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ABSTRACT OF THE DISSERTATION 

A recombinant virus and reporter mouse system for the study of chronic chikungunya 

virus pathogenesis 

by 

Alissa Roxanne Young  

Doctor of Philosophy in Biology and Biomedical Sciences 

Molecular Microbiology and Microbial Pathogenesis 

Washington University in St. Louis, 2018 

Professor Deborah J. Lenschow, Chair 
 

Chikungunya virus (CHIKV) is an arthritogenic alphavirus that during acute disease 

causes fever as well as severe joint and muscle pain.   Chronic joint and muscle pain 

persists in a significant subset of patients, yet we still have a poor understanding of what 

drives this chronic disease.  While replicating virus has not been detected in the joints of 

patients with chronic arthritis or in various animal models at chronic time points, persistent 

viral RNA can be detected for months after acute infection.   

To identify the cells that could be contributing to chronic CHIKV pathogenesis, we 

developed recombinant viruses that express Cre recombinase (CHIKV-3ʹ-Cre and 

CHIKV-5ʹ-Cre). These viruses replicated in cell types targeted by CHIKV, including 

myoblasts and fibroblasts, and they induced acute arthritis in a murine model of CHIKV 

arthritis.  Importantly, they also induced chronic disease, including persistent viral RNA 

and chronic myositis and synovitis similar to wild-type (WT) virus. CHIKV-3ʹ-Cre infection 

of tdTomato reporter mice resulted in a population of tdTomato+ cells that persisted for at 

least 112 days. The majority of these cells localized to the dermis and muscle, and 
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immunofluorescence profiling revealed that these tdTomato+ cells were dermal and 

muscle fibroblasts and myofibers. Treatment with an antibody against Mxra8, a host 

receptor for CHIKV, reduced the levels of viral RNA and the total number of tdTomato+ 

cells in the chronic phase, with a preferential reduction in fibroblasts. Anti-Mxra8 

treatment demonstrated a correlation between chronic viral RNA levels and the number 

of surviving tdTomato+ cells, thus suggesting that viral RNA can be found within these 

persistent tdTomato+ cells. This CHIKV-3ʹ-Cre and tdTomato reporter mouse system 

demonstrates that cells can survive CHIKV infection in vivo and represents a powerful 

tool to study the chronic pathogenesis of CHIKV infection.   

In the process of optimizing this reporter system, we observed noticeable effects 

on pathogenesis depending on viral inoculum. Increasing the dose of CHIKV (WT, 5ʹ-Cre, 

and 3ʹ-Cre) was associated with an earlier peak of swelling and infectious titers in the 

ipsilateral ankle, earlier resolution of swelling, and faster clearance of infectious virus in 

the ipsilateral ankle and distal sites. This accelerated clearance phenotype could explain 

why levels of persistent viral RNA tended to be lower in the ipsilateral ankle with 

increasing initial inoculum.  

Ultimately, our CHIKV-Cre system could be applied to many aspects of studying 

chronic CHIKV pathogenesis. For example, single cell or nucleus RNA-seq could help 

determine whether persistent viral RNA is concentrated in tdTomato+ cells, the nature of 

this persistent viral RNA, and whether the host transcriptome of tdTomato+ cells is altered. 

Electron microscopy could help determine the subcellular location of persistent viral RNA 

within tdTomato+ cells. CHIKV-Cre infection of Diphtheria toxin receptor (DTR) mice could 

allow for depletion of DTR+ cells and exploration of how these cells contribute to chronic 
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pathogenesis. Overall, our CHIKV-Cre and tdTomato reporter mouse system marks 

myofibers and fibroblasts as cells that may harbor viral components and likely contribute 

to chronic CHIKV pathogenesis.  Further characterization of these cells will no doubt aid 

in our understanding and development of potential treatments for this debilitating 

infection.
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1.1 Chikungunya Virus 

 Chikungunya virus (CHIKV) is a re-emerging arthropod-borne virus (“arbovirus”) that 

causes polyarthritis and myalgia. Chronic joint and muscle pain persists in a significant subset 

of patients for months to years after the initial infection, but chronic pathogenesis of the virus is 

still poorly understood. CHIKV is endemic throughout tropical regions, including Africa, Asia, 

islands in the Indian and Pacific Oceans, and Central and South America. The World Health 

Organization (WHO) classifies CHIKV as a neglected tropical disease, and perhaps as a 

consequence no vaccines or treatments are currently approved for CHIKV.  

1.1.1 Evolution and Epidemiology 

 CHIKV is a reemerging pathogen originally identified in Tanzania in 1952 [1–3]. The name 

“chikungunya” derives from the local Makonde tongue and translates into “that which bends up,” 

an apt description for the characteristic joint “pain [that] was frightening in its severity” [1,4]. The 

prolonged arthritis of Chikungunya fever (CHIKF) was concomitant with rash and leucopenia; 

despite its significant morbidity, this early CHIKF exhibited no known mortality [1]. Subsequent 

studies implicated CHIKV as an arbovirus transmitted by Aedes genus mosquitos [3]. Ultimately, 

CHIKF was recognized to be endemic throughout Africa, consisting of the two distinct West 

African and East/Central/South African (ECSA) lineages [5]; phylogenetic analyses estimate its 

emergence as a human virus within the last 500 years [6]. A third, Asian lineage likely diverged 

from the ECSA phylogroup in the middle of the twentieth century [6] and caused its first recognized 

outbreaks in Thailand in 1958 and India in 1963 [7] (Figure 1.1A). Throughout the latter half of 

the twentieth century, these three lineages caused scattered outbreaks, often with decades 

spanning cases [6,8]. During this time, CHIKV followed a sylvatic transmission cycle, which 

comprises cycling between wild animals and vectors, with occasional outbreaks in humans. 

Known animal reservoirs of CHIKV include monkeys, rodents, bats, and birds [6,9].  
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 Up until the 2000s, CHIKV was considered a self-limiting, tropical virus; however, within 

the past 15 years CHIKV has reemerged with increased virulence and range, resulting in urban 

transmission cycles without the need for animal host intermediates. In 2004, an ECSA-derived 

strain of CHIKV initiated an epidemic in Kenya with over 13,000 cases [10]. By 2005, the virus 

spread to La Réunion Island, where it infected over 200,000 people [8,11]. The Réunion epidemic 

included the first reports of increased pathogenicity, including neurological symptoms, intrapartum 

transmission, and approximately 250 deaths [12–14]. The Réunion strain was surprisingly spread 

by Aedes albopictus, a particularly bloodthirsty mosquito with a much larger spread compared to 

the previous vector, A. aegypti [9,15,16]. Genetic analyses revealed that an A226V mutation in 

the E1 protein caused this increased A. albopictus transmission [17]. Owing in part to this vector 

shift, CHIKV subsequently spread throughout the Eastern Hemisphere, establishing endemic 

conditions in tropical regions including India and the South Pacific, infecting millions and killing 

thousands, and even causing isolated outbreaks in Europe [16,18,19]. This ECSA-derived strain 

is thus dubbed the Indian Ocean Lineage (IOL) (Figure 1.1B).  

 In 2013, autochthonous (local) CHIKV transmission was reported in the Western 

Hemisphere, and nearly 2 million suspected CHIKV cases have since been reported in the 

Caribbean, Central America, and South America [18,20–22]. However, it is likely that the current 

CHIKV epidemic in the Americas represents a reintroduction of the virus as presumed Dengue 

epidemics in the American tropics during the 1800s closely resemble CHIKV symptomology [23]. 

Since 2014, thousands of travel-acquired cases of CHIKV have been reported in the United States 

[24].  Locally transmitted CHIKV cases have also been reported in Florida (12 cases in 2014) and 

in Texas (1 case in 2015), but no local cases have been reported within the past three years [25]. 

The Western Hemisphere CHIKV strains are most closely related to the Asian, not IOL, lineage, 

which initiated a separate, East Asian epidemic in 2006 [18,26,27]. As such, the Western 
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Hemisphere CHIKV strains have not been reported to contain the E1 A226V substitution. Overall, 

CHIKV is a relevant, reemerging virus inciting epidemics around the globe.  

1.1.2 Virus Structure and Replication 

 CHIKV is a positive-sense RNA virus belonging to the Togaviridae family and alphavirus 

genus [5]. While the related New World alphaviruses are associated with encephalitis (e.g. 

Eastern, Western, and Venezuelan Equine Encephalitis viruses), the Old World alphaviruses, 

which include CHIKV, often cause musculoskeletal disease and arthralgia (e.g. CHIKV, Ross 

River virus, Sindbis virus, Semliki Forest virus, O'nyong’nyong virus, Mayaro virus) [28]. CHIKV 

is currently the most prevalent and widespread of these arthritogenic alphaviruses [29]. As is 

characteristic of alphaviruses, CHIKV is a relatively small and simple virus. It consists of an 11.8 

kilobase, single-stranded RNA genome. The genome is encapsulated within an icosahedral 

nucleocapsid which is enclosed within a 60-70 nm spherical envelope with proteinaceous spikes 

[9,28] (Figure 1.2A).  

 The unipartite, positive-sense genome closely resembles host messenger RNA with a 5ʹ 

cap and 3ʹ polyadenylated tail. The genome sequentially comprises a 5ʹ un-translated region 

(UTR), a 5ʹ open reading frame (ORF) encoding 4 nonstructural proteins, a subgenomic promoter, 

a 3ʹ ORF encoding five proteins, and a 3ʹ UTR (Figure 1.2B). The 5ʹ and 3ʹ UTRs contain 

promoters necessary for genome replication and other regulatory elements [9,28,30].  The 3ʹ UTR 

is highly variable in length amongst alphaviruses and appears to be involved with vector 

competence [31,32]. Many of the functions of the nine viral proteins and specific replication events 

have not been directly studied in CHIKV, due to it being a Biosafety Level 3 (BSL3) virus, and are 

thus extrapolated from studies of related alphaviruses such as Sindbis virus and Semliki Forest 

virus.  



5 

 The 5ʹ ORF encodes four non-structural proteins (nsP1-4), which are involved in viral 

genome replication. The nsP1 protein is involved in 5ʹ capping newly synthesized viral RNA, 

initiating negative strand synthesis, and anchoring viral replication complexes to the host 

membrane. The nsP2 protein has helicase, ATPase, and protease activities. The nsP3 protein is 

an ADP-ribose-1-phosphate phosphatase and has an RNA-binding motif. The nsP4 protein is the 

virus’ RNA-dependent RNA polymerase (RdRp) [28,33,34].  

 The 3ʹ ORF comprises three structural genes (CP, E1 and E2) and two smaller cleavage 

products (E3 and 6K). The capsid protein (CP) forms the nucleocapsid around the genomic RNA. 

CP contains an RNA-binding domain and a protease domain [35]. E1 and E2 are glycosylated, 

associate in a heterodimer, and form trimeric spikes on the envelope. E1 associates with the viral 

envelope and capsid, and it functions as a Type II fusion protein during endosomal entry. E2 binds 

to host cell receptors [28,36,37]. Mxra8 has recently been reported to be a host receptor for 

CHIKV and other arthritogenic alphaviruses; however, it is likely that CHIKV also uses other host 

receptors as Mxra8 blockade did not entirely abrogate infection [38]. The E3 and 6K proteins are 

cleavage products during viral replication. E3 and 6K contain signal peptide sequences and may 

direct E2 and E1, respectively, to the secretory pathway before being cleaved by host proteases 

[39]. E3 may help shield the fusion peptide of E1 during viral budding [40]. The 61-amino acid 6K 

protein may also be involved with viral budding and formation of ion channels [28,37,41].  

 Replication of CHIKV within target cells appears to be characteristic of alphaviruses 

(Figure 1.3A-B). E2 binds to a host receptor on the cell surface [28,42]. CHIKV infection appears 

to be dependent on membrane cholesterol, which is suggestive of lipid raft involvement [43,44]. 

Incidentally, the A229V mutation characteristic of the IOL strain increases dependence on 

cholesterol [43]; how this enhances replication in A. albopictus remains unclear. Receptor binding 

triggers clathrin-mediated endocytosis [45]. CHIKV infectivity is dependent on endosomal 

acidification, indicating a pH-dependent activation of the E1 fusion protein. Additionally, CHIKV 
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replication depends only on early endosomes, indicating that the virus escapes into the cytoplasm 

prior to endosomal maturation [36,43].  

 Once released into the cytoplasm, CP associates with the ribosome, which may assist in 

uncoating of the nucleocapsid [28]. Early during replication, the 5ʹ ORF is directly translated into 

the P123 polyprotein (Figure 1.3A). During approximately 10% of the translation events, 

suppression of termination occurs at the opal stop codon between nsP3 and nsP4, 

and readthrough results in production of the P1234 polyprotein [46]. nsP2 proteolytically 

processes the P123 or P1234 polyproteins into the four non-structural proteins [28,33].  

 Genome replication cannot occur until after the nsP2 cleavage step as the RdRp (nsP4) 

is not carried in the capsid and must be translated by host machinery [33]. The P123/nsP4 

complex catalyzes replication of the negative strand from the positive genome. The negative-

sense RNA strand predominates early in infection, and it serves as a template for a full-length 

positive-sense genome, which is preferentially catalyzed by the short-lived nsP1/P23/nsP4 

complex. Full processing of P23 into nsP2 and nsP3 results in the mature nsP1/nsP2/nsP3/nsP4 

complex, which preferentially drives production of the 3ʹ subgenomic 26S RNA [46]. The 26S 

fragment accumulates later during infection, and it serves as a template for the structural 

polyprotein driven by the powerful subgenomic promoter [28,33,36]. This subgenomic RNA 

replication strategy utilized by members of the Togaviridae family thus ensures that structural 

proteins are produced at a higher amount than non-structural proteins, which are only needed at 

lower catalytic amounts.   

 Translation of the subgenomic RNA results in production of the structural polyprotein. As 

CP emerges from the ribosome, it autocatalyzes its release from the growing polyprotein using 

its protease domain. The E3-E2-6K-E1 polyprotein is subsequently translated, but 10-18% of the 

time ribosomal frameshifting in the 6K RNA results in production of the E3-E2-TF (transframe) 

polyprotein [47]. TF retains the ion-channel properties of 6K, and disrupting TF production 
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attenuates alphavirus production; however, its exact role is unclear [48]. The structural 

polyproteins are cleaved into E3-E2, 6K, TF, and E1 by host signal peptidase enzymes. 

 During viral replication in mammalian cells, the viral RNAs are sequestered into various 

vesicular bodies derived from host membrane (Figure 1.3B). These membranous bodies likely 

shield double-stranded RNA (dsRNA) intermediates from full detection by host pattern recognition 

receptors (PRRs). Early in infection, the negative sense genomes are found within spherule 

extrusions of the cell membrane, with the non-structural proteins associated with the neck of the 

spherules [49]. Internalization of the spherules and association with lysosomes produces the first 

iteration of cytopathic vacuoles (CPV-I), where production of full-length genomes and subgenomic 

RNAs continues [40]. Later during infection, a second type of virally-induced large cytopathic 

vacuoles is formed, termed CPV-II. CPV-II are derived from the trans-Golgi network and comprise 

a large vesicle containing helical tubular formations of the envelope glycoproteins; the vesicles 

are dotted with non-enveloped nucleocapsids. The role of the CPV-II is unclear, but they may 

facilitate virion assembly [40,50].  

 Virion assembly occurs in the cytoplasm and commences with the C protein forming a 

nucleocapsid around genomic RNA; the capsid displays icosahedral symmetry (T=4) and 

contains 240 CP capsomers [28,51]. Budding occurs through the plasma membrane which has 

become inundated by the E1 and E2 viral glycoproteins. In order to be infective, E2 must be 

processed by a host furin protease in order to remove E3. Budding results in an enveloped virion 

coated by 80 trimers of E1-E2 dimer spikes [28]. The replication cycle begins anew when a virion 

binds a new cell. Ultimately, CHIKV replication produces cytopathic effects and can be lytic [52]. 

1.1.3 Tropism and Acute Pathogenesis  

 As an arbovirus, CHIKV depends on replication within a mosquito vector. The Aedes 

receptor for CHIKV has not yet been identified, but it is known to replicate within the mosquito 
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midgut and transit into the salivary glands [9,17]. CHIKV can be transmitted to humans in the 

saliva of an infected, biting mosquito; factors in Aedes saliva have been shown to enhance the  

pathogenesis of other arboviruses such as Dengue virus [53]. The initial infection is followed by 

a noninfectious, incubation period of 3 to 7 days [11,13,42].  The virus appears to be highly 

transmissible, especially on geographically constrained islands; for instance 75% of the 

population of Lamu Island and 30% of La Réunion Island were infected during outbreaks in 2004 

and 2006, respectively [10,28]. An estimated 75-95% of people who are infected with CHIKV 

become symptomatic [11,54].  

 It is thought that CHIKV can propagate within stromal cells, including fibroblasts, 

surrounding the site of injection [55,56]. In vitro, mouse embryonic fibroblasts (MEFs) and other 

primary fibroblasts can be thus used as a model cell for CHIKV infection [54,57]. Within hours, 

CHIKV spreads from the connective tissue around the bite site into the microvasculature and 

lymph vessels [29,57]. From there, the virus spreads into the liver, lymph nodes, and spleen 

(Figure 1.4); viral replication in these sites ultimately leads to viremia and initiation of symptoms 

such as fever [29]. High levels of viremia last for several days, with titers in infected humans 

reported to be as high as 108 to 109 viral RNA copies per milliliter [42,58]. The transmission cycle 

begins anew when an uninfected Aedes mosquito takes a blood meal from a viremic individual. It 

has not been demonstrated whether the blood titers result from free virus, blood cells infected 

with virus, or a combination of both. Nonetheless, there are some indications that infected 

hematopoietic cells can be found in the blood.  

 For instance, one study assayed viral growth in a barrage of cell lines and reported that 

CHIKV can replicate in macrophages but not monocytes or dendritic cells [42]. However, another 

study reported that in human blood samples from acute CHIKV patients up to 7% of CD14+ 

monocytes and 3% of CD303+ plasmacytoid dendritic cells harbored CHIKV antigen [59]. The 

overall viral load in the blood also correlated with the percentage of infected monocytes, 
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suggesting that infected monocytes could serve to shuttle virus through the blood during viremia. 

The study also demonstrated that live CHIKV but not heat-inactivated CHIKV could infect 

monocytes isolated from peripheral blood mononuclear cells (PBMCs) [59]. Growth in 

hematopoietic cells such as macrophages and monocytes could prove to be a critical step in 

CHIKV pathogenesis. Infected monocytes could spread CHIKV to sequestered organs such as 

the brain and muscle; infected macrophages may also contribute to chronic infection and 

potentially inflammasome activation [56,59]. In vitro, CHIKV can infect RAW 264.7 cells (an 

immortalized mouse macrophage cell line), which results in secretion of TNF-α, IL-6 and GM-CSF 

[60]. No studies have reported substantive CHIKV growth in lymphocytes.  

 During this short-lived viremia, CHIKV spreads to many regions of the body, including the 

joints, muscles, and brain. Like other alphaviruses, CHIKV displays a propensity to infect multiple 

tissue types. CHIKV can productively replicate in epithelial cells, endothelial cells, fibroblasts, and 

osteoblasts [29,42]. In addition to epithelial and connective tissues, CHIKV also grows to high 

titers in neurons and muscle satellite cells [52,55,61]. Specific strains can grow in additional tissue 

types.  For instance, one study demonstrated that a virulent IOL CHIKV strain isolated in 2006 

from the La Réunion Island outbreak (LR2006-OPY1) can infiltrate and grow within skeletal 

muscle fibers while a pre-epidemic strain cannot [57]. It is unclear how CHIKV can transit the 

insulating barriers surrounding muscle and other targets such as the brain.  

 Infection of these target tissues triggers a vigorous inflammatory response. Within the 

joints, infection of synoviocytes leads to expression of chemokines and inflammatory cytokines, 

including IL-6, MCP-1, and IL-1β [29,54,62]. This is followed by a massive influx of immune cells, 

including macrophages, monocytes, natural killer (NK) cells, and T cells into the synovial cavity 

[54,63,64]. This substantial immune infiltrate results in painful distention of the joint capsule, 

leading to CHIKF’s characteristic arthralgia and arthritis [29]. The infiltrating immune cells may 

also become overactive and cause tissue damage through secretion of metalloproteinases 
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[29,54]. In addition to inflamed joints, CHIKV can also cause muscle, tendon, and brain damage 

[64,65]. The exact mechanism of this pathology is unclear but likely involves a combination of 

host and virus factors. Not only is CHIKV infection itself lytic, but it can also induce apoptosis 

[52,60] and results in the secretion of many potentially toxic pro-inflammatory cytokines [9,63,65]. 

Acute CHIKV symptoms can in large part be attributed to a hyper-responsive innate immune 

system. 

1.1.4 Prophylactics and Therapeutics 

No licensed anti-virals or vaccines are currently available for acute or chronic CHIKV 

disease. Current therapeutics include supportive measures such as maintaining patient water and 

electrolyte levels, as well as non-specific drugs including analgesics, antipyretics, and non-

steroidal anti-inflammatory drugs [16,56,64]. Public health efforts also aim to decrease 

transmission with vector elimination and mosquito netting [22].  

A variety of studies have identified compounds with antiviral activity against CHIKV in vitro 

or in vivo. For instance, drugs against other microorganisms have demonstrated in vitro efficacy 

against CHIKV infection [11,66,67]. Examples of repurposed antivirals include Favipiravir, arbidol, 

ribavirin, and interferon-α, but their actual in vivo or clinical effectiveness remains untested [68–

70]. A recent in vitro loss-of-function screen identified several pro-viral host factors with pre-

existing small-molecule inhibitors available, some of which showed in vivo efficacy alone or in 

combination [71]. Additional in vivo studies have demonstrated the efficacy of monoclonal 

antibodies against CHIKV, alone or in combination with immunomodulatory agents such as 

CTLA4-Ig [72–75]. 

Multiple vaccine candidates have been produced, but none are currently approved for 

human use [76]. Three vaccine candidates have completed Phase I and II clinical trials with 

varying results. The first CHIKV vaccine candidate tested involved a lab-attenuated CHIKV strain 
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derived from the Asian lineage [77] (Figure 1.1A); this vaccine proved to be immunogenic in 

Phase I and II clinical trial. However, a small percentage of participants developed transient 

arthritis, so this candidate has not been pursued further [76,77]. A second candidate involves a 

recombinant live-attenuated measles virus (MV) that expresses virus-like particles (VLPs) 

containing CP, E3, E2, 6K, and E1 proteins from the La Réunion ECSA CHIKV strain [78]. A 

recent Phase II trial of the MV-CHIKV vaccine reported good safety, tolerability, and 

immunogenicity, with CHIKV-neutralizing antibodies detectable in all MV-CHIK treatment groups 

[79]. A third CHIKV vaccine candidate (VRC-CHKVLP059-00-VP) also involves VLPs, but in this 

case the vaccine itself comprises VLPs containing CP, E1, and C2 proteins from the 37997 West 

African CHIKV strain; Phase I results using this vaccine were promising [80]. The Phase II trial 

was scheduled to end in October 2018, but the results of this trial have not yet been reported.  

Additional vaccine candidates are in the pre-clinical pipeline having showed efficacy in 

animal models of CHIKV infection. One CHIKV vaccine candidate involves a chimeric virus 

combining the non-structural proteins of Eilat virus (an insect-specific alphavirus) with  CP, E1, 

and E2 structural proteins from CHIKV-99659, a human isolate from the British Virgin Islands. 

This vaccine demonstrated immunogenicity in mice and non-human primate models [81]. Another 

potential vaccine involves a La Réunion CHIKV strain attenuated with site-directed mutations in 

the nuclear localization sequence (NLS) of CP. This vaccine demonstrated efficacy against both 

CHIKV and Ross River virus (RRV) in mice [82].  

The majority of the clinical testing for these antivirals and vaccines rely on readouts from 

acute disease, such as early viral titers, or later titers of neutralizing antibodies. It is unclear how 

these therapeutics and prophylactics would impact chronic CHIKV disease; presumably, a 

reduction in acute disease would also result in a reduction of chronic disease. A better 

understanding of the intricacies of both acute and chronic CHIKV pathogenesis could ultimately 

lead to better treatments for this debilitating disease. 
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1.2 Chronic CHIKV Pathogenesis 

 Following acute CHIKV infection, an estimated 10-60% of patients report symptoms that 

can persist for 6 weeks to 6 years after the initial infection.  The most common symptoms include 

arthritis, arthralgia, alopecia, and depression. Risk factors for these persistent symptoms include 

female sex, old age, and prolonged or more severe acute disease. A handful of studies of human 

or animal samples have reported detection of CHIKV antigen or RNA within joint and muscle 

tissues, often associated with macrophages and endothelial cells; however, detection of viral 

components in tissues at chronic time points is rare, especially in human samples. Hypotheses 

to explain the chronic manifestations of CHIKV infection include persistent viral RNA causing 

inflammation, a low level of actively replicating virus, or viral induction of autoimmunity. The 

chronic pathogenesis of CHIKV infection remains poorly understood, thus necessitating the 

development of better tools and model systems. 

1.2.1 Chronic Clinical Manifestations 

 As discussed previously, acute CHIKV is associated with one to two weeks of 

musculoskeletal symptoms, including fever, rash, headache, asthenia, and joint and muscle pain 

often so severe that upright gait is too painful; neurological symptoms are also sometimes 

reported during acute infection [83]. Following acute CHIKV infection, the fever and rash resolve, 

and virus is no longer detectable by RT-PCR in the serum [84]. However, a significant subset of 

patients continues to report persistent symptoms. 

 The most common chronic symptoms reported by patients are persistent arthralgia (joint 

pain or stiffness), arthritis (joint swelling), or more general rheumatic musculoskeletal pain 

(RMSP) in distal joints such as the ankles and wrists, typically with a bilateral and symmetrical 

manifestation. The prevalence of these symptoms depends on the study, with ~50-60% on the 

high end and ~10-20% on the low end. For example, one study of 250 CHIKV patients following 



13 

the 2007 Italian outbreak reported that 72.3% of patients described persistent arthralgia 4 to 5 

months post infection and 60.8% at 12 to 13 months; the prevalence of persistent arthralgia at 12 

to 13 months was as high as 73.8% in patients who had pre-existing joint pain prior to CHIKV 

infection [85]. In another study of 437 CHIKV patients in South India 15 months following a 2007 

epidemic, 57% reported post-viral polyarthralgia [86]. A similar study identified 1195 CHIKV 

patients 18 months following a 2009 outbreak in rural India and found that 48.6% had persistent 

RSMP [87].   

 Other studies report lower prevalence of chronic arthralgia symptoms, such as 12.5% (2 

out of 16) of German patients 6 months after travel to endemic Asian areas in 2006 [88], or 10% 

(3 out of 30) of patients 3 months after acute infection in a 2008 Singapore outbreak [89]. A study 

of 403 adult CHIKV patients in South India in 2006 reported persistent arthralgia in 16% of patients 

3 to 6 months following infection, 12.7% between 6 and 12 months, and 7% beyond 1 year [90]. 

The majority of other studies report percentages falling somewhere in the middle of these 

extremes [91–93]. For example, the TELECHIK survey, which was a 2-year follow-up of the acute 

SEROCHIK survey for the 2006 La Réunion Island outbreak, found that 42.8% of 515 CHIKV+ 

patients still reported chronic RMSP [94]; however, a reanalysis of the TELECHIK survey reported 

that 81.9% of 422 CHIKV+ patients experienced chronic RMSP [95]. Meta-analyses of chronic 

CHIKV studies have reported an average of approximately 40% of CHIKV patients developing 

chronic symptoms [96,97]. Including studies with only 1 year or more follow-ups, the overall 

CHIKV chronic symptom rate was 21% [97]. 

 Many factors likely influenced the wide range of reported prevalence in these studies, 

including the specific epidemic and CHIKV strain, as well as specific study design and inclusion 

criteria. For example, studies associated with the 2006 La Réunion Island epidemic [94,95,98] or 

outbreaks in India  [86,87] tended to be associated with a higher prevalence of chronic CHIKV 

symptoms. A meta-analysis of 38 chronic CHIKV studies found a similar trend, with ECSA-
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diverged CHIKV strains (e.g., La Réunion Island, India, France) inciting a higher average 

prevalence of chronic symptoms than recent Caribbean strains or South African ECSA strains 

from the 1980s [96]. Of note, retrospective studies tended to have a higher percentage of patients 

reporting persistent arthralgia compared to prospective studies [97], which suggests at least some 

degree of memory and reporting bias.  

 Not only did patients report joint-associated pain or swelling, but joint damage could 

sometimes be detected through radiographic changes. For example, one study examined 21 

CHIKV patients two years following the 2006 La Réunion Island outbreak and identified 5 patients 

with bone erosions and 12 patients with joint space narrowing in the hands and or feet [99]. 

Another study also from La Réunion Island identified bone lesions by radiography in 50% of 

the patients diagnosed with chronic inflammatory rheumatism following CHIKV infection [100]. 

However, a third study found no evidence of structural damage by radiography in the 437 CHIKV+ 

patients examined [86]. 

1.2.2 Non-Rheumatic Chronic Symptoms  

 In addition to joint-associated symptoms, other commonly reported chronic CHIKV 

symptoms include alopecia, depression, sleep disorders, and overall loss in the quality of life 

(QOL) [96,97]. Two studies reported alopecia prevalence of 10-30% [85,101], while one study 

reported no change in the prevalence of hair loss [94]. Rates of depression following CHIKV 

infection ranged from 13 to 54% [92,98,101–103]; however, one case reported a low depression 

prevalence of 6.3% (3 of 47) [104]. Overall, the quality of life for CHIKV patients was reduced, 

often for several years. For example, a study of French gendarmes (military police) following the 

2006 La Réunion Island epidemic found a significant negative impact on completing daily 

activities (such as showering, making bed) and a higher consumption of healthcare 30 months 

after infection [98]. In a 6-year follow-up of these gendarmes, the QOL scores had not 
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significantly improved from the 30-month survey [103]. Another study in rural India reported that 

a fifth to a quarter of patients reported moderate or severe difficulty in completing simple 

physical tasks such as arising and walking [87]. Additional studies using the standardized Short 

Form questionnaires (SF-36 and SF-12) described a significant QOL reduction in the physical 

and or mental health domains [101,105].  

1.2.3 Chronic Biomarkers 

Multiple studies have attempted to identify predictive markers for CHIKV-induced chronic 

arthralgia. Older age (>35-45 year old) individuals, females, and people who experienced 

prolonged or severe acute disease appear to be most at risk for development of chronic 

symptoms [54,85,90,91,102,106]. One group found an increased likelihood of chronic CHIKV in 

patients with high acute serum concentration of C-reactive protein (CRP) [54]. Another group 

indicated elevated acute IL-6 and GM-CSF as predictors, but found no association with acute 

disease severity, viremia, or CRP levels [89].  One study reported an association of chronic 

arthralgia with CHIKV-RNA detection beyond 7 days of symptom onset [107]. A study in rural 

Southern India identified vegetarianism as the strongest determinant of chronic CHIKV 

development [87]. While these studies agree that chronic CHIKV pathogenesis is characterized 

by a chronic inflammatory state, they do not arrive at consistent markers, and the biomarkers 

themselves are not indicative of an exact disease mechanism. 

1.2.4 Congenital CHIKV 

 In addition to symptoms in infected adults, long-term complications can also arise from 

congenital CHIKV, acquired by neonates through vertical transmission from infected mothers, 

likely via intrapartum transmission (during childbirth).  In the infants who survived the acute 

CHIKV infection during the La Réunion Island epidemic, many neurological manifestations 

occurred, included encephalopathy, intracranial hemorrhage, cerebral palsy, ataxia, and 
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blindness [108]. Further follow-up of these congenital CHIKV cases at 2 years of age revealed 

continued neurodevelopmental deficits [109]. One study of pregnant CHIKV-infected women in 

Thailand found no vertical transmission of CHIKV to neonates [110], which could indicate that 

perinatal transmission is strain-specific. These studies highlight that neurological symptoms 

dominant during neonatal infection, likely due to increased accessibility to the infant brain, 

compared to adults where rheumatic symptoms predominate with neurological manifestations 

only rarely reported.  

1.2.5 Hypotheses for Chronic Pathogenesis 

 Hypotheses to explain chronic CHIKV pathogenesis abound, including the induction of 

autoimmunity, the persistence of ultralow levels of replicating virus, and the activation of 

inflammatory responses against residual viral RNA. The role of autoimmunity in chronic CHIKV 

pathogenesis is unclear. A small subset of chronic CHIKV patients test positive for antinuclear 

antibodies (ANA); however, their pre-CHIKV status is unknown [24,102,111]. Viral infections are 

also known to transiently induce ANA, so the relevance of this observation to the development of 

chronic arthritis is unclear. Furthermore, these same studies have not detected other known 

autoantibodies, including anti-dsDNA, anti-endomysium, anti-Sm, anti-Jo-1, or anti-cyclic 

citrullinated peptide antibodies (ACCP), or rheumatoid factor [24,102,111]. It has been proposed 

that CHIKV patients could harbor unknown autoantibodies through molecular mimicry [112]. As it 

stands, proving or disproving the involvement of autoimmunity in chronic CHIKV pathogenesis 

remains challenging. 

 There is evidence that CHIKV antigen may persist in tissues chronically. CHIKV antigen 

was detected in the synovial macrophages of one patient 18 months after infection [54], as well 

as in a human muscle specimen at least three months after acute infection [61]. Cells positive for 

CHIKV antigen can also be detected in persistently-infected macaques [56] or wild-type mice 
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[113]. Recombinant CHIKV expressing firefly luciferase also produce detectable luminescence 

during the chronic stage of disease, suggesting that the virus could be undergoing low levels of 

replication [114–116]. However, these and other studies have not demonstrated that the virus 

itself is replication proficient. One study reported the detection of infectious CHIKV by TCID50 

assay at 44 dpi in the spleen, liver, and muscle tissue of IV-inoculated macaques, but not the joint 

tissue [56]. To our knowledge, infectious virus has not been isolated from the joint tissue of chronic 

patient or wild-type animal samples [117,118]. Therefore, while it is impossible to completely 

dismiss autoimmunity and low-level viral replication as the driving force behind chronic disease, 

the data supporting these hypotheses has not been definitively seen in various human or animal 

studies. 

 A prevailing hypothesis for chronic CHIKV pathogenesis is that non-infectious CHIKV RNA 

remains in infected tissues, and its dsRNA intermediates act as a proinflammatory pattern-

associated molecular patterns (PAMPs) [119]. Chronic CHIKV RNA can consistently be detected 

through qPCR in animal models, including the joints and spleen of mice and the spleen, lymph 

nodes, and liver of macaques, despite the fact that infectious virus is cleared much sooner 

[56,120]. Detection of chronic CHIKV RNA in human samples has been less consistent. One study 

reported the presence of CHIKV E1 and nsP2 RNAs in a human synovial fluid sample, but others 

have failed to detect chronic CHIKV RNA in patient serum or synovial fluid [54,118]. Such negative 

results could reflect the difficulty in obtaining more invasive patient samples such as joint, muscle, 

or spleen biopsies, as can be readily obtained in animal models.  

 Of note, administering viral or synthetic dsRNA or IFN-α by itself can even induce arthritis 

in mice through activation of IL-1R signaling, and IFNAR-/- mice are protected from these effects 

[121,122]. Therefore, administration of a viral PAMP alone or the downstream effector (type I IFN) 

can be sufficient to cause arthritic disease, even in the absence of an actively replicating virus. 
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1.3 Tools to Study Chikungunya Virus Infection 

 While clinical data provides some insight into the acute and chronic pathogenesis of 

CHIKV, the exact mechanisms of disease can only truly be dissected with in vivo models of 

infection. Fortunately, the past 10 to 15 years has seen vast advancements in CHIKV animal 

models. Furthermore, the cloning of CHIKV has allowed for the production of recombinant viruses 

that can be manipulated with the insertion of reporter genes or mutations, rather than relying on 

immutable and heterogenous clinical isolates. 

1.3.1 Animal Models 

 Mice and nonhuman primates have both been used as models of CHIKV infection [123]. 

Mouse models include  neonatal mice, immunocompromised mice, and WT mice that develop 

arthritis and myositis. Infection of neonatal mice results in lethality, often with neurological 

symptoms, which parallels neonatal human infection; decreasing the age of infection from 12 to 

9 to 6-day-old pups subsequently increases mortality [124]. Knockout neonatal mice have been 

used to explore the involvement of specific interferon-stimulated genes (ISGs) during CHIKV 

infection [125]. Immunocompromised adult mice also develop severe CHIKV disease that can 

result in lethality. For example, mice that lack the type I IFN receptor (IFNAR-/-) or type I IFN 

regulatory factors (IRF3/7-/-) exhibit 100% mortality 3 to 8 days after infection [124,126,127]. As 

such, these mice are useful in the testing of neutralizing CHIKV antibodies [75]. However, due to 

the high levels of lethality, neither neonatal nor immunocompromised mice are useful for the study 

of chronic CHIKV pathogenesis. 

 The arthritis mouse model allows for study of both acute and chronic CHIKV pathogenesis. 

This model comprises inoculating immunocompetent adolescent (3-4 weeks old) mice with CHIKV 

subcutaneously into the rear footpad, mimicking a mosquito bite. This model recapitulates many 

acute aspects of human disease including viral replication in the joint and muscle tissues, 
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tenosynovitis and myositis, viremia, and dissemination to distal joint and lymphoid tissues 

[64,66,128]. Inoculation of mice into the footpad results in a biphasic swelling pattern in the 

ipsilateral foot, with the first swelling peak corresponding to cell lysis, local proinflammatory 

cytokine production, edema, and monocyte infiltration. The second peak is associated with an 

influx of inflammatory infiltrates, including B and T lymphocytes [64,66,128]. This model also 

recapitulates aspects of chronic CHIKV disease. CHIKV RNA persists in the joints for several 

months after infection, and there are signs of chronic myositis and synovitis [117,120]. However, 

the arthritis model is not without its limitations, including lack of bilateral symmetrical joint 

involvement [129]. 

Nonhuman primate models have also been used to study aspects of CHIKV pathogenesis. 

Rhesus macaques have been used since the 1960s for CHIKV virulence studies [130], and in 

more recent years studies of CHIKV pathogenesis and transmission or testing of vaccines and 

antivirals have also utilized Rhesus macaques [131–134]. Cynomolgus macaques have also been 

used to study CHIKV pathogenesis. For instance, one study used cynomolgus macaques to 

identify cell types that harbor CHIKV antigen at chronic time points [56]. While nonhuman primate 

models more closely recapitulate human disease and are typically required prior to clinical testing 

in humans, they do not offer the flexibility and specificity of mouse models, as non-WT animals 

are typically not used. 

1.3.2 Recombinant Viruses 

 While clinical isolates were used for much of the early research on CHIKV, recombinant 

CHIKV constructs allow for increased manipulation of the virus. Reporter genes can be inserted 

into the CHIKV genome through introduction of a second subgenomic promoter, either in between 

the structural and non-structural genes (5ʹ) or at the end of the genome (3ʹ). Previous studies 

have introduced fluorescent proteins such as GFP or mCherry into these locations, resulting in 
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viruses with tissue fluorescence only during active viral replication. These reports demonstrate 

that 5ʹ clones (e.g. CHIKV-5ʹ-GFP) have lower recombinant protein expression but higher stability 

than the 3ʹ variants (e.g. CHIKV-3ʹ-GFP); these viruses are also somewhat attenuated compared 

to WT CHIKV [135,136]. Firefly luciferase has also been successfully introduced into CHIKV 

clones [114–116]. Other groups have also reported success with introducing reporter genes into 

the nsP3 gene [137].  

 While fluorescent or luminescent viruses are useful for the study of acute CHIKV 

pathogenesis, fluorescent protein expression is typically transient, and luminescent output is often 

only resolvable on the tissue level; thus, such strategies are less helpful for the detailed study of 

chronic CHIKV pathogenesis. In order to study the chronic pathogenesis of other viruses, some 

groups have utilized recombinant viruses expressing Cre recombinase, which can indelibly mark 

infected cells in reporter cells or mice. This Cre-virus approach has been previously used to 

explore the chronic pathogenesis of influenza virus [138,139] and HSV-1 [140,141],  but it has not 

yet been attempted with any alphaviruses, to our knowledge. As such, this dissertation concerns 

optimization and characterization of two CHIKV-Cre viruses, which we use to investigate the 

chronic pathogenesis of CHIKV. 
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1.4 Figures 

 

Figure 1.1: Evolution and epidemiology of CHIKV  

(A) Phylogenetic map displaying the three CHIKV phylogroups: ECSA, Asian, and African; 
adapted from [142]. (B) World map showing the countries and territories where CHIKV cases 
have been reported as of May 29, 2018. The map does not include countries or territories where 
only travel-acquired cases have been reported; figure was adapted from [143].  
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Figure 2.2: CHIKV virion and genome structure 

(A) CHIKV virion structure; adapted from [144]. (B) CHIKV genome; adapted from [28]. 
  



23 

 
Figure 3.3: Replication cycle of CHIKV in mammalian cells 

(A) CHIKV genome replication and transcription; adapted from [144]. (B) CHIKV replication in 
mammalian cells; adapted from [40]. 
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Figure 4.4: Acute and chronic pathogenesis of CHIKV 

Acute CHIKV symptoms are associated with disseminated viral replication in a variety of tissues. 
It is hypothesized that chronic CHIKV disease is due to persistence of virus, inflammatory 
cytokines, and joint damage; adapted from [40]. 
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Chapter 2: 
A Recombinant Chikungunya Virus Reporter System 
 

This chapter contains data from a manuscript in preparation for submission: 

Alissa R. Young, Marissa C. Locke, Lindsey E. Cook, Bradley E. Hiller, Rong Zhang, 
Matthew L. Hedberg, Kristen J. Monte, Deborah J. Veis, Michael S. Diamond, and 
Deborah J. Lenschow. A recombinant chikungunya virus reporter system defines 
dermal and muscle fibroblasts and skeletal myofibers as targets during the chronic 
phase of infection. In preparation to submit to PLoS Pathogens (2019). 

 



26 

2.1 Abstract 

Chikungunya virus (CHIKV) is an arthritogenic alphavirus that during acute disease 

causes fever as well as severe joint and muscle pain.   Chronic joint and muscle pain persists in 

a significant subset of patients for months to years after the initial infection, yet we still have a 

poor understanding of what drives this chronic disease.  While replicating virus has not been 

detected in the joints of patients with chronic arthritis or in various animal models at chronic time 

points, persistent viral RNA can be detected for months after acute infection.  To identify the cells 

that might contribute to chronic CHIKV pathogenesis, we developed a recombinant virus that 

expresses Cre recombinase (CHIKV-3ʹ-Cre). This virus replicated in cell types targeted by CHIKV, 

including myoblasts and fibroblasts, and it induced acute arthritis in a murine model of CHIKV 

arthritis.  Importantly, it also induced chronic disease, including persistent viral RNA and chronic 

myositis and synovitis similar to wild-type (WT) virus. CHIKV-3ʹ-Cre infection of tdTomato reporter 

mice resulted in a population of tdTomato+ cells that persisted for at least 112 days. The majority 

of these cells localized to the dermis and muscle, and immunofluorescence profiling revealed that 

these tdTomato+ cells were dermal and muscle fibroblasts and myofibers. Treatment with an 

antibody against Mxra8, a host receptor for CHIKV, reduced the levels of viral RNA and the total 

number of tdTomato+ cells in the chronic phase, with a preferential reduction in fibroblasts. Anti-

Mxra8 treatment demonstrated a correlation between chronic viral RNA levels and the number of 

tdTomato+ cells, thus suggesting that viral RNA can be found within these persistent tdTomato+ 

cells. This CHIKV-3ʹ-Cre and tdTomato reporter mouse system demonstrates that cells can 

survive CHIKV infection in vivo and represents a powerful tool to study the chronic pathogenesis 

of CHIKV infection.   
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2.2 Introduction 

Chikungunya virus (CHIKV) is a globally re-emerging arbovirus originally identified in 

Tanzania in 1952 [1–3]; phylogenetic analyses estimate its original emergence as a human virus 

within the last 500 years [6]. Up until the 2000s, CHIKV was considered a self-limiting, tropical 

virus of minimal concern; however, within the last 15 years, CHIKV has reemerged with increased 

virulence and range. In 2004, an East/Central/South African (ECSA) lineage [5] of CHIKV initiated 

an epidemic in Kenya with over 13,000 cases, the first large epidemic in decades [10]. By 2005, 

the virus spread to La Réunion Island off the east coast of Madagascar, where it infected over 

200,000 people [8,11]. The La Réunion epidemic included the first reports of increased 

pathogenicity, including neurological symptoms, intrapartum transmission, and approximately 250 

deaths [12–14]. The virus subsequently spread throughout the Eastern Hemisphere, establishing 

endemic conditions in tropical regions including India and the South Pacific, and even causing 

isolated outbreaks in Europe [18]. In 2013, an Asian lineage strain of CHIKV spread to the 

Americas and has caused nearly 2 million suspected cases in the Caribbean, Central, and South 

America [18,20–22]. 

An estimated 75-95% of people who acquire CHIKV by a mosquito bite [9,15,16] 

experience an acute disease characterized by fever, rash, arthralgias, and myalgias that last for 

approximately one to two weeks [11,29,54]. Follow-up studies have reported that between 30% 

to 60% of CHIKV infected patients develop chronic joint and muscle pain that lasts for months to 

years after the acute infection [96,118,145]. Whereas CHIKV disease is rarely fatal, the acute and 

chronic viral arthritis has a high morbidity. For instance the 2005 outbreak on La Réunion Island 

resulted in an estimated loss of 55,000 DALYs (disability-adjusted life years) or healthy years lost 

to illness [145], and the CHIKV epidemic in the Americas is predicted to cause an estimated one 

million cases of chronic CHIKV symptoms [146]. Furthermore, there are no approved vaccines or 

therapeutics for CHIKV, and over-the-counter medications provide little relief [67]. Despite its high 
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prevalence in patients and significant morbidity, the mechanism of chronic CHIKV pathogenesis 

is poorly understood.  

Overall, chronic CHIKV disease is characterized by elevated inflammatory markers and 

immune activation. A number of pro-inflammatory cytokines are elevated in the serum during 

chronic CHIKV disease, including IL-1β, IL-6, and G-CSF [62,147–149]. Chronic CHIKV patients 

also have higher levels of activated CD8+ T cells and NK cells, resembling seronegative 

Rheumatoid arthritis [24]. Mouse models of CHIKV infection have highlighted the importance of 

adaptive immunity in determining CHIKV clearance or persistence; mature B cells and a 

productive antibody response appear to be especially critical, as RAG1-/- and μMT mice (both of 

which lack mature B cells) fail to clear infectious CHIKV [115,117,120,150,151]. Multiple studies 

have attempted to identify predictive markers for CHIKV-induced chronic arthralgia 

[54,89,97,107,152]. While these studies agree that chronic CHIKV pathogenesis is characterized 

by a chronic inflammatory state, they do not define consistent biomarkers or disease mechanisms. 

  Hypotheses to explain chronic CHIKV pathogenesis abound, including the induction of 

autoimmunity, the persistence of ultralow levels of replicating virus, and activation of inflammatory 

responses against residual viral RNA. There is evidence that CHIKV antigen may persist in 

tissues chronically. CHIKV antigen was detected in the synovial macrophages of one patient 18 

months after infection [54], as well as in a human muscle specimen at least three months after 

acute infection [61]. Cells positive for CHIKV antigen can also be detected in persistently-infected 

macaques [56] or wild-type mice [113]. Recombinant CHIKV expressing firefly luciferase also 

produce detectable luminescence during the chronic stage of disease [114–116]. However, these 

and other studies have not demonstrated that the virus itself is replication proficient, and to our 

knowledge, infectious virus has not been isolated from the joint tissue of chronic patient or wild-

type animal samples [117,118]. Therefore, while it is impossible to completely dismiss 
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autoimmunity and low-level viral replication as the driving force behind chronic disease, the data 

supporting these hypotheses has not been consistently seen in various human or animal studies. 

A prevailing hypothesis for chronic CHIKV pathogenesis is that non-infectious CHIKV RNA 

remains in infected tissues, and its dsRNA intermediates act as a proinflammatory pattern-

associated molecular patterns (PAMPs) [119]. Chronic CHIKV RNA can consistently be detected 

through qPCR in animal models, including the joints and spleen of mice and the spleen, lymph 

nodes, and liver of macaques, despite the fact that infectious virus appears to be cleared much 

sooner [56,120]. Detection of chronic CHIKV RNA in human samples has been less consistent. 

One study reported the presence of CHIKV E1 and nsP2 RNAs in a human synovial fluid sample, 

but others have failed to detect chronic CHIKV RNA in patient serum or synovial fluid [54,118]. 

Such negative results could reflect the difficulty in obtaining more invasive patient samples such 

as joint, muscle, or spleen biopsies, as can be readily obtained in animal models.  

Despite the presence of chronic RNA is these various models, the cells that potentially 

harbor the viral RNA are unknown. Histological detection tools such as immunohistochemistry 

(IHC) are only rarely able to detect CHIKV antigen-positive cells in wild-type mice, likely owing to 

the insensitivity of these techniques [113]. Moreover, studies using RNA in situ hybridization (ISH) 

for detection of CHIKV RNA have not been published beyond acute time points in mice. Much 

remains to be explored surrounding chronic CHIKV pathogenesis, including the identification of 

cells that survive infection and potentially harbor viral RNA, the state of the viral RNA that persists, 

and why the immune response cannot clear this persistent RNA. 

To begin to address these questions, we have established a model that allows for the 

permanent marking of cells that are infected by CHIKV.  We engineered a recombinant CHIKV 

clone that expresses Cre recombinase, as has been done previously for influenza virus [138,139] 

and HSV-1 [140,141]. We demonstrate that this CHIKV-Cre virus infects and replicates in cell 

types targeted by CHIKV including myoblasts and fibroblasts and induces acute arthritis in mice.  
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Importantly, this virus was also able to establish chronic disease including the persistence of viral 

RNA for weeks after acute infection.  Combining this Cre expressing virus with reporter mice we 

were able to visualize and identify the surviving marked cells in the chronic phase that were likely 

infected in the acute phase.  This system represents a powerful tool to study how cells that survive 

infection by CHIKV contribute to chronic disease pathogenesis of this debilitating virus. 

2.3 Results  

2.3.1 Generation and in vitro characterization of CHIKV-3ʹ-Cre 

 To identify cells that survive CHIKV infection, we generated a recombinant chikungunya 

virus using the La Réunion clone, LR2006 OPY1, (denoted CHIKV-WT) and engineered it to 

express the bacteriophage Cre recombinase gene under control of a second subgenomic 

promoter.  Two versions of the Cre recombinase virus were generated: in one version the second 

subgenomic promoter and Cre recombinase was introduced between the non-structural and 

structural genes (denoted CHIKV-5ʹ-Cre), and in the other version the subgenomic promoter and 

Cre recombinase were inserted downstream of the structural genes (denoted CHIKV-3ʹ-Cre) 

(Figure S2.1A).   

 For these studies, we used reporter mice harboring a fluorescent protein (tdTomato) 

driven by a constitutive Rosa promoter interrupted with a stop cassette. Infection of these mice 

with our recombinant viruses should result in the expression of Cre recombinase, which can bind 

to the LoxP sites, excise the stop cassette, and promote constitutive expression of the fluorescent 

protein. Thus, the fluorescent reporter will be expressed in all cells where Cre recombinase was 

expressed, even when viral replication is abrogated (Figure 2.1A). This system can help 

determine whether individual cells can survive the initial CHIKV infection.   

 To characterize the system, we tested the ability of CHIKV-3ʹ-Cre to function in reporter 

cells in culture.  Murine embryonic fibroblasts (MEFs) from tdTomato reporter mice were isolated 
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and infected with either CHIKV-WT or CHIKV-3ʹ-Cre. Two days post infection (dpi), a population 

of tdTomato+ cells was detected following CHIKV-3ʹ-Cre infection, whereas no tdTomato+ cells 

were identified during infection with media (mock) or CHIKV-WT (Figure 2.1B-C). Infection with 

CHIKV-5ʹ-Cre also induced reporter expression, although in a lower number of cells than CHIKV-

3ʹ-Cre, and this difference was seen across several multiplicities of infection (MOIs) (Figure 

S2.1B).   

 To determine if viral replication was required to activate the reporter, we pretreated cells 

with IFN-β and then infected them with CHIVK-3ʹ-Cre.  Pretreatment with IFN-b prevented 

expression of the tdTomato reporter by CHIKV-3ʹ-Cre, demonstrating that viral replication and 

protein expression are required (Figure 2.1C). As another control, cell debris from BHK-21 cells 

infected with CHIKV-3ʹ-Cre was tested for its ability to activate reporter cells; non-virion 

components in the cell debris from lysed cells, such as Cre protein, could be taken up by 

uninfected cells and lead to aberrant reporter expression. Cell debris itself resulted in many 

tdTomato+ cells; however, UV-inactivation of infectious virus in this cell debris inhibited activation 

of the tdTomato reporter (Figure 2.1C). Similar results were also seen with CHIKV-5ʹ-Cre (Figure 

S2.1C).  Taken together, these results suggest that active viral replication and expression of Cre 

recombinase in the infected cell is necessary for activation of tdTomato expression. 

 We next assessed the ability of CHIKV-3ʹ-Cre to replicate in fibroblasts and muscle cells, 

two cell types that are targeted during acute CHIKV infection [29,42,54,55,57,58,66]. C2C12 

myoblasts or MEFs from C57BL/6 mice were inoculated with CHIKV-WT or CHIKV-3ʹ-Cre at an 

MOI of 1, and viral replication was assessed at various time points post infection.   In C2C12 

myoblasts, CHIKV-3ʹ-Cre replicated to similar levels and with similar kinetics as CHIKV-WT 

(Figure 2.1D).   CHIKV-3ʹ-Cre also replicated in MEFs, although it was attenuated compared to 

CHIKV-WT (Figure 2.1E). Similar results were seen when C2C12 cells or MEFs were infected at 

an MOI of 0.05 or with CHIKV-5ʹ-Cre (Figure S2.1D-E). Therefore, the CHIKV-3ʹ-Cre virus retains 
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its ability to replicate in key target cells during infection, though with some attenuation in 

fibroblasts.  

2.3.2 CHIKV-3ʹ-Cre induces acute arthritis 

 A mouse model of CHIKV infection has been shown to recapitulate several aspects of 

human infection [64,66,129]. Acute infection is characterized by footpad swelling that resolves 

within 10-14 dpi and by replication of the virus within the infected footpad and ankle as well as 

dissemination to other tissue sites including the contralateral ankle, wrists, quadriceps muscle, 

spleen, and serum.  In addition, during acute disease, edema and immune cell infiltration into the 

joint and muscle is observed.  We therefore next evaluated the ability of CHIKV-3ʹ-Cre to induce 

acute clinical disease.   

 C57BL/6 mice were inoculated with either CHIKV-WT or CHIKV-3ʹ-Cre into the footpad 

and analyzed for swelling, viral replication, and histopathology. Injection of each virus into the 

hind paw resulted in a biphasic pattern of acute ipsilateral footpad swelling with peaks seen at 3 

and 6 dpi and with resolution of the swelling by 10-14 dpi (Figure 2.2A).  Although the initial 

swelling peak at 2-3 dpi, thought to be driven by edema and monocyte infiltration [128], was 

reduced in CHIKV-3ʹ-Cre infection, the latter and more pronounced swelling peak at 6 dpi, thought 

to be driven by the infiltration of monocytes and CD4+ T cells [115,128], was equivalent between 

the two viruses (Figure 2.2A). Similar results were also seen with CHIKV-5ʹ-Cre (Figure S2.2A 

Fig).  The resolution of swelling was similar between both viruses. 

 We next measured viral titers in the ipsilateral ankle of the infected mice.  High viral loads 

were detected in both the CHIKV-WT and CHIKV-3ʹ-Cre infected mice at 1, 3, and 5 dpi, although 

CHIKV-3ʹ-Cre was mildly attenuated with ~10-fold lower viral loads compared to CHIKV-WT.  

Infectious virus from either CHIKV-WT and CHIKV-3ʹ-Cre was undetectable by 10-14 dpi (Figure 

2.2B).  Again, similar results were seen with CHIKV-5ʹ-Cre (Figure S2.2B Fig). Infection with 
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CHIKV-WT also resulted in viremia and dissemination to and replication in distal tissues such as 

the ipsilateral quadriceps muscle, contralateral ankle, and spleen.  Whereas viral replication of 

both CHIKV-3ʹ-Cre and CHIKV-5ʹ-Cre was detected at these distal sites, they were attenuated 

compared to CHIKV-WT (Figure S2.2C-F). 

 We also utilized RNA in-situ hybridization (ISH) to detect viral RNA in various tissue 

compartments.  RNA ISH was performed on the ipsilateral foot and ankle two days after mock 

infection or infection with CHIKV-WT or CHIKV-3ʹ-Cre. CHIKV E1 RNA could be detected for both 

viruses in several tissue compartments, including skeletal muscle, skin, and synovium (Figure 

S2.3A). However, the ISH staining for CHIKV-3ʹ-Cre was often less intense than CHIKV-WT, likely 

a reflection of its attenuation.  Notwithstanding these differences, CHIKV-3ʹ-Cre had a similar 

tissue tropism to CHIKV-WT.   

 CHIKV infection results in moderate to severe arthritis that can be detected at acute and 

subacute time points in animal models [117,120]. This is characterized by edema and swelling 

within the skin and subcutaneous tissue and cellular infiltrates into the joint space, muscle, and 

tenosynovial tissues. Specimens comprising the ipsilateral foot and ankle were harvested seven 

days after mock-infection or infection with either CHIKV-WT or CHIKV-3ʹ-Cre, and H&E sections 

were scored for overall inflammation (Figure 2.2C-D).  

 Histopathologic examination and analysis revealed significant edema, especially in the 

dermis and hypodermis, and inflammation with tissue damage in the footpad, skeletal muscle, 

and tenosynovial joint tissues was evident in mice infected by either virus compared to mock-

infected animals (Figure 2.2D). Based on histological analysis, the overall severity of the 

inflammatory response in the joint space, muscle, and tenosynovial soft tissues was 

indistinguishable between CHIKV-WT and CHIKV-3ʹ-Cre at 7 dpi (Figure 2.2C). Similar results 

were seen with CHIKV-5ʹ-Cre at 7 dpi (Figure S2.3B-C). Thus, CHIKV-3ʹ-Cre retains the 

pathogenic potential to induce acute musculoskeletal disease. 
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2.3.3 CHIKV-3ʹ-Cre induces chronic disease 

 Chronic CHIKV arthritis is characterized by persistent myositis and chronic synovial 

inflammation and proliferation with mild histological features. In addition, persistent viral RNA can 

be detected in these tissues in mice long after acute disease, despite the absence of detectable 

replicating virus [117,120].  Therefore, we next evaluated if the CHIKV-3ʹ-Cre virus could establish 

chronic disease.   

 Ipsilateral foot and ankle joints were harvested twenty-eight days after inoculation with 

media (mock-infection), CHIKV-WT, or CHIKV-3ʹ-Cre. Histopathological examination and analysis 

showed patchy areas of chronic inflammatory infiltrates within the muscle, with some evidence of 

synovial proliferation within the joints, consistent with a remote/resolving arthritis, in both the 

CHIKV-WT and CHIVK-3ʹ-Cre infected but not mock-infected mice (Figure 2.3A). However, 

compared to the specimens harvested at 7 dpi (Figure 2.2C-D), there was markedly less 

histologic evidence of inflammation and tissue damage in the specimens harvested at 28 dpi.   

 Mild inflammation was not identified in any of the mock-infected joints, and it was only 

histologically identified in a subset of CHIKV-WT or CHIKV-3ʹ-Cre chronically infected specimens; 

however, the difference did not achieve statistical significance at the cohort level (Figure 2.3B).  

Similar results were observed for CHIKV-5ʹ-Cre (Figure S2.4A-B). These results are consistent 

with the comparatively mild histologic findings previously described in CHIKV-associated chronic 

arthritis and highlight the importance of diagnostic techniques with greater sensitivity than 

histopathology. 

 We next evaluated if viral RNA persisted in tissues after infection with the CHIKV-3ʹ-Cre 

virus.  Samples harvested at 28 dpi were analyzed for the presence of CHIKV viral E1 RNA by 

real-time quantitative PCR (RT-qPCR).  CHIKV RNA was detected in the ipsilateral ankles of mice 

infected with either CHIKV-WT or CHIKV-3ʹ-Cre, although at this time point the level of viral RNA 

were slightly decreased (~3.5-fold) in the CHIKV-3ʹ-Cre infected mice compared to CHIKV-WT 
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(Figure 2.3C). As expected, mock infection or infection with UV-inactivated CHIKV-3ʹ-Cre did not 

result in a positive signal for viral RNA (Figure 2.3C).  

 An analysis of the kinetics of CHIKV viral RNA in the ankles of infected mice revealed that 

both CHIKV-WT and CHIKV-3ʹ-Cre established peak levels of viral RNA during acute disease, 1-

7 dpi (Figure 2.3D). Persistent levels of chronic viral RNA were detected through 112 dpi (16 

weeks), and both viruses established similar levels of persistent viral RNA at these late time points 

(Figure 2.3D). Again, similar results were observed for CHIKV-5ʹ-Cre (Figure S2.4C).  While RNA 

ISH could identify cells during acute infection (Figure S2.3A), it was not sensitive enough to 

identify RNA positive cells in the chronic phase (data not shown). 

 At peak productive infection, engagement of the subgenomic promoter produces a 

subgenomic RNA segment containing the structural genes [28,33,36].  As such, this results in 

more copies of structural genes, such as E1, being produced than copies of non-structural genes, 

such as nsP1, during active replication. Consistent with this description and as seen previously 

[120], during the first 7 days of infection the ratio of E1 to nsP1 RNA copies was greater than 1 

for both CHIKV-WT and CHIKV-3ʹ-Cre indicating viral replication was occurring (Figure 2.3E). 

However, after 7 dpi the ratio of E1 to nsP1 was approximately 1, and the viral RNA levels 

decreased with a similar time course for both viruses. Similar results were observed for CHIKV-

5ʹ-Cre (Figure S2.4D). These results indicate that the subgenomic promoter is only active during 

the first week of acute infection, as supported by infectious virus only being detected during the 

same time course (Figure 2.2B). Thus, persistent RNA detected after 7 dpi is likely non-replicative 

and non-infectious.  

 These results indicate that CHIKV-3ʹ-Cre retains its pathogenic potential and can induce 

both acute and chronic disease.  Despite displaying slight attenuation during acute infection, 

CHIKV-3ʹ-Cre can establish chronic disease including persistent viral RNA and histological 
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damage. Such data justifies its utilization as a tool to identify the cells that can survive CHIKV 

infection and may contribute to chronic arthritis pathogenesis.  

2.3.4 CHIKV-3ʹ-Cre marks dermal and muscle fibroblasts and myofibers 

 Previous reports have indicated that CHIKV is highly cytopathic and induces cell death in 

the majority of cells that it infects [52,60].   Yet, persistent viral RNA can be detected long past 

acute infection.  To test whether cells could survive CHIKV infection, tdTomato reporter mice were 

inoculated with media (mock), CHIKV-WT, or CHIKV-3ʹ-Cre and analyzed for the presence of 

tdTomato+ cells at time points in the chronic phase.  Notably, tdTomato+ cells were observed in 

the ipsilateral foot 28 dpi with CHIKV-3ʹ-Cre, but not in C57BL/6 or reporter mice that were mock-

infected or infected with CHIKV-WT or UV-inactivated CHIKV-3ʹ-Cre (Figure 2.4A-B, Figure 

S2.5A).  Infection with CHIKV-5ʹ-Cre infection also resulted in tdTomato+ cells in the ipsilateral 

foot, but to a much lower level than CHIKV-3ʹ-Cre (Figure S2.5B-D).  tdTomato+ cells were 

detected up to at least 112 days (16 weeks) after infection with CHIKV-3ʹ-Cre (Figure 2.4C).  

 Closer examination of ipsilateral feet infected with CHIKV-3ʹ-Cre revealed that the majority 

of tdTomato+ cells appeared to be concentrated in the skeletal muscle and in the dermal layer of 

the skin (Figure 2.4A).  In the muscle, the tdTomato+ cells appeared to be a mixture of long, multi-

nucleated myofibers and small, uni-nucleated non-myofiber cells (Figure 2.4A). A high amount 

of tdTomato+ cells were also observed in the dermis of the skin. Other connective tissues such as 

bone, synovium, and tendons contained rarer populations of tdTomato+ cells (Figure S2.5E).   

 To define the identity of the tdTomato+ cells, we performed co-staining with a variety of 

cell specific markers. Since the majority of the tdTomato+ cells were localized to the muscle and 

the dermis we focused our analysis on these two areas.  In the muscle, the long multi-nucleated, 

striated cells that histologically were consistent with striated muscle fibers co-stained with 

sarcomeric alpha actinin (SAA), a microfilament protein that attaches actin filaments to the Z-
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discs in myofibers and exhibits a striated pattern (Figure 2.5A), confirming that these tdTomato+ 

cells are skeletal muscle cells.   

 Within the muscle we also observed a subset of tdTomato+ cells that were small, uni-

nucleated, and negative for SAA staining. CHIKV is known to infected fibroblasts and the 

morphology of these cells was consistent with fibroblasts.  Although there is no specific marker 

for fibroblasts, these tdTomato+ cells co-stained for vimentin, an intermediate filament that is 

highly expressed in fibroblasts.  In the dermis of the skin, many of the tdTomato+ cells also co-

stained strongly with vimentin (Figure 2.5A). Some of the tdTomato+ cells in the skin or muscle 

also co-stained with CD44, CD29, or CD105, additional fibroblast markers (Figure 2.5A, Figure 

S2.6).  

 As these mesenchymal markers can be expressed in other cell types, sections also were 

stained with CD31 (endothelial cell marker), CD45 (hematopoietic cell marker), or smooth muscle 

actin (SMA, myofibroblast and smooth muscle marker). tdTomato+ cells in the skin and muscle 

did not strongly co-stain with these markers, suggesting that these tdTomato+ fibroblast-like cells 

are not immune cells, endothelial cells, or smooth muscle cells (Figure 2.5B). A small subset of 

tdTomato+ cells in the skin also co-stained with beta III tubulin (Figure S2.6). These cells could 

be part of nerve fibers [153] or fibroblasts with stem cell characteristics that can become 

neuroectodermal cells [154,155].  Co-staining demonstrates that many of the tdTomato+ cells 

appear to be myofibers and dermal and muscle fibroblasts. 

2.3.5 Anti-Mxra8 treatment preferentially reduces fibroblasts 

Mxra8 is a cell adhesion molecule that was described as an entry receptor for multiple 

arthritogenic alphaviruses.  Treatment with anti-Mxra8 monoclonal antibodies (mAbs) reduced 

CHIKV infection and foot swelling at 3 dpi during acute disease [38]. We assessed the impact of 

Mxra8 blockade on the establishment of chronic disease and the persistence of infected cells 
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after acute infection. tdTomato reporter mice were treated with either isotype control antibody or 

with anti-Mxra8 mAbs 12 hours prior to infection and then at 4, 8, 12, 16, 20, and 24 dpi.  Mice 

treated with anti-Mxra8 mAbs showed a significant reduction (73% decrease) in persistent viral 

RNA detected in the ipsilateral ankle 28 dpi compared to the isotype control mAb treated mice 

as judged by RT-qPCR (Figure 2.6A).  

Consistent with this data, the anti-Mxra8 treated mice had significantly reduced numbers 

(75% decrease) of tdTomato+ cells in the ipsilateral ankle 28 days after infection as compared to 

the isotype control (Figure 2.6B-C). Quantification of cell co-staining demonstrated that the 

most significant reductions with anti-Mxra8 treatment were observed in CD29+ fibroblasts in the 

muscle and skin (Figure 2.6D), with an 89% and 78% decrease, respectively. Anti-Mxra8 

treatment also reduced the number of tdTomato+ SAA+ myofibers by 57%, thus to a lesser 

extent than fibroblasts (Figure 2.6E). As such, anti-Mxra8 treatment perturbed the distribution of 

tdTomato+ cell types in the muscle, with a higher percentage of remaining tdTomato+ cells 

staining for SAA than for CD29 in the muscle (Figure 2.6F). Anti-Mxra8 treatment thus reduced 

the amount of persistent viral RNA and overall numbers and distribution of tdTomato+ cells in 

musculoskeletal tissues during the chronic phase. 

2.4 Discussion 

CHIKV causes a debilitating acute disease that results in chronic arthralgias and myalgias 

in a significant subset of patients. The mechanism of this chronic CHIKV pathogenesis is unclear 

but may be related to persistent viral RNA in musculoskeletal tissues. To begin to identify the cells 

that contribute to chronic pathogenesis, we created a recombinant CHIKV that expresses Cre 

recombinase and permanently marks infected cells in reporter mice. Using this tool, we provide 

evidence that a subset of cells infected with CHIKV can survive infection.  
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Previous reports have used immunofluorescence microscopy, immunohistochemistry, or 

RNA quantification tools to detect CHIKV antigen or RNA in animal and patient cells at time points 

in the chronic phase of disease [54,56,61,113]. However, CHIKV antigen-positive cells are 

reported to be rare in these samples from the subacute or convalescent phase, likely owing to the 

insensitivity of these techniques. Our reporter virus system constitutively marks cells that were 

once productively infected as opposed to those which acquired antigen by passive engulfment.  

We constructed two variants of the CHIKV-Cre construct, inserting the Cre recombinase 

gene into the CHIKV genome through introduction of a second subgenomic promoter, either in 

between the structural and non-structural genes (CHIKV-5ʹ-Cre) or at the 3ʹ end of the genome 

(CHIKV-3ʹ-Cre). As has been reported previously with CHIKV-GFP clones [135,136], the 

introduction of Cre recombinase resulted in mild attenuation of both viruses. However, the CHIKV-

Cre viruses retained sufficient virulence to infect targets of CHIKV replication (fibroblasts and 

myoblasts) and induce acute swelling and histopathology that was comparable to CHIKV-WT. 

The CHIKV-Cre viruses also established chronic disease resulting in persistence of viral RNA, 

chronic myositis, and synovial inflammation. From our more detailed studies, we used the CHIKV-

3ʹ-Cre rather than CHIKV-5ʹ-Cre, as certain aspects of CHIKV-3ʹ-Cre infection more closely 

resembled CHIKV-WT infection. For example, the ratio of E1:nsP1 in the first seven days of 

infection was more similar between CHIKV-3ʹ-Cre and CHIKV-WT than with CHIKV-5ʹ-Cre. This 

difference is likely because the E1 gene is under the replicative direction of the subgenomic 

promoters; the internal genomic structure of CHIKV-3ʹ-Cre is identical to CHIKV-WT in contrast 

to CHIKV-5ʹ-Cre. 

Using CHIKV-Cre viruses and tdTomato reporter mice, we also show that, like viral RNA, 

tdTomato+ cells can be detected in the ankle for at least 112 days (16 weeks) after infection. One 

limitation of our CHIKV-Cre reporter mouse system is that it cannot distinguish when during 

infection a cell is marked. We favor the hypothesis that cells are infected during the first week of 
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infection, survive acute infection without lysing, and persist for the lifetime of the cell. The 

infectious viral titers and E1:nsP1 ratios support this idea that CHIKV is only actively replicating 

during the acute phase of infection. Another scenario is that some tdTomato+ cells may arise as 

daughter cells from mitotic replication of directly infected tdTomato+ cells; while these daughter 

cells were not themselves infected, they may still retain viral RNA or an altered transcriptome. A 

third hypothesis is that tdTomato+ cells arise throughout acute and chronic time points via 

undetectable levels of replicating virus. It is also a possibility that all three scenarios occur in our 

reporter mice, perhaps at different levels in various cell types.      

Using our CHIKV-3ʹ-Cre and tdTomato reporter mouse system, we sought to identify the 

cell types targeted by CHIKV that persist into the chronic phase. In the acute phase, CHIKV has 

been shown to acutely infect a vast array of cell types, including fibroblasts, synoviocytes, 

macrophages, skeletal muscle fibers, satellite cells, osteoblasts, endothelium, keratinocytes, and 

neurons [29,42,55,61]. In vitro infections with many of these cell types exhibit high levels of 

cytopathic effects and cell death [52,60]. Immunofluorescence analysis using our reporter mice 

shows that the persistent tdTomato+ cells are predominantly a mixture of SAA+ skeletal myofibers 

and vimentin+ CD44+ CD29+ CD105+ cells that are likely mesenchymal cells such as fibroblasts, 

both of which are cell types reported be permissive to CHIKV infection [57,156].  

Not all cells known to be infected by CHIKV in the acute phase were apparent in our 

analysis in the chronic phase. Few cells in the synovial membrane were tdTomato+, even though 

mild synovial inflammation was present at chronic time points as has been previously reported 

[117,120]. During the acute stage of infection, we could detect staining for viral RNA in the 

synovium; however, the synovial staining was much less pronounced than in the muscle or skin 

for both CHIKV-WT and CHIKV-3ʹ-Cre. These results may indicate that synovial cells are not 

infected in large numbers in vivo, or more likely, given synovial fibroblasts’ permissiveness to 

CHIKV infection in vitro, many synovial cells are infected but do not survive acute, lytic infection. 
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These results could explain why previous efforts to detect viral components in patient samples at 

chronic time points have generally been unsuccessful as they have focused on synovial fluid 

analysis and occasionally synovial tissue, but rarely skin or muscle samples.  

In addition to a paucity of tdTomato+ synovial cells, few tdTomato+ cells were associated 

with the bone or other connective tissues like tendons and ligaments. A small number of 

tdTomato+ cells were sometimes found associated with the periosteum, which could represent a 

population of fibroblasts or osteoblasts.  Previous reports have suggested that acute infection of 

osteoblasts can perturb osteoclast function and can lead to chronic histological damage 

[157,158], which is not precluded by our results as the osteoblasts may accomplish such 

outcomes while still succumbing to lytic infection. 

Additional cell types that have been linked to chronic pathogenesis were not detected in 

our mice with CHIKV-3ʹ-Cre. Endothelial cells or macrophages reportedly contain CHIKV antigens 

during chronic infection in humans, macaques, or mice [54,56,113]. Some reports have also 

suggested that hematopoietic cells such as monocytes or macrophages can be directly infected 

by CHIKV [42,59]. However, the vast majority of tdTomato+ cells were CD31- and CD45-, which 

is consistent with previous reports examining acute CHIKV staining in skin samples [58]. Although 

further study is warranted, these cell types may not survive CHIKV infection, they may be poorly 

infected by CHIKV (not enough to induce sufficient Cre recombinase), or they may not be 

productively infected and instead phagocytose viral antigen from adjacent infected cells. 

We also explored how Mxra8 blockade affected the tropism of CHIKV in the chronic stage 

of pathogenesis. Mxra8 was recently discovered as a host entry receptor for several arthritogenic 

alphaviruses including CHIKV, and its blockade reduced acute viral load both in vitro and in vivo 

[38]. In our reporter mice, anti-Mxra8 treatment reduced the viral RNA burden in musculoskeletal 

tissue in the chronic phase. Other CHIKV treatments, such as mAbs against viral envelope 

proteins, have been successful at reducing acute viral loads but have not significantly affected 
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persistence of viral RNA levels [159]. Such results suggest that targeting viral entry early in 

infection could be key to alleviating both acute and chronic symptoms of disease. 

In addition to decreasing chronic RNA levels by 73%, anti-Mxra8 treatment also reduced 

the total number of tdTomato+ by 75%, thus correlating the level of chronic viral RNA and the 

number of persistent tdTomato+ cells in the chronic phase. Such correlative results suggest that 

persistent viral RNA might be contained within the tdTomato+ cells. However, current RNA ISH 

techniques are not sensitive enough to directly visualize CHIKV RNA within tdTomato+ cells at 

this stage. Immunofluorescence analysis revealed that anti-Mxra8 treatment resulted in a 

significant reduction of CD29+ tdTomato+ fibroblast-like cells in the dermis and skeletal muscle. 

Anti-Mxra8 treatment also impacted the abundance of tdTomato+ SAA+ myofibers, although to a 

lesser extent than fibroblasts, suggesting that another host receptor may exist on myofibers for 

CHIKV-LR, the strain used for the present studies. Such results underline the fact that CHIKV 

likely utilizes multiple host entry receptors in addition to Mxra8, making potential treatments even 

more difficult to target. 

Indeed, Mxra8 was shown to be a stronger determinant of CHIKV infection of Asian than 

ECSA strains [38], such as the La Réunion strain used for this study. Thus, it could be informative 

to repeat these studies with other CHIKV lineage strains that express Cre recombinase. Other 

strains or viruses may persist in distinct populations of tdTomato+ cells and or demonstrate 

differential susceptibility to treatments such as anti-Mxra8 treatment. The CHIKV-3ʹ-Cre and 

tdTomato model thus also represents a method of testing anti-viral treatments for their efficacy at 

chronic timepoints, supplemented with viral RNA analysis.  

A significant unanswered question in CHIKV disease pathogenesis is the mechanistic 

driving force of symptoms during the chronic phase.  Replicating virus has not been detected at 

chronic time points, yet chronic inflammation is clearly present in tissue, serum, and synovial 

samples, both histologically and transcriptionally [37,160,161].  While chronic viral RNA can be 
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detected, to date it has been difficult to identify the cells harboring this RNA. Our model provides 

insight into these questions by identifying the cell types that have been productively infected by 

CHIKV and are present in the chronic phase. A limitation of the model is that we cannot be certain 

at what stage a given tdTomato+ cell became infected with CHIKV. Ultimately, by combining 

reporter gene expression with flow cytometric cell sorting and single cell RNA sequencing 

analysis, we may be able to determine the transcriptional programs and inflammatory states of 

these marked cells in the acute and chronic phase of CHIKV disease. 

In conclusion, our CHIKV-3ʹ-Cre and tdTomato system provides further evidence for key 

musculoskeletal cells as targets of CHIKV infection in the acute and chronic stages of disease. 

How exactly these cells contribute to pathogenesis remains to be elucidated. Uncovering the 

mechanisms for long-term pathogenesis could aid in the development of treatments and 

preventative measures for this incapacitating virally-induced chronic arthritis. 

2.5 Materials and Methods 

2.5.1 Viruses 

 The wild-type strain of chikungunya virus (denoted CHIKV-WT) used for these studies 

is LR2006 OPY1, an ECSA strain of CHIKV isolated from the La Réunion Island outbreak [135]. 

This strain has been characterized by many groups and used extensively by our lab 

[17,56,57,64,66]. Plasmids for CHIKV-5ʹ-GFP and CHIKV-3ʹ-GFP were obtained from Stephen 

Higgs (Kansas State University), and the Cre recombinase gene, with a nuclear localization signal 

(NLS) sequence, was substituted for GFP in both viruses [135,136]. To produce the CHIKV-5ʹ-

Cre plasmid, Cre was PCR amplified from a Cre-containing plasmid with a forward primer (FW, 

containing an AscI restriction enzyme recognition site and homology to the 5ʹ end of the Cre gene) 

and a reverse primer (RV, containing a PmeI site and homology to the 3ʹ end of the Cre gene). 

This amplicon was inserted into a CHIKV-5ʹ-GFP plasmid linearized with AscI and PmeI. To 
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produce the CHIKV-3ʹ-Cre plasmid, Cre was PCR amplified from the CHIKV-5ʹ-Cre plasmid using 

AscI-Cre FW and BsmBI-Cre RV primers. The 3ʹ UTR was also PCR amplified from the CHIKV-

3ʹ-GFP virus using BsmBI-3ʹUTR FW and NotI-3ʹUTR RV primers. Both PCR fragments were 

simultaneously inserted into a CHIKV-3ʹ-GFP plasmid linearized with AscI and NotI. The infectious 

clone plasmids for CHIKV-WT, CHIKV-3ʹ-Cre, and CHIKV-5ʹ-Cre were sequenced, and they 

exhibited 100% identity with reference and predicted sequences.  

 To produce recombinant viral stocks, the infectious clone plasmids were linearized with 

NotI, and RNA was produced using a SP6 in vitro RNA transcription kit (Agilent, Promega, 

BioLabs). The RNA was transfected into baby hamster kidney 21 cells (BHK-21 cells) using 

Lipofectamine 2000 (Invitrogen) and CD1 media without antibiotics. After 48 hours, the 

supernatant was collected, centrifuged at 150-300 g to clear cell debris, aliquoted, and stored at 

-80°C. Titers of the viral stocks were regularly assessed by plaque assay as previously described 

[125]. All cell and animal work with live CHIKV was performed in a BSL3 facility and followed strict 

guidelines established by the Environmental Health and Safety committee at Washington 

University School of Medicine.  

2.5.2 Mice 

 The following strains of mice were obtained from the Jackson Laboratory: C57BL/6 (JAX 

Stock No: 000664; C57BL/6J) and tdTomato reporter mice (JAX Stock No: 007914; B6.Cg-

Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J). Mice were bred and maintained as congenic colonies at 

Washington University School of Medicine animal facilities in accordance with all federal and 

University guidelines. C57BL/6 mice were primarily used for viral titer and viral RNA analysis, 

whereas the tdTomato reporter mice were used for histological analysis. For all experiments, mice 

were weight- and sex-matched prior to infection; both sexes were used. For mouse studies, the 

principles of good laboratory animal care were adhered to in strict accordance with NIH 
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recommendations [162]. All animal protocols were approved by the Animal Studies Committee at 

Washington University. Every effort was made to minimize animal suffering. 

2.5.3 Cells and Media 

 Murine embryonic fibroblasts (MEFs) were generated from C57BL/6 and tdTomato 

reporter mice, and they were grown at 37°C and 5% CO2 in CD10 media: Dulbecco’s modified 

Eagle medium (DMEM) (Corning) supplemented with 10% fetal bovine serum (FBS) (Biowest), 

1% penicillin-streptomycin (P/S; Corning), 1% L-glutamine (Glu; Corning), 1% non-essential 

amino acids (NEAA; Corning), and 1% HEPES (Corning). For some experiments CD1 media 

(CD10 media with only 1% FBS) was used. MEFs were used prior to passage number 5 for 

these studies. The C2C12 myoblast cell line was obtained from ATCC (ATCC CRL1772) and 

cultured using the same conditions as the MEFs. 

2.5.4 Viral Growth Curves 

 MEFs and C2C12 myoblasts were grown as described above. For viral growth curves, 

MEFs were plated at 2 x 104 cells/well and C2C12s at 1 x 104 cells/well in 96-well tissue culture-

treated plates and allowed to adhere overnight. Cells were rinsed with CD1 media: DMEM 

containing 1% FBS, 1% P/S, 1% Glu, 1% NEAA, and 1% HEPES.  Diluted virus was then added 

at the indicated multiplicity of infection (MOI) and allowed to adhere for 1 hour. The input virus 

was then removed, the cells were washed once with CD1, and fresh CD1 media was added. At 

each time point, a plate was frozen at -80°C and underwent three freeze-thaw cycles before 

titers were determined on BHK-21 cells by plaque assay. 

2.5.5 In Vitro Coverslip Studies 

tdTomato reporter MEFs were plated onto collagen type I-treated 22mm glass coverslips 

(Corning) at 4 x 105 cells/well in 6-well tissue culture-treated plates in CD10. If indicated, cells 
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were also concurrently pre-treated with ~100 U IFN-b, and all cells were allowed to adhere to 

the coverslips overnight.  Cells were infected with virus at the indicated MOI, as described 

above. After 48 hours, the supernatant was removed, and the cells were fixed to the coverslips 

with 4% paraformaldehyde (PFA) for at least 10 minutes.  Coverslips were stored in the wells 

with phosphate-buffered solution (PBS) at 4°C until further processing.   

Alternatively, the MEFs were treated with lysed cell debris (CD). Briefly, BHK-21 cells 

were plated at 5 x 105 in tissue culture-treated plates in CD10 and allowed to adhere overnight. 

The cells were infected with CHIKV-3ʹ-Cre at an MOI of 10, and the supernatant was removed 

at 24 hours p.i. Large cellular debris was cleared from these supernatants by centrifugation at 

150-300 g, leaving behind virus and cellular lysate (including virus-produced Cre protein). 

Aliquots of this CD were stored at -80°C. In some instances, virus in these samples was UV-

inactivated using a Stratagene Stratalinker 1800 with two sessions at 500 mJ. 

Coverslips were prepared for microscopy as follows. Coverslips were permeabilized for 

10 min at room temperature (RT, ~23°C) with 0.2% Triton-X in PBST (PBS + 0.1% Tween20), 

washed with PBST, stained with DAPI (100 µg/mL in PBST) for 10 min at RT, washed with 

PBST, mounted onto a glass slide using ProLong Gold (Invitrogen), and allowed to cure 

protected from light at RT overnight. Coverslips were imaged using a Nikon Spinning Disk 

Confocal Microscope, maintained at the Washington University Center for Cellular Imaging 

(WUCCI). For illustration purposes, cells were imaged at 4x or 10x with a single capture using 

the DAPI and RFP channels. For quantification purposes, four random locations were selected 

on each coverslip, and a 4x4 stitched image of 16 adjacent 4x images (15% overlap) was 

produced from each location.   Image files were processed and automatically quantified for cell 

number and tdTomato+ cell count using ImageJ. The nuclei or cells were automatically 

quantified using the Quantify Particles function, with the size being a minimum of 500 pixels2. 

The DAPI+ nucleus count represents the total number of cells per field, and the RFP+ cell count 
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represents the total number of tdTomato+ cells per field. The % of tdTomato+ cells was 

calculated by dividing the total number of tdTomato+ cells per field by the total number of cells 

per field for each image. 

2.5.6 Viral Burden Studies in Animals 

 Four-week old C57BL/6 mice sedated with ketamine were injected subcutaneously with 

106 plaque-forming units (PFU) of virus diluted in 10-30 µL of CD1 without P/S into the left 

(ipsilateral) footpad, between the second and third digits. Swelling of the infected foot was 

monitored daily using digital calipers, by measuring both height and width. For infectious virus 

and viral RNA samples, mice were sedated and sacrificed with ketamine at the indicated time 

point, blood samples were taken by cutting of the inferior vena cava or abdominal aorta, and 5-

10 mL PBS was perfused into heart. Various tissues (spleen, ipsilateral and contralateral ankles 

with toes removed and skin included, and ipsilateral quadriceps muscles) were harvested into 

homogenization bead tubes and stored at -80°C. For infectious virus samples, the bead tubes 

contained 600 µL PBS, were weighed prior to and after addition of tissue sample, and were 

stored on ice until transferred to -80°C; infectious virus titer was determined by plaque assay. 

For viral RNA samples, the bead tubes contained no PBS and were snap frozen in liquid 

nitrogen before being transferred to -80°C; viral RNA levels were determined using RT-qPCR, 

as described below. Alternatively, viral RNA levels could be measured from infectious virus 

samples by isolating RNA from tissue homogenates after 25 µL was removed for a plaque 

assay. Blood samples were allowed to coagulate at RT, samples were spun down at 9,000 g for 

5-10 minutes, and serum was removed into a fresh tube and stored at -80°C. 

 For Mxra8 mAb studies, tdTomato reporter mice were infected with CHIKV-3ʹ-Cre as 

described above. The mice were injected intraperitoneally with 250 ug of Armenian hamster 

isotype control (Bio X Cell # BE0260) or Armenian hamster anti-Mxra-8 mAbs diluted in PBS 
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[38] (125 ug each of 1G11.E6 and 7F1.D8) at 12 hours prior to infection and at 4, 8, 12, 16, 20, 

and 24 dpi. Samples were harvested for RNA or histology as described above. RT-qPCR 

analysis, frozen section slides and quantification, and immunofluorescence was performed as 

described herein. 

2.5.7 Quantitative Real-Time PCR 

 RNA was isolated from Trizol-tissue homogenates using the standard Trziol-chloroform 

extraction protocol and or an RNAeasy mini-prep kit (Qiagen). Isolated RNA was resuspended 

in UltraPure H2O (Ambion) and stored at 4°C overnight or -80°C for long-term storage. Viral 

standards were produced by producing RNA from the infectious clone plasmids as described 

above.  The copy number of the standard was determined by quantifying the sample and 

calculating the copy number using the known ssRNA genome length. A 1:10 dilution series of 

the standard was prepared ranging from ~101 copies to ~109 copies.  RT-qPCR was performed 

on a Bio-Rad CFX machine using the TaqMan™ RNA-to-CT™ 1-Step Kit (Applied 

BiosystemsTM) with a 25 µL total reaction volume per well, 2 uL of RNA sample, and the 

indicated amount of Taqman primers and probe from Integrated DNA Technologies: E1 FW (5ʹ- 

TCG ACG CGC CCT CTT TAA -3ʹ), E1 probe (5ʹ- /56-FAM/ ACC AGC CTG/ ZEN/ CAC CCA 

TTC CTC AGA C/ 3IABkFQ/ -3ʹ), E1 RV (5ʹ- ATC GAA TGC ACC GCA CAC T -3ʹ), nsP1 FW 

(5ʹ- AAA GGG CAA ACT CAG CTT CAC -3ʹ), nsP1 probe (5ʹ-/ 56-FAM/ CGC TGT GAT/ ZEN/ 

ACA GTG GTT TCG TGT G/ 3IABkFQ/ -3ʹ), and nsP1 RV (5ʹ- GCC TGG GCT CAT CGT TAT 

TC -3ʹ). To quantify the Cre copy number, pre-made Enterobacteria phage P1 cyclization 

recombinase FAM Taqman copy number primers/probe were used (ThermoFischer 

Mr00635245_cn), and 1.25 µL of the 20x working stock was used per 25 µL reaction. The 

following PCR cycling protocol was used: 30 minutes at 48°, 10 min at 95°, and 40 cycles of 15 

sec at 95° and 1 min at 60°C. RNA copy number was determined for each sample using the 
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matching RNA standard, and the copy number was normalized to the total µg of RNA for each 

sample (determined by NanoDrop).  

2.5.8 Histology Studies 

 Four-week old tdTomato mice were infected as described above. For histology samples, 

mice were sedated with ketamine and sacrificed at the indicated time point, and 5-10 mL 4% PFA 

was perfused into heart. Various tissues (spleen, ipsilateral and contralateral feet/ankles) were 

harvested and fixed in 4% PFA. After 48 h of immersion fixation, tissues were washed with PBS 

and transferred to BSL2 facilities for further processing. Tissues containing bone (e.g., whole 

foot/ankle samples) were decalcified in 14% acid-free EDTA (VWR) for 14 days. For frozen 

section processing, decalcified tissues and soft tissues (e.g., spleen) were equilibrated overnight 

in 30% sucrose in PBS and then frozen in optimal cutting temperature (OCT) compound (Tissue 

Tek). Samples were then cut with a cryostat at 10 µm for spleens or 30 µm for foot/ankle samples 

onto SuperFrost Plus slides (Fisher). Slides were stored at -20°C until further processing. 

 Frozen section slides were prepared for microscopy by fixing with cold acetone, 

permeabilizing with 0.2% Triton-X in PBST, washing with PBST, and mounting with a No. 1-1/2 

glass coverslip (VWR) using Vectashield containing DAPI (Vector Laboratories H-1200). Slides 

were imaged using a Nikon Spinning Disk Confocal Microscope, maintained at the WUCCI. Whole 

tiled images of the foot and ankle were prepared using the 4x objective and the DAPI, GFP, and 

RFP channels using large-image capture and 15% overlap. Alternatively, frozen section slides 

were processed and imaged using immunofluorescence, as described below. 

 Image files were processed using ImageJ. The total number or tissue-specific number of 

tdTomato+ cells was quantified by eye using manual cell counters in ImageJ or Photoshop; 

counters were blinded to sample identity. The total area of each foot/ankle or tissue was measured 

using ImageJ, and each count of total tdTomato+ cells was normalized to respective area.  
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 Tissues were prepared as described above. For paraffin section processing, decalcified 

tissues were dehydrated using washes of 30% ethanol (EtOH), 50% EtOH, and 70% EtOH. 

Samples were submitted to the Musculoskeletal Research Center for paraffin embedding, 

sectioning, and H&E staining. Histopathologic examination and analysis was performed by a 

pathologist blinded to intervention groups. The presence of acute and/or chronic inflammation 

within the skeletal muscle, synovial tissues, and joint space was noted. The overall severity of 

inflammation was scored as follows: 0 for none, 1 for mild, 2 for moderate, and 3 for severe. 

Representative images were taken using the Zeiss Axio Imager Z2 Fluorescence Microscope with 

ApoTome 2, managed at the WUCCI.  

2.5.9 Immunofluorescence 

 To process for immunofluorescence, frozen section slides were first fixed with cold 

acetone. If indicated for the specific antibody, the samples underwent antigen retrieval using 

antigen unmasking solution (H3300; Vector Laboratories), which was incubated overnight in a 

60°C water bath, protected from light. Samples were then permeabilized with 0.2% Triton-X in 

PBST (PBS + 0.1% Tween 20) and then washed with PBST. Samples were blocked for 1-2 h with 

TSA blocking reagent (Perkin Elmer FP1012). Samples were then incubated overnight at 4°C in 

primary antibody diluted 1:100 in 3% normal goat serum (NGS, Equitech-Bio, Inc.) and 3% bovine 

serum albumin (BSA, Sigma) in PBST. After two washes with PBST, samples were incubated for 

1-2 h at RT in secondary antibody diluted 1:500 in 1% BSA PBST. Samples were washed once 

with PBST, stained with DAPI (100 µg/mL in PBST) for 10 min at RT, washed once with PBST, 

and a glass coverslip was mounted with ProLong Gold and slides were allowed to cure protected 

from light at RT overnight. Slides were imaged using a Nikon Spinning Disk Confocal Microscope 

or a Nikon A1Rsi Confocal Microscope, both maintained at the WUCCI. For illustration purposes, 
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cells were imaged at 20x or 100x with a single capture using the DAPI, GFP, RFP, and or AF647 

channels. 

 The following primary antibodies were used for these studies with antigen retrieval: anti-

vimentin (Abcam, clone EPR3776); anti-beta III tubulin (Abcam, clone EP1569Y); anti-CD45 

(Abcam, polyclonal ab10558); anti-CD44 (Abcam, clone EPR18668); anti-CD29 (eBioscience, 

clone KMI6). The following antibodies did not require antigen retrieval: anti-CD31 (BD 

Biosciences, clone MEC 13.3); anti-SAA (Abcam, clone EA-53); anti-105 (eBioscience, clone 

MJ7/18). 

2.5.10  RNA In-Situ Hybridization 

Paraffin sections were processed using the provided RNAscope reagents and protocols 

from Advanced Cell Diagnostics. Slides were first prepared as directed for indicated in formalin-

fixed paraffin-embedded (FFPE) sample (ACD Document Number 322452). The prepared 

samples were then exposed to RNAscope® Probe- V-CHIKV-sp (ACD) or negative control probe 

(ACD). The probed samples were then detected following the RNAscope® 2.5 HD Detection 

Reagent – BROWN protocol (ACD Document Number 322310), with the only modification being 

that slides were washed via pipetting the wash buffer onto the slides instead of submerging the 

slides into wash buffer. Representative images were taken using the Zeiss Axio Imager Z2 

Fluorescence Microscope with ApoTome 2, managed at the WUCCI. 

2.5.11  Statistical Analysis 

All data were analyzed using the Prism software, version 7 (GraphPad), as detailed in the 

figure captions. The following statistical tests were used: unpaired t test, Mann-Whitney test, 

ordinary one-way analysis of variance (ANOVA), ordinary two-way ANOVA, and two-way 

repeated-measures ANOVA. The following post-tests for multiple comparisons were also used: 

Bonferroni’s post-test, Dunnett’s post-test, Tukey’s post-test, and Sidak’s post-test. All error bars 
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indicate standard error of the mean (SEM); if error bars are not visible, then they are shorter than 

the height of the symbol. Asterisks indicate statistical significance, with only relevant comparisons 

shown (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001). 
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2.6 Figures 

 
Figure 2.1: CHIKV-3ʹ-Cre marks reporter cells in vitro and productively infects muscle 
cells and fibroblasts 

(A) Schematic of CHIKV-3ʹ-Cre and tdTomato reporter mouse system. (B-C) tdTomato MEFs 
were analyzed 2 days after mock infection or infection at an MOI of 10 with CHIKV-WT or CHIKV-
3ʹ-Cre. (B) Representative images of CHIKV-WT or CHIKV-3ʹ-Cre. Blue shows DAPI staining, and 
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red is tdTomato; scale bar represents 250 µm. (C) The percentage of total DAPI+ cells that were 
tdTomato+ was quantified by confocal microscopy for tdTomato MEFs that were mock-infected 
(mock) or infected at an MOI of 10 with CHIKV-WT (WT), CHIKV-3ʹ-Cre (3ʹ-Cre), CHIKV-3ʹ-Cre 
pretreated with ~100 U IFN-b (3ʹ-Cre + IFN-B), CHIKV-3ʹ-Cre cell debris (3ʹ-Cre CD), or CHIKV-
3ʹ-Cre cell debris that was UV-inactivated (3ʹ-Cre CD + UV) as described in the Methods Section 
2.5.5. (D) Growth curves of C2C12 myoblasts or (E) BL/6 MEFs infected with CHIKV-WT (green 
circles) or CHIKV-3ʹ-Cre (red triangles) at an MOI of 1. Data for each condition in C were pooled 
from 2-3 independent experiments; data in C were statistically analyzed with an ordinary one-way 
ANOVA with Tukey’s post-test. Each curve in D and E represents 8 total replicates pooled from 
2 independent experiments at each time point; data were then log-transformed and statistically 
analyzed with a two-way ANOVA using Sidak's post-test. All error bars indicate mean with 
standard error of the mean (SEM); if error bars are not visible, then they are shorter than the 
height of the symbol. Asterisks indicate statistical significance, with only relevant comparisons 
shown (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001). 
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Figure 2.2: CHIKV-3ʹ-Cre retains its pathogenic properties to induce acute arthritis 

(A) Swelling curves from the ipsilateral feet of mice infected with 106 PFU of CHIKV-WT (green 
circles) or 106 PFU of CHIKV-3ʹ-Cre (red triangles). Data were pooled from two independent 
experiments with n=10 for each virus. (B) Levels of infectious virus in the ipsilateral ankle during 
acute infection as measured by plaque assay, normalized to gram of tissue. Each time point for 
each virus represents 5-7 mice and were pooled from at least 2 independent experiments. (C-D) 
Mice were mock-infected (mock, blue diamonds) or infected with 106 PFU CHIKV-WT (WT, green 
circles) or 106 PFU CHIKV-3ʹ-Cre (3ʹ-Cre, red triangles), and ipsilateral ankles were taken for H&E 
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histology at 7 dpi. (C) Ankles were scored for overall histological damage. (D) Representative 
images of the skin, muscle, and synovium. The skin and associated tissue is divided (from left to 
right) into muscle (M), hypodermis (H), dermis (D), and epidermis (E). The muscle sections are 
divided into tendon (T) and muscle (M). The synovium sections show synovium (S) and bone (B), 
with asterisks indicating synovial inflammation and arrows indicating immune infiltrates into the 
synovial cavity. Samples were pooled from two independent experiments with five mice for each 
condition. The dashed line for B represents limit of detection, and data in B were log-transformed 
prior to analysis. Data in A were statistically analyzed with a two-way repeated measures (RM) 
ANOVA with Bonferroni’s post-test. Data in B were statistically analyzed with an ordinary two-way 
ANOVA with Bonferroni’s post-test. Data in C were statistically analyzed with an ordinary one-
way ANOVA with Tukey’s post-test. Scale bars in D represent 100 µm. All error bars indicate 
SEM. Asterisks indicate statistical significance, with only relevant comparisons shown (*, P < 0.05; 
**, P < 0.01; ***, P < 0.001; ****, P < 0.0001). 
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Figure 2.3: CHIKV-3ʹ-Cre retains its pathogenic properties to induce chronic disease 

(A-B) Mice were mock-infected (mock, blue diamonds) or inoculated with 106 PFU CHIKV-WT 
(WT, green circles) or 106 PFU CHIKV-3ʹ-Cre (3ʹ-Cre, red triangles), and ipsilateral ankles were 
taken for H&E histology at 28 dpi. (A) Representative images of the skin, muscle, and 
synovium. The skin and associated tissue is divided (from left to right) into muscle (M), 
hypodermis (H), dermis (D), and epidermis (E). The muscle sections are divided into muscle (M) 
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and tendon (T), with black ovals around focal patches of cellular filtrates. The synovium sections 
show synovium (S) and bone (B), with asterisks indicating synovial inflammation and 
proliferation. (B) Ankles were scored for overall histological damage. Samples were pooled from 
two independent experiments with five mice for each condition. (C-D) The ipsilateral ankles of 
mice were subjected to RT-qPCR to measure viral E1 RNA copy number, normalized to total µg 
of RNA isolated for each sample. (C) Mice were mock-infected (mock) or inoculated with 106 
CHIKV-WT (WT), 106 CHIKV-3ʹ-Cre (3ʹ Cre) or UV-inactivated dose of 106 CHIKV-3ʹ-Cre (UV 3ʹ-
Cre), and viral E1 RNA levels in the ipsilateral ankles were assayed at 28 dpi. Data were pooled 
from at least 2 independent experiments. (D) Viral E1 RNA levels were measured in the 
ipsilateral ankles of mice infected with 106 PFU of CHIKV-WT (green circles) or 106 PFU of 
CHIKV-3ʹ-Cre (red triangles) at time points ranging from 0 to 112 dpi. (E) The ratio of viral E1 
RNA to viral nsP1 RNA in the same samples as D. For D-E, each time point for each virus 
represents 5-20 mice and was pooled from at least 2 independent experiments. The dashed line 
for C and D represents limit of detection; for E, the dotted line represents an E1: nsP1 ratio of 1. 
Data in C and D were log-transformed prior to analysis. Data in B and C were each statistically 
analyzed with an ordinary one-way ANOVA using Tukey’s post-test, with only relevant 
comparisons shown. Data in D and E were statistically analyzed with an ordinary two-way 
ANOVA using Bonferroni’s post-test. All error bars indicate SEM. Asterisks indicate statistical 
significance, with only relevant comparisons shown (*, P < 0.05; **, P < 0.01; ***, P < 0.001; 
****, P < 0.0001). 
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Figure 2.4: Cells are marked by CHIKV-3ʹ-Cre at chronic time points 

tdTomato mice were mock-infected (mock, blue circles) or inoculated with 106 PFU CHIKV-WT 
(WT, green circles), 106 PFU CHIKV-3ʹ-Cre (3ʹ-Cre, red triangles), or UV-inactivated 106 PFU 
CHIKV-3ʹ-Cre (UV 3ʹ-Cre, open red triangles), and ipsilateral ankles were taken for frozen 
sections at 28 dpi. (A) A representative image of a whole ankle and foot 28 dpi with CHIKV-3ʹ-
Cre. Blue shows DAPI staining, and red is tdTomato; scale bar represents 1000 µm. Higher 
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magnification inset images of skin and muscle from mice infected with CHIKV-3ʹ-Cre. Scale bars 
represent 100 µm; the skin is divided into dermis (D) and epidermis (E). (B) The total number of 
tdTomato+ cells from was quantified at 28 dpi and normalized to ankle area as described in the 
Methods Section 2.5.8. (C) Time course of tdTomato mice infected with 3ʹ-Cre from 1 to 112 dpi. 
Data from B and C were pooled from at least two independent experiments. B was statistically 
analyzed with an ordinary one-way ANOVA using Sidak’s post-test. All error bars indicate SEM. 
Asterisks indicate statistical significance, with only relevant comparisons shown (*, P < 0.05; **, 
P < 0.01; ***, P < 0.001; ****, P < 0.0001). 
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Figure 2.5: Immunofluorescence profiling of tdTomato+ cells in the skin and muscle 

tdTomato mice were infected with 106 PFU CHIKV-3ʹ-Cre (3ʹ-Cre), and ipsilateral ankles/feet were 
taken for frozen sections at 28 dpi. (A) Frozen sections were stained for SAA+ myofibers, 
vimentin+ fibroblasts, CD44+ fibroblasts, or CD29+ fibroblasts, with the corresponding isotype 
control shown below each co-stain. (B) Frozen sections were stained for CD31+ endothelium, 
CD45+ hematopoietic cells, or SMA+ smooth muscle cells, with the corresponding isotype control 
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shown below each co-stain. Blue shows DAPI staining, red is tdTomato, and green is the indicated 
co-staining marker; scale bars represent 10 or 50 µm. Images are representative of 2-3 
experiments with 3-5 mice reviewed for each co-stain. 
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Figure 2.6: Mice treated with anti-Mxra8 antibodies exhibit reduced levels of chronic viral 
RNA and a reduced number of persistent tdTomato+ cells 

tdTomato mice were infected with 106 PFU CHIKV-3ʹ-Cre and treated with anti-Mxra8 mAbs (anti-
Mxra8; red squares) or an isotype control (isotype; green circles). (A) At 28 dpi, mice were 
harvested for quantification of CHIKV E1 RNA in the ipsilateral ankle; data represent three 
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independent experiments. (B-F) Ipsilateral ankles/feet were harvested for histological analysis at 
28 dpi; data represent two independent experiments. (B) Total number of tdTomato+ cells in 
ipsilateral ankles/feet. (C) Representative images of ipsilateral feet/ankles, with higher 
magnifications of dotted squares inset to the right. Blue shows DAPI staining, and red is tdTomato; 
scale bars represent 100 or 500 µm as indicated.  (D-F) tdTomato+ cells were quantified by 
morphology and co-staining as described in the Methods Section 2.5.9: (D) CD29+ muscle and 
skin cells, and (E) SAA+ myofibers. (F) Percentage distribution of cell types for each treatment. 
Data in A were normalized to total µg of RNA isolated for each sample and then log-transformed. 
Data in A were analyzed with a Mann-Whitney test. Data in B and E were statistically analyzed 
with an un-paired t test. Data in D and F were statistically analyzed with a two-way ANOVA using 
Sidak’s post-test. All error bars indicate SEM. Asterisks indicate statistical significance, with only 
relevant comparisons shown (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001). 
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Figure S2.1: CHIKV-5ʹ-Cre and CHIKV-3ʹ-Cre mark reporter cells in vitro and grow 
productively in muscle cells and fibroblasts 
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(A) Genome maps of the three CHIKV clones were used in these studies: CHIKV-WT, CHIKV-3ʹ-
Cre, and CHIKV-5ʹ-Cre. (B) tdTomato MEFs plated in 96-well plates (2.5*104 cells/well) were 
infected with CHIKV-5ʹ-Cre (purple inverted triangles) or CHIKV-3ʹ-Cre (red triangles) at an MOI 
of 0.1, 1.0, or 3.0. (C) tdTomato MEFs plated in 96-well plates (2.5*104 cells/well) and were mock-
infected (mock) or infected at an MOI of 3.0 with CHIKV-WT (WT), CHIKV-5ʹ-Cre (5ʹ Cre), CHIKV-
5ʹ-Cre pretreated with ~100 U IFN-b (5ʹ Cre + IFN-B), CHIKV-5ʹ-Cre cell debris (5ʹ Cre CD), or 
CHIKV-5ʹ-Cre cell debris that was UV-inactivated (5ʹ-Cre CD + UV). (D) Growth curves of C2C12 
myoblasts or (E) C57BL/6 MEFs infected with CHIKV-WT (green circles), CHIKV-5ʹ-Cre (purple 
inverted triangles), or CHIKV-3ʹ-Cre (red triangles) at an MOI of 0.05. The number of tdTomato+ 
cells per well in B and C were quantified at 2 dpi by eye using a fluorescent microscope. Data in 
B were analyzed with a two-way ANOVA using Sidak's post-test. Data in C were statistically 
analyzed with an ordinary one-way ANOVA using Sidak’s post-test. Data in D and E were log-
transformed and statistically analyzed with a two-way ANOVA using Dunnett’s post-test. All error 
bars indicate SEM. Asterisks indicate statistical significance, with only relevant comparisons 
shown (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001). 
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Figure S2.2: CHIKV-5ʹ-Cre and CHIKV-3ʹ-Cre replicate similarly to CHIKV-WT in a mouse 
model, with attenuation in sites of dissemination 
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(A) Swelling curves from the ipsilateral footpads of mice infected with 106 PFU of CHIKV-WT 
(open green circles; also shown in Figure 2.2A) or 106 PFU of CHIKV-5ʹ-Cre (purple). Data were 
pooled from two independent experiments with n=10 for each virus. (B-F) Levels of infectious 
virus in mice infected with 106 PFU of CHIKV-WT (solid green circles; or open green circles in 
S2B also shown in Figure 2.2B), 106 PFU of CHIKV-5ʹ-Cre (purple inverted triangles), or 106 PFU 
of CHIKV-3ʹ-Cre (red triangles) in (B) ipsilateral ankle, (C) serum, (D) ipsilateral quadriceps 
muscle, (E) the contralateral ankle, or (F) spleen. For B-F, each time point for each virus and 
organ represents 5-7 mice and were pooled from at least 2 independent experiments. Infectious 
levels during acute infection was measured by plaque assay, normalized to gram of tissue, and 
then log-transformed. The dashed line for B-F represents limit of detection for the plaque assay. 
Data in B-F were log-transformed prior to analysis. Data in A were statistically analyzed with a 
two-way repeated measures (RM) ANOVA with Bonferroni’s post-test, and data in B-F were 
statistically analyzed with an ordinary two-way ANOVA. Sidak's post-test was used for A, and B; 
Dunnett's post-test comparing WT as the control column was used for C-F. All error bars indicate 
SEM. Asterisks indicate statistical significance, with only relevant comparisons shown (*, P < 0.05; 
**, P < 0.01; ***, P < 0.001; ****, P < 0.0001). 
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Figure S2.3: CHIKV-5ʹ-Cre and CHIKV-3ʹ-Cre retain their pathogenic properties to induce 
acute arthritis 
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(A) Mice were mock infected or infected with 106 PFU CHIKV-WT (WT) or 106 PFU CHIKV-3ʹ-Cre 
(3ʹ-Cre), and ipsilateral ankles were taken for CHIKV ISH at 2 dpi. Paraffin sections were stained 
with a probe for E1 CHIKV-LR RNA. Representative images are shown of the skin, muscle, and 
synovium. Scale bars represent 100 µm. Represents two independent experiments with 6 mice 
per virus and 2 mock-infected mice. (B-C) Mice were mock-infected (mock, blue diamonds) or 
infected with 106 PFU CHIKV-WT (WT, green circles) or 106 PFU CHIKV-5ʹ-Cre (5ʹ-Cre, purple 
inverted triangles), and ipsilateral ankles were taken for H&E histology at 7 dpi. (B) 
Representative images are shown of the skin, muscle, and synovium from CHIKV-5ʹ-Cre samples; 
scale bar represents 100 µm. The skin and associated tissue is divided (from left to right) into 
muscle (M), hypodermis (H), dermis (D), and epidermis (E). The muscle section is divided into 
tendon (T) and muscle (M). The synovium section shows synovium (S) and bone (B), with 
asterisks indicating synovial inflammation and arrows indicating immune infiltrates into the 
synovial cavity. (C) Ankles from B were scored for overall histological damage, compared to 
mock-infected and CHIKV-WT-infected samples. Open symbols for mock and WT indicate that 
these data are also shown in the corresponding Figure 2.2C graph. Samples were pooled from 
two independent experiments. Data in C were statistically analyzed with a one-way ANOVA with 
Tukey's post-test. All error bars indicate SEM. Asterisks indicate statistical significance, with only 
relevant comparisons shown (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001). 
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Figure S2.4: CHIKV-5ʹ-Cre and CHIKV-3ʹ-Cre retain their pathogenic properties to induce 
chronic disease 

(A-B) Mice were mock-infected (mock, blue diamonds) or infected with 106 PFU CHIKV-WT (WT, 
green circles) or 106 PFU CHIKV-5ʹ-Cre (5ʹ-Cre, purple inverted triangles), and ipsilateral ankles 
were taken for H&E histology at 28 dpi. (A) Representative images are shown of the skin, muscle, 
and synovium from CHIKV-5ʹ-Cre samples; scale bar represents 100 µm. The skin and associated 
tissue is divided (from left to right) into muscle (M), hypodermis (H), dermis (D), and epidermis 



72 

(E). The muscle section is divided into muscle (M) and tendon (T), with black ovals around focal 
patches of cellular filtrates. The synovium section shows synovium (S) and bone (B), with 
asterisks indicating synovial inflammation and proliferation. (B) Ankles from A were scored for 
overall histological damage, compared to mock-infected and CHIKV-WT-infected samples. Open 
symbols for mock and WT indicate that these data are also shown in the corresponding Figure 
2.3B graph. (C-E) The ipsilateral ankles of mice were subjected to RT-qPCR to measure viral E1, 
nsp1, or Cre RNA copy number, normalized to total µg of RNA isolated for each sample and then 
log-transformed. (C) Viral E1 RNA levels were measured in the ipsilateral ankles of mice infected 
with 106 PFU of CHIKV-WT (open green circles, also shown in Figure 2.3D) or 106 PFU of CHIKV-
5ʹ-Cre (purple inverted triangles) at time points ranging from 0 to 112 dpi. (D) The ratio of viral E1 
RNA to viral nsP1 RNA in the same samples as C (open green circles, also shown in Figure 2.3E). 
(E) The ratio of viral Cre RNA to viral nsP1 RNA in mice infected with 106 PFU of CHIKV-5ʹ-Cre 
(purple inverted triangles) or 106 PFU of CHIKV-3ʹ-Cre (red triangles). Data in B were statistically 
analyzed with a one-way ANOVA with Tukey's post-test. For C-E, each time point for each virus 
represents 4-20 mice and was pooled from at least 2 independent experiments. The dashed line 
in C represents the limit of detection for the RT-qPCR assay; for D and E, the dotted line 
represents a ratio of 1. Data in C were normalized to total µg of RNA isolated for each sample 
and then log-transformed. Data in C-E were statistically analyzed with a two-way ANOVA with 
Sidak’s post-test. All error bars indicate SEM. Asterisks indicate statistical significance, with only 
relevant comparisons shown (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001). 
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Figure S2.5: Cells are marked by CHIKV-5ʹ-Cre or CHIKV-3ʹ-Cre at chronic time points.  
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(A) C57BL/6 or (B) tdTomato mice were infected with 106 PFU CHIKV-WT (WT, green circles), 
CHIKV-5ʹ-Cre (5ʹ-Cre, purple inverted triangles), or 106 PFU CHIKV-3ʹ-Cre (3ʹ-Cre, red triangles). 
Ipsilateral ankles were taken for frozen sections at 28 dpi, and the total number of tdTomato+ cells 
was quantified. Open green circles for WT and open red triangles for 3ʹ-Cre indicate that these 
data are also shown in the corresponding Figure 2.4B graph. (C) Representative image of a whole 
foot/ankle from 5ʹ-Cre at 28 dpi. Blue shows DAPI staining, and red is tdTomato; scale bar 
represents 1000 µm. (D) Time course of dtTomato mice infected with CHIKV-5ʹ-Cre (purpled 
inverted triangles) or CHIKV-3ʹ-Cre (open red triangles, also shown in Figure 2.4C) from 1 to 112 
dpi. Each time point for each virus represents 6-20 mice. (E) Representative images of connective 
tissues in the ipsilateral ankle of a mouse infected with CHIKV-3ʹ-Cre. Blue shows DAPI staining, 
and red is tdTomato; scale bar represents 1000 µm. In higher magnification inset images scale 
bars represent 100 µm; (A) is adipose tissue, (T) is tendon, (B) is bone, (M) is muscle, and (S) is 
synovium. Data from A, B and D were pooled from at least two independent experiments. Data 
in A and B were statistically analyzed with an ordinary one-way ANOVA using Tukey’s post-test. 
Data in D were statistically analyzed with two-way ANOVA using Sidak’s post-est. All error bars 
indicate SEM. Asterisks indicate statistical significance, with only relevant comparisons shown (*, 
P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001). 
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Figure S2.6: Immunofluorescence profiling of tdTomato+ cells in the skin 

tdTomato mice were infected with 106 PFU CHIKV-3ʹ-Cre, and ipsilateral ankles were taken for 
frozen sections at 28 dpi. Frozen sections were stained for beta III tubulin (nerve fibers) and 
CD105 (fibroblasts and endothelial cells), with the corresponding isotype control shown below 
each co-stain. Blue shows DAPI staining, red is tdTomato, and green is the indicated co-staining 
marker; scale bars represent 10 or 50 µm as indicated. 
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Chapter 3: 
Modulations of the CHIKV-Cre System 
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3.1 Introduction 

CHIKV is an arthritogenic alphavirus that causes both acute and chronic musculoskeletal 

disease. In Chapter 2, we introduced a CHIKV-Cre reporter mouse system to study the chronic 

pathogenesis of CHIKV (Figure 2.1A). We engineered two versions of CHIKV that express Cre 

recombinase: CHIKV-5ʹ-Cre and CHIKV-3ʹ-Cre (Figure S2.1A). In the process of optimizing this 

reporter system, we experimented with varying the viral dose. We ultimately settled on a 106 PFU 

dose of CHIKV- 3ʹ-Cre for our detailed analysis of chronic CHIKV pathogenesis, as it exhibited 

the highest number of tdTomato+ cells in the ipsilateral foot. However, we observed noticeable 

effects on pathogenesis depending on dose. 

Our experimentation with varying the dose of CHIKV-Cre was initially driven by published 

optimization experiments with other viruses that express Cre. Increasing the dose (ranging from 

101 to 105 PFU) of WT Influenza A (IAV) or IAV-Cre correlated with accelerated weight loss and 

increased mortality in mice [139]. Similarly, in a paper including a Herpes Simplex Virus 1 (HSV-

1) expressing Cre, increasing the dose of WT HSV-1 from 103 to 106 PFU corresponded with an 

increase in the number of animals infected [140]. 

Several studies have previously disclosed effects of modulating infection in various 

models of CHIKV infection. In vitro cell culture assays have consistently displayed that an 

increased CHIKV MOI is associated with increased viral titers in cells including fibroblasts, 

macrophages, and HeLa cells [42,58,59,66]. Our data from Chapter 2 with C2C12s or MEFs 

infected at a low (0.05) and high MOI (1.0) exhibit a similar trend (Figures 2.1D-E, S2.1D-E). We 

have also seen similar results with primary osteoblasts (data not shown). 

Varying the CHIKV inoculation dose has also been explored in vivo. In a non-human 

primate CHIKV model, macaques were infected with 101 to 108 PFU CHIKV [56]. Increasing the 

CHIKV dosage corresponded with an earlier day of peak viremia and a higher maximum viral 

RNA load in the serum. Increased CHIKV doses also correlated with more and worsening 
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symptoms that closely mimicked human disease, including fever, rash, joint effusion, and edema, 

and at the highest dose meningoencephalitis and death [56].  

Several published mouse CHIKV models have modulated infection variables with varying 

results. Immunocompromised (IFNAR-/- or STAT1-/-) mice exhibited earlier mortality when 

inoculated with 106 PFU of CHIKV compared to 102 PFU [58]. In WT mice, it was reported that 

mice had to be infected with a dose higher than 1.5x107 PFU of the CHIKV 181/25 vaccine strain 

in order to achieve dissemination to distal sites; however, a more detailed analysis of how dose 

affected pathogenesis was not disclosed [163]. While not explicitly testing dosage, in a neonatal 

mouse model of infection, increasing the age of infection from 6 to 9 to 12-day-old pups decreased 

mortality; this effect was associated with type I Interferon expression  [124]. The effect of dosage 

on pathogenesis in the adult arthritis model of CHIKV infection does not appear to have been 

explicitly explored. 

3.2 Results  

3.2.1 Increasing the dose of CHIKV accelerates acute disease and 
clearance in the ipsilateral foot 

 We first examined the effect of CHIKV dose on swelling in the ipsilateral foot. C57BL/6 

mice were inoculated with 102, 104, or 106 PFU of CHIKV-WT, CHIKV-5ʹ-Cre, or CHIKV-3ʹ-Cre 

and monitored for ipsilateral foot swelling. The 106 PFU dose of CHIKV-WT exhibited increased 

swelling at 1 and 2 dpi, but it exhibited the lowest swelling peaks at 3 and 7 dpi. Strikingly, the 102 

PFU dose of CHIKV-WT exhibited the highest swelling peaks at 3 and 7 dpi and took the longest 

to resolve swelling (Figure 3.1A). Similar results were seen with varying doses of CHIKV-5ʹ-Cre, 

although with lower overall swelling for the 102 PFU dose compared to CHIKV-WT (Figure 3.1B). 

With CHIKV-3ʹ-Cre swelling, the first peak of swelling from 1 to 3 dpi was absent, as we have 

seen previously. For the second swelling peak for CHIKV-3ʹ-Cre, the 106 PFU dose peaked at 5 
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and 6 dpi, the 104 PFU dose peaked at 7 dpi, and the 102 PFU dose peaked at 8 dpi (Figure 

3.1C). 

We next examined the effect of CHIKV dose on infectious viral titers in the ipsilateral ankle. 

C57BL/6 mice were inoculated with 102, 104, or 106 PFU of CHIKV-WT, CHIKV-5ʹ-Cre, or CHIKV-

3ʹ-Cre, and the ipsilateral ankle was harvested at 1, 3, 5, and 7 dpi for viral quantification by plaque 

assay. For all three CHIKV viruses, increasing the viral dose corresponded with an increase in 

viral titers at 1 dpi (Figure 3.2A-C). At 3 and 5 dpi, the viral titers were not statistically different 

for CHIKV-WT or CHIKV-5ʹ-Cre; however, the 106 PFU dose of CHIKV-3ʹ-Cre was significantly 

decreased at 5 dpi compared to the other doses. Intriguingly, increasing the viral dose 

corresponded with a decrease in viral titers at 7 dpi for all three viruses. 

These acute data thus suggest that increasing the viral dose initially increased swelling 

and infectious virus in the ipsilateral foot, but increasing the dose also corresponded with 

accelerated clearance of infectious virus. 

3.2.2 Increasing the dose of CHIKV-WT increases dissemination and 
accelerates clearance at acute time points 

 We next sought to determine how viral dose affected dissemination outside of the 

ipsilateral foot and ankle. C57BL/6 mice were inoculated with 102, 104, or 106 PFU of CHIKV-WT, 

CHIKV-5ʹ-Cre, or CHIKV-3ʹ-Cre. Serum, the ipsilateral quadriceps muscle, the contralateral ankle, 

and the spleen were harvested at 1, 3, 5, and 7 dpi for viral quantification by plaque assay. At 1 

dpi, increasing the viral dose corresponded with an increase in viremia for all three viruses 

(Figures 3.3A-C). A similar trend of higher doses correlating with higher viral titers was seen with 

infectious CHIKV-WT levels in the ipsilateral quad at 1 dpi (Figure 3.3D), the contralateral ankle 

at 1 and 3 dpi (Figure 3.3G), and the spleen at 1 dpi (Figure 3.3J). After 3 dpi, the reverse was 

true, and the 102 PFU dose of CHIKV-WT exhibited the highest levels of virus in the serum at 3 
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dpi (Figure 3.3A), in the ipsilateral quad at 3 dpi (Figure 3.3D), the contralateral ankle at 7 dpi 

(Figure 3.3G), and the spleen at 5 dpi (Figure 3.3J). 

These trends were not as evident for disseminated tissues in mice infected with CHIKV-

5ʹ-Cre or CHIKV-3ʹ-Cre (Figures 3.3B-C, 3.3E-F, 3.3H-I, 3.3K-L). Overall, dissemination of the 

CHIKV-Cre viruses was attenuated compared to CHIKV-WT (see Figures S2.2C-F for direct 

comparisons of disseminated viral titers for the 106 PFU dose of the three CHIKV viruses). 

Ultimately, increasing the dose of CHIKV-WT did increase early dissemination and clearance, but 

increasing the dose of the CHIKV-Cre viruses had less of a pronounced effect on dissemination. 

3.2.3 Increasing the dose of CHIKV decreases chronic disease in the 
ipsilateral foot 

 We next sought to examine the effect of viral dose on chronic disease. C57BL/6 mice or 

tdTomato reporter mice were infected in the footpad with 102, 104, or 106 PFU of CHIKV-WT, 

CHIKV-5ʹ-Cre, or CHIKV-3ʹ-Cre. The ipsilateral ankles were harvested for viral RNA or histological 

analysis at 28 dpi. Increasing the dose of CHIKV-WT corresponded with a decrease in persistent 

viral RNA levels (Figure 3.4A), and a similar result was seen with CHIKV-5ʹ-Cre (Figure 3.4B). 

However, increasing the dose of CHIKV-5ʹ-Cre did not have a significant impact on the number 

of tdTomato+ cells in the ipsilateral foot (Figure 3.4C). For CHIKV-3ʹ-Cre, increasing the viral dose 

had no significant effect on persistent viral RNA levels (Figure 3.4D) or the number of tdTomato+ 

cells in the ipsilateral foot (Figure 3.4E). While increasing the dose of CHIKV-WT or CHIKV-5ʹ-

Cre corresponded with a decrease in level of persistent viral RNA, these results did not extend to 

the number of tdTomato+ cells. 

3.2.4 Increasing the dose of CHIKV-Cre has no effect on the number of 
tdTomato+ cells at dissemination sites 

 Since an increased dose of CHIKV-5ʹ-Cre or CHIKV-3ʹ-Cre was associated with increased 

early viremia and dissemination to the ipsilateral quad (Figure 3.3B-C, 3.3E-F), we next sought 
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to determine if increasing the CHIKV-Cre dose would increase the number of tdTomato+ cells at 

sites of dissemination. tdTomato reporter mice were infected in the footpad with 102, 104, or 106 

PFU of CHIKV-5ʹ-Cre or CHIKV-3ʹ-Cre, and the contralateral ankle and spleen were harvested 

for histological analysis at 28 dpi. Increasing the dose had no significant impact on the number of 

tdTomato+ cells in the contralateral ankle or spleen for either virus (Figure 3.5A-B). The majority 

of samples had less than 10 tdTomato+ cells per tissue section, which is much lower compared 

to the hundreds to thousands of tdTomato+ cells observed in the ipsilateral ankle (Figures 3.4C, 

3.4E). A handful of samples exhibited ~50-500 tdTomato+ cells per section; however, this 

occurrence was rare and did not appear to exhibit any trends towards dose, virus, or tissue type. 

3.3 Discussion 

Overall, our preliminary data demonstrate that modulating the dosage of the CHIKV 

inoculum can have a significant impact on viral pathogenesis. Increasing the dose of CHIKV (WT, 

5ʹ-Cre, and 3ʹ-Cre) was associated with an earlier peak of swelling and infectious titers in the 

ipsilateral ankle. Alterations in the swelling curves, especially the second swelling peak, could be 

due to alterations in the quantity or quality of cells infiltrating the tissue. Early dissemination was 

also increased at higher doses of CHIKV-WT. This initial early replication at higher doses was 

also associated with earlier resolution of swelling and faster clearance of infectious virus in the 

ipsilateral ankle and distal sites. This accelerated clearance phenotype could explain why levels 

of persistent viral RNA tended to be lower in the ipsilateral ankle with increasing initial inoculum. 

These results do not necessarily contradict previous studies showing increased CHIKV 

dosage correlates with increased pathogenesis in macaques [56]. The mouse system exhibits 

fewer observable symptoms than macaques; rash, fever, and death does not occur in WT mice 

at the doses used in our studies. Acute and chronic histological damage was not analyzed by 
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H&E sections, so it is possible that higher doses exhibit increased acute and or chronic tissue 

damage to correlate with increased early swelling and infectious viral titers.   

We hypothesize that this increased early replication and accelerated clearance phenotype 

at higher virus inoculum is associated with a more vigorous innate immune reaction. A higher 

initial dose leads to increased early replication, as has been demonstrated with in vitro cell culture. 

Furthermore, a higher MOI is also associated with higher expression of IFN-β, as shown in MEFs, 

human foreskin fibroblast (HFF), and lung fibroblast immortalized cell lines [58]. Our preliminary 

data in vivo also confirm that increasing the CHIKV inoculum corresponds with an increase in 

IFN-β RNA expression at 1 dpi (data not shown). Increased viremia has also been associated 

with increased levels of IFN-α in patient sera [58,125]. We predict that such increased expression 

of type I IFNs leads to an advanced immune response leading to accelerated clearance of virus 

at a higher initial inoculum. In order to further explore this hypothesis, a closer examination of the 

immune response is warranted in our system using varying viral doses. For instance, it would be 

critical to measure the expression of additional innate immune factors such as ISGs, cytokines, 

and chemokines as well as to analyze the numbers and types of immune cells that infiltrate into 

the ipsilateral ankle.  

A similar hypothesis relating increased early replication, accelerated immune response, 

and advanced clearance has been proposed for other viruses, including adenovirus, infectious 

bronchitis virus, IAV, and human parainfluenza virus (HPIV) [164–166]. Optimization of the 

inoculum dose is of especial importance for vaccines. For instance, a higher initial vaccine 

inoculum generally leads to more robust stimulation of the immune system but might worsen side 

effects and permit for lower coverage of the population in the event of vaccine shortages. 

This association between CHIKV inoculum and replication kinetics could have interesting 

implications for human CHIKV disease. Previous studies using human serum samples have 

demonstrated an association between increased likelihood of chronic CHIKV with elevated acute 
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viremia levels [54,89].  It has also been shown that feeding A. albopictus mosquitos with 

increasing amounts of CHIKV resulted in increased dissemination to the salivary glands [167]. 

Furthermore, the minimum infectious dose from a blood meal of a viremic individual was 

estimated to ranges from approximately 104 to 105 PFU/mL for chikungunya virus in A. aegypti 

and A. albopictus mosquitoes [168]. However, what remains unknown is how the initial inoculum 

dosage from a mosquito correlates with viremia and thus acute and chronic disease in humans.   

Based on our results, it could be possible that mosquitos that inject a lower amount of 

virus in humans could correlate with prolonged viremia, delayed clearance, and more severe 

chronic disease. Such a trend if demonstrated could even be an evolutionary adaptation for 

arboviruses overall; perhaps mosquitos only need to transmit a low dose of virus in order to cause 

a high enough level of viremia in humans to enable transmission to a new vector. While still 

speculative, our results should at least caution researchers that increasing the dose of a virus 

such as CHIKV does not always correlate with increased chronic disease and highlights the 

complex interplay between host and virus. 

Overall, these data highlight the significant impact that viral inoculum can have on the 

pathogenesis of CHIKV in mice. For Chapter 2, we decided that a high dose of CHIKV-3ʹ-Cre was 

optimal for study of tdTomato+ cells in the ipsilateral ankle. However, using a lower dose of 

CHIKV-WT could be optimal for other studies of chronic CHIKV pathogenesis where maximizing 

the levels of persistent viral RNA is desired. Whether such results also apply to humans remains 

to be seen, though in practice it would be difficult to determine without being able to measure the 

exact dose of mosquito bites.  
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3.4 Materials and Methods 

3.4.1 Viruses 

 The following viruses were used in these studies: CHIKV-WT, CHIKV-5ʹ-Cre, and CHIKV-

3ʹ-Cre. Viruses were cloned and produced as described in Section 2.5.1.  

3.4.2 Mice 

 The following strains of mice were obtained from the Jackson Laboratory: C57BL/6 (JAX 

Stock No: 000664; C57BL/6J) and tdTomato reporter mice (JAX Stock No: 007914; B6.Cg-

Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J). Mice were maintained as described in Section 2.5.2. 

3.4.3 Viral Burden Studies in Animals 

 Four-week old C57BL/6 mice were inoculated with 102, 104, or 106 PFU of virus. Virus 

dilutions were made using a two-step 1:100 dilution series. Viral burden studies were completed 

as described in Section 2.5.6. 

3.4.4 Quantitative Real-Time PCR 

 RNA was isolated from tissues E1 and nsP1 levels quantified as described in Section 

2.5.7.  

3.4.5 Histology Studies 

 Four-week old tdTomato mice were infected and frozen section histology samples 

harvested as described in Section 2.5.8.  

3.4.6 Statistical Analysis 

All data were analyzed using the Prism software, version 7 (GraphPad), as detailed in the 

figure captions. The following statistical tests were used: ordinary one-way analysis of variance 
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(ANOVA), ordinary two-way ANOVA, and two-way repeated-measures ANOVA, all with Tukey’s 

post-test as a multiple comparisons test. All error bars indicate standard error of the mean (SEM); 

if error bars are not visible, then they are shorter than the height of the symbol. Asterisks indicate 

statistical significance, with only relevant comparisons shown (*, P < 0.05; **, P < 0.01; ***, P < 

0.001; ****, P < 0.0001).  
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3.5 Figures 

 
Figure 3.1: Ipsilateral foot swelling at varying CHIKV doses 
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C57BL/6 mice were infected in the footpad with 102, 104, or 106 PFU of (A) CHIKV-WT (WT, green 
circles), (B) CHIKV-5ʹ-Cre (5ʹ-Cre, purple inverted triangles), or (C) CHIKV-3ʹ-Cre (3ʹ-Cre, red 
triangles), and ipsilateral foot swelling was measured. Data are representative of two independent 
experiments and represent 3-8 mice per virus and dose. Data were analyzed with a two-way 
repeated measures ANOVA with Tukey’s post-test. Error bars indicating SEM. If error bars are 
not visible, then they are shorter than the height of the data symbol. The following symbols 
indicate statistical significance, with asterisks (*) indicating 102 vs. 104, pound signs (#) indicating 
102 vs. 106, and dagger signs (†) indicating 104 vs. 106 (*, #, †, P < 0.05; **, ##, ††, P < 0.01; ***, ###, 
†††, P < 0.001; ****, ####, ††††, P < 0.0001). 
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Figure 3.2: Viral titers in the ipsilateral ankle at varying CHIKV doses 

C57BL/6 mice were infected in the footpad with 102, 104, or 106 PFU of (A) CHIKV-WT (WT, green 
circles), (B) CHIKV-5ʹ-Cre (5ʹ-Cre, purple inverted triangles), or (C) CHIKV-3ʹ-Cre (3ʹ-Cre, red 
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triangles). The level of infectious virus in the ipsilateral foot and ankle during acute infection were 
measured by plaque assay and normalized to gram of tissue. The data for the 106 PFU dose for 
each virus was also shown in the corresponding graph in Figure 2.2B and Figure S2.2B. Each 
time point for each virus represents 5-6 mice and were pooled from at least 2 independent 
experiments. The dashed line represents limit of detection, and data were log-transformed prior 
to analysis. Data were statistically analyzed with an ordinary two-way ANOVA with Tukey’s post-
test. All error bars indicate SEM. Asterisks indicate statistical significance (*, P < 0.05; **, P < 
0.01; ***, P < 0.001; ****, P < 0.0001). 
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Figure 3.3: Viral titers in disseminated tissues at varying CHIKV doses 
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C57BL/6 mice were infected in the footpad with 102, 104, or 106 PFU of (A, D, G, J) CHIKV-WT 
(WT, green circles), (B, E, H, K) CHIKV-5ʹ-Cre (5ʹ-Cre, purple inverted triangles), or (C, F, I, L) 
CHIKV-3ʹ-Cre (3ʹ-Cre, red triangles). The level of infectious virus in the serum (A-C), ipsilateral 
quadriceps muscle (D-F), contralateral ankle (G-I), and spleen (J-L) during acute infection was 
measured by plaque assay and normalized to gram of tissue. Each time point for each virus 
represents 5-6 mice and were pooled from at least 2 independent experiments. The data for the 
106 PFU dose for each virus and tissue was also shown in the corresponding graph in Figure 
S2.2C-F. The dashed line represents limit of detection, and data were log-transformed prior to 
analysis. Data were statistically analyzed with an ordinary two-way ANOVA with Tukey’s post-
test. All error bars indicate SEM. Asterisks indicate statistical significance (*, P < 0.05; **, P < 
0.01; ***, P < 0.001; ****, P < 0.0001). 
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Figure 3.4: Viral RNA levels and tdTomato+ cells in the ipsilateral ankle at varying CHIKV 
doses 

C57BL/6 mice or tdTomato reporter mice were infected in the footpad with 102, 104, or 106 PFU 
of (A) CHIKV-WT (WT, green circles), (B-C) CHIKV-5ʹ-Cre (5ʹ-Cre, purple inverted triangles), or 
(D-E) CHIKV-3ʹ-Cre (3ʹ-Cre, red triangles). Ipsilateral feet and ankles were taken for CHIKV E1 
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RNA analysis (A, B, D) or for tdTomato frozen section histological analysis (C, E) at 28 dpi. The 
data for the 106 PFU dose for each virus was also shown in the corresponding graph in Figure 
2.3C, Figure 2.4B, Figure S2.4C, and Figure S2.5B. The dashed line for A, B, and D represents 
limit of detection, and data in A, B, and D were log-transformed prior to analysis. Data were 
statistically analyzed with an ordinary one-way ANOVA using Tukey’s post-test. All error bars 
indicate SEM. Asterisks indicate statistical significance (*, P < 0.05; **, P < 0.01; ***, P < 0.001; 
****, P < 0.0001). 
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Figure 3.5: tdTomato+ cells in disseminated tissues at varying CHIKV-Cre doses 

tdTomato reporter mice were infected in the footpad with 102, 104, or 106 PFU of CHIKV-5ʹ-Cre 
(5ʹ-Cre, purple inverted triangles) or CHIKV-3ʹ-Cre (3ʹ-Cre, red triangles). (A) Contralateral 
feet/ankles and (B) spleens were taken for tdTomato frozen section histological analysis at 28 
dpi. Data were statistically analyzed with an ordinary one-way ANOVA with Tukey’s post-test. All 
error bars indicate SEM.   
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Chapter 4: 
Summary and Future Directions 
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4.1 Summary 

 CHIKV is an arthritogenic alphavirus that causes chronic joint and muscle pain of unknown 

etiology in a significant subset of patients. In Chapter 2, we introduced a CHIKV-Cre reporter 

mouse system to study the chronic pathogenesis of CHIKV. We showed that these CHIKV-Cre 

viruses recapitulate many aspects of acute and chronic disease caused by CHIKV-WT. Using 

tdTomato reporter mice, we also showed that the majority of tdTomato+ cells at chronic time points 

were myofibers and fibroblasts, and that anti-Mxra8 treatment preferentially reduced the fibroblast 

population. In Chapter 3, we experimented with varying doses for our CHIKV-Cre system. A 

higher dose of CHIKV was associated with increased early replication and dissemination, but it 

also correlated with earlier clearance of the virus and lower persistent RNA levels.  

 A more detailed analysis of the implications of these results can be found in the Discussion 

Sections for Chapters 2 and 3 (Sections 2.4 and 3.3). What follows are some additional, more 

speculative or preliminary interpretations of data from the CHIKV-Cre system. Also highlighted 

are various future experiments and uses of the CHIKV-Cre system, ranging from single-cell 

sequencing and electron microscopy to human studies and clinical applications.  

4.1.1 Comparison of CHIKV-5ʹ-Cre and CHIKV-3ʹ-Cre 

 For our studies, we engineered two versions of CHIKV that express Cre recombinase: 

CHIKV-5ʹ-Cre and CHIKV-3ʹ-Cre (Figure S2.1A). For our more detailed studies, we used CHIKV-

3ʹ-Cre rather than CHIKV-5ʹ-Cre, as certain aspects of CHIKV-3ʹ-Cre infection more closely 

resembled CHIKV-WT infection than CHIKV-5ʹ-Cre. For example, whereas the CHIKV-3ʹ-Cre 

E1:nsP1 curve was very similar to CHIKV-WT (Figure 2.3E), the CHIKV-5ʹ-Cre E1:nsP1 curve 

was dramatically different during the first seven days of infection (Figure S2.4D). This difference 

is likely due to the fact that in CHIKV-5ʹ-Cre the E1 gene is under the replicative influence of two 

subgenomic promoters, while the internal genomic structure of CHIKV-3ʹ-Cre is identical to 
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CHIKV-WT (Figure S2.1A). In CHIKV-3ʹ-Cre, the Cre gene is downstream of two subgenomic 

promoters, which could explain why CHIKV-3ʹ-Cre infection resulted in a higher Cre to nsP1 ratio 

compared to CHIKV-5ʹ-Cre (Figure S2.4E). This increased Cre expression could also explain why 

CHIKV-3ʹ-Cre infection produced significantly more tdTomato+ cells than CHIKV-5ʹ-Cre in vitro 

(Figure S2.1B) as well as in vivo (Figure S2.5B-D).  

In addition to the CHIKV-5ʹ-Cre and CHIKV-3ʹ-Cre constructs, it could also be possible to 

introduce Cre recombinase into another locus in the CHIKV genome, such as the nsP3 gene as 

has been done for mCherry with minimal attenuation in vitro [137]. It is possible that a CHIKV-

nsP3-Cre virus would produce even less Cre recombinase without the influence of the 

subgenomic promoter and be less sensitive in marking tdTomato cells. It is also possible that 

CHIKV-nsP3-Cre would be more stable in terms of its expression and mark more cells than 

CHIKV-3ʹ-Cre. 

4.1.2 Time course kinetics of tdTomato+ cells 

We conducted an extensive time course to examine the overall levels of tdTomato+ cells 

in the ipsilateral foot from 1 to 112 dpi for both CHIKV-3ʹ-Cre (Figure 2.4C) and CHIKV-5ʹ-Cre 

(Figure S2.5D). Intriguingly, substantial numbers of tdTomato+ cells are not apparent until 7-10 

dpi; however, the peak of infectious titers in the ipsilateral ankle occurs at 1 dpi (Figures 2.2B, 

S2.2B). Our preliminary in vitro infections with tdTomato MEFs have shown that it takes at most 

18 hours for detectable levels of tdTomato protein to be produced following infection (data not 

shown); however, we have not determined if this tdTomato expression time differs in vivo or in 

different cell types. It is thus possible that the majority of cells infected during the early acute stage 

of infection (1-5 dpi) lyse and do not persist as tdTomato+ cells. There are much lower levels of 

infectious virus during the later stage of acute infection (5-10 dpi), but perhaps cells infected at 
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this stage of infection persist as tdTomato+ cells. However, as discussed previously (Section 2.4), 

our system does not enable us to determine when a tdTomato+ cell was infected. 

After 7-10 dpi, the number of tdTomato+ cells remains relatively constant up to 112 dpi. 

There are some variations in the mean number of tdTomato+ cells at chronic timepoints, such as 

the gradual increase between 7 and 112 dpi. Indeed, some of the differences reached statistical 

significance (Figure 4.1). Such differences could be due to a low number of samples at some 

time points. However, such fluctuations could be due to the turnover of tdTomato+ cells or 

potentially a low level of infectious virus. 

4.1.3 CHIKV RNA copy number per tdTomato+ cell 

In addition to a tdTomato+ cell time course, we also conducted a viral RNA time course 

using the same time points (Figures 2.3D, S2.4C). Combining such data enables us to 

preliminarily calculate the CHIKV RNA copy number per tdTomato+ cell for both CHIKV-5ʹ-Cre 

and CHIKV-3ʹ-Cre (Figure 4.2). Interestingly, the RNA copy number per tdTomato+ cell was 

higher for CHIKV-5ʹ-Cre compared to CHIKV-3ʹ-Cre; this trend is likely due to the fact that CHIKV-

5ʹ-Cre had slightly higher levels of viral RNA and significantly lower levels of tdTomato+ cells at 

all time points.  

From 1 to 10 dpi, both viruses exhibited a steep decrease in viral RNAs per tdTomato+ 

cell.  CHIKV-5ʹ-Cre decreased from a high of 2.1 x 1011 RNAs/cell at 1 dpi to 8.9 x 103 RNAs/cell 

at 10 dpi, a ~7.3 log10 decrease. Similarly, CHIKV-3ʹ-Cre decreased from a high of 1.4 x 1010 

RNAs/cell at 1 dpi to 5.2 x 102 RNAs/cell at 10 dpi, a ~7.4 log10 decrease. This decrease could 

correlate with the majority of infected cells dying, much of the virus being contained by the immune 

response, and or a shift from active viral replication to little or no replication. 

It is important to note that these calculations represent a mean of viral RNAs per 

tdTomato+ cell. The viral RNA may not be evenly distributed between tdTomato+ cells, and some 
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viral RNA may be present in tdTomato- cells. However, these results do highlight the possibility 

that at chronic time points tdTomato+ cells likely harbor a low number of RNA copies, an average 

of ~300 copies per cell from 28 to 112 dpi for CHIKV-3ʹ-Cre. Such a concentration is likely below 

the detection limit of RNA ISH for formalin-fixed tissue samples and could explain why detection 

of CHIKV RNA+ cells is so rare during chronic time points.  

4.1.4 Cell type distribution of chronic tdTomato+ cell population  

It is intriguing to consider why skeletal myofibers and fibroblasts are the predominant cell 

type to survive acute CHIKV infection when so many cell types are known to be permissive to 

CHIKV. Perhaps, myofibers and fibroblasts are the most permissive cell types to CHIKV 

infection, as suggested by in vitro growth curves and at the histological level by our ISH staining 

(Figure S2.3A); thus, even if similar percentages of all infected cell types die, many more 

myofibers and fibroblasts survive infection since a high number were initially infected. Another 

possibility is that these cells are somehow immune privileged and more resistant to 

programmed cell death pathways normally triggered during an infection. Related to this 

hypothesis is the idea that the virus or viral RNA may persist in a protected niche within these 

cells but is still able to induce chronic inflammatory pathways. As described in in the next 

section, single-cell RNA-seq and electron microscopy could help tease apart these possibilities. 

4.2 Future Directions 

 Chapter 2 introduced our CHIKV-Cre reporter mouse system and its application to 

studying chronic pathogenesis and anti-Mxra8 treatment. Many questions remain about chronic 

CHIKV pathogenesis, such as the location and status of persistent viral RNA, and our system 

could provide valuable insight. For example, single cell or nucleus RNA-seq could help determine 

whether persistent viral RNA is concentrated in tdTomato+ cells, the nature of this persistent viral 

RNA, and whether the host transcriptome of tdTomato+ cells is altered. Electron microscopy could 
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help determine the subcellular location of persistent viral RNA within tdTomato+ cells. CHIKV-Cre 

infection of Diphtheria toxin receptor (DTR) mice could allow for depletion of DTR+ cells and 

exploration of how these cells contribute to chronic pathogenesis. Additional applications of our 

CHIKV-Cre system include chronic experiments using tdTomato MEFs, alternative routes of virus 

inoculation, applications to other genotypes and virus strains, and applications to clinical research.  

4.2.1 Applications of the In Vivo Reporter System 

 Many questions remain about chronic CHIKV pathogenesis, such as the location and 

status of persistent viral RNA, and our system could provide valuable insight. For instance, is 

viral RNA in fact concentrated in tdTomato+ cells? What is the state of this persistent viral RNA? 

Is it intact or mutated? Replicating or quiescent? Furthermore, is the transcriptome of tdTomato+ 

cells altered, and how do these marked cells contribute to chronic CHIKV pathogenesis? 

Is viral RNA present in tdTomato+ cells? 

Our work with anti-Mxra8 treatment showed a positive correlation between the levels of 

chronic viral RNA and the number of tdTomato+ cells (Figure 2.6). However, further work is 

needed to determine the exact location of the persistent viral RNA. Currently IFA and ISH are 

not sensitive enough to consistently detect viral components in the tissues of WT mice at 

chronic time points. In the Influenza system, tdTomato+ cells were sorted out of single cell lung 

homogenates, allowing for identification of the cell type that was marked by the IAV-Cre virus 

and transcriptional analysis of those cells [139].  A similar analysis in our system has proven to 

be more difficult, especially for myofibers and muscle fibroblasts.  We have attempted isolation 

of tdTomato+ cells through flow cytometry or laser capture microdissection, but we have thus far 

been unsuccessful.  

Single cell RNA sequencing (RNA-seq) represents a powerful new tool that could help 

determine whether viral RNA is present in tdTomato RNA+ cells, potentially acting as a dsRNA 
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trigger for chronic inflammation. tdTomato+ fibroblasts could be detected through either single-

cell or single-nucleus RNA-seq, but analysis of tdTomato+ myofibers would be limited to single-

nucleus RNA-seq due to their large size and fragility [169–171]. Single-nucleus RNA-seq is a 

less powerful tool in our system than single-cell RNA-seq as CHIKV RNA is likely present in the 

cytoplasm and not the nucleus; thus, single-nucleus RNA-seq would be unable to characterize 

CHIKV RNA outside the nucleus in tdTomato+ cells. Therefore, our analysis of single-cell RNA-

seq may be restricted to the dermal and muscle fibroblasts. Importantly, a BSL3 10x Genomics 

machine will soon be available to use for single-cell or single-nucleus RNA-seq, thus avoiding 

the need to fix samples.  

Is the transcriptome of tdTomato+ cells altered? 

 If single-cell or single-nucleus RNA-seq is successful, it could help answer many questions 

about chronic CHIKV pathogenesis, as was done previously for Influenza using IAV-Cre 

[138,139]. Such results could help decipher how CHIKV infection manipulates the transcriptome 

of individual infected cells. Previous studies have conducted whole tissue RNAseq or proteomic 

analysis on CHIKV-infected tissues or cells, demonstrating an overall upregulation of 

inflammatory markers [37,160,161]. Our system could demonstrate whether these inflammatory 

markers are specifically upregulated in tdTomato+ cells, and thus whether CHIKV infection results 

in a population of pathogenically altered cells. It is also possible that CHIKV infection induces 

cellular or viral programs that could abort productive replication, potentially allowing the viral RNA 

to persist long-term.  

What is the state of the persistent viral RNA? 

 Sequencing of persistent CHIKV RNA has thus far only been reported in RAG1-/- mice, 

which lack an adaptive immune response and fail to clear infectious virus from the serum, joints, 

and other tissues. Two groups have deep sequenced viral RNA from RAG1-/- mouse serum, brain, 



102 

and kidney samples at 28, 42, and 100 dpi. Sequence analyses revealed a complete genome 

with relatively few and minor fixed mutations [117,151]; they did not indicate the presence of 

negative strand genomes or an increased ratio of structural to non-structural gene transcription, 

both of which would be indicative of active viral replication. Presumably, deep sequencing of 

persistent viral RNA has not yet been reported in WT mice as the level in whole tissue 

homogenates would be too low to detect. Assuming persistent viral RNA can be found in 

tdTomato+ cells, single cell RNA-seq could offer increased sensitivity compared to whole tissue 

sequencing and allow for characterization of the viral RNA in immunocompetent mice. Such data 

could help reveal the replication status of the viral RNA through the presence of negative strands 

or subgenomes, whether the entire viral genome persists, or the presence of any dominant 

mutations. 

 In addition to single cell RNA-seq, our CHIKV-Cre system could also be applied to 

sensitive microscopy techniques. In Chapter 2, we imaged tdTomato+ cells in ankle tissues using 

high-power fluorescence microscopy (Figure 2.5). Attempts to co-stain for CHIKV antigen at 

chronic time points were unsuccessful (data not shown), and we have not yet attempted to co-

stain with antibody against dsRNA, which has proven useful for detecting other RNA viruses [172]. 

Higher magnification studies of tdTomato+ cells could be performed using transmission electron 

microscopy (TEM). TEM has previously been used to detect CHIKV at acute time points [42], but 

detection of viral particles at chronic time points has not been reported. Fluorescence of the 

tdTomato protein would not be visible during TEM, but the protein could be labeled using anti-

tdTomato immunogold antibodies.  tdTomato+ cells from in vitro or in vivo samples could be 

examined for the presence of viral particles or potentially co-stained with anti-CHIKV or anti-

dsRNA antibodies with an alternatively-sized immunogold label. Using TEM, we could potentially 

identify the specific subcellular localizations of the virus or viral RNA during chronic stages of the 

infection, potentially explaining how it can persist for so long after infection. 
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Do cells marked by CHIKV-Cre play a role in chronic pathogenesis? 

In order to probe further into chronic CHIKV pathogenesis, we could use our CHIKV-Cre 

viruses in Cre-responsive mice other than tdTomato reporter mice. For example, mice that 

express the chimpanzee diphtheria toxin receptor (DTR, also called heparin binding EGF like 

growth factor, HBEGF) upon Cre-induced removal of a stop cassette (JAX Stock No:007900 

C57BL/6-Gt(ROSA) 26Sortm1(HBEGG)Awai/J) can be used to deplete DTR+ cells with diphtheria toxin 

(DT) at a desired time point [173]. For example, DT could be administered after infectious virus 

is cleared (10-14 dpi), and we could examine whether this depletion has an effect on a chronic 

time point (28 dpi). For instance, depletion of DTR+ cells could result in a decrease in the level of 

persistent viral RNA, a decrease in chronic myositis and synovitis, and an improvement in the 

whole-tissue host transcriptome. Such results would indicate that cells marked by CHIKV-Cre 

play a critical role in chronic CHIKV pathogenesis. 

We have performed a variety of preliminary experiments involving DTR mice injected 

with CHIKV-WT, CHIKV-3ʹ-Cre, or CHIKV-5ʹ-Cre and treated with DT. However, we were unable 

to determine a virus dose or DT dosing schedule that resulted in a decrease in persistent viral 

RNA levels (data not shown). We were unable to determine if CHIKV-3ʹ-Cre or CHIKV-5ʹ-Cre 

infection caused an increase in DTR+ cells compared to CHIKV-WT, as we see in tdTomato 

reporter mice. We unsuccessfully attempted IFA to co-stain for DTR protein and RT-qPCR to 

detect DTR RNA (data not shown). It is possible that DTR+ cells were produced and that DT 

injection did deplete them, but the persistent viral RNA levels did not correspondingly decrease. 

In this case, it is possible that the DTR+ cells do not contain viral RNA. It is also possible that 

viral RNA is released from the depleted DTR+ cells but then persists in the tissue or is taken up 

by other cells. Another issue is that the chronic model currently in use is not robust histologically 

(chronic inflammation is mild and not seen in every mouse), so it remains difficult to assess the 

impact of DTR+ cells depletion on histopathology. 
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 Additional studies could also be performed with tdTomato reporter or DTR depletion mice 

that express tdTomato or DTR under a tissue-specific promoter, as opposed to the constitutive 

Rosa locus. For example, mesenchyme-specific or myofiber-specific promoters could be used to 

determine the specific contribution of these cell types to chronic pathogenesis.  

4.2.2 Applications of the In Vitro Reporter System 

 In Chapter 2, we showed that tdTomato+ MEFs can be detected 48 hpi with CHIKV-3ʹ-Cre 

or CHIKV-5ʹ-Cre (Figures 2.1B-C, S2.1B-C). Of note, in preliminary experiments, tdTomato+ 

MEFs could be detected at 28 dpi after infection with CHIKV-5ʹ-Cre, a chronic time point (data not 

shown). Fibroblasts represented a large subset of the tdTomato+ cell population, thus tdTomato 

MEFs could be a viable in vitro system to begin to test our hypotheses about chronic 

pathogenesis. A major question would be to determine if viral components (antigen or RNA) are 

specifically enriched in tdTomato+ MEFs compared to tdTomato- MEFs. Assays such as IHC, IFA, 

ISH, and RNA-seq could be more sensitive in an in vitro setting, without the high background that 

is often found in animal tissue samples. Additional primary cells from tdTomato mice could also 

be used such as synovial fibroblasts or myoblasts; however, some of these primary cells may be 

unable to survive in culture for several weeks. 

4.2.3 Alternative inoculation techniques 

Our CHIKV-Cre viruses exhibited low levels of dissemination, as demonstrated by 

attenuated viral titers and chronic tdTomato+ cells in the contralateral ankle and spleen (Figure 

3.3, 3.5). We sought to determine whether using alternative sites for inoculation could increase 

the number of tdTomato+ cells in disseminated tissues.  

In a preliminary experiment, tdTomato reporter mice were inoculated normally 

(subcutaneously in the footpad) or via intraperitoneal (IP), intravenous (IV), flank, or retro orbital 

(RO) routes with 106 PFU of CHIKV-5ʹ-Cre (see Section 4.3.4 of the Methods for more details). 
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The feet/ankles and spleen were harvested for histological analysis at 7 and 14 dpi. These 

alternative inoculation sites did not increase dissemination to the joints, as few tdTomato+ cells 

were observed in either ankle (data not shown). However, RO injection did correspond with an 

increased number of tdTomato+ cells in the spleen, especially at 14 dpi (Figure 4.3A). It is unclear 

why IV tail vein injections did not produce similar levels of tdTomato+ cells in the spleen to RO 

injections since both involve direct injection of virus into the blood. 

Such results with the RO route of infection are somewhat surprising. In a macaque model 

of CHIKV infection, intravenous (IV) or intradermal (ID) infection did not appear to have a 

significant effect on viremia, fever, or blood cell counts [56]; however, viral titers in disseminated 

tissues were not explored. RO injection may be a better model of viremia than IV injection. It 

would be interesting to see if acute viral titers and persistent viral RNA were correspondingly 

increased in the spleen using RO inoculation. While RO injections could be helpful for study of 

chronic pathogenesis in the spleen, it is likely not as applicable a model of infection to humans as 

subcutaneous inoculation that mimics a mosquito bite. 

In addition to the above mentioned alternative inoculation sites, we also experimented with 

calf injections of virus. When tdTomato reporter mice were inoculated normally (subcutaneously 

in the footpad), the tdTomato+ cells were concentrated in the foot and do not extend past the ankle 

into the calf muscle (Figure 2.4A). However, the foot muscles can be difficult to micro-dissect, so 

we sought to determine if tdTomato+ cells could be found in the calf muscles using an alternative 

inoculation site. In a preliminary experiment, tdTomato reporter mice were inoculated 

subcutaneously above the gastrocnemius muscle with 106 PFU of CHIKV-3ʹ-Cre, and the calf 

muscles were dissected for histological analysis at 28 dpi. A plethora of tdTomato+ cells were 

observed in the calf muscle (Figure 4.3B). It appears by morphological appearance that the 

majority of tdTomato+ cells in the calf muscle were myofibers and few cells were fibroblasts; 

however, this observation has not yet been confirmed by immunofluorescence analysis. 
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Calf injections could be helpful for applications of the CHIKV-Cre system, such as RNA-

seq, that necessitate taking larger muscle samples than is possible with footpad infections or that 

are sensitive to decalcification. However, the muscle population of tdTomato+ cells could be 

different between subcutaneous footpad and calf injections, so future experimentation is 

warranted. 

4.2.4 Applications to Other Genotypes and Virus Strains 

In Chapter 2, we used our CHIKV-3ʹ-Cre and tdTomato system to test how treatment with 

anti-Mxra8 mAbs affected the number and type of tdTomato+ cells at a chronic time point (Figure 

2.6). We have also conducted preliminary studies with other mAb treatments. In one preliminary 

study we tested how CHIKV neutralizing antibodies (CHK-152, CHK-166) affected the abundance 

of tdTomato+ cells [72,75]. When administered at 3 dpi, treatment with CHK-152 and CHK-166 

did decrease the swelling in the ipsilateral foot at 6 dpi (Figure 4.3A). However, there was no 

difference in the number of tdTomato+ cells in the ipsilateral or contralateral ankles at 28 dpi 

between CHIKV-neutralizing antibody and the isotype control (Figure 4.3B). Such a result is not 

entirely surprising as a similar treatment with CHK-152 and CHK-166 at 3 dpi using CHIKV-WT 

and C57BL/6 mice did not affect the levels of persistent viral RNA in the ipsilateral ankle (data not 

shown). It is possible that treatment with CHIKV neutralizing antibodies prior to infection would 

both reduce the number of tdTomato+ cells and the level of persistent viral RNA at 28 dpi. 

We have also conducted tests using mAbs against IFN-α or IFN-β [174,175]. Treatment 

with a pan anti-IFN-α mAb increased both the number of tdTomato+ cells and the level of 

persistent viral RNA in the contralateral ankle at 28 dpi compared to an anti-IFN-β mAb or isotype 

control (data not shown). Efforts are underway with IFA co-staining to explore whether the 

tdTomato+ cells in the contralateral ankles of anti-IFN-α treated mice show a different cellular 

tropism than the tdTomato+ cells in the ipsilateral ankle. Taken together with the results of the 
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anti-Mxra8 treatment, these results demonstrate a correlative relationship between the number of 

tdTomato+ cells in a tissue and the level of persistent RNA, suggesting that some viral RNA is 

indeed found within the tdTomato+ cells. Our system could be thus applied to other host genotypes 

through mAb treatment. In the event that a mAb is not available against a specific target, tdTomato 

reporter mice could be bred to a knockout mouse or other mouse genotype of interest (assuming 

that the gene of interest is not on murine chromosome 6, the location of the tdTomato reporter).  

In addition to studying different host genotypes, our system could also be applied to other 

viral genotypes. CHIKV-Cre viruses could be constructed from other CHIKV strains or mutant 

viruses to further dissect how the viral genetics contribute to tropism and chronic pathogenesis 

[66]. For example, one study demonstrated that a virulent IOL CHIKV strain isolated in 2006 from 

the La Réunion Island outbreak (LR2006-OPY1) can infiltrate and grow within skeletal muscle 

fibers while a pre-epidemic strain cannot [57]. It would be intriguing to generate a Cre virus of the 

pre-epidemic CHIKV strain to further explore the tropism differences between these two strains. 

4.2.5 Implications for Clinical Studies 

 The detection of CHIKV antigen or RNA in patient samples from chronic time points has 

previously been rare. One study reported detection of CHIKV RNA and antigen in the synovial 

macrophages of one patient 18 months after infection [54]. Another study reported detection of 

CHIKV antigen in a human quadriceps muscle specimen at least three months after acute 

infection [61]. However, another study did not detect chronic CHIKV RNA in patient synovial fluid 

[118]. Results from our CHIKV-Cre infections demonstrate that the majority of tdTomato+ cells are 

not concentrated in the synovial tissues, but rather in the skeletal muscle and skin (Figure 2.4A). 

Previous clinical studies may have thus been looking at suboptimal tissues, and our results could 

provide strong enough evidence to collect more invasive tissue samples from chronic CHIKV 
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patients, such as skin and muscle biopsies from areas near the chronic joint or muscle pain in 

addition to synovial tissue samples. 

4.3 Materials and Methods 

4.3.1 Viruses 

 The following viruses were used in these studies: CHIKV-WT, CHIKV-5ʹ-Cre, and CHIKV-

3ʹ-Cre. Viruses were cloned and produced as described in Section 2.5.1.  

4.3.2 Mice 

 The following strains of mice were obtained from the Jackson Laboratory: C57BL/6 (JAX 

Stock No: 000664; C57BL/6J) and tdTomato reporter mice (JAX Stock No: 007914; B6.Cg-

Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J). Mice were maintained as described in Section 2.5.2. 

For CHK neutralizing mAb studies, tdTomato reporter mice were infected with CHIKV-3ʹ-

Cre as described in Section 2.5.2. The mice were injected intraperitoneally with 500 ug of human 

isotype control (WNV E16) or human anti-CHIKV E2 mAbs diluted in PBS [72,75] (250 ug each 

of CHK-152 and CHK-166) at 3 dpi. Samples were harvested for histology and frozen section 

slide processing and quantification was performed as described in Section 2.5.8. 

4.3.3 Quantitative Real-Time PCR 

 RNA was isolated from tissues and RT-qPCR for CHIKV E1 was performed as described 

in Section 2.5.7.  

4.3.4 Histology Studies 

Four-week old tdTomato mice were infected and histology samples harvested and 

processed as described in Section 2.5.8. Alternative inoculation techniques were also used. Foot 

pad injection refers to injecting virus subcutaneously into the left (ipsilateral) footpad, between the 
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second and third digits. Intraperitoneal (IP) injection refers to injecting virus into the abdomen. 

Intravenous (IV) injection refers to injecting virus into the tail vein. Flank injection refers to injecting 

virus subcutaneously into skin on the dorsal left side of the mouse, near the relative position of 

the spleen. Retroorbital injection refers to injecting virus into the retroorbital sinus, which is 

superior and posterior to the eyeball, through the medial canthus. Calf injection refers to injecting 

virus subcutaneously above the gastrocnemius muscle. 

4.3.5 Calculation of CHIKV E1 copy number per tdTomato+ cell 

 The total amount of E1 RNA copies for each RT-qPCR sample was calculated by 

multiplying each E1/μg (E1 RNA copies per μg of total RNA) value by the total μg of RNA (ng/μL 

multiplied by the total μL for each sample divided by 1000). The total amount of tdTomato+ cells 

for each histology sample was calculated by estimating the percentage that one 30 μm foot 

section represents of the entire foot. A mouse foot is on average 2.8 mm wide horizontally 

(averaged from swelling data), and sagittal sections are taken from the foot. Thus one 30 μm 

section represents approximately 1/93.33 fraction of the foot, assuming that the foot is closer to 

a rectangular prism than a cylinder. The number of tdTomato+ cells per normalized tissue 

section was thus multiplied by 93.33 to roughly calculate the total number of tdTomato+ cells per 

foot. The total number of E1 copies was then averaged for each time point and virus and then 

divided by the average number of tdTomato+ cells for the corresponding time point and virus. 

Data were then log-transformed prior to graphing. 

4.3.6 Statistical analysis 

All data were analyzed using the Prism software, version 7 (GraphPad), as detailed in 

the figure captions. The following statistical tests were used: unpaired t test, ordinary one-way 

analysis of variance (ANOVA), ordinary two-way ANOVA. The following post-tests for multiple 

comparisons were also used: Tukey’s post-test and Sidak’s post-test. All error bars indicate 
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standard error of the mean (SEM); if error bars are not visible, then they are shorter than the 

height of the symbol. Asterisks indicate statistical significance, with only relevant comparisons 

shown (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001). 
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4.4 Figures 

 

Figure 4.1: tdTomato+ cells in the ipsilateral foot during chronic timepoints 

tdTomato mice were infected with 106 PFU CHIKV-3ʹ-Cre (red triangles), and ipsilateral feet were 
taken for frozen sections at 7-112 dpi. These data are also shown in Figures 2.4C and S2.5C. 
The total number of tdTomato+ cells from was quantified for each section and normalized to ankle 
area as described in the Methods Section 2.5.8. Data were pooled from at least two independent 
experiments, and data were statistically analyzed with an ordinary one-way ANOVA using Tukey’s 
post-test. All error bars indicate SEM. Asterisks indicate statistical significance (*, P < 0.05; **, P 
< 0.01; ***, P < 0.001; ****, P < 0.0001). 
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Figure 5.2: CHIKV E1 RNA copies per tdTomato+ cells 

Preliminary calculation of the number of CHIKV RNA copies per tdTomato+ cell, for 106 PFU 
CHIKV-5ʹ-Cre (purple inverted triangles) or 106 PFU CHIKV-3ʹ-Cre (red triangles). C57/BL6 mice 
were infected with 106 PFU CHIKV-5ʹ-Cre or 106 PFU CHIKV-3ʹ-Cre, and the ipsilateral ankles 
were taken for RNA analysis at 1 to 112 dpi. The level of CHIKV E1 RNA was measured using 
RT-qPCR (these data are also shown in Figures 2.3D, S2.4C). The total amount of RNA copies 
per ankle was calculated (see the Methods Section 4.3.5). tdTomato mice were also infected with 
106 PFU CHIKV-5ʹ-Cre or 106 PFU CHIKV-3ʹ-Cre, and the ipsilateral feet/ankles were taken for 
frozen sections at 1-112 dpi (these data are also shown in Figures 2.4C and S2.5C). The total 
number of tdTomato+ cells in each sample was calculated (see the Methods Section 4.3.5). The 
mean total E1 copy number at each timepoint and virus was then divided by the mean total 
tdTomato+ cells at each corresponding timepoint and virus to arrive at a preliminary calculation of 
viral copies per tdTomato+ cell. Data were pooled from at least two independent experiments. 
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Figure 6.3: Alternative inoculation sites for CHIKV-Cre  

(A) tdTomato reporter mice were inoculated retro-orbitally with 106 PFU of CHIKV-5ʹ-Cre, and 
spleens were taken for histological analysis at 14 dpi. A representative image from two 
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independent experiments is shown, with blue showing DAPI staining and red showing tdTomato; 
scale bar represents 100 µm. (B) tdTomato reporter mice were inoculated subcutaneously above 
the calf muscle with 106 PFU of CHIKV-3ʹ-Cre, and the ipsilateral calf muscle was taken for 
histological analysis at 28 dpi. A representative image from two independent experiments is 
shown, with blue showing DAPI staining and red showing tdTomato; scale bar represents 250 
µm. 
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Figure 7.4: CHIKV neutralizing antibodies given at 3 dpi do not affect the number of 
tdTomato+ cells 

tdTomato mice were infected with 106 PFU CHIKV-3ʹ-Cre and treated with CHIKV neutralizing 
mAbs (CHK-152 & CHK-166; red squares) or an isotype control (isotype; green circles) at 3 dpi. 
(A) Ipsilateral foot swelling was measured at 6 dpi. (B) At 28 dpi, the ipsilateral and contralateral 
ankles/feet were harvested for histological analysis, the total number of tdTomato+ cells in each 
sample was quantified. Data in A were statistically analyzed with an un-paired t test. Data in B 
were statistically analyzed with a two-way ANOVA using Sidak’s post-test. All error bars indicate 
SEM.  
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