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ABSTRACT OF THE DISSERTATION 

The Role of Mesenchymal Stromal Cells and Classical Dendritic Cells in the Maintenance and 

Regulation of the Bone Marrow Niche 

by 

Jingzhu Zhang 

Doctor of Philosophy in Biology & Biomedical Sciences 

Molecular Genetics and Genomics 

Washington University in St. Louis, 2018 

Professor Daniel Link, Chairperson 

 

        The bone marrow niche is an important microenvironment for the regulation of normal and 

malignant hematopoiesis. The first discovered niche component is mesenchymal stromal cells, 

which are the major source for the production and secretion of multiple niche factors. 

Mesenchymal stromal cells are heterogeneous and various transgenes have been used to target 

non-identical but overlapping subpopulations. To further characterize the heterogeneity of 

mesenchymal stromal cells, we tested the targeting specificity of three tissue-specific Cre-

recombinase transgenes. We show that in addition to osteoblasts, Ocn-Cre targets a majority of 

Cxcl12-abundant reticular (CAR) cells and arteriolar pericytes. Surprisingly, Dmp1-Cre also 

targets a subset of CAR cells, in which expression of osteoblast-lineage genes is enriched. 

Moreover, a new tissue-specific Cre-recombinase, Tagln-Cre efficiently targets osteoblasts, a 

majority of CAR cells, and both venous sinusoidal and arteriolar pericytes. These observations 



 

 

xii 

 

highlight the heterogeneity of mesenchymal stromal cells in the bone marrow and provide tools 

to interrogate this heterogeneity. To further analyze the functional heterogeneity of mesenchymal 

stromal cells, we assessed the function of CXCL12 from different subsets of mesenchymal 

stromal cells on B lymphopoiesis. We show that CXCL12 from Ocn-Cre targeted stromal cells is 

particularly important for the regulation of mature naive B cells and memory B cells, potentially 

through the regulation of their homing and/or retention. This suggests that B cell development 

requires distinct niches at different stages and Ocn-Cre targeted stromal cells may represent a 

specific niche for late-stage B cell development. Besides mesenchymal stromal cells, this thesis 

also assesses the function of a recently identified resident population of murine bone marrow 

classical dendritic cells (BM cDCs). We show that BM cDC ablation results in a secondary, non-

cell autonomous loss of BM macrophages. And more importantly, BM cDCs regulate 

hematopoietic progenitor and stem cell (HSPC) trafficking through a macrophage independent 

pathway, at least in part, through its regulation of sinusoidal CXCR2 signaling and vascular 

permeability. These findings suggest BM cDCs may serve as a novel bone marrow niche 

component regulating HSPCs. Collectively, this thesis improves on the overall understanding of 

the bone marrow niche and provides insights with significant relevance to both basic and clinical 

research.     
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CHAPTER 1: INTRODUCTION TO THE BONE MARROW NICHE, 

MESENCHYMAL STROMAL CELLS AND CLASSICAL DENDRITIC CELLS  

        Hematopoiesis refers to the production of mature blood cells from hematopoietic stem cells 

(HSCs) in the bone marrow, which is tightly regulated by both intra- and extra-cellular signals. 

Hematopoietic differentiation proceeds through a hierarchical order. Uncommitted and quiescent 

HSCs may give rise to proliferative multipotent progenitors, which in turn differentiate into more 

restricted progenitors for the production of different hematopoietic lineages
1,2

. Hematopoietic 

differentiation and proliferation are regulated by the bone marrow microenvironment or niche, 

which includes different types of niche cells, extracellular matrix, and secreted niche factors
3-7

. 

The concept of the niche was first hypothesized by Ray Schofield in 1978, where he proposed 

that a specialized bone marrow niche preserved the ability for stem cells to reconstitute the bone 

marrow
8
. Later, Michael Dexter showed that mesenchymal stromal cell enriched cultures could 

maintain primitive hematopoietic cells ex vivo
9
. Since then, extensive works have been done on 

the bone marrow niche, and recent studies have identified multiple niches to regulate different 

hematopoietic lineages or different stages during hematopoietic development
10-13

.  Abnormal 

hematopoiesis has been associated with multiple diseases, including anemia, blood cancers, 

hemorrhagic disorders, infection-related diseases, and immune system regulation-related 

diseases
14-17

.  Thus, it is important to study the components and functions of the bone marrow 

niche for its regulation of normal and abnormal hematopoiesis.  Better understanding of the bone 

marrow niche will likely improve our knowledge about the initiation and progression of different 

diseases, and may advance the development of more effective treatments. 

        Prior studies on the bone marrow niche have identified multiple major niche components, 

including mesenchymal stem cells, endothelial cells, osteoblast lineage cells, megakaryocytes, 
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macrophages, the sympathetic nervous system,  and the main focus of our lab, mesenchymal 

stromal cells
4-7,10,12,13

.  Although these components have been shown to regulate the development 

and maintenance of hematopoietic progenitor and stem cells (HSPCs), the regulatory 

mechanisms and the molecular pathways involved are not fully understood. Mesenchymal 

stromal cells are mainly found in the perivascular region, thus also referred to as perivascular 

stromal cells, and are the earliest niche component discovered
3,9,10,12,18,19

. These stromal cells are 

the major source for the production and secretion of multiple niche factors, such as stromal 

derived factor-1 (SDF-1 or CXCL12) and stem cell factors (SCF or Kit ligand)
3,10,11

. 

Mesenchymal stromal cells are heterogeneous and various markers have been used to 

characterize non-identical but overlapping subpopulations, including CXCL12 abundant reticular 

(CAR) cells, leptin receptor expressing (LepR
+
) cells, and Nestin-GFP

+
 cells

3,10,20,21
. 

Collectively, these stromal cells are critical for maintaining quiescence and promoting 

proliferation of HSPCs, so it is important to further characterize its subpopulations for their 

potential specific functions and roles in the bone marrow niche.   

        B cells are an important component of the adaptive immune system whose functions include 

antigen presentation and secretion of cytokines and antibodies
22

. In mammals, B cells mature in 

the bone marrow, but also require input from peripheral lymphoid organs
23

. B cells develop 

through a series of different stages which can be identified based on their surface marker 

expression
24

. In the bone marrow, the common lymphoid progenitor (CLP) gives rise to the B 

lymphoid progenitor (BLP)
25

. Dr. Hardy and colleagues have defined the later stages of B cell 

development using Hardy Fractions, referred as Fractions A through F
26,27

.  Pre-pro-B cells are 

defined as Fraction A cells, which are derived from BLPs and retain most gene expressions of 

germline immunoglobulin
43

. Rearrangement of the heavy chain of immunoglobulin (IgH) starts 
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in early pro-B cells, or Fraction B cells, and is completed in late pro-B cells, or Fraction C 

cells
43

. They then express pre-B cell receptor (pre-BCR), which leads to recombination of the 

immunoglobulin light chain, and these cells are defined as Fraction D cells, or pre-B cells
26,27

. 

After light chain rearrangement, these cells are known as Fraction E cells, or immature B cells, 

and they express IgM on the surface
44

. Most immature B cells enter the blood and migrate to the 

spleen for maturation into mature naive B cells, or Fraction F cells, expressing both IgM and 

IgD
26,28-30

. Meanwhile, some immature B cells may mature in the bone marrow
31

. When exposed 

to recognized antigens, mature naive B cells further mature in the periphery to become anti-body 

secreting plasma cells or memory cells
29,30,32

. Memory cells may include memory plasma cells 

and memory B cells, and studies have suggested the bone marrow as a potential 

microenvironment for their maintenance
32-36

. However, it remains unclear how these cells affect 

immune memory and how they are regulated in the bone marrow, which requires further 

research. 

        Dendritic cells (DCs) are found in different tissues with great heterogeneity and functional 

variations
37-39

. Classical or conventional DCs (cDCs) are generally defined as cells with dendritic 

morphology and outstanding capacity for presenting antigens and priming T cells
40,41

. cDCs can 

be further divided into two subsets, type 1 cDCs (cDC1s) and type 2 cDCs (cDC2s). cDC1s are 

mainly responsible for immune responses against viruses, tumors and intracellular pathogens. 

cDC2s are mainly responsible for immune responses against parasites, allergens, extracellular 

bacteria, fungi and some intracellular pathogens
42

.  Besides cDCs, studies have also discovered 

plasmacytoid DCs (pDCs), which are lymphocyte-like cells specialized in the production of type 

I interferons
40,43

. DCs have a myeloid origin and their development consists of a branch of 

hematopoiesis that is different from lymphoid and granulocytic myeloid cell differentiation
44

. A 
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cell population of clonogenic common DC progenitors (CDP) has been discovered in the bone 

marrow (BM), which may differentiate into both cDCs and pDCs
45,46

. Although cDCs mature in 

the peripheral lymphoid organs, clonogenic cDC-restricted progenitors (pre-DCs) have been 

found in the spleen (Sp), BM and other tissues
47,48

, suggesting the capability of cDCs to self-

renew in their resident tissues. Recent studies have shown that BM cDCs mostly reside in the 

BM perivascular region, regulating B cells and neutrophils in the bone marrow
49-51

, although it 

remains unknown whether BM cDCs may regulate HSPCs. BM cDCs and BM macrophages are 

both mononuclear phagocytes with a common myeloid origin, and recent studies have suggested 

BM macrophages may be important for the regulation of HSPCs
7,52,53

. Thus, it would be 

interesting to test whether BM cDCs may function as a novel bone marrow niche component to 

regulate HSPCs. 
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1.1. Components of the Bone Marrow Niche 

1.1.1. Mesenchymal stem cells 

        Mesenchymal stem cells (MSCs) are multipotent stromal cells with the capability to 

differentiate into osteogenic lineage cells, chondrocytes, and adipocytes
4
. To identify MSCs, in 

vitro colony forming assays can be performed to test whether the cells of interest may form all 

three lineages. However, a prior study has identified a population of proliferative osteoblastic 

progenitors, MX-1 positive bone marrow stromal cells, which could differentiate into 

osteolineage cells, chondrocytes, and adipocytes in vitro yet only differentiate into osteoblasts in 

vivo
54

.  Other studies have proposed various markers to identify MSCs in mouse bone marrow, 

including platelet-derived growth factor receptor-alpha and -beta (PDGFRα and PDGFRβ), 

CD51, Sca1 and alpha smooth muscle actin
55-58

.  But until now, no precise and universal 

definition of MSCs exists due to a lack of consensus in defining markers
4
. Recent studies have 

identified Nestin-GFP
+
 cells that are enriched for MSC activity and express high levels of key 

niche factors, such as SCF, CXCL12, PDGFRα, and fibroblast activation protein (FAP)
58,59

. 

Follow-up studies showed that HSCs localize near Nestin-GFP
+
 cells, and ablation of Nestin-

GFP
+
 cells leads to bone marrow hypocellularity, anemia, and depletion of osteogenic cells

60,61
.  

Our lab and others have discovered that the Prx1-Cre targeted PDGFRα
+
 Sca1

+
 (PαS) cells are 

highly enriched for MSCs
3
. To our surprise, these Prx1-Cre targeted PαS cells did not express 

nestin, one possible explanation being that Nestin-GFP transgene does not accurately reflect the 

nestin expression in vivo
3
. Despite the recent research emphasis, the complex population 

heterogeneity remains an obstacle for precisely defining the MSC population and studying them 

in greater detail.  
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1.1.2. Endothelial cells 

       HSPCs preferentially localize to the perivascular regions in the bone marrow
4,5,62

. Prior 

studies have shown that BM endothelial cells (ECs) promote HSPC maintenance, and sinusoidal 

endothelial cells promote long-term HSC reconstituting capability
10,63-66

. In addition, BM ECs 

have been illustrated to release soluble niche factors, referred as angiocrine function
67

.  CXCL12 

and SCF are important niche factors that have been widely investigated in the regulation of 

HSPCs in the bone marrow
10,68-70

. A recent study shows that deletion of Kitl in ECs results in 

decreased HSC numbers and reduces the repopulating capability of HSCs after bone marrow 

transplantation
10

.  In contrast, later studies using similar models to delete CXCL12 in BM ECs 

show minimal decrease in HSPCs and only a modest loss of long-term repopulating capacity of 

HSCs after transplantation
3,11

. Other than secreted niche factors, an EC-specific adhesion 

molecule, E-selectin, is shown to activate HSC proliferation
71

. More recent data suggests that 

activation of endothelial CXCR2 by Gro-β (CXCL2) could induce bone marrow vascular 

permeability and promote HSPC mobilization
72

. Another recent study showed that activation of 

Notch signaling in ECs results in the up-regulation of cellular SCF level and the expansion of 

PDGFRβ
+
 perivascular mesenchymal cells

73
. Collectively, these studies provide evidences to 

implicate BM ECs as an important component of the bone marrow niche.  

        BM ECs are heterogeneous, and prior studies have revealed different types of ECs in the 

bone marrow
74

. Sinusoidal capillaries, highly branched small vessels found throughout the 

marrow cavity, are the most abundant blood vessels in the bone marrow
74

. Sinusoidal ECs 

express vascular endothelial cadherin (VEcad) and vascular endothelial growth factor receptor-3 

(VEGFR3), and are laminin
+ or low

 Sca-1
- or low

, while arteriolar ECs are mainly laminin
+
 Sca-1

+
 

VEcad
+
 Vegfr-3

-
 
75,76

. A recent study on the murine postnatal development reveals a novel 
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subtype of blood vessel, type H vessel. These blood vessels express higher levels of endomucin 

(Emcn) and CD31 (Pecam1) compared to sinusoidal vessels, and are found in more proliferative 

regions of the bone marrow
77,78

. Distinct bone marrow niches have been proposed around both 

arteriolar and sinusoidal vessels
12,13,18,79

. The arteriolar niche consists of arteriolar ECs and 

Nestin-GFP
high

 NG2
high

 mesenchymal stromal cells, which are demonstrated to maintain HSC 

quiescence
12

. Arteriolar vessels are less permeable compared to sinusoidal vessels and were 

shown to maintain a low level of reactive oxygen species (ROS) in HSCs, while sinusoidal 

vessels were shown to be important for regulating HSC trafficking and homing
73,79

. In 

comparison, the sinusoidal niche consisting of sinusoidal ECs and LepR
+
 (leptin receptor) 

mesenchymal stromal cells, was illustrated to regulate both quiescent HSCs and more 

proliferative progenitor cells
18

. So far, it remains unclear whether quiescent HSCs are regulated 

by the arteriolar or sinusoidal niche, and it is also possible that both niches may play important 

roles to maintain quiescent HSCs. Although the existence and the exact function of arteriolar and 

sinusoidal niches are still controversial, it is clear that BM ECs and their surrounding 

perivascular niches are critical for the maintenance and development of HSPCs.  

 

1.1.3. Osteoblast lineage cells 

        Osteoblast lineage cells include osteoblasts, osteocytes and osteoblastic progenitors
19,80

. 

Osteoblasts produce bone matrix proteins and have the potential to differentiate into 

osteocytes
81

. Osteocytes are abundant in bones and are important for bone remodeling, 

regulating both osteoblast and osteoclast functions
81,82

. Osteoblastic progenitors or immature 

osteoblasts are bone marrow stromal cells that are likely to differentiate into mature 
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osteoblasts
19

. A recent study showed that transgenic mouse models used previously to study 

osteoblasts or osteocytes in fact target other osteoblast lineage cells or mesenchymal stromal 

cells
19

. Thus, it would be more accurate to discuss the roles and functions of osteoblast lineage 

cells, instead of each individual, in the bone marrow niche.   

        Early studies done by Taichman and colleagues show that osteoblast lineage cells support 

hematopoietic development and HSC maintenance
83,84

. Later experiments show that osteoblast 

lineage cells are necessary for normal hematopoiesis and HSC activities
85,86

. In addition, 

activation of osteoblast lineage cells has been shown to promote the expansion of phenotypic and 

functional HSCs in vivo
21,87-89

. However, another study suggests that the expansion of osteoblasts 

is not sufficient to increase HSC number
90

. Moreover, a later study shows that defects in 

osteoblast function in a murine inflammatory arthritis model are insufficient to impair HSCs
91

. 

While the roles and functions of osteoblast lineage cells on HSPCs remain controversial, recent 

study suggests that they may play more important roles for the regulation of lymphoid 

progenitors, but not HSPCs
11

. The differences among these studies may be caused by the 

heterogeneity of osteoblast lineage cells, and that different subsets may play different roles in 

hematopoiesis
92

. For example, immature osteoblasts marked by high expression of a 

transcription factor, Runx2, may have a greater potential in HSC maintenance and 

enhancement
93

. In contrast, mature osteoblasts and osteocytes that are activated by constitutive 

parathyroid hormone (PTH) signaling have a decreased ability to support HSCs, compared to 

immature osteoblasts
93

. Since the common transgenic models used for studying osteoblast 

lineage cells lack specificity for a certain cell subset
19

, it is necessary to develop better markers 

or models to further dissect this heterogeneous population and to more accurately study its 

function. 
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1.1.4. Megakaryocytes 

        Megakaryocytes (MKs) are hematopoietic lineage cells recognized by their unique 

morphology, especially their large size
94-96

. MKs have been reported to mainly reside in 

proximity to bone marrow sinusoids during hematopoietic homeostasis
97

. Interestingly, after 

irradiation, MKs may relocate from the central marrow space to the endosteal surface
98

. The 

same study shows that MKs promote the expansion of the endosteal niche through its production 

and release of platelet-derived growth factor-BB (PDGF-BB), thus to increase HSC engraftment 

after irradiation
98

. In fact, one major function of MKs is to release different soluble factors in the 

bone marrow
99

. MKs are the main source of thrombopoietin (TPO) which is important for the 

maintenance of quiescent HSCs, and depletion of MKs results in a decrease of intra-BM TPO 

concentration and a decrease in HSC number
100,101

. In addition, MKs are the main source of 

platelet factor 4 (PF4 or CXCL4) in the bone marrow that regulates the cell cycle activity to 

maintain HSC quiescence
102

. In contrast, another group has reported an in vitro study in which 

MKs release insulin-like growth factor-1 and insulin-like growth factor binding protein-3 to 

increase HSC proliferation
103

. To explain the dual functions of MKs for both maintaining HSC 

quiescence and promoting HSC proliferation, Li’s group reported that MKs are the main source 

of transforming growth factor β1 (TGF-β1) and fibroblast growth factor-1 (FGF1). While TGF-

β1 regulates the quiescence of HSCs during homeostatic conditions, MKs switch to promote 

HSC expansion by releasing FGF1 under chemotherapeutic stress
6
. Collectively, prior studies 

have demonstrated that MKs release different soluble niche factors under homeostatic and 

stressful conditions, and they serve as an important bone marrow niche component to regulate 

both quiescence and proliferation of HSCs.  
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1.1.5. Macrophages 

        Macrophages are professional phagocytic cells with great heterogeneity, found in both 

lymphoid and non-lymphoid tissues
38,44,104

.  Most macrophages are capable of engulfing and 

degrading large particles, which allow them to clear foreign and damaged cells
23,88,105

. 

Macrophages are equipped with a broad-range of pattern-recognition receptors (PRRs), which 

are required for engulfing cellular debris and pathogenic particles that leads to the production of 

inflammatory or immunosuppressive cytokines
38,44,104,106

. Macrophages are also highly plastic 

and can shift their physiology rapidly in response to injury or infection
104,107

.  The phenotypes 

and functions of macrophages are largely dependent on the surrounding microenvironment
104

. 

In general, macrophages can be simply classified into two different types: classically activated, 

or M1, macrophages (CAMs), and alternatively activated, or M2, macrophages (AAMs)
108

. 

CAMs are more specialized for antigen presentation, production of nitric oxide (NO), secretion 

of chemokines and cytokines, and promoting T-helper 1 (Th1) lymphocytes expansion
104,107,108

.  

Therefore, CAMs play a critical role in the defense against bacteria, although their defense 

mechanisms may also damage the host
104,108

. In contrast, AAMs are involved in the defense 

against parasites and fungi
109,110

. AAMs express large amounts of cytosolic arginase and 

extracellular matrix related proteins, allowing them to regulate inflammation and promote 

tissue repair, thus they are also referred to as wound-healing macrophages
107,109-111

. 

Additionally, unique subsets of resident macrophages exist in different tissues, such as brain 

microglia, lung alveolar macrophages, and liver Kupffer cells
107,109

. Early studies have 

suggested that most resident macrophages are derived from circulating monocytes with bone 

marrow origin
38,104,105,112,113

. However, recent studies provide clear evidence that resident 

macrophages can proliferate locally in both steady state and stressful conditions, and it remains 
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to be determined whether circulating monocytic precursors or self-renewal is more important 

for resident macrophage homeostasis
105,114,115

. Meanwhile, resident macrophages may also be 

classified into CAMs or AAMs, although their response to a given stimulus can be different 

from regular CAMs or AAMs
116,117

. 

        Bone marrow macrophages were first discovered in 1958 by ultrastructural study, which 

serve as the central component for the erythroblastic island, surrounded by erythroblasts at 

different stages of maturation
118,119,120

. Erythroblastic island macrophages (EIMs) are essential 

for the maturation and survival of erythroblasts
119

. EIMs produce principal growth factors to 

regulate erythropoiesis, such as erythropoietin (EPO)
121-123

, insulin-like growth factor-1 

(IGF1)
124,125

 and bone morphogenetic protein-4 (BMP4)
126

. EIMs also contribute to the 

synthesis of hemoglobin by incorporating iron into ferritin
127

. Moreover, EIMs aid in the 

enucleation process by phagocytosis and degradation of extruded nuclei
128,129

. Another subset 

of BM macrophages resides in the endosteal niche and is referred as osteomacs
119,130

. On 

resting bone surfaces, bone lining cells are interspersed by osteomacs, which are in direct 

contact with the bone surface
119,131

. Osteomacs play an important role in osteoblast formation 

and maturation
103,115

, and can express a wide array of pro-anabolic molecules that are essential 

for parathyroid hormone anabolic actions
132

. Osteomacs may also contribute to injury response 

and tissue regeneration through production of growth factors, inflammatory cytokines and 

chemokines
133,134

.  

        In addition, recent studies reveal that macrophages also localize to the bone marrow 

hematopoietic niche and may support other bone marrow niche components in vitro
52,131,135

.  

Prior studies have used different in vivo macrophage depletion models to assess their function 

and have shown that macrophage depletion results in the suppression of osteoblast lineage 
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cells, reduced expression of important niche factors, HSPC mobilization and marked decrease 

of erythroblasts
7,52,53,131

. In these studies, macrophages regulate HSPCs indirectly through 

regulation of osteoblast lineage cells and Nestin
+
 mesenchymal stem cells

7,135
. Interestingly, a 

more recent study suggests that these macrophages may also regulate HSPCs directly, as 

CD234 on macrophages stabilizes CD82 on long term (LT)-HSCs to promote quiescence
136

. 

Moreover, BM macrophages express high levels of granulocyte colony stimulating factor (G-

CSF) receptor
137,138

, and exposure to the pro-inflammatory factor G-CSF, a commonly used 

HSPC mobilizing reagent, substantially reduces BM macrophages
52,139

. The loss of BM 

macrophages then promotes HSCs to proliferate and mobilize, both directly and 

indirectly
7,135,136,140

. Collectively, evidence suggests BM macrophages serve as an important 

bone marrow niche component, regulating the quiescence, proliferation and mobilization of 

HSPCs under homeostatic and stressful conditions.   

 

1.1.6. The Sympathetic Nervous System 

        The sympathetic nervous system (SNS) is another important bone marrow niche 

component. Prior studies have shown that the SNS regulates HSC mobilization through its 

modulation of granulocyte colony stimulating factor (G-CSF) and/or CXCL12 signaling
141,142

.  

Another study suggests that the SNS stimulates Nestin
+
 mesenchymal cells to send adrenergic 

signals to HSPCs
143

. Meanwhile, non-myelinating Schwann cells are a major source of activated 

transforming growth factor β (TGFβ) in the bone marrow
144

, and TGFβ  induces HSC quiescence 

ex vivo
145

. There is evidence that ablation of Schwann cells results in decreased HSC dormancy 
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and HSC number
146

. Therefore, the SNS has been proposed as a major component of the bone 

marrow niche.  

        Collectively, all the components discussed above, as well as mesenchymal stromal cells, 

make the bone marrow niche a complicated but critical microenvironment to study. 

Understanding the bone marrow niche will not only enhance our knowledge on hematopoiesis, 

but it will also help us improve treatments for bone marrow related diseases. 

 

1.2. Mesenchymal Stromal Cells 

1.2.1. CAR cells 

        CXCL12-abundant reticular (CAR) cells are identified by the expression of GFP which is 

knocked into the cxcl12 locus
147

. They have a characteristic reticular morphology, with long 

processes extending throughout the bone marrow, and are predominantly perivascular
148

. In 

mouse bone marrow, CAR cells can be defined as Lineage
-
 (CD45, CD31, Ter119 and Gr-1) 

stromal cells expressing high levels of GFP
19

. CAR cells are the main source of bone marrow 

CXCL12, and they also express high levels of SCF
10,149

. A prior study used CXCL12-diphteria 

toxin receptor (DTR) mice to deplete CAR cells, which resulted in HSC reduction in the bone 

marrow
149

. Since CAR cells express both CXCL12 and SCF, CXCL12 from CAR cells may not 

be necessary for HSC maintenance in the bone marrow. To test this possibility, a later study used 

Osterix-Cre (Osx-Cre) and Cxcl12
flox

 models to ablate CXCL12 from CAR cells and found that 

CXCL12 expression from CAR cells, while essential for efficient retention of HSPCs in the bone 

marrow, was not required for HSC maintenance
3
.  
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        CAR cells were originally described as adipo-osteoprogenic mesenchymal progenitors
149

. 

Lineage mapping using Osterix-Cre to target CAR cells shows that both osteoblasts and CAR 

cells are targeted, suggesting the osteoprogenic potential of CAR cells
3
. Meanwhile, Leptin-

receptor-Cre (LepR-Cre) targets both CAR cells and adipocytes, which suggests the adipogenic 

potential of CAR cells
11

. While both models target CAR cells efficiently, they target adipocytes 

and osteoblasts differently, which brings doubts on CAR cell’s adipo-osteoprogenic potentials. 

One possible explanation is that CAR cells may have different adipo-osteoprogenic potentials at 

different time points during development, Osx-Cre and LepR-Cre may be turned on at different 

stages, thus target adipocytes and osteoblasts differently.  

        CAR cells have also been reported to affect B lymphopoiesis. A prior study using the 

diphtheria toxin-ablation model has shown that CAR cells are important for early B cell 

development, as CAR cell ablation results in a loss of CLP, decreased proliferation and increased 

apoptosis of pro-B cells
148

. CXCL12 produced by CAR cells likely plays an important role 

during B cell development, as a recent study has demonstrated the effects of ablating CXCL12 

from different subsets of CAR cells on B cell development
3
. In addition, interleukin 7 (IL-7) has 

been reported to play an essential role in early B lymophopoiesis
150

. Deletion of either IL-7 or 

IL-7 receptor has been shown to cause reductions in pro-B and pre-B lymphocytes with no 

change to pre-pro-B lymphocytes
151-153

. A recent study crossed IL7-Cre transgenic mice with 

Rosa26
EYFP

 mice and illustrated that the IL-7 expressing cells in the bone marrow were 

predominantly bipotent CAR cells
154

.  
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1.2.2. LepR
+
 Cells 

        LepR
+
 cells are stromal cells expressing leptin receptor which were originally identified as 

Lepr-Cre targeted stromal cells by the Morrison group
10

. LepR
+
 cells include more than 90% of 

cells expressing high levels of Scf-GFP or Cxcl12-DsRed in young-adult mouse bone 

marrow
155,156

. LepR
+
 cells are mostly perivascular and especially enriched around sinusoids and 

small-diameter arterioles
156,157

. In normal young-adult mouse bone marrow, LepR
+
 cells and 

CAR cells almost completely overlap with each other
155,156

. Consistent with this observation, a 

later study used Lepr-Cre to conditionally delete Foxc1, a transcription factor that is required 

by CAR cells, which resulted into substantial depletion of HSCs and reduced bone marrow 

cellularity
158

. Therefore, LepR
+
 cells and CAR cells may be considered as the same cell 

population, at least in young-adult mice
156

. Although LepR
+
/CAR cells only represent 

approximately 0.3% of bone marrow cells, their long processes are present throughout the bone 

marrow, providing them the capability to affect most bone marrow cells
156

. LepR
+
/CAR cells 

express both SCF and CXCL12, and are also closely associated with HSCs, thus making them an 

important component of the perivascular bone marrow niche
3,11,76,155,159

.  

 

1.2.3. Nestin-GFP
+
 Cells 

        Nestin-GFP
+
 (Nes-GFP

+
) cells are bone marrow mesenchymal stromal cells expressing GFP 

under the regulatory element of the nestin promoter
21,160

. Histomorphometry analysis of whole 

bone marrow shows two different subsets of Nes-GFP
+
 cells, according to their expression levels 

of GFP and their locations: Nes-GFP
dim

 cells that are perisinusoidal and heavily overlap with 

CAR/LepR
+
 cells; and Nes-GFP

bright
 cells that are periarteriolar and express NG2

156,157
. A prior 
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study done by Frenette’s group used confocal imaging and spatial modeling to reveal that about 

35% of HSCs are closely associated with arterioles
12

. The same study also suggests that these 

arteriolar Nes-GFP
+
 stromal cells and arteriolar niches are indispensable for maintaining HSC 

quiescence
12

. This is in contrast to a later study which shows non-dividing HSCs are mainly 

perisinusoidal
159

.  

        The concept of the periarteriolar niche was initially based on the suggestion that Nes-GFP
+
 

cells, especially the Nes-CreER
 
and NG2-CreER targeted periarteriolar Nes-GFP

bright
 cells, were 

an important source of SCF and CXCL12
12,21

. Since Nes-GFP
+
 cells include two distinct subsets, 

it is not clear whether the SCF and CXCL12 expressed by Nes-GFP
+
 cells reflect the expression 

by perisinusoidal Nes-GFP
dim

 CAR/LepR
+
 cells or the expression by periarteriolar Nes-GFP

bright
 

NG2
+
 cells

156
. Moreover, inconsistent with the original studies

12,21
, other groups revealed that 

conditional deletion of Cxcl12 and Scf in Nes-CreER
 
and NG2-CreER targeted cells showed no 

significant effects on HSC frequency or HSC functions in adult bone marrow
10,11,18,155

.   

Different observations between these groups may be due to the age of mice used in their 

experiments. Studies supporting the arteriolar niche administered tamoxifen to deplete Cxcl12 

from NG2-CreER or Nes-CreER targeted cells within 3 weeks after birth
161,162

, when these Cre 

alleles are more broadly expressed in the bone marrow
163

. Other studies administered tamoxifen 

6 weeks after birth, when NG2-CreER and Nes-CreER are more restricted to periarteriolar 

cells
11,159

. While the function of Nes-GFP
bright

 NG2
+
 stromal cells and the concept of the 

periarteriolar niche still remain debatable, Nestin-GFP
+
 stromal cells do represent an important 

stromal population in the bone marrow niche.  
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1.3. B Lymphopoiesis  

1.3.1. CXCL12 

        CXCL12, also known as stromal-derived factor 1 (SDF-1) was originally discovered as a 

chemokine stimulating pre-B cell development in vitro
164

. CXCL12 is an important chemokine 

for hematopoiesis and B lymphopoiesis
20

, and mice lacking CXCL12 are perinatal lethal with 

significant defects in B cell development
165

. CXCR4 is the primary receptor of CXCL12, and 

mice lacking CXCR4 have a defect in early B cell development, with reductions in pre-pro B 

cells, CLPs and BLPs
166-168

.  CXCL12 interacts with CXCR4 to activate mitogen-activated 

protein kinase (MAPK), PI3 kinase (PI3K), extracellular-signal-regulated kinases (ERK1/2) and 

P38
169

. MAPK activation leads to actin polymerization and the regulation of cytoskeletal change, 

and PI3K activation induces polarization of adhesion molecules; both are responsible for the 

control of chemotaxis
169

. In addition, PI3K and ERK1/2 activate the NFkB pathway for gene 

transcription to promote cell proliferation, while P38 and PI3K down-regulate pro-apoptotic 

factors to inhibit apoptosis and up-regulate anti-apoptotic factors to promote cell survival
20,170

.  

        A prior study used transgenic mice to express an intracellular form of CXCL12 to inhibit 

CXCL12/CXCR4 signaling by sequestering CXCR4 intracellularly and found defects in B cell 

development starting from pro-B cell stage
171

. The same study showed that extracellular 

overexpression of CXCL12 could increase B cell number, further suggesting extracellular 

CXCL12/CXCR4 signaling is important for normal B cell development
171

. In another study, after 

being transplanted into irradiated wild type recipients, fetal liver cells from Cxcl12
-/-

 or wild type 

mice showed indistinguishable capability to reconstitute the hematopoietic system including B 

lymphopoiesis, demonstrating extracellular CXCL12 from the microenvironment, but not from 
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hematopoietic cells, is required for B cell development
172

. In contrast, serial transplantation from 

mice reconstituted with Cxcr4
-/-

 fetal liver cells shows a reduction of B cell progenitors in the 

bone marrow, illustrating the importance of CXCR4 signaling for efficient B cell 

development
172

. In addition to promoting B cell proliferation, CXCL12/CXCR4 signaling may 

also play an important role in regulating B cell retention and trafficking. Transplantation of 

Cxcr4
-/-

 fetal liver cells into wild type recipients results in a decrease of B cells in the bone 

marrow, but an increase of IgM
-
 B cells in the peripheral blood, indicating a retention defect of B 

cell progenitors in the bone marrow
173

. 

        In the bone marrow, mesenchymal stromal cells, especially CAR cells, are the main source 

of CXCL12
3,10

. However, these stromal cells are heterogeneous and may include different 

subsets with more specific functions. The Link lab has used several stromal-specific transgenic 

Cre models to delete Cxcl12 from the bone marrow, including Prx1-Cre, Osx-Cre and Ocn-Cre
3
.  

Prx1-Cre and Osx-Cre models, crossed with Cxcl12
flox/-

 mice, induced significant ablation of 

CXCL12 in the bone marrow, but Ocn-Cre:Cxcl12
flox/-

 mice did not ablate CXCL12 

significantly, compared to Cxcl12
flox/-

 control mice
3
. Interestingly, Prx1-Cre:Cxcl12

flox/-
, but not 

Osx-Cre:Cxcl12
flox/-

 mice,  induced significant reductions in CLPs and BLPs, while both models 

had significant reduction in pre-pro B cells
3
. These observations might be explained by the more 

robust ablation of CXCL12 in Prx1-Cre:Cxcl12
flox/-

 mice, compared to Osx-Cre:Cxcl12
flox/-

 

mice
3
, suggesting B cell progenitors at different stages may be sensitive to different 

concentrations of CXCL12. Another possibility is that the expression of CXCL12 by 

mesenchymal stem cells, targeted by Prx1-Cre, but not Osx-Cre, is required for the development 

and maintenance of CLPs and BLPs. Collectively, further studies are required to understand the 

role of bone marrow stromal CXCL12 in the regulation of B cell development.    



 

 

19 

 

1.3.2. Memory plasma cells 

        B cells can develop into two major types of memory cells, and they are memory plasma 

cells (PCs) and memory B cells. PCs were initially described in 1948
174

, and were originally 

considered as short-lived cells that secrete either IgM or downstream isotypes 
32

. A later study 

identified long-lived PCs in the bone marrow, which are resting in terms of proliferation and 

migration, but may produce antibodies of humoral memory
32,175

. Thus, these cells may also be 

referred to as memory PCs. Human PCs generally express high levels of CD38 and CD27, and 

low levels of CD20. In mice, the comparable markers are CD138 and B220. To distinguish 

memory PCs from short-lived PCs, genes or markers labeling cell cycle and proliferation may be 

used, such as Ki67. The bone marrow is the major reservoir for memory PCs, and studies have 

suggested that PC progenitors from different lymphoid organs may migrate to the bone marrow 

and differentiate into memory PCs
32

. A prior study has provided some evidence that the 

longevity of memory PCs is an intrinsic feature, but extrinsic signals from the surrounding 

microenvironment are also required for the survival of memory PCs and the prevention from 

apoptosis
32,176

. In the bone marrow, stromal cells have been strongly suggested to constitute an 

important part of the survival niche for memory PCs, either by directly supporting memory PC 

survival, or by recruiting and supporting other important niche components. In both human and 

mouse, PCs express CXCR4, and CXCL12 produced by stromal cells play a critical role for the 

maintenance of memory PCs in the bone marrow
32

. Disruption of CXCL12/CXCR4 signaling in 

the bone marrow may result in a significant loss of bone marrow PCs
148

. In addition, IL-6 

produced by stromal cells has been identified as another important survival factor for memory 

PCs. Therefore, it is important to further dissect the stromal cell population and study their 

regulation of PCs, especially memory PCs in the bone marrow. 
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1.3.3. Memory B cells 

        Memory B cells are defined as cells that participate in a primary response and persist in the 

host after acute immune response. Memory B cells are normally in a resting state and do not 

express any effector functions, but upon secondary exposure to the memorized antigen, they 

quickly recognize them and produce a faster and stronger immune response
32

.  Memory B cells 

differentiate into antibody-secreting PCs upon reactivation, and they are more likely to undergo 

PC differentiation compared to naive B cells. Thus, chronic antigen exposure may persistently 

reactivate memory B cells to generate more antibody-secreting PCs, which is critical for the 

maintenance of long-lived humoral immunity
32

. 

        Memory B cells are highly diverse and multiple subsets have been discovered that may 

potentially carry different functions for the immune memory
32

. In humans, memory B cells were 

historically identified as immunoglobulin D
-
 (IgD

-
) B cells, as they had undergone class-switch 

recombination
177,178

. However, a later study identified another subset of IgD
+
 memory B cells

179
. 

To identify both types of human memory B cells, the same study provides a novel marker, the 

tumor necrosis factor (TNF) receptor family member CD27, which is also used nowadays to 

mark human memory B cells
179

. Being a general marker for memory B cells, CD27 cross-links 

CD70 to enhance B cell activation in vivo and to favor differentiation towards PCs, resulting in 

stronger antibody secretion
180-183

. CD27
+
 memory B cells can be further divided into IgM

- 
IgD

-
, 

IgM
+ 

IgD
+
 and IgM

+ 
IgD

-
 cells, and IgM

+
 memory cells respond faster to stimulation than naive 

cells
179,184,185

. In addition, more recent studies identify a new subset of memory B cells that are 

CD27
-
, and they are similar to CD27

+
 memory B cells for carrying somatically mutated 

immunoglobulin genes
186,187

. The identification of murine memory B cells is more complicated, 

as CD27 is not a marker for memory B cells in mice
188

. Due to the heterogeneity of memory B 
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cells, simply using surface markers may not provide an accurate method to identify them. A 

recent study used the immunization method to induce the production of memory B cells against a 

specific antigen, which can be identified by their capability to recognize the specific antigen and 

their expressions of conventional memory B cell markers
189

. 

        Memory B cells specific for vaccinia virus antigens (smallpox) have been discovered in 

humans even 50 years after immunization
190

. Multiple mechanisms have been shown or 

discussed for the maintenance of memory B cells
32

. A prior study suggests the requirement of an 

antigen for the maintenance of the antigen-specific memory B cells
191

. However, another study 

shows that phycoerythrin (PE) specific memory B cells are well persisted in nitrophenyl-chicken 

gamma globulin (NP-CGG) immunized mice that have not been exposed to PE
192

. Other than 

antigen dependency, survival and proliferation are other important mechanisms for memory B 

cell maintenance
32

. The spleen has been shown as a major reservoir of memory B cells against 

vaccinia virus
193

. In patients, circulating IgM
+
 IgD

+ 
CD27

+
 memory B cells rapidly decline and 

finally disappear after splenectomy
194

. Splenectomy also results in reduced, but not abrogated 

circulation of IgD
-
CD27

+
 memory B cells after 2 years, suggesting that while the spleen is an 

important reservoir for these memory B cells, other organs may also serve as their reservoirs
32

. 

Prior studies have also proposed the bone marrow as a reservoir for memory B cells
35,36

. 

Although a recent study suggests that only a small fraction of memory B cells are BM resident
34

, 

it is possible that these cells may carry unique functions. The bone marrow niche provides a 

microenvironment for the maintenance of long-term quiescent HSCs, thus it would be interesting 

to test whether these BM memory B cells are more quiescent and may survive in long term, and 

to study the potential mechanisms involved in the regulation of these memory B cells by the 

bone marrow niche. 
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1.4 Dendritic Cells 

1.4.1. cDC1  

        Classical DCs type 1 (cDC1s), also known as CD8α
+
 cDCs or CD103

+
 cDCs, were 

originally described as a subset of DCs in blood that express high levels of CD141 

(thrombomodulin, BDCA-3)
195-197

. Human cDC1s are a rare population among all cDCs, as they 

are only about one-tenth of cDC2s in steady-state blood and tissues
42,198-201

. cDC1s are found in 

both lymphoid and non-lymphoid tissues, and there are suggestions that they are more abundant 

in tissues compared to blood, although this idea may need further validation
42

. While sharing 

similar phenotypic markers with cDC2s, cDC1s may be distinguished by their low expression of 

CD11c, little expression of CD11b and SIRPα
42

. Besides, cDC1s express high levels of 

CLEC9A, CADM1 and BTLA
42

. Several gene expression studies have also identified XCR1 as a 

conserved marker for cDC1s in many species
202

. In addition, intracellular IRF8 expression may 

be used as a standard marker for identifying cDC1s, as unopposed expression of IRF8 (without 

IRF4) defines the lineage
198

. IRF8 is a transcription factor that play an important role to regulate 

the differentiation of DCs, especially cDC1s, at several stages during hematopoiesis through 

direct or indirect competition with transcription factors promoting other lineages
42,203

. IRF8 may 

limit granulocytic differentiation, balance DC to monocyte differentiation, compete with IRF4 to 

control cDC1:cDC2 output, and maintain cDC1 maturation
27,156

. Gene dosage of IRF8 is a 

critical determinant during DC development. Homozygous deletion of Irf8 causes loss of 

monocytes and all DCs, but excessive production of neutrophils
204,205

. Interestingly, subtle losses 

of IRF8 activity in mice only reduces the production of cDC1s
206

.  
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        Functionally, cDC1s have been characterized as a subset of DCs with a high intrinsic 

capacity to cross-present antigens via MHC I to activate CD8
+
 T cells and to release IL-12 to 

promote T helper type 1 (Th1) and natural killer responses
207-210

. Expression of XCR1 

chemokine receptor by cDC1s enables close interaction with XCL-producing activated T cells 

and nature killer (NK) cells
27

. Human cDC1s efficiently recognize viral and intracellular 

antigens, and transport antigens to the appropriate endosomal compartments through several 

conserved mechanisms
27,211

.  For example, cDC1s express high levels of CLEC9A, a unique 

receptor that recognizes bare actin filaments exposed upon necrotic cell death, thus directs cell-

associated antigens into the cross-presentation pathway
212-215

. cDC1s are also a major source of 

type III interferons (IFN), and the production and accumulation of these interferons during 

hepatitis C virus infection have been proposed to benefit viral clearance
216

. In mice, cDC1s have 

also been characterized as cross-priming tolerogenic cells, but this potential has not been well 

characterized in human
217,218

. 

 

1.4.2. cDC2 

        The majority of myeloid cDCs in different tissues and organs are characterized as classical 

DCs type 2 (cDC2s), also referred as CD11b
+
 cDCs, expressing CD1c, CD2, SIRPα and FcεR1 

42,197
. Similar to cDC1s, cDC2s also express myeloid surface markers CD13 and CD33, but high 

levels of CD11b and CD11c
27

. A prior transcriptional profiling study has also revealed 

CLEC10A, VEGFA and FCGR2A as surface markers of cDC2s
199

. There is great heterogeneity 

among cDC2s found in different tissues, and different subsets of cDC2s may be further 

characterized
27

. Recent studies have characterized human blood cDC2s into two subsets: one 
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subset being DC-like with higher expression of CD5, CD1c, HLA-DQ and IRF4; the other subset 

being monocyte-like expressing CD14, CD32, CD36 and proportionately higher MAFB
219,220

. 

The development of cDC2s may depend on multiple transcription factors, but unlike cDC1s or 

pDCs, no single transcription factor plays an exclusive role to regulate this process
197,221-223

. In 

mice, recent studies have identifed ZEB2 as a factor influencing the fate of pre-DCs towards the 

cDC2 lineage and IRF4 as a cDC2 lineage defining factor
198,222

. Subsets of murine cDC2s exist 

in diffent tissues and may depend on variable factors, such as RELB, NOTCH2 and KLF4
197

. In 

contrast, the regulation of cDC2 development in humans is different from mice, and is less 

understood.  In humans, heterozygous GATA2 deficiency leads to eventual loss of all cDC2s
221

. 

Deletion of IRF8 in humans abrogates entire DC development including cDC2s
204,205

, while 

cDC2s are IRF8-independent in mice
224

. 

        cDC2s express a wide range of lectins, TLRs, NOD-like receptors and RIG-I-like receptors, 

and may respond to intracellular pathogens, parasites, allergens, fungi and extracellular 

bacteria
27

. CD1a and CD1c expressed by cDC2s may present the glycolipid antigens of 

mycobacteria and other pathogens
225

. Dectin-1 and Dectin-2 are also highly expressed in tissue 

cDC2s, which are important for fungal recognition
226,227

. cDC2s may secrete IL-1, IL-8, IL-10, 

IL-12, IL-23 and tumor necrosis factor-α (TNF- α), but little type III interferons, which are 

mainly secreted by cDC1s
228,229

. In addition, in vitro studies have shown that human cDC2s 

could activate Type I T helper (Th1), Th2, Th17 and CD8
+
 T cells

182-230
. Thus, cDC2s have great 

potential to induce a wide range of immune responses in human.   
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1.4.3. pDC 

        Plasmacytoid DCs (pDCs) were first discovered in human tonsil and blood
231,232

. Different 

from myeloid cDCs, pDCs do not express CD11c, CD11b, CD13 or CD33
195,196,233

. Well-known 

markers for human pDCs include CD303 (CLEC4C or BDCA-2), CD304 (BDCA-4), CD85k 

(ILT3) and CD85g (ILT7), together with more recently characterized antigens FcεRI, BTLA, 

CD358 and CD300A
234,235

. Transcriptional profiling studies have also identified additional 

markers, FAM129C, CUX2 and GZMB
199

. Development of pDCs depend on the coordinated 

process of multiple transcription factors
42

. The key factors regulating the balance between pDC 

and cDC development are E2-2 (TCF4), a basic hemophagocytic lymphohistiocytosis protein, 

and its antagonist ID2, a DNA binding inhibitor
197,236

. TCF4 is the lineage-determining factor for 

pDCs and is negatively regulated by ID2
237

. Recent studies have described multiple transcription 

factors to regulate the relative production of pDCs and cDCs, through their interactions with the 

TCF4/ID2 signaling pathway
42

. In humans, heterozygous loss of Tcf4 results in Pitt–Hopkins 

syndrome with a pDC deficiency
42

.  

        Functionally, pDCs are specialized DCs that detect and respond to viral infections through 

the rapid production of large quantities of type I and type III interferons, and the secretion of 

cytokines
235,238

. Toll-like receptor 7 (TLR7) and TLR9 are key receptors for pDCs sensing 

single-stranded RNA and double-stranded DNA, respectively
235

. Interestingly, a prior study has 

revealed the potential of pDCs to sense self-nucleic acids
239

. Together with their prominent role 

in the production of type I interferon, pDCs have been implicated in the pathogenesis of 

autoimmune diseases including psoriasis and systemic lupus erythematosus
240,241

. Multiple 

studies have also suggested that pDCs are capable of priming CD4
+
 T cells and CD8

+
 T cells, 

although further studies may be necessary to evaluate their antigen-presenting capacity
42

. 
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Moreover, pDCs have been reported to play conflicting roles in allergy
242,243

. In addition, 

tolerogenic pDCs may be affected by granulocyte-macrophage colony-stimulating factor (GM-

CSF) to contribute to tumor progression
244

. 

 

1.5. Summary 

        The bone marrow niche is a complicated microenvironment that regulates HSPC 

maintenance and B lymphopoiesis. Prior studies have identified multiple cellular components of 

the bone marrow niche, including mesenchymal stem cells, endothelial cells, osteoblast lineage 

cells, megakaryocytes, macrophages, the sympathetic nervous system and mesenchymal stromal 

cells. Among these cellular components, mesenchymal stromal cells are particularly of our 

interest, which are heterogeneous and serve as the main source of multiple important soluble 

niche factors, such as CXCL12, SCF and IL-7. Prior studies in our lab have shown the 

importance of stromal CXCL12 expression on regulating B cell development in the bone 

marrow. Moreover, BM cDCs have been discovered in the bone marrow that may be important 

for the regulation of B cells, suggesting their potential involvement in the bone marrow niche. 

Further characterization of the heterogeneity of stromal cells, the role of CXCL12 expression in 

different stromal subsets and the role of BM cDCs in the regulation of HSPCs, will improve the 

overall understanding on the bone marrow niche and may provide potential targets for future 

clinical applications. 

        In Chapter 2, the heterogeneity of mesenchymal stromal cells will be studied by using 

different transgenic Cre models. In Chapter 3, the role of CXCL12 produced by different subsets 

of stromal cells will be assessed for their effects on B cell development, especially on the 
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maintenance of memory PCs and B cells. In Chapter 4, BM cDCs will be assessed for their 

effects on HSPCs by using ablation models, and the potential molecular mechanisms involved in 

their regulation of HSPCs will also be studied. Finally, in Chapter 5, these findings on the bone 

marrow niche and its regulation of HSPCs or B cells will be summarized and future directions 

will be outlined.  
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CHAPTER 2: TARGETING OF MESENCHYMAL STROMAL CELLS BY CRE-

RECOMBINASE TRANSGENES COMMONLY USED TO TARGET 

OSTEOBLAST LINEAGE CELLS 

 

2.1. Introduction 

        The bone marrow microenvironment contains a heterogeneous population of stromal cells 

that contribute to the regulation of hematopoiesis.  Identifying these stromal cells and the signals 

they generate has important clinical implications for a number of hematopoietic diseases
5,11

.  

Mesenchymal stromal cells implicated in the maintenance of hematopoietic stem cells (HSCs) 

include endothelial cells, osteoblasts, CXCL12-abundant reticular (CAR) cells, mesenchymal 

stem cells (MSCs), and arteriolar pericytes
3,4,10,12

.  The use of tissue-specific Cre-recombinase 

transgenes to delete genes of interest from defined stromal cell populations is an established and 

important technique in the field.  Rigorously defining the targeting specificity of the Cre-

recombinase transgenes is a key to the interpretation of such experiments.   

        Two Cre-recombinase transgenes that are commonly used to target osteolineage cells are 

Ocn-Cre and Dmp1-Cre.  Osteocalcin (Ocn, Bglap) is a secreted protein implicated in bone and 

glucose metabolism 
245

.  Cell culture and in situ expression studies show that OCN expression is 

mostly limited to osteoblasts and osteocytes
245,246

.  This has led to the widespread use of Ocn-

Cre transgenes to specifically target osteoblasts and osteocytes
247,248

.  Dentin matrix acidic 

phosphoprotein 1 (Dmp1) is expressed in odontoblasts, preosteocytes and osteocytes
249,250

.  

Indeed, a transgene containing an 8 kb regulatory region of Dmp1 linked to GFP results in 

osteocyte-specific GFP expression in the bone marrow
251

.  These data have led to the widespread 

use of Dmp1-Cre transgenes to specifically target osteocytes, although targeting of some 
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osteoblasts also has been observed
250,252,253

.  Furthermore, a study by Kalajzic et al showed that a 

10 kb Dmp1-Cre transgene targeted both osteoblasts and osteocytes, as well as a small 

population of undefined cells in the bone marrow 
250

.   

        In the present study, we used high-resolution microscopy of bone sections and flow 

cytometry to carefully define the targeting specificity of Ocn-Cre and Dmp1-Cre in the bone 

marrow.  We showed that both the Ocn-Cre and Dmp1-Cre transgenes target a much broader 

population of bone marrow stromal cells than previously appreciated.  We also characterized for 

the first time the spectrum of bone marrow stromal cells targeted by a Tagln-Cre transgene.  We 

show that Tagln-Cre efficiently targets osteoblasts and perivascular stromal cells, but not 

endothelial cells.   

 

2.2. Materials and Methods 

2.2.1. Mouse strains   

        Ai9 (B6.Cg-Gt(ROSA)26Sor
tm9(CAG-tdTomato)Hze

/J) 
254 

mice and Tagln-Cre (B6.129S6-

Tagln
tm2(cre)Yec

/J) mice were obtained from The Jackson Laboratory 
255

.  Ocn–Cre mice were a 

gift from Thomas Clemens (Johns Hopkins University, Maryland) 
256

. Cxcl12
gfp

 mice were a gift 

from Takashi Nagasawa (Kyoto University, Japan) 
257

,
 
and Dmp1-Cre mice (containing the 9.6 

kb murine Dmp1 promoter) were a gift from Roberto Civitelli (Washington University, MO) 
258

.  

All mice used in this study were 8-10 weeks old.  Both male and female mice were used equally 

in these studies.  Genotyping primers are listed in Suppl. Table 2.1.  Mice were maintained under 

SPF conditions, and all experimental procedures were performed according to methods approved 

by the Animal Studies Committee at Washington University.  
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2.2.2. Flow cytometry   

        Bone marrow cells were harvested from mouse femurs by first uncapping the ends of the 

bone and then centrifuging at 3300 x g for 5 minutes to expel the bone marrow contents.  These 

cells were then digested with 1.67 mg/ml of type II collagenase (Worthington) in phosphate-

buffered saline (PBS) for 12 minutes at 37 °C.  Of note, the majority of osteoblasts are not 

recovered using this procedure (Suppl. Fig 2.1).  The following antibodies were used: CD45 (30-

F11), CD31 (390), and Ter119 (TER-119). Cells were analyzed on a Gallios flow cytometer 

(Beckman Coulter), and data analysis was done using FloJo version 10.0.7 software (TreeStar).  

        To sort Dmp1-Cre targeted or non-targeted CAR cells, we first isolated platelet-derived 

growth factor receptor-beta (PDGFRβ)-positive stromal cells from the bone marrow of Dmp1-

Cre ROSA26
Ai9/+

 Cxcl12
gfp/+

 mice using the AutoMacs Pro Separator system (Miltenyi Biotec) 

and a biotinylated anti-PDGFRβ antibody (APB5).  Cells were incubated with antibodies against 

Gr-1 (RB6-8C5), PDGFRβ (APB5), CD45 (30-F11), CD31 (390), and Ter119 (TER-119) and 

then incubated with brilliant violet 421-conjugated Streptavidin (405225, BioLegend). CAR cells 

were identified as Cxcl12-GFP
bright

 PDGRRβ
+
 Gr1

- 
CD45

- 
CD31

-
 Ter119

-
 cells.  Dmp1-Cre 

targeted CAR cells were tdTomato
high

. Cells were sorted using a MoFlo high-speed flow 

cytometer (Dako Cytomation).  All antibodies were obtained from eBioscience, unless otherwise 

noted.   

 

2.2.3. Immunostaining of bone sections   

        Mouse hindlimbs were fixed in PBS containing 4% paraformaldehyde, pH 7.4, for 24 hours 

at 4 °C.  Bones were then decalcified in PBS containing 14% EDTA, pH 7.4, for 7 days at 4 °C.  

Following incubation in PBS containing 30% sucrose for 24 hours at 4 °C, bones were 
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embedded in Optimal Cutting Temperature Compound (Sakura Finetek).  These tissue blocks 

were cut into 12 μm sections using a Leica Cryo-Jane system (Leica Biosystems).  For 

immunostaining, the slides were blocked with 10% donkey serum, diluted in 0.1M Tris-Cl pH 

7.5, 150 mM NaCl, and 0.1% Tween 20 (TNT) buffer for 1 hour at room temperature.  

Following blocking using the Avidin/Biotin Blocking Kit (SP-2001, Vector Laboratories), slides 

were then incubated in primary antibody overnight at 4 °C and, where applicable, they were 

incubated with secondary antibody for 1 hour at room temperature.  The following antibodies 

were used: rabbit anti-NG2 (AB5320, EMD Millipore), rat anti-Sca1 (557403, BD Biosciences), 

goat anti-VECadherin (AF1002, R&D Systems), mouse anti-αSMA (1A4, Sigma Aldrich); 

AlexaFluor 488-conjugated donkey anti-rat IgG (Jackson Immunoresearch); DyLight649-

conjugated donkey anti-rat IgG (Jackson Immunoresearch); and biotin-conjugated donkey anti-

goat IgG (Jackson Immunoresearch).  In some cases, slides were then incubated with 

streptavidin-DyLight 649 (Jackson Immunoresearch) for 1 hour at room temperature.  Finally, 

slides were mounted with ProLong Gold antifade reagent with DAPI (Life Technologies).  

Images were acquired with a LSM 700 microscope (Carl Zeiss) and processed using Volocity 

software (PerkinElmer).  

        For Hematoxylin & Eosin (H&E) staining, bone sections were air dried for 1 hour and then 

incubated with Hematoxylin Gill #3 (GHS316, Sigma-Aldrich) for 5 minutes followed by 

incubation with Eosin (HT110132, Sigma-Aldrich) for 3 minutes. Sections were then fixed by 

serial five-minute incubations in 50%, 70%, 95%, and 100% ethanol, followed by a five-minute 

incubation in xylene.  Finally, slides were mounted with Permount mounting medium (Fisher 

Chemical). Images were acquired with a LSM 700 microscope (Carl Zeiss). 
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2.2.4. RNA expression profiling  

        RNA was purified from sorted CAR cells using the Qiagen RNeasy Micro Kit (74004, 

Qiagen).  Libraries were generated using the NuGen Pico SL kit (NuGEN Technologies, San 

Carlos, CA) and then hybridized to Affymetrix Mouse Gene 1.0 ST arrays (Affymetrix, Santa 

Clara, CA). Gene set enrichment was performed using the GSEA software (Broad Institute). 

Differences in gene expression were determined using Significance Analysis of Microarrays 

(SAM; Stanford University, Stanford, CA).  Expression data has been submitted to Gene 

Expression Omnibus, record number GSE81399. 

 

2.2.5. Statistical analyses   

        Unpaired t-test was used to evaluate the significance of differences between two groups. All 

data are presented as mean ± S.D. 

 

2.3. Results 

2.3.1. Ocn-Cre targets osteoblasts, a majority of CAR cells, and arteriolar pericytes   

        To characterize the targeting specificity of Ocn-Cre in postnatal mouse bones, we generated 

Ocn-Cre ROSA26
Ai9/+

 mice and Ocn-Cre ROSA26
Ai9/+

 Cxcl12
gfp/+ 

mice.  The Cxcl12
gfp/+ 

transgene allows for the identification of CXCL12-GFP
bright

 (CAR) cells, which are perivascular 

stromal cells in the bone marrow implicated in HSC maintenance 
4
.  The ROSA26

Ai9/+
 transgene 

allows for the identification of Ocn-Cre targeted tdTomato
+ 

cells.  Immunostaining of the bone 

sections confirmed that the Ocn-Cre transgene efficiently targets osteoblasts (Fig. 2.1A & B, 

Suppl. Fig. 2.2) 
256

.  Surprisingly, we also observed that Ocn-Cre targets a substantial fraction of 

CXCL12-GFP
bright

 cells (Fig. 2.1A & C).  Of note, as expected, no tdTomato
+ 

CAR cells were 
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detected in control (Cxcl12
gfp/+

) mice (Suppl. Fig. 2.3). Flow cytometry showed that Ocn-Cre 

targets 72.2 ± 4.0% (n = 3 mice) of CXCL12-GFP
bright

 cells (Fig. 2.1D). To assess targeting of 

arteriolar pericytes, we stained bone sections from wild type mice with antibodies against alpha-

smooth muscle actin (αSMA) and NG2 (Fig. 2.2A & B).  In these assays, arteriolar endothelial 

cells were identified by Sca1
12

, which is also expressed on hematopoietic stem/progenitor cells 

but not on CAR cells 
3
.  Whereas αSMA staining was limited to a subset of arteriolar pericytes, 

NG2 staining was observed in all arteriolar pericytes (Fig. 2.2A & B).  Accordingly, all αSMA-

positive arteriolar pericytes co-expressed NG2, while only 56.9 ± 11.1% (n = 3 mice) of NG2-

positive arteriolar pericytes co-expressed αSMA.  Immunostaining of bone sections from Ocn-

Cre ROSA26
Ai9/+

 mice showed that Ocn-Cre targets 72.2 ± 13.3% (n = 3 mice) of NG2-postive 

arteriolar pericytes (Fig. 2.2C). Thus, in addition to osteoblasts, Ocn-Cre targets the majority of 

CAR cells and arteriolar pericytes in mice.  

 

2.3.2. Dmp1-Cre targets osteoblasts and a subset of CAR cells   

        To characterize the targeting specificity of Dmp1-Cre in postnatal mouse bones, we 

generated Dmp1-Cre ROSA26
Ai9/+

 mice and Dmp1-Cre ROSA26
Ai9/+

 Cxcl12
gfp/+

 mice.  As 

reported previously
253,258

, the Dmp1-Cre transgene efficiently targets all osteoblasts (Fig. 2.3A & 

B, Suppl. Fig. 2.4).  Surprisingly, Dmp1-Cre also targets a subset of CAR cells (Fig. 2.3A & C).  

Interestingly, Dmp1-Cre targeted CAR cells were not enriched near the endosteum or 

osteoblasts, but were distributed throughout the bone marrow (Suppl. Fig. 2.5A & B).  By flow 

cytometry 29.2 ± 1.7% (n = 3 mice) of CAR cells are targeted by Dmp1-Cre (Fig. 2.3D).   In 

contrast to Ocn-Cre, NG2
+
 arteriolar pericytes were rarely targeted by Dmp1-Cre (Fig. 2.3 E).  

Thus, Dmp1-Cre targets all osteoblasts and a subset of CAR cells but few arteriolar pericytes.   
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        To characterize the Dmp1-Cre targeted subset of CAR cells, we sorted tdTomato
+
 (Dmp1-

Cre targeted) and tdTomato
-
 CAR cells (non-targeted) and performed RNA expression profiling.   

Gene set enrichment analysis showed that Dmp1-Cre targeted CAR cells were highly enriched 

for a previously identified group of genes involved in osteoblast maturation or bone development 

(Suppl. Fig. 2.6A).  Indeed, expression of genes associated with mature osteoblasts such as 

Bglap2 (Ocn) and Postn (periostin) are increased nearly 4-fold compared to non-targeted CAR 

cells (Fig. 2.3F).  In contrast, expression of early osteoblast lineage genes, including Sp7 

(osterix) and Runx2 were normal or only minimally elevated (Fig. 2.3F).  Expression of key HSC 

maintenance genes (Cxcl12, Kitl, and Angpt1) or key B lymphoid factor genes (Igf1, Flt3l, or 

BAFF) was similar in Dmp1-Cre targeted and non-targeted CAR cells (Suppl. Fig. 2.6B & C).  

However, expression of interleukin-7, which is required for pro-B cell maintenance, was 

significantly reduced in Dmp1-Cre targeted CAR cells. 

 

2.3.3. Tagln-Cre targets osteoblasts, a majority of CAR cells, and both arteriolar and 

venous sinusoidal pericytes  

        Arteriolar pericytes have been implicated in HSC maintenance and can be readily identified 

in the bone marrow as Nestin-GFP
bright

 or NG2
+
 periarteriolar cells

12
.  However, a recent study 

reported that a substantial number of functional HSCs localize to venous sinusoids in the central 

bone marrow
159

.  In an effort to better visualize and isolate sinusoidal pericytes, we tested 

targeting by the Tagln-Cre transgene.  Tagln encodes for transgelin (SM22a) and is expressed in 

smooth muscle cells and cardiomyocytes
259-261

.  Tagln is also expressed in osteoblasts
262

.  

Accordingly, Tagln-Cre targets all osteoblasts (Fig. 2.4A & B, Suppl. Fig. 2.7).  Analyzing 

Tagln-Cre ROSA26
Ai9/+

 Cxcl12
gfp/+ 

mice, we observed that Tagln-Cre and CXCL12-GFP mark 
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overlapping, but distinct, bone marrow stromal cell populations (Fig. 2.4B & C).  Whereas 

Tagln-Cre targets the great majority of CXCL12-GFP
+
 CAR cells that line venous sinusoids 

which are marked by VE-cadherin
12,13

, it does not efficiently target those CXCL12-GFP
+
 CAR 

cells that are not in direct contact with sinusoids (Fig. 2.4D, yellow arrows).  Conversely, Tagln-

Cre targets a population of perisinusoidal cells that are CXCL12-GFP
-
dim/negative (Fig. 2.4D, 

red arrows), presumably representing non-CAR venous pericytes.  Moreover, Tagln-Cre, but not 

CXCL12-GFP, marks periarteriolar pericytes (Fig. 2.4E).  Indeed, Tagln-Cre targeted nearly all 

NG2
+
 arteriolar pericytes (Fig.  2.4E & F).  Flow cytometry showed that Tagln-Cre targets 74.9 

± 5.2% (n = 3 mice) of CAR cells (Fig. 2.4G).  Conversely, 16.6 ± 2.3% (n = 3 mice) of Tagln-

Cre targeted stromal cells were CXCL12-GFP dim/negative.  Collectively, these data show that 

Tagln-Cre efficiently targets all osteoblasts, a majority of CAR cells and both venous and 

arteriolar pericytes.   

 

2.4. Discussion 

        Ocn-Cre has been widely used to target osteoblasts in past studies 
245,247,248

. Our data show 

that Ocn-Cre targets not only osteoblasts, but also more than 70% of CAR cells and arteriolar 

pericytes. CAR cells are mesenchymal progenitors that have adipogenic and osteogenic capacity 

in vitro 
263

.  However, only a small subset of CAR cells contributes to osteoblast development in 

vivo 
4
.  Whether the Ocn-Cre targeted subset of CAR cells is fated to osteoblast differentiation is 

unclear.  Of note, we did not observe preferential localization of Ocn-Cre targeted CAR cells to 

the endosteal region.  CAR cells constitutively produce high levels of multiple cytokines and 

chemokines that regulate hematopoiesis, including CXCL12 and stem cell factor 
263

.  Indeed, 

CAR cells have been implicated in the maintenance of HSCs and B lymphoid progenitors 
264,265

.  
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Thus, phenotypes reported using Ocn-Cre need to be interpreted in light of our data showing 

targeting of CAR cells and arteriolar pericytes, in addition to osteoblasts.         

        Dmp1-Cre has been widely used to target osteocytes 
250,252,266

.  Several Dmp1-Cre 

transgenes have been described.  In this study, we show that the 10 kb Dmp1-Cre transgene, not 

only efficiently targets osteoblasts, but also a subset of CAR cells.  The results are consistent 

with a prior study by Kalajzic et. al. showing that the 10 kb Dmp1-Cre transgene targets a small 

population of undefined cell in the bone marrow, in addition to osteoblasts and osteocytes 
250

.  Of 

note, the same group also reported that an 8 kb Dmp1-Cre transgene, which is thought to be 

more osteocyte restricted, targets, at least a subset of, osteoblasts 
250

.  Whether the 8 kb Dmp1-

Cre transgene targets a subset of CAR cells will require further study.  Our data show that the 10 

kb Dmp1-Cre transgene targets approximately 30% of CAR cells.  Expression profiling of this 

subset of CAR cells shows higher expression of genes associated with mature osteoblasts, 

suggesting that Dmp1-Cre targeted CAR cells may be enriched for osteoprogenitors.  Functional 

studies are needed to confirm this possibility.   

        We report for the first time the spectrum of bone marrow stromal cells that are targeted by a 

Tagln-Cre transgene.  Prior studies in non-bone tissues had shown transgelin expression in 

cardiomyocytes and vascular smooth muscle cells 
259-261

.  Consistent with its expression in 

osteoblasts 
262

, Tagln-Cre efficiently targets osteoblasts.  Interestingly, Tagln-Cre appears to 

target a majority of CAR cells.  Specifically, it targets those CAR cells that are closely associated 

with venous sinusoids (i.e., venous sinusoidal pericytes).  Conversely, Tagln-Cre does not 

efficiently target CAR cells that are more distant from sinusoids.  Finally, Tagln-Cre efficiently 

targets arteriolar pericytes, which, despite evidence for high CXCL12 expression 
12

, do not 

express high-level GFP in Cxcl12
gfp

 mice.  Thus, the Tagln-Cre represents an important new tool 
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for investigators to efficiently target both venous sinusoidal and arteriolar pericytes in the bone 

marrow.  

        This study highlights the complexity and heterogeneity of mesenchymal stromal cells in the 

bone marrow.  Nestin-GFP
+
, LepR

+
, and CAR cells represent overlapping but not identical 

populations of perivascular mesenchymal stromal cells 
4,10,21,265

.  Bulk cell analysis of each of 

these populations shows high-level expression of genes that regulate hematopoiesis, including 

factors that regulate HSCs (e.g., kit ligand) and B lymphopoiesis (e.g., interleukin-7) 
4,21,264,265

.  

Our study suggests that there is considerable heterogeneity within the CAR cell population.  For 

example, the Dmp1-Cre targeted subset of CAR cells, in addition to being enriched for osteoblast 

genes, expresses a lower level of interleukin-7 (IL-7).  IL-7 producing stromal cells in the bone 

marrow are required for the maintenance of Pro-B cells 
264

, suggesting that Dmp1-Cre targeted 

CAR cells likely don’t contribute this specific stage of B cell development.   

        In summary, we have rigorously defined the targeting specificities in the bone marrow for 

the three Cre-recombinase transgenes.  Ocn-Cre and Dmp1-Cre target broader stromal cell 

populations than previously appreciated, and this data should be incorporated in the design of 

future studies.  These data further highlight the heterogeneity of mesenchymal stromal cells in 

the bone marrow, and suggest that the Cre-recombinase transgenes used in this study could be 

used to interrogate this heterogeneity. 
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2.7. Figures 

 

Figure 2.1. Ocn-Cre targets osteoblasts and a majority of CAR cells.  (A) Composite image 

of H & E stained sections from the femur of an Ocn-Cre ROSA26
Ai9/+

 mouse.  (B) Representative 

photomicrographs of the metaphyseal region (region “a” in panel A) of a femur section stained 

for osteocalcin (green) to mark osteoblasts and DAPI (blue) to highlight nuclei; cells that had 

undergone Cre-mediated recombination express tdTomato (red). (C) Representative 

photomicrographs taken from the diaphyseal region (similar to region “b” in panel A) of a femur 

section from an Ocn-Cre ROSA26
Ai9/+

 Cxcl12
gfp/+

 mouse.   Cells that express CXCL12 also 

express GFP (green).  Counterstaining with DAPI highlights nuclei (blue).  (D) Representative 

dot plots showing GFP and tdTomato expression in lineage (CD45, CD31 and Ter119) negative 

stromal cells harvested from Ocn-Cre ROSA26
Ai9/+

 Cxcl12
gfp/+

 mice.  Original magnification, 

200X except for panel A, which is 100X.   
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Figure 2.2. Ocn-Cre targets the majority of arteriolar pericytes.   Representative 

photomicrographs of the diaphyseal region (similar to region “b” in Fig. 1A) of a femur section 

from a wild type mouse stained for αSMA (red), NG2 (green), Sca1 (white) and DAPI (blue). 

(A) Images showing αSMA
+
 NG2

+
 arteriolar pericytes around Sca1

+
 arteriolar endothelial cells. 

(B) Images showing αSMA
- 
NG2

+
 arteriolar pericytes around Sca1

+
 arteriolar endothelial cells. 

(C) Representative photomicrographs of the diaphyseal region of a femur section from an Ocn-

Cre ROSA26
Ai9/+

mouse stained for NG2 (green) and DAPI (blue). TdTomato (red) represents 

cells targeted by Ocn-Cre.  Original magnification, 200X.  
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Figure 2.3. Dmp1-Cre targets all the osteoblasts and a subset of CAR cells but no arteriolar 

pericytes. (A) Composite image of H & E stained sections from the femur of a Dmp1-Cre 

ROSA26
Ai9/+

 mouse. (B) Representative photomicrographs of the metaphyseal region (region “a” 

in panel A) of a femur section that was stained for osteocalcin (green) and DAPI (blue). Dmp1-

Cre targeted cells express tdTomato (red). (C) Representative photomicrographs taken from the 

diaphyseal region (similar to region “b” in panel A) of a femur section from a Dmp1-Cre 

ROSA26
Ai9/+

 Cxcl12
gfp/+

 mouse; cells that express CXCL12 also express GFP (green).  (D) 

Representative dot plot showing GFP and tdTomato expression in lineage (CD45, CD31 and 

Ter119) negative stromal cells harvested from Dmp1-Cre ROSA26
Ai9/+

 Cxcl12
gfp/+

 mice.  (E) 

Representative photomicrographs taken from the diaphyseal region of a femur section from a 

Dmp1-Cre ROSA26
Ai9/+

 Cxcl12
gfp/+

 mouse stained for NG2 (green) and DAPI (blue). (F) RNA 

expression profiling of sorted Dmp1-Cre targeted (tdTomato
+
) or non-targeted (tdTomato

-
) CAR 

cells was performed.  Shown are probe signals for the indicated genes (n = 3 mice).  All data 

represent the mean ± S.D. *P < 0.05; **P < 0.01 (unpaired t-test). Original magnification, 200X 

except for panel A, which is 100X.   
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Figure 2.4. Tagln-Cre targets osteoblasts, a majority of CAR cells, and both venous 

sinusoidal and arteriolar pericytes.  (A) Composite image of H & E stained sections from the 

femur of a Tagln-Cre ROSA26
Ai9/+

 mouse. (B) Representative photomicrographs of the 

metaphyseal region (region “a” in panel A) of a femur section that was stained for osteocalcin 

(green) and DAPI (blue).  (C) Representative photomicrographs taken from the diaphyseal 

region (similar to region “b” in panel A)  of a femur section from a Tagln-Cre ROSA26
Ai9/+

 

Cxcl12
gfp/+

 mouse stained for VE-cadherin (white) to mark all endothelial cells; cells that express 

CXCL12 also express GFP (green). (D) Enlarged images of the boxed region in panel C. (E) 

Representative photomicrographs taken from the diaphyseal region of a femur section from a 

Tagln-Cre ROSA26
Ai9/+

 Cxcl12
gfp/+

 mouse stained for Sca1 (white) to mark arteriolar endothelial 

cells. (F) Representative photomicrographs taken from the diaphyseal region of a femur section 

from Tagln-Cre ROSA26
Ai9/+

 mouse stained for NG2 (green) to mark arteriolar pericytes. (G) 

Representative dot plot of lineage (CD45, CD31 and Ter119) negative stromal cells from a 

Tagln-Cre ROSA26
Ai9/+

 Cxcl12
gfp/+

 mouse showing GFP and tdTomato expression.  Original 

magnification, 200X except for panel A, which is 100X.   
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2.8. Supplementary Figures 

 

 

Supplementary Figure 2.1.  Osteoblasts remain attached to bone following centrifugation of 

femurs. Representative photomicrographs of a femur section from an Ocn-Cre ROSA26
Ai9/+

 

mouse obtained after centrifugation to expel bone marrow contents.  Ocn-Cre targeted cells 

express tdTomato (red). TdTomato
+
 cells lining bone are identified as osteoblasts. Nuclei are 

highlighted with DAPI (blue). Original magnification, 200X. 
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Supplementary Figure 2.2. Ocn-Cre efficiently targets osteoblasts. Composite image of 

representative photomicrographs from an Ocn-Cre ROSA26
Ai9/+

 mouse. Cells that have 

undergone Cre-mediated recombination express tdTomato (red); DAPI (blue) highlights nuclei. 

Tdtomato
+
 cells lining bone are identified as osteoblasts.  Original magnification, 100X for all 

images.  
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Supplementary Figure 2.3. Immunostaining of Ocn-Cre Cxcl12
gfp/+

 bone sections. 

Representative photomicrographs taken from the diaphysis of a femur section from an Ocn-Cre 

Cxcl12
gfp/+

 mouse.  GFP (left panel) and tdTomato (right panel) fluorescent signals are shown.  

Note, as expected, no tdTomato
+
 CAR cells are seen in these mice.  Original magnification, 

200X for all images. 
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Supplementary Figure 2.4. Dmp1-Cre efficiently targets osteoblasts. Composite image of 

representative photomicrographs from a Dmp1-Cre ROSA26
Ai9/+

 mouse. Cells that had 

undergone Cre-mediated recombination express tdTomato (red); DAPI (blue) highlights nuclei. 

Tdtomato
+
 cells lining bone are identified as osteoblasts.  Original magnification, 100X for all 

images.  
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Supplementary Figure 2.5. Distribution of Dmp1-Cre targeted CAR cells. (A) Composite 

image of representative photomicrographs of a femur section from a Dmp1-Cre ROSA26
Ai9/+

 

Cxcl12 
gfp/+

 mouse (upper left panel). Dmp1-Cre targeted cells express tdTomato (red). Cells that 

express CXCL12 also express GFP (green). Counterstaining with DAPI highlights nuclei (blue).  

Higher magnifications of the highlighted regions are shown in the upper right and lower left 

panels.  Original magnification, 100X for all images. (B) Percentage of Dmp1-Cre targeted and 

non-targeted CAR cells within a specified distance from the closest osteoblast (OB). Data 

represent the mean ± S.D.  n = 3 mice. 
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Supplementary Figure 2.6. RNA expression profiling of Dmp1-Cre targeted CAR cells. 

Dmp1-Cre targeted (tdTomato
+
) and non-targeted CAR cells (tdTomato

-
) were sorted from 

Dmp1-Cre ROSA26
Ai9/+

 Cxcl12
gfp/+

 mice and RNA expression profiling was performed (n=3 

mice). (A) Left panel is the gene set enrichment analysis (GSEA) plot showing enrichment for a 

previously identified group of osteoblast-lineage genes (p<0.001, FDR = 0.009). The right panel 

is a heat map for each gene in this group; red represents higher and blue represents lower 

expression. Samples “Dmp1 1, 2 and 3” represent Dmp1-Cre targeted CAR cell samples, while 

“CAR 1, 2 and 3” represent non-targeted CAR cell samples. (B) Expression of key genes 

associated with HSC maintenance.  (C) Expression of key genes that support B lymphopoiesis.  

All data are presented as mean ± S.D. *, p-value < 0.05 (unpaired t-test).  
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Supplementary Figure 2.7. Tagln-Cre efficiently targets osteoblasts. Composite image of 

representative photomicrographs from a Tagln-Cre ROSA26
Ai9/+

 mouse. Cells that have 

undergone Cre-mediated recombination express tdTomato (red); DAPI (blue) highlights nuclei. 

Tdtomato
+
 cells lining bone are identified as osteoblasts.  Original magnification, 100X for all 

images. 
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2.9. Supplementary Table 

Primers for the detection of generic Cre transgene in Ocn-Cre and Dmp1-Cre mice. 

 Primer Name Primer Sequence (5’ -> 3’) 

Cre FOR GCATTACCGGTCGATGCAACGAGTGATGAG 

Cre REV GAGTGAACGAACCTGGTCGAAATCAGTGCG 

 

Primers for the detection of Cxcl12
 gfp 

transgene. 

Primer Name Primer Sequence (5’ -> 3’) 

CXCL12-GFP FOR GGACTGGGAAGATCAAAGGTC 

CXCL12-GFP mutant REV GAACTTCAGGGTCAGCTTGC 

CXCL12-GFP wt REV GGTGGACCGAGAGTGAAAGT 

 

Primers for the detection of ROSA26
Ai9 

transgene. 

Primer Name Primer Sequence (5’ -> 3’) 

Ai9 wt FOR AAGGGAGCTGCAGTGGAGTA 

Ai9 wt REV CCGAAAATCTGTGGGAAGTC 

Ai9 mutant REV GGCATTAAAGCAGCGTATCC 

Ai9 mutant FOR CTGTTCCTGTACGGCATGG 

 

Primers for the detection of the Tagln-Cre transgene. 

Primer Name Primer Sequence (5’ -> 3’) 

Tagln-Cre FOR GGCCCAGGGGTTGTCAAAATAGTC 

Tagln-Cre wt REV CTCCTCCAGCTCCTCGTCATACTTC 

Tagln-Cre mutant REV CGCCGCATAACCAGTGAAACAG 

 

Supplementary Table 2.1. Primers for genotyping transgenic mice in this study. “FOR” 

means forward primer and “REV” means reverse primer. “mutant” represents the primers used 

for the detection of a transgene and “wt”  represents the primers used for the detection of the 

wild type allele at the corresponding locus for that transgene.  

 

 

 



 

 

53 

 

CHAPTER 3: CXCL12 FROM OCN-CRE TARGETED BONE MARROW 

STROMAL CELLS REGULATES LATE-STAGE B CELL DEVELOPMENT 

 

3.1. Introduction 

        CXCL12 is a common chemokine found in the bone marrow that is important for the 

regulation of B lymphopoiesis. CXCL12 interacts with its main receptor, CXCR4, to activate 

multiple signaling pathways responsible for the control of chemotaxis, cell proliferation and cell 

survival
20,169,170

.  In the bone marrow, mesenchymal stromal cells, especially CAR cells are the 

main source of CXCL12
3,10

. CAR cells are a heterogeneous population and previous studies have 

tested multiple transgenic Cre mouse models for targeting different subsets of CAR cells
3,19

. 

Among these Cre models, Prx1-Cre and Osx-Cre target nearly all CAR cells, while Prx1-Cre 

targets additional mesenchymal stem cells
3
. In contrast, Ocn-Cre and Dmp1-Cre targets around 

70% and 30% of CAR cells, respectively
19

. A prior study has suggested the specific role of 

Dmp1-Cre targeted CAR cells as being enriched for potential osteoprogenitors, but the specific 

functions of Ocn-Cre targeted CAR cells have not yet been discussed
19

.  

        In humans and mice, B lymphopoiesis mainly occurs in the bone marrow, with the 

additional requirement of peripheral lymphoid organs
23

. B cell development undergoes a 

stepwise progression of stages which can be identified based on surface marker expression
24

. 

Hardy Fractions have been extensively used to identify different stages of B cells, and Fraction F 

describes the last stage of B cell development before maturation, the mature naive B cells that 

express IgD
26,28-30

. In response to stimulation, such as antigen exposure, mature B cells will 

further differentiate into anti-body secreting plasma cells (PCs) or memory cells
32

. Memory cells 

may include memory B cells and memory PCs, also known as long-lived PCs, both have been 
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suggested to potentially reside in the bone marrow
32-36

. So far, only limited research has been 

done to study the functions and regulations of mature naive B cells, memory B cells and memory 

PCs in the bone marrow. 

        In the present study, we used different transgenic Cre models to test the regulation of B cell 

development by CXCL12 from different subsets of stromal cells. We show that CXCL12 

expressed by Ocn-Cre targeted stromal cells may be specifically important for the regulation of 

mature naive B cells and memory B cells in bone marrow. Collectively, data from this study may 

provide insight into the complex relationships between different stromal cell populations and 

may improve our understanding of the regulation of B lymphopoiesis and immune memory in 

the bone marrow by CXCL12.  

 

3.2. Materials and Methods 

3.2.1. Mouse strains 

        Cxcl12
flox

 mice were generated as previously described
3
. Prx1-Cre (B6.Cg-Tg(Prrx1-

cre)1Cjt/J) mice, Osx-Cre (B6.Cg-Tg(Sp7-tTA,tetO-EGFP/cre)1Amc/J) mice, CAG-GFP 

(Tg(CAG-GFP*)1Hadj/J) mice, IgHa/J (B6.Cg-Gpi1
a
 Thy1

a
 Igh

a
/J) mice and Ai9 (B6.Cg-

Gt(ROSA)26Sor
tm9(CAG-tdTomato)Hze

/J) 
254 

mice were obtained from The Jackson Laboratory 
255

.  

Ocn–Cre mice were a gift from Thomas Clemens (Johns Hopkins University, Maryland) 
256

. 

Cxcl12
gfp

 mice were a gift from Takashi Nagasawa (Kyoto University, Japan) 
257

,
 
and Dmp1-Cre 

mice (containing the 9.6 kb murine Dmp1 promoter) were a gift from Roberto Civitelli 

(Washington University, MO) 
258

.  Cxcl12
+/-

 mice were obtained through the RIKEN 

BioResource Center (Ibaraki, Japan). All mice used in this study were 8-10 weeks old. Both male 

and female mice were used equally in these studies.  Mice were maintained under SPF 
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conditions, and all experimental procedures were performed according to methods approved by 

the Animal Studies Committee at Washington University.  

 

3.2.2. Immunostaining of bone sections 

        Femurs and tibias were harvested from mice and fixed overnight in 10% formalin (Sigma-

Aldrich) at 4
o
C. Fixed bones were then washed twice in PBS, followed by decalcification in 14% 

ethylenediaminetetraacetic acid (EDTA) pH 7.4 solution for 7 days. Decalcified bones were then 

incubated  in 30% sucrose in PBS overnight at 4
o
C. These bones were then snap frozen in 

optimum cutting temperature (OCT) medium (Tissue-Tek) in Cryomold (Tissue-Tek). Frozen  

blocks were sectioned using the Cryostat system (Leica Biosystems). Sections were then 

processed using standard immunofluorescent staining protocol. Antibodies used for 

immunofluorescent staining included: goat anti-mouse VE-Cadherin (R&D Systems AF1002), 

rat anti-mouse IgD (BD Biosciences clone 11-26c.2a), rat anti-mouse B220 (BD-Biosciences, 

RA3-6B2), and rat anti-mouse IgM (eBioscience II/4). In the end, slides were mounted with 

Prolong Gold Antifade Reagent (Invitrogen) and were sealed with nail polish. Slides were 

imaged using a LSM 700 confocal microscope and ZEN imaging software (Zeiss). 

 

3.2.3. Flow Cytometry 

        Bone marrow cells were harvested from mouse femurs by first uncapping the ends of the 

bone and then centrifuging at 3300 x g for 5 minutes to expel the bone marrow contents. Spleen 

cells were harvested from mouse spleen by crushing spleen and filter the cells through a 22um 

strainer. Cells were stained by standard protocols with the following antibodies (eBiosciences 

unless otherwise noted): CD3e (145-2C11), CD4 (L3T4), CD8a (53-6.7), CD11b (M1/70), 
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CD45R (RA3-6B2, B220), CD11c (N418), Flk2 (A2F10), CD27 (LG.7F9), Gr-1 (RB6-8C5, 

BioLegend), IL-7Ra (gift of Deepta Bhattacharya, Washington University), Ly6D (49-H4, BD 

Biosciences), NK1.1 (PK136), IgM (II/4), IgD (11-26c), CD19 (eBio1D3), CD43 (S7, BD 

Biosciences), TER-119, CD45 (30-F11), CD31 (390), CD80 (16-10A1, BioLegend), CCR6 (29-

2L17, BioLegend). NP (4-Hydroxy-3-nitrophenylacetyl hapten) (Biosearch Technologies) was 

conjugated with Allophycocyanin (APC) to form NP-APC (gift of Deepta Bhattacharya, 

Washington University). Cells were analyzed on a Gallios flow cytometer (Beckman Coulter), 

and data analysis was done using FloJo version 10.0.7 software (TreeStar).  

 

3.2.4. Quantitative real-time PCR 

        To collect total bone marrow RNA, tibias from mice were flushed with 1 mL of Trizol 

(Invitrogen) and RNA was extracted following the manufacturer’s instructions. cDNA was 

prepared using iScript cDNA Synthesis Kit (Bio-Rad). Quantitative real-time PCR (qRT-PCR) 

was then performed using the TaqMan Universal RT Master Mix (Applied Biosystems), with no 

template and no RT controls. Data was collected on a OneStep Real-Time PCR System (Applied 

Biosystems). Primers were:  

CXCL12 forward, 5’GAGCCAACGTCAAGCATCTG-3’; 

CXCL12 reverse, 5’-CGGGTCAATGCACACTTGTC-3’;  

CXCL12 dT-FAM/TAMRA probe, 5’-TCCAAACTGTGCCCTTCAGATTGTTGC-3’;  

β-actin forward, 5’-ACCAACTGGGACGATATGGAGAAGA-3’;  

β-actin dT-VIC/TAMRA probe, 5′-AGCCATGTACGTAGCCATCCAGGCTG-3′. 
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3.2.5. Mature B cell homing assay  

        Spleens were harvested from 8-12 week old CAG-GFP mice, and were then crushed and 

filtered through a 22um cell strainer. 5 million splenocytes were injected into Cxcl12
flox/-

 or Ocn-

Cre: Cxcl12
flox/-

 mice, through retro-orbital injection. Recipient mice were then harvested 24 

hours after transplantation to collect bone marrow and spleen using the same method as 

described earlier. GFP
+
 mature naive B cell number was quantified via flow cytometry. 

 

3.2.6. Primary and secondary immunization 

        Ocn-Cre:Cxcl12
flox/flox

 or Cxcl12
flox/flox

 mice were immunized with a mixture of 100µg NP-

CGG (Chicken Gamma Globulin) (Biosearch Technologies) and 100µl of aluminium hydroxide 

gel adjuvant (Alhydrogel) (InvivoGen), through intraperitoneal injection. The enzyme-linked 

immunosorbent assay (ELISA) was then performed to test primary immune response. Immune 

memory was measured 2 weeks after primary immunization. For secondary immunization, 20 

million donor cells from NP-CGG immunized Ocn-Cre:Cxcl12
flox/flox

 or Cxcl12
flox/flox

 mice were 

transplanted into IgHa/J recipient mice without irradiation, through retro-orbital injection. One 

day after transplantation, 50µg of NP-CGG was injected into these recipient mice, through retro-

orbital injection. Secondary immune response was then measured with ELISA. 

 

3.2.7. Enzyme-linked immunosorbent assay (ELISA) 

        ELISA plates were coated with 5µg/ml NP (18)-BSA protein, or 5µg/ml BSA as control, 

overnight at 4 ºC. Then, block the ELISA plates with ELISA blocking buffer (PBS + 2%BSA + 

0.05% Tween20) at 37 ºC for 1 hour. Wash plates, add diluted serum samples, serially diluted 
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standard controls or negative controls into ELISA plates, incubate at room temperature for 2 

hours. For primary immune response, add anti-mouse IgM antibody (Life Technologies) and 

incubate at room temperature for 1 hour. Wash plates, then add HRP-goat anti-mouse IgM (Life 

Technologies) and incubate at room temperature for 1 hour. Then, develop the plate in TMB 

solution (eBioscience) and stop the reaction with stop buffer (eBioscience). Read the plates at 

450nm wavelength, using an Epoch Microplate Spectrophotometer (BioTek).  

        For measuring secondary immune response, after incubating the plate with serially diluted 

serum samples, add biotinylated anti-IgG1b (BD Pharmingen) or biotinylated anti-IgG1a (BD 

Pharmingen) antibodies into the plates, incubate at room temperature for 1 hour. Wash plates, 

add streptavidin-HRP (BD Pharmingen), incubate at room temperature for 1 hour. Then, use the 

same protocol as for measuring primary immune response to develop the plates. 

 

3.2.8. Statistical analyses         

        Statistical significance was determined using Prism software (GraphPad). Unless otherwise 

indicated, unpaired t-test or 1/2-way ANOVA analyses were used to evaluate the significance of 

differences between two or multiple groups. All data are presented as mean ± SEM. 
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3.3. Results 

3.3.1. Ocn-Cre targeted stromal cells regulate mature naive B cells in bone marrow 

        To assess the role of CXCL12 expressed by different subsets of bone marrow stromal cells 

in B cell lymphopoiesis, we previously crossed different transgenic Cre models with Cxcl12
flox/-

 

mice (experiments done by Ryan Day). Prx1-Cre was used to ablate CXCL12 from nearly all 

bone marrow stromal cells as it targets mesenchymal stem cells and their downstream progeny, 

including CAR cells, osteoblasts and osteocytes
3
. As expected, ablation of CXCL12 in Prx1-Cre 

targeted stromal cells significantly reduced the mRNA level of CXCL12 to a minimal level in 

the bone marrow (Fig. 3.1A). Meanwhile, we observed significant decrease in white blood cells 

(WBCs) and all stages of B cells during B lymphopoiesis in the bone marrow (Fig. 3.1B-J). Osx-

Cre was used to target CAR cells and their downstream progeny, including osteoblasts and 

osteocytes
3
. Ablation of CXCL12 in Osx-Cre targeted stromal cells resulted in a significant 

reduction of CXCL12 mRNA level, but to a lesser extent compared to Prx1-Cre:Cxcl12
flox/-

 

model (Fig. 3.1A). Similar to Prx1-Cre:Cxcl12
flox/-

 mice, we observed significant decrease in 

WBCs and total B cells, as well as in other stages during B cell development, except in common 

lymphoid progenitors (CLPs) and B lymphoid restricted progenitors (BLPs) (Fig. 3.1B-J). This is 

consistent with our previous finding that CXCL12 expressed by Prx1-Cre targeted mesenchymal 

stem cells is important for the development and maintenance of CLPs and BLPs
3
. Ocn-Cre 

targets ~70% of CAR cells, all osteoblasts and arteriolar pericytes
19

. Interestingly, ablation of 

CXCL12 in Ocn-Cre targeted cells resulted in a mild, but non-significant reduction of CXCL12 

mRNA level (Fig. 3.1A). Moreover, Ocn-Cre:Cxcl12
flox/-

 mice showed no significant decrease of 

WBCs, total B cells and most stages of B cell development, except mature naive B cell or 

Fraction F cells (Fig. 3.1B-J). To address the question whether the mild decrease of CXCL12 in 
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Ocn-Cre:Cxcl12
flox/-

 mice may affect mature naive B cells, we further examined Prx1-

Cre:Cxcl12
flox/+

 mice. Our data shows that the two models have nearly the same expression 

levels of CXCL12, but Ocn-Cre:Cxcl12
flox/-

 mice have a significantly lower number of mature 

naive B cells (Fig. 3.1K&L). Collectively, these data suggests that CXCL12 from Ocn-Cre 

targeted cells may play a specific role in the regulation of mature naive B cells in the bone 

marrow. 

        To more specifically assess the role of CXCL12 expressed by Ocn-Cre targeted cells, we 

further generated Ocn-Cre:Cxcl12
flox/flox

 mice. In these mice, we observed a significant, but mild 

reduction of CXCL12 mRNA level, compared to Cxcl12
flox/flox

 control mice (Fig. 3.2A). 

Meanwhile, we observed significant decrease of mature naive B cells, while other stages of B 

cell development remain unchanged (Fig. 3.2B). Dmp1-Cre targets ~30% of CAR cells, all 

osteoblasts and few arteriolar pericytes
19

. In Dmp1-Cre:Cxcl12
flox/flox

 mice, we observed no 

significant decrease in CXCL12 mRNA level and all stages of B cell development (Fig. 

3.2C&D). Comparing data from Dmp1-Cre:Cxcl12
flox/flox

 and Ocn-Cre:Cxcl12
flox/flox

 mice, it 

suggests that the expression of CXCL12 by osteoblasts plays little role in the regulation of 

mature naive B cells, and Ocn-Cre targeted stromal cells specifically regulate mature naive B 

cells through their expression of CXCL12.  

 

3.3.2. CXCL12 expression in Ocn-Cre targeted stromal cells regulates the homing and/or 

retention of mature naive B cells in the bone marrow 

        Mature naive B cells were mostly developed in the spleen and some of them home back to 

the bone marrow
26,28-30

. In Ocn-Cre:Cxcl12
flox/-

 mice, the number of mature naive B cells in the 
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spleen was comparable to the Cxcl12
flox/-

 control mice (Fig. 3.3A). This observation suggests that 

the loss of mature naive B cells in the bone marrow of Ocn-Cre:Cxcl12
flox/-

 mice is not likely due 

to a defect in peripheral maturation. To examine the homing and/or retention of mature naive B 

cells in the bone marrow, we transplanted splenocytes from CAG-GFP donor mice that 

ubiquitously express GFP into Ocn-Cre:Cxcl12
flox/-

 mice or Cxcl12
flox/-

 control mice (Fig. 3.3B). 

After 24 hours, the recipient mice were harvested and the number of GFP
+
 mature naive B cells 

was quantified in both bone marrow and spleen, using flow cytometry (Fig. 3.3C&D). While 

there was no significant difference in spleen (Fig. 3.3C), the number of GFP
+
 mature naive B 

cells was significantly reduced in the bone marrow of Ocn-Cre:Cxcl12
flox/-

 mice (Fig. 3.3D). 

Collectively, these data demonstrate that CXCL12 expression in Ocn-Cre targeted stromal cells 

plays an important role in the regulation of homing and/or retention of mature naive B cells in 

the bone marrow.  

 

3.3.3. Ablation of CXCL12 in Ocn-Cre targeted stromal cells did not affect bone marrow 

plasma cells and primary immune response 

        Other than Hardy fractions of B cells during different developmental stages, plasma cells 

(PCs) and memory B cells, two terminal stage B cells have also been found in the bone 

marrow
32,35,36

. To assess the effects of stromal CXCL12 ablation on plasma cells in the bone 

marrow, femurs from Ocn-Cre:Cxcl12
floxflox-

 mice and Cxcl12
flox/flox

 control mice were harvested 

and analyzed. Using flow cytometry, we discovered no significant difference after stromal 

CXCL12 ablation, for the numbers of IgM
+
 or IgG

+
 PCs, defined as B220

+
 CD138

+
 cells (Fig. 

3.4A&B). To functionally assess the effects of stromal CXCL12 ablation on PCs, we examined 
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the humoral immunity after antigen exposure in the two groups of mice. Ocn-Cre:Cxcl12
floxflox-

 

mice and Cxcl12
flox/flox

 control mice were immunized with NP-CGG (1:19 ratio), and we 

quantified the humoral immune response by measuring the amount of NP-specific IgM 

antibodies in blood serum using ELISA. At different time points, we found no significant change 

on the NP-specific IgM levels in blood serum after stromal CXCL12 ablation (Fig. 3.4C). 

Collectively, these data suggests that the ablation of CXCL12 in Ocn-Cre targeted stromal cells 

does not affect the number of PCs in the bone marrow and the humoral immunity. 

 

3.3.4. Ablation of CXCL12 in Ocn-Cre targeted stromal cells reduces the number of 

memory B cells in the bone marrow 

        To assess the effects of CXCL12 ablation in Ocn-Cre targeted stromal cells on memory B 

cells, we immunized Ocn-Cre:Cxcl12
floxflox-

 mice and Cxcl12
flox/flox

 control mice with NP-CGG 

(1:19 ratio). Two months after immunization, we quantified the number of NP-specific memory 

B cells in the bone marrow using flow cytometry. NP-specific memory B cells were defined as 

NP
+
 Lin

-
 B220

+
 IgM

-
 IgD

-
 CCR6

+
 CD80

+
 cells, and we observed a significant reduction of the 

memory B cells when CXCL12 was ablated in the bone marrow (Fig. 3.5A). In addition, we 

quantified the number of NP-specific memory B cells in the spleen from the same mice and 

found no significant differences (Fig. 3.5B). Collectively, these data demonstrates the 

importance of CXCL12 expressed by Ocn-Cre targeted stromal cells in the regulation of memory 

B cells in the bone marrow.  

        To our surprise, a population of NP
+
 Lin

-
 B220

+
 IgM

+
 IgD

+
 CCR6

+
 CD80

+
 cells was found 

in the bone marrow whose number was decreased in Ocn-Cre:Cxcl12
floxflox-

 mice, compared to 
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Cxcl12
floxflox-

control mice (Fig. 3.5C). Same population was also found in the spleen, but had no 

decrease when stromal CXCL12 was ablated (Fig. 3.5D). The potential existence of IgM
+
 IgD

+
 

memory B cells was previously discussed by other studies
179,184,185

. To test whether these cells 

may carry similar functions as the conventional memory B cells that are IgM
-
 IgD

-
, we assessed 

the secondary immune response generated from these cells. Wildtype mice were immunized with 

NP-CGG to generate memory B cells and we collected unenriched cells, IgM
+
 and IgD

+
 enriched 

cells (including IgM
+
 IgD

+
 cells), and IgM

-
 IgD

-
 enriched cells from these mice at 2 months post 

immunization. All three samples of cells were then transferred into IgHa/J recipient mice through 

retro-orbital injection, followed by secondary immunization of NP-CGG one day after transplant. 

IgHa/J mice only express IgG1a but not IgG1b which is the only isotype expressed by the donor 

mice. One week after secondary immunization, ELISA was used to quantify the amount of NP-

specific IgG1b in these recipient mice to estimate the secondary immune response generated 

from the donor memory cells. Our preliminary data showed that IgM
+
 and IgD

+
 enriched cells 

from both bone marrow and spleen could not generate significant secondary immune response, 

suggesting IgM
+
 IgD

+
 cells play little role in the B cell immune memory (Fig. 3.5E).   

  

3.4. Discussion 

        We have previously shown the importance of CXCL12 in the regulation of B lymphopoiesis 

in the bone marrow
3
. We have demonstrated the requirement of CXCL12 expression from 

mesenchymal stem cells for the maintenance of CLPs and BLPs, while CXCL12 expression from 

CAR cells are not required for early B lymphopoiesis until pre-pro-B cell stage
3
. This study 

further characterizes the role of CXCL12 expression from different subsets of stromal cells on B 
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lymphopoiesis. Our data shows that CXCL12 expression from Ocn-Cre targeted cells are 

specifically important for the maintenance of mature naive B cells. We also ablated CXCL12 in 

Dmp1-Cre targeted cells and found no effects on mature naive B cells or other B cell 

compartments. A prior study has shown that both Ocn-Cre and Dmp1-Cre targets nearly all 

osteoblasts, and about 70% or 30% of CAR cells, respectively
19

. Moreover, Ocn-Cre, but not 

Dmp1-Cre, targets arteriolar pericytes
19

. Thus, CXCL12 expression by Ocn-Cre targeted stromal 

cells, but not osteoblasts, regulates mature naive B cells. To further understand this regulation, 

we examined the homing and/or retention of mature naive B cells in Ocn-Cre:Cxcl12
flox/-

 mice, 

and observed a significant defect, compared to the control mice.  

        In addition, we also examined the effects of CXCL12 ablation in Ocn-Cre targeted stromal 

cells on two end-stage B cells, plasma cells and memory B cells in the bone marrow. We 

observed no significant decrease of plasma cells in Ocn-Cre:Cxcl12
flox/flox

 mice, while IgM
-
 IgD

-
 
 

NP-specific memory B cells were significantly reduced. To confirm this finding, further 

experiments will be performed to test whether there is a functional defect of NP-specific immune 

memory in the bone marrow. Interestingly, we also discovered an IgM
+
 IgD

+  
NP-specific B cell 

population in the bone marrow, expressing similar markers as the conventional memory B cells. 

To test the function of these cells, we performed secondary immunization and assessed the 

secondary immune response generated by these cells. Our data suggests that these cells play little 

role in the generation of secondary immune response, and their functions remain unclear.  

        In conclusion, our data show that CXCL12 expression by Ocn-Cre targeted stromal cells 

may specifically regulate mature naive B cells and memory B cells. This study provides further 

evidence to support the functional heterogeneity of bone marrow mesenchymal stromal cells, 

which may improve our knowledge on the regulation of the bone marrow niche. Meanwhile, 
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better understanding of the regulation of B lymphopoiesis and B cell derived immune memory 

may provide targets with clinical relevance, contributing to the development of potential 

therapies against different diseases involved in the bone marrow.   
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3.7. Figures 
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Figure 3.1 CXCL12 expression by stromal cells is important for B lymphopoiesis. A. 

Cxcl12
flox/-

(flox/-), Ocn-Cre:Cxcl12
flox/-

 (Ocn flox/-), Osx-Cre:Cxcl12
flox/-

 (Osx flox/-) and Prx1-

Cre:Cxcl12
flox/-

 (Prx1 flox/-) mice were flushed with Trizol to extract total bone marrow RNA, 

which was then used for RT-qPCR. mRNA level of CXCL12 was normalized to β-actin. B-J. 

Femurs from four groups of transgenic mice were harvested and analyzed for different cells 

populations using flow cytometry. Cell populations include: white blood cell (WBC) (B), 

common lymphoid progenitor (CLP) (C), B lineage restricted progenitor (BLP) (D), total B cell 

(E), pre-pro B cell (F), pro-B cell (G), pre-B cell (H), immature B cell (I) and mature naive B 

cell (J). Sample size, n = 5-37 mice per group in all experiments. K&L. Prx1-Cre:Cxcl12
flox/+

 

(Prx1 flox/+) mice were also examined and compared with Ocn flox/- group for CXCL12 

expression (K) (n = 7 or 12 mice, respectively) and the number of mature naive B cells (L) (n = 

10 or 21 mice, respectively). Data represent the mean ± SEM, *P < 0.05; **P < 0.01; ***P < 

0.001; ****P<0,0001; “ns” means non-significnat, compared to Cxcl12
flox/-

 control mice unless 

otherwise indicated. 
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Figure 3.2. CXCL12 expression in Ocn-Cre targeted stromal cells is important for the 

regulation of mature naive B cells. A&C. Tibias from A. Ocn-Cre:Cxcl12
flox/flox

 (Ocn-

flox/flox), C. Dmp1-Cre:Cxcl12
flox/flox

 (Dmp1-flox/flox), and Cxcl12
flox/flox

 (flox/flox) mice were 

flushed with Trizol to extract total bone marrow RNA, which was then used for RT-qPCR. 

mRNA level of CXCL12 was normalized to β-actin. B&D. Femurs were harvested from Ocn-

Cre:Cxcl12
flox/flox

 mice (B), Dmp1-Cre:Cxcl12
flox/flox

 mice (D), and Cxcl12
flox/flox

 control mice 

(B&D). Bone marrow from the femurs were then analyzed using flow cytometry to quantify the 

number of B cells during different developmental stages. Sample size, n = 3-6 mice per group in 

all experiments.  Data represent the mean ± SEM, **P < 0.01; ***P < 0.001, compared to 

Cxcl12
flox/flox

 control mice unless otherwise indicated. 
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Figure 3.3. CXCL12 expression in Ocn-Cre targeted stromal cells regulates the homing 

and/or retention of mature naive B cells in the bone marrow. A. The number of mature naive 

B cells in the spleen from Cxcl12
flox/-

(flox/-) and Ocn-Cre:Cxcl12
flox/-

 (Ocn flox/-) mice, were 

quantified using flow cytometry. B. 5 x 10
6
 splenocytes from CAG-GFP mice were transplanted 

into Cxcl12
flox/-

 and Ocn-Cre:Cxcl12
flox/-

 recipient mice through retro-orbital injection, and the 

bone marrow from femurs were harvested and analyzed at 24 hours after injection. C&D. The 

numbers of GFP
+
 mature naive B cells in the bone marrow (C) and spleen (D) were quantified 

using flow cytometry. Sample size, n = 11-16 mice per group in all experiments. Data represent 

the mean ± SEM, *P < 0.05, compared to Cxcl12
flox/-

 control mice unless otherwise indicated. 
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Figure 3.4. Ablation of CXCL12 in Ocn-Cre targeted stromal cells had no effects on plasma 

cells (PCs) and primary immune response. A&B. The number of IgM
+ 

PCs (A) and IgG
+ 

PCs 

(B) were quantified by flow cytometry in Ocn-Cre:Cxcl12
flox/flox

 and Cxcl12
flox/flox

 mice (n = 6 

mice per cohert). C. Ocn-Cre:Cxcl12
flox/flox

 and Cxcl12
flox/flox

 mice were immunized with NP-

CGG and the amount of NP-specific IgM antibodies were quantified at different time points (n = 

5 mice per cohert).  Data represent the mean ± SEM.  
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Figure 3.5. Ablation of CXCL12 in Ocn-Cre targeted stromal cells reduces the 

number of memory B cells in the bone marrow. Ocn-Cre:Cxcl12
flox/flox

 and Cxcl12
flox/flox

 

mice were immunized with NP-CGG. A&B. Two months later, Np-specific IgM
-
 IgD

-
 

conventional memory B cells were quantified in the bone marrow (A) and the spleen (B) of these 

mice by flow cytometry. C&D.  Np-specific IgM
+
 IgD

+
 memory-like B cells were quantified in 

the bone marrow (C) and the spleen (D) of the same mice (n = 6 or 8 mice per cohert). Wildtype 

mice were immunized with NP-CGG. Two months later, unenriched cells, IgM
+
 and IgD

+
 

enriched cells, and IgM
-
 IgD

-
 enriched cells were collected from both the bone marrow and the 

spleen of these mice. All of these cells were separately transferred into IgHa/J recipient mice 

through retro-orbital injection, followed by secondary NP-CGG immunization one day after 

transplant. E. The amount of NP-specific IgG1b in blood serum was quantified one week later 

using ELISA, which was represented by light absorbance. Data represent the mean ± SEM, **P 

< 0.01; ***P < 0.001, compared to Cxcl12
flox/flox

 control mice unless otherwise indicated. 
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CHAPTER 4: CLASSICAL DENDRITIC CELLS IN BONE MARROW 

REGULATE HEMATOPOIETIC STEM AND PROGENITOR CELL 

TRAFFICKING THROUGH CXCR2 SIGNALING IN SINUSOIDAL 

ENDOTHELIAL CELLS 

 

4.1. Introduction 

        A resident population of classical dendritic cells (cDCs) has been identified in murine bone 

marrow, but its contribution to the regulation of hematopoiesis and establishment of the stem cell 

niche is largely unknown
49

.  Here, we show that murine bone marrow cDCs are perivascular and 

have a cDC2-like immunophenotype.  A similar population of cDCs is present in human bone 

marrow.  RNA expression analysis of sorted BM cDCs showed that expression of many 

chemokines and chemokines receptors is distinct from that observed in splenic cDC2s, 

suggesting that BM cDCs may represent a unique DC population.   Ablation of cDCs results in 

hematopoietic stem/progenitor cell (HSPC) mobilization that is greater than that seen with 

ablation of bone marrow macrophages.  Ablation of cDCs is associated with an expansion of 

bone marrow endothelial cells and increased vascular permeability.  CXCR2 expression in 

sinusoidal endothelial cells and the expression of two CXCR2 ligands, CXCL1 and CXCL2, in 

the bone marrow are markedly increased following BM cDC ablation.  Treatment of endothelial 

cells in vitro with CXCL1 induced increased permeability and transmigration of HSPCs.  

Finally, we show that HSPC mobilization after BM cDC ablation is attenuated in mice lacking 

CXCR2 expression.  Collectively, these data suggest that BM cDCs play an important role in 

regulating HSPC trafficking, at least in part, through its regulation of sinusoidal CXCR2 

signaling and vascular permeability.  
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4.2. Material and Methods 

4.2.1. Mouse strains  

         The CX3CR1
gfp/+

 mice were a gift from D. Littmann
267

 (New York University School of 

Medicine).  Zbtb46
dtr 

(B6(Cg)-Zbtb46
tm1(HBEGF)Mnz

/J), Zbtb46
gfp

 (129S-Zbtb46
tm1Kmm

/J), Col2.3-

GFP (B6.Cg-Tg(Col1a1*2.3-GFP)1Rowe/J) and CXCR2
-/-

 (C.129S2(B6)-Cxcr2
tm1Mwm

/J) 

mice were obtained from The Jackson Laboratory.  CD169
dtr

 mice were a gift from Y. 

Obata
268,269

 (Riken BioResource Center, Ibaraki, Japan). CD169
dtr

 mice were bred with Zbtb46
dtr

 

mice to generate CD169
 dtr

:Zbtb46
dtr

 mice. Sex- and age-matched mice were used in all 

experiments.  All mice were inbred on a C57BL/6 background except Zbtb46
gfp

 mice, which 

were on a mixed C57BL/6 and 129 SvEv background. The numbers of animals used per 

experiment are stated in the figure legends. Mice were maintained under SPF conditions, and all 

experimental procedures were performed according to methods approved by the Animal Studies 

Committee at Washington University.   

 

4.2.2. Generation of bone marrow chimeras 

        Six to eight weeks old wild-type Ly5.1/Ly5.2 recipient mice were irradiated with two 550 

cGy doses, 6 hours apart. Two million donor bone marrow cells were then injected retro-

orbitally.  Mice were placed on prophylactic antibiotics (trimethoprim-sulfamethoxazole) for 2 

weeks following the first dose of irradiation. Mice were analyzed eight weeks after 

transplantation. 
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4.2.3. Diphtheria toxin administration 

        Diphtheria toxin (D0564, Sigma) was diluted in PBS containing 0.1% low-endotoxin 

bovine serum albumin and administered intraperitoneally at a dose of 200 ng/day for up to 6 

days. 

 

4.2.4. CFU-C assays 

        Cells obtained from the bone marrow, peripheral blood, and spleen were analyzed using a 

Hemavet (Drew Scientific) automated cell counter. 40 μL of peripheral blood, 2.5 × 10
4
 bone 

marrow cells, or 1.0 × 10
5
 splenic cells were plated in 3mL Mouse Methylcellulose Complete 

Media (HSC007, R&D Systems).  Cultures were plated in duplicate in 60 mm petri dishes and 

incubated in a humidified chamber with 5% CO2 at 37°C. The number of colonies per dish was 

counted on day 7. 

 

4.2.5. Flow cytometry  

        Bone marrow, spleen and peripheral blood were processed for flow cytometry as previously 

described
270

. Cells were analyzed on a Gallios flow cytometer (Beckman Coulter) or sorted on a 

Sony SY3200 “Synergy” high-speed cell sorter (Sony). Data analysis was done using FloJo 

version 10.0.7 software (TreeStar). The following antibodies were used for staining murine cells: 

Gr-1 (RB6-8C5), CD19 (1D3), CD48 (BCM1), B220 (RA3-6B2), CD3e (17A2), Ter119 (TER-

119), Sca-1 (D7), CD117 (2B8), CD115 (AFS98), CD45 (30-F11), CD45.1 (A20) and CD45.2 
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(104) from eBiosciences; CD31 (390), F4/80 (BM8), I-A/I-E (M5/114.15.2), CD11c (N418), 

CD150 (TC15-12F12.2), CD169 (3D6.112), CD11b (M1/70) and XCR1 (ZET) from BioLegend. 

        For cell sorting, classical dendritic cells from bone marrow and spleen were both identified 

as CX3CR1-GFP
high

 B220
-
 Gr-1

-
 MHCII

high
 CD11c

high
 F4/80

+
 cells. Endothelial cells were 

identified as Lineage
-
 (CD45

-
 Ter119

-
 Gr-1

-
) CD31

+
 cells with Sca1

+
 to mark arteriolar and Sca1

-
 

to mark sinusoidal endothelial cell.  

        For staining human bone marrow cells, the following antibodies were used: CD3 (555332), 

CD15 (555401), CD19 (555412) and CD11c (B-ly6) from BD Biosciences; CD13 (WM-15), 

CD20 (2H7) and CD56 (MEM188) from eBiosciences; CD33 (P67.6), CD1c (L161), CD14 

(M5E2), CD141 (M80) and HLA-DR (L243) from BioLegend. 

 

4.2.6. Immunostaining of bone sections 

        Mouse hindlimbs were processed for immunostaining as previously described
19

. The 

following antibodies were used: chicken anti-GFP (ab13970, Abcam), rat anti-MHCII (107601, 

BioLegend), Rat anti-Sca1 (557403, BD Biosciences), goat anti-VECadherin (AF1002, R&D 

Systems), and anti-B220 (12-0452-83, EBioscience); AlexaFluor 488 donkey anti-rat IgG 

(Invitrogen), AlexaFluor 488 donkey anti-chicken IgG (Jackson Immunoresearch), and biotin-

conjugated donkey anti-goat IgG (Jackson Immunoresearch]).  In some cases, slides were then 

incubated with streptavidin-DyLight 649 (Jackson Immunoresearch) for 30 minutes at room 

temperature. Finally, slides were mounted with ProLong Gold antifade reagent with DAPI (Life 

Technologies).  Images were acquired with an LSM 700 microscope (Carl Zeiss), and images 

were processed using Volocity software (PerkinElmer). 
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4.2.7. Real-time quantitative RT-PCR 

        Mouse femurs were flushed with 1 mL of TRIzol reagent (Invitrogen), and RNA was 

isolated according to the manufacturer’s instructions. Reverse transcription was performed using 

iScript™ cDNA Synthesis Kit (Bio-Rad) according to the manufacturer’s instructions. 

Quantitative PCR was performed using iTaq™ Universal Probes Supermix (Bio-Rad) on a 

StepOne Plus Real-Time PCR System (Applied Biosystems). RNA content was normalized to 

mouse β-actin. Primer and probes for mouse β-actin (Mm01324804_m1), CXCL12 

(Mm00445553_m1), CXCL1 (Mm04207460_m1), and CXCL2 (Mm00436450_m1) were 

ordered from ThermoFisher. 

 

4.2.8. RNA expression profiling 

        RNA was purified from sorted classical dendritic cells (cDCs) and endothelial cells using 

the Qiagen RNeasy Micro Kit (74004, Qiagen).  For cDC RNA samples, libraries were generated 

using the NuGen Pico SL kit (NuGEN Technologies, San Carlos, CA) and then hybridized to 

Affymetrix Mouse Gene 1.0 ST arrays (Affymetrix, Santa Clara, CA). Gene set enrichment was 

performed using the GSEA software (Broad Institute). Differences in gene expression were 

determined using Significance Analysis of Microarrays (SAM; Stanford University, Stanford, 

CA).  Expression data has been submitted to Gene Expression Omnibus, record number. 

 

4.2.9. In vitro permeability test and cell migration assay 

       Human Umbilical Vein Endothelial Cells (HUVECs) (S200-05N, Sigma) were cultured in 

Endothelial Cell Growth Medium (211-500, Sigma) at 37ºC, 5% CO2. 2×10
5
 HUVECs were pre-
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cultured in the upper chamber of the Boyden Chamber system for 24 hours to form a HUVEC 

layer. During the same time, the HUVEC layer was pre-treated with 40ng/ml recombinant 

CXCL1 (453-KC-010/CF, Thermo Fisher) or PBS as control. 

To test permeability of the HUVEC layer for large molecules, 400µl Endothelial Cell Growth 

Medium containing 100µg/ml Evan’s blue was added to the upper chamber of the cell insert with 

0.4µm pores in the membrane (141078, Thermo Fisher). 1ml of Hank balanced salt solution 

(H6648-500ML, Sigma) was added to the bottom chamber. After 1 hour incubation at 37ºC, 5% 

CO2, Evan’s blue in the bottom chamber was measured by light absorbance at 620nm using 

Epoch 2 microplate spectrophotometer (Biotek), and the amount of Evan’s blue was calculated 

using a standard curve. Amount of Evan’s blue in the CXCL1 treated samples were normalized 

to the amount in the PBS treated control samples for comparison. 

To test permeability of the HUVEC layer for cell migration, 400µl medium containing ~5×10
4
 

human CD34
+
 cells were added to the upper chamber of the cell insert with 3µm pores in the 

membrane (141080, Thermo Fisher). Human CD34
+
 cells were enriched from primary human 

bone marrow donated by healthy donors, using CD34 MicroBead Kit (130-100-453, Miltenyi 

Biotec) and autoMACS Pro Separator (Miltenyi Biotec). 1ml of medium containing 100ng/ml 

recombinant CXCL12 (578702, BioLegend) was added to the bottom chamber. Meanwhile, 

CXCL1 or PBS was added to the appropriate samples to continue the pre-treatment. After 24 

hour incubation at 37ºC, 5% CO2, number of cells migrated to the bottom chamber was 

quantified and the percentage was calculated.   
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4.2.10. Statistical analyses         

        Statistical significance was determined using Prism software (GraphPad). Unless otherwise 

indicated, unpaired t-test or 1/2-way ANOVA analyses were used to evaluate the significance of 

differences between two or multiple groups. All data are presented as mean ± SEM. 

 

4.3. Results 

4.3.1. Classical dendritic cells (cDCs) are enriched in the perivascular region and may be 

functionally specific for the perivascular niche. 

        Dendritic cells (DCs) are a component of the innate immune system and are distributed 

throughout the body.  DCs are professional antigen presenting cells that contribute to immune 

cell activation through the secretion of cytokines and chemokines.  DCs display considerable 

phenotypic and functional heterogeneity, suggesting that DCs in specific tissues may have 

evolved to perform distinct functions
37-39

.  DCs include classical DCs (cDCs) with dendritic 

morphology and outstanding capacity for presenting antigens and priming T cells,  and 

plasmacytoid DCs (pDCs) which are lymphocyte-like cells specialized in the production of type 

I interferons
40,41,43

. cDCs may be further divided into type 1 cDCs (cDC1s), mainly against 

viruses, tumors and intracellular pathogens, and type 2 cDCs (cDC2s), mainly agaisnt parasites, 

allergens, extracellular bacteria and fungi
42

. A prior study identified a resident population of 

cDCs in the bone marrow and provided evidence that these cells promote the survival of 

circulating mature B cells in the bone marrow
49

.  To better characterize BM cDCs, we developed 

a multicolor flow cytometry to analyze myeloid cell populations in Cx3cr1
gfp/+ 

mice, which 

express high levels of green fluorescent protein (GFP) in monocytes and BM cDCs, but not in 
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bone marrow macrophages
7,267

.  Monocytes were identified as CX3CR1-GFP
high

 MHC II
low

 

B220
-
/CD19

-
 cells (Fig. 4.1a), and, consistent with prior studies, expressed F4/80 but were 

mostly negative for CD11c and CD169 (Fig. 4.1b)
271,272

.  Bone marrow macrophages were 

identified as CX3CR1-GFP
low

, MHC II
+
, B220

-
/CD19

-
 cells and expressed CD169 and F4/80, 

but little CD11c.  Finally, BM cDCs were identified as CX3CR1-GFP
high

 and MHC II
high

 B220
-

/CD19
-
 cells.  As expected, BM cDCs expressed a high level of CD11c and F4/80, but a low 

level of CD169
51

. cDCs represent 0.048 ± .017% of nucleated cells in mouse bone marrow 

compared to 0.096 ± .047% for macrophages (n = 11 mice).  A prior study showed that BM 

cDCs are perivascular, although this study did not distinguish between venous sinusoids and 

arterioles
49

.  We show that the great majority of CX3CR1-GFP
high

 and MHC II
high

 DCs in the 

bone marrow are perivascular (Fig. 4.1c: iv-viii), with the majorit

venous sinusoid or arteriole (Fig. 4.1d, e).  

        To further characterize mouse BM cDCs, we assessed their expression of XCR1 and CDllb, 

which are selectively expressed on cDC1s and cDC2s, respectively
42

.  Nearly all of the cDCs 

express CD11b but not XCR1, suggesting that the majority of murine BM DCs are cDC2-like 

cells (Fig. 4.1f).  We next examined bone marrow from healthy donors to determine whether 

cDCs also are present in human bone marrow.  Indeed, the percentage of cDCs in human bone 

marrow (0.076 ± .041%, n = 3 donors) was similar to that seen in murine bone marrow.  

Moreover, the majority of cDCs in human bone marrow express CD1c but not CD141, consistent 

with a cDC2-like phenotype (Fig. 4.1g)
42

.  RNA expression profiling was performed on sorted 

murine BM cDCs and compared to prior data generated using splenic cDC2 cells.  Surprisingly, 

the patterns of gene expression for chemokines and chemokine receptors were strikingly 
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different, suggesting that BM cDCs may represent a unique dendritic cell population with 

distinct functional properties (Fig. 4.1h). 

  

4.3.2. BM cDC ablation induces a loss of macrophage and HSPC mobilization 

        To assess their functional importance, BM cDCs were ablated using CD11c
dtr

 mice.  A prior 

study showed that treatment with diphtheria toxin (DT) results in efficient ablation of cDCs in 

the bone marrow, but it is also associated with systemic toxicity leading to death
273,274

. As 

reported previously
275

, to circumvent DT-induced lethality, we transplanted bone marrow from 

CD11c
dtr

 mice into irradiated wild-type congenic recipients (Supplemental Fig. 4.1a).  Treatment 

of CD11c
dtr

 bone marrow chimeras with DT did not affect the number of HSPCs in the bone 

marrow (Fig. 2a, Supplemental Fig. 4.1b), but resulted in a modest HSPC mobilization into 

spleen and blood (Fig. 2b,c, Supplemental Fig. 4.1c), as quantified by CFU-C and C-kit
+
 Sca1

+
 

Lin
- 
(KSL) marked HSPCs. Prior studies have shown that CD11c

dtr
 targets certain macrophage 

subsets in peripheral organs 
274,276,277

. Indeed, we observed a loss of bone marrow macrophages 

after 6 days treatment of DT (Fig. 4.2d).  Of note, after 1 day treatment of DT, cDCs but not 

macrophages in the bone marrow were depleted, raising the possibility that macrophage loss is 

secondary to cDC loss (Fig. 4.2d).  

      Recent studies have identified Zbtb46 as a transcription factor that is expressed in cDCs but 

not in pDCs, macrophages or other myeloid or lymphoid cells
278,279

.   To confirm the specificity 

of Zbtb46 expression in cDCs, we analyzed Zbtb46
gfp

 mice, in which GFP is knocked into the 

Zbtb46 locus
279

.  As expected, Zbtb46-GFP was expressed at high levels in BM cDCs, but in 

neither bone marrow macrophages nor monocytes (Fig. 4.2e).   Since endothelial cells also 
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express Zbtb46
278,279

, we transplanted Zbtb46
dtr

 bone marrow into irradiated wild-type recipients 

to restrict Zbtb46
dtr

 to the hematopoietic lineage, thus to assess the effect of BM cDC ablation on 

HSPCs.  DT treatment on Zbtb46
dtr

 bone marrow chimeras resulted in a marked loss of BM 

cDCs (Fig. 4.2f).  Similar to CD11c
dtr

 bone marrow chimeras, we also observed a loss of bone 

marrow macrophages in the same mice following DT treatment, which occurred later than BM 

cDC ablation (Fig. 4.2f).  To determine whether this loss of macrophages was cell-autonomous, 

we generated mixed wild-type and Zbtb46
dtr

 bone marrow chimeras using similar transplantation 

method.  As expected, DT treatment resulted in the loss of Zbtb46
dtr

 derived but not wild-type 

derived BM cDCs (Fig. 4.2g).  In contrast, DT treatment resulted in decreases of both wild-type 

and Zbtb46
dtr

 derived bone marrow macrophages (Fig. 4.2h).  Collectively, these data strongly 

suggest that BM cDC ablation results in a secondary and non-cell autonomous loss of bone 

marrow macrophages.  

      Ablation of bone marrow macrophages has been reported to alter the HSPC niche and induce 

HSPC mobilization
7,52

.  Therefore, to precisely assess the role of BM cDCs on HSPC regulation 

and maintenance, it was necessary to include additional macrophage ablation model and double 

ablation model for comparison with BM cDC ablation model.  Recent studies have reported 

CD169
dtr

 may ablate bone marrow macrophages specifically
7,53,268,269

.  Thus, we transplanted 

Zbtb46
dtr

, CD169
dtr

, or CD169
dtr

: Zbtb46
dtr

 bone marrow into irradiated wild-type recipients.  6 

days of DT treatment on all three bone marrow chimeras did not induce any significant changes 

in bone marrow and spleen cellularity (Supplemental Fig. 4.1d,e).  In the bone marrow, all three 

chimeras showed no significant differences of KSL cells or CD150
+
 CD48

-
 KSL (KSL-SLAM) 

marked HSCs (Fig. 4.2i, supplemental Fig. 4.1f), although mild increases of CFU-C were 

observed (Fig. 4.2l).  Ablation of bone marrow macrophages in CD169
dtr 

bone marrow chimeras 
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resulted in weak mobilization of KSL cells and CFU-C into spleen and blood, but there was little 

mobilization of KSL-SLAM cells into spleen (Fig. 4.2j,m).  In contrast, ablation of BM cDCs in 

both Zbtb46
dtr

 and CD169
dtr

: Zbtb46
dtr

 bone marrow chimeras resulted in stronger mobilizations 

of KSL cells, KSL-SLAM cells and CFU-C into spleen and blood (Fig. 4.2j,k,m,n).  

Interestingly, there were no significant differences of HSPC mobilizations between Zbtb46
dtr

 and 

CD169
dtr

: Zbtb46
dtr

 bone marrow chimeras (Fig. 4.2j,k,m,n).  Overall, these data demonstrate 

that ablation of bone marrow macrophages only induces weak HSPC mobilization in bone 

marrow chimeras, and ablation of BM cDCs may induce stronger HSPC mobilization through 

both macrophage dependent and independent pathways. 

 

4.3.3. BM cDC ablation affects bone marrow vascular endothelial cells 

        Given BM cDCs are enriched in the perivascular region, we next assessed bone marrow 

vascular permeability after BM cDC ablation, as it has been reported to positively affect cell 

mobilization in bone marrow
280,281

.  BSA-FITC was injected into Zbtb46
dtr

 bone marrow 

chimeras treated with PBS, 1 day of DT, or 6 days of DT.  Mice were harvested 15 minutes later 

and immunofluorescent (IF) staining was performed on femurs to quantify BSA-FITC for 

estimating bone marrow vascular permeability (Fig. 4.3a)
282

.  We observed a trend of increasing 

vascular permeability along BM cDC ablation (Fig. 4.3c).  In addition, we quantified the 

percentage of vascular endothelial cells (VECs) in whole bone marrow in the same Zbtb46
dtr

 

bone marrow chimeras by IF staining and found the percentage of VECs increased after BM 

cDC ablation (Fig. 4.3b,d). Flow cytometry further confirmed that the number of bone marrow 

VECs increased 1 day after BM cDC ablation (Fig. 4.3e).  Collectively, these data show that 
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ablation of BM cDCs may result in potential activation of bone marrow VECs for increased 

vascular permeability and angiogenesis. 

 

4.3.4. BM cDC ablation activates sinusoidal endothelial cells and sinusoidal CXCR2 

signaling 

        To determine potential molecular pathways involved in BM cDC ablation induced 

activation of bone marrow VECs, we performed gene expression analysis in endothelial cells 

from Zbtb46
dtr 

bone marrow chimeras treated with 1 day of DT or PBS.  At this time point, only 

BM cDCs were ablated, but not bone marrow macrophages, thus the result would be specific to 

BM cDC ablation.  Sinusoidal endothelial cells (SECs) were marked as Lin
-
 CD31

+
 Sca1

-
 cells 

and arteriolar endothelial cells (AECs) were marked as Lin
-
 CD31

+
 Sca1

+
 cells, and both 

populations were sorted using FACS. We performed RNA microarray analysis on both 

populations, and PCA was performed to measure and visualize differences for each population 

before or after BM cDC ablation.  While AECs showed no significant differences between the 

two conditions, SECs may be activated after BM cDC ablation for differential gene expressions 

(Supplemental Fig. 4.2a,b).  To further test this possibility, we performed RNA sequencing 

analysis in SECs from Zbtb46
dtr

 bone marrow chimeras treated with 1 day of DT or PBS.  We 

performed t-distributed stochastic neighbor embedding (t-SNE) to measure and visualize 

differences between the two conditions and the result was consistent with the microarray analysis 

(Fig. 4.4a).  SECs were activated after BM cDC ablation and there were 635 significantly 

differentially expressed genes with >5 fold differences, p-value < 0.05 and FDR < 0.02.  To 

search for potential pathways activated in SECs after BM cDC ablation, gene set enrichment 

analysis (GSEA) was performed.  The most enriched gene set showed activation of chemokines 
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and cytokines related pathways (Fig. 4.4b).  Also, gene set for angiogenesis was highly enriched, 

which was consistent with the observed expansion of VECs measured by IF staining and flow 

cytometry (Fig. 4.3d,e and Fig. 4.4c).  Among expressed chemokine receptors in SECs, CXCR2 

was most highly up-regulated after BM cDC ablation (Fig. 4.4d). Importantly, recent and early 

studies have reported CXCR2 activation could induce vascular permeability and HSPC 

mobilization
72,283-285

.  We performed quantitative real-time PCR (qRT-PCR) on whole bone 

marrow RNAs from Zbtb46
dtr

 bone marrow chimeras treated with PBS, 1 day or 6 days of DT.  

Both ligands for CXCR2, CXCL1 (KC) and CXCL2 (Gro-β) were up-regulated following BM 

cDC ablation (Fig. 4.4e,f).  To confirm that this observation was not due to a non-specific up-

regulation of chemokines induced by acute inflammation, we measured whole bone marrow 

RNA level of CXCL12, a common and pro-inflammatory chemokine in the bone marrow, and 

found no increase after BM cDC ablation (Supplemental Fig. 4.2c). To further test whether there 

was an acute inflammation, we measured neutrophil numbers in blood and bone marrow
286,287

, 

and found little or no increase (Supplemental Fig. 4.2d,e). Both results suggested up-regulations 

of CXCL1 and CXCL2 were specific to BM cDC ablation. Thus, CXCR2 is activated in SECs 

after BM cDC ablation, which may play an important role for regulating sinusoidal vascular 

permeability and HSPC mobilization. 

 

4.3.5. CXCR2 signaling pathway is important for BM cDC ablation induced HSPC 

mobilization 

        To test our hypothesis on the role of CXCR2, we first confirmed prior studies
11-13, 32

 by 

testing whether activation of CXCR2 may induce vascular permeability using in vitro migration 
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assay. Human umbilical vein endothelial cells (HUVECs) were plated in the upper chamber of 

the Boyden chamber for migration assay to form a HUVEC layer, and treated with PBS or 

recombinant CXCL1 (rCXCL1) to activate CXCR2 signaling (Fig. 4.5a).  To test vascular 

permeability of the HUVEC layer for large molecules, Evan’s blue was added to the upper 

chamber of the Boyden chamber with 0.4μm pores in the membrane (Fig. 4.5a).  Quantified by 

light absorbance, the amount of Evan’s blue in the bottom chamber after 1 hour increased 

modestly upon CXCR2 activation, suggesting an increased permeability of the HUVEC layer 

(Fig. 4.5b).  To test the effects of CXCR2 activation on HSPC migration, CD34
+
 cells were 

isolated from healthy human bone marrow and added to the upper chamber of the Boyden 

chamber with 3μm pores in the membrane, and medium containing recombinant CXCL12 was 

added to the bottom chamber to induce cell migration
288-290

 (Fig. 4.5a).  A modest increase of 

cell migration through the HUVEC layer was observed after 24 hours upon CXCR2 activation 

(Fig. 4.5c).  To test the role of CXCR2 signaling on BM cDC ablation induced HSPC 

mobilization, we transplanted Zbtb46
dtr

 bone marrow into irradiated Cxcr2
-/-

 recipients, 

restricting knock-out of CXCR2 to the stromal cells and endothelial cells in the bone marrow of 

these recipients.  We then compared them with previous Zbtb46
dtr

 bone marrow chimeras in 

wild-type recipients, for HSPC mobilization after 6 days treatment of PBS or DT (Fig. 4.5d).  

BM cDC ablation did not affect bone marrow and spleen cellularity in Zbtb46
dtr

 Cxcr2
-/-

 bone 

marrow chimeras, and there was a mild decrease of cellularity compared to Zbtb46
dtr

 wild-type 

bone marrow chimeras with the same treatment (Supplemental Fig. 4.3a,b).  In the bone marrow 

of Zbtb46
dtr

 Cxcr2
-/-

 bone marrow chimeras, BM cDC ablation did not induce any significant 

differences in KSL cells (Fig. 4.3e) and KSL-SLAM cells (Supplemental Fig. 4.3c), although 

there might be a trend of mild increase of CFU-C which was similar to the pattern observed in 
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Zbtb46
dtr

 wild-type bone marrow chimeras (Supplemental Fig. 4.3d).  In the spleen of Zbtb46
dtr

 

Cxcr2
-/-

 bone marrow chimeras, BM cDC ablation resulted in weaker mobilizations of KSL cells, 

KSL-SLAM cells and CFU-C, compared to Zbtb46
dtr

 wild-type bone marrow chimeras (Fig. 

4.5f-h).  Similar to the spleen, a weaker mobilization of CFU-C was observed in the blood of 

Zbtb46
dtr

 Cxcr2
-/-

 bone marrow chimeras, compared to Zbtb46
dtr

 wild-type bone marrow 

chimeras (Fig. 4.5i).  Collectively, data from both in vitro and in vivo experiments support our 

hypothesis that CXCR2 signaling plays an important role in the regulation of HSPC mobilization 

induced after BM cDC ablation. 

 

4.4. Summary 

        In conclusion, data from this study suggests BM cDC as a novel perivascular niche 

component that regulates HSPC retention and trafficking, at least in part, through its regulation 

of sinusoidal CXCR2 signaling and vascular permeability.  This observation is consistent with 

the findings from our colleagues, where Dr. John Dipersio’s group shows endothelial CXCR2 is 

important for Gro-β induced neutrophil mobilization into the blood.  Our results do not provide 

evidence to explain how BM cDCs regulate SECs.  However, as bone marrow macrophage has 

been reported to regulate HSPCs through indirect regulation of stromal cells
7,52

, we suspect 

similar process may be involved.   
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4.7. Figures 
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Figure 4.1. Classical dendritic cells (cDCs) are enriched in the perivascular region and may 

be functionally specific for the perivascular niche. (a) Representative flow plots showing the 

gating strategy used to identify bone marrow monocytes, macrophages, and cDCs in Cx3cr1
gfp/+

 

mice. Gr-1
hi

 neutrophils and B220
+
/CD19

+
 B cells were excluded as shown in the left panel. 

Monocytes were identified as CX3CR1-GFP
+
 MHC II

low
 cells, cDCs as CX3CR1-GFP

high
 

MHCII
high

 cells, and macrophages as CX3CR1-GFP
low

 MHCII
+
 B220

-
 cells. (b) The gated 

monocyte, macrophage, and cDC populations were profiled for expression of the indicated 

lineage markers. FMO, fluorescence minus one control. (c) Representative photomicrographs of 

femur sections from Cx3Cr1
gfp/+

 mice. Slides were stained with GFP (green) (i), MHC II (red) 

(ii) and the merge (iii). Slides were stained with GFP (green) (iv), Sca1
+
 arterioles (red) (v), VE-

Cadherin
+
 venous sinusoids and arterioles (white) (vi) and merge (vii); higher magnification of 

boxed region (viii). Yellow arrows indicate cDCs. Counterstaining with DAPI highlights nuclei 

(blue). (d,e) Quantification of the distance from cDCs to the nearest venous sinusoid (d) or 

arteriole (e) (data pooled from n = 3 mice).  (f) Representative flow plot showing the expression 

of two murine cDC markers, XCR1 for cDC1 and CD11b for cDC2, in murine bone marrow 

cDCs, gated as Gr-1
-
 B220

-
 MHCII

high
 CD11c

high
 cells. (g) Representative flow plot showing the 

expression of two human cDC markers, CD141 for cDC1 and CD1c for cDC2, in human bone 

marrow cDCs, gated as Lin
-
 CD14

-
 CD13

+
 CD33

+
 CD11c

+
 HLA-DR

+
 cells. (h) A heat map 

comparing the expressions of all chemokines and their receptors between mouse BM cDCs and 

mouse spleen (Sp) cDC2s (GSE110789, Durai V. 2018).  Data represent mean ± SEM. 
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Figure 4.2. BM cDC ablation induces a loss of macrophage and HSPC mobilization. (a-d) 

Bone marrow from CD11c
dtr

 mice were transplanted into irradiated wildtype recipients and after 

eight weeks, the resulting chimeras were treated with PBS or DT for 6 days. The number of 

CFU-C in bone marrow (a), spleen (b) and blood (c) were quantified (n = 10 mice per cohert). 

(d) CD11c
dtr

 bone marrow chimeras were treated with DT for 1 day (n = 3 mice), 6 days (n = 10 

mice), or with PBS (n = 10 mice), and BM cDCs and macrophages were quantified by flow 

cytometry. (e) Bone marrow monocytes (Gr-1
low

 B220
-
 CD115

+
 cells), macrophages (B220

-
 

MHCII
+
 F4/80

+
 cells), and cDCs (MHCII

high
 CD11c

high
 cells) from Zbtb46

gfp/+
 mice were 

assessed for Zbtb46-GFP expression. FMO means fluorescence minus one control. (f) Zbtb46
dtr

 

bone marrow chimeras were generated using same method and were treated with DT for 1 day (n 

= 5 mice), 2 days (n = 5 mice), 6 days (n=12 mice) or with PBS (n = 11mice) and BM cDCs and 

macrophages were quantified. (g,h) Bone marrow from wild-type (Ly5.1) and Zbtb46
dtr 

(Ly5.2) 

mice were mixed (1:1) and transplanted into irradiated wild-type recipients (Ly5.1/5.2). The 

resulting wild-type and Zbtb46
dtr

 mixed bone marrow chimeras were treated with PBS or DT for 

6 days, and the number of cDCs (g) and macrophages (h) in the bone marrow that were derived 

from wild-type (WT) or Zbtb46
dtr

 (Zbtb46-DTR) cells were quantified (n = 5 mice per cohort).  

(i-n) Zbtb46
dtr

 (Zbtb46-DTR), CD169
dtr 

(CD169-DTR) and CD169
 dtr

:Zbtb46
dtr

 (CD169/Zbtb46-

DTR) bone marrow were transplanted into wild-type recipients. Eight weeks after 

transplantation, these mice were treated with PBS or DT for 6 days. The numbers of Lineage
-
 

(CD45, CD31, Ter119, Gr-1) Sca1
+
 C-kit

+
 (KSL) cells in bone marrow (i) and spleen (j), the 

number of CD150
+
 CD48

-
 KSL (KSL-SLAM) cells in spleen (k), and the numbers of CFU-C in 

bone marrow (l), spleen (m) and blood (n) were quantified (n = 8-18 mice per cohort). Data 

represent the mean ± SEM.  *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001 compared 

with PBS-treated or day 0 mice if no top line indicating the specific comparison groups. “n.s.” 

means no significance.  
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Figure 4.3. Ablation of BM cDCs affects bone marrow vascular endothelial cells (VECs). 

(a,b) Representative photomicrographs of femur sections from Zbtb46
dtr

 bone marrow chimeras 

treated with PBS (left), 1 day of DT (1D-DT, middle) or 6 days of DT (6D-DT, right). (a) BSA-

FTIC was injected into these mice 15mins before sacrifice, and was labeled in green. Slides were 

stained for VE-Cadherin
+
 /CD31

+
 VECs (red). (b) Slides were stained for VE-Cadherin

+
 /CD31

+
 

VECs (red). Counterstaining with DAPI highlights nuclei (blue). Original magnification, 200X. 

(c) Vascular permeability in bone marrow for BSA-FITC was measured and normalized to PBS 

treated group. (d) Percentage of VEC volumes in the bone marrow of these mice were quantified 

(n = 9, 8, 7 mice for PBS, 1D-DT and 6D-DT groups). (e) Bone marrow VECs in Zbtb46
dtr

 bone 

marrow chimeras treated with PBS or 1D-DT were quantified by flow cytometry, gated as 

Lineage
-
 (CD45, Ter119, Gr-1) CD31

+
 cells (n = 4 or 6 mice for PBS or 1D-DT groups). Data 

represent the mean ± SEM.  *P < 0.05; **P < 0.01compared with PBS-treated mice. 
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Figure 4.4. Ablation of BM cDCs activates sinusoidal endothelial cells and sinusoidal 

CXCR2 signaling. (a) Sinusoidal endothelial cells were sorted from Zbtb46
dtr

 bone marrow 

chimeras treated with PBS or 1D-DT, and RNA-sequencing (RNA-seq) analysis was performed 

in these cells. We performed t-distributed stochastic neighbor embedding (t-SNE) test to measure 

and visualize differences between PBS (n = 4 mice) and 1D-DT (n = 3 mice) groups. (b,c) RNA-

seq data were analyzed using gene set enrichment analysis (GSEA) and two significantly 

enriched gene sets of interest were shown. (d) Expression levels of all expressed chemokine in 

sinusoidal endothelial cells. (e) CXCL1 and (f) CXCL2 expressions were analyzed by 

quantitative real-time PCR (qRT-PCR) in whole bone marrow from Zbtb46
dtr

 bone marrow 

chimeras treated with PBS, 1D-DT or 6D-DT (n = 6, 5, 5 mice for these groups).  Data represent 

the mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001compared with PBS-treated mice. 
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Figure 4.5. CXCR2 signaling pathway is important for BM cDC ablation induced HSPC 

mobilization. (a-c) Human umbilical vein endothelial cells (HUVECs) were cultured in 

endothelial cell (EC) medium in the upper chamber of the Boyden Chamber for migration assay. 

HUVECs were treated with PBS or recombinant CXCL1, incubated at 37ºC, 5% CO2.  (b) 

Evan’s blue was added to the upper chamber with Hank’s balanced salt saline (HBSS) in the 

bottom chamber, polycarbonate membrane pore size = 0.4µm.  After 1 hour incubation, the 

amount of Evan’s blue in the bottom chamber was quantified by measuring light absorbance (n = 

5 or 6 per group).  (c) CD34
+
 human bone marrow cells from healthy donor were added to the 

upper chamber, with EC medium containing 100ng/mL SDF1in the bottom chamber, 

polycarbonate membrane pore size = 3µm.  After 24 hours incubation, the number of migrated 

CD34
+
 cells in the bottom chamber was quantified by cellometer (n = 11 or 12 per group).  (d) 

Bone marrow cells from Zbtb46
dtr

 mice were transplanted into irradiated wild-type (previously 

done in Fig 2) or Cxcr2
-/-

 recipients.  Eight weeks after transplantation, mice were treated with 

PBS or DT for 6 days.  (e-i) The number of KSL cells in bone marrow (e) and spleen (f), the 

number of KSL-SLAM cells in spleen (g), and the number of CFU-C in spleen (h) and blood (i) 

were quantified (n = 12, 16, 6, 6 mice for WT PBS, WT DT, Cxcr2
-/-

 PBS and Cxcr2
-/-

 DT 

groups).  Data represent the mean ± SEM.  *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001 

comparing to PBS-treated group if no top line indicating the specific comparing groups. 
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4.8. Supplemental Figures 

 

Supplemental Figure 4.1. BM cDC ablation induces a loss of macrophage and HSPC 

mobilization. (a) Bone marrow from CD11c
dtr

 mice were transplanted into irradiated wild-type 

recipients and after eight weeks, the resulting chimeras were treated with PBS or DT for 6 days. 

(b,c) KSL cells were quantified in bone marrow (b) and spleen (c) (n = 8-10 mice per cohert). 

(d-f) Zbtb46
dtr

 (Zbtb46-DTR), CD169
dtr 

(CD169-DTR) and CD169
 dtr

:Zbtb46
dtr

 (CD169/Zbtb46-

DTR) bone marrow were transplanted into wild-type recipients. Eight weeks after 

transplantation, mice were treated with PBS or DT for 6 days.  Total cellularity in bone marrow 

(d) and spleen (e), and KSL-SLAM cells (f) in bone marrow were quantified (n = 10-18 mice per 

cohort). Data represent the mean ± SEM.  *P < 0.05; **P < 0.01 compared with PBS-treated 

mice. 
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Supplemental Figure 4.2. Ablation of BM cDCs activated sinusoidal endothelial cells and 

sinusoidal CXCR2 signaling. (a,b) Arteriolar and sinusoidal endothelial cells (AECs and SECs) 

were sorted from Zbtb46
dtr

 bone marrow chimeras treated with PBS or 1 day of DT (1D-DT), 

and RNA microarray analyses were performed in these populations.  We performed principal 

component analysis (PCA) to measure and visualize differences between PBS and 1D-DT 

groups, for (a) AECs (n = 4 or 5 mice for PBS or 1D-DT groups) and (b) SECs (n = 2 or 3 mice 

for PBS or 1D-DT groups).  (c) CXCL12 expression was measured by quantitative real-time 

PCR (qRT-PCR) in whole bone marrow from Zbtb46
dtr

 bone marrow chimeras treated with PBS, 

1D-DT or 6D-DT (n = 6, 5, 5 mice for these groups). (d,e) Zbtb46
dtr

 bone marrow chimeras were 

treated with PBS or 1 day of DT, neutrophils were quantified in blood by Hemavet Hematology 

Analyzer (n = 11 or 4 for each group) (d) and in bone marrow by flow cytometry, gated as Gr-

1
high

 cells (n = 11 mice per group) (e).  Data represent the mean ± SEM  *P < 0.05 compared 

with PBS-treated mice. 
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Supplemental Figure 4.3. CXCR2 signaling pathway is important for BM cDC ablation 

induced HSPC mobilization. (a-d) Bone marrow cells from Zbtb46
dtr

 mice were transplanted 

into irradiated wild-type (previously done in Fig 2) or Cxcr2
-/-

 recipients.  Eight weeks after 

transplantation, mice were treated with PBS or DT for 6 days. Total cellularity in bone marrow 

(a) and spleen (b), KSL-SLAM cells (c) and CFU-C (d) in bone marrow were quantified (n = 6-

17 mice per cohort). Data represent the mean ± SEM.  *P < 0.05. 
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CHAPTER 5: SUMMARY AND FUTURE DIRECTIONS 

 

        The goal of this work is to improve the overall understanding of the bone marrow 

perivascular niche. Here, we further characterized a known bone marrow niche component, 

mesenchymal stromal cells, and proposed a novel niche cell component, bone marrow classical 

dendritic cells (BM cDCs). In Chapter 2, we examined the heterogeneity of mesenchymal 

stromal cells using different transgenic Cre models and identified a subset of CAR cells 

potentially enriched for osteoprogenitors. This study further highlights the heterogeneity of 

mesenchymal stromal cells in the bone marrow and suggests appropriate models to interrogate 

this heterogeneity. In Chapter 3, we used a Cxcl12 conditional deletion model and multiple 

stromal specific transgenic Cre models to assess the role of CXCL12 from different stromal cell 

populations on the regulation of B lymphopoiesis. We show that CXCL12 from Ocn-Cre 

targeted stromal cells is important in the regulation of mature naive B cells and memory B cells 

in the bone marrow. This study demonstrates the functional heterogeneity of stromal cells and 

may provide insights to the development of potential therapies for B cell related diseases. In 

Chapter 4, we used ablation models to assess the role of BM cDCs in the regulation of HSPCs in 

the bone marrow and discovered that BM cDCs serve as an important hematopoietic niche 

component to regulate HSPC trafficking through its regulation of sinusoidal CXCR2 signaling. 

These data improve our understanding of the hematopoietic niche and provide potential targets 

for the development of cell mobilization related treatment.  
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5.1. Targeting mesenchymal stromal cells with different Cre-recombinase transgenes 

5.1.1. Summary 

        In Chapter 2, we characterized three Cre-recombinase transgenes for their targeting 

specificity on bone marrow stromal cells. Ocn-Cre has been widely used to target osteoblasts in 

past studies
245,247,248

. Our data show that Ocn-Cre targets not only all osteoblasts, but also 

osteocytes, ~70% of CAR cells, and the majority of arteriolar pericytes. Dmp1-Cre has been 

widely used to target osteocytes 
250,252,266

.  We show that Dmp1-Cre targets all osteoblasts, as 

well as ~30% of CAR cells. Expression profiling of these CAR cells shows higher expression of 

genes associated with mature osteoblasts, suggesting their potential enrichment for 

osteoprogenitors. We also, for the first time, characterized the bone marrow stromal cells 

targeted by a Tagln-Cre transgene, and show that Tagln-Cre targets all osteoblasts, ~70% of 

CAR cells, and both venous sinusoidal and arteriolar pericytes. Collectively, we have rigorously 

defined the targeting specificities in the bone marrow for the three Cre-recombinase transgenes. 

Ocn-Cre and Dmp1-Cre target broader stromal cell populations than previously appreciated, 

which should be considered when designing future studies. Moreover, we present Tagln-Cre as a 

new tool to efficiently target both venous sinusoidal and arteriolar pericytes in the bone marrow.  

 

5.1.2. Are Dmp1-Cre targeted stromal cells truly enriched for osteoprogenitors? 

        Our data suggests that Dmp1-Cre targeted stromal cells may be enriched for 

osteoprogenitors. However, this hypothesis is only based on gene expression profiling using 

RNA microarray and further experiments are required to confirm this finding. First, quantitative 

real-time PCR may be used to confirm the up-regulation of genes associated with mature 

osteoblasts, which were detected by RNA microarray. Second, we may perform functional 
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assays to test the osteoprogenic capacity of Dmp1-Cre targeted stromal cells. We may sort these 

cells using the same strategy as for gene expression profiling, and culture the sorted cells in vitro 

to test their multi-lineage capacity using colony forming unit (CFU) assays for adipocytes (CFU-

A), osteoblasts (CFU-Ob) and chondrocytes (CFU-Ch). Total CAR cells and Ocn-Cre targeted 

CAR cells may also be sorted and cultured to test their multi-lineage capacity. By comparing 

their multi-lineage capacities, especially the capacity to form osteoblasts among these different 

subsets of CAR cells, we will be able to confirm whether Dmp1-Cre targeted stromal cells are 

truly enriched for osteoprogenitors.  

 

5.1.3. Further characterize the heterogeneity of CAR cells 

         Prior studies have discussed the heterogeneity of mesenchymal stromal cells in the bone 

marrow and have described different subsets of stromal cells for their specific functions, such as 

LepR
+
 cells and Nestin-GFP cells

10,12
. In this study, we further identified Dmp1-Cre targeted 

stromal cells to include potential osteoprogenitors. However, it remains unanswered how many 

functionally different subsets of stromal cells may exist. Recent studies suggest that distinct 

niches may exist to regulate different types of cells, such as quiescent or more proliferative 

HSCs
12,18,79

. Further dissecting the heterogeneity of stromal cells will provide insights to better 

characterize distinct niches with more specific functions. This will improve our understanding of 

the regulation of different cells in the bone marrow, providing fundamental knowledge to support 

future research in both basic and clinical science. For future studies, CAR cells, representing the 

majority of mesenchymal stromal cells, may be sorted from Cxcl12
gfp

 mice and analyzed by 

single cell RNA sequencing. Based on the gene expression profile, clustering analysis may be 

performed to discover more specific subsets of CAR cells. It is important to notice that due to the 
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overall similarity among CAR cells, clustering analysis may be inefficient to detect more specific 

cell subsets. Alternatively, differential gene expressions should also be analyzed and such 

analysis should focus on genes representing surface markers or genes with important functions in 

the regulation of the bone marrow niche.    

 

5.2. CXCL12 from Ocn-Cre targeted mesenchymal stromal cells regulates late-stage 

B cell development 

5.2.1. Summary 

        In Chapter 3, we assessed the role of CXCL12 from different stromal cells in the regulation 

of B cell development in the bone marrow. We show that CXCL12 from Ocn-Cre targeted 

stromal cells is specifically important for the homing and/or retention of mature naive B cells. 

We also show that Dmp1-Cre targeted stromal cells play no significant role in the regulation of B 

cell development, consistent with our prior study showing that Dmp1-Cre targeted CAR cells 

express low levels of IL-7
19

. In addition, our data suggests that CXCL12 from Ocn-Cre targeted 

stromal cells regulates memory B cells specifically in the bone marrow. Collectively, these data 

suggest that B cells require distinct niches at different stages of development, and Ocn-Cre 

targeted stromal cells may represent a specific niche for late-stage B cell development. 

Moreover, Ocn-Cre targeted stromal cells may also regulate memory B cells, thus potentially 

contributing to the regulation of B cell immune memory and humoral immunity. This study may 

provide insights to further understand immune memory, which in turn will contribute to 

improvements in the treatment of the relevant diseases.  
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5.2.2. Functionally characterize the role of bone marrow memory B cells in the regulation 

of humoral immunity 

        In this study, we used NP-CGG to induce NP-specific memory B cells and observed a 

significant reduction of these cells in the bone marrow of Ocn-Cre:Cxcl12
flox/flox

 mice compared 

to the Cxcl12
flox/flox

 control mice. Of notice, the number of memory B cells in the bone marrow 

constitutes ~40% of total memory B cells, including memory B cells from the spleen (Fig 

3.5A&B), assuming one femur represents ~9% of total bone marrow cells. We observed ~50% 

reduction in memory B cells in the bone marrow of Ocn-Cre:Cxcl12
flox/flox

 mice, roughly 

representing a 20% reduction in total memory B cells. It remains questionable whether this 

modest reduction of memory B cells has a significant impact on memory B cell derived humoral 

immunity. To test this, we have an ongoing study in which a similar number of bone marrow 

cells containing NP-specific memory B cells from Ocn-Cre:Cxcl12
flox/flox

  or Cxcl12
flox/flox

  mice 

will be transferred into IgHa/J mice, followed by secondary immunization with NP-CGG. 

ELISA will be performed to quantify the NP-specific IgG1b antibodies generated by NP-specific 

memory B cells from the donor mice.  In addition, using the same method, we could compare the 

function of NP-specific memory B cells from the bone marrow and the spleen.  

 

5.2.3. How does CXCL12 ablation in Ocn-Cre targeted stromal cells affect other cells in the 

bone marrow? 

        Our study focused on how CXCL12 ablation in different stromal cells regulates B cell 

development. However, our preliminary data also suggests a significant reduction of T cells, 

especially CD8
+
 T cells and Foxp3

+
 regulatory T (Treg) cells in the bone marrow upon CXCL12 

ablation in Ocn-Cre targeted stromal cells (Fig 5.1A). In contrast, no significant reduction of T 



 

 

107 

 

cells was observed in Dmp1-Cre:Cxcl12
flox/flox

 mice (Fig 5.1B). These data suggest that CD8
+
 T 

cells and Treg cells, as well as mature naive B cells and memory B cells, may share the same 

niche in the bone marrow. A recent study has suggested Foxp3
+
 regulatory T cells play an 

important role in the regulation of B lymphopoiesis
291

. Thus, it is possible that Treg cells may be 

important for the regulation of mature naive B cells and memory B cells in our CXCL12 ablation 

model. To test this possibility, the same CXCL12 ablation model may be applied in a 

background of Treg cell deficient mice. The effects of CXCL12 ablation in Ocn-Cre targeted 

stromal cells on mature naive B cells and memory B cells will be assessed in the lack of Treg 

cells. 

         Moreover, prior studies have suggested CD8
+
 T cells in the bone marrow may function as 

memory T cells
292

. Although this hypothesis needs further confirmation, it is important to note 

that two potential populations of memory B cells and memory T cells are both regulated by 

CXCL12 from Ocn-Cre targeted stromal cells. These data indicate that a unique bone marrow 

niche may exist to regulate memory cells, thus potentially regulating immune memory in the 

bone marrow. More interestingly, the fact that memory B cells and memory T cells may share 

the same niche suggests the potential necessity in our future research to focus on a whole system, 

instead of a specific cell type. This may provide a different perspective to investigators when 

considering and designing their future experiments.  

 

5.2.4. Do Ocn-Cre targeted stromal cells regulate mature naive B cells and memory B cells 

through other pathways? 

        CXCL12 is an important bone marrow niche factor regulating hematopoiesis and B 

lymphopoiesis
20

. Our prior study has suggested the critical role of CXCL12 in the regulation of 
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B cell development at different stages
3
. In this study, we show that CXCL12 from Ocn-Cre 

targeted stromal cells regulates mature naive B cells and memory B cells, suggesting these cells 

are potentially an important component for a specific B cell niche. As previously discussed, B 

cell development is a complicated process requiring the contribution from different molecular 

pathways. To better understand the role of Ocn-Cre targeted stromal cells in the regulation of B 

lymphopoiesis, it is necessary to further characterize these cells to test whether additional 

pathways are involved in their regulation of B cells.  

        To assess this possibility, we are currently breeding Ocn-Cre:ROSA26
Ai9/+

:Col2.3
gfp

 and 

Dmp1-Cre:ROSA26
Ai9/+

:Col2.3
gfp

 mice. The ROSA26
Ai9/+

 transgene allows for the identification 

of Ocn-Cre or Dmp1-Cre targeted cells as tdTomato
+
 cells

19
.  The Col2.3

gfp
 transgene allows for 

the identification of osteoblasts and osteoblast progenitors as GFP
+
 cells

293
. In combination, we 

can accurately sort Ocn-Cre or Dmp1-Cre targeted tdTomato
+
 GFP

-
 stromal cells, excluding 

osteoblasts. We will then perform RNA sequencing analysis on these two subsets of stromal cells 

and compare their gene expression profiles. We will try to discover genes enriched in Ocn-Cre 

targeted stromal cells that are potentially important for the regulation of B cells, especially 

mature naive B cells and memory B cells. Among these genes, we will select candidates for 

further functional tests, potentially using transgenic ablation models depending on their 

availability. This future study may help improve our understanding of the heterogeneity of 

stromal cells and the regulation of B cell development by specific stromal cells.  
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5.3. Bone marrow cDCs regulate hematopoietic stem and progenitor cell trafficking  

5.3.1. Summary 

        In Chapter 4, we assessed the role of bone marrow (BM) cDCs in the regulation of the 

hematopoietic niche and HSPCs. Using Cx3cr1
gfp

 mice, we identified cDCs in the bone marrow 

and show that they localize to both sinusoidal and arteriolar regions. We further discovered that 

the majority of these BM cDCs have a cDC2-like immunophenotype, but their gene expression 

profile suggests that they are functionally different from conventional cDC2s in the spleen. 

Interestingly, we also identified a similar population of BM cDCs in human bone marrow, 

emphasizing the potential clinical relevance of this study. Using ablation models, we show that 

the ablation of BM cDCs results in a secondary, non-cell autonomous loss of BM macrophages, 

which have been previously reported to regulate HSPCs
7
.  In addition, we show that the ablation 

of BM cDCs induces HPSC mobilization, at least in part, through a macrophage independent 

mechanism. Since HSPC mobilization is often associated with changes in the perivascular niche, 

we characterized endothelial cells and discovered endothelial expansion following BM cDC 

ablation. We also revealed a robust up-regulation of CXCR2 in sinusoidal endothelial cells and 

the up-regulation of two major ligands of CXCR2 in the bone marrow, CXCL1 and CXCL2. 

CXCR2 activation has been reported to induce vascular permeability and HSPC mobilization
72

, 

thus we assessed the role of CXCR2 in the regulation of HPSC mobilization following BM cDC 

ablation. We show that activation of CXCR2 in vitro induces vascular permeability and HSPC 

migration. Moreover, we show that deletion of CXCR2 in non-hematopoietic cells significantly 

attenuates HSPC mobilization after BM cDC ablation. Collectively, these data suggest that BM 

cDCs play an important role in regulating HSPC trafficking, at least in part, through its 

regulation of sinusoidal CXCR2 signaling and vascular permeability.  



 

 

110 

 

5.3.2. Further assess the role of CXCR2 in endothelial cells 

        To examine the role of CXCR2 in the regulation of HSPC mobilization following BM cDC 

ablation, we transplanted Zbtb46
dtr

 bone marrow into irradiated Cxcr2
-/-

 mice. The deletion of 

CXCR2 is only restricted to non-hematopoietic cells in the bone marrow, including both 

endothelial cells and stromal cells. It is possible that the attenuated HSPC mobilization following 

BM cDC ablation may be a result of CXCR2 deletion in bone marrow stromal cells. To rule out 

this possibility, we have an ongoing experiment using VEcad-Cre:Cxcr2
flox/flox

 mice as the 

recipients for Zbtb46
dtr

 bone marrow transplant. This will allow us to restrict the deletion of 

Cxcr2 to endothelial cells, excluding bone marrow stromal cells. We will then perform flow 

cytometry and CFU-C tests to assess HSPC mobilization after BM cDC ablation in these VEcad-

Cre:Cxcr2
flox/flox

 mice.  

 

5.3.3. How do BM cDCs regulate sinusoidal endothelial cells? 

        We have discovered that BM cDCs may regulate HSPC trafficking through its regulation of 

sinusoidal CXCR2 signaling. However, how BM cDCs regulate sinusoidal endothelial cells 

remains unknown. A prior study on BM macrophages suggests that they regulate HPSC 

trafficking through mesenchymal stromal cells
7
. BM cDCs and BM macrophages share the same 

myeloid origin, so we hypothesize that BM cDCs may also regulate mesenchymal stromal cells. 

To test this hypothesis, we performed a pilot experiment in which bone marrow stromal cells 

(BMSCs) were sorted from Zbtb46
dtr

 bone marrow chimeras treated with 1 day of DT or PBS. 

RNA microarray analysis on these cells suggested a potential functional change in BMSCs 

following BM cDC ablation (Fig. 5.2A). Expression of CXCL1 and CXCL2 were up-regulated 

in the whole bone marrow following BM cDC ablation to activate sinusoidal CXCR2 signaling 



 

 

111 

 

(Fig. 4.4E&F). Surprisingly, the expression of CXCL1, but not CXCL2, was significantly 

increased in BMSCs by more than 3-fold following BM cDC ablation (Fig. 5.2B&C), indicating 

the partial involvement of BMSCs in the regulation of sinusoidal CXCR2 signaling. Collectively, 

these preliminary data suggest that BM cDCs may regulate sinusoidal endothelial cells, at least 

in part, through their regulation of BMSCs. 

        While BMSCs may regulate sinusoidal endothelial cells through their up-regulation of 

CXCL1, it remains unknown how BM cDCs regulate BMSCs. Since the majority of BM cDCs 

and BMSCs are both localized to the perivascular region, it is likely that the two cell populations 

are in close proximity. Thus, it is possible that BM cDCs may directly regulate BMSCs through 

the release of intermediate molecules or direct physical interaction. To test this possibility, gene 

expression profiles from both cell populations will be compared to identify potential factor/ 

receptor pairs expressed by BM cDCs and BMSCs, respectively. In addition, 

Zbtb46
gfp

:Cxcl1
DsRed

 mice may be generated, in which BM cDCs are marked as GFP
+
 cells and 

BMSCs are marked as DsRed
+
 cells. Bone sections from these mice may then be imaged to 

check whether direct physical interaction exists between BM cDCs and BMSCs. In summary, 

understanding the mechanisms involved in the regulation of BMSCs and sinusoidal endothelial 

cells by BM cDCs will provide insights to the advancement in both basic and clinical research. 

 

5.3.4. How do BM cDCs regulate BM macrophages? 

        In Zbtb46
dtr

 bone marrow chimeras, the ablation of BM cDCs was observed 1 day after DT 

treatment, and the ablation of BM macrophages was observed at day 2. Our data suggests that 

BM cDC ablation may induce a secondary, non-cell autonomous loss of BM macrophages. 

However, the mechanism involved in this regulation remains unclear. One possibility is that the 
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death of BM cDCs will release signaling molecules, such as chemokines and cytokines, which 

may induce cell death specifically in BM macrophages. Another possibility is that BM cDCs 

may provide critical signals to support the survival of BM macrophages through their release of 

survival factors or through direct physical interaction. To test these possibilities, gene expression 

profiles from both BM cDCs and BM macrophages will be compared to identify potential 

signaling pathways contributing to the survival or cell death of BM macrophages. In contrast to 

direct regulation, BM cDCs may regulate BM macrophages indirectly through intermediate cells, 

such as BMSCs. In addition to the above scenarios, BM cDCs and BM macrophages share the 

same myeloid origin, thus the loss of BM cDCs may affect their common progenitor to undergo 

a more cDC lineage committed differentiation, preventing the replenishment of BM 

macrophages. Future research may include characterization of myeloid progenitors, BMSCs and 

other cell populations in the bone marrow, before or after BM cDC ablation. Better 

understanding of the mechanisms involved in the secondary loss of BM macrophages will likely 

provide targets to the development of macrophage-depleting agents with significant clinical 

applicability.    

 

5.3.5. Assess the effects of BM cDC ablation on osteoblasts 

        Other than sinusoidal endothelial cells, we also assessed the effects of BM cDC ablation on 

osteoblasts. Zbtb46
dtr

 bone marrow chimeras were treated with DT for 6 days and we observed a 

significant decrease in osteocalcin (Bglap2) mRNA level in the whole bone marrow (Fig. 5.3A). 

Osteocalcin is mainly expressed by mature osteoblasts, thus our data suggests a suppression of 

osteoblasts following BM cDC ablation. To test the effects of BM cDC ablation on osteoblasts, 

Zbtb46
dtr

 bone marrow was transplanted into Col2.3
gfp

 mice in which osteoblasts are marked as 



 

 

113 

 

GFP
+
 cells, followed by DT or PBS treatment 8 weeks after transplant. Using flow cytometry, 

we quantified and sorted GFP
+
 osteoblasts from DT or PBS treated Zbtb46

dtr
 bone marrow 

chimeras. To our surprise, no significant difference was observed in the number of osteoblasts 

after BM cDC ablation, compared to the control group (Fig. 5.3B). In addition, we tested the 

expression of osteocalcin in sorted GFP
+
 osteoblasts and observed a significant decrease in the 

osteocalcin mRNA level after BM cDC ablation (Fig. 5.3C). Collectively, our preliminary data 

suggests that osteoblasts might be functionally suppressed following BM cDC ablation. 

        A prior study suggested that BM macrophage ablation might induce a functional 

suppression of osteoblasts
7
. To test whether BM cDCs may regulate osteoblasts in a 

macrophage-independent pathway, we compared bone marrow chimeras transplanted with 

Zbtb46
dtr

, CD169
dtr

 and CD169
dtr

:Zbtb46
dtr

 bone marrow for the ablation of BM cDCs, BM 

macrophages and both. The whole bone marrow osteocalcin mRNA levels in these mice suggest 

that BM cDCs may regulate osteoblasts in a macrophage-independent pathway (Fig. 5.3D). 

However, large variability exists in the osteocalcin mRNA level in CD169
dtr

 bone marrow 

chimeras, and further testing is necessary to support this hypothesis. One potential experiment is 

to transplant CD169
dtr

 bone marrow into Col2.3
gfp

 mice and treat these chimeras with 6 days of 

DT to ablate BM macrophages. We can then sort GFP
+
 osteoblasts and test their expression of 

osteocalcin. In addition, it is more important to figure out the mechanism involved in the 

regulation of osteoblasts by either BM cDCs or BM macrophages. These two populations mainly 

localize to the perivascular region and osteoblasts localize to the endosteal region, thus 

intermediate cells may be involved to relay the signals for their interactions. Further 

characterization of osteoblasts using RNA-seq analysis before and after BM cDC ablation may 

help detect potential pathways driving the suppression of osteoblasts. Potential factors activating 
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these pathways will then be tested in whole bone marrow or specific cell populations. 

Osteoblasts are a critical component for osteogenesis and understanding the suppression of 

osteoblasts will provide important insights to the development of potential therapies for bone 

related diseases.   

 

5.4. Conclusion 

        In this thesis, we further characterized the roles and functions of two bone marrow niche 

components. In Chapter 2, we show that Ocn-Cre, Dmp1-Cre and Tagln-Cre transgenes target 

different subsets of bone marrow mesenchymal stromal cells. We revealed that Ocn-Cre and 

Dmp1-Cre target broader cell populations than previously appreciated, which should be 

incorporated in the design of future study. We also suggest that Dmp1-Cre targeted stromal cells 

may be enriched for osteoprogenitors. In Chapter 3, we tested the function of CXCL12 from 

different subsets of stromal cells on B lymphopoiesis. We show that CXCL12 from Ocn-Cre 

targeted stromal cells is particularly important for the regulation of mature naive B cells and 

memory B cells, potentially through the regulation of their homing and/or retention. In Chapter 

4, we assessed the role of BM cDCs in the regulation of the HSPCs. We show that BM cDC 

ablation results in a secondary, non-cell autonomous loss of BM macrophages. We also 

discovered that BM cDCs may regulate HSPC trafficking in a macrophage independent pathway, 

at least in part, through its regulation of sinusoidal CXCR2 signaling and vascular permeability. 

Collectively, this thesis study helps improve our understanding of the heterogeneity of stromal 

cells and the regulation of B lymphopoiesis by different stromal cells. In addition, we propose a 

novel bone marrow niche component that regulates HSPC trafficking. Although future research 

is required to mechanistically study the stromal cells and BM cDCs, the results generated from 
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this study provide insights that are important for the advancement in both basic and clinical 

biology.   
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5.5. Figures 

 

Figure 5.1. CXCL12 expression in Ocn-Cre targeted stromal cells is important for the 

regulation of T cells. A&B. Femurs were harvested from Ocn-Cre:Cxcl12
flox/flox

 mice (A), 

Dmp1-Cre:Cxcl12
flox/flox

 mice (B), and Cxcl12
flox/flox

 control mice (A&B). Bone marrow was then 

analyzed using flow cytometry to quantify the number of different T cells, gated as T cell 

receptor (TCR)
+
 cells. Sample size, n = 4-6 mice per group in all experiments.  Data represent 

the mean ± SEM, **P < 0.01; ***P < 0.001. 
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Figure 5.2. The effects of BM cDC ablation on bone marrow stromal cells (BMSCs).  Bone 

marrow stromal cells were FACS sorted from Zbtb46
dtr

 bone marrow chimeras treated with 1 day 

of DT of PBS (n = 4 or 5 mice, respectively). Sorted cells were then used for RNA microarray 

analysis. A. Gene expression profiles from the two conditions were compared and visualized 

using t-Distributed Stochastic Neighbor Embedding (tSNE) analysis. B. The expression level of 

CXCL1 mRNA in BMSCs was quantified by probe signal. C. The expression level of CXCL2 

mRNA in BMSCs was quantified by probe signal. Data represent the mean ± SEM, **P < 0.01; 

“ns” means no significant difference. 
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Figure 5.3. The effects of BM cDC ablation on osteoblasts. A. The mRNA level of osteocalcin 

(Bglap2) in whole bone marrow of Zbtb46
dtr

 bone marrow chimeras, measured by RT-qPCR and 

was normalized to the expression level of β-actin (n = 5 mice for both groups). Zbtb46
dtr

 bone 

marrow was transplanted into irradiated Col2.3
gfp

 mice. After 8 weeks, these chimeras were 

treated with DT or PBS for 6 days. B. The number of GFP
+
 osteoblasts was measured by flow 

cytometry (n = 4 or 5 mice, respectively). C. GFP
+
 osteoblasts were sorted by FACS and their 

mRNA level of osteocalcin was measured by RT-qPCR (n = 4 or 5 mice, respectively). Zbtb46
dtr

, 

CD169
dtr

 and CD169
dtr:

Zbtb46
dtr

 bone marrow was transplanted into irradiated wildtype recipient 

mice. After 8 weeks, these recipient mice were treated with 6 days of DT or PBS. D. The mRNA 

levels of osteocalcin in whole bone marrow of these mice were measured by RT-qPCR (n = 

6,6,5,4 mice respectively). Data represent the mean ± SEM, *P<0.05; **P < 0.01; ***P < 0.001; 

“ns” means no significant difference. Samples were compared to PBS control group unless 

otherwise indicated.  
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