgical treatments fall short at 

addressing the motor, cognitive, and emotional needs of people with PD, music-based 

interventions can facilitate motor function and promote wellbeing and quality of life. External 

rhythmic stimulation in PD is well known to improve gait dysfunction in a research laboratory 

setting, but these techniques are difficult to use in everyday life. The studies reported in this 

dissertation are among the first to elucidate the benefits of internal cueing techniques such as 

singing, which may provide a similar benefit and are highly accessible and cost-effective. 

 

6.1 Summary of main findings 

In this dissertation, we tested a novel technique of internal cueing to facilitate movement in 

healthy adults and people with PD. Though several others have suggested that singing or mental 

singing may provide benefit to motor impairments in neurological disorders, we are among the 

first to quantitatively assess specific gait characteristics while using this technique. To this end, 

we assessed: 1) the feasibility of internal cueing for people with PD by comparing it to external 

cues and a verbal dual task, 2) the effects of internal versus external cueing on forward and 

backward walking in healthy adults and people with PD, 3) the effects of internal cueing in the 
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form of singing and mental singing on forward gait at different cue rates in healthy adults and 

people with PD, and 4) the effects of internal cues on gait kinematics in people with PD. A 

summary of the main findings of our experiments follows.  

6.1.1  Aim 1 

In Aim 1, our objective was to determine if internal cueing was feasible for people with PD and 

if it could elicit improvement in gait parameters comparable to external cueing. Therefore, we 

tested four conditions, including both external and internal cue types, with all cues given at 

preferred cadence, and a dual task (DT) condition. The first notable finding of Aim 1 was that 

singing did not degrade gait in the same way that a verbal dual task did. Whereas the DT 

condition slowed and destabilized gait, internal cueing did not negatively affect gait 

characteristics or variabilities. Verbal word generation tasks done concurrently with walking 

disrupt gait automaticity in PD by dividing attentional resources between the motor and 

cognitive task, causing degradation of one or both1–3. Even though our participants were 

susceptible to DT effects, as evidenced by gait degradation in the DT condition, singing did not 

induce similar negative effects. This suggests that singing is not as cognitively challenging as 

other dual tasks and does not utilize significant attentional resources that might detract from 

concurrent motor tasks. 

Furthermore, in our comparison of internal versus external cues in Aim 1, we showed that 

internal cues were actually more beneficial than external cues at reducing gait variability. In both 

of our external cueing conditions, MUS and MUS+SING, variability measures increased from 

baseline. Increased temporal and spatial variability with external cues occurred independent of 

measures of speed, cadence, or stride length, which were unchanged. Internal cueing did not 
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have this same effect and was slightly beneficial to measures of spatiotemporal variability. The 

results of this Aim countered the common assertion that external cues are beneficial to both gait 

characteristics and variability, and warranted further study in our other Aims. 

6.1.2  Aim 2 

Backward gait 

In Aim 2, we addressed the suitability of internal cues in more challenging gait situations such as 

backwards walking. Backwards walking causes slower, more variable steps and is a common 

cause of falls and injury4,5. Moving in the backward direction occurs commonly in everyday life, 

as transitional movements such as turning often require backward steps6,7. Backward and 

forward walking, while similar, are worth studying independently as they do have some distinct 

kinematic properties8–10 and may be controlled by different neuromuscular control networks11. 

Though no previous studies had explored the use of cues on backward walking, we expected that 

this less automatic form of gait would be more impaired at baseline and thus more amenable to 

improvement through cueing. 

The major conclusion of this experiment was that internal cues provided more benefit to gait 

than external cues in both walking directions, and that backward walking characteristics 

improved more than forward characteristics. Internal cueing was associated with improvements 

in velocity, stride length, and cadence in the backward direction, as well as reductions in 

variability in both forward and backward walking. This suggests that synchronizing movement to 

one’s own singing induces more stability in motor output, in both automatic and challenging gait 

situations.  
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Detrimental effects of external cues for PD and controls 

In Aim 2, we also included two control groups so that we could compare PD participants with 

healthy older and healthy younger controls. Confirming the results of Aim 1, we saw detrimental 

effects of external cues on gait variability in all three groups. Similar negative effects from 

external cues were reported previously in healthy young adults12–14, healthy older adults12,15–20, 

and in people with PD16,21–25. Theories suggest that for people with low baseline variability, cues 

may compete with intact internal timing mechanisms and perturb gait rhythmicity19. They may 

also require additional neural engagement that divides attentional demands20. Directing attention 

to motor performance may make people overcorrect or increase deviations due to discrepancies 

between feedforward and feedback control26,27.  

Reports of gait decrement from external cues for people with low baseline variability suggest 

that external cues are only beneficial for people with sufficiently impaired baseline gait. Our 

results do not fully support this, as we saw detrimental effects with external cues for all three 

groups even though baseline gait measurements and motor severity ratings show that our PD 

sample was, in fact, more impaired than the other groups. Instead, we suggest that synchronizing 

to an external source requires extra attentional resources that can cause gait decrement for a 

broad range of people. With internal cues, on the other hand, we observed that people with PD 

exhibit greater improvement than healthy adults, especially in the backward direction. This could 

reflect more impaired backward gait with more room for improvement or to a greater reduction 

in reliance on impaired internal timing mechanisms. 
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6.1.3  Aim 3 

In Aim 3, we tested the effects of two internal cue types—singing and mental singing—on gait 

in people with PD and healthy age-matched controls. We explored the effects of different cue 

rates, as well, to optimize the benefits of internal cues. Here, we found that participants were able 

to match their footfalls to an externally imposed cadence at varied cue rates, reflecting the 

suitability of auditory cues in this population. Internal cues, again, showed a more marked 

benefit than external cues on gait variability, and these improvements were most significant 

during mental singing at tempos at or above preferred cadence.  

 

Mental singing 

Our condition of mental, covert singing was included primarily to improve accessibility of 

internal cueing techniques for people who would not be comfortable singing aloud and enhance 

ability to use internal cueing across a variety of situations. We expected mental singing to be 

possible, based on earlier reports of motor benefits in PD28, and to provide similar benefit as 

singing aloud, based on similarities in covert and overt singing29,30. The inclusion of mental 

singing, a skill that combines elements of auditory perception, auditory imagery, and vocal 

production, contributes to a burgeoning field of research on the auditory-motor network, and 

improves usability of this technique in real world situations. 

 

Cue rate 

The rate of cueing is a common source of debate in the PD literature. In our assessment of 

rhythmic cueing at different tempos in Aim 3, we observed the greatest gait benefit at tempos at 
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or above preferred cadence. This supports past work showing that external cues at increased rates 

from preferred can improve gait velocity, cadence, and stride length31–34 as well as measures of 

variability35. We saw little discernable benefit from decreasing the cue rate, as the 90% cue 

slowed and destabilized gait for all participants. This supports past studies showing worsened 

step length variability21 and stride time variability1 at slower cue rates. We did not see a 

previously hypothesized speed-accuracy trade-off, which allows accuracy to improve as speed 

decreases36. Rather, increased variability at slower speeds may compromise postural stability and 

detrimentally affect balance and gait variability37. In contrast to reports of increased stride 

lengths at slower rates38—when given more time to swing the leg through—we did not see a 

benefit to stride length at this tempo. Thus, these results support the use of preferred-tempo or 

above preferred-tempo cue rates, in order to most benefit gait characteristics and variabilities for 

the majority of people.  

 

6.1.4  Aim 4 

In Aim 4, we explored the effects of the same cued conditions on gait kinematics and movement 

quality. As no studies that we know of report the effects of musical cues on PD gait kinematics, 

we sought to test the effects of external and internal cues on lower limb movement trajectories, 

known to be impaired in PD39–41. Although metronome cues can improve PD gait kinematic 

features32,42, no studies we know of report the effects of musical cues or internal cues. We 

expected that internal cueing improvements in stride length and variability seen in Aims 1-3 

would likely be reflected in joint angle trajectories. The results, however, did not reveal 

significant differences between conditions. While measures of spatiotemporal variability did 

decrease in MENTAL singing more than in other conditions, overall, we saw that all cued 
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conditions, regardless of cue type, improved gait kinematics to approximately the same extent. 

The improvements during cueing corroborate previous reports of improved ROM, particularly at 

the hip and ankle at initial contact. The results also confirm that singing is as suitable a cueing 

technique as music listening, in that both improve kinematic gait features, while singing 

additionally benefits spatiotemporal variability.  

 

Differential response to internal cues 

Though the grouped data reveal minimal differences between conditions, we noticed that a large 

number of people did improve gait kinematics in MENTAL singing more than other conditions, 

as we had hypothesized. In order to better understand any contributing factors to likelihood of 

response in Aim 4, we sought to parse out differences between “responders” and “non-

responders” based on increases in hip ROM in the MENTAL condition, as it was the joint in 

which we saw the greatest change. In doing so, we addressed the potential use of internal cues 

for people with more profound gait impairments such as freezing of gait (FOG) or recurrent falls. 

In our comparison of non-freezers (FOG-) to freezers (FOG+), we found that FOG+ increased 

ROM, elongated strides, and reduced variability more than FOG-. We also noted that a majority 

of fallers responded positively to internal cues by increasing ROM in the hip.  

We also observed that musical experience contributed to likelihood of response, as the majority 

of people with musical training improved gait features with internal cues. These enhancements 

were expected based on extensive research suggesting that musical training induces plastic 

changes in the brain and enhances musical processing and entrainment capabilities25,43–47.  
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6.2  Significance and Common Themes 

Over the course of developing and researching the studies reported in this dissertation, we found 

several recommendations in the literature to either sing or mentally sing in order to improve 

motor patterns for people with PD48–51. We found anecdotal reports of people who were already 

using this technique52,53. We found implorations to researchers to study it54,55. To our surprise, 

however, no reports evaluating precise gait characteristics existed. While one decade-old study 

showed motor benefits in PD after a month of training in covert singing, no follow-up studies 

were conducted28. Thus, the studies listed herein are among the first to specifically evaluate the 

effects of internal cues. Taken together, the results from Chapters 2-5 suggest that internal cueing 

can provide benefit to gait impairment that can exceed that of external cues.  

We also found abundant evidence that external cues are an imperfect tool. They require a device 

and are difficult to use in short walking bouts common in daily life. Others have warned against 

using them because they may distract from environmental disturbances in the real world, such as 

oncoming traffic16. Furthermore, several reports suggest that isochronous external cues degrade 

biological gait variability that is crucial for adapting gait to meet the needs of the moment56–58. 

They are impractical to use for reducing motor blocks, which are unpredictable59,60. As such, 

external cues are infrequently prescribed and not commonly used by people with gait 

impairment. Below, we review multiple factors that must be considered in the use of internal 

cueing for people with gait impairment. 

 



135 
 

6.2.1  Comparison of singing versus speech 

Throughout these studies, we showed that, in spite of the complex nature of singing, vocal 

production of a familiar song does not divide attention and cause gait impairment in PD as a 

typical dual task. Singing is a complex, multimodal process that requires integrating components 

of both music (e.g., melody, harmony, etc.) and speech (e.g., semantics, syntax, phonological 

constraints). Efficient use of the vocal apparatus involves accurate representation of pitch, 

rhythm, timbre, and other features, as well as implementing motor plans and actively monitoring 

feedback61. Singing, then, might be considered a more complex process than speech. 

However, several pieces of evidence suggest that singing may not be excessively attention 

demanding. Singing, like speech, is a nearly universal skill that is widespread in the population. 

The majority of the population is proficient in singing and can carry a tune when asked to sing a 

well-known song62. The ability to sing is evident in infancy, and does not require formal training 

but can be enhanced with practice48. Studies show that singing actually develops before speech, 

in the form of sung exchanges in parent-infant interactions52. This evidence suggests that 

singing, though complex, is an innate and easily-accessed skill that is not overly challenging for 

most people. 

Furthermore, the inherent complexity of singing, involving high levels of integration, may 

subserve motor synchronization more than detract from it. While speech lacks fundamental 

rhythmic properties like predictable regular beats and metrical structure63, music, including sung 

lyrics, are more regular in rhythm and allow for better synchronization64. This distinction may 

explain why spontaneous motor synchronization to spoken words does not occur the way it does 

for music63. Singing also requires multiple neural circuits to work in tandem. A theorized “vocal 
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sensorimotor loop” (VSL) supposes that extensive brain activations underlie singing ability that 

involves perception, auditory-motor mapping, motor control, and memory processes65.  

Neuroanatomically, hemispheric lateralization distinctions reveal that speech production is 

primarily left hemispheric dominant, activating the left sensorimotor cortex, cerebellum, and 

insula, while singing activates homologous brain regions on the right66,67. In addition to 

hemispheric differences, the circuitry underlying melodic production may simply be more 

diffuse and therefore more likely to engage alternate pathways68. Singing is more likely to 

engage the dorsolateral premotor cortex (PMd) and the supplementary motor areas (SMA), 

which may enhance movement pre-planning and sequencing69,70. These areas are also implicated 

in processing amodal, or non domain specific, imagery that enhances sensory-cognitive 

processing and may play a role in sequencing movement to match self-generated sounds71,72. 

Singing also activates reward centers in the brain, such as the nucleus accumbens, posterior 

cingulate, and parahippocampal gyrus, more than speaking, which suggests a greater emotional 

and motivational component, potentially underlying motor enhancements during synchronization 

to song29. 

In comparing speech to singing, we must also address task differences as our verbal DT and the 

singing task were not directly comparable. One required active word generation, known in 

linguistic circles as “propositional” speech, and the other required repetition of a highly familiar 

phrase (which includes familiar songs), or “automatic” speech. Whereas the former requires new 

generation of internal models of motor performance, “automatic” or recited speech engages 

memorized internal models without the burden of internal planning73. Singing a familiar song, 

then, may provide a template that requires minimal attentional planning. This would suggest that 
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internal cueing, or singing, fills the same hypothesized role as an external cue, providing a 

scaffolding to which people can align their movement. The comparison between external versus 

internal cues was the second main comparison addressed in Aim 1. 

 

6.2.2  Comparison of external and internal cueing techniques 

The widely accepted explanation for the use of external cueing techniques in PD, which has been 

advanced for over forty years, is that external cues compensate for impaired basal ganglia 

function by providing a regularizing temporal input to align movement31,34,74. External cues 

generate temporal expectations via a process called “entrainment”, which enables time-locking 

between the auditory and motor systems and facilitates motor prediction75. Synchronizing actions 

to an externally-imposed template may optimize anticipation and improve the subsequent 

response by reducing reliance on impaired internal timing mechanisms76. By reducing the need 

to internally plan and prepare movement, external cues may decrease cognitive load and 

therefore facilitate gait prioritization60. Cues may also enable re-routing through the less affected 

cerebellar-cortical loops in order to bypass areas of neurodegeneration. The cerebellum, which 

influences regulation of timing, rate, and force of muscle activity necessary for gait 

consistency77, is also more often activated during motor than perceptual explicit timing tasks78 

and may optimize motor execution by recalibrating predictions with sensory consequences79,80.  

For people with PD, impaired internal timing mechanisms have been tested using 

synchronization-continuation paradigms consisting of two phases: first, a synchronization phase, 

in which participants must find the beat and tap in synchrony with it, and second, a continuation 

phase, in which they continue tapping at the previous rate without the auditory cue. While 
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finding the beat requires searching for a structure, continuing the beat requires making 

predictions and internally generating the beat based on detected structure. Here, an externally-

triggered cue gives way to an internally-generated beat based on the template provided. Our 

protocol used a similar paradigm by setting up an external template, turning off the music once it 

was established in the mind of the listener, and requiring participants to continue the song in 

silence. Reports of increased putamen activation during beat continuation than during beat 

finding suggest that people with PD might exhibit deficiencies in continuing the song in 

silence76,81,82. However, we observed that people with PD were able to continue the beat in 

silence when singing and match footfalls to their own internal cues. This raises the possibility 

that internal cueing through singing can allow for accurate beat continuation, even in people with 

basal ganglia degeneration. 

 

6.2.3  Vocal-motor coupling improves motor variability 

The major finding of Aim 2 was that internal cues reduced variability not only in automatic gait, 

but also in challenging gait situations. This suggests that synchronizing movement to one’s own 

singing induces more stability in motor output. In order to explain the reduced attentional load 

that likely underlies this phenomenon, we put forth a theory of vocal-motor coupling, in which a 

motor effector matches a vocal effector. Coupling between two systems in one body allows for 

matching between the body’s internal oscillatory systems. Such locking between systems has 

previously been noted in respiration (when matching inhalations during jogging or swimming, 

for instance), heart rhythms83, gestures between different body parts84, or during vocalizations 

matched to gestures85. Directly linking physical oscillators may improve temporal stability. 
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According to the “multiple timer theory”, every motor effector is independently controlled by a 

timer, but the timing mechanisms are gated so that it is difficult to separate them86. As humans 

are capable of entrainment in both the vocal and the motor system, matching one to the other via 

vocal-motor coupling may facilitate motor synchronization and reduce attentional load, thereby 

accounting for reductions in gait variability.  

 

6.2.4  Internal cueing facilitates motor prediction via an internal model 

One way to examine our results is through the lens of an internal model, which can provide a 

theoretical framework for understanding the integration of action-based effects on music 

perception and embodiment. Internal models that differentiate action and perception enable us to 

discriminate between those of the external world (when we listen to music) and our own actions 

(when we sing). Accordingly, an inverse model allows us to translate perceived sensory states 

into motor commands, such as when an auditory stimulus induces body movement87. Forward 

models, in contrast, allow us to predict the sensory outcomes of our planned actions88. In a 

forward model, the central nervous system makes a copy of the motor command (an “efference 

copy”) which it then compares to actual sensory feedback89. When the sensory consequence of 

an action matches the predicted outcome, the sensory response is suppressed so that it does not 

have to be attended to twice. In other words, we do not have to react to our own actions because 

we already know that we did them.  

Forward models play a functional role in the auditory and vocal systems as well. Self-produced 

key presses that generate auditory tones evoke smaller brain responses and are perceived as 

quieter than externally-generated sounds90. Auditory attenuation to self-produced vocalizations 
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allows us to speak without auditorily processing every word we say. When humans vocalize, the 

vocal motor system produces a motor speech template that can be used to compare the sound that 

is heard to what is produced. If the stimulus matches the intended outcome, the resulting brain 

activity will be suppressed91. Not only do self-initiated actions cause stronger predictions for 

action consequences, they also result in smaller delays than passive actions which happen to the 

body89. Information that occurs at expected times is processed more quickly and efficiently than 

at unexpected times92, which may explain why both speech and hand movements have reduced 

reaction times for temporally-predictable stimuli93. This may also account for more accurate 

timing and reduced variability measures during self-generated vocalizations as opposed to 

externally-imposed cues.    

 

6.2.5  Mental singing and auditory imagery 

In Aim 3, we showed that mental singing improved gait measures over both music listening and 

singing aloud. These results not only help optimize this technique but also contribute to a 

spectrum of recent research on auditory imagery in both healthy and patient populations. 

Although most imagery literature has focused on the visual domain, recent research suggests that 

the visual system is not unique in its ability to activate sensory processing areas in the absence of 

external stimulation. As in the visual system, in which objects are internally represented in the 

same way whether visible or imagined94, in the auditory system, melodies can be conjured 

endogenously whether they are heard or imagined. The ability to imagine music, like singing 

ability, is fairly ubiquitous among humans, whether musically trained or not, as many people 

report being able to imagine music or musical attributes95. Many features of music, including 
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pitch, tempo, melody, and timbre can be represented through images. Whereas an action 

observation network is known to mediate motor responses to observed actions, mental singing 

activates vocal-related areas of the sensorimotor cortex corresponding with tongue movement96 

as well bilateral fronto-parietal areas30.  

Mental singing is highly conducive to synchronization-continuation paradigms, such as we used 

in all of our studies. In our protocol, an external cue establishes the structure, and the participant 

must then continue it in silence. Auditory cues can enable continuation of a pattern in silence 

once it is established within the mind of the listener through musical imagery mechanisms81. 

Musical imagery is obvious in earworm, a phenomenon that occurs when a tune gets stuck in 

one’s head, or in the ability of composers who have lost their hearing to continue to write music, 

as Beethoven did when writing his violin concerto in D-major 97. Furthermore, mental imagery 

of musical passages may actually improve motor performance by reducing the need to perceive 

or match auditory feedback. The violinist Vladamir Horowitz reportedly practiced mentally 

before his concerts so as not to disturb his motor skills with aural feedback98. He may have been 

onto something. In our exploration of mental singing, we found that this condition elicited the 

largest reductions in variability. When singing overtly, eliminating the need to synchronize to an 

external cue minimized aural feedback and improved gait, but when singing covertly, taking 

away the need to vocalize the cue aloud improved it even more. While we thought that mental 

singing would work similarly to singing aloud, the discovery that it would actually elicit greater 

gait improvement was unexpected. 
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6.2.6  Freezing of gait and cueing 

Previous reports suggest that freezers might be particularly amenable to auditory cues38, 

particularly during turns6 or gait initiation59, which are challenging situations likely to induce 

FOG. Externally-imposed cues have successfully improved temporal characteristics of gait in 

freezers and simultaneously reduced occurrence of FOG6. This would be in accordance with the 

theory that improving gait characteristics overall can lessen the likelihood of passing below a 

critical threshold in which FOG is induced99. FOG episodes are more likely to occur in complex 

gait situations such as turning or backwards walking, and, as we showed in Aim 2, internal 

cueing can significantly improve gait features during backward walking. Taken together, this 

evidence suggests that internal cues may be an especially useful tool for people who experience 

freezing of gait or motor blocks. Furthermore, internal cues may be particularly beneficial 

because of their ease of use. Self-generated cue strategies such as “3-2-1-GO” are effective at 

recovering from FOG during continuous gait or gait initiation59,100–102. Singing, which similarly 

can be enacted quickly by the individual without the need for any device, may be similarly 

accessible at a moment’s notice and has the potential to reduce FOG rather than simply assisting 

with recovery from FOG, though this remains to be tested. 

 

6.2.7  Musical experience and entrainment ability 

In Aim 4, we observed differences in responsiveness to cues based on musical experience. 

Musicians’ brains have been used as a model of neuroplasticity with the realization that musical 

training has a pervasive impact on brain structure, function, and development43–47. Musical 

training can strengthen top-down auditory mechanisms103 and the strength of neuronal activation 
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during music perception correlates to the number of years of training104. Structural brain changes 

from musical training in early childhood suggest that training-induced brain plasticity can 

correlate to musically relevant motor and auditory skills that remain into adulthood47. Active 

music-making can specifically induce changes in the arcuate fasciculus, the fiber tract 

connecting the auditory and motor cortices45,105, and people with musical training exhibit 

increased connectivity between these areas during rhythm perception82. Musicians have more 

robust subcortical representations of acoustic stimuli, with faster neural timing106. They also 

exhibit differences in basic synchronization skills, evidenced by smaller asynchronies, lower 

tapping variability, and better perception skills than non-musicians107. Musical and entrainment 

skills may play facilitate cued gait, as patients with PD who are stronger beat perceivers are more 

likely to improve gait with musical cues13. Our results contribute to the overarching conclusions 

of these studies that musical training may be predictive of responsiveness to cueing techniques. 

 

6.3  Clinical applications 

The preliminary evidence we have provided here suggests that internal cueing may benefit gait 

for people with PD, but more work is needed to optimize the internal cueing techniques we have 

described. Future studies should assess optimal cue rates and song choices. We believe that both 

may be subject to highly individualized needs and preferences in order to gain the most benefit. 

Here, we consider some potential future avenues of research.  
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6.3.1  Cue Rate 

In all of our experiments, we based the cue rates on each individual’s preferred walking cadence. 

As we expected based on the literature, in Aim 3 we saw the greatest benefit to gait when we 

raised the cue rate to 110% of preferred cadence, and therefore, we used that same rate in Aim 4. 

Using external cues at this rate, participants came close to achieving a 10% increase in cadence 

and velocity, potentially indicating good synchronization to the imposed cadence. In MENTAL, 

however, these increases were less substantial, indicating that people tended to regress toward 

their preferred walking cadence. A similar pattern was observed in Aim 4. As velocity and stride 

length increases were still substantial, lower cadences during mental singing are probably not 

detrimental and may even be optimal, as lengthening strides while reducing cadence is a 

common goal of gait therapy in PD60,108.  

While the combined results of our experiments support the use of cue rates above preferred 

cadence cues, we recommend this with the caveat that optimal cue rates should likely be 

individualized based on the specific gait deficits and risks a person exhibits. As an example, in 

Aim 4, we discussed one participant who significantly shortened strides during cueing in order to 

match the increased cadence of 110%. This individual’s response may reflect a breakdown in the 

linear relationship between stride length and cadence, which has previously been shown to occur 

at cues over 120% of preferred cadence38 or over 120-130 steps/min109. This indicates that there 

may be a ceiling effect of velocity for patients, a limit beyond which they can no longer increase 

speed while maintaining normal stride lengths. As a result, external cues, even in a research 

setting, are sometimes determined on an individual basis, for instance, at a rate that induces the 

longest strides42,110. Other risks should also be taken into account. For people with FOG, for 
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instance, increased cue frequency may actually provoke FOG events111, so such risks should be 

considered when determining optimal, safe cue rates.   

 

6.3.2  Song choice 

A notable limitation of these studies is that we always used the same song for cueing. We chose 

the song because it was imperative that people knew the lyrics and melody, and songs with life-

long familiar melodies are most suitable to entrainment49,50. Song familiarity is undoubtedly an 

important factor for reducing attentional demands during internal cueing, and repeated musical 

exposure increases walking speed and enjoyment of music14. However, different musical choices 

may encourage different expressive aspects of movement112 as activating music makes 

movement more vigorous87  and may give a “boost effect” to the motor system. Individual 

preferences for song choice and elements of groove, a feature of music that enhances motor 

synchronization, may be important factors to consider in future studies13,113,114. For those with 

weaker beat perception abilities, well selected musical cues can increase velocity, even if no 

appreciable beat synchronization occurs25,110,112. 

 

6.4  Limitations 

6.4.1  Gait Measurement  

Quantitative assessments of gait using instrumented walkway mats and motion capture 

technology, such as we used in these studies, are useful and reliable115 but imperfect tools for 

assessing the complexity of gait biomechanics and motor control116. Spatiotemporal measures are 
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inadequate to fully understand movement patterns in healthy or neurological pathology, and 

motion capture technology leaves room for error117. They also collect a limited amount of 

information.  

Thus, one limitation to the data we have presented here is that we tested our participants in only 

short bouts of walking, which is representative of how daily walking often occurs but fails to 

capture gait consistency over more prolonged walking. This limits our ability to make 

conclusions on the effects of cues over longer distances. While cadence, for instance, reverted 

slightly back towards preferred over the course of a few trials, we do not know if it would stay at 

that rate or continue to decline over longer periods. An inherent risk of internal cues is that no 

pacemaker resets the tempo if the participant deviates too far from “optimal” which could 

potentially worsen over time.  

Another inherent risk of testing only short distances is that gait variability measurement 

accuracy, in particular, may suffer from this study design. Unlike other features of gait, inter-

stride variability measures have lower test-retest reliability, and measurement accuracy may 

improve over longer distances118,119. As no standardized technique to measure variability exists, 

motion capture techniques, instrumentation, and analyses are inconsistent and difficult to 

compare between studies120. With these limitations in mind, discriminative and predictive 

validity are established insofar as they relate to older adults and people living with 

PD26,27,35,121,122. 
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6.4.2  Biological variability in gait 

Testing only short bouts of walking comes with another consideration concerning variability 

measurements. Variability exists in all biological systems, and while some of this variability 

remains adaptive and functional, the summary metrics of variability reported here are widely 

considered maladaptive and dysfunctional123. The measurements of gait variability that we have 

reported are known markers of pathological gait and strongly indicative of poor locomotor 

control and instability. However, at longer time scales, variability can be a sign of health, as 

healthy individuals display increased variability over longer stretches of time121. Some recent 

work suggested that, rather than focusing on restoring linear measures of gait, gait therapy 

should focus on optimizing movement variability. Based on observations from biological 

systems such as the cardio-respiratory system, this theory suggests that the goal of gait therapy 

should be to find balance between predictability and complexity124. The optimal state of a 

physiological system may involve effective cooperation between subsystems and enhanced 

adaptability to changing environments121.  

Training people with PD, who may exhibit suboptimal gait patterns, to walk to an isochronous 

beat may run contrary to the natural stride fluctuations that exist in human gait. Eliminating this 

variability may diminish interactive adaptability and intrinsic stability124. Fixed-tempo external 

cues may not be most effective because they may disrupt the local dynamic stability by altering 

natural neuromuscular rhythms122. Walking to a beat may impose unnatural neuromuscular 

rhythms on the highly fractal dynamics of gait, and lower functional adaptability56. Therefore, 

adaptive cueing techniques that synchronize to an individual’s walking speed may be more 

effective56,113. Recent evidence suggests that variable external rhythmic cues that oscillate in 

accordance with human gait are more beneficial than isochronous cues, which are ill-suited to 
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match the inherent biological variability of walking57. Like external cues, these biologically 

variable cueing paradigms are complex and require technical expertise and equipment, so they 

are limited in their applicability and accessibility. They suggest, however, a potential benefit of 

singing in that it might allow for greater adaptability than external cues. Thus, assessing the 

effects of internal cues on the fractal properties of gait over longer distances may be another 

avenue for future research.  

 

6.4.3  Freezing status 

As FOG episodes are notoriously difficult to provoke in a research setting, freezing status is 

determined by self-report questionnaires. The NFOG-Q125, though the current gold standard, 

relies on broad questions that may not capture the full spectrum and variability in freezing status. 

A dichotomous division between freezers and non-freezers may be overly simplistic and future 

work should address freezing more comprehensively.  

 

6.5  Conclusion 

As the world’s population ages, increasing numbers of people experience age-related brain 

diseases. These diseases come with substantial social and economic burden which raise the need 

to pursue cost-effective, easily accessible rehabilitative strategies that can complement 

traditional therapeutic methods such as physical therapy.  

The studies herein provide preliminary evidence as to the potential usefulness of internal cueing 

techniques for people with gait impairment due to aging or neurological decline. We have 
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expounded on theories, both old and new, that may explain these results. We have also provided 

recommendations for clinical applications and future research studies. The next steps should 

include an intervention to train individuals with PD to optimize use of this technique. The 

neuromechanisms underlying internal cueing are elusive and should be further explored using 

mental singing, which would be particularly conducive to currently available imaging 

techniques. Considering the widespread availability of singing among neurological patients, 

other populations, such as patients with hemiplegia or Alzheimer’s, may also benefit from vocal-

motor coupling techniques. 
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