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ABSTRACT OF THE DISSERTATION 

 

Radiolabeled nanohydroxyapatite as a platform for the development of new PET imaging agents 

by 

Stacy L. Queern 

Doctor of Philosophy in Chemistry 

Washington University in St. Louis, 2018 

Dr. Suzanne E. Lapi, Co-Chair  

Dr. Kevin Moeller, Co-Chair 

Positron emission tomography (PET) imaging utilizes drugs labeled with positron emitters to 

target and evaluate different biological processes occurring in the body. Tailoring medicine to 

the individual allows for higher quality of care with better diagnosis and treatment and is a key 

purpose for advancing research into developing new platforms for PET imaging agents. A PET 

nuclide of high interest for the development of these agents is 89Zr. This can be attributed to the 

long half-life of 3.27 days and low positron energy of 89Zr.  

In this work, we developed a production method for 89Zr using Y sputtered coins that is now in 

current use at the University of Alabama at Birmingham for both research and human-use 

studies. An alternative means of separation for 89Zr from Y using IDA as an eluant with 

inorganic resin obtained from Brookhaven National Laboratory was also investigated in order to 

develop a method that alleviated the necessity to remove the chelator before human injections. 

The low-level activity separations were reproducible with successful test labeling showing the 

potential this method has as an alternative separation method. 
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 Although 89Zr has great potential as PET nuclide, it is a known bone seeker, meaning if it 

decomplexes from a chelator, it will be taken up in the bone. The natural affinity of 89Zr for bone 

can be exploited as a radiolabeling technique using nHAp. Nanoparticles composed of the main 

component in the bone matrix, nHAp, were used to exploit the natural affinity of 89Zr and other 

bone-seekers have for bone to develop a platform for PET imaging agents. The particles were 

easily labeled with high stability and little bone uptake in vivo. As a proof of concept that this 

could be used to develop targeted imaging agents, co-precipitated nHAp was rapidly modified 

with an analog of TOC to target SSTR2 receptors in AR42J cells to show specific targeting. Both 

the cells studies and the preliminary animal studies showed that there was specific targeting of 

the novel agents. Overall, the preliminary studies with 89Zr-nHAp-phospha-TOC are very 

promising for nHAp as a new platform for PET imaging agents. 
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Introduction 
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1.1 Nuclear Chemistry 

There are several types of radioactive decay, which essentially result in a loss of energy from the 

nucleus of an atom. The important decay pathways for this work include beta decay and gamma 

decay. The nuclear equations and a schematic for each type of decay are shown in Figure 1-1. 

Beta decay consists of three different modes: negative electron emission (β-), positron emission 

(β+), and electron capture (ε). In beta decay, the emitted particle energies have a continuous 

distribution with a maximum energy of Emax where Emax is the difference in the initial and final 

energies of the nuclear state with a subtraction due to the small recoil correction from the 

daughter nuclide [1-2]. For all nuclear reactions, the change in energy between the initial and 

final states is referred to as the Q-value. 
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Figure 1-1 Radioactive decay modes 

Nuclides that are neutron rich will have a high probability of undergoing β- decay. In β- decay, 

the nucleus of a neutron rich nuclide emits an antineutrino (𝜈̅) and an electron. This can be 

thought of as converting a neutron into a proton and increases the value of the atomic number (Z) 

by one while decreasing the number of neutrons (N) by one. This results in the overall mass 

number (A) remaining the same [1-2]. Generally, nuclides that undergo β- decay with half-lives 

amenable to clinical use can be used to develop radiotherapeutics to help treat disease [3-5]. A 

relevant medical isotope that undergoes β- decay is 153Sm with a half-life of 46.5 hours [6]. 

Nuclides that are proton rich may undergo β+ or ε decay. In β+ decay, the nucleus emits a 

neutrino (𝜈) and a positron, effectively converting a proton into a neutron. The ejected positron 
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will annihilate with an electron emitting two photons in opposite directions (approximately 180ᴼ) 

to each other. This type of decay occurs more frequently with lighter nuclei and requires a 

difference in a mass of the parent and daughter (or Q-value) of greater than 1.02 MeV, the mass 

of two electrons. For heavier nuclei and for nuclides with a Q-value lower than 1.02 MeV, ε 

decay is a more probable route of decay. During electron capture, the nucleus captures an 

orbiting electron effectively converting a proton into a neutron. During ε, there are emissions of 

x-rays and/or Auger electrons. Auger electrons are low energy electrons emitted from the outer 

shells of an atom. In both β+ and ε decay, the value of Z decreases by one while N increases by 

one to maintain a constant A for the parent and daughter nuclide [1-2]. A parent nuclide may 

decay by multiple routes (each with a different probability) when there is more than one route 

available. This is known branching decay. Branching decay of β+ and ε decay is seen in the 

decay of 55Co where β+ decay occurs 77% of the time while ε decay occurs 23% of the time [7-

9].  

Nuclides that experience beta decay can result in a daughter nuclide in an excited (or metastable) 

state. This daughter nuclide emits photons or electrons to deexcite to ground state. This decay is 

known as gamma decay or internal conversion, respectively. An example of this decay is the 

decay from 89mZr to 89gZr. 89mZr has a half-life of 4.16 minutes with a 94% branching ratio for 

internal conversion. An example of a decay scheme for 89mZr to 89gZr and 89Y is shown Figure 1-

2 [7].  
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Figure 1-2 Decay scheme for 89mZr 

There are several methods to produce radionuclides for research or clinical activities. In this 

work, the majority of the radionuclides used were produced using a cyclotron. A cyclotron is a 

particle accelerator that accelerates charged particles such as protons in a circular path. The ion 

source releases ions in between two electrodes, often referred to as “dees” for their shape 

historically. The two dees, where the particles travel, are hollow and shield them from the 

electric field. Once the particle exits one dee, there is a gap the particle crosses to enter the 

second dee. In this gap, the electric field will act on the particle accelerating it across and into the 

opposite dee. To constrain the particles to circular path, the dees are located in a static magnetic 

field perpendicular to the electric field [1, 8, 10]. As the particles accelerate, the radius of the 
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path increases until they reach a desired radius/energy. For negative ion accelerators, the 

extraction port provides a change to the path of negative particles by using extraction foil to strip 

off electrons. The loss of electrons changes the charge of the ions allowing them to exit the 

cyclotron into the target material to induce a nuclear reaction [8]. A schematic of a cyclotron is 

given in Figure 1-3 [1, 8]. 

 

Figure 1-3 Cyclotron schematic 

For the production of radionuclides in this work, the main nuclear reactions occur when the 

nucleus of the target material gains a proton and releases a neutron or alpha particle to obtain the 

radionuclide of interest. The relevant isotopes are listed in the Table 1-1 [5, 7, 9, 11].  
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Table 1-1 Relevant radionuclides, production routes, and decay characteristics 

Radionuclide Half-life (h) Production Route Decay Routes Eβ+max (keV) 

89Zr 78.41 89Y(p,n)89Zr 
β+ (23%) 

ε (77%) 
897 

18F 1.83 18O(p,n)18F 
β+ (96.7%) 

ε (3.3%) 
635 

153Sm 46.5 152Sm(n,γ)153Sm β- (100%) 805 (β-)     

64Cu 12.7 64Ni(p,n)64Cu 

β+ (17.6%) 

ε (43.9%) 

β- (38.5%) 

653 

 

579 (β-) 

55Co 17.53 58Ni(p,α)55Co 
β+ (77%) 

ε (23%) 
1500 

 

The energy of the accelerated particle plays a significant role in the production of these nuclides. 

A minimum threshold energy is required to induce a nuclear reaction and produce any 

radionuclide [1, 10]. Once the threshold energy is overcome, the probability of the reaction 

occurring (cross-section) may be considered [2, 10]. The cross-section plotted against the energy 

of the projectile is called an excitation function [10, 12]. The excitation function helps determine 

the range of energies optimal for the production of the radionuclide of interest. An example of an 

excitation function for the 89Y(p,n)89Zr reaction is shown in Figure 1-4 [7, 13]. 
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Figure 1-4 Experimental excitation function for 89Y(p,n)89Zr [7, 13] 

1.2 Nuclear Medicine 

The use of small amounts of radioactivity for diagnosis and treatment of disease is collectively 

referred to as nuclear medicine. One major tool in nuclear medicine is positron emission 

tomography (PET) imaging. PET imaging is a noninvasive and quantitative imaging technique 

that allows for research, diagnosis of disease and development of effective treatment plans.  

 PET is based on the principle that once a PET nuclide is administered, the nucleus emits a 

positron and approximately 1 - 10 mm from the emission site, this positron annihilates with an 

electron to produce two 511 keV photons moving in essentially opposite directions [10]. These 

photons are detected in coincidence at 180o using scintillation detectors that surround the subject 

(see Figure 1-5). The images are then reconstructed using each event that is detected in 

coincidence. One key factor in the resolution of a PET image is the energy of the emitted 

positron. The maximum positron energy, Eβ+max, is a limiting factor for image resolution because 
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higher energy positrons will propagate through tissue much further then lower energy positrons 

before the annihilation event occurs [12].  

 

Figure 1-5 PET scanner schematic 

The most commonly used PET nuclide is 18F which has an Eβ+max of 635 keV and a half-life of 

109.8 minutes [14-15]. Additionally, there are many other PET nuclides currently in use. Table 

1-1 shows the common PET nuclides found in this work and their characteristics.   

When PET nuclides are utilized in compounds, they are known as PET tracers or 

radiopharmaceuticals. Most of the time PET tracers are PET nuclides tethered to a targeting 

agent that delivers the PET nuclide to the intended area (see Figure 1-6). Ideal candidates for 

PET nuclides would have low Eβ+max and a half-life that matches the biological half-life of agent 

being studied. All PET tracers should have a relatively short half-life to minimize the radiation 

exposure to the subject, they should be easily modified and stable, and have a high specific 
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activity. Specific activity is a measure of radioactivity per total mass and is generally expressed 

as the amount of radioactivity per mole of compound [1, 8, 12]. Compounds with high specific 

activity allow for less mass to be used in the dose administered to the patient. This is particularly 

important when targeting receptors in low abundance or when using pharmacologically active 

compounds as imaging agents. While there are currently several PET tracers used clinically, the 

most commonly used PET tracer is 2-[18F]fluoro-2-deoxyglucose ([18F]FDG) which is used for 

measuring metabolic activity for diagnosis of cancer and other disease states [8, 16-17]. 

Occasionally, PET nuclides can be injected without being tethered to a targeting agent when the 

nuclide has a natural high affinity for the intended area. For example, 18F (as F-) has a natural 

affinity for bone and is used in bone imaging studies [18-19].  There are a few radionuclides that 

are bone-seekers with a naturally high affinity for bone, such as 89Zr, 18F, and 153Sm.    

 

Figure 1-6 PET tracers and targeting mechanisms 
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The development of PET tracers utilizing 89Zr has been of high interest due to its half-life of 3.27 

days [20-21]. This long half-life relative to 18F (109.77 min) is compatible with the biological 

half-life of antibodies providing longer imaging time points for PET [20, 22-23]. The β+ 

branching ratio for 89Zr is 23% and offers high resolution images and quantitative imaging with a 

maximum positron energy of 0.897 MeV [21-22]. Although 89Zr has great potential as PET 

nuclide, it is a known bone seeker [23-24]. Thus, if the 89Zr complex is not stable in vivo and the 

89Zr decomplexes, it’s affinity to bone may cause unnecessary dose for the patient.     

In this work, methods for production of 89Zr using both organic and inorganic resins for 

purification were developed and are discussed in chapters 2 and 3, respectively. Chapter 4 

investigates the radiolabeling of nanohydroxyapatite (nHAp), the main component in bone 

matrix, as a new platform for PET imaging agents. Both known bone-seekers, 89Zr, 18F and 

153Sm, and non-bone-seekers, 64Cu and 55Co, were investigated to compare the labeling and 

stability of radiolabeled nHAp. Two different morphologies of nHAp, sphere and needle, were 

compared to determine the impact of the shape on the biological properties. Chapter 5 covers an 

alternative co-precipitation method of nHAp, radiolabeling and modification with the peptide 

based phosopha-TOC to target SSTR2 receptors which are overexpressed on neuroendocrine 

tumors. These particles were employed in cell studies using the AR42J cell line to show specific 

targeting. Rat pancreatic tumors were implanted in immunodeficient mice to assess the in vivo 

targeting properties of 89Zr-nHAp-phospha-TOC. In chapter 6, conclusions and thoughts for 

future work are provided. Overall, the goal of this work was to implement nHAp as a new 

platform for PET imaging agents using 89Zr-nHAp-phospha-TOC as a proof of concept. 
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2.1 Introduction  

Radionuclides for radiotracers used in medical imaging can be produced on an accelerator or in a 

nuclear reactor. A cyclotron is a type of accelerator which offers many advantages for the 

production of these radionuclides. A medical cyclotron is generally smaller than a linear 

accelerator, making it more feasible to have on sites with size constraints such as hospitals and 

universities. Furthermore, the use of a proton accelerating cyclotron (as opposed to a reactor) 

typically provides products of a different element than the initial target material, allowing for 

chemical separations leading to a product with high specific activity. Cyclotrons also allow for 

the production of radionuclides with low impurities through selection of the proper target 

material and energy range for the protons used in the nuclear reaction. Regarding the production 

of the radionuclides using a cyclotron, there are two properties of the beam that need to be taken 

into consideration. The energy of the protons needs to be high enough for the nuclear reaction to 

occur while remaining in the range of energies to minimize the amount of impurities being 

produced where possible. Additionally, the beam current will impact the amount of activity 

being produced. The current needs to be high enough to provide suitable amounts of 

radioactivity without significantly damaging the target material due to the heat deposited from 

the beam. 

 There has been an increasing interest in the production of 89Zr, mainly due to the 89Zr half-life 

which is compatible with antibody imaging [1-4]. Additional characteristics of this isotope 

include the ability to carry out high resolution and quantitative imaging due to the branching 

ratio for β+ emission (23%) and low average positron energy (396 keV) [1, 3, 5]. While 89Zr also 

emits a γ-ray at 909 keV at a branching ratio of 99% which is suboptimal for dosimetry, the 



16 

 

longer half-life of 89Zr (3.27 days) relative to the short half-life of commonly used 18F (1.83 

hours) has propelled its demand in nuclear medicine for positron emission tomography (PET) for 

the development of imaging agents requiring longer imaging time points [5-7].  

The current method of production for 89Zr is typically via cyclotron or linear accelerator using 

natural abundance yttrium via the 89Y(p,n)89Zr reaction. Several different types of target material 

have been investigated including yttrium foil, yttrium oxide powder, yttrium sputtered onto 

copper, electrodeposition of yttrium, and aqueous yttrium nitrate [1, 3, 8-11]. While there are 

several reports investigating and optimizing foil, powder and solution targets, there are few 

reports using sputtered yttrium.  

By examining the cross-sections for the production of 89Zr and 88Zr, theoretical calculations of 

activity and beam energy optimization can be determined [12-13]. Figure 2-1 shows the 

production of 89Zr via the 89Y(p,n)89Zr reaction is optimal at low proton beam energy (<13 MeV) 

while  at higher beam energy, 88Zr as a contaminant is introduced via the  89Y(p,2n)88Zr reaction 

[14-15]. While the co-production of 89Zr and 88Zr is inevitable at higher energies, the production 

of 88Zr can be eliminated by using a lower proton beam energy of <13 MeV [7].  
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Figure 2-1 Cross-section comparison of 89Y(p,n)89Zr and 89Y(p,2n)88Zr [14-15] 

While several 89Zr purification methods have been reported, including solvent exchange, anion 

exchange, or hydroxamate resin, most groups typically use the latter [1, 3, 5-6, 8, 16-17]. Several 

groups have standardized the method using the hydroxamate resin allowing for >99.5% activity 

recovery [1, 3-4].  

Our goal was to optimize the beam energy from the UAB TR-24 cyclotron using aluminium 

degraders to minimize the production of 88Zr, and determine the optimal conditions for the 

production of 89Zr. Typically using less target mass allows for more efficient separation, high 

specific activity and lower contaminants, therefore yttrium sputtered coins were assessed as a 

target material hypothesizing that the sputtered coins would allow for more control over the 

target cross sectional area and total mass of yttrium. In this work, we investigated the 

bombardment of solid yttrium coins and yttrium sputtered target coins as production methods for 

89Zr.    
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2.2 Material and Methods  

Aluminum Degrader and Yttrium coins: Aluminum degrader coins were manufactured at the 

UAB machine shop using 6061 aluminum alloy. The aluminum discs were machined in 0.5 mm, 

0.75 mm and 1 mm thickness. Yttrium sheets with a thickness of 1 mm (ESPI metal, Ashland, 

Oregon) and cut to specified coin size to allow for irradiation in the coin target holder (ACSI, 

Richmond, Canada).  Examples of these coins can be seen in Figure 2-2.  

 

Figure 2-2 6061 Aluminum alloy degrader (left) Yttrium coin (right) 

Yttrium (99.9%) sputtered niobium (99.8%) coins, supplied by Advanced Cyclotron Systems, 

Inc. (ACSI), were investigated as an alternative method of production. The niobium coins had a 

diameter of 24 mm and a thickness of 1 mm and were cleaned with organic solvent to remove 

machine oil and lightly sanded. The yttrium was adhered to the coin via magnetron sputtering, 

vapor deposition, using a mask in the center of the niobium coin with a diameter of 10 mm to 

contain the sputtering with thickness ranging from 90 μm to 250 μm (Figure 2-3).  
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Figure 2-3 Top Left: Cyclotron Coin target holder; Top Right: Disk Assembly; Bottom: Sputtered Coins: Coin 1 

(left) 110 µm; Coin 2 (middle) 140 µm; Coin 3 (right) 90 µm 

Simulations and Calculations: Transport of Ions in Matter (TRIM) was used to calculate the exit 

beam energy through the aluminum degrader. This exit energy was used in the theoretical 

activity yield calculations for the 89Y(p,n)89Zr and  89Y(p,2n)88Zr (if applicable) using the NNDC 

website to obtain cross-sections [18] and Stopping and Range of Ions in Matter (SRIM) software 

[19] to find the correlating range for each energy. This was repeated for several different beam 

energies and degrader thicknesses.  
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The theoretical predicted activity was calculated using thin target estimation [20].  

𝐴 = 𝜑𝑥𝜎𝑁𝑡𝑔𝑡𝑡𝜆.   (1) 

where ϕ is the flux of the proton beam, A is the activity of the isotope produced (Bq), x is range 

in the material (cm), σ is the cross section (cm2), Ntgt is the density of the target nuclei 

(atoms/cm3), t is the duration of bombardment (s), and λ is the decay constant (s-1). 

Optimizing Cyclotron Conditions: Various irradiations of the target using yttrium coins were 

performed. The beam energy was varied in 100 keV increments until the beam profile provided 

maximum transmission. The sputtered coins were bombarded for 30 minutes with a 12.5 MeV 

degraded beam energy using a 0.75 mm aluminum degrader (initial proton energy 17.5 MeV) or 

two hours with a 12.8 MeV degraded beam energy using a 0.75 mm aluminum degrader (initial 

proton energy 17.8 MeV) and current was increased for each subsequent coin.  

89Zr Radiopurity Analysis: The yttrium coins or yttrium sputtered layers were dissolved in 2 M 

HCl and an aliquot was removed for gamma spectroscopy analysis using a high purity 

germanium detector (Ortec, Oak Ridge, Tennessee). The amount of 89Zr and any additional 

radiocontaminants present in the sample were determined. 

Separation and Purification: Conditions for the 89Zr purification are given in Table 2-1 with the 

average elution volume for recovery of g 89Zr.  The irradiated yttrium coins were dissolved in 50 

mL of 2 M HCl at 80ᴼC [1]. The entire dissolution process for the coins took about 2 h. 

Hydroxamate resin was prepared by functionalizing a weak cation exchange resin with 

hydroxamate groups as previously reported [3]. A column was packed with 850 mg of the 

hydroxamate resin and loaded with the dissolved yttrium target. Using 2 X 40 mL of 2 M HCl, 
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the yttrium was eluted from the column followed by 40 mL of water to rinse the HCl off the 

column. Elution of 89Zr was achieved with a range between of 3 - 14 mL of 1 M oxalic acid.  

Complete dissolution of the yttrium layer from the sputtered coin was achieved with 4 mL of 2 

M HCl at 80ᴼC in 20 minutes. Yttrium was eluted from a 100 mg of hydroxamate resin column 

with 2 X 10 mL of 2 M HCl followed with 10 mL of water to wash the column, and  89Zr was 

eluted with 1 - 1.5 mL of 1 M oxalic acid.  

Table 2-1 Separation Parameters 

 Yttrium Coins Sputtered Coins 

Original Mass of Yttrium 2 g 20-60 mg 

Dissolution Time 2 h 15-30 min 

Hydroxamate Resin Mass 850-900 mg 100 mg 

Yttrium Elution  80 mL 20 mL 

Zr-89 Elution (1 M Oxalic 

Acid) 
7.3 mL 1.2 mL 

Specific Activity Analysis and Radiolabeling: DFO-SCN was dissolved in DMSO to make a 

stock solution and serial dilutions were prepared using 1 M HEPES buffer as the diluent. 20 μCi 

of the prepared 89Zr were added to each dilution and DTPA was used to challenge the solution. 

The resulting solutions were analyzed using TLC to determine the effective specific activity [1, 

3, 21]. Solutions were also obtained from several samples prior to and after the purification 

process. These solutions were analyzed by ICP-MS (Agilent, Santa Clara, California) and the 

amount of yttrium, zirconium, aluminum, niobium, and iron in each sample was measured. To 

examine the utility of the purified 89Zr, a typical antibody labeling was conducted [2, 21-23].  

DFO-Trastuzumab and 89Zr were combined to give a specific activity of 8 μCi/μg. The solution 
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was incubated at 37ᴼC with agitation for one hour. The solution was challenged with 50 mM 

DTPA for 5 minutes. Results were then analyzed using ITLC plates with 50 mM DTPA as the 

mobile phase on TLC scanner (Eckert & Ziegler, Berlin, Germany). 

2.3 Results  

Simulations and Calculations: The simulation for 17.8 MeV beam energy propagating through a 

0.75 mm aluminum degrader, and the projected path of a 17.8 MeV beam through a 0.75 mm 

aluminum degrader and 1 mm yttrium coin can be seen in Figure 2-4. These simulations show 

the range of the beam in the material and the deviation of the beam from the center. This 

illustrates that the beam will not propagate through the entirety of the material and no 

contamination of the water cooling system will occur.   

 

Figure 2-4 Projected path of the proton beam through matter. 0.75 mm Aluminum (left), 0.75 mm Aluminum and 1 

mm Yttrium (right) [19] 
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A simulation for the sputtered coins with a 17.8 MeV proton beam energy and a 0.75 mm 

aluminum degrader was also conducted. The energy exiting the aluminum degrader was 

calculated to be 12.8 MeV and the exiting energy for the yttrium layer was 10.9 MeV. Although 

this energy may activate the niobium backing of the sputtered coins, there are several advantages 

to using niobium. Niobium is chemically inert, affordable and provides a reliable sputtering 

support material for yttrium. 

 

Figure 2-5 TRIM simulation for the sputtered Coin [19] 
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Figure 2-5 shows that the beam propagates through all three materials and stops in the niobium 

backing. The following table (Table 2-2) shows the results obtained from performing the Monte 

Carlo simulations for the energy degradation through the aluminum coin and the theoretical 

activity of 89Zr and 88Zr (if applicable). The calculated energy threshold for 88Zr production is 

13.08 MeV, which can be considered the upper limit on the beam energy for the production of 

89Zr. 
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Table 2-2 89Zr Production using a current of 10 µA and irradiation time of 20 minutes 
 

Beam  

Energy 

(MeV) 

Aluminum  

Thickness 

(mm) 

Transmitted  

Energy 

(MeV) 

Predicted  

Activity Zr-89 

(mCi) 

Predicted 

Activity Zr-88 

(µCi) 

16 0.5 12.5 3.75 NA 

16.5 0.5 13.1 4.41 NA 

16.5 0.75 11.1 2.51 NA 

16.5 1 8.86 0.57 NA 

16.7 0.5 12.5 3.75 NA 

17 0.5 13.7 5.03 0.05 

17 0.75 11.8 3.11 NA 

17 1 9.65 0.98 NA 

17.5 0.5 14.3 6.18 1.11 

17.5 0.75 12.5 3.75 NA 

17.5 1 10.4 1.46 NA 

17.8 0.75 12.8 3.93 NA 

18 0.5 14.9 6.73 3.99 

     
Calculated Threshold Energy for Zr-88  

using Q-value and Coulomb Barrier 
13.08 MeV 

Optimizing Cyclotron Conditions: The lowest beam energy for an optimal profile and 

transmission was determined through iterations of the ion source and magnet system settings on 

the cyclotron. The lowest effective beam energy of 17 MeV gave a transmission of 81%. The 

best theoretical energy for the production of 89Zr using the aluminum degrader would be at 17.8 

MeV using a 0.75 mm thick aluminum degrader.  
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The theoretical calculations and activity of each coin after bombardment are given in Table 2-3. 

Although there are four yttrium coins listed in Table 2-3, six irradiation attempts were made for 

each type of coin. Two of the yttrium coins were damaged during a 2 h irradiation using 17.8 

MeV beam energy as can be seen in Figure 2-6.   

 

Figure 2-6 Damage to the yttrium coins (Y 5, Y 6) with 2 h irradiation with 12.8 MeV transmitted beam energy 

(17.8 MeV initial beam energy) and 40 µA current. 

The following figure (Figure 2-7) shows the sputtered coins after various irradiation conditions. 

The physical appearance of the coins clearly shows an increase in scorching as the current and 

duration of irradiation increases.  



27 

 

 

Figure 2-7 (from left to right) Sputtered Coin 1 t=30 min, 10 μA, 12.5 MeV; Sputtered Coin 2 t=30 min, 21 μA, 12.5 

MeV; Sputtered Coin 3 t=30 min, 30 μA, 12.5 MeV; Sputtered Coin 6 t=2 h, 40 µA, 12.8 MeV; Sputtered Coin 5 

t=2 h, 45 µA, 12.8 MeV 

Radiopurity Analysis: The following table (Table 2-3) provides a summary of the radionuclides 

found in the analysis of the coin targets.  
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Table 2-3 Activity measured on HPGe for irradiated targets 

Coin 
Yttrium 

Thickness 
Isotope 

AMeasured 

of Coin 
ATheoretical 

Transmitted 

Energy 
Current Time 

Y 1 1 mm 

89Zr 5.13 mCi 4.71 mCi 
14.9 MeV 7 μA 20 min 

88Zr 13.6 μCi 3.99 μCi 

Y 2 1 mm 

89Zr 3.15 mCi 3.18 mCi 

12.5 MeV 8.5 μA 20 min 
88Zr 

Not 

Observed 
NA 

Y 3 1 mm 

89Zr 8.08 mCi 10.06 mCi 
13.7 MeV 20 μA 20 min 

88Zr 8.57 μCi 0.05 μCi 

Y 4 1 mm 

89Zr 66.24 mCi 89.26 mCi 

12.8 MeV 40 μA 2 h 
88Zr 

Not 

Observed 
NA 

Sputtered 

Coin 1 
110 μm 

89Zr 1.63 mCi 1.82 mCi 

12.5 MeV 10 μA 30 min 
88Zr 

Not 

Observed 
---- 

Sputtered 

Coin 2 
140 μm 

89Zr 3.94 mCi 4.86 mCi 

12.5 MeV 21 μA 30 min 
88Zr 

Not 

Observed 
---- 

Sputtered 

Coin 3 
90 μm 

89Zr 2.60 mCi 4.46 mCi 

12.5 MeV 30 μA 30 min 
88Zr 

Not 

Observed 
---- 

Sputtered 

Coin 4 
220 μm 

89Zr 25.37 mCi 31.28 mCi 

12.5 MeV 40 μA 2 h 
88Zr 

Not 

Observed 
---- 

Sputtered 

Coin 5 
210 μm 

89Zr 43.8 mCi 45.27 mCi 

12.8 MeV 45 μA 2 h 
88Zr 

Not 

Observed 
---- 

Sputtered 

Coin 6 
90 μm 

89Zr 21.9 mCi 23.09 mCi 

12.8 MeV 40 μA 2 h 
88Zr 

Not 

Observed 
---- 
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The first yttrium coin was irradiated with an initial beam energy of 18 MeV degraded to 14.9 

MeV. As these conditions resulted in significant amounts of 88Zr, the target was not dissolved for 

analysis. The coin, however, was analyzed for 88Zr once the 89Zr had decayed. 

Table 2-3 shows that 88Zr is still present with the beam energy only degraded to 13.7 MeV. In 

order to obtain minimal 88Zr with maximum 89Zr, an incident beam energy of 17.5 MeV or 17.8 

MeV was used in subsequent irradiations with a 0.75 mm aluminum degrader to give a 

transmitted beam energy of 12.5 MeV or 12.8 MeV, respectively. This is verified in the sputtered 

coin targets.  

Separation and Purification: Following purification of the irradiated yttrium coins, 88.3 ± 4.9% 

of the loaded 89Zr was recovered in an average of 7.3 mL of 1 M oxalic acid. Following 

purification of the sputtered coins 97.9 ± 2.8% of the loaded 89Zr was obtained in an average of 

1.2 mL of 1 M oxalic acid as shown in Table 2-4. In Table 2-4, ALoaded represents the activity that 

was recovered after dissolution and loaded onto the column, Volume represents the recovery 

volume for the bulk activity elution (AEluted), and the Total Yield, % represents the total activity 

recovered overall.   

 

 

 

 

 



30 

 

Table 2-4 Purification yield of 89Zr  

Coin 

ALoaded on 

Column 

(mCi) 

Bulk 

Collection 

Volume 

(mL) 

Total 

Volume 

(mL) 

Bulk   

AEluted 

(mCi) 

Elution 

Yield, % 

Total 

Yield, % 

Y 1 Not Purified 

Y 2 8.3 12 14 5.5 66.3 92.1 

Y 3 3.3 2 3 2.6 78.8 82.8 

Y 4 53.4 3 5 47.8 88.6 89.9 

Sputtered 

Coin 1 (1) 
Not Purified 

Sputtered 

Coin 2 (2) 
2 1 1.25 1.9 95 99.5 

Sputtered 

Coin 3 (3) 
2 1 1.25 1.8 90 96 

Sputtered 

Coin 4 

(9A) 

25.3 0.5 1 21.3 84.2 93.8 

Sputtered 

Coin 5 

(4A) 

33.9 1 1.5 33.8 99.7 100 

Sputtered 

Coin 6 

(1A) 

12.8 0.5 1 11.1 86.7 100 

 

89Zr Analysis: The 89Zr effective specific activity was determined using DFO titration with 

values of 20.3 mCi/µmol for the solid yttrium coin productions and 108 ± 7 mCi/μmol for the 

yttrium sputtered coin productions. The ICP-MS analysis of the yttrium coin and the sputtered 

coins showed 99.99% yttrium removed with 178 μg of yttrium in the final solution and 99.93 - 

100% of yttrium was removed with 0 - 42 μg of yttrium in the final solution, respectively. ICP-
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MS analysis was used to determine the concentration of other impurities present in the solution, 

such as zirconium, aluminum and iron. Niobium for all samples were below the detection limits 

of the instrument. Table 2-5 provides the concentrations found each element in the solutions. The 

specific activity calculated for the Y 4 coin and the sputtered coins 2, 3 and 4 using the 

concentration of Zr found via ICP-MS was 140 ± 2 mCi/μmol, 300 ± 30 mCi/μmol, 410 ± 60 

mCi/μmol and 1719 ± 5 mCi/μmol, respectively. DFO-Trastuzumab was successfully labeled 

with 89Zr produced from the sputtered yttrium coins with yields between 98% - 100%. 

Table 2-5 ICP-MS analysis of yttrium coin and the sputtered coin 

Sample Y-89 (ppb) Zr-90 (ppb) Al-27 (ppb) Fe-56 (ppb) 

Yttrium 

Coin 

Crude 3.381(±0.017)x107 3.8(±0.4)x104 10(±0.2)x106 7.6(±0.3)x105 

Purified 3.02(±0.08)x103 1.039(±0.015)x104 5(±3)x102 5.4(±0.2)x102 

Sputtered 

Coin 2 

Crude 7.58(±0.03)x106 6.5(±0.5)x103 9(±4)x104 7.35(±0.16)x104 

Purified 5.47(±0.09)x103 5.9(±0.6)x102 6.2(±0.3)x103 7.1(±0.4)x103 

Sputtered 

Coin 3 

Crude 4.49(±0.05)x106 4.5(±0.4)x103 4(±3)x104 7.2(±0.9)x104 

Purified 6.3(±0.5)x102 4.0(±0.6)x102 2.1(±0.9)x104 3.29(±0.09)x104 

Sputtered 

Coin 4 

Crude 1.639(±0.014)x107 2.23(±0.08)x103 9.9(±1.9)x103 8.07(±0.16)x103 

Purified 5.36(±0.19)x102 2.261(±0.006)x103 9(±3)x102 9.0(±0.3)x102 

 

2.4 Discussion 

Sputtered yttrium coins are an alternative and feasible route for the production of 89Zr with high 

89Zr recovery and easy processing. The difference in the activity measured on sputtered coins to 

the theoretical yields may be due to error in the thickness used in the theoretical calculations. 
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The thickness of the sputtered coins was determined using the mass of the yttrium sputtered onto 

the niobium coin and likely, the yttrium is not at 100% theoretical density. We found that the 

sputtered coins with a 0.75 mm aluminum degrader bombarded with a beam energy of 17.8 MeV 

giving a transmitted energy of 12.8 MeV on the sputtered coins and a current of 40 μA for 2 

hours produced the best results. No 88Zr was observed in the analysis of the sputtered coins due 

to the degradation of the beam, providing 100% radionuclidic purity similar to the reports from 

low energy beam production of 89Zr in literature [24]. The majority of activity for the sputtered 

coins were recovered in 1 mL (2 aliquots) of 1 M oxalic acid which was comparable to Holland 

et al. who reported >99% recovery in 3 mL [3]. We were able to obtain a specific activity of 108 

± 7 mCi/µmol which is somewhat lower than Holland et al. (470-1195 mCi/μmol) [3], however 

this may be due to the lower amounts of activity produced during our scale up phase. ICP-MS 

analysis of the yttrium coin and the sputtered coins showed 99.99% yttrium removed with 178 

μg of yttrium in the final solution and 99.93-100% of yttrium was removed with 0-42 μg of 

yttrium in the final solution, respectively. Furthermore, the ICP-MS analysis showed a higher 

concentration of zirconium in the production from the solid yttrium coins contributing to the 

lower specific activity obtained when using this method. The sputtered coins showed higher 

concentrations of aluminum and iron than the yttrium coin. Further investigations for these 

trends are ongoing. DFO-trastuzumab was successful labeled with the purified activity from the 

sputtered coins giving yields of 98-100% with a concentration of 13.1 mCi/mL of buffered and 

pH adjusted 89Zr. This is consistent with other reported labeling yields. Marquez et al. reported 

>95% yield with pertuzumab and Holland et al. reported >70% yielding with DFO-trastuzumab 

[2, 21]. 
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In the future, longer irradiations of sputtered coins with higher currents will be performed using a 

0.75 mm aluminum degrader and 17.8 MeV incident beam energy and a transmission energy of 

12.8 MeV. Separation methods to optimize specific activity will be investigated as well as 

automated processes for the purification and recovery of 89Zr.  

2.5 Conclusions 

The use of sputtered yttrium on niobium coins have shown to be an effective and alternative 

means of production of 89Zr. The degradation of the proton beam via aluminum degrader to <13 

MeV eliminated the production of 88Zr and allowed for 100% radionuclidic purity. The integrity 

of the sputtered coins was not compromised, unlike that of the yttrium coins at higher current 

and longer irradiation periods.  The sputtered coins resulted in more control over yttrium mass 

and the target cross sectional area. This allowed for an efficient separation of 89Zr from the target 

material and a dissolution time that is significantly shorter than the yttrium coins that resulted in 

a product with higher specific activity.   
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3.1 Introduction 

Zirconium-89 (89Zr) is a positron emitter with a half-life of 78.4 hours and uses in medical 

imaging applications. [1-3]. The long half-life of 89Zr can allow for imaging at longer time points 

and matches well with the biological half-life of intact antibodies making it of high interest for 

PET imaging [3-5]. The production of 89Zr is typically via irradiation of an yttrium (Y) target 

which requires the removal of the Y before the 89Zr can be used in radiolabeling. Current 

separation of 89Zr from Y involves adsorption of 89Zr on hydroxamate or Zr resin (Triskem) after 

dissolution of the target material in 2 M hydrochloric acid (HCl). The Y is eluted off the column 

using 2 M HCl and then the column is washed with high purity water [1, 6-7]. The 89Zr is eluted 

using heated 1 M oxalic acid [1, 6-7]. Although this is a relatively simple procedure for the 

purification of 89Zr, there are a few minor issues that can be improved upon. The heating of 

oxalic acid can make it more difficult to implement this method into an automated system and 

the oxalic acid is somewhat undesirable eluent as it needs to be removed before injection due to 

toxicity issues [1, 8].  

Crystalline silicotitanate (CST) is an inorganic exchange resin that has been used in the 

purification of aqueous radioactive waste. In particular, the characteristics of poorly crystalline 

silicotitanate (pCST) and highly crystalline silicotitanate (C-CST) have been reviewed mainly 

for the waste removal of 137Cs. pCST offers some advantageous adsorption properties over the 

C-CST. Since pCST is heated less during formation, the particle size produced is smaller with 

rough faces and edges [9-10]. These characteristics allow for an increased surface to volume 

ratio to allow for more interactions but with less stable adsorption, thus increasing recovery of 

the target isotope relative to C-CST [9-11]. pCST has shown to have strong stability to radiation 
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and selectivity for cesium (Cs) and strontium (Sr) metals making it the preferred resin to separate 

Cs and Sr from nuclear waste [9-10, 12]. In unpublished work conducted at Brookhaven National 

Laboratory due to general interest in inorganic resins for radiation stability, pCST was found to 

have a high affinity for Zr while having a low affinity for Y and thus is a promising support 

material in the separation of Zr from Y. 

Iminodiacetic acid (IDA) is a chelator that is currently being used in patients for hepatobiliary 

(HIDA) scans [13]. IDA is a tridentate ligand (Figure 3-1), making it a weak chelator for 89Zr 

which is tetravalent.  

 

Figure 3-1 IDA chelation as a tridentate ligand 

These characteristics allow for the potential use of IDA to remove 89Zr from the pCST column 

while maintaining a relatively unstable complex as not to interfere with subsequent labeling 

chemistry.  The aim of our work is to evaluate suitability of pCST for the separation of 89Zr 

using IDA as an eluant to allow for ease in automating the separation system and potentially 

eliminating the need to remove the IDA chelator before injection.  

3.2 Materials and Methods 

Measurement of Distribution Coefficient: Kd studies for Zr and Y were carried out using pCST 

resin. Stock solutions of 0.5 M ammonium acetate (NH4OAc) at pH 3 and 0.1 M iminodiacetic 

acid (IDA) at pH 3 with 30 ppm Zr and 30 ppm Y were prepared. 30 mg of resin was weighed 
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out into 15 mL falcon tubes. 5 mL of IDA was introduced to the resin with 100 L of metal 

solution. The samples were placed on a shaker and allowed to reach equilibrium for at least 24 

hours. 1.5 mL aliquots of the samples were taken and centrifuged to separate the resin from the 

solution. 10 L of the supernatant was removed for ICP-MS analysis and diluted with 5 mL of 

2% nitric acid. The Kd was calculated with the following equation where Kd is binding affinity, 

Ci is initial metal concentration, Ca is final metal concentration, Vx is total volume (mL), and Mx 

is mass of resin (g). 

Kd =  
Ci−Ca

Ca
 ×  

Vx

Mx
         (1) 

 

Data analysis was completed using Prism version 7 and p-values calculated using one-way 

ANOVA multiple comparison with 95% confidence where p < 0.05 was considered significant.   

89Zr Purification with pCST : A 0.1 mL bed volume PEEK column  was loaded with pCST resin 

and conditioned with 10 mL of 0.5 M ammonium acetate at pH 3 at a flow rate of 0.1 mL/min. 2 

mCi of crude 89Zr solution containing  ~11 mg of Y in 2 M HCl obtained from the UAB 

Cyclotron Facility was diluted to 2.5 mL using 0.5 M ammonium acetate at pH 3 and loaded 

onto the column at a flow rate of 0.1 mL/min. The flow through of this loading was collected in 

500 L fractions. The Y was then washed off the column using 0.5 M ammonium acetate at pH 3 

at a flow rate of 0.1 mL/min in ten 500 L fractions (total volume of 5 mL).  89Zr was eluted off 

the column using 0.1 M IDA at pH 3 with a flow rate of 0.1 mL/min in twenty 500 L fractions 

(total volume of 10 mL). 10 L aliquots of each fraction were removed and diluted with 2% 

nitric acid for ICP-MS analysis of Y and Ti. 
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89Zr Labeling and Specific Activity: The antibody panitumumab, was purchased from Vectibix 

(Thousand Oaks, CA), the chelator deferoxamine (DFO-SCN) was purchased from Macrocyclics 

(Plano, TX) and all other reagents were purchased through Fisher Scientific. For test labeling 

studies with 89Zr, panitumumab was conjugated with DFO-SCN using a 10:1 molar ratio of 

antibody to chelator where 15 L of 20 mg/mL DFO-SCN, 150 L of 8 mg/mL panitumumab 

and 135 L of 0.1 sodium carbonate buffer pH 9 were allowed to react for 1 h on a thermoshaker 

set for 37C at 350 rpm [14]. The final product was purified on a Zeba spin desalting column (40 

kDa molecular weight cutoff). The labeling was carried out using 12.5 L of 1 mg/mL DFO-

panitumumab which was aliquoted into a microcentrifuge for each labeling. 89Zr-IDA was 

neutralized using 1 M HEPES. A ~6 L aliquot (5-7 µCi) was added to each of the 

corresponding labeling microcentrifuge tubes. For comparison to the standard method, 89Zr-

oxalate, produced in house, was neutralized using 1 M HEPES and 2 M NaOH [6]. 50 Ci (~6 

L) of the neutralized standard 89Zr was added to each of the corresponding labeling 

microcentrifuge tubes. Then the microcentrifuge tubes were brought to 30 L in final volume 

using 1 M HEPES (~11.5 L). The microcentrifuge tubes were placed on a thermoshaker set for 

37C at 300 rpm for one hour and then challenged with 50 mM DTPA for 5 minutes. A 1 µL 

aliquot of each labeling (both prior to the DTPA challenge and after) was spotted on iTLC-SG, 

glass microfiber chromatography paper impregnated with silica gel (Agilent, CA) and developed 

with 50 mM DTPA as mobile phase and analyzed on AR-2000 Radio-TLC imaging scanner 

(Eckert & Ziegler, MA) to determine the labeling efficiency.  

Effective specific activity (ESA) was determined using the DFO- titration method [1, 6]. A stock 

solution of 5 mg/mL DFO in DMSO was serially diluted with 1 M HEPES. Each 200 L dilution 
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had ~25 Ci (~30 L) of 89Zr-IDA added to each tube. The tubes were placed on a thermoshaker 

set for 37C at 300 rpm for one hour and then challenged with 50 mM DTPA. A 1 µL aliquot of 

each dilution was spotted on the iTLC-SG paper, developed with 50 mM DTPA as the mobile 

phase, then analyzed on an AR-2000 Radio-TLC imaging scanner.  

3.3 Results and Discussion 

Distribution Coefficient Study: Ideally, for the distribution coefficient, Kd, values, the difference 

between the metals in the solvent should be large where the larger of the two values indicates the 

ion has a stronger affinity for the resin under the conditions studied. This means the metal with 

the lower Kd value will elute off in that solvent while the metal with the larger Kd value will be 

retained on the resin. These ideal conditions can be seen in Figure 3-2 for 0.5 M ammonium 

acetate pH 3 where the Kd value for Zr was 7700500 mL/g and the Kd value for Y was 59090 

mL/g. The Kd values for the 0.1 M IDA pH 3 for Zr and Y were 73080 mL/g and 840110 

mL/g, respectively. The large difference in the distribution coefficients between the Zr and Y for 

the 0.5 M NH4OAc pH 3 shows that the Zr has a stronger affinity for the pCST resin and will be 

retained on the resin while the Y is washed off. Although there is little difference between the Kd 

values for 0.1 M IDA pH 3, this shows that Zr has a low affinity for the resin under the 

conditions studied. This data indicates the elution order should be 0.5 M ammonium acetate pH 3 

to remove the Y and then 0.1 M IDA pH 3 to collect the Zr from the resin. 
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Figure 3-2 Distribution coefficient study with 0.1 M NH4OAc (pH 3) and 0.1 M IDA (pH 3) 

89Zr Separation with pCST: The activity elution profile shown in Figure 3-3 shows less than 

63% 89Zr breakthrough in the first 15 fractions (7.5 mL) and 8011% of 89Zr was recovered 

overall (10 mL) with 5816% in fraction 17 and 18 (1 mL). These small-scale separations 

showed repeatable results with the majority of the activity being collected the second IDA 

elution fraction.   
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Figure 3-3 Activity elution profile illustrating average radioactivity per fraction 

ICP-MS was used to investigate the amount of Y and Ti found in each fraction (Y being the 

target material and Ti as part of the pCST crystalline structure). The Y and Ti elution profile are 

provided in Figure 3-4. This figure shows that while both Y and Ti are present in the early 

fractions, they are no longer eluted after fraction 8. The Ti analysis shows that any loose metal or 

resin has been removed before the collection of the 89Zr in fractions 17 and 18.  
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Figure 3-4 ICP-MS percent by mass elution profile for Y and Ti for each fraction 

89Zr Labeling and Specific Activity: Labeling studies performed using DFO-panitumumab 

showed 978% labeling for 89Zr-IDA and 99.80.6% 89Zr-oxalate (p = 0.2381). When the 

labeling reaction was challenged with DTPA, the 89Zr-IDA method labeled antibody had 948% 

labeling remain and the 89Zr-oxalate method labeled antibody had 966% remain (p = 0.3885). 

The 89Zr-IDA compared to 89Zr-oxalate show no significant difference between the labeling even 

when challenged with DTPA. This shows that this alternative method results in a high-quality 

product suitable for radiolabeling studies. Using the standard method to determine the ESA of 

89Zr-IDA resulted in an ESA of 243 mCi/mol. The relatively low ESA can be attributed to the 

small batches of activity studied thus far.  ESA values in literature typically range from 1087 

mCi/mol reported by Queern et al. to 470-1195 mCi/mol reported by Holland et al. [1, 6]. It is 

likely that scaling up the batch size of activity will result in a higher ESA.    
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3.4 Conclusions  

Herein, we evaluated the low-level activity separations of 89Zr from Y to evaluate the suitability 

of pCST resin using an IDA eluant as a new purification strategy. This method may provide ease 

in automating the separation system and potentially eliminates the need to remove the oxalate 

chelator before injection. Our work shows reproducible results in these low-level separations. 

The test labeling of antibodies with the recovered 89Zr showed that DFO conjugated antibodies 

can be successfully labeled with comparable yields to current methods. Overall, this method 

shows potential for an alternative method for the separation of 89Zr from Y.  
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4.1 Introduction 

There is a large breadth of uses for nanoparticles, such as targeted drug delivery, photoablation 

therapy and bioimaging [1-2]. The use of nanoparticles in the medical field has growing interest 

due to their many advantageous characteristics, including availability in many shapes, sizes and 

with varying surface characteristics [3-4]. Nanoparticles offer a large surface to volume ratio that 

makes them potential candidates for targeted molecular imaging and therapy [5].   

Zirconium-89 (89Zr) is commonly used in the research arena for positron emission tomography 

(PET) imaging of radiolabeled monoclonal antibodies. This is in part due to its long half-life 

(78.4 h), which is compatible with the biological half-lives of antibodies and nanoparticles [6-8]. 

It is well known that free 89Zr is a bone seeker, which means that if the 89Zr decomplexes from 

the chelating agent, it will accumulate in the bone, [7, 9]. There are several radionuclides that are 

considered bone seekers due to their high affinity for bone, including fluorine-18 (18F), 

samarium-153 (153Sm), and 89Zr. These bone seekers have great potential for PET imaging or 

cancer therapy, but if they are not stably complexed or otherwise attached to the targeting vector 

in vivo, they may accumulate in the bone [9]. Although bone uptake of 89Zr is not commonly 

seen in human subjects, it remains a problem in preclinical studies and may cause difficulty in 

translating dosimetry from animal models to humans [7].  

Bone is made of a matrix of compounds, the main component of which is hydroxyapatite (HAp), 

(HCa5O13P3) [10-12]. Current uses of HAp in the dental and medical fields include dental enamel 

replacement, bone grafting and drug delivery [13-15]. Although HAp is well known, little work 

has been done with nano-hydroxyapatite (nHAp) as a radiolabeled PET tracer. In one study, 

Zheng et al. successfully labeled nHAp with 18F to determine biodistribution and 
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pharmacokinetics of 18F-nHAp using PET imaging and showed that 18F-nHAp was retained in 

the body for at least 160 minutes [16]. The long circulation period of nHAp means that longer-

lived radionuclides are required for the development of nHAp-based tumor targeting agents.     

The goal of our research is to exploit the natural affinity of 89Zr and other radionuclides for bone 

to synthesize radiolabeled nHAp particles. Development of rapid radiochemistry could enable a 

new class of imaging agents with kit-like formulations. The use of nHAp provides substantial 

surface area for radiolabeling and the potential for attachment of targeting moieties and drug 

loading. We investigated labeling efficiencies of several radionuclides for nHAp and the stability 

of the radiolabeled products over two half-lives. Analyses and comparisons of the size and shape 

of nHAp and the role of these parameters on labeling, stability and biodistribution in mice were 

assessed.  

4.2 Methods 

Materials 

89Zr, 18F, and 55Co were produced by the University of Alabama at Birmingham (UAB) cyclotron 

facility (Birmingham, AL) [17-18], 64Cu was purchased from Washington University School of 

Medicine (WUSM) cyclotron facility (St. Louis, MO) and 153Sm was obtained from the 

University of Missouri Research Reactor (MURR) (Columbia, MO). Sphere-shaped HAp 

nanopowder with a reported particle size of <200 nm was purchased from Sigma Aldrich (St. 

Louis, MO). Needle-shaped HAp particles with a reported average particle length of 20 nm were 

purchased from M K Impex Corp. (Mississauga, Ontario, Canada). All other chemicals were 

purchased from Fisher Scientific.  
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Particle Characterization 

Transmission Electron Microscopy (TEM) was performed at either Washington University in St. 

Louis (WUSTL) Nano Research Facility with a FEI Tecnai G2 Spirit or at UAB High Resolution 

Imaging Facility with a FEI Tecnai T12 Spirit. All samples were suspended in methanol and 

placed on a carbon support film with 200 mesh copper.  

Radiolabeling and Stability Studies 

All labeling studies were conducted with 50 µg of nHAp, either sphere-shaped or needle-shaped, 

dispersed in 300 µL of 1x PBS. The pH of all radioisotope solutions was adjusted to 7.1 using 1 

M HEPES (pH=7.1) as a buffer and 2 M NaOH and/or 1 M HCl for pH adjustments. A 50 Ci (1 

– 110 L) aliquot of the radionuclide solution was added to the nHAp solution and then 

incubated at 37 ͦ C with agitation for several time points up to 60 minutes. The samples were 

centrifuged at 15,000 rpm for 2 minutes and the supernatant was removed. The samples were 

washed three times with 1 mL of 1x PBS, centrifuged, supernatant removed, and the 

radioactivity associated with the nHAp was measured with a CRC-25 dose calibrator (Capintec, 

Inc., NJ). Determination of the maximum amount of radioactivity adhered to the nHAp was 

investigated using variable activity (40 – 200 Ci) added to the 50 µg of nHAp mass. Ten-

minute labeling intervals were studied. 64Cu-nHAp and 55Co-nHAp were used as controls, since 

these isotopes are not bone seekers. 

All stability studies were completed using the highest achieved specific activity radiolabeled 

nHAp over the course of two half-lives of the radioisotope in 300 µL of either fetal bovine serum 

(FBS) or human serum (HS). The 64Cu-nHAp and 55Co-nHAp were used as controls for the FBS 

studies, and 64Cu-nHAp was used as a control for the HS study. In order to determine the amount 
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of radioactivity still associated with the particles, the particles were centrifuged after two half-

lives at 15,000 rpm for 2 minutes, the serum was removed, and the activity associated with the 

pellet was measured.  

Biodistribution Studies 

All animal studies were conducted under a protocol approved by the Institutional Animal Care 

and Use Committee (IACUC) at the University of Alabama at Birmingham. Biodistribution 

studies were carried out for both nHAp morphologies in normal mice (32-38 days old, male, CD-

1 IGS, n=4). 50 µCi of 89Zr-nHAp in 100 µL of 0.9% sodium chloride solution was injected via 

tail vein. Animals were sacrificed via cervical dislocation at 4 hours, 24 hours, 72 hours and 7 

days post injection, and organs were harvested and analyzed for radioactivity using a 2480 

Wizard 2 Gamma Counter (Perkin Elmer, MA).  Radioactivity associated with each organ is 

expressed as percentage of injected dose per gram of organ (%ID/g). 

Statistical Analysis 

All data is reported as mean  standard deviation and was calculated using Microsoft Excel 

version 16. All p-values were determined using Prism version 7 one-way ANOVA multiple 

comparison with 95% confidence where p < 0.05 was considered significant.  

4.3 Results 

Particle Characterization 

TEM of the two types of nHAp confirmed the morphology of each and allowed determination of 

average particle size. Figure 4-1 shows an image for each of the morphologies. Both 

morphologies illustrated extremely variable particle sizes. By TEM, the sphere-shaped nHAps 
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were found to have a range of 13 nm – 1149 nm, with an average particle diameter size of 206 

nm (n=109). The needle-shaped nHAp ranged in length from 9 nm – 357 nm, with an average 

length of 76 nm (n=76) and ranged in width from 6 nm – 51 nm, with an average width of 19 nm 

(n=53).  

 

Figure 4-1 TEM images of sphere-shaped particles (A) and needle-shaped particles (B) Radiolabeling and Stability 

Studies 

nHAp was radiolabeled with 89Zr, 18F, 153Sm, 64Cu, and 55Co and the stability of the adhesion of 

each radionuclide to nHAp was assessed. The time needed to incorporate maximum radioactivity 

on the nHAp, maximum specific activity achievable, and stability in FBS and HS for two half-

lives were determined for each radionuclide-nHAp. A summary of this data is shown in Table 4-

1.  
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Table 4-1 Labeling and Stability of Radiolabeled Sphere- vs. Needle-Shaped nHAp 

Radionuclide 
Half-life 

(h) 

Minimal 

Time for 

Maximum  

Labeling 

(min) 

Maximum  

Specific Activity 

(µCi/µg) 

% Intact 

After  

Two  

Half-lives 

(FBS)† 

% Intact 

After  

Two  

Half-lives 

(HS)† 

89Zr 78.41 10 
Sphere: 1.31±0.19 

Needle: 2.8±0.3 

100±3 

98.2±1.2 

91±2 

92±2 

18F 1.83 5 
Sphere: 27±3 

Needle: 38.4±0.2 

86.9±1.3 

75.5±1.6 
NP* 

153Sm 46.28 10 
Sphere: 11.75±0.18 

Needle: 11.0±0.3 

91.4±1.1 

90.4±1.1 
NP* 

64Cu 12.70 15 
Sphere: 12.41±0.02 

Needle: 14.27±0.13 

64±2 

23.74±0.10 

56±3 

35±2 

55Co 17.53 30 
Sphere: 0.76±0.09 

Needle: 1.49±0.11 

55±5 

44±3 
NP* 

†n=3; *NP - not performed 

Figure 4-2 shows the radiolabeling yields at various labeling times for the radionuclides studied. 

Over 90% labeling was achieved for all bone seeking radionuclides in less than 10 minutes, with 

relatively low radiolabeling yields achieved for the non-bone seeker, 55Co, as expected.   
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Figure 4-2 Radiolabeling trends of nHAp for radionuclides studied  

Tables 4-1 and 4-2 show the significant difference between the stabilities of the sphere- and 

needle-shaped particles after two half-lives, where the radiolabeled sphere-shaped particles were 

more stable than the needle-shaped particles. Furthermore, the data shows that the stability trend 

for both morphologies was 89Zr > 153Sm > 18F > 64Cu > 55Co. 89Zr-nHAp and 64Cu-nHAp were 

further tested for stability in HS for two half-lives. The data in Table 4-1 shows, as expected, the 

89Zr radiolabeled sphere-shaped and needle-shaped particles are stable in HS, while the 64Cu 

particles are less stable. The 89Zr particles have similar stability in both HS and FBS.   
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Table 4-2 Statistical Data (p-values) for the Stability of the Labeled nHAp in FBS 

sphere 

needle 
89Zr 18F 153Sm 64Cu 55Co 

89Zr >0.9999 <0.0001 0.0058 <0.0001 <0.0001 

18F <0.0001 <0.0001 0.0188 <0.0001 <0.0001 

153Sm 0.0008 <0.0001 >0.9999 <0.0001 <0.0001 

64Cu <0.0001 <0.0001 <0.0001 <0.0001 0.0005 

55Co <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

*Black font represents p-values of sphere-shaped particles relative to other sphere-shaped 

particles, red font represents p-values of needle-shaped particles relative to other needle-shaped 

particles, and blue font represents p-values of sphere-shaped particles relative to needle-shaped 

particles for the same radionuclide.  

The biodistributions in normal mice for both 89Zr-nHAp morphologies are shown in Figure 4-3. 

These data show less than 5% bone uptake, with uptake in the lung and retention in the liver and 

spleen (likely due to particle size). The needle-shaped nHAp had less uptake in the bone (p < 

0.003), lungs (p < 0.01) and kidneys (p < 0.001) compared to the sphere-shaped nHAp at seven 

days. The biodistribution shows the smaller particles (needle-shaped) have less uptake in bone, 

kidney and lung, which implies that smaller particles may make better tumor targeting agents [3].  
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Figure 4-3 (A) Biodistribution for sphere-shaped 89Zr-nHAp and (B) biodistribution for needle-shaped 89Zr-nHAp 
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4.4 Discussion 

The goal of our research was to exploit the natural affinity of 89Zr and other radionuclides for 

bone to develop a rapid labeling technique for nHAp. In order to evaluate the potential of nHAp 

as a new class of imaging agents, we examined the labeling efficiencies and stability of 

adsorption to nHAp for several radionuclides. The role of the size and shape of nHAp on 

labeling and stability for 89Zr, 18F, 153Sm, 64Cu and 55Co was investigated. The two different 89Zr-

nHAp morphologies were used for biodistribution studies in normal mice.  

The TEM data showed the morphology and size of both the commercially obtained sphere- and 

needle-shaped nHAp. Both the sphere- and needle-shaped particles have a large variability from 

the reported average particle size. The sphere-shaped particles show greater deviation in particle 

size, and Figure 4-1A clearly shows that the size of these nHAp particles is not uniform. The 

needle-shaped particles are significantly larger than the reported value but are smaller relative to 

the sphere-shaped nHAp.  

The labeling data show that radiolabeling of nHAp with 18F proceeded rapidly  (5 minutes), 

which is consistent with literature data [16]. Higher specific activity was achieved with the 

needle-shaped nHAp for all radionuclides except 153Sm, for which the specific activities were 

approximately the same. This is expected due to the increased surface to volume ratio for smaller 

particles. The stability data show that (as expected) particles radiolabeled with known bone 

seekers have higher stability than the non-bone seekers, where 89Zr and 153Sm exhibited the best 

stability with > 98.2% and > 90.4% intact after two half-lives (156.8 h and 92.6 h), respectively, 

for both nHAp morphologies. It is possible that 18F showed less stability compared to 89Zr and 

153Sm because it is a non-metal with a negative charge (F-) compared to 89Zr4+ and 153Sm3+, 
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which are transition metals with positive charges. This positive charge may offer additional 

stability due to ionic interactions between the metals and the negatively-charged hydroxide (OH-) 

groups on the surface of the nanoparticles. However, the 18F can only adhere via covalent or 

hydrogen bonding, both of which are weaker than ionic bonding. For 18F, 64Cu, and 55Co, the 

radiolabeled needle-shaped nHAp showed lower stability than the sphere-shaped nHAp with p-

values less than 0.01. This was further confirmed in the 64Cu-nHAP stability experiments using 

human serum. Sphere- and needle-shaped 89Zr-nHAp were equally stable, whereas 64Cu-nHAp 

and 55Co-nHAp were less stable overall and the stabilities were less consistent between particle 

morphologies. This trend for 64Cu-nHAp and 55Co-nHAp is expected, since they are not bone 

seekers.  

The biodistributions for both sphere-shaped and needle-shaped nHAp showed low 89Zr uptake in 

the bone (<5% ID/g), with localization in the lungs, liver and spleen. In comparison, Marquez et 

al. reported biodistributions with upwards of 20% ID/g uptake in the bone with 89Zr-DFO-

pertuzumab, a monoclonal antibody that targets HER2 receptors [19]. The bone uptake can be 

attributed to the likely decomplexation of the 89Zr from the 89Zr-DFO. Our work clearly 

demonstrates significantly less uptake in the bone, which supports low desorption of the 89Zr 

from 89Zr-nHAp in vivo. Overall, the data show that this strategy has potential for the 

development of imaging and therapy agents with bone seeking radionuclides using nHAp. 

4.5 Conclusions 

Our studies illustrate how the high affinity of 89Zr for nHAp may aid in the development of new 

imaging agents. Overall, 89Zr-nHAp was shown to be a good candidate for the development of 

new targeted PET imaging agents. The particles are easily labeled with bone seeking 
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radionuclides and have high in vitro stability with little bone uptake in vivo. Our future work will 

include the modification of nHAp to include tumor targeting agents and the assessment of the 

effect these modifications have on labeling, in vitro stability and in vivo pharmacokinetics.  

4.6 Acknowledgments 

The authors of this article would like to thank the Department of Radiology at the University of 

Alabama at Birmingham (UAB) for funding, the UAB Cyclotron Facility for the production of 

89Zr, 18F, and 55Co, the University of Missouri Research Reactor (MURR) for the production of 

153Sm, and the UAB Small Animal Imaging Facility for biodistribution studies. The UAB Small 

Animal Imaging Facility is supported through the UAB Comprehensive Cancer Center 

P30CA013148 grant from NIH. 

4.7 References 

1. Murthy, S. K., Nanoparticles in modern medicine: State of the art and future challenges. 

Int J Nanomedicine 2007, 2 (2), 129-41. 

2. Wu, C. C.; Yang, Y. C.; Hsu, Y. T.; Wu, T. C.; Hung, C. F.; Huang, J. T.; Chang, C. L., 

Nanoparticle-induced intraperitoneal hyperthermia and targeted photoablation in treating ovarian 

cancer. Oncotarget 2015, 6 (29), 26861-75. 

3. Hoshyar, N.; Gray, S.; Han, H.; Bao, G., The effect of nanoparticle size on in vivo 

pharmacokinetics and cellular interaction. Nanomedicine (Lond) 2016, 11 (6), 673-92. 

4. Salata, O., Applications of nanoparticles in biology and medicine. J Nanobiotechnology 

2004, 2 (1), 3. 

5. McNamara, K., Nanoparticles in biomedical applications. Advances in Physics 2017, 2 

(1), 54-88. 

6. Holland, J. P.; Sheh, Y.; Lewis, J. S., Standardized methods for the production of high 

specific-activity zirconium-89. Nucl Med Biol 2009, 36 (7), 729-39. 

7. Deri, M. A.; Zeglis, B. M.; Francesconi, L. C.; Lewis, J. S., PET imaging with 89Zr: from 

radiochemistry to the clinic. Nucl Med Biol 2013, 40 (1), 3-14. 

8. Van Dongen, G. A. M. S.; Visser, G. W. M.; Lub-de Hooge, M. N.; de Vries, E. G.; Perk, 

L. R., Immuno-PET: A navigator in monoclonal antibody development and applications. 

Oncologist 2007, 12, 1379-89. 



60 

 

9. Abou, D. S.; Ku, T.; Smith-Jones, P. M., In vivo biodistribution and accumulation of 

(89)Zr in mice. Nucl Med Biol 2011, 38 (5), 675-81. 

10. Zhou, H.; Lee, J., Nanoscale hydroxyapatite particles for bone tissue engineering. Acta 

Biomater 2011, 7 (7), 2769-81. 

11. Kojima, C.; Watanabe, K., Adsorption and desorption of bioactive proteins on 

hydroxyapatite for protein delivery systems. J Drug Deliv 2012, 2012, 932461. 

12. Matsumoto, T.; Okazaki, M.; Inoue, M.; Hamada, Y.; Taira, M.; Takahashi, J., 

Crystallinity and solubility characteristics of hydroxyapatite adsorbed amino acid. Biomaterials 

2002, 23 (10), 2241-7. 

13. Murugan, R., Aqueous mediated synthesis of bioresorbable nanocrystalline 

hydroxyapatite. Journal of Crystal Growth 2005, 274, 209-13. 

14. Hao, X.; Hu, X.; Zhang, C.; Chen, S.; Li, Z.; Yang, X.; Liu, H.; Jia, G.; Liu, D.; Ge, K.; 

Liang, X. J.; Zhang, J., Hybrid mesoporous silica-based drug carrier nanostructures with 

improved degradability by hydroxyapatite. ACS Nano 2015, 9 (10), 9614-25. 

15. Sammons, R., Biological responses to hydroxyapatite. In Hydroxyapatite (HAp) for 

Biomedical Applications, Mucalo, M. R., Ed. Woodhead Publishing: Sawston, Cambridge, UK, 

2015; pp 53-83. 

16. Zheng, J.; Zhou, W., In vivo imaging of nano-hydroxyapatite biodistribution using 

positron emission tomography imaging. Chem. Lett. 2012, 41, 1606-07. 

17. Queern, S. L.; Aweda, T. A.; Massicano, A. V. F.; Clanton, N. A.; El Sayed, R.; Sader, J. 

A.; Zyuzin, A.; Lapi, S. E., Production of (89)Zr using sputtered yttrium coin targets Nucl Med 

Biol 2017, 50, 11-16. 

18. Mastren, T.; Marquez, B. V.; Sultan, D. E.; Bollinger, E.; Eisenbeis, P.; Voller, T.; Lapi, 

S. E., Cyclotron production of high-specific activity (55)Co and in vivo evaluation of the 

stability of (55)Co metal-chelate-peptide complexes. Mol Imaging 2015, 14 (10), 526-33. 

19. Marquez, B. V.; Ikotun, O. F.; Zheleznyak, A.; Wright, B.; Hari-Raj, A.; Pierce, R. A.; 

Lapi, S. E., Evaluation of (89)Zr-pertuzumab in breast cancer xenografts. Mol Pharm 2014, 11 

(11), 3988-95. 

 

 
 

 

 

 

 

 

 



61 

 

 

 

 

 

 

 

 

Chapter 5  

89Zr-nano-hydroxyapatite modified with 

phospha-TOC as a targeted PET agent 

 

[This work has been presented previously at the ISRS 2017 meeting as “89Zr-

nanohydroxyapatite-phospha-TOC as a new PET imaging agent” Stacy L Queern, Adriana V. F. 

Massicano, Jennifer L. Burkemper, Nicholas A. Clanton, and Suzanne E. Lapi, May 2018] 
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5.1 Introduction 

Nanoparticles are used in drug delivery and therapy in the medical field because they offer 

unique properties due their size and surface characteristics [1-2]. Currently there are many types 

of nanoparticles being used in biomedical research as the variety in the morphology results in an 

expansive research toolbox. For example, the large surface to volume ratio of nanoparticles 

provides a platform for targeted imaging and/or therapy [3]. 

Zirconium-89 (89Zr) has a half-life of 3.27 days which is compatible with the biological half-life 

of antibodies and nanoparticles [4-6]. This characteristic has made this radionuclide of 

significant interest in the molecular imaging field. An additional important feature to note is that 

free 89Zr is a bone seeker. This means that 89Zr has a high affinity for bone, thus if decomplexes 

from the compound it will accumulate in the bone [7-8]. Although this is not frequently seen in 

human studies, it may cause issues with preclinical experiments and translation of dosimetry to 

clinical trials [5, 7].  

One way to label nanoparticles with 89Zr was been discussed in our previous work (Chapter 4) 

using nanohydroxyapatite (nHAp). nHAp is the main component in the bone matrix [9-11] and 

thus 89Zr has a natural high affinity for nHAp. Our previous studies have shown rapid labeling 

and high in vitro stability with minimum release and bone uptake in vivo. Modification of nHAp 

would allow for targeted molecular imaging or therapy. As a proof of concept, the peptide, 

[Tyr3]octreotide (TOC) was used to modify nHAp in order target somatostatin receptors, namely 

SSTR2 receptors, which are over-expressed on neuroendocrine tumors [12-14] 

The aim of this work was to perform a rapid modification of nHAp using an analog of TOC to 

target neuroendocrine tumors.  Herein, we discuss the preparation of co-precipitated 89Zr with 
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nHAp and the modification of the nHAp with phospha-TOC. The binding of the modified 89Zr-

nHAp to rat pancreatic tumor cells, AR42J, that overexpress SSTR2 and distribution in 

immunodeficient mice with tumor xenografts from the same cell line were examined to 

investigate specific targeting of the modified nHAp.  

5.2 Methods 

Materials 

89Zr was produced by the Cyclotron Facility at University of Alabama at Birmingham [4].  

[Tyr3]-octreotide (TOC) was obtained from CPC Scientific (Sunnyvale, CA) and phospha-TOC 

({d-PHE}CY{d-TRP}KTC{pTHR}), an analog of TOC, was obtained from GenScript 

(Piscataway, NJ). All other chemical reagents and supplies were purchased from Fisher 

Scientific (Pittsburgh,PA) or Sigma (St. Louis, MO). 

Co-precipitation preparation of 89Zr-nHAp 

A solution of 2.5 ml of 0.5 M calcium chloride (CaCl2), 2.5 ml of 0.1 M trisodium citrate 

(Na3C6H5O7) and approximately 100 L of 89Zr were mixed and allowed to react for 30 minutes 

on a vortexer. A second solution of 1.25 mL 0.03 M ammonium hydrogen phosphate 

((NH4)2HPO4) and 0.5 mL of ammonium hydroxide (NH4OH) was added dropwise to the first 

solution then pH adjusted to pH 9 using concentrated nitric acid. The reaction was allowed to 

proceed for another 30 minutes before the final product was removed via centrifugation and 

washed three times with 18Ω milli-Q water removing water with centrifugation each time [15]. 
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Transmission Electron Microscopy (TEM) was performed to characterize the nHAp at UAB 

High Resolution Imaging Facility with a FEI Tecnai T12 Spirit. All samples were suspended in 

methanol and a 1 μL aliquot was spotted on a carbon support film with 200 mesh copper.  

Stability studies were completed using approximately 200 µCi of co-precipitated 89Zr-nHAp over 

the course of 7 d in 300 µL of fetal bovine serum (FBS). After incubation, the particles were 

centrifuged at 15,000 rpm for 2 minutes, the serum was removed, and the activity associated with 

the pellet was measured on a Capintec CRC-25 dose calibrator (Florham Park, NJ). 

Modification of 89Zr-nHAp with phospha-TOC 

For modification of 89Zr-nHAp, 2 mg of phospha-TOC was dissolved in water and introduced to 

the reaction vessel with ~300 μg (~1 mCi) of 89Zr-nHAp. The reaction was allowed to proceed 

for one hour at room temperature on a thermoshaker. The proposed reaction mechanism is given 

in Figure 5-1. The product was removed using centrifugation and washed several times with 

PBS. Once the 89Zr had decayed ten half-lives, the washes and final product were analyzed on 

Agilent 6530 Quadrupole Time-of-Flight (QTOF) LC/MS (Santa Clara, CA). A 500 μL aliquot 

of each wash was analyzed without any further dilutions. The final product was dissolved in 100 

μL chloroform and a 10 μL sample was diluted to 500 μL of 50% acetonitrile with 0.1% formic 

acid and then analyzed on the QTOF. 
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Figure 5-1 Modification of nHAp with phospha-TOC 

Cell Studies with 89Zr-nHAp-phosph-TOC 

The specific targeting of 89Zr-nHAp-phospha-TOC was tested on AR42J cell lines which have an 

overexpression of somatostatin receptor 2 (SSTR2) [13,16]. Approximately 2 x 106 million of 

cells were plated per well on 12-well plates. 0.5 μCi (1.3 μg) 89Zr-nHAp-phospha-TOC was 

introduced to all wells where 4 of the wells were designated for each of the following: non-

blocking, blocking and bare nanoparticles (no peptide). The blocking study used ~380 μg TOC 

to block the SSTR2 receptors to show that specific binding was occurring. The cells were 

incubated at 37ᴼC in a 5% CO2 atmosphere for 2 hours. The cells were washed with cold PBS 

two times and then trypsinized for 5 minutes. The trypsin was neutralized with an equivalent 
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volume of cell media and then the cells were collected. The collected cells and each wash were 

analyzed for radioactivity using a 2480 Wizard 2 Gamma Counter (Perkin Elmer, MA). 

Cells were counted directly after gamma analysis. A 20 µL aliquot of the cell sample was placed 

on a plastic cell counting chamber and counted in a Nexcelom Cellometer Auto T4 (Lawrence, 

MA) using Cellometer Auto Center version 3.3.7.1. Bovine serum albumin (BSA) protein assay 

was completed following the cell counts. BSA calibration standards for the protein bioassay were 

of 2000, 1000, 500, 250, 125, 62.5, 31.25, and 0 µg/mL in concentration. All samples had a 5-

fold dilution in the same matrix. 10 µL of each standard and sample was aliquoted in triplicate 

into a 96-well plate.100 µL of bicinchoninic acid color agent was added to each well and 

incubated for 30 minutes at 37ᴼC. The plate was analyzed on BioTek Synergy Mx plate reader 

(Winooski, VT) using Gen5 All-in-One version 2.09 software.    

Animal Studies with 89Zr-nHAp-phospha-TOC 

All animal studies were conducted under a protocol approved by the Institutional Animal Care 

and Use Committee (IACUC) at the University of Alabama at Birmingham. Seven-week-old 

female athymic nude mice were anesthetized and implanted with approximately 3 x 106 AR42J 

rat pancreatic tumor cells on their right hind quarters. The tumor was allowed to grow for 10-14 

days before imaging and biodistribution studies were performed.  

Each mouse was injected with approximately 100 μCi (~200 μg) of 89Zr-nHAp-phospha-TOC in 

100 μL of 0.9% sodium chloride solution via tail vein. PET imaging was conducted using a Sofie 

BioSciences GNEXT PET/CT scanner (Dulles, VA) at 4, 24, and 72 h post-injection with post-

imaging biodistributions to examine the uptake of 89Zr-nHAp-phospha-TOC over time. To 

determine if specific uptake was occurring, a blocking study was performed using TOC to block 
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the SSTR2 receptors on the tumors. The blocking PET imaging study was completed at 24 h 

post-injection with post-imaging biodistributions using 100 µg of TOC co-injected with the 100 

µCi of 89Zr-nHAp-phospha-TOC in 100 µL of 0.9% sodium chloride solution via tail vein [13]. 

All images were analyzed using Invicro VivoQuant version 3.5 software (Boston, MA).  

For the post-imaging biodistribution studies, the mice were sacrificed via cervical dislocation at 

4, 24, 72 hours post-injection, and organs were harvested and analyzed for radioactivity using a 

2480 Wizard 2 Gamma Counter (Perkin Elmer, MA).  Radioactivity associated with each organ 

is expressed as percentage of injected dose per gram of organ (%ID/g). 

Statistical Analysis 

Prism version 7 was used to determine the p-values using one-way ANOVA multiple 

comparison with 95% confidence where p < 0.05 was considered significant.  

5.3 Results and Discussion 

Co-precipitation preparation of 89Zr-nHAp 

The production of the co-precipitated 89Zr-nHAp resulted in a 98.7±1.3% radiochemical yield 

which illustrates that the coprecipitation labeling is highly efficient. Figure 5-2 shows an image 

of the co-precipitated 89Zr-nHAp. The TEM image showed irregular spherical particle shapes 

that measure an average of 64.8 nm (n=108) with a range in particle size of 8.9 – 175 nm. The 

average particle size and range of the co-precipitated 89Zr-nHAp compared to the needle- and 

sphere-shaped particles showed smaller average particle sizes as well as a narrower range.  
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Figure 5-2 TEM image of co-precipitated 89Zr-nHAp 

The stability of the co-precipitated 89Zr-nHAp over the course of 7 days (~ 2 half-lives) showed 

that 96 ± 3% of the radioactivity remained associated with the particles. This stability showed no 

significant difference compared to the previous work where the 89Zr labeled sphere-shaped 

particles were 100 ± 3% (p = 0.105) and 89Zr labeled needle-shaped particles were 98.2 ± 1.2% 

(p = 0.425) intact after two half-lives. The particle size in conjunction with the stability results 

led to the decision to use the co-precipitated 89Zr-nHAp particles for further experiments 

involving the modification of the nanoparticle for receptor targeting.      

Modification of 89Zr-nHAp with phospha-TOC 

The QTOF calibration curve for phospha-TOC and washes for the modified 89Zr-nHAp- 

phospha-TOC are provided in Figure 5-3. The QTOF data showed that there was no phospha-

TOC present after the fifth wash therefore validating that the mass peak at 1129 on the final 

product is the phospha-TOC attached to the 89Zr-nHAp. The final amount of the phospha-TOC 

attached to the nHAp was 1.019 µmol/mg of nHAp.  
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Figure 5-3 Phospha-TOC concentration calibration curve (left)  

and the phospha-TOC measurement for each wash (right) 

Cell Studies with 89Zr-nHAp-phosph-TOC 

Figure 5-4 shows the percent binding of the 89Zr-nHAp-phospha-TOC per µg of protein where 

non-blocking had 0.012 ± 0.002 %/µg, blocking had 0.0088 ± 0.0013 %/µg and bare particles 

had 0.0013 ± 0.0002 %/µg, and the percent binding of the 89Zr-nHAp-phospha-TOC per million 

cells where non-blocking yielded 2.3 ± 0.7 % per million cells, blocking yielded 1.5 ± 0.3 % per 

million cells and bare particles yielded 0.18 ± 0.03 % per million cells. In both graphs, the data 

show there is significant difference between the non-blocked cells and the blocked cell for both 

per µg of protein (p= 0.0006) and for the percent binding per million of cells (p=0.0007). This is 

also true of the comparison between the non-blocked cells targeted with 89Zr-nHAp-phospha-

TOC and the cells that were targeted with bare particles (no peptide), where the p-value for the 

percent binding per µg of protein was 0.0009 and for the percent binding per millions of cells 

was 0.0006. This study shows that the bare particles have minimal nonspecific binding and the 
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success of the nHAp modification for targeting the SSTR2 receptors. These cell studies confirm 

that the 89Zr-nHAp is modified with phospha-TOC and illustrates specific targeting.  

 

Figure 5-4 Cell Study using AR42J cell which overexpress SSTR2 receptors 

Animal Studies with 89Zr-nHAp-phospha-TOC 

PET imaging studies for the non-blocking mice at 4, 24, and 72 hours with the post-imaging 

biodistribution data can be found in figure 5-5. The images show tumor uptake at each time 

point. The standard uptake value (SUV) data shown in Table 5-1 shows the highest SUV at 24 

hours where the SUV for 4 h, 24 h and 72 h was 0.34 ± 0.19, 0.9 ± 0.5, and 0.6 ± 0.2, 

respectively, although there is no significant difference between the three points (p=0.1073). 

Furthermore, in Table 5-1, there is no significant difference in SUV between the tumor and the 

background (muscle) at 4 h. However, a significant difference was found between the tumor and 

the background (muscle) during the 24-hour and 72-hour time periods with p-values of 0.026 and 

0.0055, respectively. The biodistribution shows no significant difference between tumor uptake 

for each time point (p = 0.97) with background levels observed in the lungs, spleen, and liver. 
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Figure 5-5 (A) PET imaging at 4, 24, and 72 hours of 89Zr-nHAp-phospha-TOC targeting agent for SSTR2 receptors 

and (B) the corresponding post-imaging biodistribution 

Table 5-1 SUV data for the different imaging time points for tumor and muscle 

Time Point 
SUV  

for Tumor 

SUV  

for Muscle 

Tumor to 

Muscle 

comparison 

p-value 

4 hours 0.34 ± 0.19 0.26 ± 0.08 0.24 

24 hours 0.9 ± 0.5 0.24 ± 0.05 0.026 

72 hours 0.6 ± 0.2 0.165 ± 0.017 0.0055 

24 hours Blocked 0.16 ± 0.09 0.09 ± 0.02 0.079 

 

Blocking studies were conducted with post imaging biodistribution conducted at 24 hours post 

injection. Figure 5-6 displays the results of the blocking study compared to the non-blocking 

study at the 24-hour time point. Image analysis illustrated a significant difference in the SUV 

found in the non-blocked tumor relative to the blocked tumor at 24 h post injection. The SUV 

value data for the non-blocked vs the blocked tumor was 0.9 ± 0.5 and 0.16 ± 0.09 with a p-value 

of 0.018.  In the biodistribution, significantly less uptake was found in the blocked tumor than 
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the non-blocked tumor (p-value 0.042). For all other organs there was no significant difference in 

uptake (p-values > 0.05). Overall, the blocking study illustrated specific targeting of the 89Zr-

nHAp-phospha-TOC to the SSTR2 receptors in this tumor model.  

 

Figure 5-6 PET imaging at 24 hours of 89Zr-nHAp-phospha-TOC for non-blocking versus block of SSTR2 receptors 

using TOC and the corresponding post-imaging biodistribution 

 

5.4 Conclusion 

Our work shows that the co-precipitated 89Zr-nHAp had similar stability with better particle size 

distribution compared to the commercially available nHAp in our previous work (Chapter 4). 

The 89Zr-nHAp was modified with phospha-TOC and the modified nHAp showed specific 

targeting to SSTR2 on the AR42J cell line. The preliminary animal studies further confirm the 

specific targeting between the non-blocked and blocked animal model. Overall, the preliminary 

studies with 89Zr-nHAp-phospha-TOC are very promising for nHAp as a new platform for PET 

imaging agents.   
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6.1 Conclusions 

Positron emission tomography (PET) imaging is a non-invasive and highly quantitative way to 

diagnosis different diseases in several medical fields including oncology, neurology and 

cardiology. The idea of personalized care using PET imaging is a key driver for advancing 

research into developing new platforms for PET imaging agents leading to more effective 

diagnosis and better treatment planning. 89Zr has a long half-life, a low maximum positron 

energy and established radiochemistry that has raised the demand for this isotope in nuclear 

medicine. Although 89Zr has great potential as PET nuclide, it is a known bone seeker meaning if 

it decomplexes it will be taken up in the bone. This bone uptake can be exploited by using the 

natural affinity of 89Zr to create for nHAp based PET agents. Overall this work provides the basis 

(proof of concept) for showing the implementation of nHAp as a new platform of PET imaging 

agents. 

89Zr Production and Separation 

Our initial studies aimed to produce 89Zr on the UAB TR-24 cyclotron. The proton beam energy 

was degraded using an aluminum degrader to prevent the production of 88Zr and an yttrium 

sputtered target was designed to be compatible with the existing coin slot holder. The control 

over the yttrium mass and the target cross section area allowed for an efficient separation of the 

89Zr from the yttrium with a final product with reasonable specific activity. This method is now 

the standard practice for the production of 89Zr at UAB for human and research use. 

An alternative method of separation for 89Zr was investigated in collaboration with Brookhaven 

National Laboratory, to allow for ease in automating the separation system and potentially 
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eliminating the need to remove the chelator before injection. Low-level activity separations of 

89Zr from Y on pCST resin using IDA to elute off the 89Zr showed reproducibility with 

successful test labeling of a DFO conjugated antibody. These results show the potential for this 

alternative method of separation.  

Development of nHAp as PET Tracer 

The natural affinity of 89Zr and other radionuclides for bone was exploited to synthesize 

radiolabeled nHAp particles and develop rapid radiochemistry to enable a new class of imaging 

agents with kit-like formulations. The 89Zr-nHAp was shown to be a good candidate for the 

development of new targeted PET imaging agents while 153Sm-nHAp was shown to be a strong 

candidate for therapy. The particles were easily labeled with bone seeking radionuclides and 

have high in vitro stability with little bone uptake in vivo.  

A rapid modification method for nHAp using an analog of the peptide TOC to target SSTR2 

receptors was developed using the preparation of co-precipitated 89Zr nHAp. The co-precipitated 

89Zr-nHAp had similar stability with better particle size distribution compared to the 

commercially obtained sphere-shaped and needle-shaped nHAp. The 89Zr-nHAp was rapidly 

modified with phospha-TOC and the resulting agent showed specific targeting for the SSTR2 

receptors. The preliminary animal studies further confirm the specific targeting between the non-

blocked and blocked animal model. Overall, the preliminary studies with 89Zr-nHAp-phospha-

TOC are very promising for nHAp as a new platform for PET imaging agents. 
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6.2 Future Work 

While the low-level activity separations with our new method of 89Zr purification were 

promising, full size production scale separations should be performed. The production scale 

separations will allow for comparisons of large batch specific activities and test labeling 

comparisons. Further ICP-MS analysis should be conducted on the production scale separation 

fractions for both Y and Ti. ICP-MS of the Ti will supply information on the stability of the resin 

as more radioactivity is added to the column. 

While the preliminary animal studies of the 89Zr-nHAp-phospha-TOC were promising, further 

studies should be conducted for reproducibility. Further investigations should be carried out to 

determine if the bone uptake in the preliminary studies can be contributed to the 89Zr 

decomplexing or nHAp adhering to the bone. Since nHAp is used in bone grafts, it might have 

an affinity for damaged or growing bone. This may be investigated using aged normal mice that 

have been tested negative for bone disease. There is also a huge potential for other studies using 

the co-precipitation method to form nHAp as a multilabeled agent for theragnostic applications. 

As example, multilabeling co-precipitated nHAp with 89Zr and 153Sm would allow for PET 

imaging with the 89Zr while therapy is occurring using 153Sm.   

In conclusion, the work present in this thesis has set up excellent groundwork for the 

development of nHAp as a new platform for PET imaging agents. This work has shown the rapid 

labeling and modification for the development of targeted agents is possible for nHAp. The 

implementation of bone seeking radionuclides in the co-precipitation method of nHAp opens 

new avenues of research for applications in imaging and targeted therapy.  
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