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ABSTRACT OF THE DISSERTATION

A Dissertation on Fast Objective Coupled Planar Illumination Microscopy

by
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Doctor of Philosophy in Neuroscience

Washington University in St. Louis, December 2018

Research Advisor: Professor Timothy E. Holy

Among optical imaging techniques light sheet fluorescence microscopy stands out

as one of the most attractive for capturing high-speed biological dynamics unfold-

ing in three dimensions. The technique is potentially millions of times faster than

point-scanning techniques such as two-photon microscopy. This potential is especially

poignant for neuroscience applications due to the fact that interactions between neu-

rons transpire over mere milliseconds within tissue volumes spanning hundreds of

cubic microns. However current-generation light sheet microscopes are limited by

volume scanning rate and/or camera frame rate. We begin by reviewing the optical

principles underlying light sheet fluorescence microscopy and the origin of these rate

bottlenecks. We present an analysis leading us to the conclusion that Objective Cou-

pled Planar Illumination (OCPI) microscopy is a particularly promising technique for

recording the activity of large populations of neurons at high sampling rate.

We then present speed-optimized OCPI microscopy, the first fast light sheet technique

to avoid compromising image quality or photon efficiency. We enact two strategies

to develop the fast OCPI microscope. First, we devise a set of optimizations that

viii



increase the rate of the volume scanning system to 40 Hz for volumes up to 700µm

thick. Second, we introduce Multi-Camera Image Sharing (MCIS), a technique to

scale imaging rate by incorporating additional cameras. MCIS can be applied not

only to OCPI but to any widefield imaging technique, circumventing the limitations

imposed by the camera. Detailed design drawings are included to aid in dissemination

to other research groups.

We also demonstrate fast calcium imaging of the larval zebrafish brain and find a

heartbeat-induced motion artifact. We recommend a new preprocessing step to re-

move the artifact through filtering. This step requires a minimal sampling rate of

15 Hz, and we expect it to become a standard procedure in zebrafish imaging pipelines.

In the last chapter we describe essential computational considerations for controlling a

fast OCPI microscope and processing the data that it generates. We introduce a new

image processing pipeline developed to maximize computational efficiency when ana-

lyzing these multi-terabyte datasets, including a novel calcium imaging deconvolution

algorithm. Finally we provide a demonstration of how combined innovations in mi-

croscope hardware and software enable inference of predictive relationships between

neurons, a promising complement to more conventional correlation-based analyses.
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Chapter 1

Introduction

1.1 Large-scale neuroscience

Nervous systems are staggeringly complex. The human brain contains on the order of

1011 neurons and an even greater number of glial cells, though precise counts are still

debated[34]. Each neuron can make 1000s of synaptic connections with other neurons,

placing the total number of synapses in the trillions[86]. Other animals generally

have fewer cells and synapses. Popular model organisms for neuroscience range in

their numbers over many orders of magnitude, with the nematode C. elegans at the

small end with 302 neurons. With current tools even C. elegans is too complex to

simultaneously observe all aspects of the structure and function of its nervous system.

Despite the scale of nervous systems, most scientific progress has been driven by the

careful application of tools that extract data about a tiny fraction of the system, or

else about the whole system at a coarse scale.

These tools continue to drive progress, but recently there has been great interest

in developing tools that allow more comprehensive measurements. This interest is

inspired in part by the success of the Human Genome Project and other projects with

1



the -omics suffix that exhaustively catalogue aspects of the biology of an organism.

Neuroscientific hypotheses that implicate large numbers of cells separated by large

distances remain difficult to test without more comprehensive techniques.

Some of the first comprehensive projects in neuroscience have been termed “connec-

tomics” projects. These projects seek to fully characterize anatomical connections

between brain regions and/or individual neurons. The first connectome was mapped

in C. elegans in 1986 [96], and now efforts are underway in more complex organisms[3,

27, 61, 62]. While the Human Genome Project is an undisputed success, connectomics

efforts in neuroscience often arouse skepticism[4]. This is because, differently from

the genome, it is difficult to agree on how to define comprehensive in the context of

a neural system. There is growing agreement that mapping anatomical connections

is not comprehensive enough, and that one useful complement would be large-scale

recordings of the dynamics of functioning neural systems[81]. As with many areas in

biology, it is difficult to infer function from structure alone, and measurement of both

aspects will provide much better constraints on interpretation.

Figure 1.1: 3D rendering of anatomical connections between all 302 neurons in
the highly-stereotyped nematode C. elegans nervous system (open-
worm.org). The data used to generate this rendering and Figure 1.2
were first published in 1986 [96].
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Functional recording methods for neuroscience currently do not scale as well as meth-

ods for anatomical mapping. The main (perhaps obvious) reason for this is that

functional recordings must be performed while the animal (or the tissue) is alive.

Thus most of the physical and chemical transformations that aid anatomical map-

ping techniques cannot be employed when recording neural function. An additional

challenge is that a comprehensive functional method must sample both in the spa-

tial and temporal dimensions. Classically the temporal signals of most interest to

neuroscientists have been the fast electrochemical signals mediating the propagation

of information within and between neurons. This propogation is extremely fast in

biological terms; in order to observe it the sampling rate must be high enough to keep

up with synaptic transmission and local membrane potential changes within a neuron

lasting less than 1 ms. Neuronal electrophysiology was developed to record these fast

dynamics, and this has been a method-of-choice for decades of neurophysiology stud-

ies. While electrophysiology achieves high temporal resolution, it requires physically

inserting an electrode into the animal, and currently it only scales to a few hundred

neurons per insertion[40].

Recently optical imaging methods have grown in popularity due to their ability to

scale to greater numbers of neurons (potentially 1000s) than electrophysiology. Opti-

cal imaging exhibits a fundamental tradeoff between the number of neurons sampled

and the sampling rate; typical sampling rates are orders of magnitude slower than

with electrophysiology. Researchers are quickly developing new optical techniques

to improve the temporal resolution of large-scale optical imaging and bring it closer

to parity with electrophysiology. Chapter 2 of this dissertation describes techniques

developed in this spirit.

3



Figure 1.2: C. elegans Anatomical information from [96] as visualized by Varshney
et al[94]. Neurons are classified by type. Gap junctions between pairs
of neurons are marked with blue circles while chemical synapses are
marked by red points. Only recently has it become possible to record
the activity of all neurons in this network simultaneously at video rate
in a live animal, an advance enabled by optical imaging[71].

In addition to describing a novel high-speed recording technique, this dissertation

also addresses some of the challenges involved in interpreting fast functional imaging

datasets. For example, there is not yet a consensus about how to extract functional

counterparts to anatomical connectivity graphs like the one shown in Figure 1.2.

This topic is rich enough to warrant an entire dissertation. However rather than

exploring this topic in depth we focus on a simple and ubiquitous component of many

functional analyses: correlations in the activity of neurons over time. Correlation (or
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its un-normalized sibling, covariance) can be computed for each pair of neurons in

a functional dataset and summarized in a matrix. In Section 2.4 we apply our fast

imaging method to record neural activity in the larval zebrafish forebrain, and we

examine the matrix of neuronal correlations. We find that the correlation measure

is biased by an artifact resulting from the heartbeat of the fish, and we show that

fast imaging enables removal of the artifact by filtering. Managing this and similar

artifacts will be a crucial step for future studies aiming to generate comprehensive

functional descriptions of neural circuits.

The remainder of this chapter gives further background information required to un-

derstand our fast imaging technique and its context.

1.2 Optical imaging of neural function

Neuroscientists use myriad optical tools in their work. The term “optical” encom-

passes any technique utilizing electromagnetic radiation. In this dissertation “light”

will be used interchangeably with electromagnetic radiation even though “light” refers

to only a subset of the possible wavelengths of radiation, and many of the principles

discussed here also apply to wavelengths outside of that subset. Light can be har-

nessed in many ways to enable advances in neuroscience, but here we focus on a very

common application: imaging. Imaging systems exploit the fact that objects (and

regions of a single object) differ in their interactions with light. Most imaging de-

vices, including the common cell phone, are designed to sample these interactions at

a collection of spatial locations, with the collection of samples comprising an image.

Thus the abstract function of an imaging device is to map points in an “object” space

5



to points in an “image” space. In practice this is achieved through a lens system that

focuses light emitted from the object space to points in the image space (Figure 1.3).

Imaging
system

Object
space

Image
space

Light

propagation

a

b

Figure 1.3: (a) Abstract description of an imaging system as an operator that maps
points in an “object” space to points in an “image” space using light.
(b) A more practical description of a typical imaging system. A lens
(or a multi-lens system) is designed to refract light emitted from points
in the object space such that the light is refocused to a corresponding
point in the image space. The ray diagram shown illustrates this process
for a single point, but a conventional imaging system is also capable of
focusing other points at the same horizontal distance from the lens.
f : focal length of the lens, S1: object distance, S2: image distance.
(Adapted from commons.wikimedia.org)

Devices vary in the mechanism employed to form images; some mechanisms are fur-

ther described in Section 1.2.4. A microscope is simply an imaging device specialized

for imaging small things; microscopes use varying degrees of magnification to cap-

ture details that are too small to be seen by eye. Most imaging systems can only

form a clear image of a planar spatial region, though systems differ in the rate that
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image quality degrades with distance from this plane. An explanation for this and a

discussion of exceptional systems is deferred until Section 1.3.

Systems can be designed to sample many types of electromagnetic interactions. In mi-

croscopy the type of interaction sampled is generally chosen to ensure that interesting

details in a specimen can be distinguished from uninteresting details, thus generat-

ing contrast. Contrast, when defined in this way, is a joint property of the sampling

mechanism, the specimen, and the intentions of the microscope user. Some common

ways to generate contrast are to sample the absorption, scattering, phase-altering,

or fluorescence properties of the specimen. Neuroscience has long benefitted from

contrast mechanisms that expose the structure of neural systems[14], but imaging of

function became possible only relatively recently[33]. Fluorescence is currently the

most direct contrast mechanism available for sampling the electrochemical activity of

individual neurons. It is the mechanism employed by the novel microscope described

in Chapter 2. Fluorescence microscopy is further described in the following section.

1.2.1 Fluorescence contrast

Fluorescence is the process by which a molecule can emit light after being “excited”

by light of a shorter wavelength (and thus a higher energy), illustrated in Figure

1.4. Since emitted light is always of a longer wavelength than excitation light, it

is possible to isolate only the emission light using filters. This ability to isolate

light emitted by a particular molecule, or fluorophore, affords fluorescence microscopy

its utility. Many biological molecules exhibit weak fluorescence; i.e. they emit a

small amount of light when excited. Neurons and other components of tissue are

naturally weakly fluorescent, but typically this “autofluorescence” does not provide

sufficient contrast to observe interesting structure. Instead experimenters introduce
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stronger fluorescent molecules into the specimen in a way that confines the molecules

to particular structures of interest. After introducing fluorophores in this way one

can image structures of interest by imaging the emitted fluorescence.

Figure 1.4: Fluorescence explained through a Jablonski diagram (image from [19]).
Light of a certain wavelength is absorbed by the fluorophore, raising it
from a low-energy ground state S0 to an excited state. The molecule
may visit multiple intermediate excited states, eventually falling back
to the ground state and emitting a photon of a longer wavelength (and
thus lower energy) than the excitation light. The average time taken to
emit the photon after the molecule is excited is termed the fluorescence
lifetime. Note that the time axis in the diagram is somewhat misleading;
typically the fluorescence lifetime is almost entirely dominated by the
time spent in S1 before decaying to S0, whereas the diagram implies
that this transition is instantaneous.

1.2.2 Fluorophores for functional imaging

Imaging dynamic processes in neurons involves additional considerations. Autofluo-

rescence does not change with the moment-to-moment activity of the neuron and is

thus an unsuitable contrast mechanism. Specialized fluorophores have been developed
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to track dynamic processes. The earliest such molecules used in neuroscience were

synthetic[33], but flourescent genetically-encoded proteins are now more commonly

used.

The imaging demonstrated in this dissertation utilizes a very popular family of

genetically-encoded fluorescent proteins called GCaMP[17]. GCaMP proteins exhibit

increasing fluorescence emissions with increasing ambient calcium ion concentration.

This is suitable for tracking neural activity because intracellular calcium concentra-

tion increases sharply when a neuron generates an action potential. Neither GCaMP

fluorescence nor calcium concentration is a direct measure of the electrical state of

a neuron. Relative to the action potential, the fluorescence response is delayed and

spread over a longer time period (Figure 1.5). Several computational methods have

been developed in order to infer the timing of the action potential from calcium mea-

surements. This deconvolution process is further described in Chapter 3 and a novel

approach is described in appendix C. Very recently new proteins have been developed

that provide fluorescence readouts of neurotransmitter release[56] and voltage[32, 84].

If these proteins can be sufficiently optimized they may replace calcium indicators for

many use cases, and the imaging speed increases pioneered in this dissertation will

only increase in relevance.
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Figure 1.5: Shown are the fluorescence responses of several calcium-sensitive fluo-
rophores due to single action potentials in dissociated rat hippocampal
neurons (image from [17]). Fluorophores vary in their kinetics but all ex-
hibit faster on-transients than off-transients. Note that all timecourses
are much longer in duration than the action potential itself (≈1 ms), mo-
tivating algorithms that extract spike timing from the calcium signal.

1.2.3 Basics of image formation

Before comparing fluorescence microscopy methods it will be helpful to describe the

image formation process more concretely. As introduced by Figure 1.3, the task of any

imaging system is to relay light originating from a source (the “object”) to another

location (the “image”) while preserving spatial information about the source. The

image may occupy a larger or smaller space than the object if the system magnification

is less than or greater than 1, respectively. Magnifications of greater than 1 are

generally more useful for imaging the tiny structures studied in neuroscience.

With or without magnification, imaging systems strive for 1:1 correspondences be-

tween spatial locations in the object and in the image. This is accomplished by a set

of lenses between the object and the image. Lenses change the angle of incident light

rays (through refraction) so that light emitted from a point in the object space gets

refocused to another point in the image space. Typical lens systems are optimized

to simultaneously map all points from a single 2D object plane to a single 2D image

10



plane. Light emanating from a plane outside of the object plane will generally not be

focused to a single image plane. These imperfections in focus are termed aberrations.

One type of aberration, spherical, is diagrammed in Figure 1.6.

Figure 1.6: A lens exhibiting spherical aberration is incapable of focusing incident
light to a single point. Instead rays of light converge at various distances
from the lens, as shown. A critical aspect of modern lens design is to
adjust the curvature of the lens such that aberrations are minimized.
(image source: physicssimplifiedforyou.blogspot.com)

Lens systems that minimize aberrations in a single plane orthogonal to the optical

axis satisfy the Abbe Sine Condition. Most lens systems for microscopy fall into

this category. Lens systems can also be designed to minimize aberrations in a plane

orthogonal to the optical axis. Such systems satisfy the Herschel condition[35]. If a

system satisfies both the Sine and the Herschel conditions then it can achieve “perfect”

aberration-free imaging of a 3D volume. It was shown by Maxwell[57] that this is

only possible at a specific magnification

M =
no
ni

(1.1)

where no and ni are the refractive indices of the media in object space and image

space, respectively. Thus for a system working entirely in air or entirely in water
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M = 1.0. A common case in biological microscopy is that the object is immersed in

water while the image is formed in air, implying that perfect imaging is possible only

when M = 1.33.

Rather than having a single object plane and a corresponding image plane, it might

be said that a perfect imaging system has an object volume and an image volume.

The difference between Abbe/Herschel (magnifying) systems and a perfect imaging

system is illustrated in Figure 1.7.

Abbe Sine
imaging
system

Object
space

Image
space

Light

propagation

Perfect
imaging
system

Object
space

Image
space

Light

propagation

Herschel
imaging
system

Object
space

Image
space

Light

propagation

Well-focused
region

(object space)

Well-focused
region

(image space)

Figure 1.7: The conceptual diagram in Figure 1.3 has been modified to illustrate
that the well-focused region (exhibiting minimal aberrations) differs de-
pending on the optical condition satisfied by the lens system. A system
meeting the Abbe Sine condition (the most common type of system) can
focus light from a single plane orthogonal to the optical axis. A sys-
tem meeting the Herschel condition can focus light from a single plane
aligned with the optical axis. In order to avoid aberrations throughout
an entire volume and achieve perfect imaging it is necessary to meet
both conditions. Maxwell[57] showed that this only occurs when mag-
nification ≈ 1 (The precise condition is given in equation 1.1).

Until recently it was widely believed that perfect imaging systems would not be useful

for neuroscience because they provide insufficient magnification, but this was proven
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incorrect by several recent microscope designs[26, 72, 25, 63, 28, 82, 100, 45]. These

systems and the tradeoffs that they incur are discussed further in Section 1.3.1.

Even in an aberration-free system the correspondence between object and image

points is never 1:1 due to the phenomenon of diffraction. The wave nature of light

results in spreading of light from a single object point over a region of space in the

image. The size of this region of spread is termed the diffraction limit. Usually

this limit is quantified as first done by Abbe[1] in 1873 for points in an object plane

orthogonal to the optical axis:

λ

2NA
(1.2)

where λ is the wavelength of light emitted from the object and NA is the numerical

aperture of the system. Numerical aperture is defined as n sin(θ), where n is the

refractive index of the medium and θ the half-angle of the cone of light collected by

the lens system. Thus lens systems with higher NAs exhibit better resolution and

also collect a greater fraction of the light originating from the object.

The above equation describes the lateral resolution of the imaging system. A full

description of the system resolution must also consider the axial spread of light,

which is the spread of light in the direction parallel to the optical axis. The axial

resolution is described by a different equation:

2λ

(NA)2
(1.3)
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In order to acquire an image of a 3D sample often multiple 2D images are acquired

at different axial offsets within the sample. Many strategies are available to achieve

this optical sectioning. The following section will focus only on how a single 2D

fluorescence image may be acquired, with 3D acquisition deferred until Section 1.3.

1.2.4 Point-scanning versus widefield microscopy

Microscopes differ in the way that they capture a 2D fluorescence image of a spec-

imen. Microscopes can be broadly classified as point-scanning or widefield (Figure

1.8). Point-scanning techniques acquire a single pixel of the image at a time, with

each pixel corresponding to a spatial location in the specimen. Popular fluorescence

point-scanning techniques either excite only a single point in the specimen at a time

(2-photon microscopy) or excite a cone-shaped volume within the sample and block

emission light emanating from all but one point (confocal microscopy). Thus col-

lecting a 2D image requires scanning the optics laterally over multiple points in the

specimen. Typically this is done with a set of rotating mirrors (galvanometers).

The fundamental difference between point-scanning and widefield is that lateral scan-

ning is not required with widefield techniques. Scanning might be expected to result

in a slower rate of image acquisition versus widefield imaging due to constraints on

how fast the mirrors can move. However modern hardware such as the resonant gal-

vanometer scanner already allows impressive scan rates, and further improvements

might be considered a solvable engineering problem.

Yet there is a separate rate-limiting factor specific to fluorescence point-scanning

methods: there is an important time constant associated with fluorescence emission.

This constant, the fluorescence lifetime, describes the average amount of time it takes
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Figure 1.8: Widefield microscopes (left) illuminate and image an entire plane of
the sample onto a camera sensor. Point-scanning methods (right) such
as confocal and 2-photon microscopy scan a focused laser across the
sample, acquiring images one point/pixel at a time. Fluorescence-based
point-scanning methods are fundamentally slower in their imaging rates,
with pixel/voxel rates subject to a minimum dwell time[66]. (image from
[9])

for an excited fluorophore to fluoresce (emit light). Thus in order to collect sufficient

emission light a point scanning technique is subject to a minimum dwell time, the

amount of time spent exciting and detecting at a single point in the specimen[66].

Lifetime is fluorophore-specific, typically on the order of a few nanoseconds. While

this may seem brief, it results in a stringent limit on imaging rate when multiplied

by the number of pixels (potentially millions) comprising a 2D image. Moreover it is

common that only a modest number of fluorophores are present and able to contribute

to a pixel, implying that it may be necessary to wait several fluorophore lifetimes to

accumulate sufficient signal.

In a widefield microsope, on the other hand, fluorescence from many points in the

object is detected simultaneously. Thus by parallelizing pixel acquisition widefield

techniques exchange a minimum dwell time per-pixel for a minimum dwell time per-

plane. This effectively eliminates dwell time as a consideration, and instead the
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imaging rate of a widefield system is limited simply by the framerate of a modern

CMOS camera. Section 2.3 introduces a new method for circumventing this camera

rate bottleneck.

If widefield is potentially millions of times faster, why not use it exclusively for

neuroimaging? With widefield it is generally more difficult to ensure that excita-

tion/emission light is confined to a single plane in the sample. Until recently widefield

techniques suffered crippling disadvantages in this ability to optically section samples.

Details and recent innovations are discussed in the next section.

1.3 Optical sectioning strategies with widefield meth-

ods

Perhaps the simplest and most widely used widefield fluorescence method is epifluores-

cence microscopy. Unfortunately this method provides very poor optical sectioning;

excitation light is applied to the entire specimen, and the resulting emission light is

sampled indiscriminately by the detector. This means that the image formed con-

tains light from all planes of the sample. Recall that with a magnifying optical system

only a single plane of the sample can be relayed in-focus to the detector. Images of

other planes are blurred; and moreover they vary in their magnification (Appendix A

describes this in detail). Thus epifluorescence images contain the superposition of a

single well-focused object plane and many other poorly-resolved planes.
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1.3.1 Planar illumination

Recently Light Sheet Fluorescence Microscopy (LSFM) has gained recognition as

an alternative approach with much better sectioning capabilty. The core idea of

LSFM is to use a planar illumination pattern so that only fluorophores within a

single plane/sheet of the specimen are excited (Figure 1.9). Light sheet microscopes

are generally designed so that this plane of illumination corresponds with the best-

resolved plane in the object space. A 3D image of the specimen can then be obtained

by assembling multiple well-focused images taken sequentially at different planes in

the sample. This approach to optical sectioning has been implemented in several

ways and is a major factor distinguishing variants of LSFM. Key LSFM variants are

discussed in the following sections.

Figure 1.9: Generic light sheet fluorescewnce microscope design: Illumination light
is confined to a single plane within the sample (actually a thin volume
due to diffraction). An objective lens collects light emitted from the
illuminated plane and forms a widefield image. In most LSFM designs
the plane of the light sheet is orthogonal to the principle axis of the
objective lens as shown, but LSFM also includes techniques that employ
an oblique light sheet[25, 11]. (image from [37])
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Selective Planar Illumination Microscopy Selective Planar Illumination Mi-

croscopy (SPIM) was one of the earliest-developed LSFM methods, and it continues

to be one of the most popular (Figure 1.10). Excitation light is delivered through

a lens oriented orthogonally to the lens that collects the emission light. Collimated

excitation light is focused to a thin sheet by a cylindrical lens. Optical sectioning is

accomplished by translating the sample along the axis orthogonal to the plane of the

light sheet while capturing multiple 2D image slices. Precise translation is usually

achieved with a piezoelectric positioning system.

Figure 1.10: Selective Planar Illumination Microscopy was one of the first LSFM
designs and remains popular. 3D imaging is achieved by acquiring
multiple planar optical sections while translating and/or rotating the
sample, shown mounted in a cylindrical tube. cyl: cylindrical lens,
ch: imaging chamber (filled with water), s: sample, det obj: detection
objective. (image from [37])

Objective Coupled Planar Illumination Microscopy Objective Coupled Pla-

nar Illumination Microscopy (OCPI) was developed concurrently and independently

from SPIM[36]. The primary difference between SPIM and OCPI is that the OCPI

microscope accomplished optical sectioning by translating the optics rather than the
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sample (Figure 1.11). Compared with SPIM this offers greater flexibilty in specimen

mounting and the potential for faster scanning.

Fast scanning with SPIM would require translating the specimen at high rates that

can induce problematic side effects. These fast vibrations are an unwanted mechanical

stimulus to the neural system under study that can bias neural activity or deform the

tissue in complex ways that are difficult to correct with image registration. Moreover

in order to move a load at high rates the piezoelectric positioner of the scan system

requires a load-dependent calibration (discussed further in Chapter 2). With an OCPI

microscope this calibration can be performed once (per imaging objective) whereas

with a SPIM microscope the load is dependent on the specimen, requiring specimen-

specific calibrations.

Figure 1.11: Objective Coupled Planar Illumination microscopy, developed concur-
rently and independently from SPIM, differs in that optical sectioning
is achieved by translating optical elements rather than translating the
sample. An adjustable coupler maintains the light sheet within the
focal plane of the objective lens while the lens is translated. (image
from [36])

An additional innovation of OCPI is that the excitation optics and imaging objective

are both rotated 30◦ so that all optics are positioned above the sample. This allows

imaging of a wide variety of specimen types and sizes ranging from zebrafish to
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mouse. These advantages motivated the choice of OCPI over SPIM for the fast

volumetric imaging microscope described in Chapter 2. In addition to SPIM and

OCPI several other LSFM methods have been developed. The following sections

describe alternative LSFM methods and their tradeoffs in fast imaging applications.

Remote focusing methods Scanning with OCPI involves translating components

using a linear actuator (usually a piezoelectric device). Since modern objectives are

infinity-corrected, this translation does not affect the quality of the image, which is

formed using a conventional tube lens and acquired by a camera. This contrasts with

“remote focusing” methods that image outside of the objective’s native focal plane,

avoiding mechanical translation in order to scan faster. Remote focusing methods

dynamically reposition the focal plane by using fast tunable lenses, scanning mirrors,

or exploiting refractive index mismatches. Most of these methods have a critical

disadvantage relative to SPIM or OCPI: they trade away image quality in favor of

scan speed.

Figure 1.12: Shown is a LSFM method that achieves fast volume scanning using
a lens with electrically tunable focal length. The lens (labeled ETL)
is dynamically tuned to maintain focus on the light sheet while it is
scanned through the sample[28]. This method and several others[20,
26, 72, 63, 28, 77] suffer from spherical aberrations when imaging
outside of the native focal plane of the objective lens. (Image modified
from [28]).
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The nature of the tradeoff depends primarily on whether the microscope satisfies the

condition for perfect imaging (equation 1.1). Any microscope that does not satisfy

this condition suffers from spherical aberrations that worsen with increasing system

NA, system magnification, and distance from the native focal plane. We plot in

Figure 2.2 the theoretical imaging performance of a system with 20× magnification

for various NA values. The aberrations are not a technical limitation of existing lenses,

as we show in Appendix A that they follow directly from the Abbe sine condition

and apply to any magnifying system that collects images away from the classical

focal plane. Due to these aberrations such methods are unable to maintain cellular

resolution when imaging specimens of moderate-to-large size [20, 26, 72, 63, 28, 77].

An example of such a system is shown in Figure 1.12.

Botcherby et al[10] introduced two system designs that avoid aberrations when using

remote focusing (Figure 1.13). These designs can both be described as multi-stage

microscopes. A first-stage microscope images a volume of the specimen with 1×

magnification (or 1.33× when imaging from water to air) so that the perfect imaging

condition is satisfied. Thus the entire image volume is relayed from the object space

to an intermediate image space. A second-stage microscope then images a single

plane of the relayed volume. Optical sectioning is accomplished by a scanning system

that sequentially images object planes while maintaining each plane within the native

focal plane of the second-stage imaging objective.

One of the designs by Botcherby et al accomplishes scanning via translation of an

objective lens while the other requires translating only a mirror. The former design

maintains high photon efficiency but fails to reduce the inertia of the scan system.

The latter design has much less inertia, translating only a tiny mirror, but by design it

loses 50% of the light collected by the objective lens due to the use of a beamsplitter.
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Figure 1.13: Botcherby et al[10] introduced two optical designs that allow chang-
ing the plane of focus by translating optical elements located distant
from the objective that images the specimen (remote focusing). Un-
like previous (and many subsequent) remote focusing designs, these
two designs satisfy the perfect imaging condition by choosing lenses so
that the magnification from the object space to the intermediate image
space respects equation 1.1. Additional magnification is provided in
both cases by the final objective and a tube lens (tube lenses marked
by red arrows). 3D imaging using the first design (top) requires trans-
lating a heavy objective lens (either L2 or L3). 3D imaging using the
second design (bottom) requires translating only a small mirror, but
half of the emission light is lost. (image adapted from [10])

Neither design was originally adapted for LSFM, but LSFM adaptations of these

ideas emerged quickly[26, 72, 25, 63, 28, 82, 100, 45]. In all of these LSFM designs,

the light sheet is generated by the same objective lens that collects emission light,

incurring an additional cost in photon efficiency due to the extreme angles of light

emanating from the intermediate image volume. A representative example[82] loses

79% of the light collected by the objective lens. There exists no theory suggesting

that it is impossible to improve this efficiency and reach image parity with OCPI
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and SPIM while maintaining fast scan speeds, but no method to do so has yet been

discovered.

1.3.2 Computational sectioning

Several other widefield imaging techniques have been developed to perform optical

sectioning without the use of a light sheet. Sectioning is performed by computationally

unmixing light emanating from multiple image planes. Multiple methods can be

employed to perform this unmixing. The following paragraphs briefly describe two

popular groups of methods, Structured Illumination Microscopy (SIM) and Light

Field Microscopy, and their tradeoffs for fast volumetric imaging.

Structured Illumination Microscopy SIM is a broad classification encompassing

many different techniques that apply patterned (rather than uniform) illumination

to the specimen. In SIM microscopy multiple snapshots of the specimen are taken

at the same focus while varying the pattern of illumination. By recording images

of the sample in multiple known illumination contexts it is possible to extract more

information than would be possible with a single illumination pattern. SIM imaging

systems can be specialized for many purposes[79] including optical sectioning [60].

SIM can perform optical sectioning without a light sheet by simple algebraic combi-

nation of corresponding pixels from a set of images taken under structured illumina-

tion[60, 79]. Unfortunately since multiple images are required, optical sectioning via

SIM is inherently slower than (unstructured) LSFM by a factor equal to the number

of illumination contexts (at least two[49]). Moreover SIM requires mechanical scan-

ning similar to LSFM, so it has no advantage in this regard. While it has no speed
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advantage, SIM may be combined with LSFM to improve image quality; structured

light sheets have been used to improve LSFM resolution beyond the diffraction limit

[42].

Light Field Microscopy Other computational widefield methods avoid the imag-

ing speed penalty of SIM by attempting to solve a more difficult computational prob-

lem: 3D deconvolution. Deconvolution methods attempt to redistribute light intensity

across multiple pixels in multiple planes based on physical models of light propaga-

tion. Some degree of optical sectioning can be achieved by deconvolving images from

an epifluorescence microscope taken at various depths of focus[52]. However since

deconvolution is an ill-posed inverse problem[75], better results can be achieved by

specialized microscopy methods designed to constrain the problem. Light Field Mi-

croscopy (LFM) is one such method[48].

LFM is capable of extracting many optical sections from a single camera image under

uniform (volumetric) illumination without scanning. LFM constrains the deconvolu-

tion problem by operating on the light field of the sample. The light field includes

not only spatial information but also angular information about light emitted by the

specimen. Like conventional microscopy LFM captures information about where in

the sample is fluorescing, but it also captures information along two angular dimen-

sions: for each point in space an LFM records the intensity of light traveling along a

set of angles within the collection cone of the objective lens. LFM achieves this by

utilizing an array of microlenses to separate out angular information at a coarsely-

sampled set of locations in the image plane. A set of computational steps, including

3D deconvolution, has been developed to extract a sectioned 3D volume from the 4D

light field image. Further implementation details of LFM are omitted here in favor

of discussing factors that are implementation-independent.
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Figure 1.14: Diagram of a Light Field Microscope. Rather than recording a 2D im-
age of the sample, such a microscope records a 4D light field that also
includes angular information. The additional information provided
by the light field enables optical sectioning via computation after the
image is recorded. The light field is imaged by placing an array of mi-
crolenses in the typical image plane of the microscope. Each microlens
projects its incident rays onto the camera sensor behind so that differ-
ent incident ray angles arrive at different camera pixels, thus trading
spatial resolution for angular resolution. The green rays trace an image
of the objective’s back focal plane. (image adapted from [48])

When compared with LSFM, LFM has one major advantage and two major draw-

backs. The advantage is that no scanning is required in order to acquire 3D infor-

mation, so LFM is limited only by camera speed. One disadvantage is that LFM

faces a difficult computational problem. The deconvolution problem is slow to solve

(algorithmic complexity of O(n2 log n)), and no current algorithm is guaranteed to

find the best solution. The light field image provides better conditioning for the de-

convolution problem than conventional images, but nevertheless optimization often

converges to a suboptimal solution and, thus, to suboptimal images (the optimization
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problem is nonconvex). Moreover unavoidable artifacts result from incomplete spatial

and angular sampling of the specimen, especially near the native object plane[12].

The second major disadvantage of LFM is that lateral spatial resolution must be

traded for angular resolution. The significance of this tradeoff is not obvious un-

til one considers the relationship between angular resolution and optical sectioning

with LFM. Improving angular resolution results in better-resolved optical sections.

Critically the relationship between angular resolution (sectioning ability) and lateral

resolution is nonlinear: an n-fold increase in the number of optical sections requires

an n2-fold deterioration in lateral resolution[48]. This means that the only way to

improve sectioning ability without compromising lateral resolution is to use an image

sensor with a higher pixel density, but unfortunately the size of the required sensor

grows quadratically with volume thickness. These factors suggest that LFM, unlike

LSFM, scales poorly to larger image volumes.

1.4 Algorithmic neuroscience

Advances in the rate of data acquisition, enabled by instruments like the microscope

described in Chapter 2, are driving neuroscience research into what might be de-

scribed as a new era in which algorithms are central to scientific advancement. While

qualitative descriptions of data are still valuable, scientists rely increasingly on soft-

ware to transform raw data into something more understandable. Within the imaging

domain, for example, many techniques now generate more images than can possibly

be examined by eye. The microscope descriped in Chapter 2 can generate images at

a constant rate of up to 2 GB/s, with a single imaging experiment lasting up to an

hour (7.2 TB). For perspective one can compare this to the Human Genome Project,
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which produced a 3.3 GB human genome sequence over a period of 13 years. Thus

we can now generate the equivalent of 2100 genomes per hour. This rate is increasing

rapidly; we describe a method in Section 2.3 that can easily scale the microscope’s

imaging rate by another order of magnitude.

Leveraging data of this scale will require careful choices in computational hardware

and software. In Chapter 3 we overview considerations informing these choices when

analyzing data from a fast OCPI microscope. We describe general software design

strategies as well as a set of algorithms that we have developed for our analysis

pipeline. The chapter gives particular attention to the tradeoff between computa-

tional efficiency and accuracy, an increasingly important tradeoff as we scale to larger

datasets.
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Chapter 2

Fast Objective Coupled Planar

Illumination Microscopy

This chapter introduces a novel LSFM microscope designed for fast volumetric imag-

ing. OCPI was chosen as the optical sectioning paradigm due to its advantages in

image quality and scalability (introduced in Section 1.3 and discussed further in this

chapter). Several innovations are introduced in order to increase the speed and ro-

bustness of volume scanning, which is typically a rate-limiting factor for OCPI and

SPIM microscopes. Section 2.3 of this chapter introduce another innovation, Multi

Camera Image Sharing (MCIS), that incorporates multiple cameras in order to in-

crease the imaging speed of the system. MCIS is useful for speeding up OCPI as

well as any other widefield imaging technique (see Section 1.2.4 for an introduction

to widefield imaging).

This chapter also demonstrates the utility of the microscope for neuroscience, docu-

menting imaging of neural activity in the whole brain of a larval zebrafish at 10 Hz

with 0.65 µm resolution as well as imaging just the forebrain at 20 Hz. The forebrain

recording is analyzed to show that neuronal traces are contaminated with an artifact
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arising from the heartbeat of the fish. An analysis concludes that this artifact in-

troduces spurious correlations between neurons, and that a sampling rate of at least

15 Hz is required in order to remove the artifact. Expunging this artifact will be an

important processing step for future large-scale studies of zebrafish brain activity.

This microscope has successfully served more than a dozen users in a centralized imag-

ing facility, demonstrating its flexibility and robustness. Detailed hardware schemat-

ics are provided in Appendix B in order to facilitate adoption by other research

groups.

2.1 Design rationale

CMOS
Camera

TLEF

OBJ

BM

PC

LLP

Figure 2.1: Schematic of an OCPI microscope with minor modifications to the de-
sign described in previous work[93, 36]. Optical sectioning is achieved
by translating the optics for generating the light sheet together with
the detection objective (boxed components). Inertia of these compo-
nents limits the rate that a volume can be scanned. Abbreviations:
PC: pigtailed collimator, LLP: light sheet lens pair, OBJ: objective,
BM: broadband mirror, EF: emission filter, TL: tube lens.
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This section conveys our rationale for optimizing volume imaging rate with OCPI mi-

croscopy. OCPI is similar to SPIM[39], but was the first implementation of LSFM to

achieve volumetric imaging by translating the optics instead of the sample[36]. OCPI

also introduced a 30–45◦ tilt in the optics to facilitate observation of extended horizon-

tal samples, such as neuronal tissue slices or in vivo preparations, while minimizing

the path length of both the illumination and emission light through the sample. Fi-

nally, from the outset OCPI reduced weight and the geometric hindrances that would

arise from having two objective lenses by generating the light sheet using custom

optics. Figure 2.1 illustrates the basic OCPI microscope design and shows that both

the imaging objective and the lightsheet optics are translated together in the axial

direction relative to the objective.

Scanning with OCPI involves translating components using a linear actuator (usually

a piezoelectric device). Since modern objectives are infinity-corrected, this translation

does not affect the quality of the image, which is formed using a conventional tube

lens and acquired by a camera. This contrasts with “remote focusing” methods that

image outside of the objective’s native focal plane, avoiding mechanical translation

in order to scan faster. These methods have a critical disadvantage relative to SPIM

or OCPI: they trade away image quality in favor of scan speed (discussed in Section

1.3.1). We include in Appendix A an analysis of spherical aberrations in remote

scanning systems, and we plot in Figure 2.2 the theoretical performance at 20×

magnification for various NA values.

At a fairly low NA of 0.4, diffraction-limited axial resolution is limited to an area

within 150 µm from the focal plane, and this degrades rapidly to only 25 µm for an

objective with NA 0.6. In many fields, especially neuroscience, there is great interest

in imaging axial spans of hundreds of microns efficiently at high spatial and temporal
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Figure 2.2: Theoretically-estimated axial spherical aberrations as a function of dis-
placement from the native focal plane when using remote focusing at
20× magnification (see supplemnt for derivation). Plotted are spot
sizes (in object space) at various NAs. Unlike remote focusing meth-
ods, OCPI microscopy does not suffer these aberrations and is limited
only by the diffraction limit (dashed lines, calculated with Abbe’s for-
mula 2λ/(NA)2 at wavelength λ = 500 nm). We sought to preserve this
optical advantage while bringing the scan speed of OCPI closer to these
remote focusing methods.

resolution. Thus we sought to bring the scan rate of OCPI closer to the state-of-the

art while maintaining OCPI’s advantages in photon efficiency and resolution.

Volume imaging with SPIM and OCPI is usually rate-limited by the inertia of the

sample or the optics, respectively. Due to this inertia the piezo positioner fails to

follow high frequency commands (Figure 2.3). This failure can have catastrophic con-

sequences for 3D imaging at high rates. Rapid acceleration during a camera exposure

results in blurred images spanning multiple depths in the sample. Unwanted oscilla-

tions in the scan system can also result in a sequence of optical sections with depths

that are not strictly increasing/decreasing. Particular high-frequency commands may
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Figure 2.3: Examples of triangle wave scan commands (dashed lines) and measured
responses (solid lines) from the piezoelectric positioner of an unopti-
mized OCPI microscope. One full scan cycle is shown at each of the
three scan rates. Fast volume imaging is challenging because the mea-
sured response is distorted at higher scan rates due to inertia and im-
perfect closed-loop (PID) control.

even send the piezo system’s closed-loop controller into an unstable regime that de-

stroys the device.

Were one to resolve the scanning bottleneck, the scan speed would then be limited

by the camera framerate. The maximum volume imaging rate, achievable by a hy-

pothetical system limited only by a modern camera (PCO.Edge 4.2), is illustrated in

Figure 2.4. The achievable volume rate is inversely proportional to the size of the

volume and the density at which the volume is sampled. Maximum readout rates of

the scientific CMOS cameras produced by top manufacturers are all similar (Figure

2.5). Moreover these rates have not improved within 6 years, suggesting it may not

be fruitful to wait for faster cameras.
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Figure 2.4: If volume scanning were not rate-limiting, OCPI microscopy volume
imaging rate would scale with the “height” of each camera image as
well as the thickness of the imaged volume (shown for 10×magnification
with 5µm spacing of optical sections, PCO.Edge 4.2 camera). Our first
goal was to optimize the scan system so that scan rate was not the
limiting factor in most of the parameter space shown.

Below we describe an OCPI system that mitigates the camera rate bottleneck and

also removes the scanning bottleneck over much of the parameter space described in

Figure 2.4.
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Figure 2.5: Maximum pixel rates (voxel rates when imaging a volume) of popu-
lar 16-bit scientific CMOS cameras are shown. All current widefield
microscopy methods, including OCPI, are limited to these maximum
rates if there are no other limiting factors such as volume scanning rate.
Notably no high-sensitivity camera released within the past 6 years has
improved upon the fastest rate shown, motivating our second goal to
develop a method that circumvents this limit.

2.2 Scanning faster with OCPI

In order to address the scanning bottleneck we enacted five design strategies:

1. minimizing the mass of all translated components

2. optimizing the command signals that drive the piezoelectric actuator

3. acquiring image stacks during both the forward and reverse sweeps of the scan

4. calibrating the timing of camera exposures

5. pulsing the illumination laser during the global exposure period of the camera.
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Figure 2.6: Photo of the scanning assembly (boxed region of Figure 2.1). Custom
optics and machining minimize inertia. Drawings of components are
provided in Appendix B.

A photo of our mass-optimized scan assembly is shown in 2.6. Rather than create

the lightsheet with a second objective we used custom optics of minimal size[36], and

mounting and alignment hardware was machined to minimize mass while maintaining

rigidity. All components were attached to an aluminum backplane mounted to the

piezoelectric positioner.

Our chosen positioner was able to generate push and pull forces of up to 100 N. This is

more than enough force to achieve the accelerations necessary to scan at frequencies

up to 20 Hz. Yet despite this potential, to our knowledge OCPI and similar light

sheet scanning methods have never demonstrated scan rates greater than 4 Hz, and

this was with only a 32 µm scan scan range[65]. One reason for this is that faster

scanning requires more careful tuning of the magnitude and timing of the piezo force

output. In many positioners, ours included, force output is calculated by a closed-

loop controller utilizing the user’s command signal as well as feedback from a sensor.

The controller counteracts the piezoelectric phenomena of creep and hysteresis[2].
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Performance of a closed-loop piezo system is particularly sensitive to the mass of

translated components, center of gravity, and translation angle relative to gravity.

The controller in our system is of the proportional integral derivative (PID) variety,

and thus it has three tunable feedback parameters. We requested that the vendor

optimize these parameters for the mass of our assembly and angle of translation.

Additional tuning was performed manually so that the system’s response matched

high-frequency scanning commands as closely as possible (see methods). We also

verified that the response of the piezo system to a cyclic command is highly consistent

across cycles after a brief warmup period (Figure 2.7). This repeatability is crucial

to enable stable multi-stack recordings.
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Figure 2.7: Consistency of the piezoelectric scanner response. (a) Overlay of 200
consecutive piezo scan cycles as measured by the capacitive sensor of
the device (cycles during the first 20 s of operation are excluded). The
command signal was a 10 Hz triangle wave. Samples were acquired
at 100 kHz and downsampled to 10 kHz for plotting. (b) Closed-loop
control of the piezo prevents drift (“creep”) in the mean piezo response
measured during each cycle from (a). (c) Piezo response cycles are also
consistent on a per-sample basis after an initial settling period. First
a mean response cycle was created by averaging corresponding samples
across the 200 cycles. Plotted is the maximum absolute difference of any
sampled value of each cycle from the corresponding value in the mean
cycle. Before computing differences each cycle was lowpass filtered with
a gaussian kernel of width 100µs to reduce sampling noise. (d) Similar
to (c), but the median difference between corresponding samples in each
cycle is shown.
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2.2.1 Optimizing the scanning control system

PID control is quite sensitive to large accelerations in the command signal such as

those at the extrema of a triangle wave, causing the system to exhibit unfavorable

higher frequency oscillations (Figure 2.3). We addressed this issue by utilizing a

lowpass filtered triangle wave command, where the filter had a cutoff of 3.25× the

scan frequency (see methods). We also performed a brief iterative optimization of

the amplitude and offset of the command signal to achieve the desired scan range

as measured by the sensor (see methods). Thus by tuning both the PID and the

command waveform we were able to drive the piezo smoothly through a range of up

to 700 µm at frequencies up to 20 Hz (Figure 2.8).
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Figure 2.8: Distorton of the piezo response is reduced relative to Figure 2.3 by driv-
ing a tuned scan system using a lowpass-filtered command. Dashed lines
illustrate that the measured amplitude does not match the command.
The command was optimized iteratively (see methods) to generate the
desired 700 µm range at a 20 Hz scanning rate.
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2.2.2 Optimizing camera exposure timing during fast scan-

ning

For later analysis steps such as image registration, it is desirable for the slices of an

image stack to be equally spaced in the axial direction. Because of the non-uniform

speed of piezo movement, this implies that collecting camera frames with a fixed

framerate would result in images that are not evenly sampled in space. Therefore we

utilized the measured piezo waveform to time the acquisition of individual slices so

that they were equally spaced along the scan axis. Figure 2.9 illustrates this piezo

sensor-guided approach: an image is taken whenever the piezo sensor trace intersects

with a desired slice plane (5 µm slice spacing shown). Notably the time intervals

between slices are not uniform; slices near the extrema of the range are separated by

longer intervals due to reduced scan velocity. Resonant galvanometer-based imaging

systems exhibit similar nonuniformity in the angular velocity of the mirror, and these

systems set pixel timing in the same way that we set frame timing[15]. Since piezo

cycles are consistent after a warmup period (Figure 2.7), a single measured cycle

was sufficient to determine the timing of camera exposures throughout a multi-stack

recording.

39



Time (ms)
0 10 20 30 40 50

300

350

400

450

500

S
ca

n 
po

si
tio

n 
(μ

m
)

Piezo sensor
Desired slice planes
Sensor-guided exposure timings

Figure 2.9: A 10 Hz scan of a 200µm volume overlaid with dashed lines marking
depths at which to acquire images with 5µm spacing between optical
sections. When output from the piezo sensor is used to guide image
acquisition, an image is acquired at each intersection of the sensor trace
with a dashed line (marked with x’s). Note the uneven spacing of the
x’s along the time axis.

However, we found that the sensor-guided approach to exposure timing was insuffi-

cient to yield images in the correct slice plane. Figure 2.10 (left panel) compares two

images—one taken during fast scanning and the other taken statically—that were col-

lected at nominally the same plane. Despite the fact that the measured piezo position

was the same in both cases, there is a poor correspondence between the images.

Initially we expected this to be explained by lag in the mixed analog and digital circuit

that conveyed the piezo sensor signal. However to our surprise we could not explain

the inaccuracy with a simple lag, gain, or offset of the sensor signal. We therefore

developed a procedure to determine the correct timing for each image slice empirically

by acquiring images at various temporal offsets from the “naive” sensor-based timing

(Figure 2.11, methods).
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Figure 2.10: Sensor-guided image acquisition timing is insufficient to specify the
correct image plane during fast scanning. A dynamically-acquired im-
age of fluorescent beads is overlaid with an image taken when the
scanner was stationary and, according to the piezo sensor, in the same
image plane. An additional image-guided timing calibration corrected
this inaccuracy and ensured that each slice of the stack was located in
the correct plane (see methods, Figure 2.11). Scalebar: 5 µm.
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Figure 2.11: (a) A single piezo response cycle as measured by the piezo’s built-in
capacitive sensor. The dashed line marks a position at which the user
desires to acquire an image. The timing of the intersection (marked
with arrow) sets the initial guess for the timing of image acquisition.
The procedure illustrated in panels b-e is applied independently to
refine the timing for each plane to be imaged. (b) The initial guess
from (a) is inaccurate for fast dynamic recordings (same as left panel
in Figure 2.11. (c) The initial guess is refined by acquiring dynamic
images at various temporal offsets and choosing the offset that yields
an image matching the static template. The offset that yielded an
image with minimal dissimilarity (see methods) is marked with an
asterisk. (d) When the images corresponding to the optimal timing
from (c) are overlaid they show good axial alignment, but the dynamic
image exhibits a lateral shift. (e) A lateral translation aligns the dy-
namic image from (d) with the template. This lateral transformation
is recorded and applied to align each corresponding slice of each stack
in a timeseries recording. (f) When the steps in b-e are repeated for
each 5 µm-spaced slice in a stack, slices vary in their optimal timing
offset. (g) Optimal timing offsets are shown for each slice in both
the forward and reverse stacks of a bidirectional recording (see Section
2.2.4).
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The timing calibration procedure allowed us to associate each timing correction with

an axial displacement of the focal plane. The optimal timing offset was not a constant

as would be expected if the error were due to a simple temporal lag in the sensor

response. Likewise the optimal timing was not predicted by the depth in the sample,

as would be expected from a simple error in sensor gain (Figure 2.11). We found that

the difference between the piezo sensor value and the true focal plane position was

best predicted by the acceleration of the scan system, suggesting that the error may

be related to mechanical forces acting on the system (Figure 2.12).
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Figure 2.12: (a) Error in scan position is better predicted by acceleration/force than
by lower-order kinetics. Plotted are kinetic parameters of the piezo
during the “forward” sweep of the cycle shown in Figure 2.11. Only
timepoints corresponding with the timing of each image are plotted.
The raw sensor trace was first lowpass filtered with a gaussian kernel
of width 300µs to reduce sampling noise. First 3 traces, from top
to bottom: position, velocity, acceleration/force (force based on 264 g
load of the piezo). The fourth trace shows for each image slice the
difference between the measured position and the actual position of
the focal plane as determined in the procedure described in Figure
2.11. This error trace aligns better with the acceleration/force trace
than with the other traces. (b) Scatter plot of points from the blue
force trace in (a) showing that force is predictive of axial displacement
of the focal plane.
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2.2.3 Pulsed illumination

In addition to calibrating exposure timing we also employed an optimized illumination

protocol to achieve precise optical sectioning during fast scanning. The simplest

(suboptimal) approach to illumination is to keep the excitation laser active throughout

each stack and rely only on camera exposure pulses to delineate slices. This approach

is problematic for CMOS cameras operating with a rolling shutter. With a rolling

shutter the start and stop time of the exposure differs for each row of pixels in a

frame (see Figure 2.13). Since the scan system is constantly in motion this implies

that each row of pixels samples a slightly different axial plane. In order to prevent this

contamination of an image with information from multiple axial planes we utilized

pulsed illumination. By using a well-timed pulse with a duration much shorter than

the camera exposure time we were able to ensure that photon integration occured only

during the “global” exposure period during which all rows of pixels on the camera

chip are exposed simultaneusly (see methods).
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Figure 2.13: Shown is a timing diagram of for the rolling shutter of the PCO.Edge
family of CMOS cameras (reprinted from camera manual). Each frame
is acquired in two overlapping phases, exposure and readout. tallrows is
the time that it takes to expose and read an entire image. Note that
this is a longer duration than texposure because exposure and readout
for each row of pixels starts and stops at a different time. During the
interval labeled tglobal all rows of pixels are exposing simultaneously,
making this an ideal time to flash illumination light. After a row is
read exposure can begin again immediately (not shown), meaning that
light collected outside of the tglobal period will be divided between two
camera frames. Note also that tglobal is very brief when imaging at the
full framerate of the camera (one line time, 10 µs with the PCO.Edge
4.2).
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2.2.4 Bidirectional imaging
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Figure 2.14: Volume imaging rate was increased by an additional factor of two by
imaging each plane twice per scan cycle. Thus a 20 Hz imaging rate
is achieved for a scanning rate of 10 Hz. We compensated for non-
simultaneous and non-uniform temporal spacing by interpolating each
adjacent pair of stacks, resulting in virtual stacks aligned with the
transitions between colored regions.

Since each depth in the volume is visited twice per scan cycle we further increased

speed by utilizing a bidirectional imaging pattern: each scan cycle includes a “for-

ward” stack and a “reverse” stack. Thus the volume imaging rate is equal to twice

the scan rate. Image-guided timing was optimized separately for slices of the forward

and reverse stacks (Figure 2.11). Figure 2.14 diagrams four image stacks acquired

in this manner during two scan cycles. Under the bidirectional paradigm the time

interval between consecutive images of a plane is not constant. More precisely, the

interval is constant only for the slice in the center of the scan and becomes less uni-

form closer to the extrema of the scan cycle. Another more common (and commonly

ignored) complication with volumetric timeseries data is that the slices within each
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stack are not acquired simultaneously. We addressed both of these timing compli-

cations by interpolating each consecutive pair of stacks in time, yielding stacks with

a virtual sampling time corresponding to the lines of color transition in Figure 2.14

(see methods). While inferior to truly simultaneous sampling, we expect that this

correction will improve the fidelty of timing-sensitive analyses. Taken together with

the scan capability shown in Figure 2.8, our system would be able to achieve 40 Hz

bidirectional imaging of a 700 µm volume if not for the limit imposed by the frame

rate of the camera. 40 Hz is a milestone because it approximates the Nyquist sam-

pling rate of the calcium indicator on-transient (The on-transient of GCaMP6f lasts

about 50 ms[17]).

2.3 Acquiring images faster with MCIS

Thus with careful design and modern hardware, OCPI microscopy is not limited by

scan rate when imaging medium-to-large volumes. Therefore further speed improve-

ments for large-scale OCPI microscopy and other fast LSFM variants must come from

mitigating the camera framerate bottleneck. We devise MCIS to exploit a feature of

modern CMOS camera design: maximum framerate depends on the size of only one

dimension of the image (“Image height” in Figure 2.4). This in turn means that vol-

ume imaging rate scales with only two of the three image dimensions. MCIS employs

hardware to divide the image volume into two halves and relay the halves to two

different cameras (Figure 2.15). The volume is divided along the rate-limiting axis of

the camera sensor so that each half can be imaged at twice the maximal rate that a

single camera can capture the full volume. We cut the images by positioning the apex

of a “knife-edged” mirror (KEM) in the focal plane of the tube lens, introducing a

90◦ fold along the center of the focal plane. The two halves of the focal plane are then
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relayed to the two cameras. The exposures of the two cameras were synchronized,

and their images were later “stitched” back into a single image with custom software

(see methods).

48



CMOS
Camera

TLEF

OBJ

BM

PC

LLP

CMOS
Camera

Sensor Inactive

Sensor Inactive

Sensor Inactive

Sensor Inactive
(stitched in software)

Full image

KEM

Volume Scan

Relay Lens

Relay
Lens

Figure 2.15: OCPI system employing Multi-Camera Image Sharing over two cam-
eras. A knife-edged prism mirror (KEM) takes the place of the camera
sensor in Figure 2.1. The mirror is aligned so that half of the image is
reflected and relayed to a camera above while half passes unimpeded
and is relayed to a second camera. Cameras are aligned so that they
image a centered horizontal band in the field of view. The two cameras
expose synchronously, and their images are later stitched together into
a full image. Since the frame rate of a CMOS camera depends only
on image “height” (Figure 2.4) this doubles the imaging speed of the
system.
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If the apex of the KEM is not precisely in the focal plane of the tube lens then

a strip of the image will be captured redundantly (but with reduced intensity) on

both cameras. Figure 2.16 demonstrates in pseudocolor the alignment and overlap of

stitched images of a fluorescent bead sample. Beads along the edge of the KEM are

imaged on both cameras.

Camera 1 Camera 2

Stitched

Figure 2.16: (left) Example stitched image of fluorescent beads (0.2 µm diameter)
with one camera’s image in magenta and the other in green. Scale
bar: 20µm. (right) Zoomed view of the rectangular region marked in
the left panel showing a pair of beads in the narrow region imaged by
both cameras, corresponding to the apex of the KEM.

We aligned our system so that the redundantly imaged region was only 10 pixels

wide, meaning that 99.5% of pixels sample an independent region of space when

each camera exposes half of its available pixel region (Figure 2.17). We utilized an

off-the-shelf KEM that exhibited roughness at the very edge of the mirror surface

due to manufacturing limitations. This roughness scatters incident light and leaves a

subtle stripe in the stitched image of a densely fluorescent sample, barely visible in

the grayscale image of a larval zebrafish brain slice (Figure 2.18).
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Figure 2.17: Quantification of a stitched image of fluorescene dye solution with the
same width and location as shown in Figure 2.16. The width of the
redundant image region is approximately 10 pixels (less than 0.3% of
the camera chip width).

Figure 2.18: Pseudocolored and grayscale views of the same stitched slice of a larval
(5 dpf, HuC:GCaMP6s) zebrafish brain. Scale bar: 20µm.
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2.3.1 Scalability of MCIS
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Figure 2.19: Multiple MCIS modules can be chained together to split the image to
more than two cameras. Shown is a diagram of an OCPI system with
MCIS scaled to four cameras. The fundamental repeating unit of the
design is outlined in orange. Abbreviations are the same as in Figures
2.1 and 2.15.

Multiple MCIS modules can also be chained to further divide the image and relay the

partial images to additional cameras. A 4-camera MCIS system exhibiting nearly 4×

imaging speedup is diagrammed in Figure 2.19. Chaining yields a linear increase in

frame rate with each additional camera.
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The increase in frame rate comes at the cost of a modest linear increase in image

redundancy and a logarithmic decrease in photon efficiency with each additional cam-

era, with the efficiency most sensitive to the transmission efficiency of the relay lens

system (Figure 2.20). Based on the analysis shown in Figure 2.20 it would be possi-

ble to build a 16-camera system (with nearly 16x speedup) with a total transmission

efficiency of 60% if 90% efficient relay lenses are used.
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Figure 2.20: (a) Each MCIS module compounds losses to imperfections in the
transmission and reflectivity of the relay lenses and the KEM, respec-
tively. These losses are plotted separately as a function of the number
of cameras in the system for relay lens transmission efficiencies rang-
ing from 70% to 90%. (b) Same as (a) but KEM losses have been
combined with transmission losses for each lens plotted. (c) As more
cameras are added to the system less of the vertical extent of each
sensor is utilized to acquire a full stitched image. As shown in Fig-
ure 2.4, the maximum framerate is inversely proportional the utilized
vertical extent of the sensor. (d) The fraction of each image that con-
tains redundant image information increases linearly with the number
of cameras in the system. Thus the effective size of the field of view
is reduced by a small amount when compared with a single-camera
system.
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2.4 Identification and removal of heartbeat arti-

fact in calcium imaging timeseries

In order to demonstrate the impact of overcoming both the scanning and framerate

bottlenecks, we used the new system to record neural network dynamics in a zebrafish

brain expressing GCaMP6f[17]. We chose to image at 10× magnification in order

to maximize camera framerate. Note that 10× magnification is not a fixed design

parameter; magnification (and field of view) can easily be changed by swapping in

a different objective lens. We imaged a volume encompassing 40 slice planes in the

forebrain (223 µm x 127 µm x 200 µm) of a zebrafish larva with a 20 Hz volume rate

and 0.65µm x 0.65µm x 5µm voxel size over a 20-minute period. Separately we were

able to image the whole brain of the fish at a rate of 10 Hz, but the following analysis

focuses on the 20 Hz recording of the highly-active forebrain.
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Figure 2.21: Maximum intensity projection of voxelwise F (grayscale) and ∆F/F
(magenta) along the dorsal-ventral axis of the larval zebrafish forebrain
(5 dpf) with pan-neuronal GCaMP6f expression (HuC:GCaMP6f) ac-
quired at 20 stacks/s at 10× magnification with OCPI and MCIS.
Only voxels with greater than 15% ∆F/F are colored.
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Figure 2.21 shows a maximum intensity projection of the voxelwise change in fluo-

rescence relative to baseline (∆F/F ) signal at a single timepoint (see methods). As

expected with LSFM, motion of cilia and blood cells in the fish’s body induces time-

varying stripe artifacts along the light sheet propagation axis in some image regions.

We avoided these regions when we segmented regions of interest (ROIs) containing

a subset of 629 neurons throughout the volume and extracted ∆F/F timeseries (see

methods).

A raster plot of cellular activity during the first 4 minutes of the recording is shown

in Figure 2.22, along with a commonplace analysis of neuronal timeseries: a matrix of

pairwise correlations computed over the duration of the recording. Before computing

correlations, neuron traces were highpass filtered with a cutoff of 1.0 Hz in order to

emphasize correspondences over short timescales.
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Figure 2.22: (a) Raster plot of ∆F/F within 629 manually segmented neuron ROIs
over a 4 minute period. Shown is an excerpt from a 20 minute record-
ing. ROIs were drawn smaller than the size of each cell in an attempt to
minimize the effects of motion artifacts and cross-talk between nearby
neurons. (b) Neurons exhibit a range of pairwise correlations in the
∆F signal. Correlations were computed with highpass-filtered neu-
ron traces (1.0 Hz cutoff) in order to focus on relationships revealed
by high sampling rate. Neurons are ordered by axial depth in the
forebrain (dorsal to ventral).
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Genetically encoded calcium indicators vary in their decay times. The decay time of

GCaMP6f is about 400 ms in dissociated rat hippocampal neurons[17] but this varies

by neuron, and the decay time seems to be considerably more brief at temperatures

closer to the larval zebrafish body temperature (71 ms at 25 ◦C). In combination

with the fact that indicator rise times are shorter (about 50 ms for GCaMP6f[17])

this suggests that sampling at 20 Hz and beyond will provide useful information. We

evaluated this empirically by computing the power spectral density (PSD) of the ∆F

signal in each neuron. PSDs for 15 neurons are plotted in Figure 2.23.

Indeed we found that power diminishes only gradually up to the maximum frequency

(10 Hz) permitted by the Nyquist sampling theorem. Moreover we noted peaks at

2.5 Hz and 7.5 Hz in the spectra of many individual neurons. These peaks underlie

correlations much larger in magnitude than neighboring frequency bands of the signal,

and the size of the 2.5 Hz peak is especially correlated with the size of the 7.5 Hz peak

relative to other frequency pairs (Figure 2.24). These attributes suggest that the

peaks are two frequency components of the same signal, and that this signal is mixed

into the signals of many neurons. The frequencies of the peaks correspond with the

primary frequency components found in a fluorescence-based motion-tracking study

of the fish’s beating heart[51].
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Figure 2.23: Power spectra of the ∆F signals for a subset of neurons show that
power diminishes gradually with increasing frequency. These and
many other neurons exhibit peaks in their spectra at 2.5 Hz and 7.5 Hz
that correspond with the larval zebrafish heart rhythm[51].

Such heartbeat artifacts could bias the results of analyses of neuronal dynamics, just

as motion artifacts have been found to bias the results of human brain imaging stud-

ies[70]. In order to determine the effect of this artifact on the pairwise correlation

measure, we first removed the artifact by applying bandstop filters to remove the

heartbeat frequency bands from each neuronal signal. We then computed new pair-

wise correlations, and for each pair of neurons we recorded the change in correlation

magnitude pre vs post artifact removal (Figure 2.25). This analysis suggests that cor-

relation values were overestimated or underestimated by as much as 0.1, highlighting

the danger that the beating heart could induce spurious correlations into neuronal

network analyses. We conclude that many future zebrafish neuroscience studies would

benefit from adopting sampling rates of at least 15 Hz (the Nyquist frequency of the
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high frequency heartbeat component) so that the artifact can be filtered out and

spurious correlations avoided.
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Figure 2.24: (a) Comparison of time-domain correlations in the isolated heartbeat
frequency bands (lower left) and another nearby set of frequency bands
(lower right). The former correlation matrix contains a much higher
proportion of strong positive and negative correlations, as would be
expected with a broadly distributed heartbeat-induced motion signal.
(b) The sizes of spectral deviations at the two frequencies of the puta-
tive heartbeat signal are highly correlated across neurons, suggesting
that the two frequencies are components of a single signal. For each
of the 629 segmented neurons we measured the size of the peak in the
PSD at each frequency. Peak amplitiude was measured by dividing
the PSD amplitude at each frequency by the mean amplitude of the
two surrounding frequency bins (thus peak size is not defined for the
maximum and minimum frequency bins). Plotted is the correlation
between peak sizes across frequencies. Correlations near the diagonal
are expected to be strong because they are between similar frequen-
cies. However the strong correlation between the 7.5 Hz and 2.5 Hz
peak size stands out.
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Figure 2.25: Bandstop filters were applied to remove the heartbeat frequency bands
(see methods) before recomputing correlations. Shown is the matrix
of differences in correlation values obtained before and after heartbeat
artifact removal (corrafter − corrbefore). Thus this matrix highlights
spurious correlations due to heartbeat that could contaminate a naive
analysis of neuronal activity.
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2.5 Discussion

Our results demonstrate that these improvements in hardware and software design

allow OCPI microscopy to achieve state-of-the-art fluorescence imaging rates over

large volumes. These modifications bring OCPI in line with several other techniques

that are limited primarily by camera speed[26, 72, 25, 63, 28, 82, 100, 45, 11, 20,

26, 72, 63, 28, 77]. Considering all tradeoffs, we anticipate that fast OCPI will

be a technique-of-choice for many experiments requiring maximal imaging speed of

large volumes. The computational complexity of other techniques based on image

deconvolution such as light field microscopy can be prohibitive, especially for lengthy

imaging sessions. Relative to light field microscopy, direct imaging methods such as

OCPI also exhibit a more favorable tradeoff between resolution and imaging rate, and

they permit real-time analysis of imaging data[85, 80].

On the other hand when compared to other fast direct-imaging LSFM variants, OCPI

can often achieve better image quality because it avoids aberrations caused by imag-

ing outside of the native focal plane of the objective[26, 28]. While “oblique” imaging

methods (those that create the excitation sheet with the imaging objective[11, 25,

82, 100]) avoid these aberrations, they are not photon-efficient: only a small fraction

of the light cone collected by the objective reaches the image sensor. The highest

efficiency demonstrated so far in an oblique configuration is 21%[82], while OCPI

microscopy utilizes all of the light collected by the objective. This photon efficiency

minimizes photobleaching and phototoxicity that can damage tissue or alter biolog-

ical processes of interest[46]. Moreover oblique imaging systems require a relatively

high-NA objective in order to collect any light at all, nullifying the benefits of low-NA

imaging objectives for light sheet microscopy: 1) larger depth of field, permitting a

thicker light-sheet with a larger Rayleigh range and thus larger field of view, and 2)
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reduced aberrations due to refractive index mismatches between tissue and media.

SPIM, perhaps the closest relative to OCPI microscopy, shares these optical advan-

tages and differs only in that the sample is translated rather than the optics. However

this makes a crucial difference at high scanning rates: we avoid jostling the sample,

and we can optimize the response of the scan system without regard for the mass of

the sample being imaged.

OCPI and SPIM also have the unique advantage that the size of the imaged volume

is limited only by the range of the linear actuator used, whereas all other techniques

mentioned are limited to a volume set by the field of view of the objective. This

advantage is currently underutilized because the opacity of samples limits imaging

depth. Integrating a two-photon light sheet[90] into an OCPI microscope would alle-

viate this problem to some extent, but in practice 2P LSFM does not offer the same

depth advantage as point-scanning 2P. This is because with 2P LSFM, as with 1P

LSFM, scattered emmission cannot be attributed to a precise location in the sample

[88]. A greater scan range can also be utilized by incorporating structured illumi-

nation[42, 49] or multi-view imaging[44] into future OCPI microscopes, but these

solutions decrease the rate of image acquisition. Alternatively, instead of modifying

the microscope one could modify the tissue to match the refractive index of the me-

dia (i.e. reduce scattering), but as of now this is only possible in fixed tissue[89, 74,

99]. Another promising direction for future work would be to alter the OCPI scan

direction to be parallel to the sample surface, avoiding scanning deep in the tissue.

Our scan system was tuned manually in an attempt to simultaneously satisfy multiple

scan rates, ranges, and amplitudes, and we conservatively utilized only a fraction of

its 100 N maximum force output (Figure 2.12). In the future an automated proce-

dure (either empirical or simulated) will allow one to choose optimal parameters for
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each recording session and to more easily swap in an objective lens with a different

mass. An automated procedure should optimize the control system so that the piezo

response is closer to an ideal triangle wave. A triangle wave is optimal because image

slices can be distributed uniformly in both space and time. When images are not

spaced uniformly in time, as diagrammed in Figure 2.9, the camera spends a fraction

of each stack idle and thus its maximum framerate is not fully utilized. The achiev-

able framerate of the camera depends on the shortest interval between frames, 0.8 ms

in Figure 2.9. When compared to the 1.25 ms interval that would be possible with a

true triangle wave it is apparent that the camera spent 37% of the time idle. Future

optimizations will prioritize reducing this idle time.

MCIS addresses the bottleneck resulting from limits in camera framerate, provid-

ing an increase in framerate proportional to the number of cameras used. It will be

straightforward to integrate MCIS into other LSFM variants because only the compo-

nents downstream of the tube lens need to be modified. Furthermore other techniques

that do not image a plane to a plane, such as light field microscopy (discussed in Sec-

tion 1.3.2), can still benefit from MCIS by combining multiple camera sensors into

one large virtual sensor.

These improvements establish a solid foundation for studying fast dynamic processes—

such as signal transmission between neurons—at scale. We also demonstrated that

a high sampling rate allows one to remove physiological artifacts such as heartbeat

that could bias fluorescence timeseries analyses. We expect that heartbeat artifact

removal will become a standard preprocessing step when analyzing zebrafish imaging

timeseries. In combination with advances in fluorescent indicators and in large-scale

image analysis, these improvements to microscope hardware bring us closer to a more

comprehensive understanding of brain-wide activity.
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2.6 Methods

2.6.1 Calculation of image quality in non-native focal planes

See Appendix A.

2.6.2 Off-the-shelf components

A laser system (Spectral LMM 5) output a collimated gaussian beam (1 mm diam-

eter) via a pigtailed fiber-optic collimator. This beam was passed first through an

achromatic doublet lens (Edmund Optics 45-262) and then a cylindrical lens (see next

section), and finally a coverslip before reaching the sample. The lenses were sealed in-

side a housing so that water could not enter into the lens space when submersed in the

sample dish. The alignment of the light sheet was adjusted with a set of small stages

(Elliot Scientific MDE266 and MDE269). Either the Olympus UMPLFLN10X/W

or Olympus LUMPLFLN40X/W objective collected emission from the sample. The

light sheet and objective were mounted 60◦ from the horizontal axis and scanned

together (Piezosystem Jena NanoSX800 piezoelectric positioner, 30DV300 amplifier).

A stationary broadband mirror reflected the output from the objective horizontally to

a 200 mm tube lens (Thorlabs ITL200) placed at the 1f distance from the objective’s

back focal plane. The KEM (Thorlabs MRAK25-G01) was placed in the image plane

behind the tube lens, and sometimes swapped with a 50/50 beamsplitter (Thorlabs

BSW10R) for alignment purposes (see below). Two telecentric relay lenses (Edmund

Optics 62-902) relayed the divided image to the cameras (PCO Edge 4.2). Analog

and digital I/O to the positioner, cameras, and laser was managed by a PCI data

acquisition device (National Instruments PCI-6259) with a single sample clock shared
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across all signals. A PC with two RAID arrays (10 hard drives each) streamed the

output of the cameras to disk (up to 1GB/s per camera at maximum framerate). The

sample was positioned on a physiology breadboard (Thorlabs PHYS24BB) mounted

to a lab jack (Newport 281) and XY stage (Scientifica).

2.6.3 Custom components

The only custom optic was the small cylindrical lens used to form the light sheet.

This lens was ordered from Tower Optical with a specified focal length of −6.25 mm

and diameter of 3 mm. Full lens specifications are included in the appendix. Custom

mechanical components were designed collaboratively and refined iteratively in col-

laboration with the Washington University Medical School Machine Shop. Hardware

for the scan system was designed to minimize weight. A parts list, schematics, and

labeled photos are also included in the appendix. We found that the small dovetail

stages used to align the lightsheet exhibited a few microns of motion in their joints

when scanning at high rates. This motion defocused the image and required correc-

tion by modifying the dovetail slides to add a locking screw. A magnetic swappable

Thorlabs filter cube insert (Thorlabs DFMT1) was modified to hold the knife-edged

prism mirror. The 1“ apertures of the filter cube itself (Thorlabs DFM) were widened

to 1.1” with a standard boring tool to prevent vignetting of the relayed image.

2.6.4 Calibration of piezo closed-loop controller

Initial calibration of the piezo control system (NanoSX800 with 30DV300 amplifier)

was performed by the manufacturer (Piezosystem Jena). We requested that they

optimize the control system for the highest achievable frequency and amplitude of
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operation with a triangle wave command, 400 g load, and a translation angle of 30

degrees from vertical. They tuned PID parameters as follows: kp = −0.3, ki = 50,

kd = 0.1. The load used in the experiments detailed in this article was smaller (264 g),

so we further refined the calibration using the iterative procedure described in the

product manual. One parameter at a time was manually adjusted by serial command,

and the response of the system was measured. If a parameter update drove the system

into oscillations, then the system was immediately switched to open-loop mode and

the parameters reset. A detailed PID tuning procedure is available in the product

manual. The final PID parameters after this secondary tuning were: kp = −0.37,

ki = 50, kd = 0.11.

2.6.5 Generation of smoothed triangle wave commands

A triangle wave with the desired frequency, amplitude, and offset was lowpass filtered

with a cutoff of 3.25x the triangle wave frequency (32.5 Hz for a 10 Hz triangle wave).

This resulted in erosion of the triangle peaks and a reduction in the range of the

command. In order to compensate for this reduction the original triangle wave was

expanded and filtered again iteratively until the filtered wave matched the desired

range.

2.6.6 Scan range tuning

The piezo command waveform was adjusted iteratively until the maximum and min-

imum values of the piezo cycle (as measured by its built-in sensor) matched those

requested by the user. The initial guess for the command range was set to 10%

smaller than the target range to guard against potential damage from overshoot.
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The piezo was then operated with this repeated waveform for a 20 s warmup period

before measuring the sensor response for a cycle. The lower and upper limits were

then updated independently based on sensor feedback with the same procedure: er-

ror was calculated as (target − measured), a value equal to 90% of this error was

added to the limit used to generate the command signal, and a new command signal

was generated. This was continued until both the upper and lower limits matched

the user’s request within a 0.1 µm margin of error. These stopping criteria were met

within 5 iterations or less.

2.6.7 Pulsed illumination

Since the cameras operate with a rolling shutter, only the latter part of the exposure

interval corresponded to simultaneous (“global”) exposure of all CMOS sensor lines.

Laser pulses were timed to occur only within this global interval in order to prevent

image information from bleeding into adjacent slices of the stack. When the camera is

operated at maximum framerate the duration of the global shutter period is only one

line time (9.76 µs for PCO.Edge 4.2). At sub-maximal framerates the global period

is equal to difference between the chosen exposure time and the shortest possible

exposure time that the camera can sustain. Therefore one can prevent bleeding of

image information into adjacent slices of a stack during dynamic recordings by using

brief illumination pulses aligned with the end of each frame and operating the camera

slightly below its maximum framerate. We pulsed the illumination laser only during

the last 5% of the exposure interval, which required that the camera operate 5%

slower than its maximal framerate. During the imaging session shown in Figure 4

the exposure time was 580 µs and the excitation pulse duration was 30 µs. Peak laser

power was set to 18 mW for an average sustained laser power of 0.864 mW. Detailed
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diagrams of the camera’s timing system can be found in the PCO.Edge 4.2 camera

manual online.

2.6.8 Image timing calibration

After sensor-based timing of images proved inadequate we adopted an approach uti-

lizing the camera to perform further calibration of the timing of each image of the

stack separately so that the images corresponded to the intended planes of the sam-

ple. First a ground-truth image stack of 0.2 µm fluorescent beads was acquired at

a very slow (0.1 Hz) scan rate so that factors such as dynamic forces and lag in the

sensor circuit did not affect the appearance of images. Then, a fast dynamic recording

was performed in which each image in both the “forward” and “reverse” stacks was

acquired with various timing offsets relative to the sensor-based timing. The search

space of timing offsets ranged from 0µs to 1.2 ms at 50µs intervals. Each dynamic

slice image was then compared with the corresponding ground-truth “static” image

and scored by similarity. The timing offset that produced the highest similarity score

for a slice was chosen as the corrected timing for that slice. We noticed that fast

dynamic operation produces not only an axial shift in each slice but also a lateral

shift of less than 2µm that varied by slice (likely due to compression and flexion of

components). Therefore in order to calculate the similarity score we first performed

2D rigid image registration to shift the trial image laterally into alignment with the

ground-truth image. After alignment the similarity score was calculated as the sum of

squared differences between each pixel in the trial image and the ground-truth image

normalized by the sum of squared intensity of pixels in the overlap region between

images. Both the optimal temporal offset and the optimal lateral shift were recorded

for each slice in the forward and reverse stack and used to acquire and align images of
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the zebrafish specimen. When using MCIS, only the camera receiving the unreflected

image was used for this alignment procedure.

2.6.9 Interpolation of bidirectional images

Bidirectional image acquisition produces image slices that are not uniformly spaced

in time. A uniform sampling rate was simulated by interpolating new slices from

each forward and back slice pair in the timeseries. Each interpolated timepoint was

midway between the sample times, so each interpolated pixel intensity was simply the

mean of the corresponding intensities of the two slices. This method also emulates

simultaneous sampling of each image slice in the stack.

2.6.10 KEM alignment with focal plane for MCIS

The camera receiving the unreflected image was aligned first using a procedure com-

mon to any OCPI microscope. The knife-edged mirror was installed in a modified

magnetic filter cube insert so that it could be swapped easily with a 50/50 dichroic

mirror (see image stitching method). The filter cube was incorporated into a cage

system to maintain its alignment with the tube lens. This knife-edged mirror insert

was placed in the cube and the distance between the tube lens and the cube was

set by translating the cube along the cage axis and observing a dense bead sample

on the camera receiving the unreflected image. The cube was approximately aligned

when the image of the bead sample on this camera was in focus and centered on the

aperture of the cube (this also required lateral repositioning of the camera). A finer

alignment of the cube was achieved by observing closely on both cameras the strip

of the image corresponding to the knife edge of the mirror: the farther the edge of
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the mirror is from the relay image plane the larger the region of the image that is

redundantly imaged on both cameras. Alignment was complete when the width of

the redundant image region was minimized (Figure 2.17).

2.6.11 Camera alignment for MCIS

Since a row of pixels on the camera sensor is only 6.5 µm wide, slight rotations of the

relative image planes of the two cameras can result in misalignment of the knife-edge

line with the rows of the camera. Therefore in addition to the focal alignment above

we also adjusted the relative rotations of the two cameras until the imaged knife edge

line was horizontal. Since the KEM was mounted in a highly-repeatable kinematic

insert, it was only necessary to perform this angular adjustment once.

The following procedure was used whenever the vertical size of the camera’s active

pixel region was changed: With the KEM installed, the active pixel region of both

cameras was set as desired (settings on both cameras must match). Both cameras

were activated to stream live updates of an image of a dense fluorescent bead sample.

The camera receiving the unreflected image was translated up so that the KEM edge

in its live image feed corresponded with the bottom edge of the pixel region. The

other camera was likewise translated laterally so that the KEM edge aligned with the

bottom edge of the pixel region. Since the image is reflected this edge corresponds to

the top side of the unreflected image. For this reason all reflected images were flipped

in software before performing the alignment steps described in the next section.
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2.6.12 Stitching MCIS images

After aligning the cameras and setting the desired pixel region, both cameras recorded

an image of the beads simultaneusly. Then the KEM was swapped with a 50:50

plate beamsplitter (Thorlabs BSW10R) mounted in a kinematic filter cube insert,

the pixel region of the camera receiving the reflected image was set to full size (2060

x 2040 pixels), and another image was recorded. It was critical that the bead sample

remained stationary during the interim between these image snapshots. The full-

size image spans the region where the two smaller images meet, and thus contains the

information needed to align and stitch the smaller images. The bead sample was then

replaced with the sample of interest, and the full imaging session was completed.

After all data were recorded, an image transformation was found to align the smaller

bead images, and this same transformation was applied offline to stitch all images

recorded in the zebrafish specimen. This transformation was found with the following

3-step procedure. First, a rigid 2D transform was found to align the smaller reflected

image with the full image. This transformation was minimal in magnitude because

both images were acquired with the same camera and centered on the same region of

space (only the reflective surface was different). Second, a 2D affine transformation

was found to align the full image with the smaller reflected image. A full affine

transformation was allowed because subtle differences in alignment or manufacturing

of the cameras and relay lenses cannot be captured by a rigid transform. The non-

rigid component of the transformation was small (less than 1% scaling factor) but

important to maintain alignment of beads throughout the image. In the third and

final step the two transforms were composed into one transform (rigid first, affine

second). This composite transform was applied to each reflected image of the zebrafish

specimen to align it with the unreflected image. Before combining the two images the
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camera’s constant bias intensity was subtracted from each pixel (by design the black

level is not zero but a constant value).

2.6.13 Zebrafish imaging

HuC:GCaMP6f and HuC:GCaMP6s zebrafish larvae[24] were crossed with “Casper”

larvae[97] for two generations to obtain transparent fluorescent larvae for imaging.

Embryos were raised at 28.5C, screened for green fluorescence at 3dpf, and imaged

at 5dpf. The larva was transferred by pipette into a drop of 1.5% low-melting-point

agarose gel while the gel was still warm and in a liquid state. A syringe was used

to suck the larva tail-first into a segment of Fluorinated Ethylene Propylene (FEP)

tubing, and the gel was allowed to solidify. FEP was chosen because its refractive

index closely matches that of water, and therefore aberrations are minimized when

imaging through the material. The tubing segment was then mounted in a custom

water-filled chamber at an angle of 60◦ from horizontal so that the rostrocaudal axis

aligned with the light sheet. Excess tubing in front of and above the fish’s head was

cut away with a razor blade. All protocols were approved by the Institutional Animal

Care and Use Committee at the Washington University School of Medicine.

2.6.14 Stripe removal

As is common with LSFM, we observed stripes in the zebrafish images due to scatter-

ing, absorption, and interference as the light sheet propagated through the sample.

We applied a destriping filter to attenuate these stripes as a preprocessing step for

the images in Figure 2.18 and Figure 2.21. Each image slice was first log-transformed

to account for the multiplicative (rather than additive) nature of the stripes. Next

74



the slice was Fourier transformed, and the magnitude of bins corresponding with the

angle of the stripes was attenuated until the stripes were no longer visible when the

image was reconstructed with an inverse Fourier transform. We did not apply the fil-

ter when performing timeseries analyses due to concern that the filter could introduce

subtle artifacts. Most of the stripes observed were static and therefore could not be

expected to influence the ∆F/F calculation. Brain regions exhibiting dynamic stripe

patterns (for example regions behind the motile cilia of the olfactory rosettes) were

not analyzed.

2.6.15 Image registration

The zebrafish, embedded in agarose and FEP tubing, moved little during the record-

ing. However image registration was required to compensate for slow drift of the

specimen. A single image stack was chosen as a “fixed” reference stack and each of

the other “moving” stacks in the timeseries was registered to this stack. A custom

algorithm found the simple shift (translation) that maximized the overlap between

the fixed and moving stack.

2.6.16 Extraction of neuronal calcium traces

Neuron ROIs were selected by hand using a graphical software tool. A single 2D

rectangular region was marked for each neuron in the plane that best appeared to

capture the neuron’s activity. The outer edges of the cells were excluded from ROIs in

order to minimize crosstalk in the calcium traces of nearby neurons and to reduce the

effect of motion artifacts. For each timepoint of each ROI the raw fluorescence value

was calculated as the sum of voxel intensities within the ROI. ∆F/F was calculated
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by subtracting baseline fluorescence from this raw value and dividing the result by

baseline. Baseline for each timepoint was calculated as the moving average of raw

ROI fluorescence during the 60 s interval centered on the timepoint (the first and last

30 s of the recording were not analyzed).

2.6.17 Power spectral density and filtering of neuronal cal-

cium traces

All PSDs were computed with the Welch method with a rectangular window func-

tion on baseline-subtracted fluorescence traces. When filtering the signals to remove

heartbeat frequency bands a Butterworth filter of order 5 was applied for each stop-

band. The filters were applied in both the forward and reverse directions in order to

preserve phase.

2.6.18 Software

We wrote several software modules to accomplish microscope control, PID adjust-

ment, image timing calibration, image stitching, temporal interpolation, and man-

ual cell segmentation. Web links to these modules on Github are collected here:

https://github.com/HolyLab/FastScanningAndMCIS.
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Chapter 3

Analyzing data from a fast OCPI

microscope

As discussed in Section 1.4, leveraging the full capabilities of a fast OCPI microscope

requires careful management of very large imaging datasets. These datasets are now

so large that examining raw images by eye is of limited use, and algorithms are increas-

ingly important for extracting insights from the images (However manual inspection

remains critically important for quality control of raw images and the algorithms

applied to them). This chapter describes important considerations when generating

and processing large imaging datasets with the fast OCPI microscope described in

Chapter 2. It begins by describing factors that must be considered before any data is

acquired, along with ways that we have enabled flexible experimental design and data

acquisition (Section 3.1). Section 3.2 outlines a set of general strategies for scientific

computing with large-scale imaging data. Sections 3.3 and 3.4 then explore special

considerations arising when processing light sheet images and video imaging of live

animals, respectively. Where relevant we also propose microscope hardware modifi-

cations that will simplify preprocessing in future work. In Section 3.5 we describe a

full preprocessing pipeline developed for optical neurophysiology. Finally in Section
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3.6 we discuss promising directions for future work at the intersection of microscope

hardware and algorithms.

3.1 Before the experiment

The most critical scientific decisions are usually made before an experiment is per-

formed, and this is perhaps especially true when using a fast OCPI microscope. This

is because extracting a scientific result from a large imaging dataset usually requires

several time-consuming processing steps. Currently it’s typical for these steps to take

much more time than it takes to collect the data. Thus the cost of a poorly designed

experiment can be quite high if the design flaw is not discovered until after lengthy

processing.

Experimental design is of course highly specialized to the scientific question at hand,

and we refrain from discussing specific designs here. Rather, our goal with the fast

OCPI microscope is to design a system flexible enough that the experimenter is

free to make good design choices. Flexibilty is a key design consideration both for

microscope hardware (i.e. easy choice of objectives, fluorescence filters) and software.

The remainder of this section describes flexible software developed for designing and

running experiments.

Figure 3.1 illustrates the flow of imaging data as well as analog/digital signals in

the dual-camera fast OCPI microscope. The user interacts with a graphical inter-

face (shown in Figure 3.2) that coordinates several hardware devices: cameras, piezo

scanner, excitation lasers, hard drives recording data, and any other devices (ana-

log/digital, input/output) that the user connects with the microscope. This ability
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Figure 3.1: The microscope user interacts with the Imagine graphical interface
(shown in Figure 3.2). Optionally, if more precise control is desired the
user can design an experiment with the Julia package ImagineInterface
and then load that experiment in Imagine. Imagine coordinates several
hardware devices: cameras, piezo scanner, excitation lasers, hard drives
recording data, and any other devices (analog/digital, input/output)
that the user connects with the microscope. During a recording Imag-
ine streams images from the camera(s) to arrays of hard drives (RAID0
configuration for speed), one array per camera.

to interface with user-specific devices affords the microscopist a great deal of flexi-

bility in experimental design. For example, neuroscience experiments often involve

delivery of stimuli during imaging as well as concurrent recording of other physiolog-

ical signals beyond images. The graphical interface, named Imagine, was redesigned

in key ways to support this flexibility with the fast OCPI microscope:

1. Upgrading to the modern Qt toolkit (frontend).

2. Switching to hardware-timing and synchronized sampling for all analog and

digital input and output channels (backend).
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3. Optimizing multithreading to enable streaming of data from multiple cameras

operating at maximum frame rate (backend). See also Figure 3.3 for thread

diagram.

4. Support for saving/loading all instructions for the experiment to/from a file,

optionally generated by a script in Julia (frontend and backend).

Item #4 references a new software package written in Julia to aid in the rapid de-

sign of experiments (https://github.com/HolyLab/ImagineInterface). The selection

of Julia is further discussed in Section 3.2.2. The package gives full access to all

of the analog and digital channels of the microscope shown in Figure 3.1 and also

facilitates loading of input channels recorded during the experiment. Moreover both

ImagineInterface.jl and Imagine support multiple existing OCPI microscopes differing

in hardware configuration, and the software is designed to facilitate extension to new

microscopes. Upgrades to existing microscopes, such as the point-scanning feature

discussed in 3.6 that requires control of two galvanometers, can be integrated easily.

Currently instructions for an experiment must be saved to a file from Julia and then

loaded and run from the Imagine GUI. In the near future we plan to make this process

entirely scriptable: Imagine will run as a “daemon” process for streaming images to

disk/screen while a new package, Imagine.jl, will control all microscope hardware.

The iterative calibrations of the piezo scan command and camera exposure timing

described in Chapter 2 made heavy use of ImagineInterface.jl and an early version of

Imagine.jl.
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3.2 Computing with terabyte-scale imaging data

After imaging data is saved locally to the computer controlling the microscope it is

typically moved to another location for processing. In the future it may be advanta-

geous to perform some data processing “online” while recording with the microscope,

but this is only feasible for relatively simple processing steps. A large fraction of the

computation involved in an experiment is performed afterward with tools chosen by

the experimenter. This section describes choices faced by users regarding hardware

and software for performing this analysis, focusing on our particular choices in these

areas when processing datasets produced by the fast OCPI microscope.

3.2.1 Computing hardware

Perhaps the most consequential choice in hardware is between a single server and a

distributed system (i.e. a cluster or supercomputer). This is consequential because

an algorithm that works well on a server may need to be adapted to work well on a

distributed system, or vice versa. Distributed systems have access to greater comput-

ing power and memory, but because these resources are spread over many computing

nodes it is relatively slow to move data from one node to another. Another major

difference is that computing clusters require a higher level of expertise to maintain

and operate, often necessitating involvement of a third party computing service. At

least one research group has already committed to developing distributed computing

solutions for large LSFM datasets[29]. Our group, on the other hand, has focused on

developing a software pipeline that can be run on a single server. Most of the algo-

rithmic considerations discussed in the following sections apply to both single-server

and distributed environments.
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Another important decision is what computing hardware to include in the single-

server. A fast central processing unit (CPU) is highly useful. However CPU speeds

have essentially stopped increasing due to manufacturing limitations, and as a result

computing systems are increasing in parallelism rather than speed. Therefore it will

be fruitful to choose CPUs with high core counts and to design software accordingly.

In addition recent years have seen the rise of powerful coprocessors that can perform

specialized computing tasks highly efficiently. The graphics processing unit (GPU),

for example, was developed for rendering images but has proven extremely useful

for certain general-purpose processing tasks. Likewise the more recently developed

tensor processing unit (TPU) greatly accelerates many linear algebra operations[78].

Both of these coprocessors excel at parallelism, integrating 1000s of simple processing

units rather than the 10s of complex cores available in modern CPUs.

Regardless of the chosen processing unit, computation on large imaging datasets is

often I/O bound, meaning that the rate of loading/writing the data from/to storage

is the limiting factor in the runtime of an algorithm. Therefore it is beneficial to

use a fast data storage device. Unfortunately the speed of a storage device tends to

be inversely proportional to the capacity of the device; choices may be limited for

very large imaging datasets. However this is an area of rapid development; recently

multi-terabyte solid state storage devices with speeds of over 1 GB/s have entered

the market. Such devices, while too expensive for permanent storage, may work well

as temporary storage for mitigating I/O bottlenecks during processing. Note that

even the fastest storage devices are much slower than RAM, both in terms of access

time (latency) and throughput. Modern RAM has an access time of around 50 ns,

compared to about 20µs for the current fastest storage devices. Likewise RAM can

stream data at 60,000 GB/s, compared with 3 GB/s for the fastest sustained reads
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from storage. RAM will remain much faster than storage for the foreseeable future,

and algorithms must be written accordingly.
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Figure 3.2: Screenshot of the graphical user interface (GUI), “Imagine”, for con-
trolling the fast OCPI microscope. The GUI was originally written in
C++ in 2008 and utilizes the Qt windowing toolkit for graphical ele-
ments. Several upgrades were made in recent years. The tabs shown
left of the image window control aspects of the recording. The selected
“Waveform” tab allows loading and visualizing a full set of instructions
for running an experiment from a file. A support package in the Julia
language, “ImagineInterface.jl”, provides a scripting interface to design
and export these instructions to Imagine.
ImagineInterface.jl credit: Cody Greer
Original Imagine credit: Zhongsheng Guo, Timothy E. Holy
Upgraded Imagine credit: Ben Ackland, Cody Greer, Dae Woo Kim
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Figure 3.3: Diagrammed is the thread hierarchy employed by the Imagine software.
One Imagine graphical window (third level in hierarchy) is created for
each camera connected to the microscope. During data acquisition the
PixmapperThread (updates images on screen) and the DataAcqThread
run simultaneously. The DataAcqThread delegates the work of stream-
ing data from the camera to the CookeWorkerThread, which then com-
municates with other threads to write data to the hard drives (RAID
array). Thread communication and prioritization are orchestrated so
that streaming image data takes priority over updates to the graphical
interface during fast recordings.
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3.2.2 Software design strategies

The stagnation of single-CPU performance and the rise of parallelism has two main

implications when selecting computing infrastructure that can scale with increasing

rates of image acquisition. First, parallelism should be the preferred way to solve

difficult problems. Second, when it is difficult or impossible to develop a parallel

solution, single-threaded CPU operations should be performed as efficiently as possi-

ble. Achieving peak efficiency often requires additional time and expertise from the

programmer, a difficult tradeoff to balance in a highly experimental environment like

academic science. The Julia language, described below, seeks to make a favorable

tradeoff in this regard.

The Julia language Any algorithm can be implemented in any Turing complete

programming language, but a careful choice of programming language can make pro-

gramming tasks easier. The Julia language, launched in 2012 but only recently reach-

ing version 1.0, was designed to make programming easier for scientists, mathemati-

cians, and engineers[6]. We have chosen Julia for our most computationally intensive

tasks due to its highly favorable tradeoff between program runtime and the time it

takes to write code. One proxy for programmer investment time is simply the length

of the text that specifies a program. When this quantity is plotted against runtime

for several benchmark algorithms Julia fares very well compared with other popular

languages, demonstrating performance approaching that of C with many fewer lines

of code (Figure 3.4).

Julia achieves high performance through multiple strategies, but perhaps the most

important one is that Julia blurs the line between compiled and interpreted languages.

Many languages that are popular for exploratory data analysis (Python, Matlab, R)
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Figure 3.4: Shown is a comparison of performance (runtime, smaller is better) and
conciseness for a diverse set of benchmark algorithms written in Ju-
lia and other popular languages. Note that Julia (blue dots) exhibits
the favorable combination of short runtimes and concise code. This
combination is highly desirable in scientific applications where code is
rapidly prototyped, executed, and rewritten. (Reprinted from london-
julia.org, original source was benchmarksgame.alioth.debian.org but is
now offline.)

are interpreted languages, meaning that the programmer’s instructions are compiled

to machine code line-by-line as the program is executed. This allows a great deal of

flexibility because the types of variables need not be known until runtime, but the

tradeoff is that these languages spend a lot of time compiling code. This contrasts

with efficient compiled languages like C in which the entire program is translated

to machine code before execution begins. This means that the types of all variables

must be known at compile time, making it difficult to write code that is flexible and

reusable. It can be said that Julia supports both compiled and interpreted modes

of operation. If the types involved in the execution of a function can be inferred by

the Julia compiler (LLVM) at compile time then Julia compiles a specialized version
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of the function automatically (and only once), allowing the function to run with the

efficiency of a compiled langauge. If, on the other hand, types cannot be inferred, then

Julia behaves as an interpreted language with slower performance. A great number of

crucial language design decisions (not discussed here) have centered around making it

easy to write Julia code that compiles well while preserving a simple syntax familiar

to Matlab and Python users.

Another important factor in choosing a language is simply its popularity. A lan-

guage’s popularity is strongly correlated with the availability and maturity of software

libraries. Moreover collaborations are much easier when scientists share a language.

In this regard Julia has not yet reached the maturity of Python, but this is changing

quickly. Academics and major corporations alike are increasingly adopting Julia.

Regardless of language choice there are common software design considerations when

processing large imaging datasets. The following paragraphs discuss some language-

agnostic design strategies that we have found useful.

Optimize read and write operations As mentioned in 3.2.1, the most severe

bottleneck when processing large imaging datasets is the time spent communicating

with the storage device. Small datasets can be loaded entirely into system memory

(RAM) to exploit its faster read/write times, but this is currently impractical for

multi-terabyte datasets with a single server. When a single conventional hard disk

is used, the time required to sequentially read each pixel from a dataset into mem-

ory is around 10× longer than it took to record the data with the microscope (for

the microscope described in Chapter 2). The speed difference between memory and

storage is especially extreme when a random access pattern is needed rather than a

sequential pattern.
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This suggests three design criteria for algorithms:

• Read the dataset from storage as few times as possible.

• Use a sequential access pattern whenever reading from storage.

• Avoid writing intermediate (partially-processed) copies of the dataset whenever

possible.

We defer discussion of specific algorithms until Section 3.5, but one general strat-

egy that we have found useful is that of lazy evaluation. The “lazy” programming

paradigm delays operating on data until the point in the program in which the result

of the operation is required. The main advantage of this approach is that a sequence

of image processing steps can be composed without re-reading data from storage at

each step. An example of the lazy approach when applying image transformations is

shown in Figure 3.5. The syntax is nothing special, but each of the functions shown

is implemented such that the operation is delayed until the last line when data is

accessed. Moreover only the computations needed to generate the requested array

element (in this case a pixel) are performed. With this approach raw data is read

from disk only once and the results of intermediate steps need not be saved to storage.

If one wanted to inspect results at an intermediate step (as often happens) then one

can do so with only a minor modification of the code.
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Figure 3.5: Shown is Julia code demonstrating “lazy” evaluation of functions for
stitching images, correcting for movement, and calculating fluorescence
change from baseline (operations needed for the results shown in Chap-
ter 2). The syntax gives no indication of lazy evaluation; rather, each
function shown is written so that the action it performs is delayed until
pixel data is accessed (in the last line). Only the data needed for the
requested pixel is accessed and processed. In Julia lazy evaluation has
no overhead relative to conventional evaluation.

Patchwise algorithms As already mentioned, advances in computing capability

are now predominantly driven by increases in parallelism. Therefore in order to

continue to scale image processing to ever-larger datasets it will be necessary to

design algorithms that harness this parallelism. Fortunately image processing tasks

are relatively well-suited to parallelization. This is because images often contain a

great deal of local information that can be treated independently of information in

distant parts of the image and thus processed by separate hardware devices in parallel.

Coprocessors like the GPU were designed with this parallelism in mind.

In many cases the processing of a local “patch” of an image is only partially indepen-

dent from other patches. Any non-independent computations require communication

between parallel processing streams, potentially slowing the processing significantly.

A crucial design goal is therefore to design algorthms that operate on image patches

and require minimal communication between threads. Our approaches to image reg-

istration and neuron segmentation (discussed further in Section 3.5) adopted this

design philosophy.
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3.3 Special considerations for light sheet microscopy

data

The previous section discussed some computational strategies that apply generally

to large imaging datasets. This section focuses on computational considerations that

are specific to fluorescence imaging datasets, especially those produced by LSFM.

3.3.1 Point spread function

The point spread function (PSF) is a key property of any imaging system: it specifies

the distribution of light intensity for an image of a single infinitely-small point in the

object space. Note that when the PSF is determined experimentally, a bead is taken

as an approximation of “infinitely-small”. This is a fair approximation if the bead is

smaller than the diffraction limit set by the NA of the imaging system. Fluorescence-

based imaging systems have two PSFs of importance: the excitation PSF and the

emission PSF. These PSFs are necessarily different because excitation and emission

light differ in wavelength and thus have different diffraction limits (defined in Section

1.2.3). The effective PSF of a fluorescence microscope can be described in terms of the

combined effect of the excitation and emission PSFs on the image of a single point. In

a confocal or 2-photon microscope (point-scanning devices) the effective PSF depends

mostly on the excitation PSF because it’s not necessary to focus emission light when

scanning one point at a time. In a well-designed and aligned system the PSF does

not differ significantly for different points within the field-of-view of the micrsoscope.

In a widefield microscope, on the other hand, both excitation and emission must be

considered. Moreover LSFM has an additional caveat: excitation and emission PSFs
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differ not only due to wavelength but also due to different NAs and different orien-

tations in space. In order to create a light sheet a low NA lens is used, and typically

the delivery light path is rotated 90◦ relative to the collection path. This means that

the size of the lateral PSF in LSFM is determined by the emission wavelength and

the NA of the objective.

Lateral PSF While the size of the lateral PSF is uniform for points within the

field-of-view, the peak intensity of the PSF may not be constant. The most common

method to form a light sheet (and the one used for the microscope in Chapter 2)

employs an excitation beam with a Gaussian intensity distribution. This results in

non-uniform image brightness in the LSFM field-of-view. If this non-uniformity is

not accounted for computationally, several negative consequences may ensue:

• Quantification of absolute fluorescence intensity throughout the field-of-view

will be biased.

• Moving specimens will exhibit changing brightness distributions that can un-

dermine motion correction via image registration (discussed in subsequent sec-

tions).

• The rate of photobleaching/phototoxicity (discussed next section) will not be

uniform throughout the field-of-view.

The first two consequences are the most problematic, and fortunately it is relatively

straightforward to minimize their impact by measuring the light sheet intensity distri-

bution before the experiment and normalizing pixels by the known excitation inten-

sity. A hardware solution is also available: generating the lightsheet via fast scanning
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of a Gaussian beam[41]. Note that these factors exerted minimal effect in the anal-

ysis shown in Chapter 2 because a normalized fluorescence measure was used, and

the specimen moved little during recording. Future efforts to image freely-moving

specimens must give greater attention to these factors.

Axial PSF Unlike the lateral PSF the axial PSF in LSFM is determined primarily

by the thickness of the light sheet. This provides LSFM the unusual ability to achieve

an axial resolution much better than what might be expected based on the NA of

the imaging objective. Unfortunately due to diffraction there is a tradeoff between

minimum thickness (“waist” size) of the light sheet and the size of the practical field-

of-view. A diagram illustrating the geometry of the light sheet is shown in Figure

3.6.

Figure 3.6: Shown is the geometry of a light sheet generated with a Gaussian beam,
viewed from the side. The horizontal axis corresponds to one lateral
dimension of the image while the horizontal axis corresponds to the axial
dimension. The constants zr and w0 are determined by the diameter
of the Guassian input beam D. These constants specify the best axial
resolution and the rate of change in axial resolution throughout the field-
of-view, respectively. Due to diffraction, a decrease in w0 corresponds
with a decrease in zr, resulting in a tradeoff between axial resolution
and field-of-view. (image from [64])
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Thus the axial width of the PSF is not constant throughout the field-of-view. This

may seem inconsequential as long as the worst-case axial resolution is sufficient for the

purpose at hand. However there can still be negative consequences due to the fact that

the appearance of an object viewed by the microscope is not translation invariant.

As mentioned in the previous section, this variance with translation can complicate

attempts to analyze specimens that move during imaging. Correcting for this variance

is more complex than correcting for the brightness difference described previously.

One conservative method would be to blur 3D images along the axial dimension

with kernels of various widths so that the axial resolution matched the worst-case

axial resolution throughout the field-of-view. One could also apply deconvolution to

improve the worst-case axial resolution, but this would likely result in artifacts.

Again a hardware solution to this problem has been developed. It is possible to quickly

change the focal length of the light sheet optics during a camera exposure so that the

waist visits every location in the field-of-view[21]. This produces a nearly uniform

axial resolution intermediate between the best-case and the worst-case resolution. It

is likely that uniformity could be further improved by using an excitation system that

meets the Herschel condition (See Section 1.2.3).

3.3.2 Depth effects

When imaging real biological tissue, image quality usually deviates significantly from

what might be expected based on PSF measurements. This is because light rays

change direction while passing through the tissue due to scattering. Scattered light

cannot be effectively focused by the imaging system. It may or may not arrive at the

image sensor. If it does arrive, it usually arrives at the incorrect location, resulting

in degradation of image resolution in a widefield imaging device.
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Scattering occurs whenever light passes between media of different refractive indices.

Living biological specimens have many components with refractive indices different

from that of the typical imaging medium, water. Figure 3.7 lists approximate re-

fractive index values for various cellular components. Longer light paths through the

specimen cross more scattering interfaces, resulting in decreasing image quality as a

function of depth in the sample.

Figure 3.7: A list of basic biological components and their estimated refractive in-
dices is shown. Image quality is degraded when excitation light or emis-
sion light passes through a component with a refractive index differing
from the imaging medium (water for live imaging). Question marks in-
dicate that a wide range of values has been published, and the precise
value depends on molecular form. (reprinted from [7])

This depth effect is common to any existing fluorescence microscope. One implication

is similar to that of the PSF inhomogeneities already discussed: the appearance of

the image is not invariant to motion of the specimen, particularly to changes in

orientation. This effect can be quite severe, especially for widefield imaging methods

applied to relatively opaque tissues.

LSFM is atypical in that there are two consequential depth axes: the imaging optical

axis and the excitation optical axis. Thus 3D LSFM images of scattering tissue exhibit

a 2D gradient in image quality. Multi-view LSFM was developed in part to mitigate

these depth effects by delivering excitation light along two axes and collecting emission

light along two axes [44]. This reduces depth effects in small and thin specimens like
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larval zebrafish, but is still problematic for larger specimens. Another promising

methodological direction is to apply reagents that homogenize the refractive indices

of the tissue and the medium. This has been successful in non-living tissue[89, 99]

but no approach has yet been found that is safe for living specimens.

3.3.3 Stripe artifacts

LSFM images often exhibit stripe artifacts. These artifacts arise due to interactions

between excitation light and tissue. In principle stripes can be caused by both absorp-

tion and interference phenomena. Absorption can occur when the light sheet passes

through absorptive substances like pigments, leaving a line of shadow that obscures

anything behind the pigment. In tissues without pigment there is little absorption

at wavelengths commonly used for fluorescence microscopy, and stripes are predomi-

nantly generated by interference. When excitation light gets deflected at a scattering

interface, excitation intensity is decreased in a line behind the interface and increased

along other (not necessarily parallel) lines.

The impact of stripes on the analysis of LSFM images ranges from inconsequential to

catastrophic depending on the context. Stripe artifacts undermine attempts to pre-

cisely quantify fluorescence intensity within striped regions. Since the location and

severity of stripes depend on the specific path of excitation light through the sample,

sometimes it is possible to reposition the sample so that stripes do not obstruct crucial

regions of the image. Fortunately in many cases, such as when imaging calcium in

neurons, relative changes in fluorescence are more important than absolute measure-

ments. In these cases stripe artifacts are benign, provided that the sample remains

stationary. Any movement of the sample, however, can change the distribution of

stripes and disrupt even relative brightness measurements.
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Stripes can be removed post-acquisition using computational methods. One such

method, described in Section 2.6.14, was applied to destripe the image shown in

Figure 2.18. Figure 3.8 shows this image before and after destriping.

Figure 3.8: Light sheet microscope images often exhibit stripe artifacts due to ab-
sorption and interference phenomena along the axis of light sheet prop-
agation. Shown is the image from Figure 2.18 before and after applying
the stripe removal algorithm described in Section 2.6.14.

Our destriping algorithm and several other similar algorithms[91] demonstrate good

qualitative results. However timeseries analysis of calcium data must reliably track

fluorescence changes of just a few percent, and thus analysis is highly sensitive to

artifacts and biases introduced by the destriping procedure. In our experience the

artifacts introduced by destriping are too severe to be used in tandem with calcium

imaging analyses. Fortunately destriping was not necessary for the neuronal analyses

in Chapter 2 for reasons already mentioned. Motile cells within the fish’s body created

problematic regions with dynamic stripe patterns, but these regions were avoided

when manually selecting ROIs.
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We expect that improved destriping algorithms will facilitate analysis of these prob-

lematic regions. Once again, however, this problem can be minimized by modifying

the microscope hardware. The first microscope designed to address this issue was

multidirectional SPIM (mSPIM), a method that rapidly changes the propagation an-

gles within the plane of the light sheet during image acquisition[38]. The final image

acquired with mSPIM can be understood as an average of many striped images, each

with a different dominant stripe angle. Thus the stripes are averaged out of the final

image. Multiview SPIM[44] exhibits less striping for a similar reason.

Recently a method has been developed to prevent stripes by inserting a passive el-

ement (a line diffuser) into the excitation path[87]. This approach is comparatively

simple to implement but it also introduces a modest increase in light sheet thickness

due to manufacturing imperfections.

Neither active nor passive stripe removal can deliver excitation at the full set of

angles that would be required to completely eliminate artifacts. Therefore in the

future highly sensitive analyses may still benefit from algorithms that compensate for

the stripe artifact.

3.4 Special considerations for live imaging

In this section we discuss factors affecting the analysis of imaging datasets acquired

from living neural tissue. We describe ways in which the imaging process can affect the

specimen and how to prevent these effects from biasing quantitative image analyses.
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3.4.1 Photodamage, Photobleaching, and Phototoxicity

All fluorescence imaging methods introduce energy into the sample by way of exci-

tation light. This energy can damage the tissue, altering the specimen during the

imaging process. This damage is especially troublesome in live specimens because

the living system may respond actively to the damage, disrupting the process under

study. Photodamage can occur without fluorescence: heat damage can result from

absorption of illumination light by the specimen[8].

The fluorescence process can result in another type of damage, phototoxicity. Photo-

toxicity is tissue damage induced chemically as a result of the photobleaching process.

Photobleaching is the process by which a fluorophore changes chemical structure due

to excitation, losing its fluorescence properties. The mechanism of this molecular

change is not fully understood, but it involves a reaction with molecular oxygen that

produces free radicals[23]. These free radicals can damage or kill living cells in the

specimen. Regardless of damage, the photobleaching also results in a steady decrease

in the fluorescence quantified in images. Since fluorescence intensity is often used

as a proxy for a biological variable of interest, the photobleaching process can bias

results[46].

LSFM exhibits exceptionally low photodamage, photobleaching, and phototoxicity

because it confines excitation to the image plane and samples pixels in parallel. How-

ever these damaging processes must still be considered with LSFM, especially in the

context of high speed recordings: higher imaging rates require higher photon flux in

order to maintain signal-to-noise ratio. Photodamage varies depending on properties

of the specimen and fluorophore, and thus it should be accounted for on a case-by-case

basis. Photobleaching, on the other hand, can often by addressed with postprocess-

ing. One simple way that timeseries analyses compensate for photobleaching is by
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quantifying fluorescence relative to a baseline computed as a moving average (as done

in Chapter 2).

3.4.2 Unintentional stimulation of neural systems

Neural systems present a special consideration for light microscopy: most organisms

exhibit some degree of light sensitivity, and this information is conveyed by the ner-

vous system. Therefore the imaging process itself can be a potent stimulus for the

neural system, even when it does not cause photodamage. For this reason neurosci-

entific studies of retinal function typically avoid imaging with excitation wavelengths

that can be sensed by the retinal cells. 2P excitation, which has been integrated with

LSFM[90], is a method-of-choice in these cases due to its use of infrared excitation.

Due to the higher energy (and thus higher damage) involved with 2P LSFM it is not

a universal replacement for 1P LSFM. 1P LSFM remains attractive for fast imaging

of the many neural subsystems that exhibit no light sensitivity.

3.5 Preprocessing pipeline for optical neurophysi-

ology

In this section we outline a full preprocessing pipeline for optical neurophysiology

with the fast OCPI microscope, illustrated in Figure 3.9. The first two steps in the

pipeline, fast scanning compensation and image stitching, were already described in

Chapter 2. We focus instead on our computational approaches to image registration,

neuron segmentation, and deconvolution of spiking activity from calcium imaging

data.
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Figure 3.9: Shown is a preprocessing pipeline for optical neurophysiology data gath-
ered by the fast OCPI microscope. The pipeline begins by moving data
from storage on the microscope computer (diagrammed in 3.1) to the
user’s storage. The user can then process data on their own server in
several steps. The first two steps, already explained in Chapter 2, are
specific to the fast OCPI microscope. The remaining steps, described in
this section, are appropriate whenever imaging calcium in neurons. The
names of relevant code repositories on Github are shown to the right.

3.5.1 Image registration

Complications arising due to motion of the specimen were mentioned in Section 3.3

in the contexts of the non-uniformity of the LSFM PSF, depth effects, and dynamic

striping artifacts. Even when the PSF is uniform, scattering is minimal, and striping

is avoided, specimen motion presents a significant challenge for timeseries analysis of

neuronal activity. In the absence of motion, one can track the activity of a neuron over

time by simply quantifying moment-to-moment changes at a set of voxel coordinates.

In a moving sample the voxel coordinates of a neuron change over time, complicating
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tracking of dynamics. Live animals may move significantly during imaging. Even

detached tissue samples tend to slowly drift and change shape during recording.

Typically a motion correction preprocessing step is performed to align each image

in the timeseries before analyzing dynamic signals. This step is performed by image

registration algorithms. General image registration is a difficult problem, and remains

a very active area of algorithms research. The problem is computationally intensive,

but perhaps the more insidious difficulty is that few algorithms are guaranteed to find

the globally optimal transformation that aligns two images. More insidious still, an

image transformation that is numerically optimal may be impossible when considering

the constraints imposed by the physics of specimen motion. Therefore the art of

image registration entails constraining the search space to transformations that are

physically possible and finding the best transformation within that subspace. Figure

3.10 illustrates these challenges with a simple 2D image consisting of 4 pixels.

As Figure 3.10 suggests, it is most practical to optimize an image transformation

model with intermediate expressivity. We, and others independently[68], have chosen

an intermediate model that groups pixels into many image blocks. For each block

we then optimize a simple translation (diagram in Figure 3.11). These translations

together express a complex transformation that allows stretch and compression of

images. A regularization is also implemented in order to prevent selection of trans-

formations that are physically impossible. This registration method is highly efficient

for two reasons:

1. The elementary blockwise transformation is limited to a translation and there-

fore can be found efficiently.

102



Δx

Δy

Δx2

Δy1

Δx3

Δy3

Δx4

Δy4

Δx1

Δy2

Figure 3.10: Shown are two parameterizations of motion for a 4-pixel “specimen”.
The left parameterization is highly constrained, describing the motion
of every pixel with a single pair of displacements along the x and y
axes. An efficient algorithm exists for finding the globally optimal
∆x and ∆y, but this transformation model can only describe simple
translations. Biological tissue movement tends to be more complex. A
maximally general model is shown on the right, where the motion of
each pixel is parameterized independently. This model is too general
without constraints on the parameter space. For instance, a transfor-
mation that swaps the top-right and bottom-left pixels is impossible
without physical tearing of the specimen. Such an impossible trans-
formation may result when a registration algorithm is overfitting the
model to the data. The propensity for overfitting is high given that
the number of parameters required for the model on the right is 2×
the number of datapoints (pixels in the image).

2. The transformation for each block can be computed independently and therefore

in parallel, as discussed in Section 3.2.2.

An example result of our registration method is shown in Figure 3.12. While this

approach is computationally efficient, it does not always find good transformations

and requires that the analyst carefully tune hyperparameters. This difficulty seems

common to all “deformable” image registration algorithms, and a breakthrough in

this field would be a boon for neuroimaging.

Image registration is not only useful for aligning images in a timeseries; it can also

be applied to align multiple specimens for comparison. Specimens with stereotyped
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Figure 3.11: Shown is a parameterization of specimen motion intermediate to the
two extremes shown in Figure 3.10. Pixels are grouped into local
blocks, and a separate translation describes motion in each block. In
this way elastic transformations can be represented with a manageable
number of parameters. (Note that the number of parameters no longer
outnumbers the number of datapoints as in the right panel of Figure
3.10.) This method is amenable to parallelization because each block
can be processed independently. Our full registration algorithm also
includes a subsequent step that reconciles blockwise transformations so
that the composite transformation respects physical constraints. Also
note that the final deformation vector field is interpolated smoothly
between block centers.

structure (such as zebrafish brains) can then be compared in a common coordinate

system. Comparisons are facilitated by brain “atlases” that serve as templates for

algnment of multiple datasets from multiple laboratories. Atlases have enabled sub-

stantial advances in the human neuroimaging field[47].

Recently, microscale atlases for aligning larval zebrafish brains have become avail-

able[73, 76, 53, 54]. These atlases show great promise, giving access to expert anatom-

ical annotation of brain regions and allowing cross-referencing of molecular informa-

tion gleaned from confocal imaging of a multitude of fluorescent reporter lines. This

includes molecular information that may provide meaningful distinctions between

types of neurons based on, for example, the dominant neurotransmitter used by the
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Figure 3.12: Shown is the result of image registration applied to a single optical
section of the larval zebrafish brain, acquired with LSFM. The left
image shows an overlay of the section at two timepoints (one green,
one red) of the recording. The images align poorly due to motion of
the sample during the interval between snapshots. The right image
shows the overlay again after applying an image transformation found
by a registration algorithm. Alignment is exceptionally good because
the sample only moved in the lateral direction; typically there is also
motion in the axial direction.

neuron. We see a particularly exciting opportunity to align functional LSFM datasets

with these atlases. This alignment is termed cross-modal registration. Cross-modal

registration is more challenging because of the additional variability across microscopy

methods combined with individual differences across specimens.

We developed a cross-modal registration pipeline to align our functional LSFM datasets

to zebrafish brain atlases. Shown in Figure 3.13 is a set of neurons for which we have

both functional data and expert anatomical classifications from the atlas. Similar

overlays can be generated for molecular variables such as, for example, the proba-

bility that each neuron expresses GABA based on its anatomical location. These

atlases continue to improve with new layers of information, and we expect that atlas

alignment will become a standard step in many zebrafish functional imaging pipelines.
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Figure 3.13: Shown is a set of neurons in a larval zebrafish brain that were seg-
mented based on calcium activity recorded with LSFM (see Section
3.5.2) and then aligned with an atlas containing expert anatomical
annotation of brain regions. Registration to an atlas allows compar-
isons across animals and laboratories. It also enables cross-referencing
of function with molecular information gleaned from the many images
of reporter zebrafish lines integrated into the atlas.

3.5.2 Extracting neuronal timeseries

Image registration enables the next step in the processing pipeline, extraction of

neuronal timeseries from the (motion-corrected) image timeseries. The class of al-

gorithms suited to this task are image segmentation algorithms. The majority of

image segmentation algorithms have been designed to locate and extract interesting

features from static images. Extracting time-varying signals of individual neurons

from calcium imaging data requires a very different algorithm.

This is because typically any single image from a calcium imaging timeseries contains

insufficient information to locate neurons. The baseline fluorescence of modern cal-

cium indicators[17] is quite low, meaning that neurons may only become visible when
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active. Moreover neurons are often densely packed with broadly distributed and over-

lapping fluorescence profiles, meaning that a pixel cannot “belong” unambiguously

to a single neuron. This complication can be circumvented by expressing calcium

indicators in a sparse subset of all neurons in order to minimize overlap. In these

cases, neurons can be segmented manually by the microscopist with a graphical tool

for drawing regions of interest (ROIs). We developed a simple tool for this in Julia

and applied it to extract the calcium signals analyzed in Chapter 2. This manual

segmentation approach has a number of drawbacks:

• It is very time consuming. 30 person-hours were spent drawing and verifying

the 629 neuronal ROIs analyzed in Chapter 2, representing a minority of the

total number of active neurons visible in this dataset.

• Much of the neuronal signal-to-noise ratio (SNR) is lost. This is because neuron

ROIs must be drawn conservatively, excluding fluorescence measured near cell

boundaries in order to prevent contamination by signals from adjacent cells.

• It relies on the expertise/preferences of a single analyst, and therefore it is not

easily repeatable.

Cell segmentation is simplified by confining calcium indicator expression to the cell

nucleus[43], but this only partially addresses the above issues. Moreover nuclear

expression results in calcium signals with slower onsets and offsets, obfuscating fast

dynamics. These issues have motivated numerous recent efforts to perform neuron

segmentation with algorithms[58, 69, 55, 101, 31, 13].
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A highly successful approach has been to formulate the spatiotemporal segmentation

problem as a matrix factorization problem:

I = S × T (3.1)

Matrix I represents the imaging dataset with spatial dimensions unrolled so that I has

dimensions npixels × ntimepoints. Matrices S and T are unknown, with sizes npixels ×

nneurons and nneurons × ntimepoints, respectively. Also unknown is nneurons. Several

recent algorithms[69, 55, 101, 31, 13] have focused on applying appropriate constraints

to this factorization problem and inferring nneurons so that the factorization procedure

produces:

• a matrix S with the spatial profile of each neuron occupying a different column

of S, and possibly with a single column devoted to a “background” fluorescence

distribution.

• a matrix T with the temporal dynamics of each neuron occupying a different

row of T , and possibly with a single row devoted to dynamic “background”

fluorescence.

Thus this formulation models the fluorescence measured at each pixel in the image

as a linear combination of fluorescence from multiple partially-overlapping sources.

The background terms mentioned above can be understood as the baseline neuronal

calcium levels when neurons are inactive. Allowing the background to vary over time

enables modeling the gradual decrease in baseline fluorescence from photobleaching

(discussed in Section 3.4). In order to get good results from this approach it is helpful

to constrain the factorization in several ways:
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1. Force elements of S and T to be non-negative, respecting the fact that negative

fluorescence has no physical basis. This converts the problem to a non-negative

matrix factorization (NMF).

2. Require sparsity in S, reflecting the expectation that each neuron only occupies

a small fraction of the image space.

3. Require locality in S, reflecting the expectation that each neuron occupies a

contiguous region of space.

4. Require signals in T to respect the expected dynamics of the spike-induced

calcium transient (discussed further in next subsection).

5. Employ some mechanism to reject signals with insignificant SNR (reduce nneurons).

We refrain from discussing specific mechanisms for implementing the constraints listed

above. Progress in this area has been rapid, and we see opportunities for further im-

provements in algorithmic efficiency. For example, the locality constraint described

above (item #3) suggests that segmentation process might be efficiently parallelized

(see also discussion of patchwise algorithms in Section 3.2.2). We also note that

constraint #4 above may be problematic. Recent data suggests that the time con-

stants associated with the calcium response function vary significantly from neuron-

to-neuron[92]. Our own NMF-based segmentation algorithm achieves good results

without enforcing this constraint. Uncertainty in the calcium response function also

complicates efforts at spike deconvolution, described next.
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3.5.3 Spike deconvolution

Before the development of calcium imaging, analyses of neural systems predominantly

focused on the timing and rate of action potentials measured through electrophysiol-

ogy. This focus on spiking activity is perhaps justified given that the action potential

seems to be the dominant mode of information transmission among many types of

neurons (graded potentials and slower neuromodulatory processes are examples of

other modes). Thus calcium signals are often viewed as an indirect measure of neu-

ral spiking activity, and there is great interest in extracting information about spike

timing from calcium signals.

Individual spiking neurons have been shown to exhibit calcium responses with char-

acteristic rise times and fall times following a single action potential (See also Section

1.2.2). This repeatability suggests that, given a known calcium response function,

it should be possible to deconvolve the calcium signal to find the timing of individ-

ual spiking events. When performed successfully, calcium deconvolution affords a

significant increase in temporal resolution, matching or even exceeding the calcium

sampling rate and bringing calcium imaging closer to the resolution of electrophysi-

ology[95]. Several calcium deconvolution methods have been developed with varying

degrees of computational efficiency.

We developed a new algorithm that lies at the efficient extreme of this spectrum, run-

ning in O(n) time, where n is the number of timepoints in a neuronal timeseries. The

algorithm, derived in Appendix C, performs efficient Wiener deconvolution. Wiener

deconvolution is a long-established deconvolution method applied in many engineering

fields[98]. The method can be applied to produce a timeseries of “spikes” guaranteed

to be the least-squares optimal explanation for the observed calcium signal. Naive

Wiener deconvolution requires operating on the timeseries in the Fourier domain.
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Thus a fast Fourier transform is required, which runs in O(n log n) time. We show that

when the decay of the calcium response is modeled as an exponential (as is standard

practice), it is possible to perform Wiener deconvolution entirely in the time domain

with just two passes through the dataset. The algorithm in Appendix C extends an-

other O(n) algorithm derived using the continuous time Fourier transform[36]. Our

new method, derived instead using the discrete time Fourier transform, shows im-

proved performance for timeseries data acquired at sampling rates much slower than

the action potential.

Despite a long history of algorithm development[83, 36, 95, 92, 30], calcium decon-

volution has not yet become a standard preprocessing step. This may be in part due

to the limited sampling rates of microscopes, a barrier that we sought to lower with

the microscope described in Chapter 2. However in our experience there is another

significant barrier, the inconsistency of calcium response parameters across neurons.

A recent study estimated that the decay constants of neurons in the larval zebrafish

brain commonly differ by as much as 1 s[92]. Typically these time constants are re-

quired inputs to deconvolution algorithms. While methods exist for estimating these

constants from calcium signals, our experience with a recent method[30] is that esti-

mation is unreliable. Another approach to estimation was recently proposed[92]; we

expect that this will remain an active area of research. It’s also possible that advances

in voltage-sensitive fluorophores will obviate the need for calcium deconvolution, but

at the moment these fluorophores are not stable enough to replace calcium indicators

for recordings lasting several minutes[32, 84, 67].
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3.6 Future work interpreting neuronal dynamics

The flexible design of the fast OCPI microscope hardware and software paves the way

for adding new capabilities to the system in the future. Likewise our development of a

preprocessing pipeline for calcium imaging lays the groundwork for ambitious analyses

of neural networks including thousands of neurons. In this chapter we discuss analyses

designed to extract circuit parameters from preprocessed calcium imaging data as well

as ways that these analyses will be enhanced by the addition of a new point-scanning

module allowing targeted stimulation of the zebrafish brain during OCPI imaging.

In Section 2.4 we presented a correlation analysis of a set of neurons recorded at high

speed in the larval zebrafish forebrain. Correlation is one of the simplest and most

common metrics used to describe relationships between neurons or brain regions. We

chose correlation in order to estimate the impact of the heartbeat artifact on analyses;

if correlations are affected then more complex analyses are also likely affected.

With greater confidence in our ability to manage artifacts contaminating neuronal

timeseries we now consider more complex analyses. One attractive direction is to

move from metrics, like correlation, that describe the data and seek instead to explain

observations with a model. If we can fit a model that successfully predicts the behavior

of the neural system in a variety of contexts then this model will likely shed light on

the mechanisms generating the data. Before discussing an explicit model first let us

examine the explanatory power gained through an incremental change in our analysis,

computing cross-correlations instead of correlations.
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3.6.1 Cross-correlation analysis
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Figure 3.14: (a) Cross-correlation analysis reveals predictive relationships between
neurons. Cross-correlations were calculated for each pair of neurons
for lag values in the interval 0 s to 1 s (21 lag values per pair). First
we identified the subset of statistically significant (p <= 0.01) cross-
correlation values (statistics below). If a neuron pair had significant
cross-correlations at multiple lag values then a color was assigned by
the lag at the most extreme (“peak”) cross-correlation value. Only
the subset of lags that are nonzero and less than 500 ms are colored,
with the remainder in white. Positive and negative peaks in the cross-
correlation are shown separately (left and right, respectively) (b) His-
togram summary of the data shown in (a).

Statistical significance Significance of cross-correlations was determined as fol-
lows: A null hypothesis was computed separately for each neuron pair
by first reshuffling the neurons’ traces and computing the correlation
10000 times. The threshold for significant positive correlation with a
single measurement was then the 99th percentile value of the resam-
pled correlations. However since correlation was measured for each
of the 21 lags we applied a Bonferroni correction, and the corrected
threshold was then the 99.952th percentile value. The same proce-
dure determined the significance of negative cross-correlations, with
the 0.047th percentile value as an upper bound.
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Figure 3.14 shows a cross-correlation analysis of the dataset analyzed in Section 2.4.

A cross-correlation is simply a correlation computed after shifting two timeseries for-

ward or backward in time relative to one another. The extent of this forward or

backward shift is labeled as “lag” in Figure 3.14. Further details are discussed in the

figure caption. This analysis illustrates that a subset of neuron pairs exhibit an asym-

metric predictive relationship: positive changes in one neuron’s fluorescence predict

either positive or negative changes for another neuron at a later time. Interestingly,

significant positive peaks in the cross-correlation tend to occur at shorter lags than

negative peaks. Regardless of how this is interpreted it is clear that unlike (zero-lag)

correlation, cross-correlation can identify neurons that tend to precede or follow one

another in their activity changes.

3.6.2 Predictive modeling

While cross-correlation can reveal predictive relationships it does not model network

dynamics. What gains might be made by moving from cross-correlation to an explicit

model? Consider a model that predicts a neuron’s dynamics based on linear regression

with previous activity two other neurons as input:

ct = waat−∆t + wbbt−∆t (3.2)

where a, b, and c are neuronal timeseries vectors indexed by t and the w values are

scalar weights that must be fit to the data. This can be generalized to a matrix

equation for predicting the activity of each neuron via the previous states of all

neurons

114



Y = YshiftW (3.3)

where Y is a ntimepoints×nneurons matrix of neuronal timeseries, Yshift is the same data

but time-shifted by a lag (as is done for cross-correlation), and W is a nneurons×nneurons

matrix of weights to be fitted. This formulation has two advantages over cross-

correlation:

• The fitted weights in W have a natural interpretation as the influence that neu-

rons exert on network dynamics, and under certain conditions may approximate

synaptic weights (discussed further below).

• The regression procedure tends to produce a W that is more sparse (and thus

easier to interpret) than the cross-correlation matrix.

Neither of the above statements is entirely obvious. The second statement we justify

analytically in Appendix D. Empirical results, shown in Figure 3.15, also support

the first statement. The first statement, that W may contain cause-and-effect rela-

tionships, requires more supporting evidence. While we offer no mathematical proof,

the following paragraphs discuss key constraints and ways to improve the likelihood

of extracting concrete circuit parameters (such as synaptic weights) with predictive

modeling.
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Figure 3.15: Shown is the weight matrix resulting from solving equation 3.3 for the
same dataset analyzed in Figures 2.22 and 3.14 with a lag of a single
sample (50 ms). Note that the matrix is quite sparse relative to the
correlation (and cross correlation) matrix. The reader is encouraged
to zoom in with a pdf viewer. Self-prediction weights (values along the
diagonal) tend to be large and positive, and they are omitted so that
the colorscale emphasizes interaction weights between neurons. The
largest weights tend to be close to the diagonal, which is perhaps not
surprising given that neurons are ordered by increasing slice depth.
This agrees with the intuition that nearby neurons are more likely to
influence one another.

Fast imaging The potential to model causal relationships hinges on the fact that

presynaptic activation must precede postsynaptic activation (by definition). If the

sampling rate of the microscope is too slow then activations may appear to occur

simultaneously, and the temporal relationship cannot be modeled. How fast is fast

enough? In the case of a single synaptic interaction it may be necessary to sample

as often as every millisecond. While the microscope described in Chapter 2 made

strides in this regard, this is still impossible for all but the smallest image volumes.

There are, however, reasons for optimism. Quite often a single spike in a presynaptic

neuron is insufficient to trigger a spike in the postsynaptic neuron. Instead, tempo-

ral summation (multiple presynaptic spikes) and/or spatial summation (presynaptic
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spikes from multiple input neurons) is required. This may alleviate sampling rate

constraints, at least for some of the synaptic interactions in the circuit.

Prediction at multiple timescales Another optimistic point is that if the sam-

pling rate is too slow to detect single-synapse relationships it may still be highly

useful for detecting relationships between neurons separated by multiple synapses.

The same logic applies for neuromodulatory interactions known to transpire over sec-

onds or even minutes. These points highight a weakness of modeling activity based

on a single lag; ideally a model should be able to explain interactions at multiple

timescales. Multiple lags can be modeled simply:

Y = Yshift1W1 + Yshift2W2 + Yshift2W2... (3.4)

Note that all shifted Y matrices can be combined into one matrix, and the same is true

for the W matrices, meaning that the least-squares solution can be obtained in exactly

the same way as in the single-lag case. However the size of the matrices involved grows

quickly, scaled by the number of lags in the model. This scaling presents a challenging

computational problem. For instance, in order to model activity of 10, 000 neurons

based on 100 lags one must fit a W of size 1, 000, 000× 10, 000. It may be possible to

develop tractable fitting methods for data of this scale, but perhaps a more serious

problem is the potential for overfitting with a large model. As was discussed in the

context of image registration (Section 3.5), fitting a more complex model (larger W )

without increasing the number of datapoints is a recipe for overfitting.

The need for ground truth data It is impossible to recognize and prevent overfit-

ting without some notion of “ground truth” against which to evaluate the performance

117



of the model. Classically this is done by splitting the data into “training” and “test”

sets, omitting the test set from training, and quantifying performance only on the

test set. This will be an important step when evaluating models of neural dynamics,

but this would be complemented by additional ground truth in other forms. If, for

instance, in addition to recording function we could also map all synaptic connec-

tions in the same specimen with electron microscopy (EM), then we could effectively

evaluate the model’s ability to capture synaptic information.

EM is perhaps the most time-intensive and labor-intensive way to perform this eval-

uation. A more efficient way may be to image a circuit for which connections have

already been mapped in previous work. In this case it would be important to choose

a circuit with stereotyped connectivity. C. elegans may then be an obvious choice,

but any system for which we have statistical information (if not precise counts) about

neuron types and connections would be conducive to this analysis.

Broad sampling of circuit contexts Fitting an accurate functional model of a

neural circuit will require more than a high sampling rate; it will also be necessary

to sample network activity in a sufficient set of contexts. If a neuron never activates

during a recording, then it cannot possibly enter into the model. Moreover there may

be multiple network states that could activate a neuron, with each state employing a

different set of synapses. If the network does not visit all of these states during the

recording then information will be missing from the model. These issues suggest that

experiments should be specifically designed to push the network into a diverse set of

states.

In an intact animal one way to do this would be to deliver a variety of stimuli to

the animal’s sensory systems. Perhaps a well-designed stimulus set could traverse a

118



broad swath of the state space of sensory neural networks. The space traversed in

other networks (i.e. motor) may be comparatively smaller. Thus generating a more

robust and comprehensive model may require activating neurons by other means in

addition to delivering sensory stimuli.

Targeted neural activation with optogenetics Optogenetics has recently emerged

as a tool to activate neurons by delivering light, activating light-sensitive ion chan-

nels in the neural membrane[22]. Precise activation of neurons can be achieved either

by targeting expression of the actuator genetically or by focusing light on specific

neurons in a circuit. We have taken the latter approach to enable targeted optoge-

netic stimulation while imaging with the fast OCPI microscope, integrating a new

point-scanning module (Figure 3.16).

Using this point-scanning module in tandem with optogenetics will allow us to selec-

tively activate any neuron (or set of neurons in a confined region) in the specimen.

Even with this ability we may only be able to traverse a small region of a state

space involving 1000s of neurons. A conservative approach would then be to focus on

small and relatively isolated neural subsystems including 10s of neurons rather than

1000s. A less-conservative view is that we may be able to infer important circuit char-

acteristics without comprehensive sampling of network states. Moreover the natural

state space of the system may be low dimensional, a possibility suggested by repeated

observations that network activity occupies a state space much smaller than that sug-

gested by the number of neurons recorded[16, 18, 50, 5, 59]. These observations may

be misleading estimates of dimensionality, arising due to the limited set of contexts

explored during experiments. Ultimately this issue will be resolved empirically, and

tools like those presented in this dissertation will enable this empirical process.
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Figure 3.16: A photo is shown of the current configuration of the fast OCPI micro-
scope. A point-scanning module has been added to the system to allow
targeted stimulation of the specimen. Two galvanometer mirrors steer
excitation from up to four laser lines (405 nm, 488 nm, 514 nm, and
730 nm) to excite any point in the field-of-view of the objective lens.
Note that in order to achieve simultaneous point-scanning and light-
sheet imaging the choice of excitation wavelength must be compatible
with the emission wavelengths of interest in the sample. A dichroic
filter wheel is incorporated for flexibility in this regard. (A scan lens
is also incorporated but is not visible).
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Appendix A

Spherical aberrations from remote

focusing

Cody Greer and Timothy E. Holy

Consider an optical system that satisfies the Abbe sine condition for two planes, called

the object focal plane and image focal plane. Consider a point source along the optic

object focal plane image focal plane

point source

Δz

Δz'

image of
point source
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axis separated by ∆z from the object focal plane. Rays are emitted from this object

over a range of angles and can be traced to the object focal plane.

The sine condition states that each ray satisfies

n sin θ = Mn′ sin θ′, (A.1)

where n is the refractive index of the object immersion medium, n′ that of the imaging

immersion medium (here taken to be 1 for air), M the local linear magnification near

the axis, and θ, θ′ are the ray angles in the object and image space, respectively.

For a ray of angle θ, let h denote the height of the strike position of each ray in the

object focal plane, where h = ∆z tan θ. We can calculate the position ∆z′θ where this

intersects the optic axis:

∆z′θ =
h′

tan θ′
(A.2)

=
Mh
sin θ′√

1−sin2 θ′

(A.3)

=
M∆z tan θ

1
M
n sin θ√

1− 1
M2 n

2 sin2 θ

(A.4)

=
M2

n
∆z

√
1− 1

M2n2 sin2 θ√
1− sin2 θ

. (A.5)

Note that the strike position is a function of θ, and therefore in general we do not

have perfect focus. The only time the angle-dependence disappears is when the

ratio of square-roots cancels, which requires |M | = n. This is the condition derived

more generally by the Maxwell perfect-imaging theorem. (We can also see that the

longitudinal magnification is M2

n
.)
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When this condition does not hold, the fractional range of strike positions (up to the

maximum angle consistent with the numerical aperture NA) is

√
1− NA2

M2√
1− NA2

n2

− 1 (A.6)

For M = 20 and water immersion, at NA 0.5 we get approximately 8%, and at NA 1

we get a 50% spread.

The axial RMS spot radius offers a more informative summary of the imaging perfor-

mance. This quantity is the square root of the mean squared error (MSE) in strike

position for every ray within the collection cone of the objective lens. For a ray with

angle θ emitted from a source at ∆z the squared error is

(∆z′θ − z′0)2 =

(
∆z′θ −

M2

n
∆z

)2

(A.7)

For each angle θ an ideal point source at ∆z emits a circle of rays. It can easily

be shown with trigonometry that the total light collected at angle θ is proportional

to tan(θ). Therefore we scale the error at each angle θ accordingly to get the sum

squared error and then divide to calculate MSE:

MSE =

∫ θ′
0

tan(θ)
(

∆z′θ − M2

n
∆z
)2

dθ∫ θ′
0

tan(θ) dθ
(A.8)

=

∫ θ′
0

tan(θ)
(

∆z′θ − M2

n
∆z
)2

dθ

− ln(cos(θ′))
(A.9)
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The upper limit, θ′ is the maximum angle that the objective can collect as specified

by the NA. Note that the above calculates the RMS spot radius in image space; in

order to convert this to object space units divide by the axial magnification.

124



Appendix B

Microscope components and

drawings
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Number in diagram Part description Vendor Custom? Part number Price (USD) Count

not shown Laser system w/5 wavelengths, AOTF Spectral (now Andor) no Laser Merge Module (LMM) 90000 1 *discontinued, estimated price
1 Pigtailed fiber collimator OZ Optics no LPC-01-405/640-3/125-P-1-6AC-40-3S-3-2 146.5 1
2 Pigtailed fiber collimator holder (machine shop) yes NA 1
3 Lightsheet lens module (“cigarette”) (machine shop) yes NA

not shown Lightsheet achromat lens Edmund Optics no 45-262 87.5 1
not shown Lightsheet cylinder lens Tower Optical yes* 99 1

4 Rotation collar (machine shop) NA 1
5 Clamp for lightsheet lens holder (machine shop) NA 1

not shown 10x, 0.3 N.A. objective (UMPLFLN10X/W) Olympus no  1-U2M583 774.25 1
6 20x, 0.5 N.A. objective (UMPLFLN20X/W) Olympus no  1-U2M585 1464.64 1

not shown 40x, 0.8 N.A. objective (LUMPLFLN 40X/W) Olympus no 2500 1
7 Objective holder (RMS) (machine shop) yes
8 Mini-dovetail stage (2-axis) Lightspeed Technologies Inc. no MDE266 304 1
9 Mini-dovetail stage (3-axis) Lightspeed Technologies Inc. no MDE269 573 1

10 dovetail stabilizer (machine shop) yes NA 1
11 Front piezo plate (machine shop) yes NA 1
12 Piezo positioner, 800um range Piezosystem Jena no NanoSX800 11205 1

not shown Piezo amplifier (digital control) Piezosystem Jena no 30DV300 5616 1
13 Rear piezo plate (machine shop) yes NA

not shown Precision broadband mirror Edmund Optics no 48-017 395 1
not shown 200mm tube lens Thorlabs no ITL200 450 1
not shown Knife edged mirror Thorlabs no MRAK25-G01 125.46 1
not shown 50/50 beamsplitter (25 x 36 mm) Thorlabs no BSW10R 110 1
not shown Filter cube w/insert Thorlabs no DFM 304 1
not shown Extra filter cube insert Thorlabs no DFMT1 201 1
not shown 0.9x telecentric relay lens Edmund Optics no 62-902 2265 2
not shown CMOS camera PCO no Edge 4.2 16400 2
not shown Stages for aligning cameras Thorlabs no DTS25 179.5 4
not shown DAQ board (PCI-6259) National instruments no 779072-01 1592.1 1
not shown Physiology stage surface Thorlabs no PHYS24BB 2500 1
not shown Lab jack Newport no 281 999.94 1
not shown Breadboard for connecting lab jack Thorlabs no MB1224 259 1
not shown XY microscope translation stage Scientifica no N/A (Quote ref: QLS-30894) 4042.5 1
not shown RAID hard drives Seagate no 4221403 78.19 20
not shown Breadboard for vertical mounting of system Thorlabs no MB1824 400 1

Price total: 163760.69

*Cylindrical lens specifications
Diameter  3mm +0/-0.2mm
Center Thickness  1mm ±0.1mm
Edge Thickness  1.37mm
Effective Focal Length -6.25mm
Back Focal Length  -6.91mm
Focal Length Tol  ±3%
Radius  -3.24mm
Surface quality  60/40 both sides
Coating  MgF2

Parts List (ordered approximately from excitation to collection of emission)
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Appendix C

Derivation of Wiener filter for

calcium deconvolution

Cody Greer and Timothy E. Holy

An “exponential decay” discrete-time impulse response may be written

ra(n) = u(n)an, (C.1)

where u is the Heaviside function

u(n) =


1 (n ≥ 0)

0 (n < 0)

(C.2)
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and |a| < 1. Given a “source signal” s(n), the measured signal m(n) can be written

m(n) =
∞∑

n′=−∞

s(n− n′)ra(n′) + η(n), (C.3)

where η(n) is the noise in the measurement (here taken to have zero mean). When

the noise is zero, the particular case of Eq. (C.1) can be written more simply as

m(n) = s(n) + am(n− 1). (C.4)

Now suppose we have m(n) and want to infer s(n). In the absence of noise

s(n) = m(n)− am(n− 1). (C.5)

However, this is not optimal in the presence of noise.

We will tackle this by Wiener deconvolution. Eq. (C.1) has DFT

r̂a(ω) =
∞∑

n=−∞

ra(n)e−ıωn =
∞∑
n=0

(az)n =
1

1− az
, (C.6)

where we have set z = e−ıω. The optimal (Wiener) inverse filter w(n) has DFT

ŵ(ω) =
r̂∗

|r̂|2 + η2
=

1/r̂

1 + η2/|r̂|2
, (C.7)

where ∗ means complex conjugation and here we’re using η2 as a constant encoding

mean-square noise. (Here we assume the noise is additive and thus independent of
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s.) Substituting Eq. (C.6) into Eq. (C.7), we obtain

ŵ(ω) =
1− az

1 + η2(1− az)(1− a/z)
(z∗ = 1/z) (C.8)

= − z(1− az)

aη2z2 − [1 + η2(1 + a2)] z + aη2
. (C.9)

The denominator can be expressed as cz2 + bz + c if we set

b = −
[
1 + η2(1 + a2)

]
(C.10a)

c = aη2, (C.10b)

and may therefore be written

c(z − γ+)(z − γ−) (C.11)

where

γ± =
−b±

√
b2 − 4c2

2c
. (C.12)

Since |a| < 1, we have

b2 − 4c2 > η4
[
(1 + a2)2 − 4a2

]
> 0, (C.13)

so both roots will always be real and distinct from one another. Computing γ± seems

best done numerically. Note that if c2 � b2 there can be a delicate cancelation in γ−.
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The more numerically stable form is

γ− =
−b−

√
b2 − 4c2

2c
(C.14)

=
−b−

√
b2 − 4c2

2c

−b+
√
b2 − 4c2

−b+
√
b2 − 4c2

(C.15)

=
b2 − (b2 − 4c2)

2c(−b+
√
b2 − 4c2)

(C.16)

=
2c

−b+
√
b2 − 4c2

(C.17)

= 1/γ+. (C.18)

Therefore we will always have one γ± satisfying |γ±| < 1 and the other |γ∓| > 1.

Since b < 0 and c > 0, we have γ+ > 1 and 0 < γ− < 1. Therefore let us simply

define

γ =
2c

−b+
√
b2 − 4c2

(C.19)

as the one for which |γ| < 1.

Substituting Eq. (C.11) into Eq. (C.9), we obtain

ŵ(ω) = − z(1− az)

c(z − 1/γ)(z − γ)
(C.20)

=
Az +B

z − 1/γ
+
Cz +D

z − γ
(C.21)

=
(A+ C)z2 + (B − γA+D − C/γ)z −Bγ −D/γ

(z − 1/γ)(z − γ)
, (C.22)

which implies

A+ C = a/c (C.23)

B − γA+D − C/γ = −1/c (C.24)

Bγ +D/γ = 0. (C.25)
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Since there are four constants and only three constraints, we may freely choose B = 0,

which then sets D = 0 and we obtain

A = −γ
c

1− a/γ
1− γ2

; (C.26a)

C =
γ

c

1− aγ
1− γ2

. (C.26b)

Consequently we can write this as

ŵ(ω) =
Az

z − 1/γ
+

Cz

z − γ
(C.27)

= − Aγz

1− γz
+

C

1− γz∗
, (1/z = z∗) (C.28)

where we have chosen the latter form because Eq. (C.6) holds only for |a| < 1, so we

have chosen the coefficient of a term involving z to always satisfy this constraint.

First we treat the conjugation. Note that if we define g(n) = f(−n) (the time-reversal

of f), we have

ĝ(ω) =
∞∑

n=−∞

f(−n)e−ıωn (C.29)

=
∞∑

n′=−∞

f(n′)eıωn
′

(n′ = −n) (C.30)

= f̂ ∗(ω). (C.31)

Therefore the second term of Eq. (C.28) represents a backwards-filtered decaying

exponential.

For the first term, we note that it is a product of z and Eq. (C.6); this indicates that

this is the DFT of the convolution between a delta-function (a translation) and an

exponential decay. Rather than use the convolution theorem, it’s easier to compute
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directly: if h(n) = r(n− n0), then

ĥ(ω) =
∞∑

n=−∞

an−n0u(n− n0)e−ıωn (C.32)

= zn0

∞∑
n=−∞

an−n0u(n− n0)zn−n0 (e−ıωn → zn) (C.33)

=
zn0

1− az
. (C.34)

Consequently, Eq. (C.28) can be recognized as the DFT of

w(n) = −Aγrγ(n− 1) + Crγ(−n). (C.35)

Let’s check this in the limit of low noise η2 � 1, for which we have b ≈ −1, c � 1,

and consequently γ ≈ c = aη2. So in this limit |γ| � 1, and the filters in Eq. (C.35)

decay very rapidly, nearly becoming delta-functions. Since A → 1/η2 and C → 1,

Eq. (C.35) becomes approximately

w(n) ≈ −Aγδ(n− 1) + Cδ(n) (C.36)

= −aδ(n− 1) + δ(n). (C.37)

This is the filter version of Eq. (C.5), so it checks out.

Thus, the final recipe is:

• Given a and η2, compute γ from Eqs. (C.10) and Eq. (C.19)
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• Compute the forward- and reverse-filtered signals s+ and s−:

s+(n) = m(n) + γs+(n− 1); (starting from the beginning) (C.38)

s−(n) = m(n) + γs−(n+ 1). (starting from the end) (C.39)

Near the edges these have “issues,” so don’t take the edges too seriously. (These

issues decay with time constant γ.)

• Compute A and C from Eqs. (C.26)

• Compute

s(n) = −Aγs+(n− 1) + Cs−(n). (C.40)
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Appendix D

Sparsity of the weight matrix with

linear regression

Consider a dataset consisting of three vectors a, b, and c. Suppose that these vectors

are temporal traces of the activity of three neurons, and that one is interested in fitting

a linear model to predict c based on samples from a and d at a previous timepoint.

Fitting the model consists of solving the following equation for predictive weights wa

and wb for a particular time lag ∆t

ct = waat−∆t + wbbt−∆t (D.1)

Typically no wa and wb exist to solve this equation exactly, so instead we can find

the wa and wb that minimize the sum of squared prediction errors
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min
wa,wb

∑
t

(ct − (waat−∆t + wbbt−∆t))
2 (D.2)

Equivalently we can minimize the mean squared error, which is simply the above

quantity divided by the number of timepoints. We will present an argument that this

optimization naturally leads to sparsity in weights, often driving either wa or wb to

zero even in situations where the time-shifted a and b vectors have similar correlations

with c.

First we restate the mean squared error optimization problem in statistical language

min
wa,wb

E[(C − (waAshift + wbBshift))
2] (D.3)

casting A, B, C and their time-shifted versions as random variables.

Suppose Bshift is partially redundant with Ashift, differing only by the addition of

another signal S

Bshift = Ashift + S (D.4)

Substituting into Equation D.3

min
wa,wb

E[(C − (waAshift + wb(Ashift + S)))2]

= min
wa,wb

E[(C − ((wa + wb)Ashift + wbS))2] (D.5)
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For simplicity we will define weight wab = wa + wb and substitute, yielding

min
wab,wb

E[(C − (wabAshift + wbS))2]

= min
wab,wb

E[C2 + w2
abA

2
shift + w2

bS
2 − 2wabCAshift − 2wbCS + 2wabwbAshiftS)]

= min
wab,wb

E[C2] + E[w2
abA

2
shift] + E[w2

bS
2]−

E[2wabCAshift]− E[2wbCS] + E[2wabwbAshiftS)] (D.6)

We seek the optimal wb in this situation. We can solve for this by setting the derivative

of the objective function w.r.t. wb to zero and solving for wb.

0 =
d

dwb

(
E[w2

bS
2]− E[2wbCS] + E[2wabwbAshiftS]

)
=

d

dwb

(
w2
bE[S2]− 2wbE[CS] + 2wabwbE[AshiftS]

)
= 2wbE[S2]− 2E[CS] + 2wabE[AshiftS]

wb =
E[CS]− wabE[AshiftS]

E[S2]
(D.7)

Equation D.7 gives the value of wb for any C, Ashift, and S. We next consider the

scenario when S is independent of C, contributing no information useful for prediction.

This does not mean that S is “noise”, though it may include noise. S may also be

independent if it consists of neural activity unrelated to activity in C, such as might be

expected when activity is spontaneous (self-generated) or initiated through a different

neural pathway. In addition to this independence let us assume that E[C] = 0 and

E[A] = 0. This is equivalent to preprocessing C and A by subtracting their means,
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akin to subtracting baseline fluorescence when calcium imaging.

wb =
E[C]E[S]− wabE[AshiftS]

E[S2]
(by independence)

=
−wabCov[Ashift, S]

E[S2]
(because E[C] = 0 and E[A] = 0) (D.8)

Thus under these conditions the optimal wb is independent of C and is nonzero only

when Ashift and S have nonzero covariance. We can also see that wb decreases in

proportion to the average power in S. If, in addition, S and Ashift are also independent

then Cov[Ashift, S] = 0 and therefore wb must equal zero. The crucial point is that

under these same conditions the correlations of Ashift with C and Bshift with C are

both nonzero, and indeed may be almost equal.

While these independence conditions may not be met precisely in real neuronal record-

ings, we see that the regression approach declines to weight relationships that provide

redundant predictive information.

The above argument extends easily to regression with an arbitrary number of variables

(neurons), leading to sparsity in the weight matrix describing their interactions.
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