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Metabolism can convert drugs to harmful reactive metabolites that conjugate to DNA and off-

target proteins. Reactive metabolites are a significant driver of both drug candidate attrition and

withdrawal from the market of already approved drugs. Unfortunately, reactive metabolites are

difficult to study in vivo, because they are transitory and generally do not circulate. Instead, this

work computationally models both metabolism and reactivity. Using deep learning, predictive

models were developed for the metabolic formation of quinones and epoxides, which together

account for about half of known reactive metabolites. Additionally, an accurate model of DNA

and protein reactivity was constructed, which predicts how likely a molecule is to be reactive,

and therefore potentially toxic. To connect the metabolism and reactivity models, a system

was developed for predicting the exact structures of quinones and epoxides. Finally, using

the metabolite structure predictor as a stepping-stone, the quinone formation and epoxidation

models were connected to the reactivity model to build an integrated bioactivation model of

metabolism and reactivity.
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Chapter 1

Introduction

1.1 Idiosyncratic Adverse Drug Reactions

Adverse drug reactions (ADRs) are a major current health problem. Various studies in different

populations implicated ADRs in 6.5%[1], 8.1%,[2], 8.7%[3], and 12.8%[4] of hospital admis-

sions. Furthermore, toxicity problems are a major driver of drug candidate attrition.[5, 6, 7,

8, 9, 10] Most ADRs can be directly traced to a drug’s pharmacological action.[11] However,

some ADRs are the especially problematic idiosyncratic adverse drug reactions (IADRs), which

are not readily traceable to a drug’s pharmacology and pharmacokinetics, and can unexpectedly

strike with severe symptoms in almost any organ.[12]

IADRs are infrequent, occurring in 1 in 10000 to 1 in 100000 patients.[13] Consequently,

IADRs often do not manifest even in the largest phase of preclinical trials—phase III—which

generally have a sample size of only around 3000[14] patients. However, after drugs are ap-

proved and released to the market, previously undetected IADR drivers can become rapidly

apparent, as the low incidence rate of IADRs is overcome by the size of the general patient

population.[15] Despite being rare, IADRs cause significant mortality and morbidity because

their effect are often severe including blood disorders (such as hemolytic anemia, aplastic ane-

mia, and agranulocytosis), skin diseases (toxic epidermal necrolysis and Stevens-Johnson syn-

drome), anaphylaxis, and, most commonly, liver disorders. IADRs in the form of drug-induced

liver injury (DILI) are one of the most common reasons for drug withdrawal from the market,
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and have been associated with over 1000 drugs.[16, 17, 18] IADRs necessitate around 15% of

liver transplants in the United States, as well as 50% of acute liver failure cases.[19] Not only

are IADRs a major cause of patient suffering, but also are a major drain on pharmaceutical

companies. It takes about 1.9 billion dollars for a company to get a new drug approved, but if it

becomes evident that the drug causes IADRs, it generally must be withdrawn from the market

or labeled by the FDA with a black-box warning, severely curtailing its use and profitability.[20,

21]

Unfortunately, IADRs are challenging to reproduce and study in vivo, and almost all animal

models have failed.[9, 22, 12, 23, 24] However, there is significant evidence that suggests many

IADRs have a common mechanism: bioactivation.

1.2 Metabolism and Bioactivation

.

The body is constantly exposed to foreign chemical entities—xenobiotics—such as di-

etary toxins or environmental pollutants.[25] Even seemingly harmless xenobiotics can be-

come harmful if permitted to accumulate to high enough levels.[26] Because xenobiotics are

frequently lipophilic, they can traverse cell membranes and get stuck within this hydrophobic

barrier.[27]

In response to this threat, organisms evolved xenobiotic-clearing defense mechanisms: metabolism.

Generally, metabolism is beneficial, for it serves the critical function of making xenobiotics

more hydrophilic and therefore easier to excrete. Drugs are also xenobiotics, and are subject

to these same metabolic processes after ingestion. For example, the breast cancer tamoxifen is

primarily eliminated from the body by hydroxylation and subsequent (Figure 1.1).

Unfortunately, metabolism sometimes instead produces reactive metabolites, which can be

toxic. In the case of tamoxifen, it has a secondary metabolite route that leads to a reactive
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FIGURE 1.1: Bioactivation occurs when metabolism produce reactive metabolites
that covalently bind to biological macromolecules Generally, metabolism detox-
ifies drugs. For example, the typical metabolic pathway for the cancer drug ta-
moxifen is hydroxylation followed by glucuronidation. The glucuronide is very
stable and facilitates excretion by increasing the polarity of tamoxifen. However,
tamoxifen has a harmful secondary pathway: after the initial hydroxylation, it can
undergo sulphonation instead of glucuronidation. This sulfate is unstable, and
rapidly collapses to form a reactive metabolite, a carbocation. This carbocation
binds to DNA, and can induce liver cancer. In rats, α-hydroxytamoxifen is pri-
marly sulphonated, while in humans, glucuronidation is fortunately much more
pronounced. Indeed, rats have a much higher chance of developing liver cancer

after tamoxifen treatment than humans.[19, 28, 29, 30].
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carbocation that binds to DNA and induces liver caner. Fortunately, this metabolic pathway is

infrequent in humans, or tamoxifen might not be a viable drug.

Many reactive metabolites are electrophiles, such as tamoxifen’s reactive carbocation. Metabolism

also produces another type of reactive metabolites: free radicals. Free radicals are potentially

harmful as well. For example, free radicals can induce lipid peroxidation and damage cell

membranes.[31] However, overall electrophiles are arguably the more pernicious type of reac-

tive metabolites, because they have been linked to many IADRs.

Due to their electronic deficiency, electrophiles frequently conjugate to nucleophilic sites

within biological macromolecules, including DNA and proteins. Conjugation to DNA can be

mutagenic and potentially carcinogenic, as was mentioned for tamoxifen’s carbocation metabo-

lite. Conjugation of electrophiles to nucleophilic sites within proteins, such as cysteine or lysine

residues, is also potentially harmful. These metabolite-protein adducts can induce toxic immune

responses. For example, carbamazepine is an anti-epileptlic with an IADR risk of about 1 out

of every 5000 patients (Figure 1.2). This toxicity is believe to be often due to the formation of a

reactive epoxide metabolite at a specific site, which then conjugates to nucleophilic sites within

proteins

Indeed, there is a large body of evidence suggesting that many IADRs are immune-mediated.

For example, most IADRs will reoccur much more quickly if a patient is retreated with the

same drug for a second time, suggestive of immune system memory. [14, 24]. For instance,

the IADR risk of carbamazepine (as well as lumiracoxib and ximelagatran), has been correlated

with certain human leukocyte antigen alleles These genes encode major histocompatibility com-

mon proteins, which among other functions help the immune system target pathogen-infected

cells[32, 33]. This susceptibility of certain allies to carbamazepine IADRs might explain why

other drugs can cause some patients severe harm while leaving most untroubled. Despite ex-

posure to likely the same metabolites, such rare variations in the immune system might cause

unexpected reactions

One positive aspect of this bioactivation hypothesis is that it suggests small modifications
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FIGURE 1.2: Reactive Metabolites can Induce IADR.
For example, the toxicity risk of carbamazepine—which causes IADRs in about 1 out of every
5000 patients—has been traced the formation of a reactive epoxide metabolite. This metabolite
conjugates to nucleophilic sites within proteins, and induces a toxic immune response in un-
lucky patients. In contrast, oxcarbazepine prevents epoxidation at that site, and has a lower risk
of adverse efffects.

5



Chapter 1. Introduction

can be be made that may make drugs much safe For example, carbazepine has an analog, ox-

carbazepine, which blocks carbamezpine’s primary site of epoxidation with a ketone. This is

likely the explanation for why oxcarbazepine has a much lower risk of causing IADRS. In fact,

there are many well-studied cases of drug pairs that have only slightly different structures yet

have significantly different IADR risk. For example, the hepatotoxic anxiolytic alpidem and the

widely used, nontoxic zolpidem (Ambien), the hepatoxic sudoxicam and the heavily prescribed

meloxicam, and the occasionally several toxic nefazodone compared to the safe buspirone. The

toxicity of each harmful drug within these pairs has been traced to a bioactivation event that is

not observed in its safer analog. Highlighting these pairs is not to imply that each safe drug

was designed in response to toxicity problems its more dangerous analog. Oftentimes, these

pairs are designed independently and only later linked or study. Nevertheless, these compar-

isons demonstrate that understanding the specific bioactivation mechanism for a bioactivated

molecule might enable design of safer analogs

1.3 Computational Methods of Predicting Reactivity and Metabolism

While there is still much to be discovered about the exact mechanisms of most IADRs, in

the absence of more specific understanding, drug developers are wary of advancing drug can-

didates that produce reactive metabolites(unless those reactive metabolite are necessary for a

drug’s mechanism of action). Unfortunately, accurately detecting reactive metabolites in the

early stages of development can be expensive when considering the vast number of drug can-

didates present in the early stages of development, or molecules can be missed. Computational

methods for predicting reactive metabolite formation have the potential to reduce the number of

experiments needed. The most common computational tool for avoid reactive metabolites are

structural alerts. Structural alerts are simply certain motifs that are known to be often bioacti-

vated. Using a data base of structural alerts, one can quickly identify potentially problematic

molecules among a list of drug candidates. For example, one well-known structural alert is the
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FIGURE 1.3: Structural alerts are not specific enough, because many safe drugs
contain these motifs, which are not bioactivated due to specific molecule context.
Therefore, avoiding any drug with a structural alert would result in many safe
drugs being missed. In the case of furan, all 13 displayed drugs contain this
structural alert, circled in red. However, in only 3 of these drugs is the structural

actually bioactivated

furan group: an oxygen-containing aromatic ring with five-members that is often metabolized

to an epoxide, a common type of reactive metabolite (Figure 1.3).

Structural alerts are a natural strategy for trying to avoid reactive metabolites, by simply

trying to avoid in the future what has caused problems in the past. However, by sometimes con-

founding molecules with important differences that nevertheless have a common substructure,

structural alerts also have several critical deficiencies that making them unsatisfactory in several

ways. First, they are by definition entirely reliant on historical data, and consequently have no

ability to forecast the properties of new drugs with novel structures. One can try to update a

structural alert library based on new results, so at least not to remain stagnant, but they have no

capacity to leverage understanding of already-known structural alerts to make new predictions.

Additionally, some reactive metabolite-producing drugs do not contain structural alerts. For

example, the hypertension drug ambrisentan does not contain a structural alert and has not been

observed to produce reactive metabolites, yet caused several cases of severe hepatotoxicity, the
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mechanism(s) of which were never uncovered.[34] Finally, not all structural-alert containing

drugs are actually bioactivated.

Instead of structural alerts, more sophisticated data-driven methods seek to extrapolate un-

derlying principles from current data in order to hopefully generalize to never-seen-before pat-

terns. A common goal of these methods is to predict sites of metabolism: the specific atoms

that are modified during reactions with cytochromes P450. One of the earlier and more success-

ful of these was “SMARTCyp”, which began by performing high-quality quantum chemical

computations that approximate cytochrome P450 activation energies. Using this simulation, the

creator of SMARTCyp constructed a lookup table of “SMARTS” patterns (a system for denot-

ing molecule substructures) that listed the activation energies of cytochromes P450 reactions

with many different substructures. Because of the wide variety of substructures considered, this

method offers higher-resolution predictions than structural alerts. For example, in some cases

different manifestations of the same alert were scored, thereby recording different scores for

motifs that would be considered identical by the structural alerts method. However, SMART-

CYp only analyzes molecular substructures, and therefore might fail to differentiate molecules

with common structures yet other important features outside of the matching area. Further-

more, if a particular motif has not been scored by SMART Cyp, there is no way to generalize

from its previous computations to estimate a score for the new motif.

A more flexible approach, and in some ways a precursor to my own work, was taken by RS-

Predictor (for RegioSelectivity).[35, 36, 37]. The method first calculated about 500 topological

quantum chemical and topological descriptors, which are numerical representations of various

properties of atoms and molecules. Next, support vector machines were used to find a function

that maps between these values and experimentally-known sites of metabolism. Compared to

SMARTCyp, RS-Predictor has the advantage of providing predictions for every atom within a

test molecule. Consequently, even novel motifs are valid inputs for prediction, although there is

no guarantee that the predictions will be accurate.

However, RS-Predictor has several disadvantages. The support vector machine algorithm
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produces a complex function that obfuscates which features are important for its decision-

making. Additional, support vector machines do not produce probabilistic predictions, for their

goal is merely to find a separating hyperplane between classes. In other words, a prediction for

one site that is double that of another site does not imply that the model believes the first site

is twice as likely to be metabolized. As a result, it’s predictions are fairly binary, and does not

produce a reliable measure of confidence when making predictions. Without such scores, it is

difficult to use its output to triage molecules for experimental validation. Moreover, the.kernel

it uses entails comparisons between every data point, so it does not scale well to large data sets.

Finally, support vector machines by definition have to retain. a subset of their input data—the

support vectors—which can hamper model distribution if trained on proprietary structures.

A successor of RS-Predicictor—XenoSite—improved on the previous model in several re-

spects, by switching from support vector machines to neural networks. First, unlike support

vector machines, neural network predictions are probabilistic. Secondly, neural networks ex-

tract parameters from the data during training, after which the original data can be discarded.

Therefore, one can disseminate neural network models without risk of disclosing the underlying

training structures.A Additionally, neural networks scale more easily to larger data sets, mak-

ing them easier to restrain as more data becomes available. Finally, these networks are highly

modular, and can be customized for a variety of different tasks.

1.4 Overview of Chapters

As an example of this flexibility, consider the model structure utilized by the quinone forma-

tion model, detailed in Chapter 5 and Figure 1.4. This model was customized to output three

different types of predictions, for atoms, atom pairs, and molecules. Such customizability is

not as easily possible with the more rigid support vector machine framework. My dissertation

harnesses the flexibility of descriptor-trained-neural networks to model different components of

the bioactivation mechanism, and finally synthesize them into a single bioactivation model
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First, I extended much of the methodology and paradigm from site of metabolism to in-

stead predict sites of reactivity. Chapter 2 details development of the first reactivity model I

developed, for predicting reactivity to glutathione (GSH). GSH reactivity is important to pre-

dict because conjugation to GSH is frequently used in experimental assays to detect reactivity

metabolites, as conjugation to GSH s an important endogenous defense mechanism for elimi-

nating reactive metabolites. Previous studies of GSH reactivity had focused on small datasets

of structurally similar molecules.[38, 39, 40] Consequently, these few reactivity indices and had

little applicability outside their training domain. Instead, in this study we accurately modeled

reactivity across 1213 diverse molecules.

The success of GSH study was highly encouraging, because it was the first model of diverse

chemical reactivity, and suggested that the similar approach used in both the original XenoSite

study and the GSH paper might be further applicable to other important problems. Indeed we

constructed a model that shared several features with the GSH reactivity model, but extended it

to predicting reactivity to biological macromolecules, including DNA and protein (Chapter 3.

Next, I turned my attention to metabolism. Specifically, I built models that predict the forma-

tion of some of the most common types of reactive metabolites. First, in Chapter 4 I constructed

a model of epoxidation, an example of which was seen in Figure fig:carbvsoxcarb).Epoxidesareabout10%ofallreactivemetabolites, andarethereforeimportanttoanticipate.

Even more prevalent, however, are quinone species, which make up 40% of known reactive

metabolites. In Chapter 5, I devise a method for accurately predicting quinone formation, on

both the site and molecule level, and across multiple metabolic steps.

Up to this point, I had modeled both reactivity and metabolism, but had considered each

in isolation form one another. The key missing link between these models were the actual

metabolite structures. To fill this gap, I spent significant effort devising a comprehensive system

of metabolite structure prediction, detailed in Chapter 6.

Finally, in Chapter 7 I tied together all my previous work by building a bioactivation model

that predicts where epoxides or quinones might form on a given molecule, then enumerates the

structures of these possible metabolites, and scores the reactivity of the these structures. In this

11



Chapter 1. Introduction

Carbamazepine 
(hepatotoxic)

Reactive Metabolite

Protein

Hapten Complex

Modeling Metabolism

Chapter 4:
Modeling Epoxidation of Drug-like 
Molecules with a Deep Machine 
Learning Network 

Chapter 5:
Deep Learning to Predict the 
Formation of Quinone Species in Drug 
Metabolism 

Modeling Reactivity

Chapter 2:
Site of Reactivity Models Predict 
Molecular Reactivity of Diverse 
Chemicals with Glutathione 

Chapter 3: 
Modeling Reactivity to Biological 
Macromolecules with a Deep 
Multitask Network 

Metabolite Structure Prediction

Chapter 6:
The Metabolic Forest: Predicting 
the Diverse Structures of  Drug 
Metabolites 

Bioactivation Modeling

Chapter 7:
Modeling the 
Bioactivation and 
Subsequent Reactivity
of Drugs 

FIGURE 1.5: The chapters numbers are based on order of publication, with the
final two chapters still pending publication. However, they are visually organized
here to demonstrate the relationship between each study and the component of the

bioactivation pathway.to which each study relates.

manner, I was able to predict both how likely metabolites are to form, and to rank their potential

reactivity.

These chapters are arranged virtually in Figure , to show how each address a different com-

ponent of bioactivation.

,
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Chapter 2

Site of Reactivity Models Predict Molecular

Reactivity of Diverse Chemicals with Glu-

tathione

Reprinted (adapted) with permission from Hughes, T. B., Miller, G. P., and Swamidass, S.

J. (2015). Site of Reactivity Models Predict Molecular Reactivity of Diverse Chemicals with

Glutathione. Chemical Research in Toxicology 28(4), 797âĂŞ809. Copyright (2015) American

Chemical Society.

2.1 Introduction

It costs about one billion dollars to bring a single drug to market.[41, 42] Efforts to make

the process more efficient may be necessary for survival of the pharmaceutical industry.[43,

44] An estimated 50% of drug leads fail due to low efficacy and 40% fail due to toxicity is-

sues[10]; both of these issues are often associated with failure to properly predict the impact

of drug metabolism.[45] In fact, drug-induced liver injury (DILI) is the most common culprit

for withdrawal of already approved drugs from the market and termination of a drug’s clini-

cal investigation.[19] DILI is responsible for 50% of acute liver failure cases, as well as 15%

of liver transplants within the United States.[19] This drug toxicity often reflects formation of
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Glutathione

electrophilic reactive metabolites, such as quinones or epoxides, which covalently bind to pro-

teins or DNA.[19, 46] These metabolites typically bind nucleophilic sites in proteins, such as

thiols,[47] and then cause adverse drug reactions by eliciting an immune response.[48, 19, 49]

Consequently, efforts to model and understand the formation of reactive metabolites could

improve the efficiency of drug development and the safety of future medicines. Specifically, a

system capable of modeling how metabolism gives rise to reactive metabolites would be valu-

able in drug development and discovery. The first part of this system, quantitative models of

metabolism, already exist. Several studies—by our group and others—have already demon-

strated that computational models can predict how molecules are metabolized.[50, 51, 52, 36,

53, 54] In contrast to metabolism, comparatively little has been done to model molecule reac-

tivity. Until now, there have been no mathematical models of molecule reactivity that work on

diverse molecules. This study uses tools previously used to model metabolism to build effective

models of reactivity. Ultimately, we hope to combine this reactivity model with metabolism

models and other key factors, like dose,[55] to better understand and predict toxicity.

Here, we focus on modeling the reactivity of molecules with glutathione (GSH). In the

liver, reactive metabolites are trapped by GSH, the most abundant peptide in the body (Fig-

ure 2.1).[56, 57, 58, 59] Experimental systems exploit this fact to monitor reactive metabolite

formation by detecting metabolites conjugated to GSH.[60, 39, 56] In comparison to in vitro

approaches, computational methods can more quickly and cheaply predict molecular properties

relevant to drug discovery and development.

Prior work in modeling reactivity has been limited in critical ways. The presence of specific

structural alerts in molecules is commonly used to flag potentially toxic molecules, yet these

alerts do not distinguish between reactive and non-reactive molecules that contain the same

substructure.[9] For example, all Michael acceptors are flagged as problematic even though

many are not actually reactive.[61, 39] By contrast, Quantitative Structural-Activity Relation-

ship (QSAR) models can correctly identify reactive molecules with the same alert, but their
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Glutathione

utility extends only to closely related molecules.[39, 56] Others have suggested that indices de-

rived from quantum simulations may predict reactivity, but this idea has only been validated in

limited studies that do not include GSH.[62, 63, 64, 65, 66] A computational way of predicting

the reactivity of a large range of structurally diverse molecules would be a major advance in the

field.

In this study, we constructed a model to predict the GSH reactivity of diverse molecules.

Our approach implemented several critical advances over prior methods. First, unlike QSAR

methods trained on small sets of structurally similar molecules, our model was tuned to the

structural data from over 1,400 diverse molecules, orders of magnitude more molecules than

published QSAR methods. Second, we modeled reactivity at an atom level, using a combination

of topological and quantum descriptors. This fine-grained approach started with the reactivity

of atoms instead of molecules to make structurally localized predictions about the source of a

molecule’s reactivity. Third, we used a deep neural network to find a mapping between these

descriptors and molecule reactivity and atom-level sites of reactivity or SOR.[67] We found

success with this approach when predicting P450 metabolism.[50] When applied in this study,

the strategy was capable of encoding non-linear relationships and simultaneously making SOR

predictions for each atom in a molecule along with GSH reactivity predictions for the molecule

as a whole. The validation of those models demonstrated the ability to model effectively GSH

reactivity of diverse chemicals, both identifying reactive molecules and sites of reactivity.

2.2 Materials and Methods

2.2.1 Glutathione Site of Reactivity Training Data

As a starting point, we mined a large chemically diverse training data set from the Accel-

rys Metabolite Database (AMD).@ Reactive molecules were identified from 1281 reactions

of molecules with GSH.@ Reactions were validated by checking that each reaction’s starting

molecule did not contain GSH and the product molecule did contain GSH.@ An automated
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FIGURE 2.1: Adverse drug reactions are often caused by reactive metabo-
lites. Acetaminophen is metabolized by Cytochromes P450 to N-acetyl-p-
benzoquinone imine (NAPQI). NAPQI is electrophilically reactive and covalently
binds to nucleophilic sites within proteins eliciting an immune response. Glu-
tathione (GSH and outlined in grey) protects the body from this adverse drug re-
action by scavenging electrophiles like NAPQI, to which GSH binds at its site of
reactivity (circled atom). Thus, a site of GSH conjugation is a likely site of protein
conjugation, and identifying these sites of reactivity offers information about the
mechanism of metabolite toxicity. Several methods have been published that can
predict how P450s metabolize molecules. This study, however, focuses on mod-
eling the reactivity of molecules with GSH, but not the metabolism of molecules

into reactive species.
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algorithm used the structure of the starting and product molecules to identify the reactive atom

within each reactive molecule. The final data set included 1213 reactive molecules, each with

atoms marked if they conjugated to GSH.@ Structurally similar but unreactive molecules were

mined from the full reaction network for each reactive molecule. From this network, metabolic

parent and sibling molecules were identified. After excluding molecules already identified as re-

active, the remaining 271 molecules were marked unreactive. Each one is metabolically studied

and chemically similar to a reactive molecule in the data set.

This set of molecules contained a wide range of chemically diverse molecules, including

epoxides, classically-defined Michael acceptors, and more. Unfortunately, our license for the

AMD data did not allow us to publish the structures of the entire data set. The registry numbers

for all molecules are included in the Supplementary Material, and this is enough information to

reconstruct the database and replicate our results.

2.2.2 External Reactivity Data

We assessed the predictive ability of the reactivity model against two published external quanti-

tative data sets. The first study focused on ten substituted p-benzoquinone compounds, measur-

ing both the rate at which molecules react with GSH (log kGSH) and rat hepatocyte viability (the

concentration at which 50% lethality is observed, log LC50).[39] A second study measured the

reactivity of 38 structurally diverse contact allergens molecules with several amino acids and

GSH as measured by their percent depletion of the trapping agent after 24 hours or 15 minutes,

respectively.[60]

2.2.3 Comparison QSAR Models

As a baseline for comparison, QSAR models reported in the literature might be expected to

predict GSH reactivity.[39, 56] Those studies involved small training sets with limited chemical

diversity. Consequently, we did not expect these models to generalize well to diverse chemicals,

but they are still useful examples against which to compare our approach. Specifically, we
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selected two QSAR models trained on the reactivity and toxicity of ten p-benzoquinones.[39]

The source study included a total of eight QSAR models, from which we selected the two

reported by the authors to have the highest performance on their training data:

log LC50 = 24.54 + 17.7 · ELUMO + 3.36 · (ELUMO)2 (2.1)

log kGSH = −18.38− 16.78 · ELUMO − 3.19 · (ELUMO)2 (2.2)

The authors excluded one molecule as an outlier when training Equation 2.1, while Equation

2.2 was based on the reactivity of all ten molecules. The other models in this study were

inapplicable because they used the electron density on specific atoms within the benzoquinone

core structure, a quantity that was not computable for diverse chemical structures.

2.2.4 Descriptors

Our study utilized a total of 116 different descriptors, including both atom-level and molecule-

level descriptors. These descriptors were computed using in-house software that takes as in-

put SDF files with 3D coordinates (generated using Open Babel) and explicit hydrogens.[68]

Descriptor subgroups include topological, quantum chemical reactivity, and molecule-level de-

scriptors.[69] Table 2.1 provides a condensed summary of quantum chemical reactivity descrip-

tors discussed in this paper; a comprehensive table is available in the Supplementary Informa-

tion. The bulk of our descriptors have been previously shown to be useful for the XenoSite

metabolism model, although we supplement them with new reactivity descriptors in the current

study.[50] Several of these descriptors have been proposed as reactivity indices, such as the ener-

gies of the lowest unoccupied and highest occupied molecular orbitals (ELUMO and EHOMO), the

maximum nucleophilic and electrophilic delocalizabilities (max
[
DN(r)

]
and max

[
DE(r)

]
),

and the maximum self-polarizability (max
[
πS(r)

]
). Moreover, DN(r), DE(r), and πS(r) have

been proposed as atom-level reactivity indices that may predict sites of GSH reactivity.[70,
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TABLE 2.1: Quantum chemical reactivity descriptors were generated at both the
atom and molecule level.

Atom-Level Descriptors
DN(r) nucleophilic delocalizability
DE(r) electrophilic delocalizability
πS(r) self-polarizability
Molecule-Level Descriptors
ELUMO energy of the lowest unoccupied molecular orbital
EHOMO energy of the highest occupied molecular orbital
max

[
DN(r)

]
maximum atom nucleophilic delocalizability

max
[
DE(r)

]
maximum atom electrophilic delocalizability

max
[
πS(r)

]
maximum atom self-polarizability

71, 72] These reactivity descriptors are calculated from self-consistent field computations us-

ing MOPAC, a semi-empirical quantum chemistry modeler, using the PM7 force field and an

implicit solvent model.[73, 74]

We do not use fingerprints or fingerprint similarity as a descriptor. Fingerprints are a very

powerful and easy way to implicitly encode molecular shape, which makes them particularly

useful in predicting protein-ligand binding. As useful as fingerprints are in virtual screen-

ing,[75] off-target prediction,[76, 77, 78] and high-throughput screening analysis[79, 80], their

use to predict reactivity would be problematic. Instead of overall shape, it is specific sub-

structures in molecules that give rise to GSH reactivity. Furthermore, very similar molecules

can have very different GSH reactivity, as observed for unreactive acetaminophen and reactive

NAPQI despite a difference of just two hydrogens and, consequently, a very high similarity by

fingerprints.[81] This example is not an anomaly—virtually all Michael acceptors have a ‘sib-

ling’ molecule with additional hydrogens that is not reactive. It is not surprising, therefore, that

no reported methods use fingerprints to predict reactivity.

2.2.5 Combined Atom- and Molecule-level Reactivity Model

We built a model for atom and molecule reactivity using a neural network with one input layer,

one hidden layer and two output layers (Figure 2.2). This network is similar to commonly
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used neural networks that have an input, hidden, and output layer. One of the output layers

represents molecule-level predictions as molecule reactivity scores (MRS); the other output

layer represents atom-level predictions as atom reactivity scores (ARS). We trained this model

in a two-stage process.

First, we trained the atom network in which each atom within a molecule was a candidate

reactive atom, which we defined as the site of binding to GSH. Every atom had a vector of

numbers, or descriptors, such that each entry of the vector described a chemical property of that

atom. The data set was a matrix, organized as one row per atom, and one column per descriptor.

An additional binary target vector labeled the experimentally-observed reactive atoms with a

“1.” We used the Pybel python library to identify topologically equivalent atoms and label

atoms equivalent to reactive atoms as reactive for the purposes of training.[82]. The weights

of the network were tuned using gradient descent on the cross-entropy error, so that sites of

reactivity scored a higher ARS than other atoms. These ARS ranged from zero to one, reflecting

the probability that an atom is reactive.

Next, the molecule-output node was trained to compute the MRS. The data matrix was

composed of one row per molecule, and one column per descriptor. The binary target vector

labeled the reactive molecules with a “1.” A logistic regressor found a scoring function that

gave reactive molecules high scores and unreactive molecules low scores, as represented by the

MRS, which ranged from zero to one. The descriptors for each molecule were the top five ARS

corresponding to the scores of the five atoms predicted to be most reactive within a molecule, as

well as all molecule-level descriptors. Less accurate variations that excluded either the molecule

or bonds were considered in the Results and Discussion section.

2.3 Results and Discussion

In the following sections, four strategies assessed the quality of reactivity models built using this

approach. First, we determined the accuracy of the ARS computed by the model in accurately
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FIGURE 2.2: The structure of the reactivity model. This diagram shows how in-
formation flows through the model, which is composed of one input layer, one
hidden layer and two output layers. This model computed a prediction for each
test molecule and atom in the test molecule. Atom reactivity scores (ARS) were
computed with a neural network, with one output node, one hidden layer (with
ten units), and one input layer. From the 3D structure of input molecule X , 30
molecule-level and 86 atom-level descriptors were calculated (two input layer
nodes for each category are displayed). The diagram only shows two hidden
nodes, two molecule input nodes, and two atom input nodes for conciseness. The
actual model had several additional nodes in each input and hidden layer. For each
atom within X , all 116 descriptors were fed into the ten hidden layer nodes (two
are displayed), which generated an ARS. The molecule reactivity score (MRS) of
X was computed from the top five ARS corresponding to the scores of the five
atoms predicted to be most reactive within a molecule and all molecule-level de-
scriptors. The molecules on the top right illustrate atom-level data, with sites of
reactivity circled, and the molecules on the bottom right illustrate molecule-level

data, with reactive molecules circled.
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identifying the site of reactivity (SOR) within reactive molecules. Second, we evaluated the

accuracy of the MRS computed by the model in separating reactive and unreactive molecules.

Third, in both cases, we assessed the plausibility of the model by determining which descriptors

the model relies upon. Fourth, we assessed the reactivity model using external quantitative data

from the literature.

2.3.1 Accuracy in Identifying Sites of Reactivity

One goal was to accurately identify the atom within a reactive molecule that covalently conju-

gated with GSH. Knowledge of the specific site of conjugation in a molecule, its SOR, can be

used to guide modifications of a reactive molecule to make it less reactive. In addition, SOR

predictions lead to specific and testable hypotheses about the mechanism of a molecular reac-

tivity. To date, none of the reported GSH reactivity models identify SORs in reactive molecules,

and thus the model for SOR prediction in this study is the first of its kind.

Once trained, the model computed an ARS for each atom in a test molecule. These scores

ranged between zero and one, and can be regarded as the probability that the corresponding

atom reacts with GSH in our data set. Within reactive molecules, the ARS reported by the

model should clearly distinguish between reactive and unreactive atoms, thereby accurately

identifying SORs.

We estimated the accuracy of our model using cross-validation. In this approach, molecules

were separated into metabolically related clusters based on connections through metabolic re-

actions in the database. Each cluster of molecules was removed from the training set at a time.

The remainder of the molecules was used to train a model, and made predictions on all the

molecules present in the cluster left out of the training process. In this way, predictions were

made on all molecules in the training data. In each cross-validation fold, the model predic-

tions for test molecules then did not depend on training data from the same or closely related

molecules. Next, for each molecule, we quantified the separation of known SORs from unre-

active atoms using the area under the ROC curve (AUC). The whole data set performance was
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quantified by averaging the molecule-level AUCs for each molecule in the data set.

This cross-validation strategy quantitatively measured the accuracy of the ARS scores from

the model. Currently, the only other published methods of predicting reactive atoms are in

the quantum modeling literature, which proposes several reactivity indices.[62, 63, 64, 65, 66]

The accuracy of these indices in identifying the SOR was a useful baseline against which to

compare ARS performance. This comparison revealed several critical observations. First, the

ARS reported by the model more accurately separated reactive and unreactive atoms than any

other method, with a cross-validated average AUC of 90.8% (Figure 2.3).

Second, ARS accuracy was greater than any of the individual descriptors including those

specifically designed to predict reactivity. For example, self-polarizability, πS(r) separated

reactive and unreactive atoms with an accuracy of 75.3%. Likewise, the nucleophilic and elec-

trophilic delocalizabilities (DN(r) and DE(r)), also known as fukui reactivity, separated re-

active and unreactive atoms, but with reduced accuracies of 72.4% and 70.5%, respectively.

Third, a logistic regressor for ARS (ARS[LR] in the figure) was more accurate than the re-

activity indices, 88.7%, yet less accurate than the model derived from a neural network. The

18.6% reduction in error achieved by using the neural network indicated a significant non-linear

component in the reactivity model that was consistent with previous work on the best models

predicting sites of metabolism.[83]

2.3.2 Descriptors Driving Atom Reactivity Performance

The identification of essential descriptors gave insight into how the model made predictions,

why the model was sensible and what could be done to improve the model. The importance

of specific descriptors for identifying SORs was quantifiable through a permutation sensitivity

test.[84] First, a model was built using all the training data, and the performance on training

data was recorded. Next, the importance of individual descriptors (or groups of descriptors)

was quantified by measuring the drop in performance of the model on the training data when the

descriptor values were randomly shuffled. For the test in this study, the specific descriptors and
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FIGURE 2.3: Atom reactivity scores accurately identified sites of reactivity.
For each prediction method, average site AUC was computed for 1213 reactive
molecules with their sites of conjugation to glutathione labeled. This metric re-
flected how often reactive atoms were ranked above unreactive atoms within re-
active molecules. The cross-validated atom reactivity scores (ARS), generated by
a neural network with ten hidden nodes trained by gradient descent on the cross-
entropy error, outperformed the cross-validated predictions of a logistic regressor
(ARS[LR]). The performances of selected atom-level descriptors were also eval-
uated. The accuracy of the reactivity model exceeded that of πS(r), DN (r), and

DE(r), three commonly used reactivity indices.
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groups of descriptors were included in the Supplementary Information, and only the most salient

results were presented here. For each set of descriptors, we repeated the randomization process

ten times, and recorded the average performance drop. The larger the drop in performance, the

more important the descriptor was to the model.

Surprisingly, topological descriptors were much more important than quantum chemical de-

scriptors in predicting atom-level reactivity (Figure 4.5). The first and third most important

descriptors were the element and hybridization state of the test atom, associated with perfor-

mance drops of 14.3% and 8.1%, respectively. Ten of the twelve most important descriptors

were topological. In contrast, the model was not strongly dependent on quantum chemical de-

scriptors. The most important quantum chemical descriptor, demonstrating a performance drop

of 8.1%, was the maximum bond distance between the test atom and a covalently bound hy-

drogen, a known proxy for the strength of the atom to hydrogen covalent bond.[54, 85, 86]

The next most important quantum descriptor was the density of the ELUMO molecular orbital

on the test atom, with an accuracy of only 1.2%. Strikingly, the model did not rely strongly

on classic quantum reactivity indices like DE(r), DN(r), or πS(r), which were associated with

performance drops, respectively, of only 0.5%, 0.1%, and 0.0% (data not shown in figure).

This outcome may seem to contradict observations in the prior section wherein these reac-

tivity indices could identify SORs with some accuracy. In this case, the predictive values of the

descriptors depended on their combined contribution to model performance. None of the indi-

vidual topological descriptors accurately identified reactive atoms. Instead, the combination of

several topological descriptors collectively appeared to very accurately identify reactive atoms,

such that the information conveyed in the quantum descriptors was not necessary. Importantly,

this result suggested that accurate models of GSH reactivity can be constructed using only topo-

logical descriptors without requiring a time- and resource-consuming quantum simulation. In

a broader context, similar topology-only models may quantify other types of reactivity as well;

however, those applications are beyond the scope of this study and left for future work.
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FIGURE 2.4: The importance of specific descriptors to the atom reactivity model.
A permutation sensitivity analysis quantified the importance of descriptors for the
final trained atom reactivity model. This listing indicates the twelve most im-
portant descriptors in decreasing order of importance from top to bottom. The
graph shows the model performance drop associated after permuting the associ-
ated descriptor values, averaging over ten iterations. All top descriptors with the
exception of two were topological; the remainder were derived from a quantum

simulation of the molecule structure.
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2.3.3 Accuracy in Identifying Reactive Molecules

Another key goal of an effective method is to accurately distinguish between GSH reactive

and unreactive molecules. Thus far, there have been a few published QSAR models for GSH

reactivity. All of these efforts used linear or quadratic regression to map quantum chemical pa-

rameters, like the energy of the highest occupied molecular-orbital (EHOMO), to the quantitative

GSH reactivity of small sets of closely related molecules.[39, 56] The authors of these studies

were quick to point out that these QSAR models were trained on very small data sets of similar

molecules, so that they are not suited to predict the reactivity of a structurally diverse set of

molecules. In contrast, our approach will effectively work across the full range of chemical

diversity encountered in drug development programs.

Individual atom reactivity contributed to the overall reactivity of a molecule, and thus the

model was designed to consider this aggregate property and predict overall reactivity to score

test molecules. The reactivity score, the MRS, ranged from zero to one. This value reflected

the probability of a test molecule being reactive in our data set. The respective reactivity scores

should distinguish between reactive and unreactive molecules across the entire data set. The

accuracy of these predictions was quantified and assessed by cross-validation. As discussed for

atom reactivity model assessment, individual models were built after excluding each cluster of

related molecules in turn. The MRS was computed for each molecule within the cluster left

out of the training. In this case, the accuracy was quantified by measuring the area under the

ROC curve, the AUC, across the entire data set. As a baseline against which to compare model

performance, we also computed the performance of both QSAR models of reactivity published

in the literature[39], and reactivity indices proposed in the literature[70, 71, 72], including

individual molecule descriptors and the maximum of each atom descriptor associated with the

molecule atoms.

From this assessment (Figure 2.5), several patterns were evident. First, the MRS can dis-

tinguish reactive and unreactive molecules with a reasonable accuracy of 80.6%. Our model out-

performed several closely related variants, including versions using only ARS output (max[ARS]
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and MRS[Atom only]) or molecule descriptors (MRS[Molecule only]). This observation sug-

gests that a combination of atom-level and molecule-level information was necessary to most

accurately predict molecule reactivity. Moreover, the addition of hidden nodes at the top level

did not improve accuracy (data not shown), suggesting that this stage of the network does not

require non-linearity to improve accuracy. Second, the model MRS outperformed two pub-

lished QSAR models for reactivity which both yielded an accuracy of only 65.1%. This result

was not surprising, as one of the known limitations of QSAR models is their limited domain

of applicability. As expected, QSAR models trained only on a small number of benzoquinones

do not generalize to a large, diverse set of molecules. Third, the model MRS outperformed

individual quantum chemical descriptors by a wide margin. The quantum chemical descrip-

tors ELUMO, EHOMO, max
[
DN(r)

]
, max

[
πS(r)

]
, and max

[
DE(r)

]
have accuracies of 64.7%,

58.2%, 56.4%, 52.0%, and 50.4%, respectively. Fourth, reactive and non-reactive molecules had

average scores of 0.85 and 0.65, respectively, which suggests that the model more confidently

identified reactive molecules than non-reactive molecules. This could be a consequence of error

in the training data arising from difficulty in accurately identifying non-reactive molecules.

An important caveat in this assessment was the reliability of labeling unreactive molecules in

the training data. There was a potential for error arising from the difficulty of extracting negative

data from literature-derived sources. It was necessary to make assumptions to overcome this

shortcoming. We assumed that molecules did not react with GSH if none of the metabolites

identified in the literature are GSH conjugates. However, despite this assumption, the absence of

GSH conjugates in the database was not strong evidence proving a molecule is not reactive. Not

all studies look for GSH conjugates, and consequently some reactive molecules are incorrectly

labeled as unreactive in the training data.

There are two potential consequences for this intrinsic limitation and the error that it in-

troduced into the training data. First, the MRS scores are not directly interpretable as the

probability of a reaction occurring between the molecule and GSH in an experimental bench

top study. Rather, the scores are the probability of the molecule being labeled reactive in our
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data set and, by extension, being recognized as reactive in the literature. Of course, we still

hope this score will correlate closely with experimental measures of reactivity, as will be tested

in a subsequent section. Second, the potential error due to mislabeling unreactive molecules

could lead to cross-validation performances either over- or under-estimating the true general-

ization accuracy. Nonetheless, cross-validation analyses still provide critical insight into the

relative performance of different methods and the importance of individual descriptors. In this

case, cross-validation experiments provided the best assessment of models on a wide range of

chemically diverse molecules because of the size of the data set.

2.3.4 Descriptors Driving Molecule Reactivity Performance

As pointed out for atom reactivity, knowledge of the useful descriptors provides both a deeper

understanding of the model and insight into ways of improving the model. We could once

again use a permutation sensitivity analysis to identify important descriptors, but in this case a

simpler method is available. The final node of the model was a logistic regressor trained using

normalized inputs, so that the importance of individual descriptors was clear from the weight of

the respective nodes. An advantage of weight inspection over permutation sensitivity analysis

is that the sign of the weight indicates whether an increase in the descriptor value will favor or

disfavor a higher reactivity score. This outcome can facilitate an assessment of the plausibility

of the model.

The model used a combination of atom- and molecule-level descriptors that confirmed ob-

servations about the overall performance of model variants (Figure 2.6). Encouragingly, three

of the top descriptors were immediately understandable. First, as expected, the reactivity of

the most reactive atom in the molecule (the highest ARS) was an essential feature. Second,

the energy of the LUMO orbital was negatively associated with reactivity, a finding consistent

with frontier molecular orbital theory. Third, the size of the smallest ring was another important

descriptor, which reflects the high enthalpy gain associated with opening three-member rings

during bond formation with GSH[87]. Lastly, the weights of the remaining reactivity indices
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FIGURE 2.5: The reactivity model accurately identified reactive molecules. Sev-
eral prediction methods were compared based on their ability to identify reactive
molecules. The data set included 1484 molecules, 1213 of which are reactive with
glutathione and 271 of which are not reactive, but are structurally similar to reac-
tive molecules. Performance was measured by computing the area under the ROC
curve (molecule AUC). The best performing approach computed a MRS using a
logistic regressor based on molecule-level descriptors and the top five ARS scores
associated with each atom of the molecule. Control models demonstrated lower
accuracy using only atom level information (MRS[Atom only] and max[ARS])
or molecule level information (MRS[Molecule only]). Similarly, neither the two
published QSAR models (Equation 2.1 and Equation 2.2), several molecule de-
scriptors, nor atom descriptors, yielded models as accurate as our reactivity model.
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FIGURE 2.6: Importance of descriptors to molecular reactivity score. The weights
of the final model nodes revealed the relative contribution of individual descriptors
to model performance. The descriptors were normalized before training, so that
the magnitude of the weights directly measured the importance of each descrip-
tor. The values for the five ARS scores were included, as well as those of selected
reactivity indices. As we would hope, a significant weight was placed on all of
the ARS descriptors. Moreover, the qualitative contributions of specific quantum
descriptors were within expectations based on frontier orbital theory. This analy-
sis increased confidence in the ability of the model to sensibly generalize toward

external data.

were similarly understandable. In particular, the utility of max[DN(r)] agreed with prior stud-

ies that have implicated the importance of this descriptor in modeling molecule GSH reactivity.

Likewise, max[DE(r)] correlated with the reactivity of molecules containing electrophilic prop-

erties, and thus, as expected this descriptor was not a strong predictor.

Collectively, these results increase our confidence in the ability of the model to learn gen-

eralizable rules governing relationships between test molecules and reactivity from the data.

Descriptors of high importance were consistent with our knowledge of theoretical and experi-

mental knowledge of chemical reactivity.

31



Chapter 2. Site of Reactivity Models Predict Molecular Reactivity of Diverse Chemicals with

Glutathione

2.3.5 Performance on External data sets

We tested reactivity models against two external quantitative data sets to further assess their

performance. We stress that these are quantitative data sets, where the degree of reactivity with

GSH was measured, yet the specific site of reactivity within reactive molecules was not identi-

fied. In contrast, the training data was not quantitative by including only binary values labeling

atoms and molecules as reactive. Consequently, we did not expect to observe exceedingly strong

correlations between the model output and these quantitative data sets per se. Nonetheless, sta-

tistically significant correlations are critically important because they assure us that errors in

training data are not so significant that they prevent the construction of a useful model.

The first external data set on ten benzoquinones included both rat toxicity data (measured as

the LC50) and experimentally measured rates of reactivity with GSH. In this set of molecules,

the GSH reactivity correlated closely with toxicity, and so we determined correlations between

MRS and either set of experimental values (Figure 2.7). In both cases, MRS correlated very

closely to experimental values with R2 values of 0.78 and 0.70, and significant p-values of

0.0015 and 0.0025. These findings are striking, because they demonstrate the ability of the

model trained on qualitative structural data to yield relative quantitative values for the reactivity

of molecules.

By comparison, the source paper for this data reported QSAR models with correlations of

0.9 and 0.8. These correlations were higher than those for our model; however, this compari-

son needs to be interpreted in light of several issues. First, these QSAR models were trained

on the data on which they were assessed and not cross-validated. Consequently, their correla-

tions were higher than the true generalization accuracy of the respective models. Second, these

QSAR models were overfit to benzoquinones and do not generalize to diverse chemicals, as the

authors point out in their study. Third, when evaluating our reactivity model, it is significant that

the model did not currently use any quantitative data in the training process, which may limit

model performance. In the future, we plan to include quantitative data for building models to

improve predictions beyond the insights gained from qualitative data sets. Considering all these
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points, the model performance was nearly the same as the QSAR models, showing a statistically

significant fit to quantitative data despite being trained only on qualitative structural data. We

consider this finding a strong validation of the model.

The second external data set included reactivity of 38 structurally diverse contact allergens

with cysteine, lysine, histidine, and GSH.[60] We considered the performance of our models in

predicting reactivity between test molecules with all four of these molecule traps. In the reported

assays, reactivity was measured as the percent depletion of the trapping agent at 15 minutes (for

GSH) or 24 hours (for cysteine, lysine, and histidine). As a single point measurement, there is

more experimental noise in this study than the first external study.

In this study, analysis of all four assays data demonstrated that the model MRS correlated

with the experimental data better than the traditional reactivity QSAR models (Table 2.2 and

Figure 2.8). MRS correlated with GSH depletion with a significant Pearson correlation (R =

0.43), whereas the QSAR model had a non-significant correlation (R = 0.30). Of the three

amino acids, the highest correlation corresponded to cysteine, which was a soft nucleophile.

This observation was reasonable given that the model was trained on reactivity data for the

cysteine-containing GSH. Although lysine is a hard nucleophile, XenoSite scores still correlate

significantly, suggesting that our model may be sophisticated enough to predict reactivity with

both soft and hard nucleophiles. In contrast, histidine is much less nucleophilic than the other

amino acids and thus the correlation was weak.

The moderate correlation of 0.43 between the GSH reactivity and the XenoSite reactivity

model scores might seem like a weak result. However, this outcome should be interpreted in

light of several key points. First, model training relied solely on qualitative data and thus may

not yield the most optimal model performances against quantitative data. This shortcoming will

be addressed in future studies. Second, a lower correlation was expected in this assessment

because single-point measurements of reactivity are very noisy. Third, despite issues with that

data set, our trained model yielded statistically significant predictions for 38 structurally diverse

molecules. Fourth, the final model performed better that traditional QSAR models, which are
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FIGURE 2.7: Molecule reactivity scores correlated with glutathione reactivity and
toxicity of substituted quinones. The model molecule reactivity scores (MRS)
correlated closely with hepatocyte toxicity (LC50, top graph) and the rate of re-
activity with GSH (kGSH, bottom graph) of ten substituted p-benzoquinones.[39]
The left panel illustrates all ten test molecules and sorts them by MRS computed
by a model trained without using these molecules. For each molecule, the shad-
ing intensity represents atom reactivity scores (ARS), which range from 0 to 0.41.

Circled atoms are labeled as reactive in our training data set.
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TABLE 2.2: Reactivity scores correlated more closely with trapping agent deple-
tion than QSAR models. The correlations between peptide reactivity and QSAR
predictions (Equation 2.2) are molecule reactivity scores (MRS) were calculated
for 38 structurally diverse contact allergens.[60] Reactivity was measured by pep-
tide depletion assays, with incubation times of 15 minutes for GSH or 24 hours
for peptides containing cysteine, lysine, or histidine. Across the results of all four
assays, reactivity was more significantly correlated with MRS than by the QSAR

model. Statistically significant correlations are in bold.

Peptide QSAR Reactivity Model MRS

GSH 0.30 (p-value = 0.0709) 0.43 (p-value = 0.0064)
Cysteine 0.38 (p-value = 0.0210) 0.56 (p-value = 0.0003)
Lysine 0.26 (p-value = 0.1310) 0.41 (p-value = 0.0126)
Histidine 0.14 (p-value = 0.4295) 0.24 (p-value = 0.1504)

Unreactive 

ARS 

Reactive 

FIGURE 2.8: Reactivity scores correlated with the nucleophile reactivity of struc-
turally diverse contact allergens. Model performance was assessed using an ex-
ternal data set with 38 molecules.[60] The y-axis is the percent depletion of GSH
after 15 minute incubation with each molecule. The x-axis indicates molecule
reactivity scores (MRS). For test molecules present in the training data set, the
appropriate cross-validated predictions were extracted. The significance of Pear-
son correlation is reflected by the p-values. To the left, six example molecules are
visualized with scaled ARS (which range from 0 to 0.43) and are sorted by MRS,
which correspond to the data points marked with an X in the right panel plot. The
six corresponding X’s are in the same horizontal order as visualized molecules.

MRS significantly correlated with GSH reactivity.
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not-significantly correlated with the GSH reactivity. In the context of these points, our results

provide strong evidence that this model represents a significant advance in reactivity modeling.

In these experiments, we demonstrate that the model correlated well with quantitative reactivity

data, including GSH reactivity data, reactivity with specific amino acids, and rat toxicity for

molecules known to be toxic by a reactive mechanism. These results support the idea that the

model was not overfitting the training data and that the data limitations were not preventing the

construction of an accurate reactivity model.

2.3.6 Performance on Drug-Metabolite Pairs

Preliminary results from our studies indicate that the reactivity model MRS accurately distin-

guished drugs from their reactive metabolites. For example, our model assigned acetaminophen

a MRS score of 0.75, whereas its reactive metabolite NAQPI scored 0.99. Keeping in mind the

average MRS scores of reactive and non-reactive molecules (0.85 and 0.65, respectively), this

result is encouraging but not definitive. Though a systematic study of reactive drug metabolite

prediction is beyond the scope of this paper, we consider two drugs, trimethoprim and felba-

mate, and their known reactive metabolites (Figure 2.9).

The metabolism of the antibacterial trimethoprim forms a reactive iminoquinone methide

metabolite that likely contributes to trimethoprim hypersensitivity reactions.[88, 9] The reac-

tive metabolite conjugates to GSH or N-acetyl cysteine in human and rat liver microsomes.[89]

Our model successfully distinguished trimethoprim from its toxic metabolite, with an increase

in the MRS score from 0.30 to 0.99. Additionally, the most reactive atom on the metabolite

predicted by the model corresponded to the same atom known to be conjugated to both GSH

and N-acetyl cysteine, and similarly, the second most reactive atom was the same one reported

experimentally as a conjugate of N-acetyl cysteine.[89] The anticonvulsant felbamate some-

times causes hepatotoxicity and aplastic anemia, and such adverse reactions have been traced

to a reactive α,β-unsaturated aldehyde metabolite.[9] Our model assigned this reactive metabo-

lite a very high MRS score of 0.96, whereas felbamate only scores 0.33. Moreover, the atom
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FIGURE 2.9: Molecule reactivity scores distinguished drugs and their reactive
metabolites. For each molecule, the shading represents atom reactivity scores
(ARS), which ranged from 0 to 0.768. The structures of trimethoprim and felba-
mate are shown, alongside their reactive metabolites and subsequent GSH conju-
gates. Circled atoms are labeled as reactive in our training data set. For molecules
present in the training set, cross-validated predictions are displayed. In these
cases, the predictions are obvious to an organic chemist, but they illustrate key
points of the method’s behavior. First, it can distinguish accurately between very
similar molecules that are reactive and non-reactive. And second, in the current

form, it cannot predict how metabolism gives rise to reactive species.
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receiving the highest score was the actual atom known to conjugate to GSH.

These findings are encouraging because they show that the model can correctly identify

which of two very similar molecules is reactive. This is a key quality control check that suggests

the model is sensibly encoding reactivity.

2.4 Non-Obvious Predictions

One hope is that this approach would identify reactive molecules that do not contain obvi-

ously reactive groups. We qualitatively and quantitatively assessed our approach in this task

by identifying molecules that are correctly predicted as reactive, but do not contain an epoxide

or a Michael acceptor structure, two chemical groups widely recognized as reactive. One prior

study listed 17 substructures that should be considered Michael acceptors.[61] To this list, we

added an epoxide alert, which is also commonly reactive. This list contains α, β unsaturated

carbonyls, the classically defined Michael acceptor. We identified 622 reactive molecules within

our training data that do not contain an epoxide or any of these specific substructures . For the

purpose of this analysis, we considered these molecules "non-obvious" reactive molecules.

First, we observed that our model correctly identified the SORs in these molecules. The av-

erage site AUC was 87.6%, comparable to the performance across the entire database of 90.8%.

Specific examples, drawn from these non-obvious molecules, demonstrate that the model cor-

rectly predicted the mechanism of reactivity (Figure 2.10). Second, MRS could identify non-

obvious reactive molecules, but with a molecule AUC of only 67%. The reduced power to iden-

tify non-obvious reactive molecules is expected, because these molecules are more difficult.

Nonetheless, the model still identifies the correct SOR with nearly the same accuracy. These

two observations demonstrate our approach generalizes beyond simple substructure matching

to identify reactive molecules that do not match commonly used structural alerts.

These results are encouraging, suggesting a possible role for the model as a component

of a weight-of-evidence strategy for regulatory risk assessment. While the model’s results are
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Reactive Molecules Without Epoxides or Michael Acceptors 
Substructures 

Epoxide and Michael 
Acceptor 

Structural Alerts 
 

Unreactive 
 

ARS 

Reactive 
 

FIGURE 2.10: Atom reactivity scores accurately identified non-obvious sites of
reactivity. The right panel displays 18 structural motifs known to be reactive.
[61] The left panel displays reactive molecules drawn from our training data that
do not contain these specific substructures.[9, 90, 91, 92, 93, 94, 95, 96, 97]
The molecules are sorted by molecule reactivity scores, which range from 0.78 to
0.99. The shading intensity represents scaled atom reactivity scores (ARS), which
range from 0 to 0.78. Our model accurately identified reactive molecules that do

not match commonly used structural alerts.

not definitive, they could build evidence for specific mechanisms of reactivity and toxicity.

Either more expensive computational studies or benchwork could then test these mechanisms

to build additional evidence. Because the model’s predictions are mechanistic, drilling down to

specific reactive atoms, this approach could support the mechanism and pathway centered risk

assessments that regulatory agencies are developing.
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2.5 Conclusion

This study demonstrates a new approach to modeling reactivity using structural reactivity data.

The reactivity model is trained on site of reactivity data and identifies with 90.8% accuracy the

sites of reactivity within reactive molecules, and separates reactive and unreactive molecules

with 80.6% accuracy. Furthermore, the model predictions strongly correlate with quantitative

GSH reactivity data in chemically diverse, external data sets. This predictive ability is espe-

cially encouraging because (1) it is only trained on qualitative data—whether or not an atom is

reactive—and (2) the model is generalizable across broad areas of chemical space. In contrast,

traditional QSAR models correlate significantly only with their own training data and fail to

generalize for structurally diverse molecules. The current model does have some key limita-

tions. First, the reported model is not trained on all available reactivity data. Specifically, it

does not currently make use of quantitative reactivity data (like that in the external data sets).

Expanding this effort to include quantitative data when available will likely improve the quality

of the model. Second, the current model can only detect molecules reactive with GSH, a soft

nucleophile. Some important reactive species do not efficiently react with GSH, but, nonethe-

less, covalently bind DNA or proteins. In the future, we plan to overcome this limitation by

including molecules that react with other types of trapping agents, including cyanide, proteins,

and DNA. Finally, in the current form, this model does not consider how metabolism gives rise

to reactive species. We plan to combine this reactivity model with metabolism models into a

system without this limitation. While such a comprehensive model still lies in the future, this

study represents a significant step forward by demonstrating that site of reactivity data yields

accurate molecule reactivity predictions. Site of reactivity data is nearly unstudied in the liter-

ature, but contains a strong signal for reactivity that can be utilized to more accurately predict

molecule reactivity and could also be a useful component of mechanism-based predictions of

toxicity.
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Chapter 3

Modeling Reactivity to Biological Macro-

molecules with a Deep Multitask Network

This chapter is adapted from this published manuscript:

Hughes, T. B., Dang, N. L, Miller, G. P., and Swamidass, S. J. (2016). Modeling Reactivity

to Biological Macromolecules with a Deep Multitask Network. ACS Central Science 2(8),

529âĂŞ537.

3.1 Introduction

Most small-molecule drug candidates fail before entering the market,[8] frequently because of

unexpected toxicity.[10, 8] Often, toxicity is detected only late in drug development, because

many types of toxicity, especially idiosyncratic adverse drug reactions (IADRs), are particularly

hard to predict and detect.[98, 6] Moreover, drug-induced liver injury (DILI) is the most fre-

quent reason drugs are withdrawn from the market, and causes 50% of acute liver failure cases

in the United States.[19]

A common mechanism often underlies many types of drug toxicity, including both DILI and

IADRs. Drugs are bioactivated by drug-metabolizing enzymes into reactive metabolites, which

then conjugate to sites in proteins or DNA to form adducts. DNA adducts are often mutagenic,

and may alter the reading and copying of genes and their regulatory elements, causing gene
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dysregulation and even triggering cancer.[99, 100, 19] Similarly, protein adducts can disrupt

their normal biological functions and induce harmful immune responses.[48, 19, 49]

Metabolites are reactive because of their chemical properties, and are often generally clas-

sified as soft or hard electrophiles based on polarizability and their preferential reaction with

targeted nucleophiles.[101] Soft electrophiles like epoxides or Michael acceptors have low elec-

tron density at multiple sites, while hard electrophiles such as carbocations or saturated alde-

hydes have a localized site with low electron density.[102, 31, 101] Soft electrophiles tend to

react with soft nucleophiles, like cysteine residues within glutathione (GSH) or protein, whereas

hard electrophiles generally react with hard nucleophiles, such as purine and pyrimidine bases

in DNA or lysine and histidine residues within protein.[19, 102, 103, 101, 60, 104] Despite

these general rules, it remains a challenge to predict the reactivity of small molecules and their

likelihood for modifying DNA and proteins.

Conjugation between small molecules and nucleophilic GSH (soft) or cyanide (hard) is com-

monly used in screening studies to identify molecules capable of forming adducts. Detecting

GSH or cyanide adducts is easier than detecting protein or DNA adducts, and serves as a proxy

for reactivity to macromolecules in experimental studies [105, 106]. Moreover, GSH is a phys-

iologically relevant trapping agent, which reaches millimolar levels in cells and protectively

conjugates with many reactive molecules.[107]

However, GSH and cyanide are only imperfect proxies for protein and DNA. Proteins and

DNA are structurally complex macromolecules and likely have correspondingly complex re-

activities with a diverse set of soft and hard nucleophilic molecules. Therefore, we expect

some molecules will react with protein or DNA, but not efficiently react with GSH or cyanide.

These molecules are of special concern, because they do not react with GSH or cyanide, and

consequently are likely to be missed by many standard reactivity experiments. Computational

modeling could provide a complementary strategy for detecting molecules likely to be reactive,

and therefore prone to causing DILI or IADRs, including those molecules missed by standard
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screening assays. Others have proposed QSAR models to predict GSH reactivity, yet these mod-

els are of limited value, as they are focused on very limited structural groups.[40] In contrast,

we recently published a computational model that predicted GSH reactivity toward a diverse set

of chemicals at both the site and molecule level.[108]

Here, we aimed to extend our previously published GSH reactivity model to also predict

reactivity with cyanide, protein and DNA. First, we extracted a structurally-diverse, literature-

derived database of molecules known to bind DNA and protein, as well as the simple nucle-

ophilic traps cyanide and GSH (Figure 1). Second, we labeled the site of conjugation on each

molecule, known as its site of reactivity (SOR). Third, we used a deep convolution neural net-

work to accurately predict these SORs in cross-validated experiments. Fourth, we transform

SOR scores to accurate molecule-level electrophilic reactivity scores that accurately predict

whether molecules will conjugate to DNA or protein. Fifth, we apply these molecule reactivity

scores to calculate DNA and protein selectivity scores to estimate the fraction of molecules that

are reactive to DNA and protein but not cyanide or GSH.

Of course, ultimately, the XenoSite reactivity model will be connected to models of drug

metabolism to be most useful. Although out of the scope of this study, combined metabolism

and reactivity models would be able to predict both bioactivation and subsequent toxicity of

metabolites. Nonetheless, this study takes a significant step towards effectively managing the

IADR and DILI risk of new medications with computational modeling.

3.2 Results and Discussion

In the initial section, we summarize a systematic effort to optimize the structure and training

of the model, with the goal of choosing the best method for predicting reactivity. The follow-

ing sections then investigate the performance of the final optimized model. First, we evaluated

the model’s cross-validated atom reactivity scores (ARS) by testing site of SOR classification

performance within reactive molecules. Second, we compared ARS performance to that of
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These predictions range from zero to one, indicating the probability that an atom
is reactive with each of the four nucleophilic targets. From top to bottom, a
cyanide conjugation of a nefazodone metabolite, [109] a DNA conjugation of N-
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are depicted, with the rest of each macromolecule represented by “Xx".
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atom-level quantum chemical reactivity indices. Third, we assessed ARS performance on an

external test set. Fourth, we calculated the accuracy of the model’s cross-validated molecule re-

activity scores (MRS) at predicting molecule reactivity. Fifth, we compared MRS performance

to molecule-level quantum chemical reactivity indices. Sixth, we use the model to estimate the

number of high throughput screening molecules that are reactive with macromolecules (DNA

and protein), but are not flagged by small-molecule trapping agents (GSH and cyanide).

3.2.1 Model Optimization

Several experiments demonstrate how each of the innovations in our modeling approach im-

prove performance. These experiments are briefly discussed here, and further details and data

are available in Supporting Information. First, we hypothesized that jointly modeling several

types of reactivity in a multitask learning model would improve predictions on the smaller data

sets.[113, 114] Indeed, the multitask model outperformed the individual modeling approach at

predicting cyanide and protein SOR (Figure S2). This is likely because the cyanide and pro-

tein reactivity tasks are the most difficult and, therefore, benefit most from integrated modeling.

The cyanide dataset is difficult because it is small, and the protein dataset is both small and in-

cludes the most diverse mechanisms. The data reported herein reflects modeling all four types

of reactivity together in a multi-task network, instead of building separate models for each task.

Second, a modular input layer was used to group related descriptors (such as the identities

of all atoms a certain depth away), rather than a traditional three-layer neural network structure.

We hypothesized that building explicit chemical knowledge into the model structure could re-

duce the total number of parameters in the model, thereby creating a simpler model with better

generalizability. This possibility was inspired by several examples of modular neural networks

in the literature.[115, 116, 117, 118, 119, 120] In fact, the modular structure did enable reduc-

tion of the total number of weights in the model by 50%, while retaining the same performance

(Figure S3). This weight-reduced, modularly-structured model outperformed a traditionally-

structured model with the same number of weights. Third, we found that including quantum
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chemical descriptors did not improve performance compared to a topological-descriptor-only

model (Figure S4), so we did not include the quantum chemical descriptors in the final model.

Construction of this topological-descriptor-only model was inspired by our previous model of

GSH reactivity, which primarily relied upon topological descriptors rather than quantum chem-

ical descriptors.[108] A common critique of neural networks is their opacity compared to more

transparent methods with easily interpretable weights, like a logistic regressor. In response to

this critique and to gain insight into the inner workings of our model, a permutation sensitiv-

ity analysis was performed (Figure S5). We have previously used this approach to expose the

structure of similar models.[84, 108, 121] Details of the permutation sensitivity analysis are

available in the Supporting Information. Fourth and finally, we found that including the nega-

tive epoxides in the training data substantially improved the model’s ability to identify reactive

epoxides (Figure S6).

3.2.2 Accuracy at Predicting Sites of Reactivity

A central objective of this study was to accurately predict SORs: the specific atom(s) within

reactive molecules that covalently bind to nucleophilic sites within DNA and protein. The

XenoSite reactivity model gives four reactivity scores to each atom (ARS) within a test molecule,

each of which ranged from zero to one, and represented the probability that an atom is reac-

tive with cyanide, DNA, GSH, or protein, respectively. Within a reactive molecule, a well-

performing model should assign reactive atoms with higher scores than nonreactive atoms. The

magnitude of the SOR values and identity of the target(s) of the reactive molecule sheds light on

preferential chemistries leading to adduction and structures of the adducts. Such knowledge is

relevant for reactive metabolite identification under experimental conditions and further study

on the consequences of adducts on normal biological processes. Furthermore, SOR predictions

indicate the probability of reactive hot spots leading to unfavorable adductions, and such knowl-

edge could be leveraged to engineer rational modifications to reduce a molecule’s reactivity, and

potentially its toxicity.
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The accuracy of the ARS scores was assessed using ten replicates of ten-fold cross-validation,

where groups of related molecules are held out in the same fold. Each replicate yielded very

similar results, so for brevity we reported the results from the first one. Performance was quan-

tified by two metrics. First, we calculated the average site AUC by computing the area under

the receiver operating characteristic (ROC) curve (AUC) for each molecule and averaging the

AUCs for each molecule in the data set.[108, 121] Second, we calculated the top-two metric,

which is a standard for site of metabolism predictions. This approach considers a molecule

correctly predicted if any of its SOR are predicted in the first or second rank positions.[121,

50, 122, 123, 52] Reactivity indices drawn from the quantum modeling literature are another

method for predicting atom reactivity,[62, 63, 64, 65, 66] and thus, they provide an important

point of comparison to our ARS for predicting SOR.

XenoSite’s cross-validated ARS predicted reactive atoms with average site AUC accuracies

of 96.6%, 89.8%, 92.8%, and 94.4%, and top-two accuracies of 83.9%, 80.6%, 80.9%, and

84.2%, for cyanide, DNA, GSH, and protein, respectively (Figure 3.2). These performances

are very accurate, especially when compared to the current standard of atom-level reactivity

indices (listed in Table 1) from quantum simulations.[62, 63, 64, 65, 66] Consistent with our

previous model of GSH reactivity, ARS outperformed all reactivity indices tested across all four

nucleophilic targets.[108] For example, for predicting DNA SOR, the best performing descrip-

tor by both metrics was πS(r), with an average site AUC of 60.9% and a top-two accuracy of

27.6%, which are both significantly lower than ARS’s corresponding performances of 89.8%

and 80.6%. The machine learning approach we adopt here is strikingly more accurate than

quantum chemical measures of reactivity.

As further evidence of generalizability, the model was applied to an external test of 14

molecules reactive with GSH that were collected from a newer version of the AMD than that

used in training (Figure 3.2). The model predicted SOR on this test set with an average site

AUC accuracy of 93.6%, matching the cross-validated performance of 92.8%. The top-two

external test set performance was 64.3%, somewhat lower than the cross-validated performance
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FIGURE 3.2: Atom reactivity scores (ARS) accurately identified sites of reactiv-
ity (SORs). The average site AUC (top left) and top-two (top center) metrics were
computed for each of the four target nucleophiles and used to assess the cross-
validated ARS for 1364 reactive molecules extracted from the Accelrys Metabo-
lite Database (AMD) with their SORs labeled. ARS outperformed all quantum
chemical descriptors tested for each target nucleophile. Bottom, from the latest
AMD release, an external test of 14 molecules was extracted and SOR(s) labeled
for GSH. Performance is equivalent to that of the cross-validated predictions as
measured by both the average site AUC (bottom left) and the top-two (bottom
center) metrics. Right, two example molecules from the external test set are vi-
sualized with their predictions, indicated by the colored shading. Each site of
reactivity is labeled with a white circle. Top right, an antimalarial drug candidate

metabolite,[124] and bottom right, gefitinib.[125]

of 80.9%. The lower performance is well explained by the high variance of the estimate, because

there are only a few molecules in the set. Moreover, the performance of the model is still

substantially better than the quantum chemical descriptors, which are indistinguishable from

zero performance on the test molecules. Depictions of all 14 external test set molecules with

their GSH ARS and SOR are available in the Supporting Information, alongside their most

closely similar pair from the training set (Figure S7).
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3.2.3 Accuracy at Identifying Reactive Molecules

Another central goal is to accurately discriminate between reactive and nonreactive molecules.

XenoSite predicted four reactivity scores for each molecule (MRS), each of which ranged

from zero to one, and represented the probability that the molecule is reactive with cyanide,

DNA, GSH, or protein, respectively. The accuracies of MRS were measured by ten-fold cross-

validation, with performance quantified by the area under the ROC curve (molecule AUC).

The MRS scores were reasonably accurate in separating reactive and nonreactive molecules,

with molecule AUCs of 90.3%, 78.7%, 77.7%, and 79.8% for cyanide, DNA, GSH, and pro-

tein, respectively (Figure 3.3). In contrast, the performances of the best reactivity indices us-

ing traditional quantum descriptors were much lower: 84.9% (−EHOMO for cyanide), 73.7%

(max
[
DN(r)

]
for DNA), 62.9% (πS(r) for GSH), and 65.1% (max

[
DN(r)

]
) for protein). For

each nucleophilic target, MRS outperformed all quantum chemical descriptors.

The model’s MRS scores were superior to other methods, yet still were lower accuracy than

the ARS scores. This discrepancy was likely due to the presence of more noise in the molecule-

level data than in the atom-level data. The ascertainment bias in the literature means that many

of the negative molecules are actually reactive. When extracting nonreactive molecules, we

assumed that molecules were not reactive to a nucleophile if they were not reported to be reac-

tive to that nucleophile by any reactions in the AMD. This assumption was not solid evidence

of molecules’ nonreactivity, because many studies do not test for reactivity. By contrast, the

atom-level reactivity data were all drawn from experiments that tested for reactivity, and thus

were much less noisy with many fewer false negatives. A similar drop from atom- to molecule-

level accuracy was observed in our previous studies with the literature derived data, including

the GSH reactivity model that was a precursor to this work.[108, 121] In the future, we plan

to improve the data by experimentally testing the reactivity of “nonreactive" molecules that

nonetheless receive high MRS. We expect that some of these false positives will be shown to be

in fact reactive, and that this effort will validate the models and improve the training data.
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3.2.4 Molecules Missed by Standard Screening Assays

Experimental studies with cyanide and GSH are traditional screening tools to trap hard and soft

electrophilic reactive molecules, respectively, and thus provide potential insights on possible re-

actions between the reactive molecules and biological macromolecules.[105, 106] Importantly,

cyanide and GSH possess only a single type of nucleophilic site, while biologically relevant

macromolecules often contain both hard and soft nucleophiles with an array of different struc-

tures and hence different chemistries. Consequently, nucleophilic trapping assays using cyanide

and GSH may not adequately reflect all possible reactions observed within biological macro-

molecules, and thus fail to detect potentially toxic electrophiles.

We estimated how frequently molecules will react with macromolecules (protein and DNA)

but not with trapping agents (GSH and cyanide) commonly used in experimental screens. We

calculated the probability that each molecule will form adducts to either DNA or protein, but

neither cyanide nor GSH. The DNA probability was computed by taking the product of its

probabilities of reacting with DNA (MRSDNA) and not reacting with cyanide (1 − MRSCN)

or GSH (1 − MRSGSH). The protein probability was computed by taking the product of its

probabilities of reacting with protein (MRSPRO) and not reacting with cyanide (1 − MRSCN)

or GSH (1 −MRSGSH). Next, we summed up the probabilities for all molecules with respect

to each macromolecule. These scores are well scaled probabilities, so this sum is a valid es-

timate of the total number of molecules selectively reacting with each macromolecule and not

the traditional nucleophilic traps, and hence those that would be missed by standard screen-

ing approaches. For the entire data set of 2803 molecules, this approach yielded totals of 257

and 227 molecules predicted to be reactive only with DNA and protein, respectively, and not

cyanide or GSH. This finding suggests that in our data set 9.2% of DNA reactive molecules and

8.1% of protein reactive molecules would be missed by standard screening assays with cyanide

and GSH. Though not the majority of molecules, this result suggests there are shortcomings of

using small-molecule trapping agents to infer reactivity with macromolecules. Computationally
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FIGURE 3.4: Molecule reactivity scores (MRS) predict some molecules signifi-
cantly more reactive with biological macromolecules than nucleophilic traps used
in standard screening assays. Discordant predictions between the protein and GSH
models (left), and between the DNA and cyanide models (right) are visualized. As
indicated both by the colored shading (corresponding to atom reactivity scores)
and by the MRS listed below, for each molecule the biological macromolecule
(protein or DNA) prediction is significantly greater than the corresponding stan-
dard trapping agent (GSH or cyanide) prediction. Experimentally-known sites
of reactivity are labeled with white circles. Upper left pair: a metabolite of 6-
nitrochrysene (MRSPRO: 0.42, MRSGSH: 0.29), an environmental pollutant.[130]
Bottom left pair: N-acetoxy-sulfamethoxazole (MRSPRO: 0.51, MRSGSH: 0.38), a
metabolite that may mediate the toxicity of the antibiotic sulfamethoxazole.[131]
Upper right pair: a metabolite of lucidin-3-O-primeveroside (MRSDNA: 0.68,
MRSCN: 0.26), a component of a food dye known to be carcinogenic in rats.[132]
Bottom right pair: 7H-dibenzo(c,g)carbazole-3,4-dione (MRSDNA: 0.64, MRSCN:

0.30), an environmental multispecies carcinogen.[133]

modeling could fill a gap here, by identifying these problematic molecules when screening can-

not (Figure 3.4). The experimental validation of specific missed reactive molecules and these

estimates is outside the scope of this study, but is planned in our future work.

3.3 Model Limitations

For predicting reactive metabolites, this study’s approach is limited by not modeling their

metabolic activation, which may precede reactions with nucleophilic traps. Nevertheless, mod-

els for metabolic reactions are rapidly maturing as evidenced by our work [121, 50, 134, 135,

136] and others, [54, 137, 138] and it is conceivable that metabolism and reactivity models

could be combined for a more biologically relevant prediction of risks poised by drugs and
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other compounds. An additional caveat is that some reactions in the database are likely missing

reactive intermediates. For example, acyl glucuronides are predicted somewhat reactive, yet are

known not be reactive themselves. Instead, only after acyl migration and ring opening do acyl

glucuronides form short-lived, reactive open-chain aldehyde intermediates that can lead to cova-

lent binding to molecules.[139] There are likely other uncertainties where intermediate reactive

metabolites are not present in the database, as they may be so reactive that they are too short-

lived to be observed experimentally. Missing intermediates is a limitation of the data, but is

both a strength and weakness of our method. On the plus side, we implicitly model some types

of rearrangements that yield reactive species, and in doing so, expand the utility of the model.

Nevertheless, this process leads to motifs that are not reactive themselves being predicted reac-

tive. Therefore, we are actually modeling a combination of intrinsic reactivity and potential for

covalent binding. A final caveat is that the domain of applicability of XenoSite is likely limited

to drug-like molecules. We do not expect the model to generalize well to molecules outside of

this domain, such as to inorganic molecules. Precise assessment of the domain of applicability

is a critical question for future work. We plan to directly test this with prospective experiments,

which is much more convincing than computational strategies for assessing the applicability

domain.

3.4 Conclusion

This study establishes that SOR modeling accurately predicts a key driver of drug toxicity: cova-

lent binding to DNA and protein. The XenoSite reactivity model identifies SOR within reactive

molecules with AUC performances of 96.6%, 89.8%, 92.8%, and 94.4%, for cyanide, DNA,

GSH, and protein, respectively. Compared to building separate models, collectively modeling

reactivity for all four nucleophilic targets enabled knowledge transfer between tasks, improving

SOR predictions for cyanide and protein. For cyanide, DNA, GSH, and protein, the model sep-

arates reactive and nonreactive molecules with, respectively, 90.3%, 78.7%, 77.7%, and 79.8%
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AUC. These predictions of molecular reactivity can highlight potentially toxic molecules that

might be missed in the early stages of drug development. Ultimately, to accurately predict

reactive metabolites, both metabolism and reactivity must be modeled. While there has been

significant progress on metabolism modeling, [121, 50, 134, 135, 136, 54, 137, 138, 140] reac-

tivity modeling has lagged far behind. By accurately modeling reactivity across a broad range of

chemical space for biologically relevant macromolecules, such as DNA and protein, this study

contributes a fundamental component of an integrative model of metabolism and reactivity.

3.5 Methods

3.5.1 Site of Reactivity Training Data

We assembled a training data set from the December 2014 release of the literature-derived

Accelrys Metabolite Database (AMD). From 2489 total reactions, molecules were extracted

based on reported reactions with cyanide, DNA, GSH, or protein. For each target nucleophile,

the reactive atom(s) within each reactive molecule were marked based on the structures of the

starting and product molecules, using an automated algorithm constructed using the RDKit

python library.[141] Topologically equivalent atoms were found using the Pybel python library,

and atoms equivalent to reactive atoms were themselves labeled as reactive.[82] The final data

set included, in total, 1364 electrophilic molecules with their reactive atoms and SORs marked.

This data set was composed of 51, 145, 1059, and 120 molecules known to be reactive with

cyanide, DNA, GSH, or protein, respectively. For each of the four reactive nucleophilic targets,

the atoms across the whole data set were labeled as reactive or nonreactive. Some atoms were

marked reactive with more than one nucleophile.

Metabolically related but nonreactive molecules were extracted from the reaction network

of each reactive molecule. Metabolic sibling and parent molecules were extracted from this

network, while excluding molecules themselves known to be reactive. We also included 63 nat-

urally occurring[142] and known nonreactive[143] epoxides as nonreactive molecules. While
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epoxides are generally quite reactive, they can be stable in certain cases; however, a shortcom-

ing of our previous method for predicting GSH reactivity was that it predicted all epoxides

reactive.[108] These molecules were added to mitigate this shortcoming.

A total of 1439 molecules were labeled nonreactive, with 103, 248, 1269, and 255 labeled

nonreactive to cyanide, DNA, GSH, and protein, respectively. At the molecule-level, for each

of the four reactive nucleophilic targets, molecules across the entire data set were labeled as

reactive or nonreactive. Some molecules were marked reactive or nonreactive with more than

one nucleophile.

To enable replication of our work, we included all AMD molecule registry numbers in the

Supporting Information, in addition to the SMILES strings of the nonreactive epoxides. Unfor-

tunately, the AMD license precluded us from disseminating the rest of the molecule structures

themselves.

3.5.2 External Site of Reactivity Test Data

After assembling the training data, a new version of the AMD was released (June 2015) with

several new reactions, which was used as an external data set. We filtered out all molecules

already labeled as reactive in the training data. This process left only 14 new molecules that

reacted with GSH and no new molecules reacting with cyanide, DNA, or protein. These 14

molecules were completely withheld from model training and optimization decisions, and were

only tested with the final model.

3.5.3 Quantum Chemical Reactivity Indices

Several quantum chemical descriptors were calculated from self-consistent field computations

with MOPAC, a quantum chemistry package, using the semi-empirical method PM7 and the

COSMO implicit solvent model.[73, 74] These included descriptors that have been previously

proposed as reactivity indices, on both the atom- and molecule-level (Table 3.1).[70, 71, 72]
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TABLE 3.1: Quantum Chemical Reactivity Descriptors.

Atom-Level Descriptors
DN(r) nucleophilic delocalizability
DE(r) electrophilic delocalizability
πS(r) self-polarizability
Molecule-Level Descriptors
ELUMO energy of the lowest unoccupied molecular orbital
EHOMO energy of the highest occupied molecular orbital
max

[
DN(r)

]
maximum atom nucleophilic delocalizability

max
[
DE(r)

]
maximum atom electrophilic delocalizability

max
[
πS(r)

]
maximum atom self-polarizability

Atom-level descriptors include the nucleophilic (DN(r)) and electrophilic (DE(r)) delocaliz-

abilities, which are also known as fukui reactivity indices, as well as self-polarizability (πS(r)).

The maximum of each of these (max
[
DN(r)

]
, max

[
DE(r)

]
, and max

[
πS(r)

]
) were used

as molecule descriptors, which also included the energies of the lowest unoccupied and high-

est occupied molecular orbitals (ELUMO and EHOMO). The performances of the final reactiv-

ity model—which only used topological descriptors—were compared to those of the quantum

chemical indices.

3.5.4 Topological Descriptors

The reactivity model used 15 molecule-level and 194 atom-level topological descriptors, each

of which describes a chemical property. An in-house python script calculated these descriptors

from the structure of each molecule. This script derives these descriptors from several sources,

such as each molecule’s connectivity distance matrix, periodic table properties, or motif patterns

defined by Pybel.[82] The majority of our topological descriptors have been shown to be useful

for the XenoSite metabolism, reactivity, and epoxidation models.[50, 108, 121] In this study,

we used an expanded set of topological descriptors, which slightly improved performance in

comparison to the previous set of topological descriptors (Figure S1). The full list of descriptors

is available in the Supporting Information (Table S1 and Table S2), as well as a list of new
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topological descriptors added for this project.

3.5.5 Combined Atom- and Molecule-Level Reactivity Model

We collectively modeled reactivity to cyanide, DNA, GSH, and protein at both the atom- and

molecule-level by building a deep neural network using an in-house machine learning python

library. The architecture included a molecule layer, an input layer, two hidden layers, and two

output layers (Figure 3.5). The atom output layer computed atom-level SOR predictions against

each nucleophile, while the molecule output layer computed molecule reactivity scores (MRS)

for each nucleophile. The corresponding scores predicted the chances that a test molecule is

reactive against that nucleophile.

We trained this network in two stages. First, the atom-level network was trained to produce

atom reactivity scores (ARS). For this process, each atom was considered a possible SOR. A

numerical vector was associated with each atom, which contained all of the descriptors for that

atom. A binary target vector indicated if each atom was a SOR for each of the nucleophilic

targets. For molecules of unknown reactivity against each nucleophilic target, the appropriate

values were empty, neither one nor zero. Using gradient descent on the cross-entropy error,

the weights of the network were trained such that SOR scored higher ARS than other atoms.

Four ARS were produced for each atom, each ranging from zero to one, and representing the

probability that the atom will be reactive with cyanide, DNA, GSH, or protein.

Second, the molecule-output nodes were trained to compute MRS. For this stage, each

molecule was considered possibly reactive, and a numerical vector of descriptors was associ-

ated with each molecule. Descriptors included all molecule-level descriptors, as well as the top

five ARS for each of the four nucleophilic targets, corresponding to the scores of the five atoms

predicted within a molecule to be the most reactive to each nucleophile. For each molecule, a

binary target vector (with unknown components empty) indicated if the molecule was reactive

to each of the nucleophilic targets. For each nucleophile, a logistic regressor found a scoring
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function that gave reactive molecules high MRS and nonreactive molecules low MRS, ranging

from zero to one.
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FIGURE 3.5: The structure of the XenoSite reactivity model. This diagram il-
lustrates how information flowed through the model, which consisted of one in-
put layer, two hidden layers, and two output layers. By simultaneously model-
ing all types of reactivity, the model was able to transfer knowledge between re-
lated tasks, thereby improving performance substantially over independent mod-
els. The model computed atom-level predictions for reactivity to each of four nu-
cleophilic targets: cyanide (ARSCN), DNA (ARSDNA), GSH (ARSGSH), and pro-
tein (ARSPRO), collectively referred to as atom reactivity scores (ARS). Addition-
ally, the model computed molecule reactivity scores (MRS): MRSCN, MRSDNA,
MRSGSH, and MRSPRO, which predicted the chances of a molecule’s reactivity to
each of the four nucleophilic targets, respectively. From the structure of an input
model χ, 15 molecule-level and 194 atom-level descriptors were calculated. Some
chemically related descriptors, such as neighbor atom identities, were grouped in
the first hidden layer (with 30 nodes). Grouped and ungrouped nodes were in-
putted into the second hidden layer (with 17 nodes), which outputted four atom-
level scores. Finally, for each of the four nucleophilic targets, the respective MRS
was computed from the top five ARS for each of the four nucleophilic targets,
corresponding to the scores of the five atoms predicted within a molecule to be
the most reactive to each nucleophile, as well as all molecule-level descriptors.
The diagram is condensed and displays one representative molecule input node,
five atom input nodes, and two nodes for each hidden layer. The molecule input
node is a chemical structure; all other nodes are vectors of real numbers computed

from nodes or layers from which there are incoming connections.
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Chapter 4

Modeling Epoxidation of Drug-like molecules

with a Deep Machine Learning Network

Reprinted (adapted) with permission from Hughes, T. B., Miller, G. P., and Swamidass, S. J.

(2015). Modeling Epoxidation of Drug-like Molecules with a Deep Machine Learning Network.

ACS Central Science 1(4), 168-180. The original article was published at https://pubs.acs.org/doi/10.1021/acscentsci.5b00131

Permission requests related to adapted or original material should be directed to the ACS.

4.1 Introduction

Drug discovery and development involves significant efforts to identify safe and efficacious

drugs; nevertheless, unanticipated toxicity and adverse drug reactions do occur and cause ap-

proximately 40% of drug candidates to fail.[10] Frequently, these harmful outcomes are linked

to the formation of electrophilic metabolites that covalently bind to proteins or DNA and, in

some cases, elicit an immune response in susceptible patients [19, 46, 47, 48, 49] One of the

most common types of reactive metabolites are epoxides, the subject of this study.

Epoxides are three membered cyclic ethers and are often highly reactive due to ring ten-

sion and polarized carbon-oxygen bonds.[144, 145, 146, 147, 148] Epoxides are formed by

cytochromes P450 acting on aromatic or double bonds,[149, 150] and these epoxidation reac-

tions comprise around 10%[151] to 15%[152] of all bioactivation reactions. Biological defense
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mechanisms to epoxides, include glutathione conjugation and cleavage by epoxide hydrolase,

offer only partial protection.[148, 144, 153, 154] Glutathione can be depleted,[155, 156] and

certain products of glutathione conjugation[154] and epoxide hydrolase [157, 158] are them-

selves toxic.

Epoxide metabolites often drive toxicity for drugs, and accurate strategies for anticipating

the formation of epoxides are critical in drug development. Knowledge of epoxide formation

aids assessment of drug candidates. Furthermore, the identity of the specific bond in a molecule

undergoing epoxidation, its site of epoxidation (SOE), could enable rational modification of

the molecule to reduce risk of reactive metabolite formation. An example of how this knowl-

edge can lead to drugs with improved safety is illustrated by carbamazepine (Figure 4.1). The

metabolism of this anti-epileptic drug forms carbamazepine-10,11-epoxide. Carbamazepine

metabolism can also form an iminoquinone,[159] but the epoxide’s formation is the focus of

this study and more correlated with adverse reactions.[160, 161, 162] The molecular mech-

anism for this response involves reactions between the epoxide and proteins to form adducts

[163]. However, the epoxide formation can be blocked by modifying carbamazepine’s SOE.

For example, oxcarbazepine[160] or eslicarbazepine are analogues of carbamazepine that are

no longer epoxidized.[162] While oxcarbazepine and eslicarbazepine were not prospectively

designed in order to reduce epoxide formation, they demonstrate how small molecular changes

can significantly impact toxicity caused by epoxide metabolites. These analogues retain the

same mechanism of action as carbamazepine, yet have a lower incidence of adverse effects

because they prevent the formation of epoxides.[164, 162]

A number of studies, including those by our group, have established that computational

methods can predict the sites at which molecules are metabolized.[50, 51, 52, 36, 53, 54] A

shortcoming of those approaches has been the lack of predictions for the actual metabolites gen-

erated by those reactions. Cytochromes P450 catalyze many different types of oxidative reac-

tions, including commonly observed hydroxylations.[165, 149, 52] While several cytochromes

P450 site of metabolism models are reported in the literature, to the best of our knowledge, none
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of those models specifically identify SOEs in molecules. Instead, all existing methods only re-

port which atoms undergo oxidation, without distinguishing the specific type of reaction—such

as epoxidation or hydroxylation—or the resulting modification to the structure.

In this study, we construct an epoxidation model—based on the structural data of several

hundred diverse molecules—that is successful at three key objectives. First, the model accu-

rately predicts SOE within epoxidized molecules; these SOE predictions can be used to direct

structural modifications to drug candidates. Second, the model distinguishes SOE from sites of

sp2 hydroxylation (SOH), a key negative control. Both SOEs and SOHs are oxidized by P450s,

and we expect a useful model to correctly identify which of these oxidations give rise to epox-

ides. In contrast, commonly reported P450 site of metabolism models will not distinguish these

two cases and report both as sites of metabolism. Third, the model identifies which molecules

are metabolized into epoxides, separating these molecules from closely related molecules that

are not epoxidized. This enables rapid screening of drug candidates for molecules that are

potentially toxic due to epoxidation.

4.2 Methods

4.2.1 Epoxidation Training Data

We mined a large, chemically diverse training data set from the Accelrys Metabolite Database

(AMD), which includes a collection of metabolic reactions drawn from the literature.[168] A

total of 702 reactions were extracted, each of which takes place in humans, human cells, or

human microsomes, and is classified as epoxidation. Due to the short half-life of many epoxides,

however, some product molecules do not explicitly contain an epoxide. Instead, an epoxidation

product may be a dihydrodiol or a DNA, glutathione, or protein conjugate (Figure 4.2).[169,

170] An automated labeling algorithm used these motifs to label SOEs on the starting molecule

of each reaction.
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FIGURE 4.1: Adverse drug reactions are often caused by reactive metabolites. For
example, carbamazepine is metabolized by cytochromes P450 to carbamazepine-
10,11-epoxide. Carbamazepine metabolism can also form an iminoquinone [159]
, but the epoxide’s formation is the focus of this study and more correlated with
adverse reactions [160, 161, 162]. The epoxide is electrophilically reactive and
covalently binds to nucleophilic sites within proteins. The resulting adduct serves
as a hapten complex and elicits an immune response. This mechanism is thought
to be responsible for many carbamazepine adverse reactions[166, 167]. This site

of epoxidation is circled on carbamazepine.
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In this study, we defined a SOE as the bond between the two carbons to which an epox-

ide forms and identified these bonds in depictions by circling the two adjoining atoms. When

bonds were topologically equivalent to observed SOEs, as identified using the Pybel python

library, they were themselves labeled as SOE.[82] Duplicate starting molecules were identified

by canonical SMILES, and merged into a single training example with all observed SOEs la-

beled. The final data set included 389 epoxidized molecules, each with its SOEs labeled. These

epoxidized molecules included 411 aromatic bond SOEs and 168 double bond SOE. Addition-

ally, 20 single bond SOEs were included; the labeling of single bonds as SOEs is likely due to

rearrangements or intermediates—absent from the database—allowing epoxidation to occur at

an aromatic or double bond.

We also identified structurally similar but non-epoxidized molecules. These target com-

pounds were mined from the reaction network for each previously identified epoxidized molecule.

This strategy ensured the inclusion of the metabolic parent and sibling molecules so that a robust

distinction between molecules undergoing epoxidation and those that are not became possible.

After excluding molecules already classified as epoxidized, the remaining 135 molecules were

marked non-epoxidized. Each one was metabolically studied and chemically similar to an epox-

idized molecule in the data set.

Our license for the AMD data did not allow us to disclose the structures of the full data set.

However, all molecule registry numbers are included in the Supporting Information, and this is

sufficient data to rebuild the database and reproduce our results.

4.2.2 Hydroxylation Negative Control Data

As discussed in the Introduction section, sp2 sites can be either epoxidized or hydroxylated. An

epoxidation model must be validated using hydroxylation data as a negative control to distin-

guish the epoxidation model from a general oxidation model. An epoxidation model should

rank SOEs above SOHs, whereas an oxidation model would rank them approximately equally.

For use as negative controls, we also extracted SOHs from the AMD. Both SOHs and SOEs are
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acted on by cytochromes P450, but the epoxides formed from SOEs are more likely to be toxic.

To build a hydroxylation test data set, 3000 human hydroxylation reactions were randomly sam-

pled from the AMD. We filtered out sp3 hydroxylations, and any SOHs that included non-carbon

atoms, both of which are easily distinguishable from epoxidations. After these filtrations, 1105

hydroxylations remained. Duplicate starting molecules were identified by canonical SMILES,

and merged by labeling all known SOHs for each molecule. This final data set included 811

molecules, each with atoms labeled if they are SOHs, and bonds adjacent to these atoms labeled

as bonds of hydroxylation.

4.2.3 Descriptors

Our approach used information encoded in descriptors for each bond to assess its susceptibility

to epoxidation. Each bond was associated with a total of 214 numerical descriptors, includ-

ing atom-level, bond-level, and molecule-level descriptors. Descriptors were calculated by in-

house software that took as input SDF files with explicit hydrogens and 3D coordinates created

by Open Babel.[68] The majority of our descriptors were atom-level descriptors previously de-

veloped for the XenoSite metabolism model[50] and the XenoSite reactivity model.[108] Each

bond contained 89 descriptors from its “left" atom and its “right" atom. To prevent represen-

tation bias due to atom ordering, left and right atom assignment was randomized on a bond-

by-bond basis. Twenty-three molecule-level descriptors, reported in our prior work, were also

computed and used by the network to make predictions.

We supplemented these atom and molecule descriptors with bond descriptors developed

specifically to capture the chemical properties of bonds. These 13 new bond descriptors are

summarized in Table 4.1. There were two types of bond descriptors. First, topological bond

descriptors summarized information from the molecular 2D structure. Second, quantum chem-

ical descriptors were calculated from self-consistent field computations by MOPAC, a semi-

empirical quantum chemistry modeler, utilizing an implicit solvent model and the PM7 force

field.[73, 74]
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FIGURE 4.2: In the database, each epoxidation reaction acting on a site of epox-
idation (abbreviated SOE and circled) forms an epoxide, dihydrodiol, or a conju-
gate adjacent to a hydroxylation. For example, the epoxidation reaction of nevi-
rapine forms an epoxide (top),[171] of N-desmethyl triflubazam forms a dihydro-
diol (middle),[172] and of benzo(a)pyrene forms a DNA conjugate adjacent to a
hydroxylation (bottom).[170] The first case explicitly records the epoxide, while
the other two record a tell-tale signature of a transient, reactive epoxide that is
not directly observed.[169, 170] A total of 702 human epoxidation reactions were
identified in the Accelrys Metabolite Database. An automated labeling algorithm

labeled SOEs on the starting molecule of each reaction based on these motifs.
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Topological Bond Descriptors

Single Bond binary value indicating whether bond is a single bond
Aromatic Bond binary value indicating whether bond is an aromatic bond
Double Bond binary value indicating whether bond is a double bond
Conjugated Bond binary value indicating whether bond is conjugated
Triple Bond binary value indicating whether bond is a triple bond
Topologically Equivalent number of topologically equivalent bonds in the same molecule

Quantum Chemical Bond Descriptors

Bond Length distance between the two atoms of a bond
σs occupancy interaction of s-orbital σ bond electrons
σp occupancy interaction of p-orbital σ bond electrons
πp occupancy interaction of p-orbital π bond electrons
σs-σp occupancy interaction of s-orbital σ bond and p-orbital σ bond electrons
σs-πp occupancy interaction of s-orbital σ bond and p-orbital π bond electrons
σp-πp occupancy interaction of p-orbital σ bond and p-orbital π bond electrons

TABLE 4.1: .
Several bond descriptors were developed for the epoxidation model, using both topological and
quantum chemical information.

In total, 214 numbers were used to describe each bond; 89 atom descriptors for the “left”

atom, 89 for the “right” atom, 23 molecule descriptors, and 13 bond specific descriptors.

4.2.4 Combined Atom- and Molecule-Level Epoxidation Model

We built a model for bond and molecule epoxidation using a deep neural network with one

input layer, two hidden layers and two output layers (Figure 4.3). The top-level output layer

computed molecule-level predictions called the molecule epoxidation scores (MES); the next

output layer computed bond-level predictions called the bond epoxidation scores (BES). Here,

the term “deep network" does not mean a deep autoencoder network as is being increasingly

used.[173] Instead, we mean a deep convolution network, with many more layers than a stan-

dard network and extensive weight sharing between replicates of the BES network.[174] This

network was trained in two stages.

First, we trained the bond-level network to compute accurate BES values. In this training,
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each bond within a molecule was considered a possible SOE. Each bond had a vector of numbers

(descriptors), with each entry of the vector describing a chemical property of that bond. The data

set was a matrix, structured as one column per descriptor, and one row per bond. A final binary

target vector labeled experimentally-observed SOEs with a 1. The weights of the network were

trained using gradient descent on the cross-entropy error, so that SOEs scored higher BES than

other bonds. These BES ranged from zero to one, representing the probability that a bond was

a SOE.

Second, the molecule-level output layer was trained to compute MES values. Several ver-

sions of this output layer were considered, including another multilayer neural network, a lo-

gistic regressor, and a max layer that computed the MES as the maximum BES observed in the

molecule. The logistic regressor and neural network took as input the top five BES, as well as

all molecule-level descriptors. As we will see, both the neural network and the logistic regres-

sor offer better scaled predictions with higher classification performances than the simpler max

layer.

4.3 Results and Discussion

The following sections study the classification performance and inner workings of the epoxida-

tion model. First, we evaluated the ability of BES to predict the SOE of epoxidized molecules.

Second, we considered the credibility of the model by analyzing which descriptors are most

important to the model’s performance. Third, we increased resolution on the quality of the

model predictions by calculating classification performance on aromatic and double bonds in-

dividually. Fourth, we asked whether BES distinguish SOEs from sites of sp2 hydroxylation,

because both epoxidation and sp2 hydroxylation are catalyzed by P450s, but have significantly

different implications for toxicity. Fifth, we tested how well MES separated epoxidized and

non-epoxidized molecules. Finally, we studied how the model could direct drug modifications

to reduce toxicity of known drugs.
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FIGURE 4.3: The structure of the epoxidation model. This diagram shows how
information flowed through the model, which was composed of one input layer,
two hidden layers and two output layers. This model computed a molecule-level
prediction for each test molecule as well as predictions for each bond within that
test molecule. From the 3D structure of an input molecule, 23 molecule-level and
191 bond-associated descriptors were calculated. These inputs nodes are inputted
into the first hidden layer (with 10 nodes), which outputs a bond epoxidation
score (BES) for each bond in the molecule. The BES quantifies the probability
that the bond is a site of epoxidation. The top five BES, and all molecule-level
descriptors, flow into the second hidden layer (with 10 nodes), which outputs a
single molecule epoxidation score (MES) for the input molecule, reflecting the
probability that the molecule will be epoxidized. For conciseness, the diagram is
abbreviated and only shows two nodes for each hidden layer, one molecule input
node, two atom input nodes (for each atom associated with the bond) and one
bond input node. The actual model had several additional nodes in the input and

hidden layers.
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4.3.1 Accuracy in Identifying Sites of Epoxidation

An important goal for designing drugs less prone to metabolic activation is to accurately iden-

tify the site (bond) within a molecule that undergoes epoxidation. In our study, SOE predictions

gave a specific hypothesis about the mechanism of a molecule’s toxicity. Furthermore, knowl-

edge of the SOE lays a strong foundation for guiding the modification of a molecule to make it

less susceptible to epoxidation and thus less likely to cause protein and DNA adducts that lead

to toxic effects. There are currently no other published computational methods that specifically

predict SOEs among a diverse set of molecules.

The trained model predicts SOEs by computing a BES for each bond in a test molecule.

These scores ranged between zero and one and reflected the probability that an epoxide will

form on the two atoms within the corresponding bond. If accurate, BES should discriminate

between SOEs and all other bonds within epoxidized molecules.

We assessed the generalization performance of our model using a cross-validation protocol.

In this procedure, we separated molecules into metabolically related groups that represented

metabolic networks in the database. Each group was comprised of epoxidized molecules and

all parent and sibling molecules of those epoxidized molecules. One by one, each group of

molecules derived from these networks was withheld from the training set. The rest of the

molecules was used to train a model and make predictions on all the molecules present in the

group left out of the training process. In each cross-validation fold, the model predictions for

test molecules then did not depend on training data from identical or closely related molecules

and thus provided a rigorous evaluation of the model. In this way, BES predictions were made

on all molecules in the training data.

We used two metrics to quantitatively measure the classification performance of the cross-

validated BES. First, we computed the “average site AUC" by calculating the area under the

ROC curve (AUC) for each molecule and quantified the whole data set performance by av-

eraging the AUCs for each molecule in the data set. Second, we used the “top-two” metric,

which is often used in site of metabolism prediction.[50, 122, 123] By this metric, a molecule
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was considered correctly predicted if any of its observed SOEs were predicted in the first- or

second-rank position by a given model. Both metrics measure the separation of known SOEs

from all other bonds within each molecule known to undergo epoxidation.

The BES reported by the neural network model accurately identified SOEs with an average

site AUC performance of 94.9% and a top-two performance of 83.0% (Figure 4.4). The neural

network outperformed a simpler logistic regressor model (BES[LR] in the figure), which had

an average site AUC performance of 93.7% and a top-two performance of 80.5%. The neu-

ral network was significantly more accurate than the logistic regressor, reducing the error by

19.0% (average site AUC) and 12.8% (top-two). This improvement is significant according to a

paired t-test, with p-values of 0.000454 (average site AUC) and 0.0328 (top-two).[175] This im-

provement indicated non-linearity in the epoxidation data that cannot be taken into account by

a logistic regressor. This finding justified the use of the more complex neural network, and was

consistent with a previous study on site of metabolism prediction [83], as well as our previous

work on sites of glutathione reactivity. [108]

This model for epoxidation is the first of its kind, and thus there are no other published

models by which performance can be compared. Instead, we tested the performance of each raw

descriptor to provide a baseline for comparison. Each descriptor was treated as a very simple

model limited to a single chemical attribute to predict SOE. The best performing descriptor was

πp occupancy; however, this descriptor significantly underperformed our model, with accuracies

of 90.8% (average site AUC) and 72.8% (top-two). Using machine learning to collectively

consider many chemical attributes classified SOEs more accurately than any attribute considered

in isolation.

4.3.2 Descriptors Driving Bond Epoxidation Score Performance

We identified which descriptors the model relied upon to further assess the sensibility of the

model. The contribution of individual descriptors for identifying SOEs was measurable with

a permutation sensitivity analysis. [84, 108] First, a baseline model was built using the entire
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FIGURE 4.4: Bond epoxidation scores accurately (BES) identify sites of epoxi-
dation (SOEs). Top left, for each prediction method, average site AUC was com-
puted for 389 molecules extracted from the Accelrys Metabolite Database with
their SOEs labeled. This metric reflected how often SOEs were ranked above
other sites within these molecules. Bottom left, top-two classification perfor-
mance was computed, by which a molecule was considered correctly predicted
if any of its observed SOEs were predicted in the first- or second-rank position.
By both metrics, the cross-validated predictions generated by a neural network
(BES) outperformed the predictions of a logistic regressor (BES[LR]). The clas-
sification performance of BES also exceeded that of all raw descriptors, the five
best of which are included in each panel. Right, examples from the data set are
visualized with their predictions[176, 177, 178] In the bar graph axis, the two-
center electron-nuclear attraction energy is abbreviated as electron-nuclear attrac-
tion. For each molecule, the colored shading represents BES, which range from 0

to 0.73. Each experimentally-observed SOEs is circled.
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training data set, and its performance was calculated on this training data. The average site AUC

performance was used for the sensitivity analysis, because it most closely measures performance

in the intended use case. It quantifies how accurately the model identifies the correct SOEs

within epoxidized test molecules, relative to all other potential sites, on a molecule-by-molecule

basis. Reassuringly, very similar results from the sensitivity analysis are obtained using other

metrics (data not shown). Next, the influence of individual descriptors, as well as groups of

descriptors, was measured by recording the drop in the model’s performance on the training

data when the descriptor values were shuffled randomly. For each descriptor set, the shuffling

procedure was performed 10 times, and the mean performance drop reported. Descriptors more

heavily relied upon by the model were associated with higher performance drops.

As seen in Figure 4.5, the model primarily relied on quantum chemical bond descriptors.

Shuffling all quantum chemical bond descriptors (listed in Table 4.1) as a group resulted in a

performance drop of 10.3%. The most important individual descriptor was πp occupancy; shuf-

fling of this descriptor was associated with a performance drop of 4.8%. This observation was

consistent with πp occupancy predicting SOEs reasonably well by itself, with the best perfor-

mance among all lone descriptors (Figure 4.4). Heavy reliance on πp occupancy by the model

is logical given its role in epoxidation. In fact, a π-complex is the initial intermediate formed

during epoxidation by cytochromes P450.[169, 179, 180] Consistent with this mechanism, this

sensitivity analysis is consistent with critical importance of πp in forming the intermediate π-

complex. While reasonable, πp occupancy has never been proposed as a way to identify SOE.

The second most important descriptor was SMARTCyp reactivity, with a performance drop

of 2.5%. The relevance of SMARTCyp reactivity is readily understandable, because it predicts

the sites of cytochromes P450 metabolism of drug-like molecules.[52] The remaining most im-

portant individual descriptors were topological. Previous studies by our group found topological

descriptors to be important for many different types of chemical modeling.[108] Topology en-

compasses fundamental information, such as atom element identity or bond type, which has
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FIGURE 4.5: The importance of specific descriptors to the bond epoxidation
model. A permutation sensitivity analysis quantified the importance of descriptors
for the final trained site of epoxidation model. Left, the 10 most important indi-
vidual descriptors in decreasing order of importance from top to bottom. Right,
the importance of four broad descriptor categories. The graph shows the model
performance drop associated after permuting the associated descriptor values, av-

eraging over 10 iterations.

been useful for finding many different types of patterns. Overall, the results of sensitivity anal-

ysis indicated that the model logically relied upon descriptors relevant to epoxidation.

4.3.3 Accuracy in Identifying Aromatic and Double Bond Sites of Epoxi-

dation

Ideally, the model should be able to distinguish SOEs from all other bonds across the entire

dataset. This is not assessed by the average site AUC and top-two metrics used in prior sections,

which only compare BES predictions on a molecule-by-molecule basis. In contrast, global

AUC, computed across all atoms in the dataset does measure this behavior. The model’s BES is

very accurate across the whole dataset, with a global AUC of 95.6%. The logistic regressor is
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FIGURE 4.6: Bond epoxidation scores (BES) accurately identified both aromatic
and double bond sites of epoxidation. Across the 389 molecules that underwent
epoxidation, the model accurately separated epoxidized and non-epoxidized aro-
matic bonds (left) and double bonds (right). Using cross-validated scores, clas-
sification performance was quantified by computing the AUC of the model on
either the aromatic or the double bonds in the full data set. The AUC of the model
was compared with similarly computed AUCs for individual descriptors. In both

cases, the model BES outperformed all individual descriptors.

slightly less accurate with a global AUC of 94.5%, but this performance drop is significant with

a p-value of 10−8 computed with a paired t-test [175]. Similarly, the best performing descriptor

is the πp occupancy with a global AUC of 88.4%, which is also a significant performance drop

from the BES with a p-value approaching zero.

We further assessed the model’s performance by ensuring it was able to distinguish SOEs

from either aromatic and double bonds (Figure 4.6). These tests excluded (for example) single

bonds, which are very rarely epoxidized and might artificially inflate performance if included

in performance calculations. An aromatic bond AUC was computed by first extracting all aro-

matic bonds within epoxidized molecules, and then calculating AUC. A double bond AUC was

calculated similarly. Encouragingly, BES were very accurate in identifying both epoxidized aro-

matic bonds (92.5%) and epoxidized double bonds (95.1%) and also substantially outperformed

all individual descriptors.
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4.3.4 Distinguishing Epoxidation from Hydroxylation

Another key task was to accurately SOEs from SOHs, because epoxidation and hydroxylation

may have significantly different implications for toxicity and downstream metabolism. Gen-

erally, SOEs are not obviously distinguishable from sites of sp2 hydroxylation, because ei-

ther epoxidation or hydroxylation may occur at sp2 atoms. While several studies have already

demonstrated that computational models can predict the sites where molecules are oxidized[50,

51, 52, 36, 53, 54], they do not predict if the oxidation is an epoxidation or a hydroxylation.

For our study, we tested whether BES distinguished SOEs from SOHs. We initially built a

hydroxylation data set of 3000 hydroxylation reactions that were randomly sampled from the

AMD resource, as described in the Materials and Methods. This final data set included 811

molecules, in which atoms were marked if they are sites of sp2 hydroxylation.

In this study, a SOE was defined as a bond between the two carbons of the final epoxide,

whereas a SOH is usually defined as the single atom targeted for hydroxylation. However, our

model only makes predictions on bonds. So, for validation purposes, we labeled the bonds con-

necting to hydroxylated atoms as SOHs and asked whether these sites receive lower scores than

SOEs. Only bonds between two sp2 carbon atoms were included. Each of the 811 molecules

in the hydroxylation data set were tested by our model, and the predictions for each bond of

hydroxylation extracted. As previously explained, the hydroxylation reactions were sampled

randomly from our database. Therefore, molecules subject to both hydroxylation and epoxida-

tion data sets were included. Cross-validated predictions were used for molecules that were also

part of the training set. Within these molecules, it was possible for the same site to be subject

to both epoxidation and hydroxylation. These sites were labeled as SOEs.

We investigated whether these SOEs were distinguishable from SOHs. Encouragingly, BES

separated SOEs from SOHs with an AUC of 83.3% (Figure 4.7). In contrast, the best performing

raw descriptor among all tested was πp occupancy, with an AUC of only 77.0%. This is a critical

result because it demonstrates that the model can distinguish identify SOEs from bonds that are

also acted on by P450s, but not epoxidized.
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FIGURE 4.7: Bond epoxidation scores (BES) distinguish sites of epoxidation
(SOEs) from sites of hydroxylation (SOHs). Top, each prediction method was
assessed by its ability to separate SOEs from SOHs. The cross-validated scores
on the SOEs of 389 epoxidized training molecules were compared with the SOH
scores on 811 test molecules with their sites of sp2 hydroxylation labeled. The
scores for each SOE and SOH were extracted and performance quantified by
computing the AUC. The classification performance of the model was then com-
pared with similarly computed AUCs for individual descriptors. The model’s
BES outperformed all individual descriptors. Right, from top to bottom are
1-nitropyrene[181] and ketoconazole[182], example molecules subject to both
epoxidation and hydroxylation. Each SOE is indicated by solid circles, and SOHs
are indicated by dashed circles. The colored shading indicates BES (which range

from 0 to 0.45).
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4.3.5 πp Orbital Occupancy and Epoxidation

One striking result from these experiments is the consistently high importance of πp occupancy

in identifying SOEs. Although, it has been known for a long time that a π-complex is the initial

intermediate formed during epoxidation by cytochromes P450,[169, 179, 180] no published

literature has suggested πp occupancy is a marker for SOEs or quantitatively assessed its ability

to identify SOEs.

To further investigate this observation, which may provide mechanistic clues, we studied

the distribution of πp occupancy and BES as a function of epoxidation and bond type (Figure

4.8). From these distributions, it seems immediately clear that SOEs have higher πp occupancy

than non-epoxidized sites. However, πp occupancy is also strongly correlated with the type of

bond; and the optimal cutoff between SOEs and non-epoxidized sites is different for double

and aromatic bonds. This result suggests that πp occupancy may not be the direct driver of

the π-intermediate’s formation. Instead, πp occupancy may be a proxy for another factor that

we we do not directly capture in other descriptors. One possible factor may be the ability of

neighboring groups to donate πp electrons, but directly testing this hypothesis is beyond the

immediate scope of this study and will be left for future work.

These distributions also highlight another key feature of our approach; the model’s output is

well-scaled and can be interpreted as a probability. In other words, bonds with a BES score of

0.8 have approximately a 80% chance of being epoxidized. In contrast, πp occupancy, though

predictive, is not scaled to be a SOE probability.

4.3.6 Accuracy at Identifying Molecules that Undergo Epoxidation

We also assessed the ability of our model to separate epoxidized from non-expoxidized molecules.

With high enough classification performance, our model might be a useful tool to rapidly screen

drug candidates for potentially problematic molecules.[144, 145, 146, 147, 148]

In this assessment, we trained the model for epoxidation to distinguish between those molecules

that underwent epoxidation and those that did not. We included in our training data set molecules
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Double Bonds Aromatic Bonds 

FIGURE 4.8: Bond epoxidation scores (BES) represent a well-scaled probability
that a site will be epoxidized. Across the 389 molecules that underwent epoxida-
tion, the normalized distribution of BES (bottom) and πp occupancy (top) across
both aromatic bonds (left) and double bonds (right) are displayed for all epox-
idized and non-epoxidized sites, indicated by the shaded bars. The solid lines
represents the percentage of bonds that are epoxidized (using non-normalized fre-
quencies). The diagonal dashed lines on the bottom plots indicates a hypothetical
perfectly scaled prediction. This demonstrates that BES is much better scaled than

πp occupancy.

79



Chapter 4. Modeling Epoxidation of Drug-like molecules with a Deep Machine Learning

Network

that are structurally closely related to epoxidized molecules, but are not themselves epoxidized

in our database. After training the model on the SOE level, we tested several methods of sep-

arating epoxidized and non-epoxidized molecules (Figure 4.9). In this case, classification per-

formance was quantified by measuring the AUC across the entire data set.

The simplest method for predicting molecule epoxidation was to take the cross-validated

maximum BES score within each molecule. Across the entire data set, this approach yielded

MES that separate epoxidized and non-epoxidized molecules with an AUC of 78.6%. The

addition of a training step to input the top five BES and molecule-level descriptors into a logistic

regressor or neural network slightly improved classification performance. The cross-validated

scores outputted by a logistic regressor (MES[LR] in the figure) had a higher AUC of 78.9%

and those of the neural network (MES[NN]) had an AUC of 79.3%. A false positive rate paired

t-test[175] indicated that MES[NN] was not significantly better than max [BES] (p-value 0.14)

or MES[LR] (p-value 0.19).

However, MES[NN] provided a better scaled prediction than either max [BES] or MES[LR],

as demonstrated by the reliability plots in Figure 4.10. The neural network closely approximated

a perfectly well-scaled prediction, with an R2 value of 0.971, compared to 0.956 for the logistic

regressor or 0.889 for max [BES]. The neural network’s reliability plot is superior to that of the

logistic regressor, not only due to the higher R2 value, but also because it assigns significantly

more non-epoxidized molecules low scores, and epoxidized molecules high scores, evidenced

by the relative densities in Figure 4.10.

Nevertheless, choosing between the logistic regressor and neural network is debatable.

The logistic regressor offers a simpler model structure, whereas the neural network provides

a slightly higher classification performance and better scaled prediction. Going forward, we

decided to use the neural network, but we believe that the logistic regressor could also be used

with similar results. For the rest of the study, we define MES to mean MES[NN].

The significantly lower AUC of the molecule-level MES compared to the site-level BES was

a consequence of the lower quality of the molecule-level data, which included “non-epoxidized"
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molecules. This was based on our assumption that molecules were non-epoxidized if they were

not subject to any epoxidation reaction in our literature-derived database. While necessary, this

assumption was not strong evidence that molecules were not subject to epoxidation, because

not all studies look for epoxidation products. As a consequence, some epoxidizable molecules

were incorrectly labeled as non-epoxidized in our data. In contrast, our site-level epoxidation

data is much less noisy, because it is drawn from experiments detecting epoxidation, and this is

reflected in the higher site-level performance.

Nevertheless, MES separated epoxidized and non-epoxidized molecules with 79.3% AUC.

This result is consistent with our presumption that the most of the molecules labeled as non-

epoxidized, are truly not epoxidized. If epoxidized and non-epoxidized molecules were drawn

from the same chemical distribution, it would not be possible to separate them with any accu-

racy. Furthermore, MES outperformed all molecule-level descriptors in terms of classification

performance. This result demonstrated that our model offers an informative prediction on the

molecule level. The best performing descriptor was the negative of the total number of single

bonds in a molecule, yet its AUC was only 72.3%, considerably worse than MES. In contrast to

site-level epoxidation, for which πp occupancy was quite predictive (Figure 4.4), maximum πp

occupancy predicts molecule epoxidation with only 57.7% AUC. The model MES much more

accurately predicted which molecules will be epoxidized than any single chemical descriptor.

4.3.7 Case Studies

Knowledge of the SOE of a drug or drug candidate can direct rational drug design to avoid the

formation of reactive metabolites and reduce the risk of adverse drug reactions. Case studies

provide excellent examples of how our model could enable the development of safer drugs

(Figure 4.11).

Carbamazepine is an effective drug to treat epilepsy; however, it can cause severe adverse

reactions mediated by reactive metabolites. Carbamazepine metabolism can form several re-

active metabolites, including an iminoquinone,[159] but the epoxide’s formation is the focus
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FIGURE 4.9: Molecule epoxidation scores accurately identify molecules subject
to epoxidation. Left, several prediction methods were compared by their abil-
ity to identify molecules that underwent epoxidation. The data set included 524
molecules, 389 of which were epoxidized and 135 structurally similar but not
epoxidized molecules. Model performance was measured by computing the AUC
across epoxidized and non-epoxidized molecules (Molecule AUC), using cross-
validated scores. By this metric, the best approach inputted the top five bond
epoxidation scores (BES) and all molecule-level descriptors into a neural network
(MES[NN]). This slightly outperformed the simpler methods of using a logis-
tic regressor (MES[LR]) or merely taking the maximum bond epoxidation score
(max [BES]). While this improvement is not statistically significant, on the basis
of the reliability plots in Figure 4.10, the neural network (MES[NN]) was chosen
to calculate molecule epoxidation scores (MES) for this study. Right, example
pairs of epoxidized and closely related non-epoxidized molecules are visualized.
From left to right, top to bottom: resveratrol (MES: 0.79)[183], quinalbarbitone
(MES: 0.88)[184], glucuronidated resveratrol (MES: 0.37)[185], and thiopental
(MES: 0.60).[186] Each experimentally-observed site of epoxidation is circled.
For each molecule, the colored shading represents BES, which range from 0 to

0.76.
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FIGURE 4.10: MES[NN] offers a well-scaled probabilistic prediction of molecule
epoxidation. The bar graphs plot the normalized distributions of max [BES],
MES[LR], and MES[NN] across 525 epoxidized and non-epoxidized molecules.
The solid lines plot the percentage of molecules that are epoxidized (using non-
normalized frequencies) in each bin. The diagonal dashed lines indicate a hypo-
thetical perfectly scaled prediction. MES[NN] offers the best scaled prediction
of the three methods, with a strong correlation to a perfectly scaled prediction.
This means that the MES[NN] is interpretable as the probability that a molecule

is epoxidized.

of this study and more correlated with adverse reactions.[160, 161, 162] Analogues of carba-

mazepine that block the epoxidation have a lower incidence of adverse effects. Replacement of

the problematic double bond with a ketone yielded oxcarbazepine, which lacks the metabolic

activation to an epoxide and adverse events, yet retains similar efficacy.[164] Similarly, eslicar-

bazepine does not contain the problematic double bond, is no longer epoxidized at this position,

and also has a lower incidence of adverse reactions. [187, 162] The model correctly identifies

carbamazepine’s SOE. Furthermore, the model correctly identified two carbamazepine analo-

gous as less likely to be epoxidized: oxcarbazepine (MES: 0.38) and eslicarbazepine (MES:

0.20) compared with carbamazepine (MES: 0.88).

Furosemide is a commonly prescribed diuretic, but is prone to hypersensitivity reactions

and hepatotoxicity due to the epoxidation of its furan ring.[9] The model correctly identifies

this as a SOE. There are no close analogues of furosemide on the market. However, there are

three other drugs in the same class that containing the same sulfamyl-based active scaffold:

piretanide, bumetanide, and torasemide. None of these drugs contain the problematic furan, are

all predicted not to form epoxides (MES: 0.21, 0.19, and 0.21, respectively, compared with 0.94

for furosemide), and all are less prone to hypersensitivity driven reactions than furosemide.[9]
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The case of hepatotoxic sudoxicam and its non-hepatotoxic analogue, meloxicam, is a more

complicated.[9] Sudoxicam is a NSAID that was withdrawn from testing due to hepatotoxicity

caused by epoxidation of its thiazole ring; the unstable epoxide causes ring scission and forma-

tion of a reactive acylthiourea metabolite.[9, 158] This reaction pathway is suppressed by the

addition of a single methyl group to sudoxicam’s SOE. The resulting drug meloxicam is less

prone to epoxidation, although the epoxide still forms.[158] Instead, meloxicam is primarily

hydroxylated at the added carbon.[158] As a result, the reactive acylthiourea urea metabolite

forms less often, and consequently meloxicam is not hepatotoxic, despite being prescribed at a

similar dose to the hepatotoxic sudoxicam.[9, 158]

The model correctly predicts the SOEs of both sudoxicam and meloxicam, and assigns

them high MES of 0.95 and 0.96, respectively. However, the model does not identify meloxi-

cam as the less toxic molecule. This is exactly what we should expect, because both molecules

are epoxidized by P450s.[158] Meloxicam’s modification introduces an alternative hydroxyla-

tion pathway that reduces the amount of epoxide formed, and this change is responsible for

its reduced toxicity. This highlights the limitations of considering the epoxidation pathway in

isolation. A better risk assessment might combine epoxidation predictions with more com-

prehensive models of metabolism to predict if epoxides are a major metabolite. Building this

system is exactly our long-range goal, but beyond the scope of the current study.

Nevertheless, our findings provide a critical step in the right direction: the first reported

model that predicts the formation of reactive epoxides from drug candidates and the accurate

identification of the specific epoxidized bonds. As clear in both cases, carbamazepine and

sudoxicam, the model can be used to identify SOEs that can then be modified to make drugs

safer.
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FIGURE 4.11: .
The epoxidation model recognizes sites of epoxidation within drugs that can be modified to
reduce toxicity. The figure includes three groups of closely related drugs shaded by their
BES scores; the top three are prone to hypersensitivity reactions while their analogues are
not. The top three molecules and meloxicam are epoxidized and their sites of epoxidation
are circled.[160, 161, 162, 188, 189, 158] The model’s BES correctly identifies the SOEs in
these molecules. The model’s MES correctly identifies these molecules as epoxidized, with
higher scores than the non-epoxidized molecules. For the top three molecules, epoxidation is
the primary mechanism of their hypersensitivty.[9] Encouragingly, the two analogues of car-
bamazepine are correctly identified as non-epoxidized, and therefore non-hepatotoxic. This
demonstrates how the model could be used to identify less toxic analogues. Furosemide does
not have a close analogue on the market, but the model correctly identifies the furan ring as
problematic. The other diuretics with the same active scaffold, but without this furan, are less
toxic.[9] Identifying meloxicam as less toxic is a more difficult task and would require more
comprehensive metabolism modeling. Meloxicam is a safer analogue of sudoxicam because
an alternate hydroxylation pathway is introduced by the modification that out competes the
epoxidation pathway.[158]
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4.4 Conclusion

This study establishes a new system to predicting the formation of reactive epoxide metabolites.

The epoxidation model—trained on SOE data—identifies with 94.9% AUC performance the

SOEs within epoxidized molecules. The model also classifies epoxidized and non-epoxidized

molecules with 79.3% AUC . This method needs to be combined with additional tools to be

useful for predicting the toxicity of drugs. For example, while this model predicts the formation

of epoxides, it does not score the reactivity of these epoxides. Epoxide reactivity can vary

widely, with half-lives ranging from one second to several hours,[169] and this variation may

have significant implications for toxicity. To address this, we plan to combine this epoxidation

model with a model of reactivity already developed.[108] Furthermore, we will expand to model

quinone formation, another motif of potentially high reactivity that frequently causes adverse

drug reactions.[103, 190, 152] Ultimately, we envision a powerful model for predicting adverse

drug reactions that integrates metabolism models, reactivity models, and dosage information.

By accurately modeling epoxidation, this study provides a key piece of this ultimate goal.
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Chapter 5

Deep Learning to Predict the Formation of

Quinone Species in Drug Metabolism

Reprinted (adapted) with permission from Hughes, T. B. and Swamidass, S. J. (2017). Deep

Learning to Predict the Formation of Quinone Species in Drug Metabolism. Chemical Research

in Toxicology 30(2), 642–656. Copyright (2017) American Chemical Society.

5.1 Introduction

Unanticipated toxicity frequently causes drug candidates to be discontinued late in develop-

ment.[8] Furthermore, idiosyncratic adverse drug reactions (IADRs) are often detected only

after approval, causing significant morbidity and mortality.[98, 6] Around 75% of IADR cases

result in liver transplants or death.[14, 191] There is considerable evidence that many varieties of

drug toxicity—including IADRs—may be driven by a common mechanism: drug-metabolizing

enzymes bioactivate drugs into electrophilically reactive metabolites, which covalently bind to

sites within DNA or proteins.[31, 192, 193, 24] Frequently, DNA adducts are mutagenic, and

may interfere with transcription, replication, or regulation, causing gene dysfunction or initi-

ating cancer.[99, 100, 19] Likewise, protein adducts can disturb important biological activities

or engender adverse immune responses.[48, 19, 49] This study focuses on quinones, a major
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class of Michael acceptors, which are soft electrophiles[61] and the most common type of reac-

tive metabolites.[152] Quinone species, such as quinone-imines, quinone-methides, or imine-

methides, are commonly highly electrophilically reactive.[194] Over 40% of all known reactive

metabolites are quinones.[152] Quinone formation—the formation of quinones by metabolic

oxidation—is performed by cytochromes P450[9, 195, 196] and peroxidases.[24, 197, 198,

199] Quinone formation generally occurs in one or two metabolic steps, where the final step

is usually the co-reduction of a cytochrome P450’s catalytic iron by the substrate, thereby de-

hydrogenating and oxidizing the substrate into a quinone species.[200] For example, in a sin-

gle step both cytochromes P450[81] and peroxidases[201] convert acetaminophen to the toxic

metabolite N-acetyl-p-benzoquinone imine, which covalently binds to proteins (Figure 5.1).

In contrast, lumiracoxib requires two-steps to form a quinone. First, cytochromes P450 hy-

droxylate lumiracoxib, the product of which then forms a quinone after further metabolism by

cytochromes P450 or peroxidases.[9, 202, 203]

Detecting or anticipating quinone formation is critical for avoiding drug candidates early

in drug development that can form reactive metabolites. Experimental methods for detecting

quinone formation—most commonly incubation with glutathione—are well developed.[204]

However, these techniques require time and resources, which can be significant, especially

when considering thousands of candidates during the initial screening phase of drug devel-

opment. Moreover, some methods detect metabolic events that are inconclusive for quinone

formation—such as aromatic hydroxylation—because the product may not form a subsequent

quinone in the in vitro screens, which are often tuned to only generate one-step metabolites.

For example, buspirone undergoes aromatic hydroxylation but does not form a quinone (Fig-

ure 5.2). In contrast, after hydroxylation at a structurally similar motif, the analog nefazodone

does proceed to form a hepatotoxic quinone.[205, 206] An accurate computational method for

predicting both one- and two-step quinone formation pathways would be complementary to

experimental screens, and might identify otherwise undetected quinone formation risk.

Several studies demonstrated that computational methods can predict sites of metabolism.[50,
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FIGURE 5.1: Examples of one- and two-step quinone formation: the forma-
tion of a quinone by metabolic oxidation. The quinone (indicated by red ovals)
metabolites of acetaminophen and lumiracoxib cause hepatotoxicity due to for-
mation of a hapten complex with off-target proteins that triggers toxic immune
responses [9, 202, 203]. Acetaminophen’s conversion to the reactive quinone
N-acetyl-p-benzoquinone imine (NAPQI) illustrates one-step quinone formation,
and lumiracoxib’s conversion to lumiracoxib quinone-imine via the intermediate
4’-hydroxylumiracoxib demonstrates two-step quinone formation [9, 202, 203].
The quinone formation model encompasses both one- and two-step quinone for-

mation.
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active nefazodone quinone, thereby causing hepatotoxicity in some patients [205,
206]. In contrast, the analog buspirone does not form a quinone, despite undergo-
ing a comparable initial hydroxylation event [206]. A key goal of our model was

to accurately identify molecules that form quinones.
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51, 52, 36, 53, 54, 207] However, these methods do not predict the metabolic structures pro-

duced by these reactions, and 450s can alter the same site in different ways, each with dif-

ferent consequences to toxicity.[165, 149] In contrast, we recently published a computational

model that went beyond site of metabolism prediction to specifically predict the formation of

epoxides—the second most common type of reactive metabolites after Michael acceptors such

as quinones—which demonstrated the feasibility and utility of modeling the formation of spe-

cific reactive metabolites.[121]

In this study, we built the quinone formation model (Figure 5.3), which succeeded at two

crucial tasks. First, the model accurately predicted the specific atom pairs within molecules

that form quinones: their quinone-forming pairs (QPs). Knowledge of QPs can guide structural

modifications to reduce the chances of reactive metabolite formation. Second, the model dis-

tinguished quinone-forming and non-quinone-forming molecules. Molecule quinone formation

predictions can be used to quickly screen for molecules likely to form reactive metabolites, a

key toxicity risk.

5.2 Materials and Methods

5.2.1 Quinone Formation Training Data

From the literature-derived Accelrys Metabolite Database (AMD), we extracted an extensive

data set of chemically diverse metabolic reactions that form quinones. Overall, 576 reactions

were extracted, each observed in humans, human cells, or human microsomes. These reactions

consisted of 377 single-step quinone formation reactions and 199 two-step quinone formation

reactions. An automated algorithm used the structure of each quinone product to label the QP

on its metabolic parent, for one-step quinone formation, and its metabolic grandparent, for two-

step quinone formation. We use “metabolic parent" to refer to the starting molecule of a one-

step quinone formation reaction, and “metabolic grandparent" to refer to the starting molecule

of a two-step quinone formation reaction. Metabolic parents form quinones directly, whereas
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FIGURE 5.3: The network depicts how information propagated through the
model, which contained one molecule layer, one input layer, three hidden lay-
ers, and three output layers. From the structure of an input molecule, several
molecule-level, atom-level, and pair-level descriptors were calculated at the input
layer. The molecule- and atom-level descriptors flowed into the first hidden layer,
which outputted an atom quinone formation score (AQS) for each atom in the in-
put molecule. In this study, we defined a quinone-forming pair (QP) as the exact
pair of ring carbons that forms a quinone. To predict QP, the atom-level scores
of both atoms and the pair-level descriptors were presented to the second hidden
layer, which computed an pair-level quinone formation score (PQS). Finally, the
top three atom-level scores, the top three pair-level scores, and all molecule-level
descriptors were submitted to the third hidden layer, which calculated a molecule
quinone formation score (MQS). On the right, atom-level data is illustrated on
bottom (with atoms of quinone formation circled), pair-level data illustrated in
the middle (with a pair of atoms circled), and molecule-level data is illustrated
on top (with the quinone-forming molecule circled). The molecule input node
is a chemical structure, and all other circles are predictions ranging from 0 to 1.

Blocks are vectors of real numbers.
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metabolic grandparents form a quinone through an intermediate structure. Both metabolic par-

ents and grandparents were included in the training data. The results of the labeling algorithm

were manually inspected and corrected as necessary.

For this study, we defined a QP as the pair of ring carbons that forms a quinone. In depic-

tions, the atoms of these QPs are indicated by circles. When a pair of atoms was topologically

equivalent to an observed QP, it was itself labeled as a QP. Duplicate starting molecules were

merged into a lone training molecule with all observed QPs marked. The final data set included

359 quinone-forming molecules, each with its QPs labeled. Primarily, these QPs were found

in six-membered rings (Table 5.3). Excluding atoms shared between fused rings of different

sizes—such as the fused six- and seven-member rings of nevirapine in Figure 4—90.2% of

the QP atoms were in six-membered rings, compared to 8.6% and 1.2% for five- and seven-

membered rings, respectively.

Predicting which molecules will form quinones is a key goal of a useful model. There-

fore, the training data set also included molecules that not form quinones. To assemble these

molecules, first all metabolically studied molecules in human-relevant experiments were ex-

tracted from the AMD. Second, all molecules that contained a six-membered aromatic ring

were selected. Third, all molecules that formed quinones were filtered out, including quinones

that formed in multiple steps. This procedure yielded a pool of 11884 molecules that have been

studied in humans, human cells, or human microsomes, but have not been reported to form

quinones. From this pool, 359 (the same number of quinone-forming molecules) randomly se-

lected non-quinone-forming molecules were added to the training set, for a total of 718 training

molecules.

5.2.2 External Non-Quinone-Forming Test Sets

After removing the 359 non-quinone-forming molecules added to the training data, 11525 non-

quinone-forming molecules remained. From this pool, external test sets were similarly extracted

by randomly selecting 359 molecules for each test set. We repeated this process 20 times,
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thereby constructing 20 external test sets with 359 molecules apiece. All of these molecules

were withheld from model training, and were only evaluated by the final model.

5.2.3 Topological Descriptors

To predict quinone formation, the first step of our method assigned each atom a vector of

numbers—topological descriptors—which described chemical properties of that atom. Each

atom was assigned 390 numbers, including 375 atom descriptors and 15 molecule descrip-

tors. These descriptors were computed by in-house python software using the structure of each

molecule as input.[82] We used topological descriptors, previous versions of which have been

used for models of metabolism,[136, 50] reactivity,[208, 108] and epoxidation.[121] For this

study, we started with our most recent set of topological descriptors,[208] which we supple-

mented with several new atom descriptors for ortho, meta, and para substituents. A second

descriptor generation step assigned two descriptors to each pair of atoms: the connectivity dis-

tance between the atoms, and whether this distance was odd or even.

5.2.4 Combined Pair- and Molecule-level Quinone Formation Model

We built a model using a deep convolutional neural network with one molecule layer, one input

layer, three hidden layers, and three output layers (Figure 5.3). The top output layer computed

molecule quinone formation scores (MQS), the middle output layer computed pair quinone

formation scores (PQS), and the bottom output layer computed atom quinone formation scores

(AQS). Respectively, the molecule-, pair-, and atom-level scores represented the probability that

a molecule, pair, or atom formed a quinone, each score ranging from zero to one. The network

was trained in three stages.

First, the atom-level network was trained to produce accurate atom-level scores. In this

training step, each ring carbon within a molecule was considered a possible atom of quinone

formation. Each atom was assigned a vector of numbers that described chemical properties of

that atom. The data set was a matrix, with one row per atom, and one column per descriptor.
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Experimentally observed atoms of quinone formation were labeled with a 1 in a final binary

target vector. Using gradient descent on the cross-entropy error, we trained the network weights

so that atoms of quinone formation received higher scores than other atoms.

Second, the pair-level network was trained to compute scores for each pair of atoms. In

this training step, each row of the data matrix was a pair of ring carbons, and each column

was a descriptor. Descriptors included the atom-level score of each atom and both pair-level

descriptors. For each atom pair, the two associated atom-level score were sorted by magnitude

and transformed by the logit function into a log-odds. The pair-level network was trained to

assign experimentally observed QP with higher scores than all other atom pairs.

Third, the molecule-level network was trained. Each row of this data matrix was a molecule,

and each column was a descriptor. Descriptors included the top three atom-level scores, the

top three pair-level scores, and all molecule-level descriptors. The weights of the network

were trained to assign quinone-forming molecules with higher scores than non-quinone-forming

molecules.

The final model included hidden layers at all three stages. Several alternative models were

considered, including a logistic regressor at all three stages, an AND function that mapped

the atom-level to the pair-level, and a max layer that used a molecule’s maximum PQS as its

molecule-level score. For all three stages, adding a hidden layer offered either higher classifi-

cation performance or a better scaled prediction than alternative methods.

5.2.5 Quantum Chemical Descriptors

Currently, there are no other methods for explicitly predicting quinone formation. However,

there are several computational tools available for predicting sites of metabolism, which fre-

quently use quantum chemical calculations that correlate to the activation energies of cytochromes

P450.[52, 209, 137, 35, 36, 37] Due to the absence of other methods for predicting quinone for-

mation, we computed several quantum chemical descriptors to establish baseline performances

(Tables 5.1 and 5.2).
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Table 5.1: Atom-level quantum chemical reactivity indices.

Label Definition

πS(r) self-polarizability

CHARGE partial charge on atom

DN (r) nucleophilic delocalizability

DE(r) electrophilic delocalizability

DLUMO ELUMO density on atom

DLUMO+1 ELUMO+1 density on atom

DHOMO EHOMO density on atom

DHOMO-1 EHOMO−1 density on atom

ED electron density on atom

ERE Electronic resonance energy

EEE Electronic exchange energy

EERE one-center electron-electron repulsion energy

ENAE one-center electron-nuclear attraction energy

EE EERE +ENAE

FarthestBondedHydrogen distance to the farthest hydrogen bound to atom

FarthestBondedHydrogenIndicator indicates whether or not an atom is bound to a hydrogen

NNRE nuclear-nuclear repulsion energy

C coulomb interaction energy

MCHARGE mulliken charge

MPOP mulliken population

POPS S-orbital electron population

POPP P-orbital electron population

POPD D-orbital electron population

Table 5.2: Molecule-level quantum chemical reactivity indices.

Label Definition

η electron hardness: [EHOMO − ELUMO] /2

µ chemical potential: [EHOMO + ELUMO] /2

ω electrophilic index: µ/2η

∆H◦
f heat of formation (kcal/mol)

AREA squared area (angstrom)

VOLUME cubic volume (angstrom)

DIP dipole moment (debye)

EE electronic energy (eV)

ELUMO energy of the lowest unoccupied molecular orbital

ELUMO+1 energy of the second lowest unoccupied molecular orbital

EHOMO energy of the highest occupied molecular orbital
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EHOMO−1 energy of the second highest unoccupied molecular orbital

IP ionization potential

max
[
DN (r)

]
maximum atom nucleophilic delocalizability

max
[
DE(r)

]
maximum atom electrophilic delocalizability

max
[
πS(r)

]
maximum atom self-polarizability

NE nuclear energy (eV)

num_α_E number of α electrons

num_β_E number of β electrons

S electron softness: 1/η

These descriptors were calculated by MOPAC, a quantum chemistry package that performs

self-consistent field computations, with the COSMO implicit solvent model and the semi-

empirical method PM7.[73, 74] On both the pair- and molecule-level, we compared the per-

formances of quantum chemical descriptors to those of the quinone formation predictions from

the model, which only used topological descriptors. Atom-level quantum chemical descriptors

were mapped to the pair-level by multiplying the descriptor values of both atoms together.

5.3 Results and Discussion

The following sections analyze the performance and applications of the quinone formation

model. First, we quantified the power of pair quinone formation scores (PQS) to predict

quinone-formation atom pairs within quinone-forming molecules. Second, we evaluated the

ability of molecule quinone formation scores (MQS) to separate quinone-forming and non-

quinone-forming molecules. Third, we used the molecule-level score to identify drugs that are

likely to form quinones, but that have not previously been reported to do so. Fourth, we investi-

gated whether MQS can separate drugs containing the same structural alert. Fifth, we screened

for drugs that are predicted to form quinones, but are not currently known to do so. Finally,

we studied how the model can potentially direct rational drug modifications to prevent quinone

formation.
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5.3.1 Accuracy at Predicting Quinone-Forming Pairs

To minimize reaction metabolite formation during drug design, identifying a molecule’s QP

is critical. Additionally, knowledge of the QP—the exact pair of carbons involved in quinone

formation—provides a precise hypothesis about the source of a molecule’s toxicity. Information

about QPs also suggests where a molecule could be modified to prevent quinone formation,

thereby minimizing a key toxicity risk. The quinone formation model is the first published

computational method that specifically predicts QPs across a wide range of molecules.

To predict QPs, the model was trained in two stages. First, the model computed an atom

quinone formation score (AQS) for each ring carbon within a test molecule. The atom-level

scores ranged from zero to one, reflecting the probability than an atom was involved in quinone

formation. The weights of the network were trained such that experimentally-known atoms of

quinone formation receive high scores, and all other atoms received low scores.

The atom-level scores were intended to predict whether a single atom is part of a quinone

formation reaction. However, because quinone formation always operates on a pair of two

atoms, the atom-level scores did not directly predict quinone formation. Therefore, a second

training step maps the atom score to the pair level, producing a pair level score. Within each

molecule, this step considered all pairs of ring carbons as possible QPs. For each pair of atoms,

this training step took as input two atom level score (corresponding to each atom), as well as

pair-level descriptors. The weights of this stage of the network were trained to assign QPs with

high pair-level scores, and all other pairs with low scores.

For both the atom-level and pair-level training steps, 10-fold cross-validation was used, a

standard procedure in machine learning for estimating generalization accuracy. Within quinone-

forming molecules, accurate predictions should differentiate QP from all other pairs. We used

two metrics to quantify the accuracy of cross-validated atom- and pair-level scores. First, we

calculated the “average pair AUC" by computing the area under the receiver operating char-

acteristic curve (AUC) for each molecule and averaging the AUCs across all molecules to

measure performance for the entire data set.[108, 121, 208] Second, we calculated “top-two"
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performance—which considers a molecule correctly predicted if any of its QPs are predicted

in the first or second rank positions—a standard metric for site of metabolism predictions.[121,

50, 122, 123, 52]

To assess the performance of the atom level model, we translated the atom-level scores to the

pair-level by multiplying the scores of both atoms together, thereby calculating the probability

that both atoms were involved in quinone formation. By this approach, the atom-level scores

computed by a neural network yielded an average pair AUC performance of 97.1%, and a top-

two performance of 83.8% (Figure 5.4). In contrast, a logistic regressor computed significantly

less accurate predictions, with performances of 94.4% (average pair AUC) and 70.2% (top-two).

Based on this result, we selected the neural network for the atom-level training stage.

For the second training stage—on the pair-level—we similarly tested both a neural net-

work and a logistic regressor. The neural network predicted QP with performances of 97.6%

and 86.9%, for average pair AUC and top-two, respectively. These did not exceed the perfor-

mances of the logistic regressor: 97.8% (average pair AUC) and 88.3% (top-two). However,

both the pair-level neural network and the pair-level logistic regressor significantly improved

performance compared to only training on the atom-level, especially by the top-two metric.

For example, comparing the top-two performances of the pair-level logistic regressor and the

atom-level neural network by a paired t-test[175] yielded a p-value of 0.037. Consequently, we

retained the pair-level training and model.

However, at the pair level, choosing between the neural network and the logistic regressor

was more difficult, because they had statistically indistinguishable classification performances.

Paired t-tests[175] indicated that the neural network and the logistic regressor were statistically

equivalent for both average pair AUC (p-value 0.339) and top-two (p-value 0.286). To break the

tie, we constructed reliability plots, which quantify how well predictions correlate to probabil-

ities (Figure 5.5).[215, 121] These plots revealed that the neural network is a better scaled pre-

diction than the logistic regressor, with the lowest root-mean-square error to a perfectly scaled

prediction. Well-scaled predictions are interpretable as probabilities, so we decided to use the
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FIGURE 5.4: The pair-level model, computing pair quinone formation scores
(PQS), accurately predicted quinone-forming pairs (QP). Top left, average pair
AUC was calculated for 359 molecules extracted from the Accelrys Metabolite
Database and labeled with their QPs. Within these quinone-forming molecules,
the average pair AUC metric quantifies how frequently QP were ranked higher
than other atom pairs.[108, 121, 208] Bottom left, the top-two metric was cal-
culated, which counts a molecule correctly predicted if any of its QP received
the first- or second-highest prediction.[121, 50, 122, 123, 52] By both metrics,
the cross-validated pair-level scores outperformed atom quinone formation scores
(AQS), computed by a control model that did not include training on the pair-
level, instead mapping the atom-level to the pair-level by multiplying the scores
of both atoms together. The pair-level model performance also exceeded that of
quantum chemical descriptors, the five best of which are included in each panel.
The baseline of each metric—indicated by the Random Model—was computed
by calculating performance over randomized predictions. For each metric, aster-
isks indicate results significantly worse than the best-performing method, as deter-
mined by a paired t-test[175]. Examples from the data set are visualized with their
scores (ranging from 0 to 0.98) indicated by the colored shading, assigning each
atom the probabilistic OR of all pair-level quinone formation scores including
the atom. Top center, nevirapine,[210, 211] top right, mefenamic acid,[212] bot-
tom center, pyronaridine,[213] and bottom right, mitoxantrone.[214] The atoms

of experimentally-observed QPs are circled.
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RingSize % Total % Single-ring
3 2.6 0.0
5 8.6 8.6
6 85.6 90.2
7 2.5 1.2
8 0.7 0.0

TABLE 5.3: Size of Rings with Atoms of Quinone Formation

neural network. Nevertheless, the choice between the neural network and the logistic regressor

is arguable, because the logistic regressor is a simpler model structure. While we settled on the

neural network for this component of the model, we believe a logistic regressor could likely be

utilized with comparable results.

The majority of the QPs in the data were found in six-membered rings (Table 5.3), which

raised concerns that we would not accurately predict quinone formation on five-membered rings

due to insufficient data. With this in mind, we investigated whether QP in five-membered rings

were also accurately predicted by calculating accuracy only on those molecules. Across the 36

molecules where a five-membered ring formed a quinone, pair-level scores predicted QPs with

performances of 96.7% and 86.1%, for average pair AUC and top-two, respectively. These per-

formances matched the accuracies across the whole data set of 97.6% (average pair AUC) and

86.9% (top-two). We accurately predicted QP in five-membered rings despite limited training

data, suggesting that the underlying principles that guide quinone formation on six-membered

rings also applied to quinone formation on five-membered rings.

Currently, there are no other models published for predicting quinone formation to which

this model can be compared. Instead, to provide a baseline we calculated several quantum chem-

ical descriptors (Tables 5.1 and 5.2), which correlate to the activation energies of cytochromes

P450 and are often used by sites of metabolism predictors.[52, 209, 137, 35, 36, 37] Each

quantum chemical descriptor was considered as a model to predict QP. To map each descrip-

tor to the pair-level, the descriptor value of both atoms was multiplied together. None of the

quantum chemical descriptors approached the accuracy of the pair-level score. For example,
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FIGURE 5.5: The pair-level neural network computes the best scaled prediction of
quinone-forming pairs, and corresponds closely with a probability. Across 78341
atom pairs within 718 quinone-forming and non-quinone-forming molecules, the
bar graphs plots the normalized distributions of the pair-level logistic regressor,
the pair-level neural network, the atom-level logistic regressor, and the atom-level
neural network. Using non-normalized frequencies, the solid lines in each bin
plot the percentage of atom pairs that form quinones. Atom-level scores were
mapped to the pair-level by multiplying the scores of both atoms together. On
the pair-level, the logistic regressor and the neural network used the outputs of
the atom-level neural network as inputs, along with pair-level descriptors. Each
diagonal dashed line indicates a hypothetical perfectly scaled prediction. Of the
four methods, the pair-level neural network provided the best scaled prediction,
with the lowest root-mean-square error of a perfectly scaled prediction, and the
highest correlation to the best-fit line. Therefore, the pair-level neural network
most accurately reflected the probability that an atom pair will form a quinone.
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the best descriptor by the top-two metric was the density of the highest occupied molecular

orbital (HOMO) on the test atom, which only had a top-two performance of 34.8%, far below

the pair-level model’s performance of 86.9%. By considering many chemical attributes together

using machine learning, the model predicted QPs more accurately than any quantum chemical

descriptor.

5.3.2 Accuracy at Identifying Quinone-Forming Molecules

We also evaluated how well the model separated quinone-forming from non-quinone-forming

molecules. A model that accurately predicts molecule quinone formation could be used to

quickly screen drug candidates for a key toxicity risk.

In this assessment, we trained the model to differentiate molecules that formed quinones

from those that did not. In addition to quinone-forming molecules, the training data contained

molecules that could form quinones—defined as containing a six-membered aromatic ring—

and that were metabolically studied in human-relevant experiments in the Accelrys Metabolite

Database (AMD), but did not form quinones. Following pair-level training, we investigated sev-

eral methods of discriminating between quinone-forming and non-quinone-forming molecules

(Figure 5.6). To measure performance at this objective, we calculated the AUC across the full

data set (molecule AUC).

First, we tried the most straightforward method of predicting molecule quinone forma-

tion: taking each molecule’s maximum cross-validated pair-level scores. This procedure distin-

guished quinone-forming and non-quinone-forming molecules with a molecule AUC of 88.5%.

Second, we added a training step that submitted the top three pair-level scores, the top three

atom-level scores, and all molecule descriptors to a neural network or a logistic regressor. Us-

ing 10-fold cross-validation, neither the neural network nor the logistic regressor outperformed

the maximum pair-level score, with molecule AUCs of 88.2% (p-value 0.16) and 88.4% (p-value

0.31), respectively, with significance evaluated by a false positive rate paired t-test.[175]
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FIGURE 5.6: Molecule quinone formation scores (MQS) accurately identified
quinone-forming molecules. The ability of several methods to identify molecules
that form quinones was computed, including taking each molecule’s maximum
pair quinone formation score (PQS), training a logistic regressor or a neural net-
work on the top three pair-level scores, the top three atom-level scores, and all
molecule descriptors, and training a control model in the form of a neural net-
work that only used as input molecule descriptors. The data set set included
359 quinone-forming molecules and 359 non-quinone-forming molecules. To
quantify performance, the AUC was computed across quinone-forming and non-
quinone-forming molecules (Molecule AUC), using cross-validated predictions.
Asterisks indicate results significantly worse than the best-performing method, as

determined by a false positive rate paired t-test.[175]
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FIGURE 5.7: Example pairs of molecules that do and do not form quinones are vi-
sualized. Cross-validated scores (ranging from 0 to 0.78) are indicated by the col-
ored shading, assigning each atom the probabilistic OR of all pair-level quinone
formation scores including the atom. The number line denotes each molecule’s
cross-validated score, computed by the neural network. From left to right, top
to bottom: estradiol (MQS: 0.60)[216], nefazodone (MQS: 0.83)[205, 206],
buspirone (MQS: 0.09)[205, 206], and a 2α-substituted androstenedione analog
(MQS: 0.42).[217] The atoms of experimentally-observed quinone-forming pairs

are circled.
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FIGURE 5.8: The neural network produces a well-scaled probabilistic prediction
of molecule quinone formation. Across 718 quinone-forming and non-quinone-
forming molecules, the bar graphs plot the normalized distributions of the maxi-
mum pair-level score, the molecule-level logistic regressor, and the molecule-level
neural network. Using non-normalized frequencies, the solid lines in each bin plot
the percentage of molecules that form quinones. Each diagonal dashed line indi-
cates a hypothetical perfectly scaled prediction. The neural network provided the
best scaled prediction, with the lowest root-mean-square error (RMSE) of a per-
fectly scaled prediction, and the highest correlation to the best-fit line. Therefore,
the neural network most accurately reflected the probability that a molecule will

form a quinone.

However, the neural network supplied a better scaled prediction than both the logistic re-

gressor and the maximum pair quinone formation score, as indicated by the reliability plots of

Figure 5.8. Furthermore, compared to both other methods, the neural network predicted more

quinone-forming molecules with high scores, and non-quinone-forming molecules with low

scores. On the other hand, both the logistic regressor or the maximum PQS were simpler mod-

els with equivalent molecule AUC performance. Still, because of its well-scaled predictions,

we decided to use the neural network, but we expect that the other two methods would provide

similar results.

Compared to the performance of pair-level model’s performance in identifying QPs (97.6%

AUC), the molecule-level model had a considerably lower AUC of 88.2%. This drop in accuracy

might be because the molecule-level data contains more noise than the pair-level data. When

selecting “non-quinone-forming" molecules, we inferred that a molecule did not form a quinone

if it was not reported to do so in the AMD. This supposition, while obligatory for molecule-level

training, was not a robust indication that molecules do not form quinones, because not every

study measures quinone products. As a result, our data set construction procedure imprecisely
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labeled some quinone-forming molecules as non-quinone-forming. In contrast, the pair-level

quinone formation data was much cleaner, because it was extracted from experiments capable

of reporting quinone formation. Our previous studies with the AMD have observed comparable

drops in site-level (equivalent to the pair-level in this study) to molecule-level accuracy.[121,

208, 108]

Even so, the molecule-level scored classified quinone-forming molecules with 88.2% AUC,

greatly exceeding that of any comparison quantum chemical descriptor and demonstrating that

the model produces illuminating molecule-level predictions. The best quantum chemical de-

scriptor was the energy of the highest occupied molecular orbital (EHOMO), which only had

an AUC of 64.2%. The relatively high performance of the molecule-level model supports our

assumption that many of the molecules labeled as non-quinone-forming indeed do not form

quinones. If the quinone-forming and non-quinone-forming molecules were actually extracted

from identical chemical populations, separating them in our cross-validated experiments—

which simulated performance on external data—would be highly unlikely.

To further confirm that molecule-level performance was not a consequence of overfitting,

we evaluated the model on several external test sets of non-quinone-forming molecules. Each

external test set was predicted by the final trained model. Separation between each external

non-quinone-forming test set and the quinone-forming training molecules was measured by the

molecule AUC. Over the 20 test sets, the AUC was 85.9% ± 1.2%, which is comparable to

the previously reported cross-validated AUC of 88.2% computed by training on both quinone-

forming and non-quinone-forming molecules. The model successfully generalized to new data,

assigning non-quinone-forming molecules it had never seen before with much lower scores than

quinone-forming training molecules.

5.3.3 Comparison to Structural Alerts

We compared the model to “structural alerts," which are motifs known to commonly form reac-

tive metabolites. A library of structural alerts can be easily used to flag potentially problematic
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Motif SMARTS Quinone-
Forming Pairs

Total
Pairs

Nitrogen ortho to Oxygen [$(c1([#7])c([#8])cccc1),$(c1([#8])c([#7])cccc1)] 3 34
Oxygen para to Hydrogen [$(c1([#8])ccc([#1])cc1),$(c1([#1])ccc([#8])cc1)] 8 284
Nitrogen ortho to Carbon [$(c1([#7])c([#6])cccc1),$(c1([#6])c([#7])cccc1)] 6 210
Nitrogen para to Nitrogen [$(c1([#7])ccc([#7])cc1),$(c1([#7])ccc([#7])cc1)] 15 39
Oxygen ortho to Hydrogen [$(c1([#8])c([#1])cccc1),$(c1([#1])c([#8])cccc1)] 57 1038
Oxygen ortho to Carbon [$(c1([#8])c([#6])cccc1),$(c1([#6])c([#8])cccc1)] 6 344
para to Phenol [$(c1ccc([OH1])cc1),$(c([OH1])1ccccc1)] 108 433
Oxygen para to Carbon [$(c1([#8])ccc([#6])cc1),$(c1([#6])ccc([#8])cc1)] 33 345
Nitrogen para to Carbon [$(c1([#7])ccc([#6])cc1),$(c1([#6])ccc([#7])cc1)] 6 50
Hydroquinone [$(c1([#8][#1])ccc([#8][#1])cc1),$(c1([#8][#1])ccc([#8][#1])cc1)]24 27
ortho to Phenol [$(c1c([OH1])cccc1),$(c([OH1])1ccccc1)] 79 892
Nitrogen ortho to Hydrogen [$(c1([#7])c([#1])cccc1),$(c1([#1])c([#7])cccc1)] 12 495
Nitrogen para to Oxygen [$(c1([#7])ccc([#8])cc1),$(c1([#8])ccc([#7])cc1)] 41 81
Oxygen para to Oxygen [$(c1([#8])ccc([#8])cc1),$(c1([#8])ccc([#8])cc1)] 33 57
Oxygen ortho to Oxygen [$(c1([#8])c([#8])cccc1),$(c1([#8])c([#8])cccc1)] 51 196
Nitrogen ortho to Nitrogen [$(c1([#7])c([#7])cccc1),$(c1([#7])c([#7])cccc1)] 1 24
Nitrogen para to Hydrogen [$(c1([#7])ccc([#1])cc1),$(c1([#1])ccc([#7])cc1)] 34 174
Halogen para to Carbon or Nitro-
gen or Oxygen [$(c1([F,Cl,Br,I])ccc([#6,#7,#8])cc1),$(c1([#6,#7,#8])ccc([F,Cl,Br,I])cc1)]4 109

Catechol [$(c1([#8][#1])c([#8][#1])cccc1),$(c1([#8][#1])c([#8][#1])cccc1)]43 75
Not Matched 417 74815

TABLE 5.4:
We analyzed the frequencies of quinone structural alerts using SMARTS strings (Table 5.4). We matched each training molecule against each
SMARTS string. If there was a match, we extracted all matching atoms. For each pair of matching atoms, we retained only those pairs where
both atoms were in the same ring and were the correct distance away from one another. In the table, the total number of pairs that form quinones
are listed in the “Quinone-Forming Pairs" column, and the total number of pairs recorded in the “Total Pairs" column.

molecules during drug development.[9, 218] This is a widely used approach, but unfortunately

structural alerts for quinone formation—such as anilines or phenols—are also found in many

safe drugs, because they are not bioactivated due to specific molecular context. We would hope

that the model could identify which structural alerts are bioactivated to quinones and which are

not.

To systematically evaluate whether the model distinguishes structural alerts, we focused

on several motifs known to commonly form quinones. The exact patterns used are listed in

Table 5.4. We included both motifs that form quinones in one step, such as hydroquinones and

catechols, and motifs that form quinones in two steps, such as an oxygen or nitrogen ortho or

para to a hydrogen. For each motif, we extracted all atom pairs from the training data set that

matched the structure, and recorded whether this pair formed a quinone. Next, we assigned

each pair its cross-validated pair-level score, and calculated the AUC across all pairs of that

substructure, the pair AUC (Figure 5.9 and Table 1.4). For each structural alert, the model

predicted quinone formation with performances significantly higher than random.
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FIGURE 5.9: Pair-level scores predicted whether several structural alerts form
quinones. We tested several motifs that are structural alerts for both one- and
two-step quinone formation. For each motif, across the 718 training molecules,
the cross-validated scores of all atoms pairs matching that motif were extracted.
Left, the receiver operating characteristic (ROC) curve is displayed across all the
atom pairs of three example motifs (visualized in the center). The graph displays
example ROC curves for the second best, typical, and worst performing alerts.
The diagonal dashed line indicates baseline performance. The ROC curves of all
the motifs are displayed in Figure 5.10. In the depiction of the ortho to phenol
motif, the “R" represents any atom, including hydrogens. Right, the area under
the ROC curve (AUC) was calculated across all the atom pairs of each motif. The

error bars represent 95% two-sided confidence intervals.[219]

Motif Category Quinone-Forming Pairs Non-Quinone-Forming Pairs Pair AUC (%)
Nitrogen ortho to Oxygen One Step 3 31 100.0
Oxygen para to Hydrogen Two Step 8 276 98.9
Nitrogen ortho to Carbon One Step 6 204 97.9
Nitrogen para to Nitrogen One Step 15 24 96.4
Oxygen ortho to Hydrogen Two Step 57 981 95.2
Oxygen ortho to Carbon One Step 6 338 95.2
para to Phenol One and Two Step 108 325 94.6
Oxygen para to Carbon One Step 33 312 94.1
Nitrogen para to Carbon One Step 6 44 93.2
Hydroquinone One Step 24 3 93.1
ortho to Phenol One and Two Step 79 813 92.8
Nitrogen ortho to Hydrogen Two Step 12 483 91.4
Nitrogen para to Oxygen One Step 41 40 90.5
Oxygen para to Oxygen One Step 33 24 88.1
Oxygen ortho to Oxygen One Step 51 145 87.5
Nitrogen ortho to Nitrogen One Step 1 23 87.0
Nitrogen para to Hydrogen Two Step 34 140 84.1
Halogen para to Carbon or Nitrogen or Oxygen Two Step 4 105 83.6
Catechol One Step 43 32 69.3
Not Matched 417 74398 97.7

TABLE 5.5: P
air-level scores predicted whether structural alerts form quinones.
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FIGURE 5.10: Pair-level scores predicted whether several structural alerts form
quinones. We tested several motifs (Table 5.4) that are structural alerts for both
one- and two-step quinone formation. For each motif, across the 718 training
molecules, the cross-validated scores of all atoms pairs matching that motif were
extracted. The receiver operating characteristic (ROC) curve is displayed across
all the atom pairs of each motif. The diagonal dashed line indicates baseline

performance: 50% area under the ROC curve (AUC).
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FIGURE 5.11: Pair-level scores predicted whether catechols form quinones. Of
all structural alerts tested, the model performed the worst on catechols (Figure
5.9). Nevertheless, the model distinguished catechols with a statistically signifi-
cant performance. This motif (indicated by the red circles) requires a single step
to form a quinone. Across the 718 training molecules, the cross-validated scores
of all atoms pairs matching this motif were extracted. Left, the receiver oper-
ating characteristic (ROC) curve is displayed across all these atom pairs. The
diagonal dashed line indicates baseline performance: 50% area under the ROC
curve (AUC). Four example molecules are visualized. Scores (ranging from 0
to 0.97) are indicated by the colored shading, assigning each atom the proba-
bilistic OR of all pair-level quinone formation scores including the atom. The
atoms of experimentally-observed quinone-forming pairs are circled. Top center,
a noscapine metabolite[221] and top right, a raloxifene metabolite[222], both of
which are correctly predicted to form quinones at the catechol. Bottom center,
aspalathin[223] and bottom right, a methylenedioxypyrovalerone metabolite[224]
neither of which form quinones at the catechol-para-to-hydrogen motifs, which

are correctly assigned low scores.

For example, the catechol motif commonly forms an ortho quinone in a single step (Figure

5.11).[9, 220, 218] Catechols might be considered a motif that “obviously" forms quinones.

However, of the 75 catechols in our data set, only 43 actually are known to form quinones.

The quinone formation model’s pair-level scores separated quinone-forming and non-quinone-

forming catechols with a pair AUC of 69.3%. This was the lowest performance of all the struc-

tural alerts we tested, and there is certainly room for improvement. Nevertheless, as indicated by

the 95% confidence intervals[219] in Figure 5.11, we separated catechols with a performance

significantly higher than baseline (AUC 50%). We find this an encouraging result, because
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the method helps identify which catechols might not actually form quinones, unlike the struc-

tural alerts approach that considers all catechols a bioactivation risk without evaluating specific

molecular context.

We also found that pair-level scores are informative for two-step quinone formation struc-

tural alerts. For example, for the motif of a nitrogen para to a hydrogen to form a quinone,

a hydroxylation must first occur at the unsubstituted carbon, followed by quinone formation.

The nitrogen-para-to-hydrogen motif can be found in some anilines or anilides, which are well

known structural alerts.[9, 22, 218] The entire training data set contained 174 total nitrogen-

para-to-hydrogen atom pairs, of which 34 are actually known to form quinones. Encourag-

ingly, the quinone formation model’s pair-level scores accurately separated quinone-forming

and non-quinone-forming nitrogen-para-to-hydrogen groups with a pair AUC of 84.1% (Figure

5.12).

The phenol motif is a broad structural alert found in a wide variety of drugs.[9, 218] In

contrast to catechols (which require one step to form a quinone), and nitrogen-para-to-hydrogen

(which require two steps), phenols can form quinones in one or two steps, depending on ring

substituents. For example, phenols can form a quinone-methide in a single step if there is a

para carbon, or form a quinone in two steps via intermediate aromatic hydroxylation at the para

position. Across our training data set, there are 433 carbons para to a phenol. For each atom,

we extracted the atom-pair-level score of the carbon and the ipso-carbon of the corresponding

phenol. Of these atom pairs, 108 form a para quinone.

The model accurately distinguished whether a quinone will form para to a phenol, with

a pair AUC of 94.6% (Figure 5.13). Both one- and two-step quinone formation at the para

position to a phenol were accurately predicted. For example, both oxymetazoline and an

analog of androstenedione contain a phenol-para-to-carbon motif, but only in oxymetazoline

does the phenol-para-to-carbon motif form a quinone-methide.[228, 229] The model’s pair-

level scores cleanly distinguished the phenol-para-to-carbon in both molecules. Similarly, both

propofol and doxycycline contain a phenol-para-to-hydrogen, which can form a quinone in two
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FIGURE 5.12: Pair-level scores predicted whether nitrogen-bound carbons para
to a carbon with a hydrogen form quinones. This motif (indicated by the red
circles) requires aromatic hydroxylation to form a quinone. Across the 718 train-
ing molecules, the cross-validated scores of all atoms pairs matching this motif
were extracted. Left, the receiver operating characteristic (ROC) curve is dis-
played across all these atom pairs. The diagonal dashed line indicates baseline
performance: 50% area under the ROC curve (AUC). Four example molecules
are visualized. Scores (ranging from 0 to 0.96) are indicated by the colored shad-
ing, assigning each atom the probabilistic OR of all pair-level quinone forma-
tion scores including that atom. The atoms of experimentally-observed quinone-
forming pairs are circled. Top center, a dasatinib analog[225] and top right,
chlorpromazine[226], both of which are correctly predicted to form quinones at
the nitrogen-para-to-hydrogen motif. Bottom center, saracatinib[225] and bot-
tom right, a thioridazine metabolite[227] neither of which form quinones at the

nitrogen-para-to-hydrogen motifs, and are correctly assigned low scores.
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FIGURE 5.13: Pair-level scores predicted whether a quinone will form para to a
phenol. This motif (indicated by the red circles) may require one or two metabolic
steps to form a quinone. In the depiction of the phenol motif on the left, the “R"
represents any atom, including hydrogens. Across the 718 training molecules,
the cross-validated scores of all atoms pairs matching this motif were extracted.
Left, the receiver operating characteristic (ROC) curve is displayed across all
these atom pairs. The diagonal dashed line indicates baseline performance: 50%
area under the ROC curve (AUC). Four example molecules are visualized. Scores
(ranging from 0 to 0.77) are indicated by the colored shading, assigning each
atom the probabilistic OR of all pair-level quinone formation scores including
that atom. The atoms of experimentally-observed quinone-forming pairs are cir-
cled. Top center, oxymetazoline[228] and top right, propofol[230], both of which
are correctly predicted to form quinones at the para-to-phenol motif. Bottom cen-
ter, an androstenedione analog[229] and bottom right, doxycycline[231] neither
of which form quinones at their para-to-phenol motifs, and are correctly assigned

low scores.

steps with an intermediate hydroxylation. Propofol’s phenol-para-to-hydrogen received a much

higher pair-level score than doxycycline, consistent with only propofol being known to form a

quinone.[230, 231]

These results demonstrate that the model has better specificity than structural alerts. Specific

substructures can determine the parts of molecules that have the capacity to form quinones,

but they do not assess the likelihood of the quinone actually forming. The quinone formation

model, however, can stratify molecules by their propensity of forming quinones, identifying

which alerts are bioactivated, and which are not.

Structural alerts are retrospective in nature. Consequently, they cannot detect quinone for-

mation for motifs that have not previously been observed to form quinones. As a result,
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FIGURE 5.14: Pair-level scores predicted whether quinones form at motifs that
do not match structural alerts. Across the 718 training molecules, the cross-
validated scores of all atoms pairs that did not match any structural alert were
extracted. Left, the receiver operating characteristic (ROC) curve is displayed
across all these atom pairs. The diagonal dashed line indicates baseline perfor-
mance: 50% area under the ROC curve (AUC). Four example molecules are vi-
sualized. Top center, an antimalarial drug candidate.[124] Top right, a voltage-
gated sodium channel inhibitor drug candidate.[232] Bottom center, an imiloxan
metabolite.[233] Bottom right, a brimonidine metabolite.[234] The atoms of
experimentally-observed quinone forming pairs are circled. Scores (ranging from
0 to 0.92) are indicated by the colored shading, assigning each atom the proba-

bilistic OR of all pair-level quinone formation scores including the atom.

molecules that form quinones at atypical sites will likely be missed by structural alerts. In

contrast, our model can potentially detect these unusual cases, because it is built on a diverse

data set that includes a wide variety of typical and atypical sites of quinone formation. To test

this, we investigated the accuracy of the model at predicting quinone formation at sites that do

not match structural alerts. After filtering out all atom pairs that matched any of the quinone

structural alerts used (Table 1.4), we calculated the pair AUC over all remaining atom pairs.

The model accurately predicted quinone formation at these non-obvious sites, with a pair AUC

of 97.7% (Figure 5.14). This indicates that the model is able to accurately predict quinone

formation even for atom pairs that would not generally be considered to be at risk.

5.3.4 Case Studies

We considered several case studies to investigate the model’s utility. One potential application

is to screen for molecules that are likely to form quinones, but that are currently not known
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to do so. To explore this application, we predicted the quinone formation of drugs that were

not reported to form quinones in the AMD. After downloading a database of FDA-approved

and withdrawn drugs, the molecules present in the training data set were removed.[235] Next,

each drug was submitted to the trained quinone formation model, thereby assigning a molecule

quinone formation score to each drug.

To define a cutoff above which a drug was considered predicted to form a quinone, we used

the optimal point on the cross-validated molecule ROC curve from the training data (Figure

5.15).

This optimal point—corresponding to a molecule score of 0.515—is the cutoff that offers

the best trade-off between sensitivity and specificity. We selected all drugs that were assigned

a higher score than the optimal cutoff. This revealed 288 drugs that are predicted to form

quinones, but that are currently thought to be non-quinone-forming across all the relevant liter-

ature in the AMD. All 288 drugs and their molecule quinone formation scores are available in

the Supporting Information. Here, we highlight three example drugs (Figure 5.16). Each drug

carries a risk of idiosyncratic toxicity, the causes of which are currently obscure.

First, the antiarrhythmic flecainide is associated with idiosyncratic hepatotoxicity, the ori-

gin of which is currently unknown.[239, 9, 22] There are no known reactive metabolites of

flecainide, and previous studies have suggested that flecainide is harmlessly metabolized to a

phenol via oxygen-dealkylation, followed by glucuronidation.[240, 9, 22] However, our model

suggests that the phenol metabolite may actually form a quinone.

Second, the antihistamine thenalidine is associated with idiosyncratic cases of agranulocy-

tosis, a potentially deadly condition that entails a severely lowered blood white cell count that

leaves a patient vulnerable to critical infection.[241, 242, 243, 244] Indeed, three years after

thenalidine was introduced to the U.S. market, it was withdrawn in 1958 due to fatal cases

of agranulocytosis.[245, 246, 247, 248] The mechanism of thenalidine’s idiosyncratic toxic-

ity was never uncovered, and it is has no known reactive metabolites. An obvious hypothesis
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FIGURE 5.15: Molecule quinone formation scores accurately identified quinone-
forming molecules. Each molecule was assigned its cross-validated score, com-
puted by a neural network that took as input the top three pair-level scores, the top
three atom-level scores, and all molecule descriptors (Figure 5.3). The receiver
operating characteristic (ROC) curve is displayed across all molecules. The diag-
onal dashed line indicates baseline performance: 50% area under the ROC curve
(AUC). The arrow points to the location on the ROC curve that offers the opti-
mal tradeoff between sensitivity (the true positive rate) and specificity (one minus
the false positive rate). This location corresponds to a cutoff molecule quinone

formation score of 0.515.
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ceived high molecule quinone formation scores (MQS), but are not known to
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alized above its most similar quinone-forming molecule from the training data.
Similarity was quantified using path based fingerprints and MinMax similarity, a
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(MQS: 0.81), thenalidine (MQS: 0.79), and bunamiodyl (MQS: 0.96). Bottom,
a remoxipride metabolite (MQS: 0.58),[237] thioridazine (MQS 0.36),[226] and
a flutamide metabolite (MQS 0.88).[238] The atoms of experimentally-observed
quinone forming pairs are circled. Scores (ranging from 0 to 0.99) are indicated
by the colored shading, assigning each atom the probabilistic OR of all pair-level
quinone formation scores including the atom. For the training examples, cross-

validated scores are reported.
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is that thenalidine’s thiophene ring—a well-known structural alert—could undergo bioactiva-

tion through epoxidation or sulfur-oxidation.[249, 9] However, the quinone model’s predictions

yield a second, more surprising hypothesis: thenalidine may undergo hydroxylation at the para

position on its aniline ring, followed by formation of a potentially highly reactive quinone imine.

Third, bunamiodyl carries a risk of severe nephropathy.[245, 250] It was introduced in 1958

as a cholecystographic contrast medium, but was withdrawn in 1964 after around one hun-

dred patients died due to renal failure.[251, 248, 245, 250] While bunamiodyl is not known to

produce reactive metabolites, our model predicts that it undergoes dehalogenation followed by

formation of an ortho or para quinone imine.

As seen for flecainide, thenalidine, and bunamiodyl, the model can yield an explicit, testable

hypothesis about the mechanisms of a molecule’s toxicity. Experimentally validating these

quinone formation predictions is beyond the scope of this study, but is planned for future work.

In another application, we see that the model’s scores accurately reflect the impact of rational

drug modifications. Often, small modification to a molecule can prevent reactive metabolite for-

mation while retaining drug efficacy. For example, the antimalarial drug amodiaquine forms a

reactive quinone imine metabolite that causes the hepatotoxicity and agranulocytosis sometimes

associated with amodiaquine treatment, severely limiting its use.[9, 252, 253, 254] Amodi-

aquine has an analog that retains pharmacologic efficacy while preventing reactive metabolite

formation.[9, 255, 256] The quinone formation model detects the effect of this subtle change,

cleanly distinguishing amodiaquine from its safe analog (Figure 5.17). The quinone forma-

tion model also correctly predicts amodiaquine’s QP, demonstrating how the model could help

guide rational drug modifications that require specific knowledge about where on a molecule a

reactive metabolite forms.
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aquine.
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5.4 Model Limitations

Quinone formation is only one piece of the toxicity puzzle, and this model is only one-step to-

wards effective toxicity management. For example, while the model predicts quinone formation,

it does not predict the reactivity of those quinones. Subtle changes in ring substituents can have

a large impact on quinone reactivity and toxicity.[40] Consequently, in future work we plan to

incorporate the quinone formation model with already-developed reactivity models.[108, 208]

Moreover, the quinone formation model does not correct for alternate metabolic pathways

that may detoxify molecules before they can form quinones. Due to these metabolic alterna-

tives, quinone formation is sometimes observed in vitro, but does not occur in vivo.[9] Further-

more, after quinones form, they can be further metabolized by reduction, which for example

can produce hydroquinones that can then be conjugated and eliminated.[257] In the long run,

integration of the quinone formation model with models of reduction and detoxification, such

as uridine 5’-diphospho-glucuronosyltransferase conjugation[140], could offer more nuanced

predictions by weighing quinone formation against other metabolic routes.

Likewise, quinone formation that occurs in several metabolic steps may not be detected by

the current model, which focused on one- and two-step quinone formation. As we continue

to develop more complex systems of metabolite structure prediction, we plan to expand the

quinone formation model by explicitly modeling intermediate structures, potentially extending

its utility beyond two metabolic steps. Additionally, the current method only uses topological

descriptors. As evidenced by the quinone formation model’s accuracy, these descriptors are

tightly correlated with electronic structure, but performance on rare subclasses or new molecules

could be affected by not explicitly including quantum chemical descriptors. In the future, we

will consider expanding our method to include quantum chemistry, such as descriptors relating

to the half-reactions between the substrate and Compound I within cytochromes P450.

Finally, there is no guarantee that the model’s applicability domain extends beyond its train-

ing domain of metabolically studied drug-like molecules. New areas of chemical space—

possibly only currently explored in proprietary data within pharmaceutical companies—may
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not be well suited to the current topological-descriptor-based model trained on literature-derived

data. However, this study’s methodology could be easily applied to new data, thereby expanding

the utility of the model.

5.5 Conclusions

This study constructed a novel method that forecasts the formation of reactive quinone metabo-

lites. The QP-trained quinone formation model predicted with 97.6% AUC the QPs within

quinone-forming molecules. These pair-level predictions suggest where drug candidates could

be modified to make them safer. The model also separated quinone-forming and non-quinone-

forming molecules with 88.2% AUC. Furthermore, the model distinguished molecules con-

taining the same quinone-formation structural alert, and detected the impact of rational drug

modification to prevent quinone formation. Molecule-level quinone formation predictions can

be used to flag problematic molecules in the early stages of drug development. However, even-

tually both reactivity and metabolism must be modeled to accurately predict reactive metabolite

formation. While we have recently made progress on modeling the reactivity of diverse chem-

icals [108, 208], previous studies of metabolism have primarily focused on predicting sites of

metabolism, rather than actual metabolite structures.[50, 134, 135, 136, 54, 137, 138, 140] This

study explicitly predicted the formation of quinones—one of the most common types of re-

active metabolites—thereby supplying an essential piece of a unified model of reactivity and

metabolism.
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Chapter 6

The Metabolic Forest: Predicting the Di-

verse Structures of Drug Metabolites

6.1 Introduction

Safety problems are one of the primary causes of drug candidate attrition.[5, 6, 7] Further-

more, idiosyncratic adverse drug reactions (IADRs) frequently only arise after approval, incur-

ring significant resources.[9, 12] Many IADRs present as drug-induced liver injury, the leading

driver of drug withdrawal from the market.[258, 98, 259, 260, 261] Although IADRs are poorly

understood, many are linked to bioactivation: enzymatic conversion of drugs to electrophili-

cally reactive metabolites.[193, 262, 192, 24, 88] Reactive metabolites covalently bind to nu-

cleophilic sites within biological macromolecules, including DNA[263, 132, 264] and off-target

proteins.[265, 266, 267] Conjugation to DNA is frequently mutagenic,[110, 268] and conjuga-

tion to proteins can disrupt their functions[269, 104] or incite adverse immune responses leading

to IADRs.[31, 19, 270, 271, 18]

To minimize toxicity risk, pharmaceutical companies strive to detect reactive metabolites

early in the development process.[15, 261, 272, 273] If bioactivation is observed for a certain

drug candidate, small structural differences may avoid reactive metabolite formation without

significantly affecting its pharmacophore.[190, 9] To detect reactive metabolites, mass spec-

trometry is frequently used.[204, 109] However, these assays have a significant caveat: they
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only measure binding to simple traps such as glutathione or cyanide, with a single nucleophilic

site.[105, 106] Binding to these traps may not accurately predict binding to DNA or protein,

which are much larger and contain a diverse array of nucleophilic sites.[103] Instead, protein

binding can be quantified in experiments with radiolabeled compounds, but these are generally

not used until the late stage of preclinical development because of their expense to synthe-

size.[190, 274] Ideally, computational approaches could facilitate reactive metabolite detection

by rapidly flagging drug candidates susceptible to bioactivation, thereby reducing both the total

number of needed experiments and the chances of missing potentially toxic molecules.

Currently, the dominant computational aid for avoiding bioactivation is the structural alert

approach.[218, 9, 46, 275] Using a data base of structural alerts, which are simply motifs such

as phenols or furans that are often bioactivated, molecules containing those substructures can

easily be flagged.[276] However, structural alerts have several shortcomings: they are often not

actually bioactivated due to specific molecular context, they do not match all drugs that produce

reactive metabolites, and they are purely retrospective. Instead, several alternative, more flexible

approaches have the potential to learn concepts from the data that generalize to never-before-

seen structures. [135, 35, 36, 37, 52, 209, 137, 50, 136, 54, 134, 140, 277, 278, 138, 121]

These methods focus on predicting sites of metabolism (SOMs): the specific atom(s) that are

metabolically modified by enzymes. A molecule’s SOMs can be used to infer the structures of

its metabolites or suggest where a molecule might be rationally redesigned.

However, SOM predictors also have limitations. First, by exclusively focusing on metabolism, they

omit consideration of reactivity and therefore miss the second half of the bioactivation mecha-

nism. As a result, benign metabolic steps like hydroxylation are indistinguishable from bioacti-

vation events. Secondly, even highly reliable SOM predictions are limited to a single metabolic

step, whereas in reality many molecules are subject to sequential metabolism. For example, one

systematic review of experimental metabolism literature reported that only 45.6% of all metabo-

lites were formed by a single step, compared to 32.0% and 26.5% of metabolites that were

generated by two- or three-or-more-steps, respectively. [152] Intriguingly, both shortcomings
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of the SOM paradigm are solvable by the focus of this study: automated metabolite structure

generation.

In this work, we built the metabolic forest: collection of metabolism rules that rapidly enu-

merates metabolite structures for one or several sequential steps (Figure 6.1). To rigorously

evaluate its ability to reproduce experimentally-observed structures, we quantified performance

across a large, literature derived data set of tens of thousands of reactions. By performing a

systematic search between reported substrates and products, the metabolic forest automatically

label SOMs (and reveals manual annotation errors), and suggests missing intermediates struc-

tures. The metabolic forest predicts many different types of metabolism, including quinone for-

mation. Although their formation is nontrivial to programmatically represent, quinone species

are especially important to include in a useful method, because they compose over 40% of

known reactive metabolites.[152] Using the quinone and epoxide structures generated by the

metabolic forest, we link previously developed metabolism[121, 279] and reactivity[208] mod-

els to generate bioactivation hypotheses.

6.2 Results and Discussion

We explored several applications of the metabolic forest. First, we quantified performance at

accurately reproducing metabolite structures across a large, literature derived data set of Phase

1 reactions. Second, using these paths, we automatically labeled SOMs, thereby also fixing any

mistakes in the original, manual labels. Third, we measured the intermediate metabolites gener-

ated when finding paths between substrates and metabolites. Fourth, we quantified how well the

metabolite predictor produced quinone structures, a reaction type that is both especially chal-

lenging to represent and especially important for anticipating toxicity. Fifth, we hypothesized

the toxicity drivers of several drugs with IADRs of unknown etiology.
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FIGURE 6.1: The metabolic forest explores metabolic pathways by sequen-
tially applying metabolism rules. These pathways can reproduce experimentally-
observed structures, or enumerate new structures. Oftentimes, there are several
possible pathways between substrates and metabolites. For example, butadiene, a
carcinogenic industrial chemical,[88, 280, 281, 282] has several known metabo-
lites.[282] The bottom pathway demonstrates an experimentally elucidated path-
way. First, cytochromes P450 and myeloperoxidase epoxidize 1,3-butadiene [283,
284, 285] to form butadiene monoxide. Second, epoxide hydrolase forms 3-
butene-1,2-diol.[286] Third, cytochromes P450 form hydroxymethylvinyl ketone,
a highly reactive Michael acceptor.[287] Fourth, glutathione (GSH) conjugates to
the reactive metabolite.[287] Top, two alternative pathways are shown. The mid-
dle row shows an alternative pathway with an equivalent number of metabolic
steps, with two different intermediates than the experimentally-known pathway.
The top row shows yet another alternative pathway, with several additional inter-

mediates.
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6.2.1 Accurate Predictions of Metabolite Structures

The main objective of this study was to develop a system for accurately predicting metabo-

lite structures. With this in mind, a critical metric was the percentage of AMD records for

which the metabolite predictor generated the exact experimentally-observed metabolite. For

any record that adheres to known metabolism patterns, a useful method should find a series of

transformations linking substrate and product.

For each of the 20736 records in the data set, we submitted the substrate and product struc-

tures to a breadth-first algorithm that considered all possible combinations of the encoded rules.

Each search continued until either a pathway to the exact product structure was found, the user-

specified depth-limit was exceeded, or a maximum time limit reached. We performed several

experiments to measure the ability of the metabolite predictor to accurately predict metabolite

structures (Table 6.1). First, we ran an annotated search, whereby we generated all metabolite

structures for all of a molecule’s manually-labeled SOMs. This resulted in an overall perfor-

mance of 78.36%. Second, we ran a depth one search (Algorithm 3). This improved over the

known site search, with a top performance of 79.42%. Deepening the search to depths two or

three depth increased performance to 88.43% and 88.77%, respectively. There was also a signif-

icant improvement between the depth one search and the depth two search. Previous experience

with the AMD has suggested that many reactions reported in a single record may in fact be two

or more metabolic steps, and this is confirmed by the superior performance of the deeper search.

Due to the combinatorial explosion of metabolite structures, we found it necessary to define

a time cutoff for each breadth-first search, at which point the search terminated. Without this

limit, the total number of metabolites grows rapidly, this is especially problematic for large

molecules. We tried several time cutoffs, including 50, 125, 250, 500, and 750 seconds for each

reaction. Unsurprisingly, for searches of depth one, the time cutoff had very little effect on

performance. This is as expected, because all depth-one possibilities were explored within the

allotted time window. In contrast, searches of greater depth often required a longer run time to

find a valid solution (Figure 6.2).
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TABLE 6.1: The performance of several methods at reproducing the structure(s)
linking AMD record reactants and products.

.

reaction type depth three depth two depth one annotated site RD-Metabolizer

overall 88.77 88.43 79.42 78.36 12.30
C-hydroxylation 91.29 91.07 84.71 84.24 33.50

hydrolysis 86.73 86.41 75.53 75.70 4.44
N-dealkylation 90.09 89.91 81.42 81.17 0.11

reduction 82.71 82.33 70.15 68.59 0.00
aliphatic hydroxylation 92.69 92.45 86.60 86.07 0.29
aromatic hydroxylation 92.11 92.06 86.85 86.55 84.88

O-dealkylation 91.57 91.4 86.15 85.76 9.32
C-oxidation 83.39 82.61 56.69 55.07 13.83

hydrogenation 84.71 84.32 66.87 66.72 0.15
N-demethylation 88.66 88.42 80.11 79.88 0.08
O-demethylation 93.89 93.72 90.58 90.31 0.52
dehydrogenation 86.93 86.04 68.89 66.31 7.47

epoxidation 79.19 78.51 70.54 70.54 31.22
oxidation 77.41 76.24 54.08 48.69 5.69

S-oxidation 85.9 85.32 77.24 73.86 0.00
N-oxidation 88.71 87.62 80.88 80.88 10.82
ring opening 55.25 53.22 19.49 16.10 0.34

dehalogenation 62.6 58.33 43.09 29.88 3.25
dearomatization 65.29 65.08 51.45 46.49 0.62
N-deacylation 92.26 92.26 80.87 80.18 3.87
O-deacylation 97.65 97.65 90.85 90.85 12.68
aromatization 62.34 59.48 40.26 26.23 13.51

oxidative n-dealkylation 91.29 91.29 86.19 85.59 0.00
chain shortening 67.2 67.2 12.54 7.40 13.50

N-reduction 78.35 78.35 69.76 69.42 0.00
oxidative deamination 88.65 87.23 74.47 74.11 1.06

glutathionation 34.53 34.53 27.35 0.00 0.00
optical resolution 94.44 94.44 91.67 91.67 17.59
tautomerization 56.13 52.36 8.02 6.60 0.00
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Examples of records for which a path were successfully elucidated are shown in Figure 6.3.

For example, for zotepine, it was straightforward to find a one-step sulfur oxidation linking

substrate and its metabolite. Also highlighted in Figure 6.3 are examples of records for which

a valid path was not found. For example, for a capsaicin metabolite, glutathione attaches to a

unsubstituted carbon on a phenyl ring, and a hydroxyl is simultaneously added at a different

carbon meta to the glutathionation site. Some steps seem to be missing, as the simultaneous

glutathionation and meta hydroxylation is not a known metabolic pathway. Although we might

hope to capture this metabolite with a deeper or faster search by combining metabolism rules,

encoding a rule for such an idiosyncratic case would suggest mere memorization of the data,

rather than generation of metabolically-logical structures.

We quantified the usage of each rule for the depth three, depth two, and depth one searches

(Table 6.2). Additionally, we measured how often any Phase I rule was used (6.3). Unsurpris-

ingly, rules representing very common reaction types, like dealkylation or hydroxylation, were

used much more heavily than more specialized rules like azo splitting.

6.2.2 Inferring Intermediate Metabolite Structures

Many AMD records have missing intermediates. Such records are often immediately obvious

during manual inspection, for they often entail multiple transformations at different parts of

the molecule, such as two hydroxylations. Another frequent variety is sequential transforma-

tions at a single site being conflated into a single reaction. For example, some halogenated

aromatic rings are reported to immediately form quinones, without reporting the intermediate

dehalogenation event that needs to take place before the two-electron oxidation to a quinone.

As previously discussed, we implemented a depth-first search algorithm to infer intermediate

metabolite structures. To quantify the number of missing metabolites discovered, we subtract

the number of metabolites found by the depth one search from the number of metabolites found

by the depth two search. This resulted in 83 metabolites, which can be interpreted as missing

metabolites in AMD records.
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TABLE 6.2: The reaction rules and the number of records where that rule was
used in the pathway between the reported substrate and metabolite structures.

rule depth three depth two depth one

Phase 1 19457 19281 16137
dealkylation 5379 5330 4292

hydroxylation 4850 4841 4297
hydrolysis 3771 3734 3136

oxygen reduction 1258 1252 1061
dehydrogenation 908 879 644
hydrogenation 848 829 446

nitrogen oxidation 670 659 595
epoxidation 644 635 522

sulfur oxidation 552 549 500
nitrogen reduction 269 266 210

oxidative dehalogenation 202 191 143
tautomerization 222 206 60

dephosphorylation 135 135 125
quinone formation 152 150 80

dehydration 157 148 54
benzodioxole reduction 89 89 86

reductive dehalogenation 100 96 64
glutathionation 109 92 58

epoxide opening 88 85 1
sulfur reduction 61 61 47

sulfation 52 51 21
azo splitting 27 26 20
acetylation 30 22 0

glucuronidation 5 5 0
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FIGURE 6.2: The metabolic forest took as input the reactant and product struc-
tures of AMD records. For each record, the algorithm performed a breadth-first
search to link the reactant and product using a collection of metabolic rules. These
searches continued until a pathway to the exact product structure is found, the
depth-limited was reached, or a maximum time limit was exceeded. Top left, the
overall percentage of records for which a valid pathway was found, using a time
limit of 1000 seconds. In the Annotated Site comparison experiment a depth one
search was restricted to using sites of metabolism matching those that were man-
ually annotated during construction of the data set. Another comparison method
was performed using the rules published by RD-Metabolizer.[288] Bottom left,
accuracy is broken down for t f he ten most frequent reaction types of the data set,
as recorded in the AMD. Detailed results are reported in Table 6.1. Top right, per-
cent error as a function of the maximum time limit allowed per record. The depth
one search requires little running time to exhaust all possibilities. In contrast, per-
formances of the depth two and depth three search are improved by allowing for a
longer search. Bottom right, the corresponding number of records that timed out

for each depth and time limit.
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FIGURE 6.3: Examples of successes and failures records. Top panel, example
of reaction records from the literature for which a transformation pathway was
found by the metabolic forest: top row, a three-step reaction pathway of benox-
inate,[289] second row, a two-step reaction pathway of flurazepam,[290] and
bottom row, a one-step pathway from zotepine.[291] Lower panel, examples of
records for which no transformation pathway was found. Top left, a dealkylation
and desulfuration of isofenphos, an insecticide, [292] Bottom left, a ring open-
ing reaction of a metabolite of oxybuprocaine, a local anesthetic.[293] Top row,
right, a simultaneous glutathionation and hydroxylation reaction of a metabolite
of capsaicin, the primary irritant of chili peppers,[294] Experimentally-observed
metabolites are enclosed within boxes. Inferred sites of metabolism are circled.
Red crosses indicate records for which no pathway was found to link substrate

and metabolite.

132



Chapter 6. The Metabolic Forest: Predicting the Diverse Structures of Drug Metabolites

HN

N

HO Cl

HO O

OH
OP

HO

O

O

O

Unobserved Intermediate ProductReactant
Site of 

Metabolism

OP

O

O

O

HO

OP

O

O

O

O

Cl

N

O

N

OH

O

HO N

N

Cl

FIGURE 6.4: Missing intermediate structures can be predicted from those records
for which a depth two or depth three search found a metabolic pathway not found
at depth one. Three examples are visualized. Each substrate-metabolite pair could
only be linked by searching a depth greater than one. Such intermediates can be
short-lived and consequently difficult to observe experimentally, yet may have im-
portant biological consequences. Top row, a candidate prodrug of the antidepres-
sant bupropion.[295] Middle row, the plasticizer additive and flame retardant 2-
ethylhexyl diphenyl phosphate.[296] Bottom row, ∆3-carene, a natural monoter-
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vealed. Three examples are shown, where the incorrect, manually annotated sites
are circled in red and crossed, and the correct sites uncovered by the depth one
search are circled in black. From left to right, acetylisoniazid[298], tacrine [299],

and (NS-21), a former drug candidate for bladder disorders[300].

6.2.3 Automatic Detection of Mislabeled Sites.

Comparing the annotated site search to the depth one search revealed cases where SOMs were

mislabeled (Figure 6.5). Across 20736 Phase 1 reaction records, the depth one search found

a reaction connecting reactant and product in 79.42% of cases,. In contrast, an annotated site

search that limited rules to generating structures by modifying at least one of the manually-

annotated SOMs only had an accuracy of 78.36%. The comparable accuracy of the 79.42% and

78.36% implies that the metabolic forest produces SOMs that are of similar validity as those

produced by manual labor. Furthermore, mistakes in the human annotations are revealed by

examining cases where the depth one search found a solution, but the annotated-site-limited

search failed.
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6.2.4 Accurate Generation of Quinone Structures.

Accurate quinone structure generation is an especially important task for a metabolite structure

predictor. Quinone species, including quinone-imines, quinone-methides, and imine-methides,

represent over 40% of reactive metabolites.[152] Many drugs are vulnerable to quinone forma-

tion due to the ubiquity of the phenyl ring in drug design. Due to their abundance, quinone

formation in drug metabolism has been extensively studied experimentally.[257, 301, 254, 302,

197] Recently, we published the first study that explicitly predicted quinone formation.[279]

However, that model had the limitation—common to most previous metabolism models—of

only making predictions on the input molecule, and not producing actual metabolite structures.

For the present study, we designed a specialized rule for quinone structure prediction. To

evaluate performance at predicting quinone structures, we used the exact data set from our pre-

vious quinone study.[279] Quinone formation reactions are challenging to encode because they

can involve a variety of substituents and by definition entail a loss of aromaticity. Nevertheless,

we accurately modeled quinone formation using a combination of SMARTS reactions rules

and more fine-coded chemical programming (Algorithm 1). To our knowledge, this is the first

published algorithm for predicting the structure of quinones. It is generalizable beyond drug-

like molecules to poly aromatic hydrocarbons, which represent a challenge in that they have

many molecules with many paths through those molecules. Nevertheless, the algorithm finds

quinones all the way across the aromatic system (Figure 6.8). Across the 576 quinone forma-

tions reactions, the metabolic forest finds a formation pathway 91.84%, 91.84%, and 76.22% of

the time, for depth three, two, and one searches, respectively (Figure 6.6).

6.2.5 Hypothesized Reactive Metabolites of Toxic Drugs.

Building a bioactivation model by linking models of metabolism[121, 208, 308] and reactiv-

ity[108, 279] was a primary motivation for constructing an accurate method of metabolite struc-

ture generation. The full construction and analysis of this unified bioactivation model is beyond

the scope of this study. Nevertheless, to demonstrate the value of the metabolic forest, we built
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FIGURE 6.6: The metabolic forest accurately produced quinone structures.
Across a data set of 576 quinone formations,[279] the metabolic forest found a
formation pathway 91.84%, 91.84%, and 76.22% of the time, for depth three,
two, and one searches, respectively. Bottom half, examples of experimentally-
observed quinones successfully reproduced by depth one, depth two, and depth
three searches. From top to bottom, the starting drugs are tacrine, a cholinesterase
inhibitor[303, 304] clozapine, an atypical antipsychotic[106] and mianserin, an
antidepressant.[305] Third to bottom, dihydroxyphenylalanine.[306] Second to
bottom row, a quinone is formed from 4-nitropyrene, an urban air pollutant from

diesel engines.[181, 263] Bottom, a kinase inhibitor drug candidate.[307]
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a prototype implementation. In this system, we used the explicit metabolite structures generated

by the metabolic forest to unite three, heretofore incompatible, models: the previously discussed

quinone-formation model[279], a model of epoxidation[121], and a model of reactivity.[208]

The quinone formation and epoxidation models were originally conceived as specialized

metabolism studies, with their respective focuses chosen because quinones and epoxides to-

gether represent around 50% of all known reactive metabolites.[152, 151] However, classifying

quinones and epoxides as either reactive or nonreactive is a generalization, because reactivity

is actually a continuum. For example, there are naturally-occurring epoxides[142] and other

small-molecule-containing epoxides that are known to be nonreactive[143] In these cases, the

presence of electron-donating groups on the carbons in an epoxide often stabilized the motif,

by reducing the electron deficiency. Similarly, nearly identical quinones can vary widely in

their reactivity and toxicity.[40] Consequently, evaluating the reactivity of possible quinones

and epoxides enables a ranking of possible structures that may drive toxicity.

The quinone model predicts how likely quinones are to form at both the site- and molecule-

level. Similarly, the epoxidation model yields probabilistic scores for epoxide formation, also

at the site- and molecule level. The reactivity model predicts reactivity to biological macro-

molecules, including DNA and protein, as well as glutathione (GSH) and cyanide, which are

frequently used experimentally to detect reactive molecules.[105, 106] To build our bioactiva-

tion model, we constructed a pipeline where, for a given input molecule, all the structures of all

possible epoxides and quinones were generated, and these structures submitted to the reactivity

model. By multiplying the probabilistic metabolism scores from the epoxidation and quinone

models by the reactivity scores, metabolites can be identified that are both likely to form and

likely to be reactive. In the future, we plan to quantitatively use these bioactivation scores to

predict reactive metabolite formation, and to systematically evaluate its performance at this task.

Here, we highlight a few case studies where the metabolite predictor has generated hypotheses

about reactive metabolites that may be responsible for IADRs (Figure 6.7).
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The chemotherapy drug imatinib has been implicated in several cases of idiosyncratic, se-

vere hepatotoxicity.[9, 309]. However, no reactive metabolite has been detected.[310] Our mod-

els predict formation of a highly reactive quinone-methide. Our quinone formation model [279]

predicted formation of a quinone-imide that is also predicted to be highly reactive by our re-

activity model.[208]. The potent non-opioid analgesic metamizole was withdrawn from the

market in several countries, including the United States, due to cases of agranulocytosis.[311,

312, 313, 314, 315] The mechanism of this toxicity has not been elucidated, although evidence

has been found for an immunoallergic origin.[316] A cation radical has been observed in in-

cubations with myeloperoxidase,[317] but without evidence of its formation in vivo the culprit

of metamizole remains an open question. Our bioactivation model presents an alternative hy-

pothesis: the formation of a reactive quinone on metamizole’s pyrazolone motif. Famotidine, a

histamineH2 receptor antagonist, has been associated with unexplained idiosyncratic reactions,

including toxic epidermal necrolysis. [318] A reactive epoxide forming on the thiazole within

famotidine is a possible explanation suggested by epoxidation and reactivity scores,

6.2.6 Limitations

The metabolic forest accurately produced the metabolite structures across a large, literature-

derived data set of 20736 Phase 1 reaction records. Although diverse, this data may have biases

that limit our results. For example, many short-lived intermediates are difficult or impossi-

ble to experimentally detect. As a result, such transitory molecules are likely under-reported

in metabolic studies. Due to our focus on accurately reproducing literature-derived data, our

current tool may not be as well tuned to these underreported intermediates.

Secondly, the search algorithm naively considers all possible combinations of rules, without

regard to biological patterns that make some combinations more likely than others. For exam-

ple, the current method blindly mixes Phase 1 and Phase 2 reactions, ignoring the well-known

paradigm of redox reactions often introducing functional groups for subsequent conjugation
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FIGURE 6.7: Previously developed models of metabolism and reactivity are con-
nected by the metabolic forest to generated bioactivation hypotheses for several
IADR-associated drugs, whose IADR-drivers were never elucidated. Top, the
chemotherapy drug imatinib has been implicated in several cases of idiosyncratic,
severe hepatotoxicity.[9, 309]. However, no reactive metabolite has been de-
tected.[310] The potent non-opioid analgesic metamizole was withdrawn from
the market in several countries, including the United States, due to cases of agran-
ulocytosis.[311, 312, 313, 314, 315] The mechanism of this toxicity has not been
elucidated, although evidence has been found for an immunoallergic origin,[316]
suggestive of a bioactivation mechanism. A cation radical has been observed
in incubations with myeloperoxidase,[317] but without evidence of its forma-
tion in vivo the culprit of metamizole remains an open question. Famotidine,
an histamine H2 receptor antagonist, has been associated with idiosyncratic reac-
tions, including toxic epidermal necrolysis. [318] The colored shading represents
the quinone formation score[279] for imatinib and metamizole, the epoxidation
score[121] for famotidine, and the reactivity scores[208] of all three predicted

metabolites.
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reactions.[152] Additionally, the search does not take into account the connectivity distance be-

tween the sites modified by subsequent metabolic steps. It would be logical to start the search

at each depth near the site mostly recently modified, to reduce the number of false paths con-

sidered for reactions that are highly correlated, such as hydroxylation followed by quinone

formation.[88]

A third possible caveat is the risk of incorrect metabolite structures in the data misinform-

ing the design of the metabolic rules. The potential impact of this possibility on our reported

accuracies seems low, because the large data set size of 20736 records made the effect of any

single record negligible. Furthermore, when constructing the metabolic forest, only a small

fraction of the data was inspected. It seems more likely that incorrect or unorthodox metabolite

structures resulted in an accuracy underestimation. For example, one poorly performing reac-

tion type were glutathionation reactions, because glutathione was reported as several slightly

different forms in the data and therefore did match any product structure. Explicitly encoding

all these glutathione forms would be undesirable, because it would unnecessarily expand the

total number of possible structures at each depth, and place undue emphasis on a single reaction

type.

6.3 Conclusion

This study established a validated, accurate tool for predicting metabolic structures across one or

several metabolic steps. Our method combined simple rules encoded by reaction SMARTS with

novel algorithms for complex, resonance-structure-based transformations, including quinone

formation, hydrogenation, dehydrogenation, and tautomerization. We validated the metabolite

structure predictor on a diverse collections 20736 records from a literature-derived database.

Beginning with the substrate of each record, a breadth-first search successfully found a trans-

formation resulting in the exact experimentally-observed product 79.42%, 88.43%, and 88.77%

of the time when generating a metabolite tree limited to one, two, or three successive rules,
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respectively. We also validated our method on a previously published data set of 576 quinone

formations,[279] producing the correct quinone structure with accuracies of 76.22%, 91.84%,

and 91.84% with searches of depths one, two, and three, respectively. Our tool can also be

used to infer missing intermediate structures, and to automatically label sites of metabolism.

Most importantly, the metabolite predictor enables integration of metabolism and reactivity

models to construct a bioactivation model. Until now, metabolite structures were the missing

link in that endeavor. We constructed a prototype model that predicted novel putative reactive

metabolites for the drugs imatinib, metamizole, and famotidine, each of which is associated

with IADRs, the causes of which have never been elucidated. These reactive metabolites are

specific, testable hypotheses about the mechanism of their parent drug’s idiosyncratic toxicity.

We plan to comprehensively model bioactivation using the metabolite predictor, and expect that

accurate enumeration of possible metabolite structures will become a cornerstone of many other

future investigations.

6.4 Methods

6.4.1 Phase 1 Metabolism Data

We measured the performance of the metabolite predictor on the Phase 1 metabolism data set,

detailed in our simultaneous study.[319] In short, this data consisted of 20736 in vitro and in

vivo Phase I human records from the literature-derived Accelrys Metabolite Database (AMD).

We identified five categories of Phase 1 metabolism: stable oxygenation, unstable oxygenation,

dehydrogenation, hydrolysis, and reduction, and manually labeled 10280, 5811, 2794, 3869,

and 1590 sites of metabolism. Do their complex, often multi-step mechanisms, quinone for-

mations do not fit well into the criteria used to extract and label the Phase 1 data set. Instead,

to quantify performance at predicting quinone structures, we used a data set from one of our

previous studies consisting of 576 quinone formations extracted from the AMD.[279]
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6.4.2 The Metabolic Forest

We built a metabolite structure predictor that rapidly enumerates trees of metabolic pathways.

This algorithm–codenamed the metabolic forest—was built in python using the 2017.09.01 re-

lease of RDKIT, an open-source cheminformatics package.[141] The metabolic forest included

24 reaction rules (Table 6.3). Each rule belonged to a rule set, including 1) each of the five

broad classes of Phase 1 metabolism labeled in our simultaneous study, [319] 2) conjugation,

3) quinone formation, and 4) tautomerization.

For Phase 1 metabolism, the stable oxygenation ruleset included the epoxidation, hydrox-

ylation, nitrogen oxidation, and sulfur oxidation rules, the unstable oxygenation ruleset in-

cluded the dealkylation and oxidation dehalogenation rules, the dehydrogenation ruleset in-

cluded a lone dehydrogenation rule, the hydrolysis ruleset included the dephosphorylation,

epoxide opening, carbonyl cleavage, and azo splitting rules, and the reduction ruleset included

the benzodioxole reduction, dehydration, hydrogenation, nitrogen reduction, sulfur reduction,

oxygen reduction, and reductive dehalogenation rules. The conjugation ruleset included four

rules specifying the reactions acetylation, glucuronidation, glutathionation, and sulfation. The

quinone formation ruleset included a single quinone formation rule that both modeled the two-

electron oxidation that directly forms quinones and several types of reactions that often set the

stage for that oxidation, such as aromatic hydroxylation. Similarly, the tautomerization rule-

set had a single eponymous rule. Tautomerization, although not generally regarded as a type

of metabolism, nevertheless plays a role in known metabolic pathways of drugs like clopido-

grel [320] and ranitidine.[321]

Programmatically, these rules fell into three archetypes: SMARTS rules, resonance pair

rules, and resonance structure rules, detailed in the following sections.

6.4.3 SMARTS Rules

Many of the reaction rules used the Reaction SMARTS syntax provided by the open-source

cheminformatics library RDKit (Table 6.4).[141] Reaction SMARTS syntax is derived from
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TABLE 6.3: The 24 rules used by the metabolic forest, their associated rule set,
and their type.

rule ruleset type
dehydrogenation
hydrogenation

quinone formation

dehydrogenation
reduction

quinone formation
resonance pair rule

epoxidation
tautomerization

stable oxygenation
tautomerization resonance structure rule

acetylation
azo splitting

benzodioxole reduction
dealkylation
dehydration

dephosphorylation
epoxide opening
glucuronidation
glutathionation

hydrolysis
hydroxylation

nitrogen oxidation
nitrogen reduction

oxidative dehalogenation
oxygen reduction

reductive dehalogenation
sulfation

sulfur oxidation
sulfur reduction

conjugation
hydrolysis
reduction

unstable oxygenation
reduction
hydrolysis

stable oxygenation
conjugation
conjugation

carbonyl cleavage
stable oxygenation

stable oxidation
reduction

unstable oxygenation
reduction

reductive dehalogenation
conjugation

stable oxygenation
reduction

smarts reaction rule
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SMARTS patterns, and has similarities to the alternative reaction languages “SMIRKS”[322,

323] and “SMILES”.[324] Reaction SMARTS are a compact method for encoding transforma-

tions that occur on a small number of localized atoms. For example, the string: “[#6h:1]»[*:1]O”

expresses a hydroxylation reaction where the oxygen (“O") is connected with a single bond to

a carbon with at least one hydrogen (“[#6h:1]"). The oxygen will be protonated during a san-

itization step before outputting the final structure. The exact Reaction SMARTS used for each

rule are listed in Table 6.4.

TABLE 6.4: Reaction SMARTS used by the metabolite prediction algorithm.

Rule Reaction SMARTS

acetylation [#7,#8,#16;h:1]»[*:1][#6](=[#8])[#6]

azo splitting [#7:1]=[#7:2]»[*:1].[*:2]

benzodioxole reduction [#6R:1]-[#8R:2]-[#6H2R:3]-[#8R:4]-[#6R:5]»([*:1]-[*:2].[*:3].[*:4]-[*:5])

dealkylation

[#6H3:1][#7,#8H0,#16:2]»([*:2].[*:1](=O)O)

[#6H3:1][#7,#8H0,#16:2]»([*:2].[*:1]=O)

[#6H3:1][#7,#8H0,#16:2]»([*:2].[*:1]-O)

[#6H2:1][#7,#8H0,#16:2]»([*:2].[*:1](=O)O)

[#6H2:1][#7,#8H0,#16:2]»([*:2].[*:1]=O)

[#6H2:1][#7,#8H0,#16:2]»([*:2].[*:1]-O)

[#6H1:1][#7,#8H0,#16:2]»([*:2].[*:1]=O)

[#6H1:1][#7,#8H0,#16:2]»([*:2].[*:1]-O)

[#6H0:1][#7,#8H0,#16:2]»([*:2].[*:1]-O)

[#6:1][#6:2]»(O-[*:1].[*:2])

[#6h:1][#6:2]»(O-[*:1].[*:2])

[#6h:1][#6:2]»(O=[*:1].[*:2])

[#8H1:3]-[#6:1]-[#7,#8,#16:2]»([*:3]=[*:1].[*:2])

dehydration

[#6,#7:1]-[#8H1:2]»[*:1].[*:2]

[#6:3]-[#6:1]-[#8H1:2]»[*:3]=[*:1].[*:2]

[#6,#7:1]=[#8:2]»[*:1].[*:2]

dehydrogenation
[#16v4:1]-[Oh:2]»[*:1]=[*:2]

[#6h:1]-[#6D1H3,#6D2H2,#6D3H1,#7D2H1,#7D1H2,#7D3,#8H1:2]»[*:1]=[*:2]
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Rule SMARTS

dephosphorylation [#8:1]=[#15:2]([#8:3])([#8:4])[#8:5][#6:6]»[*:1]=[*:2]([*:3])([*:4])[*:5].O[*:6]

epoxidation [#6:1]=[#6,#7:2]»[*:1]1-[*:2][O]1

epoxide opening
[#6:1]1[#8:2][#6:3]1»([*:2][*:3][*:1])

[#6:1]1[#8:2][#6:3]1»([*:2][*:3][*:1]O)

glucuronidation
[#6:1][#6:2](=[O,N,P,S:3])[#8:4]» O1C(C(=O)O)C(O)C(O)C(O)C([*:4][*:2](=[#8:3])[*:1])1

[#8H1:1][#6:2]»O1C(C(=O)O)C(O)C(O)C(O)C([*:1][*:2])1

glutathionation

[#6:1]1[#8:2][#6:3]1» C(CC(=O)N[C@@H](CS([*:1][*:3][*:2]))C(=O)NCC(=O)O)[C@@H](C(=O)O)N

[#6:1][Cl:2]»C(CC(=O)N[C@@H](CS([*:1]))C(=O)NCC(=O)O)[C@@H](C(=O)O)N

[#16h1:1]»C(CC(=O)N[C@@H](CS([*:1]))C(=O)NCC(=O)O)[C@@H](C(=O)O)N

hydrogenation
[#6:1]#[#6:2]»[*:1]=[*:2]

[#6:1]=[#6:2]»[*:1]-[*:2]

hydrolysis
[#8,#16:1]=[#6:2]-[#7,#8,#16:3]»([*:1]=[*:2](O).[*:3])

[#8,#16:1]=[#6:2]-[#7,#8,#16:3]»([*:1]=[*:2].[*:3])

hydroxylation
[#6h:1]»[*:1]O

[#6h2:1]»[*:1]=O

nitrogen oxidation
[#7v3:1]»[*:1]O

[#7v3:1]»[*:1]=O

nitrogen reduction

[#7:1](=[#8:2])-[#8:3]»[*:1].[*:2].[*:3]

[#7:1]( [#8:2]) [#8:3]»[*:1].[*:2].[*:3]

[#8:2]=[#7:1]-[#8:3]»[*:1].[*:2].[*:3]

[#8:2]=[#7:1]-[#8-1:3]»[*:1]=[*:2].[*:3]

[#7D2:1]=[#8:2]»[*:1]

[#7:1]-[#8:2]»([*:1].[*:2])

oxidative dehalogenation

[#9,#17,#35,#53,#85:1]-[#6:2]»[*:1].[*:2]O

[#9,#17,#35,#53,#85:1]-[#6h1:2]»[*:1].[*:2]=O

[#9,#17,#35,#53,#85:1]-[#6H2:2]»[*:1].[*:2](O)=O

[#9,#17,#35,#53,#85:1]-[#6:2][#6H1:3]»[*:2](O)[*:3]-[*:1]

[#9,#17,#35,#53,#85:1]-[#6:2]-[#9,#17,#35,#53,#85:3]»[*:1].[*:2](O)=O.[*:3]

[#9,#17,#35,#53,#85:1]-[#6:2]-[#9,#17,#35,#53,#85:3]»[*:1].[*:2](O)O.[*:3]

oxygen reduction
[#8:1]=[#6,#7:2]»[*:1]-[*:2]

[#8:1]-[#8:2]»[*:1].[*:2]
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Rule SMARTS

reductive dehalogenation
[#9,#17,#35,#53,#85:1]-[#6:2]»[*:1].[*:2]

[#9,#17,#35,#53,#85:1]-[#6:2]-[#6:3]»[*:1].[*:2]=[*:3]

sulfation
[#6:1][#8:2]»[*:1][*:2]S(=O)(=O)O

[#6:1]1=[#6:2][#6:3]2[#8:7][#6:4]2[#6:5]=[#6:6]1» [*:1]1=[*:2][*:3]=[*:4](-S(C)(=O)(=O))[*:5]=[*:6]1

sulfur oxidation
[#16;v2,v4:1]»[*:1]O

[#16;v2,v4:1]»[*:1]=O

sulfur reduction
[#16:1]=[#8:2]»[*:1].[*:2]

[#16:1]-[#16:2]»[*:1].[*:2]

6.4.4 Resonance Pair Rules

While Reaction SMARTS work well for encoding transformations that occur on small groups

of neighboring atoms, they do not extend well to reactions that can occur at distal sites on a

molecule due to resonance structures. For example, quinone formation reactions are challenging

to encode because they can involve several atoms across one or more rings, and by definition

entail a loss of aromaticity. Consequently, there is no way to write a well-generalized SMARTS

rule for quinone formation, because bond and atom attributes shift simultaneously. A SMARTS

rule matching a certain quinone formation may not generalize to even slightly different ring

patterns, despite identical underlying principles.

Instead, we designed resonance reaction rules that share a common problem: finding a path

across the conjugated or aromatic systems within a molecule, while also efficiently iterating

through the resonance structures in that molecule. This is more complex than one might initially

imagine, because input molecules may have many possible resonance structures, and many pos-

sible paths through those resonance structures. Several implementations were ultimately aban-

doned to combinatorial explosions on certain problematic types of molecules. Ultimately, we

found an efficient implementation that enables rapid computation of resonance-based metabo-

lites, even across large aromatic systems like polycyclic aromatic hydrocarbons.
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Fundamentally, this procedure considers various resonance structures in turn. However,

rather than naively consider all resonance structures for an input molecule, only potentially

useful resonance structures are produced. This is possible due to the insight that conjugated-

system-based metabolic events can only occur across a single conjugated system, so the various

conformations of any other conjugated system are not relevant. To efficiently make resonance

structures, a molecule is first fragmented into its constitutive conjugated systems. Next, for

each conjugated system fragment, all resonance structures are generated for the fragment, and

then reattached to the rest of the molecule. As a result, the total number of resonance structures

produced by a molecule is a linear combination of the number of resonance structures in each of

its conjugated systems, rather than a multiple. This significantly cuts down on the total number

of resonance structures produced, but not does not forgo any resonance structure that might be

relevant for a given transformation, which can only occur across a single conjugated system.

For the resonance pair rules, pairs of atoms within each resonance structure were considered

(Algorithm 1). Only pairs were considered that matched all of the following criteria: 1) both

within the same conjugated system, 2) at least one connecting path that alternated double and

single bonds and 3) both matching any of several predefined endpoint structures. Each of these

endpoint structures had a corresponding list of possible structural modifications. For each valid

pair, each possible combination of modifications was performed. For each resulting structure,

for each connecting path of alternating single and double bonds between the two atoms, a final

structure was generated by swapping the single and double bonds.

The exact specifications of the three resonance pair rules, dehydrogenation, hydrogenation,

and quinone formation rules, are detailed in Table 6.5. Dehydrogenation and hydrogenation

considered conjugated systems, as previously described. However, due to its mechanism, the

quinone formation rule only needed to consider aromatic systems (Figure 6.8).
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Algorithm 1 The resonance pair algorithm. Algorithm takes inputs (1) the molecule, (2) end-
point patterns as SMARTS strings, and (3) sets of atoms that are grouped by connected system,
aromatic or conjugate as needed determined for the rule.

1: procedure RESONANCEPAIRALGORITHM(Molecule,Transforms,Systems)
2: T ← all matches in Molecule to Transforms
3: for S in Systems do
4: for KekuleForm (K) in S do
5: for PairedMatches (A1, A2) in both S and T do
6: P ← path of alternating single/double bonds between A1 and A2, with start and end double

bond
7: M ← transform S in Molecule to match K
8: M ← apply transform from A1 to M
9: M ← apply transform from A2 to M

10: M ← swap single and double bonds along P in M
11: yield M

6.4.5 Resonance Structure Rules

The tautomerization and epoxidation rules also used resonance structures, but are distinct from

the resonance pair rules because they do not perform combinations of modifications on pairs of

atoms. Instead, the tautomerization rule does not change the overall number of double bonds,

single bonds, or hydrogens (Algorithm 2). The rule works by iterating through resonance struc-

tures and enumerating all atoms one-bond away from each conjugated system. Next, for each of

these neighboring atoms, all paths were considered between the neighbor and each atom within

the system, where the number of double and single bonds was the same. For each path, all

double and single bonds were swapped to emit a tautomer.

The epoxidation rule used resonance structures and a pattern listed in Table 6.4 to replace

double bonds between carbons with epoxides. By first converting all aromatic bonds in the

input molecule to single or double bonds (known as kekulization), and then considering all

double bonds within each resonance structures, all possible epoxides are generated. Instead,

only using a single kekulized form of the input molecule could miss some epoxides for those

sites assigned to be single rather than double bonds.
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TABLE 6.5: The transforms used by the resonance pair rules.

Rule Endpoint (Transforms) System Type

dehydrogenation
[#6h:1][#6D1H3,#6D2H2,#6D3H1,#7D2H1,#7D1H2,#8H:2] (’single2double’)

[#6h:1][#7D3:2] (’single2double’, ’addPlus1’) conjugated

hydrogenation [*:1] conjugated

quinone formation

[#6R:1][#6D1H3,#6D2H2,#6D3H1,#7D2H1,#7D1H2,#8H:2] (’single2double’)
[#6D2H1:1] (’addO’)

[#6H0R:1]-[F,Cl,Br,I:2] (’replaceHalogenWithO’, ’single2double’)
[#6H0R:1][#7D3:2] (’single2double’, ’addPlus1’)
[#6R:1][#7,#8:2][#6:3] (’dealk’, ’single2double’)
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FIGURE 6.8: Raloxifene illustrates the quinone prediction method. Various res-
onance structures are considered in turn. For each structure, all paths between
each pair of atoms are examined. Each atom pair is tested for compatibility with
several predefined endpoint structures. A valid path is indicated by red bonds on
the upper left. For this path, both endpoints are hydroxyls, in purple, which form
a long range quinone in a one step, two-electron oxidation when the single and
double bonds swap as indicated by the arrows. Two-step quinone formations are
also predicted by our method, such as that formed by hydroxylation followed by

oxidation to form the lower right structure.
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Algorithm 2 The tautomerization algorithm.
1: procedure TAUTOMERIZATIONRULE(Molecule)
2: for S in ConjugatedSystems do
3: for KekuleForm (K) in S do
4: for Neighbor (N) in Molecule not in S do
5: for Atom (A) in S do
6: P ← path of alternating single/double bonds between A and N , with equal number of

single and double bonds
7: M ← swap single and double bonds along P in M
8: yield M

6.4.6 Algorithm for Predicting Depth Two or Three Metabolite Structures

To search for multiple-step metabolites, a breadth first search was performed, with depth capped

at two or three. In this algorithm, the search continued until a metabolic path was found between

substrate and metabolite. For example, for a depth two search, each depth one metabolite was

first consider in turn. If any of the depth one metabolites matched the experimentally known

metabolite, the search terminated. Otherwise, all the depth one metabolites were considered,

one at a time. For each depth one metabolite, all its metabolites were generated (equivalent to

depth two metabolites relative to the starting reactant). If any of those depth two metabolites

matched the experimentally known product, the search terminated. This process continued until

either a match was found or the specified depth limit was exceeded. This search is only limited

by the size of the input molecule, the quality of the rule sets, and the computational power

available. In this study, we at most ran a depth three search to find paths between substrates and

metabolites, by deeper searches are readily possible. This algorithm can also be modified to

only take as input a substrate structure, and generate all possible metabolites to a given depth.

6.4.7 Comparison to RD-Metabolizer

A recent study included metabolite structure generation.[325] This work used Reaction SMARTS,

and in total 20 are included in Tables 1 and 3 in the the study. To construct a comparison rule set,

we transcribed all of these patterns and evaluated them using the same criteria as our method:

ability to exactly reproduce metabolite structures. Although these were all the patterns that
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Algorithm 3 The breadth-first search algorithm. Algorithm takes inputs (1) the substrate, (2)
the metabolite, (3) a ruleset(a collection of metabolic rules) and (4) a depth limit.

1: procedure BFSMETABOLITE(Substrate,Metabolite,RuleSet,Depth)
2: Intermediates(I)= [] . Empty list
3: for Rule(R) in RuleSet do
4: for Transforms in R do
5: T ← all matches in Substrate to Transforms
6: for Site(S) in T do
7: M ← apply T at S on Substrate
8: if M == Metabolite then return M
9: else

10: I ← append M to I
11: if Depth >= 1 then
12: for M in I do
13: BFSMetabolite(M ,Metabolite,RuleSet,Depth− 1)

seem to be available from this work, they are labeled as examples and therefore our evaluation

of this ruleset might not reflect its true ability. As previously described, Reaction SMARTS are

also part of the metabolic forest, and we have comprehensively listed these in Table 6.4.
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Chapter 7

Modeling the Bioactivation and Subsequent

Reactivity of Drugs

7.1 Introduction

Adverse Drug Reactions (ADRs) are a major challenge for global public health. Indepen-

dent investigations of diverse populations implicated ADRs in 6.5%[1], 8.1%,[2], 8.7%[3], and

12.8%[4] of hospital admissions. Similarly, a meta-analysis of U.S. hospital prospective studies

found that 6.7% of patients had severe ADRs, with a fatality rate of 0.32%.[326] Extrapolating

from those results, the FDA estimated that annual ADRs in the U.S. cause over 2,216,000 hos-

pitalizations and more than 106,00 deaths.[327] Furthermore, predicated on the meta-analysis’s

accuracy, the FDA proposed that ADRs are the 4th leading cause of death in the U.S., exceeding

automobile deaths, diabetes, AIDS, pulmonary disease, and pneumonia.[327] Some ADRs are

traceable to the pharmacological effects of certain drugs, and this mechanistic understanding

can inform efforts to reduce risk.[11] However, a subset of ADRs—idiosyncratic adverse drug

reactions (IADRs)—have elusive etiologies.

These IADRs strike seemingly at random, with unpredictable and often severe symptoms.

Most commonly, IADRs cause liver disorders, but can also induce dangerous skin diseases, in-

cluding Stevens-Johnson syndrome and toxic epidermal necrolysis, as well as dangerous blood

disorders such as agranulocytosis or aplastic anemia.[14, 328, 329, 330, 105, 331, 317, 241,
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246, 243, 247] In the U.S., IADRs are responsible for about half of all acute liver failure cases,

and 15% of liver transplants.[19] Nevertheless, IADRs are rare overall, only occurring in about

1 in 10000 to 1 in 100000 patients.[13] As a result, many IADR-causing drugs can slip through

all stages of preclinical trials, which even in their largest phase generally only have about 3000

patients.[14] After approval and market release, however, exposure to much large patient pop-

ulations can reveal a drug’s hidden risk. Indeed, already-approved drugs are mostly commonly

withdrawn from the market due to intolerable numbers of IADR cases.[258, 98, 259, 260, 261]

Even if a drug is not withdrawn, it may be labeled with a “black–box" warning by the FDA,

significantly curtailing its profitably.[332]

Devising early-detection methods for IADRs would reduce patient morbidity and mortality.

Furthermore, pharmaceutical developers would avoid heavily investing in drugs that ultimately

are too risky to use. Unfortunately, IADRs are generally intractable to study and difficult to

replicate in humans or animal models. It is not clear why IADRs only affect some individuals,

or why the same drug can cause different IADRs in different unlucky patients. However, a

growing body of evidence suggests that many IADRs are induced by a specific mechanism:

bioactivation, the focus of this study (Figure 7.1).

In bioactivation, enzymes convert drugs into electrophilically-reactive metabolites that co-

valently bind to nucleophilic sites, within biological macromolecules, including DNA and (off-

target) proteins. Metabolite-DNA adducts may be mutagenic or even carcinogenic [19, 28, 29],

and metabolite-protein adducts can disrupt protein function or trigger toxic immune responses.

In fact, many IADRs have been linked to overzealous autoimmune attacks set off by the produc-

tion and covalently binding of reactive metabolites. Due to the threat conferred by bioactivation,

drug developers strive to avoid advancing candidates that produce reactive metabolites, n order

to reduce the risk of investing in IADR-causing drugs. Screening assays for reactive metabolites

are often used, but have some limitations. These assays may not accurately reflect endogenous

metabolism, consume time and resources, and require physical synthesis of each compound

under consideration.
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FIGURE 7.1: This study modeled four common pathways of bioactivation:
quinone formation, nitroaromatic reduction, thiophene sulfur-oxidation, and
epoxidation. Top row, lumiracoxib, a cyclooxygenase-2 selective inhibitor,
was withdrawn from several countries after several cases of severe liver dam-
age.[202, 203] This toxicity was traced to the formation of reactive quinone-imine
metabolite that conjugates to off-target proteins, inducing deleterious immune
responses.[202, 203] Second row, nitrofurantoin, an antibiotic, carries a risk of
acute liver failure,[333], which is thought to be caused by reduction of nitrofu-
rantoin’s nitroaromatic group to a reactive nitroso.[334] Third row, zileuton, a
5-lipoxygenase inhibitor used to treat asthma, has been restricted in its use due to
rare cases of severe hepatotoxicity, which has been traced to oxidation of the sul-
fur in its thiophene motif, producing a highly reactive S-oxide.[335] Bottom row,
furosemide, a diuretic, confers a risk of idiosyncratic hepatitis due to production

of a reactive epoxide metabolite.[9, 336, 337, 338, 339]
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Instead, computational models have the potential to rapidly screen possible structures for

bioactivation risk, thereby flagging problematic molecules or providing a short list of molecules

for experimental validation. In this study, we build a model that jointly models metabolism

and reactivity, thereby producing bioactivation predictions. We model four types of metabolism

that often produce reactive metabolites: quinone formation, nitroaromatic reduction, thiophene

sulfur-oxidation, and epoxidation (Figure 7.1). These pathways were chosen because we have

well-developed models for these metabolic routes, including an accurate model of quinone for-

mation[279], epoxidation[121], and a phase I metabolism model that includes predictions for

nitroaromatic reduction and thiophene sulfur-oxidation.[319]

7.2 Methods

7.2.1 Bioactivation Training Data

We assembled a heterogeneous data set of bioactivation reactions from the literature-derived

Accelrys Metabolite Database. Each reaction took place in humans, human cells, or human

liver microsomes. Four types of bioactivation reactions were extracted: quinone formation,

epoxidation, nitroaromatic reduction, and thiophene S-oxidation. Each of these pathways are

well-known bioactivation mechanisms, and in previous work we have built models that pre-

dict whether molecules will subject to each type of metabolism. Quinone formation[279] and

epoxidation[121] were modeled independently, and nitroaromatic reduction and thiophene S-

oxidation were included in a model of diverse Phase 1 reactions.[319] In total, we extracted from

the experimental data 210 quinone formations, 174 epoxidations, 4 nitroaromatic reductions,

and 10 thiophene S-oxidations. For each molecule, we enumerated all possible metabolites for

each of these 4 pathways, producing 6594 quinone formations, 6077 epoxidations, 48 nitroaro-

matic reductions, and 10 thiophene S-oxidations. We then merged all duplicate molecules into a

single representation per molecule, with all of its experimentally-known bioactivation pathways
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labeled. Finally, we filtered out any molecules that did not have at least one one experimentally-

not-observed bioactivation pathway, because such cases would not be a good test of the model’s

ability to predict the correct pathway within bioactivated molecules. This procedure produced

a total of 340 bioactivated training molecules.

We also selected molecules that are not known to be bioactivated. To select these molecules,

we started with the same set of reactions from the Accelrys Metabolite Database, where each

reaction took place in humans, human cells, or human liver microsomes. We then filtered out all

molecules that were intrinsically reactive: those that are known to directly conjugate to protein

or glutathione. We also filtered out all bioactivated molecules. Finally, we selected all molecules

that had at least one possible bioactivation pathway among the 4 mechanisms considered in this

study. This left us with a large pool of negative molecules. From this pool, we randomly

selected an equivalent number as the total number of bioactivated molecules, forming a final

data set of 680 molecules.

7.2.2 External Non-Bioactivated Test Sets

A total of 12882 non-bioactivated molecules remained after the training molecules were re-

moved. From these, we extracted 38 negative external test sets by randomly shuffling the list

of negatives and splitting it into batches of 340 molecules. We chose this batch size to equal

the number of negatives included in the training data. None of these molecules were considered

during training, and only tested by the final model.

7.2.3 DrugBank

To provide an external data for investigating the model’s predictions, the withdrawn drug list

from the July 3rd, 2018 release of DrugBank was downloaded. This file included the structures

of 221 drugs. We removed any drug that was also present in our training data, Afterwards, 208

molecules remained in our training data.
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TABLE 7.1: Bioactivation descriptors used to predict bioactivation pathways.

Descriptor
Formation Score
GSH Atom Reactivity Delta
GSH Bioactivation Score
Protein Atom Reactivity Delta
Protein Bioactivation Score

7.2.4 Bioactivation Descriptors

For this study, we synthesized several previous models of metabolism and reactivity to design

specific bioactivation descriptors that were inputted to a neural network (Figure 7.2). Using

previously designed models for quinone formation, epoxidation, nitroaromatic reduction, and

thiophene S-oxidation, formation scores were computed for each possible transformation for a

given input molecule. Next, the actual structures of each of these possible metabolites was gen-

erated using an in-house metabolite structure predictor.[340] After enumeration of the metabo-

lite structures, the atom-level reactivity GSH- and protein-reactivity scores were computed for

both the substrate and the product molecule. Next, the atom-level reactivity deltas between the

metabolite and substrate were calculated for both GSH and protein, by subtracting the atom’s re-

activity prediction in the product from the atom’s reactivity prediction in the substrate. Finally,

a bioactivation score was computed by multiplying each reactivity delta by the corresponding

formation score.

We also computed simple molecule descriptors, such as molecule weight or the total num-

ber of atoms. Overall, the descriptor generation produced 20 descriptors for each possible

metabolite, including 5 bioactivation pathway descriptors (Table 7.1) and 15 molecule descrip-

tors (Table 7.2).

7.2.5 Combined Path- and Molecule-level Bioactivation Model

The descriptors are computed to create inputs for machine learning algorithms, which find map-

pings between vectors of numbers–known as features—and labeled examples, known as targets.
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FIGURE 7.2: Bioactivation descriptors were computed using site-level
metabolism predictions, metabolite structure predictions, and reactivity predic-
tions. Left, the predictions generated by a previously developed epoxidation
model[121] are visualized on styrene. The colored shading indicates site-level
epoxidation scores, which reflect the probability that an epoxide will form at
each possible location within styrene. Bottom right, using a previously developed
metabolite structure generator,[340] the exact epoxide structure corresponding to
the highest site-level epoxidation score was generated. Next, we applied our pre-
viously published reactivity model [208], which has prove useful in other studies
as well [341, 342], to predict the atom-level reactivity of both the substrate and
the metabolite. Finally, by tracking each atom’s reactivity score in the metabolite
from the corresponding atom in the substrate, we calculated atom-level reactivity
deltas. As shown in the chart, atoms 4 and 5 are both predicted to be more reactive

in the substrate than the metabolite, while the rest of the atoms are unchanged.
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TABLE 7.2: Molecule descriptors used to predict bioactivation pathways

Descriptor
Molar Refractivity
Molecular Weight
Number of Aromatic Bonds
Number of Bonds
Number of Double Bonds
Number of Heavy Atoms
Number of Hydrogen Bond Acceptors Definition 1
Number of Hydrogen Bond Acceptors Definition 2
Number of Hydrogen Bond Donors
Number of Hydrogens
Number of Rings
Number of Single Bonds
Number of Triple Bonds
Octanol/Water Partition Coefficient
Topological Polar Surface Area

In this, the descriptors compose our features, and our targets are a binary column indicating

whether a pathway was experimentally observed.

The bioactivation model is a convolutional neural network, with one molecule layer, one in-

put layer, one hidden layer, and two output layers (Figure 7.3). The first output layer calculates

path bioactivation scores (PBS), and the second output layer computes a single molecule bioac-

tivation score (MBS) for each input molecule. Each PBS reflects the probability of a specific

bioactivation event at a specific sites within a molecule. Using the probabilistic OR function,

the MBS is computed by calculating the probability of bioactivation at any site by any of the

pathways considered in this study: quinone formation, epoxidation, nitroaromatic reduction,

and thiophene S-oxidation.

Our procedure can generate a several different PBS, which may share some atoms in com-

mon. In order to aid interpretability, we devised a method for visualizing PBS for a given input

molecule (Figure 7.4).
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15 molecule 
descriptors

5 bioactivation 
descriptors

Pathways

χMolecule Layer

Input Layer

PBSPathway Output Layer

Hidden Layer

MBSMolecule Output Layer

Probabilistic OR
of all PBS

10 hidden nodes

FIGURE 7.3: The diagram demonstrates the flow of data through the model. The
model consists of one molecule layer, one input later, one hidden layers, and two
output layers. First, several descriptors are calculated from an input molecule’s
structure. These descriptors are submitted to the hidden layer, which computes
pathway bioactivation scores (PBS) for the input molecule. Each PBS ranges
from zero to one, reflecting the probability of a specific bioactivation mechanism
at a specific site within the input molecule. For this study, we enumerated four
types of bioactivations, including all possible quinone formations, epoxidations,
nitroaromatic reductions, and thiophene S-oxidations. Next, a probabilistic OR
function computes a molecule bioactivation score (MBS), which also ranges from
from zero to one and represents the probability of a molecule undergoing bioac-
tivation by any of the pathways considered. A chemical structure is represented
by the molecule node. The other circles are probabilistic scores between 0 and 1.

Blocks are vectors of real numbers.
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FIGURE 7.4: Epoxidations and nitroaromatic reductions entail bond cleavage.
However, quinones take place on atom pairs, and thiophene sulfur-oxidation oc-
curs on a atom, the sulfur. Consequently, while each of these predictions types
can be visualized on separate structures (Figure 7.1), this paradigm does not make
for easily-understandable predictions. Instead, we first mapped all PBS to the
atom level. This is straightforward: for a quinone pair prediction, each atom
would be assigned the initial score. Similarly, both atoms of a bond prediction (ni-
troaromatic reduction and epoxidation) would be assigned the same initial score.
While this mapping moved closer to an interpretable result, in the same, the same
atom can be subject to multiple possible bioactivation pathways. For example,
the atoms making up sites of aromatic epoxidation are often themselves possible
sites of quinone formation. Therefore, in the final step prior to visualization we
computed the scores on each atom by using the probabilistic OR function across

all predictions that included the current atom under consideration.
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7.3 Results and Discussion

The bioactivation model’s performance and capabilities are investigated in the following sec-

tions. First, we focus on the model’s pathway bioactivation scores (PBS). Using several metrics,

we quantify how well PBS predict the correct pathway (s) within bioactivated molecules. Next,

we turn our attention to the model’s second output layer, which produces molecule bioactiva-

tion scores (MBS). Using similar methodologies as the pathway-level analysis, we measure the

performance of MBS by several standards. Finally, we use the final bioactivation model to enu-

merate hypotheses for the toxicity drivers of drugs with currently unknown or poorly understood

toxicity mechanisms.

7.3.1 Bioactivation Pathway Prediction Accuracy

For bioactivated molecules, knowledge of their specific bioactivation pathway (s) yields po-

tentially fundamental insights about their possible toxicity mechanism (s). Bioactivation takes

place at specific sites within molecules, and forms specific reactive metabolite structures. Knowl-

edge of these sites and subsequent reactive structures can potentially guide rational modifica-

tions to prevent bioactivation while hopefully retaining a drug’s pharmacological effect.

To train the model, we use gradient descent on the cross-entropy error. In this procedure,

the model’s weights are gradually adjusted to assign high PBS for experimentally known bioac-

tivation pathways, and low PBS for all other pathways. We used cross-validation to produce

PBS for the entire data set, a standard practice in machine learning for simulating performance

on external data. In this procedure, any metabolically-related molecules are withheld together,

and the model trained on the remaining data. Next, the trained model predicts the PBS of the

withheld molecule (s). In total, there are groups of related molecules, so the cross-validation

procedure entails training individual models. This process insures that each molecule’s predic-

tions are computed by a model that does not contain information about that molecule. We use

several metrics to assess the model’s performance at predicting bioactivation pathways.
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FIGURE 7.5: The model produced accurate cross-validated bioactivation path-
way predictions. Right, the top-two metric was computed across 340 bioacti-
vated molecules. The top-two metric reflects the percentage of correctly predicted
molecules, where a correct prediction is defined as molecule for which any of its
bioactivated pathways received the highest or second-highest score for all possi-
ble pathways within that molecule. left, across the same bioactivated molecules
the average path AUC was measured by calculating how often bioactivated path-
ways received higher scores than all other possible pathways. For both metrics,
the performances of the five bioactivation descriptors were reported, as well as the
cross-validated scores produced by training with either a neural network or a lo-
gistic regressor. Asterisks denote performances that were statistically significant

worse than the highest-scoring method, using a paired t-test.[175]

First, we compute the “top-two” performance, a commonly used metric in site of metabolism

prediction studies ( Figurefig:pathtoptwoandaveragepathauc). [121, 50, 122, 123, 52] This met-

ric counts a molecule as accurately predicted only if any of its bioactivated pathways receive the

highest or second-highest PBS for the entire molecule. The total number of correct predictions

are divided by the total number of bioactivated molecules and multiplied by 100 to produce the

percentage of correct predictions. Second, we computed “average path AUC” for calculating

the area under the receiver operating characteristic curve (AUC) for each bioactivated molecule,

followed by averaging these AUCs. We have used this metric in several precious studies because

it measures how accurately predictions are ranked on intra-molecule basis, which seems impor-

tant for a hypothetical user trying to interpret the results.[279, 108, 121, 208]

For the purpose of choosing the best model, the results of both the top-two and average site

AUC metrics were inconclusive. By the top-two metric,the logistic regressor had a performance

of 78.24%, equivalent to the neural network’s performance of 77.94%. The two models also

produced equivalent average pathway AUCs: 88.97%and 87.60%for the neural network and
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logistic regressor, respectively.

Intriguingly, for both metrics, three of the bioactivation scores produced equivalent perfor-

mances. These performances are calculated simply by treating a descriptor as a model predic-

tion, without any training. In previous studies, we frequently compare our results to individual

descriptors, and we have always found that machine learning outperforms the naive descriptor

approach. In the past, this has seemed logical, because machine learning algorithms can con-

sider many different chemical attributes in concert, and learn complex functions based on these

features. This is the first study in which any descriptor had such a strong performance compared

to the modeling approach, let alone three descriptors.

It is noteworthy that the two descriptors that have much less predictive value are the two

reactivity deltas. This suggests that merely calculating the reactivity of a potential product is

not very informative for predicting bioactivation, because that metabolite may be very unlikely

to occur. Indeed, all three descriptors that match the model performances include information

about the likelihood of the metabolic transformation: the formation score (which is just a predic-

tion of metabolism and does not consider reactivity), and both “bioactivation scores”, computed

by multiplying the maximum atom reactivity increase by the formation score. From these re-

sults, it is not clear whether the reactivity component is informative to the model, because these

scores do not outperform the much simpler formation score.

To attempt to differentiate the two models and three the highly predictive bioactivation

scores, we computed a third metric, the global pathway AUC. Unlike the previous metrics,

this measure does not consider molecule identify, and merely computed an AUC for all path-

ways within positives for the data set. Despite this distinction, the global pathway AUC showed

a very similar pattern as the previous two metrics. The neural network had score had a global

pathway AUC of 90.87%, which as measured by a false positive rate paired t-test[175] was

statistically equivalent to the performances of the same three descriptors formation sore, pro-

tein bioactivation score, and gsh bioactivation score. The only difference between these results

and the previous metrics is that the logistic regressor had a performance of 90.1, which was
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caption[The global path
AUC was computed for several methods across all bioactivated molecules] The global path
AUC was computed for several methods across all bioactivated molecules. Asterisks denote

performances that were statistically significant worse than the highest-scoring method, using a
false-positive-rate paired t-test.[175]

low enough to result in a borderline significant p-value of 0.00364 when compared to the best

performing method : the raw formation score descriptor value.

We finally observed some distinction by computing reliability plots for each of the top per-

forming descriptors and models (Figure 7.6). In this measure, for each method, scores are

assigned to 1 of 10 bins, with each bin representing a score of width 0.1 We then computed

the percentage of bioactivations in each bin, after normalizing the frequencies bioactivated and

non-bioactivated examples, and compute the root mean square error (RMSE) between each bin

percentage and the bidpoint percentage value of that bin. The normalized bin percentages are

plotted on the right Y-axis of each plot. A perfectly scaled prediction would have an RMSE of 0

by this procedure. To assess performance, we also compute R2 pf the best fit line, which should

be 1 for a model that produces scores that bin into a perfectly straight line.

With an RMSE of only 5.206% and an R2) of 0.964, the neural network outperformed

all other methods by both counts. The formation score also has a high R2) of 0.958, but its

slope does not match a scaled probability as well as the neural network, and it only has an

RMSE of 18.595% compared the diagonal identify line representing a perfect probability. Based

on this result, we chose the use the neural network going forward, but do not claim that this
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FIGURE 7.6: .
. Of all methods, the neural network computed the most well-scaled predictions of

bioactivation pathways, with predictions that were highly probabilistic. The bar graphs plot the
normalized distributions for each method across 398 pathways within 340 bioactivated

molecules. The solid lines plot in each bin the percentage of bioactivated pathways among all
pathways in the corresponding score, denoted on the X-axis. The diagonal dashed lines

indicate the ideal perfectly scale prediction. The neural network produced the best scaled
prediction of all methods, indicated by the highest correlation to the best fit-line, and the

lowest root-mean-square error (RMSE) compared to a perfectly scaled prediction.
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FIGURE 7.7: From top to bottom, ethacrynic acid, a diuretic, mianserin, an an-
tidepressant, tolmetin, a nonsteroidal anti-inflammatory, and Imipramine, an an-
tidepressant. For each drug, the experimentally known site of metabolism is cir-
cled in black, and the observed reactive metabolite displayed. tolmetin is known
to produce two different reactive metabolites: an epoxide and a quinone, both
of which are predicted and visualized. Notice that tolmetin’s plane of symmetry
means that the highly predicted sites on the other side of the molecule merely

indicate the same quinone pathway.

is objectively the best option. Some might prefer the simpler logistic regressor model, for

example, or the even simpler formation score descriptor.

We chose the neural network’s scores because we felt that their probabilistic nature might be

helpful for the next objective: predicting molecule bioactivation. Before pivoting to molecule-

level bioactivation predictions, however, considered a few examples of bioactivation pathways

correctly predicted by the neural network (Figure 7.7). Four drugs are visualized with their

cross-validated PBS produced by the neural network, with the magnitude of the PBS indicated

by the color shading gradient. For each drug, the experimentally known site of bioactivation is

circled, and the observed reactive metabolite displayed

7.3.2 Accuracy at Predicting Molecule Bioactivation

Given a list of drugs or drug candidates, a useful bioactivation model should accurately predict

which structures will be bioactivated. Flagging these potentially toxic molecules and separating

167



Chapter 7. Modeling the Bioactivation and Subsequent Reactivity of Drugs

them from lower-risk compounds could enable problematic compounds to be triaged for more

rigorous testing, or simply set aside if there are acceptable alternatives. To enable the bioactiva-

tion model to make these molecule-level bioactivation predictions, we included in the training

data molecules that are not bioactivated, despite having structures capable of forming quinones,

epoxides, thiophene S-oxides, or aromatic nitrosos.

After the first-stage of training, which produced accurate pathway-level predictions, we per-

formed a second training stage to tune the model to distinguish between bioactivated and non-

bioactivated molecules. Performance at this objective was assessed by computing the “molecule

AUC”: the AUC over all molecules in the training data set. We evaluated several models using

this method.

The most intuitive approach is to simply assign each molecule’s its maximum cross-validated

pathway score, which resulted in a molecule AUC of (Figure 7.8). This method produced a

molecule AUC of 80.80%. A more complicated formula that stills entails no training is to cal-

culate the probabilistic OR over all PBS for a given input molecule. This is computed by sub-

tracting each PBS from 1, multiplying all those decimals together, and subtracting that product

from 1. Essentially, this operation calculates the the the joint probability of none of the bioac-

tivation pathways occurring, and then takes the complement of that probability to produce a

probability of at least one bioactivation taking place on a single molecule. The probabilistic OR

had a molecule AUC of 82.37%.

Next, we explored the benefits of adding a second training step. For this training step, the

descriptors for each molecule were its top twelve the probabilistic OR of all of its PBS, as well

as all molecule topological descriptors, for a total of 21 descriptors. We used this descriptor

set as the input for a second training stage, and tested both a logistic regressor and a neural

network with ten hidden nodes. We used the same cross-validation folds as the pathway-level

training, where any similar molecules were held out at the same time. The cross-validated scores

produced by the logistic regressor had a molecule AUC of 81.69%, and the neural network had

a molecule AUC of 81.42%.
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FIGURE 7.8: Molecule bioactivation scores (MBS) accurately identified bioacti-
vated molecules

.

All four methods: the highest PBS, the probabilistic OR of all PBS, the neural network,

and the logistic regressor, had statistically equivalent results when evaluated by a false positive

rate paired t-test.[175] However, the probabilistic OR function outperformed all of the other

three methods, with an R2 of 0.97508 and an RMSE of 6.601. This might seem surprising,

because generally the predictions from trained models are better calibrated than raw descriptors.

However, in this case, the probabilistic OR does not merely represent a single chemical property,

but instead by definition computes a probability that applies to the entire molecule. When

considered in the light of simply being computed by the rules of probability, it is perhaps not

so surprising that it performed better than other methods. Based on this result, we used the

probabilistic OR to compute MBS for the remainder of this study.

As an external tests, we used five of the previously discussed batches of non-bioactivated

olecules. Each batch consisted of 340 unique molecules that were not present in the training

data. the training data. The PBS for each molecules in each external test set was predicted by

the final trained model. For each test set, we measured the separation between the MBS of the

test molecules and the MBS of thebioactivated molecules, computed using the cross-validated

PBS.
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FIGURE 7.9: Of all methods, The probabilistic OR function produced the best-
scaled MBS, with predictions that were highly probabilistic. The bar graphs plot
the normalized distributions for each method across 398 pathways within 340
bioactivated molecules. The solid lines plot in each bin the percentage of bioac-
tivated pathways among all pathways in the corresponding score, denoted on the
X-axis. The diagonal dashed lines indicate the ideal perfectly scale prediction.
The probabilistic OR function produced the best scaled prediction of all methods,
indicated by the highest correlation to the best fit-line, and the lowest root-mean-

square error (RMSE) compared to a perfectly scaled prediction
.
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Over the five external test sets, the molecule AUC was 79.92± 2.07, which is equivalent

to the accuracy of the MBS on the full cross validated training set 82.37 ± 1.60, The model

successfully generalized to new data, assigning non-bioactivated molecules it had never seen

before with much lower scores than bioactivated molecules.

7.3.3 Toxicity Drivers Hypothesis Generation

We used the bioactivation model to enumerate hypotheses for the toxicity drivers of withdrawn

drugs, after downloading a list of withdrawn drugs from DrugBank and removing any molecules

found in our training data. Each of these 208 molecules were submitted to our final trained

model, thereby producing a MBS for each molecule.

The model outputs probabilistic MBS, but for the purposes of estimating the total number

of bioactivated molecules within the list of withdrawn drugs, it was useful to define an exact

score to binarize predictions. To define this cutoff, we analyzed the full ROC curve used to

calculate the molecule AUC across all training molecules (Figure 7.10). While several methods

for defining this cutoff are possible, in this study we computed the cutoff that optimizes both

sensitivity and specificity.[343] This analysis resulted in a MBS threshold of 0.48. Using this

threshold, we predicted that among the dataset of withdrawn drugs, 43 are bioactivated.

By providing hypotheses for the toxicity mechanisms of these drugs, the model provides a

starting point for experimentalists seeking to unravel the etiology of certain IADRs. Perhaps

especially interesting to investigate are drugs predicted to be bioactivated, but that are not cur-

rently known to do so. In terms of space, this is not an appropriate place list all the drugs

potentially worthy of investigation, but I will list a few interesting examples (Figure 7.11).

For example, pipamazine, an antiemetic[344] was withdrawn from the U.S. in 1969 due to

rare, severe cases of hepatotoxicity.[98, 248] The mechanism of these IADRs were not eluci-

dated, and no reactive metabolites of pipamazine have been experimentally detected. Neverthe-

less, given that use of pipamazine was curtailed so long ago, there may have been little incentive
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FIGURE 7.10: The ROC of the cross-validated molecule bioactivation scores was
used to define to a score cutoff, which can be used to binarize predictions. Several
methods for defining this cutoff are possible. In this study, we found the cutoff
by computing the score on the ROC curve that is closet to 100% true positive
rate and 0% false positive rate, thereby representing an optimal threshold for both
sensitivity (the true positive rate) and specificity (1 − false positive rate).[343]
Based on whether sensitivity or specificity or more important for a given purpose,

other methods of defining an optimal cutoff are certainly possible.
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We submitted the structures of 221 withdrawn drugs to the bioactivation model,
the majority of which were downloaded directly from DrugBank, and supple-
mented by literature review. In order to generate toxicity mechanism hypotheses
for these drugs, we looked at molecules that received high molecule bioactivation
scores, yet have not been reported to form form reactive metabolites (to the best
of our knowledge). From top to bottom: thenalidine, cinoxacine clprenolol, and

pipamazine.
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to study it with assays or technologies not available in the 1960s. The high score the bioacti-

vation model assigns to pipamazine, suggests a possible explanation for the IADRs associated

with pipamazine, with the top bioactivation pathway prediction consisting of a simultaneous

quinone formation and dealkylation reaction.

7.4 Model Limitations

One limitation of our approach is that there are other bioactivation pathways beyond those in-

cluded in this study. However, the approach demonstrated here is easily extendable to additional

pathways. Another shortcoming is that we only considered one-step bioactivations, where a

metabolic reaction produced a metabolite that conjugated to macromolecules. Going forward,

by expanding the metabolism scores to included multiple steps, we plan to extend the ability of

the model to pick up multi-step bioactivations. Finally, not all reactive metabolites are toxic.

Sometimes, detoxification pathways such as glutathionation are able to effectively clear reac-

tive metabolites before they cause deleterious effects. We ultimately envision a broader toxicity

model, where bioactivation predictions are combined with other important factors like daily

dose, in order to build a model that explicitly predicts the toxicity risk of a certain molecule.

7.5 Conclusion

In this study, we built a bioactivation model that uses metabolism and reactivity predictions

to predict whether a molecule will be metabolized into a metabolite that binds to protein or

GSH. The model predicted with 89.04% AUC the bioactivation pathway within bioactivated

molecules. These path-level predictions make a specific hypothesis about the mechanism of a

molecule’s toxicity. Furthermore, with 82.37% AUC the model predicted the bioactivation of

molecules. Molecule-level predicts can be used to rapidly screen large number of molecules for

the key toxicity risk of bioactivation. This model synthesizes several previous studies of both

metabolism[121, 279, 319] and reactivity[108, 208] into a single model that weighs the two

174



Chapter 7. Modeling the Bioactivation and Subsequent Reactivity of Drugs

components of bioactivation. Future work will expand the power of this model by enumerating

additional metabolic reactions Furthermore, the model will be improved by considering multiple

metabolic steps that precede reactive metabolite formation.
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