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Anodic Cyclization Reaction: Manipulation of Reaction Pathway   
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by 
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Doctor of Philosophy in Chemistry 
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Professor Kevin D. Moeller, Chair 

 
 

In recent years, synthetic chemists have been expressing significant interest in electro-organic 

synthetic methods. This interest is being fueled by the existence of an increasing number of 

successful methods in the literature and the availability of new electrochemical equipment that 

removes the barrier to attempting an electrolysis reaction for the first time. Yet while these 

developments have fueled growth in some areas of electro-organic synthesis (the recycling of 

chemical catalysts for example), other areas remain underdeveloped. One such area is the 

exploration of reactions that can be triggered directly as an electrode surface without the use of 

any chemical reagent. Such reactions lead to highly reactive intermediates that allow for entirely 

new modes of reactivity to be explored. For example, our group has been working to develop 

anodic oxidation reactions that convert electron rich olefins into reactive radical cation 

intermediates. The reactions lead to a reversal in the polarity of the original olefin that enable the 

normally nucleophilic groups to be used as electrophiles. The result is an opportunity to change 

the entire manner in which the synthesis of a complex target is approached. Simply put, new 

modes of reactivity offer an opportunity to not only change the way individual steps in a 
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synthetic sequence are conducted but also change the overall route because groups that normally 

function in a certain manner no longer behave the same way. While efforts to demonstrate the 

power of these opportunities have been successful for a variety of reactions in the group, our 

ability to continue forwarding the chemistry into even newer areas relies on our continuing to 

expand our knowledge of the reactive intermediates involved in electrochemical oxidation 

reactions, how they behave, and how they can be channeled down productive pathways. With 

this in mind, the main focus of this dissertation is to build our understanding of the reactive 

intermediates involved in anodic cyclization reactions and how those intermediates can best be 

applied as synthetic tools. The work probes the advantage of directly using the radical cations 

intermediates generated at an anode for triggering bond formation relative to pushing the 

reactions away from pathways that utilize the radical cation and toward pathways that involve an 

oxidative radical pathway. Along these lines, a synthetic route that allows both pathways to be 

accessed from the same starting materials has been developed. Using the chemistry, reactions 

that generate seven membered ring products and oxidative tandem cyclization reactions have 

been explored. In addition to these studies, an example of how optimizing a reaction sometimes 

requires one to pay attention to intermediates downstream of the cyclization is reported. Finally, 

the electrochemical method has been extended to an example of how it can be used in the 

synthesis of a complex molecular surface. 
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Chapter 1: Introduction 

This chapter covers the fundamental background of electrochemistry and anodic cyclization 

reactions needed for the subsequent chapters.  Section 1.1 discusses organic electrochemistry in 

terms of physical organic chemistry basics including the understanding of Nernst Equation and 

the application of cyclic voltammetry.  Section 1.2 covers a general introduction to anodic 

cyclization, the experimental apparatus required for the reactions, and the factors (including 

current, concentration, temperature) that can affect reaction results. This chapter serves two 

major functions. (1) It provides a set of basic principles for understanding the reaction 

observations in the rest of this thesis. (2) It serves as a quick and simplified guide to 

understanding electro organic synthesis in general.      

1.1 Organic Electrochemistry 

Organic electrochemistry shares the same fundamental principles with the larger area of 

electrochemistry (analytical devices, batteries, energy storage devices, etc.), but it is more 

focused on organic chemical transformations. The pioneering work in this area originated with 

Faraday, who defined the laws of electrolyses and terms like anode, cathode, etc.,  and Kolbe, 

who developed electrochemical decarboxylation reactions, in the period between 1820-1840.1 

Toward the end of the nineteen century Tafel and Haber introduced a method for the reduction of 

nitrobenzene (the now famous Haber process, 1898) that contributed greatly towards our 

understanding of organic electrode process. The first half of the twentieth century witnessed 

further growth in synthetic electrochemistry. For instance, Hickling introduced a potentiostat that 

brought electrochemical experiments into more common practice. After World War II, most of 
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the attention was transferred to non-aqueous solvents reactions and theoretical foundations on the 

physical organic side1. The first edition of Organic Electrochemistry (M. M. Baizer, ed., 1973) 

led to a more unified understanding of organic electrosynthesis and provided a foundation for 

future growth. Yet, while this growth was occurring, much of the larger synthetic community 

ignored the advantages of the technique. Most organic chemistry text books restricted their 

discussion of electrochemical methods to the Kolbe Electrolysis discovered in 1849. However, a 

series of dedicated research groups continued to press the issue. Seminal works by the groups of 

Schafer, Steckhan, Saveant, Simonet, Lund, Shono, Torii, Fuchigami, Yoshida, Fry, Peters, 

Little, and Moeller forwarded ever more synthetically relevant examples of how electrochemical 

methods could benefit the larger area of synthesis1,2.   This led to the modern-day situation where 

an ever-increasing number of synthetic chemists are starting to take advantage of the power of 

organic electrochemistry.2-8    

1.1.1 Nernst Equation 

Reactions at an electrode surface are at their core electron-transfer processes. As such, they fall 

into two major classes. Inner sphere electron transfers that involve bonding processes between 

two groups during an electron-transfer process and outer sphere electron transfers that exchange 

an electron without a bonding event. At an electrode the two processes are easy to distinguish. 

For an inner sphere electron transfer, the molecule becomes bound to the electrode either before 

or during the process. For an outer sphere electron transfer, an electron jumps between the 

electrode and the substrate. Most organic electrochemical processes involve outer sphere electron 

transfer. For example, a single electron transfer between an electrode to a carbonyl moiety to 

form a radical anion in solution is typically an outer sphere electron transfer. The same is true for 
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the one electron oxidations of electron-rich olefins that are the main focus of the thesis that 

follows.  

All such processes are governed by the Nernst Equation. This equation defines the relationship 

between the potential (energy) necessary for an electron-transfer process and the equilibrium that 

occurs at the electrode surface. For example, consider the generic reduction shown in Scheme 

1.1.  

 

Scheme 1.1 Reduction Couple Reaction 

For this transformation, the potential at the electrode can be described by the Nernst equation as 

follows.   

 

Figure 1.1 Nernst Equation 

E° reflects the standard potential. According to definition, the standard potential (reduction 

potential by definition) of the A/A•- couple is the standard electromotive force when this couple 

is opposed to normal hydrogen electrode (NHE) whose potential is set to 0 artificially.1 The 

potentially E is a number that can be measured experimentally for a fully reversible system. To 

understand this better in terms of practical means, a brief introduction to the commonly used 

cyclic voltammetry technique requires.  

A + e A
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1.1.2 Cyclic Voltammetry 

Cyclic voltammetry is a common technique used to measure substance oxidation and reduction 

potentials. It is conducted by varying an applied potential to a solution in a linear fashion and 

measuring the current associated with that varied potential. The potential is swept in both 

directions leading to the “cyclic” part of the experiment (Figure 1.2). The voltammogram is 

plotted on an X,Y-axis with the X-axis being potential and the Y-axis being current. For a fully 

reversible electron transfer, the experiment leads to a “duck shape” voltammogram. This 

voltammogram allows one to measure the equilibrium oxidation potential of the substrate being 

studied.  can be drew, which contains information of substance oxidation/reduction potential.9  

 

Figure 1.2 Cyclic voltammetry sweep 

In the following example of reversible Fc+ reduction (Figure 1.3), the voltammogram is 

achieved using 1mM Fc+ solution at a scan rate of 100mV/s.9  
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Figure 1.3 Fc+ reduction voltammogram 

In the forwarding scan, (A to D), Fc+ is being reduced to Fc. At point C, the current reached its 

highest value (ip,c). At this point, the current passed is a result of both material that was adsorbed 

onto the surface of the electrode and material that is diffusing to that surface. As the experiment 

sweeps to more negative potential, the material absorbed on the electrode is consumed and the 

current falls to the diffusion control limit for the material diffusing to the surface. If the CV were 

continued past point D, the current would stabilize at this level. The reverse scan then show the 

same, but opposite trend. At point B and E, Fc+ equals to Fc concentration. This point is the 

midway point between the two peak potentials that are separated by a distance of 0.059/n where 

n is the number of electrons transferred. According to Nernst Equation, the reduction potential of 

this process E = E1/2 = 1/2 (Ep,a + Ep,c). (The number of E1/2 matches average potential of Ep,a and 

Ep,c). The potential measured here is a thermodynamic potential. Note that, for a completely 

chemically reversible process, current associate with point F and point C are the same9.   

The following example shows a chemically irreversible oxidation process. 
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Figure 1.4 Example of chemically irreversible voltammogram 

Due to its irreversibility, Ep/2 is reported as oxidation potential of this process. The value 

measured is a kinetic value. It depends on the concentration of the reagent, the concentration of 

electrolyte, the sweep rate, etc. In other words, to make comparisons between kinetic potentials 

of different substrates all of the other reaction parameters must be identical.  The kinetic value is 

also dependent on the rate of a follow up reaction. This will be discussed in section 1.3.4. 

1.2 Anodic Cyclization Reaction 

With this backdrop, the Moeller group has been systematically studying anodic cyclization 

reactions and their application to organic synthesis.4,10 In general, anodic oxidation reactions are 

umpolung reactions.11-14 For an anodic cyclization, the reactions involve a direct coupling 

between two nucleophiles with no need for additional transformations to convert the polarity of 
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one of the groups. The reaction are frequently more gentle and selective than reactions that 

involve a chemical oxidant,15 and they can be used to provide a straightforward method for 

constructing complex ring systems16.  

1.2.1 General Application of Anodic Cyclization Reaction 

In general, all electrochemical coupling reactions can be fit into one of two main categories 

(Figure 1.5) in that they are either oxidation or reduction reactions. Both are by their very nature 

umpolung reactions. In an oxidation reaction, an electron is removed from a substrate to convert 

an electron rich nucleophile into an electron poor electrophile. In a reduction reaction, an 

electron is added to the substrate to convert an electron poor electrophile into an electron rich 

nucleophile. Both can be used to trigger coupling reactions. Oxidation reactions occur at the 

anode in an electrolysis cell and reduction occur at the cathode. Both reactions occur in every 

electrolysis, but normally one of the reactions is the primary reaction of interest and the other is 

an “auxiliary reaction”. In the thesis below, we will be focusing on oxidative coupling reactions. 

In each case, the auxiliary reaction will be the reduction of methanol to hydrogen gas and 

methoxide. The methoxide neutralizes the acid generate at the anode during the oxidation.  

  

Figure 1.5 Electrochemical coupling reaction 
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An intramolecular anodic cyclization reaction starts when one of the electron rich moieties in a 

substrate is oxidized. In our group, this is typically an olefin and the electron-transfer convert the 

olefin into a very reactive, electrophilic radical cation intermediate. The radical cation is trapped 

by an internal nucleophile (the second electron-rich moiety). To accomplish this task, the initial 

group oxidized typically has a lower oxidation potential than any other electron rich moieties in 

the molecule. The qualifying word “typically” was used because there are circumstances where 

an electrolysis reaction is governed by the Curtin-Hammett principle.17 In these cases, a group 

with a low oxidation potential that does not participate in a desired coupling reaction is initially 

oxidized. A subsequent intramolecular electron transfer then leads to the internal oxidation of a 

second group. It is the reactive intermediate generated from this second group that triggers the 

desired coupling reaction. The coupling reaction drains the equilibrium associated with the 

intramolecular electron transfer toward the desired cyclization product. For the most part, we 

will treat these situations as special cases as they arise. A more detailed discussion of the general 

mechanism and how we think about the reactions will be presented below in Section 2.1.  

For now, it is important to point out that our group along with others have explored anodic 

cyclization reactions that arise from a series of substrates. In these substrates, the initial sites of 

oxidation and the trapping groups for the subsequent intermediates have been varied so that an 

empirical feel for the reactions has been developed. Those results have provided a mechanistic 

model for how to think about the reactions and how to address problems with new cyclization 

reactions as they arise. Since all anodic coupling reactions proceed through similar types of 

mechanisms, the details of the reactions studied to date provide valuable insight into how new 

reactions can be designed and optimized.  
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With this in mind, the groups oxidized in such reactions have been electron rich aryl rings18, enol 

ethers15,16,18-26, ketene acetals15,17,27-34, and amides (generating N-acyliminium ions35,36 and 

amidyl radicals37). The reactive intermediates generated from these oxidation reactions have 

been combined with a variety of different trapping partners based on the nature of the products 

one has wanted to generate. For C-C bond formation, trapping partners have been di- and tri-

substituted olefins21,22, allylsilanes24,28,31, enol ethers18,20-22,31,33, heterocycles4,17,27,38, and 

electron-rich aromatic rings18. For C-O bond formation, trapping partners can be primary 

alcohols15,19,23,29,39,40,  amides34 and carboxylic acids41. For C-N bond formation, trapping 

partners can be sulfonamides39,40,42,43 and amines44. During these studies, a number of total 

syntheses have been completed including with respect to C-C bond formation, Alliacol A45, 

Arteannuin ring skeleton27, Cyathin core46, Heptemrone B16, and Guanacastepene16. For C-O 

bond formation, (+)-Nemorensic acid15 and (-)-Crobarbatic acid29 have been made along with a 

series of C-glycoside derivatives.(make sure that you have the main references here). For C-N 

bond formation, a series of amino acids derivatives and peptidomimitics have been synthesized.41 

A brief summary of reaction types based on substrates and trapping partners that have been used 

is presented in Table 1.1. Some of the more interesting observations made in connection with 

these reactions will be discussed in the rest of this chapter.  
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Table 1.1 Brief Summary of Anodic Cyclization Reaction 

 

The first of these observations is that the electrochemical reactions can not only be used during 

the early stages of a synthesis for establishing synthetic building blocks, but also at the end of 

multi-step syntheses generating complex ring structures.47 The method is both gentle and very 

versatile.  

1.2.2 Reaction Experimental Apparatus 

Before undertaking any further discussion of key reaction observations, it is important to 

examine how the reactions are actually conducted. Organic electrolysis set up are relatively 

straightforward. The reaction cell can be as a simple as a three-neck round bottom flask or a vial 

for an undivided cell reaction (one where the anode and the cathode are in the same chamber, 

Figure 1.6).1 The flask is then fitted with two carbon rods as electrodes that are attached to a 

direct current (DC) power source. This is the setup used for most of the reactions discussed in 
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this thesis in Chapter 2, 3 and 4. The two half reactions (oxidation of the substrate at the anode 

and reduction of methanol at the cathode) occur automatically when a constant current is applied 

to the reaction. The key then is the power supply used to apply that current.  

        

Figure 1.6 Electrolysis Set-up  

 

  

Figure 1.7 Power Source  

Anode
(Oxidation)

Cathode
(Reduction)

n

MeO

X
Y

n

MeO

X
Y

MeOH

OMe + 1/2 H2
electrolyte solution



 
 

12 

As for this DC power source, Figure 1.7 shows several different types of options that can be 

used. The system shown in top left has been used in Moeller lab for over 30 years, an indication 

of the durability associated with electrochemical equipment. This set up is comprised of an 

AC/DC converter, a potentiostat that regulates the current that is allowed to flow through the 

electrochemical cell, an ammeter that monitors that current, and a coulometer that is used to 

record the quantity of electric charge that is passed through a reaction. The reaction setup on the 

bottom left is shown to illustrate how the power source for an electrochemical reaction can be as 

simple as a toy photovoltaic. The point is that any power source can be used to push current 

through a reaction. The yields obtained for reactions using this simple reaction setup are not 

significantly lower than those obtained using the more complex setup. On the right are more 

modern commercial setups that take advantage of a condensed engineering designs to provide 

compact, versatile power supplies for numerous electrochemical applications and experiments. 

(All commercially available, top is from B&K Precision, bottom is from IKA)  

1.2.3 Constant Potential and Constant Current Electrolysis 

With a power supply identified, an electrolysis reaction can be conducted as either a constant 

current or constant potential experiment. In our group, we mainly take advantage of constant 

current electrolyses. We do so primarily because a constant current electrolysis does not require 

the use of a reference electrode. This makes the reaction easier to conduct, and therefore easier to 

adopt by others. In addition, constant current conditions can provide advantages in some aspects 

over a constant potential electrolysis, which will be discussed later. In a constant current 

electrolysis, a constant current is passed through the electrolysis cell and the working potential at 
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the electrodes (the potential needed to reduce and oxidize the species in the medium) is allowed 

to float (Figure 1.8). 

           

Figure 1.8 Constant Current Electrolysis 

The result is that the working potential at each electrode (Eworking) automatically adjusts to the 

oxidation potential of the substrate at the anode and the reduction potential of the substrate at the 

cathode. This is illustrated in the right hand “cartoon” presented that illustrates the working 

potential at the anode during a constant current electrolysis. In the reaction, the potential climbs 

until it matches that of the potential associated with the most easily oxidized group in solution. 

The potential then stays at that level until the oxidation of the substrate approaches completion. 

At that point, the amount of the initial substrate present at the electrode is not high enough to 

satisfy the flow of current. This causes the working potential at the anode to climb until it 

reaches the potential of the group with the next lowest oxidation potential in solution. It will then 

hold at that position as long as the need to pass current through the cell is satisfied. One can put 

off the rise in potential by running the reaction at low current density, a situation that lowers the 

amount of material needed to satisfy the demand for current.8 This can be seen in the figure as 

the change in percent conversion before the climb in current occurs. The lower the current 

density, the higher the percent conversion that can be obtained before any loss in selectivity. In 
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this system, the automatic adjustment of the potential allows for the selective oxidation of a wide 

variety of substrates with the exact same reaction setup.  

The second method is the use of a controlled potential setup. In such experiments, the working 

potential at the anode (or cathode) is set to have a specific value relative to a reference electrode. 

The value selected matches that of the group one wants to oxidize. That value is then held 

constant for the duration of the experiment, a scenario that leads to a specific selectivity that does 

not change during the course of the reaction. However, as the substrate is consumed in such an 

experiment, the resistance across the cell increases and the current decreases. Due to this 

phenomenon, it takes longer time for the reaction to finish and it is very difficult to get the 

reaction to proceed to completion. This is a disadvantage for a typical laboratory experiment, but 

it can be very advantageous for industrial processes that utilize continuous flow cells that 

maintain a constant presence of substrate.48   

1.2.4 The Influence of Substrate Concentration  

When thinking about concentration, we need to consider electrode materials, electrode surface 

double layer phenomena, substrate, and electrolyte. Simply put, radical cations are highly 

reactive intermediates, and their effective concentration at the surface of an electrode and the 

environment of the reaction in the region of that electrode can both play a large role in the 

reactions that follow. For starters, too high of a concentration of radical cation can lead to 

polymerization reactions and decrease the amount of intramolecular cyclization. For this reason, 

the nature of the electrode surface used can be important. Take for example the reaction 

illustrated in Scheme 1.2. In this case, the reaction outcome was significantly influenced by the 

nature of the anode material.26 There are two potential causes for this discrepancy. First, the use 
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of the high surface area reticulated vitreous carbon anode (RVC) dramatically reduces the 

effective concentration of the radical cation at the surface of the anode. Two reactions run at the 

same current will lead to different current densities (the effective concentration of the oxidant) 

depending in the surface area of the anode. A high surface area means a low effective 

concentration of the oxidant and hence a low effective concentration of the resulting radical 

cation. This favors the intramolecular reaction. Second, high surface area RVC anodes favor two 

electron oxidations relative to Pt electrode.26 We have seen in a number of reactions, that the rate 

of the second oxidation step in an electrolysis can play a significant role in the success of the 

reaction, a topic that will be discussed in detail later on.49 In the reaction shown, it is likely that 

the RVC electrode plays both roles in optimization of the yield. 

 

 

Scheme 1.2 Anode Material Impact 

Another phenomenon that can prove very important in an electrochemical reaction is the 

formation of a “Double Layer” involving the electrolyte. Figure 1.9 shows a double layer model 

for the solution around an anode (an outer Helmholz Layer for physical chemists).  
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Figure 1.9 Double Layer Model/ Helmholz Model 

Due to electrical field imposed during an electrolysis, the anode surface/solution interfacial 

region forms compact layers of ions, negative ions and positive ions alternatively stacking layer 

by layer. In the Figure, a layer of negative ions is shown stacking next to the anode which is 

positively charged. Since the electric field decreases as the distance from the electrode increases, 

the layers become more diffuse as the distance increases. The first two layer are relatively well-

defined leading to the “Double Layer” term. This phenomenon together with the nature of the 

actual electrolyte can be used to control the region of the reaction solution close to the electrode; 

a region in which many electrochemical reactions occur. This is important because double layers 

can be used as a to (1) exclude MeOH solvent that would trap a reactive intermediate too quickly 

and (2) control the concentration of substrate (forming radical cation) due to its solubility in the 

double layer generated. For example, a more polar electrolyte would lead to a high concentration 

of a polar substrate, etc. Consider the chemistry highlighted in Scheme 1.3 showing the effect of 

electrolyte on the generation of a C-glycoside derivative.49 
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.  

  

Scheme 1.3. The Influence of a double layer on the reaction  

Note how the use of a non-polar electrolyte and solvent led to poor current efficiencies for the 

reaction (2 F/mole being the theoretical amount of charge required for the reactions. Entry 3 and 

4 in the table directly compare the role of the electrolyte. The substrate is polar in this case and 

not as soluble in a double layer comprised of a “greasy” hydrophobic electrolyte. Hence, the 

current efficiency of the reaction is poor with the current being drained off toward the oxidation 

of methanol solvent as background oxidation. As can be seen in entry 4, the use of a more polar 

electrolyte (less greasy) improves the solubility of the polar substrate in the double layer thus 

improving the current efficiency of the reaction. The less polar electrolyte can be used very 

favorably with a less polar substrate.  

In another case, the effect of the double layer could be clearly seen in terms of its ability to limit 

the amount of methanol present at the electrode surface.  
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Scheme 1.4 Electrolyte Effect in Reaction 

By utilizing a hydrophobic electrolyte such as Et4NOTs, the concentration of methanol in double 

layer was greatly decreased. This decreased the rate in which methanol trapped sulfur radical 

cation allowing more time for the necessary electron-transfer and desired cyclization. The result 

was a higher yield of the desired product. 17 

1.3 Mechanism Related Topics in Anodic Cyclization 

Reactions  

A systematic mechanism model will be described in Chapter 2 because the project described 

there helped to define the last set of principles we currently use to guide the development on new 

anodic coupling reactions. The topics in this section are relatively independent of each other, but 

all relate to the anodic cyclization discussed in Chapter 3 and 4.  

1.3.1 Curtin-Hammett Controlled Reaction 

When a substrate is oxidized at an anode, it is not always clear where the radical cation generated 

is located. When a substrate contains several electron rich functional moieties, intramolecular 
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electron-transfer reactions can occur leading to equilibrium structures that may in fact be 

resonance structures (no movement of atoms between the two or more alternatives). One case of 

such a reaction was shown above in Scheme 1.4. This example was an extension of the initial 

dithioketal example studied (Scheme 1.5).  

  

Scheme 1.5 Curtin-Hammett Controlled Reaction 

In this reaction, the dithioketal has a lower oxidation potential (Ep/2 = +1.1 V vs Ag/AgCl) than 

the enol ether (Ep/2 = +1.4 V vs Ag/AgCl). Hence, the initial oxidation at the anode occurs at the 

sulfur atoms again leading to a sulfur based radical cation. An intramolecular electron transfer 

reaction can lead to the formation of an enol ether radical cation that is by definition (the 

oxidation potential) higher in energy. However, the enol ether radical cation can be trapped by 

the alcohol in the molecule, a reaction that we know to be very fast39. This drains the equilibrium 

toward the desired cyclization product. This is an example of the Curtin Hammett principle in 

action. The barrier for the cyclization is far lower in energy than the barrier for methanol 

trapping of the sulfur based radical cation. Hence, the product is determined by the fast 

cyclization reaction. When the intramolecular alcohol trapping group was protected with a silane, 

then the only product generated was trapping of the sulfur based radical cation by methanol17. 
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This type of Curtin-Hammett control of an anodic oxidation reaction has been seen on numerous 

occasions including the oxidation of amides in the presence of much more electron-rich aromatic 

rings.50 

1.3.2 Thermodynamic Control and Kinetic Control 

While it was tempting to suggest that all electrochemical reactions are governed by the Curtin-

Hammett principle, this turns out to not be the case. For example, when a competition study was 

set up between a sulfonamide anion and an alcohol trapping group to test their ability to undergo 

an oxidative cyclization with a dithioketene acetal, a different scenario was found (scheme 1.6)39.   

 

Scheme 1.6 Thermodynamic Product vs Kinetic Product 

Under basic anodic oxidation conditions, the sulfonamide is deprotonated and the N anion is 

formed40. This led to a question as to whether the oxidative coupling of a sulfonamide anion and 

an olefin involved an oxidation of the nitrogen anion to form a nitrogen-based radical that adds 

 

Energy
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to the olefin or a trapping of the olefin radical cation by the nucleophilic nitrogen-anion. It was 

thought that the two intermediates might equilibrate as illustrated in the center of the Scheme 

provided. To test this idea, an alcohol nucleophile was added to the mix. If the reaction was 

simply the result of a nitrogen-based radical adding to the olefin, then no alcohol trapping would 

occur. However, if the reaction led to the formation of the olefin radical cation, then an alcohol 

trapping might occur. In the event, the alcohol trapping occurred and the reaction was shown to 

involve the olefin radical cation. Initially, it was thought that the reaction was controlled by the 

Curtin-Hammett Principle in analogy to other reactions. However, further study showed that the 

N-trapping product was the result of thermodynamic control. Its formation was favored by non-

polar reaction conditions (slow down kinetic alcohol trapping), lower current (a slower second 

oxidation that drives the reaction to completion) and increased temperature. The alcohol trapping 

product was the kinetic product. Its formation was enhanced by polar reaction conditions, low 

temperature (the cyclization is exothermic), and higher currents. So, in this case the reaction 

product obtained was not completely controlled by Curtin-Hammett kinetics.    

1.3.3 Reversible Radical Cyclization 

In general, the cyclization of a radical cation with a carbon-based nucleophilic group is regarded 

as a potentially reversible radical process. The key to the word potentially is the second oxidation 

step that follows the cyclization. This understanding of the reactions was first formed by 

observing cyclization between enol ether derived radical cations and allyl- and vinylsilane 

trapping groups. Key was an early observation of Miura and Oshima that indicated that  a-silyl 

radicals were formed in preference to b-silyl radicals (Scheme 1.7).51  
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Scheme 1.7 a-silyl Radical over b-silyl Radical 

This observation was determined by examining the addition of a thiol radical to a silyl-

substituted vinyl cyclopropane.  In the upper case shown, only the a-silyl radical was generated. 

In the lower case shown, the substrate was designed to further stabilize the β-silyl radical. Even 

so, the a-silyl radical was still the preferred product. With this piece of information (silyl radical 

was preferred), experiments were designed to probe the preferences of a radical cation-based 

reaction (Scheme 1.8). In this experiment, it was thought that if the chemistry proceeded through 

a radical-type addition, a six-membered ring would be preferred. If the reaction proceeded 

through an electrophilic-like addition, then then the five membered ring product would be 

preferred. The result of this experiment would be compared to a molecule that had no silyl group 

to establish the role of the silyl group. 
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Scheme 1.8 Radical Type vs Electrophilic Type Trapping 

The comparison of the two reactions are shown in Scheme 1.9. 25 

  

Scheme 1.9 Parallel Experiments on Cyclization 
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In the upper case, the oxidation took advantage of a substrate missing the silyl group. As with 

many such reactions, the yield of product obtained was poor. The reaction leads to products from 

methanol trapping, proton or hydrogen atom elimination reactions, polymerization reactions, etc. 

In the past, we showed that the presence of an allylsilane group to channel the reaction down the 

elimination pathway was needed for synthetically useful yields. Nevertheless, the baseline 

reaction was informative in that it led to a mixture of five and six-membered ring products with 

the five being obtained in slightly higher yield. With this background, the substrate with the 

added silyl group was submitted to the oxidation. The reaction led to an increase in yield and the 

exclusive isolation of 6-member ring product. This observation was consistent with a radical type 

cyclization according to the proposal outlined in Scheme 1.8.  

With this observation, the formation of the six-membered ring product in the parent reaction and 

the complete lack of five-membered ring product in the reaction containing the silyl group 

(substrate 6) was notable. For a radical type cyclization, the five-exo product is kinetically 

favored with the six membered ring product being thermodynamically favored. This suggested 

that in the top case there was evidence for a reversible type cyclization. With the silyl 

substitution on the bottom case, it is not clear that the six-endo product would not be favored 

kinetically as well. However, the complete lack of five-membered ring would also be more 

consistent with a reversible reaction, although the exact nature of this particular reaction remains 

a matter of speculation. In the end, it was concluded that the reaction was best viewed as a 

radical type reaction that was potentially reversible. Subsequent studies have shown that the 

initial cyclization of a radical cation is often reversible depending on the rate at which a second 

electron is removed from the cyclized substrate. The competition study described above was an 

example of this type of behavior39.    
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The observation of radical type of cyclization discussed here is associated with behavior of 

intermediate discussed in chapter 3 and 4. Even though the working mechanism proposed a 

radical type cyclization, the radical cation intermediate still behaves different from a completely 

radical intermediate, as will described in chapter 3.   

1.3.4 Substrate Selectivity and Steady State Kinetics  

In Section 1.2.3, we included a discussion on constant potential vs constant current 

electrochemical reactions. In general, during constant current condition, the oxidation potential at 

electrode surface is maintained at the level of lowest substrate oxidation potential and climbs up 

once this substrate is consumed. This maintains the substrate selectivity. Within this context, it is 

important to note that the oxidation potential of the substrate is not only dependent on the nature 

of the functional group being oxidized, but also the rate of following up transformation (Scheme 

1.10). As highlighted by the Nernst equation, the oxidation potential of a molecule represents the 

position of an equilibrium at the electrode surface between the substrate and the radical cation 

intermediate generated. Anything that drains the radical cation away from the electrode surface, 

like a rapid cyclization reaction, then shifts the equilibrium toward the radical cation and lowers 

the oxidation potential. This can be mathematically described by treating the reaction as a steady 

state kinetics situation with the radical cation being the reactive intermediate. With this 

approximation, one can solve for the concentration of the radical cation and plug it back into the 

Nernst equation. This leads to equation 1, and the observation that the faster the cyclization (k2) 

the lower the observed potential.  
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Scheme 1.10 Steady State Impact on Oxidation Potential44 

This effect can be seen for the substrates shown in Scheme 1.10. An isolated dithioketal 

functional group has an oxidation potential of Ep/2 = +1.06 V vs Ag/AgCl. The measured 

oxidation potential of substrate 6 with an alcohol trapping group is Ep/2 = +0.95 V vs Ag/AgCl. 

The oxidation potential for substrate 4 was measured to be Ep/2 = +0.60 V vs Ag/AgCl.44 The 

drop in potential reflects the relative rates of the cyclization showing that the amine based 

cyclization occurs more quickly than the alcohol based cyclization.   

1.3.5 conclusion  

With all the observation and concepts described in this chapter, a foundation for understanding 

the reaction observation has been built. We are able to conduct a structure/activity study as 

described in the rest of this thesis, based on the advantage of constant current electrolysis. (The 

reactivity will change based on the structure of substrate).  
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Chapter 2: Anodic Cyclization Mechanism 

Study 

In this chapter, we will discuss the mechanistic model that has been developed for anodic olefin 

coupling reactions, and our recent contributions to that model. The chapter is based on a paper 

we published that highlights how to think about and optimize the yield anodic coupling 

reactions.1 As shown in Scheme 2.1, the reactions involve three steps (k1/k-1, k2, and k3) that can 

each play a key role in defining the success of the reactions. A summary will be given for all 

three steps, but particular attention will be given in this chapter to the third step and how to 

identify and solve problems at this juncture. My role in the work was in connection with those 

issues. With that in mind, a brief discussion of the first two steps in the reaction (k1/k-1 and k2) 

will be provided in section 2.1. Section 2.2 will then present the background of my project and 

how we moved forward with our understanding of the third phase of the reaction. Section 2.3 

will provide a conclusion for the effort, section 2.4 experimental details for the work, and section 

2.5 the supporting spectra data.  

 (Sections of this chapter were taken from our paper: Feng, R.; Smith, J. A.; Moeller, K. D. 

Anodic Cyclization Reactions and the Mechanistic Strategies That Enable Optimization. 

Accounts of Chemical Research 2017, 50 (9), 2346) 
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2.1 Anodic Cyclization Reaction Mechanism Structure 

As described in Chapter 1, anodic coupling reactions typically fit the mechanistic paradigm 

forwarded in Scheme 2.1.  

 

Scheme 2.1 Anodic Cyclization Reaction Mechanism Model 

In general, the anodic oxidation of a substrate leads to radical cation 1 that can then undergo a 

reversible cyclization reaction (k1/k-1). The cyclized radical cation will undergo a second 

oxidation forming a di-cationic intermediate 3. At this point, there is no direct evidence for the 

generation of the dication intermediate. However, the reversibility of the cyclization and the 

dependence of that reversibility on the rate of the second oxidation is most consistent with the 

mechanism shown.  

Following the second oxidation step, methanol trapping of the cations or a combination of 

methanol trapping and elimination (as in the case of an allylsilane trapping group) leads to the 

final product. These steps that occur after the second oxidation are typically assigned as k3. 
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During this stage of the reaction, the order of the steps that occur is frequently not clear, but 

controlling them can be critical for reaction success. For example, in Chapter 1 it was pointed out 

in connection with the use of a disubstituted olefin trapping group for the radical cation that 

reactions led to poor yields of product. This was the result of not providing a suitable reaction 

pathway for the intermediates generated after the second oxidation step.  

The key for conducting a successful anodic cyclization is understanding how the three steps that 

govern the reactions fit together and how to recognize when any one of the steps does not go 

according to plan.1 

2.1.1 Step One: The Reversible Cyclization 

There are several factors that influence a cyclization reaction such as steric barriers in the 

substrate, the polarity of the radical cation intermediate, and the nature of the trapping group.  

In terms of steric barriers in the substrate, consider the pair of reactions illustrated in Scheme 

2.2.3 Both reactions targeted the formation of a bridged bicyclic ring skeleton. Due to the lower 

oxidation potential of dithiol ketene acetal relative to the enol ether present in the substrates, the 

ketene acetal provides the site for radical cation formation and the enol ether the trapping group. 

In the first case, the cyclization works beautifully. In the second case, it does not. This 

observation is consistent with a radical-type cyclization and supported the conclusion reached in 

the work described in Chapter 1. Radical cyclization reactions are very sensitive to sterics on the 

double bond being attacked but not sterics at the site of the initial radical. Note how in Scheme 

2.2, steric substitution at the site of the radical cation does not impede the cyclization, but extra 

sterics at the site of the terminating enol ether does. The formation of decomposition products 
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refers to decomposition of the reactive radical cation. Such products usually result from 

elimination and polymerization pathways. 

In a reaction not shown here but of significance for Chapter 3 (where the observation will be 

detailed), it was also found that anodic cyclization reactions can be highly dependent on the 

nature of the trapping group. For example, if the first reaction shown in Scheme 2.2 utilizes an 

allylsilane trapping group instead of the enol ether, then it fails. The reaction shown in Scheme 

2.2 is challenging in that it forms a six-membered ring and a quaternary carbon at the same time. 

The use of an allylsilane trapping group which is less reactive toward the radical cation does not 

overcome this twin challenge.2 

 

 

Scheme 2.2 Steric Effect on Cyclization 

 

Another key observation concerning the cyclization reaction has to do with the polarity of the 

radical cation intermediate. As mentioned in the previous chapter, the fact that the working 

potential of an anode will automatically adjust to the oxidation potential of a substrate under 
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constant current conditions enables the use of structure-activity studies to examine how the 

nature of a radical cation influences the subsequent cyclization reactions. During these studies, it 

was found that polar radical cations favor C-C bond formation while less polar radical cations 

favor heteroatom trapping reactions. For example, consider the two oxidation reactions shown in 

Scheme 2.3. In these reactions, oxidation of the dithiol ketene acetal 10 leads to a less polar 

radical cation while the oxidation of N,O-ketene acetal  8 leads to a more polar radical cation. 

The polarity of the radical cation can be assessed by 13C-NMR of the starting olefin. 

Interestingly, the two olefinic carbons of vinyl sulfide have the same chemical shift illustrating 

the effect of the sulfur having the same electronegativity as carbon. That case forms the base 

non-polar radical cation for the subsequent studies. In this case, the more polar radical cation 

leads to a much higher yield in the subsequent C-C bond forming cyclization3.  

 

S

S Me
TMS

N

O

O

TIPSO
TMS

Me

S

S

MeO
S

S Me

O

MeN

O
O

N

O
O

TIPSO

Leads to a less polar
radical cation (20-30%) impure

RVC anode
Pt wire cathode
0.1 M Et4NOTs
50-75% MeOH/THF
2,6-lutidine
8.0 mA, 2.2 F/mole

Leads to a more polar
radical cation

70% (3/2 = t/c)8

9

10

11



 
 

35 

Scheme 2.3 Polar Radical Cation Favors C-C Bond Formation 

 

For a counter example, the chemistry highlighted in Scheme 2.4 can be used. In this case, 

oxidation of a less polar vinyl sulfide substrate 12a is compared with the oxidation of enol ether 

substrate 12b in the presence of an alcohol nucleophile. In the vinyl sulfide case, the desired 

intramolecular trapping reaction occurs leading to desired cyclization product 14. On the other 

hand, in enol ether case the intramolecular trapping is not fast enough and the radical cation 

leads to fragmentation product 15.4 It is important to note that when the alcohol in substrate 12a 

was protected with a silyl group, the oxidation led to the fragmentation product as well. So, the 

use of the vinyl sulfide radical cation did not make the fragmentation impossible, it only changed 

the relative rate of the cyclization vs. fragmentation reaction to favor the cyclization. This result 

was consistent with a variety of other reactions that all indicated that the use of a non-polar 

radical cation accelerated the heteroatom trapping reaction.5  
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Scheme 2.4 Less Polar Radical Cation favors C-X Formation 

 

2.1.2 The Second Oxidation 

While the observations above point to the critical nature of the cyclization reaction, the removal 

of a second electron from the cyclized radical cation intermediate also plays an important role in 

the success of the reaction1. This is especially true given that the cyclization is frequently 

reversible. In such cases, the second oxidation is needed to drain the reaction toward the desired 

product in order to avoid either poor current efficiency (re-reduction of the initial radical cation 

at the cathode) or decomposition of the radical cation.  

When these situations arise, there are a number of strategies that can be used to aid the removal 

of a second electron from the cyclic radical cation intermediate (2 in Scheme 2.1). First, higher 

current densities increase the effective concentration of oxidant in the reactions, and this change 

can lead to faster oxidation of both the substrate and the removal of the second electron (k2 in 
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Scheme 2.1). Second, substrate modification strategies can be a very effective way to increase k2. 

The most common way to accomplish this is to generate a more stable cation after the second 

oxidation (or viewed alternatively – generate a more electron rich electron following the 

cyclization, which can easily be oxidized). This has been done using tri-substituted olefins, 

allylsilanes, and para-substituted aromatic rings. In the case shown in Scheme 2.5,6 an example 

of this approach is shown using the para-methoxy substituted phenyl substrate 16a and its meta 

substituted derivative 16b for comparison. As expected, the effect of the para-substituent was 

dramatically better than that seen with the meta-substituent due to its better overlap with the 

benzylic radical and subsequent cation after the second oxidation step. Note that effect was 

attributed to the second oxidation step because of the similarities in the initial oxidation 

potential, a value that indicates that the initial removal of an electron and the rate of the 

cyclization reaction are similar for the two substrates.     
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Scheme 2.5 Stable Cation Increase k2 

 

Another approach that has been effective is increasing the electrolyte in the reactions. This 

provides more of the anionic counter ion needed for the cation generated during the second 

oxidation step. This approach was also very effective for the formation of C-glycosides in 

connection with the chemistry shown in Scheme 2.56 
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2.2 Efforts to oxidatively construct enriched 1,4-dicarbonyl 

moieties and an observation about k3: 

Our efforts to probe the role of the third step in the mechanistic scheme above originated with 

efforts to develop an oxidative strategy for structure like those illustrated in Figure 2.1. The 

chemistry was based on the observation that anodic coupling reactions are frequently good tools 

for making 1,4-carbonyl derivatives7. Both of the structures shown contain the types of 1,4-

dicarbonyl structures synthesized in the past, but in this case require the generation of molecules 

having a higher net oxidation state. With this in mind, the group was working on a general 

strategy to access these types of molecules.  

 

Figure 2.1 1,4-dicarbonyl Structure 

2.2.1 Retrosynthetic Analysis 

Dankasterone (2.1) is a target that has intrigued our group for a number of years both because of 

the 1,4-dicarbonyl group and because of the unique angularly fused ring system contained within 

its skeleton. The molecule, isolated from a marine sponge, is a member of a novel class of 

rearranged steroid derivatives with significant cytotoxicity against tumor cells8. Because of the 

group’s interest in the molecule, a number of attempts have been made concerning its synthesis. 
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While none of these attempts has been particularly successful in terms of assembling the 

angularly fused core of the molecule, interest remains in a general strategy for the molecule and 

for the oxidized 1,4-dicarbonyl system. The interest in the oxidized 1,4-dicarbonyl portion of the 

molecule is fueled by its relationship to other molecules such as aberrarone (2.2). Aberrarone is 

from a novel class of terpenoid that has anti-malarial activity.9 In this case, the C,D-rings of the 

natural product contain an oxidized 1,4-dicarbonyl motif. It was hoped that a common route 

might be developed to synthesize both the A,B-ring system of dankesterone and the C,D-ring 

system of aberrarone. This route is shown in Scheme 2.6.  

 

Scheme 2.6 Aberrarone Retro-Analysis 

In principle, both product types can be made from a common intermediate (21) that would be 

generated from the anodic oxidation of a functionalized substrate like 22 or 23. The initial plan 

was to use substrates like 22 for the oxidation, but problems with the synthesis quickly led to the 

choice of substrates with the general structure of 23. In these cases, the idea was to conduct the 
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oxidation and then hydrolyze the resulting heterocyclic product to the desired functionalized 1,4-

dicarbonyl (Scheme 2.7). 

 

Scheme 2.7 Proposed oxidation/hydrolysis route to higher-oxidized 1,4-dicarbonyls 

2.2.2 Model Substrate 

With this in mind, model substrates 24, 25, and 26 (Figure 2.2) were synthesized for  

 

Figure 2.2 Model substrates 

study. In general, the desired oxidative cyclization of these substrates failed. Instead, the 

reactions afforded polymeric materials. It appeared that the cation resulting from the second 

oxidation and subsequent methanol trapping (30) (Scheme 2.8) was unstable and underwent an 

elimination reaction to form an electron-enriched heterocycle (32) instead of trapping a second 

equivalent of methanol to form the desired product 31. This was problematic because the 

heterocycle 32 had an oxidation potential lower than that of the initial substrate. This led to 

overoxidation of the product. 
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Scheme 2.8 Proposed decomposition pathway for model substrates 

Problems of this nature can be challenging to avoid because the reactions do require mildly basic 

conditions that can favor elimination reactions. While electrochemical reactions do remain 

neutral overall, acid is generated at the anode and base at the cathode. Hence, in the absence of a 

base to shuttle protons away from the surface of the anode, substrates like 24-26 can undergo 

acid catalyzed electrophilic cyclization that afford the wrong regiochemical addition to the enol 

ether (Scheme 2.9). 
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Scheme 2.9 Electrophilic cyclization 

The plan to avoid the elimination and overoxidation observed for the reaction in Scheme 2.8 was 

to introduce steric bulk onto the heterocycle. The hope was that this hindrance would reduce the 

amount of overoxidation by either hindering the ability of the heterocycle to approach the anode, 

slowing the rate of elimination to 32, or perhaps both. The addition of a t-Bu group to the ring in 

substrate 26 was ineffective, and overoxidation occurred in a manner similar to the other 

substrates studied. However, the addition of a trityl protecting group to substrate 26 dramatically 

improved the reaction (Scheme 2.10). The idea that the newly added steric bulk slowed the 

elimination was supported by the observation that 34 could be isolated without  

 

Scheme 2.10. Addition of a bulky trityl protecting group dramatically improves conversion to product 

 

formation of the aromatic ring. With the protecting group in place, the reaction led to a 74% 

yield of product as determined by NMR-integration of the product relative to an internal standard 
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that was added to the crude reaction product.1 The product could be isolated in a 55% yield, with 

the loss of material attributable to instability of the product to chromatography through silica gel.  

The optimized reaction conditions shown in Scheme 2.10 did require excess current to go to 

completion. At this point, it is not known whether this excess current is needed because the 

substrate has difficulty reaching the anode due to sterics (a situation that would lead to 

background oxidation of the solvent), or if the initial cyclization is reversible and the second 

oxidation of an intermediate 28 (Scheme 2.8) is slow. Such scenarios lead to poor current 

efficiency due to migration of the radical cation intermediate to the cathode followed by 

reduction of the intermediate back to the starting material6. In either event, protecting 

intermediates like 33 from elimination did allow for isolation of the desired product.  

This was not the first time that consideration of a cation generated downstream of the second 

oxidation proved critical for optimization of an anodic cyclization reaction10. Earlier studies 

conducted by John Brandt in the group examined the trapping of ketene dithioacetal derived 

radical cations (35) by amides to form lactones (Scheme2.11). In this case, the product from the 

second oxidation 37 was trapped by methanol to reversibly form product 38 (which in the initial 

plan was to be hydrolyzed to the desired lactone upon workup). The reversibility of the reaction 

led to intermediate 37 persisting in solution. This allowed time for an elimination to generate the 

very electron-rich ketene aminal 39. The oxidation of 39 led to a significant decrease in the yield 

of the desired lactone product. One key observation was that the more electron rich the N of the 

amide, the poorer the yield of product. This was initially confusing, because more donating N-

groups were viewed as making the amide in 35 a better nucleophile, accelerating the radical 

cation trapping step. In short, the first attempt to fix the yield of the anodic oxidation reaction 
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focused on improving the rate of cyclization (k1 in the mechanistic model shown in Scheme 2.1). 

This solution pushed the reaction in the wrong direction. 

 

 

Scheme 2.11. Water scavenges the unstable intermediate cation, avoiding overoxidation 

 

The problem was eventually resolved by the addition of water to the reactions. When the cation 

37 was trapped with water, hemiaminal 40 was generated. The hemiaminal then eliminated the 

amine to form a stable lactone product (41), which could not undergo a subsequent oxidation 

reaction. So as with the reaction shown in Scheme 2.10, optimization of this reaction involved 

controlling an intermediate generated downstream of the oxidations rather than optimizing either 

the initial cyclization or second oxidation step.  

2.2.3 Conclusion 
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In the end, it became clear that the overoxidation of a product in an anodic coupling reaction is 

likely caused by an unwanted elimination reaction involving either the product or frequently the 

cation generated from the final oxidation. In such cases, optimization of the anodic cyclizations 

rests with channeling the final cation generated down a productive pathway. 

2.3 Experimental Section  

Synthesis of electrolysis substrate 25 was as followed. 

 

Scheme 2.12 Synthesis of Electrolysis Substrate 25 

Synthesis of 43 (methyl (E)-3-(1-trityl-1H-imidazol-4-yl)acrylate) 

 

To a solution of (E)-3-(1H-imidazol-4-yl)acrylic acid 41 (2 g, 14.5 mmol, 1.0 eq) in MeOH (15 

mL) at 0 ºC was added thionyl chloride (1.05 mL, freshly distilled) dropwise. The suspension 

was warmed to room temperature, stirred for 1h, and brought to reflux for 3h. The reaction 
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mixture was then transferred into a 250 mL round bottom flask under argon and diluted with 50 

mL of THF (50 mL) and 5.5 mL of triethylamine (2.5 eq) was added in at 0 oC. To the resulting 

solution was added TritCl (4.67 g, 1.15 eq) in 50 mL of THF in small portions. The reaction 

mixture was stirred overnight. Upon completion, the reaction mixture was quenched by water 

and then diluted with CH2Cl2. The organic layer was separated, and the aqueous layer was 

washed with CH2Cl2. The combined organic layers were dried over MgSO4, concentrated, and 

the crude product purified by recrystallization with EtOAc to afford 25 (3.87 g, 67% yield). 

Spectra data for 25: 1H NMR (300 MHz, Chloroform-d) δ 7.47 (s, 1H), 7.38 – 7.31 (m, 10H), 

7.17 – 7.10 (m, 7H), 7.02 (d, J = 1.3 Hz, 1H), 6.55 (d, J = 15.6 Hz, 1H), 3.75 (s, 3). This data 

matched the previously published 1H NMR. (Refence from Smith, J. A. Ph.D. Dissertation, 

Washington University in St. Louis, 2015)  

 

Synthesis of 44 (3-(1-trityl-1H-imidazol-4-yl)propan-1-ol) 

 

To a solution of 25 (2.2 g, 5.59 mmol, 1.0 eq) in dichloromethane (100 mL) under argon at -78 

ºC was added DIBAL-H (1M in hexane) dropwise over 1h. Mixture was stirred at rt for 2h. Upon 

completion, the reaction was diluted with 15 mL of EtOAc and then treated with 30 mL of a 

saturated Rochelle’s salt solution. The mixture was stirred overnight before being quenched with 

water and then diluted with CH2Cl2. The organic layer was separated, and the aqueous layer was 

washed with CH2Cl2. The combined organic layers were dried over MgSO4, concentrated, and 
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carried onto next step. To this end, the crude mixture was placed into 100 mL round bottom flask 

under argon and then diluted with 12 mL of methanol. The resulting solution was sonicated for 

10 min until everything had been completely dissolved and then treated with 0.12 g of 10% by 

weight Pd/C. The reaction was then placed under a H2 atmosphere and was stirred for 20h. Upon 

completion, the reaction mixture was filtered through celite, washed with CH2Cl2, and 

concentrated. The crude product was purified by chromatography through silica gel using 

Hexane: EtOAc: MeOH (5:4:1) as the eluent to afford 43 (0.785g, 74% yield). Spectra data for 

43: 1H NMR (300 MHz, Chloroform-d) δ 7.43 – 7.30 (m, 10H), 7.19 – 7.05 (m, 7H), 6.55 (s, 

1H), 4.33 (s, 1H), 3.74 (t, J = 5.6 Hz, 2H), 2.68 (t, 2H), 1.86 (p, J = 6.0 Hz, 2H). This data 

matched the previously published 1H NMR. (Refence from Smith, J. A. Ph.D. Dissertation, 

Washington University in St. Louis, 2015) 

Synthesis of 25 (4-(4-methoxybut-3-en-1-yl)-1-trityl-1H-imidazole) 

 

To a solution of 43 (1.75g, 4.77 mmol, 1.0 eq) in CH2Cl2 (30 mL) under argon was added 

DMSO (0.42 mL, 1.25 eq). The mixture was cooled to -78 ºC and then freshly distilled oxalyl 

chloride (0.49 mL, 1.2 eq) was added in a dropwise fashion. The solution was allowed warm to -

60 ~ -50 ºC and stirred for 30 min before triethyl amine (3.3 mL 5 eq) was added to the flask. 

The reaction was allowed to warm to was allowed warm to rt before being quenched with water 

and diluted with CH2Cl2. The organic layer was separated, and the aqueous layer was washed 

with CH2Cl2. The combined organic layers were dried over MgSO4, concentrated, and carried 
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onto next step. To this end, methoxymethyl phosphoium chloride (3.27 g, 2 eq) was dissolved in 

26 mL of THF and cooled to 0 ºC. t-BuLi (5.61 mL, 2 eq) was added to this solution in a 

dropwise fashion before stirring the mixture for 1h. At this point the aldehyde from the previous 

step, was dissolved in 7 mL THF. The resulting aldehyde solution was added into newly 

generated ylide solution in a dropwise fashion. The resulting solution was stirred overnight. 

Upon completion, reaction mixture was quenched by water and then diluted with ethyl ether. The 

organic layer was separated, and the aqueous layer was washed with ethyl ether. The combined 

organic layers were dried over MgSO4, concentrated, purified by chromatography through silica 

gel using Hexane: EtOAc (5:5) as the eluent to afford 25 (0.97 g) in a 52% yield. Spectra data for 

25: 1H NMR (300 MHz, CDCl3) δ 7.51 – 7.25 (m, 10H), 7.22 -7.09 (m, 6H), 6.55 (s, 0.34H), 

6.50 (s, 0.48H), 6.27 (d, J = 12.7 Hz, 0.41H), 5.83 (d, J = 6.2 Hz, 0.27H), 4.74 – 4.65 (dt, 0.48H), 

4.36 (q, J = 7.0 Hz, 0.28H), 3.50 (s, 0.87H), 3.45 (s, 1.64H), 2.58 (t, J = 7.5 Hz, 2H), 2.44 – 2.09 

(m, 2H); 13C NMR (75 MHz, CDCl3) δ 147.4, 146.1, 142.6, 138.2, 129.8, 127.9, 118.1, 106.4, 

102.2, 59.4, 55.7, 29.8, 28.7, 27.6, 23.6. IR (neat, cm-1): 3052, 2925, 2847, 2825, 2361, 2157, 

1654, 1491, 1445, 1207, 1130, 1107, 1035, 1001, 748, 701. HRMS (ESI) calcd for C27H26N2O 

[M + Na]+ 395.2110, found 395.2118.  

General Procedure for Electrolysis： 
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Compound 25 (72.9 mg, 0.184 mmol) and 5 mL of a 0.65 M LiClO4 in THF were placed in a 25 

mL, 3-neck round bottom flask. To this solution was added LiOMe (0.5 mmol). The mixture was 

sonicated for 10 min, and then the flask equipped with carbon cathode and RVC anode. Current 

(10 mA, 10 F/mol) was passed through the cell until the starting material disappeared by TLC. 

At that point, the reaction mixture was diluted with NaHCO3 (sat. aq), the layers separated, and 

the aqueous layer washed three times with CH2Cl2. The combined organic layer was dried over 

MgSO4 and then concentrated. A 1H NMR was taken of the crude product and the yield of the 

product present calculated to be 74% using 2,6-luditine which had been added to the crude 

material following the reaction as internal standard. The crude product was purified by flash 

chromatography through silica gel to afford 34 (45 mg, 55% yield). The same material was 

applied to same second time chromatography, the yield dropped to 43%, proving the evidence of 

losing material during chromatography. 1H NMR (600 MHz, Chloroform-d) δ 8.21 (s, 1H), 7.42 

- 7.17 (m, 15H), 6.73 (d, J = 1.6 Hz, 1H), 4.96 – 4.91 (m, 1H), 4.64 (d, J = 4.9 Hz, 1H), 3.48 – 

3.39 (m, 9H), 3.06 – 2.98 (m, 2H), 2.83 (td, J = 8.8, 4.7 Hz, 1H), 2.70 – 2.50 (m, 1H). 13C NMR 

(151 MHz, Chloroform-d) δ 146.59, 142.37, 142.29, 134.56, 132.27, 131.79, 131.47, 131.36, 

130.37, 129.52, 121.64, 118.11, 108.02, 107.09, 65.11, 60.78, 59.22, 59.06, 57.80, 57.15, 54.71, 

53.42, 34.10, 31.84, 25.28, 23.46. HRMS (ESI) calcd for C28H28N2O2 [M + H]+ 425.2219, found 

425.2224.   

The structure was originally assigned as 34a. (Reference from Smith, J. A. Ph.D. Dissertation, 

Washington University in St. Louis, 2015). The mass matched this structure, but compound 34 

would be expected to lose the OR group during the mass spectrometry experiment. Hence, mass 

spectrometry was not a good way to differentiate the two compounds. However, during the 2D 

NMR analysis, the existence of an extra proton leading to the assignment of 34. 
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In the 2D NMR analysis, initially, proton NMR, carbon NMR, and HSQC were used to assign 

the position of proton and carbon using the logic described below: Following an initial 

estimation of proton assignment, HSQC was used to find the corresponding carbon. (Appendix 

A). Then COSY was used to confirm the correlation between protons (see below).  
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Figure 2.4 COSY of 34 

In red circle, the correlation shows coupling between proton 1 and proton 2. In green circle and 

dashed line shows no coupling between proton 2 and proton 6 which is common in ring. To 

further confirm the structure, HMBC was analyzed (see below). The purple circle and red line 

showed the multiband correlation between carbon 5 and proton 2, which proves the key evidence 

for the formation of C6-C2 bond.  
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Simulated 3D molecule structure (using ChemDraw 3D generating lowest energy structure) was 

provided below to show the stereochemistry generated from this transformation. The C1-C2 

bond winds up at the convex face of the molecule due to a reversible cyclization leading to the 

most stable product. (circled in blue) 

Figure 2.5 HMBC of 34 
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Figure 2.6 Simulated 3D structure of 34 using ChemDraw 

During repeating experiments, 25 (105 mg) was used to conduct same electrolysis reaction, after 

same work up procedure as described before, product 34 was directly dissolved in DCM/TFA 

(10 mL/ 2 mL), the mixture was stirred overnight. The reaction was quenched with 2M NaOH 

aqueous solution. The layer was separated, aqueous layer was extracted with DCM by three 

times. The combined organic layer was dried over MgSO4. The mixture was purified through 

flash chromatography using 30% Ethyl Acetate in hexane as eluting solvent to give 32.6 mg 

product (estimated 68%). NMR showed a mixture of product and impurity not able to 

characterized at 4.5 ppm and trityl region. The material was conducted a second time flash 

chromatography (same condition) was conducted to give 8 mg of product 45 (loss of material 

during chromatography). 1H NMR (300 MHz, Chloroform-d) δ 7.56 (d, J = 5.6 Hz, 1H), 6.70 (s, 

1H), 4.29 (d, J = 1.6 Hz, 1H), 3.43 (d, J = 8.9 Hz, 6H), 2.96 – 2.21 (m, 5H). HRMS (ESI) calcd 

for C9H14N2O2 [M + H]+ 183.2201, found 183.1131.      
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2.4 Spectra Data 

See Appendix A. 
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Chapter 3: Pathway Control and the 

Formation of Seven Membered Rings 

  

While in the last chapter we focused on the three-step mechanism involved in an anodic coupling 

reaction with a special emphasis on the last step, it is important to remember that the first 

cyclization step is in many ways the most critical. After all, if the cyclization reaction does not 

work, then the other steps are not in play at all. With that in mind, this chapter will focus on the 

cyclization reaction and the nature of the reactive intermediate that triggers it.  The chemistry 

described focuses on our efforts to establish the seven-membered ring core structure of the 

natural product artemisolide with the use of an anodic cyclization reaction. 

3.1 Synthesis of Artemisolide 

Artemisolide is a sesquiterpene–monoterpene lactone isolated from Artemisia Species. It is used 

in traditional Chinese medicine for the treatment of malaria, hepatitis, inflammation, and 

infections caused by bacteria, fungi and virus1. From the standpoint of our group, we have been 

working on incorporating synthetic electrochemistry into a broader range of applications and in 

so doing introducing synthetic electrochemistry to broader range of organic chemists. In this 

context, artemisolide represented an appealing target because of its novel structure and biological 

activity, and its apparent compatibility with a concise and innovative use of both an anodic 

cyclization reaction and the Curtin-Hammett principle (Scheme 3.1).  
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Scheme 3.1 Retro-Analysis of Artemisolide 

The planned approach for constructing artemisolide is shown in Scheme 3.1. In the first step of 

the retrosynthetic analysis presented, the molecule is reduced to a core 5-7-5 ring structure 

through a retro Diels-Alder reaction. The forward Diels-Alder reaction is known2-5. Therefore, 

the synthesis of the tricyclic intermediate (2a) would represent a formal total synthesis of the 

natural product. From this point, the retrosynthetic analysis tracks back to a potential anodic 

coupling reaction between an enol ether and a furan to construct the bond between C6 and C7. 

Key to this notion was the use of a protecting group to mask the functionality at C2 of the key 

intermediate. This protecting group was selected to be a dithioketal that would stabilize an anion 

for construction of the substrate, accelerate the cyclization to form the seven membered ring 

through a gem-substituent effect,6 and then afford a carbonyl after deprotection. Of course, the 

sulfurs of the ketal would undergo an oxidation reaction prior to oxidation of either the enol ether 

or the furan, but we had previously shown in a similar substrate bearing both a dithioketal and an 



 
 

59 

enol ether that an intramolecular electron-transfer and Curtin-Hammett control of the reaction 

would lead to products generated from the enol ether radical cation.6  

3.2 Seven Membered Ring Formation in 5-7-5 System 

3.2.1 Problems Constructing the Seven Membered Ring 

When this project was started, two key preliminary results were of interest (Scheme 3.2). In the 

first, it had been demonstrated that the anodic cyclization was compatible with the formation of a 

seven-membered ring.7 In this paper, a disubstituted methoxy enol ether was coupled to the furan 

ring to make the seven-membered ring in a 62% isolated yield. Interestingly, when the chain 

between the enol ether and the furan ring was extended to make an eight membered ring, the 

reaction led to a mixture of some cyclized product and an acyclic product (Scheme 3.2). The 

acyclic product was clearly formed from an enol ether oxidation. No product derived for a furan 

product was observed.   

 

Scheme 3.2 Model Substrate Test on Seven Member Ring Formation 
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In the second example, the Wright group studied the formation of seven-membered rings in the 

context of building similar tricyclic ring skeletons. They found that when the group at the allylic 

carbon was a hydrogen (R = H) the reaction failed to generate a cyclic product. When this group 

was an alkyl (R = Me, Ethyl, etc), the reaction proceeded nicely to the desired product. The 

conclusion reached by Wright and Sperry was that the addition of the alkyl group accelerated the 

cyclization through a gem-dialkyl affect thereby enabling the chemistry8-10.  

 

Scheme 3.3 Gem-diakyl effect on seven-member ring formation 
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This result from the Wright group was a bit of a surprise based on our earlier finding that the 

reactions could lead to seven-membered ring formation. Hence, Rob Perkins in the group remade 

the Wright-substrate with the proton on the allylic carbon and studied its oxidation chemistry11. 

We found that the byproducts formed were consistent with the types of radical cation-based 

elimination reactions that plague other slow anodic cyclization reactions.  

 

Scheme 3.4 Fused seven member ring containing allylic proton electrolysis test 

This elimination reaction would be enhanced by the direct overlap of the allylic hydrogen with a 

radical cation in the cyclic enol ether substrate 5a. It was slower and unobserved when the enol 

ether was not contained within a ring (Scheme 3.2, substrate 3a). In the end, it was our 

conclusion that the alkyl groups in the Wright case most likely blocked the elimination along 

with making the cyclization faster.  

The use of an alkyl group to block the elimination reaction appears to be a general solution. In 

their reported total synthesis of 11 ((-)-Guanacastepene)12, the Trauner group took advantage of 

methyl group at the allylic position of the enol ether/radical cation to enable the synthesis of a 

central seven-membered ring. This reaction proceeded through key intermediate 12 (Scheme 

3.5). 
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Scheme 3.5 Total synthesis of Guanacastepene 

While this approach works, the structure of artemisolide (Scheme 3.1) does not have a alkyl 

group at the position allylic to the radical cation to be generated. In fact, this position in the 

molecule (C1) plays an important role in constructing the diene in 3a (Scheme 3.1) that is needed 

for the final Diels-Alder reaction. As a result, we needed an alternative approach to either 

accelerate the cyclization, stop the elimination, or both. 

3.2.2 Historical Approaches  

Our first approach, initially pursued by Alison Redden in the group, sought to accelerate the 

cyclization with a different geminal substituent as described in the discussion of the 

retrosynthesis above. The plan was to incorporate a dithioketal at a point consistent with the 

functionality at C2 in the key tricyclic intermediate. Two attempts at this approach are worth 

mentioning here (Scheme 3.6).3 
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Scheme 3.6 Gem substitution effect on seven member ring formation 

Initially, an attempt at directly making the seven membered-ring via the oxidation of substrate 16 

was examined. The reaction failed and led to elimination products and polymeric material in a 

fashion again consistent with a slow cyclization step. Clearly, the effect of this particular gem 

substitution on the rate of the cyclization was not sufficient to overcome decomposition of the 

radical cation. It did appear that the Curtin-Hammett step6 had worked as planned (Scheme 3.5) 

because the products formed arose from the enol ether radical cation and not a dithioketal based 

radical cation, a reaction that leads to cleavage of the carbon sulfur bonds and formation of a 

dimethoxy ketal.  
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The success of the Curtin-Hammett approach in these reactions was demonstrated more 

convincingly with the use of substrate 17. In this case, Dr. Redden demonstrated that the reaction 

proceeded smoothly to afford the six-membered ring product13. The product from the cyclization 

was then used in a ring expansion reaction to generate the desired tricyclic system. This ring 

expansion was only partially successful leading to a mixture of regioisomers (21 and 22). This 

was obviously problematic for the total synthesis. With that said, the route was also problematic 

from a conceptual point of view. It represented an indirect synthesis of the ring system. A more 

desirable approach would be a direct synthesis of the seven-membered ring. In other words, our 

desire was not to find a “work around” for a failed electrolysis, but rather to fix the electrolysis.  

3.3 Change of the Nature of Reactive Intermediate 

 

3.3.1 Transformation to Radical Intermediate 

With the failure to accelerate the seven-membered ring formation with a geminal substituents 

consistent with the desired total synthesis, the group’s interests changed to examine an approach 

to slowing the elimination reaction. It is important to remember that while radical cations can do 

radical-like cyclizations14 (Chapter 1), they do have significant cationic character. It is this 

cationic character that leads to the problematic elimination reaction. To address this, Alison 

Redden and Robert Perkins developed a method for neutralizing this cationic character and 

channeling the anodic oxidation reactions down an oxidative radical pathway.13  
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Their approach was first illustrated in the context of forming six-membered rings and quaternary 

carbons with an allylsilane terminating group (Scheme 3.7). 

 

Scheme 3.7 Radical Intermediate 

The first reaction in Scheme 3.7 was included as background. In this reaction, the oxidation 

generated a radical cation from a methoxy enol ether. The subsequent cyclization was too slow 

leading to the elimination of a proton from the radical cation along with polymerization 

reactions. This observation paralleled the ones made in connection with the seven membered ring 

forming reactions described above.15 To address this issue, the substrate (29) was modified by 
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changing the simple enol ether to a glycol based enediol ether that contained a free hydroxy 

group. This provided the substrate with a second nucleophile that had the potential to quickly 

trap the radical cation intermediate in 30, remove the possibility for the proton elimination side 

reaction arising from the cationic character of the intermediate, and leave behind a radical 

intermediate that could still undergo the desired cyclization.  

The initial test of this idea was conducted at room temperature. The reaction formed a low yield 

of product (10-25%), but still formed mainly products from decomposition of the radical cation. 

Fortunately, work ongoing in the group at the time showed that the trapping of a radical cation 

by an alcohol was both reversible and exothermic.16 If alcohol trapping of intermediate 30 is 

reversible, then some cation character would remain and the possibility for a competing 

elimination reaction would persist. However, since the alcohol trapping is exothermic16, the 

formation of the cyclized product would be favored by lowering the temperature. Hence, the 

oxidative cyclization was repeated at -78 oC.  At this low temperature, the isolated yield of the 

cyclized product was raised to 65%. Clearly, the allylsilane could be used as a trapping group to 

simultaneously form a six-membered ring and a quaternary carbon if the reaction was channeled 

down an oxidative radical pathway and a persistent radical cation intermediate avoided.13  

The success of this reaction suggested that maybe the approach would provide a general route to 

anodic carbon-carbon bond forming reactions that involved slow cyclization reactions. Certainly, 

it was reasonable to suggest that the same approach might solve the challenges associated with 

the formation of seven-membered rings outlined above.  
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3.3.2 Oxidative Radical Pathways and Seven-Membered Ring Formation 

To test this idea, we needed a rapid route to make the substrates. As shown in Scheme 3.3, the 

Wright group had developed a Michael reaction/electrolysis sequence for exploring similar silyl 

enol ether based substrates.17 A survey of the literature suggested that a related approach 

utilizing a Michael-type addition to an unsaturated acetal (Scheme 3.8) might provide a useful 

route to the enediol ether substrates. The work built upon observations made by the Manna group 

using organolithium reagents,18 and the Sakai group using cuprate reagents19 as the nucleophiles 

for the additions.  

 

Scheme 3.8 Literature using acetal as Michael Acceptor 

We thought this approach might prove very general since Grignard reagents needed for 

generating the necessary cuprate reagents should be accessible and in principle unsaturated ketals 

can be synthesized from a variety of available enones. The real key was carrying the furan 

through the Grignard process, but again the Wright group’s efforts indicated that this was 

possible. The approach would potentially provide access to a large number of ene diol 
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electrolysis substrates. This was also an initiation point for me build a series of substrates 

required in chapter 4.  

In the beginning, Robert Perkins expended significant effort to optimize  both the reaction 

conditions and workup procedure to make the reactions possible.11 Substrate 33 was synthesized 

and oxidized by Dr. Perkins. 

 

Scheme 3.9 Radical Intermediate on Seven-Membered Ring Formation 

The oxidation reaction was partially successful. It did lead to the formation of some cyclized 

product (21%), but the reaction was messy and the product difficult to isolate. Hence, the yield 

was determined by NMR analysis of the crude reaction product. In addition to the desired 

product, approximately 30% of product (35) derived from furan oxidized was obtained. The 

initial ene diol ether did lead to a cyclic ketal in this product. Many attempts to optimize the 

reaction also led to formation of the oxidized furan as the major product.  
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Figure 3.1 Electrolysis of 33 by Robert Perkins 

The oxidation of the furan was a surprise since the previous studies had clearly demonstrated that 

enol ethers are preferentially oxidized in the presence of a furan ring, even when the enol ether is 

less electron-rich than the one utilized in substrate.7 For example, consider the oxidation of 

substrate 3c mentioned earlier (Scheme 3.2). In this reaction, the only non-cyclized products 

obtained were the result of enol ether oxidation. No products from furan oxidation were observed 

even though it is clear from the current reaction that they can be isolated. In addition, the 

oxidation of enol ether substrate shown in Schemes 3.2, 3.3, 3.4, 3.5 had not led to any furan 

oxidation product. Nor had the reaction originating from substrate 33b (Scheme 3.10), an 

observation that ruled out any suggestion of an initial proton induced cyclization of the enol 

ether in the substrate to form the cyclic ketal prior to the oxidation13.  
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Scheme 3.10 six member ring ene diol substrate electrolysis 

Interestingly, the ratio of the two products shown in Scheme 3.9 did not depend on the pH of the 

reaction, another observation that was inconsistent with decomposition of the enol ether prior to 

the oxidation.   

In light of these observations, it seems more likely that the desired radical for the oxidative 

radical cyclization led to a hydrogen atom abstraction as shown in Scheme 3.1111.  

 

Scheme 3.11 Radical Intermediate causing HAT (Hydrogen Atom Transfer) 

In the proposed mechanism, once radical cation 37 was trapped by internal hydroxyl group, the 

radical was in position to abstract a proton alpha to the furan ring through a six-membered ring 
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transition state.  This HAT (Hydrogen Atom Transfer) reaction would result in radical 38. A 

second oxidation followed by methanol trapping and a methanolysis reaction would lead to the 

observed product 41. 

While such a hydrogen atom abstraction should not have been a surprise, it caught us off guard 

because the previous successful anodic cyclization reactions leading to seven-membered rings 

showed no such behavior (Schemes 3.2 and 3.3). Is it possible that radical cation intermediates 

(which does not require low temperature) simply do not undergo such hydrogen atom abstraction 

reactions? This is a question we will address below.  

3.3.3 Constrained Radical Intermediate in Seven-Member Ring Formation 

With it becoming clear that slowing down the competitive elimination reaction was not an 

option; the key question became whether or not we could accelerate the cyclization to form a 

seven membered ring without putting a quaternary carbon next to the radical cation. Our hope 

was that we could accelerate either the oxidative radical pathway enough to overcome the 

hydrogen atom abstraction, the radical cation pathway enough to overcome the problematic 

elimination from the radical cation, or both.  
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Figure 3.2 Constrained Radical Intermediate Substrate 

With this in mind, the two substrates shown in Figure 3.2 were designed. The design was guided 

by two main thoughts. First, the more rigid side chain would decrease the rotational degrees of 

freedom associated with the tether and should lead to a significant increase in the rate of the 

cyclization reaction. In addition, the presence of the sp2-hybridized atoms would reduce any 

transannular interactions that might slow the cyclization. Second, while the phenyl group would 

not be compatible with the synthesis of artemisolide, the use of a cis olefin as the constraint 

would potentially be compatible with the synthesis because it could be used to mask the 

functionality needed at C2 of intermediate 23. It was hoped in both cases that the rate of the 

cyclization might overcome the HAT reaction, although we did worry that the presence of the 

constraint might also accelerate the HAT reaction.  

With this in mind, we made substrate 43a using the chemistry shown in Scheme 3.12.  
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Scheme 3.12 constrained ene diol substrate synthesis  

The electrolysis substrate was chromatographed through silica gel. While the material was 

unstable and chromatography led to lower yields, the substrate could be isolated in an amount 

that allowed for examination of the electrolysis.  

  

Scheme 3.13 Constrained Radical Intermediate Pathway Cyclization  

The oxidation led to a significant amount of recovered starting material along with a collection 

of oxidation products (Figure 3.3 Three of the peaks (labeled with asterisks) seem consistent 

with the cyclized product. However, the smaller peaks upfield of these signals would be 

consistent with the furan oxidation product. Much of the rest of the spectrum was consistent with 

a messy electrolysis and the formation of polymer type products. Note the very messy methoxy 

region between 3 and 4 that is often associated with these types of problems in an electrolysis. 
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Certainly, an extensive optimization of the reaction would be needed for there to be a chance for 

obtaining a significant amount of the desired cyclized product. There was little evidence that the 

reaction would lead to a high yield of cyclized product if optimized for conversion. This 

optimization was not conducted due to the success of the reaction channeled down the radical 

cation pathway.   

 

Figure 3.3 Constrained ene diol substrate electrolysis. NMR of the crude product. Coumarin as internal 

standars 

3.3.4 Constrained Radical Cation Intermediate in Seven-Membered Ring 

Formation 

The lack of cleanliness in the reaction channeled down the oxidative radical pathway made it 

clear that the added constraint had not fixed the problems encountered with the previous 
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oxidative radical pathway. Hence, we turned our attention to the radical cation pathway and the 

twin questions of whether or not radical cation reactions were subject to the HAT transfer 

reaction and whether or not the presence of the phenyl ring in the tether would increase the rate 

of the desired cyclization relative to the elimination reactions that typically plague slow radical 

cation-based cyclizations reactions? It was noted that the phenyl ring would also accelerate the 

elimination reaction of the allylic, and now benzylic hydrogen from the radical cation?  

To address these questions, substrate 47 was synthesized and oxidized. The TIPS group was 

chosen in order to increase the stability of the substrate with respect to methanolysis during  

Figure 3.4 Constrained Radical Cation Intermediate Substrate 

electrolysis reaction. As with the synthesis of the enediol ether substrates, we examined the 

generality of an approach to make the silyl enol ether substrates (Scheme 3.14).  

 

Scheme 3.14 Michael addition to ketone to access constrained intermediate 
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Plan (a) and (b) were both selected for this study so we could examine the generality of our 

earlier observation about the effect of fused ring size on the reactions. The reaction highlighted 

in equation (a) will be detailed in chapter 4 since the substrates synthesized were part of the 

project outlined there. In Plan (b), different conditions were tested in order to optimize both the 

yield of the reaction and the stability of the substrate for the electrolysis. This stability was 

important so that we could obtain pure material for testing the electrolysis reaction. The 

Grignard-reagent was synthesized as shown previously in Scheme 3.12. Different conditions 

were then tested for the Michael addition. 

 

 

Scheme 3.15 Michael condition test 

The chart shown in Scheme 3.15 summarizes selected examples of conditions probed that 

combined taught us critical items about the reaction. First, generation of the cuprate benefited 

from a temperature that was higher than the -78 oC used for the actual addition reaction. Second, 

the reaction benefited from a slow addition of the ketone to the cuprate at low temperature before 
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warming the reaction temperature back to room temperature following the addition (a detail 

prescription can be found in Experimental Section). Third, the reaction benefited from the use of 

a triisopropyl silyl group on the enol ether. With this TIPS group, the product was more stable 

and could be purified by silica gel chromatography.  

The reactions shown in equations (c) and (d) represented a back-up plan in case the silyl enol 

ethers could not be isolated. Unfortunately, both of these reactions failed. The example shown in 

equation (c) did not work when the conditions above were employed, and the substrate for 

equation (d) proved too difficult to make. The routes were abandoned because of the successful 

synthesis of triisopropylsilyl enol ether substrate 47.  

With the substrate 47 in hand, the electrolysis reaction was attempted. For this reaction, the five-

membered ring enol ether was utilized because of its relationship to the targeted natural product. 

In this case, the phenyl ring constraint proved very successful, and the oxidation reaction led 

cleanly to oxidized product. In the proton NMR spectrum of the crude product obtained (Figure 

3.5), note the cleanliness of the methoxy region. This region is at a chemical shift consistent with 

ketal and acetal based methoxy ethers (ca. 3.2 – 3.4 ppm). Isolation of the product proved to be 

difficult due to hydrolysis reactions and elimination to the furan ring. So, the success of the 

cyclization was first evaluated by NMR integration using the crude reaction product.  

 

Scheme 3.16 Constrained Radical Cation Intermediate 
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To get a rough approximation of yield, the signals at 5.5 were integrated relative to trimethoxy 

benzene as internal standard. These signals were selected because a fast chromatography of the 

crude material did lead to the isolation of the material (tentatively assigned as 48) shown in 

Figure 3.6. This material could be hydrolyzed to generate a fully characterized cyclization 

product 49. Clearly, the material that gave rise to Figure 3.6 might only represent part of the 

isomeric mixture that could have been formed in the reaction. However, the integration of this 

region of Figure 3.5 indicated that the yield of cyclized material might be as high as 80%. 

However, this number is very crude, and it likely only indicates that a significant portion of the 

oxidized material was the desired cyclized product.   

 

Figure 3.5 Electrolysis of 47 using trimethoxy benzene as internal standard 
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More evidence for the formation of cyclized product was obtained by the hydrolysis of the 

material shown in Figure 3.6 to form a cyclized product containing both a ketone and the furan 

(49). Product 49 was formed in a 59% isolated overall yield from the oxidation substrate 47.  

 

Figure 3.6 Material after fast chromatography following electrolysis of 47  

The yield is currently tentative because of the scale of transformation (14 mgs). (A larger scale 

reaction is on under investigation). It was characterized as a cyclization product with the use of 

2D NMR.  The HMBC spectrum is included in Figure 3.7. Note the correlation between the 
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hydrogen on atom eight and carbon nine that indicates formation of the desired carbon-carbon 

bond.   

  

 

Figure 3.7 HMBC for 49  

The conditions for the overall conversion of 47 to 49 were not optimized since this was a model 

system and not compatible with the natural product synthesis (the presence of the phenyl ring is 

not consistent with the ring system of artemisolide). However, the oxidation of 47 when 

compared with the reaction resulting from the oxidation of substrate 43 did provide compelling 

evidence that this reaction benefited from the use of a radical cation intermediate. The oxidation 

led to no evidence of a product derived from the elimination of a proton next to the initial radical 
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cation. In addition, we did not isolate any product that would result from the competitive H-atom 

abstraction or furan oxidation, although the proton NMR of the crude material leaves open the 

possibility that a minor amount of material from a H-atom abstraction may have formed. With 

that said, the use of the conformational constraint with the radical cation pathway eliminated the 

need to block a potential elimination reaction from the radical cation with a methyl group as seen 

in the earlier related seven-membered ring forming reactions, and it avoided the need to employ 

the more difficult to synthesize and handle enediol ether substrate. The reaction suggests that the 

anodic coupling reaction might be compatible with the synthesis of artemisolide if channeled 

down the radical cation pathway in the presences of an appropriate conformational constraint.   

Furthermore, a comparison of the reactions resulting from oxidation of 43 and 47 suggests that 

radical cation intermediates do not rapidly undergo H-atom abstraction reactions and that the 

reactions is overall a much cleaner process. This led to the conclusion that we cannot simply 

channel a reaction down an oxidative radical pathway to overcome a slow cyclization as 

previously thought. There are times (a competitive H-atom abstraction) where the use of a 

radical cation intermediate dramatically improves the oxidative cyclization. Of course, this does 

not change the earlier observations that there are times (a competitive proton elimination from 

the radical cation) when the oxidative radical approach is needed). 

3.3.5 Discovered Alternative Pathway for Seven-Membered Ring Formation 

During the process of reaction condition optimization, we chose the use of tetrabutylammonium 

bromide as an electrolyte and stumbled onto an alternative pathway for the generation of a seven 

membered ring product. This pathway involved an initial oxidation of the bromide electrolyte to 

form a source of Br+ as previously reported in the literature.20,21  
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Scheme 3.17 Electrolyte Influence 

The Br+ can then brominate the furan ring leading to the cyclization as outlined in Scheme 3.17. 

In this case, the reaction would lead directly to the furan product following the elimination of 

HBr. When substrate 47 was oxidized using similar CCE (Constant Current Electrolysis) 

conditions with the use of the tetrabutylammonium bromide, product 48 was achieved in a 33% 

isolated yield along with 31% RSM. Remember that without the Br- based electrolyte the 

product generated from the reaction was not the furan but a methoxylated dihyrofuran derivative 

that needed to be converted into the furan with a subsequent oxidation step.  

Since this alternative approach did not relate to the main topic of our work in this area (a more 

general look at the role of radical cation and oxidative radical pathways in oxidative cyclization) 

it was not pursued in detail as part of this study. However, this alternative approach might 

provide an interesting alternative for other classes of reactions that would benefit from the use of 

a Br+ catalyst21.  
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3.4 Conclusions and control of pathway 

It is clear that both the oxidative radical pathway and the radical cation pathway have situations 

where they represent the preferred approach for an oxidative cyclization reaction. For example, 

consider the chemistry shown in Scheme 3.18 which highlights the conclusions reached above.  

 

Scheme 3.18 Radical Pathway VS Radical Cation Pathway 

In the cyclization originating from the oxidation of substrate 29 use of the oxidative radical 

pathway was essential in order to avoid elimination reactions from the radical cation. Here, the 

intramolecular HAT pathway was not competitive with the cyclization. However, for the 

oxidation of substrate 50 the intramolecular HAT reaction did prove to be problematic 

(presumably due to the stability of the new radical formed) and a radical cation pathway that was 

not susceptible to the HAT reaction required.  

With it becoming clear that the nature of the reactive intermediate is important for the success of 

an oxidative cyclization reaction, it is important to take note of how substrates 43 and 47 were 

synthesized (Scheme 3.12 and scheme 3.15). Both were made from the same cuprate reagent and 

the same enone with slightly modification. For the formation of the substrate leading to the 
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radical cation pathway (43), the cuprate was added to the enone via a Michael addition. For the 

formation of the substrate leading to the oxidative radical pathway (47), the cuprate was added to 

a ketal derived from the enone. The point is that the same synthetic sequence can be used to 

access both substrates. So, in a synthesis the same overall route can be employed to a product no 

matter what reactive intermediate is needed for optimizing the success of the oxidative 

cyclization.  

In this chapter, a major issue discussed is centered on the mechanism attempting to get access to 

seven-member ring. However, in the actual artemisolide synthesis, we need a double bond 

instead of phenyl ring. A couple of attempts were made to access these intermediates, but time 

ran out before we could find a successful route.22,23 

 

Scheme 3.19 Synthesis of 59 

3.5 Experimental Section  

Synthesis of 47 route  

OTIPS O O

Al

OOTIPS O

TMS

TMS

Route 1

TMS

OTIPS O

Route 2

O

Br
O

O

59

59

60

61

O

Br

Br Br4C
PPh3

Pd(PPh3)4
Bu3SnH



 
 

85 

The key to the synthesis of the electrolysis substrates in this chapter is Michael-addition to 

corresponding ketone or ketone acetal. As a sample, the synthesis of substrate 47 is detailed here. 

Other Grignard-reagents used in this chapter were either purchased from Sigma Aldrich or 

synthesized from the commercially available bromide using the procedure described below.    

 

Scheme 3.20 Synthesis of Electrolysis Substrate 47 

Synthesis of 57 (2-bromophenyl)(furan-3-yl)methanol 

 

To a solution of 3-3romo furan (5.23 g, 35.6 mmol, 1.12 eq) in THF (40 mL) at -78 oC was 

added n-BuLi (14.2 mL of a 1.6 M solution in hexane, 1.2 eq) in a dropwise fashion. After 

30min, 2-bromobenzaldehyde (3.66 mL, 31.6 mmol) in 15 mL THF was added in dropwise. The 

reaction mixture was allowed to warm to room temperature and then stirred overnight. The 

reaction was then quenched with a saturated aqueous solution of NH4Cl and most of THF solvent 
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removed under reduced pressure. The residue was diluted with water and DCM, and the aqueous 

layer extracted with three times with dichloromethane (DCM). The combined organic layer was 

dried over MgSO4, filtered, and concentrated in vacuo. The crude product was chromatographed 

through silica gel using 20% ethyl acetate in hexane as eluent to give 7.0 g of product (87% 

yield). The NMR data (Appendix B) matched the previously published data.11   

 

Synthesis of 58 3-(2-bromobenzyl)furan 

 

To a solution of NaI (5.55 g, 37 mmol, 4.5 eq) in acetonitrile (100 mL) at 0 oC, was added 

TMSCl (4.73 mL, 37 mmol, 4.5 eq) in a dropwise fashion. The reaction was stirred at 0 oC for 

15min before adding 57 (2.08 g, 8.22 mmol, 1 eq) in 50 mL of CH3CN dropwise over 1h at 0 oC. 

The reaction was then quenched with NaOH (2M). The resulting aqueous layer was extracted 

two times with Et2O. The combined organic layer was dried over MgSO4, filtered, and 

concentrated in vacuo. The crude product was chromatographed through silica gel with hexane 

as eluent to give 2.0 g of product (85% yield). The NMR data (Appendix B) matched the 

previously published data.11   

 

A procedure for making phenyl bromide Grignard: 

Br

O
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Note: In our hands, the phenyl-based Grignard-reagents generally require longer reaction time (5 

h vs 3 h) and higher temperature (reflux) than the alkyl-based Grignard-reagents. 

Mg ribbon (4 g, freshly sanded, freshly cut) was placed in 50 mL flask. The flask was flame 

dried and then cooled to room temperature. THF (12 mL) was added to the flask and the mixture 

sonicated for 15 min. The starting bromide (8.5 mmol) was dissolved in 8 mL of THF. The 

subsequent additions were made using a Sage Instruments Syringe Pump (Model number 341B). 

In stage one, 2 mL of the bromide solution was added to the flask with the syringe pump at a rate 

of 8 mL/min. A heat gun was then used to initiate a reflux. In a second stage, the remaining 6 mL 

of bromide solution was added to the flask at a rate of 2 mL/min while the reaction was heated 

with a hot plate. In the third stage of the reaction, the result mixture was refluxed for 5h. A dark 

red solution was obtained.       

A procedure for titration of phenyl bromide Grignard: 

A 5 mL flask was flame dried and placed under argon with the use of a balloon. To this flask was 

added 14.5 mg of menthol along with ½ a spatula of 1,10-phenanthroline to be used as an 

indicator. Methanol solvent (0.5 mL) was then used to dissolve the solid. To this mixture was 

added the Grignard-reagent in a dropwise fashion. Upon addition, a milky white solid was 

formed. After 0.54 mL of the Grignard-reagent was added, the mixture became a clear, dark red 

solution. The titration indicated that the Grignard-reagent had a concentration of 0.18 M. This 

concentration varied due to a loss of solvent during the preparation of the Grignard and 

activation of the bromide.   
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Synthesis of 43a 3-((3-(2-(furan-3-ylmethyl)phenyl)cyclopent-1-en-1-yl)oxy)butan-2-ol 

 

To a freshly made Grignard solution (0.69 M, 2mL) at 0 oC was added freshly recrystallized CuI 

(50 mg). The mixture was stirred at room temperature for 30 min until a dark red color 

suspension was formed. Mixture was then cooled to -78 oC. To this solution the unsaturated ketal 

substrate synthesized in Chapter 4 (154 mg, 1.0 mmol, 1 eq) was added in 1 mL of THF in a 

dropwise fashion.  This was followed by a dropwise addition of BF3-Et2O (0.04 mL, 1 mmol, 1 

eq), and then the reaction was stirred for 5 h. Prior to the workup, 2,6-lutidine (0.6 mL) was 

added into the mixture. The reaction was quenched with a saturated aqueous NaHCO3 solution. 

The reaction was washed with EDTA solution (pH=8, 0.1 M) until no blue color remained. The 

layers were separated, and the aqueous layer was washed with ether three times. The combined 

organic layer was dried over MgSO4, filtered, and concentrated in vacuo. The crude product was 

chromatographed on silica gel (20% EtOAc in hexane, packed with 1% TEA) to give 148 mg of 

43a and 2,6-lutidine mixture (2:1 NMR ratio) (28% product yield) and 28% RSM (NMR yield). 

1H NMR (500 MHz, Chloroform-d) δ 7.47 (t, J = 7.7 Hz, 1.79H), 7.41 – 7.03 (m, 6H), 6.97 (d, J 

= 7.6 Hz, 2.98H), 6.23 (d, J = 2.3 Hz, 1H), 4.49 (t, J = 1.8 Hz, 1H), 4.26 – 4.11 (m, 1H), 3.98 – 

3.69 (m, 4H), 2.50 – 2.24 (m, 4H), 1.35 – 1.14 (m, 6H). 

Note: This procedure was according to the development of project outlined in chapter 4. 

Electrolysis of 43a 

OO

OH
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A three-neck round bottom flask was charged with 43a (0.14 mmol, 1 eq), LiClO4 (200 mg), 

MeOH/THF (1:1, 3 mL), and 2,6-lutidine (0.1mL, 5 eq). Into this solution was inserted a RVC 

anode and a carbon cathode.  The reaction was electrolyzed at 8mA until 3F/mol current was 

passed through the solution at -78 oC. The reaction was then quenched with water. The layers 

were separated and the aqueous layer extracted two times with dichloromethane. The combined 

organic layers were then washed with brine, dried over MgSO4, filtered, and concentrated in 

vacuo. This crude product gave rise to the proton NMR spectrum shown in Figure 3.3. 

Synthesis of 47 ((3-(2-(furan-3-ylmethyl)phenyl)cyclopent-1-en-1-yl)oxy)triisopropylsilane 

 

A Grignard solution of 58 (10 mL, 0.2 M) was freshly made using the procedure reported above.  

To this solution at 0 oC as added CuI (200 mg, 0.5 eq) and HMPA (0.68 mL, 2 eq). The mixture 

was then stirred at 0 oC for 10 min before the temperature was allowed to slowly climb to room 

temperature and the reaction stirred for an additional 30 min. The reaction was cooled to -78 oC, 

and then cyclopent-2-en-1-one (164 mg, 2 mmol) in 3 mL of THF was added to the mixture 

followed by the addition of TIPSOTf (1.62 mL, 3 eq). The reaction was stirred for 1h before the 

addition of trimethylamine (1.6 mL, 3 eq). The resulting reaction mixture was allowed to warm 

to room temperature. 2,6-Lutidine (0.21 mL) was added to the reaction before work up. The 

reaction was then quenched with a saturated aqueous solution of NaHCO3. The layers were 

separated and the organic layer then washed with an EDTA solution (0.1 M, pH=8) until no 

green/blue coloration remained. The aqueous layer was extracted two times with Et2O. The 

OOTIPS
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combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo. A 1H 

NMR of the crude reaction product was taken, using 2,6-lutidine as internal standard. Integration 

indicated a 60% NMR yield of the desired enol ether. The crude product was chromatographed 

on silica gel (using hexane as eluting solvent) to give 114 mg of product (30% yield). 1H NMR 

(600 MHz, Chloroform-d) δ 7.35 (d, J = 1.8 Hz, 1H), 7.31 (d, J = 7.6 Hz, 1H), 7.24 – 7.20 (m, 

1H), 7.13 (dd, J = 6.4, 1.6 Hz, 2H), 7.08 (s, 1H), 6.23 (d, J = 1.7 Hz, 1H), 4.65 (q, J = 1.8 Hz, 

1H), 4.14 (dd, J = 8.5, 6.1, 2.4 Hz, 1H), 3.88 – 3.78 (m, 2H), 2.42 – 2.37 (m, 1H), 2.32 (ddd, J = 

13.0, 8.6, 4.9 Hz, 1H), 1.74 (dq, J = 12.0, 6.8, 5.5 Hz, 2H), 1.23 (q, J = 7.4 Hz, 3H), 0.89 (q, J = 

8.5, 7.6 Hz, 18H). 13C NMR (151 MHz, CDCl3) δ 153.87, 143.04, 140.16, 137.00, 134.43, 

126.85, 124.25, 124.09, 123.20, 121.88, 108.52, 103.23, 40.50, 31.99, 30.85, 25.79, 19.99, 15.24. 

HRMS (ESI) for C25H36O2Si [M + Na]+: Calcd. = 419.6282, Found 419.2369.  

Electrolysis of 47  

 

Scheme 3.21 Electrolysis of 47 

Entry 1 as an example: 

OTIPSO O
OMe

MeO
TIPSO

OO

TsOH

electrolyte (0.6M)
solvent

2,6-lutidine (5 eq)
2.5 F/mol, 8 mA

OMeO
TIPSO

47 48 48a 49

entry electrolyte solvent product yield acidified product yield

1 0.6M LiClO4 DCM:MeOH (1:1) 48 80%a 59%

2 0.6M Bu4NBF4 MeOH 48 - 28%

3 0.6M Bu4NBr MeOH 48a 33% (31%RSM) -

electrolyte influence

a) NMR yield
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To a three-neck round bottom flask was charged with 47 (0.1mmol, 1eq), LiClO4 (127 mg), 

MeOH/DCM (1:1, 2 mL), 2,6-lutidine (0.1 mL, 5 eq), the reaction was electrolyzed at 8 mA until 

2.5 F/mol current passed. The reaction was then quenched with water. Aqueous layer was 

extracted with DCM twice. The combined organic layer was dried over MgSO4, filtered, and 

concentrated in vacuo. 12.1 mg of 1,3,5-trimethoxybenzene was used as internal standard for 

crude NMR. By calculation, a crude cyclized product 48 yield was obtained of 80%. Figure 3.5 

(Note: a) TsOH treatment following by NaHCO3 work up did not lead to product, so repeating 

experiments were attempted; b) When using Bu4NBr, 48a was obtained in 33% isolated yield 

after electrolysis without acid treatment). In one of the repeating experiments, 14 mg starting 

material was used to conduct electrolysis under the condition described before. A quick 

chromatography was conducted following electrolysis. The material as shown in Figure 3.6 was 

then then dissolved in THF:Water (4:1). TsOH was added in. After stirring for 4 h, the reaction 

was then quenched with water. Aqueous layer was extracted with DCM twice. The combined 

organic layer was dried over MgSO4, filtered, and concentrated in vacuo. The crude product was 

chromatographed on silica gel (using 20% EtOAc in hexane) to give product 5 mg 49 isolated 

yield 59%. In another repeating experiments (0.28 mmol scale reaction, 113.2 mg) using the 

same electrolysis as described before and no chromatography following electrolysis. After TsOH 

treatment (8 mL H2O: THF = 1:4, 0.5 g TsOH), same aqueous work up as described before led 

to 18 mg, 26% isolated yield. 

Compound 48 

(Note: The compound was purified through silica gel using 10% Ethyl Acetate in hexane  

directly after water wash, to remove huge 2,6-lutidine peak. A spectrum of after fast column can 
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be found in Appendix B). The spectra showed not very pure, but a clear view on the 

methoxylated furan peaks (5.5-5.6 ppm, 3 protons) 

Compound 49 

1H NMR (600 MHz, Chloroform-d) δ 7.37 – 7.19 (m, 5 H), 6.26 (s, 1 H), 4.13 (dd, J = 16.1, 3.1 

Hz, 1 H), 3.66 (m, 1H), 3.52 (d, J = 16.2 Hz, 1H), 3.11 – 3.08 (d, J = 16.2 Hz, 1H), 2.78 – 

2.69(m, 1H), 2.51 – 2.37(m, 3H). 13C NMR (151 MHz, CDCl3) δ 144.4, 141.5, 128.5, 127.2, 

127.0, 124.2, 117.7, 111.9, 54.5, 42.9, 37.7, 31.2, 24.2. NMR was compared to 48a for 

confirmation and 2D NMR for confirming structure was taken using similar logic as described 

for characterizing 48a due to the same core ring structure. The green circle showed correlation 

between C9 and H8. A detailed discovery logic can be seen 48a.  
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Figure 3.8 HMBC of 49 

Compound 48a  

1H NMR (600 MHz, Chloroform-d) δ 7.37 - 6.98 (m, 5H), 6.20 (s, 1H), 4.27 (d, J = 10.5 Hz, 

1H), 4.02 (d, J = 16.0 Hz, 1H), 3.81 (m, 1H), 3.73 (d, J = 16.4 Hz, 1H), 3.39 (s, 3H), 2.36 – 2.18 

(m, 1H), 2.00 (dd, J = 13.3, 9.1 Hz, 1H), 1.90 (dd, J = 8.5, 3.9 Hz, 1H), 1.70 (dd, J = 13.1, 10.2 

Hz, 1H). 13C NMR (151 MHz, Chloroform-d) δ 142.8, 141.0, 130.0, 127.1, 126.7, 125.8, 111.0, 

104.8, 62.5, 48.1, 38.0, 30.6, 29.0, 18.2, 17.6, 13.2. HRMS (ESI) for C26H38O3Si [M + H]+: 

Calcd 426.6645; Found 427.2664. 2D NMR was used for confirming structure. 

In the 2D NMR analysis, initially, proton NMR, carbon NMR, and HSQC were used to assign 

the position of proton and carbon using the logic described below: Following an initial 
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estimation of proton assignment, HSQC was used to find the corresponding carbon. (Appendix 

B). Then TOCOSY was used to confirm the correlation between protons (see below).  

 

Figure 3.9 TOCSY of 48a 

In green circle and linked by dashed line, the correlation shows coupling between proton 7  and 

proton 8. To further confirm the structure, HMBC was analyzed (see below). The green circle 

and arrow showed the multiband correlation between carbon 9 and proton 7, which proves the 

key evidence for the formation of C8-C9 bond.  
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Figure 4.10 HMBC of 48a 

 

zoom in region 
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Synthesis of 60a (E)-N'-(furan-3-ylmethylene)-4-methylbenzenesulfonohydrazide 

  

A solution of TsNHNH2 (0.93 g, 5 mmol, 1 eq) in 5 mL MeOH was stirred at 60 oC until all of 

the hydrazine dissolved. To this solution was added furan-3-carbaldehyde (0.43 mL, 5 mmol, 

1eq) in a dropwise fashion. After 15 min, the mixture was cooled to room temperature and the 

solvent removed in vacuo. The proton NMR of the crude product (DMSO-d6 solvent) showed a 

product that was pure enough to carry on to the next step in the synthesis. The yield of the 

product obtained was 1.132 g (85% yield). The NMR data (Appendix B) matched the data 

previously reported for this compound.24 

 Synthesis of 60 (3-(furan-3-yl)prop-1-yn-1-yl)trimethylsilane24  

 

Compound 60a (0.872 g, 3.3 mmol, 2.2 eq) and CuI (57 mg, 0.3 mmol, 20 mol%) were dissolved 

in 18 mL of dioxane. The reaction mixture was placed under argon, and then LitOBu (5.25 mL, 

1M in THF) added. The mixture turned from a murky yellow to a dark red solution. 

Ethynyltrimethylsilane (0.21 mL, 1.5 mmol, 1 eq) was added in. The mixture was stirred at 90 oC 

for 1 h, and then cooled to room temperature. Mixture was filtered through celite. The solvent 

was concentrated in vacuo. The crude product was chromatographed on silica gel (using 5% 

EtOAc in hexane as eluting solvent) to give 200 mg of product (73% yield). The NMR data 

(Appendix B) was corresponded to previously published data.24 

O

NNHTs

O

TMS
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Synthesis of 61 2-(furan-3-yl)acetaldehyde 

   

A solution of (methoxymethyl)triphenylphosphonium chloride (4.64 g, 13.53 mmol, 2.9 eq) in 

30 mL THF was stirred at 0oC. KtOBu (13.5 mL, 1M in THF) was added in dropwise. The 

mixture was stirred at room temperature for 1 h, cooled to -78 oC, and then treated with furan-3-

carbaldehyde (1.00 g, 10.4 mmol, 1 eq) in 10 mL of THF. The addition of the aldehyde was done 

in a dropwise fashion. The reaction was stirred at room temperature for 20 min. The reaction was 

monitored for the loss of the starting material using TLC. The reaction was then quenched with 

hexane and solvent was removed under pressure. The reaction mixture was chromatographed 

through silica gel eluting with hexane. This was done quickly in order to avoid decomposition of 

the enol ether. The collected compound (1.57 g) was dissolved in 40 mL THF and 20 mL of 

H2SO4 (1%). This mixture was refluxed overnight. The reaction was then quenched with a 

saturated aqueous NaHCO3 solution. The layers were separated and the aqueous layer was 

extracted two times with Et2O. The combined organic layers were dried over MgSO4, filtered, 

and concentrated in vacuo. The product was then isolated by Kugelrohr distillation (100 oC, 0.4 

mmHg) to afford a 25% yield of product the targeted aldehyde.  The NMR data (Appendix B) 

matched that of the previously published data.25   

3.6 Spectra Data 

See Appendix B 

O

O
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Chapter 4: Tandem Cyclization using 

Radical Pathway  

Having shown that the nature of the reactive intermediate in an oxidative cyclization is important 

for the reactions, we turned our attention toward another previously problematic transformation. 

Namely, the oxidative initiation of tandem cyclization reactions that generate more than one 

bond at a time. With the findings made in Chapter 3 the question immediately became, did the 

previous efforts utilize the correct reactive intermediate?  In this chapter, we will outline the 

history of our efforts to conduct a tandem anodic cyclization and then our initial efforts to 

determine the nature of the reactive intermediate needed for these intriguing, potentially 

powerful synthetic reactions.   

4.1 Tandem Cyclization Reactions in the Literature 

Tandem cyclization reactions have long proven to be an effective strategy for the synthesis of 

complex ring skeletons.1 It is intriguing to think about the role an oxidative cyclization reaction 

might play in this approach because the reactions raise the overall functionality of a molecule 

while making new bonds.  With this in mind, the molecules paniculatine and dankasterone were 

selected as targets for studying the synthetic potential of oxidative tandem cyclization reactions. 

Both are structurally interesting natural products with significant biological activity1,2 as 

mentioned in the previous chapter (Chapter 2).  
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Figure 4.1 Paniculatine and Dankasterone 

4.1.1 Paniculatine 

Panculatine was selected as a target because of a previous synthesis that would allow us to 

highlight the importance of an oxidative approach to tandem cyclization reactions. Paniculatine, 

along with magellanine and magellaninone, belongs to a class of Lycopodium alkaloids that are 

comprised of a tetracyclic framework. This ring skeleton has always been a challenging and 

appealing task for researchers. Accordingly, the family of molecules has been the subject of a 

number of synthetic efforts.1,3  

 

Figure 4.2 Lycopodium Alkaloids 
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One of those synthetic efforts was very attractive for our purposes. In that regard, the panculatine 

structure was achieved by the Sha group with the use of a tandem radical cyclization reaction 

(Scheme 4.1).1 In this approach, a site for the initiation of the radical reaction was generated by 

the introduction of an iodide.  

 

 

Scheme 4.1 Paniculatine Synthesis 

This was accomplished by treating a Michael reaction derived silyl enol ether with mCPBA and 

NaI. A tandem cyclization was then triggered with the use of tributyltin hydride, and the product 

of the tandem cyclization eventually converted to intermediate I1 . Since the tandem radical 

cyclization at the heart of this scheme is a reductive process, the overall plan required an 

oxidation, reduction, oxidation strategy that consumed stoichiometric MCPBA, NaI, Bu3SnH, 

TBAF, Li/NH3, H2O2, and PCC. In principle, all of these reagents can be avoided and the 

synthetic sequence dramatically shortened with the use of an oxidative radical cyclization like 

the one illustrated in Scheme 4.2. The point is that the net transformation required is an oxidative 
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one. So, why not use an oxidation based tandem cyclization in place of a reduction-based 

approach?  

 

Scheme 4.2 Paniculatine Synthesis via Anodic Cyclization  

Of course, the route shown would utilize a radical cation intermediate to trigger the tandem 

cyclization. Is this the best intermediate or would this particular reaction be best pursued using 

an oxidative radical approach? Since the starting substrate is made by a Michael reaction, either 

route could be readily implemented using the strategy highlighted in Chapter 3.  

4.1.2 Dankasterone 

Dankasterone also contains multi-cyclic framework which can potentially be made use the use of 

an oxidative tandem cyclization strategy. For that reason, the retrosynthetic analysis highlighted 
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in Scheme 4.3 was designed. (Reference from Scates, B.A., Ph.D. Dissertation, Washington 

University in St. Louis, 2006)  

 

Scheme 4.3 Retro-Analysis of Dankasterone via Anodic Cyclization 

In this case, silyl enol ether 15 would be oxidized to generate a radical cation (14) that would in 

turn trigger the tandem cyclization. As in the earlier reaction an acetylene would serve as the 

relay pi-system in the tandem reaction. A methoxy vinyl ether would then serve as the 

terminating group leading eventually to intermediate 11.  

The similarity of the routes proposed for the two natural products suggested that the development 

of such an oxidative approach might prove generally useful.  

4.2 Initial Tests on Anodic Tandem Cyclization 

Because of the synthetic potential of the approach, Bradley Scates and Laura Anderson both 

spent time during their Ph.D. thesis studies looking at this possibility. However, they did not 

know about the mechanistic considerations highlighted in Chapters 2 and 3. So, we decided to 
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take another, hopefully more informed look. Before getting to that effort, it is instructive to 

briefly look at Bradley and Laura’s efforts.  

4.2.1 Kolbe Approach 

The first attempt was conducted in the context of a route to Dankesterone. It involved a Kolbe 

electrolysis to generate the radical needed because the acid needed for the Kolbe was already 

present as a result of the substrate synthesis (Scheme 4.4). (Reference from Scates, B.A., Ph.D. 

Dissertation, Washington University in St. Louis, 2006.) 

 

Scheme 4.4 Tandem Cyclization via Anodic Condition 

 

The plan was to install a carboxyl group at a-position of ketone like 21 following a Michael 

reaction and then use the resulting 1,3-dicarbonyl to introduce the sidechain needed for 

terminating the tandem cyclization. This avoided problems with the alkylation and any loss of 

regiospecificity derived from the Michael reaction. Note how a Michael, alkylation sequence 

starting from 21 would require regeneration of an enolate, etc. The use of the Kolbe to generate 
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the radical avoided this complication. The result would still be a two-electron oxidative process 

that avoided a reduction based cyclization.  

Unfortunately, in practice a non-oxidative decarboxylation could never be avoided. As soon as, 

the ester was saponified an immediate decarboxylation occurred after the alkylation. The 

quaternary carbon was simply not stable. Even when the alkylation was avoided and a simple 

model study without the substituent alpha to the carbonyl present subjected to the electrolysis, 

the molecule underwent decarboxylation prior to the oxidation (Scheme 4.5). The result was a 

product that resulted from oxidation of the allylsilane.  

 

Scheme 4.5 Decarboxylation during Anodic Condition Tandem Cyclization 

4.2.2 Double Michael Sequence 

The failure of this simple approach led to an effort to make the substrate through a double 

Michael reaction sequence as highlighted in Scheme 4.6. (Reference from Anderson, L.A., Ph.D. 

Dissertation, Washington University in St. Louis, 2010. )  

O

OH

O O

TMS

OMe

O
1)

I

TMS

Li

TMS

tBuLi, Et2O

2) CuCN, Et2O
3) enone addition
4) CO2

Et4NOTs, 2,6-lutidine
RVC anode, C cathode
MeOH/DCM, 0 oC

Decarboxylation
Not viable

22
23



 
 

107 

 

Scheme 4.6 Double Michael Sequence to Enol Ether Substrate 

In this trial, a monosubstituted olefin was used as the relay in order to simplify the Mannich 

reaction used to install the second Michael acceptor in the sequence. The terminal double bond 

was chosen to be a simpler disubstituted olefin in order to further simplify the substrate 

synthesis. However, neither change was all that effective. The yield of the electrolysis substrate 

27 was never obtained in over 5% and even that amount could not be purified. Attempts were 

made at the cyclization, but with the lack of clean starting material little was learned. The 

electrolysis either afforded product from a straight hydrolysis or polymerized material that may 

or may not have come from the actual substrate. The route was abandoned.  

 

O
1) Br

Li

tBuLi

Et2O

2)  CuCN, TMSBr
      Et2O : THF  1:1

3)  enone addition
     85%

OTMS

DMF

2,6-lutidine

N
I NMe2O

O
OTMS

1) MeI, Et2O

2) 15% K2CO3
     MeOH, CH2Cl2
     39%

1)

2) CuCn, TMSBr
     Et2O : THF  1:1
3) enone addition
    3% not purified

Br Li
tBuLi

Et2O

24
25

2627



 
 

108 

 

Scheme 4.7 Initial Test on Enol Ether Substrate 

4.3 Enol Ether Substrate via Thiophene Route leading to 

Radical Cation Pathway 

4.3.1 Enol Ether Substrate via Thiophene Route 

These results led to another change in the substrate synthesis (Scheme 4.8).  

OTMS
[O]

O

majority of 
recovered material

+ unknown material
   and polymerization

TMS
OTMS

2,6-lutidine, Et4NOTs
20%MeOH/CH2Cl2
RVC/C

Polymerized

OTMS O
RVC/C
2,6-lutidine, LiClO4
20% MeOH/THF
2.4F, 10mA

27a 28a

27b

27c 28c



 
 

109 

 

Scheme 4.8 Enol Ether 32 Synthesis via Thiophene Route 

In this route, the two side chains were made separately, and then the a-position alkyl side chain 

29 installed first with a net retention of double between C2-C3 via the use of the known thiol 

based strategy developed by Baraldi and coworkers (Scheme 4.12).4 The sidechains were 

selected to be consistent with the previous panculatine synthesis since it was known that the 

radical based reaction worked with those groups. Once intermediate 31 was in hand, the b alkyl 

chain 30 was installed via Michael addition.  

 

Scheme 4.9 Synthesis of 29 
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The synthesis of 29 was straight-forward. Using the route shown in Scheme 4.9, compound 29 

was obtained in 30% yield from the starting material. No purification of the intermediates before 

the final bromide 29 was necessary.  

 

Scheme 4.10 Synthesis of 30 

The synthesis of compound 30 proved to be a bit more problematic. While the chemistry prior to 

the final bromination worked well, the bromination itself proved difficult even though the related 

bromination reaction had worked well for the synthesis of compound 29. To solve this problem, 

several different reaction conditions were attempted.  

 

Scheme 4.11 Synthesis of 30- bromination step 

 

TMS
DHP, CSA

DCM, rt
a) nBuLi
b) TMSCl
    THF, reflux

TMS
OH PPTS, MeOH

45%, 3 stepsTMS
Br

NBS, PPh3,DCM
0 oC- rt

61%
30

33a
37

38

OH OTHP
OTHP

TMS
OH

TMS
Brcondition

bromo
source additive solvent condition yield

PBr3

Br2

NBS

-

imidazole
PPh3

PPh3

DCM

DCM

DCM

rt

rt

0 oC - rt

-

43%

61%



 
 

111 

The best of these conditions involved the use of NBS as the source of bromine. Because of its 

convenience, these conditions were used throughout the rest of the project.   

 

Scheme 4.12 Synthesis of 32a/b 

With the sidechains in place, intermediate 31 was synthesized via intermediate 39 starting from 

the enone and a thiolated methylacetate as shown4. A series of Michael reaction conditions were 

then explored to make the electrolysis substrate. The development of these conditions was 

described in Chapter 3. For this reaction, the Michael product 32a obtained when the silyl 

trapping group was a TMS could only be obtained without purification as a clean mixture of the 

enol ether electrolysis substrate and the ketone derived from hydrolysis of the enol ether. Using a 

TBS based trapping group allowed for isolation of the pure silyl enol ether 32b but only in a 

yield of 17% due to decomposition of the enol ether during the chromatography.  

4.3.2 Enol Ether Substrate Electrolysis 

The two types of silyl enol ether substrate were oxidized even though the TMS substrate was 

never pure and mixed with its hydrolysis product. In this work, it appeared that Dr. Bradley 

O
HS&+�&2�0H

NaOMe
68%

O

S

O
a) 29, K2CO3

b) NaOH
53%

O

SiMe2Ph

31

a) 30, Mg
b) R3SiCl, CuI
    HMPA, 2,6-lutidine
    -30 oC - rt

O
R

SiMe2Ph

TMS
32

39

32a R=TMS
32b R=TBS



 
 

112 

Scates was able to obtain an approximately 10% yield of the desired product by NMR analysis of 

the crude reaction mixture. However, the product mixture was very complex and the product was 

never fully characterized. Hence, this assignment remains tentative.  

I worked to repeat this work. However, during my efforts at the electrolysis of 32a I was only 

able to obtain about an 18% yield of a ketone 40 derived from hydrolysis of the substrate 

(Scheme 4.13). The rest of the reaction mixture was messy, and it was impossible to tell if this 

was the result of an unsuccessful oxidation or our inability to generate enough of a good quality 

substrate for the electrolysis. Different conditions deviated from Dr. Bradley Scates’s thesis were 

put under test in order to exclude the influence from electrolyte (Bu4NBF4) and temperature 

(0oC), still no product. 

As for the TBS substrate 32b (stable than 32a), the conclusions reached were more trustworthy 

since a good quality substrate could be obtained. However, the cyclization was not successful. In 

the best case, the reaction led to the ketone from cleavage of the silyl enol ether in a 60% yield 

along with 9% of the recovered starting material. The recovery of some starting material from 

the reaction did hint that TBS substrate was more stable to the electrolysis conditions than the 

TMS substrate.  
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Scheme 4.13 Enol Ether Substrate 32a-b Electrolysis 

In many ways, the generation of the ketone product from the reaction was a surprise since TBS 

enol ethers are typically stable to the electrolysis. However, it should be noted that the hydrolysis 

product might arise from recovered starting material, and recovered starting material does not 

always mean the oxidation did not occur. A reversible cyclization that leads to a stable radical 

cation can lead to reduction of the radical cation at the cathode5. This often means driving the 

cyclization to completion by increasing the rate of the second oxidation reaction.  

Such a conclusion would be consistent with the simple coupling of an enol ether derived radical 

cation and an acetylene that showed similar behavior (Scheme 4.14). (Reference from Scates, 

B.A., Ph.D. Dissertation, Washington University in St. Louis, 2006. ) 
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Scheme 4.14 Acetylene as trapping group behavior 

In the first case studied (R = H), the reactions led to a low mass balance but did provide cyclized 

products. One was obtained by formation of a vinyl cation that was then trapped by methanol 

and oxidized to form an unsaturated acetal I2, and a second was formed by the elimination of a 

proton from the vinyl cation to make an allene I3. In a mechanistic study, the addition of 

dichloromethane to the reaction led to the formation of a hydrogen abstraction product I3 

suggesting that the reaction did lead to the formation of a vinyl radical intermediate. Attempts to 

accelerate the cyclization with geminal substituents6 led to recovery of the starting material. In 

no case, did the reaction lead to a product showing decomposition of the enol ether radical 

cation even though a stoichiometric amount of current was passed through the reaction and the 

enol ether was clearly the group with the lowest oxidation potential functional moiety in 

solution. This is important since we know oxidation of an enol ether followed by a slow 

cyclization leads to elimination reactions from the radical cation along with solvent trapping of 

the enol ether radical cation7. The appearance of none of these products is more consistent with 

oxidation of the enol ether, stabilization of the radical cation through an intramolecular trapping 

reaction, and then a reversible cyclization leading to reduction of the radical cation at the 
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cathode. This stabilization is necessary since the enol ether radical cation will not survive in 

methanol solvent long enough to reach the cathode. At the time of this chemistry, we did not 

know how to solve this problem (higher electrolyte concentrations, acceleration of the second 

oxidation step, etc.). However, the clear indication that the reaction did lead to a vinyl radical 

suggested that one way to drive the reaction to completion might be to accelerate trapping of the 

vinyl radical. It was concluded that the vinyl silane trapping group in substrate 32b might not be 

sufficient to accomplish this task. So, a more effective trisubstituted olefin 32c was used as the 

final radical trapping group. (Reference from Scates, B.A., Ph.D. Dissertation, Washington 

University in St. Louis, 2006 ) (Scheme 4.15) This reaction was partially successful. The tandem 

cyclization led to a 20% yield of the desired product 40a along with a 27% yield of a ketone 

derived from methanolysis or hydrolysis of the starting enol ether 40b. As discussed above, the 

TBS enol ether has been shown to be stable to the electrolysis conditions so it was thought that 

once again the presence of this second product might be consistent with the hydrolysis of 

recovered starting material – a result that again might be consistent with a reversible cyclization 

followed by radical cation reduction to starting material. The result did suggest the possibility 

that the reaction could be made to work.  

 

Scheme 4.15 Trisubstituted alkene as terminating group  
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4.4 Alcohol Substrate leading to Radical Pathway 

While the chemistry did appear workable, the route to the substrates and the lack of success led 

to other projects in the group being pursued. The project lay dormant for several years. However, 

it was bothersome that the Sha chemistry had so nicely led to a tandem cyclization reaction from 

similar substrates using the reductive radical approach. Based the results we described in Chapter 

3, we began to wonder if the problem with the previous efforts was the nature of the reactive 

intermediate involved. Maybe the radical cation and its propensity toward reversible reactions 

was not the ideal intermediate to use, and the reactions would benefit from an oxidative radical 

type approach where the key intermediate doing the tandem cyclization would be the same as in 

the Sha chemistry (Section 4.1.1). Fortunately, the chemistry discussed in Chapter 3 also meant 

that the oxidative radical method could be attempted.  

4.4.1 Synthesis of an enediol based tandem cyclization substrate: 

The synthetic route to a substrate compatible with an oxidative radical cyclization was developed 

by modifying the route used to generate the silyl enol ether substrate 32. The retrosynthetic 

analysis is shown below. 
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Scheme 4.16 Retro analysis of ene diol 44 

The main change was the need to introduce a cyclic ketal 42 into the substrate for the Michael 

reaction. Two approaches to this task were attempted. First, the ketal was installed in a 2-

bromocyclohexene substrate 41 that was then used to add the sidechain 29 needed at the a-

position of the electrolysis substrate. Second, the order of these steps was reversed with the a-

side chain 29 being introduced first to generate 31 (Scheme 4.12). The cyclic acetal was then 

introduced to form intermediate 42 (Scheme 4.17).  
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Scheme 4.17 Two Attempts to Alcohol Substrate 

In the first strategy, the bromo ketal 41 could be achieved with 52 % yield. However, the 

installation of sidechain 29 was never successful. Initially, t-butyl lithium was used to generate 

an anion from 41 before the addition of sidechain 29. The route failed. Starting material 41 was 

recovered indicating that vinyl anion was never achieved. Following this attempt, an organozinc 

based approach was attempted.8,9 The result was the same. The initial attempt to form the zinc-

reagent 43 led once again to recovered starting material 41 along with some of the ketone 

derived from hydrolysis of 41. With the difficulties encountered with the vinyl anion synthesis, 

the effort was changed to the second approach that would form the ketal from substrate 31 

(Scheme 4.12).  

The ketalization of compound 31 proved to be more problematic than the previous ketalization to 

form intermediate 41. Compound 41 contained an inductive electron-withdrawing group at the 
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alpha carbon that might have made that reaction proceed more easily. With respect to the 

ketalization of 31, a variety of conditions were tested.  

 

Scheme 4.18 Acetalization condition  

In entry 1-3, different Lewis acids were screened for effecting a condensation reaction between 

the ketone and ethylene glycol. None of the reactions led to the product. For the reaction in Entry 

4, a TMS protected glycol was used in combination of a TMSOTf as Lewis acid following the 

procedure from R. Noyori10, It was hoped that the TMS protected glycol and TMSOTf 

combination would lead to increased reactivity, but the change did not improve the reaction. 

With the failure of the condensation type approaches, a change of mechanism was attempted. In 

this case, the carbonyl was used as a nucleophile to open an epoxide following the work of 

William J. Scott.11 This was the procedure that Robert Perkins found to be effective for the 
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chemistry outlined in Chapter 3 and condition optimized myself. In this mechanism, the epoxide 

opening leads to an alkoxide and an oxonium ion that then undergo an intramolecular cyclization 

reaction to form the desired ketal. The initial attempts along these lines did show promise. The 

yield of the reaction was then optimized by examining the stoichiometry of the reaction and the 

relative concentration of the epoxide.  It was observed that the reaction worked best when the 

epoxide was dissolved in the solvent to lower its overall concentration and then that solution 

added very slowly to the ketone and Lewis acid. This reduced the amount of epoxide 

polymerization that occurred. The use of the dimethyl epoxide proved superior to the tetra 

methyl epoxide, presumably due to the slower polymerization of the dimethyl epoxide. The 

mechanism is thought to have significant SN1-character where the epoxide initially complexes the 

Lewis acid leading to a cationic intermediate. In the case of the more substituted epoxide, ring 

opening to a carbon cation and subsequent reaction with a second epoxide is more likely because 

of the longer lifetime of the carbocation. The reaction did not proceed well to form either the 

dimethoxy ketal or a ketal derived from an unsubstituted ethylene oxide.  

The unsaturated acetal substrate was then subjected to a Michael-type addition. Initially, we 

looked for the best reaction conditions for this reaction with a series of model substrates (Scheme 

4.19). Our starting point for the reaction conditions utilized for the reaction was to follow the 

lead of Robert Perkins who developed the approach during the work described in Scheme 3. For 

the model studies, the reactions either took advantage of unsaturated ketals that were 

commercially available or unsaturated ketals that could be rapidly synthesized from enone 

starting materials.  
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Scheme 4.19 Michael addition to ketene acetal model substrate test 

The examples shown were chosen in order to examine the compatibility of the reactions with the 

methyl groups on the acetal and the size of the ring. Reactions (a) and (b) were run using the 

exact conditions developed by Robert Perkins. Both reactions worked well with case (b) 

illustrating the compatibility of the reaction with a donating alkyl substituent on the alpha carbon 

of the double bond.  

It should be noted that the general basic work-up and EDTA wash protocol Robert Perkins 

developed for the reactions were essential for the success of the reactions. During my repeating 

experiments, I usually added 5 equivalents of 2,6-lutidine (more than used in his protocol) to the 

reaction before work up. The crude reaction mixture was then washed with an EDTA solution 

until no blue/green color remained. This was essential because either a slightly acidic crude 

product or a reaction product that retained some of the Cu metal from the cuprate triggered the 

conversion of the desired enediol to a cyclic ketal. Following the EDTA wash, the organic layers 

were extracted with brine. Then a regular brine extraction was conducted. Chromatography was 
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then conducted using silica gel that was pre-treated with TEA to prevent acid catalyzed 

decomposition of the product.  

The reaction shown in part (c) of Scheme 4.19 turned out to be more sensitive to the reaction 

conditions and the quality of the reagents. The cuprate itself was in this case generated more 

efficiently at room temperature instead of the lower temperature used with the other cuprate 

reagents. In addition, the reaction using the six-membered ring substrate required more time and 

was optimally complete in 5 h instead of the 3 h employed with the five-membered ring 

substrate. Even with the extended reaction time, some starting material was recovered.  

The example shown in Scheme 4.19 part (d) changed the Lewis acid used for the reaction. In this 

case, the cuprate reagent was generated at 0oC. The reaction mixture was then cooled to -78oC 

and TMSCl added (buffered with an equal equivalent of trimethylamine). This avoided the need 

for the BF3.Et2O used in the previous reactions. TMEDA was added to increase the 

nucleophilicity of the anion instead of the HMPA added to the previous reactions. This was done 

to avoid the toxicity of the HMPA reagent. A proton NMR of the crude reaction mixture did 

show a vinyl proton consistent with the enol ether product, however the product could not be 

isolated.  

In the end, it became clear that the addition reaction with the six-membered ring substrate was 

slower and more challenging than the reaction with the five-membered ring substrate in terms of 

product isolation. We also found that in many cases the sequence of making the cuprate at 0oC, 

letting the reaction warm to room temperature, and then cooling it down again before adding in 

the acetal improved the reaction. Presumably, this sequence led to a more complete formation of 

the nucleophile.  



 
 

123 

Two other reactions were pursued by Ms. Kendra White and myself in order to establish the 

generality of the approach. These reactions used acyclic unsaturated acetal substrates.  

 

Scheme 4.20 Acyclic ene diol substrate synthesis 

The overall goal was to examine the preference of the subsequent electrolysis reactions for either 

the oxidative radical vs. radical cation reaction pathway. The reaction shown in case (e) worked 

well using the same reaction conditions developed previously. However, the reaction shown in 

part (f) of the Scheme did not work. It appears that the dimethoxy substrate will require different 

conditions for generating the oxonium ion needed for the addition. While we were confident that 

this reaction could be optimized, the project was not a priority at the time because we wanted to 

answer the question being asked about the tandem oxidative cyclization. It was clear that we had 

the chemistry in place to make the necessary substrate for that study.  

With this in mind, the key Michael-type reaction was then conducted using ketal 42a. 

Unfortunately, the optimized conditions developed for the model substrates were not successful 

with this substrate. The reactions were capricious, and conditions optimized for one substrate 

could not automatically be applied to others.  

 Hence, the reaction needed to be re-optimized specifically for substrate 42a.  
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Scheme 4.21 Michael-type addition condition optimization 

In many ways, this observation was not much of a surprise. The reactions are a fine balance 

between the generation of an oxonium ion from the ketal and then a subsequent addition to the 

result electron poor Michael acceptor. In previous cases, this required an activated anion that was 

optimized with the use of HMPA and assistance in opening the ketal with the use of BF3-Et2O as 

a Lewis acid. In this case, the use of too much of the Lewis acid and the use of HMPA proved to 

be detrimental to the reaction. The reaction with a substrate having four methyl groups on the 

ketal bridge led to decomposition. It may be that the extra sterics associated with the substrate 

led to opening of the ketal and decomposition faster than the addition of the nucleophile could 

occur. The same reaction conditions with the less hindered ketal (entry 2) led to recovery of 

starting material. In the end, we found that the reaction benefited from raising the temperature of 

the reaction, avoiding HMPA, lowering the amount of Lewis acid used, and increasing the 

amount of the anion utilized. Eventually a yield of 30% could be obtained for the product 44a. 
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While not optimal, further optimization was not pursued because we wanted to know if the 

oxidative cyclization was going to work before expending that additional effort. So, a similar 

route along with additional optimization efforts for each substrate was employed to develop a set 

of electrolysis substrates (as shown in next section).   

4.4.2 Electrochemical Studies 

Our initial electrochemical test was conducted on substrate 44a at room temperature (Scheme 

4.22). The reaction was very messy leading to the TLC shown. The left lane was reaction spot. 

The Right lane was starting material. (The top spot in right lane generated due to instability, I 

know that because when I was doing chromatography for starting material, there was only the 

lower spot after chromatography) Clearly, the use of the oxidative radical pathway was not going 

to automatically mimic the reaction conducted by Sha. However, it was not clear where the 

problem was. Was the issue the initial cyclization, or was the issue downstream of that step with 

either the intermediate generated from the first cyclization, the intermediate from the second 

cyclization, the second oxidation step, etc., or a combination of one or more of these issues? 

 

Scheme 4.22 Initial Tandem Cyclization Test on 44a 
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Since, we were not sure how the vinylsilane would behave as a terminating olefin for the 

oxidative cyclization, the next substrate tried (45) had a trisubstituted olefin as this terminating 

group. Trisubstituted olefins have functioned beautifully as terminal groups for anodic coupling 

reactions.12 In addition, an olefin was used instead of the acetylene as a relay so that we could 

examine its involvement as relay in the reaction by proton NMR (Scheme 4.23).  

 

Scheme 4.23 Substrate 45 Electrolysis Test 

The first two conditions tried (entrees a and b) led to a complex mixture with low mass balances 

(entry a with a 30% mass balance and entry b with a 15% mass balance). In both cases, the 

products that could be observed still contained the mono-substituted olefin. This result was 

consistent with a failure of the initial cyclization and polymerization of the radical cation 

intermediate generated, although no specific product from the reaction could be characterized.   

This result was not totally surprising since early work by Rob Perkins in the group had shown 

that the oxidative radical type reactions benefited from low temperature.7 This kept the ketal 

formed from the initial radical cation trapping reaction closed and prevented unwanted side 

reactions from the initial radical cation. With this in mind, the reaction was run at -78 oC. The 

reaction shown in entry c led to a 47% isolated mass balance. Once again, the reaction did not 

O OH

RVC(+)/C(-)
current, electrolyte

2,6-lutidine
DCM/MeOH (1:1)

temperature

45

condition current electrolyte temperature result

a

b

c

d

8mA

8mA

8mA

30mA

0.4M LiClO4

0.4M LiClO4

0.4M LiClO4

0.4M LiClO4

rt

0 oC

-78 oC

-78 oC

messy

messy

45a

47% 45a

80% 45a

?



 
 

127 

consume the monosubstituted double bond as can be seen in the proton NMR of the crude 

product shown in Figure 4.3 below. The reaction was interesting because the side chain 

trisubstituted olefin in the substrate appeared to be largely consumed. Note how the tri-

substituted olefin proton peak (5.17ppm, 1 proton) integrated in 1:2 ratio relative to the mono-

substituted olefin proton peaks (5.8ppm, 1 proton, 4.9-5.0ppm, 2 protons). This suggested that 

the trisubstituted olefin was consumed in at least one half of the product. It was also noted that 

the peaks at 3.7 ppm changed significantly relative to the starting material (compound 45 as 

shown in Appendix C). This indicated that a cyclic acetal may have formed during the reaction. 

The methoxy region of the spectrum showed some small peaks, but did not indicate that the 

major products not been methoxylated to a major extent. At the time, this result was surprising. 

Now, we think the products generated may well be derived from a three membered ring 

cyclization product originating from the radical. Evidence for this type of product will be 

presented below (Scheme 4.25).  
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Figure 4.3 substrate 45 electrolysis entry c 

 At this point, the current passed through the reaction was increased in a fashion that would 

accelerate the loss of a second electron from the reaction (entry d). In this case, a tri-substituted 

olefin proton peak was completely lost, the reaction looked cleaner, and the mass balance of the 

reaction dramatically improved. However, once again there was clear evidence that the 

monosubstituted olefin was not involved in the reaction (Figure 4.4). The methoxy region of the 

spectrum showed a number of methoxy signals in a fashion consistent with earlier radical cation 

reactions that led to polymerization. Alternatively, the methoxy groups might arise from trapping 

of cation intermediates like 49 suggested in Scheme 4.25 below. What was clear from the 

spectrum is that the reaction had not led to the desired tandem cyclization reaction.  
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Figure 4.4 substrate 45 electrolysis entry d 

 The fact that in both cases the double bond of the relay did not participate in the cyclization 

suggested that perhaps this monosubstituted double bond was a poor enough trapping group that 

it led to the problems seen. For that reason, substrate 46 with the acetylene in place as the relay 

was utilized. It was hoped that the TMS group on the acetylene would help stabilize a vinyl 

radical intermediate and lead to the tandem cyclization.  
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Scheme 4.24 Substrate 46 Electrolysis Test 

However, as shown in Scheme 4.24 the change to the acetylene did not improve the reaction. At 

room temperature, the reaction again led to a complex mixture with no identifiable product. For 

the reaction shown in entry b the temperature was decreased to -78oC. The reaction led to a 30% 

mass balance of material. However, in this case there appeared to be trisubstituted olefin 

remaining (5.17ppm, 1 proton, triplet, and asymmetric peak at 3.7ppm) indicating that the 

tandem cyclization reaction had not gone as expected. There was evidence of methoxylation in a 

manner cleaner than the previous reactions.  What was missing was the expected olefinic 

methylene that would result from a successful tandem cyclization like in 46b, although some 

tandem cyclization product trapped by methoxy group cannot be ruled out like 46c. Such a 

product was not isolated from the reaction.  
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Figure 4.5 substrate 46 electrolysis entry b 

We hoped to increase the yield of the oxidized product and perhaps buy more time for the 

cyclization with a change to a high concentration of a greasier electrolyte. The idea was to make 

a more defined double layer that excluded methanol solvent and bought more time for the 

desired tandem intramolecular reactions. The result was a cleaner reaction out of which the 

elimination product 47 could be isolated in an 11% yield. (NMR below)  
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Figure 4.6 substrate 46 electrolysis entry c isolated 47 

The recovery of this product (Structure confirmed by 2D NMR, Appendix C) was intriguing 

because it provided some insight into a potential explanation for why this particular reaction was 

proving to be problematic. Consider the potential mechanism highlighted in Scheme 4.25. One 

can imagine the formation of the desired radical (48) leading to either a reversible cyclization 

with the acetylene (pathway a) or a potentially fast reversible three-membered ring cyclization 

with the trisubstituted olefin (pathway b). The reversible three membered ring cyclization might 

stabilize the radical long enough for a second oxidation (pathway c) to take place generating a 

cationic intermediate 49 that would not readily undergo electrophilic cyclization with the 

acetylene to form an unstable vinyl cation 52. The result would be elimination leading to the 
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observed product 47, potential methanol trapping leading to the methoxy signal observed in the 

NMR, and/or polymerization reactions from the cations. Of course, some formation of a 

successful tandem cyclization product that might lead to a methoxylated product could not be 

ruled out, although once again no such product was isolated. 

 

Scheme 4.25 Possible Pathway 

The resulting diene could easily undergo further oxidation reactions leading to a loss of mass 

balance and the types of methoxylated products observed as well. It was clear that the presence 

of the trisubstituted olefin on the sidechain bound to the radical intermediate was problematic for 

the reaction. This may well have been part of the problem in the earlier cyclization attempts by 

Bradley Scates and Laura Anderson. The isolation of this product provides one of the first key 

observations needed to shape subsequent experiments in a more hypothesis driven approach.  

4.5 Conclusions  
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It is clear at this point that we need to understand more about the oxidative tandem cyclization 

reactions before venturing into more complex substrates. In the case shown above, the 

equilibrium may well be driven by the final oxidation reaction. Hence, the behavior of the 

reaction may be quite different from that observed with a reductive radical reaction that is 

terminated by a hydrogen atom abstraction from tributyltin hydride. For example, steric 

hindrance might slow a hydrogen atom abstraction reaction from tributyltin hydride allowing 

time for a series of equilibrium steps to make multiple bonds whereas the same steric hinderance 

might make a radical electron rich and accelerate an oxidation that shortened the lifetime of the 

reaction and eliminated the opportunity for the same equilibrium steps. What is needed is a 

systematic study of oxidative tandem cyclization reactions so that these issues can be probed. 

Such a study is suggested in Chapter 6.2.3 using acyclic system probing tandem cyclization. 

Another possible solution resides in raising the temperature of the reaction in order to accelerate 

the desired cyclization. One of the disadvantages of using the enediol ether substrates is the need 

to conduct the reactions at -78oC in order to keep the cyclic ketal generated closed. This lower 

temperature favors the formation of kinetic products like the three membered ring relative to the 

potentially more stable tandem cyclization products. Higher temperature might buy time for an 

equilibrium. One way to resolve this issue may be the use of a MOM-protected enol ether. In this 

case, the anodic oxidation would lead to a radical cation that can fragment to generate exactly the 

same radical used in Sha’s synthesis (Scheme 4.26). This fragmentation approach would not 

require the lower temperature. In Sha’s synthesis, the reaction was brought to reflux.1 It is also 

possible to raise the temperature of an anodic cyclization reaction13. Would this lead to the 

tandem cyclization? 
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Scheme 4.26 MOM protected substrate under anodic condition 

4.6 Experimental Section  

The synthesis of silyl enol ether substrates 32a-b and enediol ether substrates 44a, 45, 46 were 

accomplished using similar routes. The synthesis of substrates 32a-b was relatively straight 

forward. Most of the non-standard effort focused on exploring the reaction conditions needed to 

form the acetylene side chain 30. On the other hand, the synthesis of substrates 44a, 45, and 46 

required significantly more effort.  

 

Scheme 4.27 Electrolysis Substrate Synthesis Route 
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4.6.1 Synthesis of 29 (E)-(3-bromoprop-1-en-1-yl)dimethyl(phenyl)silane14 

 

Scheme 4.28 Synthesis of side chain 29 

Synthesis of 33 2-(prop-2-yn-1-yloxy)tetrahydro-2H-pyran 

 

To a solution of camphorsulfonic acid (46 mg, 0.2 eq) and 3,4-dihydro-2H-pyran (2 mL, 22 

mmol, 1.1 eq) in 10 mL of dichloromethane under Argon was added prop-2-yn-1-ol (1.15 mL, 

20 mmol, 1eq). The reaction mixture was stirred for 18 h at room temperature and then quenched 

with a saturated aqueous solution of NaHCO3. The layers were separated and then the aqueous 

layer was extracted two times Et2O. The combined organic layer was dried over MgSO4, filtered, 

and concentrated in vacuo. The residue was carried onto next step without further purification. 

The spectra data (Appendix C) matched the previously published 1H NMR (CAS 6089-04-9). 

 

Synthesis of 34 dimethyl(phenyl)(3-((tetrahydro-2H-pyran-2-yl)oxy)prop-1-yn-1-yl)silane 
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A solution of 33 from the last step in 40 mL of THF was added to a three-neck round bottom 

flask that was fitted with a condenser and placed under argon. The mixture was cooled to -78oC, 

and then n-BuLi (13.8 mL, 1.6 M in hexane, 1.1 eq) added in a dropwise fashion. The mixture 

was stirred for 15 min (clear brown solution) before allowing the reaction to warm to room 

temperature. After an addition of chlorodimethyl(phenyl)silane (4.0 mL, 24 mmol, 1.2eq), the 

reaction was brought to reflux for 20h. The reaction was then quenched with aqueous NaHCO3, 

and most of THF solvent was removed under reduced pressure. The residue was diluted with 

water and Et2O, the layers separated, and the aqueous layer extracted three times with Et2O. The 

combined organic layer was dried over MgSO4, filtered, and concentrated in vacuo.  The residue 

was carried onto next step.  

 

Synthesis of 35 3-(dimethyl(phenyl)silyl)prop-2-yn-1-ol 

 

To a mixture of 34 from last step in 100 mL of MeOH was added pyridinium p-toluenesulfonate 

(1 g, 0.2 eq). The reaction was stirred for 20 h and then quenched with a saturated aqueous 

solution of NaHCO3. Most of solvent was removed under reduced pressure. The residue was 

diluted with water and dichloromethane, the layers separated, and then the aqueous layer 

extracted three times with dichloromethane. The combined organic layers were dried over 

MgSO4, filtered, and concentrated in vacuo. Once again, the residue was carried onto next step 

without further purification. 

 

OHDMPS
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 Synthesis of 36 (E)-3-(dimethyl(phenyl)silyl)prop-2-en-1-ol 

 

Lithium aluminium hydride (1.214 g, 1.6 eq) in 60 mL of  THF was added to a round bottom 

flask under Argon. The mixture was cooled to 0 oC and then product 35 from last step added. 

The reaction was allowed to warm to room temperature and then stirred for 20 h. The reaction 

was quenched with a saturated Rochelle’s salt solution and stirred until the layers were 

separated. Most of organic solvent in the mixture was removed under reduced pressure, the 

resulting residue was then diluted with water and Et2O, and the aqueous layer extracted three 

times with Et2O. After concentration, the residue was carried onto next step.  

Synthesis of 29 (E)-(3-bromoprop-1-en-1-yl)dimethyl(phenyl)silane 

 

To a solution of the crude 36 from the last step in 300 mL of dichloromethane at 0 oC under 

argon was added PBr3 (10 mL, 1 M in dichloromethane, 0.5 eq) in small portions. The mixture 

was allowed to warm to room temperature overnight. The reaction was then quenched with a 

saturated solution of aqueous NaHCO3. The layers were separated and the aqueous layer 

extracted three times with dichloromethane. The combined organic layers were dried over 

MgSO4, filtered, and concentrated in vacuo. The crude product was chromatographed through 

silica gel using 10% ethyl acetate in hexane as eluent to give 0.61 g of product (30% yield over 

four steps). The NMR data (Appendix C) matched the previously published data. 14  

OHDMPS

BrPhMe2Si
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4.6.2 Synthesis of 30 (4-bromobut-1-yn-1-yl)trimethylsilane 

 

Scheme 4.29 Synthesis of side chain 30 

Synthesis of 33a 2-(but-3-yn-1-yloxy)tetrahydro-2H-pyran 

 

 

To a solution of camphorsulfonic acid (92 mg, 8 mmol, 0.2 eq) and 3,4-dihydro-2H-pyran (4 mL, 

44 mL, 1.1 eq) in 20 mL of dichloromethane under argon was added but-3-yn-1-ol (3.03 mL, 40 

mmol, 1eq). The reaction mixture was stirred for 18 h at room temperature. The reaction was 

quenched with a saturated aqueous solution of NaHCO3, the layers separated and the aqueous 

layer extracted two times with Et2O. The combined organic layer was dried over MgSO4, 

filtered, and concentrated in vacuo. The residue was carried onto next step. The spectra data 

(Appendix C) matched the previously published 1H NMR.14 

 

Synthesis of 37 trimethyl(4-((tetrahydro-2H-pyran-2-yl)oxy)but-1-yn-1-yl)silane 
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A solution of 33a from the last step in  80mL of THF was added to a three-neck round bottom 

flask that was fitted with a condenser and placed under argon. The mixture was cooled to -78oC. 

To this solution was added n-BuLi (27.5 mL, 1.7 M in hexane, 44 mmol, 1.1eq) in a dropwise 

fashion. The resulting solution was stirred for 15 min. The reaction was allowed to warm to room 

temperature before trimethylsilyl chloride (6.1 mL, 48 mmol, 1.2 eq) was added and the reaction 

brought to reflux for 20h. The reaction was then quenched with a saturated aqueous solution of  

NaHCO3. Most of THF solvent was removed under reduced pressure before the resulting residue 

was diluted with water and Et2O, the layers were separated, and the aqueous layer was extracted 

three times with Et2O. The combined organic layer was dried over MgSO4, filtered, and 

concentrated in vacuo.  The residue was carried onto next. 

 

Synthesis of 38 4-(trimethylsilyl)but-3-yn-1-ol  

 

To a mixture of 34 from the last step in 200 mL of MeOH was added pyridinium p-

toluenesulfonate (2 g, 8 mmol, 0.2 eq). The reaction was stirred for 20 h and then quenched with 

a saturated aqueous solution of NaHCO3. Most of solvent was removed under reduced pressure. 

The resulting residue was diluted with water and dichloromethane, the layers separated, and the 

aqueous layer extracted three times with dichloromethane. The combined organic layers were 

dried over MgSO4, filtered, and concentrated in vacuo. The crude product was chromatographed 

TMS
O

O

TMS
OH



 
 

141 

through silica gel with 50% ethyl acetate in hexane as eluent to afford 2.54 g of product (45% 

yield over three steps). The NMR data (Appendix C) matched the previously published data 

(CAS 2117-12-6).  

 

Synthesis of 30 (4-bromobut-1-yn-1-yl)trimethylsilane 

 

A bromination reagent was screened. NBS was used for the rest of synthesis. 

 

Scheme 4.30 Bromination Reagent Screening for 30  

A solution of 38 (0.57 g, 4.03 mmol, 1 eq) in 15 mL of dichloromethane under argon was cooled 

to -20 oC. To this solution was added PPh3 (1.258 g, 4.8 mmol, 1.2 eq) in 7 mL of 

dichloromethane, followed by a solution of NBS (0.79 g, 4.4 mmol, 1.1 eq) in 18 mL of 

dichloromethane. The reaction mixture was allowed to room temperature overnight during which 

period the color of the mixture changed from pale yellow to bright yellow. The reaction was then 

quenched with an aqueous, saturated solution of NaHCO3. The layers were separated, the 
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aqueous layer extracted two times with Et2O, and the combined organic layers dried over 

MgSO4, filtered, and concentrated in vacuo. The crude product was chromatographed through 

silica gel using hexane as eluent to afford 0.5 g of product (61% yield). The spectra data matched 

the previously published 1H NMR (CAS 69361-41-7).  

 

4.6.3 Synthesis of 32 enol ether electrolysis substrate 

 

Scheme 4.31 Synthesis of Enol Ether Substrate 32 

Synthesis of 39 tetrahydrobenzo[b]thiophene-3,4(2H,3aH)-dione4 

 

A solution of methyl 2-mercaptoacetate (4.6 mL, 1eq) in 10 mL of MeOH was add dropwise into 

a freshly made NaOMe solution (Na metal, 1.31 g, 100 mL of  MeOH, 1.05eq) at 0oC. to this 

mixture was added a solution of cyclohex-2-en-1-one (5 mL, 52 mmol, 1 eq) in an additional 10 

mL of MeOH in a dropwise fashion. During this time, the reaction was maintained at 0 oC. The 
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reaction mixture was allowed to warm to room temperature, and then brought to reflux 

overnight. After the reaction was cooled, the majority of the solvent was removed under reduced 

pressure. The resulting residue was diluted with ether and washed with 2 N NaOH until basic 

(The organic layer pH was tested with regular pH testing strip). The aqueous layer was collected, 

acidified with 1 N HCl, and then extracted three times with Et2O. The combined organic layers 

were dried over MgSO4, filtered, and concentrated in vacuo. The crude product was 

chromatographed through silica gel using 10% EtOAc in hexane as eluent to give 6 g of the 

desired product (68% yield). The spectra data matched the previously published 1H NMR.  We 

did find that the yield of the product varied significantly during repeated scale up efforts, and at 

times the product was obtained in yields as low as 13%.  

 

Synthesis of 31 (E)-2-(3-(dimethyl(phenyl)silyl)allyl)cyclohex-2-en-1-one 

 

A round bottom flask fitted with a condenser was charged with compound  39 (180 mg, 1.05 

mmol, 1 eq), compound 29 (0.321 g, 1.26 mmol, 1.2 eq), K2CO3 (0.174 g, 1.26 mmol, 1.2 eq), 

and 10 mL of anhydrous acetone. The mixture was brought to reflux for 16 h. After reaction, the 

salt was removed by filtration and the solvent removed under reduced pressure. The residue was 

suspended in a solution of 5% aqueous NaOH and Et2O (1:1). This mixture was stirred for 10 h. 

After the reaction, the layers were separated and the aqueous layer was extracted three times with 

Et2O. The combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo. 

O

SiMe2Ph
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The crude product was chromatographed through silica gel using 20% EtOAc in hexane as the 

eluent to give 150 mg of product (53% yield). In this reaction, we found that the yields of 

product ranged from 34% to 70% with the yield frequently benefiting from a smaller reaction 

scale. The spectra data matched the previously published 1H NMR. 1H NMR (300 MHz, CDCl3) 

δ 7.68 – 7.49 (m, 2H), 7.47 – 7.33 (m, 3H), 6.73 (t, J = 4.2 Hz, 1H), 6.31 – 5.97 (m, 1H), 5.82 

(dt, J = 18.6, 1.4 Hz, 1H), 3.41 – 2.87 (m, 2H), 2.63 – 2.43 (m, 2H), 2.42 – 2.20 (m, 2H), 2.23 – 

1.81 (m, 2H), 0.36 (s, 6H). 13C NMR (75 MHz, CDCl3) δ 198.9, 145.9, 145.7, 137.9, 133.8, 

129.6, 128.8, 127.7, 38.4, 36.4, 26.1, 23.1.  

 

Synthesis of 32a 

 

A Grignard solution of 30 (0.48 M, 1.68 mL, 1.5 eq) was made freshly and titration. (A 

procedure for Grignard and titration can be found in chapter 3 experimental). To the solution, 

CuI (24 mg, 0.124 mmol, 0.2 eq) and HMPA (0.28 mL, 1.612 mmol, 3 eq) were added in, the 

mixture was stirred at -40 oC for 30 min. The mixture was cooled to -40 oC, a solution of 

cyclohex-2-en-1-one (145 mg, 0.537 mmol, 1eq), TMSCl (0.164 mL, 1.28 mmol, 2.4 eq) and 0.1 

mL 2,6-lutidine in 0.5 mL THF was added in dropwise. The reaction was stirred for 15 min and 

allowed to warm to room temperature. The reaction was then quenched with saturated NaHCO3 

(aq). The organic layer was washed with EDTA (pH=8, 0.1M) three times. And all aqueous layer 

OTMS
SiMe2Ph

TMS
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was extracted with DCM. The combined organic layer was dried over MgSO4. The solvent was 

removed under reduced pressure and WITHOUT chromatography, 32a crude can be achieved 

(clean reaction).  

Synthesis of 32b  

 

A Grignard solution of 30 (0.34 M, 4.4 mL, 1.5 eq) was made freshly. To the solution, CuI (95 

mg, 0.5 mmol, 0.5 eq) and HMPA (0.52 mL, 3 mmol, 3 eq) were added in, the mixture was 

stirred at -30 oC for 30 min. The mixture was cooled to -30 oC, cyclohex-2-en-1-one (270 mg, 1 

mmol, 1 eq) was added in, followed by TBSCl (362 mg, 2.4 mmol, 2.4 eq) and 0.1 mL 2,6-

lutidine. The reaction was stirred at -30 oC and allowed to warm to room temperature over 6 h. 

The reaction was then quenched with saturated NaHCO3 (aq). The organic mixture was washed 

with EDTA (pH=8, 0.1M) three times. The combined organic layer was dried over MgSO4, 

filtered, and concentrated in vacuo. The crude product was chromatographed through silica gel 

using 20% EtOAc in hexane as eluent to give 88 mg of product (17% yield).  

General Procedure for Electrolysis： 

OTBS
SiMe2Ph

TMS
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Scheme 4.32 Electrolysis of Enol Ether Substrate 32a-b 

Entry 2 as an example 

To a three-neck round bottom flask was charged with 32b (0.173 mmol, 1eq), 0.6  M LiClO4, 10 

mL MeOH, 2,6-lutidine (0.1 mL, 0.867 mmol, 5 eq). The reaction was electrolyzed at 30 mA 

until 2.5 F/mol current passed using RVC as anode and graphite as cathode. The reaction was 

then quenched with saturated NaHCO3 (aq). Aqueous layer was extracted with DCM three times. 

The combined organic layer was dried over MgSO4, filtered, and concentrated in vacuo. The 

crude product was chromatographed through silica gel using 10% EtOAc in hexane as eluent  to 

give 8 mg of 32b (9% yield) and 41 mg of 40 (60% yield). 

Spectra data for 40  

1H NMR (300 MHz, CDCl3) δ 7.57 – 7.46 (m, 2H), 7.39 – 7.32 (m, 3H), 6.11 – 5.92 (m, 1H), 

5.85 – 5.54 (m, 1H), 2.65 – 2.09 (m, 9H), 2.02 – 1.91 (m, 1H), 1.87 – 1.56 (m, 4H), 0.3 (s, 6H), 

0.15 (s, 9H). Appendix C 
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4.6.4 Synthesis of 44a alcohol electrolysis substrate 

Several routes were attempted. Pathway c) was chosen as the standard route for the rest 

substrates synthesis. The synthesis of 31 can be found in 4.6.3. 

  

Scheme 4.33 Route for Synthesis of 44a 

Synthesis of 42a (E)-(3-(2,3-dimethyl-1,4-dioxaspiro[4.5]dec-6-en-6-yl)prop-1-en-1-

yl)dimethyl(phenyl)silane  

 

A condition screening on making the acetal was conducted. 
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Scheme 4.34 Acetal Transformation Condition Screening 

(2R,3S)-2,3-dimethyloxirane was used as a general synthesis for the rest of the synthesis. 

To a round bottom flask was charged with 31 (0.6 g, 2.22 mmol, 1 eq), Sc(OTf)3 (109 mg, 

10mol%), Na2SO4 (0.86 g) under Argon. 2 mL DCM was added in, the mixture was cooled to 0 

oC. (2R,3S)-2,3-dimethyloxirane (0.48 g, 6.66 mmol, 3 eq) (cis leads to same result) in 2 mL 

DCM was added in dropwise with syringe pump (Model as described in chapter 3) over 6 h. 

Reaction was stirred overnight at room temperature. The reaction was quenched with 1 mL TEA 

and stirred for 10 min. The reaction was then quenched with saturated NaHCO3 (aq). Aqueous 

layer was extracted with DCM three times. The combined organic layer was dried over MgSO4, 

filtered, and concentrated in vacuo. The crude product was chromatographed through silica gel 

using 10% EtOAc in hexaneas eluent to give 0.47 g of 42a (62% yield). 1H NMR (300 MHz, 
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CDCl3) δ 7.59 – 7.47 (m, 2H), 7.39 – 7.30 (m, 3H), 6.26 – 6.02 (m, 1H), 5.80 (dt, J = 18.5, 1.4 

Hz, 1H), 5.67 – 5.58 (m, 1H), 3.81 – 3.48 (m, 2H), 3.03 – 2.79 (m, 2H), 2.06 – 1.97 (m, 2H), 

1.93 – 1.59 (m, 4H), 1.33 – 1.13 (m, 6H), 0.33 (s, 6H). HRMS (ESI) for C21H30O2Si [M + H]+ 

calc. 343.5558, found 343.2069, [M + Na]+ calc. 365.5376, found 365.1887. 

Synthesis of 44a (E)-3-((2-(3-(dimethyl(phenyl)silyl)allyl)-3-(4-(trimethylsilyl)but-3-yn-1-

yl)cyclohex-1-en-1-yl)oxy)butan-2-ol 

 

A condition screening on the Michael reaction was conducted. 

For future substrate synthesis, condition (4) was used as standard operation except with better 

quality of Grignard solution and larger scale reaction. 

O OH
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Scheme 4.35 Substrate 44a Condition Screening 

 To a freshly made Grignard solution (0.53 M, 3.5 mL, >10 eq) at 0oC was added CuI 

(recrystallized, 50 mg). Mixture was stirred at room temperature for 30 min, a coffee color 

suspension was formed. Mixture was then cooled to -78 oC. 42a (56.6 mg, 0.16 mmol, 1 eq) in 3 

mL THF was added in dropwise, followed by dropwise addition of BF3-Et2O (0.02 mL, 0.16 

mmol, 1eq). Reaction was stirred for 15 h. 2,6-lutidine (0.2 mL) was added into the mixture 

before work up. The organic mixture was quenched with saturated NaHCO3, washed with EDTA 

solution (pH=8, 0.1M) until no blue color. Aqueous layer was washed with ether three times. The 

combined organic layer was dried over MgSO4, filtered, and concentrated in vacuo. The crude 

product was chromatographed through silica gel (packed with 1% TEA) using 10% EtOAc in 

hexane as eluent to give 22 mg of 44a (30% yield) and 18% RSM. 1H NMR (500 MHz, 

Chloroform-d) δ 7.59 – 7.47 (m, 2H), 7.35 (dd, J = 3.8, 2.5 Hz, 3H), 6.08 – 5.99 (m, 1H), 5.77 
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(dt, J = 18.4, 1.6 Hz, 1H), 3.79 – 3.59 (m, 2H), 3.25 (ddd, J = 14.9, 5.3, 1.8 Hz, 1H), 2.70-2.5 

(2H), 2.34 – 1.96 (m, 4H), 1.91 – 1.36 (m, 6H), 1.34 – 1.21 (m, 6H), 0.33 (dd, J = 4.0, 1.7 Hz, 

6H), 0.26 – 0.12 (m, 9H). HRMS (ESI) for C28H44O2Si2 [M + Na]+ calc. 491.8093, found 

491.2737. 

4.6.5 Synthesis of 45 alcohol electrolysis substrate 

Based on the work discussed in 4.6.4, the synthesis of 45 was straight forward. 

 

Scheme 4.36 Synthesis Route of 45  

Synthesis of 48 2-(3-methylbut-2-en-1-yl)cyclohex-2-en-1-one 
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A round bottom flask with condenser was charged with 39 (0.7 g, 4 mmol, 1 eq), 1-bromo-3-

methylbut-2-ene (0.55 mL, 4.8 mmol, 1.2 eq), K2CO3 (0.663 g, 4.8 mmol, 1.2 eq) in 40 mL 

anhydrous acetone. The mixture was brought to reflux over 16 h. After reaction, the salt was 

filtered and solvent was removed under reduced pressure. Residue was suspension in a mixture 

of 5% NaOH/Et2O (1:1). The mixture was stirred for 10 h. Mixture was extracted with ether by 

three times. The organic layer was dried over MgSO4, filtered, and concentrated in vacuo. The 

crude product was chromatographed through silica gel using 20% EtOAc in hexane as eluent to 

give 0.9 g of 48 can be achieved (<100% pure). The spectra data matched the previously 

published 1H NMR. (Reference from Scates, B.A., Ph.D. Dissertation, Washington University in 

St. Louis, 2006) 

Synthesis of 49 2,3-dimethyl-6-(3-methylbut-2-en-1-yl)-1,4-dioxaspiro[4.5]dec-6-ene 

 

To a round bottom flask was charged with 48 (4 mol), Sc(OTf)3 (200 mg, 10mol%), Na2SO4 (1.5 

g) under Argon. 3.5 mL DCM was added in, the mixture was cooled to 0oC. (2R,3S)-2,3-

dimethyloxirane (0.86 g, 12 mmol, 3 eq) in 3.5 mL DCM was added in dropwise with syringe 

pump over 6 h. Reaction was stirred overnight at room temperature. The reaction was quenched 

with 2 mL TEA and stirred for 10 min (Mixture turned from bright red to bright yellow). The 

reaction was then quenched with saturated NaHCO3 (aq). Aqueous layer was extracted with 

DCM three times. The combined organic layer was dried over MgSO4, filtered, and concentrated 

O O
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in vacuo. The crude product was chromatographed through silica gel using 10% EtOAc in 

hexane as eluent to give 0.535 g of 49 (57% yield). 1H NMR (500 MHz, Chloroform-d) δ 5.64 

(dt, J = 4.0, 2.0 Hz, 1H), 5.37 – 5.11 (m, 1H), 3.85 – 3.54 (m, 2H), 2.77 (d, J = 7.3 Hz, 2H), 2.01 

(d, J = 3.7 Hz, 2H), 1.91 – 1.58 (10H), 1.40 – 1.01 (m, 6H). HRMS (ESI) for C15H24O2 [M + H]+ 

calc. 237.3583, found 237.1839, [M + Na]+ calc. 259.3402, found 259.1657. 

Synthesis of 45 (E)-3-((3-(but-3-en-1-yl)-2-(3-(dimethyl(phenyl)silyl)allyl)cyclohex-1-en-1-

yl)oxy)butan-2-ol 

 

To a freshly made Grignard solution (0.8 M, 8.4 mL) at 0oC was added CuI (recrystallized, 130 

mg, 0.3 eq). Mixture was stirred at room temperature for 30 min, a coffee color suspension was 

formed. Mixture was then cooled to -78 oC. 49 (2.26 mmol, 1 eq) in 15 mL THF was added in 

dropwise, followed by dropwise addition of BF3-Et2O (0.3 mL, 1 eq). Reaction was stirred for 15 

h. 2,6-lutidine (1.3 mL) was added into the mixture before work up. The organic mixture was 

quenched with saturated NaHCO3, washed with EDTA solution (pH=8, 0.1M) until no blue 

color. Aqueous layer was washed with ether three times. The combined organic layer was dried 

over MgSO4, filtered, and concentrated in vacuo. The crude product was chromatographed 

through silica gel (packed with 1% TEA) using 10% EtOAc in hexane as eluent to give 0.47 g of 

44a and 2,6-lutidine mixture (22% yield product) and 54% RSM. (Note: During repeating 

experiments, product yield could be increased to 38%). 1H NMR (500 MHz, Chloroform-d) δ 

5.82 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 5.09 – 4.89 (m, 3H), 3.78 – 3.60 (m, 2H), 3.15 (dd, J = 

O OH
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14.8, 6.6 Hz, 1H), 2.72 (d, J = 2.7 Hz, 1H), 2.58 (d, J = 7.8 Hz, 1H), 2.19 – 1.80 (6H), 1.70-1.66 

(6H), 1.77-1.57 (4H), 1.28 (3H), 1.17 (3H). HRMS (ESI) for C19H32O2 [M + Na]+ calc. 

315.4466, found 315.2278. 

4.6.6 Synthesis of 46 alcohol electrolysis substrate 

 

Scheme 4.37 Synthesis Route of 46  

Synthesis of 46 3-((2-(3-methylbut-2-en-1-yl)-3-(4-(trimethylsilyl)but-3-yn-1-yl)cyclohex-1-en-

1-yl)oxy)butan-2-ol 
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To a freshly made Grignard solution (0.4 M, 10 mL) at 0 oC was added CuI (recrystallized, 174 

mg). Mixture was stirred at room temperature for 30 min, a coffee color suspension was formed. 

Mixture was then cooled to -78 oC. 49 (0.63 g, 2.66 mmol) in 15 mL THF was added in 

dropwise, followed by dropwise addition of BF3-Et2O (0.3 mL, 1 eq) was added in. Reaction was 

stirred for 15 h. 2,6-lutidine (1.55 mL, 5 eq) was added into the mixture before work up. The 

organic mixture was quenched with saturated NaHCO3, washed with EDTA solution (pH=8, 0.1 

M) until no blue color. Aqueous layer was washed with ether three times. The combined organic 

layer was dried over MgSO4, filtered, and concentrated in vacuo. The crude product was 

chromatographed on silica gel (packed with 1% TEA) using 10% EtOAc in hexane as eluent to 

give 0.65 g of 46 and 2,6-lutidine mixture (53% yield product). 1H NMR (500 MHz, 

Chloroform-d) δ 5.07 (t, 1H), 3.76 – 3.61 (m, 2H), 3.15 (dd, J = 14.7, 6.9 Hz, 1H), 2.72 – 2.66 

(m, 1H), 2.48 (dd, J = 14.8, 7.4 Hz, 1H), 2.32 – 2.08 (m, 4H), 2.00 (dt, J = 15.8, 7.1 Hz, 1H), 

1.86 – 1.74 (m, 1H), 1.73 – 1.65 (6H), 1.65 – 1.54 (m, 2H), 1.51 – 1.40 (m, 2H), 1.20 – 1.03 

(6H). HRMS (ESI) for C22H38O2Si [M + Na]+ calc. 385.6119, found 385.2511.  

Electrolysis of 46 leading to 47  

 

A general electrolysis procedure (described before) was utilized, with reaction flask cooled at      

-78 oC. 11% of 47 can be isolated and characterized. 1H NMR (500 MHz, Chloroform-d) δ 6.58 

(d, J = 11.5 Hz, 1H), 6.12 (dt, J = 11.6, 1.6 Hz, 1H), 3.64 (ddq, J = 48.4, 7.9, 5.9 Hz, 2H), 3.12 

O OH

RVC(+)/C(-)
current, electrolyte

2,6-lutidine
DCM/MeOH (1:1)

temperature

46

TMS TMS

OO

47
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(d, J = 7.5 Hz, 1H), 2.30 – 2.04 (m, 3H), 1.93-1.85 (1H), 1.85 – 1.77 (m, 6H), 1.71 – 1.58 (m, 

2H), 1.57 – 1.45 (m, 4H), 1.24 (dd, J = 57.8, 6.0 Hz, 6H), 0.16 (s, 9H). HRMS (ESI) for 

C22H36O2Si [M + H]+ calc. 361.6141, found 361.2538, [M + Na]+ calc. 383.5960, found 

383.2356.  

Notes: 

(1) The additive to facilitate Michael condition serves as counter effect for cuprate, a sweet 

ratio of the reagent used need to be discovered. 

(2) A good quality of Grignard is required. 

4.7 Spectra Data 

See Appendix C 
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Chapter 5: Chan-Lam Coupling on 

Microelectrode Array Application 

While the chemistry in the previous chapters has been focused on the use of oxidative cyclization 

reactions in synthesis, it is important to note that the electrochemical methods have a broad range 

of applications.  To broaden my own expertise with these systems, I undertook a side project 

aimed at using a mediated electrolysis reaction to selectively functionalize a complex 

microelectrode array. The key was to see how the same constant current electrolysis conditions 

employed in the studies above would automatically adjust to a completely different set of 

parameters. In this case, the potential at the anode would need to automatically adjust to the 

precursor for a Cu(II)-catalyst as opposed to an electron-rich olefin. But at its core the 

electrochemistry is the same.  

 (Sections of this chapter were taken from our paper: A., S. J.; Guoxi, X.; Ruozhu, F.; W., J. J.; 

D., M. K. C-Glycosides, Array-based Addressable Libraries, and the Versatility of Constant 

Current Electrochemistry. Electroanalysis 2016, 28 (11), 2808) 

5.1 Micro Electrode Array 

To begin, the chemistry to be discussed will take advantage of microelectrode arrays that have 

12544 electrodes/ cm2. The electrodes are separated from each other by a distance of 33 

microns1. Each one of the electrodes can be independently used as a cathode, an anode, or as the 

working electrode for sweeping potential. Our group has been developing methods to build and 
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analyze libraries of molecules on these arrays2. Because our emphasis is on synthesis, we will 

only discuss use of synthetic methods on the arrays here.  

All synthetic methods on an array begin with a polymer that is used to coat the array and 

provides the functionality needed to add groups to the surface of the electrodes (Figure 5.1).  

 

Figure 5.1 An Addressable Micro Electrode 

The polymer we typically use contains two important sections. One is aryl bromide or aryl 

boronic ester that allows for modification of the surface, and the other is a cinnamate modified 

styrene moiety for cross-linking and adding stability to the surface1. 

Reactions are run on the surface of the array by utilizing the electrodes in the array to generate 

specific catalysts, substrates, or chemical reagents. An example of this chemistry will be 

highlighted below. For now, let’s focus on the use of a catalyst on the array (the chemistry we 

will need below) and simply say that reactions are conducted on the array by taking a precursor 

for the catalyst and either reducing it or oxidizing it to form the catalyst at the electrodes surface. 

A “confining agent” is then added to the solution above the array that returns the catalyst to its 
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pre-catalyst state before it can migrate to sites on the array not selected for the reaction. By 

controlling the relative rates at which the catalyst is made at the electrodes and destroyed in 

solution one controls how far the catalyst can migrate from its site of origin. Again, an example 

of this approach will be presented below.   

5.2 Binding Studies with C-Glycosides 

The goal of the project I joined was to examine the chemistry of C-glycosides and in particular 

the chemistry between phenyl substituted C-glycosides that were antagonists of FimH3.  To this 

end, Jake Smith in the group developed a synthesis of C-glycosides, built some of the molecules 

for testing, and had begun developing a strategy to probe their activity using the arrays.  

5.2.1 Array-based metal catalyzed cross coupling method development 

One of the first approaches taken for the placement of the C-glycosides on the array was the use 

of an array-based Diels-Alder reaction.2,3 The Diels-Alder reaction has been used on multiple 

occasions to attach biomolecules to the surface of electrodes because of its orthogonality to the 

functional groups found in peptides, DNA, or sugars.4 On an array, the reaction is confined to 

selected electrodes by using those electrodes to generate a Lewis acid. Scheme 5.1 
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Scheme 5.1. A site-selective Diels-Alder reaction 

The array was first coated with an agarose polymer that provided attachment sites from 

molecules above each electrode in the array. All of the electrodes in the array were then 

functionalized with a dienophile (13), using the previously reported esterification reaction 

strategy5. Once the dienophile was attached to the surface of every electrode in the array, the 

array was treated with the diene (14) and a solution that contained a Sm(I)-species, an electron-

rich aryl ring (15) and an electrolyte for the subsequent electrolysis reaction. A checkerboard in a 

box pattern of electrodes were then used as anodes to oxidize the Sm(I)-species to the Sm(III)-

Lewis acid needed to trigger the Diels-Alder reaction. The electron-rich aryl ring (15) served as a 

confining agent for the reaction by reducing the Sm(III)-Lewis acid generated at the selected 

electrodes before it could migrate to sites on the array that were not selected for the reaction.  

The whole process amounted to a nice example of the versatility associated with a constant 

current electrolysis. The electrochemical cell for the array reaction is a simple, thin-film flow cell 

that consists of the array on one side, a Pt-counter electrode on the other, and the solution in 
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between. The array potential is then set as being either positive or negative relative to the counter 

electrode, and then a constant current passed between the electrodes. The potential at the 

electrodes is allowed to float to match that of the substrate in solution. To place the dienophile on 

the array, the array was set at a potential negative to the counter electrode and then allowed to 

float so that it matched the reduction of vitamin B12 leading to a base needed for esterification. 

To conduct the Diels-Alder reaction, the array was set at a potential positive to the counter 

electrode and then allowed to float so that it matched the oxidation potential of the Sm(I). The 

electrochemical experiments were essentially identical to the direct, bulk electrolyses described 

in the previous chapters.  

In order to use the Diels-Alder reaction to place a sugar onto an array, both the surface of the 

array and the C-glycoside derivative needed to be altered accordingly. In this case, the array was 

functionalized with a dienophile in a manner directly analogous to the previous experiment with 

one exception (Scheme 5.2). In this case, the diblock copolymer that contained a cinnamate 

 

Scheme 5.2. The first site-selective placement of a C-glycoside on the arrays 
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functionalized methacrylate block and a hydroxylated polystyrene block described above was 

used in place of the agarose coating on the array6,7. The hydroxyl-substituted aryl ring of the 

polystyrene block was then used to attach molecules to the surface of the array. The dienophile 

was attached to the coating proximal to every electrode in the array and then the Diels-Alder 

reaction with a “properly functionalized” C-glycoside diene (16) conducted with a checkerboard 

in a box pattern of electrodes in the same manner as described above. The C-glycoside was 

labeled with a pyrene group so that the success of the reaction could be determined with the use 

of a fluorescence microscope. The quality of the reaction can be seen in the image provided. A 

bright fluorescent spot appears by each electrode used for the oxidation. The red fluorescence 

from the array is indicative of a pyrene dimer and therefore consistent with a high concentration 

of the C-glycoside by the selected electrodes. At the same time, no fluorescence appears in 

between the electrodes or at any unwanted site on the array, even when the array was examined 

for the presence of pyrene monomer (blue). Clearly, both the reaction and the confinement 

strategy worked perfectly.  

While the Diels-Alder strategy worked well, the overall approach was less than ideal, in that both 

the array and the C-glycoside had to be pre-functionalized. While this was not a large problem 

with respect to the array, the use of a “properly functionalized” C-glycoside (16) required a 

multistep synthesis of the substrate. Clearly, it would be better if such a separate synthesis could 

be avoided and a method for directly placing a fluorescently labeled C-glycoside derivative on 

the array developed.  

At the time the Diels-Alder reaction was being developed, other methods for functionalizing 

diblock copolymer coating on the arrays were taking hold. One in particular was quite intriguing. 

In this chemistry, alcohol substrates were directly added to the diblock copolymer coating on the 
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array that contained a bromostyrene block. In this case, a Cu(I)-catalyst generated on the arrays 

by the reduction of a Cu(II) salt triggered addition to the surface8. Once again, the reactions only 

occurred on the surface proximal to the electrodes used to generate the active catalyst. Oxygen 

was used as the confining agent to oxidize the Cu(I)-catalyst in the solution above the array, 

before it could migrate to a non-selected site.  

The extension of this chemistry to the use of a C-glycoside is illustrated in Scheme 5.3. The 

reaction used the pyrene labeled alcohol (19) already available from the earlier synthesis. 

 

Scheme 5.3 Addition of a C-glycoside based alcohol nucleophile to the surface of an array. 

With the nucleophile in hand, an array having 12,544 electrodes/ cm2 was coated with the 

diblock copolymer, and then blocks of twelve electrodes each, used for the generation of Cu(I) in 

the presence of the alcohol nucleophile and air. The success of the reaction can be seen in the 

image provided. Once again, the C-glycoside was placed onto the array by the electrodes 

selected, and once again the presence of the confining agent kept the C-glycoside from being 

placed at sites not selected for the reaction. The same reductive constant current reaction setup 

used on the arrays for the generation of base (Scheme 5.1), was this time used to make Cu(I), 

with the potential at the electrode surface automatically adjusting to match that needed for the 

reduction of Cu(II).  
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Figure 5.2 biphenyl substituted c-glycoside 

 

5.2.2 Fluorescence Linker Synthesis  

While the chemistry looked very reasonable, it was not directly compatible with the glycosides 

desired for the initial study. These molecules are shown in Figure 5.2. 

 

 

Both of these molecules contained a phenyl substituent on the anomeric carbon with 2 being 

stable C-glycoside derivative. The mannose part of the sugar is responsible for binding. If the 

primary alcohol is added to the array, then there is no place to attach a fluorescent group for 

determining if a reaction to place the molecules on the array has been successful. In fact, efforts 

along these lines met with failure during subsequent signaling experiments, and it was unclear as 

to whether the molecules no longer bound because of the surface of the array or whether the 

molecules were never placed on the array.  

It was at this point that I joined the project. We figured that the most direct method for resolving 

these issues would be to design and build a linker that would allow for both removal of the C-

glycoside from immediate contact with the surface and for determining its presence on the array 

(Scheme 5.4). 



 
 

166 

 

Scheme 5.4 Sugar-Pyrene Linker 

The linker was made by alkylating lactone 1 with pyrene bromide in 76% yield followed by 

reduction to the diol in a yield of 62%. The diol then can be coupled to the C-Glycoside through 

Pd catalyzed Buchwald type coupling9 to yield 4a/4b with 51% yield. In this case, synthetic 

expediency led to the formation of a mixture of labeled molecules. However, the two molecules 

differed only in the specific location of the fluorescent label, a detail that was not important for 

the subsequent study. The key was that the C-glycoside was both tagged with a fluorescent group 

so that the quality of the array reaction could be monitored, and that the nucleophile used was a 

simple alcohol. Hence, in future efforts there would be no need to conduct extra synthetic steps 

to add the functionality for attachment to an array. 
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5.2.3 Placement of C-Glycoside onto the Array via Chan-Lam coupling 

At this point, we decided to utilize the borate ester surface for the placement reaction because it 

is superior for use in signaling studies1. The placement of alcohols onto a borate ester 

functionalized array does not require utilization of a Cu(I)-catalyst (like in the addition to the 

bromostyrene derived surface8), but rather a Cu(II)-catalyst and the Chan-Lam coupling reaction10. 

Cu(II) is known to oxidize alcohols, so in this case the presence of excess nucleophile can serve 

as a confining agent to make sure that the Chan-Lam coupling reaction only occurs at sites 

selected for the oxidative catalytical cycle conversion of Cu(I) to the required Cu(II)-catalyst. 

The reaction worked very well with the more complex sugar and borate ester surface (Scheme 

5.5, a “W” in a circle pattern of electrodes was used for the oxidation). As in the earlier 

reactions, the fluorescently labeled C-glycoside was only placed by the electrodes used for the 

reaction.  

Once again, the chemistry demonstrated the versatility of the constant current electrolysis. To 

change from a Cu(I)-catalyzed reaction on the array to a Cu(II)-catalyzed reaction on the array, 

one only needs to reverse the polarity of the electrodes, pass current through the reaction, and 

allow the working electrodes on the array to automatically adjust to the substrate in solution.  

 

 

 

 

Scheme 5.5 Chan-Lam Coupling on Micro Electrode Array 
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5.2.4 Binding Study Between C-Glycoside and Protein 

This study is not a major work for this chapter. Reference can be found below.  

With the ability to both make C-glycosides and place them by selected electrodes in a 

addressable microelectrode array, attention was quickly turned toward determining if the 

resulting C-glycoside modified arrays were compatible with the analytical experiments the arrays 

are being developed for2,11. In these experiments, a microelectrode arrays that has been 

functionalized with potential ligands for a receptor is typically inserted into a solution that 

contains a redox mediator and a specific concentration of a targeted receptor. A current is 

established for the redox mediator at each of the electrodes in the array. If the receptor in 

solution binds a molecule on the surface of the array, it changes the capacitance of the surface 

above the electrode associated with the molecule. This causes a change in current that can then 

be monitored. By varying the concentration of the receptor in solution, a plot of the change in 

current relative to the amount of receptor used can accumulated and information about the 

strength of the interaction between the molecule and the receptor obtained. 

A preliminary look at signaling 

The compatibility of the C-glycoside functionalized surface with this experiment was 

demonstrated by taking the array functionalized in Scheme 5.3, treating it with a solution 

containing both a ferrocyanide/ ferricyanide redox couple, and varying concentrations of 

streptavidin, and then monitoring the current associated with the redox mediator at various sites 

on the array. Streptavidin is known to undergo strong non-specific binding interactions with 

sugar surfaces, enough to interfere with streptavidin–biotin interactions12.  In fact, we learned 

that we could not use the streptavidin–biotin interaction to probe the use of arrays with sucrose 
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surfaces because of the extent of background binding observed. The data for the current 

experiment is shown in Figure 5.3. In this figure, the current measured at three blocks of 

electrodes functionalized with the C-glycoside is plotted along with data taken from three blocks 

of electrodes that are only functionalized with the diblock copolymer coating used for the 

synthetic experiment. The currents measured are given as relative currents with the highest 

current measured on the array given a value of zero and the lowest a value of 1. In this way, 

interactions between the streptavidin and the C-glycoside functionalized surface that block the 

redox mediator from reaching the electrode below afford positive changes to the curve. The data 

for the interaction between the streptavidin and the C-glycoside functionalized surface is shown 

in blue. The error bars show the spread in data from the three blocks of electrodes.   

 

Figure 5.3. A preliminary signaling study. 

The red line was generated from three blocks of electrodes that were left unfunctionalized. Once 

again, the error bars show the spread in data associated with those blocks of electrodes.  

From the start it was clear that the presence of the C-glycoside functionalized diblock copolymer 

did lead to an increased interaction between streptavidin and the surface. The data showed a clear 

difference in current between the blocks of electrodes functionalized with the C-glycosides and 
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the blocks of electrodes that were not similarly functionalized. No binding occurred with the 

unfunctionalized polymer and the same maximum current for the redox mediator was obtained 

for each concentration of receptor used. Initially, roughly the same current was measured for the 

blocks of electrodes functionalized with the C-glycoside, indicating that the polymer was easily 

permeable to the redox mediator. However, this changed as the concentration of receptor was 

increased indicating that a binding event between streptavidin and the functionalized surface did 

occur. The strength of this binding interaction was not a complete surprise since there are 

multiple C-glycosides associated with the surface of the electrodes. Multiple ligands on the 

surface of an electrode have been shown to amplify binding signals. 

While determining the exact nature of the binding interaction between the surface and the 

streptavidin (a direct interaction with the sugar or an interaction with the swelled polymer) would 

require additional studies, the data presented does demonstrate that the presence of the C-

glycoside on the array is compatible with the analytical approach taken. When combined with 

the synthetic studies described, it is clear that the chemistry needed for using the arrays to 

examine binding interactions, like the one between mannose derivative 2 and the FimH receptor  

Refence from Smith, J., Ph.D. Dissertation, Washington University in St. Louis, 2015. 

5.3 Experimental Section 

Synthesis of 2 5-(2-(2-oxotetrahydrofuran-3-yl)acetyl)pyrrolidin-2-one 
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To a solution a triethylamine (1.55 mL, 1.1 equiv) in 80 mL THF at -78 oC, nBuLi (6.88 mL, 1.6 

M in hexane, 1.1 equiv) was added in dropwise. Mixture was stirred for 15 min. Dihydrofuran-

2(3H)-one 1 (0.76 mL, 1 equiv) in 13 mL THF was added in. Mixture was stirred for 30 min. 

Pyrene-CH2-Br (2.95 g, 1 equiv) in 43 mL DMF was added in. Mixture was stirred for 4 h. Upon 

completion, the mixture was quenched with NH4Cl (aq) and diluted with CH2Cl2. Organic layer 

was separated and aqueous layer was extracted with CH2Cl2 by 3 times. Combined organic 

layers were dried over MgSO4. The crude product was purified by flash chromatography through 

silica gel to afford 2 (78% yield). The spectra data matched the previously published 1H NMR. 

Synthesis of 3 5-(5-hydroxy-3-(hydroxymethyl)pentanoyl)pyrrolidin-2-one 

 

To a flask containing lithium aluminum hydride powder (0.584 g, 2.5 equiv) in 142 mL THF 

solution, under argon, at 0 oC, 2 in 43 mL THF was added in dropwise.  Reaction mixture was 

stirred overnight. 80 mL Rochella salt (half satuated) was added in. Mixture was stirred 

overnight. Most THF was removed on rotovap. Residue was extracted with DCM. Organic layer 

was separated and aqueous layer was extracted with DCM by 3 times. Combined organic layers 

were dried over MgSO4. The crude product was purified by flash chromatography through silica 

gel to afford 3 (1.54 g, 82% yield). 1H NMR (300 MHz, CDCl3) δ 8.29 (d, J = 9.3 Hz, 1H), 8.10-

8.18 (m, 4H), 8.06 – 7.96 (m, 3H), 7.87 (d, J = 7.8 Hz, 1H), 3.88 – 3.57 (m, 4H), 3.36 (ddd, J = 

48.2, 13.8, 7.6 Hz, 2H), 2.29 (m, 1H), 1.81(dt, J = 7.4, 4.5 Hz, 2H); 13C NMR (75 MHz, CDCl3) 

δ 134.7, 131.4, 130.8, 130.0, 129.1, 128.2, 127.5, 127.4, 126.8, 125.9, 125.1, 125.0, 124.8, 124.6, 

HO OH

Pyr
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123.4, 109.9, 65.5, 61.2, 41.5, 35.7, 35.6; IR (neat, cm-1) 3294, 2903, 2847, 1051, 1006, 953, 

838, 753, 706, 680; HRMS (ESI) calcd for C21H18O2 [M + H]+ 305.1532, found 305.1536. 

Synthesis of 4a/4b  

 

To a flask containing sugar bromide (79.9 mg, 1 equiv) and 3 (165 mg, 3 equiv) was added 

Pd(OAc)2  (4 mg, 10 mol%) , ligand (24 mg, 20 mol%) as well as Cs2CO3 (87.9 mg, 1.5 equiv). 

System was charged under argon. 0.5 mL of toluene was added in. The reaction mixture was 

brought to reflux for 20 h. Upon completion, the mixture was quenched with water and diluted 

with DCM. Organic layer was separated and aqueous layer was extracted with DCM by 3 times. 

Combined organic layers were dried over MgSO4. The crude product was purified by flash 

chromatography through silica gel (eluted 30% EtOAc in hexane) to afford 4a and 4b mixture 

(62 mg, 51% yield). 1H NMR (300 MHz, CDCl3) δ 8.32 (d, J = 9.2 Hz, 1H), 8.23 – 7.93 (m, 

7H), 7.85 (d, J = 7.9 Hz, 1H), 7.24 (d, J = 10.1 Hz, 1H), 6.76 (s, 1H), 6.64 (s, 1H), 4.99 (d, J = 

6.0 Hz, 1H), 4.92 – 4.72 (m, 1H), 4.49 (s, 1H), 4.40 – 4.22 (m, 1H), 4.22 – 3.94 (m, 5H), 3.89 (s, 

1H), 3.83 – 3.71 (m, 1H), 3.71 – 3.49 (m, 1H), 3.41 (dd, J = 23.3, 13.6 Hz, 1H), 3.19 (d, J = 12.8 

Hz, 2H), 2.56 (s, 1H), 2.36 (s, 1H), 2.29 – 2.14 (m, 3H), 2.05 (s, 1H), 1.91 (d, J = 6.3 Hz, 2H), 

1.72 (s, 1H), 1.46 (d, J = 9.4 Hz, 5H), 1.42 – 1.30 (m, 5H), 1.26 (t, J = 7.1 Hz, 2H); 13C NMR (75 

MHz, CDCl3) δ 171.1, 158.1, 137.3, 136.9, 134.4, 131.3, 130.8, 130.0, 129.0, 128.6, 128.3, 

127.8, 127.4, 126.9, 126.7, 126.1, 125.8, 124.9, 124.8, 124.6, 123.4, 116.4, 112.4, 112.2, 112.0, 

109.1, 109.0, 87.1, 86.4, 83.2, 81.5, 73.6, 67.1, 60.9, 60.4, 57.1, 56.9, 37.7, 35.2, 26.9, 25.1, 
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14.2; IR (neat, cm-1) 3338, 2930, 2360, 1726, 1604, 1453, 1380, 1288, 1073; HRMS (ESI) calcd 

for C42H48O8 [M + Na]+ 703.3241, found 703.3245. 

Reactions Performed on 12K-microelectrode Array: Cu(II) 

3.0 mg of C-glycoside 4a/4b and 15 mg tetrabutylammonium hexafluorophosphate were 

dissolved into 300 µL of DMF in an Eppendorf tube as well as 15 µL of 25 mM solution of 

Cu(OAc)2. The 12K-array chip coated with diblock copolymer (with aryal bromide unit) was 

exposed to 125 µL of the reaction solution and selected electrodes were grounded (WashU 

pattern), while a potential of +2.4 V was applied to the auxiliary electrode for 20 pulses. The 

slide was washed with EtOH. The whole process was repeated to get a bright enough image 

under the observation of a fluorescence microscope. 

5.4 Spectra Data 

See Appendix D 
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Chapter 6: Conclusion and Future Work 

6.1 An Overview  

In general, the work reported here has sought to provide improved insight into how we think 

about and optimize anodic cyclization reactions. After laying a foundation for this effort in the 

first chapter, the second chapter focused on detailing the importance of controlling the reactivity 

of the intermediate generated downstream of the second oxidation step in a two-electron 

oxidative cyclization. Specifically, we noted that an elimination reaction involving the cation 

generated from the second oxidation can lead to over-oxidation products. Trapping the cationic 

intermediate or slowing the elimination can prevent these issues.  The observations made 

completed the picture of a three-step working model for the reactions that allows us to make 

observations about the products obtained from any given reaction and then propose the step in 

the reaction that is problematic along with a potential solution.  While all three steps in the 

reaction can play a critical role in a cyclization, the first step is still the most critical. If it does 

not go well, then the others have no chance. With that in mind, Chapter 3 focused on the role the 

key reactive intermediate plays in the success of the initial cyclization. Anodic coupling 

reactions can be channeled down pathways that involve either radical cations or radical 

intermediates. Previous work had shown situations where the radical intermediate was preferred. 

In this thesis, we highlight an example that benefits from the use of a radical cation pathway and 

a strategy by which the same overall synthetic route can be used to access either approach. In 

Chapter 4, work toward determining whether an oxidative radical or a radical cation pathway is 

preferred for oxidative cascade type reactions is presented. While a successful tandem 
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cyclization has not yet been accomplished, preliminary data suggested that the specific substrates 

studied were hampered by a reversible cyclization and competitive reactions involving the 

initially generated reactive intermediate and the trapping group that was supposed to terminate 

the final cyclization. This result indicated the need for a more general approach to studying the 

possibility of a tandem cyclization. Chapter 5 departs from the chemistry of oxidative cyclization 

reactions and applies the same constant current electrolysis strategy to the synthesis of complex 

molecular surfaces on a microelectrode array. The goal was to show how electrochemical 

methods that are traditionally used in solution phase synthesis can be expanded to include 

applications of the surface of a microelectrode array destined for application in bioanalytical 

chemistry.  

6.2 Continuing Studies 

6.2.1 A final solution to synthesis of Artemisolide 

In Chapter 3, we concluded that the coupling of an enol ether and a furan could be used to 

synthesize seven-membered rings like the one in the natural product artemisolide if the substrate 

contained a conformational constraint in the tether between the enol ether and the furan that 

could accelerate the reaction enough to overcome the competitive elimination of a proton from 

the carbon alpha to the radical cation. We demonstrated that the reaction might need to be 

channeled down the radical cation pathway since an oxidative radical approach led to a 

competitive H-atom abstraction reaction that could not be avoided. For these studies, the 

conformational constraint used was a phenyl ring. However, the actual structure of artemisolide 

lacks this phenyl ring, and instead has a tertiary alcohol group on the central seven-membered 

ring. Hence, an alternative conformational constraint is needed. In principle, a cis-double bond 
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would accomplish the same thing as the phenyl ring and provide a more relevant synthetic 

handle for the natural product synthesis.  

 

Figure 6.1 Cis double bond as constrain in substrate 

6.2.2 An remain-questioned solution to electrochemical Tandem Cyclization 

with a, b disubstituted moieties  

As concluded in chapter 4, the tandem cyclization reaction derived from 46 was conducted at 

low temperature in order to keep the initial trapping of the radical cation by an alcohol closed 

and thus furnish the radical intermediate. The reaction led to product 47 suggesting the presence 

of a cyclopropane formation pathway that competed successfully with the desired pathway. It is 

possible that the reaction represents the formation of kinetic products that would be favored by 

the use of lower temperature. This suggests that it may be possible to gain access to the desired 

product if it is the thermodynamically favored product. To test this question would require a 

higher temperature. To this end, a methoxymethyl (MOM) protected enol ether substrate would 

provide an alternative way to generate radical intermediate. The decomposition of this substrate 

would lead to the radical intermediate in a fashion that would not be reversible. Hence, there 

would be no need to lower the temperature of the reaction. One potential pathway forward would 

be to pursue this substitution pattern for the substrate.  

OOTIPS
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Figure 6.2 MOM protected Tandem cyclization substrate 

6.2.3 A fast and systematic way to study electrochemical Tandem Cyclization  

As described in chapter 4, efforts to determine the parameters needed to control an oxidative 

cascade type reaction have been hampered by the nature of the substrates utilized. They were 

selected because of their relationship to known processes. However, the synthesis of the 

substrates proved complex and hindered exploration of the reactions, and the location of the 

terminating olefin in the substrate complicated the study.  

To move forward with the chemistry, it would be helpful to study a substrate that was both easier 

to make and cleaner in terms of the mechanistic possibilities available to the reactive 

intermediates involved.  One strategy would be to study the substrates shown in Scheme 6.1. In 

these cases, the first cyclization reaction has just one option. In addition, the synthesis of the 

substrate avoids the more complex cyclic enones used in Chapter 4. In this way, the acyclic 

version of this oxidative radical vs radical cation intermediate pair would provide a quicker 

probe for answering questions about which intermediate is required for the electrochemical 

tandem cyclization.  

O

O

TMS
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Scheme 6.1 Acyclic version of substrates for electrochemical Tandem cyclization 
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