
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

Arts & Sciences Electronic Theses and
Dissertations Arts & Sciences

Winter 12-2018

Different Estimation Methods for the Basic Independent Different Estimation Methods for the Basic Independent

Component Analysis Model Component Analysis Model

Zhenyi An
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds

 Part of the Statistical Methodology Commons

Recommended Citation Recommended Citation
An, Zhenyi, "Different Estimation Methods for the Basic Independent Component Analysis Model" (2018).
Arts & Sciences Electronic Theses and Dissertations. 1676.
https://openscholarship.wustl.edu/art_sci_etds/1676

This Thesis is brought to you for free and open access by the Arts & Sciences at Washington University Open
Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an
authorized administrator of Washington University Open Scholarship. For more information, please contact
digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/art_sci_etds
https://openscholarship.wustl.edu/art_sci_etds
https://openscholarship.wustl.edu/art_sci
https://openscholarship.wustl.edu/art_sci_etds?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1676&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/213?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1676&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci_etds/1676?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1676&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

Washington University in St. Louis

Department of Mathematics and Statistics

Different Estimation Methods for the Basic Independent

Component Analysis Model

by

Zhenyi An

A thesis presented to

The Graduate School

of Washington University in

partial fulfillment of the

requirements for the degree

of Master of Arts

Dec 2018

Saint Louis, Missouri

copyright by

Zhenyi An

2018

Contents

Contents ii

List of Figures iv

1 Introduction to the Independent Component Analysis (ICA) 1
1.1 Introduction . 1
1.2 Mathematical Preliminaries . 8

1.2.1 Cumulants . 8

2 Independent Component Analysis (ICA) Estimation 13
2.1 Independent Component Analysis (ICA) by Non-Gaussianity Maxi-

mization . 13
2.1.1 Non-gaussian is independent 13

2.2 Measuring Non-Gaussianity by kurtosis 16
2.2.1 Extrema of kurtosis give independent components 16
2.2.2 Gradient algorithm using kurtosis 17
2.2.3 A fast fixed-point algorithm using kurtosis 20
2.2.4 Negentropy as non-Gaussianity measure 22
2.2.5 Gradient algorithm using negentropy 24
2.2.6 A Fast Fixed-point algorithm using negentropy 24
2.2.7 Orthogonalization Methods 26

2.2.7.1 Deflationary Orthogonalization 26
2.2.7.2 Symmetric Orthogonalization 27

ii

2.2.8 Independent Component Analysis (ICA) and Projection Pursuit 28

3 Independent Component Analysis (ICA) by Maximum Likelihood
Estimation 29
3.1 Deriving the likelihood . 29

3.1.1 Likelihood Estimation . 29
3.1.2 Estimation of the densities . 31
3.1.3 A simple density family . 32

3.2 Algorithms For Maximum Likelihood Estimation 35
3.2.1 Gradient algorithms . 35
3.2.2 A Fast fixed-point algorithm 37

3.3 The Infomax Principle . 38

4 Independent Component Analysis (ICA) by Minimization of Mu-
tual Information 40
4.1 Defining Independent Component Analysis (ICA) by mutual information 40

4.1.1 Information-theoretic concepts 40
4.1.2 Mutual information as measure of dependence 41

4.2 Mutual information and non-Gaussianity 42
4.3 Mutual information and likelihood . 45

5 R Implementation Examples using FastICA Algorithm 47
5.1 Un-mixing two independent signals 47
5.2 Un-mixing two mixed independent uniformly distributed components 49

Bibliography 52

iii

List of Figures

2.1 A single uniformly distributed independent component with real-lined
compared with gaussian distribution with dashed line 15

2.2 The real-lined mixture of independent components compared with
dashed lined gaussian distribution . 16

5.1 Result of implementation of the fastICA algorithm 48
5.2 Un-mixing two mixed independent uniforms 50
5.3 Plot of the original two independent uniforms 51

iv

Acknowledgments

I’d like to appreciate my supervisor Dr. Figueroa-Lopez’s help during my prepa-

ration process of the thesis, whose patience and consideration really impressed me.

Sincerely thanks Dr. Ding for offering the inspiration and feedback on the oral de-

fense. Until the final step of the graduation, there’s always sufficient support from

faculty and staff in Mathematics Department. Every acknowledgment during the

program period can’t be achieved without all of your help. I am also thankful for

the understanding and consideration from my family, even though they didn’t stay

by my side physically, I still can feel their support.

Zhenyi An

Washington University in St. Louis

Dec 2018

v

ABSTRACT OF THE THESIS

Different Estimation methods for the Basic Independent

Component Analysis Model

by

Zhenyi An

Master of Arts in Statistics

Washington University in St. Louis, December 2018

Research Advisor: Professor José E. Figueroa-López

Inspired by classic cocktail-party problem, the basic Independent Component

Analysis (ICA) model is created. What differs Independent Component Analysis

(ICA) from other kinds of analysis is the intrinsic non-Gaussian assumption of the

data. Several approaches are proposed based on maximizing the non-Gaussianity

of the data, which is measured by kurtosis, mutual information, and others. With

each estimation, we need to optimize the functions of expectations of non-quadratic

functions since it can help us to access the higher-order statistics of non-Gaussian

part of the data. In this thesis, our goal is to review the one of the most efficient

estimation methods, that is, the Fast Fixed-Point Independent Component Analysis

(FastICA) algorithm, illustrate it with some examples using an R package.

vi

Chapter 1

Introduction to the Independent

Component Analysis (ICA)

1.1 Introduction

In this section, we discuss the connection between Independent Component Anal-

ysis (ICA) and some other popular approaches such as Principle Component Analysis

(PCA), decorrelation and whitening transformation. This part is based on Chapter

7 from the book Independent Component Analysis by Hyvarinen et al.

Firstly, we introduce the cocktail-party problem, which is a prime example of the

power of Independent Component Analysis. Imagine that you are in a room where

there are three people speaking at the same time. There are also three microphones in

three different areas. So, the microphones would record and offer you three recorded

time signals, which are denote by x1 (t), x2 (t) and x3 (t) at time index t. Each

1

recorded signals is a weighted sum of the speech signals from the three speakers,

which we denote by s1 (t), s2 (t), and s3 (t). Let’s express this as a system of linear

equations:

x1(t) = a11s1 (t) + a12s2 (t) + a13s3 (t) , (1.1)

x2 (t) = a21s1(t) + a22s2(t) + a23s3(t), (1.2)

x3(t) = a31s1 (t) + a32s2 (t) + a33s3 (t) , (1.3)

where the aij with i, j = 1,. . . ,3 are some parameters depending on the distances of

the microphones from the speakers. If we were able to estimate the original speech

signals s1 (t), s2 (t), and s3 (t) using only the recorded signals xi (t), that would be

fine, however, we know neither the aij nor the si (t), so the problem becomes more

difficult to solve.

One approach to solving this problem is to use some information on the statistical

properties of the signals si (t) to estimate both the aij and the si (t). Actually, we can

see that it suffices to assume that s1 (t), s2 (t), and s3 (t) are, at each time instant t,

statistically independent. This is a reasonable assumption to fit in many given cases.

In general, in the Independent Component Analysis (ICA) model, it’s common to

estimate the aij based on the independency of the information already given, which

allows us to approximately separate the three original signals, s1 (t), s2 (t), and s3 (t),

from their mixtures, x1 (t), x2 (t), and x3 (t).

2

The basic Independent Component Analysis (ICA) model consist of n random

variables [C. Jutten et al.-1991] , x1, ..., xn, which are modeled as linear combinations

of random variables some s1, ..., sn:

xi = ai1s1 + ai2s2 + ...+ ainsn,

for all i = 1, . . . , n, where aij, i, j = 1, ...,m are some unknown real coefficients. By

definition, the s′is are statistically mutually independent. It’s more convenient to

use vector-matrix notation. Let us denote by x the random column vector whose

elements are the mixtures x1, ..., xn and likewise by s be the random column vector

with elements s1, ..., sn. Let us denote by A the matrix with elements aij. Thus, the

mixing model can be written as

x = As (1.4)

or

x =
n∑

i=1
aisi, (1.5)

where ai is the ith column of the matrix A. The basic Independent Component

Analysis (ICA) model can be estimated when the following assumptions are satisfied.

Assumption 1. We assume that the independent components s1, . . . , sn are statis-

tically independent.

3

Assumption 2. The independent components s1, . . . , sn must have non-Gaussian

distributions with finite moments of any degree.

Assumption 3. For simplicity of the matrix operation, we assume that the unknown

mixing matrix is square.

There also exist some indeterminacies that would hold for the Independent Com-

ponent Analysis (ICA).

1. We can’t determine the variances of the independent components. This is

because both s and A are unknown, any scalar multiplier in one of the sources

si could always be canceled by dividing the corresponding column ai of A by

the same scalar, say ai:

x =
∑

i

(1
αi

ai

)
(siαi) (1.6)

2. We can’t determine the order of the independent components either. Since

both s and A being unknown, we can freely change the order of the terms in

the summation

x =
n∑

i=1
aisi (1.7)

4

and rename the independent components.

Next, let’s discuss about the connection between the whitening transformation [J.-F.

Cardoso-1989] and the Independent Component Analysis (ICA). Whitening process

is stronger than decorrelation. A zero-mean random vector after whitening transfor-

mation, say y, means that its components are uncorrelated and its covariance matrix

equals the identity matrix:

E{yyT} = I. (1.8)

So, whitening transformation means that we linearly transform the observed data

vector x by multiplying it with some matrix V:

z = Vx, (1.9)

so that we obtain a new vector z that is “white”. The whitening process transforms

the mixing matrix into a new one. Thus, we have from (1.4) and (1.5) that:

z = VAs = Ãs (1.10)

Meanwhile, let’s consider an orthogonal transformation U of z:

y = Uz (1.11)

5

Due to the orthogonality of U, we have

E{yyT} = E
{
UzzTUT

}
= UIUT = I (1.12)

which is to say, y is “white” as well. Thus, we can’t tell if the independent compo-

nents are given by z or y after using the whitening transformation alone. Since y

could be any orthogonal transformation of z, whitening transformation gives the inde-

pendent components only up to an orthogonal transformation. Otherwise, whitening

transformation is useful as a preprocessing step in Independent Component Analy-

sis (ICA). The utility of whitening process resides in the fact that the new mixing

matrix

Ã = VA (1.13)

is orthogonal. This can be seen from

E{zzT} = ÃE{ssT}ÃT = ÃÃT = I (1.14)

As the properties shown above, we can restrict our search for the mixing matrix

to the space of orthogonal matrices. Instead of having to estimate the n2 param-

eters that are the elements of the original matrix A, we only need to estimate an

orthogonal mixing matrix Ã, which contains n (n− 1) /2 degrees of freedom. For

example, in two dimensions, an orthogonal transformation is determined by a single

parameter; in larger dimensions, an orthogonal matrix contains only about half of

6

the number of parameters of an arbitrary matrix. Thus we can conclude that whiten-

ing process solves half of the problem of Independent Component Analysis (ICA).

Hence, whitening transformation helps to reduce the complexity of the problem.

Otherwise, whitening transformation also makes it clear why Gaussian variables

are not allowed in Independent Component Analysis (ICA). Suppose that the joint

distribution of two independent components, s1 and s2, is Gaussian. This means

that their joint pdf is given by

p(s1, s2) = 1
2π exp

(
−s

2
1 + s2

2
2

)
= 1

2π exp
(
−||s||

2

2

)
(1.15)

Now, assume that the mixing matrix A is orthogonal. For example, we could

assume that this is so because the data has been processed through whitening trans-

formation. By using the formula of transforming probability density function, we

obtain:

py(y) = 1
| det Jg(g−1(y))|px(g−1(y)), (1.16)

where y = g(x) and noting that for an orthogonal matrix A−1 = AT holds, we obtain

the joint density of the mixtures x1 and x2 as density is given by

p(x1, x2) = 1
2πexp(−

||AT x||2

2)| det AT | (1.17)

Due to the orthogonality of A, we have ||ATx||2 = ||x||2 and | det A| = 1; note that

if A is orthogonal, so is AT . Thus, we have

7

p(x1, x2) = 1
2πexp(−

||x||2

2), (1.18)

Thus we see that the orthogonal mixing matrix does not change the probability

density function, since it does not appear in the probability density function (1.18)

above at all and the original and mixed distributions keep the same. Hence we are

unable to infer the mixing matrix from the mixtures.

We conclude that in the case of Gaussian independent components, we can only

estimate the Independent Component Analysis (ICA) model up to an orthogonal

transformation.

In the case that some of the components are Gaussian and others are non-

Gaussian, we can estimate all the non-Gaussian components, but the Gaussian com-

ponents can’t be separated from each other. Only in the case that there ’s just one

Gaussian component, we can estimate the model, since the single Gaussian compo-

nent does not have any other Gaussian components that it could be mixed with.

1.2 Mathematical Preliminaries

In this thesis, there will be some high-order statistics concepts and properties

needed to further research.

1.2.1 Cumulants

First, we proceed to the general definition of cumulants. Assume that x is a

8

real-valued, zero-mean, continuous scalar random variable with probability density

function px(x).

We know that the first characteristic function ϕ(w) of x is defined as the following:

ϕ(w) = E{exp(jwx)} =
∫ ∞
−∞

exp(jwx)px(x)dx (1.19)

where j =
√
−1 and w is the transformed variable corresponding to x. Each proba-

bility distribution is uniquely specified by its characteristic function. Expanding the

characteristic function ϕ(w) into its Taylor series yields

ϕ(w) =
∫ ∞
−∞

(
∞∑

k=0

xk(jw)k

k!)px(x)dx =
∞∑

k=0
E{xk}(jw)k

k! (1.20)

Thus the coefficient terms of this expansion are moments E{xk} of x. For this reason,

the characteristic function ϕ(w) is also called moment generating function.

The second characteristic function φ(w) of x is given by the natural logarithm of

the first characteristic function (1.19) :

φ(w) = ln(ϕ(w)) = ln(E{exp(jwx)}) (1.21)

The cumulants κk of x are defined as the coefficients of the Taylor series expansion

of the second characteristic function (1.21):

φ(w) =
n∑

k=0
κk

(jw)k

k! (1.22)

where the kth cumulant is obtained as the derivative

9

κk = (−j)k d
kφ(w)
dwk

|w=0 (1.23)

For a zero mean random variable x, the first four cumulants are

κ1 = 0, κ2 = E{x2}, κ3 = E{x3}, and (1.24)

κ4 = E{x4} − 3[E{x2}]2 (1.25)

Hence the first three cumulants are equal to the respective moments, and the fourth

cumulant κ4 is recognized to be the kurtosis defined earlier in (2.4).

Then, the respective expressions for the cumulants when the mean E{x} of x is

nonzero is listed below.

κ1 = E{x} (1.26)

κ2 = E{x2} − [E{x}]2 (1.27)

κ3 = E{x3} − 3E{x2}E{x}+ 2[E{x}]3 (1.28)

κ4 = E{x4} − 3[E{x2}]2 − 4E{x3}E{x}+ 12E{x2}[E{x}]2 − 6[E{x}]4 (1.29)

10

Now consider the multivariate case. Let x be a random vector and px(x) its

probability density function. The characteristic function of x is again

ϕ(w) = E{exp(jwx)} =
∫ ∞
−∞

exp(jwx)px(x)dx (1.30)

where w is now a row vector having the same dimension as x, and the integral is

computed over all components of x. The moments and cumulants of x are obtained

in a similar manner to the one-unit case.

The moments of x are coefficients of the Taylor series expansion of the first

characteristic function ϕ(w), and the cumulants are the coefficients of the expansion

of the second characteristic function φ(w) = ln(ϕ(w)). In the multivariate case, the

cumulants are usually called cross-cumulants. It can be shown that the second, third,

and fourth order cumulants for a zero mean random vector x are [M. Girolami-1999]

cum(xi, xj) = E{xixj} (1.31)

cum(xi, xj, xk) = E{xixjxk} (1.32)

cum(xi, xj, xk, xl) = E{xixjxkxl} − E{xixj}E{xkxl} (1.33)

− E{xixk}E{xjxl} − E{xixl}E{xjxk} (1.34)

Hence the second cumulant is equal to the second moment E{xixj} , which in turn

11

is the correlation rij covariance cij between the variables xi and xj. Similarly, the

third cumulant cum(xi, xj, xk) is equal to the third moment E{xixjxk}. However,

the fourth cumulant differs from the fourth moment E{xixjxkxl} of the random vari-

ables xi, xj, xk, and xl. In general, higher-order moments correspond to correlations

used in second-order statistics, and cumulants are the higher-order counterparts of

covariances. Both moments and cumulants contain the same statistical information

since cumulants can be represented in terms of sums of products of moments. But,

it’s more recommended to utilize cumulants because they present in a clearer way

the additional information provided by higher-order statistics. In particular, it can

be shown that cumulants have the following properties not shared by moments.

1. Let x and y be statistically independent random vectors having the same

dimension, then the cumulant of their sum z = x + y is equal to the sum of the

cumulants of x and y. This property also holds for the sum of more two independent

random vectors.

2. If the distribution of the random vector or process x is multivariate gaussian,

all its cumulants of order three and higher are identically zero.

Thus higher-order cumulants measure the departure of a random vector from a

gaussian random vector with an identical mean vector and covariance matrix, which

makes it possible to use cumulants for extracting the non-Gaussian part of a signal.

example, they make it possible to ignore additive gaussian noise corrupting a non-

Gaussian signal using cumulants.

12

Chapter 2

Independent Component Analysis

(ICA) Estimation

2.1 Independent Component Analysis (ICA) by

Non-Gaussianity Maximization

2.1.1 Non-gaussian is independent

As shown in the last section, it’s possible for us to estimate non-Gaussian variables

but Gaussian variables. Hence, non-Gaussianity [N.Delfosse-1995] could be used as

a leading principal in Independent Component Analysis (ICA) estimation.

Let’s recall the Central Limit Theorem first, which says, the distribution of a sum

of independent random variables tends toward a Gaussian distribution under certain

conditions. Let us now assume that the data vector x is distributed as the following

13

Independent Component Analysis (ICA) data model:

x = As (2.1)

i.e., it is a mixture of independent components. Estimation of the independent

components can be accomplished by finding the right linear combinations of the

mixture variables, since we can solve the equation as

s = A−1x (2.2)

Thus, to estimate one of the independent components, we can consider a linear

combination of the xi. Let us denote this by y = bTx = ∑
i bixi, where b is a vector

to be determined. Note that we also have y = bTAs. Thus, y is a certain linear

combination of the si, with coefficients given by bTA. Let us denote this vector by

q. Then we have

y = bTx = qTs =
∑

i

qisi. (2.3)

If b were one of the rows of the inverse of A, this linear combination bTx would

actually equal one of the independent components. In that case, the corresponding q

would be such that just one of its elements is 1 and all the others are zero. Actually

it’s hard for us to determine exactly since there’s no information about matrix A.

Still we can find a good approximation of the estimator.

We can vary the coefficients in q, and see how the distribution of y = qTs changes.

The idea behind this is that since a sum of even two independent random variables is

14

Figure 2.1: A single uniformly distributed independent component with real-lined
compared with gaussian distribution with dashed line

more gaussian than the original variables, y = qTs is usually more gaussian than any

of the si. Note that this is strictly true only if the si’s have identical distributions.

In this case, obviously only one of the elements qi of q is nonzero.

In practice, there’s no need to know the values of q, because qTs = bTx by the

definition of q. We can just let b vary and look at the distribution of bTx.

Therefore, we could take as b a vector that maximizes the non-Gaussianity of

bTx. Such a vector would necessarily correspond to a q = ATb. This means that

y = bTx = qTs equals one of the independent components. Maximizing the non-

Gaussianity of bTx thus gives us one of the independent components. We can explain

why maximizing the non-Gaussianity equals to obtaining the independent component

through the Figure 2.1 and Figure 2.2.

In classical central limit theorem, it says the sample mean of the random variables

15

Figure 2.2: The real-lined mixture of independent components compared with
dashed lined gaussian distribution

tends to be more gaussian as the sample size increases. Here, the mixture of the

independent components also can be seen as the weighted sum of the independent

random variables. Thus, there’s no doubt that as the number of the independent

components increase, the mixture should be more gaussian when compared with the

original single independent component. The plot above can tell the fact.

2.2 Measuring Non-Gaussianity by kurtosis

2.2.1 Extrema of kurtosis give independent components

In order to measure the non-Gaussianity in a quantitative way, we introduce the

kurtosis [A. Hyvarinen-1999]. The kurtosis of y, denoted by kurt (y) is defined by

kurt(y) = E{y4} − 3(E{y2})2 (2.4)

16

Remember that all the random variables here have zero mean. For a Gaussian

y, the fourth moment equals 3(E{y2})2 and then kurtosis is zero. Typically, non-

Gaussianity is measured by the absolute value of kurtosis. The square of kurtosis can

also be used. Due to its simplicity, kurtosis is widely used in Independent Component

Analysis (ICA) and related fields. Theoretical analysis is simplified because of the

following linearity property: If x1 and x2 are two independent random variables, it

holds

kurt(x1 + x2) = kurt(x1) + kurt(x2), (2.5)

and

kurt(αx1) = α4kurt(x1), (2.6)

where α is a constant.

2.2.2 Gradient algorithm using kurtosis

Many of the Independent Component Analysis (ICA) criteria have the basic form

of minimizing a cost function J (W) with respect to a parameter matrix W.

In gradient descent [A. Hyvarinen-1998], we minimize a function J (W) itera-

tively by starting from some initial point w (0), computing the gradient of J (W) at

this point, and then moving in the direction of the negative gradient by a suitable

distance. Then we repeat the same procedure at a new point, and so forth. For

t = 1, 2, ..., we have the update rule

17

w(t) = w(t− 1)− α(t)∂J(w)
∂w

|w=w(t−1) (2.7)

with the gradient taken at the point w(t − 1). The parameter α(t) here gives the

length of the step in the negative gradient direction. It’s often called the step size

or learning rate. The iteration (2.7) is continued until it converges.

Denote the difference between the new and old value by

w(t)− w(t− 1) = ∆w (2.8)

We can then write the rule (2.8) either as

∆w = −α∂J(w)
∂w

(2.9)

or

∆w ∝ −∂J(w)
∂w

(2.10)

where α is a shorthand notation of the step size or learning rate and the symbol ∝

is read “is proportional to”; it is then understood that the vector on the left-hand

side, ∆w, has the same direction as the gradient vector on the right-hand side.

In order to maximize the kurtosis absolute value, we would start from some vector

w, then compute the direction in which the absolute value of the kurtosis of y = wTz

is growing most strongly and then move the vector w in that direction. Then the

gradient of the absolute value of kurtosis of wTz can be simply computed as

18

∂|kurt(wTx)|
∂w

= 4sign(kurt(wTz))[E{z(wTz)3} − 3w||w||2] (2.11)

Since the data is handled through whitening transformation, we haveE{(wTz)2} =

||w||2.

We are optimizing this function on the unit sphere ||w||2 = 1, the gradient method

must be complemented by projecting w on the unit sphere after every step. This can

be done by dividing w by its norm. Since the latter term in brackets in (2.11) would

simply change the norm of w in the gradient algorithm, and not its direction, it can

be omitted. This is because only the direction of w is interesting, and any change in

the norm is not significant because the norm is normalized to unity anyway.

For the unconstrained problem of minimizing a multivariate function, the most

classic approach is gradient descent. When the solution is a vector w; the matrix

case goes through in a completely analogous fashion.

Then, we obtain the gradient algorithm in the multivariate case:

∆w ∝ sign(kurt(wTz))E{z(wTz)3} (2.12)

w← w/||w|| (2.13)

And an adaptive(data-driven) version of this algorithm:

∆w ∝ sign(kurt(wTz))z(wTz)3 (2.14)

19

w← w/||w|| (2.15)

where every observation z (t) can be used in the algorithm at once. However, it

must be noted that when computing sign(kurt(wTx)), the expectation operator in

the definition of kurtosis can’t be omitted. Instead, the kurtosis must be properly

estimated from a time-average; of course, this time-average can be estimated on-line.

Denoting by γ the estimate of the kurtosis, we could use

∆γ ∝ ((wTz)4 − 3)− γ (2.16)

This gives the estimate of kurtosis as a kind of a running average. Actually, in

many cases we assume one acknowledges the nature of the distributions of the inde-

pendent components, i.e., whether they are subgaussian or supergaussian. Then we

can simply plug the correct sign of kurtosis in the algorithm and avoid its estimation.

2.2.3 A fast fixed-point algorithm using kurtosis

We have obtained a gradient method for maximizing the non-Gaussianity mea-

sured by the absolute value of kurtosis. The advantage of such gradient methods is

that the inputs z(t) can be used in the algorithm at once, which enables fast adapta-

tion in a nonstationary environment. But, in this case, the convergence rate is slow

and it depends on a good choice of the learning rate sequence.

In the case of making the learning rate radically faster and more reliable, the

fixed-point iteration algorithms can be a good option. To derive a more efficient

20

fixed-point iteration, we note that at a stable point of the gradient algorithm, the

gradient must point in the direction of w, that is, the gradient must be equal to w

multiplied by some scalar constant. Only in such way, adding the gradient to w does

not alternate its direction. And the vector w converges.

The statement above means that after normalization to unit norm, the value of

w is not changed except perhaps by changing its sign. Equating gradient of kurtosis

in (2.11) with w, this means that we should have

w ∝ [E{z(wTz)3} − 3||w||2w] (2.17)

This equation immediately suggests a fixed-point algorithm where we first com-

pute the right-hand side, and give this as the new value for w:

w← E{z(wTz)3} − 3w (2.18)

After every fixed-point iteration, w is divided by its norm to remain on the

constraint set. The final vector w gives one of the independent components as the

linear combination wTz.

Note that convergence of this fixed-point iteration indicates that the old and new

values of w point are in the same direction. It is not necessary that the vector con-

verges to a single point, since w and −w define the same direction. This kind of

algorithm is called Fast Fixed-Point Algorithm for Independent Component Anal-

ysis (FastICA), whose convergence is cubic, and there’s no learning rate or other

adjustable parameters needed in the algorithm.

21

2.2.4 Negentropy as non-Gaussianity measure

Negentropy is defined in terms of the information-theoretic quantity of differential

entropy, which we just call it entropy here. The entropy of a random variable is

related to the information that the observation of the variable gives. The more

“random”, i.e., unpredictable and unstructured the variable is, the larger its entropy.

The (differential) entropy H of a random vector y with density py (η) is defined as

H(y) = −
∫
py(η) log py (η) dη (2.19)

Remark 2.2.1. A Gaussian variable has the largest entropy among all random vari-

ables of equal variance. This means that entropy could be used as a measure of

non-Gaussianity.

To obtain a measure of non-Gaussianity that is zero for a gaussian variable and

always nonnegative, one often uses a normalized version of differential entropy, called

negentropy. Negentropy J is defined as follows

J(y) = H(ygauss)−H(y) (2.20)

where ygauss is a gaussian random variable of the same covariance matrix as y.

But, the problem in using negentropy is that it’s computationally hard. Estimat-

ing negentropy using the definition requires an estimate (possibly nonparametric) of

the probability density function. In practice, we only need approximation of 1-D

22

(neg)entropies, so we consider the scalar case only. The classic method of approxi-

mating negentropy is based on higher-order cumulants, using the polynomial density

expansions, which gives the approximation

J(y) ≈ 1
12E{y

3}2 + 1
48kurt(y)2, (2.21)

in which the random variable y is assumed to be of zero mean and unit variance.

One useful approach is to generalize the high-order cumulant approximation so that

it uses expectations of general nonquadratic functions. As a simple special case, we

can take any two non-quadratic functions G1 and G2, so that G1 is odd and G2 is

even, and consider the following approximation:

J(y) ≈ k1(E{G1(y)}2 + k2(E{G2(y)} − E{G2(v)})2 (2.22)

where k1 and k2 are positive constants, v is a Gaussian variable of zero mean and

unit variance and for non-quadratic functions Gi, i is an index, not a power. If we

use only one non-quadratic function G, the approximation becomes

J(y) ∝ [E{G(y)} − E{G(ν)}]2 (2.23)

for practically any non-quadratic function G. Thus, we obtain approximations of

negentropy that offer a good compromise between the properties of the two classic

non-Gaussianity measures presented by kurtosis and negentropy.

23

2.2.5 Gradient algorithm using negentropy

As with kurtosis, we can derive a simple gradient algorithm for maximizing negen-

tropy. Taking the gradient of the approximation of negentropy [A. Hyvarinen-1999-1]

in (2.23) with respect to w, and taking the normalization E{(wTz)2} = ||w||2 = 1

into account, one obtains the following algorithm

∆w ∝ γE{zg(wTz)}, (2.24)

w← w/||w|| (2.25)

where γ = E{G(wTz)} − E{G(ν)}, ν being a standardized gaussian random vari-

able. The normalization is necessary to project w on the unit sphere to keep the

variance of wTz constant. The function g is the derivative of the function G used

in the approximation of negentropy. The expectation could be omitted to obtain an

adaptive stochastic gradient algorithm. The constant γ, which gives the algorithm a

kind of “self-adaptation” quality, can be easily estimated on-line follows:

∆γ ∝ (G(wTz)− E{G(ν)})− γ (2.26)

This constant corresponds to the sign of kurtosis in (2.11).

2.2.6 A Fast Fixed-point algorithm using negentropy

As with kurtosis, a much faster method for maximizing negentropy than that

24

given by the gradient method, can be found using a fixed-point algorithm. The re-

sulting Fast Fixed-Point Algorithm for Independent Component Analysis (FastICA)

finds a direction, i.e., a unit vector w, such that the projection wTz maximizes non-

Gaussianity. Non-Gaussianity is here measured by the approximation of negentropy

J(wTz) given in (2.23).

Looking at the gradient method in (2.24) immediately suggests the following

fixed-point iteration:

w← E{zg(wTz)} (2.27)

which would be followed by the normalization of w. The coefficient γ can be omit-

ted because it would be eliminated by the normalization anyway. Then after the

derivation process, we obtain the following approximative Newton iteration:

w← w− [E{zg(wT z)}+ βw]/[E{g′(wT z)}+ β]. (2.28)

This algorithm can be further simplified by multiplying both sides of (2.28) by β +

E{g′(wT z)}. This gives, after some simple algebraic simplification:

w← E{zg(wTz)− E{g′(wTz)}w}. (2.29)

This is the basic fixed-point iteration in fast fixed-point algorithm.

In this section, we have so far estimated only one independent component. This

is why these algorithms are sometimes called “one-unit” algorithms. The key to

extending the method of maximum non-Gaussianity to estimate more independent

25

component is based on the property that the vectors wi corresponding to differ-

ent independent components are orthogonal after whitening transformation space

as shown in the Section 1. To recapitulate, the independence of the components

requires that they are uncorrelated, and after whitening transformation space we

have E{(wT
i z)(wT

j z)} = wT
i wj , and therefore uncorrelatedness equals to orthogo-

nality. The w′is are in fact the rows of the inverse of the mixing matrix by definition,

and these are equal to the columns of the mixing matrix, because by orthogonality

A−1 = AT .

To summarize, in order to estimate several independent components, we need

to run any of the one-unit algorithms several times with vectors w1, ...,wn, and, to

prevent different vectors from converging to the same maxima, we must orthogonalize

the vectors w1, ...,wn after every iteration. We present in the following different

methods for achieving decorrelation.

2.2.7 Orthogonalization Methods

2.2.7.1 Deflationary Orthogonalization

When we have estimated p independent components, or p vectors w1, ...,wp, we

alternate the following steps:

1. Choose m, the number of Independent Components to estimate. Set p← 1.

2. Initialize wp (e.g. randomly)

3. Do an iteration of a one-unit algorithm on wp.

26

4. Do the following orthogonalization:

wp ← wp −
p−1∑
j=1

(
wT

p wj

)
wj (2.30)

5. Normalize wp by dividing by its norm.

6. If wp has not converged, go back to Step 3.

7. Set p ← p + 1. If p is not greater than the desired number of Independent

Components, go back to Step 2.

2.2.7.2 Symmetric Orthogonalization

In certain applications, it may be desirable to use a symmetric decorrelation, in

which no vectors are privileged over others. This means that the vectors wi are not

estimated one by one; instead, they are estimated in parallel. One motivation for

this is that the deflationary method has the drawback that estimation errors in the

first vectors are cumulated in the subsequent ones by the orthogonalization. Another

one is that the symmetric orthogonalization methods enable parallel computation of

Independent Components.

Symmetric orthogonalization is done by first doing the iterative steps of the one-

unit algorithm on every vector wi in parallel, and afterwards orthogonalizing all the

wi by special symmetric methods. Specifically, we follow these steps:

27

1. Choose the number of independent components to estimate, say m;

2. Initialize the wi, i = 1, ...,m (e.g., randomly);

3. Do an iteration of a one-unit algorithm on every wi in parallel;

4. Do a symmetric orthogonalization of the matrix W = (w1,wm)T ;

5. If not converged, go back to step 3.

2.2.8 Independent Component Analysis (ICA) and Projec-

tion Pursuit

Projection pursuit [M.C. Jones-1987] is a technique developed in statistics for

finding interesting projections of multidimensional data. The projection pursuit is

usually performed by finding the most non-Gaussian projections of the data. In the

formulation of projection pursuit, no data model or assumption about the indepen-

dent components is made. If the Independent Component Analysis (ICA) model

holds, optimizing the non-Gaussianity measures produce independent components;

if the model does not hold, then what we get are the projection pursuit directions.

28

Chapter 3

Independent Component Analysis

(ICA) by Maximum Likelihood

Estimation

3.1 Deriving the likelihood

3.1.1 Likelihood Estimation

We can easily derive the likelihood for a noise-free Independent Component Anal-

ysis (ICA) model as in (1.4). Let us briefly recall the basic Independent Component

Analysis (ICA) model.

Denote by x the random vector whose elements are the mixtures x1, ..., xn and

likewise by s be the random vector with elements s1, ..., sn. Let us denote by A the

29

matrix with elements aij. Thus, the mixing model can be written as [M. Gaeta-1990]

x = As (3.1)

whose density px of the mixture vector can be formulated as

px(x) = | det B|ps(s) = | det B|
∏

i

pi(si) (3.2)

where B = A−1, and the pi denote the densities of the independent components. Its

expression can be given as a function of B = (b1, ...,bn)Tand x as follows:

px(x) = | det B|
∏

i

pi(bT
i x) (3.3)

Assume that we have T observations of x, denoted by x(1),x(2), ...,x(T). Then the

likelihood can be obtained as the product of this density evaluated at T points. This

is denoted by L and considered as a function of B:

L(B) =
T∏

t=1

n∏
i=1
pi(bT

i x(t))| det B| (3.4)

The log-likelihood is given by

logL(B) =
T∑

t=1

n∑
i=1

log pi(bT
i x(t)) + T log | det B| (3.5)

To simplify notation and to make it consistent to what was used in the previous

section, we can denote the sum over the sample index t by an expectation operator,

and divide the likelihood by T to obtain [D.-T.Pham-1992]

30

1
T

logL(B) = E{
n∑

i=1
log pi(bT

i x)}+ log | det B| (3.6)

The expectation here is not the theoretical expectation, but an average computed

from the observed sample. Surely, in the algorithms the expectations are eventually

replaced by sample averages.

3.1.2 Estimation of the densities

We have expressed the likelihood as a function of the parameters of the model,

which are elements of the mixing matrix. And we used the elements of the inverse

B of the mixing matrix which can be directly computed from its inverse.

Still, we need to estimate the densities of the independent components in the

Independent Component Analysis (ICA) model. In fact, the likelihood is a function

of these densities too. However, the estimation becomes so complicated that it’s

hard for us to solve. This is because the estimation of densities is a nonparametric

problem generally. Here, nonparametric problems mean that it can’t be reduced to

the estimation of a finite parameter set. Thus, the estimation of the Independent

Component Analysis (ICA) model has also a nonparametric part, which is why the

estimation is sometimes called “semi-parametric”.

Since nonparametric problems have an infinite number of parameters, which are

hardest to estimate, we’d like to avoid this kind of estimation in the Independent

Component Analysis (ICA). There are two ways to avoid it.

First, in some cases that we have known the densities of the independent com-

ponents already, we can just use these prior densities in the likelihood. Then the

31

likelihood will really be a function of B only. If reasonably small errors in the spec-

ification of these prior densities have little influence on the estimator, it will be a

suitable result.

A second approach is that we can approximate the densities of the independent

components by a family of densities that are specified by a limited number of pa-

rameters. If it is the case that it’s possible to use a very simple family of densities

to estimate the Independent Component Analysis (ICA) model for any densities pi,

we will get a simple solution. For instance, we may use an extremely simple param-

eterization of the pi, consisting of the choice between two densities, that is, a single

binary parameter.

3.1.3 A simple density family

It turns out that in maximum likelihood estimation, it’s sufficient to use just two

approximations of the density of an independent component. For each component,

we just need to determine which one of the two approximations is better. It shows

that we can make small errors when we fix the densities of the components, since it’s

sufficient for us to use a density that is in the same half of the space of probability

densities. Also, it shows that we can estimate the independent components using

models made up of only two densities.

The validity of these approaches in shown in the following theorem. This theorem

is basically a corollary of the stability theorem in (2.2.5).

32

Theorem 3.1.1. Denote by p̃i the assumed densities of the independent components,

and

gi(si) = ∂

∂si

log p̃i(si) =
˜p′i(si)
˜pi(si)

(3.7)

Constrain the estimates of the independent components yi = bT
i x to be uncorrelated

and to have unit variance. Then the ML estimator is locally consistent, if the assumed

densities p̃i fulfill

E{sigi(si)− g′(si)} > 0 (3.8)

for all i.

Since sufficiently small changes don’t change the sign in (3.8), the theorem above

rigorously shows that small misspecifications in the densities pi do not affect the

local consistency of the maximum likelihood estimator.

Moreover, the theorem show show to construct families consisting of only two

densities, so that the condition in (3.8) is true for one of these densities.

Example 3.1.1. Consider the following log-densities:

log p̃+
i (s) = α1 − 2 log cosh(s) (3.9)

log p̃−i (s) = α2 − [s2/2− log cosh(s)] (3.10)

33

where α1, α2 are positive parameters that are fixed so as to make these two functions

logarithms of probability densities. Actually, these constants can be ignored in the

following. The factor 2 in (3.9) is not important, but it’s usually used here; also, the

factor 1/2 in (3.10) could be changed.

The motivation for these functions is that p̃+
i is a supergaussian density, since the

log cosh function is close to the absolute value that would give the Laplacian density.

The density given by p̃−i is subgaussian, because it is like a gaussian log-density,

−s2/2 plus a constant, that has been somewhat “flattend” by the log cosh function.

Simple computations show that the value of the non-polynomial moment in (3.8)

is for p̃+
i

2E{− tanh(si)si + (1− tanh(si)2)} (3.11)

and for p̃−i it is

E{tanh(si)si − (1− tanh(si)2)} (3.12)

since the derivative of tanh(s) equals 1 − tanh(s)2, and E{s2
i } = 1 by definition.

We see that the signs of these expressions are always opposite. Thus, for practically

any distributions of the si, one of these functions fulfills the condition, i.e., as the

desired sign, and estimation is possible. Of course, for some distributions of the si

the non-polynomial moment in the condition could be zero, which corresponds to

the case of zero kurtosis in cumulant-based estimation; such cases can be considered

to be very rare.

34

Thus we can just compute the non-polynomial moments for the two prior dis-

tributions in (3.9) and (3.10), and choose the one that fulfills the stability condi-

tion in (3.8). This can be done on-line during the maximization of the likelihood.

This always provides a locally consistent estimator, and solves the problem of semi-

parametric estimation.

3.2 Algorithms For Maximum Likelihood Estima-

tion

3.2.1 Gradient algorithms

Algorithm 1. The Bell-Sejnowski algorithm

The simplest algorithms for maximizing likelihood are obtained by gradient meth-

ods. Using the gradient method mentioned in last section, the stochastic gradient of

the log-likelihood in (3.6) as:

1
T

∂ logL
∂B

= [BT]−1 + E{g(Bx)xT} (3.13)

here, g(y) = (gi(yi), ..., gn(yn)) is a component-wise vector function that consists of

the so-called score functions gi of the distributions of si, defined as

35

gi = (log pi)′ =
p

′
i

pi

(3.14)

This immediately gives the following algorithm for Maximum Likelihood estimation:

∆B ∝ [BT]−1 + E{g(Bx)xT} (3.15)

A stochastic version of this algorithm could be used as well. This means that the

expectation is omitted, and in each step of the algorithm, only one data point is

used:

∆B ∝ [BT]−1 + g(Bx)xT . (3.16)

This algorithm is often called the Bell-Sejnowski algorithm [A.J.Bell et al-1995]. The

algorithm in Eq. (3.15) converges very slowly, however, especially due to the inversion

of the matrix B that is needed in every step. The convergence can be improved by

whitening the data, and especially by using the natural gradient.

Algorithm 2. The natural gradient algorithm

The natural gradient method [S.-I. Amari et al-1996] simplifies the maximization

of the likelihood considerably, and makes it better conditioned. The principal of the

natural gradient is based on the geometrical structure of the parameter space, and is

related to the principal of relative gradient, which uses the Lie group structure of the

Independent Component Analysis (ICA) problem. In the case of basic Independent

36

Component Analysis (ICA) model, both of these principles amount to multiplying

the right-hand side of (3.15) by BT B. Thus we obtain

∆B ∝ (I + E{g(y)yT})B (3.17)

This algorithm can be interpreted as nonlinear decorrelation. The idea is that the

algorithm converges when E{g(y)yT} = I, which means that yi and gi(yi) are un-

correlated for i 6= j.

3.2.2 A Fast fixed-point algorithm

In Eq. (2.28) in previous section we had the following form of the fast fixed-point

algorithm (for whitened data):

w← w− [E{zg(wT z)}+ βw]/[E{g′(wT z)}+ β] (3.18)

where β can be computed from (2.28) as β = −E{yig(yi)}. If we write this in matrix

form, we obtain:

W←W + diag(αi)[diag(βi) + E{g(y)yT}]W (3.19)

where αi is defined as −1/E{g′(wT z) + βi}), and y = Wz. To express this using

non-whitened data, as we have done in this section, it is enough to multiply both

sides of (3.19) from the right by the whitening matrix. This means simply that we

37

replace the W by B, since we have Wz = WVx which implies B = WV.

Thus, we obtain the basic iteration of fast fixed-point algorithm as:

B← B + diag(αi)[diag(βi) + E{g(y)yT}]B (3.20)

where y = Bx, βi = −E{yig(yi)}, and αi = −1/(βi + E{g′(yi)}).

After every step, the matrix B must be projected on the set of whitening matrices.

This can be accomplished by the classic method involving matrix square roots,

B← (BCBT)−1/2B (3.21)

where C = E{xxT} is the covariance matrix of the data.

3.3 The Infomax Principle

The infomax principle [J.-F. Cardoso-1997] is very closely related to maximum

likelihood principle for Independent Component Analysis (ICA). It is based on max-

imizing the output entropy, or information flow, of a neural network with nonlinear

outputs. Hence the name infomax.

Suppose that x is the input to the neural network whose outputs are of the form

yi = φi(bT
i x) + n (3.22)

where the φi are some nonlinear scalar functions, and the bi are the weight vectors

of the neurons. The vector n is additive gaussian white noise. One then wants to

38

maximize the entropy of the outputs:

H(y) = H(φ1(bT
1 x), ..., φn(bT

n x)) (3.23)

This can be motivated by considering information flow in a neural network. Efficient

information transmission requires that we maximize the mutual information between

the inputs x and the outputs y. We have the entropy of a transformation formula,

H(y) = H(x) + E{log | det Jf(x)|} (3.24)

where y is an invertible transformation of the random vector x, say y = f(x).

Using formula above, we obtain

H(φ1(bT
1 x), ..., φn(bT

n x)) = H(x) + E{log | det ∂F
∂B

(x)|} (3.25)

where F(x) = (φ1(wT
1 x), ..., φn(wT

n x)) denotes the function defined by the neural

network. We can simply calculate the derivative to obtain

E{log | det ∂F
∂B

(x)|} =
∑

i

E{log φ′

i(bT
i x)}+ log | det B| (3.26)

Now, we can see the output entropy is of the same form as the expectation of the

likelihood as in (3.6). So if the nonlinearities φi used in the neural network are

chosen as the cumulative distribution functions corresponding to the densities pi,

i.e., φ′
i(.) = pi(.), the output entropy is actually equal to the likelihood. This means

that infomax is equivalent to maximum likelihood estimation.

39

Chapter 4

Independent Component Analysis

(ICA) by Minimization of Mutual

Information

4.1 Defining Independent Component Analysis (ICA)

by mutual information

4.1.1 Information-theoretic concepts

Briefly recall the basic definitions of information theory presented in (2.2.4). The

differential entropy H of a random vector y with density p(y) is defined as:

40

H(y) = −
∫
p(y) log p(y)dy (4.1)

Entropy is closely related to the code length of the random vector. A normalized

version of entropy is given by negentropy J , which is defined as follows

J(y) = H(ygauss)−H(y) (4.2)

where ygauss is a gaussian random vector of the same covariance matrix as y. Ne-

gentropy is always nonnegative, and zero only for gaussian random vectors. Mutual

information I between m random variables, yi, i = 1, ...,m is defined as follows

I(y1, y2, ..., ym) =
m∑

i=1
H(yi)−H(y). (4.3)

4.1.2 Mutual information as measure of dependence

Mutual information [P.Comon-1994] considers the whole dependence structure of

the variables, not just the covariance, like principal component analysis and related

methods. It’s always nonnegative, and zero if and only if the variables are statistically

independent.

Therefore, mutual information is used to find the Independent Component Anal-

ysis (ICA) representation. This approach is an alternative to the model estimation

approach. We define the Independent Component Analysis (ICA) of a random vector

x as an invertible transformation:

41

s = Bx (4.4)

where the matrix B is determined so that the mutual information of the transformed

components si is minimized. If the data follows the Independent Component Analysis

(ICA) model, this allows estimation of the data model. Otherwise, in this definition,

there’s no need to assume that the data follows the model. Actually, minimization

of mutual information can give the maximally independent components in any case.

4.2 Mutual information and non-Gaussianity

Before discussing the connection between the mutual information and non-Gaussianity,

let’s do some derivation about the entropy of the linear transformation of the random

vector x.

Consider an invertible transformation of the random vector x, say

y = f(x) (4.5)

In the following, we want to show the connection between the entropy of y and

that of x.

Denote by Jf(ξ) the Jacobian matrix of the function f , i.e., the matrix of the

partial derivatives of f at point ξ. The classic relation between the density py of y

and the density px of x, can then be formulated as

py(η) = px(f−1(η))| det Jf(f−1(η))|−1 (4.6)

42

Now, expressing the entropy as an expectation

H(y) = −E{log py(y)} (4.7)

we obtain

E{log py(y)} = E{log[px(f−1(y))| det Jf(f−1(y))|−1]} (4.8)

= E{log[px(x)| det Jf(x)|−1]} = E{log px(x)} − E{log | det Jf(x)|} (4.9)

Thus we obtain the relation between the entropies as

H(y) = H(x) + E{log | det Jf(x)|} (4.10)

Then, by using the formula for the differential entropy of a transformation as

given in (4.10), we can get a corresponding result for mutual information. We have

for an invertible linear transformation y = Bx:

I(y1, y2, ..., yn) =
∑

i

H(yi)−H(x)− log | det B| (4.11)

Next, let’s consider what happens if we constrain the yi to be uncorrelated and

of unit variance. This means E{yyT} = BE{xxT}BT = I, which implies

43

det I = 1 = det(BE{xxT}BT) = (det B)(detE{xxT})(det BT) (4.12)

and this implies that det B must be constant since detE{xxT} does not depend

on B. Moreover, for yi of unit variance, entropy and negentropy differ only by a

constant and the sign, as can be seen (4.2), Thus we obtain,

I(y1, y2, ...yn) = const.−
∑

i

J(yi) (4.13)

where the constant term does not depend on B. This shows the basic relation

between negentropy and mutual information.

We see in (4.13) that finding an invertible linear transformation B that minimizes

the mutual information equals to finding directions in which the negentropy is max-

imized. We have seen previously that negentropy is a measure of non-Gaussianity.

Thus, we have the conclusion as stated below.

Conclusion 1. Independent Component Analysis (ICA) estimation by minimization

of mutual information equals to maximizing the sum of non-Gaussianities of the

estimates of the independent components, when the estimates are constrained to be

uncorrelated.

However, there exist some important differences between these two criteria.

Note 1. The deflationary, i.e., one-by-one, estimation of the independent components

44

is available in negentropy since we are able to look for the maxima of non-Gaussianity

of a single projection bT x. But, it’s impossible with mutual information.

While using non-Gaussianity, we force the estimates of the independent compo-

nents to be uncorrelated. This is not necessary since we can use the form in (4.11)

directly while using mutual information.

4.3 Mutual information and likelihood

Mutual information and likelihood are closely related. To see the relation between

likelihood and mutual information, consider the expectation of the log-likelihood in

(3.5):

1
T
E{logL(B)} =

n∑
i=1

E{log pi(bT
i x)}+ log | det B| (4.14)

If the pi were equal to the actual probability density functions of bT
i x, the first

term would be equal to −∑i H(bT
i x). Thus the likelihood would be equal, up to

an additive constant given by the total entropy of x, to the negative of mutual

information as given in Eq. (4.11).

The connection may be just as strong, or even stronger practically. Since in

practice we don’t know the distributions of the independent components that are

needed in maximum likelihood estimation. So a reasonable approach is to estimate

the density of bT
i x as part of the maximum likelihood estimation method, and use

this as an approximation of the density of si. This is what we did in Section 3. Then

45

the pi in this approximation of likelihood are indeed equal to the actual probability

density functions bT
i x. Thus equivalency holds.

Conversely, to approximate mutual information, we could take a fixed approx-

imation of the densities yi, and plug this in the definition of entropy. Denote the

probability density functions by Gi(yi) = log pi(yi). Then we could approximate

(4.11) as

I(y1, y2, ..., yn) = −
∑

i

E{Gi(yi)} − log | det B| −H(x) (4.15)

46

Chapter 5

R Implementation Examples using

FastICA Algorithm

5.1 Un-mixing two independent signals

The original matrix s which consists of two independent signals (columns) are

given. The first signal (column) is made up with sin series and the second one is

repeated series from −0.99 to 1. Then the mixing matrix which is denoted by A is

shown below:

A =

 0.3019 −0.5539

0.7567 0.5673


After doing matrix multiplication between matrix we obtained x, the mixture of

two independent signals which is an 1000×2 matrix. What we next do is that apply

fastICA function in R to un-mixing the mixture x. The result is as shown in the

47

Figure 5.1: Result of implementation of the fastICA algorithm

Figure 5.1.

We can see from the Figure 5.1, the shape of the signals we obtained after im-

plementing the fastICA algorithm method is so similar that we can conclude that

the result is not bad. But, the scale here has changed and the order of the original

signals has been switched. In this R function, the negentropy has been chosen as

a measure of non-Gaussianity of the data, and log cosh function has been used for

the approximation of the negentropy. We has introduced that the convergence of

the fastICA algorithm is much faster than gradient based algorithm, which is cubic.

In this example, we can find from the R output, only after three iterations, the

tolerance is small enough, that is, 3.036508e − 07 so that we can see the iteration

48

converges.

5.2 Un-mixing two mixed independent uniformly

distributed components

The original matrix s is two uniformly distributed components. And the mixing

matrix A is denoted by:

A =

 2 2

−1 3


After doing matrix multiplication between matrix we obtained x, the mixture

of two uniformly independent signals which is a 5000 × 2 matrix. As the previous

example, what we will do is that apply fastICA function in R to un-mixing the

mixture x. The result is as shown in the following.

What we obtained is shown in the Figure 5.2. The first graph indicates pre-

processed data. Second one is the plot of two independent uniformly distributed

components.

49

Figure 5.2: Un-mixing two mixed independent uniforms

50

Figure 5.3: Plot of the original two independent uniforms

To compare the result after implementing the fastICA algorithm method with

the original one shown in Figure 5.3, the shape is so similar even though the graph

scale changes. Here again, the negentropy is the measure of non-Gaussianity of the

data, and log cosh function has been used for the approximation of the negentropy.

We can find through the R output, the tolerance is small enough, which is, 0.000004

after three iteration steps so that we conclude the iteration converges.

51

Bibliography

[1] C. Jutten and J. He´rault. Blind separation of sources, partI:An adaptive algo-
rithm based on neuromimetic architecture. Signal Processing, 24:1–10, 1991.

[2] M. Girolami. Self-Organising Neural Networks - Independent Component Anal-
ysis and Blind Source Separation. Springer-Verlag, 1999.

[3] J.-F. Cardoso. Source separation using higher order moments. In Proc. IEEE
Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP’89), pages
2109–2112, Glasgow, UK, 1989.

[4] N. Delfosse and P. Loubaton. Adaptive blind separation of independent sources:
a deflation approach. Signal Processing, 45:59–83, 1995.

[5] A. Hyvarinen. Fast and robust fixed-point algorithms for independent compo-
nent analysis. IEEE Trans. on Neural Networks, 10(3):626–634, 1999.

[6] A. Hyvarinen and E. Oja. Independent component analysis by general nonlinear
Hebbian- like learning rules. Signal Processing, 64(3):301–313, 1998.

[7] M.C. Jones and R. Sibson. What is projection pursuit? J. of the Royal Statistical
Society, Ser. A, 150:1–36, 1987.

[8] M. Gaeta and J.-L. Lacoume. Source separation without prior knowledge: the
maximum likelihood solution. In Proc. EUSIPCO’90, pages 621–624, 1990.

52

[9] D.-T. Pham, P. Garrat, and C. Jutten. Separation of a mixture of independent
sources through a maximum likelihood approach. In Proc. EUSIPCO, pages
771–774, 1992.

[10] A. J. Bell and T. J. Sejnowski. An information-maximization approach to blind
separation and blind deconvolution. Neural Computation, 7:1129–1159, 1995.

[11] J.-F. Cardoso. Infomax and maximum likelihood for source separation. IEEE
Letters on Signal Processing, 4:112–114, 1997.

[12] S.-I. Amari, A. Cichocki, and H.H. Yang. A new learning algorithm for blind
source separation. In Advances in Neural Information Processing Systems 8,
pages 757–763. MIT Press, 1996.

[13] P. Comon. Independent component analysis—a new concept? Signal Processing,
36:287–314, 1994.

[14] A. Hyvärinen. Fast and robust fixed-point algorithms for independent compo-
nent analysis. IEEE Trans. on Neural Networks, 10(3):626634, 1999.

53

	Different Estimation Methods for the Basic Independent Component Analysis Model
	Recommended Citation

	Contents
	List of Figures
	Introduction to the Independent Component Analysis (ICA)
	Introduction
	Mathematical Preliminaries
	Cumulants

	Independent Component Analysis (ICA) Estimation
	Independent Component Analysis (ICA) by Non-Gaussianity Maximization
	Non-gaussian is independent

	Measuring Non-Gaussianity by kurtosis
	Extrema of kurtosis give independent components
	Gradient algorithm using kurtosis
	A fast fixed-point algorithm using kurtosis
	Negentropy as non-Gaussianity measure
	Gradient algorithm using negentropy
	A Fast Fixed-point algorithm using negentropy
	Orthogonalization Methods
	Deflationary Orthogonalization
	Symmetric Orthogonalization

	Independent Component Analysis (ICA) and Projection Pursuit

	Independent Component Analysis (ICA) by Maximum Likelihood Estimation
	Deriving the likelihood
	Likelihood Estimation
	Estimation of the densities
	A simple density family

	Algorithms For Maximum Likelihood Estimation
	Gradient algorithms
	A Fast fixed-point algorithm

	The Infomax Principle

	Independent Component Analysis (ICA) by Minimization of Mutual Information
	Defining Independent Component Analysis (ICA) by mutual information
	Information-theoretic concepts
	Mutual information as measure of dependence

	Mutual information and non-Gaussianity
	Mutual information and likelihood

	R Implementation Examples using FastICA Algorithm
	Un-mixing two independent signals
	Un-mixing two mixed independent uniformly distributed components

	Bibliography

