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ABSTRACT OF THE DISSERTATION 

Breath Biomarkers and an Expanded Role for Isoprenoids in Plasmodium falciparum  

Chad L. Schaber 

Doctor of Philosophy in Biology and Biomedical Sciences 

Molecular Microbiology and Microbial Pathogenesis  

Washington University in St. Louis, 2018 

Professor Audrey R. Odom John, Chair 

 

Malaria remains one of the deadliest infectious diseases worldwide, and efforts to combat it 

require novel insights into diagnostics, vector transmission, and drug inhibitor targets. Previous 

studies suggest that malaria infection causes hosts to preferentially attract the transmission 

vector, the Anopheles mosquito, but the mechanism and wider implication of these findings were 

not known. By analyzing the headspace above malaria parasite cultures, we identified several 

molecules that might engender mosquito attraction. We demonstrated that several of these 

molecules activate mosquito odorant receptors, including the known plant-emitted mosquito 

attractant α-pinene. During patient studies involving two independent pediatric clinical 

populations from Malawi, we observed that α-pinene and the related compound 3-carene are 

present at higher concentrations in the breath of infected patients versus uninfected patients. 

Furthermore, initial analysis of sweat samples identified additional malaria-induced volatile 

profile changes. These results provide a viable mechanism by which infection causes increased 

mosquito attraction, with potential applications for creating superior lures for mosquito vector 

elimination campaigns. With the same two populations, we evaluated two different methods for  
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breath collection. We found that inert sampling bags have superior performance to the inert Bio-

VOC syringe. Fascinatingly, using data from the sampling bag study, we discovered that patient 

breath contains volatile biomarkers that can distinguish between infected and uninfected patients. 

Ascertaining that malaria breath biomarkers exist paves the way for future research on new non-

invasive breath diagnostic tools. 

 

The metabolic fate of isoprenoids, the chemical class to which α-pinene and 3-carene belong, 

also provides potential targets for antimalarial drugs. Previous research has shown prenylation, 

the attachment of specific isoprenoid groups to proteins to facilitate proper localization and 

function, is an essential pathway in the parasite. However, the protein prenylation substrates for 

the malaria parasite were not known. Using a novel metabolic labelling strategy with an alkyne 

modified prenyl analogue, we determined the entire complement of parasite prenylated proteins. 

These findings will aid ongoing efforts to design inhibitors against the parasite enzymes 

mediating prenylation. Initial evidence of a new series of parasite prenyl transferase, specifically 

farnesyl transferase, inhibitors is presented as well. 
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Chapter 1: Introduction 
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1.1 Overview 

 

Malaria has killed countless numbers of people during the millennia in which it has been a part 

of the human experience. Even today, with advances in detection, treatment, and prevention 

having reduced the burden of the disease to a fraction of historic levels, malaria affects hundreds 

of millions and kills hundreds of thousands each year [1]. Maintaining gains and pushing ever 

closer to the goal of worldwide malaria elimination requires a thorough understanding of the 

causative agent with an eye to how new insights can aid anti-malarial campaigns. 

 

This chapter aims to provide foundations and context for the remainder of the dissertation. It will 

establish the salient features of the malaria parasite, the state of malaria diagnostics, the method 

by which breath biomarkers are discovered and implemented, and the functioning of isoprenoids 

in the parasite. The chapter thereby prepares the reader to evaluate the merit and potential 

applications of my work as laid out in subsequent chapters.  

 

1.2 Malaria parasite overview and life cycle 

 

The causative agent of malaria is unicellular protozoan parasites of the genus Plasmodium. The 

two species that account for the vast majority of malaria infections in humans are P. falciparum 

and P. vivax. A minority of cases are caused by P. malariae and P. ovale. Occasionally, humans 

can become infected with non-human primate malaria species, most notably P. knowlesi [2]. The 
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focus of this dissertation will be on P. falciparum, which is thought to cause nearly all of the 

mortality associated with malaria and is the predominate species in Africa.  

 

Throughout its life cycle, as reviewed in [3] and summarized here, the parasite occupies two 

hosts: humans and mosquitoes of the genus Anopheles. Upon biting a human, infected 

mosquitoes transfer the mature mosquito-stage parasites, called sporozoites, into the new human 

host. At this stage, the parasites are extra-cellular and motile, moving from the site of the bite to 

the bloodstream and then the liver. Upon reaching the liver, sporozoites invade hepatic cells and 

transition to the asexual replicating liver stage. In this life stage, each sporozoite produces up to 

40,000 daughter parasites, called merozoites. Once the replicating parasites reach a critical point, 

the host liver cell ruptures, releasing the thousands of merozoites into the blood-stream and 

starting the next phase of the life cycle. 

 

The blood stage of the parasite, which is the stage responsible for the symptoms and mortality 

associated with malaria, is characterized by a continuous asexual replication cycle. A merozoite 

enters a red blood cell, a.k.a. erythrocyte, and establishes itself inside a parasitophorous vacuole, 

a membrane-bound compartment that separates the parasite from the cell cytoplasm. The 

merozoite matures into a more metabolically active trophozoite, the parasite digesting 

hemoglobin from the host cell and glucose from the bloodstream to fuel its growth. The 

trophozoite then divides into 10-30 daughter merozoites, the red blood cell rupturing to release 

the daughter merozoites into the bloodstream to continue the cycle. The entire blood stage cycle 

from merozoite invasion to daughter merozoite release takes around 48 hours, and its continual 

repetition can result in more than 10% of a host’s red blood cells being infected [4]. 
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A subset of merozoites will diverge from this cycle, transitioning to sexual forms known as 

gametocytes. Maturation of gametocytes takes roughly two weeks. Once matured, the 

gametocytes are able to complete the life cycle when taken up in the blood meal of a mosquito. 

The gametocytes sexually recombine in the mosquito midgut and progress through a series of 

stages in the mosquito until they end as sporozoites in the salivary glands, thus closing the circle 

and ready to infect a new human host. 

 

1.3 State of malaria diagnostics 

 

Accurate and available diagnostic tools are key to treating and containing malaria while 

simultaneously preventing emergence of drug resistance. The WHO currently recommends that 

all patients suspected of having malaria be diagnosed prior to treatment [1]. Along with many 

other factors, unnecessary prescriptions raise the risk of resistance emerging by providing 

opportunities for the parasites to experience sub-therapeutic drug concentrations [5]. A long list 

of antimalarials have become partially or totally ineffective due to the rise and spread of drug 

resistance [6–8]. The current front-line treatment, artemisinin combination therapy (ACT), itself 

has started to report cases of resistance in Southeast Asia [9–12].  

 

Of the several options for clinical malaria diagnosis, the gold standard for over 100 years has 

been Giemsa stained blood smear microscopy. While modified and optimized, this method has 

remained largely the same since Giemsa stain was first introduced in 1904 [13,14]. A sample of 

patient blood is drawn and spread across a microscope slide to produce a so-called “thick smear.” 
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The slide is then fixed in methanol and dyed with Giemsa stain. When observed under a light 

microscope, infection can be determined by the presence or absence of purple-stained parasites 

inside pink-stained red blood cells. With expert operators, this type of diagnosis can be highly 

accurate down to low parasite levels of 20-100 parasites/μL blood [15]. However, it is not 

without drawbacks. The accuracy and limit of detection is highly dependent upon the skill of the 

person preparing and reading the slide as well as the quality of supplies; accuracy in the field can 

be as low as 30% [16–20]. The high initial costs in terms of training and equipment also limit 

microscopy as a viable option in remote and resource-limited settings. 

 

These limitations have led to the development of rapid diagnostic tests (RDTs) that provide 

faster results with lower skill and cost requirements. RDTs act as lateral flow antigen detection 

tests. A small sample of patient blood is placed in a well along with a running buffer and dye-

bonded antibodies to both a Plasmodium (test) and human (control) antigens. The solution is 

drawn along a strip of chromatography paper, and, if present, the test and control antigens are 

captured and concentrated along with their matching dye-containing antibodies in two separate 

locations. If enough antigen, and thus dye-bonded antibody, is present, the dye will accumulate 

to a level that makes it visible to the human eye as a colored band on the paper strip [21]. The 

parasite antigen in most currently employed RDTs is either histidine-rich protein 2 (HRP2) or 

parasite lactate dehydrogenase (pLDH). HRP2, which is specific to P. falciparum, is the most 

widely employed test antigen in Africa. In terms of accuracy, RDTs have proven equivalent or 

superior to microscopy in endemic regions [15,22–25] and are now the diagnostic of choice in 

multiple settings with 312 million RDTs delivered worldwide in 2017 [1]. Furthermore, multiple 

studies have shown that the introduction of RDTs decreases antimalarial over-prescription, albeit 
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from a high base rate [26–28]. However, while more robust to user errors and product failures 

than microscopy, the accuracy of RDTs can also suffer dramatic reductions if not handled 

properly, and several tests on the market are unreliable at parasite burdens below 200 

parasites/μL blood [29–31]. Since HRP2 can remain at detectable levels in the bloodstream for 

up to a month after infection clearance, RDTs with HRP2 as the target antigen also have an 

intrinsic false positive rate [32].  

 

Another mounting issue for HRP2-based RDTs is the spread of parasites that have stopped 

producing the antigen. The first sub-population of parasites lacking HRP2 was documented in 

2010 in Peru, a follow-up study demonstrating that the percentage of HRP2-negative parasites 

had increased from 20% to 40% from 1998-2001 to 2003-2005 in the same region [33,34]. Since 

then, significant HRP2-negative sub-populations have been reported in India and Africa; in some 

cases, the HRP2-negative status has been linked to false negative HRP2-RDT results [35–39]. 

One mathematical modeling paper demonstrated that, given certain assumptions, HRP2-

negativity could spread throughout much of Africa [40]. However, the WHO and others have 

urged caution in extrapolating from recent reports and suggested guidelines to better assess the 

extent of HRP2-negativity moving forward [41,42]. Still, in the same report, the WHO called for 

identifying new target antigens. 

 

Beyond new antigens for lateral flow detection type RDTs, new technologies are needed to help 

improve malaria diagnosis. Several new approaches have been proposed, with a few like loop-

mediated isothermal amplification and insulated isothermal PCR having shown success in initial 

field trials (reviewed in [43]). The development of more accurate and reliable diagnostics should 
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help to mitigate the over-prescription of antimalarials due to lack of confidence in RDTs by 

health providers and/or patients [44]. Additionally, space exists for devices targeted at certain 

scenarios, such as case management in low-resource countries and malaria elimination 

surveillance efforts [45]. Non-invasive sampling has been identified specifically as a desirable 

feature for future diagnostics [43]. 

 

1.4 Introduction to breath VOCs 

 

The idea that the odor of a patient, particularly breath, can aid in diagnosis has a long history. 

Diagnostic odors range from the sickly sweet smell associated with diabetes to the urine smell 

indicative of uremia or kidney failure [46]. The compounds behind these scents, or other 

undetectable gaseous molecules that might be a sign of disease, were not known. The first step 

toward a more holistic understanding of breath compounds came when Linus Pauling noted over 

two hundred compounds present in breath by mass spectrometry in 1971 [47]. Indeed, a typical 

human breath contains several hundred compounds with many hundreds of compounds having 

been noted across currently available work [48].  

 

The nature of the compounds in the breath is understandably diverse, ranging from industrial by-

products to biogenic molecules. All these compounds fall under the broad category of volatile 

organic compounds (VOCs), organic molecules that partition into the gas phase at approximately 

room temperature. VOCs range from one to eighteen carbons long, their volatility decreasing 

with size, amount of unsaturation, and number of functional groups [48]. While over a thousand 

VOCs have been noted in human breath, there are patterns and constants. Two compounds, 
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isoprene and acetone, are virtually universally present in human breath and are also the most 

abundant compounds in breath, with levels in the high parts-per-billion (ppb) to low parts-per-

million range (ppm) [49–51]. All other VOCs, barring occasional high prevalence contaminants 

from diet or environmental scents or hazards, tend to be in the parts-per-trillion (ppt) to low ppb 

range with a large amount of observed variability [49]. This high variability in presence and 

abundance of VOCs is a fact of human breath research. For compounds originating in the 

environment or from ingested food, for example benzene (released from gasoline) and dimethyl 

sulfide (produced by garlic consumption), this variability can be explained by the large variety of 

environs and diets humans are exposed to [52,53]. Lifestyle choices can impact breath VOCs 

too, with smoking, for example, having especially dramatic effects on breath compounds [54]. 

For compounds thought to originate from human or microbiome metabolism, the causes for this 

variation are not well understood, but metabolism is exquisitely attuned to a wide range of 

stimuli, and the resulting VOC by-products reflect that fact. One example is the rapid change in 

isoprene levels brought on by physical exertion [55]. 

 

Determining whether a particular VOC is endogenous and what metabolic reaction produced it, 

though, is difficult. A common method to assess if a VOC is from an endogenous biological 

process versus the environment is to compare how prevalent it is in different sections of the 

breath [56]. The earliest part of the breath has the highest amount of contaminants from the 

environment and the oral cavity while the end, alveolar portion has the highest amount of 

compounds present in the blood or body cavity moving into the gas phase in the lungs. 

Comparisons can also be made between breath and room air samples. Regardless, if the VOC is 

higher in the end breath versus early breath (or breath versus room air), it is thought to be 
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endogenous. This method is not without its caveats (reviewed in [57]). Foremost among those 

caveats is that it does not discriminate between environmental VOC contaminants that become 

concentrated in the body versus VOCs produced in the body [58]. Even if a VOC is 

“endogenous,” it could be a product of the microbiome rather than human metabolism [59]. 

Foreign pathogens could also contribute, a possibility explored in the next section.  

 

Hundreds of breath VOCs are believed to have a human endogenous origin, but for most there is 

no evidence of their exact metabolic origins. Evidence for metabolic origins of VOCs tends to be 

correlative, such as ketogenic diets raising acetone levels, and thus acetone itself likely resulting 

from ketolytic processes [60]. Similarly, short chain fatty acids in breath were elevated after a 

glucose challenge and thus were linked to glucose metabolism [61]. Other lines of inquiry 

involve determining the VOCs generated by cell lines and then extrapolating to the metabolic 

processes known to be dominant in those lines (usually done in the context of cancer cell lines) 

[62–65]. More generally, the putative origins of VOCs are often based on either the molecule 

itself or a likely precursor being present in established human metabolic pathways [66].  

 

1.5 Breath biomarkers of disease 

 

Over the past decade, breath diagnostics have garnered increasing attention both for diseases 

lacking robust diagnostic options and as a non-invasive, easy-to-use alternative to established 

diagnostic tools (reviewed in [67,68]). To highlight a few notable examples, tuberculosis was 

diagnosed with over 90% accuracy in two recent field trials, one using a pilot point of care 

device and one using a potentially portable sensor system [69,70]. These point of care device 
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studies came after a string of studies demonstrating unique VOC profiles from both 

Mycobacterium cultures and infected patients [71–73]. Similarly, a set of sesquiterpenes was 

found to be indicative of Aspergillus in culture and then in breath samples from patients 

suffering from aspergillosis [74–76]. More broadly, multiple infectious agents have been linked 

to unique VOC profiles, whether from cultured specimens or infected patient breath (reviewed in 

[77,78]). Evidence for malaria is discussed in Chapter 3 and Appendix A. Outside of infection, 

chronic obstructive pulmonary disease (COPD) and lung cancer have been extensively 

investigated, and a large clinical trial for point-of-care lung cancer breath diagnosis is ongoing 

[79–82]. 

 

Discovery and validation of breath biomarkers plays a crucial role in establishing breath 

diagnostics for a given disease [67]. Discovery is the first step: a disease of interest has to be 

investigated to see whether it generates an observable change in affected patients’ breath VOC 

profile prior to further work. These breath biomarker studies involve breath collection, VOC 

capture, analysis of VOCs, data processing, and determination of biomarkers by classification 

algorithms and comparative statistics. 

 

While collecting breath may seem a straight-forward proposition, there are many variables to 

consider. Population size, the section of breath to be collected, and the mechanics of collecting 

the breath are all integral parts of a successful experimental design [83]. In exceptional cases 

where the disease of interest would be thought to influence VOCs in the upper airway or oral 

cavity, such as oral cancer or viral throat infections, alveolar breath is not the desired portion. 

The last section of the breath, a.k.a. the alveolar section, tends to be richest in VOCs reflecting 
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biological processes in the body and lowest in contaminants and thus is usually the most suitable 

breath portion for collection [56]. However, it can be difficult to consistently collect solely 

alveolar breath; sometimes this is achieved by having the patients exhale briefly before 

collection or by simply discarding the first few hundred milliliters of breath volume. Either 

approach can be hard to perform consistently across the entire test population though, so whole 

breath is sometimes collected to avoid such issues [57,83]. Recently, advanced devices that track 

CO2 levels (which exist in a gradient across each breath) and breath volume in real time have 

made consistent collection more achievable [84–86]. These devices also act to transfer the 

desired portion of breath directly onto a VOC capturing material. In most other cases, an 

intermediate step is required, with breath first collected in an inert container and then transferred 

to VOC capturing absorbent material. Examples of the inert containers include glass bulbs, iron 

gas canisters, inert polymer sampling bags, and inert syringes (reviewed in [68,87]). Sampling 

bags and one type of inert syringe, the BioVOC, are the two most widely utilized methods; their 

comparative merits and drawbacks are the subject of Chapter 4. 

 

After breath is collected, the VOCs present in the sample typically need to be captured for 

transport and later analysis. Samples can be maintained in sampling bags, glass bulbs, etc. for a 

period of time, but VOCs tend to diffuse out, react with the container surface, or otherwise 

degrade over a period of days [88,89]. Commonly, the breath sample will be stored for a few 

hours before VOC capture. For much breath research, capture involves driving the breath sample 

through a thermal desorption (TD) tube, which is a small glass or metal tube packed with tens to 

hundreds of milligrams of an absorbent resin that traps VOCs via absorption. Absorptive 

material can be thought of as a VOC sink: all VOCs with an affinity for the material will bind 
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until the material becomes saturated. When the time comes to analyze the bound VOCs, they are 

all released near-simultaneously by thermal desorption, which is achieved by rapidly heating the 

tube. The various properties, advantages, types of material, and permutations of TD tubes have 

been extensively reviewed by Woolfenden [90,91]. One important point is that VOCs bound in a 

TD tube stay quite stable for at least two weeks [92]. Finally, as an alternative to TD tubes, solid 

phase microextraction (SPME) fibers, which work via different physical processes, are also 

employed for capturing breath VOCs [87,93].  

 

For analysis of captured VOCs, the most common platform is gas chromatography mass 

spectrometry (GC/MS). This technology has been reviewed extensively elsewhere [94,95]. In 

brief, compounds are separated in time by the GC portion as they pass through a long non-polar 

column. Thus separated, only one to a few compounds reach the MS detector at a time. Upon 

entering the MS, the compounds are fragmented in a characteristic and consistent manner by 

bombardment with high energy electrons, and the molecular weight of each fragment is then 

determined. The molecular fragment data (usually represented as mass to charge, or m/z) along 

with the retention time from GC separation is relatively unique to any given compound. The 

combined amount of all fragments also gives an abundance readout for a compound. Thus, even 

with a matrix of hundreds of compounds such as breath, the structural characteristics and 

quantity of all the compounds can be determined. Two common analytical alternatives to GC/MS 

are selected ion flow tube (SIFT) MS and proton transfer reaction (PTR) MS (reviewed in 

[96,97]). Unlike GC/MS, SIFT and PTR breath samples are directly injected without pre-

concentration or capture. This method avoids the problems of VOC capture and degradation at 

the cost of not being able to concentrate VOCs or collect samples off-site. Additionally, SIFT 



13 

 

and PTR tend to have higher sensitivity, but provide less definitive structural data and fail to 

detect as broad a range of compounds. A final analytical option is sensor arrays and other so-

called electronic noses (eNoses). While occasionally used in biomarker discovery, they provide 

minimal to no data on the identity and quantity of individual VOCs and are of more interest in 

later stages as a point-of-care device after biomarkers have already been established (see below). 

 

After analyzing the samples, the raw data must be further processed to allow conclusions to be 

drawn. Due to the complex and often subtle interaction between a given disease and exhaled 

breath volatiles, the VOC changes are rarely able to be discerned “by eye.” For GC/MS, raw data 

is deconvoluted and aligned, generating a list of compounds and their abundance in each sample 

(discussed in detail [98,99]). Except for a priori VOCs of interest, univariate statistical methods 

cannot grapple with the high dimensionality of breath data. Principle component analysis (PCA) 

is useful for visualizing the overall distribution of samples and flagging outliers, but disease state 

is rarely the main driver of VOC variation. Thus, machine learning techniques are the tool of 

choice for identifying potential biomarkers [99,100]. Most relevant to biomarker discovery are 

supervised techniques, algorithms that detect the compounds that best classify the samples based 

on a parameter, in this case, disease state. The compounds so identified can be further 

investigated with univariate techniques, or, ideally, the supervised classifier model can be 

validated with a second, independent data set. 

 

After initial biomarker discovery, the next step in moving towards a true diagnostic is to validate 

the initial findings. Performing follow-on studies to ascertain whether biomarkers can be found 

across several study populations is critical due to the high variability inherent in breath data [67]. 
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Assuming these studies are successful, the final step is creating a true point-of-care (PoC) 

devices that can be applied in a clinical setting. Most of the efforts to transition from laboratory 

techniques to PoC have been with electronic noses (eNoses). This moniker applies to a wide 

range of different sensor array systems, all of which output distinct patterns corresponding to the 

overall composition of a breath sample. Knowledge of the chemical classes and abundances of 

potential biomarkers help in selecting and tuning sensor systems for optimal performance. While 

increasingly cheap and reliable, eNoses are only now starting to become viable as clinical 

diagnostics, and there are still technical barriers to overcome [101]. If a few high abundance or 

chemically distinct biomarkers are established for a disease, a targeted sensor could be designed. 

However, it is rare for a disease to be diagnosable by a small number of breath VOCs. 

Alternative technologies based on miniaturized mass spectrometry devices are another potential 

avenue for developing PoC breath diagnostics [68].  

 

1.6 Introduction to isoprenoids 

 

Isoprenoids are perhaps the most diverse class of naturally occurring compounds with over 

25,000 known, but all derive from the same precursor: isopentyl pyrophosphate (IPP), also called 

isopentyl diphosphate (IDP) [102]. There exist two dedicated pathways for generating IPP. In 

mammals, some bacteria, and plant cytosol, the mevalonate pathway is used. In Apicomplexa, 

the majority of eubacteria, and plant chloroplasts, the methylerythritol phosphate (MEP) pathway 

is used. Despite producing the same end product, the two pathways are metabolically distinct 

with no overlapping enzymes or intermediates. With Apicomplexa, including Plasmodium, the 

entire synthesis pathway is localized to the eponymous apicoplast, a non-photosynthetic plastid 
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organelle derived from a secondary endosymbiotic event with a red algae [103,104]. Notably, the 

MEP pathway enzymes are one of several plant-like systems retained from the endosymbiotic 

algal ancestor. 

 

IPP itself is a five-carbon building block with a high-energy pyrophosphate group helping to 

drive various addition and rearrangement reactions. IPP and its isomer dimethylallyl 

pyrophosphate (DMAPP) are condensed to form a 10-carbon molecule (geranyl pyrophosphate, 

GPP) to which additional IPP molecules can be added to create 15- (farnesyl pyrophosphate, 

FPP) and then 20- (geranylgeranyl pyrophosphate, GGPP) carbon molecules [104]. These 

molecules can be further modified by cyclization, rearrangement, and/or addition of other 

biomolecules to form the numerous down-stream products. As might be expected for such a 

diverse class of compounds, isoprenoids play a multitude of roles, including as antibiotics, 

signaling molecules, and lipid membrane stabilizers [103]. Two classes of isoprenoids are of 

particular importance in the context of the following chapters: prenyl groups and small volatile 

terpenes. 

 

Prenylation is the process of attaching a 15-carbon FPP or 20-carbon GGPP to the C-terminal 

end of a protein. Ubiquitous across eukaryotes, prenylation is an essential function; the prenyl 

groups facilitate membrane association and thus proper localization for substrate proteins. 

Important roles for prenylated proteins include extensive involvement in endomembrane 

trafficking as well as cell polarity and growth [105]. Several proteins become oncogenic due to 

improper prenylation, e.g. K-Ras, and prenylation inhibitors have garnered widespread interest 

as possible chemotherapeutics [106,107]. Multiple studies have noted inhibition of parasite 
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growth when treating Plasmodium with various prenylation inhibitors, leading to the conclusion 

that prenylation is essential for Plasmodium [108–110]. These studies have also engendered 

interest in “piggy-backing” prenylation inhibitors developed for cancer as potential new anti-

malarials [111,112].   

 

Three classes of proteins catalyze prenylation: farnesyl transferase (FT), geranylgeranyl 

transferase type I (GGT-1), and geranylgeranyl transferase type II (GGT-2). FT and GGT-1 

recognize the “CaaX” box, a C-terminal domain consisting of a cysteine followed by two 

aliphatic amino acids and a variable terminal amino acid. The identity of the final three amino 

acids broadly determines whether the protein will be a substrate for a FT or GGT-1, though these 

rules are not definitive [113]. Both of the transferases dephosphorylate and conjugate a prenyl 

molecule (either a FPP or GGPP) to the cysteine in the CaaX box, and the final three amino acids 

are subsequently cleaved off by a separate enzyme [105]. Rather than a CaaX motif, the GGT-2 

recognizes a terminal CC or CXC, with additional proximal amino acids contributing to substrate 

recognition. These type II transferases dephosphorylate and conjugate two GGPP molecules, one 

to each cysteine [105]. Despite annotations for all three transferases and evidence of prenylation 

occurring, only a handful of Plasmodium proteins were known to be prenylated until recently, as 

discussed in Chapter 4 [114,115].  

 

In addition to prenyl groups, the subset of small, volatile, hydrocarbon isoprenoids known as 

terpenes is of particular interest to the current work. The two most common varieties, 

monoterpenes and sesquiterpenes, are formed, respectively, by geranyl pyrophosphate (GPP) or 

FPP being dephosphorylated to form a reactive carbocation before undergoing an intramolecular 
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attack and rearrangement. Typically, the result is a cyclic or even poly-cyclic hydrocarbon. 

While all terpenes proceed by a carbocation intermediate, a wealth of possible end products are 

possible, and hundreds of terpene synthase enzymes have been described, the exact product 

dictated by the properties of the enzyme-binding pockets [116]. With the exception of a select 

few non-plant eukaryotes, terpene synthesis is limited to prokaryotes, fungi, and plants [117]. 

One well-described role for these compounds is as defense molecules released to deter or kill 

predators and parasites. Their other main role is as signaling molecules both to members of the 

same species as well as to other, mutualist species [102]. It is in this capacity that terpenes are 

recognized as the scents and aromas associated with plants, especially flowers and fruiting 

bodies.  

 

A key example of terpenes as signaling molecules is their use by plants to attract pollinating 

insects, a phenomenon observed, or at least inferred, across multiple species [118]. Mosquitoes, 

specifically the malaria vector genus Anopheles, are no exception, with several studies observing 

mosquito attraction to terpene-containing blends mimicking plant aromas [119–121]. Mosquito 

odorant receptor response to terpenes is discussed further in Appendix A. As female mosquitoes 

both take blood meals and feed on plant nectar, they are also attracted to human-associated 

scents. Both human scent mimicking and mosquito-attractive plant scents have been piloted in 

mosquito mass trapping campaigns, a promising strategy for malaria control [122,123]. An 

intriguing question has been whether infection status could serve to influence host odors in a way 

that augments mosquito attraction. A number of studies have found evidence that this does occur, 

but the mechanism was unknown [124–128]. How this intersects with terpenes is part of the data 

explored in Chapters 2 and 3 and Appendixes A and B. 
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2.1 Abstract 
 

Current evidence suggests that malaria infection could alter patient breath metabolites, a 

phenomenon that could be exploited to create a breath-based diagnostic test. However, no study 

has explored this in a clinical setting. To investigate whether natural human malaria infection 

leads to a characteristic breath profile, we performed a field study in Malawi. Breath volatiles 

from children with and without uncomplicated falciparum malaria were analyzed by thermal 

desorption-gas chromatography/mass spectrometry. Using an unbiased, correlation-based 

analysis, we find that children with malaria have a distinct shift in overall breath composition. 

Highly accurate classification of infection status was achieved with a suite of six compounds. In 

addition, we find infection correlates with significantly higher breath levels of two mosquito-

attractant terpenes, α-pinene and 3-carene. These findings attest to the viability of breath analysis 

for malaria diagnosis, identifies candidate biomarkers, and identifies plausible chemical 

mediators for increased mosquito attraction to malaria-infected patients.  

 

2.2 Introduction 

 

Malaria remains a critical global health concern that affects hundreds of millions of people each 

year [1]. The most deadly form, caused by the parasite Plasmodium falciparum, remains a 

particular burden throughout sub-Saharan Africa. Diagnostic testing for malaria is crucial for 

acute fever management in the clinic and also for public health campaigns aimed at monitoring 

and control [2]. Current clinical practice depends on the “gold standard” of microscopic 

examination of patient blood samples, with increasing use of rapid diagnostic tests (RDTs) based 
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on lateral flow format detection of parasite antigens [3,4]. Both methods can achieve high 

accuracy rates, but often face prohibitive cost and skill requirements in many endemic settings 

[3]. While RDTs demand fewer human and capital resources, a number of factors can lead to 

dramatically lower accuracy than microscopy [5]. Further, the most widespread RDTs, based on 

detection of the P. falciparum protein HRP2, have an intrinsic false positive rate, as the parasite-

derived antigen remains in the bloodstream up to a month after infection clearance [6]. 

Worryingly, false negative results are now rising due to the spread of parasite populations 

lacking the HRP2 antigen in India, Peru, and Africa [7–12]. In some geographical regions, more 

than 20% of surveyed parasite infections already lack HRP2 [12]. In 2016, the WHO put out a 

call for “new test antigens” in response to growing concerns about current RDTs [13].  

 

By investigating the existence and extent of breath biomarkers for malaria, new avenues for 

diagnostics become possible. Any given exhaled human breath contains hundreds of different 

molecules, known as volatile organic compounds (VOCs) due to their ready partition into the gas 

phase, and thousands of breath VOCs have been described [14]. Breath-based diagnosis operates 

on the presumption that pathological conditions create characteristic and reproducible changes in 

breath VOCs, as has been reported for an increasing number of malignancies and infectious 

diseases [15–18]. Determining if a given disease generates a unique, detectable breath VOC 

signature, i.e. a “breathprint,” represents the first step in development of a breath-based 

diagnostic, which has the possibility to be non-invasive and easy to perform [19]. 

 

Preliminary studies indicate malaria could generate just such a breathprint. For example, a 

number of alterations in breath compounds were observed during experimental, sub-microscopic 
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malaria in volunteers [20]. However, no study has yet investigated whether these or other 

patterns are observed in clinical malaria episodes, where the parasite burden is at least one 

thousand times higher, the infection has been present longer, and the sexual stage of the parasite 

has had time to develop. Additional evidence that malaria is a prime candidate for breath-based 

diagnosis comes from studies of mosquito behavior. The Plasmodium parasite requires 

Anopheles spp. vector mosquitoes to sustain transmission [3]. Studies in human, mouse, and 

avian malaria have repeatedly demonstrated increased mosquito attraction to odors from infected 

vertebrate hosts [21–25]. Thus, Plasmodium infection may alter host VOCs, which might then be 

detected in the breath. 

 

To evaluate for P. falciparum-specific changes in breath volatiles during natural human malaria 

infection, we performed unbiased breathprinting. We collected and analyzed breath volatiles 

from febrile Malawian children with and without uncomplicated P. falciparum malaria infection. 

In this work, we provide the first evidence that natural malaria infection correlates with global 

changes in breath volatiles that allow for accurate classification of infection status. Furthermore, 

we establish that volatile mosquito attractants are present at elevated levels in the breath of 

children with malaria. 

 

2.3 Methods 

 

2.3.1 Breath collection 

Prior to enrollment, approval for this study was obtained from both the Malawi College of 

Medicine Research Ethics Committee (# P.05/14/1572) and the Institutional Review Board of 
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Washington University School of Medicine (#201504128). Patients were recruited from two 

ambulatory pediatric centers in Lilongwe, Malawi. Samples were collected over a two-week 

period during February 2016 from children ages 3-15 presenting for care. Children who had both 

a positive malaria rapid diagnostic test (RDT) and blood smear were classified as having malaria 

(n = 17), while those with both a negative RDT and blood smear were enrolled as uninfected 

controls (n = 18). After informed consent was obtained from caretakers, vital signs and 

anthropometry were taken and a brief demographic and health history form was completed. 

Inclusion and exclusion criteria are detailed further in the Supplemental Information. Parasitemia 

was quantified at a later date using fixed and stained thin smears. For each sample, one thousand 

red blood cells were counted and inspected for malaria parasites by an experienced parasitologist 

blinded to the patient's clinical status. 

 

Breath collection was performed as previously reported with alterations detailed here [20]. In 

brief, ≥ 1 L of exhaled breath was collected in a 3 L SamplePro Flexfilm sample bag (SKC Inc.). 

Using a set flow pump (ACTI-VOC, Markes International), exactly 1 L of breath was pumped 

through an inert stainless-steel sorbent tube packed with Tenax 60/80, Carbograph 1 60/80, and 

Carboxen 1003 40/60 (Camsco). These are absorbent resins that capture VOCs present in the 

breath for transportation and later analysis. Sorbent tubes were stored at -20°C prior to shipment 

on freezer packs for off-site mass spectrometric analysis. 

 

2.3.2 Gas chromatography-mass spectrometry (GC/MS) analysis of samples 

Samples were analyzed by gas chromatography-mass spectrometry (GC/MS) one month after 

initial collection. All samples were run with a TurboMatrix 650 ATD (Perkin Elmer) connected 
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to a Leco Pegasus 4D GCxGC-TOFMS system. A gaseous standard mixture was added to each 

tube immediately prior to analysis. Raw data files along with patient infection status are 

available at the Metabolomics Workbench repository, where it has been assigned the Project ID 

PR000612 [26]. 

 

For analysis of the overall VOC profile, files were deconvoluted using MassHunter Qualitative 

Analysis (Agilent). Deconvoluted compound lists were imported into Mass Profiler Professional 

(Agilent) for alignment. Peaks were normalized to the 1,2-dichlorobenzene-D4 internal standard 

(m/z 150 @ 11.7 min). Compounds unique to individual samples were filtered out from further 

analysis, as were siloxane contaminants. 

 

 The compounds α-pinene, 3-carene, isoprene, acetone, and the 1,2-dichlorobenzene-D4 internal 

standard were specifically identified and quantified in the GC/MS data files using OpenChrom 

[27]. The abundances of these compounds in each sample were calculated by integrating the 

respective base ion peaks. Peak areas were normalized to the base ion peak area of 1,2-

dichlorobenzene-D4. For each specific compound, peaks with a normalized area of 0.0002 or 

less were considered at or below the limit of detection.  

 

2.3.3 Classifier 

Using the aligned, standardized compound list generated by Mass Profiler Professional, VOCs 

that were present in at least 20 participants at a raw signal of >20,000 counts were used in 

classifier analysis. Class labels were assigned to each subject based on their infection status and 

VOCs were sorted based on their correlation with infection status. The abundances of the six 
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most correlated VOCs were summed to create a cumulative abundance metric. Positively 

correlated VOC abundances (that is, abundances of compounds that were higher in malaria-

positive patients) were added while negatively correlated VOC abundances (that were lower in 

malaria-positive patients) were subtracted. A nearest mean classification algorithm (binary 

classification) with leave-one-breath-sample-out cross validation scheme was followed to assign 

predicted infection status. The predicted label [malaria (+) or malaria (-)], was compared with the 

actual status in order to quantify the performance as shown in Figure 1. The classification 

performance, as a function of number of VOCs included, was used to determine the optimal 

number of VOCs needed for identification (Supplementary Figure 1D). 

 

2.4 Results 

 

2.4.1 Patient population characteristics and breath sample quality control 

We performed a descriptive prospective case-control study of ambulatory pediatric patients in 

Lilongwe, Malawi. Cases were defined as having malaria on the basis of both rapid diagnostic 

testing and microscopic analysis of thick blood smears. Demographic and clinical characteristics 

in the malaria-positive versus malaria-negative patient populations are shown in Table 1 (n = 

35). Across all these characteristics, infected and uninfected cohorts were broadly similar, 

specifically in regards to potential confounding factors like fever. Diet, which can have an 

impact on breath volatiles, was fairly homogenous and was not markedly different between the 

two groups (Supplementary Figure 2). For infected patients, the average parasitemia was 2.2% 

(range: < 0.001% to 6%).  
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Breath volatiles were captured onto sorbent material and subsequently released by thermal 

desorption for analysis by gas chromatography/mass spectrometry (TD-GC/MS). To quality-

control for successful breath collection, the levels of the two most common and abundant breath 

VOCs, isoprene and acetone, were compared to room air controls [28]. For each patient, we find 

that the abundance of isoprene and/or acetone was at least twice the level observed in room air 

controls, confirming successful breath collection (Supplementary Figure 3).  

 

2.4.2 Correlation-based classifier identifies suite of six biomarkers with high 

diagnostic accuracy 

Using an unbiased correlation based approach, we identified candidate biomarkers that best 

differentiated malaria positive breath samples from malaria negative breath samples (Figure 1A). 

Following pre-processing (Figure 1B), GC/MS data was used to correlate the abundance profile 

of each VOC with malaria infection status. This strategy identified VOCs that were both 

positively and negatively correlated with infection status, indicating that P. falciparum infection 

leads to a distinct breathprint marked by both increases and decreases in specific breath 

compounds (Figure 1C). While no individual compound served as an adequate classifier in 

isolation, the cumulative abundance across the six VOCs with the highest absolute correlation 

values proved to be a robust strategy to classify infection status (Figure 2A). All six malaria-

associated VOCs—methyl undecane, dimethyl decane, trimethyl hexane, nonanal, isoprene, and 

tridecane—have been previously reported as present in human breath [14]. Isoprene is known to 

have an endogenous origin, while the other five VOCs are believed to be derived through 

oxidative stress-induced lipid peroxidation [28,29]. The three branched alkanes (methyl 

undecane, dimethyl decane, and trimethyl hexane) were annotated through manually curated 
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reference to a spectral library. The other three VOCs (nonanal, isoprene, and tridecane) were 

definitively identified by comparison to pure commercial standards. Characteristic data for all six 

compounds are provided in Supplementary Table 1.  

 

Together, the six candidate biomarkers yield a cumulative abundance metric, which provides a 

more Gaussian distribution than individual component features (Figure 2C). Critically, with an 

appropriate cumulative abundance threshold, we classified malaria infection status with 83% 

accuracy (Figure 2B-D, Supplementary Figure 1). Potential confounding clinical characteristics 

(including sex, age, and malnutrition) were not found to be associated with significant 

differences in cumulative abundance of these six biomarkers (Supplementary Table 2). Thus, we 

have identified six specific breath compounds that represent candidate biomarkers, whose 

targeted detection may be used for noninvasive diagnosis of malaria.  

 

2.4.3 Infected patients have elevated breath levels of mosquito-attractant 

terpenes 

We expect that other combination of breath compounds may also have diagnostic utility. As 

illustrated in Supplementary Figure 1B-D, the changes in breath volatiles that we observed as a 

result of malaria infection are not limited to the top six compounds. Including additional 

compounds (up to the top 30 highest correlated compounds) does not result in lower accuracy, 

and, in validation studies, alternative highly correlative compounds may have improved 

reproducibility. The full list of compounds used for unbiased discovery, and their correlation 

values, can be found in the Supplementary Information.  
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From this extended list, two compounds in particular, the monoterpenes α-pinene and 3-carene, 

drew especial attention. Previous in vitro studies have identified that cultured P. falciparum-

infected red blood cells produce a number of plant-like terpenes, including the monoterpene α-

pinene [30,31]. Plant-produced terpenes in general influence Anopheles spp. mosquito attraction 

and feeding behavior [31]; these mosquitoes feed on plant-derived nectar in addition to the blood 

meals taken by females. 

 

Using base ion peak areas, we find that the mean abundances of α-pinene and 3-carene were both 

significantly higher (p = 0.04 with 20% higher mean and p = 0.01 with a 28% higher mean, 

respectively) in the breath of children with malaria compared to uninfected children (Figure 3). 

To confirm that the changes in α-pinene and 3-carene did not reflect a general trend towards 

increased capture of monoterpenes during malaria infection, we evaluated levels of the 

structurally similar terpene (+)-limonene. We find that (+)-limonene was not increased in 

abundance in the breath of children with malaria (Supplementary Figure 4). Additionally, 

potential confounding clinical characteristics (including sex, age, and malnutrition) were not 

found to be associated with significant differences in α-pinene and 3-carene abundances 

(Supplementary Table 2). Using a receiver operator characteristic curve analysis, we found that 

breath levels of either α-pinene or 3-carene categorized malaria infection status with a maximum 

accuracy of 69% and 77%, respectively (Supplementary Figure 5). 

 

2.5 Discussion 
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Despite impressive gains over the last two decades, only half of children with fever in Africa 

receive diagnostic testing for malaria as per WHO recommendations [1]. Given the costs of 

traditional microscopic blood smears and the caveats of intrinsic false positives and rising false 

negatives with HRP2-based RDTs, the case is clear for innovative alternatives. In this work, we 

provide the first report of candidate diagnostic biomarkers and elevated mosquito attractants in 

the breath of P. falciparum-infected children from a typical malaria-endemic clinical setting.  

 

This study demonstrates the promise of breath testing for malaria diagnosis. We find robust and 

global differences in breath VOC composition based on infection status (Supplementary Figure 

1B), with as few as six breath volatiles used to provide a classification accuracy of 83% (Figure 

2). The patterns of breath volatiles identified in this population of Malawian children with 

uncomplicated falciparum malaria will require extensive validation in heterogeneous locations 

and populations. However, these initial studies provide a solid framework upon which to build a 

possible future diagnostic test. Targeted testing for specific volatiles may be feasible. 

Alternatively, so-called “eNose” technology may have features more suitable to rapid, field-

stable, point-of-care testing in malaria-endemic settings. eNoses implement sensor arrays and 

pattern recognition technology to describe the chemical composition of complex volatile 

mixtures, such as breath [32]. One such existing commercial device, Aeonose, was used in a 

recent clinical study of pulmonary tuberculosis, achieving a diagnostic sensitivity of 88% and 

specificity of 92% [33]. Although technological barriers persist for clinical implementation [32], 

less extensive adaptation may be required to implement eNoses in scenarios in which 

noninvasive testing would be highly valuable, such as border-crossings and population-based 

screening efforts in elimination settings, a not insignificant need [2].  
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In the breath of children with malaria, we find increased levels of two terpenes, a class of 

biomolecules often used by plants for insect communication. Elevated quantities of specific 

breath terpenes (Figure 3) represent a biologically plausible chemical mechanism for the finding 

that malaria infection increases Anopheles spp. host attraction [22–24]. In particular, we propose 

that the monoterpene α-pinene represents a strong candidate to be considered as a malaria-

induced volatile mosquito signal. In culture, increased α-pinene levels have been observed 

reproducibly upon P. falciparum infection of host cells [30,31]. In addition, this terpene is a 

direct, potent, and specific activator of Anopheles gambiae odorant receptors (AgOR21 and 

AgOR50), confirming that the primary mosquito vector expresses the biochemical machinery to 

detect this molecule [30]. Finally, several lines of evidence suggest that α-pinene specifically 

modulates mosquito feeding behavior. Both α-pinene and the related 3-carene are among the 

volatiles produced by mosquito-preferred nectar-providing plant species [34,35]. In addition, a 

blend of volatiles containing α-pinene enhanced Anopheles mosquito blood feeding to the same 

degree as Plasmodium infection [31]. Because malaria-induced volatiles are chemically identical 

to those produced by mosquito-preferred plants, our findings indicate that the malaria parasite 

may hijack mosquito behavior to increase transmission. Future studies are required to evaluate 

whether similar strategies may be used by additional vector-borne microbial pathogens. 

However, mosquito attraction is highly complex and the contribution of these elevated 

monoterpenes to the overall increased preference for malaria-infected hosts will require 

dedicated mosquito behavior testing.  
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Our work also highlights the potential utility of α-pinene and other terpenes as components of 

superior odor-baited mosquito traps. Successful mass trapping campaigns depend on human 

scent-mimicking odor baits [36], with some initial promise seen from lures composed of plant 

attractants, including α-pinene [37,38]. New odor baits blending human- and plant-derived 

attractant compounds may prove powerful tools for boosting the efficacy of malaria control 

efforts.  

 

There are several potential limitations to our findings. Our study patients were largely 

homogeneous with respect to ethnicity, diet, and geographical location. Additional independent 

validation of our candidate biomarkers in both pediatric and adult patients in a variety of settings 

is necessary. Our results are also distinct from the previous breath metabolite findings reported 

by Berna et al. from experimentally-induced, submicroscopic, P. falciparum-infected, naïve 

healthy adults [20], which identified increased levels of four small thioethers as the best 

classifier of infection status. Using a similar collection protocol, these specific thioethers were 

only observed in the breath of a single patient, who tested negative for malaria. Thus, the 

thioethers may prove to be markers of the earliest stages of infection, but subside by the time an 

individual presents for care. The longer time between sample collection and analysis, as well as 

different sorbent material, may also explain an absence of thioethers in this study. Similarly, the 

failure to identify our six biomarkers and elevated terpenes by Berna et al. may be the result of 

the marked difference in parasite burden or age between the two study populations. The 

experimentally infected adults achieved a maximum parasitemia of < 2.5*10-6 %, using a 

conversion factor of 4 million red blood cells per microliter, nearly one hundred thousand times 

less than the average parasitemia in our study. In addition, our study participants are likely to 
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have had multiple previous episodes of malaria. Prior parasite exposure may be required for 

host-generated volatiles produced during P. falciparum infection. Finally, children with 

uncomplicated falciparum malaria virtually always carry gametocytes, the sexual stage of the 

parasite required for mosquito transmission [39–41]. Because gametocytes take more than a 

week to mature, they are not present during experimental infections, and therefore examination 

of experimental malaria patients will miss gametocyte-specific volatile changes. The increased 

mosquito attraction observed during malaria infection appears to require the presence of 

circulating gametocytes [22–24]; this was most recently highlighted in the largest experimental 

cohort to date [21]. Future studies will evaluate the correlation between our candidate biomarkers 

and parasite burden, prior parasite exposure, and gametocyte carriage. 
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2.6 Figures 
 

 

 

Figure 1. Presence of malaria infection corresponds with an altered breath VOC profile. A, 

Schematic of the analytical approach followed to classify breath samples. B, Representative 

GC/MS total ion chromatograph. After removal of contaminants and normalization, a log2 

operator was applied to compress the abundance values obtained from each subject. For 

visualization, the abundance of each volatile organic compound (VOC) is represented as a color 

bar shown below the GC/MS chromatograph. Red numbers indicate the six VOCs with the 

largest absolute correlations. C, Z-score abundances for the six VOCs with the highest absolute 

correlation with malaria infection status are shown. Asterisk (*), compound identity confirmed 

by comparison to pure standard. Compound structures and properties provided in Supplementary 

Table 1. 
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Figure 2. Accurate classification of falciparum malaria infection status achieved with six breath 

VOCs. A, Schematic of the classification approach. The internal standard normalized abundance 

values of the six VOCs are linearly combined to create a cumulative abundance metric. 

Negatively correlated VOCs are subtracted rather than added. B, Distribution of cumulative 

abundance of biomarkers from children with (red) or without (blue) falciparum malaria. C, 

Cumulative abundance of the six VOCs across all subjects shows clear separation between the 

two populations. D, Confusion matrix of actual and predicted malaria infection status. Displayed 

are the percentages of patients in each class. 83% of classifications were correct, with a 

specificity of 94% and sensitivity of 71%. 
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Figure 3. Malaria infection correlates with elevated levels of volatile mosquito-attractant 

terpenes. A, Structure and features of volatile terpenes α-pinene and 3-carene. MW = molecular 

weight, RT = retention time. B, Breath levels of α-pinene, left, and 3-carene, right, in children 

without (n = 18) and with (n = 17) falciparum malaria. Abundance quantified by peak area of 

base ion normalized to internal standard. Mean and standard deviation are shown. Student’s t-test 

used to assess for significant difference between means.  
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Supplementary Figure 1. Cumulative VOC abundance accurately diagnoses malarial infection. 

A, Combined heat map of all patient VOC profiles shows no pattern between subject groups. 

Rows are profiles of individual patients, columns are individual VOCs sorted in order of elution 

time. B, Same as panel A, but with VOCs sorted in order of descending correlation with class 

labels. Green boxes highlight regions of adundance difference between the two subject groups. 

C, Classification map of all patients. Top half, malaria negative (-) subjects; bottom half, malaria 
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positive (+) subjects. Classifications do not change substantially with inclusion of additional 

VOCs (up to 42). D, Diagnostic accuracy peaks at 83% using as few as six VOCs. Leave-one-out 

cross validation yielded an accurate classification rate of 77%. Abundance values were 

normalized to an internal standard. 
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Supplementary Figure 2. Dietary recall does not show major differences based on infection 

status. Malaria infection status (Negative or Positive) indicated as in legend. Patients were asked 

to list all food and drink they had consumed in the previous 24 hours. Nsima is a maize-based 

thick porridge. “Other Vegetables” is a catch all for a number of green, leafy vegetables. 

Mandasi is a dough-based pastry. 
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Supplementary Figure 3. Breath sample quality control confirms presence of common and 

abundant breath volatile organic compounds. A, Structure and features of isoprene and acetone. 

MW = molecular weight, RT = retention time. B, Abundance of isoprene in breath samples and 

room air. C, Abundance of acetone in breath samples and room air. In order to verify that breath 

samples were successfully collected, the abundance of isoprene and acetone were compared 

versus room air controls. Each breath sample had at least a two-fold higher abundance versus 

room air for isoprene, acetone, or both. Abundance quantified by the base ion peak area 

normalized to an internal standard. Room air control n = 2, malaria negative n =17, malaria 

positive n = 18. Zero values were adjusted to the limit of quantification (0.0002). Mean and 

standard deviation are shown. 
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Supplementary Figure 4. Infected patients do not have higher breath abundance for all 

monoterpenes. A, Structure and features of (+)-limonene, a structurally distinct monoterpene 

from α-pinene and 3-carene. MW = molecular weight, RT = retention time. B, (+)-limonene 

abundance in malaria negative and positive patients. Abundance quantified by peak area of base 

ion normalized to internal standard. Mean and standard deviation are shown. Student’s t-test 

used to calculate significance. Malaria negative n =17, malaria positive n = 18. Zero values were 

adjusted to the limit of quantification (0.0002). Identity of (+)-limonene confirmed by 

comparison to true standard. 
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Supplementary Figure 5. Receiver operator characteristic (ROC) curves for terpenes of interest 

as malaria diagnostics. Curves were computed using internal standard normalized abundance 

values. Dotted line indicates expected results if predictive power is no better than random 

chance. Position with maximum likelihood ratio for each curve indicated by point. Using the 

threshold value at this point gave an overall accuracy of 69% for α-pinene and 77% for 3-carene.  
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2.7 Tables 
 

Table 1. Patient demographic and clinical characteristics 

 

 
Malaria Positive  

(n = 17) 

Malaria Negative 

 (n = 18) 

p value1 

Demographics    

Age, median years (IQR) 8 (6-10) 7 (5-8.5) 0.33 

Female, n (%) 8 (47) 10/17 (59) 0.73 

Reported Symptoms, n (%) 
   

Fever 16 (94) 15 (83) 0.60 

Diarrhea 0 (0) 2 (11) 0.49 

Vomiting 5 (29) 4 (22) 0.71 

Headache 16 (94) 14 (78) 0.34 

Abdominal Pain 13 (76) 17 (94) 0.18 

Muscle/Joint Pain 12 (71) 4 (22) 0.007 

Other, n (%)    

Chronic Malnutrition2 5/16 (31) 3 (17) 0.43 

Acute Malnutrition2 0/16 (0) 1 (6) 1 

Uses Bednet 9 (53) 10 (56) 1 

Malaria within past 3 

months 
3 (18) 5/17 (29) 0.69 

 

Data represented as number (%) except for age. If one or more patients were excluded due to 

gaps in the record, number given is fraction of total. Abbreviation: IQR, interquartile range. 

1 Fisher’s exact test or Mann-Whitney U-test used as appropriate to calculate p values. 

2 Chronic and acute malnutrition defined respectively as height-for-age Z-score or BMI-for-age 

Z-score two or more standard deviations below median.  
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Table S1. Properties of candidate diagnostic compounds identified by correlation analysis. 

 

Compound Name Structure 
Base Ion 

(m/z) 

Retention Time 

(min) 

Retention 

Index1 

4-methyl 

undecane 

 
43 14.52 1113 

Nonanal2 

 

 
57 14.25 1104 

Isoprene2 

 

 
67 1.50 520 (lit.) 

Tridecane2 

 

 
57 20.26 1300 

3,7-dimethyl 

decane 

 
57 11.83 1031 

2,3,4-trimethyl  

hexane 

 
43 6.27 860 
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Values shown for the cumulative abundance calculated as per Figure 2A and abundances for α-

pinene and 3-carene calculated as per Figure 3. The first column in each group is the mean for 

patients negative for the characteristic indicated by the row title. The second column in each 

group is the mean for patients positive for the characteristic indicated by the row title. Mean and 

significance were not calculated for acute malnutrition as only one patient presented with it. 

1 Student’s t-test used to calculate p values. 

2 Chronic malnutrition defined as height-for-age Z-score two or more standard deviations below 

median.  
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Chapter 3: Breath biomarker discovery for 

malaria, a comparison of sampling methods   
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3.1 Abstract 

 

Breath-based sampling technologies have enormous potential as simple and non-invasive point-

of-care diagnostic devices. Breath biomarker discovery relies on robust and reproducible 

analyses of the volatile compounds present in patient breath. Although a number of different 

breath collection modalities have been employed for biomarker discovery, few studies have 

compared the relative strengths and weaknesses of these methods. In this report, we compare two 

of the most common breath collection systems, a Bio-VOC and sampling bags, in a field setting 

for malaria biomarker discovery. Malaria is a prime candidate for breath diagnosis, and our study 

location in Lilongwe, Malawi, represents real-world testing conditions. Two pediatric cohorts 

were recruited two months apart, the first study using a Bio-VOC and the second using sampling 

bags. The efficacy of breath collection was assessed by quantifying levels of two high prevalence 

breath compounds, acetone and isoprene, as well as determining the overall number of breath 

compounds collected and their cumulative abundance. By each metric, the sampling bags were 

superior to Bio-VOC. Use of sampling bags yielded 9- and 12-fold higher levels of acetone and 

isoprene, respectively, and an average of 10-fold more total volatiles detected in each individual. 

Sampling bags were likely superior due to both the greater volume of breath collected and their 

less diffusion-prone design. Additionally, malaria-infected patients had elevated breath levels of 

two mosquito-attractant terpenes (α-pinene and 3-carene), supporting previous observations. 

 

3.2 Introduction 
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Test-and-treat strategies for control of infectious diseases depend upon simple and accurate 

diagnostics. For diseases such as malaria, which are endemic to resource-limited settings, large-

scale population screening efforts would also greatly benefit from non-invasive diagnostic 

strategies that do not require blood sampling or highly skilled laboratory personnel. Breath-based 

diagnostics have the potential to meet this critical need. A typical exhaled human breath contains 

hundreds of volatile organic compounds (VOCs) [1], and an expanding number of pathologic 

states have been linked to unique exhaled breath VOC profiles [2,3]. Discovery and validation of 

candidate breath VOC biomarkers are the indispensable first steps towards development of 

breath-based diagnostics [2]. A variety of methodologic approaches to breath collection and 

analysis have been used to date, and a comprehensive analysis of their comparative utility in a 

field setting is lacking.  

 

As a result of variability in the strategies used for breath collection, it is often challenging to 

compare results between studies. Breath collection methods are often determined by ease-of-use 

and cost considerations. The Bio-VOCTM (Markes International, UK), originally developed to 

monitor environmental exposure to workplace hazards, is among the simplest and least 

expensive options for breath collection [4–6]. This breath collection apparatus boasts an easy, 

straightforward collection scheme and a reusable design. In addition, the Bio-VOC has the 

capability to enrich for collection of alveolar breath. Alveolar breath most closely reflects 

circulating bloodstream levels of compounds versus ambient air contaminants and is therefore of 

particular interest for disease biomarker discovery [7]. These features have led to the Bio-VOC 

being the second most common breath collection system [8]. The most common collection 

system is inert sampling bags made of materials such as polyvinyl fluoride and biaxially-oriented 
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polyethylene terephthalate [9]. Sampling bags can collect a larger volume of breath; however, 

the bags are single-use, more costly, less facile, and do not accurately harvest any particular 

portion of the exhaled breath. Another alternative for breath collection is the use of dedicated 

electronic breath sampling devices that track CO2 levels and breath volume. Such devices allow 

for robust and highly accurate collection of particular breath portions. However, only a handful 

of these devices, including the BCA (Mensanna, New Jersey) and ReCIVA® (Owlstone, UK), 

are commercially available, there is little head-to-head comparative data, upfront costs are 

considerable, and they may not be suitable for field settings with high ambient temperatures, 

elevated humidity, and unreliable access to power [10,11].  

 

Malaria, caused by infection with protozoan parasites of the genus Plasmodium, represents a 

particularly promising opportunity for development of breath-based diagnostics. Over the last 

decade, rapid diagnostic tests (RDTs) for malaria diagnosis have been increasingly deployed and 

have contributed to a substantial decrease in malaria incidence worldwide. Rapid diagnostic tests 

primarily rely upon detection of an exported parasite-derived protein, Plasmodium falciparum 

histidine-rich protein 2 (HRP2). Unfortunately, the emergence and spread of P. falciparum 

strains that lack HRP2 expression has put these diagnostics at risk [12,13] and fueled interest in 

alternative diagnostic methods, including breath-based diagnostics. Previous studies have 

demonstrated the biological feasibility of malaria-specific breath biomarkers, as cultured P. 

falciparum-infected red blood cells release characteristic volatiles that may be exhaled in the 

breath [14]. A pilot study of the breath composition of adults with experimental P. falciparum 

infection identified candidate breath biomarkers (small thioethers) of these early-stage, 

submicroscopic infections [15].  
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To evaluate the possibility of breath VOC biomarkers for pediatric malaria infection, we recently 

performed two independent clinical studies to characterize the breath volatile profiles of 

Malawian children with and without uncomplicated falciparum malaria. Because the two studies 

used distinct methods for breath collection, together they also provide an opportunity to directly 

compare the performance characteristics of each collection system, as downstream analyses in 

each study were otherwise identical. Because of ease-of-use and cost considerations, the Bio-

VOC was used for breath collection in the first study. For the second, sampling bags were used 

in an effort to increase the volume of breath volatiles collected, and, using this data, we recently 

reported a suite of six breath VOCs that accurately diagnose uncomplicated pediatric malaria 

[16]. In the current work, we directly compare the results from these two sample collections, in 

order to interrogate the impact of breath collection method on VOC detection.  

 

3.3 Methods 

 

3.3.1 Breath collection 

Prior to enrollment, approval for these studies was obtained from both the University of Malawi 

College of Medicine Research and Ethics Committee (# P.05/14/1572) and the Institutional 

Review Board of Washington University School of Medicine (#201504128). Two independent 

pediatric cohorts were recruited, both from ambulatory pediatric centers in Lilongwe, Malawi. 

Children aged 3-15 years were eligible for inclusion in the study if, in the course of routine care, 

the treating clinician determined a need for malaria testing. Exclusion criteria included severe 

malaria or any other condition requiring urgent medical intervention, having received 
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antimalarial therapy within the past week, known diabetes, kidney, or liver disease, or inability to 

cooperate with breath sampling. 

 

The first recruitment period was in November 2015 and the second in February 2016, both 

during the “high” season for malaria. Children who had both a positive P. falciparum malaria 

RDT and blood smear were classified as having malaria, while those with both a negative rapid 

diagnostic test and blood smear were enrolled as controls. After informed consent was obtained 

from caretakers, vital signs and anthropometry were taken, and a brief demographic and health 

history form was completed.  

 

For the first study, samples were collected using a Bio-VOC breath sampler, a device which 

collects ~100 mL of exhaled, alveolar breath [17]. The Bio-VOC can be described as a 

chemically inert syringe open at both ends, pictured in Figure 1a. Study participants were 

instructed to take a normal breath in and then to exhale fully into the Bio-VOC. Since the volume 

of the syringe is smaller than the volume of a normal breath, the early portion of the breath is 

forced out by the later portion, thus semi-selectively retaining the alveolar portion of the breath. 

After each exhalation, a plunger is attached to one end of the Bio-VOC and a sorbent tube to the 

other. The retained breath is expelled through the sorbent tube by depression of the plunger. 

Three breath samples from each participant were collected and stored on a single sorbent tube. 

This process is diagrammed in Figure 1c and shown in Supplemental Movies 1 and 2. 

 

The breath collection protocol for the second study has been previously described [16]. In brief, 

≥ 1 L of exhaled breath was collected in a 3 L SamplePro Flexfilm sample bag (SKC Inc., 
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Pennsylvania). Using a set flow pump (ACTI-VOC, Markes International), exactly 1 L of breath 

was pumped through a sorbent tube. This method is pictured and diagrammed in Figures 1b and 

1d, and demonstrated in Supplemental Movie 3. Samples of room air were collected using both 

methods to assess possible environmental contaminants (n = 5 for Bio-VOC and n = 2 for 

sampling bags). 

 

For both studies, breath VOCs were captured onto identical sorbent tubes: inert stainless steel 

packed with Tenax 60/80, Carbograph 1 60/80, and Carboxen 1003 40/60 (Camsco, Texas). 

Prior to sampling, sorbent tubes were conditioned by flushing with 120 mL/min He at 290°C for 

one hour, or with 100 mL/min He at 320°C for two hours. All breath samples were stored at -

20°C prior to analysis. 

 

Following specimen collection, study participants returned to usual care as per the 

recommendations of the treating clinician. Antimalarial medications were provided for 

participants with positive malaria rapid diagnostic test results. Demographic and anthropometric 

data was entered into a database and height-for-age and BMI-for-age Z scores were calculated 

using Anthro Plus software (World Health Organization, Switzerland). 

 

3.3.2 Gas chromatography-mass spectrometry (GC/MS) analysis of samples 

Samples were analyzed by GC/MS one month after initial collection. All samples were run with 

a TurboMatrix 650 ATD (Perkin Elmer, Massachusetts) connected to a Pegasus 4D GCxGC-

TOFMS system (LECO, Michigan). A gaseous standard mixture was added to each tube 
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immediately prior to analysis. Detailed machine settings and protocol information were the same 

as previously detailed [16]. 

 

GC/MS data files were analyzed with OpenChrom [18]. The abundances of α-pinene, 3-carene, 

isoprene, acetone, and the 1,2-dichlorobenzene-D4 internal standard in each sample were 

calculated by integrating the respective base ion peaks. Peak areas were normalized to the base 

ion peak area of 1,2-dichlorobenzene-D4. Peaks with a normalized area of 0.0002 or less were 

considered at or below the limit of detection. One patient was removed from the malaria negative 

cohort for both terpenes using Grubbs’ test for outliers (α = 0.0001). 

 

For analysis of the overall VOC profile, files were deconvoluted using MassHunter Qualitative 

Analysis (Agilent, California). Deconvoluted compound lists were imported into Mass Profiler 

Professional (Agilent) for alignment. Peaks were normalized to the 1,2-dichlorobenzene-D4 

internal standard (m/z 150 @ 11.7 min). Compounds were given annotations using the 

“IDBrowser Identification” feature using the NIST v11 reference library. M/z expansion was set 

to -0.3 amu / +0.7 amu. Retention time (RT) matching was not employed. Internal standards, 

contaminants, and consistently marginal compounds were removed. 

 

3.4 Results 

 

3.4.1 Patient population characteristics and breath collection descriptions 

To evaluate the performance characteristics of distinct breath collection methods, we compared 

the findings from two separate breath biomarker discovery studies. Both studies were performed 
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at the same site in Lilongwe, Malawi, three months apart, and both were conducted during the 

wet season and reached their enrollment targets within two weeks. The two study populations 

were demographically similar. The populations did not differ significantly with respect to 

potential confounding clinical criteria (Table 1), with the sole exception of the percentage of 

children reporting abdominal pain (64% in the Bio-VOC study; 86% in sampling bag study; p = 

0.04), a finding of unclear significance.  

 

The two studies were methodologically distinct in the approach to pediatric breath collection. In 

brief, for the first study three breath samples were sequentially collected for each patient using a 

Bio-VOC device, an inert syringe that semi-selectively captures a portion of alveolar (end 

expiratory) breath (Figure 1a, Supplemental Movie 1). In the second study, multiple full breaths 

per patient were collected in an inert sampling bag, until more than one liter of breath was 

obtained (Figure 1b, Supplemental Movie 3). The two studies were otherwise nearly identical in 

downstream sample processing, as breath samples were transferred to a sorbent tube within 

minutes of collection, either by manually expelling the sample (Bio-VOC) or using a set-flow 

pump to draw the sample from the bag and through the tube (sampling bags) (Figure 1c, 

Supplemental Movie 2). Thermal desorption-GC/MS, using identical equipment and settings, 

was used to release, identify, and quantify captured breath VOCs from both studies. 

  

3.4.2 Comparison of efficacy of collection protocols  

In order to compare the efficacy of breath collection, we first compared the detected levels of 

two well-characterized breath VOCs, acetone and isoprene. Several factors make these two 

compounds (Figure 2a) particularly useful in monitoring the efficiency of breath capture. Most 
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breath VOCs are present at concentrations in the parts-per-trillion (ppt) to low parts-per-billion 

(ppb) range. In contrast, acetone and isoprene are highly abundant in human breath, typically 

present in concentrations from tens to thousands of ppb [19]. Both compounds are therefore 

reliably detectable by GC/MS through a large dynamic concentration range. Furthermore, both 

acetone and isoprene are present at higher levels in the body and breath than in ambient air, such 

that breath levels are unlikely to represent changes in environmental conditions [7,19].  

 

We find that both acetone and isoprene were reliably detected in breath samples collected by 

either method (Bio-VOC or sampling bags), with average abundance levels roughly ten-fold 

greater than levels found in room air controls (Figure S1). However, when breath was collected 

by Bio-VOC, levels of acetone and isoprene were both significantly reduced compared to breath 

samples collected via sampling bags (Figure 2b; p < 0.0001). Use of sampling bags resulted in 9-

fold higher levels of acetone and 12-fold higher levels of isoprene compared to Bio-VOC 

collection. The markedly lower levels of acetone and isoprene captured by Bio-VOC suggested 

that other breath compounds, expected to be present at yet lower concentrations, would likely be 

at or below the limit-of-detection using this method. 

 

To test this assumption, we thus qualitatively and quantitatively compared performance of each 

collection method across the range of breath VOCs. The raw data for GC/MS is visually 

represented as a total ion chromatogram (TIC), a plot of retention time versus detection signal 

strength. Comparing TICs from representative breath samples collected by Bio-VOC versus 

sampling bags (Figure 2c) illustrates the superior detection of breath VOCs using bag collection. 

When sampling bags are used, peak heights are higher and a greater number of peaks are visibly 
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present. To quantify these differences in overall VOC detection between the two collection 

systems, untargeted metabolomics was employed to determine the abundance of every 

compound present in the breath of each subject (see Supplemental Information and [16]). In 

order to minimize the impact of patient-to-patient variability, we restricted analyses to those 

compounds identified in the breath of at least 50% of all subjects for either study. By that metric, 

a stark difference was noted between the samples collected, depending on the breath collection 

method used (Figure 2d). Nearly 10 times as many compounds were detected with the sampling 

bag method compared to the Bio-VOC. This discrepancy in compounds detected was not offset 

by higher values for those peaks that were identified. Based on summing the peak areas for 

individual subjects, we find that the overall signal for the Bio-VOC was reduced as well, such 

that the mean total peak area was more than 7-fold lower than that of sampling bags. The 

restricted number of VOCs detected using Bio-VOC collection at least in part reflects the 

reduced volume of breath sampled. When a smaller breath volume is captured, fewer compounds 

will be collected at levels above the limit-of-detection by GC/MS (Figure 1c).  

 

3.4.3 Attractant terpenes moderately elevated in infected patient breath  

As expected, the inferior performance of the Bio-VOC hampers our ability to meaningfully 

compare breath profiling results between the two studies. Through analysis of breath compounds 

collected via sampling bags, we have previously reported a suite of six compounds that classified 

malaria infection status with 83% accuracy. In addition, we identified two potential mosquito 

attractant compounds, the terpenes α-pinene and 3-carene, which were present at higher levels in 

the breath of malaria-infected patients [16]. Importantly, we are unable to validate or reject these 

findings using the independent breath data obtained via Bio-VOC. When the Bio-VOC was used 
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for breath collection, five of the six classification biomarkers that were previously identified as 

consistent with malaria infection [16] were not detected in more than half of patients. The 

remaining biomarker, isoprene, was readily detected using Bio-VOC collection, but did not 

differ in abundance based on infection status (see Supplemental Information). Both potential 

mosquito-attractant terpenes, α-pinene and 3-carene, were successfully detected using Bio-VOC 

collection. However, as was found for the canonical breath compounds acetone and isoprene, 

detection of breath terpenes was also much reduced with Bio-VOC collection compared to 

sampling bags, with a 5-fold reduction in 3-carene and an 11-fold reduction in α-pinene levels 

across all patients between collection methods (p < 0.0001, Mann-Whitney U-test). Despite this 

limitation, we found that both terpenes demonstrate a pronounced trend towards higher 

abundance in the breath of malaria-positive patients. On average, individuals with malaria had 

breath levels of α-pinene and 3-carene that were 1.6-fold and 2.1-fold higher, respectively, than 

the breath levels of these compounds in uninfected individuals, although this finding did not 

reach statistical significance (Figure 3; p = 0.08 and p = 0.19). 

 

Potential confounding biological variables were also noted in the Bio-VOC study. Malaria-

infected subjects were more likely to be female (58% vs. 24% of malaria-negative; p = 0.04) and 

older (mean age 9 vs. 6; p = 0.02) (Table S1). However, we did not find that age correlated with 

terpene abundance (Figure S2), and neither α-pinene nor 3-carene levels differed significantly in 

female versus male subjects (p = 0.15 and 0.45, respectively; Table S2). 

 

3.5 Discussion 
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Human breath profiling generates an information-rich metabolic “breathprint” that reflects 

individual-specific information about many facets of health and disease, from gastrointestinal 

disorders to neoplasms [3,20,21]. In particular, analysis of breath volatiles shows increasing 

promise as a non-invasive diagnostic strategy for a variety of infectious diseases, such as 

tuberculosis, invasive fungal infections, and malaria [15,16,22–24]. Here we compare results 

from two exploratory breath biomarker discovery studies that employed distinct collection 

methods, Bio-VOC and sampling bags. To the best of our knowledge, this is the first reported 

comparison of these two breath collection techniques in a field setting. While a single prior study 

did report the inferior performance of Bio-VOC for breath composition of an individual child 

(analyzed once using sampling bags and once using Bio-VOC) [25], comprehensive comparisons 

of breath collection methods with consistent downstream analyses have been lacking.  

 

Understanding how breath metabolites change during a variety of pathological states is critical to 

informing the specificity of particular biomarkers. Several prior efforts have noted the number of 

VOCs observed across the sample population using a Bio-VOC method similar to the one we 

employed [7,26,27]. However, direct study-to-study comparisons have so far proven extremely 

challenging, due to the large number of additional variables involved in experimental designs. 

These differences include relatively modest experimental changes between studies, such as 

differences in absorbent resin and machine parameters. However, major confounders between 

studies include differences in the amount of breath collected, data pre-processing methodologies, 

and the type of detector utilized. For example, use of TD-GC/MS versus an alternative analytical 

technique, such as proton transfer reaction (PTR) mass spectrometry, brings in a range of trade-

offs such as VOC detection limits, likelihood of sample degradation, and metabolite resolving 
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power [9,28]. Given the lack of standardizations, the difficulty in comparing studies has been 

well noted across the breath biomarker field [9,22,29].  

 

Our current work provides strong evidence that Bio-VOC-based breath collection has inferior 

performance compared to breath collection using sampling bags. Breath collection by Bio-VOC 

yielded reduced levels of typical breath volatiles (acetone and isoprene) and fewer total VOCs 

present above the limit-of-detection (Figure 2). In part, these findings can be attributed to the 

reduced volume of breath collected (Figure 1c), as the Bio-VOC is estimated to have sampled 

between 264 and 387 mL total (based on 88-129 mL/breath), whereas the bags consistently 

sampled 1000 mL of breath [6,17]. Under field conditions, as in our study, actual collection 

volumes may be yet lower. Future studies are needed to determine if collecting additional breath 

(i.e. higher volumes) with the Bio-VOC can narrow the performance gap between it and 

sampling bags. 

 

Interestingly, the reduced volume of breath collected by the Bio-VOC (approximately 30% of the 

volume of sample bags) does not fully account for the approximately 10-fold reduction in breath 

acetone and isoprene levels compared to sampling bags. While breath VOC levels exhibit 

substantial biological variability, neither acetone nor isoprene have greater variability (based on 

95% CI, interquartile range, and coefficient of variation) in breath samples collected using Bio-

VOC compared to sampling bags. In addition, we find that the inter-subject variability in both 

our studies are well within the typical range for other breath analyses [19]. One possible 

explanation for the poorer-than-expected Bio-VOC performance is that sampling bags may be 

more air-tight in design. Once the requisite liter of breath is collected, there is negligible 
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potential for leaking or diffusion with sampling bags. In contrast, when sampling breath with the 

Bio-VOC, the investigator must retrieve the device from the patient and transfer breath contents 

over a sorbent tube, potentially permitting some VOC diffusion out of the open ends of the 

device prior to capture. An additional consideration is whether the Bio-VOC detects fewer VOCs 

because of exclusion of ambient contaminants, which would be a desirable feature. Collecting 

breath via sampling bags is expected to result in a more mixed breath sample (oral plus alveolar 

breath) with an increased number of contaminants compared to the end-expiratory (alveolar) 

breath that is harvested by Bio-VOC. Arguing against this possibility, the canonical breath 

volatiles acetone and isoprene predominate within the body and not the environment [7,19]. 

Additionally, many of the other annotated VOCs unique to the sampling bag study are also 

believed to have endogenous (not environmental) origins, including hexanal and the methylated 

alkanes [30].  

 

In our analysis of breath volatiles collected by sampling bags, we previously nominated six 

breath compounds as candidate biomarkers of malaria infection. Due to the inferior performance 

of the Bio-VOC, we were unable to evaluate those findings in this second independent cohort, as 

the majority of the previously proposed biomarkers were below the limit-of-detection. Our 

previous analysis also reported higher levels of two mosquito-attractant terpenes, α-pinene and 3-

carene, in the breath of malaria-infected children [16]. In the cohort whose breath was collected 

using Bio-VOC, we also find higher breath levels of α-pinene and 3-carene in malaria-infected 

individuals compared to uninfected controls, although this did not reach statistical significance. 

This failure to reach significance could be the result of greater variability in the Bio-VOC α-

pinene and 3-carene levels versus sampling bags levels. The coefficients of variation were 104% 
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and 130% for α-pinene and 3-carene for the Bio-VOC study, versus 28% and 30% for the 

terpenes for the sampling bags study. The greater variability is likely caused by measuring near 

the limit-of-detection with the Bio-VOC, versus well above it for the sampling bags. Regardless, 

the Bio-VOC cohort provides modest additional support for the hypothesis that malaria infection 

increases breath levels of mosquito-attractive terpene compounds. Together, both studies support 

the strong ongoing need for additional studies to validate malaria-induced breath changes, in 

hopes of pursuing development of much-needed new malaria diagnostics. 

 

The current work has several potential limitations. Although our two patient populations were 

largely similar in terms of overall clinical characteristics, they may differ in some unaccounted-

for manner that affects the number or diversity of VOCs detected. We also note that the Bio-

VOC was designed for use by adults, not the pediatric population (ages 3 to 15 years) under 

investigation in this work. However, the average forced vital capacity of children in this age 

range readily exceeds the volume of the Bio-VOC, suggesting that the poor performance of the 

Bio-VOC is unlikely to be a specific concern with respect to pediatric breath collection [31]. 

Finally, the studies compared in this analysis both employed a common method for pre-

concentrating breath VOCs prior to analysis via GC/MS, namely capture onto thermal desorption 

(TD) tubes. An alternative pre-concentration method, which has been used with Bio-VOCs, is 

solid phase microextraction (SPME) fibers [8]. Unlike TD tubes, SPME fibers are less dependent 

on the volume of breath collected [8,32]. Thus, additional investigation is necessary to confirm 

whether the conclusions reached here with regards to analysis via TD tubes may be extended to 

studies utilizing SPME fibers. 
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Altogether, our results strongly support the use of sampling bags over the Bio-VOC for breath 

biomarker discovery studies. Almost all human disease-specific VOCs that have been described 

to date are present in the breath in the parts-per-trillion (ppt) to low parts-per-billion (ppb) 

concentration range, and we find that the Bio-VOC demonstrates insufficient capacity to detect a 

diverse number of compounds within that range. The low cost and ease-of-use of the Bio-VOC 

cannot compensate for the improved performance of sampling bags. Specialized breath 

collection devices may prove more superior still. However, the cost barrier for these devices or 

even sampling bags calls for the development of a robust, low cost device for use in remote 

locations or for diseases with limited funding. 
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3.6 Figures 
 

 

 

Figure 1. Comparison of Bio-VOC and sampling bag for breath collection. Pediatric breath 

collection via Bio-VOC (a) and sampling bag (b). For each method, field-site video of breath 

collection is presented in Movie S1 and S2, respectively. c) and d) Schematic of breath collection 

methods for Bio-VOC and sampling bag, respectively. Step 1, the empty collection device. Step 

2, patient exhales into the collection device. Unique breath volatile organic compounds 

visualized as different color dots. Step 3, Sorbent tube is affixed to the collection device. Step 4, 

Breath volume driven through sorbent tube by depressing plunger or using an air pump. Breath 
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metabolites are captured on the sorbent tube. Step 5, Breath metabolites are released from the 

sorbent tube by thermal desorption and measured by GC/MS. LOD: limit of detection. Overall, 

the sampling bag (right) collects a larger volume of breath (Step 3) leading to a greater quantity 

of breath metabolites captured. This in turn is reflected as higher signals by GC/MS, including 

multiple breath metabolites that were undetectable via the Bio-VOC now being observed (Step 

5). 
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Figure 2. Comparison of breath volatile organic compounds (VOCs) using two different 

collection methods (Bio-VOC and sampling bags). a) Structure and chemical information for the 

two most common and abundant compounds in breath. MW = molecular weight, RT = retention 

time. b) Breath abundance of acetone and isoprene across the two studies. Median and 

interquartile range are shown. P-values, Mann Whitney U-tests. c) Portion of representative total 

ion chromatogram from both studies. * = internal standard, ** = column contaminant, number = 
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compound. Compound annotations are as follows: 1 = 1,3,5-cycloheptatriene, 2 = acetic acid, 3 = 

4-ethylbenzamide, 4 = hexanal, 5 = propyl-propanedioic acid, and 6 = 2,3,4-trimethyl-hexane. d) 

Comparison of total VOCs detected above the limit-of-detection in more than half of patients in 

one or both studies. 
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Figure 3. Breath abundance of candidate mosquito-attractant terpenes in Bio-VOC study. a) 

Structure and chemical information of the terpenes. MW = molecular weight, RT = retention 

time. b) Breath abundance of terpenes α-pinene, left, and 3-carene, right, in children without (n = 

20) and with (n = 26) falciparum malaria. Median and interquartile range are shown. For subjects 

in which compounds were not detected, abundance values were adjusted to the limit-of-

quantification (0.0002). P-values, Mann Whitney U-tests.   
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Supplementary Figure 1. Acetone and isoprene are significantly more abundant in breath 

samples versus room air. Higher levels of acetone and isoprene were seen in breath versus room 

air for both a) the Bio-VOC study and b) the sampling bag study. Median and interquartile range 

are shown. P-values, Mann Whitney U-tests.  
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Supplementary Figure 2. Terpene levels do not correlate with age in Bio-VOC study. 

Scatterplot for α-pinene (left) and 3-carene (right). Linear regression line with goodness-of-fit 

(R2) shown.   
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3.7 Tables 
 

Table 1. Comparison of patient demographic and clinical characteristics between the two study 

populations. 

 
Bio-VOC 

Study 
(n = 47) 

Sample Bag 
Study 

 (n = 35) 

p value1 

Malaria Positive, n (%) 26 (55) 17 (49) 0.66 

Demographics    

Age, median years (IQR) 8 (6-10) 8 (5-10) 0.86 

Female, n (%) 20 (43) 18/34 (53)  0.38 

Reported Symptoms, n (%) 
  

 

Fever 43 (91) 31 (89) 0.72 

Diarrhea 6 (13) 2 (6) 0.46 

Vomiting 19 (40) 9 (26) 0.24 

Headache 35 (74) 30 (86) 0.28 

Abdominal Pain 30 (64) 30 (86) 0.04 

Muscle/Joint Pain 23 (49) 16 (46) 0.83 

Other, n (%)    

Chronic Malnutrition2 9/46 (20) 8/34 (24)  0.78 

Acute Malnutrition2 3/46 (7) 1 (3) 0.63 

Uses Bednet 29 (62) 19 (54) 0.65 

Malaria within past 3 months 9/45 (20) 8/34 (24) 0.79 

Data represented as number (%) except for age. If one or more patients were excluded due to 

gaps in the record, number given is fraction of total. Abbreviation: IQR, interquartile range. Data 

for Sampling Bag Study reported previously [16]. 

1 Fisher’s exact test or Mann-Whitney U-test used as appropriate to calculate p values. 

2 Chronic and acute malnutrition defined respectively as height-for-age Z-score or BMI-for-age 

Z-score two or more standard deviations below median.   
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Table S1. Patient demographic and clinical characteristics between malaria positive and negative 

patients for Bio-VOC Study. 

 

Data represented as number (%) except for age. If one or more patients were excluded due to 

gaps in the record, number given is fraction of total. Abbreviation: IQR, interquartile range. 

1 Fisher’s exact test or Mann-Whitney U-test used as appropriate to calculate p values. 

2 Chronic and acute malnutrition defined respectively as height-for-age Z-score or BMI-for-age 

Z-score two or more standard deviations below median.  

  

 
Malaria Positive  

(n = 26) 
Malaria Negative 

 (n = 21) 
p value1 

Demographics    

Age, median years (IQR) 9 (7-10) 6 (4-8.5) 0.02 

Female, n (%) 15 (58) 5 (24) 0.04 

Reported Symptoms, n (%) 
   

Fever 25 (96) 18 (86) 0.31 

Diarrhea 3 (12) 3 (14) 1 

Vomiting 13 (50) 6 (29) 0.23 

Headache 21 (81) 14 (67) 0.33 

Abdominal Pain 16 (62) 14 (67) 0.77 

Muscle/Joint Pain 16 (62) 7 (33) 0.08 

Other, n (%)    

Chronic Malnutrition2 7 (27) 2/20 (10) 0.26 

Acute Malnutrition2 1 (4) 2/20 (10) 0.57 

Uses Bednet 11 (42) 18 (86) 0.003 

Malaria within past 3 months 6/24 (25) 3 (14) 0.47 
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Table S2. Median abundances and significance values for patients sorted by potential 

confounding clinical variables for Bio-VOC study. 

 α-Pinene 3-Carene 
 

Median 
Abundance 
(Positive) 

Median 
Abundance 
(Negative) 

p 
value1 

Median 
Abundance 
(Positive) 

Median 
Abundance 
(Negative) 

p 
value1 

Malaria Infection  0.0064 0.0036 0.08 0.0040 0.0019 0.19 

Demographics       

Female 0.0074 0.0037 0.15 0.0036 0.0023 0.45 

Reported 

Symptoms 
      

Fever 0.0050 0.0019 0.07 0.0026 0.0009 0.26 

Diarrhea 0.0032 0.0050 0.49 0.0027 0.0023 0.99 

Vomiting 0.0063 0.0037 0.10 0.0043 0.0022 0.06 

Headache 0.0050 0.0039 0.65 0.0023 0.0032 0.95 

Abdominal Pain 0.0041 0.0062 0.27 0.0026 0.0023 0.47 

Muscle/Joint Pain 0.0035 0.0054 0.20 0.0024 0.0029 0.45 

Other       

Chronic 

Malnutrition2 
0.0067 0.0039 0.49 0.0038 0.0020 0.30 

Acute 

Malnutrition2 
0.0027 0.0047 0.50 0.0025 0.0025 0.51 

Uses Bednet 0.0044 0.0047 0.36 0.0019 0.0036 0.29 

Malaria within 

past 3 months 
0.0052 0.0037 0.61 0.0027 0.0024 0.97 

Median Abundance (Negative) columns, the median normalized peak area values for patients 

negative for the characteristic indicated by the row title. Median Abundance (Positive) columns, 

median normalized peak area values for patients positive for the characteristic indicated by the 

row title.  

1 Mann-Whitney U-test used to calculate p values.  

2 Chronic or acute malnutrition defined as height-for-age Z-score or BMI-for-age Z-score 

(respectively) two or more standard deviations below median.  
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4.1 Abstract 

 

Severe malaria due to Plasmodium falciparum infection remains a serious threat to health 

worldwide and new therapeutic targets are highly desirable. Small molecule inhibitors of prenyl 

transferases, enzymes that catalyze the post-translational isoprenyl modifications of proteins, 

exhibit potent antimalarial activity. The antimalarial actions of prenyltransferase inhibitors 

indicate that protein prenylation is required for malaria parasite development. In this study, we 

used a chemical biology strategy to experimentally characterize the entire complement of 

prenylated proteins in the human malaria parasite. In contrast to the expansive mammalian and 

fungal prenylomes, we find that P. falciparum possesses a restricted set of prenylated proteins. 

The prenylome of P. falciparum is dominated by Rab GTPases, in addition to a small number of 

prenylated proteins that also appear to function primarily in membrane trafficking. Overall, we 

found robust experimental evidence for a total of only thirteen prenylated proteins in P. 

falciparum, with suggestive evidence for an additional two probable prenyltransferase substrates. 

Our work contributes to an increasingly complete picture of essential, post-translational 

hydrophobic modifications in blood-stage P. falciparum. 

 

4.2 Introduction 

 

Over the past 15 years, improved efforts at controlling malaria, caused by infection with the 

protozoan parasite Plasmodium falciparum, have significantly decreased the overall number of 

cases and childhood deaths attributable to severe malaria [1]. However, there remain over 200 
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million infections and over half a million deaths due to malaria each year [2]. Access to highly 

effective antimalarial therapies remains a cornerstone of malaria control efforts. Unfortunately, 

widespread resistance to former first-line agents, such as chloroquine, and emerging resistance to 

newer treatments, such as the artemisinin-combination therapies, endangers control of malaria 

worldwide [3,4]. 

 

Target-based antimalarial drug development depends on identification of essential biological 

processes in P. falciparum that are amenable to small molecule inhibition. Development of 

therapeutics for the developing world is hampered by a relative lack of commercial 

pharmaceutical interest. Therefore, one strategy has been to identify potential antimalarial target 

proteins whose human homologs have themselves been explored as pharmaceutical targets. 

These kinds of repurposing approaches thus harness the power of previous large-scale small 

molecule screening and development pipelines, in hopes of reducing the effort and expense of 

developing novel antiparasitics for resource-limited settings. 

 

Protein prenyltransferases have emerged as one such “piggybacking” target for antimalarial drug 

development [5,6]. Protein prenylation is the C-terminal modification of cellular proteins with 

either a farnesyl (15-carbon) or geranylgeranyl (20-carbon) isoprenyl group. Prenyl modification 

of proteins is catalyzed by several classes of cellular prenyltransferase enzymes, including 

farnesyl transferase (FT) and geranylgeranyltransferase type I and type II (GGT-1 and GGT-2) 

[7,8]. Prenylation is typically required for the membrane association and therefore the cellular 

activity of prenyltransferase substrates. For example, farnesylation of the small G-protein 

oncogene, K-Ras, is required for the transformation of many human cancers, including lung and 
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colon cancer [9]. For this reason, protein farnesyltransferase inhibitors have been extensively 

explored by the pharmaceutical industry as potential human chemotherapeutics [10,11]. Like 

most eukaryotic organisms, P. falciparum malaria parasites also possess protein 

prenyltransferase activity and have been found to incorporate both farnesyl and geranylgeranyl 

modifications into protein substrates [12,13]. Chemical inhibition of isoprenoid precursor 

biosynthesis in malaria parasites blocks protein prenylation and is lethal to cultured P. 

falciparum, suggesting that production of isoprenyl substrates for protein prenylation is an 

essential function of isoprenoid biosynthesis in the parasite [14]. In addition, inhibition of 

parasite prenyltransferase activity halts parasite replication [15–18], providing compelling 

evidence that protein prenylation is indispensable for malaria parasite growth.  

 

Since protein prenyltransferase activity is required by P. falciparum, identification of 

prenyltransferase substrates will likely reveal additional antimalarial targets. Bioinformatic 

approaches have been previously used to predict a limited number of potential prenylated 

proteins in the malaria genome [19]. However, since Plasmodium spp. are evolutionarily 

divergent from organisms used to generate these models, and few prenylated proteins have been 

experimentally confirmed in malaria parasites, it is not clear how well bioinformatics algorithms 

perform in predicting prenyltransferase substrates for Plasmodium spp. In this work, we use a 

chemical labeling approach to metabolically tag, potentially, the full complement of prenylated 

proteins in asexual P. falciparum parasites. Our approach was to metabolically incorporate an 

alkyne-modified isoprenoid analogue into the pool of prenyltransferase protein substrates. This 

additional alkyne functional group permits selective binding of prenylated proteins to 

streptavidin beads, via click chemistry with biotin-azide. The resulting prenylated proteins were 
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identified by subsequent tryptic digestion and LC-MS analysis, coupled with bioinformatics 

analysis. 

 

4.3 Methods 

 

4.3.1 P. falciparum tissue culture  

All culturing was done with Plasmodium falciparum genome reference strain 3D7. 3D7 was 

obtained from the Malaria Research and Reference Reagent Resource Center (strain MRA-102, 

contributed by D. J. Carucci, ATCC, Manassas, Virginia). Parasites were grown in RPMI-1640 

media (Sigma-Aldrich, SKU R4130) supplemented with 27 mM sodium bicarbonate, 11 mM 

glucose, 5 mM HEPES, 1 mM sodium pyruvate, 0.37 mM hypoxanthine, 0.01 mM thymidine, 10 

μg ml−1 gentamycin (Sigma-Aldrich) and 0.5% Albumax (Life Technologies) with a 2% 

suspension of human erythrocytes under an atmosphere of 5% CO2, 5% O2, balance N2 and 

incubated at 37°C, as previously described [20,21]. For in-gel fluorescence, 40 mL of culture 

was used per replicate. Samples destined for mass spectroscopy analysis were derived from 200 

mL of culture per replicate. For all experiments, cultures were adjusted to 4% of red blood cells 

infected (4% parasitemia) at experiment start. Cultures were treated with fosmidomycin (Life 

Technologies) to a final concentration of 600 nM (approximately half IC50). Pyrophosphate 

probes or prenyl pyrophosphates (Echelon Biosciences) were added to a final concentration of 10 

µM. After compounds were added, cultures were mixed thoroughly and incubated for 24 hours. 

 

After 24 hours, cultures were saponin lysed as previously described [21], with modifications. In 

brief, cells were pelleted and washed with PBS before being lysed with 1% saponin in PBS. 
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Saponin lyses red blood cell (RBC) membranes but not parasite cell membranes, thus freeing the 

parasites from the RBCs. The lysed mixture was pelleted, and the loose RBC membrane layer 

and supernatant removed, leaving a parasite pellet. This pellet was washed with PBS, centrifuged 

again, the supernatant removed, and stored at -80°C.  

 

RBC controls were performed with 5 mL per replicate of 2% hematocrit in supplemented RPMI 

media with no parasites. RBCs were pelleted without saponin since internal RBC proteins are 

released with lysis. This volume corresponds to the volume of saponin-freed parasites from 

200mL total culture at 4% parasitemia.  

 

4.3.2 In-gel fluorescence labeling  

RBC controls and saponin-lysed pellets of P. falciparum, treated with or without FSM and FPP 

or C15AlkOPP, were suspended in 300 μL lysis buffer (10 mM PO4
3-, 137 mM NaCl, 2.7 mM 

KCl, 2.4 μM PMSF, benzonase nuclease, protease inhibitor cocktail and 1% SDS) and sonicated 

6 to 8 times for 2 seconds in 10-second intervals. Click reactions were performed on 100 μg 

samples of protein lysate (1 μg/μL) with 25 μM TAMRA-N3, 1 mM TCEP, 0.1 mM TBTA, and 

1 mM CuSO4 at room temperature for one hour. Proteins were precipitated using a ProteoExtract 

precipitation kit (Calbiochem) to remove excess click chemistry reagents. Protein pellets were 

dissolved in 1X Laemlli loading buffer and heated at 95 oC for 5 minutes. Samples were 

fractionated using 12% SDS PAGE gels and imaged via in-gel fluorescence using a BioRad FX 

Molecular Imager with 542/568 nm excitation/emission wavelengths. Gels were stained with 1X 

Coomasie blue stain followed by destaining to visualize protein loading.  
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4.3.3 Cloning and expression of PfFPPS 

The gene PfFPPS (PF3D7_1128400) was PCR amplified from P. falciparum 3D7 cDNA 

(primers PfFPPS Fwd 5’-

CTCACCACCACCACCACCATGCUGAGAACGAGCAGAATAACCAAGATTC-3’; PfFPPS 

Rev 5’-ATCCTATCTTACTCACTCAAGCGCCTGTAAACAAAATGTCC-3’) and cloned into 

pBG1861 using ligation independent cloning as previously described.[22] The cloned PfFPPS 

sequence was verified by Sanger sequencing. The primers used add coding for a six histidine tag 

at the N-terminus of the gene to allow for nickel affinity purification. 

 

Subsequently, pBG1861 was transformed into ArticExpress (DE3) RIL E. coli (Agilent 

Technologies). Cultures were grown in LB media with 100 µg/mL ampicillin at 37°C and 200 

rpm until mid-log phase, at which point they were cooled to 8°C. Expression was induced with 

0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG), 5 µM geraniol and 5 µM farnesol 

overnight at 8°C and 200 rpm. Following induction, cells were pelleted and then lysed by 

sonication in a solution of 25 mM Tris pH 7.5, 250 mM NaCl, 1 mM MgCl2, 10% v/v glycerol, 

20 mM imidazole, 1 mM dithiothreitol (DTT), 1 mg/mL lysozyme, 200 µM 

phenylmethylsulfonyl fluoride (PMSF) 0.3 U/mL benzonase nuclease (Novagen), and EDTA-

free protease inhibitor (Roche). 6-histidine tagged protein was purified from soluble lysate over 

Ni-NTA resin (Goldbio). The resin with bound protein was washed with 25 mM Tris pH 7.5, 250 

mM NaCl, 1 mM MgCl2, 10% v/v glycerol, 20 mM imidazole, 1 mM dithiothreitol (DTT). 

Bound protein was then eluted with 25 mM Tris pH 7.5, 250 mM NaCl, 1 mM MgCl2, 10% v/v 

glycerol, 300 mM imidazole, 1 mM dithiothreitol (DTT).  
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Next, the elutant was further purified over a HiLoad 16/60 Superdex 200 gel filtration column 

(GE Healthcare) using an AKTAExplorer 100 FPLC (GE Healthcare). The FPLC buffer was 250 

mM NaCl, 25 mM Tris pH 7.5, and 1 mM MgCl2, 10% glycerol v/v. Fractions enriched with 

PfFPPS, as seen by a strong band at ~ 44 kDa on a Coomassie-stained SDS-PAGE gel, were 

pooled and concentrated by centrifugation using Amicon Ultra-15 centrifugal filter units (EMD 

Millipore). Concentrated protein was supplemented with 1mM DTT, was flash-frozen in liquid 

N2, and was then stored at -80°C prior to use. Protein concentration was measured by a BCA 

protein assay kit (Thermo Scientific).  

 

4.3.4 Isoprenyl pyrophosphate synthase assay 

Following purification, release of pyrophosphate during GGPP/C20AlkOPP synthesis from 

FPP/C15AlkOPP by PfFPPS was monitored using the EnzChek phosphate assay kit (Life 

Technologies), as previously described [23]. Reactions were performed in a 50 µL volume, with 

final reagent concentrations as follows: 250 mM NaCl, 50 mM Tris pH 7.5, 1mM MgCl
2
, 1 

U/mL purine nucleoside phosphorylase (PNP), 0.2 mM 2-Amino-6-mercapto-7-methylpurine 

riboside (MESG), 0.1 U/mL yeast inorganic pyrophosphatase (New England Biolabs), and 2 µM 

purified PfFPPS, and, where indicated, 100 µM IPP, FPP (Echelon Biosciences) and/or 

C15AlkOPP. All reagents save PfFPPS were pre-warmed to 37°C. Reactions were initiated by 

the addition of PfFPPS, after which absorbance at 360 nm was recorded over a 30 min period 

with a BMG POLARStar plate reader preheated to 37 °C. Absorbance monitoring was performed 

in clear 96-well flat-bottomed plates. Enzyme reactions were linear with respect to time and 

enzyme concentration. Absorbance units were converted to µM phosphate using a phosphate 

standard curve. 
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4.3.5 Pull-down of labeled proteins  

Protein lysates (1.5 mg/mL) from parasites treated with FSM and FPP or C15AlkOPP were 

subjected to click reactions with 100 μM biotin-N3, 50 mM TCEP, 10 mM TBTA, and 50 mM 

CuSO4 for 90 minutes at room temperature. Excess reagents were removed by protein 

precipitation using 1 volume of chloroform, 4 volumes of CH3OH, and 3 volumes of PBS. 

Proteins were precipitated in between two immiscible phases by centrifugation at 4,500 x g for 5 

minutes. The aqueous layer was discarded and 4 volumes of CH3OH was added, followed by 

centrifugation at 4,500 x g for 3 minutes to pellet the proteins. Proteins were dissolved in 1% 

SDS in PBS buffer (1.5 mg/mL) and incubated with 300 μL of NeutrAvidin® agarose resin 

(Thermo Scientific) for 90 minutes. Resin samples were washed to remove unbound proteins 

with 3-mL volumes of 3 × 1% SDS in PBS, 1 × PBS, 3 × 8 M urea, and 3 × 50 mM NH4HCO3. 

Resin was suspended in 300 μL of 50 mM NH4HCO3 and combined with 5 μg trypsin 

(sequencing grade, Promega Corp.) for overnight digestion at 37 oC. Supernatants were collected 

by washing the resin with 200 μL x 4 of 50 mM NH4HCO3 and samples were lyophilized.  

 

4.3.6 Proteomic analysis  

Sample preparation for MS/MS analysis. Lyophilized peptides were dissolved in 200 mM 

NH4COO. Aliquots from resulting peptide solutions (20 μg) were obtained to prepare 0.25 μg/μL 

solutions. Each sample was loaded in SDB-XC extraction disk (3M, USA) packed in stage tips 

conditioned with 80% acetonitrile (ACN) and equilibrated with 200 mM NH4HCO2. Samples 

were washed with 200 mM NH4HCO2 and eluted into three fractions using 40 μL of 6%, 11%, 

and 17% ACN in H2O. Each sample was dissolved in 100 μL of 5% ACN and 0.1% TFA in H2O 
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and loaded onto packed extraction disks in stage tips that were conditioned (80% ACN and 0.1% 

TFA in H2O) and equilibrated (5% ACN and 0.1% TFA in H2O). Peptides were eluted with 80% 

ACN with 0.1% TFA in H2O, lyophilized, and dissolved in 0.1% formic acid.  

 

LC-MS/MS analysis of tryptic digested peptides. LC-MS/MS analyses were carried out using an 

RSLCnano System (Dionex, UK) and an Orbitrap Fusion Tribrid mass spectrometer (Thermo 

Scientific). Samples were directly loaded and eluted at a flow rate of 300 nL/min onto a reverse-

phase column (75 μm i.d., 450 mm) packed with ProntoSIL C18AQ 3 μm media (Bischoff, 

Germany) that was prepared in-house. The peptides were eluted with buffer A (0.1% formic acid 

in H2O) and buffer B (0.1% formic acid in CH3CN) in the following gradient segments of buffer 

B: 17 mins, 0-2%; 60 mins, 2-25%; 2 mins, 25-44%; 2 mins, 44-76%; 3 mins, 76%; and 2 mins, 

76-2%. The eluted peptides from the column were sprayed into a nanospray ion source on an 

Orbitrap Fusion Tribrid mass spectrometer set to record single microscan FTMS scan events at a 

resolution of 30000 over the m/z range 300-1500 Da in positive ion mode, with charge states of 

2-7 included. The top 15 data-dependent CID MS/MS were triggered from the FTMS scan and 

introduced into the Orbitrap- Fusion ion trap. The collision energy was set to 35% and activation 

Q to 0.25 with the scan range and ion trap scan rate both set to normal. The automatic gain 

control (AGC) target values were set to optimal conditions at 500,000 for MS1 and 5,000 for 

MS2 [24]. Dynamic exclusion was allowed once at a 90-second duration. 

 

Proteomic data processing. The .raw files were searched using Sequest embedded in Proteome 

Discoverer (version 1.4.0.288, Thermo Scientific) against the Plasmodium falciparum 3D7 

isolate (ID UP000001450) appended with Homo sapiens (ID UP000005640) from 



104 

 

UnipProtKB/SwissProt [25]. The precursor mass tolerance was set to 10 ppm and the fragment 

mass tolerance was set to 0.6 Da. A variable modification was set as oxidized methionine. The 

enzyme was set to Trypsin (Full) and up to 4 missed cleavages were allowed. A decoy search 

was also performed.  

 

The resulting .msf files were processed in Scaffold (version 4.4.1, Proteome Software Inc., 

Portland, OR) through searching with X! Tandem (version 2010.12.01.1, GPM Organization). 

Glu  pyro-Glu of the N-terminus, ammonia-loss of the N-terminus, Gln  pyro-Glu of the N-

terminus and oxidation of methionine were specified in X! Tandem. Peptide identifications were 

accepted if they could be established at greater than 95% by the Scaffold Local FDR algorithm. 

Protein identifications were accepted if they could be established at greater than 99.0% 

probability and contained at least 2 identified peptides. Protein probabilities were assigned by the 

Protein Prophet algorithm [26]. Proteins that contained similar peptides and could not be 

differentiated based on MS/MS alone were grouped to satisfy the principles of parsimony. 

Proteins sharing significant peptide evidence were grouped into clusters. Fold changes in 

enrichment between probe-treated and control samples were calculated using total weighted 

spectra with 1 imputation. 

 

4.4 Results 
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4.4.1 An alkyne-functionalized isoprenoid analogue is metabolically 

incorporated into malaria parasites 

To identify the prenylated proteins in P. falciparum using an alkyne-containing isoprenoid 

analogue, we first tested for metabolic incorporation of the compound C15AlkOPP (Fig. 1A), 

which was previously employed to identify prenylated proteins in mammalian cells [27,28]. This 

probe structurally resembles the native isoprenoid substrates farnesyl pyrophosphate (FPP) and 

geranylgeranyl pyrophosphate (GGPP) used for prenylation of proteins, and is a substrate for both 

mammalian FT and GGT-1 [29]. Red blood cells infected with P. falciparum were exposed to the 

probe in the presence or absence of fosmidomycin (FSM), an established inhibitor of isoprenoid 

biosynthesis in P. falciparum [21,30], followed by release of the intact parasites via mild detergent 

treatment. The free parasites were then lysed and the resulting lysates subjected to copper-

catalyzed click reaction with TAMRA-N3, which generates a stable cycloaddition product between 

the alkyne-tagged prenylated proteins and TAMRA-N3 to allow visualization of labeled proteins 

(Fig. 1B). The samples were then fractionated via SDS-PAGE and subjected to in-gel fluorescence 

imaging (Fig. 1C, top panel).  

 

Fluorescent protein bands were observed at approximately 25 and 50 kDa in samples obtained 

from parasites treated with C15AlkOPP (lane 3); a number of weaker bands, including species 

near 37 and 150 kDa, were also observed. A substantial enhancement of labeling ensued upon 

co-administration of FSM (lane 4), suggesting that depletion of the endogenous FPP pool results 

in increased incorporation of the analogue; similar results with C15AlkOPP have been observed 

in mammalian cells treated with lovastatin [27]. Replacing the probe with FPP showed only 
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limited labeling in these regions (lane 2), indicating that the alkyne analogue is a viable tool to 

tag cellular prenylated proteins.  

 

It should be noted that P. falciparum parasites develop within human erythrocytes. Although 

human prenyltransferases have not been identified in the mature erythrocyte proteome [31], we 

evaluated for the possibility that human erythrocyte proteins could incorporate C15AlkOPP 

probe in the absence of parasite infection. Human red blood cells were thus also treated with 

C15AlkOPP and FSM, and did not demonstrate significant labeling (lane 1). The band observed 

above 25 kDa is almost certainly an artifact due to a highly abundant protein band in this region 

as shown in the Coomassie stained gel (Fig. 1C, bottom panel); given its size, that protein may 

represent a hemoglobin dimer [32]. Overall, these results indicate that the C15AlkOPP probe 

successfully labels prenylated proteins in the malaria parasite with minimal interference from 

human proteins. 

 

4.4.2 The C15AlkOPP probe is elongated by P. falciparum FPPS/GGPPS 

As noted above, C15AlkOPP is a substrate for the mammalian FT and GGT-1 enzymes. 

Previously reported metabolic labeling data suggests that C15AlkOPP can also be used to label 

substrates of GGT-2. However, those results do not preclude elongation of C15AlkOPP to 

C20AlkOPP prior to prenyltransferase-catalyzed incorporation. Hence, we next sought to 

investigate whether C15AlkOPP can be elongated to C20AlkOPP in malaria parasites. Unlike 

other organisms that express a series of prenyl synthases, P. falciparum produces a single multi-

functional enzyme (PfFPPS/GGPPS, hereafter PfFPPS) that is responsible for synthesis of 

geranyl pyrophosphate, farnesyl pyrophosphate, and geranylgeranyl pyrophosphate [33,34]. To 
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evaluate whether the parasite enzyme may utilize the C15AlkOPP probe as a substrate, we 

assayed purified recombinant PfFPPS protein. As expected, PfFPPS uses IPP to elongate its 

natural substrate, FPP, thus generating GGPP. Similarly, we found that PfFPPS also effectively 

uses C15AlkOPP as a substrate (Fig. 2). Thus, while it is not clear whether the elongated 

analogue is a substrate for the malarial GGTs, the production of that species maximizes the 

likelihood that our single probe strategy using C15AlkOPP will function to tag both farnesylated 

and geranylgeranylated proteins in the parasite.  

 

4.4.3 Bioinformatic analysis of the P. falciparum proteome affords a list of 

putative prenylated proteins  

To date, only a limited number of proteins with canonical C-terminal prenylation motifs have 

been demonstrated to be bona fide substrates in P. falciparum [14,35–37]. Prior to proteomic 

analysis, we performed a bioinformatic investigation to create a list of all possible 

prenyltransferase substrates present in the P. falciparum proteome. FASTA sequences of 

proteins from the Plasmodium falciparum genome reference isolate 3D7 proteome (UniProt ID 

UP000001450) with possible C-terminal –CaaX, –CXC, and –CC prenylation motifs were 

analyzed using Prenylation Prediction Suite (PrePS) [38]. Out of 90 protein sequences with Cys 

at the 4th position from the C-terminus (–CaaX), a total of 8 proteins were predicted to be 

prenylated (Table 1). This group contains 5 proteins whose molecular masses are close to 25, 37, 

50, and 150 kDa, similar to what we observed experimentally via in-gel fluorescence labeling 

(Fig. 1C). Furthermore, five of these proteins contain basic residues upstream of the putatively 

prenylated Cys, a typical pattern observed for most prenylated proteins. In addition to these 

predicted proteins, we examined those that were not recognized by PrePS but met additional 
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criteria for prenylation: basic residues upstream of Cys at the -1 to -5 positions and a 

hydrophobic or aromatic residue at the +2 position. Seven proteins that satisfy these additional 

parameters were thus identified from the proteome database (Table 2). A previous study reported 

8 proteins that satisfied these criteria based on the P. falciparum genome, which included a 

DEAD/DEAH box Helicase and Methionyl-tRNA formyltransferase (along with six predicted in 

our analysis) [36]. However, neither of these two proteins contains a C-terminal CaaX sequence 

in the reference Plasmodium falciparum isolate 3D7 proteome database (although one of them 

does in another database, see Figure S1). Interestingly, the remaining protein listed in Table 2 

(but not identified in the aforementioned genomic analysis), PRL protein tyrosine phosphatase, 

does appear to be a real prenylated protein. Recent computational docking studies [39] suggested 

that it is a substrate and this has been confirmed through additional in vitro assays [36]. 

 

Proteins with C-terminal –CXC and –CC motifs were also extracted from the proteome and 

analyzed in PrePS. As expected, Rab proteins were predicted to be substrates of geranylgeranyl 

transferase type II (GGT-2) with high degrees of probability (Table 3). The molecular weights of 

these small GTPases are consistent with the bands observed near 25 kDa via in-gel fluorescence 

labeling (Fig. 1C). No proteins other than those belonging to the Rab family were identified as 

potential substrates, suggesting that there are no known proteins with these –CXC and –CC 

sequences that have the specific neighboring residues upstream of Cys necessary to render them 

substrates for GGT-2. In aggregate, our bioinformatics analysis suggests that the P. falciparum 

proteome contains 8 –CaaX, 3 –CXC, and 7 –CC proteins (18 total) that may be 

prenyltransferase substrates. 
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4.4.4 Proteomic analysis of the prenylated proteins in P. falciparum  

After validating the use of C15AlkOPP as a prenylation probe in P. falciparum, we next sought 

to determine the molecular identity of prenylated proteins in the parasite. To reduce cellular 

production of FPP, which would compete with probe incorporation, cultured asexual P. 

falciparum were treated with sub-lethal (50% of the half-maximal inhibitory concentration) 

concentrations FSM. Fosmidomycin-treated parasites were grown in the presence of either 

C15AlkOPP probe or FPP as a negative control. Following labeling, parasites were freed from 

host erythrocytes, and parasite protein lysates were subjected to click reaction with biotin-N3; 

the affinity handle conferred by biotin permits the selective enrichment and isolation of labeled 

prenylated proteins upon pull-down through the strong biotin-avidin interaction (Fig. 1B). 

Proteins were washed under stringent conditions (1% SDS and 8 M urea) followed by on-bead 

trypsin digestion. Equal amounts of peptides from C15AlkOPP- and FPP-treated samples, were 

pre-fractionated and analyzed by nano-flow liquid chromatography and tandem mass 

spectrometry (MS/MS), followed by database searching against Plasmodium falciparum 

(UniProt ID UP000001450) and Homo sapiens proteomes (UniProt ID UP000005640). After 

data processing, 445 proteins were identified at 99.0% minimum probability with at least 2 

identified peptides from 9073 spectra, and 98.0% minimum peptide confidence within a 1% false 

discovery rate, for both C15AlkOPP- and FPP-treated samples.  

 

Our labeling strategy was designed to enrich for prenyltransferase substrates labeled with 

C15AlkOPP and/or C20AlkOPP using a biotin pull-down approach. Proteomic studies that use 

such enrichment methods are sometimes complicated due to nonspecific adsorption of proteins 

onto the avidin-coated beads used in these experiments. To address that issue, our approach 
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employed a quantitative comparison based on spectral counting between the samples treated with 

C15AlkOPP and those treated with FPP. We used the average total spectral counts for each 

identified protein to calculate the enrichment of proteins (fold-change) across three replicates of 

samples treated with C15AlkOPP probe versus FPP. The full list of spectral counts and identities 

are provided (Supplemental Table 1). Proteins with potential prenylation motifs (–CaaX, –CC, –

CXC on their C-terminus) were extracted from that data and summarized in Table 4. A total of 

15 prenylated proteins are listed, including 14 of the 18 predicted in our bioinformatics analysis. 

One additional protein (Q81LH7) bearing the –CaaX sequence CNFM, which was not predicted 

by PrePS, was also identified. Conversely, four of the –CaaX sequences predicted by PrePS were 

not observed (Q81583, Q81EC5, Q81E80 and Q81EK2 with –CaaX sequences CLVF, CTIM, 

CKQC and CNIM, respectively). All Rab proteins predicted to be prenylated by PrepPS were 

identified. 

 

The list of all proteins identified in our analysis (Supplemental Table 1) is ordered based on the 

fold change between the C15AlkOPP- and FPP-treated samples. The top 12 proteins in that list 

correspond to the first 12 entries in Table 4 (9 to 33-fold change). For each of these top 12 hits, 

very few spectral counts were observed in the absence of probe, giving high confidence that 

these represent bona fide prenylated proteins. In contrast, numerous proteins were found below 

the 6-fold threshold. In those cases, substantial spectral counts were observed in the absence of 

probe; we attribute those proteins to nonspecific adsorption. However, the last 3 entries in Table 

4, while manifesting low levels of spectral counts in the C15AlkOPP-treated samples, gave no 

spectral counts in the FPP-treated samples, suggesting that they may represent true, low 

abundance hits; one of those three, SNARE Ykt6.1, has been confirmed as a prenyltransferase 
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substrate [37]. It is worth noting that the aforementioned DEAD/DEAH box Helicase and 

Methionyl-tRNA formyltransferase suggested by previous investigators as possible prenylated 

proteins based on bioinformatics analysis [36] are not present in the list of proteins in Table S1. 

Finally, it should be noted that human Rab homologs were also identified and grouped into 

clusters with the parent proteins from P. falciparum (Supplementary Table S1 and Figure S2), 

since the data analysis was conducted using both the H. sapiens and P. falciparum databases. 

However, for each identified Rab, the change in spectral counts in the presence of probe was 

always higher for the candidate malarial proteins than their human homologs. Additionally, we 

found, in each case, that protein probabilities for parasite sequences were higher than those for 

the cognate human orthologs. Together, these characteristics indicate that the Rab proteins 

identified upon metabolic labeling of P. falciparum are indeed malarial in origin and that the 

human candidates are artifacts of sequence similarities.  

 

4.5 Discussion 

 

Due to the ongoing spread of drug resistance, there is a pressing need for new therapies to treat 

malaria. Evidence strongly suggests that protein prenylation is required for asexual development 

of the P. falciparum malaria parasite; several distinct chemotypes of prenyltransferase inhibitors 

exhibit potent antimalarial activity [15,16,18,40–42]. Given the essential nature of protein 

prenylation, it follows that the functions of prenyltransferase substrates themselves are necessary 

for parasite replication. Thus, identification of prenylated proteins in P. falciparum may reveal 

new, essential, and highly valuable targets for antimalarial drug development. Such targeting 
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could be accomplished either indirectly by interfering with their prenylation or directly via 

inhibition of their cognate functions. 

 

Here we present the first experimentally determined catalog of prenylated proteins (the 

“prenylome”) of blood stage P. falciparum. We have identified prenyltransferase substrates 

through the use of metabolic labeling with a novel, alkyne-containing isoprenoid analogue. We 

find that the P. falciparum farnesyl pyrophosphate synthase (FPPS) successfully elongates the 

probe (which is a derivative of FPP) to generate the cognate 20-carbon (GGPP derivative) probe. 

Therefore, we believe our in vivo metabolic labeling approach has likely captured the full 

complement of both farnesylated and geranylgeranylated proteins in P. falciparum, with the 

exception of prenylated proteins with very low levels of expression during blood-stage 

development that may not react in our derivatization strategy.  

 

Eukaryotic systems possess three different protein prenyltransferases: farnesyltransferase (FT) 

and geranylgeranyltransferase type I (GGT-1) commonly recognize the same motif (the CaaX 

box) that includes the cysteine of their substrates they modify, and are thus referred to as CaaX 

prenyltransferases, whereas geranylgeranyltransferase type II (GGT-2, also called Rab 

geranylgeranyltransferase) recognizes an alternative motif [43]. Active prenyltransferases consist 

of two polypeptide subunits, α and β; FT and GGT-1 typically share an α subunit. As has 

previously been suggested [19], we find that experimentally confirmed prenyltransferase 

substrates of P. falciparum parasites possess canonical motifs that indicate the presence of both 

CaaX prenyltransferases and Rab geranylgeranyltransferases. P. falciparum lysate has previously 

been shown to possess both FT and GGT-1 activity [12]. The current annotation of the P. 
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falciparum genome indicates a full complement of genes encoding the candidate 

prenyltransferases, as follows: PfFT [PF3D7_1242600 (α subunit) and PF3D7_1147500 (β 

subunit)], PfGGT-1 [PF3D7_1242600 (α subunit; shared with PfFT) and PF3D7_0602500 (β 

subunit)], and PfGGT-2 [PF3D7_1442500 (α subunit) and PF3D7_1214300 (β subunit)].  

 

Our work experimentally confirms that protein prenylation in P. falciparum reflects a more 

modest set of prenylated proteins than is observed in fungi or higher eukaryotes, including 

humans. According to PRENbase (http://mendel.imp.ac.at/PrePS/PRENbase/), a curated online 

database of protein prenylation across sequenced genomes, prenylated proteins in the human 

genome are spread into 43 clusters of paralogous proteins [44]. Biological functions of 

prenylated proteins are well conserved, even amongst unicellular eukaryotes, as 42 similarly 

defined clusters are present across fungal genomes. In stark contrast, we find robust experimental 

evidence for a total of only thirteen prenylated proteins in P. falciparum, with suggestive 

evidence for an additional two probable prenyltransferase substrates. While a restricted 

prenylome has been suggested bioinformatically for malaria parasites, our study provides 

important evidence that there are not unrecognized, non-canonical motifs used by the P. 

falciparum prenyltransferases.  

 

During asexual replication, P. falciparum is an obligate parasite of human erythrocytes, and 

relies on vesicle-mediated trafficking of erythrocyte cytoplasm and hemoglobin, as well as 

export of essential proteins for remodeling of the erythrocyte membrane and cytoplasm. The 

importance of membrane trafficking to P. falciparum development is underscored by the 

restricted biological functions of the malaria prenylome. Interestingly, we find that the majority 

http://mendel.imp.ac.at/PrePS/PRENbase/
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of proteins in the P. falciparum prenylome belong to a single cluster of paralogous proteins, the 

Rab family of small GTPases, classic regulators of endomembrane trafficking. These proteins 

likely make up the broad band at 25 kDa found in our in-gel fluorescence images upon C15OPP 

labeling (Fig. 1C), as well as in studies using radiolabeling of parasites with [3H]-geranylgeranyl 

pyrophosphate [45]. Unsurprisingly, of the eleven Rabs annotated in P. falciparum, we found all 

ten predicted to be geranylgeranylated by GGT-2 [46]. 

 

In addition, three more prenyltransferase substrates in P. falciparum (two SNARE proteins and a 

phosphatidylinositol 3-phosphate binding protein) are also likely to function in membrane 

trafficking. Notably absent from the P. falciparum prenylome are a number of GTPase 

superfamilies, including Ras and Rho, typical of other unicellular eukaryotes and metazoans. 

This restricted use of protein prenylation for a single biological function reflects the complement 

of small GTPases that has been suggested to have been present in the last common eukaryotic 

ancestor, prior to the dramatic expansions of paralogous GTPase gene families [47,48]. The 

limited collection of GTPases and prenylated proteins that we find in P. falciparum is therefore 

not unique to this parasite, but is shared with other Alveolates in this lineage, including several 

other important mammalian parasitic pathogens, such as Cryptosporidium, Toxoplasma, and 

Eimeria.  

 

We identify only four confirmed prenylated proteins in P. falciparum that possess a canonical 

CaaX motif, which should serve for recognition and modification by either FT or GGT-1. 

Bioinformatic analyses are insufficient to indicate whether a given CaaX-containing protein is 

farnesylated or geranylgeranylated. However, experimental evidence suggests that at least one of 
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these proteins, PF14_0359, a Hsp40 analog, is specifically farnesylated. In P. falciparum, 

metabolic labeling with [3H]-farnesyl pyrophosphate, but not [3H]-geranylgeranyl 

pyrophosphate, identifies a dominant band at approximately 50 kDa [45]. As the remaining 

proteins in the malaria prenylome are between 23-38 kDa, this finding most likely represents 

farnesyl modification of PfHsp40 (48 kDa) [49].  

 

P. falciparum expresses an expanded repertoire of molecular chaperones, comprising 2% of the 

overall genome, and including 49 Hsp40 superfamily members in total [50]. However, while 

other eukaryotes typically express up to five type I Hsp40s, PfHsp40 is the sole, cytosolic type I 

Hsp40 homolog in the malaria parasite. In other organisms, farnesylation of orthologous type I 

Hsp40s has been well described, and is required for the biological functions of these chaperones 

in mediating protein stability [51,52]. The cellular function of PfHsp40 in P. falciparum has yet 

to be explored, although immunofluorescence microscopy indicates that this protein is cytosolic 

[49]. However, data from proteomics and yeast two-hybrid studies indicate it may play a role in 

trafficking to the RBC membrane [53]. The extent to which farnesylation plays a role in the 

localization or functions of PfHsp40 remains to be explored.   

  

Our work contributes to an increasingly complete picture of post-translational hydrophobic 

modifications in blood-stage P. falciparum. The identification of a limited set of CaaX proteins 

has important implications for understanding the evolution of this modification process, as well 

as the active work developing novel antimalarial therapies targeted to isoprenoid synthesis and 

prenyltransferases. 
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4.6 Figures 
 

 

Figure 1. The C15AlkOPP probe allows tagging of prenylated proteins for in-gel fluorescence 

labeling and pulldown for proteomic analysis. (A) Structures of native isoprenoid substrates of 

prenylation, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP), and the 

probe analog C15AlkOPP. (B) Scheme for metabolic labeling using the C15AlkOPP probe 

followed by selective labeling or enrichment using click chemistry. In-gel fluorescence and 

proteomic analysis of prenylated proteins were facilitated through click reactions with 

fluorescent reporter TAMRA-N3 and affinity handle biotin-N3, respectively. (C) Labeling of 
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prenylated proteins visualized through in-gel fluorescence (top panel) in P. falciparum lysates. 

Lane 1: C15AlkOPP + FSM in red blood cells; lane 2: FPP + FSM in Pf; lane 3: C15AlkOPP in 

Pf; lane 4: C15AlkOPP + FSM in Pf. Total protein loading by Coomassie blue stain is shown in 

purple (bottom panel). 
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Figure 2. P. falciparum farnesyl pyrophosphate synthase (PfFPPS) accepts C15AlkOPP as a 

substrate. Specific activity (mean ± S.E.M.) of PfFPPS, measured using an absorbance-based 

phosphate release assay. Left to right, enzyme activity in the presence of FPP and IPP, 

C15AlkOPP probe and IPP, or C15AlkOPP alone. No activity was seen in absence of PfFPPS 

(data not shown). Three replicates were performed for each condition. 
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4.7 Tables 
 

Table 1. Candidate prenyl transferase substrates from the P. falciparum 3D7 proteome, which 

contain canonical CaaX motifs and were identified by PrePS. PrePS was used to predict the 

likelihood of prenylation of the proteins identified: *low, **intermediate, ***high 

 

 

 

 

 

  

Accession No. Name C-term 
Mol. wt. 

(kDa) 
PrePS 

Q8I346 SNARE protein (putative) KKQCCSIM 23 
FT*** 

GGT-1*** 

Q8I583 Ulp1 protease (putative)  ISQGCLVF 123  
FT* 

GGT-1* 

Q8IKN0 Uncharacterized protein QRRMCNIM 38  
FT* 

GGT-1** 

Q8IEC5 Uncharacterized protein KKKKCTIM 95  
FT*** 

GGT-1*** 

Q8IL88 
Hsp40 subfamily A 

(putative) 
GRVACAQQ 48  FT** 

C0H5D3 SNARE protein (putative) 
KNNQCCSL

Y 
26  FT* 

Q8IE80 Uncharacterized protein NIAACKQC 34  FT* 

Q8IEK2 Uncharacterized protein NRLKCNIM 73  GGT-1** 
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Table 2. Candidate prenyl transferase substrates from the P. falciparum 3D7 proteome, which 

were not identified by PrePS but possess additional, promising CaaX features. PrePS was used to 

predict the likelihood of prenylation of the proteins identified: *low, **intermediate, ***high 

 

  

Accession 
No. 

Name C-term 
Mol. 
wt. 

(kDa) 

Basic 
residue at -

1 to -5 

Hydrophobic 
residue at +2 

Aromatic 
residue at 

+2 

Q8IIN1 
Protein tyrosine 

phosphatase 
NCLRKCHFM 25 + + + 

Q8ILH7 
Uncharacterized 

protein 
KKRNKCNFM 51 + + + 

Q8I3K7 
Membrane skeletal 

protein IMC1-related 
QRNLYCSYA 34 + + + 

Q8I0W8 
Deoxyribodipyrimidine 

photolyase 
KREKKCVAS 129 + + - 

O77306 Ser/Thr protein kinase NKKNSCAYT 157 + + - 

Q9NLB7 
Uncharacterized 

protein 
NYNFLCLYI 10 - + + 

O77380 CPSF DLENMCSFL 339 - + + 



121 

 

Table 3. Candidate prenyl transferase substrates from the P. falciparum 3D7 proteome, which 

possess –CXC and –CC C-terminal motifs for possible geranylgeranylation. PrePS was used to 

predict the likelihood of prenylation of the proteins identified: *low, **intermediate, ***high 

 

 

  

Accession 
No. 

Name C-term 
Mol. wt. 

(kDa) 
PrePS 

-CXC     

Q8IL79 Copper transporter putative ADPACCGC 27 No 

Q8IM51 
Secreted ookinete adhesive 

protein 
ECSCSCSC 23 No 

Q8IHR8 Rab6 NMLSKCLC 24 GGT-2** 

Q7K6B0 Rab18 ESRSNCAC 23 GGT-2*** 

Q8I3W9 Rab1a SPQSFCSC 24 GGT-2*** 

-CC     

Q8IHW0 
Myosin heavy chain subunit, 

putative 
ELNMFKCC 208 No 

C6KST4 Uncharacterized protein IKKKKMRCC 33 No 

Q8II49 Conserved Plasmodium protein TKKFFPCC 30 No 

Q8IHW1 Conserved Plasmodium protein KTKKCYCC 19 No 

Q8IAL1 Uncharacterized protein GKRFLGCC 9 No 

Q7K6A8 Rab1b KDTKKKCC 23 GGT-2*** 

O96193 Rab5a TLSKKGCC 27 GGT-2*** 

Q8I274 Rab5c EETKKKCC 24 GGT-2*** 

Q76NM4 Rab11a TKKKNKCC 25 GGT-2*** 

Q8I5A9 Rab2 SRSGFSCC 24 GGT-2*** 

C0H516 Rab7 KMYKSRCC 24 GGT-2*** 

C0H5G2 Rab11b NMNKVKCC 24 GGT-2** 



122 

 

Table 4. Prenylated proteins in Plasmodium falciparum, identified by C15AlkOPP labeling and 

proteomics, with –CaaX, -CXC, and –CC prenylation motifs. For each protein, fold-change 

indicates the ratio of the average total spectral counts obtained following C15AlkOPP- versus 

FPP-labeling, across three experimental replicates. An imputation of 1 was employed to calculate 

fold changes. Spectral counts and percent coverage for each replicate are shown. Two 

uncharacterized proteins (shown in red text) containing predicted prenylation motifs were 

identified with low spectral counts. aProtein accession numbers including theoretical molecular 

weights and bgene IDs were obtained from UniProt and PlasmoDB, respectively. CUnless 

otherwise referenced from previous reports, biological processes and cellular component of 

identified proteins were obtained from UniProt.d PrePS was used to predict the likelihood of 

prenylation of the proteins identified: *low, **intermediate, ***high.   
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Chapter 5: Conclusion  
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5.1 Summary 

 

The work presented here provides several valuable and actionable insights into Plasmodium 

falciparum. For the first time in a clinical population, malaria was shown to be associated with 

distinctive and potentially diagnostic changes in the breath volatile organic compound (VOC) 

profile of patients (Chapter 2). Preliminary analysis of sweat samples also found broad changes 

in the VOCs of infected patients (Appendix B). Of utility to future breath biomarker discovery 

studies, Chapter 3 gives the first head-to-head comparison of two prevalent breath collection 

methods, finding that sampling bags have distinct advantages over the Bio-VOC. Additionally, 

this dissertation elucidated a possible mechanism for the enhanced attraction of mosquitoes to 

infected hosts. Work in Appendix A discovered mosquito attractant terpenes in the air above 

malaria parasite cultures, namely the terpene α-pinene. It and the related terpene 3-carene were 

later found to be at higher levels in infected patient breath in two clinical populations (Chapters 2 

and 3). The presence of higher terpene concentrations induced by malarial infection provides a 

plausible mechanism for increased mosquito attraction. This finding has implications for 

designing odorant lures for mosquito traps as well as for gaining a better understanding of the 

dynamics of malaria transmission. Finally, Chapter 4 used a novel labelling strategy to pinpoint 

all prenylated proteins in P. falciparum. This knowledge will prove valuable for understanding 

isoprenoid biology in the parasite as well the effects of antimalarials targeted at prenylation. A 

series of such inhibitors, specifically farnesyl transferase inhibitors (FTIs), is the subject of 

Appendix C. 
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5.2 Breath biomarkers of malaria 

 

A few studies have noted VOC changes associated with animal model malaria and differences in 

mosquito attraction indicative of VOC changes [1–4]. One previous work found a set of small 

thioethers in breath associated with sub-clinical parasite levels during controlled human malaria 

infections [5]. However, our work was the first to evaluate breath changes in patients with active 

malaria. The discovery that a suite of six compounds could classify infection status with 83% 

accuracy provides viable evidence that breath could be a diagnostic medium for malaria. While 

our study provides groundwork for further studies, a single study is not definitive. A validation 

study in the same area with the same demographics will help confirm viability, but additional 

studies in populations of varying demographics and geographic locales are needed to determine 

whether our identified biomarkers are a widespread phenomenon. A consideration for these 

future studies is the possibility of better linking parasite density and life stage to VOC changes. 

Parasitemia, the metric of parasite burden used in our studies, is an imperfect measure. 

Conducting qPCR off-site, along with on-site diagnosis, will provide a highly accurate picture of 

parasite burden and the prevalence of the sexual stage gametocytes (discussed in section 5.4). 

 

In future validation studies, the six compounds identified will provide a useful starting point but 

should not be the sole route of analysis. Beyond these six compounds, dozens of compounds 

correlated with infection status, and a portion of those VOCs may be more reliable across 

multiple studies. Indeed, while selective sensors for one or a few VOCs are possible, the current 

focus of point-of-care breath diagnosis is electronic nose (eNose) devices [6]. These eNoses 

detect the overall composition of the breath VOC profile and perform classification with the help 
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of machine learning algorithms built on detected abundances of numerous VOC sub-populations. 

Thus, continuing to use unbiased and aggregate analysis, whether with the correlation approach 

or other machine learning approaches like random forests, will maximize the chances of 

identifying VOC differences that will be useful for point-of-care diagnosis. In addition to being 

able to pick and tune the most appropriate eNose sensor system, the detailed and granular 

abundance and structural data of VOCs provided by GC/MS is still the most definitive approach 

to determining if breath profile changes exist. Any given eNose can fail in these early stages by 

virtue of performing poorly with the VOCs that happen to be important.  

 

5.3 Breath collection methodology 

 

As a growing but still niche field, breath biomarker discovery has seen an influx of new 

investigators. However, especially for studies on neglected tropical diseases, funds can be 

limited. Inexpensive, reliable tools for breath collection would help studies focusing on an 

expanding range of diseases. The Bio-VOC was seen as a low-cost, easy-to-handle alternative to 

the main method of breath collection, i.e. inert sampling bags. However, our findings indicate 

that the Bio-VOC’s advantages are outweighed by its inferior performance compared to 

sampling bags. Surprisingly, no field comparison of the two methods had been performed 

previously, so such a comparative study is timely. Critically, the Bio-VOC fails to perform at a 

level that allows for reliable determination of breath biomarkers. Choosing it as the sole method 

for an initial study could erroneously exclude a disease as a candidate for breath diagnosis. 
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To expand on our findings, future studies should aim to test these differences in a rigorous lab 

setting. One helpful experiment would be to determine the effective limit of detection for both 

methods, a value that is known only approximately at present. Generalizing our findings, seen in 

pediatric patients, to all ages is also an important step. Another key test would be to evaluate the 

performance of the Bio-VOC when used to collect upwards of five breaths from each patient, as 

our study and other past studies have collected only three breaths. The increased capture volume 

may increase the limit-of-detection of the Bio-VOC to match that of the sampling bags, but 

variability associated with multiple breath samplings could arise. The potential for variability 

also points to an issue shared by sampling bags, the Bio-VOC, and other collection methods: a 

lack of standardization. While efforts have been made to standardize breath biomarker discovery 

in terms of method reporting [7], establishing a suggested minimum breath collection volume, 

based on breath VOC concentrations, would be a helpful step. Expanding standards to 

encompass agreed upon positive controls, such as isoprene levels or a basket of common breath 

VOCs, would help with inter-study comparability.    

  

5.4 P. falciparum induced volatile changes 

 

It was long assumed that mosquito transmission of Plasmodium parasites, and of numerous other 

pathogens, was a consequence of natural mosquito behavior without any input from the parasite. 

Only relatively recently did evidence emerge suggesting mosquitoes are disproportionately 

attracted to infected individuals, a fact now confirmed across several studies [8]. Given the 

designs of these studies, host odor seemed like the most likely mediator of increased attraction, 

but the exact mechanisms were not known, especially for human malaria. Our finding of known 
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plant-like attractants, especially α-pinene, emitted by parasite cultures and at higher levels in 

infected patient breath provides a plausible mechanism for increased mosquito attraction. 

However, the exact effects of α-pinene and 3-carene on mosquito behavior have not yet been 

elucidated. Testing these compounds against mosquitoes, probably as part of a blend that mimics 

human odors, should help settle the issue. The exact source of the terpenes is another outstanding 

question: we proposed that the parasite, which harbors multiple plant-like genes, may possess a 

plant-like terpene synthase. No such gene is annotated, but predicting terpene synthases from 

genome data is infamously difficult. Screening for the synthase via a toxic precursor build-up 

system in E. coli is one possibility, but P. falciparum genes do not regularly express and/or fold 

well in E. coli. If the parasite produces the terpenes, that would engender questions as to whether 

the terpenes made vary by geographic location to better match the preferences of local Anopheles 

species. Other mooted possibilities aside from parasite production include that the terpenes are 

arising from red blood cell metabolism [9] or are somehow being released from fatty deposits. 

 

A linked question is the extent to which breath volatiles effect mosquito behavior in comparison 

to other body odors, most notably odors from sweat. A recent study found preferential mosquito 

attraction to sweat samples from infected patients, and sweat odors could be the dominant factor 

[10]. Disentangling this issue will require assessing mosquito attraction directly against collected 

breath samples or captured breath VOCs. Even if sweat VOCs have a greater role in attraction, 

breath VOCs will reflect those seen in sweat. An early indication of this is a putative 

monoterpene alcohol seen at higher levels in infected patient sweat samples in Appendix B (at an 

approximate retention time of 11 minutes).  
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A final area for future investigation is the life stage dependency of terpene prevalence and 

mosquito attraction. The malaria parasite can only complete its life cycle when taken up by a 

mosquito if the parasite has transitioned from the asexual blood stage cycle to the terminal sexual 

stage, i.e. gametocytes. Mature gametocytes take roughly two weeks after emergence from the 

liver to fully develop. Previous behavioral research indicates that the preferential attraction to 

infected hosts corresponds to the presence of mature gametocytes [11], though their presence is 

usually linked with peak overall parasite density. Knowledge of gametocyte levels via qPCR will 

help, but a more definitive approach would be to sample host volatiles before and after treatment 

that kills solely asexual parasites (a feature of some current frontline antimalarials). Regardless 

of life stage, if further confirmed, the alteration of host volatiles to increase vector attraction 

would be a new paradigm of parasite host manipulation that might apply beyond P. falciparum. 

Other eukaryotic parasites, like the causative agent of leishmaniasis transmitted by sandflies 

[12], are prime candidates to employ attraction tactics, but whether the phenomena extends to 

“simpler” pathogens such as arboviruses is an interesting avenue for exploration as well. 

Including increased preference for infected hosts also affects efforts to model malaria spread 

with regards to control strategies [13]. 

 

5.5 Roles of prenylation in P. falciparum 

 

As with many eukaryotes, prenylation is an essential cellular process in P. falciparum. However, 

few protein substrates had been experimentally validated. By utilizing a comprehensive labeling 

technique, we present compelling evidence for the full suite of prenylated proteins in P. 

falciparum. Bolstering the labelling data, the substrates identified all possess features that predict 
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prenylation. A later, independent study using a similar labelling strategy found results broadly in 

agreement with our own, the few discrepancies explainable by the strictness of cut-off criteria 

[14]. Both studies found a limited number of prenylated proteins; based on predictive data the 

farnesyl transferase (FT) appears to have fewer than five substrates, in stark contrast to other 

organisms. This information has implications for drug development as farnesyl transferase 

activity has been shown to be essential for parasite growth; our findings imply that the 

essentiality hinges on a handful of downstream proteins. Since farnesyl transferase inhibitors 

(FTIs) are being explored as future antimalarials [15], knowledge of downstream processes will 

help to understand the mechanism of killing and how possible modes of resistance might arise. 

Hypothetically, inhibiting farnesylation of a single protein might kill the parasite, and targeting 

that specific prenylation event, or the substrate protein itself, may provide targets for new 

antimalarials. 

 

In service of identifying antimalarial targets, but also expanding the understanding of prenylation 

as a biological process, several future studies are warranted. Evolutionarily, P. falciparum exists 

before the expansion of the Ras superfamily [16], which explains the few predicted 

geranylgeranyl transferase type II (GGT-2) substrates. For the protein substrates of 

geranylgeranyl transferase type I (GGT-1) and FT, it is unclear if their reduced number is in line 

with other species of the same lineage or if it is the result of P. falciparum’s parasitic lifestyle. 

Expanding prenylome studies to multiple species will help answer this question; currently only 

P. falciparum and various human cell types have been explored with comprehensive labelling. It 

is worth noting that P. falciparum may have additional prenylated proteins that are exclusive to 

mosquito or liver stage parasites, though predictive data suggest that numerous additional 
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substrates are unlikely to be discovered. Determining which proteins of the prenylome are 

farnesylated specifically will be essential for understanding FTI activity. Strong evidence exists 

that Hsp40 is farnesylated; performing labelling while administering FTIs should help identify 

the others. The protein Hsp40 warrants special investigation as it is easily the most prevalent 

farnesylated protein and could be a key essential enzyme. Attempting to knock out Hsp40 or 

altering its prenylation site will help identify the role that prenylation plays for this enzyme, 

which, unusually for a prenylated protein, appears to be mostly cytosolic.  

 

5.6 Final thoughts 

 

Advances in diagnostics, mosquito vector control, and antimalarial treatments are crucial in 

decreasing and ultimately eliminating the malaria burden worldwide. The work presented in this 

dissertation sets the ground for innovations in all three areas by establishing the plausibility of 

breath diagnosis, identifying malaria induced attractants with implications for mosquito traps and 

malaria transmission, and elucidating the substrates for a metabolic process targeted by a class of 

potential antimalarial compounds. As this work built upon previous findings, so must future 

studies validate and expand upon what is presented here to achieve the goal of translating 

observations into actions to defeat malaria. 
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A.1 Abstract 

 

The malaria parasite, Plasmodium falciparum, contains a non-photosynthetic plastid organelle 

that possesses plant-like metabolic pathways. Plants use the plastidial isoprenoid biosynthesis 

pathway to produce volatile odorants, known as terpenes. In this work, we describe the volatile 

chemical profile of cultured malaria parasites. Among the identified compounds are several 

plant-like terpenes and terpene derivatives, including known mosquito attractants. We establish 

the molecular identity of the odorant receptors of the malaria mosquito vector, Anopheles 

gambiae, which respond to these compounds. The malaria parasite produces volatile signals that 

are recognized by mosquitoes and may thereby mediate host attraction and facilitate 

transmission. 

 

A.2 Introduction 

 

Malaria remains an enormous burden to human health worldwide. There are over 250 million 

cases of malaria each year, and nearly one million deaths [1]. A single protozoan species, 

Plasmodium falciparum, is responsible for the most severe and deadly cases of this disease. 

Widespread and emerging drug resistance has contributed to a resurgence of malaria and to 

increased international attention to malaria control [2, 3]. Because P. falciparum is transmitted 

through the bite of mosquitoes of the genus Anopheles, mosquito vector management has 

remained a key component of most malaria reduction efforts [4].  
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Female mosquitoes choose their mammalian hosts based in part on complex chemical cues. 

Some of these signals, such as carbon dioxide, have been well characterized on a molecular 

level. For example, carbon dioxide is not only a potent mosquito stimulant, but also augments 

mosquito feeding behaviors and modulates attraction to other human body odors [5]. However, 

Anopheles gambiae strains that lack functional CO2 receptors are still capable of locating human 

hosts [6], indicating that additional chemical signals also drive host preference. Several recent 

studies have demonstrated that malaria-infected hosts, including humans and rodents, are more 

attractive to Anopheles spp. [7-9]. Analysis of volatile organic compounds emitted by 

Plasmodium-infected mice revealed a global increase in volatiles, including host-derived 

compounds that enhance mosquito attraction [9].   

 

While female mosquitoes depend on protein-rich blood meals for egg maturation, both male and 

female mosquitoes are also attracted to and feed from plants. Plant nectar is an important, 

carbohydrate-rich nutrient source that provides essential energy for flight, and, for some 

mosquito species, overwintering [10, 11]. This phytoattraction has been successfully harnessed 

by malaria control efforts through “attractive nectar baiting” strategies, in which mosquitoes are 

lured to sugar-water blends spiked with plant volatiles and insecticides [12, 13]. Suspected 

preferred host plants for Anopheles gambiae include Asteracaeae spp. and Ricinus communis 

[14]. Analysis of purified odorants from these plants has revealed enrichment of volatile 

compounds known as terpenes, including 10-carbon monoterpenes such as pinene and limonene. 

At low concentrations, these purified terpenes directly mediate attraction of Anopheles spp. [14]. 
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Terpenes are low vapor-pressure hydrocarbons that belong to a class of compounds known as 

isoprenoids. Over 200,000 isoprenoids have been described, and this large group of biomolecules 

exhibits dramatic structural and functional diversity [15]. All isoprenoids are produced 

downstream of two common 5-carbon precursors, isopentenyl pyrophosphate (IPP) and 

dimethylallyl pyrophosphate (DMAPP). Animals and fungi generate isoprenoids through a 

biosynthetic route that proceeds through mevalonate. In contrast, eubacteria and plastid-

containing eukaryotes use an alternate metabolic route, the non-mevalonate or methylerythritol 

phosphate (MEP) pathway. Plants utilize both the mevalonate and MEP pathways; however it is 

the chloroplast-localized MEP pathway that is used for biosynthesis of the terpene volatiles that 

constitute their characteristic flavors and fragrances [16]. For many species of insects, not just 

mosquitoes, chemodetection of plant-derived terpenes directly modulates herbivory and 

pollination behaviors (reviewed in [17]). 

 

The malaria parasite, Plasmodium falciparum, contains an unusual plastid organelle, called the 

apicoplast, of similar endosymbiotic evolutionary origin to the plant chloroplast [18]. While the 

apicoplast retains several plant-like metabolic pathways, evidence suggests that the MEP 

pathway may be the only essential function of this organelle during intraerythrocytic 

development [19-21]. In this work, we examine the possibility that, like plants, Plasmodium 

falciparum parasites might utilize the MEP pathway to produce terpenes. We determined the 

volatile chemical composition of headspace gas from cultured P. falciparum, and thus identified 

parasite-produced terpene molecules that represent known mosquito phytoattractants. In 

addition, we have established the molecular identity of the Anopheles gambiae odorant receptors 

that respond to these plant-like terpenes. Together, our studies provide evidence that malaria 
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parasites produce specific volatile compounds, and anopheline mosquitoes that transmit malaria 

contain the cellular machinery necessary for detecting and responding to these compounds. Thus, 

plant-like terpenes produced by P. falciparum may represent semiochemicals for mediating 

anopheline mammalian host preference. 

 

A.3 Methods 

 

A.3.1 P. falciparum culture and strains  

All P. falciparum strains were cultured in vitro in human erythrocytes [22], at 2% hematocrit. 

The culture conditions were as described previously [23], with the following modifications: a 5% 

O2–5% CO2–90% N2 atmosphere in RPMI 1640 medium supplemented with 27 mM sodium 

bicarbonate, 11 mM glucose, 5 mM HEPES, 1 mM sodium pyruvate, 0.37 mM hypoxanthine, 

0.01 mM thymidine, 0.25 mg/ml gentamicin (Goldbio), and 0.5% Albumax (Invitrogen). 

Wildtype strain 3D7 (MRA-102) was obtained from the Malaria Research and Reference 

Reagent Resource Center (MR4). 3D7-IG was kindly provided by Daniel Goldberg, MD PhD, 

Washington University School of Medicine. 

 

A.3.2 Headspace sampling 

Plasmodium falciparum strain 3D7-MR4 was cultured in a cell bioreactor bag (GE Lifesciences) 

for 48 hours with a volume of 200mL at 2% hematocrit and 2% parasitemia (infected 

erythrocytes / total erythrocytes). The culture was injected into the bag via syringe through a 

liquid injection port in a sterile environment. Uninfected samples contained erythrocytes and 

media, and blank controls represented sampling from empty bags without media or erythrocytes. 
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The two injection ports with attached airtight filters were then used to fill the bag with a 5% O2–

5% CO2–90% N2 atmosphere. The biobag was secured to a tilting plate and connected to 0.63” 

sterile plastic tubing (Cole Parmer) through two injection ports. The ends of the tubing were 

connected to luer pieces, which were secured to the biobag ports using parafilm. Of note, the 

biobag ports do not contain luer locks, but all other pieces of tubing in the system are connected 

with interlocking luer pieces. One piece of tubing was connected directly to a Bio-Rad Econo 

Pump, and the other was fed through an airtight hole in a 250 mL media bottle (Kimax). The 

bottle also contained openings for fiber insertion and outgoing plastic tubing. This tubing was 

connected to the other end of the peristaltic pump, completing the closed loop. A 

carboxen/polydimethylsiloxane SPME microfiber (Sigma Aldrich), inside a manual holder, was 

placed through an adaptor into the media bottle. Parafilm was used to secure the fiber and fiber-

holder in place and provide an airtight seal. Each experiment was performed in a temperature-

maintained 37°C room for optimal malarial growth. Sampling was initiated by opening the 

clamps on the two biobag injection ports, initiating peristalsis, and extending the fiber from 

inside the holder to its exposed position in the bottle. The fiber was exposed to the sampling 

conditions for 48 hours. After sampling, the fiber was re-sheathed and analyzed by GC/MS as 

detailed below. 

 

A.3.3 GC/MS analysis of SPME fiber extracts 

Samples were analyzed on an Agilent 7890A gas chromatograph interfaced to an Agilent 5975C 

mass spectrometer. The GC column used for the study was an Agilent HP-5MS (30 m, 0.25mm 

i.d., 0.25 μm film thickness. Samples were injected in a splitless mode with injector and transfer 

line temperatures set at 300oC. A linear temperature gradient was started with an initial 
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temperature of 60oC, held for 2 minutes, increased to 300o C at 10oC /minute, and held for 1 

minute. The ion source temperature, electron energy, and emission current were set at 230oC, 

70eV and 300μA, respectively, to obtain EI mass spectra. 

 

A.3.4 Manual analysis of GC/MS data 

The raw data were analyzed by the Automated Mass Spectral Deconvolution and Identification 

System (AMDIS), which provided an output of the GC trace with deconvoluted mass spectrum 

extracted from each trace. Each mass spectrum represents a potential compound at a specific 

point in the trace. Every sample (headspace gas and parasite extract) yielded an average of 700 

mass spectra per analysis. The structures of the compounds in each GC peaks were identified by 

database search (NIST mass spectrum library) using AMDIS software. Background peaks that 

represented known biologically irrelevant contaminants, such as polysiloxane arising from 

SPME fibers, were excluded from further analysis, as were compounds that did not possess 

consistent, parasite-unique ion spectra at given retention times. 

 

A.3.5 Saponin lysis of P. falciparum cultures 

Parasites were freed from RBCs through lysis with saponin at a final concentration of 0.1% 

(vol/vol), followed by centrifugation at 2500 rpm and resuspension in 4 mLs of PBS. Pellets 

were washed in an additional 1 mL of PBS, followed by centrifugation at 14,000 for 1 minute. 

Dry pellets were stored at -80ºC until analysis. 
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A.3.6 Organic extraction 

Extraction of isolated parasite cells was performed as described in the original Folch procedure 

[24], with the following modifications. Saponin-lysed parasite pellets were suspended in 1 mL of 

2:1 (v/v) chloroform/methanol. The suspensions were sonicated for 30 seconds and then iced for 

30 seconds for 3 cycles. Samples were vortexed at 600 rpm for 1 hour after sonication. Samples 

were then centrifuged at 14000 rpm and the supernatant was recovered. 300 μL of 0.9% NaCl 

was added to induce phase separation of the sample. The organic phase was recovered for 

analysis. The organic phase was not evaporated after extraction to avoid loss of volatile 

compounds. 

 

A.3.7 GC/MS analysis of extracted samples 

GC/MS analyses were conducted on a Thermo ISQ 1300 GC/MS system with Xcalibur operation 

system (San Jose, CA, USA). Separation was achieved by a Thermo 30m TG SQC column 

(0.25mm i.d., 0.25 u film thickness) at a flow rate of 1ml/min with He as the carrier gas. The GC 

temperature was started at 50oC for 2 min, raised to 150oC at 10oC/min, and to the final 

temperature of 300oC at a rate of 20oC/min. The samples were injected in a splitless mode, and 

the EI mass spectra were acquired in the mass range of 40 to 450 Da at a rate of 0.2sec/scan. The 

injector, transfer line, and ion source temperatures were set at 240oC, 250oC and 210oC, 

respectively. 

 

A.3.8 Single-unit electrophysiological recordings  

All experiments were performed on adult female flies, 5 days after eclosion. Flies were reared at 

25°C in an incubator with a 12-hr light-dark cycle. “Empty neuron” recordings were from flies of 
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genotype w Δhalo/Δhalo; Or22a-GAL4/UAS-AgOrX. The ab3A mutant flies and Or22a-GAL4 

and UAS-AgOr transgenic lines were described previously [25]. Fourteen AgOrs (AgOr11, 18, 

20, 21, 26, 27, 30, 31, 46, 48, 50, 56, 57, 75), previously found to respond to terpenes [25], were 

selected to test their responsiveness to additional terpene compounds (α-(+)-pinene, 26870; β-

(+)-pinene, 80607; α-(-)-pinene, 305715; β-(-)-pinene, 402753; R-(+)-limonene, 183164; S-(-)-

limonene, 218367, Sigma Aldrich). Odorants were diluted in paraffin oil (10-2, v/v) and odor 

stimuli (50 μl applied to a filter disc) were delivered from a Pasteur pipette via a 500-ms pulse of 

air (200 ml/min) into the main air stream (2000 ml/min) as described previously [25]. 

Extracellular single-unit recordings were performed essentially as described [25]. Briefly, 

electrical activity of the ORNs was recorded extracellularly by placing a sharp electrode filled 

with Ringer solution into a sensillum and the reference electrode filled with the same Ringer 

solution was placed in the eye. AC signals (300-2000 Hz) were recorded on an Iso-DAM 

amplifier (World Precision Instruments) and digitized at 5 kHz with Axoscope 10.2 (Molecular 

Devices). ORN spike responses were quantified offline and averaged from 6 different neurons. 

Baseline spike frequency (calculated from spike activity 1 sec prior to odor stimulus) was 

subtracted. 

 

A.4 Results 

 

A.4.1 Plant-like volatile compounds in Plasmodium falciparum headspace gas 

We hypothesized that malaria parasites might produce volatile organic compounds, including 

terpenes. We therefore evaluated the chemical composition of the headspace gas above 

asynchronous P. falciparum parasites, cultured in human red blood cells (RBCs). Because 
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previous studies of volatile emissions from P. berghei-infected mice (average blood volume 2-

4mL) [9] or low volume P. falciparum cultures [26] did not detect malaria-specific volatiles, we 

utilized large-volume cultures (200mL) to increase the likelihood of detecting small quantities of 

Plasmodium-produced compounds. In addition, because terpenes are present at low levels in 

human serum [27], we utilized media supplemented with a lyophilized serum substitute 

(Albumax, Invitrogen), which does not contain detectable terpenes. For headspace sampling, we 

employed solid-phase microextraction (SPME) fibers, which selectively bind and concentrate 

nonpolar organic compounds, as is typically performed to evaluate plant-derived volatiles 

(reviewed in [28]).  

 

Fibers were exposed to a controlled atmosphere conditioned by P. falciparum for forty-eight 

hours, and then were desorbed and analyzed by electron impact (EI) gas chromatography-mass 

spectrometry (GC/MS). As is typical of complex volatile samples, component peaks overlap and 

are not well resolved by visual inspection (representative traces, Fig. S1). For this reason, 

resulting chromatograms were deconvoluted to isolate overlapping peaks and to extract and 

annotate component mass spectra. When distinguishing parasite-specific compounds, we aimed 

to identify compounds qualitatively present in parasite-infected samples compared to controls. 

Therefore we conservatively selected compounds present in a majority of independent biological 

replicates of parasite-infected RBC samples and excluded entities also present in either 

uninfected RBC samples or blank controls that contained neither RBCs nor media. Four 

compounds specific to parasite-infected samples were thus identified, including two terpenes 

(Fig. 1). These identified compounds have previously been identified as typical components of 

plant essential oils and/or fungal volatile profiles [29-32]. 
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A.4.2 Terpenes are present in malaria-infected erythrocytes 

We identified several entities that were annotated as terpenes and were present exclusively in the 

headspace gas of malaria parasites, compared to control uninfected erythrocytes or blank 

samples. Since terpenes with closely related chemical structures give rise to similar mass spectra, 

variability in compound annotation is typical and expected. The dominant malaria-specific 

terpenes were annotated as a 15-carbon sesquiterpene (4,5,9,10-dehydro isolongifolene) and its 

close derivative (8,9-dehydro-9-formyl cycloisolongifolene) (Fig. 2; Fig. S2). No commercial 

standards or known synthesis routes are described for either compound; however, the structural 

annotations are supported by consistent database match factors from 654-774.  

 

In addition, each malaria-infected sample contained at least one 10-carbon monoterpene. 

Monoterpene annotations varied between samples, but included the structurally related 

compounds limonene and pinanediol (α-pinene derivative) (Fig. S3). To confirm the identity of 

these monoterpenes, we extracted nonpolar organic compounds from cultured P. falciparum and 

performed GC/MS analysis. P. falciparum-infected cultures, but not uninfected RBC or blank 

controls, contained a single peak suggestive of a monoterpene, with a retention time of 2.39 

minutes, identical to that of an α-pinene (monoterpene) standard (Fig. 3). Comparison of the 

mass spectra of the observed parasite-specific peak with that of a purified standard established 

that the parasite-specific compound is α-pinene (Fig. 3E), a terpene compound previously shown 

to be produced by Anopheles-preferred plant species and attractive to A. gambiae [14]. 
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A.4.3 Terpenes are produced by de novo isoprenoid biosynthesis in malaria 

parasites 

To evaluate whether terpenes in malaria-infected samples were produced de novo by the parasite, 

we utilized fosmidomycin, a phosphonic acid antibiotic that inhibits the first dedicated enzyme 

of the MEP pathway, deoxyxylulose phosphate reductoisomerase [19]. Previous metabolic 

profiling of fosmidomycin-treated parasites has established that fosmidomycin reduces 

concentrations of isoprenoid precursors in P. falciparum [23]. Upon fosmidomycin treatment of 

cultured P. falciparum, pinene peak abundance decreased dramatically (Fig. 3D). Proteomic 

studies of mature RBCs indicate that these cells do not possess the enzymatic machinery to 

produce isoprenoid precursors required for terpene synthesis [33, 34]. In addition, RBCs do not 

appear to contain substantial stores of IPP, since malaria parasites that cannot produce IPP 

themselves are unable to survive [21, 23]. Together this evidence strongly supports that the 

monoterpenes emitted by Plasmodium-infected RBCs arise from the MEP pathway of the 

malaria parasite. 

 

A.4.4 Anopheles odorant receptors respond to malaria-produced terpenes 

P. falciparum is transmitted person-to-person through the bite of anopheline mosquitoes. To 

locate plant and mammalian nutrient sources, A. gambiae detect volatile compounds, which 

signal through ligand-gated voltage channels known as odorant receptors (AgORs) [25]. 

Electrophysiological and behavioral studies indicate that A. gambiae detect and are attracted to 

plant volatiles. While high concentrations of terpenes often repel mosquitoes, pinene and 

limonene directly attract A. gambiae at low concentrations and are the dominant volatile organic 

compounds found in the extracts of mosquito-preferred plant species [14].  
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To determine the biochemical mechanism by which A. gambiae detect plant- and malaria-

produced terpenes, we assayed a panel of mosquito odorant receptors (AgORs) for pinene and/or 

limonene ligand-activated electrical activity. Using the Drosophila “empty neuron” in vivo 

expression system [35, 36], we found that AgOR75 was dramatically stimulated by (+)-

limonene, while AgORs 21 and 50 were substantially stimulated by pinene (Fig. 4, Fig. S3). 

These odorant receptors are differentially expressed in Anopheles chemosensory tissues. 

Specifically, AgORs 21 and 50 are highly expressed in both male and female antennae [37]. 

These studies confirm that the primary African malaria vector mosquito can distinguish 

monoterpenes produced by P. falciparum. In addition, our studies also establish the molecular 

identity of the monoterpene-specific odorant receptors of A. gambiae.  

 

A.5 Discussion 

 

Our studies indicate that Plasmodium falciparum malaria parasites produce a repertoire of plant-

like volatile compounds. These compounds may represent interspecies chemical signals, or 

semiophores, that modulate the attraction of vector mosquitoes to hosts. Among the parasite-

specific compounds we identified, terpenes are bioavailable molecules that readily pass through 

membranes and partition into alveolar gas in the lung. Terpenes, likely from dietary sources, 

have previously been identified in exhaled breath samples of humans [38]. Upon malaria 

infection, parasite-produced terpenes are likely to be detected outside of infected individuals, 

since the total number of parasites in a typical human infection well exceeds the number sampled 

in culture in these studies [39, 40].  
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Previous studies have suggested that P. falciparum infection of Anopheles spp. mosquitoes may 

reduce fitness and alter feeding behaviors [41-43]. Over time, selective pressures might enrich 

for mosquitoes with a decreased tendency to feed from malaria-infected individuals. Therefore, 

any chemical signals that increase attraction of mosquitoes to infected individuals must be 

difficult to select against and resistant to evolutionary pressures. This hypothesis is consistent 

with the finding that malaria infection increases production of typical mammalian host odorants 

[9]. Our studies suggest an additional strategy by P. falciparum for overcoming selection against 

biting infected hosts, in which the malaria parasite compensates by imitating the volatile 

components of plants preferred by Anopheles spp. The parasite thus hijacks a highly selected 

signaling response that is necessary for mosquito nectar-feeding behavior and survival. Since 

Plasmodium infection increases nectar attraction in Anopheles [44], the parasite appears to 

facilitate transmission both by generating a mosquito chemoattractant and by sensitizing the 

mosquito to detect this signal. Interruption of parasite-mediated volatile signaling to mosquitoes 

will be a potent means of blocking this critical step in the malaria life cycle.   

 

P. falciparum has well-characterized biosynthetic machinery to produce isoprenoid building 

blocks and prenyl diphosphates [45-47]. In other systems, such as plants, terpenes are produced 

by terpene synthases, which generate terpenes by catalyzing intramolecular cyclization of prenyl 

diphosphate substrates [48]. This promiscuous reaction typically produces a variety of 

chemically related terpene variants from a single enzyme, a cardinal feature of this enzyme class 

[49]. Consistent with this product diversity, the large protein family of terpene synthases (PFAM 

01397) exhibits remarkable sequence diversity. Our studies strongly suggest that terpenes are 
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produced de novo in P. falciparum, since chemical inhibition of parasite-specific isoprenoid 

biosynthesis reduces terpene production. No unambiguous terpene synthase ortholog is present in 

P. falciparum by domain or phylogenetic analyses, but is likely to be represented among the 

nearly half of parasite genes that remain unannotated. The diversity of terpenes present in P. 

falciparum-conditioned gas suggests that there is at least one monoterpene and one sesquiterpene 

synthase. 

 

Here we report a repertoire of volatile organic compounds that are specific to P. falciparum-

infected cultures. These compounds are not likely to represent all possible malaria-specific 

volatiles, because our conservative data filtering necessarily excludes compounds that are 

parasite-specific but exhibit significant biological variability. The volatile fingerprint of P. 

falciparum represents not only a target for the development of inhibitors that will interrupt 

malaria transmission, but also an untapped strategy for malaria diagnostics. The parasite-specific 

compounds we have identified may represent volatile biomarkers of malaria infection. Ongoing 

studies will establish the presence and identity of these compounds in human P. falciparum 

infection.  
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A.6 Figures 
 

 

Figure 1. Plasmodium-specific VOCs. Compounds annotated in three or more P. falciparum-

infected SPME sampling replicates (total n=5) and not in uninfected red blood cell samples 

(n=3) or blank controls (n=6). For each compound, the average retention time (RT) and the range 

of match factors are indicated. Match factors (MF, 0-999) describe how well sample spectrum 

agrees with the database spectrum; values >650 indicate close identity.  
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Figure 2. 4,5,9,10-dehydro isolongifolene is present in the headspace gas of Plasmodium-

infected red blood cells (RBCs). Top: Total ion chromatogram (TIC) of SPME fibers conditioned 

with headspace gas from P. falciparum-infected human RBCs. Arrow, retention time of 13.101 

min (typical of 4,5,9,10-dehydro isolongifolene). Bottom: TIC of SPME fibers conditioned with 

headspace gas from uninfected human RBCs. 
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Figure 3. Pinene is produced in malaria parasites by de novo isoprenoid biosynthesis. A-D 

Extracted ion chromatograms (EIC) of the total ion chromatograms (TIC) at m/z = 93, the base 

peak in the ion spectra of pinene. A α-(+)-pinene standard (positive control). B uninfected RBCs 

(negative control). C Plasmodium-infected RBCs. D Plasmodium-infected RBCs treated with 5 

μM fosmidomycin (inhibitor of parasite isoprenoid biosynthesis). E Electron impact (EI) mass 

spectra of the observed pinene peak from P. falciparum in panel C (top) compared to the purified 

α-(+)-pinene standard in panel A (bottom). 
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Figure 4. Anopheles gambiae odorant receptors respond to malaria terpenes. Anopheles odorant 

receptors were expressed in the Drosophila “empty neuron” in vivo expression system and 

exposed to (+)-limonene and α-(+)-pinene. (+)-limonene specifically activated receptor 75. Α 

(+)-pinene activated receptors 21 and 50 (n=6, error bar: ±S.E.M). 
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Supplemental Figure 1. Total ion chromatograph (TIC) of Plasmodium parasite and red blood 

cell VOCs. Top: Typical chromatograph of SPME fibers exposed to Plasmodium falciparum-

infected red blood cells. Marked peaks represent dominant compounds in each trace, many of 

which represent known contaminant compounds (asterisks, silyated background compounds). 

Red, parasite-specific peaks from a representative parasite sample compared to uninfected 

control. Bottom: Typical chromatograph of SPME fibers exposed to uninfected red blood cells. 

A hydrogen azide, B n-butane, C n-hexane, D toluene, E 2,4-dimethyl heptane, F 2,3-dimethyl 

heptane, G 4-methyl octane, H methoxy-phenyl-oxime, I benzaldehyde, J octanal, K 2-ethyl 1-

hexanol, L 2,3,6,7-tetramethyl octane, M dodecane, N 1,4-dimethyl-, trans-cyclooctane.  
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Supplemental Figure 2. Terpenes exclusive to headspace gas of infected red blood cells. Top: 

Overlay of typical extracted ion chromatograms for the base peak ion of 4,5,9,10-dehydro 

isolongifolene, m/z = 143. Arrow indicates retention time of 4,5,9,10-dehydro isolongifolene, 

13.1 min. Bottom: Overlay of typical extracted ion chromatograms for the parent peak ion of 8,9 

dehydro-9-formyl cycloisolongifolene, m/z = 230. Arrow indicates retention time of 8,9 

dehydro-9-formyl cycloisolongifolene, 12.1 min. 
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Supplemental Figure 3. Heatmap of terpene annotation predictions. Each column represents 

compounds identified from SPME sampling replicates from five independent biological samples 

of P. falciparum-infected RBCs. Not represented are compounds also present in RBCs or 

identified solely from nonpolar organic extractions. The gray scale represents the confidence in 

the match ID given by NIST, based on the similarity between the ion spectra in the sample and 

the reference spectra from the NIST library. White represents 0% probability, indicating the 

spectrum was not found in the TIC, and black represents 80% probability (the highest match of 

all annotated compounds), indicating the terpene was found in the TIC with an ion spectrum that 

matched closely to the reference spectrum in the NIST library. Heatmap includes all entities 

annotated as terpenes; monoterpenes indicated in bold. 
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Supplemental Figure 4. Anopheles odorant receptor stimulation by parasite monoterpenes.  

Responses of Anopheles receptors in the presence of additional terpene isomers. (-)-limonene 

had no major differences in its activation profile from (+)-limonene, and α-(-)-pinene, β-(+)-

pinene, β-(-)-pinene had no major differences in its activation profile from α-(+)-pinene. 
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volatile organic compound profile of sweat  



xlvii 

 

Preface 

The following work was performed by myself, Lucy B. Bollinger, Mwawi Mwale, Rachel 

Mlotha-Mitole, Indi Trehan, and Audrey R. Odom John. LBB, IT, MM, and RM collected the 

sweat samples and patient metadata. I performed the GC/MS and data analysis. AOJ and I 

designed the experiments. 

 

For contributions to this work, the authors wish to thank Amalia Berna, Michelle Eckerle, Leah 

Imlay, Peter Kazembe, Robert Krysiak, Hans-Joerg Lang, Wentai Lou, Mark Manary, Jonathan 

Ngoma, Brigida Rusconi, Karl Seydel, Terrie Taylor, Malcolm Tobias, the NIH/NIGMS 

Biomedical Mass Spectrometry Resource at Washington University, and the Center for High 

Performance Computing at Washington University. 

 

  



xlviii 

 

B.1 Methods 

 

B.1.1 Sweat sample collection 

Prior to enrollment, approval for the study was obtained from both the Malawi College of 

Medicine Research Ethics Committee (# P.05/14/1572) and the Institutional Review Board of 

Washington University School of Medicine (#201504128). A pediatric cohort was recruited from 

ambulatory pediatric centers in Lilongwe, Malawi, from November 4th to November 16th, 2015. 

Eligibility, exclusion criteria, enrollment procedures, and malaria diagnosis are the same as 

discussed in Chapters 2 and 3.   

 

No Nonsense® brand tan nylon leggings (Kayser-Roth Corp., NC) had been cut into “sleeves” 

roughly 7 in (17.8 cm) long. Pairs of sleeves were placed in individual sealable Ziploc® Double 

Zipper bags (S.C. Johnson & Sons, WI) and shipped to Malawi. After obtaining consent, the 

patient had a sleeve put on each arm between the armpit and the elbow. Patients and caretakers 

were instructed to refrain from touching the sleeves, which were worn for one hour. After the 

hour had elapsed, the pair of sleeves were removed and placed in a new, labeled Ziploc® bag. 

The air was pressed out of the bag, which was then sealed and stored at -20°C. In addition to 

patient samples, room air control samples were collected by placing a pair of sleeves on a clean 

bench at the collection site for one hour. Sleeves were always handled with clean gloves. 
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B.1.2 Gas chromatography/mass spectrometry (GC/MS) analysis 

Samples were shipped back to Saint Louis, MO, on dry ice and stored at -20°C until analysis, 

which was performed in two periods 5 weeks and 12 weeks after collection. For each patient 

sample, the pair of sleeves was placed in a 250 mL Pyrex bottle with a septum cap. All bottles, 

caps, and septa were baked at 165°C for 2 hours before use to remove possible contaminants. 

Septa were only used once and then discarded. The headspace above each pair of sleeves was 

sampled for 24 hours by an 85 µm CAR/PDMS Stableflex 24 Ga SPME fiber (MilliporeSigma, 

MA). The fibers were baked in the GC/MS inlet at 300°C for 45 min prior to sampling.  

 

After sampling for 24 hours, the fiber was run with an Agilent 7890A GC coupled to a 7200 

qTOF MS (Agilent, CA). The GC inlet temperature was set to 300°C, operating in Splitless 

mode with purge flow split to vent set at 50 mL/min at 0.5 min. The GC had a 30 m length x 

0.25 mm ID x 0.25 µm film thickness DB-5 column (Agilent, CA). The GC oven program was 

hold at 60°C for 2 min, ramp 10°C/min to 300°C, then hold at 300°C for 4 min. The column had 

a constant flow rate of 1.2 mL/min. The MS was operated in EI mode, source temperature set to 

280°C, source emission current set to 35 μA, and electron energy set to 70 eV. The acquisition 

rate was 5 Hz with an acquisition time of 200 ms/spectrum and mass range of 20 to 750 m/z. 

 

B.1.3 Feature extraction and statistical analysis 

Feature extraction was performed using the XCMS Online platform [1]. A Pairwise Job was 

submitted with the sample data divided on the basis of malaria infection status: malaria positive 

samples (n = 30) and malaria negative patients (n = 24) acting as the two datasets. The 
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parameters used are listed below. The Annotation and Identification settings are not relevant as 

they are not designed for GC/qTOF-MS data. 

 General 

o Ret. time format: minutes 

o Polarity: positive 

 

 Feature Detection 

o Method: centWave 

o ppm: 40 

o min. peak width: 0.18  

o max. peak width: 4  

o mzdiff: 0.01 

o S/N threshold: 6 

o Integration method: 1 

o prefilter peaks: 3 

o prefilter intensity: 100 

o Noise Filter: 0 

 

 Retention Time Correction 

o Method: obiwarp 

o profStep: 1 

 

 Alignment 

o bw: 2 

o minfrac: 0.5 

o mzwid: 0.025 

o minsamp: 1 

o max: 100 

 

 Statistics 

o Stat test: Welch t-test 

o p-value threshold: 0.01 

o FC threshold: 1.5 

o p-value threshold: 0.05 

o value: into 

o Normalization: None 

 

 Misc. 
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o Bypass file sanity check: checked 

 

The output feature list was additionally analyzed in MATLAB (MathWorks, MA) to generate 

principal component analysis (PCA) plots. 

 

Further statistical analysis was performed using the caret package for R [2], which allows for 

building and testing predictive models with a variety of underlying algorithms. Random forest 

(RF), partial least squares (PLS), k-nearest neighbor (KNN), linear discriminant analysis (LDA), 

and support vector machine (SVM), models were built in quintuplicate using a new set of seeds 

with each iteration. The input data was restricted to features that had an m/z of less than 250, a 

retention time of less than 23 minutes, and a p-value of less than 0.2 (Welch’s t-test comparing 

between malaria positive and negative samples). The data was centered and scaled, features with 

near-zero variation were removed, and missing values were filled using k-nearest neighbor 

imputation. Models were set to tune based on overall accuracy. Validation was performed using 

repeated cross validation with 10 folds and 10 repeats. The code was run on the cluster at the 

Center for High Performance Computing at Washington University. Sample code is presented 

below: 

#Loading caret package and setting directory where data is located 

 

library(caret) 

setwd("/sample directory") 

 

#Importing the sample data and formatting as a data frame. The .csv file should have a column 

#with patient identifiers, a column with “Infection” status, and a column for each extracted 

#feature 

 

sample_data <- read.csv("sample_data.csv") 

sample_data.df<-data.frame(sample_data) 
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#Creating a list to store the models 

 

PLS_models_list <- list() 

 

#Creating a loop to build the model 5 times with a new set of seeds each time 

for(i in 1:5){  

   

  set.seed(i*8)  

   

  {my_seeds <- vector(mode = "list", length = 101) 

    for(j in 1:100) my_seeds[[j]] <- sample.int(2000, 10) 

    my_seeds[[101]] <-50} 

   

#Setting the validation method to be used. Note it is done with a specified set of seeds 

#(my_seeds) to allow comparisons between models 

 

  my_control <- trainControl(method = "repeatedcv", number = 10, repeats = 10, 

                             classProbs = TRUE, 

                             savePredictions = TRUE, 

                             seeds = my_seeds)  

   

 #Setting the model to be built along with relevant parameters  

   

  model_PLS<-train(Infection~., 

                   metric = "Accuracy", 

                   tuneLength = 5, 

                   data = breath.df, 

                   method = "pls", 

                   trControl = my_control, 

                   preProcess = c("center","scale", "nzv","knnImpute")) 

   

 

  PLS_models_list[[i]] <- model_PLS 

   

} 

 

#Outputting list of all 5 models built. 

 

save(PLS_models_list, file ="PLS_models_list.RData") 
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B.2 Figures 
 

 

 

Figure 1 Principal component analysis (PCA) plot of sweat samples shows moderate separation 

by infection status. Malaria infected patient samples are represented by red dots, and malaria 

negative samples by blue dots. The spatial position of each dot represents its relative “score” for 

each principle component, a composite of correlated variables that accounts for a given 

percentage of the total variability in the sample population. Calculated using all features 

extracted by XCMS analysis. 
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Figure 2 Metabolomic cloud plot visualizing potential features of interest differing based on 

infection status. Each dot represents a feature (m/z and retention time) extracted by XCMS with 

a mean abundance higher/lower by at least 1.5-fold and significantly different (Welsh’s t-test, p 

< 0.01) based on infection status. Features higher in infected patients are shown below, in red. 

Features ≥ 1.5-fold higher in uninfected patients are shown above, in blue. The darker the dot, 

the greater the degree of significance. The larger the dot, the larger the fold change difference. 

All total ion chromatograms for the malaria negative patient samples (top) and positive patient 

samples (mirrored, bottom) are overlaid to demonstrate the overall signal at the retention times 

were features of interest are located.  
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B.3 Tables 
 

Table 1 Patient demographic and clinical data for sweat analysis study.  

 

 
Malaria Positive  

(n = 30) 

Malaria Negative 

 (n = 24) 

p value1 

Demographics    

Age, median years (IQR) 8.5 (5-10) 6.5 (5-8.8) 0.11 

Female, n (%) 17 (57) 8 (33) 0.11 

Reported Symptoms, n (%) 
   

Fever 28 (93) 20 (83) 0.39 

Diarrhea 3 (10) 2 (8) 1 

Vomiting 16 (53) 8 (33) 0.18 

Headache 23 (77) 13 (54) 0.09 

Abdominal Pain 20 (67) 17 (71) 0.78 

Muscle/Joint Pain 15 (50) 9 (38) 0.42 

Other, n (%)    

Chronic Malnutrition2  8 (27)  2/23 (9) 0.16 

Acute Malnutrition2 0 (0) 4/23 (17) 0.03 

Uses Bednet  12 (40)  16 (67) 0.06 

Malaria within past 3 

months 
 7/28 (25)  6 (25) 1 

 

Data represented as number (%) except for age. If one or more patients were excluded due to 

gaps in the record, number given is fraction of total. Abbreviation: IQR, interquartile range. 

1 Fisher’s exact test or Mann-Whitney U-test used as appropriate to calculate p values. 

2 Chronic and acute malnutrition defined respectively as height-for-age Z-score or BMI-for-age 

Z-score two or more standard deviations below median.  
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Table 2 Performance of models trained on sweat sample data to classify patient infection status. 

The input data was restricted to features that met certain criteria (see Methods). Each iteration 

was executed with a different specified seed value. PLS = partial least squares, LDA = linear 

discriminant analysis, RF = random forest, KNN = k-nearest neighbor, and SVM = support 

vector machine. 

 

 
Classification Accuracy (%) 

 
Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 

PLS 81 84 82 82 83 

LDA 74 73 72 73 75 

RF 68 69 69 70 69 

KNN 68 69 69 67 68 

SVM 77 79 78 78 80 
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Appendix C: Screen of farnesyl transferase 

inhibitors against P. falciparum  
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Preface 

The following work was performed by myself, Feng Xu (University of Minnesota), Mark 

Distefano (University of Minnesota), and Audrey Odom John. Compounds were formulated and 

synthesized by FX. I performed the screening against P. falciparum and subsequent data 

analysis. 
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C.1 Methods 

 

C.1.1 Drug formulation and synthesis  

The farnesyl transferase inhibitor (FTI) drugs were formulated and synthesized by the Distefano 

lab (University of Minnesota). Compounds were based on two parent structures, A and B, that 

have known farnesyl transferase inhibitor activity in non-P. falciparum organisms. Structures 

were confirmed with electron spray ionization mass spectrometry, H1 nuclear magnetic 

resonance, and analytical high pressure liquid chromatography. The drugs were resuspended in 

pure dimethyl sulfoxide (DMSO), then shipped on dry ice and stored at -20°C.  

 

C.1.2 P. falciparum tissue culture  

All culturing was done with Plasmodium falciparum genome reference strain 3D7. 3D7 was 

obtained from the Malaria Research and Reference Reagent Resource Center (strain MRA-102, 

contributed by D. J. Carucci, ATCC, Manassas, Virginia). Parasites were grown in RPMI-1640 

media (Sigma-Aldrich, SKU R4130) supplemented with 27 mM sodium bicarbonate, 11 mM 

glucose, 5 mM HEPES, 1 mM sodium pyruvate, 0.37 mM hypoxanthine, 0.01 mM thymidine, 

10 μg ml−1 gentamycin (Sigma-Aldrich) and 0.5% Albumax (Life Technologies) with a 2% 

suspension of human erythrocytes under an atmosphere of 5% CO2, 5% O2, balance N2 and 

incubated at 37°C, as previously described [1,2]. 
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C.1.3 Quantifying drug growth inhibition 

Growth inhibition assays were performed in opaque bottom 96-well plates with 100 μL 

supplemented media (see above) at 2% dimethyl sulfoxide (DMSO) and 2% human erythrocytes. 

The highest tested FTI drug concentration depended on the stock provided, ranging from 40 to 

480 μM. Starting with the highest concentration each FTI was serially diluted 1:2 nine times to 

give a range of drug concentrations at which to test inhibitory activity. A “no drug” control well 

was tested along with each drug concentration series. Each drug series was done in duplicate on 

the same plate. Asynchronous P. falciparum culture, diluted to a final parasitemia of 0.75%, was 

added to all wells except no parasite control wells, and was allowed to grow for 72 hours at 37°C 

under atmosphere. After 72 hours, DNA content was quantified as a proxy for parasite growth 

using Picogreen (Thermo Fisher Scientific, CA) as previously described [3]. The fluorescence of 

DNA bound Picogreen dye was measured using a FLUOstar Omega microplate reader (BMG 

Labtech, Germany) with the excitation wavelength set to 485 nm and the recorded emission 

wavelength set to 528 nm. The IC50 values were calculated using the non-linear regression 

feature of the software Prism 7 (Graphpad Software, CA). Wells where the red blood cells had 

visibly lysed were not used in calculations. Three replicates were performed for each drug. 
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C.2 Figure 

 

 

Figure 1 Representative malaria parasite growth curves for farnesyl transferase inhibitors (FTIs). 

The three curves are characteristic of FTIs that have high (FXU2-50, blue), moderate (FXU2-66, 

black), and low (FXU2-3, red) activity against the malaria parasite. Each point is the mean of 

two technical replicates testing at a particular concentration. Each curve, fitted by a non-linear 

regression model, calculates the concentration at which each FTI has 50% of its maximum 

inhibitory activity (IC50), which corresponds to 0.35 µM for FXU2-50, 6 µM for FXU2-66, and 

49 µM for FXU2-3.    
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C.3 Table 
 

Table 1 Antimalarial activity for screened farnesyl transferase inhibitors (FTIs). IC50 = 

inhibitory concentration at 50% maximal activity. SEM = standard error measurement.  

Each IC50 value is the mean of three replicates (two for those marked with a “*”). 

FTI Identifier IC50 (µM) SEM (µM) Parent Structure 

FXU2-50 0.35 0.005 B 

FXU2-49 0.45 0.040 B 

FXU1-120 1.40 0.200 A 

FXU2-54 1.70 0.200 B 

FXU1-99 2.20 0.400 A 

FXU2-4 2.50 0.200 A 

FXU2-11 2.60 0.500 B 

FXU1-140 2.70 0.100 A 

FXU2-44 3.00 0.100 B 

FXU2-90 3.06 0.170 A 

FXU2-132 3.12 0.240 A 

FXU1-107 3.20 0.400 A 

FXU2-122 5.07 0.200 A 

FXU2-134 5.21 0.160 A 

FXU2-7 5.70 1.000 A 

FXU2-66 6.06 0.300 B 

FXU2-92 7.10 0.320 A 

FXU2-91 7.13 0.230 A 

FXU2-45* 7.70 1.400 B 

FXU2-96 7.87 0.290 A 

FXU2-116 8.41 0.510 A 

FXU1-74 9.70 1.200 A 

FXU2-6 10.40 1.200 A 

FXU2-59 11.04 0.790 B 

FXU2-125 11.22 0.960 A 

FXU1-139 14.00 1.400 B 

FXU1-75 17.00 2.300 A 

FXU1-107-CO2Me 26.70 2.700 A 

FXU2-1-CO2Me 38.50 0.800 A 

FXU2-2 42.47 2.650 A 

FXU2-37 48.60 6.500 B 

FXU2-3 48.88 2.280 A 

FXU2-1* 56.40 3.100 A 
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