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Professor Li Ding, Chair 

 

 

Accurate interpretation of cancer mutations in individual tumors is a prerequisite for 

precision medicine. Large-scale sequencing studies, such as The Cancer Genome Atlas 

(TCGA) project, have worked to address the functional consequences of genomic 

mutations, with the larger goal of determining the underlying mechanisms of cancer 

initiation and progression. Many studies have focused on characterizing non-synonymous 

somatic mutations that alter amino acid sequence, as well as splice disrupting mutations 

at splice donors and acceptors. Current annotation methods typically classify mutations 

as disruptors of splicing if they fall on the consensus intronic dinucleotide splice donor, 

GT, the splice acceptor, AG. Splice site mutations as a group have been presumed to be 

invariably deleterious because of their disruption of the conserved sequences that are 

used to identify exon-intron boundaries. While this classification method has been useful, 

increasing evidence suggests that splice site mutations can lead to transcriptional 
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changes beyond disruption and that many exonic mutations that act primarily through 

alternative splicing are still being overlooked in cancer genomics. My thesis work focuses 

on developing tools to systematically classify and functionally validate splice site and 

splice creating mutations using RNA-Seq data, to more accurately understand the 

functional consequences of mutations on alternative splicing by integrating DNA and 

RNA-Sequencing data.  

 

First we developed SpliceInator, a semi-automated tool to systematically detect splicing 

phenotypes using mutation and gene expression data. We interrogated 1,146 conserved 

splice site mutations across 19 cancer types revealing a wide range of complex splicing 

phenotypes and emphasize the importance of analyzing patient specific RNA-

Sequencing. We further explored beyond the splice site by interogating all mutations in a 

splicing context using MiSplice for the first large-scale discovery of splice-creating 

mutations (SCMs) across 8,656 TCGA tumors. We reported 1,964 originally mis-

annotated mutations having clear evidence of creating novel splice junctions. Mutations 

in a subset of genes including PARP1, BRCA1, and BAP1, were experimentally validated 

for splice-creating function using a mini-gene splicing assay. Notably, we found 

neoantigens induced by SCMs are likely several folds more immunogenic compared to 

missense mutations, exemplified by the recurrent GATA3 SCM. Our work highlights 

importance of integrating DNA and RNA data for understanding functional and clinical 

implications of mutations in human diseases. Finally, to further capture the full landscape 

of SCMs, we explored both somatic and germline mutations for splice-site-creating 

function using MiSplice. Altogether, we have gathered a set of 2,888 SCMs enabling us 
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to effectively compare the landscape of rare and germline SCMs. This compendium of 

SCMs has also started to elucidate novel genomic properties of mutations located at the 

donor and acceptor splice site and SCM containing exons including an overall decrease 

in the size of the novel exon post mutation, mimicking a natural evolutionary selective 

pressure but exploited in the cancer genome to maintain proper alternative splicing. To 

date, this is the first analysis comparing rare germline SCMs and somatic SCMs revealing 

their comparable dysregulation to the splicing code in cancer. Together my thesis work 

revealed that splice-site-creating mutants play a much larger role than previously 

appreciated in contributing to cancer and further expands our understanding of the 

genetic basis by which mutations can alter the mRNA landscape by dysregulating 

alternative splicing. More broadly, my work calls for a deeper analysis of seemingly 

“silent” mutations in any disease as such mutations may alter gene function via alternative 

splicing and integrating RNA and DNA-Seq can allow for accurate evaluation of mutations 

in a splicing context.  
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Chapter 1: Introduction 

1.1 Cancer Cell Fitness 

 

Introduction: Cancer, the second leading cause of death in the US, will cause an 

estimated 609,640 Americans deaths in 2018. The scientific community has come to the 

conclusion that cancer is a “disease of the genome” but deciphering the origins of cancer 

is still an evolving field of research. Over time, cells acquire random mutations, many of 

which have no effect, some with deleterious effects, and a few that confer a selective 

advantage that allows the cell to grow faster than neighboring cells (Stratton et al., 2009). 

After a cell acquires a set of genomic alterations that allow it to grow freely, resist cell 

death, escape normal signaling, and acquire the properties of immortality, metastasis and 

angiogenesis, the cancer cell can form a malignant mass that is harmful to the host 

(Hanahan and Weinberg, 2011).  

 

Type of Mutations: Mutations can be germline or somatic in nature. Germline mutations 

are inherited from parents or acquired de novo. Somatic mutations are acquired 

throughout an organism’s lifetime in individual cells due to genetic and environmental 

factors, such as chemicals and radiation. Most of the damage in the DNA is repaired, but 

sometimes the alterations are fixed. Acquired mutations include point mutations (single 

nucleotide variants / SNVs), insertions, deletions, larger copy number aberrations (CNA), 
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or large scale structural variation (SV). Mutations in genic and regulatory regions can 

affect gene function in several ways by causing loss or gain of function, altering transcript 

splicing, and increasing or decreasing gene expression level.  Epigenetic changes on 

histones and DNA, (such as methylation etc.) have been shown to play a central role in 

turning genes on and off, and are known mechanisms of dysregulation in cancer (Chen 

et al., 2014; Maunakea et al., 2013; Rajagopal et al., 2014). In combination, such 

variations can disrupt normal gene function and alter cellular response to regulation giving 

the cell a selective advantage to proliferate autonomously. 

 

Passenger and Driver Mutations: Genomic changes contributing to cancer can be placed 

into two categories: driver and passenger events. Driver mutations confer a growth 

advantage to the cell (under selective pressure) and are positively selected for during the 

development of the tumor. Novel bioinformatic analyses of large scale sequencing data 

have helped to infer pathogenic/driver and passenger mutations. Lu et al. analyzed allelic 

imbalance to identify potential initiating germline mutations in cancer (Lu et al.). In a study 

to identify rare germline truncation variants in 12 cancer types from The Cancer Genome 

Atlas (TCGA), variants with a higher variant allele fraction (VAF) in the tumor compared 

to the normal tissue were hypothesized to have undergone positive selection in the tumor. 

More recently, our lab expanded on this analysis by expanding to a larger cohort of 10,389 

samples and expanded the landscape of known pathogenic drivers in a subset of cancer 

types (Huang et al.).  Passenger mutations are those that are acquired in somatic cells 

but do not increase or inhibit cellular growth potential. These mutations can occur prior 

to, during, and after tumor initiating mutations but most are present prior to the 
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accumulation of driver mutations (Stratton et al.). Since they are present prior to the driver 

event, when the driver mutation does confer a selective advantage to a cancer clone, you 

may observe passenger mutations “hitch-hicking” with the driving clone.  Alternatively, 

initiation mutations are events that confer an advantage to the disease, but require 

cooperating mutations for developing disease phenotypes. Xie et al. identified initiation 

mutations in DNMT3A, ASXL1, TET2 and other genes associated with myelodysplasic 

syndrome (MDS), myeloproliferative neoplasm (MPN), chronic lymphocytic leukemia 

(CLL) and acute myeloid leukemia (AML) (Xie et al., 2014). These mutations were 

identified in patients without overt hematological malignancies suggesting that they may 

initiate clonal expansion but alone are insufficient to result in the development of cancer. 

Since this publication, there have been several novel studies that have expanded on this 

analysis by evaluating the presence of initiation mutations in the general population, but 

at extremely low variant allele fraction. This finding has appropriately initiated an entire 

cancer genomics field and spurred the development of novel sequencing technologies to 

accurately classify low level variants relative to background noise (Wong et al.; Young et 

al.). 

 

Tumor Suppressors and Oncogenes: Cancer drivers can be categorized as tumor 

suppressors or oncogenes. In 1979, Oppermann and colleagues linked the neoplastic 

transformation of cells by avian sarcoma virus to a phosphoprotein with kinase activity 

encoded by src(Oppermann et al.). This report identified the first oncogene, a gene where 

an alteration to one allele could contribute to the malignant tumor phenotype and cellular 

transformation. In 1984, RB1 was identified as the first tumor suppressor gene (TSG), a 
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gene with suppressor or regulatory function(Murphree and Benedict). TSGs commonly 

require mutation or inhibition of both alleles in order for cellular transformation to occur. 

According to Knudson’s “two hit hypothesis”, patients carrying a germline mutation in a 

tumor suppressor are more likely to develop cancer since a second random somatic 

mutation affecting the wildtype allele in any cell is much more likely to occur than two 

random mutations in a non carrier(Knudson). The “two hit hypothesis” is a tale as old as 

time and  is still commonly referred to in the literature as a method to identify putative 

cancer predisposition genes in large genomic datasets(Park et al.).   

 

Large Scale Cancer Projects: With the first cancer genome sequenced in 2008, the 

amount of sequencing data in cancer genomics has increased dramatically, supplying the 

scientific community with a gold mine of data to process, analyze, and refine. Several 

large scale projects have taken the initiative to integrate genomic data and genome wide 

annotation tracks allowing multiple teams to work together and pour their efforts into 

determining key genes and pathways that contribute to cancer. The Cancer Genome 

Atlas (TCGA) is a project that collected expression, methylation, RNA and DNA sequence 

data for matched tumor and normal samples across 33 distinct cancer types. The 

International Cancer Genomics Consortium (ICGC) seeks to provide genomic, 

transcriptomic, and epigenomic data across 50 different tumor types. The Pediatric 

Cancer Genome Project (PCGP) is a collaboration between St. Jude Children’s Research 

Hospital and Washington University School of Medicine in St. Louis whose goal is to 

determine genetic changes that give rise to childhood cancers. The Clinical Proteomic 

Tumor Analysis Consortium (CPTAC) has expanded off the analyses and projects of the 
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cancer genome atlas to expand the integration of omics data beyond the transcriptome 

and to the proteome and phosphoproteome. These projects are just a few of the many 

large-scale projects that are aimed at identifying the genetic origins that contribute to the 

development and progression of various forms of cancer. 

 

Pan-Cancer Studies: With the accumulation of large-scale genomic data across tissues 

types due to the aforementioned large scale-cancer projects, some labs have dedicated 

their entire research focus on pan-cancer analyses. The goal of these pan-cancer 

analyses is to glean important and relevant signatures and patterns among many patients 

to determine and define cancer by molecular subtype in order to expand and properly 

design personal therapies across cancer types (Cancer Genome Atlas Research et al.; 

Cooper et al.; Hoadley et al.; Huether et al.; Kandoth et al.; Sveen et al.; Vogelstein et 

al.). Currently, small sample sizes for individual cancer types limits our statistical power 

to identify more infrequently mutated driver genes. To address this problem, TCGA lead 

the effort in emphasizing the importance (statistically and biologically) to compare 

samples across multiple cancer types to identify infrequently mutated sites that are 

potentially driving cancer development. Initial findings from pan-cancer studies included: 

the identification of 127 significantly mutated genes across 12 cancer types(Kandoth et 

al.), which has more recently been expanded to a list of 299 cancer related genes (Bailey 

et al.). The identification of rare germline pathogenic variants including an analysis across 

12 cancer types and subsequently 33 cancer types(Huang et al.; Lu et al.). While the 

TCGA phase has wrapped up, the upcoming phases, which will expand into the clinic to 

guide personalized medicine, is going to be a very exciting new direction for the field and 



6 
 

will bring novel genomic applications directly to the clinic. While these aforementioned 

pan-cancer analyses have elucidated many differentially mutated regions in the genome, 

it is important to remember all sequencing projects are limited by the mutational load of 

the tumor of interest.  

 

1.2 Alternative Splicing and Disease 

 

The potential for phenotypic variability within an individual species is encoded and 

dictated by the underlying genomic. Understanding how differences in gene architecture 

can alter a gene’s function is essential to understanding many biological questions 

including disease diagnosis, progression, and treatment. To understand genomic 

variability, we will briefly discuss the genomic differences between species, evaluate how 

the genome has evolved in multicellular organisms, and discuss how mutations can lead 

to disease. 

 

The Splicing Code: One of the characteristic differences between unicellular and 

multicellular eukaryotic organisms is the difference in genomes. The central dogma of 

biology postulates that DNA is transcribed to RNA which is then translated to proteins 

that perform most functions within the cell. This central dogma lead scientists to realize 

that certain segments of DNA were not transcribed into RNA or translated in the final 

protein structure. Instead, transcribed regions of the DNA (exons) were often interrupted 

by longer segments of DNA that were systematically removed from the RNA (introns) to 
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generate the final sequence that is shuttled for protein translation. In 1978, Walter Gilbert 

hypothesized different combinations of exons could generate multiple mRNA isoforms 

from the same pre-mRNA molecule (Berget et al.; Chow et al.; Gilbert; Modrek and Lee, 

2002). This hypothesis has come to be known as alternative splicing, the process of 

joining exons or coding sequences, and splicing out introns.  

 

There is still active debate regarding where in our evolutionary history introns arose. The 

introns early (IE) hypothesis suggests that introns are ancient structures but were lost in 

intron-poor species such as prokaryotes (Irimia and Roy; Roy and Gilbert). In opposition, 

the introns late (IL) hypothesis postulates certain species like eurkaryotes gained introns 

due to insertion events after the divergence of prokaryotes and eukaryotes. Complicating 

this question more, intron-rich and intron-poor species are interspersed throughout the 

eukaryotic branch, suggesting massive intron gain or loss could lead to the diversity of 

genomic sequences present in eukaryotes.  

 

The average human transcript contains approximately 8 introns. Current studies suggest 

that between 70-95% of human genes harbor multiple mRNA transcripts(Johnson et al., 

2003; Matlin et al., 2005; Modrek and Lee, 2002). Alternative splicing expands the 

complexity and information content of the eukaryotic genome and allows for tissue, 

developmental, or temporally expressed isoforms which can perform alternate functions. 

 

The splicing code is made up of cis-acting elements that help the splicing complex 

distinguish between non-coding and coding regions and facilitates the joining of exons 
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and exclusion of introns (Wang and Cooper, 2007). The consensus intronic dinucleotide 

GT splice donor and AG splice acceptor flank spliced exons at the 3’ and 5’ ends 

respectively, and can be found in 99% of all introns. Intronic and exonic splicing enhancer 

(ISE and ESE) and suppressor (ESS and ISS) elements influence the splicing complex 

to target true splice sites and pseudo splice sites (Supek et al., 2014b) (Ast; Bonomi et 

al.; Faustino and Cooper; Keren et al.; Matlin et al.). The spliceosome is responsible for 

joining exons and splicing out introns to form the mature mRNA molecule. The 

spliceosome is made of five small nuclear ribonucleoproteins (snRNPs), U1, U2, U4, U5 

and U6, along with a number of other proteins. The U1 snRNP interacts with the 5’ splice 

site (5’ ss), splicing factor 1 (SF1) identifies the branch site, and the U2 auxiliary factory 

(U2AF) binds the polypyrimidine tract and the 3’ splice site (3’ ss). Additional proteins that 

facilitate the splicing process include SR proteins (SR) which bind to ESEs and interact 

with U2AF. Mutations in splices sites and enhancer or suppressor sequences can 

ultimately contribute to a pathogenic phenotype by altering the binding affinity for 

spliceosomal or associated proteins. 

 

The splicing process is dynamic and occurs co-transcriptionally. For this reason, genomic 

context alone cannot begin to describe the efficiency of the splicing code.  But we still 

need to start somewhere. 

 

RNA polymerase II transcribes DNA to create the nascent mRNA molecule. As the 

molecule is transcribed, the spliceosomal machinery is recruited to facilitate the removal 

of introns and the joining together of exons. RNA polymerase transcriptional dynamics 
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can be influenced by underlying genetic architecture. For example nucleosomes are 

commonly found positioned on exons which have a high GC content. The median length 

of exons are coincidently very close in size to the length of genomic DNA that wraps 

around histones, suggesting an added selective pressure on maintaining an exon size of 

rougly 140 bp. Nucleosomes are made up of 8 core histone proteins which contain histone 

tails that have post-translational modifications (PTMs). PTMs can influence both RNA 

polymerase transcriptional dynamics and RNA processing by attracting necessary 

splicing factors to facilitate proper splicing. For example the H2A.Z histone 2A variant is 

known to promote splicing of non-consensus introns in S. cerevisiae (Herzel et al.; Neves 

et al.).  

 

Splicing alterations and cancer development: Splice alterations have been shown to affect 

the landscape of mRNA isoforms present in both tumor and normal tissues (Wang and 

Cooper). Mutations in cis can directly affect the use of a splice site or promote the use of 

an alternative splice site facilitating exon/intron inclusion. The production of inappropriate 

transcripts in a particular tissue type can result in disease due to its alternate function. 

Mutations in canonical splice sites have been linked to several diseases, for instance: A 

familial study found in hSNF5, when the consensus GT dinucleotide is mutated to an AT, 

a deletion of exon 7 occurs. This germline mutation was observed in both affected and 

unaffected family members, but infant brain tumors in affected members showed a loss 

of the wild-type allele in the tumor(Taylor et al.; Venables). In colorectal and liver 

metastases, a 3’ splice site mutation from AG to AT leads to a loss of the adjacent exon. 

Furthermore a loss of the wild type allele in the tumor suggests that this isoform is under 
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positive selection in the tumor (Kurahashi et al.). In another familial study, a single intronic 

base change formed a cryptic splice site resulting in the addition of 11 nucleotides to the 

tumor suppressor BRCA1 gene creating a truncated protein(Findlay et al.; Hoffman et 

al.). Less studied are mutations in less conserved intronic regions. In ATM, a mutation at 

the 6th position of an intronic region is linked to breast cancer but only causes a proportion 

of transcripts to form a truncated protein(Broeks et al.).  

 

All of the above studies are one-off cases where a resulting phenotypic effect was 

observed in an individual which led to the discovery of the mutation inducing the aberrant 

splicing pattern. Bioinformatic heavy labs are starting to group similar splicing alterations 

to evaluate genomic signatures that can predict the resulting phenotypic changes. Below 

we will describe some of the recent novel findings in the field that have started to broadly 

characterize the normal and mutation induced splicing landscape across populations. 

 

The global effects of mutations on splicing variation is now being widely studied in large-

scale RNA-Seq consortia. Rivas et al. predicted the effects of protein-truncating variants 

on the transcriptome by utilizing data from the Genotype-Tissue Expression (GTEx) and 

Geuvadis projects (Rivas et al., 2015). Both projects allowed the team to quantitatively 

evaluate allele specific expression of 13,182 mutations in healthy individuals, primarily 

focusing on nonsense and splicing mutations. Their findings identified variants within the 

splicing region with significant splice-disruption events and confirmed their findings in a 

separate dataset of common variants in Swedish individuals.  
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Using the same dataset, a recent publication evaluated the level of “deleterious-ness” of 

mutations near the splice-site to determine a more refined definition for the splice-region 

(Zhang et al., 2018). In addition to the canonical GT and AG sites, the study found one 

base in the exon and four bases into the intron after the canonical GT (donor) and the 

first exonic base adjacent to the AG (acceptor) site are mutation intolerant. Additionally, 

co-occuring mutations were less likely to occur suggesting one mutation in one of the 

aforementioned sites was enough to perturb the splicing pattern. Additional studies 

identified synonymous driver mutations in key oncogenes, and found that nearly half of 

all synonymous driver mutations affected splicing, specifically last base exonic mutations 

(Supek et al., 2014a). Together, these findings suggest that synonymous driver mutations 

likely also contribute to cancer through altering alternative splicing. 

 

Shiraishi et al. developed SAVNet to evaluate somatic variants that induced splice altering 

variants across 31 cancer types in the TCGA cohort (Shiraishi et al., 2018). The authors 

found that the smoking signature (C>A substitutions) contributed largely to the variants 

characterizing splicing differences followed by APOBEC.  

 

Cummings et al. used paired transcriptome analyses for patients with undiagnosed 

muscle disorders and identified recurrent splice-site-creating variants in collagen VI-

related dystrophy and predicted functional variants in mutation-rich genes such as TTN 

(Cummings et al., 2017).  
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Several studies have tried to integrate computational predictions and massively parallel 

splicing assays to gain new insight into the splicing code. Soemedi et al. evaluated 4,964 

single nucleotide variants via a massively parallel splicing assay (MaPSy) (Soemedi et 

al., 2017). Approximately 10% of variants were confirmed in vitro and in vivo to disrupt 

splicing but their assay is limited in only being able to evaluate mutations in exons that 

were less than 100 nucleotides in length.  

 

Mutations in Trans Elements & Cancer: Mutations in trans-acting elements or splicing 

factors will affect a larger subset of genes by disrupting the biological machinery that 

helps to recognize exons and introns. The most well studied splicing factors include 

serine/arginine-rich (SR) proteins and heterogenous nuclear ribonuclear proteins 

(hnRNPs)(Kaida et al.; Matlin et al.). SR proteins bind to ESE’s and ISE’s and promote 

splicing and inclusion of exons by recruiting spliceosomal proteins. The family of hnRNP 

proteins function as splicing silencers by binding to ESS’s and ISS’s. SR proteins in 

particular are shown to be differentially regulated in cancer and play a role in 

neoplasia(Fregoso et al.; Kaida et al.). These splicing elements have been shown to 

function in a position dependent fashion(Lim et al.). SR proteins are usually bound in 

exons while hnRNPs are found in introns, but modifications that lead to altering the 

splicing elements binding sites has been linked to their opposite function. Cis mutations 

that affect binding of hnRNPs and SR proteins can drastically change whether exon 

usage is promoted or suppressed. An initial study showed that many disease alleles 

should be classified as splicing mutations even though they were mis-classified as 

missense mutations because of the motifs that were changed near the splice site(Lim et 
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al.). Using the pan-cancer dataset by TCGA, more motif alterations can be elucidated and 

linked to splicing alterations. 

 

Mutations in enhancer and silencer sequences can also affect isoform expression 

because of the proteins that associate with them. Variants in BRCA1 (Walker et al.), 

SMN1/2, PDHA and GH are known to cause exon skipping by disrupting the ESE 

sequence(Woolfe et al.). This same study showed that splice altering variants (SAVs) are 

enriched in regions near the splice junctions. Exon skipping SAVs are characterized by a 

loss of ESE and a gain of ESS while variants with increased exon inclusion are 

characterized by ESS loss. Alternative isoforms are linked to a number of different 

diseases which have been shown to contribute to drug resistance, tumor angiogenesis, 

metastasis, and misregulation of apoptosis(Woolfe et al.). Tools are still needed to identify 

the functional significance of somatic and germline splice altering mutations within the 

coding and noncoding regions of a gene.  

 

While the field has made great strides in classifying variants that disrupt alternative 

splicing, interpreting all variants in a splicing specific context has still been largely ignored 

in large scale sequencing projects. Variant classification and interpretation is fundamental 

to understanding the biological consequences of mutations on a gene of interest. If 

variants are not properly annotated, the biological interpretation is incorrect. Currently, 

mutations are classified based on their changes to the resulting protein. The degenerate 

nature of the genetic code whereby 61 codons represent 20 amino acids allows 

nucleotide changes to affect the sequence of mRNA while leaving the amino acid 
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sequence of the resulting protein unchanged. “Silent” mutations that do not change the 

amino acid are still to this day commonly overlooked in cancer genomics. A study 

analyzing mutations in the CFTR gene showed that synonymous mutations could alter 

splicing by leading to the use of a cryptic splice site or by altering the 3’ splice site of exon 

9 which results in a truncated protein product(Niksic et al.; Wang and Cooper; Wilschanski 

et al.) Another recent study showed that synonymous mutations were enriched in 

oncogenes and some tumor suppressor genes in a cancer type specific manner (Supek 

et al., 2014a). Furthermore, this study found many recurrent “synonymous” TP53 

mutations are inactivating events that alter canonical splicing of the mRNA. These studies 

suggest that some seemingly “silent” mutations can affect gene function by modifying 

splicing, transcription factor binding, or other properties that contribute to mRNA 

translation(Sauna and Kimchi-Sarfaty, 2011). Using known exonic and intronic mutations 

that activate cryptic splice sites, Lee et al. developed a machine learning classifier to 

predict whether a mutation would disrupt alternative splicing (Lee et al., 2017). 

Interestingly, in analyzing variants in CFTR, 70% of the 47 variants tested, were predicted 

to be missense variants suggesting many splicing alterations are mis-annotated in well-

known disease-related genes. 

 

The previously mentioned studies all emphasize the importance of evaluating 

synonymous and nonsynonymous mutations across cancer types in order to uncover 

potential pseudo or non-canonical splice sites that are currently being overlooked in 

cancer genomics.   
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My thesis work focused first on generating bioinformatic tools that systematically classify 

splice site and splice-site-creating mutations by integrating DNA and RNA sequencing 

and experimentally validating the predicted consequences of the variants using a mini-

gene splicing assay. In Chapter 2, I helped develop SpliceInator a semi-automated tool 

to systematically detect splicing phenotypes using mutation and gene expression data. 

SpliceInator, combines two lines of evidence to assess mutant specific aberrant splicing 

events and their implications, one based on interpretation of RNA-Seq fragment mapping 

using TopHat and another based on standard statistical hypothesis testing of RSEM 

expression values. We interrogated 1,146 conserved splice site mutations across 19 

cancer types revealing a wide range of complex splicing phenotypes. 521 variants in our 

dataset conferred a measurable splicing alteration, with 69.29% associated with only one 

splicing defect, while the remaining were a combination of two to four different splicing 

events. Another 624 splice site mutations did not confer any measurable splicing defects 

but 75.6% were classified as having a low variant allele fraction, low exon expressivity or 

both while 24.8% were undetermined. Furthermore, synonymous and non-synonymous 

variants genome-wide were evaluated in a splicing context and we discovered 243 

mutations that create and strengthen nearby alternative splice sites, respectively, further 

justifying the demand for a tool that can systematically evaluate all mutations in a splicing 

context. To meet this demand, in Chapter 3 we developed MiSplice for the first large-

scale discovery of splice-creating mutations (SCMs) across 8,656 TCGA tumors. We 

report 1,964 originally mis-annotated mutations having clear evidence of creating novel 

splice junctions. TP53 and GATA3 have 26 and 18 SCMs, respectively and ATRX has 5 

from low-grade gliomas. Mutations in 11 genes including PARP1, BRCA1, and BAP1, 
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were experimentally validated for splice-creating function. Notably, we found neoantigens 

induced by SCMs are likely several folds more immunogenic compared to missense 

mutations, exemplified by the recurrent GATA3 SCM. Further, high expression of PD-1 

and PD-L1 was observed in tumors with SCMs, suggesting candidates for immune 

blockade therapy. Our work highlights importance of integrating DNA and RNA data for 

understanding functional and clinical implications of mutations in human diseases. 

 

Finally, to further capture the full landscape of SCMs, in chapter 4 we evaluated both 

somatic and germline mutations for splice-site-creating function using MiSplice. 

Altogether, we have gathered a set of 2,888 SCMs enabling us to effectively compare the 

landscape of rare and germline SCMs. Interestingly, we found mutations overlapping the 

splice donor site were sufficient to disrupt the canonical splice site but this phenomenon 

doesn’t hold true for acceptor splice site mutations in our dataset. Alternatively acceptor 

SCMs needed to not only strengthen the novel splice site to facilitate the novel site usage, 

but also disrupt the canonical splice site. This compendium of SCMs has also started to 

elucidate novel genomic properties of SCM containing exons including an overall 

decrease in the size of the novel exon post mutation, mimicking a natural evolutionary 

selective pressure but exploited in the cancer genome to maintain proper alternative 

splicing. To date, this is the first analysis comparing rare germline SCMs and somatic 

SCMs revealing their comparable dysregulation to the splicing code in cancer. Evaluating 

mutation induced events separately from patient specific de novo events can provide a 

focused analysis on the genomic features selecting for SCM+ exons relative to leaky 

splicing or mutation independent cryptic splice site activation. As tissue type specific 
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datasets continue to increase, developing novel tissue specific signatures will help inform 

the tissue type specific relevance of mutation induced SCMs. Together my thesis work 

revealed that splice-site-creating mutants play a much larger role than previously 

appreciated in contributing to cancer and further expands our understanding of the 

genetic basis by which mutations can alter the mRNA landscape by dysregulating 

alternative splicing. More broadly, my work calls for a deeper analysis of seemingly 

“silent” mutations in any disease as such mutations may alter gene function via alternative 

splicing and integrating RNA and DNA-Seq can allow for accurate evaluation of mutations 

in a splicing context.  
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Chapter 2: Complex patterns of splice 

site mutations 

Contribution: I scripted and developed the full code for the TopHat Module and partial 

code to the Expression Level Module and Rule Based Classifier of SpliceInator.  I 

manually reviewed all variants validated by our computational tool, performed 

downstream analyses and created all Figures other than 2.1A. 

2.1 Introduction 

Large-scale sequence-based studies are increasingly examining the functional 

consequences of human genomic variants(Dees et al.; Ding et al.; Hoadley et al.; Huether 

et al.; Kandoth et al.; Wang and Cooper; Xie et al.), with many focusing on characterizing 

somatic coding mutations and their amino acid sequence alterations in order to 

investigate the underlying mechanisms of cancer. Splice mutations are of particular 

interest because of their dramatic modifications of mature RNA products, including 

possible retention of large intronic segments and loss of whole exons, coupled with 

significant downstream consequences for associated surviving proteins. With respect to 

cancer, splicing alterations can affect both tumor and normal tissues(Wang and Cooper), 

but determining their functional consequences within and outside of the canonical splice 

site is still understudied in cancer genomics(Barbaux et al.; Broeks et al.; Holmila et al.; 

Kurahashi et al.; Steffensen et al.; Venables; Woolfe et al.). By one estimate, around 22% 

of disease causing alleles are mis-classified as missense mutations because they alter 



27 
 

motifs near the canonical site utilized by the splicing machinery. Especially relevant to 

cancer are synonymous mutations that can be enriched in oncogenes and some tumor 

suppressor genes in specific cancer types(Supek et al.). Several recurrent mutations in 

cancer-associated genes, such as TP53, were found to be inactivating events, altering 

canonical mRNA splicing. Silent and missense mutations can also affect gene function 

by modifying splicing, transcription factor binding, or other aspects of mRNA translation 

(Sauna and Kimchi-Sarfaty). These studies show that mutations in cis can directly affect 

the use of a splice site, or promote the use of an alternative splice site, thereby facilitating 

exon skipping or intron inclusion. There is a growing appreciation of the need for reliable 

splicing analyses to identify alternative biochemical pathways that are causative in 

contributing to the disease state(Dorman et al.; Lim and Fairbrother; Mort et al.; Rivas et 

al.; Steffensen et al.). It is likely that many, perhaps most of these pseudo or non-

canonical splice sites are currently being overlooked in cancer genomics.  

 

Given the biomedical importance of splice-affecting mutations, a bevy of analysis tools 

has been developed over the last few decades. Early entrants, including Gene 

Splicer(Pertea et al.), MaxEntScan(Yeo and Burge), Splice Site Finder(Shapiro and 

Senapathy), NNSplice(Reese et al.), and Human Splicing Finder(Desmet et al.) sought 

mainly to identify splice site mutations, but methods have increasingly added new 

analysis capabilities. For example, tools like Skippy(Woolfe et al.), SpliceTrap(Wu et al.), 

DEXSeq(Anders et al.) use RNA-Seq data to discern differential exon usage and exon-

skipping and SpliceSeq(Ryan et al.) added significant visualization aids. Algorithms are 

becoming progressively more ambitious, for example SpliceR(Vitting-Seerup et al.) and 
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SplicingTypesAnno(Sun et al.) attempt to characterize a broader set of events 

encompassing intron retention and various exon extensions and contractions. 

Calculations often depend on tally-based heuristics and ad-hoc rules. The overall problem 

of comprehensively characterizing splice mutations and their downstream implications 

remains unsolved. 

 

Research increasingly suggests that splice architectures are complex and their 

implications for cancer are significant(Ast; Bonomi et al.; Faustino and Cooper; Keren et 

al.; Matlin et al.; Modrek and Lee; Taylor et al.; Venables; Wang and Cooper) . A number 

of specific mechanisms have already been observed. For example, variants in BRCA1, 

SMN1/2, PDHA and GH cause exon skipping by disrupting an exonic splicing enhancer 

sequence(Walker et al.; Woolfe et al.). Mutations near pseudo splice sites can also result 

in activation, for instance the c.190 mutation in BRCA1(Yang et al.), which appears to be 

under positive selection in the tumor. This mutation is a clear example of a predicted 

“missense” event that actually functions as a modifier of splicing efficiency in vivo and 

points to modified alternative splicing as a more important effect in cancer than has been 

previously appreciated. Importantly, we found that standard annotation tools did not 

properly identify this variant as splice altering.  

 

Given the importance of splice effects in cancer and the lack of a purely algorithmic 

solution for finding and characterizing them, we applied a semi-automated approach to 

this problem based on large batches of case-control RNA-Seq data that are now 
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available. We apply this method here to examine 1,146 candidate mutations over 19 

cancer types and describe several novel findings. 

 

Figure 2.1: SpliceInator Workflow. The SpliceInator workflow can be grouped into two main modules 

and post processing analyses. In Module 1, case and control RSEM expression values are compared 

using standard statistical hypothesis testing to classify intron retention and exon skipping events. In 

Module 2, BAMs are processed with TopHat using RNA-Seq fragment mapping to identify mutant specific 

alternative splice junctions to classify intron retention, exon skipping, exon shrinkage and exon extension 

events. In the post processing steps, a rule based classifier is used to derive support from module 1 and 

module 2 to classify variants with associated splicing defects. Second, quantile analysis is performed to 

group genes into expression classifications in a tissue specific manner. After processing, users can 

compare variants to predicted splicing defects to infer the functional consequences of each variant in a 

splicing context. The right-hand column highlights several thresholds and internal tests that are utilized 

in SpliceInator that can alter which steps are run for each module. For example, if read count thresholds 

are not satisfied in the second module, then only module 1 and the post processing steps will be tested 

and reported. 
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2.2 Results 

SPLICEINATOR – AUTOMATIC PRIORITIZATION OF SPLICE MUTATION EVENTS 

 

Given the difficulty of rigorously characterizing splice mutation events, we instituted a 

procedure to automatically prioritize candidates from large lists of inputs (Figure 2.1). 

Called SpliceInator, it identifies the most promising members, assigning each a 

preliminary assessment of one or more phenotypes. SpliceInator employs 3 forms of 

analysis. In the first module, expression levels (units of RPKM) are permutation-tested 

against corresponding controls, for example intron x in the case versus intron x in the 

control group. If 3’ bias of the case gene is sufficiently low (Spearman rank test), this 

between-samples assessment is augmented by a within-sample permutation test, for 

instance the subject intron against the other introns in the gene. In this latter scenario, the 

probability results would then be combined using Fisher’s chi-square transform method. 

The second module uses TopHat(Trapnell et al.) assembly to identify boundaries and 

establish read counts. Given some minimal read thresholds, a Fisher exact test is applied 

to assess whether patterns of junction coverage are altered between case and controls 

due to splice site mutation. A third component of SpliceInator classifies whole gene 

expression values based on Tukey’s quartile analysis, including pronouncement of no 

expression for values more than 1.5 interquartile ranges below the first quartile. Finally, 

using a rule based classification we then prioritized variants from module 1 and module 

2 using the following rules: 1) Events are classified as intron retention if found to be 

statistically significant by module 1; 2) Exon extension and exon shrinkage events are 
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reported if found to be statistically significant by module 2; 3) Exon skipping events are 

classified based on a combination approach. If the exon skipping event is found to be 

statistically significant in module 1 and module 2, the module 1 pvalue is reported and a 

designation of M1;M2 is reported. If module 2 reports a statistically significant pvalue, an 

M2 designation is reported. The codebase is available from GitHub (github.com/ding-

lab/SpliceInator). 

 

DIVERSE SPLICING PHENOTYPES ASSOCIATED WITH SPLICE SITE MUTATIONS 

 

We collected high quality mutation calls with a UCSC conservation score greater than 

99% from 19 cancer types derived from The Cancer Genome Atlas (TCGA). A total of 

1,146 splice site mutations currently defined as substitutions, deletions, or insertions 

overlapped the 2 bp canonical intronic splice donor or acceptor of 624 cancer associated 

genes. We predicted mutations located at highly conserved sites in cancer genes would 

be associated with measurable splicing defects. The TopHat module identified alternative 

junctions near splice site mutations and each prediction was manually reviewed to 

produce a high confidence list of mutations and associated splicing defects. Our analysis 

revealed TopHat accurately classifies exon extension, exon shrinkage, and some exon 

skipping events, but is unable to identify intron retention, another widespread defect 

observed in many samples by manual review. The statistical based module using RSEM 

data properly identified intron retention and exon skipping events that were missed in the 

TopHat alignment analysis.  
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45.46% of variants in our dataset conferred measurable splicing alterations. The overall 

landscape of splicing phenotypes for 521 variants included: exon skipping (230), 5’ exon 

shrinkage (137), intron retention (219), 3’ exon shrinkage (49), multi-exon skipping (32), 

3’ exon extension (27), and 5’ exon extension (24) (Figure 2.1a). 69.29% (361) of splice 

site mutations had only one associated splicing defect, while the remaining were a 

combination of splicing events including 2 events (24.76%, 129), 3 events (4.99%, 26) 

and 4 events (0.96%, 5).  
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Figure 2.2. Splicing defects associated with splice site mutations. (A) An UpSetR plot highlighting 

the distribution of splicing phenotypes associated with splice site mutations across the dataset. The bar 

plot on the left hand side reflects the total amount of sites that fall into each splicing phenotype group. 

The bar plot at the top depicts the total mutations that are classified as having a corresponding splicing 

defect depicted in the bubble’s below. Colors correspond to a separate splicing phenotype. Black lines 

between bubbles indicate complex splicing events. (B) For each splicing phenotype, we evaluated how 

the splicing defect would alter the reading frame of the protein. 

 

SPLICE SITE MUTATIONS LINKED TO COMPLEX SPLICING EVENTS 

 

Current tools and analyses focus on the primary splicing defect, but 30.6% of mutations 

with a measurable splicing phenotype in our dataset have two to four different splicing 

alterations linked to the same splice site mutation. The most common complex event 
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involves intron retention and single exon skipping in 29 cases. A 2011 study(Ma et al.) in 

c.elegans provides evidence that intron retention and exon skipping is regulated by the 

identity of the 3’ splice site due this regions interaction with U2AF splicing factors.  

 

Five mutations in KDM6A, KMT2B, CBFB and TP53 presented with 3’ exon shrinkage 

and single exon skipping. Two of the mutations sharing this out of frame complex splicing 

event are annotated to exon 26 of the H3K27 demethylase, KDM6A, and have lower 

expression relative to their BLCA cohort (Figure 2.3a). A closer examination of the RNA-

Seq revealed equal support of the 3’ exon shrinkage and single exon skipping events, 

and a lack of reads supporting the canonical junction in both cases. Using MaxEntScan 

we scored the canonical and alternative splice sites using a sliding window approach to 

evaluate the strongest alternative splice site score with the introduced mutation. Before 

the mutations the donor site score is 8.07 but with the introduced mutations the score 

changes to -0.33 and -6.43 for the point mutation and larger deletion, respectively. 

Although the alternative splice site utilized in the 3’ exon shrinkage event in both cases 

has a lower splice score of -0.88, Human Splicing Finder scored the alternative site as a 

potential donor site (70.87 out of 100) taking into consideration additional genomic 

features such as branch point potential and splice factor protein binding sites(Desmet et 

al.). Altogether, these results suggest the donor splice site mutation weakens the 

canonical splice site decreasing the overall expression of KDM6A while also utilizing a 

nearby alternative donor site leading to a 3’ exon shrinkage and exon skipping event. The 

landscape paper on LUAD(Cancer Genome Atlas Research), and two additional 

studies(Banka et al.; Cheon et al.) of Korean patients with Kabuki syndrome report the 
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presence of frequent mutations in KDM6A, including mutations overlapping the same 

splice site, but did not report on the functional consequences of the splice site mutation.  

 

Since the recurrent KDM6A splice site mutations had the same splicing phenotype, we 

next evaluated the landscape of recurrent splicing alterations across the cohort. Our 

dataset contained 300 recurrent splice site mutations present in two or more samples 

overlapping the same splice site. Several highly recurrent mutations in the same cancer 

type showed similar splicing patterns including GATA3 in BRCA and MET in LUAD. The 

GATA3 simple indel was identified in 12 breast cancer (BRCA) samples and expressed 

the same 5’ exon shrinkage event across all 13 samples (Arnold et al.; Dorman et al.). 

Four different mutations overlapping the same splice site in MET expressed a similar exon 

skipping profile that is well supported in the literature(Drilon).  
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Figure 2.3. Complex Splicing Events. (A) Heatmap showing the distribution of splicing phenotypes 

associated with select recurrent splice site mutations. Cancer type classification is highlighted above, 

followed by gene expression classification using quantile based analysis. For select genes, recurrently 

muatated splice sites in the same gene are grouped by black bands within their gene group. Splicing 

defects for each site are classified as in frame and out of frame with an empty and filled in square, 

respectively.  (B) Lolliplot with 80 recurrent mutations in TP53 spanning 9 splice sites. Mutations are 

depicted by a circle, with each circle colored according to the identified splicing defect. If more than one 

defect is identified to be linked to that mutation, the circle is divided into two or three quadrants, with each 

quadrant colored according to the splicing defect. 

 

Figure 3: Complex Splicing Events
A. Genes with Recurrent Splice Site Mutations

B. Diverse splicing phenotypes in recurrently mutated splice sites in TP53
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Figure 3. Complex Splicing Events. (A) Heatmap showing the distribution of splicing phenotypes associated with select recurrent splice site muta-
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recurrently muatated splice sites in the same gene are grouped by black bands within their gene group. Splicing defects for each site are classified 
as in frame and out of frame with an empty and filled in square, respectively.  (B) Lolliplot with 80 recurrent mutations in TP53 spanning 9 splice sites. 
Mutations are depicted by a circle, with each circle colored according to the identified splicing defect. If more than one defect is identified to be linked 
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Alternatively, many recurrent sites did not show such consistency across samples and 

tissue types. TP53 is highly mutated across cancer types and harbors 80 recurrent splice 

site mutations across nine splice sites. Evaluating the distribution of splicing phenotypes 

for each splice site shows a very different effect. Mutations at p.261_splice are derived 

from BRCA, HNSC, KIRC and UCS and while three cancer types share the same intron 

retention event, the UCS sample has no measurable splicing alterations. Six of the seven 

mutations at p.224_splice are derived from four cancer types and all lack a measurable 

splicing defect, but a single mutation in SKCM expresses 3’ exon extension and intron 

retention which could be explained by the high tumor VAF (94.44%) for this particular 

mutation. This result highlights the importance of having individualized RNA-Sequencing 

to complement mutational analysis to evaluate patient specific splicing alterations.  
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LACK OF MEASURABLE SPLICING DEFECT FOR MANY SPLICE SITE MUTATIONS 

 

We next wanted to explore whether there was a relationship between the presence of an 

aberrant transcript and the newly formed premature termination codon (PTC). The 

Nonsense Mediated Decay (NMD) pathway predominantly degrades PTC’s and 

nonsense mutations that differ from the canonical stop codon to reduce expression of 

potentially damaging transcripts. The general rule of thumb is that PTC’s located at least 

50-55 bp upstream of the last exon-exon junction drive strong NMD, whereas those out 

side of this criteria are predicted to escape the degradation process. To evaluate if the 

presence of a measurable splice defective product is due to the lack of degradation by 

NMD, we translated the aberrantly spliced product and evaluated the position of the PTC 

relative to the exon-intron boundary predictions. Our analysis found that X mutations 

create a PTC that is predicted to escape NMD while X mutations should hypothetically be 

degraded.  

 



39 
 

 

Figure 2.4. Lack of a measurable splicing defect. (A) Mutations which lack a measurable splicing 

defect are categorized into bins by quantile gene expression classification into not expressed, low 

expression, average expression and high expression based on their tissue type (x axis). Each variant is 

then grouped based on exon expression, variant allele fraction and unknown causes to explain the lack 

of a measurable splicing defect in each gene expression category. (B) Overall distribution of exon 

expressivity between samples found with and without a measurable splicing defect separated by 

acceptor and donor site annotation. 

 

Although we identified splicing alterations for 521 variants, 624 splice site mutations were 

not associated with any measurable splicing defects suggesting one or more of the 

following: (1) a lack of expression of the transcript; (2) low expression of the variant allele 

in the tumor; (3) the creation of a highly unstable transcript that is degraded; (4) copy 

number aberrations; (5) presence of a subclone; or (6) a false positive. To evaluate lack 
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of expression of the case sample relative to the controls, we performed Tukey’s quartile 

analysis, including pronouncement of no expression for values more than 1.5 interquartile 

ranges below the first quartile (Methods). While 339 sites had high or average expression 

relative to their cohort, 14 and 272 genes were considered as not expressed or lowly 

expressed, respectively, suggesting the mutation disrupted overall expression of the 

transcript. To assess exon expression we evaluated reads supporting the adjacent 

annotated exon against control samples and normalized by the length of the transcript 

and total mapped reads (Methods). For 116 of the 624 splice site mutations, the transcript 

had no expression in the tissue type of interest illuminating the lack of a measurable 

splicing defect in the presence of a splice site mutation. Furthermore, the group lacking 

splicing defects had an overall lower exon expressivity and lower variant allele fraction 

distribution when compared to the group of variants with measurable splicing defects 

(Figure 2.4). Altogether, our results suggest 75.6% of highly conserved splice site 

mutations lacking a measurable splicing defect can be classified as having low VAF 

(<30%), low exon expressivity or both while 24.8% are still undetermined (Figure 2.4).  
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IMPACT OF SPLICE SITE MUTATION ON GENE EXPRESSION 

 

Figure 2.5. Splice altering variants with increased expression. 19 predicted splice eQTLs identified 

across cohort. Indicated in figure are gene name, sample, cancer, variant allele fraction (VAF), copy 

number (CN), purity estimate, and the associated splicing defects indicated by color. Color legend on 

right hand side corresponds to associated splicing defect, and a filled in circle indicates predicted out of 

frame events. 

 

We next compared cases against cancer specific control cohorts to evaluate the effect of 

splice site mutations on gene expression. Overall, around 59% of sites had comparable 
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(high or average) expression within their control cohort, while 41% had lower overall 

expression (low or not expressed). Interestingly of the 59%, 19% had higher gene 

expression, selecting for an altered transcript that escapes RNA degradation pathways.  

In the high expression group, we sought to identify splicing expression quantitative trait 

loci (eQTLs) where the splice site mutation is associated with higher expression in the 

gene of interest. We hypothesized splice eQTL’s would have a measurable splicing 

defect, elevated DNA VAF (>50%) and increased overall gene expression of case 

samples relative to the associated control cohort. Out of 526 mutations with measurable 

splicing alterations, 19 are predicted to be splice eQTLs in our cohort and they reside in 

the following cancer associated genes: TP53 (2), PTEN (2), KEAP1 (2), CREBBP, AXIN1, 

ACVR2A, TSC1, MGA, CHD4, WAS, CDKN2A, BCORL1, BRIP1, MAP4K3, KMT2C, and 

CBLC (Table 1). Interestingly, 10 of these 19 mutations are complex events, having 2 or 

more splicing phenotypes associated with the mutation, and 13 are classified as having 

a retained intron.  
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Figure 2.6. KEAP1 highly expressed splice eQTLs. (A) Lolliplot depicting location of highly expressed 

splice site mutations in KEAP1 (p.570).  Each domain is highlighted using a different color and each 

circle on the lolliplot visualizes the location of the mutation on the exonic sequence and highlights the 

complex splicing patterns identified at each site. The resulting consequences of each splicing defect on 

the kelch domains is further annotated below the lolliplot revealing crucial structural elements that are 

absent under each condition. (B) Protein structure of the kelch domains in the KEAP1 structure. Six kelch 

domains form a propellar structure within KEAP1 (gray) that is responsible for interacting with Nrf2 

(yellow). The circles in the upper left hand corner of each structure highlight the splicing defects that will 

disrupt the associated colored kelch domain in the 3D depiction. The amino acid position where the splice 

site mutations fall are highlighted in blue and annotated along with the Nrf2 interacting domain (yellow). 

 

Two highly expressed splice eQTLs were identified in the E3 ubiquitin ligase Kelch-like 

erythroid cell derived protein with CNC homology (ECH) associated protein 1 otherwise 

known as KEAP1. KEAP1 sequesters and ubiquitinates Nrf2, a nuclear factor erythroid 
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2-related factor 2 (NFE2L2). In cancer, many mutants disrupt the binding between KEAP1 

and Nrf2. Disrupted binding increases the presence of free Nrf2, thereby activating 

downstream genes that are conducive for cell growth and responding to oxidative 

stresses. Three LUAD samples in our dataset harbor splice site mutations in KEAP1, two 

of which were classified as high expressing splice eQTLs. We hypothesized the two 

mutations in KEAP1 are disrupting the binding between KEAP1 and Nrf2. One mutation 

was identified at the acceptor site of exon 6 and another at the donor site of exon 5, with 

a VAF of 61% and 72%, respectively. Copy number data also suggests the mutant with 

72% VAF has undergone a copy number loss, providing further evidence as to the 

selection of the mutant case in the tumor. Furthermore, while one mutation occurs within 

the last 50 bp of the last exon-exon junction and the other is present in the last exon of 

KEAP1, this could explain why the splicing defects are tolerated and escape degradation 

by nonsense mediated decay.  

 

When comparing the KEAP1 mutants against the control group, KEAP1 mutants had 

higher overall gene expression (wilcox test=0.04) and lower overall NFE2L2 expression 

(wilcox test = 0.01). Interestingly, one KEAP1 mutant sample with RPPA data had higher 

Nrf2 protein expression relative to the controls and lower KEAP1 protein expression, 

providing an answer as to the mechanism by which the splice eQTL could be disrupting 

this biological pathway. The discordant relationship between protein and gene expression 

in this case could be explained by a negative feedback loop leading to a decrease in gene 

expression under conditions of high protein expression.  
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Structurally, the mutations occur within the last of the six kelch repeats that fold into a 

beta propeller tertiary structure, with each blade compromising four anti-parallel beta 

sheets (Figure 2.6b). In Figure 2.6b we highlight the kelch domains that are predicted to 

be disrupted due to associated splicing defects. For example, if exon 5 of KEAP1 was 

skipped, the fifth kelch domain would be completely absent thus disrupting the overall 

propeller structure and the binding pocket for Nrf2. These results lead us to believe the 

KEAP1 high expressing splice eQTLs act in a dominant negative manner by disrupting 

the binding of KEAP1 to Nrf2 thereby increasing the amount of free Nrf2 in the cell. 
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NON-CANONICAL SPLICE SITE MUTATION DISCOVERY 

 

Finally, we wanted to perform a genome-wide investigation on the creation and 

strengthening of de novo splice sites by exonic variants. We used two independent 

methods to interrogate mutations outside of the splice site in a splicing context. Using the 

entropy based method, for each variant the sequences of each 9-mer (donor) and 23-mer 

(acceptor) covering the variant position was extracted from the genome for both the 

mutant and reference sequence. Their splice score as potential donor or acceptor sites 

were estimated using MaxEntScan. The largest scores of the 9-mer or 23-mer windows 

were retained for mutant and reference and their difference (mutant - reference) was 

calculated. Finally, the scores with largest difference between potential donor site and 

potential acceptor site was retained as the final score. A novel splice site is predicted to 

be created if the reference score <3 and the mutant score is >8. We further filtered this 

list by evaluating nearby junctions in the bam files (reads>10) for predicted novel splice 

sites. For the second method, we used the TopHat module of SpliceInator to collect all 

alternative junctions within 14 base pairs of the annotated mutations. We manually 

reviewed all the predictions to evaluate the efficacy of our method. 

 

For the entropy based method, a total of 243 sites were predicted near a novel junction 

but after manual review the method correctly called 9 de novo donor sites, 6 strengthened 

alternative acceptor sites, and 7 strengthened alternative donor sites. Of the 22 sites, 15 

were specific to the mutated sample and not present in any control samples. For the 

TopHat method, a total of 192 alternative acceptor sites and 204 alternative donor sites 
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were predicted to fall within 14 bp of a non-splice site mutation. After manual review, 1 de 

novo acceptor site, 35 de novo donor sites, 153 strengthened acceptor splice sites, and 

145 strengthened donor splice sites were properly detected. Furthermore, 49 of the 154 

acceptor sites had no supporting reads supporting the novel junction in the control and 

84 of the 180 donor sites were specific to the mutated sample.  The MaxEntScan scoring 

filtered out many sites that were found using our TopHat method, suggesting using the 

splice score alone isn’t sufficient to properly evaluate mutations in a splicing context. Both 

methods picked up strengthened acceptor sites in the following genes CTSH, LAMC1 

and NUP98; and 4 created donor sites in WDR33, NOP14, RSRC2 and PARP1. 

 

The Poly ADP-ribose polymerase 1, PARP1, is an enzyme involved in recruiting proteins 

involved in DNA repair pathways. Both methods identified a silent mutation in PARP1 in 

a LUSC patient that acts as a splice altering variant by creating a de novo donor site in 

exon 21. RNA-Sequencing data supports the use of the de novo donor site leading to an 

11 amino acid deletion, which falls within the PARP1 catalytic regulatory domain. 180 

reads in the mutated sample supported the de novo site while 170 controls contained no 

supporting reads giving us strong evidence that this “silent” mutation is more appropriately 

a splice altering variant. PARP1 inhibitors are commonly used in cancer treatment to 

disrupt DNA repair in tumor cells thereby leading to the accumulation of DNA breaks and 

ultimately cell death(Malyuchenko et al.).  

2.3 Methods 

SpliceInator Methods: 
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The analysis procedures use RPKM values, which were derived for the full-length exons 

and introns of genes using TCGA RNA-Seq bam files. Briefly, bed files were generated 

for exon and intron coordinates based on the Ensembl 37.75 database. The SamTools 

package counted raw reads for each exon and intron. Finally, RPKM was calculated as 

109×R/(N×L), where R is the number of raw reads mapped to each exon or intron, N is the 

total number of mapped reads in the project, and L is the length of the exon or intron. 

Some analyses also consider ±50 bps and ±2 bps around junctions, for which we use 

RPM (# of mapped reads per million reads) to quantify the expression because the 

lengths are short and fixed. 

The main algorithm, which we call SpliceInator, combines two lines of evidence to assess 

aberrant splicing events and their implications, one based on standard statistical 

hypothesis testing of RSEM expression values and the other based on interpretation of 

RNA-Seq fragment mapping using TopHat. We have found empirically that each of these 

components excels at a relatively mutually exclusive subset of the various kinds of 

splicing anomalies that have been observed: intron retention and exon skipping for the 

statistical method and exon extension and shrinkage for TopHat-based analysis. The 

latter also can detect some exon skipping events, for which perform ad hoc interpretation 

in light of the statistical evidence. Consequently, we have not found it necessary to 

develop any sort of overarching method for combining results of the two calculations. 

For the genes of interest, the statistical method takes as input both the gene-wide RSEM 

and the individual intron and exon RSEM values for each gene over a set of samples. 

Genes reporting RSEMs below a threshold are considered to have expression too low to 

properly assess and are skipped. Otherwise, each sample for each gene is processed 
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sequentially for the different kinds of possible splicing anomalies. Each of these 

calculations proceeds in essentially the same way, the intron retention calculation being 

representative, as follows. Preliminary exclusion criteria are evaluated first: the intron’s 

RSEM must be above a threshold and must likewise be greater than the average RSEM 

over the corresponding introns in the control group, of which there must be at least 50 

instances. Assuming these criteria are met, the algorithms then evaluates whether the 

subject intron’s RSEM is significantly higher than the average of those in the control group 

via simple permutation testing, which returns a “case-control” P-value. The method 

attempts to maximize power when possible. Specifically, if 3’ bias within the gene of the 

current sample is sufficiently low, a within-sample test is also performed. Potential 3’ bias 

is checked via Spearman’s rank test between the introns’ RSEM values and their location 

midpoints, both ordered 5’ to 3’. Lack of strong bias is inferred if Spearman’s coefficient 

£ 0.3, in which case the algorithm runs a second permutation test to check whether the 

subject intron RSEM is significantly greater than the other intron RSEMs within that gene. 

This calculation returns the “within-sample” P-value. These tests are essentially 

independent, by which we finally combine the case-control and within-sample P-values 

using Fisher’s Method. Analysis of exon-skipping is similar. The algorithm is relatively 

robust against the heuristic parameters quoted above.  

 

For TopHat-based analysis, TopHat Junction output was used for each splice site 

mutation to identify junction ids where mutations are between the start and stop of the 

junction feature. Exon intron boundaries were calculated using the overhang value for 

each junction feature. We enforced a threshold of at least 10 reads aligned to a particular 
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exon-intron boundary. Depths of coverage for each junction for cases and controls were 

collected using the TopHat junction output. To obtain total unique reads within the junction 

neighborhood, we performed read counts on the in house bam files and used this value 

as our total reads for both cases and controls. Reads supporting reference junction versus 

alternative junction were compared using Fisher’s 2x2 exact test between cases and 

controls to discern altered junction coverage due to presence of the splice site mutation.  

 

Methods Novel splice site mutation discovery:  

We propose to use the TopHat Module of SpliceInator to identify all alternative junction 

predictions across the entire cancer genome atlas RNA-Seq sample set (>7,000 samples) 

and pediatric cancer dataset (>500 samples). To hone in on mutations that are directly 

disrupting pseudo splice sites, we will first identify missense and silent variants that are 

within a threshold distance of an alternative junction prediction. After identifying the 

alternative junction, we searched for nearby donor and acceptor sites that may have been 

strengthened or weakened by the introduced mutation. By comparing cases to controls 

within the same cancer type, we were able to determine if the novel junction is used within 

the cancer type at a low level or only present in the case with the mutation. Finally, each 

de novo donor and acceptor site is scored using a scoring algorithm. By using entropy 

and information analysis of the consensus base sequences, we can evaluate the strength 

of a particular site based on its nucleotide frequencies(Burset et al.). Using a weighted 

scoring method for each possible acceptor/donor sequence, we multiplied the information 

of each base by the information weight of the site. The acceptor and donor information 

and weight is derived from over 25,000 different splice donor/acceptor sites to come up 
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with the information weights and content at each position. To be classified as creating or 

strengthening a novel acceptor or donor site the mutation fell within 8 bp of the novel 

predicted donor site, 14 bp of the novel predicted acceptor site, had supporting reads 

from both the positive and negative strand, and create or strengthen a nearby site that 

utilizes the canonical GT or AG splice site. 

Methods to evaluate exon expression:  

Github/Exon-Expressivity 

We developed a script which take as inputs a Mutation Annotation File (MAF) and an 

RNA bamlist to compare total reads supporting an exon against the total mapped reads 

(normalized by length) to evaluate exon expressivity across cancer types and samples in 

our dataset. 

• Exon_Expressivity.pl : Inputs 1) RNA-Seq bam locations 2) Mutation Annotation 

File (MAF). This script will identify all exons nearest to the splice site mutation of 

interest designated in the MAF file and collect exon read count data across 

samples in the RNA-Seq bam list and total mapped reads from the flagstat or 

alignment stats files in the designated bam directories. The exon expressivity 

coefficient (Ei) is calculated by dividing the total reads aligned to exon (E) over the 

total mapped reads of the imported bam (B), normalized by the length of the exon 

and multiplied by a scaling factor (see equation below). The Ei coefficients are then 

averaged across all samples for each cancer type to determine the overall exon 

expressivity of the exon of interest. If multiple transcripts share the same exon, 

multiple Ei values will be reported for each individual exon.  

• 𝐸𝑥𝑜𝑛	𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑖𝑡𝑦	(𝐸𝑖) =
1 23456	7859:	;6<=>89	43	?@3>	(?)
23456	A5BB89	7859:	3C	DEB3F489	G5E	(G)HIJKLMN	OP	QROK	(ST) ∗ 10X 
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To determine a cut off for the exon expressivity (Ei) we evaluated Ei scores across all 

1,159 mutations in our dataset and associated control samples. We determined Ei of case 

samples with detectable splicing alterations to define samples with known “expressed 

junctions”.   

 

Alignment guided junction analysis to identify mutations linked to splicing defects: We 

propose to identify junctions between two exon-exon boundaries genome wide. A junction 

is defined by RNA-Seq reads that are split between two exon-intron boundaries, joining 

two exons. TopHat41 reports the number of reads supporting the canonical junction 

shared between two exons, or any deviations including exon skipping, intron retention, 5’ 

exon shrinkage, 3’ exon shrinkage, multi exon skipping, 3’ exon extension, and 5’ exon 

extension. The number of reads supporting each junction for cases and controls were 

collected for each sample. Controls were defined for each gene based on tissue type and 

only include samples lacking mutations in the gene of interest. Reads supporting the 

reference junction and alternative junctions were compared using Fisher’s Exact Test 

between cases and controls to determine which junctions showed statistically significant 

altered junction usage. This calculation indicates whether the altered junction is 

potentially due to the mutation in the case, or if a background level of alternative splicing 

is occurring at this junction due to a tissue type specific event.  

Part 1. SpliceInator: Splice site mutations that lead to aberrant signals have cancer 

implications. We developed a tool combining TopHat RNA-seq analysis with case-control 

and within-sample statistical testing of expression data to identify and classify such 

events.  
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RNA-Seq Guided Junction Analysis using SpliceInator to identify mutations contributing 

to splicing defects: SpliceInator is a statistical tool that we are developing to classify 

variants into the following categories: 1) expression loss, 2) intron retention, 3) exon 

skipping, 4) exon extension, 5) exon shrinkage, and 6) unknown, using patient specific 

RNA-seq data. It performs permutation based testing on normalized expression data 

derived from exons, introns, and splice junctions between mutant and control samples. 

Additionally, when there is minimal 3’ bias, within-sample testing is also performed to add 

statistical power.  

First, reads per kilobase per million (RPKM) are derived for each gene using patient 

specific RNA-Seq. Next, mutations are tested for intron retention. Within this test, we first 

check for 3’ bias within the given sample according to Spearman’s Rank Correlation test 

of each exon across the gene in a 5’ to 3’ manner. Absent significant bias, RPKM of each 

intron is tested against all others within the gene to check for elevated expression. Next, 

the full intron expression of the mutant sample is tested against the same intron in the 

control cases. For exon skipping, the same type of calculations are performed, except full 

exon expression is used. After an initial analysis of a highly recurrent GATA3 acceptor 

variant, we noted that exon shrinkage and extension events could not be properly 

identified when comparing the full exon and intron expression between cases and 

controls. For the exon shrinkage and extension tests, we decided to additionally extract 

RPKM values associated with +/- 2bp and +/- 50 bp of all defined exon boundaries. This 

allowed us to test smaller events that could be occurring near a splice site, such as the 7 

bp shrinkage identified in the GATA3 variants, or larger events with the +/- 50 bp data. 
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For exon shrinkage and exon extension, the full exon expression, 2 bp expression and 

50 bp expression are all compared between cases and controls. This analysis will allow 

us to connect our expression analysis with junction-based prediction and identify cases 

of intron retention, which are outside of TopHat’s predictive capability.  

Intron retention events are common splicing aberrations: SpliceInator identified 104 intron 

retention events highlighted in Figure 2.1. An additional 44 exon skipping events were 

identified by SpliceInator, further supporting the findings of TopHat predicted exon 

skipping events. Our findings emphasize the importance of using both tools in identifying 

splicing defects associated with mutations. [add more examples here about interesting 

intron retention events]. 

3.4 Discussion 

Splice alterations have been shown to affect the landscape of mRNA isoforms present in 

both tumor and normal tissues. Unlike many missense mutations known to disrupt the 

protein structure or associated binding sites, an initial review of splice site mutations 

quickly revealed position and tissue type alone couldn’t explain observed splicing 

patterns. Since looking solely at genomic context could not directly inform whether a 

splice site mutation would confer a splicing defect we developed SpliceInator, a semi-

automated tool to interrogate mutations in a splicing context.  

 

Evaluating splicing defects associated with highly conserved splice site mutations 

revealed diverse splicing patterns. While some well known splicing patterns were 

observed, more than 30% of variants with a known splicing defect had a more complex 
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phenotype consisting of two or more splicing defects. Although some recurrent splice site 

mutations at the same position conferred similar splicing defects, many exhibited different 

patterns, suggesting tumor heterogeneity makes predicting the effects of mutations on 

the transcriptome very difficult without patient specific RNA-Sequencing data. In 

particular, TP53 harbored many recurrent splice site mutations across cancer types and 

didn’t show consistent splicing patterns while recurrent mutations in KDM6A did. 

 

Even more interesting was the lack of a measurable splicing defect for 54% of highly 

conserved splice site variants. While we were able to classify approximately 75% of 

variants from this group into samples having low variant expression and low exon 

expressivity, approximately 25% were still unclassified. The unclassified variants could 

be creating a highly unstable transcript that is quickly degraded by the cell, but follow up 

functional analysis is needed to confirm this prediction revealing the limitation of RNA-

Seq data. We were also able to demonstrate mis-annotated variants by evaluating all 

mutations in a splicing context using SpliceInator. By more accurately classifying variants 

in genes such as PARP1 and PTEN we can better understand the biological implications 

of variants disrupting the splicing process and determine patient specific treatments.  

 

Altogether our findings suggest you can’t predict what to expect due to the complexity of 

the splicing process and tumor heterogeneity. While our tool makes a significant 

contribution by providing an automated method to determine functionally relevant 

mutations using matched RNA-Seq data there is still much to learn about how cancer can 

abrogate splicing mechanisms for tumor growth and proliferation. For example, while we 
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focused on defining specific defects such as exon skipping, exon shrinkage, exon 

extension and intron retention, there were several events that were not easily classified 

into one or more of the aforementioned categories. Further developing our tool to 

accommodate more complex splicing defects will be a necessity to better gauge the true 

landscape of splicing phenotypes in disease. 
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Chapter 3: Discovery of splice-site-

creating mutations 

Contribution: I developed 1/3 the code for MiSplice with the other parts developed by 

Qingsong Gao and Song Cao.  I manually reviewed all variants validated by our 

computational tool, performed downstream analyses, created all Figures and performed 

entire mini-gene splicing assay for 11 variants tested.  

3.1 Introduction 

Large-scale sequencing studies, such as The Cancer Genome Atlas (TCGA) project, 

have worked to address the functional consequences of genomic mutations in tumors 

(Dees et al., 2012; Kandoth et al., 2013; Lawrence et al., 2013; Niu et al., 2016), with the 

larger goal of determining the underlying mechanisms of cancer initiation and 

progression. Many studies have focused on characterizing non-synonymous somatic 

mutations that alter amino acid sequence, as well as splice disrupting mutations at splice 

donors and acceptors (Jung et al. 2015). Current annotation methods typically classify 

mutations as disruptors of splicing if they fall on either the consensus intronic dinucleotide 

splice donor, GT, or the splice acceptor, AG. As a group, splice site mutations have been 

presumed to be invariably deleterious because of their disruption of the conserved 

sequences that are used to identify exon-intron boundaries. 
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While this classification method has been useful, increasing evidence suggests that splice 

site mutations can lead to transcriptional changes beyond disruption of the canonical 

junction (Lim and Fairbrother, 2012; Mort et al., 2014; Rivas et al., 2015; Sauna and 

Kimchi-Sarfaty, 2011; Steffensen et al., 2014). One such example is the c.190 mutation 

in BRCA1. Conventional annotation had predicted a missense mutation, p.C64G, but our 

analysis of RNA-seq data in ovarian tumors harboring p.C64G and a published mouse 

model (Yang et al., 2003) suggested the germline c.190 mutation leads to the creation of 

an alternative splice junction, resulting in a truncated null protein. There have been 

several case studies reporting observations of missense and silent mutations activating 

cryptic splice sites in MLH1 (Nyström-Lahti et al., 1999), LMNA (Woolfe et al., 2010), RB1 

(Zhang et al., 2008), RNASEH2A (Rice et al., 2013), MECP2 (Taimoor I Sheikh, 2013), 

BAP1 (Wadt et al., 2012), KIT (Chen et al., 2005), as well as other studies relating 

missense and silent mutations with splicing changes (Jung et al., 2015; Kahles et al., 

2016; Soemedi et al., 2017; Supek et al., 2014). Despite the broad clinical ramifications 

of mutation-induced altered splicing, systematic evaluation of their occurrence and 

resulting effects in cancer has yet to be undertaken, nor have there been significant 

bioinformatics platforms for doing so. 

We applied a newly developed bioinformatic tool called MiSplice, which integrates DNA 

and RNA-Seq data across thousands of samples to discover mutations that induce splice 

site creation. In our large-scale analysis across 8,656 tumor samples, we report 1,964 

such somatic mutations that had originally been mis-annotated. Splice site-creating 

mutations (SCMs) are enriched in the new introns, with the highest rate at the -3 

nucleotide position of acceptors with two-thirds of such events at aGag and agGag 
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repeats by creating an alternative junction 2 nucleotides away. Partial and full splice 

creation capabilities across these 1,964 sites are evaluated by measuring the fraction of 

reads supporting the alternative junction, which we term the Junction Allele Fraction (JAF) 

and which is found to be negatively correlated with distance to the new splice site. In total, 

1,607 genes harbor SCMs, with 248 of them having more than one mutation, including 

TP53, GATA3, ATRX, and NF1. Recurrent SCMs were found in TP53, GATA3, DDX5, 

KDM6A, PTEN, SETD2, SMAD4, BCOR, SPOP, and BAP1, suggesting association with 

cancer development. Broadly speaking, integrated DNA and RNA data can furnish a 

sound basis for discovering SCMs and for accurately understanding functional 

consequences of mutations in cancer and other human diseases. 

3.2 Results 

SPLICE-SITE-CREATING MUTATION DISCOVERY 

We collected high quality mutation calls from 8,656 tumors across 33 cancer types 

derived from The Cancer Genome Atlas having available TCGA RNA-Seq data 

(Methods).  For every mutation, we defined a set of control samples in the same cancer 

cohort that lacked the same mutation in the gene of interest. We sought to assess the 

landscape of SCMs across cancer genomes by evaluating all mutations already having 

conventional annotations and their potential splice site-creating effects (Fig. 3.1A). To 

achieve this goal, we conducted analysis using a bioinformatic tool, MiSplice (Mutation 

Induced Splicing), which systematically evaluates mutations in a splicing context using 

RNA-Sequencing data (Fig. 3.1B). 
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Figure 3.1. Splice site-creating mutation discovery. (A) Examples of splice site-creating mutations for 

different conventionally annotated mutation types. Splice-in is defined as mutations contained within the 

newly created exons and splice-out is when the mutation is present in the newly created intron. (B) The 

MiSplice work flow consists of three steps: alternative junction discovery, filtering, and manual review. 

First, the user inputs the locations of RNA-Seq BAM files along with a mutation file. MiSplice searches 

the BAM file to identify any alternative splice junctions near the mutation of interest, while filtering out 

known splice junctions and calculates the number of alternative junction supporting reads for case and 

control samples. For the filtering step, the following sites are removed: mutations in HLA genes, low 

fraction of reads supporting the alternative splice junction, and sites expressed in controls. Finally we 

manually reviewed all sites to validate the in silico predictions. (C) Breakdown of 2,056 manually validated 

splice site-creating mutations by conventional annotation.  

 

MiSplice manages large analyses using parallel computation to search for alternative 

splice junctions within windows of ±20 bp from the mutation of interest. For example, of 
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the 1,416,566 candidate mutations examined here, 4,448 had 5 or more unique RNA-

Sequencing reads supporting the predicted alternative junction in proximity to the 

mutation. MiSplice then conducts a series of further evaluations, including Ensembl-

based filtering of canonical junctions, establishing observational significance by case 

comparison to a matched set of controls, and assessing score and depth of each cryptic 

site using MaxEntScan (Yeo and Burge, 2004) and SamTools (Li et al., 2009). From the 

resulting subset, MiSplice filters out HLA genes and sites whose junctions have 

insufficient difference of expression, as judged from the case-control assessment. Here, 

we evaluated promising alternative junctions with at least 5% of paired end RNA-

Sequencing reads at the genomic location supporting the alternative junction of interest. 

MiSplice processing revealed 2,056 mutations (Table S1) potentially creating an 

alternative splice site. Manual review indicated a 2.09% false positive rate, suggesting 

high specificity of the MiSplice algorithm for discovering these types of mutation-induced 

splicing events. Of these putative splice events, 1.90% and 0.47% are considered 

complex and are in highly homologous gene regions, respectively, so they were excluded 

from further analyses (Methods). 

 

Of the final 1,964 splice site-creating mutations (SCMs) passing manual review (Table 

S1), 52% (1,016) are in annotated splice sites, suggesting disruption of the canonical 

splice site and selection of a the alternative splice site nearby (Fig. 3.1C). Importantly, 

26% (513) and 11% (208) of the SCMs had previously been mis-annotated as missense 

and silent mutations, respectively. In addition, we found 58 insertions or deletions, 46 

nonsense, and 123 non-coding region mutations that likewise create cryptic splicing sites. 
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MOLECULAR AND BIOLOGICAL PATTERNS OF SPLICE SITE-CREATING MUTATIONS 

We next characterized the sequence context for the 1,790 SCMs corresponding to single 

nucleotide mutations. The sequences of each 9-mer (donor) and 23-mer (acceptor) 

covering the mutation position were extracted for both the mutant and reference 

sequences. Their splice scores as potential donor or acceptor sites were then estimated 

using MaxEntScan (Table S1). 
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Figure 3.2. Sequence contexts and characteristics of splice site-creating mutations. (A) 

Frequency distribution of splice site-creating mutations relative to the newly created splice junction, 

with high frequency shown at the 3rd nucleotide position in the newly created intron. (B) Comparison of 

splicing scores for the newly created splice site, before (reference) and after the mutation (mutant). 

Showing larger effect of mutations at the 3rd nucleotide position in the intron (especially for the 3’ splice 
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sites). (C) Dominant nucleotide sequence context for splice site-creating mutations at -3 position of the 

3’ splice site. Mutation position (red dot) is present 3 base pairs away from the newly created exon. (D) 

Transition and transversion rate at the -3 position of the 3’ splice site. Most mutations are G>C 

transversions, strengthening the consensus sequence of the splicing factor U2AF1. (E) Comparison of 

splicing scores between the nearest canonical splice junction with and without mutation compared to 

the newly created splice junction with and without the mutation. Most mutations strengthen the 

alternative splice junction relative to the canonical splice junction.  

 

Mutations near the alternative splice junctions show higher mutation rates in the introns 

for both 5’ (p<1e-5, binomial test) and 3’ splice site (p<1e-6) (Fig. 3.2A). More 

interestingly, we found an enrichment of mutations at the third nucleotide position in the 

intron, but depletion at the first and second positions (especially for 3’ splice site) (Fig. 

3.2A). Comparison of splicing scores between splice site-creating mutants and reference 

forms shows that most mutants have stronger splice signals than the reference (Fig. 

3.2B). Mutations that create a G or T to produce an alternative 5’ splice site dramatically 

increase splice site strength. For 3’ splice sites, mutations enriched on the third nucleotide 

of the newly created intron showed the largest increase of splicing score (Fig. 3.2B). 

Further examination of the sequence context around mutations at the third nucleotide of 

3’ splice sites shows that 53% have a mutation on aGag repeats and another 16% are 

mutated on agGag repeats, all creating alternative junctions 2 nucleotides away from the 

annotated ones (Fig. 3.2C). Mutations at the -3 position of the alternative acceptor site 

would potentially enhance U2AF1 recognition of the acceptor splice site. Previous studies 

have reported S34F U2AF1 mutants preferentially skip exons that contain a T nucleotide 

at the -3 position (Okeyo-Owuor et al., 2015). Of the 192 mutations that are located at the 
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-3 position from the alternative junction and contain an AG in the -2 and -1 positions, 56% 

undergo a G>C transversion (21% G>A, 18% G>T, 3% C>T, 2% A>C, 1% A>T) with C 

being the preferred base at the -3 position for U2AF1 binding (Fig. 3.2D). 

 

We also explored the relationship between the alternative and canonical splice junctions. 

As expected, mutations at splice sites dramatically reduced splice scores of the canonical 

splice junctions, while strengthening those at the alternative splice junctions in most 

cases. In contrast, a subset of missense and silent mutations did not drastically alter the 

canonical junction, but instead preferentially strengthened a nearby alternative splice site 

(Fig. 3.2E). When analyzing the raw splicing scores (canonical and alternative site before 

and after mutation), we found that 1,089 out of 1,790 (61%) events showed higher splice 

score for the alternative splice site than the canonical site, indicating inclination for the 

alternative sites. Further, while 485 (27%) events saw lower post-mutation alternative 

splice score, differences between alternative and canonical scores had decreased, 

suggesting that these mutations are still likely enhancing the preference for the alternative 

site. Only 214 (12%) events did not show evidence suggesting increased post-mutational 

preference for using the alternative site. These cases are a good illustration of the fact 

that many other genomic splicing features are also relevant, including exonic splicing 

enhancers (ESE), polypyrimidine tract, branch point, and RNA-binding proteins. They are 

also consistent with the general view that splice score is not definitive (Jian et al., 2014). 

We emphasize that all 1,790 alternative splice sites demonstrated usage based on patient 

RNA-Seq data and that 10 out of 11 (>90%) identified splice site-creating mutations were 

validated experimentally (see below). 



72 
 

 

EXPRESSIVITY AND PENETRANCE OF SPLICE-SITE-CREATING MUTATIONS 

In the presence of the mutation, alternative splice junctions exhibited a wide range of 

expression. To quantify this effect, we measured alternative junction expression as the 

fraction of alternatively spliced junction spanning reads over the total number of reads at 

the genomic location, what we refer to as the Junction Allele Fraction (JAF). Fig. 3.3A 

shows the distribution of JAF’s for all high confidence MiSplice predicted alternative 

junctions, separated by conventional mutation annotations (Fig. 3.3A).  Currently, we use 

a JAF cut-off of 5% for reporting the final high-confidence sites. However, there are some 

potential alternative sites excluded by this cut-off. Our analysis revealed alternative 

junction expression varies widely. As expected, DNA variant allele fraction (VAF) and JAF 

have a generally positive correlation (Fig. 3.3B), with SCMs in KDM6A and FGFR2 having 

>75% DNA VAF and JAF. However, a SCM in ARID1A has a DNA VAF of 23% and JAF 

of 67%. Such large ranges have been noted for mutations outside of the splice site 

(Broeks et al., 2003; Clarke et al., 2000; Venables, 2004). Both the truncated and normal 

spliced products can be observed for many variants, either due to the wild type allele or 

leaky splicing, for example as observed in RNASEH2A, NFU1, SMN1, CFTR, and 

NF2  (Boerkoel et al., 1995; Caminsky et al., 2014; Ferrer-Cortes et al., 2016; Lohmann 

and Gallie, 2004; Mautner et al., 1996; Pagani et al., 2003; Rice et al., 2013; Svenson et 

al., 2001; Vezain et al., 2011) . 
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Figure 3.3. Junction allele fraction of splice site-creating mutations. (A) The junction allele fraction 

(JAF) is defined as the number of reads supporting the alternative spliced junction relative to total 

junction spanning reads. Distribution of JAF values separated by conventional annotation type. (B) JAF 

vs. DNA Variant Allele Fraction (VAF) comparison by conventional annotation type. Most mutation 

types show a generally positive correlation between JAF and VAF values. (C) Splice site-creating 

mutations expressed in the newly created exon of the alternative splice junction. Comparison of 
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mutation position relative to the percent of reads supporting the alternative junction and mutation 

(Spliced-In JAF). The mean of each position is highlighted by the black point. For all positions, there is 

a strong correlation between the presence of the splice site-creating mutation and the alternative splice 

junction.  

 

We next considered the expression of mutations that are spliced-in, i.e. mutations located 

within the exon of the alternatively spliced product. To this end, we determined the ratio 

of the number of alternative junction reads containing the mutation versus total number 

of reads supporting the alternative junction (Fig. 3.3C).  Overall, most of the reads 

supporting the alternative junction also support the mutation, which suggests a strong 

association between the mutation and alternative splice junction. Regarding the 5’ splice 

site, mutations within the first 6 bp of the new exon junction have a much higher fraction 

of alternative junction reads supporting them; and we see an inverse correlation between 

the mutation and the junction as the distance between them increases. For the 3’ splice 

site, we observe a similar trend, although with a higher variability as a function of the 

distance from the alternative junction.  

 

SPLICE SITE-CREATING MUTATIONS ACROSS GENES AND CANCER TYPES 

A total of 1,607 unique genes harbored SCMs, with 85% (1,359) having one mutation and 

15% (248) having two or more. TP53 contained the greatest number (26), followed by 

GATA3 (18). While most SCMs were found outside the current cancer gene compendium 

(Table S1), Fig. 3.4A shows that a remarkable number of cancer genes harbor splice 

altering variants, a phenomenon supported in the literature (Sebestyen et al., 2016). A 
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pan-cancer view reveals that TP53 was the most mutated across cancer types, while 18 

GATA3 mutations and 6 ATRX mutations were specific to breast cancer (BRCA) and low 

grade glioma (LGG), respectively. 

 

Figure 3.4. Splice site-creating mutations across genes and cancer types. (A) Distribution of splice 

site-creating mutations in each gene separated by total number of mutations in each gene. TP53 has the 

largest number of splice site-creating mutations, followed by GATA3 and ATRX. (B) Genes with the 

highest number of pancancer splice site-creating mutations. Circle size correlates with total number of 

mutations for each gene (labeled inside circle), and colored by cancer type. Splice site-creating mutations 

in TP53 are present in many cancer types, while mutations in ATRX and GATA3 are specific to LGG and 

BRCA, respectively. (C) Proteins Timeless (PAB domain) and PARP1 (Chain A) are colored green and 

pink, respectively. Originally annotated p.S939S mutation (red) and spliced-out sequence (blue) are 

highlighted on PARP1 (Chain A). (D) 3D protein structure of PARP1 in complex with an inhibitor (PDB 

ID: 5WRQ). Drug inhibitor and PARP1 (Chain A) are indicated with green and pink, respectively. 
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We observed 137 mutations nearby to one another (+/- 5 bp) which lead to the creation 

of the same recurrent splice site-creating events, not only in TP53, but also GATA3, 

DDX5, KDM6A, SETD2, PTEN, SPOP, and BAP1. While some mutations did not occur 

at the same position, 14 mutations creating the same alternative splice junction were 

found in the same exon, including 2 mutations in the third exon of BAK1. While most 

mutations in close proximity created the same alternative splice junction, two adjacent 

splice site-creating mutations in CTNND1 and 2 nearby exonic mutations in ACP2 and 

GMPPB created different alternative junctions. 

SCMs can impact protein structure and have potential therapeutic implications. Poly ADP-

ribose polymerase 1 (PARP1) is an enzyme involved in recruiting protein members of 

DNA repair pathways including Timeless PAB (PARP1 binding domain) (Fig. 3.4C) (Xie 

et al., 2015). Since PARP1 is essential to many cellular processes, including DNA repair, 

it is commonly targeted by antitumor agents (Malyuchenko et al., 2015). PARP1 inhibitors 

targeting the catalytic domain disrupt DNA repair mechanisms thereby increasing the 

effectiveness of chemotherapeutic agents (Fig. 3.4D). Identifying mutations that disrupt 

inhibitor binding are essential to properly evaluate treatment options. MiSplice identified 

a conventionally annotated silent PARP1 mutation (p.S939S) in a lung squamous cell 

carcinoma (LUSC) patient that acts as a splice site-creating variant by creating a de novo 

donor site (Fig. 5A). 82 reads supported the de novo donor site, which results in a 10 

amino acid deletion (p.940-p.950) that falls within the catalytic domain (Fig. 3.4D). Out of 

173 LUSC control samples, none contained reads supporting the alternative junction, 

providing strong evidence that the annotated “silent” mutation is actually a SCM. Previous 

reports of missense mutations at p.940 are predicted to reduce PARP1 enzymatic activity 
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by disrupting the binding affinity of PARP1 to its substrate NAD+ (Alshammari et al., 

2014). The in-frame SCM is likely disturbing the local structure of PARP1 and thereby 

disrupting the interactions between PARP1, its protein binding partners, and drugs 

binding within the pocket (Figs. 3.4C and 3.4D). 

 

Figure S1. BAP1 gene and protein expression. Related to Figure 3.5. Violin plot of RSEM and 

RPPA data for control samples (grey) and novel splice creating mutant samples (red). 
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We identified two kidney renal clear cell carcinoma (KIRC) samples having the same 

conventionally annotated missense mutation (c.233A>G, p.N78S) in BAP1, a nuclear 

deubiquitinase, that created the same spliced-out alternative splicing product (Fig. 3.5B). 

Inactivation of BAP1 is prevalent among renal cell carcinomas (Pena-Llopis et al., 2012) 

and an annotated missense mutation (p.L570V) has been reported to create a cryptic 

splice site in melanoma (Wadt et al., 2012). At the transcriptional level, the expressions 

of the case and control samples are relatively comparable, but at the translational level, 

one case with available protein data (RPPA) showed significantly lower expression 

(p=0.044, permutation test) relative to the controls (Table S2). This result suggests the 

conventionally annotated missense mutations in BAP1 are likely creating an alternatively 

spliced transcript that is not readily expressed at the protein level. 

 



79 
 

Figure 3.5. Minigene functional assay of splice site-creating mutations. (A) Integrative genomics 

viewer (IGV) screenshot of the conventionally annotated synonymous mutation in PARP1 in exon 21. 

RNA-Seq reads of the candidate splice site-creating mutation reveals the creation of an alternative 

splice site (red reads) created by the conventionally annotated synonymous mutation. (B) Candidate 

recurrent splice site-creating mutations in BAP1. Conventionally annotated as synonymous variants, 

BAP1 mutated region shows alternatively spliced reads (red reads) in the IGV screenshot for each 

sample with the splice site-creating mutation. (C) IGV screenshot of a conventionally annotated 

synonymous mutation in RAD51C in exon 2. (D) Maximum entropy score of the splice site-creating 

variant before (purple) and after (red) the introduced mutation for each variant functionally validated in 

the mini-gene splicing assay. In silico predictions suggest all mutations strengthen the alternative splice 

site. (E) Candidate splice site-creating mutations validated by the mini-gene splicing assay. Exons of 

interest were cloned into the pCAS2.1 vector and mutant (red) and wildtype (purple) plasmids were 

transfected into 293T cells and total RNA was extracted to identify mutation induced alternatively 

spliced products.  

 

We used a pCAS2.1 splicing reporter mini-gene functional assay, adapted from previous 

publications (Bonnet et al., 2008; Gaildrat et al., 2010; Malone et al., 2016; Tournier et 

al., 2008; Vreeswijk and van der Klift, 2012), to validate SCMs in eleven cancer genes, 

including two originally annotated silent mutations in PARP1, RAD51C, two splice site 

mutations in TP53 and BRCA1, and several missense mutations in ARID2, BAP1, BCOR, 

CDH1, KMT2A, PTEN, and TSC2. Wild-type and mutant exons were cloned into a 

pCAS2.1 vector (Gaildrat et al., 2010) and transiently transfected into HEK293T cells. 

Total RNA was extracted to evaluate alternatively spliced products by RT-PCR. 

Examining the change in the MaxEntScan score for the 11 genes revealed mutations in 

ARID2, BAP1, BCOR, CDH1, PARP1, RAD51C, PTEN, and TSC2 having dramatically 
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stronger splice scores in the presence of the mutation, while mutations in BRCA1, 

KMT2A, and TP53 did not (Fig. 3.5D). Except for PTEN, variants with stronger splice 

scores showed higher levels of the alternatively spliced product in the mini-gene assay 

when compared to the wild-type. Variants with moderate changes in splice score still 

showed evidence of alternatively spliced transcripts, revealing the importance of utilizing 

functional assays to evaluate the effect of mutations in a splicing context in addition to in-

silico predictions. The mini-gene assay confirmed 91% (10/11 genes) splicing alterations 

in all tested genes and sequencing confirmed the alternatively spliced products (Fig. 3.5E, 

Methods), suggesting a strong concordance between MiSplice predicted splice site-

creating mutations and the functional assay. 

NEO-ANTIGENS INTRODUCED BY SPLICE SITE-CREATING MUTATIONS 

We have further investigated neoantigens produced by splice site-creating mutations. By 

using the RefSeq transcript database, a total of 2,993 protein sequences were translated 

for transcripts containing mutation-induced alternative splice forms (Table S3). In the 

translation, we allowed for different transcripts from each SCM. The HLA types for each 

sample were adopted from the TCGA pancan immune working group (Synapse ID: 

syn5974636). NetMHC4 and NetMHCpan-3.0 (Andreatta and Nielsen, 2016) were used 

to predict the binding affinity between epitopes and the major histocompatibility complex 

(MHC) and showed a high concordance in total predicted neoantigens (Pearson = 0.94, 

Supplementary Figure S2).   We found that alternative splice forms for some important 

genes related to tumorigenesis, including SMARC1, KDM6A, and NOTCH1, are highly 

immunogenic and can contain 40 or more unique neoantigens (Fig. 3.6A) (Dalgliesh et 
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al., 2010; Papadakis et al., 2015). In addition, the mean number of neoantigens across 

SCMs from NetMHCpan-4.0 and NetMHCpan-3.0 are 2.0 and 2.5, respectively, which 

are both higher than the average number of around 1 for non-synonymous mutations. 

Furthermore, 28 genes contain recurrent neoantigen events (more than or equal to three) 

across samples (Fig. 3.6B). In particular, GATA3 has the highest recurrence and GATA3 

SCMs were mutually exclusive with other mutation types (Fig. 3.6C). The CA deletion at 

chr8:8111433 disrupts the canonical splice site and an alternative splice site is used for 

creating the alternative splice form, which results in a frame shifted protein product 

spanning the Zinc-finger domain (Figs. 3.6D and 3.6E). 19 unique neoantigen peptide 

sequences were mapped to the frameshifted protein product for the 16 samples (Fig. 

3.6F). We were further able to validate one alternative peptide sequence using mass 

spectrometry data from a recent proteogenomics study on 77 TCGA breast cancer 

patients (Mertins et al., 2016). For one sample with the highly recurrent and expressed 

GATA3 SCM, we used MSGF+ to search publicly available mass spectrometry data for 

evidence of alternative GATA3 peptides. Fig. 3.6G shows one identified mass spectrum 

supporting one alternative GATA3 peptide, which covers two immunogenic peptides  

(KPKRRLPG and LIKPKRRLPG ) predicted in TCGA-AR-A1AP. 
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Figure 3.6. Schematic of GATA3 splice site-creating mutations and neoantigen predictions. (A) 
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Distribution of neoantigens predicted by NetMHCpan and NetMHC4. Genes with highest number of 

neoantigens labeled. Mean value for each tool indicated by X and labeled. (B) Genes with the largest 

recurrence of predicted neoantigens across the dataset. GATA3 shows the highest recurrence. (C) 

Mutual exclusivity of protein-affecting mutation (PAM), frame-shifting indel (FS), in-frame indel (IF) and 

splice site-creating mutations (SCM) in GATA3. (D) IGV screenshot of GATA3 splice site-creating 

mutation which disrupts the canonical splice site and utilizes a cryptic splice site 7 bp downstream. 

Mutant reads highlighted in red and normal reads in purple. CA deletion indicated in figure. (E) 

Predicted functional domains disrupted due to the recurrent splice site-creating mutation in GATA3. (F) 

Predicted neoantigen peptide sequences mapped to the frameshifted protein product for samples with 

GATA3 splice site-creating mutations. (G) Mass spectrum of GATA3 peptide in TCGA-AR-A1AP.  
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Figure 3.7. PD-L1, PD-L2, PD-1, CD8A and CD8B expression. (A) Expression comparison of PD-L1, 

PD-L2, and T cell markers: PD-1, CD8A, CD8B between samples with (case) and without (control) 

splice site-creating mutations across 6 cancer types.  Symbols: * is p-value less than 0.05, ** is p-value 

<0.01, *** is p-value <0.001, n.s. is not significant. 

 

High neoantigen burden is associated with an elevated immune response (Turajlic et al., 

2017). To test whether SCMs affect immune response, we compared the expression of 

T-Cell markers PD-1, CD8A and CD8B and PD1 immune checkpoint blockades PD-L1 

and PD-L2 (Fig. 3.7).  We selected 6 cancer types (BRCA, BLCA, HNSC, LUAD, LUSC 

and SKCM) with sufficient samples containing SCMs for adequate statistical power.  Both 

T-Cell markers (PD-1, CD8A and CD8B) and immune checkpoint blockade PD-L1 show 

increased expression in samples with SCMs compared to samples without SCMs (Fig. 

3.7), indicating alternative splice forms induced by SCMs increase the overall 

immunogenicity of these cancers. The highly expressed PD-L1 suggests PD-L1 

immunotherapy as potential treatments for samples containing SCMs. 

3.3 Methods 

DATASET DESCRIPTION 

Aligned RNA-Seq bam files were analyzed using the ISB google. These cancer types are 

Acute Myeloid Leukemia [LAML], Adrenocortical carcinoma [ACC], Bladder Urothelial 

Carcinoma [BLCA], Brain Lower Grade Glioma [LGG], Breast invasive carcinoma 
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[BRCA], Cervical squamous cell carcinoma and endocervical adenocarcinoma [CESC], 

Cholangiocarcinoma [CHOL], Colon adenocarcinoma [COAD], Esophageal carcinoma 

[ESCA], Glioblastoma multiforme [GBM], Head and Neck squamous cell carcinoma 

[HNSC], Kidney Chromophobe [KICH], Kidney renal clear cell carcinoma [KIRC], Kidney 

renal papillary cell carcinoma [KIRP], Liver hepatocellular carcinoma [LIHC], Lung 

adenocarcinoma [LUAD], Lung squamous cell carcinoma [LUSC], Lymphoid Neoplasm 

Diffuse Large B-cell Lymphoma [DLBC], Mesothelioma [MESO], Ovarian serous 

cystadenocarcinoma [OV], Pancreatic adenocarcinoma [PAAD], Pheochromocytoma and 

Paraganglioma [PCPG], Prostate adenocarcinoma [PRAD], Rectum adenocarcinoma 

[READ], Sarcoma [SARC], Skin Cutaneous Melanoma [SKCM], Stomach 

adenocarcinoma [STAD], Testicular Germ Cell Tumors [TGCT], Thymoma [THYM], 

Thyroid carcinoma [THCA], Uterine Carcinosarcoma [UCS], Uterine Corpus Endometrial 

Carcinoma [UCEC], Uveal Melanoma [UVM] 

MISPLICE PIPELINE 

The MiSplice pipeline was developed to detect mutation-induced splicing events from 

RNA-Seq data.  It is written in Perl and incorporates two standard tools, samtools and 

MaxEntScan.  The pipeline is fully automated and can run multiple jobs in parallel on LSF 

cluster.  It executes the following steps: 

1)      Splitting large maf file into multiple smaller files with less mutations (currently, the 

default setting is 200). 



86 
 

2)      Discovering splicing junctions within 20bps of the mutation with at least 5 

supporting reads with mapping quality Q20 and then filtering canonical junctions by using 

the Ensembl 37.75 database. We selected 20bp as a cut-off since it is the farthest 

distance from the splice junction in a splice region. 

3)      Computing the number of supporting reads of above cryptic splice sites for control 

samples without mutations (Table S1). 

4)      Calculating the splicing scores for the cryptic splice sites via MaxEntScan. 

5)      Reporting the depth of each cryptic splice site via Samtools. 

6)      Filtering cryptic sites which fall in HLA loci or less than 5% of reads at the genomic 

location supporting the alternative junction of interest. 

7)      Further filtering cryptic sites by comparing the supporting reads in control samples. 

The final reported cryptic sites must stand as top 5% for the number of supporting reads 

in the case (with mutation). 

SPLICE SITE SCORE ESTIMATION 

For each cryptic splice site and nearby canonical splice site, the corresponding nucleotide 

sequences were first extracted for both the mutant and reference sequences (9-mer and 

23-mer for donor and acceptor, respectively). Their splice scores as potential donor or 

acceptor sites were then estimated using MaxEntScan. 

NEOANTIGEN PREDICTION 
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For each predicted SCM, we use a curated RefSeq transcript database (version 

20130722) to obtain the translated protein sequences for transcript containing alternative 

splice forms induced by SCMs. Different length of epitopes (8mer, 9mer, 10mer and 

11mer) are constructed from the translated protein sequence. We use 

NetMHC3pan(Nielsen and Andreatta, 2016) and NetMHC4(Andreatta and Nielsen, 2016) 

to predict the binding affinity between epitopes and MHC. Epitopes with binding affinity 

<=500nM which are also not present in the wild-type transcript are extracted from the 

following neoantigen analysis.   

MANUAL REVIEW 

All splice site-creating mutations were manually reviewed using the integrative genomics 

viewer (http://software.broadinstitute.org/software/igv/). Mutations were placed into one 

of three categories: Pass, Complex, and No Support. Mutations were classified as 

complex if more than one alternatively spliced product was observed for the mutated 

sample.  

CODE AVAILABILITY 

MiSplice is written in Perl and is freely available from GitHub at https://github.com/ding-

lab/misplice under the GNU general public license. MiSplice uses several independent 

tools and packages, including SamTools and MaxEntScan, all of which are likewise freely 

available, but which must be obtained from their respective developers. The MiSplice 

documentation contains complete instructions for obtaining and linking these applications 

into MiSplice. 
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MINI GENE SPLICING ASSAY 

Exons of interest and approximately 150 bp of their flanking intron sequences were PCR 

amplified from HEK293T genomic DNA using primers carrying restriction enzyme sites 

for BamH1 and MluI. PCR products were cleaned up using NucleoSpin PCR Cleanup 

(Macherey-Nagel) or DNA Clean and Concentrator-5 Kit (Zymo Research) and digested 

with BamHI and MluI. The digested pCAS2.1 vector and PCR products were ligated using 

T4 DNA Ligase (NEB). Mutations were introduced via Q5 Site-Directed Mutagenesis 

(NEB). WT and MUT constructs were confirmed by sequencing of the insert region. The 

plasmids were transiently transfected into HEK293T cells using Lipofectamine 2000 

(ThermoFisher Scientific). 24 hours post transfection, cDNA was synthesized using 2 to 

3 ug of total RNA with the Superscript III First-Strand Synthesis System (ThermoFisher 

Scientific) and priming with Oligo(dT)20.  Finally, cDNA was amplified using pCAS-KO1-

(5′-TGACGTCGCCGCCCATCAC-3′) and pCAS-R (5′-ATTGGTTGTTGAGTTGGTTGTC-

3′) and the alternative splicing patterns were evaluated on a 2.5% agarose gel with 

ethidium bromide. Qiaquick Gel Extraction Kit (Qiagen) was used to purify bands for 

sequencing (Table S3.1-3.2, Figure S3-S6). 
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Figure S2: Mini-gene splicing assay.  

 

Table 3.1: Mutation information for splice site-creating mutations validated in minigene 

assay.  

Gene Sample Position Refere

nce 

Muta

nt 

Coding 

Change 

Amino 

Acid 

Change 

Transcript 

ARID2 TCGA-FS-A1Z3 12: 

46243434 

T A c.1787T

>A 

p.Val596

Glu 

ENST00000334

344 
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TSC2 TCGA-EE-A17Y 16:209870

5 

C A c.89C>A p.Ser30Ty

r 

ENST00000219

476 

CDH1 TCGA-GC-A3I6 16:688636

53 

C G c.2392C

>G 

p.Leu798

Val 

ENST00000219

476 

TP53 TCGA-FG-A60J 17:757715

7 

T G c.783-

2A>C 

p.X261_s

plice 

ENST00000269

305 

RAD5

1C 

TCGA-32-1982 17:567723

80 

A G c.234A>

G 

p.Thr78Th

r 

ENST00000337

432 

BCOR TCGA-DM-A1HA X:399220

49 

A G c.4123C

>T 

p.Arg1375

Trp 

ENST00000378

444.4 

BAP1 TCGA-CJ-4637 

and TCGA-B0-

5107 

3: 

52442512 

T C c.233A>

G 

p.Asn78S

er 

ENST00000460

680 

PARP

1 

TCGA-66-2791 1:2265508

31 

G A c.2817C

>T 

p.Ser939

Ser 

ENST00000366

794 

BRCA

1 

TCGA-D6-6823 17:412568

83 

A C c.301+2

T>G 

p.X101_s

plice 

ENST00000471

181 

PTEN TCGA-06-2559 10:896929

93 

G T c.477G>

T 

p.Arg159

Ser 

ENST00000371

953 

KMT2

A 

TCGA-55-7994 11:118366

474 

G T c.5423G

>T 

p.Trp1808

Leu 

ENST00000534

358 

 

Table 3.2: Predicted alternative and wild-type RT-PCR splice products from mini-gene 

splicing assay. 

Type RT-PCR Sequence 

pCAS2.1 TGACGTCGCCGCCCATCACGCCTCCAGGCTGACCCTGCTGACCCTCCTGCTG

CTGCTGCTGGCTGGGGATAGAGCCTCCTCAAATCCAAATGCTACCAGCTCCAG
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CAGCCAAGATCCAGAGAGTTTGCAAGACAGAGGCGAAGGGAAGGTCGCAACA

ACAGTTATCTCCAAGATGCTATTCGTTGAACCCATCCTGGAGGTTTCCAGCTTG

CCGACAACCAACTCAACAACCAAT 

BAP1 Wild Type CCCTGTATATGGATTTATCTTCCTGTTCAAATGGATCGAAGAGCGCCGGTCCC

GGCGAAAGGTCTCTACCTTGGTGGATGATACGTCCGTGATTGATGATGATATT

GTGAATAACATGTTCTTTGCCCACCAG 

BAP1 Mutant CCCTGTATATGGATTTATCTTCCTGTTCAAATGGATCGAAGAGCGCCGGTCCC

GGCGAAAGGTCTCTACCTTGGTGGATGATACGTCCGTGATTGATGATGATATT 

TP53 Wild Type CTCGCTTAGTGCTCCCTGGGGGCAGCTCGTGGTGAGGCTCCCCTTTCTTGCG

GAGATTCTCTTCCTCTGTGCGCCGGTCTCTCCCAGGACAGGCACAAACACGCA

CCTCAAAGCTGTTCCGTCCCAGTAGATTACCA 

TP53 Mutant CTCGCTTAGTGCTCCCTGGGGGCAGCTCGTGGTGAGGCTCCCCTTTCTTGCG

GAGATTCTCTTCCTCTGTGCGCCGGTCTCTCCCAGGACAGGCACAAACACGCA

CCTCAAAGCTGTTCCGTCCCAGTAGATTACCACGA 

BCOR Wild 

Type 

CTTGCCATCGGCATTCTCCACGTAGTATTCCCCTGTCAGTGGCAATCCCCGCC

TGGACTCCTGAGGGATCAAGTGTTTGGTTTTGCACAGTCTCTTCCCGGATGGC

TTCTCGCTGTTGTCGGTGTATTTCTGCAGCAGGGAGGCAGCCTGGCAATCCTC

TTCTTCGTCTGCACACAGCACATCTGTCTTCTGGTTTTCTTTAATTTTCTGCTGT

TTGGCAGGCGGCCTGGAGGCTGGTGCGCAGCTTGGCTGAGCCTGCTTTTTGC

CGCCTGCACTGGTGGATGAAAGACTCTTCATGGGCGGAGAGCCGGAGAACAC

AGGCAAGC 

BCOR Mutant CTGGACTCCTGAGGGATCAAGTGTTTGGTTTTGCACAGTCTCTTCCCGGATGG

CTTCTCGCTGTTGTCGGTGTATTTCTGCAGCAGGGAGGCAGCCTGGCAATCCT

CTTCTTCGTCTGCACACAGCACATCTGTCTTCTGGTTTTCTTTAATTTTCTGCTG

TTTGGCAGGCGGCCTGGAGGCTGGTGCGCAGCTTGGCTGAGCCTGCTTTTTG

CCGCCTGCACTGGTGGATGAAAGACTCTTCATGGGCGGAGAGCCGGAGAACA

CAGGCAAGC 
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RAD51C Wild 

Type 

AAGTTGGGATATCTAAAGCAGAAGCCTTAGAAACTCTGCAAATTATCAGAAGAG

AATGTCTCACAAATAAACCAAGATATGCTGGTACATCTGAGTCACACAAGAAGT

GTACAGCACTGGAACTTCTTGAGCAGGAGCATACCCAGGGCTTCATAATCACC

TTCTGTTCAGCACTAGATGATATTCTTGGGGGTGGAGTGCCCTTAATGAAAACA

ACAGAAATTTGTGGTGCACCAGGTGTTGGAAAAACACAATTATG 

RAD51C Mutant AAGTTGGGATATCTAAAGCAGAAGCCTTAGAAACTCTGCAAATTATCAGAAGAG

AATGTCTCACAAATAAACCAAGATATGCTG 

KMT2A Wild 

Type 

CAGTGGGATGTTACCAAACGCAGTGCTTCCACCTTCACTTGACCATAATTATGC

TCAGTGGCAGGAGCGAGAGGAAAACAGCCACACTGAGCAGCCTCCTTTAATG

AAGAAAATCATTCCAGCTCCCAAACCCAAAGGTCCTGGAGAACCAGACTCACC

AACTCCTCTGCATCCTCCTACACCACCAATTTTGA 

KMT2A Mutant TTGCAGGAGCGAGAGGAAAACAGCCACACTGAGCAGCCTCCTTTAATGAAGAA

AATCATTCCAGCTCCCAAACCCAAAGGTCCTGGAGAACCAGACTCACCAACTC

CTCTGCATCCTCCTACACCACCAATTTTGA 

PARP1 Wild 

Type 

CTTTGACACTGTGCTTGCCCTTGGGTAACTTGCTGATATGTGAAGCGTGCTTCA

GTTCATAC 

PARP1 Mutant TGATATGTGAAGCGTGCTTCAGTTCATAC 

BRCA1 Wild 

Type 

ACTCCAAACCTGTGTCAAGCTGAAAAGCACAAATGATTTTCAATAGCTCTTCAA

CAAGTTGACTAAATCTCGTACTTTCTTGTAGGCTC 

BRCA1 Mutant CTGTGTCAAGCTGAAAAGCACAAATGATTTTCAATAGCTCTTCAACAAGTTGAC

TAAATCTCGTACTTTCTTGTAGGCTC 

ARID2 Wild 

Type 

AACGGTCTTTCCAAATCATACAGTGAAGAGAGTGGAGGATTCCAGTAGCAATG

GGCAGGCACATATTCATGTGGTAGGAGTAAAACGGAGGGCTATACCACTTCCC

ATTCAGATGTACTATCAGCAGCAACCAGTTTCTACTTCTGTTGTTCGTGTTGATT

CTGTTCCTGATGTATCTCCTGCTCCTTCACCTGCAG 

ARID2 Mutant AACGGTCTTTCCAAATCATACAGTGAAGAGAGTGGAGGATTCCAGTAGCAATG

GGCAGGCACATATTCATGAG 
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PTEN Wild Type TTGCACAATATCCTTTTGAAGACCATAACCCACCACAGCTAGAACTTATCAAAC

CCTTTTGTGAAGATCTTGACCAATGGCTAAGTGAAGATGACAATCATGTTGCAG

CAATTCACTGTAAAGCTGGAAAGGGACGAACTGGTGTAATGATATGTGCATATT

TATTACATCGGGGCAAATTTTTAAAGGCACAAGAGGCCCTAGATTTCTATGGG

GAAGTAAGGACCAGAGACAAAAAG 

PTEN Mutant TTGCACAATATCCTTTTGAAGACCATAACCCACCACAGCTAGAACTTATCAAAC

CCTTTTGTGAAGATCTTGACCAATGGCTAAGTGAAGATGACAATCATGTTGCAG

CAATTCACTGTAAAGCTGGAAAGGGACGAACTGGTGTAATGATATGTGCATATT

TATTACATCGGGGCAAATTTTTAAAGGCACAAGAGGCCCTAGATTTCTATGGG

GAA 

CDH1 Wild 

Type 

GACTTTGACTTGAGCCAGCTGCACAGGGGCCTGGACGCTCGGCCTGAAGTGA

CTCGTAACGACGTTGCACCAACCCTCATGAGTGTCCCCCGGTATCTTCCCCGC

CCTGCCAATCCCGATGAAATTGGAAATTTTATTGATGAA 

CDH1 Mutant GACTTTGACTTGAGCCAGCTGCACAGGGGCCTGGACGCTCGGCCTGAAGTGA

CTCGTAACGACGTTGCACCAACCCTCATGAGTGTCCCCCG 

TSC2 Wild Type AGGGGTTTTCTGGTGCGTCCTGGTCCACCATGGCCAAACCAACAAGCAAAGAT

TCAGGCTTGAAGGAGAAGTTTAAGATTCTGTTGGGACTGGGAACACCGAGGCC

AAATCCCAGGTCTGCAGAGGGTAAACAGACGGAGTTTATCATCACCGCGGAAA

TACTGAGA 

TSC2 Mutant AGGGGTTTTCTGGTGCGTCCTGGTCCACCATGGCCAAACCAACAAGCAAAGAT

TCAGGCTTGAAGGAGAAGTTTAAGATTCTGTTGGGACTGGGAACACCGAGGCC

AAATCCCAG 
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Figure S3. ARID2, BCOR, BRCA1 Mini-Gene results. Related to Figure 3.5.  (A,D,G) DNA 

chromatograms verifying ARID2, BCOR, and BRCA1 wildtype and mutant sequencing results, 

respectively. Mutation position is highlighted. (B,E,H) Reverse transcriptase PCR (RT-PCR) with 

wild type and mutant plasmids, results in triplicate. Numbered bands are sequenced for 

confirmation. (C,F,I) DNA chromatograms of RT-PCR bands sequenced. Highlighted sequence 

indicates boundary of pCAS2.1 plasmid. 
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Figure S4. PTEN, PARP1, KMT2A Mini-Gene results. Related to Figure 3.5. (A,D,G) DNA 

chromatograms verifying PTEN, PARP1, and KMT2A wildtype and mutant sequencing results, 

respectively. Mutation position is highlighted. (B,E,H) Reverse transcriptase PCR (RT-PCR) with wild type 

and mutant plasmids, results in triplicate. Numbered bands are sequenced for confirmation. (C,F,I) DNA 

chromatograms of RT-PCR bands sequenced. Highlighted sequence indicates boundary of pCAS2.1 

plasmid.  
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Figure S5. RAD51C, TP53, TSC2 Mini-Gene results. Related to Figure 3.5.  (A,D,G) DNA 

chromatograms verifying RAD51C, TP53, and TSC2 wildtype and mutant sequencing results, 

respectively. Mutation position is highlighted. (B,E,H) Reverse transcriptase PCR (RT-PCR) with wild 

type and mutant plasmids, results in triplicate. Numbered bands are sequenced for confirmation. (C,F,I) 

DNA chromatograms of RT-PCR bands sequenced. Highlighted sequence indicates boundary of 

pCAS2.1 plasmid.  
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Figure S6. BAP1 and CDH1 Mini-Gene results. Related to Figure 3.5.  (A,D) DNA chromatograms 

verifying BAP1 and CDH1 wildtype and mutant sequencing results, respectively. Mutation position is 

highlighted. (B,E) Reverse transcriptase PCR (RT-PCR) with wild type and mutant plasmids, results in 

triplicate. Numbered bands are sequenced for confirmation. (C,F) DNA chromatograms of RT-PCR 

bands sequenced. Highlighted sequence indicates boundary of pCAS2.1 plasmid.  

 

CELL CULTURE 

HEK293T cells were cultured in Dulbecco's modified Eagle's medium (DMEM) 

supplemented with fetal bovine serum (FBS) and penicillin streptomycin.  
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STATISTICAL ANALYSES 

MiSplice assesses the significance of the number of reads supporting the predicted 

alternative splice junction by comparing to read counts from a control cohort. Specifically, 

a frequency distribution is constructed from the control cohort, from which threshold 

values for 5% and 95% tails on the left and right, respectively, are determined. A series 

of logic tests is then conducted to discern the best explanation of the data. Possible 

verdicts are low or high expression if the datum is outside the 5% or 95% thresholds, 

respectively, average expression if no thresholds are exceeded, or no expression in this 

tissue if the thresholds are zero. 

 

3.4 Discussion 

In this study, we applied our newly developed bioinformatics tool called MiSplice 

(Mutation Induced Splicing) to systematically analyze splice site-creating events that arise 

from somatic mutations. Our analysis shows MiSplice reliably identifies SCMs across 

multiple cancer types. Existing studies have largely focused on splice-disrupting events 

in known splice sites, but the current study substantially extends our knowledge into the 

realm of splice site-creating mutations in human cancer. For instance, we found 1,016 

splice site mutations not only disrupt the canonical splice site, but also create an 

alternative splice site.  We also found that hundreds of mutations that would traditionally 

be classified as missense, silent, indel, and nonsense are really acting as SCMs.  Many 

important cancer-related genes harbor these mutations, such as TP53, ATRX, BAP1, 
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CTNNB1, RB1, etc.  It is noteworthy that we found five splice site-creating mutations in 

ATRX among 288 lower grade glioma cases, likely leading to the disruption of ATRX 

function.  A previous study has shown that loss of wild-type ATRX is associated with 

tumor growth in glioma (Koschmann et al., 2016).  

Characterization of these alternative splice events show that most SCMs have a higher 

splice score, as measured by MaxEntScan, in the post-mutation alternative splice site as 

compared to the reference. These results are consistent with the preferential selection of 

these alternative sites as new splicing forms. For the splice-site mutation, the splice score 

associated with the canonical junction is coincidently decreased after mutation. However, 

while there is no difference in splice scores of canonical junctions before and after 

missense and silent mutations, the alternative splice site was often strengthened after 

mutation. This suggests silent and missense mutations instead act as modifiers of splicing 

by creating or strengthening cryptic sites within the exon as opposed to disrupting the 

canonical splice site. In addition, we found a significant enrichment of mutations at the -3 

position in the 3’ splice site, the two dominant sequence contexts being aGag and agGag, 

where G is at the -3 position. 

In cases where the mutation is retained in the alternative splice junction, we distinguish 

mutations with two further categories, splice-in and splice-out.  For splice-in mutations, 

we can characterize the association between mutations and cryptic splicing forms.  For 

example, we found high concordance for RNA-seq reads supporting alternatively spliced 

junctions and mutations, suggesting the association between mutations and cryptic 

splicing forms. 
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The current study has greatly extended the insight into the transcriptional ramifications of 

genomic alterations by identifying nearly 1,964 alternative splice sites introduced by 

somatic mutations and functionally validating ten of eleven variants in a mini-gene splicing 

assay. These events were conventionally annotated as missense, silent, splice site, 

nonsense, or other mutations when, in fact, we have shown that they often create cryptic 

splice sites. The relative abundance of the alternative and wild-type product suggests 

varying levels of junction usage, depending on the context of the mutation, and 

emphasizes the importance of validating predictions using a functional assay to 

understand the full biological consequence. The alternative products may be 

therapeutically targetable in some cancer patients.  For example, the targeting of 

neoantigens shows promising result in treating melanoma patients (Carreno et al., 2015). 

By further evaluating human leukocyte antigen (HLA) genotypes and binding affinities to 

the major histocompatibility complex (MHC), it is likely that new neoantigens from cryptic 

splice sites may be discovered. The current study reveals that alternative splice forms 

induced by splice site-creating mutations are highly immunogenic and correlated with a 

high T-Cell immune response and an elevated PD-L1 expression, suggesting potential 

for immunotherapy in these samples.  Further investigation of the cryptic splice sites by 

mass spectra  
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Chapter 4: Rare germline and somatic 

splice-site-creating mutations disrupt 

exon definition in cancer genomes 

Contribution: I developed the entire code for translation of MiSplice variants.  I manually 

reviewed many variants validated by our computational tool, performed all downstream 

analyses, wrote the entire text, created all Figures, and performed entire mini-gene 

splicing assay for 7 variants tested.  

4.1 Introduction 

 

Mutations can be germline or somatic in nature. Germline mutations are inherited from 

parents or acquired de novo. Somatic mutations are acquired throughout an organism’s 

lifetime in individual cells due to genetic and environmental factors such as chemicals 

and radiation. Most of the damage in the DNA is repaired, but sometimes the alterations 

are fixed. Mutations in genic and regulatory regions can affect gene function in several 

ways by causing loss or gain of function, altering transcript splicing, and increasing or 

decreasing gene expression level. In combination, such variations can disrupt normal 

gene function and alter cellular response to regulation giving the cell a selective 

advantage to proliferate autonomously.  
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The underlying genomic architecture of individual species alters the resulting phenotypic 

variability. Understanding how differences to gene architecture can alter a genes function 

is essential to understanding many biological questions including disease diagnosis, 

progression and treatment. Current studies suggest that between 70-95% of human 

genes harbor multiple mRNA transcripts (Johnson et al.; Matlin et al.; Modrek and Lee). 

Different mRNA transcripts are created by the process of alternative splicing which 

expands the complexity and information content of the eukaryotic genome and allows for 

tissue, developmental, or temporally expressed isoforms which can perform alternate 

functions. Understanding how genomic variation in tumors can contribute to alternative 

splicing defects is an actively expanding field.  

 

For the past decade, cancer genomics studies have focused on identifying and validating 

germline and somatic mutations by comparing patients tumor samples to their normal 

tissue. The integration of transcriptomic and proteomic data provides valuable insight as 

to the biological factors contributing to the cancer genome (Cieslik and Chinnaiyan). A 

database to explore splice-junction usage across TCGA (Sun et al.) as well as a global 

analysis of splicing across the TCGA cohort (Kahles et al.) were recently published 

expanding the current paradigm about the exceptions and rules by which splicing is 

dysregulated in cancer. While this recent publication analyzed the global landscape of 

alternative splicing across the TCGA pan-cancer cohort, they limited their analysis to 

germline mutations that are known to also be somatic in origin, greatly limiting their 

prediction power (Kahles et al.).  
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Earlier this year, we published a bioinformatic tool that systematically predicts somatic 

splice-site-creating mutations across 33 cancer types (Jayasinghe et al.). We identified 

nearly 2,000 somatic splice-site-creating mutations with 26% and 11% of mutations being 

initially mis-classified as missense and silent mutations, respectively. This novel finding 

lead us to question the burden of similar mutations in the germline of cancer patients, as 

this is an underexplored question in the field. Recently, The Cancer Genome Atlas 

consortium published a curated mutation profile of germline (Huang et al.) and somatic 

(Bailey et al.; Ellrott et al.) mutations across cancer genomes. These timely and thorough 

scientific publications have provided a sound basis for exploring the splice-site-creating 

landscape in both a somatic and germline context.  

 

Here we developed additional modules for MiSplice to facilitate accurate identification of 

thousands of rare germline and somatic splice-site-creating events while providing 

necessary supplemental scripts to infer the resulting transcriptional and translational 

effects. Using our stringent pipeline we identified 2,888 rare germline and somatic SCMs 

which were initially inaccurately annotated. We observed interesting patterns in genomic 

sequence contexts surrounding SCM containing exons (SCM+ exons) including 

increased nucleosome occupancy and an overall decrease in the novel splice form 

relative to the original exon size. The discovery of rgSCMs genome wide facilitated the 

proper annotation of hundreds of variants that could have direct implications in cancer. 

For example, one recurrent synonymous variant was identified in RAD54L, generally 

characterized as a DNA repair gene, suggesting this variant could be a novel pathogenic 

germline variant that has been missed in previous studies. Finally, we validated 6 rare 
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germline SCMs (rgSCMs) in cancer associated genes, including the RAD54L silent 

variant, and one common germline SCM (cgSCM) validating our computational pipeline 

and workflow for proper and efficient SCM identification.  

4.2 Results 

DATASET DESCRIPTION 

 

To further explore the germline and somatic splice-site-creating landscape across cancer 

samples, we collected somatic and germline mutations calls from the MC3 working group 

(Ellrott et al.) and the Cancer Genome Atlas (TCGA) germline working group (Huang et 

al.). We sought to evaluate the splice-creating potential of variants conventionally 

annotated as SpliceDonorSNV, SpliceAcceptorSNV, Missense, Synonymous, 

IntronicSNV (near the splice site) and Nonsense mutations (Figure 4.1A). With stringent 

filtering (Methods) we evaluated >3,000,000 somatic mutations, > 10,000,000 rare 

germline mutations and >20,000,000 common germline variants in a splicing context 

using the MiSplice pipeline (Jayasinghe et al.) (Figure 4.1C). For rare germline mutations 

and somatic mutations, we defined a set of control samples in the same cancer type that 

lacked the same mutation of interest. With respect to common germline mutations, 

samples were placed in a case group or control group depending on their mutation status 

for each mutation of interest. We conducted the splice-site-creating mutation analysis 

using the ISB google cloud using MiSplice (mutation-induced splicing) that systematically 

evaluates mutations in a splicing context using RNA-seq data. MiSplice manages large 

analyses using parallel computation to search for alternative splice junctions within 
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windows of ±20 bp from the mutation of interest. We identified high confidence rare and 

common germline splice-site-creating mutations (rgSCMs, cgSCMs) and somatic splice-

site-creating mutations (sSCMs). 

 

 

Figure 4.1. Somatic and Germline splice-site-creating variant discovery. (A) Examples of splice-

site-creating mutations (SCM) for different annotated mutation types.   (B) Breakdown of rare germline 

SCMs and somatic SCMs, plotted by conventional annotation type. Cancer associated genes are 

highlighted in black. (C) The updated MiSplice workflow can process millions of somatic and germline 

variants on the ISB-Google Cloud or on a local compute cluster. Mutation calls and RNA-Sequencing 

bams are provided as input, and variants in close proximity to a detected splice junction are maintained 

for additional filtering. Canonical junctions, low coverage, novel junction presence in the controls, large 

predicted exon sizes and certain genes including HLA are filtered out. Finally an added annotation 



114 
 

module determines allele frequency for each variant in the gnomAD database, predicts the mutation 

effect using TransVar and predicts the resulting wildtype and novel protein isoforms 

 

 

GERMLINE AND SOMATIC SPLICE-SITE-CREATING MUTATION DISCOVERY 

The expanded discovery of somatic splice-site-creating mutations across 33 cancer types 

identified 1,782 sSCMs (Figure 4.1B). 237 SCMs are annotated to genes commonly 

associated with either adult or pediatric cancer. Some of the most highly recurrent events 

were reported in our previous publication (Jayasinghe et al.) but novel sSCMs were 

identified by expanding our analysis to this larger MC3 dataset (Table 1). Newly identified 

sSCMs in cancer associated genes were manually reviewed for accuracy. 

 

In expanding our analysis of splice-site-creating mutations to the germline, we identified 

mis-annotated germline mutations that show evidence of creating new splice sites. After 

processing rare variants from 33 cancer types a total of 14,709 cancer specific unique 

variants were identified as having splice-creating-potential. Additional filters included 

removing sites with more than 5% of controls containing the alternative splicing event (>2 

reads), samples with less than 20 controls, and finally filtered out splicing events identified 

in highly homologous genes including MUC*, AHNAK* and CRIPAK (Methods) leaving 

4,295 potential splice-site-creating variants. Of the 4,295 variants, 1,121 variants had a 

maximum allele frequency across populations in the controls subset less than 0.05% as 

derived from gnomAD browser - version 2.1 (Lek et al.). Finally after peptide translation 

and additional filtering, we were left with 1,106 high confidence single nucleotide variants 
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classified as rgSCM events encompassing 995 unique variants from 852 genes, and 63 

in cancer associated genes. 

 

Additional filters were incorporated into MiSplice to filter out novel splice isoforms present 

at a higher frequency in the cancer cohort population. Finally all variants underwent 

additional annotation post filtering to capture filter out events present at a high frequency 

in the population, and we incorporated TransVar to provide the most up to date annotation 

and predict the resulting peptide change. For the entirety of this analysis we will focus on 

single nucleotide variants.  

 

A majority of SCMs were conventionally annotated as SpliceAcceptorSNVs followed by 

Missense, Synonymous, SpliceDonorSNVs, Nonsense and a handful IntronicSNVs 

(Figure 4.1B). This distribution held true for both rare germline and somatic events. 

Interestingly, our expanded analysis identified 170 novel rare germline SCMs 

conventionally annotated as synonymous variants and an additional X somatic SCMs not 

identified in our previous work. A remarkable number of SCMs were annotated to cancer 

associated genes (Table 1) including 63 rare germline SCMs and 237 somatic SCMs. We 

will take a closer look at the biological relevance of these events in a later section.  

 

COMPARATIVE SEQUENCE CONTEXTS AND CHARACTERISTICS 

With this large and high confidence list of somatic and germline splice-site-creating 

mutations across thousands of exons, we have the unique opportunity to collect relevant 

genomic information to characterize SCM positive exons. First we looked to determine 
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the location of the novel splice junction relative to the canonical splice site (Figure 4.2A). 

In knowing that the strongest splicing enhancer elements are located near the canonical 

splice site, we predicted many SCMs would cluster near the canonical site and taper off 

with increasing distance from the canonical site. As expected splice acceptor and splice 

donor variants are densely populated near the canonical splice site while synonymous 

and missense mutations are found deeper within the exonic region. After the mutation is 

introduced, the largest differences in transcript size post mutation (here on in referred to 

as effect size) are shared by conventionally annotated missense, synonymous and 

nonsense mutations, while smaller alterations are observed for mutations in close 

proximity to the splice site (Supplementary Figure 4.1A). Due to our restricted search 

window for identifying novel splice sites in proximity to mutations, we anticipated and 

gladly observed a direct correlation between the effect size and distance from the 

mutation to the canonical splice site (Supplementary Figure 1B).  
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Figure 4.2. Sequence contexts and characteristics of splice-site-creating mutations. (A) Cartoon 

of donor and acceptor splice-site-creating mutations (SCM). Example mutation is plotted in red relative 

to the novel splice site and canonical splice site. (B) Distribution of rgSCM and sSCM events relative to 

the distance from the canoncial splice site. Proportion of variants at each position is colored by 

conventional annotation type. (C) Comparison of the novel splice site score before and after mutation for 

rgSCM and sSCM broken down by the creation of a novel donor or acceptor splice site. Each point is 

colored by conventional annotation type. (D) Contrast the overall change in splice score before and after 

mutation for the novel and canoncial junctions. Positive values indicate a stronger novel splice score 
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change post mutation relative to canonical splice site. (E) For variants conventionally annotated as 

SpliceDonorSNV and SpliceAcceptorSNV, compare the difference in splice score pre and post mutation 

for the novel and canonical splice site. 

 

 

To confirm the mutation is indeed a splice-site-creating mutation, we compared the novel 

splice score of the genomic sequence before and after mutagenesis (Figure 4.2A). Rare 

germline and somatic SCMs alike globally exhibited an increase in the novel splice score 

after mutation (deviating in the positive direction above the xy line), with few exceptions 

(Figure 4.2C). While strengthening a novel or cryptic splice site is necessary to induce 

alternative isoform usage, we wanted to determine if the canonical splice site was also 

disrupted due to the mutation. To characterize an overall splice score change, the 

difference in the splice score was calculated for both the novel (ΔN) and canonical 

(ΔC)  splice site. The difference between ΔN-ΔC would be positive under conditions 

where the novel splice score change post mutation was stronger than the canonical site 

in the presence of the mutation, capturing the overall mutations effect on both sites. Figure 

4.2D displays the distribution of the overall combined splice score change for each site 

by conventional annotation type. While all values trend in the positive direction, 

suggesting a stronger novel site change relative to canonical site change, conventionally 

annotated splice donor variants are densely clustered together. By taking a step back we 

can compare ΔN and ΔC separately. In Figure 4.2E, the difference in the novel score 

(ΔN) increases dramatically, while the canonical site (ΔC) is completely disrupted. On the 

other hand, for the donor site, the novel splice site doesn’t change in the presence of the 

mutation, but the canonical site is disrupted.  
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This interesting phenomenon for the donor splice site holds true for the 294 conventionally 

annotated donor mutations and suggests that by simply disrupting the donor splice site, 

it’s usage can be completely ablated and becomes unrecognizable, placing a stronger 

emphasis on the donor site relative to the acceptor splice site. Supporting this hypothesis, 

recently Wong et al. performed a massively parallel splicing assay on the introns of three 

genes to monitor the effects of all predicted changes to the 9 nucleotide 5’ splice site, 

surveying a total of 32,768 unique donor sites (Wong et al.). From the assay, they 

determined disruption of the 5’ splice site alone was enough to disrupt splicing, despite 

mutating nearby genomic regions.  

 

The average exon in our dataset containing a splice-site-creating mutation is 289 bp long 

with a standard deviation of 668 bp. By comparing the relative exon sizes between each 

of the conventionally annotated mutation types, an increased canonical exon size was 

observed for missense (p=2.1e-08,1.9e-13) and synonymous sites (2.9e-05,9.8e-11) in 

comparison to the acceptor and donor splice sites, respectively. Nonsense mutations also 

showed evidence of increased exon size relative to the donor splice site (p=0.033) 

(Supplementary Figure 1A).   

 

Next we chose to explore beyond the exon to determine if introns adjacent to the SCM 

positive exon contained additional information for SCM classification. Interestingly, splice 

acceptor mutations were more likely to be situated downstream of a larger intron relative 

to the intron upstream of the synonymous mutation (p=5.4e-05, Figure 4.1C). Similarly 
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the downstream intron size was larger for splice acceptor SNVs relative to introns 

downstream of missense (p=3.4e-05), synonymous (p=2.5e-09) and splice donor 

mutations (Supplementary Figure 1D). These initial observations suggest that while 

evaluating the splicing score in the presence and absence of the mutation is very 

informative, with a large enough dataset, we may be able to glean new information from 

the adjacent genomic sequences to strengthen the identification of putative SCM 

containing exons. 

 

TRANSLATIONAL AND TRANSCRIPTIONAL IMPLICATIONS OF SCMS 

Each variant was annotated according to their resulting translational consequence to 

interrogate overall trends in splicing dysregulation (Methods). For both somatic and rare 

germline SCMs, exon shrinkage events were observed at a higher frequency than exon 

extension. 91% and 89% of translated sites resulted in exon shrinkage trending towards 

an overall decrease in the novel exon size relative to the canonical exon (Figure 4.3A). 

The novel exon size decreased by an average of 21 and 33 bp for sSCM and rgSCM, 

respectively.  From an evolutionary standpoint, exon size tends to be far more 

constrained than intron size. One hypothesis for this constraint is due to the intricate 

dance between chromatin remodeling and alternative splicing.  

 

Within the nucleus, DNA is wrapped around histones in segments of <150 nucleotides. 

Nucleosomes are made up of eight core histones and are conveniently positioned on 

exons. The size of the average exon is ~150 nucleotides long providing strong evidence 

as to the evolutionary pressure selecting for exons around this length(Amit et al.; 
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Schwartz et al.). Since splicing is a co-transcriptional process, splicing factors and histone 

marks work together to properly facilitate the splicing process(Jeong). With the 

aforementioned evidence suggesting a link between nucleosome occupancy and splicing, 

we performed a nucleosome occupancy enrichment analysis for the rgSCM and sSCMs 

using NucMap (Zhao et al.). The enrichment scores were much stronger at regions 

overlapping the exons containing splice-site-creating mutations relative to a 2kb window 

surrounding the exon of interest (Figure 4.3B). Additional studies have revealed stronger 

nucleosome enrichment for exons that are adjacent to long introns or have weaker splice 

sites (Spies et al.). To explore this phenomenon in our dataset,  SCMs were binned by 

the canonical splice site score, and nucleosome enrichment was compared among the 

four binned groups by quartile, but no correlation was observed in our dataset 

(Supplemental Figure S7). 
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Figure 4.3. Novel spliced isoform exon expression and predicted translation. (A) Contrasting 

overall novel exon size relative to canonical exon size for rgSCM and sSCM events. Each point is colored 

by the predicted reading frame of the novel spliced isoform. (B) Enrichment analysis of nucleosome 

occupancy by NucMap on four different cell lines for all 2,888 predicted SCM containing-exons. Each 

plot is centered on the exon containing the novel splice-site-creating mutation. (C) Junction allele fraction 

(JAF) distribution by predicted reading frame. P-value reported by wilcox test comparing in frame and 

off-frame events within each SCM group. (D) Based on the location of the premature termination codon, 

each predicted protein product was classified as eliciting or escaping nonsense mediated decay based 
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on the 50 bp rule. P-value reported by wilcox test comparing both groups within each SCM group. Each 

point is colored by the predicted reading frame of the novel spliced isoform. 

 

The resulting reading frame of the novel splice isoform was annotated as off-frame or in-

frame based on the size of the exon shrinkage or extension event. As expected, the 

junction allele fraction, or fraction of reads supporting the alternative splice form, was 

significantly lower for predicted off-frame SCMs compared to in-frame SCMs (wilcox test, 

sSCM:p=1.281e-12, rgSCM:p=5.617e-15) (Figure 4.3C). The expression of the resulting 

off-frame events is predicted to be lower at the RNA level because aberrantly spliced 

transcripts are often degraded by nonsense mediated decay (NMD), a process that 

identifies and degrades transcripts containing premature termination codons (PTCs). The 

general rule of thumb is PTCs located at least 50 bp upstream of the last exon-exon 

junction drive strong degradation, whereas those outside of this criteria are predicted to 

escape the degradation process(Brogna and Wen; Lewis et al.; Maquat et al.; Nagy and 

Maquat; Popp and Maquat; Venables; Weischenfeldt et al.). When applying the 50 bp 

rule to to our set, 97% of the off-frame spliced products are predicted to elicit-NMD (990 

off-frame, 33 in-frame) while 79% of in-frame events are expected to escape-NMD (1465 

in-frame, 400 off-frame) (Supplemental Figure S7). For escapee transcripts, we would 

expect to observe a higher expression of the novel splice form. Indeed, expression as 

measured by the junction allele fraction supported NMD-escaping transcripts maintaining 

a higher expression relative to the non-escapee group (wilcox, rgSCM:p=9.078e-15, 

sSCM:p=8.129e-16) (Figure 4.3D).  
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Even though some sites are predicted to undergo degradation, all SCMs were identified 

due to their expression in the RNA-Sequencing data. Most sites have JAF’s lower than 

50% suggesting some post transcriptional mechanisms by which the transcript is being 

degraded, although not to completion. It is important to note that it is very likely we are 

not capturing the full landscape of SCMs due to efficient degradation of mutation induced 

alternative transcripts. 

 

LANDSCAPE OF SOMATIC AND GERMLINE SCMS GENOME-WIDE 

 

We next explored the landscape of SCMs genome-wide. Figure 4.4A highlights the most 

highly recurrent genes in our dataset with TP53 harboring somatic SCMs spanning 

several cancer types while CBWD5 has many SCMs predominantly derived from BRCA. 

For the subset of highly recurrent SCM containing genes, rgSCM and sSCM almost 

always do not co-occur in the same gene with the exception of: LZTR1 and PTPN13. Out 

of 2,163 unique genes harboring at least one SCM, 161 genes encompassing 417 

variants had both a germline and somatic SCM reported. Several shared SCM positive 

genes overlap cancer associated genes including CHEK2, CHD8, CASP8, FANCL, 

MUTYH, RAD51C, RPA1, BRCA1, EML4, FANCI, PARP3, and PARP4. Interestingly, 

only CHEK2 shared a mutation at the same splice donor site, but both events produced 

different transcriptional effects. Additionally, a conventionally annotated missense variant 

in MLLT10 contained both an rgSCM and sSCM resulting in the same 251 bp exon 

shrinkage, and was validated in our minigene splicing assay (Figure 4.5D).  
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Figure 4.4. Splice-site-creating variants across genes and cancer types. (A) Overview of most highly 

recurrent splice-site-creating mutations colored by SCM type (germline or somatic). Values in plot indicate 

total number of SCMs identified for each gene-cancer type pair. (B) Overall change in gene expression 

(TPM) between SCMs and their cancer type cohort (wilcox test). Pvalue is indicated at the bottom of each 

plot and the average of each group are plotted as one value. Grouped by change in expression with a 

significant increase in expression being on the left and a significant decrease on the right. 

 

Next we wanted to explore changes in gene expression relative to SCM presence. Using 

gene expression data from the UCSC XenaBrowser, we compared transcripts per million 

(tpm) values between the SCM mutants, TCGA Cancer Cohort and associated GTEX 

tissue cohort, when available. By comparing the expression of the SCM mutant to the 

Fig 4. Splice-site-creating variants across genes and cancer types. (A) Overview of most highly 
recurrent splice-site-creating mutations colored by SCM type (germline or somatic). Values in plot 
indicate total number of SCMs identified for each gene-cancer type pair. (B) Overall change in gene 
expression (TPM) between SCMs and their cancer type cohort (wilcox test). Pvalue is indicated at 
the bottom of each plot and the average of each group are plotted as one value. Grouped by change 
in expression with a significant increase in expression being on the left and a significant decrease on 
the right.  (C) Overlapping rgSCM and sSCMs. (C) 
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cancer type cohort, several SCMs exhibited differential expression including those in 

cancer associated genes (Figure 4.4B) (Wilcox test). The biological implications of the 

altered expression will need to formally evaluated in follow up studies.  

 

HYPERMUTATOR PHENOTYPE OF RAD54L RGSCM 

 

RAD54L is involved in DNA repair via homologous recombination and frequently 

undergoes copy number alterations depending on the tissue type of interest. For example, 

loss of heterozygosity in RAD54L is common in breast cancer and lower-grade 

gliomas(Nowacka-Zawisza et al.) and associates with longer progression free survival 

and chemosensitivity(Tang et al.), respectively, suggesting a tumor suppressor 

phenotype. More recently, the mechanism of cell proliferation and radio-resistance in 

glioblastoma was linked to CDC7 expression, a gene directly regulated by RAD54L(Li et 

al.). In contrast, in choroid plexus carcinomas the DNA repair gene was often amplified in 

tumors and necessary for proliferation (Tong et al.) in murine models, suggesting an 

oncogenic phenotype.  
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Figure 4.5. RAD54L and mini-gene splicing assay. (A) Splice junction quantification of te novel and 

canonical splice sites for two samples containing the RAD54L silent mutation and one normal sample. 

Genomic sequence of the novel and canonical splice site are highted below the exon pictogram. The 

novel change in novel and canonical splice score are indicated next to the genomic segments.  (B) 

Mutational signature for RAD54L HNSC Mutant sample. (C) Mutational signature for overall HNSC cohort 

(D) Candidate splice creating variants validated by the mini-gene splicing assay. Exons of interest were 
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cloned into the pCAS2.1 vector and mutant (red) and wildtype (purple) plamids were transfected into 

293T cells and total RNA was extracted to identify mutation induced alternatively spliced products. 

 

In our sample set two conventionally annotated silent (p.G659G) mutations in RAD54L 

were identified more appropriately as an rgSCM and associated with a slightly higher 

overall expression relative to the head and neck squamous cell carcinoma (HNSC) cohort 

(wilcox p=0.099) but not in the testicular germ cell tumor (TGCT) (wilcox p=0.343). The 

rare germline mutation creates a new splice site (GC>GT) leading to a 58 bp exon 

shrinkage, frameshifting the remainder of the protein at exon 17 containing a Snf2 specific 

helical domain (HD2) domain and the C terminal Domain (CTD) (Heyer et al.) (Figure 

4.5A). The novel splice junction is located within 55 bp of the last exon-exon junction and 

is thus predicted to escape NMD. The splicing score post-mutation increases dramatically 

from 0.98 to 8.73 and the variant allele fractions in the tumor and normal sample are 

comparable, 49% and 46% for the HNSC sample and 44% and 52% in the TGCT sample, 

respectively.  

 

We next sought to evaluate whether the predicted rgSCM event in RAD54L can induce 

genomic changes relative to the associated cancer cohort. Both samples exhibit higher 

mutation rate relative to the rest of their cancer type cohort, with the TGCT sample being 

the highest mutated sample and the HNSC sample being one of the top 10 mutated 

samples. To evaluate whether the potentially pathogenic rare germline SCM mimics a 

hypermutator like phenotype, we evaluated the mutational signatures of each patient. 

After inspecting the mutational signature of the HNSC sample, signature 2 and signature 

13 are the most prevalent followed by 1, 7 and 10 (Methods). In contrast, the HNSC 
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cancer type cohort did not exhibit a similar mutation signature, suggesting this sample is 

under a different evolutionary pressure relative to the cancer cohort. The joint signatures 

of 2, 10 and 13 in the HNSC sample are commonly found in patients undergoing local 

hypermutator phenotypes and with this sample being one of the 5 top mutated samples 

in HNSC (lacking mutations in other DNA-repair related genes) (Alexandrov et 

al.)  suggests the RAD54L rgSCM variant may be indicative of the observed phenotype.  

 

Finally, to functionally confirm the predicted alternatively spliced product in the lab, we 

performed a mini-gene splicing assay to validate rgSCMs in 6 cancer-associated genes 

and 1 common germline SCM (Figure 4.5D). Briefly, we used a pCAS2.1 splicing reporter 

mini-gene functional assay by cloning mutant exons into the pCAS2.1 vector (Gaildrat et 

al.) and transiently transfected into HEK293T cells. RNA is extracted after 24 hours and 

after generating cDNA synthesis, RT-PCR is performed to evaluate the presence of the 

novel splice isoform relative to the wild-type vector. RAD54L rgSCM was one of the seven 

germline SCMs confirmed in the assay (Figure 4.5D). Taken together, MiSplice was able 

to predict a recurrent putative rare germline SCM event improperly annotated as a 

synonymous mutation. While mutations disrupting DNA repair have been identified in 

another member of the RAD family RAD51D (Pelttari et al.), to date no pathogenic 

mutations have been identified in RAD54L. 

 

4.4 Methods 

DATASET DESCRIPTION 
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Aligned RNA-Seq bam files were analyzed using the ISB google. These cancer types are 

Acute Myeloid Leukemia [LAML], Adrenocortical carcinoma [ACC], Bladder Urothelial 

Carcinoma [BLCA], Brain Lower Grade Glioma [LGG], Breast invasive carcinoma 

[BRCA], Cervical squamous cell carcinoma and endocervical adenocarcinoma [CESC], 

Cholangiocarcinoma [CHOL], Colon adenocarcinoma [COAD], Esophageal carcinoma 

[ESCA], Glioblastoma multiforme [GBM], Head and Neck squamous cell carcinoma 

[HNSC], Kidney Chromophobe [KICH], Kidney renal clear cell carcinoma [KIRC], Kidney 

renal papillary cell carcinoma [KIRP], Liver hepatocellular carcinoma [LIHC], Lung 

adenocarcinoma [LUAD], Lung squamous cell carcinoma [LUSC], Lymphoid Neoplasm 

Diffuse Large B-cell Lymphoma [DLBC], Mesothelioma [MESO], Ovarian serous 

cystadenocarcinoma [OV], Pancreatic adenocarcinoma [PAAD], Pheochromocytoma and 

Paraganglioma [PCPG], Prostate adenocarcinoma [PRAD], Rectum adenocarcinoma 

[READ], Sarcoma [SARC], Skin Cutaneous Melanoma [SKCM], Stomach 

adenocarcinoma [STAD], Testicular Germ Cell Tumors [TGCT], Thymoma [THYM], 

Thyroid carcinoma [THCA], Uterine Carcinosarcoma [UCS], Uterine Corpus Endometrial 

Carcinoma [UCEC], Uveal Melanoma [UVM]. 

MUTATION FILE DESCRIPTION 

To evaluate somatic mutations we started with the mc3.v0.2.8.CONTROLLED.maf and 

filtered out mutations with the following MAF Filter Flags: StrandBias, pcadontuse, 

common_in_exac, oxog, contest, nonpreferredpair, ndp, badseq, broad_PoN_v2, leaving 

a total of 10,573,839 variants. With respect to mutation callers, single nucleotide 

polymorphisms and insertions and deletions were only maintained if there was agreement 

from two or more callers. Finally mutations with a variant allele fraction of less than 5% 
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were filtered out. Description of MC3 MAF file and filter flags found here: 

https://www.synapse.org/#!Synapse:syn7214402/wiki/405297. Final filtered somatic 

mutation file used for analysis found here: 

https://www.synapse.org/#!Synapse:syn12074532.  

To evaluate germline mutations, individual VCFs were downloaded from Huang et al., 

2018 (Huang et al.) encompassing TCGA cancer types listed in the Dataset Description. 

All variants were annotated using steps 6 and 7 of germline wrapper 

(https://github.com/ding-lab/germlinewrapper) against hg19 Homo Sapiens fasta file. 

After annotation, variants were maintained in a common germline MAF if allele frequency 

is greater than 0.01 and filtered into a rare MAF if allele frequency is less than 0.01 or if 

not reported. Common variants were only evaluated for BRCA. All rare variants were 

evaluated for splice-site-creating function using MiSplice. Furthermore, total reads 

supporting the alternatively spliced product were lowered for genes identified as 

significant in Huang et al., 2018 (Huang et al.) and re-run through MiSplice. After filtering, 

any variants with more than 10% of controls samples containing the alternatively spliced 

product were further filtered out leaving high confidence variants. For the 20,205,168 

common variants in BRCA, in an initial screen only 72,245 unique variants were evaluated 

for splice-creating function. Of the 72,245 unique variants, 287 were shown to have 

splice-creating function in at least one sample. The variants with splice-creating function 

were then evaluated in the remaining samples. In total 74,383 variants were evaluated 

for splice-creating function. 29 variants with less than 10% of control samples exhibiting 

the alternatively spliced isoform were manually reviewed, resulting in 6 high confidence 

common germline splice altering variants.  
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Finally germline mutations were finally filtered as being rare if the allele frequency derived 

from the Genome Aggregation Database (gnomAD browser; 

http://gnomad.broadinstitute.org/; release 2.0.2) is less than 0.0005 AF (0.05%). 

MISPLICE PIPELINE (SPLICE-SITE-CREATING MUTATION) 

The MiSplice pipeline was developed to detect mutation-induced splicing events from 

RNA-Seq data.  It is written in Perl and incorporates two standard tools, samtools and 

MaxEntScan.  The pipeline is fully automated and can run multiple jobs in parallel on LSF 

cluster.  It executes the following steps: 

1)      Splitting large maf file into multiple smaller files with less mutations (currently, the 

default setting is 200). 

2)      Discovering splicing junctions within 20bps of the mutation with at least 5 

supporting reads with mapping quality Q20 and then filtering canonical junctions by using 

the Ensembl 37.75 database. We selected 20bp as a cut-off since it is the farthest 

distance from the splice junction in a splice region.  

3)      Computing the number of supporting reads of above cryptic splice sites for control 

samples without mutations. 

4)      Calculating the splicing scores for the cryptic splice sites via MaxEntScan. 

5)      Reporting the depth of each cryptic splice site via Samtools. 
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6)      Filtering cryptic sites which fall in HLA loci or less than 5% of reads at the genomic 

location supporting the novel junction of interest. 

MISPLICE GERMLINE FILTERING 

All relevant scripts for filtering germline splice-site-creating mutations can be found: 

https://github.com/reykajayasinghe/MiSplice_Supplemental/. 

1) Gene filter: Large exons with a high affinity for alternatively spliced products were 

filtered out including: AHNAK, AHNAK2, HLA family, FMN2, CRIPAK, IGH*, MUCIN 

family, RP11*, orf genes (Table X) 

2) Remove events with less than 20 supporting controls.  

3) Remove sites with greater than 5% of control samples having the same reported 

alternative splicing event. 

4) Nearby Mutations and combining mutations in the same gene by cancer type: Combing 

the same splice-site-creating event into one entry when there are multiple mutations 

nearby one another for the same sample set. Combining the same SCM event across 

multiple patients into the same entry.  

5) All sites are annotated with TransVar (Zhou et al.). Only variants with annotated 

variants in protein_coding transcripts that were classified by uniprot as TSL=1 were 

maintained for further analysis. 
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6) Finally, all single nucleotide variants were annotated with population frequencies 

derived from the genome aggregation database 

(gnomAD,http://gnomad.broadinstitute.org/). 

SPLICE SITE SCORE ESTIMATION 

For each cryptic splice site and nearby canonical splice site, the corresponding nucleotide 

sequences were first extracted for both the mutant and reference sequences (9-mer and 

23-mer for donor and acceptor, respectively). Their splice scores as potential donor or 

acceptor sites were then estimated using MaxEntScan for single nucleotide 

polymorphisms. 

MUTATIONAL SIGNATURE 

For determining the mutation signatures of a the subset of samples, mutations were 

extracted from the MC3 public mutation file for the HNSC sample while mutations were 

extracted from the controlled mutation file for the TGCT sample 

(https://www.synapse.org/#!Synapse:syn7214402). Different mutation files were needed 

because all the mutations for the TGCT sample were removed from the public mutation 

file due to filter flags mostly considered “NonExonic.” All mutations were run through 

Mutational Signatures in Cancer (MuSiCa) to evaluate mutation signatures for each 

patient.   

NUCLEOSOME POSITIONING ANALYSIS 

For determining the nucleosome positioning of the alternatively spliced exons, all exons 

containing a rare germline or somatic SCM were collected and converted to bed format. 
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Coordinates were lifted over to hg38 from hg19 using ucsc hgLiftOver 

(https://genome.ucsc.edu/cgi-bin/hgLiftOver) and coordinates were modified to match the 

input for NucMap (http://bigd.big.ac.cn/nucmap/Faq.php#q9) to extract enrichment 

scores of nucleosome binding sites across several cell lines including: hsNuc0270101, 

hsnuc0260501, hsNuc0390101, hsNuc0320101, hsNuc0070101, and hsNuc0020101. 

Using the browser analysis software normalized reads (RPM, reads per million)  were 

extracted from the aforementioned cell lines and an enrichment score was calculated 

using the online software. 

MANUAL REVIEW 

All novel splice creating mutations were manually reviewed using the integrative 

genomics viewer (http://software.broadinstitute.org/software/igv/). Mutations were placed 

into one of three categories: Pass, Complex, and No Support. Mutations were classified 

as complex if more than one novel alternatively spliced product was observed for the 

mutated sample. After annotation, sites with large effect size (>100 bp) were manually 

reviewed for confirmation. Many events with very large new exons were recharacterized 

as ultra-short-introns. 

TRANSLATION 

All MiSplice Supplemental scripts are written in python 

(https://github.com/reykajayasinghe/MiSplice_Supplemental). Translation.py takes in the 

TransVar annotated matrix and defines important characteristics surrounding the SCM 

including: determining size of the upstream and downstream intron, size of the current 

exon, size of the novel splice isoform, overall change in size of the spliced product, 
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mutation position relative to the start and end of the exon, determines the resulting 

wildtype and mutant amino acid predictions for the SCMs, and finally predicts degradation 

by NMD. Some sites may be lost during this translation script due to improper annotation 

by transvar to a protein coding transcript or the lack of a known transcriptional start site 

in the input coding sequence file.  

CODE AVAILABILITY 

MiSplice is written in Perl and is freely available from GitHub at https://github.com/ding-

lab/misplice_gsSCM under the GNU general public license. MiSplice uses several 

independent tools and packages, including SamTools and MaxEntScan, all of which are 

likewise freely available, but which must be obtained from their respective developers. 

The MiSplice documentation contains complete instructions for obtaining and linking 

these applications into MiSplice. 

MINI GENE SPLICING ASSAY 

Exons of interest and approximately 150 bp of their flanking intron sequences were PCR 

amplified from HEK293T genomic DNA using primers carrying restriction enzyme sites 

for BamH1 and MluI. PCR products were cleaned up using NucleoSpin PCR Cleanup 

(Macherey-Nagel) or DNA Clean and Concentrator-5 Kit (Zymo Research) and digested 

with BamHI and MluI. The digested pCAS2.1 vector and PCR products were ligated using 

T4 DNA Ligase (NEB). Mutations were introduced via Q5 Site-Directed Mutagenesis 

(NEB). WT and MUT constructs were confirmed by sequencing of the insert region. The 

plasmids were transiently transfected into HEK293T cells using Lipofectamine 2000 

(ThermoFisher Scientific). 24 hours post transfection, cDNA was synthesized using 2 ug 
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of total RNA with the Superscript III First-Strand Synthesis System (ThermoFisher 

Scientific) or igScript Reverse Transcriptase (Intact Genomics) and priming with 

Oligo(dT)20.  Finally, cDNA was amplified using pCAS-KO1-(5′-

TGACGTCGCCGCCCATCAC-3′) and pCAS-R (5′-ATTGGTTGTTGAGTTGGTTGTC-3′) 

and the alternative splicing patterns were evaluated on a 2.5% agarose gel with ethidium 

bromide. Qiaquick Gel Extraction Kit (Qiagen) was used to purify bands for sequencing. 

CELL CULTURE 

HEK293T cells were cultured in Dulbecco's modified Eagle's medium (DMEM) 

supplemented with fetal bovine serum (FBS) and penicillin streptomycin.  

SELECTION OF VARIANTS FOR VALIDATION 

In selecting variants to validate, we focused on mutations in cancer associated genes and 

known cancer predisposition genes. After selected gSCMs from cancer predisposition 

genes, we then filtered sites in 1) low complexity regions to avoid creating non-specific 

primers; 2) exons containing variants with restriction enzyme cut sites in BamHI and MluI; 

3) exons containing variants in the first or last exon of a gene. In these cases signals from 

the UTR regions may disrupt the mini-gene splicing assay; 4) complex splicing events 

that couldn’t be properly captured in a mini-gene splicing assay; 5) exons with small 

introns. For the mini-gene splicing assay, we selected exons of interest that were located 

far enough away from adjacent exons with specific enough primers to amplify 150 bp of 

the intronic region on either side of the exon of interest. 
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4.5 Discussion 

Accurate and quick validation of somatic and germline variation is tantamount to 

personalized medicine. Our MiSplice pipeline has proven to properly classify and 

characterize splice-site-creating mutations and can help to improve our genomic 

annotation pipelines when RNA-sequencing and DNA-sequencing data is integrated to 

predict transcriptional consequences. Our findings also highlight the benefits of taking 

advantage of the selective mutagenesis that occurs in cancer genomes to evaluate 

splicing modulation across a given cohort. With our large and high confidence set of 2,888 

SCMs we can effectively compare the landscape of rare and germline SCMs while 

grouping both sets together to evaluate overall trends in SCM+ exons. We were able to 

accurately determine that mutations overlapping the splice donor and splice acceptor 

splice site commonly undergo different selective pressures when mutated.  

 

Specifically, mutations overlapping the splice donor site were sufficient to disrupt the 

canonical splice site usage but this phenomenon doesn’t hold true for acceptor splice site 

mutations in our dataset. Alternatively acceptor SCMs needed to not only strengthen the 

novel splice site to facilitate the novel site usage, but also disrupt the canonical splice 

site. Furthermore, exons containing splice acceptor SCMs trended towards having a large 

upstream intron and downstream intron relative to other SCM+ exons. By surveying 

additional mutation induced alternative splicing events, we can continue to learn from the 

surrounding genomic context to tease apart the intricacies of the splicing code as it 

pertains to SCM+ exons. For example, we observed an enrichment of nucleosome 

occupancy overlapping SCM+ exons, suggesting active splicing of these exons across at 
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least the 33 tissue types surveyed in our analysis. Overall, the size of the novel exon 

tended to decrease post mutation, mimicking a natural evolutionary selective pressure 

but exploited in the cancer genome to maintain proper alternative splicing. With respect 

to degradation of the novel isoform, regardless of whether or not the resulting protein 

product was expected to undergo degradation, we still actively see expression of the 

novel isoform, although significantly lower for the transcripts predicted to elicit NMD.  

 

To date, this is the first analysis comparing rare germline SCMs and somatic SCMs 

revealing their comparable dysregulation to the splicing code in cancer. Evaluating 

mutation induced events separately from patient specific de novo events can provide a 

focused analysis on the genomic features selecting for SCM+ exons relative to leaky 

splicing or mutation independent cryptic splice site activation. As tissue type specific 

datasets continue to increase, developing novel tissue specific signatures will help inform 

the tissue type specific relevance of mutation induced SCMs. For example  

 

Understanding how splice-altering variants can lead to alternative isoforms in tumor 

samples and determining protein domains that are disrupted or created is still an open 

area of study. In order to better characterize events specific to a tissue type, developing 

modules of MiSplice that have known tissue specific transcripts will strengthen annotation 

and mutation calling. Furthermore, there is room to expand outside of the single 

nucleotide variant landscape to evaluate insertions, deletions and more complex events 

that are potentially also contributing to the disease state. Finally, MiSplice is a very 

stringent algorithm. There are many seemingly tissue type specific events that are present 
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at a low level in some tissue types that have the potential to be exploited in other tissue 

types especially under direct mutagenesis. While we did not report on these cases in this 

analysis, the intermediate MiSplice outputs will provide very fruitful datasets for inferring 

novel biological mechanisms exploited in the cell. 

 

 

 

Supplemental Figure S7. (A) Distribution of overall effect size of novel isoform broken 

down by conventional annotation and SCM type. (B) Comparing change in size of novel 
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spliced isoform to the distance from the canonical splice site. Both values were 

generated from different steps in the pipeline, further confirming our annotation pipeline. 

(C) Distribution of upstream intron sizes by conventional annotation. (D) Distribution of 

upstream intron sizes by conventional annotation. 

 

 

 

Supplemental Figure S8. NMD Prediction Overview . (A) Comparing overall JAF 

distribution by conventional annotation type and colored by NMD prediction. (B) 

Based on the location of the premature termination codon, each predicted protein 
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product was classified as eliciting or escaping nonsense mediated decay based on 

the 50 bp rule.  

 

 

 

Supplemental Figure S9. Nucleosome Occupancy by Canoncical Splice Site 

Score . (A) Exons containing SCMs were grouped into bins by strength of canonical 

splice site and nucleosome occupancy was evaluated by group using NucMap. Low [-

17.58,6.39], Medium [6.40,8.21], Higher[8.22,9.77], Highest [9.78,15.07].  
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Chapter 5: Conclusion and Future 

Directions 

 

CANCER SPECIFIC EXON DEFINITION 

 

From studying differential alternative splicing across species, it is understood the 

appearance of alternatively spliced exons has manifested through three different 

mechanisms: (1) the transition of a constitutive exon to an alternatively spliced exon, (2) 

exon shuffling and (3) exonization of intronic sequences.  

 

When a new or duplicated exon is inserted into an existing gene it is known as exon 

shuffling. This process is facilitated by the repetitive elements in introns leading to 

recombination events and thereby exon shuffling. The model of exon creation through 

exonization was initially thought to occur from nothing. While many exon creation events 

are due to repetitive elements (Alu elements) which can undergo exonization, there are 

two well accepted methods of exonization including: intron-mutation induced splice signal 

creation events and RNA editing. Alu elements belong to the short interspersed element 

family (SINE), consist of a 300 nucleotide sequence, and are inserted into various regions 

of the genome via retrotransposition. The regions of an Alu element strongly resemble a 

canonical splice site in that they contain a poly-pyrimidine tract and splice-site like signals 

nearby that can be inaccurately identified by the splicing machinery. The use of a new 
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exon is further encouraged by strong alternatively spliced exons flanking the inserted 

sequence along with splicing enhancer and silencer elements. Interestingly, Alu exons 

have been found to be enriched for enhancer elements and depleted of silencer elements, 

encouraging the exonization event. In addition to the primary sequence, secondary 

structure can also affect exonization by means of adenosine deaminase acting on RNA 

(ADAR) editing. Adenosine to Inosine editing is common in Alu elements due to the 

secondary structure created when two inverted Alu elements are inserted near one 

another. During this process, the ADAR family of enzymes alters Adenosine residues to 

Inosine.  Since Inosine is recognized by the biological machinery as Guanosine, a 

functional splice site can be created in an Alu element by altering AA to AG. There have 

been several cases of exon gain due to Alu insertions in exons (Sela et al.) and introns 

(unpublished). 

 

Evolutionary conservation or depletion of a splice site provides strong evidence as to the 

biological function of the alternatively spliced product.  

 

Understanding how exon creation or modification can generate a novel protein isoform is 

vital to understanding the evolution of canonical gene function. New exon events that 

arise in cancer or in natural selection in various species allows for the new exon event to 

be “tested”, since the new event is almost always alternatively spliced the wildtype form 

is also present in the organism as well (Sorek, 2007). If the alternative isoform is 

detrimental it will be selected against, and if beneficial we should see evidence of 

selection in the form of expression of the alternatively spliced product. It has been 
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suggested that exonization events are ways to test out new gene modules with a generally 

small effect on the overall evolution of the species.  

 

The findings from my thesis work suggests that evolutionary constraints on the tumor has 

selected for these splice-site-creating mutants and conferred some combination of the 

following criteria: (1) modify protein structure and/or (2) shift mRNA usage away from the 

wild type. 

 

Although many of the predicted splice-site-creating events are predicted to escape 

nonsense mediated decay, about half of the sites should be degraded but are still present 

in the total RNA population, signifying a novel means of escaping degradation. In this 

thesis we propose an additional classification of “exonization” through the lens of cancer 

evolution. We have identified thousands of somatic and germline coding mutations, 

inducing the use of a novel or cryptic splice site functionally altering the reading frame of 

the mutant isoform and diversifying the landscape of the cancer genome. In the following 

sections, I will discuss additional analyses that can be performed on this compendium of 

splice-site-creating mutants to evaluate selection of SCMs across the TCGA dataset. 

 

Allelic Imbalance of SCMs 

Over evolutionary time during the birth of a new exon, while undergoing various selective 

pressures, newly created exons tend to exhibit increased expression and eventually 

become fixed over the previous wild-type form (Sorek, 2007). Similarly with our splice-

creating mutants, we see varying levels of selection by the tumor, and in some cases the 
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mutant induced splice form is selected at a higher frequency than the wild type suggesting 

preference for the alternatively spliced product (Sorek, 2007).  

 

In thinking about cancer from an evolutionary standpoint, we have a unique opportunity 

to evaluate changes to overall exon definition and determine their potential for purifying 

selection over a relatively short time scale. When interrogating mutational signatures in 

cancer, we predict genomic changes will lead to changing expression of the resulting 

gene product. The clonal heterogeneity of a tumor exemplifies the theory of selective 

pressures on growing populations of cells in a microenvironment. Selective pressures 

(including treatment, microenviroment, tissue etc.) alter the clonal architecture and the 

clone with the most beneficial fitness is maintained until treated (Gerlinger et al.). By 

looking at the overall variant allele fraction of the DNA and RNA, we can evaluate the 

transcriptional dynamics that could be exploited by the cancer cell. When exons are newly 

created, some might fix over time and we can evaluate this by comparing expression of 

the newly created exons relative to the wildtype sequence (Sorek, 2007). When 

comparing the different Alu element insertions between mouse and humans, Sela et al., 

found increased levels of the newly created exons in humans relative to mouse (Sela et 

al.) suggesting selection for the Alu created exons over evolutionary time. 

 

For approximately 80 rare germline splice-site-creating events in our dataset, we have 

access to DNA-Sequencing and RNA-Sequencing for both the tumor and normal 

samples. With these data we can assess the comparative Variant Allele Fractions (VAF) 

for DNA-seq and Junction Allele Fraction (JAF) in the RNA-Seq between the tumor and 
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normal data. Understanding allelic imbalance will aid us in understanding the difference 

in expression between the mutant and wild type allele, a selection of one allele over 

another in the tumor would suggest either cis or trans factors that affect expression of the 

associated gene thereby altering the tumor biology. 

 

Protein Support from Mass Spectrometry  

Support of the novel splice-site-creating event could be significantly strengthened by 

peptide support. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) has 

performed mass spectrometry for a subset of samples from the cancer genome atlas 

project to further interrogate how mutations can manifest on the translational level. To 

evaluate the translational potential of the splice-site-creating mutants, for a handful of 

samples in our dataset we have mass spectrometry data to evaluate if the novel isoform 

is translated (Table 5.1). In Table 5.1 I have highlighted all the sample and gene pairs for 

which we have associated mass spectrometry data and can validate the novel splice 

isoform if it is expressed. Specifically, MSGF+ (https://omics.pnl.gov/software/ms-gf) can 

be utilized to identify peptides specific to our novel splice isoforms. Although we have 

evidence of the mutant isoforms in the RNA-Sequencing data, support by mass spec will 

provide very strong evidence that the mRNA is translated to a protein whose functions 

could be altered due to the alternatively spliced product.   

 

Table 5.1. rgSCM and sSCM events with mass spectrometry data 
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Type 

SCM 

Result Frame NMD 

Classificati

on 

Gene Canc

er 

JAF Conventional 

Annotation 

germline exon-

extension 

off-frame ELICIT-

NMD 

CBWD5 BRC

A 

8.62069  

SpliceDonorSN

V 

germline exon-

extension 

off-frame ESCAPE-

NMD 

C7 OV 39.2461  

SpliceDonorSN

V 

germline exon-

shrinkage 

in-frame ESCAPE-

NMD 

SORBS3 BRC

A 

9.52381  Synonymous 

germline exon-

shrinkage 

in-frame ELICIT-

NMD 

TUBGCP

6 

BRC

A 

41.3793  

SpliceAcceptor

SNV 

germline exon-

shrinkage 

off-frame ELICIT-

NMD 

CCDC94 OV 9.40171  

SpliceAcceptor

SNV 

germline exon-

shrinkage 

off-frame ELICIT-

NMD 

MTBP BRC

A 

22.2222  Missense 

germline exon-

shrinkage 

in-frame ESCAPE-

NMD 

SKA2 OV 21.4286  Missense 

germline exon-

shrinkage 

off-frame ESCAPE-

NMD 

LMO1 OV 18.75  Synonymous 

germline exon-

shrinkage 

in-frame ESCAPE-

NMD 

ZCCHC1

7 

BRC

A 

14.8148  Missense 
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germline exon-

shrinkage 

in-frame ESCAPE-

NMD 

PFKL BRC

A 

45.1128  

SpliceAcceptor

SNV 

germline exon-

shrinkage 

in-frame ESCAPE-

NMD 

PIAS3 OV 34.9593  Missense 

germline exon-

shrinkage 

off-frame ELICIT-

NMD 

ELMO3 OV 6.76692  Missense 

germline exon-

shrinkage 

off-frame ESCAPE-

NMD 

HMGCR BRC

A 

8.94309  

SpliceAcceptor

SNV 

germline exon-

shrinkage 

in-frame ESCAPE-

NMD 

CHD8 OV 27.3092  Missense 

germline exon-

shrinkage 

off-frame ELICIT-

NMD 

NEDD1 BRC

A 

5.9322  Missense 

germline exon-

shrinkage 

off-frame ESCAPE-

NMD 

CUEDC1 BRC

A 

36.4985  

SpliceDonorSN

V 

germline exon-

shrinkage 

in-frame ESCAPE-

NMD 

PTPRM OV 49.1228  

SpliceAcceptor

SNV 

somatic exon-

extension 

off-frame ELICIT-

NMD 

TP53 OV 46.6667  

SpliceDonorSN

V 

somatic exon-

extension 

off-frame ESCAPE-

NMD 

ZDHHC1

6 

OV 30.2013  Missense 
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somatic exon-

shrinkage 

off-frame ESCAPE-

NMD 

SNAPC1 BRC

A 

21.1538  

SpliceAcceptor

SNV 

somatic exon-

shrinkage 

in-frame ESCAPE-

NMD 

CDC37 OV 16.7965  Synonymous 

somatic exon-

shrinkage 

in-frame ESCAPE-

NMD 

NFYB OV 19.5402  

SpliceAcceptor

SNV 

somatic exon-

shrinkage 

off-frame ELICIT-

NMD 

LANCL2 OV 22.7273  

SpliceAcceptor

SNV 

somatic exon-

shrinkage 

in-frame ESCAPE-

NMD 

NOP9 BRC

A 

36.3636  Missense 

somatic exon-

shrinkage 

off-frame ELICIT-

NMD 

EDC3 OV 7.5188  

SpliceAcceptor

SNV 

somatic exon-

shrinkage 

off-frame ESCAPE-

NMD 

C1orf172 BRC

A 

12.8205  Missense 

somatic exon-

shrinkage 

in-frame ESCAPE-

NMD 

GTF2E2 BRC

A 

12.8713  

SpliceAcceptor

SNV 

somatic exon-

shrinkage 

off-frame ESCAPE-

NMD 

ID3 OV 23.3051  

SpliceAcceptor

SNV 

somatic exon-

shrinkage 

in-frame ESCAPE-

NMD 

EIF1AX OV 39.0476  

SpliceAcceptor

SNV 
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somatic exon-

shrinkage 

in-frame ESCAPE-

NMD 

FBXO18 OV 8.31889  Missense 

somatic exon-

shrinkage 

in-frame ESCAPE-

NMD 

CRAMP1

L 

BRC

A 

39.2857  Missense 

somatic exon-

shrinkage 

off-frame ELICIT-

NMD 

CDK12 OV 40.7407  

SpliceAcceptor

SNV 

 

Oncogenic Function of SCMs 

MiSplice identified two kidney renal clear cell carcinoma (KIRC) samples having the same 

conventionally annotated missense mutation (c.233A>G, p.N78S) in BAP1, a nuclear 

deubiquitinase, that created the same novel spliced-out alternative splicing product. 

Inactivation of BAP1 is prevalent among renal cell carcinomas (Wadt et al., 2012) and an 

annotated missense mutation (p.L570V) has been reported to create a cryptic splice site 

in melanoma. At the transcriptional level, the expression of the case and control samples 

are relatively comparable, but at the translational level, one case with available protein 

data (RPPA) showed significantly lower expression relative to the controls. This result 

suggests the conventionally annotated missense mutations in BAP1 likely create an 

alternatively spliced transcript that is not readily expressed at the protein level. With this 

evidence it would be interesting to determine the in vitro function of BAP1 splice-creating 

variant in a cell line of interest. Using the established cell lines with our splice-site-creating 

variants of interest, downstream assays can be performed to determine if the SCMs have 

the potential to contribute to oncogenesis.  
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Mutation Induced Ultra Short Introns 

With the birth of a new intron, we see cases of intronization or the alternative splicing of 

an internal exon (Irimia et al., 2008). With certain events we also see the alternative 

splicing of internal introns that look to be facilitated by selected mutation induced splicing 

events. Small intron-creation events in exons were observed in approximately ~150 

unique gene-cancer type events. While introns are commonly spliced out by the major 

and minor spliceosome, several alternative mechanisms can facilitate the splicing of very 

short introns, typically less than 65 nucleotides in length. For example a U2 snRNP SF3b 

excises short introns ranging from 43 to 56 bp in NDOR1, HNRNPH1 and ESRP2 (Sasaki-

Haraguchi et al.). While introns in humans are quite long, introns in invertebrates are 

much shorter. With this knowledge, Lim et al. assessed genomic features of short introns 

across organisms to determine the minimum amount of information required to define an 

intron (Lim and Burge). While there is ample evidence in the literature supporting ultra 

short introns (USI), genomic deletions can arise due to repetitive sequences. To filter out 

common genomic deletions, we overlapped our predicted USI’s with computationally 

predicted USI’s in a recent publication by Abebrese et al (Abebrese et al.). In total, 29 

USI’s were filtered leaving less than 20 putative mutation induced USI’s. Furthermore, 3 

USI’s in KMT2D, CBLN3 and PRRC2C overlapped with Abebrese et al. and PRRC2C 

had evidence of splice junction usage across several cell lines after screening A549, Bj, 

H1 hESC, HeLa, HepG2, Hsmm, K562, Mcf7, Nhek, and Nhlf.  

 

To date, mutation induced USI’s have not been systematically evaluated in cancer. In 

general for all the USI’s identified, all but one are in frame and generally do not change 
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the splice site score but are recurrent and span cancer types. While the splicing score 

doesn't change, it has been reported that short introns generally have non-canonical 

splice sites such as those observed in IRE1alpha-dependent Xbp1 mRNA splicing known 

for splicing out 26 nucleotide sequences in various genes including itself (Bai et al.). The 

predicted mutation induced USIs identified in the TCGA dataset provides additional 

evidence regarding the mechanisms by which the splicing code can be dysregulated in 

the human population and potentially exploited in cancer.  

 

Common Germline Splice-Site-Creating Variants 

As a proof concept, we wanted to explore common germline splice-site-creating events 

in one cancer type to determine ancestry specific events. For the 20,205,168 common 

variants in Breast Invasive Carcinoma (BRCA), in an initial screen only 72,245 unique 

variants were evaluated for splice-site-creating function. Of the 72,245 unique variants, 

287 had evidence of splice-creating function in at least one sample. The variants with 

splice-site-creating function were then evaluated in the remaining samples. In total 74,383 

variants derived from 287 unique sites were evaluated for splice-site-creating function. 29 

variants with less than 10% of control samples exhibiting the alternatively spliced isoform 

were manually reviewed, resulting in 6 high confidence common germline splice-site-

creating variants (Table 5.2).  

 

Table 5.2. Common SCMs  
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Gene Mutation # 

Cases 

% of 

Controls 

with event 

# reads in case samples 

Neurolysin, 

mitochondrial 

(NLN) 

5:6508410

1 A>G 

22 0 % 15,14,18,11,8,7,12,13,5,7,11,

13,6,5,10,13,6,7,18,27,9,10 

Leukocyte 

Immunoglobulin 

Like Receptor 

A2 (LILRA2) 

19:550986

67 G>A 

20 0.39 % 11,5,7,5,15,6,7,7,5,8,13,10,15

,5,17,9,8,10,9,10 

Glutaminyl-

Peptide 

Cyclotransferase 

Like (QPCTL) 

19:462062

62 G>A 

4 1.07 % 7,5,5,7 

TatD DNase 

Domain 

Containing 3 

(TATDN3) 

1:2129855

92 G>A 

17 2.25 % 6,6,6,6,6,5,8,6,6,7,5,8,5,8,7,6,

12 

Calpain 13 

(CAPN13) 

2:3098597

7 G>A 

4 2.64 % 9,11,8,16 
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The NLN common germline variant has a population frequency of 0.19 in the african 

american community. 20 of the 22 samples with the germline variant are black or african 

american in the TCGA dataset and have a slightly higher expression of the NLN gene 

relative to non-mutated controls in breast cancer, although not significant (wilcox test = 

0.09). Our initial findings of the NLN gene and other common variants suggest a subset 

could be mis-annotated when evaluating both RNA and DNA sequencing. Interestingly 

a few variants created ultra-short-intron events described in the previous section.  

 

Non-Canonical Splice Sites and Minor Spliceosome Alterations 

 

For both splice-site-creating papers, we only focused on sites creating canonical GT or 

AG splice sites. Several interesting SCMs created non-canonical splice sites (deviating 

from GT and AG genomic context) suggesting usage of non-canonical splice sites by the 

major spliceosome or minor spliceosome. 

 

The splicing code is made up of cis-acting elements that help the splicing complex 

distinguish between non-coding (intron) and coding (exon) regions. There are two known 

distinct ribonucleoprotein complexes known as the major and minor spliceosomes that 

are responsible for joining exons and splicing out two types of introns, U2 and U12. For 

NAD kinase 2, 

mitochondrial 

(NADK2) 

5:3621971

0 C>T 

22 6.01 % 13,6,18,9,8,5,17,8,25,18,11,7,

8,19,12,35,17,34,16,6,6,7 
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U2 type introns, the consensus intronic dinucleotide GT splice donor and AG splice 

acceptor flank the exons at the 3’ and 5’ ends respectively, and can be found in 99% of 

all introns. The remaining 1% are U12 type introns and were initially recognized due to 

their non-consensus splice site sequences AT and AC at the 3’ and 5’ splice sites, 

respectively (Hall and Padgett; Jackson). Interestingly, some introns with the canonical 

GT-AG splice sites are also spliced by the minor spliceosome. While the consensus 

sequence alone cannot differentiate between the two groups, several other cis-

sequences including lacking a polyprimidine tract upstream of the 3’ splice site, 

polypyrimidine tract and branch point (Dietrich et al.) can help differentiate between the 

two groups. The major and minor spliceosome share the U5 snRNP and many 

spliceosomal proteins.  

 

While only 1% of U12 type introns are present in the genome, they are highly conserved 

across eukaryotes suggesting a potential functional role in the genome. For example, U12 

type introns are shown to be removed at a much slower rate than U2 type introns (Patel 

et al.), and the minor spliceosomal proteins are present at a much lower abundance than 

the major spliceosome (Tarn and Steitz). This evidence suggests that minor introns are 

likely a rate limiting step in the expression of various mRNAs that contain U12 type 

introns. Despite this evidence, the current compendium of minor introns is still expanding.  

 

The benefit of coupling U12 intron containing genes and U12 spliceosome abundance 

allows the cell a regulatory mechanism by which only a subset of genes can be 

differentially regulated in response to stimuli. Younis et al., determined the U6atac snRNA 
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minor spliceosomal gene expression could be increased by cell stress activated kinases 

leading to increased expression of U12 intron containing genes that regulate cell stress 

physiology (Younis et al.).  RNA-seq analysis revealed a down-regulation of 2,088 genes 

including 429 minor intron genes. Together, these results show that altering expression 

of minor spliceosomal genes can alter a distinct subset of genes with overarching 

changes at the transcriptome level.  

 

With the large dataset provided by The Cancer Genome Atlas mechanisms of U12 

dysregulation across cancer genomes can be more effectively evaluated. Furthermore, 

our analysis of splice-site-creating mutants identified the usage of many non-canonical 

GT-AG splice sites, suggesting a potential dysregulation of spliceosomal usage.  

 

As with aberrations in major spliceosome related genes, mutations in minor spliceosomal 

genes lead to different disease phenotypes ranging from brain to skeletal irregularities. 

Recently, Madan et al., evaluated alternatively spliced junctions in 8 Myelodysplastic 

syndrome (MDS) patients with ZRSR2 mutations and identified 689 mis-spliced junctions 

in all 8 cases (Madan et al.). The mispliced junctions are specific to ZRSR2 mutants. 

Additionally, a conditional knockdown of Rnu11 in mice resulted in microcephaly and 

upregulated intron retention of minor intron containing genes (Baumgartner et al.). Many 

of the minor intron containing genes were not differentially expressed but 178 introns were 

detained at higher levels in the mutant relative to the wildtype while one was 

downregulated. Finally a family of three sisters were found to have biallelic mutations in 

RNPC3 and when downstream U12 intron retention rates were compared, 21 genes out 
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of 522 tested had decreased U12/U2 ratios in the patient cells(Argente et al.). 

Interestingly the subset of aberrant U12 introns were relevant to the disease phenotype 

and some U2 cryptic splice sites were activated instead of the U12 intron. Mutations in 

U12 spliceosomal proteins have been linked to several other diseases including RNU12 

(Elsaid et al.), RNU4ATAC (Edery et al.; He et al.; Heremans et al.; Merico et al.), 

TRAPPC2 (Shaw et al.), FUS (Reber et al.), and SMN1 (Zhang et al.). The previous 

studies provide strong evidence that minor splicing factors regulate subsets of minor 

introns. By evaluating differential expression of related minor introns, novel functional 

mutations in minor spliceosome genes or U12 minor introns themselves can be identified 

to determine if minor intron splicing is altered globally in cancer.  

 

As with mutations in spliceosomal genes, mutations in cis can also alter minor intron 

splicing. LKB1 encodes a serine threonine protein kinase involved in major cellular 

processes including cell cycle arrest, p53 mediated apoptosis among others. The second 

intron of LKB1 is a minor intron and a mutation that affects the 5’ splice site causes Peutz-

Jeghers syndrome (Hastings et al.). Interestingly, the 5’ splice site mutation changes the 

splice sites of intron 2 from AT-AC to GT-AC. One would expect that a 5’ splice site 

mutation would cause skipping of the subsequent exon or use of an alternative 5’ splice 

site, but the authors found instead that a cryptic 3’ splice site was utilized, thereby altering 

the frame of the final transcript, which induced a premature termination codon and 

degraded by nonsense mediated decay.  
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In a related manner, a mutation in SCN8A has been shown to inactivate the 5’ splice site 

thereby resulting in an exon skipping event associated with an X-linked recessive disorder 

(Shaw et al.). While this exon skipping event doesn’t occur in the minor intron itself, it 

does lead to altering the usage of minor intron contained within the gene, suggesting a 

strong interplay between splice site usage.  

 

In 2018, our lab published a comprehensive analysis of gene fusions identified in RNA-

Seq across the TCGA compendium (Gao et al.). From this publication, several gene 

fusions were identified involving minor spliceosomal related genes (Table 5.3). All of 

these resulting fusion products in the associated samples have the potential to 

dysregulate a large subset of downstream minor introns, but their current consequence 

is unknown. A case control comparison evaluating overall expression of the fusion genes 

with wild type counterparts will determine if the expression of the fusion itself or 

downstream targets are affected due to the predicted fusion product.  

 

Table 5.3. U12 and U12 associated genes with detected Fusions in TCGA  

Cance

r 

Sample Fusion Juncti

on 

Spanni

ng 

Breakpoin

t1 

Breakpoint2 

HNSC TCGA-CV-7090-01A-

11R-2016-07 

DHX15--

RBPJ 

6 21 chr4:24548

855:- 

chr4:2638635

3:+ 

PRAD TCGA-G9-6339-01A-

12R-A311-07 

DHX15--ETV1 9 35 chr4:24584

323:- 

chr7:1393589

6:- 

SARC TCGA-DX-A3LU-01A-

11R-A21T-07 

DHX15--

CCND3 

1 12 chr4:24541

873:- 

chr6:4194058

5:- 
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COAD TCGA-F4-6809-01A-

11R-1839-07 

FUS--

PYCARD 

2 116 chr16:3118

2422:+ 

chr16:312022

03:- 

ESCA TCGA-IG-A51D-01A-

11R-A36D-31 

FUS--IL9R 6 7 chr16:3118

2664:+ 

chrY:5718942

6:+ 

HNSC TCGA-CV-6941-01A-

11R-1915-07 

FUS--

PRSS36 

1 11 chr16:3118

4396:+ 

chr16:311497

31:- 

OV TCGA-13-1481-01A-

01R-1565-13 

FUS--KAT8 22 22 chr16:3118

0227:+ 

chr16:311270

35:+ 

STAD TCGA-HU-A4HB-01A-

12R-A251-31 

FUS--

TMEM114 

71 35 chr16:3118

5179:+ 

chr16:857222

4:- 

BRCA TCGA-LD-A7W5-01A-

22R-A352-07 

PDCD7--

TAF15 

3 16 chr15:6512

9032:- 

chr17:358177

16:+ 

BRCA TCGA-E2-A14Z-01A-

11R-A115-07 

RNPC3--

KIAA0825 

3 5 chr1:10352

6262:+ 

chr5:9441738

0:- 

BRCA TCGA-E2-A10A-01A-

21R-A115-07 

SNRNP48--

NISCH 

2 1 chr6:75951

01:+ 

chr3:5248451

3:+ 

SARC TCGA-IW-A3M4-01A-

11R-A21T-07 

ZCRB1--

YAF2 

1 8 chr12:4232

5924:- 

chr12:422106

19:- 

SKCM TCGA-D9-A6E9-06A-

12R-A311-07 

ZCRB1--

LIMA1 

18 64 chr12:4232

4019:- 

chr12:502224

85:- 

BLCA TCGA-G2-AA3B-01A-

11R-A39I-07 

ZMAT5--

ASCC2 

4 15 chr22:2976

6949:- 

chr22:297936

76:- 

GBM TCGA-41-2572-01A-

01R-1850-01 

ZMAT5--

ASCC2 

110 32 chr22:2976

6872:- 

chr22:297905

48:- 

HNSC TCGA-T3-A92M-01A-

31R-A39I-07 

ZMAT5--

NIPSNAP1 

5 11 chr22:2976

6872:- 

chr22:295618

62:- 
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LUAD TCGA-05-4426-01A-

01R-1206-07 

ZMAT5--

KIAA1671 

1 3 chr22:2976

6949:- 

chr22:250144

30:+ 

LUSC TCGA-85-8048-01A-

11R-2247-07 

ZMAT5--HIRA 2 7 chr22:2973

8330:- 

chr22:193315

56:- 

SARC TCGA-Z4-A9VC-01A-

11R-A37L-07 

DDIT3--FUS 3 23 chr12:5752

0418:- 

chr16:311896

65:+ 

BRCA TCGA-E2-A1IO-01A-

11R-A144-07 

CLPX--

PDCD7 

1000 1000 chr15:6516

6642:- 

chr15:651331

83:- 

LUAD TCGA-97-A4M7-01A-

11R-A24X-07 

MPG--

SNRNP25 

32 116 chr16:8325

6:+ 

chr16:57086:+ 

LUSC TCGA-21-1070-01A-

01R-0692-07 

ARHGAP17--

SNRNP25 

1 7 chr16:2496

4197:- 

chr16:56539:+ 

SKCM TCGA-D3-A8GC-06A-

11R-A37K-07 

FAM129B--

SNRNP25 

6 35 chr9:12751

6857:- 

chr16:55777:+ 

SKCM TCGA-EB-A44Q-06A-

11R-A266-07 

KDM2B--

SNRNP35 

5 24 chr12:1215

32806:- 

chr12:123458

021:+ 

BRCA TCGA-E2-A14T-01A-

11R-A115-07 

TMEM117--

ZCRB1 

18 26 chr12:4384

4928:+ 

chr12:423241

04:- 

STAD TCGA-BR-8077-01A-

11R-2343-13 

YAF2--

ZCRB1 

9 8 chr12:4221

0355:- 

chr12:423139

86:- 

OV TCGA-24-1425-01A-

02R-1566-13 

ST6GALNAC

1--ZMAT5 

7 8 chr17:7664

3508:- 

chr22:297424

80:- 

PAAD TCGA-3A-A9IH-01A-

12R-A39D-07 

NF2--ZMAT5 3 5 chr22:2967

8323:+ 

chr22:297424

80:- 

 

In evaluating disruptions of minor introns, several experiments can validate the in silico 

predictions. If the minor intron is retained due to mutation or disruption of U12 or U12-
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associated splicing factor we would expect to see either expression of the retained intron 

in RNA-Seq or decreased expression of the associated gene. If the minor intron has an 

associated premature termination codon, one would predict the resulting transcript would 

be degraded by nonsense mediated decay. If effectively degraded, no reads supporting 

the transcript would be identified in the RNA-Seq. To confirm this, the transcript containing 

the mutation can be transfected into the cell line of interest and puromycin treated to 

inactivate the NMD pathway thereby allowing us to evaluate the full repertoire of 

transcripts produced by the mutant transcript. If the transcript is alternatively spliced due 

to the mutation in the minor intron and is normally degraded by NMD, in this experiment 

we should see evidence of the minor intron retained due to the knockdown of NMD factors 

by puromycin. Alternatively, if we do not see the transcript even after NMD knockdown, 

then the mutation in the minor intron is likely not disrupting this particular intron retention 

event. 

 

If the minor intron is retained as suggested by evidence in the RNA-Sequencing data and 

it isn’t degraded efficiently, we can next try and determine if the major and minor 

spilceosomal machinery is responsible for removal of the minor intron of interest. Since 

the U2 spliceosome is known to be degenerate and can identify multiple sequences, it is 

possible that the U12 spliceosome isn’t playing a role in removing the minor intron of 

interest. To test this experimentally(Hastings et al.), a mini-gene derived with our exon, 

intron and exon of interest can be can be incubated in nuclear extract. When incubated 

in the presence of ATP, we can evaluate mRNA products that are derived from ATP 

dependent splicing reactions. Then in this same experimental condition, U2 and U12 
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dependent spliceosomes can be inactivated using antisense oligonucleotides directed at 

the U2 small nuclear RNA, U12 snRNA or both. Finally, RNA is extracted from all 

conditions and alternatively spliced products can be evaluated via RT-PCR. Outcome 1: 

If U12 spliceosome is important for this particular minor intron splicing then you will see 

a decrease or absence in the spliced product when associated spliceosomal RNA is 

knocked down. And when U2 spliceosome is knocked down there should be no change 

in spliced product. Outcome 2: If the U2 spliceosome is important for the splicing of this 

transcript then you will see a decrease or absence in the spliced product when associated 

spliceosomal RNA is knocked down. And when U12 is knocked down there should be no 

change in spliced product. Outcome 3: Both spliceosomes may be important for this 

process thereby resulting in differences in the spliced products under both knockdown 

conditions. 
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Appendix: Additional Projects 

5.1 Complex Insertions and Deletions in Cancer 

Genomes 

 

Systematic Discovery of Complex Indels in Human Cancers (Nature Medicine, 2016) 

(Ye et al., 2016) 

Contribution: I lead the development and scripted several scripts that were used to 

develop a variant quality control pipeline for filtering complex insertions and deletions. I 

manually reviewed many complex indels and helped with writing and submission. I helped 

to validate complex insertions and deletions identified in a COLO829 cell line by sanger 

sequencing.  

Refer to Supplementary Note 2: Sanger Sequencing of Validated Complex Indels from 

COLO829. 
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5.2 Analysis of Somatic Complex Insertions and 

Deletions in Pediatric Hematopoietic Malignancies 

 

 

Identification of Complex Indels in Pediatric Cancer Genomes 

Complex indels are formed by deleting and inserting DNA fragments of different sizes at 

a common genomic location. Application of the publicly available Pindel-C suite 

(https://github.com/genome/pindel) to 545 whole genome Pediatric Cancer Genome 

Project (PCGP) samples uncovered 21 somatic complex insertions and deletions among 

20 pediatric hematopoietic cancer samples listed in Table below. Our analysis was 

restricted to the following genes commonly mutated in hematopoietic diseases including: 

TP53, CBL, CREBBP, FLT3, KMT2D (MLL2), PAX5, SETD2, IKZF1, PMS2, RAD51, 

NCOR1, TBL1XR1 and KMT2C (MLL3). Nine of the 21 complex insertions and deletions 

identified differed from those reported in the original studies as follows: 

• 2 complex events in TBL1XR1 and SETD2 were not reported; 

• 6 complex events in MLL2, SETD2, IKZF1, and CREBBP were classified as simple 

indels; 

• 1 complex event in TP53 was classified as both a SNV and an INDEL separately. 

The remaining 12 events occurring among several key genes are found among samples 

that are currently not publicly available.  These samples are among the following cancer 

types: Hyperdiploid Acute Lymphoblastic Leukemia (SJHYPER), E2A-PBX Acute 

Lymphoblastic Leukemia (SJE2A), and ETS-Related Gene Associated Acute 
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Lymphoblastic Leukemia (SJERG). A handful of somatic and germline complex indels 

have also been identified in non-coding regions of the genome, but our initial analysis 

focuses on coding somatic mutations in cancer genes.  

 This preliminary analysis demonstrates the importance of using the most updated 

form of Pindel-C to identify complex events that may be absent or classified as other 

variant types in current cancer genomics studies.  

 

Table A.1. Complex indels identified for PCGP Samples 

Sample Gene Chromosome Start  End 

SJE2A043 PAX5 9 37002647 37002649 

SJERG031 MLL2 12 49444452 49444454 

SJERG020052 MLL3 7 151842335 151842365 

SJERG020306 SETD2 3 47059133 47059166 

SJERG020307 TBL1XR1 3 176756153 176756179 

SJERG020309 MLL2 12 49444958 49444960 

SJETV001 TBL1XR1 3 176769294 176769299 

SJETV024 SETD2 3 47059194 47059204 

SJHYPER005 NCOR1 17 15952238 15952243 

SJHYPER007 FLT3 13 28608280 28608286 
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SJHYPER051 TP53 17 7577595 7577601 

SJHYPER097 SETD2 3 47162194 47162195 

SJHYPER104 PAX5 9 37002675 37002676 

SJHYPER108 MLL2 12 49443861 49443863 

SJHYPER111 CBL 11 119148875 119148900 

SJHYPER111 FLT3 13 28608305 28608309 

SJHYPER227 IKZF1 7 50367310 50367314 

SJHYPO002 CREBBP 16 3843416 3843439 

SJHYPO040 CREBBP 16 3799606 3799632 

SJINF013 TP53 17 7577093 7577111 

SJPHALL020043 SETD2 3 47147487 47147488 

 

Complex indel discovery  

1. Read Extraction 

2. Pattern Growth-Based Alignment 

3. Distinguishing Complex Indels from Simple Indels 

4. Remove False Predictions and Variant Allele Frequency Analysis 

Filtering procedure 



177 
 

1. Coverage: All sites with at least 20 reads supporting the site of interest in both the 

tumor and normal sample were maintained for further analysis. 

2. Coding Region Selection: Identified all complex indels overlapping an exon as 

defined by ensembl 75 including flanking 2 bp splice sites. 

3. Repetitive Regions: Removed any variants falling in repetitive regions as defined 

by MSI Sensor. Reptitive regions are defined as areas having more than 6 or more 

repeat unit bases in a segment of the genome. 

4. Manual Review: Finally all sites were manually reviewed in the integrative 

genomics viewer to finally confirm all complex indels. 

The screenshots below from the Integrative Genomics Viewer show the events described 

in the table above (tumor sample on top, normal sample on bottom). 

 

 

Sample Gene Chromosome Start  End 

SJE2A043 PAX5 9 37002647 37002649 
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Sample Gene Chromosome Start  End 
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SJERG031 MLL2 12 49444452 49444454 
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Sample Gene Chromosome Start  End 

SJERG020052 MLL3 7 151842335 151842365 



181 
 

 

Sample Gene Chromosome Start  End 
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SJERG020306 SETD2 3 47059133 47059166 

 



183 
 

Sample Gene Chromosome Start  End 

SJERG020307 TBL1XR1 3 176756153 176756179 
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Sample Gene Chromosome Start  End 
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SJERG020309 MLL2 12 49444958 49444960 
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Sample Gene Chromosome Start  End 

SJETV001 TBL1XR1 3 176769294 176769299 
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Sample Gene Chromosome Start  End 

SJETV024 SETD2 3 47059194 47059204 
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Sample Gene Chromosome Start  End 
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SJHYPER005 NCOR1 17 15952238 15952243 
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Sample Gene Chromosome Start  End 

SJHYPER007 FLT3 13 28608280 28608286 
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Sample Gene Chromosome Start  End 
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SJHYPER051 TP53 17 7577595 7577601 
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Sample Gene Chromosome Start  End 

SJHYPER097 SETD2 3 47162194 47162195 
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Sample Gene Chromosome Start  End 

SJHYPER104 PAX5 9 37002675 37002676 
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Sample Gene Chromosome Start  End 

SJHYPER108 MLL2 12 49443861 49443863 
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Sample Gene Chromosome Start  End 
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SJHYPER111 CBL 11 119148875 119148900 
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Sample Gene Chromosome Start  End 

SJHYPER111 FLT3 13 28608305 28608309 
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Sample Gene Chromosome Start  End 
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SJHYPER227 IKZF1 7 50367310 50367314 
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Sample Gene Chromosome Start  End 

SJHYPO002 CREBBP 16 3843416 3843439 
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Sample Gene Chromosome Start  End 
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SJHYPO040 CREBBP 16 3799606 3799632 
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Sample Gene Chromosome Start  End 

SJINF013 TP53 17 7577093 7577111 
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Sample Gene Chromosome Start  End 

SJPHALL020043 SETD2 3 47147487 47147488 

 

  



206 
 

 

5.3 Children’s Discovery Institute: Utilizing CharGer 

to determine novel variants in undiagnosed pediatric 

cases  

 

There is an urgent need for improved and quick diagnosis of birth defects. To address 

this concern our lab has developed CharGer (unpublished) to assess the pathogenicity 

of variants using and automated query of public data sources (example: Clinvar). Using 

patient mutation files (example: VCFs) derived from the mother, father and child, we can 

derive both de novo and compound heterozygous mutations.  

 

When focusing on de novo variants we are interested in identifying spontaneous 

mutations in developmental genes compared to inherited mutations that are derived from 

both parents. We also require that mutations have a low frequency in the population 

(PM2). In this partial blind study we ran mutation files through the CharGer pipeline 

without knowing the associated phenotype. Variants of interest reported through the 

pipeline were reported to a physician at Washington University to determine the overlap 

between mutations called by an orthogonal gene sequencing service, GeneDx, and those 

that were missed. 
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To validate our automatic classification, we applied CharGer on a  data set of 7 families 

with various birth defects in infants and children. For 6 families, CharGer confirmed a 

predicted “likely pathogenic” variant reported from GeneDx or followup functional studies 

from collaborators. Using variant call format (VCF) from GeneDx we derived mutations 

inherited from the mother, father and de novo variants in the child. Variants were filtered 

by high population allele frequency (>0.05) derived from 1000 genomes (1KG), Exome 

Aggregation Consortium (ExAC) and Exome Sequencing Project (ESP) and reported 

variants in our predefined gene list made up of 597 developmental genes (Saunders et 

al.,), 625 cancer genes  and 11 additional genes identified in GeneDx positive analyses. 

CharGer identified 3/6 families as having 'Likely Pathogenic 'candidate variants and the 

remaining 3/6 as having 'Unknown Significance’. Furthermore, CharGer identified 

additional candidate variants for all 6 families, along with candidate variants for the 7th 

GeneDx negative family.  
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5.4 Discovery of Novel Fusions in Cancer Genomes 

 

Contribution: I helped oversee the overall development of this project including figure 

development and writing. 

 

Cell Rep. 2018 Apr 3;23(1):227-238.e3. doi: 10.1016/j.celrep.2018.03.050. 

Driver Fusions and Their Implications in the Development and Treatment of Human 

Cancers {(Gao et al., 2018)}. 

  



209 
 

5.5 Evaluating Novel Germline Variants in Cancer 

Genomes 

 

Contribution: I helped to manually review many germline variants and helped significantly 

with the BRCA1 homologous recombination assay for the below publication.  

 

Patterns and functional implications of rare germline variants across 12 cancer types (Lu 

et al., 2015).  
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5.6 Effect of Blood Somatic Mutations in PPM1D on 

TP53 and Cell Cycle Arrest  

 

In 2014, our lab was one of the first to identify blood specific somatic mutations in elderly 

patients without any adverse hematopoietic diseases (Xie et al., 2014). After, performing 

a similar analysis on additional samples, we identified one novel recurrently mutated gene 

with a significant enrichment of blood-somatic mutations. PPM1D is a phosphatase 

involved in the dephosphorylation of DNA damage response genes including TP53.  

While this gene has been associated with breast and ovarian cancer predisposition, it has 

still not yet been reported in hematological malignancies. C-terminal truncating mutations 

are predicted to hinder the activation of DNA damage response proteins by enhancing 

the dephosphorylation activity of PPM1D.  Figure X highlights blood specific mutations 

identified across 2,278 patients.   

 

Figure A.1: Blood specific somatic mutations identified in PPM1D 
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We hypothesized blood specific mutations in PPM1D disrupt TP53 phosphorylation. To 

evaluate this hypothesis, we determined the level of p53 Ser15 phosphorylation of 

PPM1D Mutants after radiation treatment (Methods). Under conditions of DNA damage 

(ex. Radiation) TP53 is phosphorylated and will activate downstream genes to initiate the 

DNA damage response pathway. Normally PPM1D will dephosphorylate TP53, thereby 

inactivating the DNA damage response pathway. Without UV treatment you would expect 

to see low levels of TP53 phosphorylation. As shown previously in our lab, PPM1D 

mutants further decreased Ser15 phosphorylation levels (stronger than WT), suggesting 

PPM1D mutants are more “active” than the wild type. Under wild type conditions, we 

expect to see a larger number of cells undergoing apoptosis after UV treatment. Under 

normal conditions TP53 should be phosphorylated and activated thereby halting the cell 

cycle process in response to DNA damage. To evaluate this, we can use propidium iodide 

(PI) staining to evaluate cells in various stages of the cell cycle. PI dyes DNA and binds 

to DNA in proportion to the amount of DNA present in the cell. Cells in S phase will 

therefore have more DNA than cells in G1 and will take up proportionally more dye (more 

fluorescence) with a higher amount of DNA content. Cells in G2 should be twice as bright 

as cells in G1 phase. Using FACS and the PI dye, we can conditionally sort these cells 

using fluorescence.  
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Figure A.2. FACS sorted cells from mutant and wildtype treatments after UV 

induction. 

 

Table A.2. Predicted results for assay 

Strain TP53 Activity Cell cycle changes after 

UV treatment 

BAF3/Null ON More cells undergoing 

apoptosis 

BAF3/WT-PPM1D On-ish/Off-ish Less cells undergoing 

apoptosis (less dividing 

cells) 

BAF3/PPM1D-D314A 

(phosphate dead) 

ON More cells undergoing 

apoptosis 
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BAF3/PPM1D-Q520* 

(activating) 

More OFF-ish Less cells undergoing 

apoptosis 

 

The results from Figure A.2 suggest that blood-specific PPM1D mutants tend to have 

higher phosphatase activity against TP53, and prevented the cells from apoptosis after 

DNA damage, suggesting that PPM1D mutations were potentially involved in cell 

proliferation regulation. Under conditions of BAF3/Null and the D314 phosphatase dead 

cell line, we would expect to always see active TP53 which should successfully halt the 

cell cycle process therefore more cells in S/G1. With the Q520 mutant, we expect to see 

higher expression of PPM1D thereby inactivating TP53 and more cells in G2 phase 

(mitotic cells-dividing). TP53 is unable to stop cells from entering the cell cycle even after 

DNA damage. 

 

Protocol for Cell Cycle Analysis  

Day 1  

Prior to starting make sure cells are confluent. Move media to water bath. 

1. Transfer cells from flasks to 15 mL tubes. BAF3 cells are a cell suspension cell 

line (so most cells are in the media floating around). 

2. Spin down 200 rpm for 5 minutes 

3. Remove supernatant. 

4. Resuspend pellet in 1 mL of appropriate media. 

5. Count Cells 

a. 1:5 dilution 
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b. Add 80 ul of Trypan blue to small tube. 

c. Add 20 ul of sample to small tube.  

d. Calculate # of cells using hematocytometer. Need to have 10^6 cells 

6. Spin down resuspension one more time. 

7. Remove supernatant. 

8. Add 1000 ul media. 

9. Label 6 well plates. One should be UV treated and the other should be no UV. 

Set up experiments in duplicates or triplicates if possible. 

a. BAF3 

b. WT 

c. D314A 

d. Q520  

10. Add 2 mL of media to each well. 

11. Add calculated amount of each sample to the appropriate well. 

12. Transfer remaining cells back to cell culture flask with 6 mL of media. 

13. Incubate Errbody! 

Day 2 

Wait 24 hours and irradiate the cells with 6 Gy UV  

Day 4 

Wait 48 hours and harvest cells for fixation 

Fixation 

1. Remove cells from 6 well plate and move to 15 mL tubes. 

2. Centrifuge at 500 rpm for 5 min 
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3. Remove supernatant and resuspend cells in 1 mL of media. 

4. Count cells. 

5. Resuspend at 2x10^6 cells in 1 mL ice cold buffer.  

6. Vortex gently, slowly adding the cell suspension dropwise to 9 mL of 70% 

ethanol in a 15 mL polypropylene centrifuge tube. 

7. Store at 4 degrees C for 24 hours. 

Day 5 

8. Centrifuge cells at 200 x g, 10 min, 4 degrees Celsius 

9. Resuspend pellet in 3 mL cold PBS and transfer to tubes. 

10. Wash cells with cold PBS.  

11. Resuspend cells in 300-500 ul PI triton staining solution to 10 mL of 0.1 % (v/v) 

Triton X-100 (Sigma) in PBS add 2 mg DNAse-free RNAse A. 

12. Incubate 37 degrees Celsius for 15 min or for 30 min at 20 degrees Celsius. 

13. Transfer tubes to ice or store at 4 degrees Celsius protected from light. 

14. Acquire data on flow cytometer within 48 hours. 

15. Perform FACS on department of pathology and immunology 
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5.7 Discovery of Truncation Mutations Leading to 

Protein Alterations  

 

Studying the allele specific expression of nonsense mutations across genes genome wide 

will broaden our understanding of rules by which nonsense mediated decay can 

effectively degrade a transcript. To study mutation enrichment and degradation efficiency 

across cancer types, we propose a novel scoring method using RNA-Sequencing and 

whole exome sequencing variant allele fraction ratio as a proxy for allele specific 

expression. By comparing case expression to a control dataset in each cancer type, our 

analysis has uncovered an enrichment of nonsense mutations predicted to escape 

nonsense mediated decay (NMD) and a subset showing evidence of N and C terminally 

truncated proteins. Identifying variants that target a transcript for degradation via NMD or 

produce a transcript that could be translated to a truncated protein are both clinically 

pathogenic. We further expanded our investigation to consider enriched mutations across 

mutation types, including missense, silent and splice site variants, to identify activating 

and inactivating truncation mutations. 

 

Of note our analysis identified a subset of mutations in a tumor suppressor, STK11, utilize 

a downstream start codon to create N terminally truncated proteins lacking the N terminal 

localization sequence in lung cancer samples. We propose a novel scoring method using 

RNA and DNA variant allele fraction ratio as a proxy for allele specific expression to study 

mutation enrichment and degradation efficiency across cancer types. 
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Recurrent protein isoforms are shown to be present in prostate, lung, hepatocellular and 

tumor samples, but only a small percentage of samples in a few cancer types are shown 

to harbor mutations in splicing factors(Brooks et al.; Rajan et al.; Zhang et al.). Since the 

dominant isoform present in many tumors are not attributed to mutations in splicing 

factors, this directs us to focus on introduced genomic variants that are contributing to 

altering splicing patterns. Furthermore, since one-third of alternative splicing events in 

human genes are thought to cause NMD(Brogna and Wen; Lewis et al.; Ni et al.; Pan et 

al.; Venables; Weischenfeldt et al.; Weischenfeldt et al.), it is vital that we can predict 

nonsense mutations that will and won’t be degraded by the introduced mutation.  

 One-third of SAVs are estimated to introduce a premature termination codon 

(PTC), which could lead to dominant negative or gain of function effects. Annotated 

nonsense mutations are predicted to create premature termination codons (PTC) in the 

resulting transcripts, which are predominantly degraded by the Nonsense Mediated 

Decay (NMD) pathway. The general rule of thumb is that PTC’s located at least 50-55 bp 

upstream of the last exon-exon junction drive strong NMD, whereas those outside of this 

criteria are predicted to escape the degradation process. Finally, as noted in previous 

studies, N terminally truncated proteins can lead to translation re-initiation at a 

downstream codon, thereby bypassing NMD and creating a product with residual 

function. This exception to NMD is known for few genes, but has yet to be characterized 

in cancer and genome wide.  

 Understanding how SAVs can lead to alternative isoforms in tumor samples and 

determining if the new transcripts become a target of NMD is still an open area of study. 
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Identifying variants that target a transcript for degradation via NMD or produce a splicing 

product that could be translated to a truncated protein are both clinically pathogenic. A 

pan-cancer analysis of SAVs can expand the current paradigm about the exceptions and 

rules by which NMD and splicing are altered in cancer.  

 

Dataset and mutation distribution 

Stringent filters (Supplementary Methods) were used to create high quality mutation calls 

for 18 cancer types: breast adenocarcinoma (BRCA), bladder urothelial carcinoma 

(BLCA), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), 

colon and rectum adenocarcinoma (COADREAD), glioblastoma multiforme (GBM), head 

and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney renal 

clear cell carcinoma (KIRC),  kidney renal papillary cell carcinoma (KIRP), acute myeloid 

leukemia (LAML), low grade glioma (LGG), liver hepatocellular carcinoma (LIHC), lung 

adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), Stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), uterine carcinosarcoma (UCS) and 

uterine corpus endometrioid carcinoma (UCEC).  

Filters: We collected nonsense mutations predicted to introduce termination codons into 

a transcript of interest. We performed RNA-Seq and DNA-Seq readcount analysis to 

determine sites that had at least 20X coverage. From the high coverage nonsense 

mutation gene set, we collected silent and missense mutations, performed readcount 

analysis and filtered out sites with less than 20X coverage. Finally sites with both copy 

number and gene expression data available through the Broad GDAC Firehose were 

collected for further analysis.  
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Our final mutation dataset consisted of 88,845 silent, nonsense and missense mutations 

in 5,023 genes across 16 cancer types from 3,129 samples.  

 

Dataset and mutation distribution 

Stringent filters (Supplementary Methods) were used to create high quality mutation calls 

for 18 cancer types: breast adenocarcinoma (BRCA), bladder urothelial carcinoma 

(BLCA), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), 

colon and rectum adenocarcinoma (COADREAD), glioblastoma multiforme (GBM), head 

and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney renal 

clear cell carcinoma (KIRC),  kidney renal papillary cell carcinoma (KIRP), acute myeloid 

leukemia (LAML), low grade glioma (LGG), liver hepatocellular carcinoma (LIHC), lung 

adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), Stomach 

adenocarcinoma (STAD), thyroid carcinoma (THCA), uterine carcinosarcoma (UCS) and 

uterine corpus endometrioid carcinoma (UCEC). We collected 11,952 nonsense 

mutations predicted to introduce a premature termination codon into the transcript of 

interest. We additionally collected silent and missense mutations in all genes with 

nonsense mutations for comparison. Our final mutation dataset consisted of silent, 

nonsense and missense mutations in 6,107 genes across 18 cancer types in 3,863 

samples. All mutations were collected in copy number neutral sites with at least 20 reads 

spanning the site of interest in RNA-Sequencing data and DNA-Sequencing. 

 

Identification of activating nonsense mutations in copy number neutral data 
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To evaluate the effect of nonsense mutations on stability, we used a novel method to differentiate 

between nonsense mutations degraded and escaping degradation as measured by next 

generation sequencing data. We chose to leverage variant allele fractions (VAFs) measured by 

DNA and RNA sequencing of the tumor samples to define the relationship between the genomic 

position and transcriptome effect. One would expect a comparative relationship between RNA 

and DNA VAF if allelic content and transcription were directly proportional. But in practice there 

are a number of variables that can cause a deviation from this proportional relationship including 

post transcriptional modifications such as RNA degradation.  

 

By comparing the RNA to DNA VAF ratio across exons for nonsense, missense and silent 

mutations in copy number neutral regions we can evaluate the positional effect of nonsense 

mutations. This comparison between mutation types across exons and genes will highlight exons 

of interest that have a higher than expected RNA VAF when compared to DNA VAF and can 

potentially be used as a proxy to measure sites that escape nonsense mediated decay.  
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Figure A.3.  Bar plot of total sites with RNA/DNA VAF Ratio greater than (top) and 

less than one (bottom) separated by gene. 
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Figure A.3 highlights the top 14 exons found to have the largest number of nonsense mutations 

and their RNA/DNA VAF Ratios. Many exons predicted to contain nonsense mutations that 

escape NMD are present in the last exon of the gene including ARID1A, AHNAK, APC, SMAD2, 

as expected. Of the 2,538 exons from 2,194 genes with at least one nonsense mutation with an 

RNA/DNA VAF greater than one, 1,069 of the exons are classified as the last exon of the gene of 

interest. This confirmed our first main finding that many nonsense mutations in cancer act as 

expected and are degraded effectively by the NMD pathway. Interestingly, there are still a large 

number of nonsense mutations that are present at a high variant frequency in RNA and DNA, 

suggesting evasion of the degradation pathway. We focused on a set of tumor suppressor genes 

that contained a large number of nonsense mutations with high RNA VAF including CDKN2A, 

TP53, SMAD2, CREBBP, ARID1A, PTEN, MAP3K1, KMT2C and KMT2D.  

 

A subset of our mutations had available normalized RSEM gene expression data to compare the 

gene expression of the case to associated controls. For each of the genes mentioned above, we 

compared the case expression of the gene of interest to control samples in the same cancer type, 

and also compared genes within the same pathway to identify downstream genes with altered 

expression due to the activating truncation mutation. After identifying potential activating 

mutations, each mutation was annotated using TransVar(Zhou et al.), a multilevel variant 

annotator.  

 

One sample had a mutation in exon 1 of CDKN2A in HNSC and was found to have much higher 

expression than control samples. CDKN2A expression leads to activation of INK4A and ARF 

which in turn inhibits MDM2, CDK4 and CDK6. Gene expression of the downstream genes 

showed significantly decreased expression of MDM2 and CDK6 but lower expression of TP53 

and RB1 which should have increased expression with decreased expression of MDM2 and 
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CDK6. A closer look at the mutations present in this sample revealed a frame shift insertion in 

TP53 and upon inspection of the RNA-Seq showed very few reads spanning TP53 exons and 

present in a copy number neutral region and similar findings for RB1 (but without a mutation). 

 

For each gene of interest we identified missense, silent, nonsense and splice site variants 

deemed to be activating mutations by our gene expression permutation test. We used a lolliplot 

to visualize the predicted activating mutations within each functional domain. Our findings 

identified a number of “hotspots” where mutations cluster that create similar truncating activating 

mutations.  

 

We defined genes as expressed if they had a RSEM value greater than the lower quartile of the 

distribution of RSEM control values. Furthermore, we focused on sites that have RNA and DNA 

VAF ratio greater than 1 and RSEM value greater than the lower quartile for the distributed RSEM 

control values. 

 

Measuring allele specific expression by integrating RNA and DNA variant allele 

fractions 
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Figure A.4. Comparison of RNA Variant Allele Fraction and DNA allele fraction by 

conventional annotation type. Top panels indicate all sites and bottom panels are only 

expressed.  
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Figure A.5. Normalized gene expression (RSEM) and variant allele fraction for all 

sites.  

Table A.3. Total number of variants in each RNA/DNA VAF ratio category 

 No Filter  Expressed  

Mutation Type Ratio >= 

1 

Ratio < 1 Fisher 

(Silent) 

Ratio >= 1 Ratio < 1 Fisher 

(Silent) 

Missense 

Mutation 

33304 24727 8.863e-

15 

24632 17556 2.143e-

12 
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Nonsense 

Mutation 

2219 6329 <2.2e-16 1556 3623 <2.2e-16 

Silent Mutation 11960 10049 - 8793 7150 - 

 

76,501 mutations fall into copy number neutral sites and 63,489 mutations have case 

RSEM greater than the lower quartile of matched cancer control samples lacking 

mutations in the gene of interest. We classify these mutations as expressed relative to 

their control samples. 

 

We chose to leverage variant allele fractions (VAFs) measured by DNA and RNA 

sequencing of the tumor samples to define the relationship between the genomic position 

and transcriptome effect. One would expect a comparative relationship between RNA and 

DNA VAF if allelic content and transcription were directly proportional. But in practice 

there are a number of variables that can cause a deviation from this proportional 

relationship including post-transcriptional modifications such as RNA degradation. Figure 

A.4 highlights the relationship between DNA and RNA VAF across missense, nonsense 

and silent mutations while table 1 gives a numerical representation of the number of 

mutations falling above a slope of 1. Nonsense mutations show an increased number of 

mutations with higher DNA VAF than RNA VAF, suggesting a higher level of degradation 

efficiency compared to missense and silent mutations. Overall we can see a higher level 

of RNA VAF enrichment of missense mutations (positive selection) compared to silent 

mutations while nonsense mutations show on overall negative selection.  
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Using the silent mutation RNA and DNA VAF distribution, we can make the assumption 

silent mutations follow a null distribution. We used fishers exact test to compare the 

proportion of mutations greater than and less than a RNA DNA VAF Ratio of 1 to 

determine if the difference in proportions is significant between both missense and 

nonsense with silent mutations as the null distribution.  

 

Novel inactivation of STK11 

 

Figure A.6. Lolliplot of novel inactivating mutations in STK11. Statistics of STK11 variants 

below. 
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Figure A.7. All Alternative isoforms of indicated STK11 mutants.  

 

We identified 7 mutations in the canonical transcript of exon in ensembl transcript 

ENST00000326873. We used TransVar1 to perform equivalence annotation to map the 

mutation of interest to all other transcripts defined by Ensembl based on the genomic 

coordinates of the variant.  To determine which transcript is readily expressed in the tissue 

type, we determined the total number of reads supporting the first and last base of the 

exon unique to each Ensembl transcripts. For the example of STK11 we determined 

transcript X is expressed in LUAD by assessing number of reads supporting the unique 

exon for that transcript.   

 

Studies found that the subcellular localization of kinase deficient mutants were found in 

the nucleus while mutants with disrupted NLS were localized in the cytoplasm. 

Furthermore, the mutant with the disrupted NLS could still induce G1 cell cycle arrest 

comparable to the wild type protein. We hypothesize a subset of nonsense mutations in 
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the first exon of STK11 utilize a downstream start codon to create N terminally truncated 

proteins lacking the N terminal localization sequence.  

 

Identification of activating mutations using allele specific expression 

Our analysis was able to pick up well known activating mutations in key cancer genes 

including EGFR. Of the 28 EGFR mutations tested in our gene expression test comparing 

case to control gene expression, 16 had RNA VAF greater than 10% suggesting some 

level of transcription supporting the variant allele. 9 of the 16 mutations are functionally 

characterized activating mutations in EGFR including: L858R4 (4 - LUAD), L861Q (1 - 

LUSC), G719A4 (1 - LUAD), G598A,V (2 –LGG), R108K5 (1 - GBM). Furthermore, a tool 

using protein structure guided discovery identified R252C/P (2 – LGG), S768I (1 – LUAD) 

and L833V (1 – LUAD) as potential activating mutations due to their proximity to known 

activating mutations6.  

 

Kelch-like erythroid cell derived protein with CNC homology (ECH)-associated protein 1 

(Keap1) is essential in the regulation of cytoprotective and detoxifying defense systems. 

Keap1 is responsible for sequestering nuclear factor erythroid 2-related factor 2 (Nrf2 or 

NFE2L2) in the cytoplasm and interacts with Cul3-E3 ubiquitin ligase complex to target 

Nrf2 for ubiquitination and degradation by the proteosome. Many mutations in lung cancer 

disrupt the binding of Keap1 to Nrf2, thereby increasing the presence of free active Nrf2, 

or the degradation efficiency of Nrf2 by disrupting binding to Cul37. In 2014, several 

“superbinder” mutants were found to increase the levels of Nrf2 within the nucleus without 

disrupting the interaction between KEAP1 and Nrf28. To evaluate how this could be the 



230 
 

case, the authors looked at protein turnover of Nrf2 and found the superbinder mutants 

R320Q and R470C dramatically stabilized Nrf2 more so than the wild-type Keap1 but 

maintained successful ubiquitination. This surprising result could suggest that the 

increased affinity for Keap1 for Nrf2 suppresses substrate turnover by disrupting a 

degradation step post ubiquitination.  

 

Assessing degradation efficiency of nonsense mutations using allele specific 

expression 

 

Figure A.8.  (A) Allele specific expression denoted by RNA/DNA VAF Ratio of 

nonsense mutations across exons. Red corresponds to mutations found in the first 

exon, green in middle exon and blue in last exon. Wilcox test was used to compare 

groups of nonsense mutations located in the first, middle and last exons of a gene. (B) 

RNA/DNA VAF Ratio distribution across all cancer types for mutations found in the 
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first, middle and last exons. (C) RSEM distribution across all cancer types for 

mutations found in first, middle and last exons. 

 

Nonsense mutations in the last exon tend to have higher allele specific expression than 

mutations in another exon, as expected. Interestingly, nonsense mutations in the first 

exon show a similar trend as the last exon mutations (higher allele specific expression). 

N terminally truncated proteins can lose their localization sequences, thereby altering 

the cellular localization of the protein. Studies of β-globin show a very distinct transition 

between nonsense mutations in the first exon that are able to bypass NMD and those 

that are subject to degradation. The potential of the transcript to evade degradation is 

dependent upon the presence of a downstream start codon to reinitiate translation.  

 

All nonsense mutations from the first and last exon were annotated to all possible 

transcripts using TransVar to determine mapping potential to alternative isoforms. 143 of 

the 207 nonsense mutations annotated to the first exon maintained the nonsense 

mutation prediction on alternative isoforms. Of the 143 variants annotated solely to the 

first exon, 58 variants had an RNA VAF less than 10% suggesting selection against the 

variant allele in the tumor or the presence of a subclonal mutation. The presence of the 

remaining 85 variants with greater than 10% RNA VAF supporting the N-terminal 

nonsense mutation could be explained by translation readthrough or reinitiation at a 

downstream start codon. Two studies reported leak expression when nonsense mutations 

were introduced up to residue 70 of the Shaker voltage-gated potassium (Kv) channel10 

and residue 26 of B-globin9, suggesting a sharp divide between mutations susceptible 
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and resistant to NMD. Both studies came to the conclusion that the likely mechanism is 

due to reinitiation of translation at a downstream translation start site, and in the case of 

the Kv channel, non-canonical start codons were used (AAG, AGG). Additionally, 

translation isn’t limited to the next start codon, but alternative start sites farther 

downstream can be used by a fraction of ribosomes. 

  



233 
 

 

5.8 Viral integration   

Contribution: I helped with gene expression figures related to discordant pair analysis. All 

Figures and supplemental documentation can be seen in the following 

publication.

 

Divergent viral presentation among human tumors and adjacent normal tissues, Scientific 

Reports, 2016 Jun. doi:10.1038/srep28294  

Cao S., Wendl M., Wyczalkowski M.A., Wylie K., Ye K., Jayasinghe R.G. et al.  

 

  



234 
 

 

5.9  DROSHA Mutation Analysis    

 

Through this collaboration we identified novel mutations in DROSHA and Dicer and 

evaluated RNA-Seq expression for associated downstream products that could be 

altered. Of note, for one of the mutated samples, MDM2 expression was increased, 

matching our collaborators findings in a patient of interest.  

 

 

Figure A.9. DICER1_14_95556886_T_G_TCGA-EL-A3GO 
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Figure A.10. DICER1_14_95556886_T_G_TCGA-EM-A2CT 

 

 

Figure A.11. DICER1_14_95557629_T_C_TCGA-EL-AD35 
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Figure A.12. Distribution of normalized expression for downstream genes and 

DICER1 for mutants vs. control samples  

 

Table A.4: Samples with DROSHA Mutations 
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