
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

Arts & Sciences Electronic Theses and 
Dissertations Arts & Sciences 

Summer 8-15-2018 

Topics in PT-symmetric Quantum Mechanics and Classical Topics in PT-symmetric Quantum Mechanics and Classical 

systems systems 

Nima Hassanpour 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds 

 Part of the Mathematics Commons, and the Quantum Physics Commons 

Recommended Citation Recommended Citation 
Hassanpour, Nima, "Topics in PT-symmetric Quantum Mechanics and Classical systems" (2018). Arts & 
Sciences Electronic Theses and Dissertations. 1625. 
https://openscholarship.wustl.edu/art_sci_etds/1625 

This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open 
Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an 
authorized administrator of Washington University Open Scholarship. For more information, please contact 
digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/art_sci_etds
https://openscholarship.wustl.edu/art_sci_etds
https://openscholarship.wustl.edu/art_sci
https://openscholarship.wustl.edu/art_sci_etds?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1625&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1625&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/206?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1625&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci_etds/1625?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1625&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


WASHINGTON UNIVERSITY IN ST. LOUIS

Department of Physics

Dissertation Examination Committee:
Carl M. Bender, Chair

Mark Alford
Erik Henriksen
Michael Ogilvie
Jung-Tsung Shen

Topics in PT-symmetric Quantum Mechanics and Classical systems

by

Nima Hassanpour

A dissertation presented to
The Graduate School

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

August 2018
Saint Louis, Missouri



copyright by

Nima Hassanpour

2018



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Overview of PT -Symmetric Systems . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Overview of PT -Symmetric Quantum Mechanics . . . . . . . . . . . . . . . 5

1.2.1 WKB Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Stokes Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Stokes Wedges of PT -Symmetric Quantum mechanics . . . . . . . . 16
1.2.4 WKB solution approximation for energy eigenvalues of (1.32) . . . . 19
1.2.5 Families of Solutions in PT -Symmetric Quantum mechanics . . . . 21
1.2.6 Unitarity Problem of PT -Symmetric Hamiltonians . . . . . . . . . . 23

1.3 Overview of Exceptional Points . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.1 Exceptional points, Unbroken and Broken Regions of aPT -symmetric

Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Time-independent Hamiltonian for any linear constant-coefficient evolution equa-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Hamiltonian Description of the Damped Linear Harmonic Oscillator . . . . 38

2.2.1 Prelle-Singer Procedure for Damped Harmonic Oscillator . . . . . . 39
2.3 New Method of Derivation of Hamiltonian of Linear Constant-Coefficient

Second-Order Differential Equation . . . . . . . . . . . . . . . . . . . . . . . 44
2.4 Hamiltonian for a Constant-Coefficient nth-Order Equation . . . . . . . . . 54

2.4.1 Degenerate Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.5 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3 Analytic Structure of Eigenvalue of Coupled quantum Systems . . . . . . . . . 60
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

ii



3.2 Analytic Continuation of Eigenvalue Problem for Harmonic Oscillator . . . 65
3.3 Energy levels of the Coupled Harmonic Oscillator . . . . . . . . . . . . . . . 69
3.4 Partition Function for Zero-Dimensional Field Theories . . . . . . . . . . . . 78

3.4.1 Intereacting Quadratic Field Theory . . . . . . . . . . . . . . . . . . . 78
3.4.2 Interacting Sextic Field Theory . . . . . . . . . . . . . . . . . . . . . . 80

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 Behavior of eigenvalues in a region of broken- PT symmetry . . . . . . . . . . 85
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2 Eigenvalue Behavior as ε→ −1 . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.1 Stokes wedges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.2 Numerical Behavior of the Eigenvalues as ε decreases below 0 . . . . 93
4.2.3 Asymptotic Study of the Eigenvalues near ε = −1 . . . . . . . . . . . 94

4.3 Eigenvalue Behavior as ε→ −2 . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.4 Eigenvalue Behavior for −4 < ε < −2 . . . . . . . . . . . . . . . . . . . . . . 109

4.4.1 ε Slightly Below −2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.4.2 Discrete and Continuous Eigenvalues . . . . . . . . . . . . . . . . . . 113
4.4.3 Complex Coulomb Potential ε = −3 . . . . . . . . . . . . . . . . . . . 115
4.4.4 Conformal Limit ε→ −4 . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5 Series Solution of PT -Symmetric Schrödinger Equation . . . . . . . . . . . . . 123
5.1 Numerical Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2 Nodes and expectation values . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.3 Numerical scheme applied to other potentials . . . . . . . . . . . . . . . . . . 133

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

iii



List of Figures

1.1 The left box at x = −a contains sink and the right one located at x = a
involves source. This system has PT -symmetry, since under the parity
operator sink and source interchange their positions and sink transfers into
source and vice verse with time operator and vice versa. . . . . . . . . . . . 3

1.2 The solid lines show the Stokes lines of the Airy equation in complex plane.
On the Stokes lines the solution of differential equation is oscillatory and
is the linear combination of the dominant solutions on the stokes wedges
that are tangent at the Stokes lines. The curly line is the branch cut of
WKB approximation to the Airy equation which can radiate from zero with
arbitrary angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 The solid lines shows the Stokes lines of the Airy equation and the dashed
lines represent the anti-Stokes lines of this equation on which the imagi-
nary part of the exponent of the WKB solution is zero. Therefore, the dom-
inant and subdominat solution grow and decay with highest rate on these
lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Stokes wedges for several values of ε are shown. As ε increases, the angle
of Stokes wedges decreases and as soon as ε > 2 whole the wedges rotate
down the real axis. By allowing ε to approach infinity, the angle of wedge
goes to zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Pattern of Stokes wedges for when ε = 1, 3, and 4. . . . . . . . . . . . . . . . 22
1.6 A generic path on which the integral is define in complex plane. This

path goes to infinity along the anti-Stokes line with helps the solution of
Schrödinger goes to zero as fast as possible. But along every path in the
shaded Stokes wedges, the integral and consequently C operator can be
defined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Regions (shaded) in the complex-x pane where the boundary condition
ψ(x) → 0 is satisfied as |x| → ∞ for the eigenvalue problem in (3.12).
Note that the harmonic oscillator is actually two problems, one on the real
axis and the other along the imaginary axis. . . . . . . . . . . . . . . . . . . . 66

3.2 Sheet 1 of the complex Reimann surface of E(g) in (3.27). On this sheet
both the inner and outer square roots are positive when their argument are
positive. Branch points are indicated by blue dots and branch cuts by red
dashed lines. On this sheet E(0) = ν + ω. . . . . . . . . . . . . . . . . . . . . 70

iv



3.3 Sheet 2 of the complex Reimann surface of E(g) in (3.27). On this sheet the
inner square root in (3.27) is negative and the outer square root is positive
when their argument are positive. On this sheet E(0) is ν− ω (assuming
that ν−ω is positive). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4 Sheet 3 of the complex Reimann surface of E(g) in (3.27). On this sheet
both the inner and outer square roots are negative when their arguments
are positive and thus E(0) = −ν + ω. . . . . . . . . . . . . . . . . . . . . . . 74

3.5 Sheet 4 of the complex Reimann surface of E(g) in (3.27). On this sheet
the inner square root is positive and while the outer square root is negative
when their argument are positive. On this sheet E(0) = ν−ω. . . . . . . . . 75

3.6 First four quartets of energy levels associated with the Hamiltonian (3.1).
The quartets are labeled (m, n), and the quartets shown are for m = 0, 1
and have n = 0, 1. We have chosen the values ν = 2 and ω = 1 and have
have plotted the values of E(0) to scale. Note that each energy eigenvalue
corresponds to the lowest such state on a different Reimann sheet. . . . . . . 77

4.1 Real eigenvalues of the Hamiltonian H = p2 + x2(ix)ε plotted as function
of the parameter ε. When ε ≥ 0 (the region of unbroken PT symme-
try), the spectrum is real, positive, and discrete. However, as ε goes below
0 (ε < 0 is known as the region of broken PT symmetry) the real eigen-
values begin to merge pairwise and from complex-conjugate pair. When
−1 < ε < 0, there are only a finite number of real positive eigenvalues
and an infinite number of complex-conjugate pairs of eigenvalues. When
ε ≤ −0.57793, only one real eigenvalue survives and as ε approaches −1+,
this real eigenvalue becomes infinite. THe behavior of the complex eigen-
values in the region of broken PT symmetry is not shown in this graph
and has not been explored until now. . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Stokes wedges associated with the eigenvalue problem for the Hamiltonian
H = p2 + x2 (ix)ε for eight values of ε. The location of center lines, the
upper edges, and the lower edges of the Stokes wedges are given in (4.3)-
(4.8). The left wedge is colored blue and the right wedge is colored red. As
ε decreases, the wedges get wider and rotate upwards. At ε = −1 the two
wegdes touch and fuse into one wedge. However, when ε goes below −1,
the sheets are again distinct; the left wedge rotate clockwise into sheet −1
and the right wedge rotates anticlockwise into sheet 1. . . . . . . . . . . . . 91

v



4.3 Eigenvalues of the Hamiltonian H = p2 + x2(ix)ε plotted as functions of
the parameter ε for−1.1 < ε < 0. This graph is a continuation of the graph
in Fig. 4.3. As ε decreases below 0 and enters the region of broken PT
symmetry, real eigenvalues (solid black lines) become degenerate and then
form complex-conjugate pairs. The real parts of these pairs of eigenvalues
(solid blue lines) initially decrease as ε decreases but blow up suddenly as ε
approaches −1. The real parts then decrease as ε decreases below −1. The
imaginary parts of the eigenvalue pairs (dashed red lines) remain finite
and appear to suffer discontinuous jumps at ε = −1. However, a closer
look shows that these dashed lines rapidly decay to 0 near ε = −1 and
then rapidly come back up to different values as ε passes through −1. A
blow-up of the region near ε = −1 is given in Fig. 4.4. . . . . . . . . . . . . . 94

4.4 Detailed view of Fig. 4.3 showing the behavior of the eigenvalues of the
Hamiltonian H = p2 + x2(ix)ε plotted as functions of the parameter ε
for −1.05 ≤ ε ≤ −0.95. There is one real eigenvalue for ε > −1 (solid
black line). The real parts of the complex eigenvalues (blue solid lines)
and the real eigenvalue diverge at ε = −1. The complex eigenvalues oc-
cur in complex-conjugate pairs and the imaginary parts of the eigenvalues
rapidly go to 0 at ε = −1. These behaviors are expressed quantitatively in
(4.24). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5 Behavior of eigenvalues of the Hamiltonian H = p2 + x2(ix)ε as the param-
eter ε winds around the exceptional point at ε = −1 in a circle of radius
0.05 in the complex-ε plane. This singular point is an infinit-order excep-
tional point, and all of the complex eigenvalues analytically continue into
one another as one encircles the exceptional point. The lines are shaded
blue when Reε > 0 and red line Imε < 0. The behavior of the imaginary
parts of the eigenvalues (left panel) are easier to visualize because they ex-
hibit a simple logarithmic spiral. The dot shows that the imaginary part
of an eigenvalue (the eigenvalue shown in black in Figs. 4.3 and 4.4) van-
ishes (the eigenvalue is real) when Reε > 0. However, as we wind in one
direction the imaginary parts of the eigenvalues increases in a helical fash-
ion and as we wind in the opposite direction the imaginary parts of the
eigenvalues decrease in a helical fashion. As we pass the real-ε axis we
pass through the values plotted on the red dashed line shown in Figs. 4.3
and 4.4. A shaded cylinder has been drawn to assist the eye in following
this helix. The two helices intersect four times each time the singular point
at ε = −1 is encircled, and they intersect at 90◦ intervals. If we begin at
the dot, we see that the real parts of the eigenvalues increase as we rotate
about ε = −1 in either direction. Each time ε crosses the real axis in the
complex-ε plane the curves pass through the values shown at the left and
right edges of Fig. 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

vi



4.6 First three complex-conjugate pairs of eigenvalues of the Hamiltonian H =
p2 + x2(ix)ε plotted as of Fig. 4.3. Note that the real parts of the eigevalues
coalesce to −1 and the imaginary parts coalesce to 0 as ε approaches −2.
The results of a WKB calculation of these eigenvalues near ε = −2 is given
in (4.46). Note that the real parts of the eigenvalues near ε = −1.3, but they
do not all cross at the same point as can be seen in Fig. 4.7 . . . . . . . . . . 102

4.7 Detail of Fig. 4.6 showing the behavior of the real parts of the first six
eigenvalues of the Hamiltonian H = p2 + x2(ix)ε for −1.4 ≤ ε ≤ −1.2.
The real parts of the eigenvalues cross almost at the same value of ε but the
imaginary parts of the eigenvalues remain well separated. . . . . . . . . . . 104

4.8 Contour in the complex-s plane for the complex Coulomb potential ε = −3.
The contour comes in from ∞ parallel to the positive-real axis at an angle
of −2π in the center of the left Stokes wedge (right panel). Next, it loops
around the origin in the positive direction (center panel). Finally, it goes
back out to ∞ parallel to the positive-real axis at an angle of 2π in the
center of the right Stokes wedge (left panel). The total rotation about the
origin is 4π. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.9 Eigenvalue contours in the complex-s plane for the cases ε = −2.5 and
ε = −3.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.10 Eigenvalues of the Hamiltonian H = p2 + x2(ix)ε for ε = −2.0001 and
−2.001. (The right panels are magnifications of the left panel.) The spec-
trum lies in the left-half complex plane and is partly continuous and partly
discrete. The eigenvalues in the continuous part of the spectrum lie on a
pair of complex-conjugate curves that radiate away from −1 and as we
calculate more eigenvalues, the points on these curves become denser. The
discrete part of the spectrum consists of eigenvalues lying on two complex-
conjugate curves that are much closer to the negative-real axis. There is
an elaborate structure near ε = −1, As ε goes below −2, the eigenvalues
move away from−1; specially, for ε = −2.0001 the distance from−1 to the
nearest eigenvalue is about 0.0005 and for ε = −2.001 the distance to the
nearest eigenvalue is about 0.008 . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.11 Discrete and continuous parts of the spectrum of thePT -symmetric Hamil-
tonian H = p2 + x2(ix)ε for the case ε = −2.6. The discrete eigenvalues
(orange squares) occur in pairs the left-half complex plane. The continu-
ous eigenvalues (blue dots) lie on two complex-conjugate pairs of curves
in the right-half complex plane. As we decrease the cell size in the Arnoldi
algorithm, the dots become dense on these curves. The continuous curves
of eigenvalues originate slightly to the left of the origin. . . . . . . . . . . . . 114

4.12 Detail of Fig. 4.11 showing the elaborate near the origin in the complex-
eigenvalue plane for ε = −2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . 115

vii



4.13 Absolute values of the the eigenfunction ψ(t) for the discrete eigenvalue
−1.79± 4.31i for ε = −2.6. The eigenfunctions satisfy homogeneous bound-
ary conditions ar ±(1− η) for η = 0.01 and look like bound-state eigen-
functions in the sense that the eigenfunctions decay to 0 exponentially fast
at both boundary points. The left and right panels are interchanged under
t→ −t, which corresponds to a PT reflection. . . . . . . . . . . . . . . . . . 116

4.14 Absolute values of the eigenfunctions for the continuum eigenvalues−0.01±
0.18i for ε = −2.6. These eigenvalues belong to the continuous spectrum.
The indication that they are part of the continuous spectrum is that at one
of the boundary points the eigenfunctions suddenly drop to 0 rather than
decaying exponentially to 0. As in Fig. 4.13, the left and right panels are
interchanged under t→ −t, which corresponds to a PT reflection. . . . . . 117

4.15 Eigenvalues for the Coulomb case ε = −3. These are no discrete eigen-
values and the continuum eigenvalues lie on four curves in the left-half
complex plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.16 Detail of the region around the origin in the complex eigenvalue plane of
Fig. 4.15 for ε = −3. For this figure we have chosen η = 0.999 and have
taken the very small cell size 0.00001. . . . . . . . . . . . . . . . . . . . . . . . 120

4.17 Eigenspectrum for ε = −3.8. The continuous part of the spectrum (blue
dots) lies on two complex-conjugate pairs of curves in the left-half plane
and resembles that of the Coulomb case (see Fig. 4.15). The discrete part of
the spectrum (orange squares) consists of complex-conjugate eigenvalues
in the left-half plane and real eigenvalues on the positive-real axis. . . . . . 121

4.18 Plot of the absolute value of the eigenfunction associated with the discrete
real eigenvalue E = 0.0804 for ε = −3.8. . . . . . . . . . . . . . . . . . . . . 122

4.19 First three real eigenvalues of the Hamiltonian p2 + x2(ix)ε plotted as func-
tions of the parameter δ, where ε = −4 + δ. The eigenvalues clearly ap-
proach 0 as δ → 0 and we see strong evidence that the eigenvalues vanish
linearly with δ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.1 The value of Im c plotted as a function of E. The first few energy levels in
the N = 3 theory appear as roots of Im c. . . . . . . . . . . . . . . . . . . . . 125

5.2 Im c in the N = 7 theory PT symmetric spectra. The upper left plot is
for the wedges centered at θ = π/6 and θ = 5π/6; the upper right plot
has wedges centered at θ = −π/18 and θ = −17π/18; the lower plot has
wedges centered at θ = −5π/18 and θ = −13π/18. . . . . . . . . . . . . . . 126

5.3 Eigenfunction for the third excited state for N = 3 plotted along the real axis.129
5.4 Plot of Im c for the N = 1.1, N = 1..5, and N = 1.9 theories. All three of

these theories are in the PT broken region. In the first case there is only
one eigenvalue, in the second case there are three real eigenvalues, and in
the third case there are many real eigenvalues. In all cases the numerical
method used here provides highly accurate results. . . . . . . . . . . . . . . 131

viii



5.5 Plot of Im c for the N = 2.1 and N = 2.5 theories. These theories are in the
PT unbroken region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.6 Plot of Im c for the V = −x4 and V = x4. . . . . . . . . . . . . . . . . . . . . 134
5.7 Plot of Im c for the anharmonic oscillator potential V = x4 ± x2. . . . . . . . 136

ix



List of Tables

4.1 Comparison of the real parts of the eigenvalues of the different equation
(4.26) at δ = 0.01 with the asymptotic approximation in (4.46). The rate
at which the accuracy increases with increasing k is similar to the increase
in accuracy of the standard WKB approximation to the eigenvalues of the
quartic anharmonic oscillator [1]. . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2 Comparison of the imaginary parts of the eigenvalues of the differential
equation (4.26) at δ = 0.01 with the asymptotic approximation in (4.46). . . . 108

4.3 First three real discrete eigenvalues as a function of δ, where ε = −4 + δ.
All the eigenvalues approach 0 as δ → 0. In fact, Fig. 4.19 indicates that
they approach zero in a linear fashion. . . . . . . . . . . . . . . . . . . . . . 119

5.1 Energy levels and c values in the N = 3 theory. . . . . . . . . . . . . . . . . . 128
5.2 Energy levels and c values in the N = 3 theory. . . . . . . . . . . . . . . . . . 130
5.3 Eigenvalue in the broken PT regime for noninteger value of N. . . . . . . . 133
5.4 Eigenvalue in the broken PT regime for noninteger value of N. . . . . . . . 134
5.5 Eigenvalues of the harmonic oscillator V = x2 (N = 2), the PT -symmetric

quartic oscillator V = −x4 (N = 4), and the conventional anharmonic
oscillator V = x4 obtained by using the numerical methods described before.135

5.6 Eigenvalues of the single-well (V = x4 + x2) and double-well (V = x4− x2)
quartic anharmonic oscillators obtained by using the numerical methods
described. The numerical accuracy is excellent and is roughly the same for
either oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.7 This table shows that this numerical methods fail if the potential is not PT
symmetric; that is, it is not a real function of the variable iz. . . . . . . . . . . 137

x



Acknowledgments

During my PhD study, I have had the great opportunity to work with my advisor Prof.

Carl M. Bender who helped me to start exploring different areas of the exciting field of

theoretical physics. I would like to to express my sincere gratitude to Prof. Bender for his

inspiration, guidance and continuous support. It was a great pleasure for me to have him

as my advisor during my doctoral studies. I have benefited a lot form his knowledge,

experience, priceless ideas and inspiring discussions.

I am grateful to all of the Department faculty members for their help and support. Partic-

ularly, I would like to thank Prof. Mark Alford and Prof. Michael Ogilvie for their helpful

discussion. I also would like to thank Prof. Mehdi Golshani, and Prof. Mohammad

Maleak who had great role in my scientific journey.

I am also grateful to my family. Their unconditional support is largely the reason that this

PhD is completed in the United States. No words are sufficient to describe my parents’

contribution to my life.

Nima Hassanpour

Washington University in Saint Louis

August 2018

xi



to my parents

xii



ABSTRACT OF THE DISSERTATION

Topics in PT-symmetric Quantum Mechanics and Classical systems

by

Nima Hassanpour

Doctor of Philosophy in Physics

Washington University in St. Louis, 2018

Professor Carl M. Bender, Chair

Space-time reflection symmetry, or PT symmetry, first proposed in quantum mechanics

by Bender and Boettcher in 1998 [2], has become an active research area in fundamental

physics. This dissertation contains several research problems which are more or less re-

lated to this field of study. After an introduction on complementary topics for the main

projects in Chap.1, we discuss about an idea which is originated from the remarkable

paper by Chandrasekar et al in Chap.2. They showed that the (second-order constant-

coefficient) classical equation of motion for a damped harmonic oscillator can be derived

from a Hamiltonian having one degree of freedom. We gives a simple derivation of their

result and generalizes it to the case of an nth-order constant-coefficient differential equa-

tion.

In Chap.3 we studied the analytical continuation of the coupling constant g of a coupled

quantum theory. We get to this conclusion that one can, at least in principle, arrive at

a state whose energy is lower than the ground state of the theory. The idea is to begin

with the uncoupled g = 0 theory in its ground state, to analytically continue around
xiii



an exceptional point (square-root singularity) in the complex-coupling-constant plane,

and finally to return to the point g = 0. In the course of this analytic continuation, the

uncoupled theory ends up in an unconventional state whose energy is lower than the

original ground-state energy. However, it is unclear whether one can use this analytic

continuation to extract energy from the conventional vacuum state; this process appears

to be exothermic but one must do work to vary the coupling constant g.

PT -symmetric quantum mechanics began with a study of the Hamiltonian H = p2 +

x2(ix)ε. When ε ≥ 0, this portion of parameter space is known as the region of unbroken

PT symmetry. The region of unbroken PT symmetry has been studied but the region

of broken PT symmetry which is related to the negative ε has thus far been unexplored.

In Chap.4 we present a detailed numerical and analytical examination of the behavior of

the eigenvalues for 4 < ε < 0. In particular, it reports the discovery of an infinite-order

exceptional point at ε = 1, a transition from a discrete spectrum to a partially continuous

spectrum at ε = 2, a transition at the Coulomb value ε = 3, and the behavior of the

eigenvalues as ε approaches the conformal limit ε = 4.

Finally in Chap.5 we devised a simple and accurate numerical technique for finding

eigenvalues, node structure, and expectation values of PT -symmetric potentials. The

approach involves expanding the solution to the Schrdinger equation in series involving

powers of both the coordinate and the energy. The technique is designed to allow one

to impose boundary conditions in PT -symmetric pairs of Stokes sectors. The method is

illustrated by using many examples of PT -symmetric potentials in both the unbroken-

and broken-PT -symmetric regions.
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Chapter 1

Introduction

Mathematics has been an inseparable part of physics since the appearance of modern

physics. The entanglement of these two fields culminated by the advent of quantum me-

chanics at the beginning of twentieth century. It has been observed frequently that each

of these fields causes a progress in the other one, which motivated us to dedicate this the-

sis to mathematical topics in the physical context. The research presented here concerns

projects in both classical and quantum mechanics. They are more or less related to the sig-

nificant role of Parity-Time (PT ) symmetry, which although was observed before [3–11],

it has been understood deeply recently [2, 12]. Most crucially, this theory claims that the

Hermiticity condition usually imposed on quantum mechanical observables is a highly

restrictive mathematical condition that can be replaced by the more physical condition of

PT -symmetry. This has been a driving factor for paradigm change over the last decade.

In this thesis we aim to investigate the properties of some classical and quantum systems

from a PT -symmetric viewpoint and to study in depth features that are the direct result

of this paradigm shift. In this chapter we introduce the basic ideas of PT -symmetric

systems and the concepts that play an important role to well understand of the theory
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behind research projects of next chapters, like Stokes wedges, WKB approximation, and

exceptional point.

1.1 Overview of PT -Symmetric Systems

The Hamiltonian of a physical system contains symmetries of the system and conse-

quences evolution equation in both classical and quantum mechanics. In order to solve

the evolution equation we must impose appropriate boundary conditions to describe the

complete behavior of the system. We are interested in type of physical systems that have

both parity (P) which is the left-right symmetry and time (T ) reversal symmetry simulta-

neously. Under P , x → −x and p→ −p, and under T , t→ −t, x → −x, and p→ −p. In

addition to these properties time operators must have another feature which transforms

i→ −i in complex plane and this is because of its nonlinearity.

Based on the choice of boundary condition, the physical systems are classified into closed

or open system; that is, isolated or non-isolated. A closed system does not have interac-

tion with its environment and in quantum mechanics it is described by Hermitian Hamil-

tonian, which is H† = H. The eigenvalues of a Hermitian Hamiltonian are always real

and positive. As a consequence of these property, the Hermitian Hamiltonian is unitary

which conserve the probability in time. But the isolated system is not physical and in

real world a system always has interaction with its environment. Otherwise, it cannot be

observed and measured, because measurement requires that the systems has contact with

external world. Therefore, open systems are the ones that are physically realistic.
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Figure 1.1: The left box at x = −a contains sink and the right one located at x = a
involves source. This system has PT -symmetry, since under the parity operator sink and
source interchange their positions and sink transfers into source and vice verse with time
operator and vice versa.

A closed system does not have exchange of energy with environment and therefore, the

probability density ρ = ψ∗ψ is conserved. On the other hand, energy flows into or our of

open system, like the sink (gain) and source (loss) box in Fig. 1.1 separately. Since there is

flow of energy in each of these boxes the probability is not conserved any more. For the

sink box the probability density increases by time and it decreases for the source box. A

smart and simple way to make the probability conserved is to contact the sink and source

boxes by a proper coupling constant. If the rate of gain and loss for both boxes are the

same the coupled system can be in equilibrium and has zero net probability flux.

An interesting point about this coupled system is that it has PT symmetry. Under time

reversal operator T loss and gain are replaced and under parity operatorP the coordinate

of the boxes are swapped x → −x. In spite of its simplicity, the classical system of coupled

gain and loss has a significant role in a deeper understanding ofPT symmetry of physical

systems without sophisticated mathematics [13, 14].
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Quantitatively, the Hamiltonian that describes the time evolution of the source box is

H = [E1] = [re−iθ] [15], where r > 0 and 0 < θ < π. In this case ImE1 < 0 which means

this box is not in equilibrium and its energy is decreasing. Similarly, for the box in the left

side of Fig. 1.1 the Hamiltonian that describes the time evolution of the source is a 1× 1

matrix H = [E2] = [reiθ], that has a positive imaginary part ImE2 > 0, and its energy

increases. The whole system can be described by the 2× 2 matrix Hamiltonian

H =

re−iθ g

g reiθ ,

 (1.1)

which is not Hermitian. However it is PT -symmetric, where the parity operator is given

by the matrix

P =

0 1

1 0

 , (1.2)

which interchanges the two boxes, and the time operator reverses the time and i → −i

simultaneously. If the boxes are isolated, which means that g = 0, they cannot exchange

energy with each other and the system is not in equilibrium. The energy in left box decays

to zero and it grows to infinity in the right box. Therefore, the system does not have a real

eigenvalue and it is in the PT -broken region. However, if g has a magnitude in a cer-

tain domain, the two boxes can transfer energy continuously and system can equilibrate,

and the system is in the unbroken region of PT -symmetry. For the Hamiltonian in (1.1)

the eigenvalues are real if g2 > r2 sin2 θ. It this region the system is in equilibrium, the

eigenstates oscillate and do not grow or decay exponentially.
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As a conclusion of these simple examples, we understand that PT -symmetric systems

can be interpreted as nonisolated physical systems having balanced loss and gain, such

systems can be considered as intermediate between open systems and closed systems. If

the parameters of the system are adjusted to support a sufficiently rapid internal circula-

tion, the system resembles a closed Hamiltonian system in equilibrium. We then say that

the system has an unbrokenPT -symmetry, and thus it mimics a closed system. However,

if the parameters of the system are varied to weaken the internal circulation, the system

undergoes a transition to a broken PT -symmetric phase, and it is no longer in equilib-

rium. The PT -symmetric system thus behaves like an open quantum system, such as

a scattering experiment. (The broken and unbroken regions and their transition to each

other is discussed by detailed in section 1.3).

1.2 Overview of PT -Symmetric Quantum Mechanics

In this section we give a detailed explanation for mathematical bases of PT -symmetric

quantum mechanics. One important topic is the WKB approximation which leads to cal-

culate the eigenvalues of a PT -symmetric Hamiltonian. Since the purpose is to solve a

differential equation with WKB approximation, we need to define the boundary condi-

tions which the concept of Stokes wedge addresses this necessity and paves the way that

the WKB method plays a crucial role in PT -symmetric quantum mechanics. In addi-

tion, we introduce the C operator and explain its important role in constructing the inner

product and resolving the unitarity problem of PT -symmetric Hamiltonians in Hilbert

space.
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1.2.1 WKB Approximation

WKB theory is a powerful tool to provide a global approximation for linear differential

equation whose highest derivative is multiplied by a small parameter ε [1]. This method

is highly popular in physics, since the second-order derivative term in the Schrödinger

equation has a small coefficient h̄2, and is quite suitable for applying the WKB method.

Following the notation in [16, 17] we introduce a new parameter η = 1/h̄ instead of h̄.

Then the Schrödinger equation reads

(
− d2

dx2 + η2Q(x)
)

ψ(x, η) = 0, Q(x) = V(x)− E (1.3)

Without imposing any boundary condition at infinity, we assume that the solution of this

equation has the form

ψ(x) = exp
[∫ x

a
φ(x, η)dx

]
(1.4)

where a is an arbitrary lower limit of integral, therefore

− φ2 − φ′ + η2Q = 0. (1.5)

If we expand φ in the powers of η,

φ = φ0(x, η)η + φ1(x, η) + φ2(x, η)η−1 + ..., (1.6)
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where each φj(x, η) approaches to a limit as η → ∞ for fixed x, then substituting it in the

differential equation yields

−
(

φ2
0η2 + 2φ0φ1η + φ2

1 + 2φ0φ2 + ... + φ′0η + φ′1 + ...
)
+ η2Q = 0 (1.7)

as far as terms in η2, η, and η0 are concerned. Since the equality holds for all x, the coef-

ficient of each power of η must be zero, which gives

− φ2
0 + Q = 0, 2φ0φ1 + φ′0 = 0 φ2

1 + 2φ0φ2 + φ′1 = 0. (1.8)

By solving these algebraic equations we obtain

φ0 = ±
√

Q, φ1 = − φ′0
2φ0

= −1
2

log φ0. (1.9)

Therefore the approximate solution for ψ up to order of η0 is given by

ψ(x)± ∼ exp
[∫ x

a

(
ηφ0 −

1
2

log φ0

)
dx
]
= Q−1/4 exp

[
±η

∫ x

a

√
Qdx

]
(1.10)

These two solutions are know as the WKB approximation. Linear independence of them

allows us to write the general solution for Schrödinger equation as follows

ψ(x) ∼ c1Q(x)−1/4 exp
(

η
∫ x

a

√
Q(x)dx

)
+ c2Q(x)−1/4 exp

(
−η

∫ x

a

√
Q(x)dx

)
(1.11)

for large η. As can be seen, this solution is not valid in the vicinity of turning points,

where Q(x) = 0. In the Schrödinger equation, turning points occur when V(x) = E,

which is the border between the classically allowed region (V(x) < E, i.e., Q(x) < 0)

and classically forbidden region (V(x) > E, i.e. Q(x) > 0). One can analyze this kind of
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problem by replacing Q(x) with a polynomial function of x. For instance, in the case of

first-order zeros, Q(x) can be replaced by (x − x0). Therefore, the Schrödinger equation

reduces to the Airy function, and the global solution is obtained by matching the solutions

in different regions.

WKB theory is a singular perturbation theory, because the highest derivative term is mul-

tiplied by a small parameter, and as this parameter goes to zero, the order of differential

equation changes abruptly. Because of that the WKB series usually diverges, but on the

other hand it can give extremely accurate results just by calculating the first several terms

of the series. There are two conditions to ensure that the WKB solutions are valid on an

interval. First, it is necessary that the expansion terms of φ be an asymptotic series as

η → 0 for all x in the interval, which requires the asymptotic relations

φn+1 � ηφn (η → ∞) (1.12)

However, because the WKB approximation appears in the exponent, the previous condi-

tion is not sufficient to get a good approximation for ψ. To ensure the WKB series, where

truncated at the term η−N+1φN, is a proper approximation of solution, the next term must

be small relative to 1 for all x in the interval

η−NφN+1 � 1 (η → ∞). (1.13)

If this relation holds the relative error between ψ and WKB approximation is small.

Another important point about the WKB solutions concerns the domain of validity, which

we need to analyze in the complex plane. The solutions of the Schrödinger equation are

single-valued and well-defined all over the domain free from singularities of Q, yet the
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approximation solutions clearly cannot be single-valued because the roots of Q appear in

the denominator of the WKB solution. This demonstrates that the solution can only be

valid in some restricted domain of the complex plane. This analysis is the topic of the

next section, which relates to Stokes wedges and Stokes phenomena. These concepts have a

crucial role in calculating the eigenvalues and eigenfunctions of the Schrödinger equation

when the potential has PT symmetry.

1.2.2 Stokes Phenomenon

To get a deeper understanding of WKB solutions and their domain of validity we need to

expand our analysis into complex-z plane. We use the symbols (a, z) and (z, a) to simplify

the solution

(a, z) = Q−1/4 exp
[

η
∫ z

a

√
Qdz

]
, (1.14)

(z, a) = Q−1/4 exp
[
−η

∫ z

a

√
Qdz

]
, (1.15)

where a is a point in complex plane, and the path of integral does not cross the branch

cuts. Hence the solution can be written as

ψ(z) = c1(a, z) + c2(z, a) (1.16)

obviously, (a, z) and (z, a) are multivalued functions of the complex variable z. As we go

around the branch point of Q the solutions (a, z) and (z, a) will not return to the original

value. This means that, if a specific solution of ψ is approximated at z 6= 0 by a WKB

solution, it is not approximated by the same value at z exp(2πi). On the other hand,
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the solution of the differential equation ψ(z) is entire and single valued on the whole

region [18]. The Stokes Phenomenon is a powerful theory that reconciles this discrepancy.

We explain the element of Stokes Phenomenon by using a simple example [17].

For the second-order differential equation ψ(z)′′ = ηψ(z) the independent WKB solutions

are

(0, z) = eηz, (z, 0) = e−ηz, (1.17)

which in this case are also the exact solutions too. When |z| is large, there are three classes

of approximations:

• If Rez = x > 0, ψ(z) ∼ eηz;

• If Rez = x < 0, ψ(z) ∼ e−ηz;

• If Rez = x = 0, neither approximation is valid and ψ(z) = eηz + e−ηz.

This means that for −1
2 π < arg z < 1

2 π, (0, z) is the dominant solution and (z, 0) is the

subdominant one. We label them by (0, z)d and (z, 0)s. Conversely, in the domain 1
2 π <

arg z < 3
2 π, the (0, z) is subdominant and (z, 0) is dominant. In this example the dominant

and subdominant property are reversed by crossing the lines where Rez = 0 which are

positive and negative imaginary axis. In general these lines can be found by solving

Re
∫ z

a

√
Q(z)dz = 0. (1.18)

These lines are called Stokes lines and the dominant and subdominant property of the

WKB solutions are reversed by crossing these lines. Along these lines the solution is
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combination of the dominant WKB expressions on each side of the line. According to

above definitions, we can rewrite the WKB solution as follows:

ψWKB = (0, z) + (z, 0)
(

arg z = −1
2

π

)
,

ψWKB = (0, z)d + (z, 0)s

(
−1

2
π < arg z <

1
2

π

)
,

ψWKB = (0, z) + (z, 0)
(

arg z =
1
2

π

)
,

ψWKB = (0, z)s + (z, 0)d

(
1
2

π < arg z <
3
2

π

)
,

which are without approximation. We can eliminate the subdominant term if it is smaller

than the magnitude of error. Very near the Stokes line, both solutions must be considered;

|e−ηz| is ignorable when it is subdominant, but as z approaches the Stokes line its value

increases quickly to unity. This simple equation clearly explains the effect of Stokes lines.

In the next step we study the Airy equation in order to clarify how to resolve the ap-

parently multivalued solutions due to the existence of a branch cut. The Airy equation

reads

y′′(z) = zy(z). (1.19)

We eliminate the large parameter η, which in the WKB method is still applicable. The

complete solution of the differential equation is written as

y(z) = c1Ai(z) + c2Bi(z), (1.20)
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which is entire and single valued. On the other hand, the WKB approximation made up

of two expressions

(0, z) = z−
1
4 e

2
3 z3/2

, (z, 0) = z−
1
4 e

2
3 z−3/2

. (1.21)

Stokes lines appear when Rez3/2 = 0, which happens where arg z = ±1
3 π, π. The solution

(o, z)d is dominant in domain −1
3 π < arg z < 1

3 π, and subdominant in the regions 1
3 π <

arg z < π, and −π < arg z < −1
3 π, which is written as (0, z)s. The other solution has the

opposite situation in those regions.

The branch cut can be insert at z = 0 with arbitrary argument. If (0, z) is considered on

the negative side of the branch cut with angle of δ, by crossing the branch cut an angle of

2π is added to the argument. Then if z = reiδ there would be a transfer between the two

WKB solutions

(0, z)d =
(

reiδ+2π
)−1/4

e
2
3(reiδ+2π)

3/2

= −ir−1/4e−iδ/4e−
2
3(reiδ)

3/2

= −i(z, 0)d (1.22)

Therefore, crossing the branch cut for the WKB solutions of the Airy leads to the following

change

(0, z)→ −i(z, 0) , (1.23)

(z, 0)→ −i(0, z) , (1.24)

the dominancy or subdominancy being preserved in the process. If such a process are

traced over the branch cut in a negative direction, the −i is replaced by +i. Based on the
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Figure 1.2: The solid lines show the Stokes lines of the Airy equation in complex plane.
On the Stokes lines the solution of differential equation is oscillatory and is the linear
combination of the dominant solutions on the stokes wedges that are tangent at the Stokes
lines. The curly line is the branch cut of WKB approximation to the Airy equation which
can radiate from zero with arbitrary angle.

two rules that we have so far the (z, 0)s solution in region 1 of Fig. 1.2 alters as follows

1 : (z, 0)s, 2 : (z, 0)d, 4 : (z, 0)d, 3 : i(0, z)d (1.25)

if arg z = π : (z, 0) + i(0, z) (1.26)

We need one more rule to determine the approximate solution for all arg z that is intro-

duced by the anti-Stokes line [17]. The anti-Stokes line is defined by

Im
∫ z

a

√
Q(z)dz = 0. (1.27)

Therefore the anti-Stokes lines of the Airy function are obtained by solving

Im z
3
2 = 0. (1.28)
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Figure 1.3: The solid lines shows the Stokes lines of the Airy equation and the dashed
lines represent the anti-Stokes lines of this equation on which the imaginary part of the
exponent of the WKB solution is zero. Therefore, the dominant and subdominat solution
grow and decay with highest rate on these lines.

which leads to the lines with arg z = 0,±2
3 π, the lines that are bisector of the angles

formed by two consecutive Stokes lines. Along anti-Stokes line the dominant solution has

its maximum dominancy and subdominant solution attains its maximum subdominancy.

According to Fig. 1.3, if we have a subdominant solution in region 2, its coefficient must

be changed discontinuously on angle ∠BOD in order to emerge on the next Stokes line

OD with the appropriate coefficient, and appear as a dominant solution in the next do-

main 4. The discontinuous change does not violate the continuity of the WKB solution,

because its magnitude is much smaller than the error allowed based on the dominant

term. If dominant term does not appear in a domain, no change in the coefficient of sub-

dominant term can take place. The alteration of coefficient of subdominant term is known
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as Stokes Phenomenon, after its discoverer Sir George Stokes [19]. Quantitatively this the-

ory asserts that as a subdominant function crosses an anti-stokes line, its new coefficient

is expressed in terms of the original coefficient and the coefficient of the dominant term:

New Subdominant Coefficient = Old Subdominant Coefficient+C×Dominant Coefficient,

(1.29)

where C is the Stokes constant according to the particular anti-Stokes line. If we track

the subdominant solution in the negative direction +C will be replaced by −C. In other

words the Stokes constant measures the lack of commutativity between the analytic con-

tinuations of the solutions and their asymptotic near infinity, when crossing the anti-

Stokes line [20, 21].

For the Airy equation there are three Stokes constants. We may prove that C1 = C2 =

C3 = i for all anti-Stokes lines following [17]. In order to do that let a general solution on

the Stokes line OB be given by

ψWKB = A(0, z) + B(z, 0) (1.30)

As can be seen in Fig. 1.3, based on the rules that have been explained we obtain the

solution for regions 2 and 3 by tracking positively

2 : A(0, z)s + B(z, 0)d ,

3 : (A + C2B)(0, z)s + B(z, 0)d .
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By crossing the anti-Stokes and Stokes lines negatively we get

1 : A(0, z)d + B(z, 0)s

7 : A(0, z)d + (B− C1A)(z, 0)s

6 : A(0, z)s + (B− C1A)(z, 0)d

5 : iA(z, 0)s + i(B− C1A)(0, z)d

4 : [iA− iC3(B− C1A)] (z, 0)s + i(B− C1A)(0, z)d

Where 1, 7, 6, 5, and 4 refer to regions in Fig. 1.3. By comparing the equation of (z, 0) and

(0, z) in region 3 and 4, we obtain

B = iA− C3i(B− C1A) ,

A + C2B = i(B− C1A) .

The validity of these equations for all A, and B imply the following four equations

1 = −iC3, 0 = i + iC3C1, 1 = −iC1, C2 = i, (1.31)

yielding C1 = C2 = C3 = i.

1.2.3 Stokes Wedges of PT -Symmetric Quantum mechanics

After comprehensive discussion on the Stokes phenomenon and Stokes wedges, we ex-

plain how these techniques can be applied in order to find the boundary conditions for a
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PT -symmetric Hamiltonian, which finally leads to energy of the bound states. In this

chapter and rest of this dissertation we consider a well-known class of Hamiltonians

H = p2 + x2(ix)ε and attempt to find out the energy eigenvalues of this type of Hamilto-

nian for a different range of ε [6]. Hence, the Schrödinger equation reads

− ψ′′(z) + z2(iz)εψ(z) = Eψ(z), (1.32)

which is written in coordinate space, and we treat the variable z as a complex independent

parameter.

Although we cannot solve this problem exactly we can find the asymptotic behavior of its

solution by using the WKB approximation. As explained in the aforementioned section,

we know that the exponential component of the asymptotic behavior of ψ(z) for large |z|

has the form

ψ(z) ∼ exp
[∫ z

ds
√

Q(s)
]

, (1.33)

where Q(z) = x2(ix)ε − E. First we consider ε = 0 in order to identify the appropri-

ate boundary condition to impose on ψ(z). In this case we can see immediately that the

WKB solutions behave roughly as ψ(z) ∼ exp
(
±1

2 z2
)

. The requirement that the eigen-

functions must be square integrable implies that the negative sign must be chosen for

a physical solution. In the complex plane we choose a solution that has negative real

part so that it vanishes for large |z|. This solution is valid in the Stokes wedges with

opening angle of π
2 which their bisectors are positive and negative real axis. These two

stokes wedges create a PT -symmetric region, as can be seen in Fig.1.4. The differential

equation may be integrated along any path in the complex-z plane as long as the ends

of the path approach complex infinity inside the left wedge and the right wedge. But as
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Figure 1.4: Stokes wedges for several values of ε are shown. As ε increases, the angle
of Stokes wedges decreases and as soon as ε > 2 whole the wedges rotate down the real
axis. By allowing ε to approach infinity, the angle of wedge goes to zero.

mentioned before, the anti-Stokes line is the quickest path for decreasing of the subdom-

inant solution. Therefore, it is reasonable to choose this as the default path for solving

the Schrödinger equation, and run the numerical code along anti-Stokes line for finding

eigenvalues.

As epsilon increases from zero, the logarithmic branch point appears at the origin z = 0.

Without loss of generality, we may choose the branch cut to run up the imaginary axis

from z = 0 to i∞. In this cut plane the solutions to the Schrödinger equation are single-

valued. By reasoning that the real part of the exponent of WKB solution equals zero we

can calculate the angles of Stokes wedges as functions of ε. WKB analysis provides precise
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formulas for the location of the center line of the Stokes wedges:

θright wedge, center = −
ε

8 + 2ε
π,

θle f t wedge, center = −π +
ε

8 + 2ε
π , (1.34)

the upper edges of Stokes wedges,

θright wedge, upper edges =
2− ε

8 + 2ε
π,

θle f t wedge, upper edges = −π − 2− ε

8 + 2ε
π, (1.35)

and the lower edges of Stokes wedges

θright wedge, lower edges = −
2 + ε

8 + 2ε
π,

θle f t wedge, lower edges = −π +
2 + ε

8 + 2ε
π . (1.36)

The opening angle of each of these wedges is ∆ = 2π
ε+4 . As ε is smaller than 2 the Stokes

wedges contain real axis. As soon as it is larger that 2, the entire wedges rotate down

below the real axis, which Fig. 1.4 shows this pattern clearly. When ε → ∞, opening

angle ∆ goes to zero, and Stokes lines approach the negative imaginary axis.

1.2.4 WKB solution approximation for energy eigenvalues of (1.32)

We have indicated the regions in which the wave function converge to in the complex

plane. In order to do that we did not need the detailed solution of the associated Schrödinger
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equation. It is sufficient to investigate the asymptotic behavior of the wave function as

|z| → ∞ [6].

From the WKB approximation, one can determine the real eigenvalues associated with

each potential by WKB quantization condition [22],

∫ z+

z−
dz
√

En −V(z) =
(

n +
1
2

)
π, (1.37)

where z− and z+ are the classical turning points which are found by En = V(z). In the

complex plane there can be more than two turning points. At this moment we consider

the two turning points inside the PT -Stokes wedges that are shown in Fig. 1.4. In those

wedges the turning points are located at

z− = E
1

ε+2 eiπ( 3
2−

1
ε+2), z+ = E

1
ε+2 e−iπ( 1

2−
1

ε+2) (1.38)

and they lie in the lower-half (upper-half) plane z plane when ε > 0 (ε < 0).

The path of integral for the leading-order WKB approximation (1.37) lies entirely in the

lower-half plane when ε > 0, and when ε = 0 (the case of harmonic oscillator) it coin-

cides the real axis. However when ε < 0 the path is on the upper-half plane and crosses

the branch cut on the positive imaginary axis. In this case there is no continuous path

joining the turning points. Therefore, WKB fails as soon as ε < 0 [6]. When ε ≥ 0, we

approximate the contour by one straight line from z− to 0 and another one from 0 to z+.

After proper change of variable it gives

(
1
2
+ n

)
π = 2 cos

(
−π

2
+

π

2 + ε

)
E

ε+4
2ε+4

∫ 1

0
dy
√

1− yε+2 (1.39)
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We then evaluate the integral and solve the equation for En

En ∼

 Γ
(

3
2 +

1
ε+2

)√
π
(

n + 1
2

)
cos

(
−π

2 + π
2+ε

)
Γ
(

1 + 1
ε+2

)


2ε+4
ε+4

(n→ ∞) . (1.40)

This approximation gives an accurate approximation for energy eigenvalues and shows

that they are indeed real as ε > 0. In Chap. 4 of this thesis we will investigate how

eigenvalues behave as ε varies in the range (−4, 0).

1.2.5 Families of Solutions in PT -Symmetric Quantum mechanics

In general, for integer and noninteger ε, the Schrödinger equation has more than two

turning points. Hence, there can be many pairs of turning point, that can be chosen as the

integral domain of WKB quantization. Those points can be written in the form

z− = E
1

2+ε
n eiζ , z+ = E

1
2+ε
n eiγ , (1.41)

where ζ and γ are a specific angle of each turning point. With this definition (1.37) gives

(
1
2
+ n

)
π =

(
eiγ − eiζ

)
E

ε+4
2ε+4

∫ 1

0
dy
√

1− yε+2 , (1.42)

Accordingly, the energy spectrum can be real only if ζ = π − γ, which means that the

turning points z− and z+ must lie PT -symmetrically to one another in order for the

eigenvalues to be real.
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Figure 1.5: Pattern of Stokes wedges for when ε = 1, 3, and 4.

Evaluating the integral in the above expression leads to

En(γ) ∼

Γ
(

3
2 +

1
ε+2

)√
π
(

n + 1
2

)
cos (γ) Γ

(
1 + 1

ε+2

)


2ε+4
ε+4

(n→ ∞) , (1.43)

with the consequence that the relationship between two families of spectra arising from

different wedges with convergence angle γ and γ′ is given by [23]

En(γ′)

En(γ)
=

[
cos(γ)
cos(γ′)

] 2ε+4
ε+4

(1.44)

To clarify this point, the Stokes wedges of the Hamiltonian p2 + x2(ix)ε are shown in

Fig. 1.5 for ε = 1, 3, 4. When ε = 1 the turning points occur at E1/3
n exp(−iπ/6),

E1/3
n exp(−i5π/6), and E1/3

n exp(iπ/2). Only the first two roots can be transfered to

each other under PT transformation. Also there is just one real spectrum for this po-

tential via WKB calculation. For ε = 3, the potential V(x) = −ix5 has five turning

points at E1/5
n exp(iπ/10), E1/5

n exp(iπ/2), E1/5
n exp(−3iπ/10), E1/5

n exp(−7iπ/10), and

E1/5
n exp(−11iπ/10). In this case, there are two PT -symmetric pairs of turning points,
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the pair E1/5
n exp(iπ/10), and E1/5

n exp(−11iπ/10) and the pair E1/5
n exp(−3iπ/10) and

E1/5
n exp(−7iπ/10). Each pair of turning points gives a distinct real spectrum, which are

related by (1.44). Continuing this fashion, when ε = 4, six possible turning points can

be identified at angles,0, iπ/3, 2iπ/3, 2iπ, 4iπ/3, and 5iπ/3, which leads to three pairs of

PT -symmetric turning points. The pair of shaded Stokes wedges on the lower-half plane

and upper-half plane are symmetric respect to the real axis as is shown in Fig. 1.5. There-

fore, their energy spectra are the same and these two pairs do not have different solutions,

which means the potential V(x) = x6 has two distinct energy spectrum. Based on these

observations, we conjecture the number of paths that can possibly lead to distinct real so-

lutions is given by the number of pairs of noncontiguous PT -symmetric Stokes wedges

that is, Stokes wedges that are symmetric to the imaginary axis, while two pairs of Stokes

wedges which are symmetric to the real axis may only be counted once [23]. In Chap.

5 we develop a numerical method that is capable of calculating the energy spectrum for

different pairs of Stokes wedges of a potential. Our result also verifies this conjecture

and makes it more reliable. The real spectrum of PT -symmetric Hamiltonian has been

proved [24, 25] just for the pair of Stokes wedges that we considered in section 1.2.3 and

the existence of a real spectrum for the other pairs of wedges needs similar rigorous proof.

1.2.6 Unitarity Problem of PT -Symmetric Hamiltonians

In conventional quantum mechanics, the Hermiticity of the Hamiltonian ensures the or-

thogonality and orthonormality of the eigenfunctions. This is based on the standard Her-

mitian inner product

(ψ, φ) ≡
∫

dx[ψ(x)]∗φ(x) . (1.45)
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Also, according to the theory of linear operators on Hilbert spaces, the eigenfunctions of

a Hermitian Hamiltonian are complete. Which means that any finite-norm vector χ in the

Hilbert space can be expressed as a linear combination of the eigenfunctions of H:

χ =
∞

∑
n=0

anψn. (1.46)

This expression of this statement in coordinate space is the construction of the unit oper-

ator as a sum over the eigenfunctions

∞

∑
n=0

[ψn(x)]∗ψn(y) = δ(x− y) . (1.47)

In addition to these properties, the time-evolution operator of the Hermitian Hamiltonian

is unitary and it automatically preserves the inner product.

Based on analogy, if we naively extend the above features of PT -symmetric Hamiltoni-

ans, then the associated inner product is

(ψ, φ) ≡
∫

C
dx[ψ(x)]PT φ(x) =

∫
C

dx[ψ(−x)]∗φ(x) , (1.48)

where x is a variable in complex plane and C is a contour in the Stokes wedges shown in

Fig. 1.6. It can be shown that pairs of eigenfunctions of H associated with different eigen-

values are orthogonal according to this definition for inner product [6]. However, this is

not acceptable for formulating a valid quantum theory because the norm of a state is not

necessary positive [26–28]. In order to resolve this problem we introduce a new opera-

tor C which is a hidden inherent symmetry of PT -symmetric Hamiltonian. To construct

this operator in an unbroken PT -symmetry region, first we mention the completeness
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Figure 1.6: A generic path on which the integral is define in complex plane. This path
goes to infinity along the anti-Stokes line with helps the solution of Schrödinger goes to
zero as fast as possible. But along every path in the shaded Stokes wedges, the integral
and consequently C operator can be defined.

statement of PT -symmetric quantum mechanics

∑
n
(−1)nφn(x)φn(y) = δ(x− y) , (1.49)

which is a nontrivial result that has been confirmed numerically with high accuracy

[29, 30] and later its mathematical proof has been given in [31]. Also one can show that

the algebraic sign of the PT norm in (1.48) is (−1)n for all n when ε > 0 [12]. This ob-

servation means that the Hilbert space is spanned by energy eigenstates, of which half

have PT -norm +1 and half have PT -norm −1. Because the norm has a probabilistic in-

terpretation in conventional quantum mechanics, certainly negative probability raises an

obstacle. This situation is similar to the problem which Dirac encountered in formulating

the wave equation in relativistic quantum mechanics [32].
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The problem of an indefinite norm can be solved by physical interpretation of the negative

norm states. We observe that for any PT -symmetric Hamiltonian there is a hidden sym-

metry, which the number of positive norm and negative norm eigenfunctions are equal.

We introduce operator C to describe this symmetry. This operator is constructed in terms

of the energy eigenstates of the Hamiltonian. In position space the operator C is

C(x, y) = ∑
n

φn(x)φn(y) (1.50)

and it is easy to verify that

∫
dyC(x, y)C(y, z) = δ(x− z) , (1.51)

which means that C2 = 1. Although P2 = 1 too, P and C are not identical. The parity

operator is real, and C is complex. Also these two operators do not commute.

With this operator we define a new inner product which has positive definite norm

(ψ, φ) ≡
∫

C
dx[CPT ψ(x)]φ(x) . (1.52)

This inner product is phase independent and conserved in time space.The inner CPT

product generates positive norms because the C operator multiplies the negative-norm

eigenstates by a factor of −1. Therefore, in terms of the new inner product, the complete-

ness condition reads

∑
n

φn(x) [CPT φn(y)] = δ(x− y) , (1.53)

The operator C does not appear in Hermitian quantum mechanics. For example if we set

the parameter ε to zero in the potential V(x) = x2(ix)ε, the C operator becomes identical
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to P in this limit. Hence, CPT is reduced to T , which means that the CPT symmetry

of a Hamiltonian collapses to the well-known Hermiticity condition because T takes the

complex conjugacy. There are several important remarks about C operator

• The inner product which was defined above is path independent and different choices

of contour do not affect the result of integral.

• As long as the CPT symmetry is not spontaneously broken, the eigenvalues of the

observable are real.

• According to the Dirac Hermiticity ansatz, the eigenvector and eigenvalues of the

Hamiltonian are determined and the inner product is defined beforehand. In con-

trast, the inner product inPT -symmetric quantum mechanics depends on the Hamil-

tonian itself. One must find the eigenstates of H, in order to find the associate inner

product and Hilbert space.

• Calculating the C operator is a complicated procedure that in most of the cases find-

ing the exact solution is impossible [33–42], and it needs to be calculated by pertur-

bation analysis. To do so, the process starts from the algebraic equations which are

inherent into the symmetry of the Hamiltonian

[C,PT ] = 0, C2 = 1, [C, H] = 0 (1.54)

1.3 Overview of Exceptional Points

Singularities of functions describing analytically observable quantities have always been

in the scrutiny of theoretical investigation. For instance, the measured cross sections are
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usually associated with pole terms in the complex-energy plane of the scattering ampli-

tude [43]. Another example is the pattern of spectra when plotted versus an complex cou-

pling. It usually shows the phenomenon of level repulsion, often associated with quan-

tum chaos [44]. When such spectra are continued into the complex plane of the coupling

constant, one encounters a different type of singularity where two separated levels are

connected by a square-root branch point. If for a real strength parameter the Hamiltonian

is Hermitian, the branch points always occur at complex parameter values, and continu-

ously deform a Hermitian Hamiltonian into non-Hermitian one. As a consequence, the

well-known properties associated with degeneracy of Hermitian operators are no longer

valid. These singularities have been called exceptional points (EPs) by Kato [45] for the first

time.

The physical significance of EPs was recognized in an early paper by Berry [46] based

on the observation by Pancheratnam [47], in which the specific algebraic property of the

dielectric tensor (it cannot be diagonalized) brings about particular physical effect that

has been explained in great detail in [48] for a particular optical system. Optical systems

constitute one major realm where the effects of EPs have been observed frequently. Yet,

originating from a coupling-dependent eigenvalue problem EPs naturally occur and can

give rise to dramatic effects in many physical problems, such as mechanics, electromag-

netism, atomic and molecular physics, quantum phase transition, quantum chaos, and so

on.

As a simple example that illustrate the importance of EPs, consider the following two by

two matrix

M0 =

a 0

0 b

 , (1.55)
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where its discrete eigenvalues are a, and b. Now we replace zeros by ε, which is a complex

variable:

M =

a ε

ε b

 . (1.56)

In this case the eigenvalues λ± are a functions of ε,

λ±(ε) =
1
2

(
a + b±

√
(a− b)2 + 4ε2

)
, (1.57)

and branch points (or EPs) of λ± are located at ε = ±i/2(a− b) on the imaginary axis.

Suppose that λ+ stays on the principal Riemann sheet. In this case λ+ = a at ε = 0.

By encircling the branch point at ε = i/(a− b)/2 we go into the next Riemann sheet on

which the eigenvalue is λ−. Now if we set ε = 0 the eigenvalue has a magnitude of b.

As we encircle the other branch point on the negative part of imaginary axis, we come

back to the principal sheet and the eigenvalue is λ+ again. This example shows how the

discrete eigenvalues of the matrix M0 can be connected by analytic continuation of M’s

eigenvalues into the complex plane which are evaluated on different Riemann sheets.

Although this procedure is just an abstract example, EPs have an undeniable role in phys-

ical phenomena, and more remarkably; theirs effect have been observed in laboratory

recently [49, 50].
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1.3.1 Exceptional points, Unbroken and Broken Regions of aPT -symmetric

Hamiltonian

Exceptional points and PT symmetry quantum mechanics have a strong tie together.

Here we discus how the nature of a PT -symmetric Hamiltonian comprises the concept

of exceptional points. A PT -symmetric Hamiltonian is conserved under parity and time

operators simultaneously [6]

H = HPT . (1.58)

The P and T are reflection operators, so their square is identity P2 = T 2 = 1. Also the

parity and time operators commute:

PT − T P = 0 , (1.59)

which gives (PT )2 = 1. Based on this equation and the definition of PT -symmetry

transformation of the Hamiltonian HPT = (PT )H(PT ), we can conclude that a PT -

symmetric Hamiltonian commutes with parity and time operators simultaneously

H(PT )− (PT )H = 0. (1.60)

The subtle point of this equation is related to time-reversal operator. Since it is nonlinear,

the eigenfunction of the Hamiltonian H may or may not be the eigenfunction of PT

operator. To see this we assume that ψ is an eigenfunction of H. Therefore,

H(PT )ψ = (PT )Hψ→ H(PT )ψ = E∗(PT )ψ , (1.61)
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which means that PT ψ is also an eigenfunction of H. In case of real eigenenergy we get

PT ψ = αψ, and multiplying both sides by PT , we find that α is just a phase α = eiθ.

But for the complex eigenenergy PT ψ 6= αψ and the Hamiltonian and PT operators

cannot have the same eigenfunction. This means that although the Hamiltonian has PT -

symmetry the solutions of the Schrödinger equation may not contain this symmetry. In

our case, this happens when the eigenvalues becomes complex and as a result the eigen-

functions do not have PT symmetry any more. If both the Hamiltonian and PT oper-

ator have a common eigenfunction, it is said that we are in the region of unbroken PT -

symmetry. As the eigenvalues become complex we enter into the broken PT -symmetry

region. The exceptional point signifies the moment that this phase transition occurs.

As a simple example, we consider the following 2× 2 PT -symmetric Hamiltonian [51],

HPT =

e− i γ
2 ω

ω∗ e + i γ
2

 , (1.62)

which is invariant under time reversal that appears as the complex-conjugate operator

and parity, which is represented by the σx matrix. Next we calculate eigenvalues of this

matrix

λ± = e± 1
2

√
4|ω|2 − γ2 , (1.63)

as γ < ±
√

4|ω|2 the two eigenvalues are real. At γ = ±
√

4|ω|2 they collapse to λ = e, and

with further increase of γ, PT -symmetry breaking occurs and λ± = e± i
2

√
γ2 − 4|ω|2.

This simple idea was applied to observe the PT -phase transition in optical physics for

the first time. There are two reasons that optics offers a particularly fertile ground for EPs

[52]: On one hand, the formal equivalence between the quantum-mechanical Schrödinger
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equation and the optical wave equation; on the other hand, the possibility to manipulate

loss and gain with a complex refractive index distribution n0 + nR(x) + inI(x), where n0

represents a constant background, nR(x) is the real index profile of structure, and nI(x)

stands for gain and loss terms [53–55]. The real part of index is an even function of posi-

tion nR(x) = nR(−x) and the imaginary part is odd i.e., nI(x) = −nI(−x), which satisfy

the PT -symmetry condition for the potential of Hamiltonian V(x) = V∗(−x) [56]. In

addition to optical physics, there are other areas of physics where EPs play an important

role, which we mention briefly.

Microwave Cavity

Observation of transferring between two eigenvalues by encircling of the square-root

branch point was accomplished in a microwave cavity for the first time [57]. In this ex-

periment the complex eigenvalue was implemented by two real parameters and many

properties of the EP such as fourfold encirclement, and phase transition were measured.

A recent experiment [58] provides the direct proof of PT -symmetry phase transition and

shows that it is not reciprocal. This experiment used two coupled microwave resonators

which simulate the gain/loss system. Other experiments with microwave cavities are

discussed in [59, 60], where the effects of EPs feature prominently.

Quantum Phase transition and Chaos

The Lipkin model is a toy model which often used to study the quantum phase transition

[61–63]. The interaction term reduces or increases the energy of Fermion pair between
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two levels.

H(λ) = Jz +
λ

N

(
J2
+ + J2

−

)
(1.64)

where Jz, J± are the N-dimensional representation of the SU(2) operators. A phase transi-

tion can occur if λ > 1, and by approaching to thermodynamic limit (N → ∞) it moves to

λ = 1. If λ < 1, we are in the normal phase and we do not have singularity. In the deformed

phase λ > 1, the symmetry is broken and even and odd numbers k of the Ek become de-

generate. In this procedure EPs have a significant role [64,65]. A perturbation changes the

pattern of EPs and also the spectrum. The concurrence of chaos and high density of EPs,

which shows the region of phase transition, can be seen clearly, while the model remains

robust outside the critical region for reasonable amplitude of perturbation.

In addition these physical phenomena, the role of EPs can be found in atomic physics,

especially on Feshbach resonance. Also it has strong effect on behavior of laser system as

well as open quantum systems. In Chap. 3, we discuss the EPs of two coupled harmonic

oscillators, and investigate how they can affect the ground-state energy. Moreover we

expand this model to quantum field theory. Accordingly we study different potentials, to

discover the role of EPs on vacuum-state energy.
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Chapter 2

Time-independent Hamiltonian for any

linear constant-coefficient evolution

equation

This chapter contains the materials published in a paper [66], which represents work performed by

me under the supervision of my advisor, C. M. Bender.
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2.1 Introduction

It seems unlikely that the equation for the damped classical harmonic oscillator

ẍ + αẋ + λx = 0 , (2.1)

a dissipative system, could be derived from a Hamiltonian. This is because E = 1
2 ẋ2 +

1
2 λx2, the standard expression for the total energy, is not conserved for α 6= 0. Indeed, it

satisfies the equation
d
dt

(
1
2

ẋ2 +
1
2

λx2
)
= −αẋ2 (2.2)

showing that it decreases with time. So, one might think that (2.1) cannot be derived

from a time-independent Hamiltonian. Actually, it was shown [67–69] that the time-

independent Hamiltonian for a damped harmonic oscillator is only possible when the

rate of dissipation is equal to the mass or coefficient of acceleration term.

Nonetheless, Bateman [70] made the remarkable observation that if one appends the time-

reveral oscillator equation with undamping (gain) instead of damping,

ÿ− αẏ + λy = 0 (α > 0), (2.3)

then even though the two oscillators are independent and noninteracting, the two equa-

tions of motion (2.1) and (2.3) can be derived from the time-independent quadratic Hamil-

tonian

H = pq +
α

2
(yq− xp) + (λ− α2

4
)xy . (2.4)
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The two oscillator equations follow directly from Hamiltonian’s equations of motion

ẋ =
∂H
∂p

= q− α

2
x , (2.5)

ẏ =
∂H
∂q

= p +
α

2
y , (2.6)

ṗ = −∂H
∂x

=
α

2
p−

(
λ− α2

4

)
y , (2.7)

q̇ = −∂H
∂y

= −α

2
q−

(
λ− α2

4

)
x . (2.8)

To derive (2.1) we differentiate (2.5) with respect to t, eliminate q̇ by using (2.8), and

eliminate q by using (2.5). Similarly, to derive (2.3), we differentiate (2.6) with respect to

t, eliminate ṗ by using (2.7), and eliminate p by using (2.6).

The Hamiltonian (2.4) is PT symmetric; under parity reflection the oscillator with loss

and gain are interchanged,

P : x → y, y→ x, p→ q, q→ p, (2.9)

and under time reversal T the signs of the momenta are reversed,

T : x → x, y→ y, p→ −p, q→ −q. (2.10)

The PT symmetry of H in (2.4) and the success of Batman’s strategy depend crucially

on the gain and loss terms in (2.1) and (2.3) being exactly balanced. As a consequence of

the gain/loss balance, the system possesses a conserved quantity, namely the value of H.

However, the energy has the complicated form (2.4) and is not simple sum of kinetic and

potential energies.
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recently it was shown [71] that the equation of motion (2.1) of the damped oscillator can

be derived from a (non-quadratic) time-independent Hamiltonian depending on only a

single canonical pair (x, p). This remarkable result was proved by using a modification

of the Prelle-Singer method approach to identify integrals of motion of dynamical system,

which explained by detailed in Sec. 2.2.

In [71] different forms of the Hamiltonian were given depending on whether the system

was overdamped, underdamped, or critically damped. In particular, for the overdamped

case (α/2 > λ) the Hamiltonian takes the unconventional form

H = Axp + Bpδ , (2.11)

where A, B and δ are constants that we will specify later. Different functional forms were

given for the other cases in order to have a real Hamiltonian. However, since this is not

a concern for us, the functional form of (2.11) serves for all cases (apart from an obvious

modification in the case of critical damping).

In addition to that, we show how to construct the Hamiltonian for an arbitrary homo-

geneous linear constant-coefficient differential equation of any order with new method.

First, we do so for the second-order equation (2.1) and we demonstrate the procedure

for a general third-order equation. An interesting special case of such an equation is

the equation that describe the nonrelativistic self-acceleration of charged oscillator parti-

cle and it is quite remarkable that even though there are runaway modes, the energy of

such a system is conserved. Then, we generalize our procedure to an arbitrary nth-order
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constant-coefficient equation. In the last section we discuss about the problem of quan-

tization and we show that quantizing the classical Hamiltonian is quiet difficult in this

procedure.

2.2 Hamiltonian Description of the Damped Linear Har-

monic Oscillator

Counterintuitively, time independent Hamiltonian for dissipative equation with constant

coefficient exists [71]. Naturally, it was believed that the damped linear harmonic oscilla-

tor

ẍ + αẋ + λx = 0 , (2.12)

can only possess a time dependent Hamiltonian [72–76] which is H = (1/2)p2e−αt +

(λ/2)x2eαt and consequently the Lagrangian L = eαt((1/2)ẋ2 − (λ/2)x2). For the past

several decades there has been a number of attempts to quantize the damped linear har-

monic oscillator [77–81] from different points of view, but it appears that the problem still

eludes a completely satisfactory resolution. Obviously, the major conceptual difficulty

was the lack of time independent Hamiltonian formalism. What made this formalism

possible is a method called the modified Prelle-Singer approach, which identifies integral

of motion and integrability of dynamical systems [82–84]. This was the main point that

interested us for further research on this topic. We rederive almost the same result us-

ing a completely different method; this is the content of this chapter. To be familiar with

the Prelle-Singer procedure, in the next section we give a detailed calculation of the time

independent Hamiltonian for the linear damped harmonic oscillator.
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2.2.1 Prelle-Singer Procedure for Damped Harmonic Oscillator

We begin with this assumption that the (2.12) admits a first integral I(t, x, ẋ) = C, with C

constant, so that the total differential becomes

dI = Itdt + Ixdx + Iẋdẋ = 0 , (2.13)

where each subscript denotes partial differentiation with respect to that variable. Rewrit-

ing (2.12) in the form of φdt− dẋ = 0 with φ(x, ẋ) = −(αẋ + λx) and adding a null term

S(t, x, ẋ)ẋdt− S(t, x, ẋ)dx, we obtain

(φ + Sẋ) dt− Sdx− dẋ = 0 . (2.14)

Hence, for the solutions the 1-forms (2.12) and (2.14) must be proportional. Multiplying

(2.14) by the factor R(t, x, ẋ) which acts as the integrating factor for (2.14), we get

dI = R (φ + Sẋ)− RSdx− Rdẋ = 0 . (2.15)

Comparing (2.13) with (2.14) we get the relations

It = R (φ + Sẋ) , Ix = −RS, Iẋ = −R . (2.16)

Applying the compatibility equations, Itx = Ixt, Itẋ = Iẋt, and Iẋx = Ixẋ on the (2.16)

provides us

St + ẋSx + φSẋ = −φx + φẋS + S2 , (2.17a)

Rt + ẋRx + φRẋ = − (φẋ+S) R , (2.17b)
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Rx − SRẋ − RSẋ = 0 . (2.17c)

With solving (2.17a)-(2.17c), one can obtain expressions for S and R. It may be noted that

any set of special solutions (S, R) is sufficient for our purpose. From knowing them the

integral of motion I(t, x, ẋ) can be deduced via the relation

I = I1 − I2 −
∫ [

R +
d

dẋ
(I1 − I2)

]
dẋ , (2.18)

where

I1 =
∫

R (φ + ẋS) dt, I2 =
∫ (

RS +
d

dx
I1

)
dx . (2.19)

Since we are interested in a time-independent Hamiltonian, we choose; It = 0. Hence,

one can easily fix the null term S from first (2.16) as

S = −φ

ẋ
=

αẋ + λx
ẋ

. (2.20)

Substituting this into the (2.17b) we get

ẋRx − (αẋ + λx) Rẋ = −λx
ẋ

R . (2.21)

(2.21) is a first-order linear partial differential equation with variable coefficients. As we

mentioned earlier, any particular solution is sufficient to construct the integral of motion.

Therefore, we choose a suitable ansatz for R instead of solving the general solution. We

assume R to be of the form

R =
ẋ

(A(x) + B(x)ẋ + C(x)ẋ2)
r , (2.22)
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where A, B, and C are functions of x only. We demand the above form to deduce the first

integral I has a rational form, that is, I = f (x, ẋ)/g(x, ẋ), where f , and g are arbitrary

function of x, and ẋ, from which we get Ix = ( fxg − f gx)/g2 and Iẋ = ( f ẋg − f gẋ)/g2.

From 2.16 one can see that R = Iẋ = ( f ẋg − f gẋ)/g2, S = Ix/Iẋ = ( fxg − f gx)/( f ẋg −

f gẋ), and RS = Ix. Hence, the denominator of S should be the numerator of the function

R. Since the denominator S is ẋ, we fix the numerator of R as ẋ. For simplicity we choose

the denominator of R to be a polynomial of ẋ, because it has a rational form, and differen-

tiating or integrating changes the power of the denominator by one and its form remains

the same. Because of that we consider a constant power r for denominator of R, which as

we see play an important role.

Substituting (2.22) into (2.21) in addition to simple calculation, we arrive at the relation

r
[

ẋ
(

Ax + Bx ẋ + Cx ẋ2
)
− (αẋ + λx)(B + 2Cẋ)

]
= −α(A + Bẋ + 2Cẋ) . (2.23)

Solving (2.23), we can fix the forms of A, B, Cand r, and we find that

R =


ẋ/
(
λx2 + αxẋ + ẋ2) (α2 < 4λ),

ẋ/ (ẋ + [(r− 1)/r]αx)r (α2 < 4λ),

ẋ, (α = 0),

(2.24)

where

r =
α

2λ
[α±

√
α2 − 4λ] . (2.25)
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Finally, substituting R, and S into the integral of (2.18) we get

I =



1
2 log

(
ẋ2 + αxẋ + λx2)+ (α/2ω) tan−1[(αẋ + 2λx)/2ωẋ] α2 < 4λ(λ, α 6= 0)under-damped ,

r−1
r−2(ẋ + α

r x)(ẋ + r−1
r αx)(1−r), α2 > 4λ(λ, α 6= 0)over-damped ,

ẋ
ẋ+(1/2)αx − log(ẋ + 1

2 αx), α2 = 4λ(λ, α 6= 0)critically damped ,

ẋ + αx, λ = 0(α 6= 0)pure damping ,

ẋ2 + λx2, α = 0(λ 6= 0)no damping ,
(2.26)

with ω = 1/2
√

4λ− α2. One can easily check that dI/dt = 0 for each of the cases in

(2.26). This equation demonstrates that the damped linear harmonic oscillator admits a

time-independent integral of motion for all values of αand λ. Now the integral of motion

is time independent so we can find a Hamiltonian description for the damped equation

of motion.

Assuming the existence of a Hamiltonian

I(x, ẋ) = H(x, p) = pẋ− L(x, ẋ) , (2.27)

where L(x, ẋ) is the Lagrangian and p is the canonically conjugate momentum. Accord-

ingly we have
∂I
∂ẋ

=
∂H
∂ẋ

=
∂p
∂ẋ

ẋ + p− ∂L
∂ẋ

=
∂p
∂ẋ

ẋ , (2.28)

that shows the conjugate momentum is the result of following integral

p =
∫ Iẋ

ẋ
dẋ + f (x) , (2.29)
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where f (x) is an arbitrary function of x, and without loss of generality we take f (x) = 0.

By substituting (2.26) into (2.29) we obtain the conjugate momentum

p =



tan−1[(2ẋ + αx)/2ωx] (α2 < 4λ),

(ẋ + [(r− 1)/r]αx)(1−r) (α2 ≥ 4λ),

log(ẋ) (λ = 0),

ẋ (α = 0).

(2.30)

Substituting back of (2.30) into (2.28) we arrive at the following Hamiltonian

H =



(1/2) log
[
x2 sec2(ωxp)

]
− (α/2)xp (α2 < 4λ)

[(r− 1)/(r− 2)]p(r−2)/(r−1) − [(r− 1)/r]αxp (α2 > 4λ)

log(p)− (1/2)αxp (α2 = 4λ)

ep + αx (λ = 0)

(1/2)p2 + (λ/2)x2 (α = 0).

(2.31)

One can easily check that the canonical equations of motion for the above Hamiltonian

are exactly the (2.12) in appropriate parametric regimes. At this point we finish the intro-

duction part for this topic and will come back to this issue in next section, where we drive

the similar Hamiltonian for damped equation of motion and generalize it to higher order.

43



2.3 New Method of Derivation of Hamiltonian of Linear

Constant-Coefficient Second-Order Differential Equa-

tion

In this section we present a new simple procedure that confirms the result of previous

section. We start from the equation (2.12) and for sake of simplification in our calculation

we assign α = 2γ and λ = ω2. As a result the new equation reads

ẍ + 2γẋ + ω2 = 0 . (2.32)

By substituting x(t) = e−iνt, we obtain a quadratic equation for the frequency ν:

ν2 + 2iγν−ω2 = 0 . (2.33)

This equation factors

(ν−ω1)(ν−ω2) = 0 , (2.34)

where

ω1 + ω2 = −2iγ, ω1ω2 = −ω2 , (2.35)

and thus

ω1,2 = −iγ±Ω = −iγ±
√

ω2 − γ2 . (2.36)

44



The generic form of a Hamiltonian H(x, p) that can generate the evolution equation (2.32)

is given in (2.11). There are two such Hamiltonian, corresponding to the two eigenfre-

quencies in (2.36). The first is

H1 = −iω1xp +
ω1

ω1 −ω2
p1−ω2

ω1 . (2.37)

A second and equally effective Hamiltonian is obtained by interchanging the subscripts

1 and 2:

H2 = −iω2xp +
ω2

ω2 −ω1
p1−ω1

ω2 . (2.38)

These Hamiltonians appear in (2.31) for the case of over-damping
(
γ2 > ω2), in which

case they are real, but they apply equally well when
(
γ2 < ω2) if we are not concerned

with the reality of the Hamiltonian. Indeed, the Hamiltonian is no longer the standard

real energy, which is not conserved. Rather, it is a complex quantity which is conserved

and from which the equations of motion can be derived in the standard way.

For the Hamiltonian H1, Hamilton’s equations read

ẋ =
∂H1

∂p
= −iω1x + p−

ω2
ω1 , (2.39)

ṗ = −∂H1

∂x
= iω1p . (2.40)
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We then take a time derivative of (2.39) and simplify the resulting equation first by using

(2.40) and then by using (2.39):

ẍ + iω1ẋ = −ω2

ω1
ṗp−1−ω2

ω1

= −iω2p−
ω2
ω1

= −iω2 (ẋ + iω1x) . (2.41)

Thus

ẍ + i(ω1 + ω2)ẋ−ω1ω2x = 0 (2.42)

which reduces to (2.32) upon using (2.35).

The equation of motion (2.32) has one conserved (time-independent) quantity, and this

quantity can be expressed in terms of the function x(t) only. To find this quantity, we

begin with (2.39) and solve for p:

p = (ẋ + iω1x)−
ω1
ω2 (2.43)

We then use this result to eliminate p from the Hamiltonian H1. Since H1 is time-independent,

we conclude that

C1 =
(ẋ + iω2x)ω2

(ẋ + iω1x)ω1
(2.44)

is conserved. Had we started with the Hamiltonian H2 we would have obtained quantity

C2 =
(ẋ + iω1x)ω1

(ẋ + iω2x)ω2
, (2.45)
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but this is not an independent conserved quantity because C1 = 1/C2. These conserved

quantities were also found in [71] for the case of over-damping.

When γ = 0, these results reduce to the familiar expressions in the case of simple har-

monic oscillator. In this case we let ω = ω1 = −ω2 so that H1 becomes

H1 = −iωxp +
1
2

p2 , (2.46)

which is related to the standard simple harmonic oscillator Hamiltonian by the change of

variable p→ p− iωx. The conserved quantities C2 and C1 become simply
(
ẋ + ω2x2)±ω,

in which we recognize usual conserved total energy.

Hamiltonian for a Constant-Coefficient Third-Order Equation

In this section we show how to construct a Hamiltonian that gives rise to the general

third-order constant-coefficient evolution equation

(D + iω1) (D + iω2) (D + iω3) = 0 , (2.47)

where D = d
dt . The Hamiltonian that we will construct has just one degree of freedom.

An interesting physical example of such different equation is the third-order differential

equation

mẍ + kx−mτ
...x = 0 (2.48)

that describe an oscillating charged particle subject to a radiative back reaction force [85].

Following Batemans’s approach for the damped harmonic oscillator [70], Englert [86]
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showed that the pair of noninteracting equation (2.48) and

mÿ + ky + mτ
...y = 0 (2.49)

can be derived from the quadratic Hamiltonian

H =
(ps− rq)

mτ
+

2rs
mτ2 +

pz + qw
2

− mzw
2

+ kxy . (2.50)

This Hamiltonian contains the four degree of freedom (x, p), (y, q), (z, r), and (w, s). An

interacting version of this model was studied in [87]. In fact, it was found that the two

equations of motion (2.48) and (2.49) can be derived from the simpler quadratic Hamilto-

nian

H =
pr + qz√

mτ
− rz

τ
+ kxy , (2.51)

which has only the three degree of freedom (x, p), (y, q), and (z, r). A similar three-degree

of freedom Hamiltonian was also found in [87].

Our objective here is to find a one-degree of freedom Hamiltonian that can be used to

derive the third-order differential equation (2.47). Note that the general solution to (2.47)

is

x = a1e−iω1t + a2e−iω2t + a3e−iω3t , (2.52)

where ak are arbitrary constants. If we form (D + iω2) (D + iω3) x, that is, ẍ + i(ω2 +

ω3)ẋ−ω2ω3x, we obtain

a1e−iω1t = − (D + iω2)(D + iω3)x
(ω1 −ω2)(ω1 −ω3)

, (2.53)
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in which the constants a2 and a3 do not appear. Similarly, we have

a2e−iω2t = − (D + iω3)(D + iω1)x
(ω2 −ω3)(ω2 −ω1)

,

a3e−iω3t = − (D + iω1)(D + iω2)x
(ω3 −ω1)(ω3 −ω2)

. (2.54)

So, assuming that the frequencies ωk are all distinct, there are two independent conserved

quantities, namely

C2 =
[ẍ + i(ω2 + ω3)ẋ−ω2ω3x]

[ẍ + i(ω1 + ω2)ẋ−ω1ω2x]
ω1
ω3

,

C3 =
[ẍ + i(ω2 + ω3)ẋ−ω2ω3x]

[ẍ + i(ω1 + ω3)ẋ−ω1ω3x]
ω1
ω2

. (2.55)

These expressions and the equation of motion can be derived from the Hamiltonian

H = −iω1xp +
b2ω1

ω1 −ω2
p1−ω2

ω1 +
b3ω1

ω1 −ω3
p1−ω3

ω1 , (2.56)

where b2 and b3 are arbitrary constants. Thus, ṗ ≡ − ∂H
∂x = iω1p. This means that p ∝ eiω1t,

so that 1/p is directly related to combination in (2.53).

Then, from Hamiltonian’s equation ẋ ≡ ∂H
∂p and from further differentiation with respect

to t, we obtain

ẋ = −iω1x + b2p−
ω2
ω1 + b3p−

ω3
ω1 ,

ẍ = −iω1ẋ− iω2b2p−
ω2
ω1 − iω3b3p−

ω3
ω1 , (2.57)

...x = −iω1ẍ−ω2
2b2p−

ω2
ω1 −ω2

3b3p−
ω3
ω1 .
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These equations depend on the constants b2 and b3. Nevertheless, after we combine these

equations and perform some simplifying algebra, we obtain

...x + i(ω1 + ω2 + ω3)ẍ− (ω1ω2 + ω2ω3 + ω3ω1)ẋ− iω1ω2ω3 = 0 . (2.58)

The constants b2 and b3 have disappeared in this combination and we have reconstructed

the equation of motion (2.47). These constants are reminiscent of Lagrange multipliers,

but they are unlike Lagrange multipliers in that we do not vary the Hamiltonian with

respect to them. Rather, we require that the equations of motion be independent of these

constants.

Using only derivatives up to the second order, we can find expressions for b2p−ω2/ω1 and

b3p−ω3/ω1 , namely

i(ω3 −ω2)b2p−
ω2
ω1 = ẍ + i(ω1 + ω3)ẋ−ω1ω3x ,

i(ω2 −ω3)b3p−
ω3
ω1 = ẍ + i(ω1 + ω2)ẋ−ω1ω2x . (2.59)

in which we recognize two of the quantities that appear in (2.55). The third such quantity,

namely ẍ + i(ω1 + ω2)ẋ−ω1ω2x, is closely related to H,

ẍ + i(ω2 + ω3)ẋ−ω2ω3x = −(ω1 −ω2)(ω1 −ω3)x + ib2(ω3 −ω1)p−ω2/ω1 + ib3(ω2 −ω1)p−ω3/ω1

= i(ω1 −ω2)(ω3 −ω1)
H

ω1p
.

We conclude that

C2 =
i(ω1 −ω2)(ω3 −ω1)p

[i(ω2 −ω3)b3]
ω1/ω3

H
ω1p

∝ Hb−ω1/ω3
3 . (2.60)
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Similarly, we have

C3 ∝ Hb−ω1/ω2
2 . (2.61)

Thus C2 and C3 are constants of the motion because they are both proportional to the

Hamiltonian, with proportionality constants given by powers of b2 and b3, respectively.

To summarize, by eliminating the parameters b2 and b3 the evolution equation (2.47) can

be derived from the unusual time-independent Hamiltonian (2.56) containing the single

coordinate variable x and its conjugate momentum p. This Hamiltonian is a conserved

quantity, which can be expressed as

H = iω1p
ẍ + i(ω2 + ω3)ẋ−ω2ω3x

(ω1 −ω2)(ω1 −ω3)
(2.62)

The conserved quantities C2 and C3 are both proportional to H.

Before moving on, we must explain how a Hamiltonian with a single degree of freedom

can give rise to a differential equation whose order is greater that two. The problem is as

follow. Our Hamiltonian has the general form

H = axp + f (p) . (2.63)

Therefore, the equations of motion are simply

ẋ = ax + g(p) , (2.64)

where g(p) = f ′(p), and

ṗ = −ap (2.65)
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We solve (2.65) first,

p(t) = Ce−at (2.66)

where C is an arbitrary constant. Next, we return to (2.64), which becomes

ẋ = ax + g(Ce−xt) (2.67)

after we eliminate p by using (2.66). This is a first-order equation. Thus, its solution has

only two arbitrary constants:

x(t) = φ(t, C, D) (2.68)

We obtained the higher-order differential equation (2.58) by the sequence of differenti-

ation in (2.57) that were required to eliminate the constants b2 and b3. Of course, the

solution to an nth-order equation can incorporate n pieces of data such as n initial condi-

tions: x(0), ẋ(0), ẍ(0),
...x (0), and so on. How is it possible to incorporate n pieces of data

with only two arbitrary constants C, and D? There appear to be n− 2 missing arbitrary

constants.

The answer is that the n − 2 pieces of initial data determine n − 2 parameters bk multi-

plying each of the fractional powers of p in H. (One parameter can always be removed

by a scaling.) We can incorporated the initial data into the Hamiltonian in the form of

parameters. These parameters specify an ensemble of Hamiltonian, all of which gives a

unique nth-order field equation that is independent of these parameters and is capable of

accepting n pieces of initial data.

For the triplet equation, we can see from (2.59) that the ratio b1/ω2
2 /b1/ω3

3 is related to the

initial conditions. So, for the case of the third-order equation, the three arbitrary constants

are C, D and b1/ω2
2 /b1/ω3

3 . We emphasize that the Hamiltonian gives the higher-order
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equations of motion precisely because of the requirement that the parameters bk drop out

from the equation of motion. The parameters bk in the Hamiltonian are crucial because

they incorporate the initial data and are determined by the initial data. The nonzero

parameter b3 forces the evolution equation to be third order. Without b3 the Hamiltonian

does not know about the third frequency ω3. Indeed, if b3 = 0, (2.56) reduces to (2.37)

(with b2 = 1). [This is consistent with (2.59) because setting b3 = 0 there implies that

ẍ + i(ω1 + ω2)−ω1ω2x = 0]

Finally, one may ask what would happen if we followed the standard procedure for

deriving the equations of motion for x(t) from the Hamiltonian equations of motion

ṗ = −∂H/∂x and ẋ = ∂H/∂p. This would mean solving the second equation for p in

terms of x and ẋ and then substituting back in the first to obtain a second-order equation

for x(t). In our case that would mean solving the first equation of (2.57) for p, which is

not possible for general values of the parameters. However, it is instructive to see how

this procedure works if we choose the parameters so that an explicit solution is possible.

For example, if we choose ω1 = 1, ω2 = −2, ω3 = 4, b2 = 2 and b3 = 1, the equation

can be solved to give p2 = −1 +
√

ẋ + ix + 1. Substituting back into the equation ṗ = ip

gives, after some algebra, the nonlinear second-order equation

(ẍ− 3iẋ + 4x− 4i)2 = −16(ẋ + ix + 1) . (2.69)

Further manipulation shows this to be equivalent to the constancy of C2/C3.

So, in the cases where the standard procedure can be followed in practice, the resulting

nonlinear second-order equations is equivalent to an equation for a constant of motion

(which of course depends on the parameters b2 and/or b3)
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2.4 Hamiltonian for a Constant-Coefficient nth-Order Equa-

tion

It is straightforward to generalize to the case of an arbitrary nth-order constant-coefficient

evolution equation [
n

∏
r=1

(D + iωr)

]
x(t) = 0 , (2.70)

whose general solution is

x(t) =
n

∑
r=1

are−iωrt. (2.71)

For simplicity, we assume that the frequencies ωr are all distinct; at the end of this section

we explain what happens if some of the frequencies are degenerate.

Corresponding to (2.54) and (2.55), we have

e−iωst ∝

[
n

∏
r 6=s

(D + iωr)

]
x(t) . (2.72)

Thus, the quantity

Qs ≡
{[

n

∏
r 6=s

(D + iωr)

]} 1
ωs

(2.73)

is proportional to e−it for all s. Hence, the n− 1 independent ratios Qs/Q1 (s > 1) are all

conserved. Any other conserved quantity can be expressed in terms of these ratios.

The equation of motion and the conserved quantities can be derived from the Hamilto-

nian

H = −iω1xp +
n

∑
r 6=1

brω1p1− ωr
ω1

ω1 −ωr
, (2.74)
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which is the nth order generalization of (2.56) for the cubic case. In this expression the

n − 1 coefficients br are arbitrary. Note that in constructing the Hamiltonian H there

is nothing special about the subscript “1” and it may be replaced by the subscript “s”

(1 < s ≤n).

2.4.1 Degenerate Frequencies

Until now, we have assumed that the frequencies ωr are all distinct. However, if some

of the frequencies are degenerate, there is a simple way to construct the the appropriate

Hamiltonian: If the frequencies ω1 and ω2 are equal, we make the replacement

ω1

ω1 −ω2
p1−ω2

ω1 → log(p). (2.75)

(In making this replacement we are shifting the Hamiltonian by an infinite constant.)

Thus, for ω1 = ω2 the Hamiltonian H1 in (2.37) reduces to

H1 = −iω1xp + log p . (2.76)

Hamilton’s equations for this Hamiltonian immediately simplify to (2.42) with ω1 = ω2.

Similarly, for the case ω1 = ω2 the Hamiltonian (2.56) reduces to

H = −iω1xp + b2 log p +
b3ω1

ω1 −ω3
p1−ω3

ω1 (2.77)

and Hamiltonian’s equations for this Hamiltonian readily simplify to (2.58) with ω1 = ω2.

55



Also, if the frequencies are triply degenerate, ω1 = ω2 = ω3 = ω, the Hamiltonian in

(2.56) is replaced by

H = −iωxp + b log p +
1
2

c (log p)2 , (2.78)

where b and c are two parameters that are determined by the initial data. Once again,

Hamilton’s equation’s for this Hamiltonian combine to give (2.58) with ω1 = ω2 = ω3 =

ω.

2.5 Quantization

The obvious question to be addressed next is whether it is possible to use the Hamilto-

nians that we have constructed to quantize classical systems that obey a linear constant-

coefficient evolution equation. Let us begin by discussing the simple case of the quantum

harmonic oscillator (QHO), whose Hamiltonian H1 is given in (2.46).

One possibility is to quantize Hamiltonian in p-space by setting x = id/dp. Then the

time-independent Schrödinger eigenvalue equation is, by shifting E by ω

H1ψ̃(p) =
(

ωp
d

dp
+

1
2

p2
)

ψ̃(p) = Eψ̃(p) , (2.79)

whose solution is

ψ̃(p) ∝ p
E
ω e
− p2

(4ω)2 . (2.80)

In this way of doing things we can derive the quantization condition by demanding that

ψ̃ be a well-defined, nonsingular function, which requires that E = nω, where n is a

56



nonnegative integer [1]. However, these “momentum-space” eigenfunctions are prob-

lematical because p has no clear physical interpretation as a momentum, and it is not

a Hermitian operator. The p-space eigenfunctions are certainly not orthonormal in any

simple sense because they do not solve a Strurm-Liouville boundary value problem [88].

However, we can calculate the corresponding x-space eigenfunctions by Fourier trans-

form using the formula [89]

Hn(z) =
(−i)n

2
√

π
ez2
∫ ∞

−∞
dp eipz pne−p2

(2.81)

We find that

ψn(x) ∝ e−
1
2 ω2x2

φn(x) , (2.82)

where φn(x) is the nth eigenfunction of the QHO. This is consistent with our remark above

that H1 is related to the standard QHO Hamiltonian by the transformation p → p− iωx.

This transformation is achieved at the operator level by the similarity transformation p→

e−ω2x2
peω2x2

[90]. Because of this additional factor, our eigenfunctions are orthonormal

with respect to the metric η = eω2x2
. As an alternative approach, we can cast (2.46) in

x-space as

H1 = −1
2

d2

dx2 −ω2
(

1 + x
d

dx

)
, (2.83)

from which we can obtain the ψn(x) directly.

To summarize, the quantized version of (2.46) corresponds to a transformed version of the

QHO, where the x-space eigenfunctions are simply related to the standard eigenfunction,

and are orthonormal with respect to an additional weight function. The p-space eigen-

functions can be written down but their interpretation is not at all obvious (the operator p

corresponds to the conventional raising operator a†) and are not orthogonal in any simple
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way. Moreover, p, represented as −id/dx, is not Hermitian because the overlap integral

between two wave functions has to be calculated with the inclusion of the metric η(x),

so integration by parts is no longer simply a matter of a minus sign. Instead, p is pseudo-

Hermitian [12, 26, 91] with respect to η, i.e., p† = ηpη−1. In p space the weight function

eω2x2
becomes the highly nonlocal operator e−ω2d2/dp2

.

If we now generalize to the damped harmonic oscillator, we can still find a solution ψ̃(p)

to the time-independent Schrödinger equation, namely [71]

ψ̃(p) ∝ p
E

ω1 exp
[
− ω1

(ω1 −ω2)2 p1−ω1
ω2

]
, (2.84)

but even if we take E = nω1 in order to make the prefactor nonsingular, we are still left

with a nonintegral, and in general complex, power of p in the exponential. (See also the

comments in [71]). This, in addition to the previously discussed problem with ψ̃(p), we

would now have to consider it to be a function in a cut plane. Moreover, there is no simple

formula like (2.81) whereby one could obtain the x-space eigenfunction. Furthermore, if

we cast the equation in x-space we obtain

H1 =
1

1− ω2
ω1

{
−i

d
dx

[(
−i

d
dx

)−ω2
ω1 − i(ω1 −ω2)x

]}
(2.85)

in which the difficulty associated with a fractional derivative is manifest.

Evidently, quantizing Hamiltonian of the form in (2.63) is nontrivial. The problem of

quantizing the cubic equation describing the back-reaction force on a charged particle

was solved in [87]. However, the system that was actually quantized was a pair of coupled

cubic equations in the unbroken PT -symmetric region. Thus, it may be that the most
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effective approach for quantizing a Hamiltonian of the form (2.63) is to introduce a large

number of additional degrees of freedom.

2.6 Conclusion

We have shown that any nth-order linear constant-coefficient evolution equation can be

derived from a nonconventional but simple Hamiltonian of the form (2.63). Remarkably,

this Hamiltonian has only one degree of freedom, that is, one pair of dynamical variables

(x, p). Furthermore, we have shown that for such a system there are n− 1 independent

constants of the motion and we have constructed these conserved quantities in terms of

x(t) and its time derivatives. However, we find that it is not easy to formulate a gen-

eral procedure to quantize the system described by the Hamiltonian, and this remains an

extremely interesting but difficult open problem.
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Chapter 3

Analytic Structure of Eigenvalue of

Coupled quantum Systems

This chapter contains the materials published in a paper [92], which represents work performed by

me under the supervision of my advisor, C. M. Bender.
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3.1 Introduction

The analytic structure of self-coupled systems, such as the quantum anharmonic oscilla-

tor, has been studied in great depth. Singularities in the coupling-constant plane have

been identified as the cause of the divergence of perturbation theory [93, 94]. These sin-

gularities are typically square-root branch points and are associated with phenomenon of

level crossing. These singularities are sometimes referred to as exceptional points [95].

Studies of coupling-constant analyticity have revealed a remarkable and generic phe-

nomenon, namely, that the eigenvalues belonging to the spectrum of the Hamiltonian

are analytic continuations of one another as functions of the complex coupling constant.

Thus, the energy levels of a quantum system, which are discrete when the coupling con-

stant is real and positive, are actually smooth continuations of one another in the complex-

coupling-constant plane [1], and a simple geometric picture of quantization emerges: The

discrete eigenvalues of a quantum system are in one-to-one correspondence with the

sheets of the Riemann surface. The different energy levels of the Hamiltonian are merely

different branches of a multivalued energy function.

While this picture of quantization has emerged from studies of coupling-constant singu-

larities of self-coupled systems, this chapter argues that an even more elaborate picture

arises from studies of coupled quantum systems. Consider, for example, the simple case

of two coupled quantum harmonic oscillator, one having natural frequency ν > 0 and the

other having natural natural frequency ω > 0. For definiteness, we assume that ν > ω.

The Hamiltonian for such a system has the form

H = p2 + ν2x2 + q2 + ω2y2 + gxy , (3.1)
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where g is the coupling parameter. For sufficiently large |g| the eigenvalues of H become

singular. To demonstrate this rewrite the potential V(x, y) = ν2x2 + ω2y2 + gxy as

V(x, y) = ν2
(

x +
gy
2ν2

)2
+ y2

(
ω2 − g2

4ν2

)
(3.2)

We see immediately that on the line x + gy/2ν2 = 0 in the (x, y) plane V(x, y) becomes

unbounded below if g2 > 4ν2ω2. Thus, while the potential has a positive discrete spec-

trum when the coupling constant g lies in the range

− 2νω < g < 2νω (3.3)

we expect there to be singular points at g = ±2νω in the coupling-constant plane. This

result raises the question, what is the nature of the singular points at ±2νω?

Coupling-oscillator models have been studied in great detail in many papers [70, 96–101]

and in particular for oscillator models of the type in (3.1). The presence of singularities at

g = ±2νω was noted in [96]; however, the nature of singularities and the Riemann sheet

structure was not identified in any of these papers.

In this chapter we show that the Riemann surface for the coupled-oscillator Hamiltonian

(3.1) consists of four sheets. The singularities at g = ±2νω are square-root singularities,

like the exceptional-point singularities of self-coupling oscillators. However, if we cross

either of the square-root branch cuts, we enter a second sheet of the Reimann surface

on which two new square-root branch points appear. These branch points are located

at g = ±i
(
ν2 −ω2)1/2. If we cross either of the branch cuts emanating from these new

branch points, we enter a third sheet of the Riemann surface where there are yet another

pair of square-root exceptional points at g = ±2νω, unconnected with the singularities on
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sheets one and two. Crossing either of the branch cuts emanating from these singularities

at g = ±2νω takes us to a fourth sheet of the Reimann surface. Not all energy levels of

the coupled harmonic oscillator mix among themselves as g varies on this four-sheeted

Riemann surface. Rather, each energy level belongs to qyarter of energies that are analytic

continuation of one another. We find the fourth sheet of the Riemann surface corresponds

to four distinct spectral phases of the coupled oscillator system (3.1)

We give a detailed description of these spectral phases in the next section. We explain

below how such spectral phases arise. Let us consider a single harmonic oscillator, whose

dynamics are defined by the Hamiltonian

H = p2 + ν2x2 . (3.4)

This simple quantum system actually has two spectral phases characterized by two dis-

tinct spectra. To understand why, we assume that ν is a positive parameter and we note

that the nth eigenvalue En, which is defined by the eigenvalue problem

− d2

dx2 ψ(x) + ν2x2ψ(x) = Enψ(x) (ψ→ 0 as x → ±∞) , (3.5)

is given by

En = (2n + 1)ν (n = 0, 1, 2, 3, ...). (3.6)

In [102] it was observed that if we analytically continue ν in a semicircle in the complex-ν

plane, that is, if we let ν = reiφ (r real) and allow φ to run from 0 to π, the eigenvalues

change sign even though the Hamiltonian remains unchanged. By this analytic contin-

uation we reach a new phase of the harmonic oscillator whose spectrum is negative and
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unbounded below. Thus, the Hamiltonian (3.4) of the harmonic oscillator has two distinct

and independent real spectra that are related by analytic continuation in the natural fre-

quency ν of the oscillator.

How can one Hamiltonian (3.4) have two different spectra? The answer to this question

is that the positive spectrum is obtained by imposing the boundary condition in (3.5) in a

pair of Stokes wedges [1, 2, 23, 103] centered about the positive-real-x and negative-real-x

axis. We refer to the positive spectrum as the conventional one. These wedges have angular

opening π/2. The negative spectrum is defined by imposing the boundary condition in

a pair of Stokes wedges containing and centered about the upper and lower imaginary-x

axes. We refer to the negative spectrum as the unconventional spectrum of the harmonic

oscillator. These Stokes wedges also have angular opening of π/2. To understand the

configuration of the wedges we examine the WKB geometrical approximation

ψ ∼ e±νx2/2 (3.7)

to the solution of the harmonic oscillator eigenvalue equation (3.5). On the basis of (3.7)

we can see that the 90◦ wedges in which the eigenfunctions vanish rotate clockwise

through an angle of π/2 as ν rotate anticlockwise through an angle of π. Thus, those

two phases are analytic continuation of one another and are analytically connected by

rotations in the complex frequency plane.

A principal result of this chapter is that if we analytically continue the physical system

consisting of two coupled harmonic oscillators described by the Hamiltonian in (3.1) in

the coupling-constant parameter g, we obtain all four possibilities for the phases of the

two oscillators in which each possibilities for the two oscillators in which each oscillator
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is in a conventional or unconventional phase. Thus, all four phases are analytically con-

nected on the Reimann surface of the complex coupling g, even though the frequencies ν

and ω are held fixed and positive.

3.2 Analytic Continuation of Eigenvalue Problem for Har-

monic Oscillator

Analytic continuation of the coupling-constant parameter in some quantum-mechanical

potential may cause a paradox [102]. To illustrate the problem we consider the potential

V(x) = a2x6 − 3ax2 , (3.8)

which the Schrödinger equation corresponding to this potential has the form

− ψ′′(x) +
(

a2x6 − 3ax2
)

ψ(x) = Eψ(x) . (3.9)

When a > 0, the ground-state wave function ψ0 is exactly

ψ0(x) = e−
1
4 ax4

. (3.10)

This is indeed the ground-state eigenfunction because it has no nodes. By substituting

(3.10) into (3.9) and applying simple algebra we obtain E0(a) = 0. Now suppose we

analytically continue the equation of ground-state energy from positive to negative values

of parameter a. Accordingly, the ground-state energy is still E0(a) = 0. However, this

conclusion is wrong! For the case of a < 0 the Schrödinger differential equation (3.9) can
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Figure 3.1: Regions (shaded) in the complex-x pane where the boundary condition
ψ(x) → 0 is satisfied as |x| → ∞ for the eigenvalue problem in (3.12). Note that the
harmonic oscillator is actually two problems, one on the real axis and the other along the
imaginary axis.

be solved numerically, and indeed the lowest eigenvalue is a positive number

E0(a) = 1.9333...
√
|a| (3.11)

How is it possible that an analytic continuation of the zero function is nonzero? To

address this question we need to define very carefully the procedure of analytic con-

tinuation of the eigenvalue problem [102]. Obviously, the ground-state wave function

ψ0 = exp
(
−1

4 ax4
)

is nonnormalizable after continuation of a to negative values, which

indicates a simple replacement of a by −a is not the correct procedure.
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In order to provide an illustrative explanation, we describe the correct procedure of an-

alytic continuation of coupling constant for harmonic oscillator, which has the potential

V(x) = 1/4a2x2. Accordingly, the Schrödinger differential equation reads

(
− d2

dx2 +
1
4

a2x2 − E
)
= 0 , (3.12)

with the associate boundary condition

lim
|x|→∞

ψ(x) = 0 . (3.13)

To continue the parameter a into the complex plane we need to generalize the Schrödinger

eigenvalue problem (3.12) from the real-x axis to the complex-x plane. As we explained

comprehensively in chap. 1, WKB approximation solution for this differential equation is

ψ± ∼ exp
(
±1

4 ax2
)

which determine the Stokes wedges. As can be seen in Fig. 3.1 in the

shaded region ψ− goes to zero for large value of x in complex plane and in the unshaded

region ψ+ approaches to zero as |x| → ∞. Thus, if we extend the differential equation into

the complex plane we actually obtain two completely independent eigenvalue problems.

With these arrangements we can discuss the analytic continuation of the eigenvalue prob-

lem. If we let

a = ρeiθ , (3.14)

and allow θ to increase from 0 to π, then the centerlines of the shaded regions in fig. 3.1

also rotate in the complex plane but in the clockwise in order to retain the quantization

condition ψ− → 0 as x → ∞. In our case that ψ−(x) = exp
(
−1

4 ax2
)

, the centerline

rotates 90◦ clockwise. Before analytic continuation of a the ground state energy E0 = 1
2 a.

After continuation the Schrödinger differential equation and the quantization conditions
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read

(
− d2

dx2 +
1
4

a2x2 − E
)

ψ(x) = 0 , (3.15)

lim
x→±i∞

ψ(x) = 0 . (3.16)

To solve this problem we set x = ir and get

(
− d2

dr2 +
1
4

a2r2 + E
)

ψ(r) = 0 , (3.17)

lim
r→±∞

ψ(r) = 0 . (3.18)

Notice that (3.17) is the same as (3.12) except that the sign of E is reverse, which means

after analytic continuation of a to −a the energy of ground state is

E = − a
2

, (3.19)

as it was expected to be. This result can be generalized to a polynomial potential V(x)

whose highest power in x term is λx2n and there are n + 1 independent eigenvalue prob-

lems in the complex-x plane. As λ rotates to an angle θ in a counterclockwise direction

into the complex plane, the array of eigenvalue problem, rotates in a clockwise direction

by an angle of θ/(2n + 2).

This simple example shows the basic idea of analytic continuation of a parameter in dif-

ferential equation, and how it causes change in the eigenvalues of a system. In next sec-

tions we investigate the effect of analytic continuation on the ground state of two coupled

harmonic oscillators.
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3.3 Energy levels of the Coupled Harmonic Oscillator

In this section we examine the analytic structure of the eigenvalues of the coupled har-

monic oscillator Hamiltonian (3.1). We begin by the ground-state eigenfunction, which

has the general form

ψ(x, y) = e−
1
2 ax2− 1

2 by2+cxy , (3.20)

where a, b and c are constants to be determined. We substitute (3.20) into the time-

independent Schrödinger eigenvalue equation Hψ = Eψ, which has the explicit form

− ψxx + ν2x2ψ− ψyy + ω2y2ψ + gxyψ = Eψ . (3.21)

We then equate the coefficient of x2, y2, xy, and x0y0 and obtain the four equations

ν2 = a2 + c2 , (3.22)

ω2 = b2 + c2 , (3.23)

0 = 2ac + 2bc + g , (3.24)

E = a + b . (3.25)

Subtracting the first equation from the second and combining the result with the third

equations allows us to calculate a, b, and c, which we then eliminate in favor of a single

quartic polynomial equation for the eigenvalue E:

E4 − 2
(

ν2 + ω2
)

E2 +
(

ν2 −ω2
)2

+ g2 = 0 . (3.26)
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Figure 3.2: Sheet 1 of the complex Reimann surface of E(g) in (3.27). On this sheet both
the inner and outer square roots are positive when their argument are positive. Branch
points are indicated by blue dots and branch cuts by red dashed lines. On this sheet
E(0) = ν + ω.

The solution to this equation involves square roots,

E(g) =
[

ν2 + ω2 +
(

4ν2ω2 − g2
) 1

2
] 1

2

(3.27)

and from this equation we see that E(g) is a four-valued function of the coupling constant

g.
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Let us make a grand tour of the Reimann surface on which E(g) is defined. We begin

on sheet 1, where both square-root functions are real and positive when their argument

are real and positive. There are two obvious square-root branch points (zeros of the inner

square root) and these are located at g = ±2νω. Square-root branch cuts emerge from

each of these branch points and, as shown on Fig. 3.2, we have chosen to draw these

branch cuts as vertical lines going downward. On sheet 1, we have chosen to draw these

branch cuts as vertical lines going downward. On sheet 1

E(0) = ν + ω (3.28)

and because we assume that ν and ω are real and positive we see that both oscillators are

in their conventional ground states.

There are no other singularities on sheet 1 that allow us to change the sign of the outer

square root. This is because at such a singular point the argument of the outer square root

function would have to vanish:

ν2 + ω2 +
√

4ν2ω2 − g2 = 0 (3.29)

The solution of this equation is obtained by squaring ν2 + ω2 = −
√

4ν2ω2 − g2:

− g2 =
(

ν2 −ω2
)

, (3.30)

So −g2 is positive. The solution in (3.30) is spurious because both terms in (3.29) are

positive.
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1/2 

1/2 

Figure 3.3: Sheet 2 of the complex Reimann surface of E(g) in (3.27). On this sheet the
inner square root in (3.27) is negative and the outer square root is positive when their
argument are positive. On this sheet E(0) is ν−ω (assuming that ν−ω is positive).

If we analytically continue E(g) through either of the branch cuts on sheet 1, we arrive on

sheet 2, where the inner square root changes sign. Therefore, on this sheet

E(0) = ν−ω (3.31)

assuming that ν > ω. Thus, the x oscillator is in its conventional ground state but the

y oscillator is in its unconventional ground state. Because the inner square root returns
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negative values when its argument is positive, the solution for −g2 in (3.30) is not spu-

rious. Therefore, there are new branch cuts associated with the sign change of the outer

square root; these branch cuts emanate from branch points located at

g = ±i
(

ν2 −ω2
)1/2

. (3.32)

All four branch cuts on sheet 2 are shown on Fig. 3.3. If we now pass through a branch cut

emanating from±2νω, we return to sheet 1 but if we pass through a branch cut emanating

from either branch point in (3.32), we enter sheet 3.

On sheet 3 there are two pairs of square-root branch cuts. The branch points on the imag-

inary axis coincide with those on sheet 2. However, there is a new pair of branch points

on the real axis at g = ±2νω. Although these branch points appear at the same locations

as on sheet 1 and 2, they are unrelated to those branch points. We show this explicitly in

figure (3.4) by drawing the associated branch cuts differently. On this sheet both the inner

and outer square-root functions in (3.27 are negative and

E(0) = −ν + ω (3.33)

when ν−ω is positive. Now the x oscillator is in an unconventional ground state and the

y oscillator is in a conventional ground state.

If we know pass through a branch cut emanating from (3.32), we return from sheet 3 to 2

However, if pass through a branch cut emanating from ±2νω, we enter sheet 4. On this

sheet there are only branch points, which located at ±2νω (see Fig. 3.5). On sheet 4

E(0) = −ν−ω (3.34)
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1/2 

1/2 

Figure 3.4: Sheet 3 of the complex Reimann surface of E(g) in (3.27). On this sheet both
the inner and outer square roots are negative when their arguments are positive and thus
E(0) = −ν + ω.

Both oscillators are now in unconventional ground states. To summarize, Figs. 3.2-3.5

describe each of the four branches of the function E(g) in 3.27. On these four branches

E(0) takes the values given in (3.28), (3.31), (3.33), and (3.34). Form these four values of

E(0) we infer that by analytically continuing the two-coupled-oscillator system in (3.1)

through the entire Reimann surface we access both phases, conventional and unconven-

tional, of both oscillators, even though the two frequency parameter ν and omega are held

fixed.
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Figure 3.5: Sheet 4 of the complex Reimann surface of E(g) in (3.27). On this sheet
the inner square root is positive and while the outer square root is negative when their
argument are positive. On this sheet E(0) = ν−ω.

The four-fold structure of the ground-state energy is repeated for all of the energy levels.

To verify this, we construct the eigenfunctions associated with the other energy levels

of the theory. These eigenfunctions consist of the exponential in (3.20) multiplied by a

polynomial P(x, y). If P(x, y) has the form

P(x, y)− Ax + By + Cxy + D , (3.35)
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the eigenvalue equation (3.21) leads to the three coupled equations (3.22), (3.23), and (3.24)

together with four alternative for E:

ED = (a + b)D , (3.36)

EA = A(3a + b)− 2Bc , (3.37)

EB = B(a + 3b)− 2Ac , (3.38)

EC = D(g + 2bc + 2ac) + 3C(a + b) . (3.39)

For the quartet of ground-state energy levels described above, D = 1, A = B = C = 0,

so that P(x, y) = 1. We assign the label (0, 0) to this quartet because it reduces to the

(conventional and unconventional) ground states of the x and y oscillators when g =

0 and c = 0. We use the designation (0, 1) for the quartet P(x, y) = y, (1, 0) for the

quartet P(x, y) = x, and (1, 1) for the quartet P(x, y) = xy that give rise to spectra in the

decoupling limit g = 0, c = 0. In this limit, it follows again that a2 = ν2 and b2 = ω2,

leading to four quartets with the additional three spectra arising from (3.37) for (1, 0)

when B = C = D = 0, (3.38) for (0, 1) when A = C = D = 0 and (3.39) for (1, 1)

when A = B = D = 0. These four quartets are illustrated in Fig. 3.6 for the case ν = 2

and ω = 1. We emphasize that the energy levels of different quartets are not analytic

continuation of one another but the elements of each quartet are analytic continuation

of one another and branches of a four-valued function defined on exactly the same the

Reimann surface pictured in Figs. 3.2-3.5.
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Figure 3.6: First four quartets of energy levels associated with the Hamiltonian (3.1). The
quartets are labeled (m, n), and the quartets shown are for m = 0, 1 and have n = 0, 1.
We have chosen the values ν = 2 and ω = 1 and have have plotted the values of E(0) to
scale. Note that each energy eigenvalue corresponds to the lowest such state on a different
Reimann sheet.

77



3.4 Partition Function for Zero-Dimensional Field Theo-

ries

3.4.1 Intereacting Quadratic Field Theory

Let us examine the zero-dimensional field-theoretic equivalent of the Hamiltonian (3.1).

The partition function for this field theory is given by the integral

Z(g) =
∫ ∫

dx dy e−ν2x2−ω2y2−gxy (3.40)

where both integration paths run from −∞ to ∞. We can evaluate the integral exactly by

rearranging the terms in the exponential as we did in (3.2):

Z(g) =
∫ ∫

dx dy e−ν2[x+gy(2ν2)]
2−y2[ω2−g2/(4ν2)] . (3.41)

Simple transformation then reduce this to a product of two guassian integrals,

Z(g) =
∫ ∫ 2dxdy√

4ν2ω2 − g2
e−x2−y2

, (3.42)

which evaluate to

Z(g) =
2π√

4ν2ω2 − g2
. (3.43)

This partition function is a double-valued function of g and is defined on a two-sheeted

Reimann surface. Like the coupled harmonic oscillator discussed in section 3.3 the square-

root singularities are located at g = ±2νω. However, unlike the case of the coupled
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harmonic oscillator, the Reimann surface two sheets and not four; these sheets corre-

spond to the possible signs of Z(g) and these sheets correspond to the analogs of the

conventional-conventional theory and unconventional-unconventional theory. (To ob-

tain the unconventional-unconventional theory from the conventional-conventional the-

ory we replace x by ix and y by iy and this changes the sign of the partition function.)

There is no analytic continuation to the partition function for a mixed unconventional-

conventional theory. This is because the path of integration is included with the inte-

gral that defines the partition function. Given an eigenvalue differential equation we are

free to choose the boundary conditions (we can require that the eigenfunctions vanish as

x → ±∞ or as x → ±i∞) but there is no such freedom in the case of an integral. To

obtain other phase we would have to change the path of integration in the definition of

the partition function.

We can generalize this calculation by including in the partition function external fields J

and K coupled on the x and y fields:

Z(J, K; g) =
∫ ∫

dx dy e−ν2x2−ω2y2−gxy+Jx+Ky . (3.44)

Evaluating this integral by following the same procedure as above, we now find a more

elaborate singularity structure,

Z(g) =
2π√

4ν2ω2 − g2
exp

(
J2ω2 + K2ν2 − gKL

4ω2ν2

)
, (3.45)

which is again defined on the two-sheeted Reimann surface but in addition has essential

singularities at the square-root branch points. Consequently, all of the Green’s functions,
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which are obtained by taking derivatives with respect to the external sources, have in-

creasingly stronger singularities at g = ±2νω.

3.4.2 Interacting Sextic Field Theory

A higher-power selfinteracting field theory that possesses a conventional real spectrum

and in addition possesses a real PT -symmetric spectrum has a sextic interaction of the

form φ6. We thus examine a field theory that describes the coupling of two sextic oscil-

lators and we choose a symmetric form for the coupling. The partition function for the

zero-dimensional version of this coupled quantum field theory is

Z(g) =
∫ ∫

dx dy e−x6−y6−gx3y3
. (3.46)

This sextic theory is more difficult to examine analytically. We begin by expanding the

coupling term as a series in powers of g:

Z(g) =
∞

∑
n=0

(−g)n

n!

∫ ∫
dx dy e−x6−y6

x3ny3n . (3.47)

Since the x and y integrals run from −∞ to ∞, only even values of n contribute to the

partition function. When n is even, we have

∫ ∞

−∞
dx e−x6

x3n =
1
3

Γ
(

n
2
+

1
6

)
, (3.48)
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but if n is odd, the integral vanishes. Thus, we make the replacement n = 2m and re-

express the partition function as a sum over m:

Z(g) =
1
9

∞

∑
m=0

g2m

(2m)!
Γ
(

m +
1
6

)
. (3.49)

This sum is a hypergeometric series:

Z(g) =
1
9

Γ2
(

1
6

)
2F1

(
1
6

,
1
6

;
1
2

;
g2

4

)
. (3.50)

In general, the hyprgeometric series has a radius of convergence of 1. (This is easy to

verify by using the Stirling approximation for the Gamma function.) This implies that

Z(g) has a singularity on the circle |g| = 2.

It is important to identify the precise location and nature of this singularity. To do so we

use the linear transformation formula [89]

2F1 (a, d; c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) 2F1 (a, b; a + b− c + 1; 1− z) (3.51)

+ (1− z)c−a−b Γ(c)Γ(a + b− c)
Γ(a)Γ(b) 2F1 (c− a, c− b; c− a− b + 1; 1− z)
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This transformation makes the singularity explicit because the hypergeometric function

is analytic in the circle. Applying this transformation gives

Z(g) =

√
πΓ3

(
1
6

)
9Γ2

(
1
3

) 2F1

(
1
6

,
1
6

;
5
6

; 1− g2

4

)
(3.52)

+

(
1− g2

4

) 1
6
√

πΓ
(
−1

6

)
9 2F1

(
1
3

,
1
3

;
7
6

; 1− g2

4

)

from which we conclude that Z(g) is defined on a six-sheeted Reimann surface and that

the branch points on all six sheets of the Reimann surface are located at g = ±2, which

corresponds with the singularities of the coupled harmonic oscillator model at±2νω with

ν = ω = 1.

More generally, we can examine the green’s functions Gα,β of the theory, which are defined

as integrals of the form

Gα,β ≡
∫ ∫

dx dy xαyβe−x6−y6−gx3y3
(3.53)

where α and β are integers. It is necessary that α + β is even for the Green’s function to be

nonvanishing. Following the same analysis as above, we find that all Green’s functions

are defined on a six-sheeted Reimann surface and that the singularity in the complex-g

plane has the form (
1− g2

4

) 1−α−β
6

(3.54)

Thus, like the Green’s function for the coupled harmonic oscillator we see that the sin-

gularity becomes stronger with increasing α and β, but the Green’s functions are always

six-valued functions of g.
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3.5 Conclusions

We have shown that a coupled quantum theory has a rich analytic structure as a func-

tion of the coupling constant. By analytically continuing in the coupling constant we can

obtain different spectral phases of the uncoupled theory. Indeed, if we think the coupling

constant as an external classical source, then by varying this external source in a closed

loop in the complex-coupling-constant plane we can even imagine extracting energy from

the conventional ground state of such theory, at least in principle. For example, we can be-

gin with the uncoupled harmonic-oscillator system (3.1) in its conventional ground state

(3.28). We then turn on the source g, smoothly and continuously vary g, and finally turn

off g again when the system is in the unconventional ground state (3.31). Such a process

appears to be exothemic because it extracts an amount of energy equal to be 2ν + 2ω.

However, varying the coupling constant requires that we do work on the system. Un-

til now, it is not clear what it means to vary a coupling constant through complex val-

ues. However, remarkable progress on this is currently being made from an experimental

point of a system and by doing so to analytically continue from one energy state to an-

other. Such a process has actually been achieved in the laboratory by smoothly varying

the parameters of a microwave cavity [13] and, in doing so, going continuously from one

frequency mode to another. More recently, experiments have been performed in which

an exceptional point is dynamically encircled [49, 50]. That is, a combination of physical

parameters is varied in real time, and the system response is measured, allowing one to

access different Riemann surfaces. While [49] emphasizes robust switching, [50] concerns

itself with energy transfer between diferent states of a system, such as has been consid-

ered here in our illustrative prototypical system. An experimental approach, whether
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optomechanical or using light, acoustics, matter waves, or microwaves may in the future

yield experimental verification of the analytic continuation discussed in this work.

Finally, these studies have been performed for linear couplings between the oscillators,

which led to the four-fold structure shown here. It is to be expected that other types of

couplings lead to different, possibly more complicated Riemann surfaces.
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Chapter 4

Behavior of eigenvalues in a region of

broken- PT symmetry

This chapter contains the materials published in a paper [104], which represents work performed

by me under the supervision of my advisor, C. M. Bender.
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4.1 Introduction

PT -symmetric quantum theory has its roots in a series of papers that proposed a new

perturbative approach to scalar quantum field theory: Instead of a conventional expan-

sion in powers of a coupling constant, it was proposed that a perturbation parameter δ

be introduced that measures the nonlinearity of the theory. Thus, to solve a gφ4 field the-

ory one studies a gφ2 (φ2)δ theory and treats δ as a small parameter. After developing a

perturbation expansion in powers of δ, the parameter δ is set to one to obtain the results

for the gφ4 theory. This perrturbative calculation is impressively accurate and does not

require the coupling constant g to be small [105, 106]. A crucial technical feature of this

idea is that φ2 and not φ be raised to the power δ in order to avoid raising a negative

number to a noninteger power and thereby generating complex number as an artifact of

the procedure.

Subsequently, the δ expansion was used to solve an array of nonlinear classical differ-

ential equations taken from various areas of physics: The Thomas-Fermi equation (nu-

clear charge density) y′′(x) = [y(x)]3/2 /
√

x is modified to y′′(x) = y(x) [y(x)/x]δ; the

Lane-Emdon equation (stellar structure) y′′(x) + 2y′(x)/x + [y(x)]n = 0 is modified to

y′′(x) + 2y′(x)/x + [y(x)]1+δ; the Blasius equation (fluid dynamics) y′′′(x) + y′′(x)y(x) =

0 is modified to y′′′(x) + y′′(x)[y(x)]δ = 0; the Korteweg-de Vries equation (nonlinear

waves) ut + uux + uxxx = 0 is modified to ut + uδux + uxxx = 0. In each of these cases the

quantity raised to power delta is positive and when δ = 0 the equation becomes linear.

Just a few terms in the δ expansion gives an accurate numerical result [107].

The breakthrough of PT -symmetric quantum theory was the surprising discovery that

to avoid the appearance of spurious complex numbers it is actually not necessary to raise
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a positive quantity to the power δ so long as the quantity is symmetric under combined

space and time reflection. This fact is highly nontrivial and was totally unexpected. For

example, a quantum-mechanical potential of the form x2 (ix)ε does not necessarily lead to

complex eigenvalues because the quantity ix is PT invariant. Indeed, the non-Hermitian

PT -symmetric Hamiltonian

H = p2 + x2 (ix)ε (4.1)

has the property that its eigenvalues are entirely real, positive, and discrete when ε ≥ 0

(see Fig. 4.1) The reality of the spectrum was noted in [2, 108] and was attributed to the

PT symmetry of H. Doery, Dunning, and Tateo proved that the spectrum is real when

ε > 0 [24, 109]. Following the observation that the eigenvalues of non-Hermitian PT -

symmetric Hamiltonians could be real, many papers were published in which various

PT -symmetric model Hamiltonian were studied [6].

A particularly interesting feature of PT -symmetric Hamiltonian is that they often ex-

hibit a transition from a parametric region of unbroken PT symmetry in which all of the

eigenvalues are real to a region of broken PT symmetry in which some of the eigen-

values are real and the rest of the eigenvalues occurs in complex-conjugate pairs. The

PT transition occurs in both the classical and quantized versions of a PT -symmetric

Hamiltonian [108] and this transition has been observed in numerous laboratory experi-

ments [13, 14, 56, 58, 110–117].

There have been many studies of the real spectrum of H in (4.1) but essentially noth-

ing has been published regarding the analytic behavior of the complex eigenvalues as

functions of ε in the region of broken PT symmetry. However, it is known that there

is sequence of negative-real values of ε lying between −1 and 0 at which pairs of real

wigenvalues become degenerate and split into pairs of complex-conjugate eigenvalues.
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Figure 4.1: Real eigenvalues of the Hamiltonian H = p2 + x2(ix)ε plotted as function of
the parameter ε. When ε ≥ 0 (the region of unbrokenPT symmetry), the spectrum is real,
positive, and discrete. However, as ε goes below 0 (ε < 0 is known as the region of broken
PT symmetry) the real eigenvalues begin to merge pairwise and from complex-conjugate
pair. When−1 < ε < 0, there are only a finite number of real positive eigenvalues and an
infinite number of complex-conjugate pairs of eigenvalues. When ε ≤ −0.57793, only one
real eigenvalue survives and as ε approaches −1+, this real eigenvalue becomes infinite.
THe behavior of the complex eigenvalues in the region of broken PT symmetry is not
shown in this graph and has not been explored until now.

These special values of ε are often called exceptional points [95]. In general, eigenvalues

usually have square-root branch-point singularities at exceptional points.

Exceptional points in the complex plane, sometimes called Bender-Wu Singularities, ex-

plain the divergence of perturbation expansions [93, 94]. The appearance of exceptional

points is a generic phenomenon. In these early studies of coupling-constant analyticity, it
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was shown that the energy levels of a Hamiltonian, such as the Hamiltonian for the quan-

tum anharmonic oscillator H = p2 + x2 + gx4, are analytic continuations of one another

as functions of the complex coupling constant g due to the phenomenon of level crossing

at the exceptional points. Thus, the energy levels of a quantum system, which are discrete

when g is real and positive, are actually smooth analytic continuations of one another in

the complex-g plane [1]. A simple topological picture of quantization emerges: The dis-

crete energy levels of a Hamiltonian for g > 0 are all branches of a multivalued energy

function E(g) and the distinct eigenvalues of this Hamiltonian correspond with the sheet

of the Reimann surface on which E(g) is defined. Interestingly, it is possible to vary the

parameter of a Hamiltonian in laboratory experiments and thus to observe experimentally

the effect of encircling exceptional points [13, 49, 50].

The purpose of this chapter is to study the analytic continuation of the real eigenvalues

shown in Fig. 4.1 as ε moves down the negative-ε axis. We discus the Stokes wedges

that characterize the eigenvalue problem as ε goes below −1 and we show that there is

an infinite-order exceptional point at ε = −1 where there is an elaborate logarithmic spiral

(a double helix) of eigenvalues. The real part of each complex-conjugate pair of eigen-

values that is formed at exceptional points between ε = −1 and ε = 0 approaches ∞

like | ln (ε + 1) |2/3 as ε approaches −1. In contrast, the imaginary parts of each pair of

eigenvalues vanish logarithmically at ε = −1. As ε goes below −1, the real parts of the

eigenvalues rise up from 0. As ε goes from just above to just below −1, the imaginary

parts of the eigenvalues appear to undergo discrete jumps but in fact they vary continu-

ously as functions of ε.

In Sec. 4.3 we give plot of the eigenvalues in the region −2 < ε < −1 and perform

an asymptotic analysis of the eigenvalues near ε = −2. As ε approaches −2, the entire
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spectrum becomes degenerate; the real parts of all the eigenvalues approach −1 and the

imaginary parts coalesce to 0.

Section 4.4 presents a numerical study of the eigenvalues in the region −4 < ε < −2.

We show that a transition occurs at ε = −2 in which the eigenspectrum goes from being

discrete to become partially discrete and partially continuous. The continuous part of

the spectrum lies on complex-conjugate pairs of curves in the complex-ε plane. Another

transition occurs at ε = −3 (the PT -symmetric Coulomb potential); below ε = −3 some

of the discrete eigenvalues become real. As ε approaches the conformal point ε = −4, the

eigenvalues collapse to the single value 0. Sec. 4.5 gives brief concluding remarks.

4.2 Eigenvalue Behavior as ε→ −1

4.2.1 Stokes wedges

The time-dependent Schrödinger eigenvalue problem for the Hamiltonian H in (4.1) is

characterized by the differential equation

− y′′(x) + x2 (ix)ε y(x) = Ey(x) . (4.2)

The boundary condition imposed on the eigenfunctions require that y(x) → 0 exponen-

tially rapidly as |x| → ∞ in a pair of Stokes wedges in the complex-x plane. This subsec-

tion explains the location of these Stokes wedges.
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Figure 4.2: Stokes wedges associated with the eigenvalue problem for the Hamiltonian
H = p2 + x2 (ix)ε for eight values of ε. The location of center lines, the upper edges, and
the lower edges of the Stokes wedges are given in (4.3)-(4.8). The left wedge is colored
blue and the right wedge is colored red. As ε decreases, the wedges get wider and rotate
upwards. At ε = −1 the two wegdes touch and fuse into one wedge. However, when ε
goes below−1, the sheets are again distinct; the left wedge rotate clockwise into sheet−1
and the right wedge rotates anticlockwise into sheet 1.

As has been previously discussed at length, the potential x2 (ix)ε has a logarithmic singu-

larity in the complex-x plane when ε is not an integer. Thus, it is necessary to introduce a

branch cut. This branch cut is chosen to run from 0 to ∞ in the complex-x plane along the

positive-imaginary axis because this choice respects the PT symmetry of the Hamilto-

nian. This is because PT symmetry translates into left-right symmetry in the complex-x

plane (that is, mirror symmetry with respect to the imaginary-x axis) [2, 108]. The argu-

ment of x on the principal sheet (sheet 0 of the Reimann surface) runs from −3π/2 to

π/2. On sheet 1, π/2 < arg x < 5π/2; on sheet−1, −7π/2 < arg x < −3π/2; and so on.

91



As explained in [2, 108], the Stokes wedges in which the boundary condition on y(x)

are imposed are located in the complex-x plane in a PT -symmetric fashion. If ε = 0,

the Stokes sedges have angular opening π/2 and are centered about the positive x and

negative x axis on the principal sheet of the Reimann surface. As ε increases from 0, the

wedges get narrower and rotate downwards; as ε decreases from 0, the Stokes wedges get

wider and rotate upwards. Wentzel-Kramers-Brillouin (WKB) analysis provides precise

formulas for the location of the center line of the Stokes wedges,

θright wedge, center = −
ε

8 + 2ε
π , (4.3)

θleft wedge, center = −π +
ε

8 + 2ε
π , (4.4)

the upper edges of the Stokes wedges,

θright wedge, upper edge =
2− ε

8 + 2ε
π , (4.5)

θleft wedge, upper edge = −π − 2− ε

8 + 2ε
π , (4.6)

and the lower edges of the Stokes wedges,

θright wedge, lower edge = −
2 + ε

8 + 2ε
π , (4.7)

θleft wedge, lower edge = −π +
2 + ε

8 + 2ε
π . (4.8)

The location of the Stokes wedges for eight values of ε are shown in Fig. 4.2 . As ε de-

creases to −1, the opening angles of the wedges increases to 120◦ and the upper edges of

the wedges touch. At the special value ε = −1 the logarithmic Riemann surface collapses

to a single sheet; the wedges fuse and are no longer separated. As a result, there are no

92



eigenvalues at all (the spectrum is null) [118]. When ε goes below −1, the wedges are

again distinct and no longer touch; the left wedge rotates in the negative direction and

enters sheet −1 while the right wedge rotates in the positive direction and enters sheet 1.

4.2.2 Numerical Behavior of the Eigenvalues as ε decreases below 0

Previous numerical studies of the (real) eigenvalues for ε ≥ 0 were done by using the

shooting method. However, when the eigenvalues become complex, the shooting method

is not effective and we have used the finite-element method and several variational meth-

ods. We have checked that the eigenvalues produced by these different methods all agree

to at least five decimal places.

Figure 4.1 may seem to suggest that the real eigenvalues disappear pairwise at special

isolated values of ε. However, the eigenvalues do not actually disappear; rather, as each

pair of real eigenvalues fuse, these eigenvalues convert into a complex-conjugate pair of

eigenvalues. At this transformation point, both the real and imaginary parts of each pair

of eigenvalues vary continuously; the real parts remain nonzero and the imaginary parts

move away from zero as ε goes below the transition point. A more complete plot of the

eigenvalues in Fig. 4.3 shows that the real parts of each pair of eigenvalues decay slightly

as ε decreases toward −1, while the imaginary parts grow slowly in magnitude. How-

ever, just as ε reaches −1 the real parts of the eigenvalues suddenly diverge logarithmi-

cally to +∞ and the imaginary parts of the eigenvalues suddenly vanish logarithmically.

Below ε = −1 the real parts of the eigenvalues rapidly descend from +∞ and the imag-

inary part of the eigenvalues rise up from 0. This behavior is depicted in Fig. 4.3 and a

detailed description of the region −1.05 < ε < −0.95 is shown in Fig. 4.4.
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Figure 4.3: Eigenvalues of the Hamiltonian H = p2 + x2(ix)ε plotted as functions of the
parameter ε for −1.1 < ε < 0. This graph is a continuation of the graph in Fig. 4.3. As ε
decreases below 0 and enters the region of broken PT symmetry, real eigenvalues (solid
black lines) become degenerate and then form complex-conjugate pairs. The real parts
of these pairs of eigenvalues (solid blue lines) initially decrease as ε decreases but blow
up suddenly as ε approaches −1. The real parts then decrease as ε decreases below −1.
The imaginary parts of the eigenvalue pairs (dashed red lines) remain finite and appear
to suffer discontinuous jumps at ε = −1. However, a closer look shows that these dashed
lines rapidly decay to 0 near ε = −1 and then rapidly come back up to different values as
ε passes through −1. A blow-up of the region near ε = −1 is given in Fig. 4.4.

4.2.3 Asymptotic Study of the Eigenvalues near ε = −1

Figure 4.3 shows that the eigenvalues are singular at ε = −1 and suggests that this sin-

gularity is more complicated that the square-root branch-point singularities that occur at

standard exceptional points [119]. To identify the singularity we perform a local asymp-

totic about the point ε = −1. We begin by letting ε = −1 + δ and we treat δ as small
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Figure 4.4: Detailed view of Fig. 4.3 showing the behavior of the eigenvalues of the
Hamiltonian H = p2 + x2(ix)ε plotted as functions of the parameter ε for −1.05 ≤ ε ≤
−0.95. There is one real eigenvalue for ε > −1 (solid black line). The real parts of the
complex eigenvalues (blue solid lines) and the real eigenvalue diverge at ε = −1. The
complex eigenvalues occur in complex-conjugate pairs and the imaginary parts of the
eigenvalues rapidly go to 0 at ε = −1. These behaviors are expressed quantitatively in
(4.24).

(δ� 1). This allows us to approximate the potential x2(ix)ε in (4.1) as

− ix
[
1 + δ ln(ix) +O(δ2)

]
(4.9)

We also expand the eigenfunctions in powers of δ:

ψ(x) = y0(x) + δy1(x) +O(δ2) . (4.10)
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Because we are treating δ as small, the Stokes wedges have an angular opening close to

2π/3 and are approximately centered about the angles θL = −7π/6 and θR = π/6. We

construct solutions ψL(x) and ψR(x) in the left and right Stokes wedges. We then patch

together these eigenfunctions and their first derivatives at the origin x = 0. The patching

condition is

0 = ψR(x)ψ′L(x)− ψ′R(x)ψ′L(x)|x=0 . (4.11)

To zeroth order in power of δ the Schrödinger eigenvalue equation Hψ(x) = Eψ(x) reads

y′′0 (x) + ixy0(x) + Ey0(x) = 0 . (4.12)

Substituting x = reiθL,R reduces this equation to an Airy equation [89] for the zeroth-order

eigenfunctions y0,(L,R)(r) in the left and right wedges:

y′′0,(L,R)(r)−
(

r− E∓iπ/3
)

y0,(L,R)(r) = 0 , (4.13)

where the derivatives are now taken with respect to r.

The boundary condition on the eigenfunctions in each wedge require that y0,(L,R)(r)→ 0

as r → ∞, so the solutions to (4.13) are Airy function [89]:

y0,(L,R)(x) = CL,RAi
(

r− Ee∓iπ/3
)
= CL,RAi

(
∓xe±iπ/6 + Ee±2iπ/3

)
, (4.14)

where CL,R are multiplicative constants.
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The right side of the patching condition (4.11) for the zeroth-order solutions is calculated

from the Wronskian identity for Airy functions [89]:

ψ0,R(x)ψ′0,L(x)− ψ′0,R(x)ψ0,L(x)|x=0

= −CLCR

[
e−iπ/6Ai

(
Ee−2iπ/3

)
Ai′
(

Ee2iπ/3
)
+ eiπ/6Ai

(
Ee2iπ/3

)
Ai′
(

Ee−2iπ/3
)]

= −iCLCRW
[
Ai
(

Ee2iπ/3
)

, Ai
(

Ee−2iπ/3
)]

=
1

2π
CLCR 6= 0 . (4.15)

When δ is exactly 0, the potential is linear in x and y0,(L,R)(x) are the exact solutions to

the Schrödinger equation. The above calculation shows that these solutions cannot be

patched, and thus there are no eigenvalues at all when ε = −1 (δ = 0). This conclusion is

consistent with Fig. 4.3, which shows that the real parts of all of the eigenvalues become

infinite as ε approaches −1. The fact that the spectrum is empty at ε = −1 is not a new

result; the absence of eigenvalues of a linear potential was established in [120].

Next, we perform a first-order O
(
δ1) analysis. We set y1(x) = Q(x)y0(x). (This substi-

tution is motivated and explained in detail in [1].) The first-order Schrödinger equation

now reads

y′′1 (x) + ixy1(x) + ix ln(ix)y0(x) + Ey1(x) = 0 . (4.16)

We multiply this equation by the integrating factor y0(x) and insert the leading-order

approximation to eigenfunction and obtain

[
y2

0(x)Q′(x)
]′

= −ix ln(ix)y2
0(x) . (4.17)
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We then integrate this equation along the center ray of each Stokes wedge:

Q′L,R(x) = i
∫ ∓ exp(∓iπ/6)∞

0
dt t ln(it)

[
y0,(L,R)(t)
y0,(L,R)(x)

]2

= ie∓iπ/3
∫ ∞

0
ds s ln

(
∓se∓iπ/6

) [y0,(L,R)
(
∓se∓iπ/6)

y0,(L,R)(x)

]2

= ie∓iπ/3
∫ ∞

0
ds s ln

(
se∓2iπ/6

) [ Ai
(
s + Ee±2iπ/3)

Ai
(
∓xe±iπ/6 + Ee±2iπ/3

)]2

. (4.18)

Thus, to first order in δ with ψ(x) = y0(x) [1 + δQ(x)] the patching condition (4.11) be-

comes

0 = [1 + δQR(0) + δQL(0)]
[
y0,R(x)y′0,L(x)− y′0,R(x)y0,L(x)

]
x=0 + δy0,L(x)y0,R(x)

[
Q′L(0)−Q′R(0)

]
= CLCR

{
− 1

2π
+ δAi

(
Ee−2iπ/3

)
Ai
(

Ee2iπ/3
) [

Q′L(0)−Q′R(0)
]}

(4.19)

where we have used the zeroth-order patching condition (4.11) and the leading-order

eigenfunction (4.14). Note that because the Schrödinger equation is linear we are free to

choose QL(0) + QR(0) = 0.

For large E, we use the asymptotic expansion of the Airy function [89]

Ai(x) ∼ 1
2
√

π
x−

1
4 exp

(
−2

3
x3/2

)
(|x| → ∞, | arg x| < π) . (4.20)

Thus, the patching condition for |E| → ∞ becomes

2
δ
∼ 1√

E
exp

(
4
3

E3/2
) [

Q′R(0)−Q′L(0)
]

. (4.21)
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Note that because we are treating δ as small, the difference Q′R(0) − Q′L(0) is approxi-

mately a positive real number. For real E this difference is exactly real because Q′R(0) and

−Q′L(0) are complex conjugates.

We expand the right side of (4.21) to first order in β/α, where α = ReE > 0 and β = ImE.

This expansion is justified because, as we can see in Fig. 4.3, the imaginary parts are small

compared with the real parts near ε = −1. The patching condition (4.21) then becomes

2
δ
∼ α−1/2

(
1 + i

β

α

)−1/2

exp

[
4
3

α3/2
(

1 + i
β

α

)3/2
]

= α−1/2
(

1− i
β

2α

)
exp

(
4
3

α3/2
)

exp
(
−2iα1/2β

)
+O

(
β2

α2

)
. (4.22)

Hence, when δ is positive, we obtain the condition

arg
2
δ
= arctan

(
− β

2α
− 2α1/2β = 2mπ

)
, (4.23)

where m is an integer. This result simplifies because the arctangent term is small; to

leading-order we obtain 2α1/2β = 2mπ. Similarly when δ < 0, we find that 2α1/2β =

(2m + 1)π.

We conclude that for either sign of δ we obtain a simple formula for the real part of

the eigenvalues. Specifically, if we combine the above three equations, we obtain 2
|δ| ∼

α−1/2 exp
(

4
3 α3/2

)
. Hence, in the neighborhood of ε = −1 (that is, when δ is near 0), the

real parts of the eigenvalues are logarithmically divergent while the imaginary parts of

the eigenvalues remain finite:

ReE ∼
(
−3

4
ln |δ|

)2/3

, ImE ∼ nπ

2
√

ReE
, (4.24)
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Figure 4.5: Behavior of eigenvalues of the Hamiltonian H = p2 + x2(ix)ε as the parameter
ε winds around the exceptional point at ε = −1 in a circle of radius 0.05 in the complex-ε
plane. This singular point is an infinit-order exceptional point, and all of the complex
eigenvalues analytically continue into one another as one encircles the exceptional point.
The lines are shaded blue when Reε > 0 and red line Imε < 0. The behavior of the
imaginary parts of the eigenvalues (left panel) are easier to visualize because they exhibit
a simple logarithmic spiral. The dot shows that the imaginary part of an eigenvalue (the
eigenvalue shown in black in Figs. 4.3 and 4.4) vanishes (the eigenvalue is real) when
Reε > 0. However, as we wind in one direction the imaginary parts of the eigenvalues
increases in a helical fashion and as we wind in the opposite direction the imaginary
parts of the eigenvalues decrease in a helical fashion. As we pass the real-ε axis we pass
through the values plotted on the red dashed line shown in Figs. 4.3 and 4.4. A shaded
cylinder has been drawn to assist the eye in following this helix. The two helices intersect
four times each time the singular point at ε = −1 is encircled, and they intersect at 90◦

intervals. If we begin at the dot, we see that the real parts of the eigenvalues increase
as we rotate about ε = −1 in either direction. Each time ε crosses the real axis in the
complex-ε plane the curves pass through the values shown at the left and right edges of
Fig. 4.4
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where n is an even integer for δ > 0 and n is odd integer for δ < 0. Evidently, the

imaginary parts of the eigenvalues vary rapidly as ε passes through −1 because there is

a logarithmic singularity at ε = −1. A blow-up of the region −1.05 < ε < 1.05 is given in

Fig. 4.4.

To visualize the behavior of the eigenvalues near ε = −1 more clearly, we have plotted

the imaginary and real parts of the eigenvalues in the complex-ε plane in the left and

right panels of Fig. 4.5. Observe that the imaginary parts of the eigenvalues lie on a

helix and that the real parts of the eigenvalues lie on a double helix as ε winds around

the logarithmic singularity at ε = −1. This logarithmic singularity is an infinite-order

exceptional point, which one discovers only very rarely in studies of the analytic structure

of eigenvalue problems.

4.3 Eigenvalue Behavior as ε→ −2

In Fig. 4.6 we plot the first three complex-conjugate pairs of eigenvalues in the range

−2.0 ≤ ε ≤ −1.1. Note that the eigenvalues Ek coalesce to the value −1 as ε approaches

−2. As ε decreases towards −2 the real part of Ek becomes more negative as k increases,

and the spectrum becomes inverted; that is, the higher-lying real parts of the eigenvalues

when ε is near −1.7 (for example) decrease as ε decreases and they cross when ε in near

−1.3. This crossing region is shown in detail in Fig. 4.7.

The objective of this section is to explain the behavior of the eigenvalues as approaches -2

by performing a local analysis near ε = −2. To do so we let

ε = −2 + δ (4.25)
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Figure 4.6: First three complex-conjugate pairs of eigenvalues of the Hamiltonian H =
p2 + x2(ix)ε plotted as of Fig. 4.3. Note that the real parts of the eigevalues coalesce
to −1 and the imaginary parts coalesce to 0 as ε approaches −2. The results of a WKB
calculation of these eigenvalues near ε = −2 is given in (4.46). Note that the real parts of
the eigenvalues near ε = −1.3, but they do not all cross at the same point as can be seen
in Fig. 4.7

and treat δ small (δ� 1) and positive. With this change of parameter (4.2) becomes

− y′′(x)− (ix)δy(x) = Ey(x). (4.26)

The boundary condition on y(x), which we can deduce from Fig. 4.2, are that the eigen-

functions y(x) must vanish asymptotically at the ends of a path that originates at e−3πi/2∞

in the complex-x plane, goes down to the origin along the imaginary axis, encircles the

origin in the positive direction, goes back up the imaginary axis, and terminate at eπi/2∞.

The eigenfunctions are required to vanish at the endpoints e−3πi/2∞ and eπi/2∞.
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We now make the crucial assumption that it is valid to expand the potential term in (4.26)

as series in powers of δ. To second order in δ, we then have

− y′′(x)− δ ln(ix)y(x)− 1
2

δ2 [ln(ix)]2 y(x) = (E + 1)y(x). (4.27)

In this form, one can see that to every order in powers of δ the potential terms in the

Schrödinger equation are singular at x = 0. As a consequence, the solution y(x) vanishes

at x = 0. (One can verify that y(0) = 0 by examining the WKB approximation to y(x); the

prefactor [V(x)− E]−1/4 vanishes logarithmically.)

We then make the change of independent variable t = −ix. In term of t, (4.27) becomes

− y′′(t) + δ ln(−t)y(t) +
1
2

δ2 [ln(−t)]2 y(t) = −(E + 1)y(t). (4.28)

This eigenvalue equation is posed on a contour on the real-t axis that originates at t =

+∞, goes down the positive-real t axis, encircles the origin in the positive direction, and

goes back up to e2iπ∞, and y(t) is required to vanish at the end points of this contour. We

then replace ln(−t) with ln(t)± iπ:

− y′′(t) + δ [ln(t)± iπ] y(t) +
1
2

δ2 [ln(t)± iπ]2 y(t) = −(E + 1)y(t) . (4.29)

Next, we make the scale change

t = s/
√

δ (4.30)

This converts (4.29) into the Schrödinger equation

− y′′(s) + ln(s)y(s) + δU(s)y(s) = Fy(s) , (4.31)
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Figure 4.7: Detail of Fig. 4.6 showing the behavior of the real parts of the first six eigen-
values of the Hamiltonian H = p2 + x2(ix)ε for −1.4 ≤ ε ≤ −1.2. The real parts of the
eigenvalues cross almost at the same value of ε but the imaginary parts of the eigenvalues
remain well separated.

where the energy term F is given by

F = −(E + 1)/δ +
1
2

ln(δ)∓ iπ − 1
8

δ [ln(δ)]2 +
1
2

δπ2 ± 1
2

δiπ ln(δ) (4.32)

and the order δ term in the potential is given by

U(s) =
1
2
[ln(s)]2 − 1

2
ln(δ) ln(s)± iπ ln(s) . (4.33)
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Our procedure will be as follows. First, we neglect the U(s) term in (4.31) because δ is

small and we use WKB theory to solve the simpler Schrödinger equation

− y′′0 (s) + ln(s)y0(s) = F0y0(s) (4.34)

Second, we find the energy shift ∆F due to the U(s) term in (4.31) by using first-order

Rayleigh-Schrödinger theory [1]; to wit; we calculate the expectation value of U(s) in the

WKB approximation to y0(s) in (4.34). Having found F = F0 + ∆F, we obtain the energy

E from (4.32):

E = −1− Fδ +
1
2

δ ln(δ)∓ iπδ− 1
8

δ2 [ln(δ)]2 +
1
2

π2δ2 ± 1
2

iπδ2 ln(δ) . (4.35)

This approach gives a very good numerical approximation to the energies shown in Fig.

4.6.

The standard WKB quantization formula for the eigenvalues F0 in a single-well potential

V(s) (the two-turning-point problem) is

(
n +

1
2

)
π =

∫ s2

s1

ds
√

F0 −V(s) (n� 1) . (4.36)

For (4.34) the potential V(s) is ln(s) and the boundary conditions on y0(s) are given on

the positive half line: y0(s) vanishes at s = 0 and at s = +∞. In order to apply (4.36),

we extend the differential equation to the whole line −∞ < s < +∞ by replacing ln(s)

with ln(|s|) and consider only the odd-parity solutions. Thus, we must replace the integer

n in (4.36) when 2k + 1, where k = 0, 1, .... The turning points are given by s1 = −eF0 and
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s2 = eF0 . Hence, the WKB formula (4.36) becomes

(
2k + 1 +

1
2

)
π =

∫ eF0

−eF0
ds
√

F0 − ln(|s|) = 2
∫ eF0

0
ds
√

F0 − ln(|s|) (k� 1) (4.37)

The substitution s = ueF0 simplifies this equation to

(
2k +

3
2

)
π = 2eF0

∫ 1

0
du
√
− ln(u) , (4.38)

and the further substitution ν = − ln(u) reduces the integral to a Γ function:

∫ 1

0
du
√
− ln(u) =

∫ ∞

0
dv e−νν1/2 = Γ

(
3
2

)
=

1
2
√

π . (4.39)

Thus, the WKB approximation to the eigenvalues F0 is

F0 = ln
[(

2k +
3
2

)√
π

]
, (4.40)

which is valid for large k.

Next, we calculate the order-δ correction ∆F to (4.40) due to the potential U(s) in (4.31).

To do so we calculate the expectation value of U(s) in the WKB eigenfunction y0(s) of

(4.34):

∆F = δ

∫ ∞
0 ds U(s) [y0(s)]

2∫ ∞
0 ds [y0(s)]

2 , (4.41)

where U(s) is given in (4.33).

Integrals of this type are discussed in detail in Chap.9 of [1]. To summarize the procedure,

in the classically forbidden region beyond the turning point, y0(s) is exponentially small,

and the contribution to the integral from this region is insignificant. In the classically

106



Table 4.1: Comparison of the real parts of the eigenvalues of the different equation (4.26)
at δ = 0.01 with the asymptotic approximation in (4.46). The rate at which the accuracy
increases with increasing k is similar to the increase in accuracy of the standard WKB
approximation to the eigenvalues of the quartic anharmonic oscillator [1].

Numerical value of O(δ2) calculation Relative
k ReEk at δ = 0.01 of ReEk in (4.46) error
0 -1.0352 -1.0414 8.70 %
2 -1.0426 -1.0461 0.33%
4 -1.0469 -1.0493 0.30%
6 -1.0499 -1.0518 0.18%
8 -1.023 -1.0538 0.15%

10 -1.0542 -1.0555 0.12%
12 1.0559 -1.0569 0.10%

allowed region, the square of the eigenfunction has the general WKB from

[y0(s)]
2 =

C√
F0 −V(s)

sin2
[

φ +
∫ s

dr
√

F0 −V(r)
]

, (4.42)

where C is a multiplicative constant and φ is a constant phase shift.

Making the replacement sin2 θ = 1
2 −

1
2 cos(2θ), we observe that because of the Reimann-

Lebesque lemma, the cosine term oscillates to zero for large quantum number k, and we

may replace [y0(s)]
2 in the integrals in (4.41) by the simple function 1

2 [F0 −V(s)]−1/2.Thus,

the shift in the eigenvalues is given by

∆F = δ

∫ eF0

0
ds ln(s)√
F0−ln(s)

[
1
2 ln(s)− 1

2 ln(s)± iπ
]

∫ eF0

0
ds√

F0−ln(s)

. (4.43)

After making the previous changes of variable s = eF0u followed by ν = − ln(u), we

obtain
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Table 4.2: Comparison of the imaginary parts of the eigenvalues of the differential equa-
tion (4.26) at δ = 0.01 with the asymptotic approximation in (4.46).

Numerical value of O(δ2) calculation Relative
k ImEk at δ = 0.01 of ImEk in (4.46) error
0 0.03397 0.03210 3.5 %
2 0.03352 0.03220 3.8%
4 0.03339 0.03224 3.4%
6 0.03334 0.03226 3.2%
8 0.03332 0.03228 3.1%

10 0.03332 0.03229 3.0%
12 0.03333 0.03231 3.0%

∆F = δ

∫ ∞
0 dν e−ν (F0 − ν) ν−1/2

[
1
2 (F0 − ν)− 1

2 ln(δ)± iπ
]

∫ ∞
0 dν e−νν−1/2

, (4.44)

which evaluates to

∆F =
1
8

δ
[
4F2

0 − 4F0 + 3− 4F0 ln(δ) + 2 ln(δ)± iπ(8F0 − 4)
]

. (4.45)

Finally, we substitute F = F0 + ∆F in (4.35) to obtain the eigenvalues Ek:

Ek = −1 + δ

[
1
2

ln(δ)− F0

]
− 1

8
δ2
{
[ln(δ)]2 + 2 ln(δ)− 4 ln(δ)F0 + 3− 4π2 − 4F0 + 4F2

0

}
± i
{
−δπ +

1
2

δ2 [π ln(δ) + π − 2F0]

}
, (4.46)

where F0 is given in (4.40).

To verify these results, in Tables 4.1 and 4.2 we compare our numerical calculation of ReEk

and ImEk with the asymptotic prediction in (4.46).
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Figure 4.8: Contour in the complex-s plane for the complex Coulomb potential ε = −3.
The contour comes in from ∞ parallel to the positive-real axis at an angle of −2π in
the center of the left Stokes wedge (right panel). Next, it loops around the origin in the
positive direction (center panel). Finally, it goes back out to ∞ parallel to the positive-real
axis at an angle of 2π in the center of the right Stokes wedge (left panel). The total rotation
about the origin is 4π.

4.4 Eigenvalue Behavior for −4 < ε < −2

This section reports our numerical calculations of the eigenvalues for ε between −2 and

−4. We rotate in x in (4.2) by 90◦ by making the transformation s = ix. In the s variable,

the eigenvalue equation (4.2) becomes

ψ′′(s)− s2+εψ(s) = Eψ(s) . (4.47)

In the x variable the center-of-wedge angles (4.3-4.4) are−π + επ/(8+ 2ε) and−επ/(8+

2ε) but in the s variable these angles are simply ∓2π/(4 + ε). Thus, the integration
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Figure 4.9: Eigenvalue contours in the complex-s plane for the cases ε = −2.5 and ε =
−3.5.

contour makes 2/(4 + ε) loops around the logarithmic branch point at the origin in the

complex-s plane.

For example, if ε = −3 (this is the complex PT -symmetrc version of the Coulomb po-

tential for which H = p2 + i/x [121]), then the contour loops around the origin exactly

twice; it goes from an angle −2π to the angle 2π. Looping contours for other complex

eigenvalue problem have been studied in the past and have been called “toboggan con-

tours” [122]. In the PT -symmetric Coulomb case the contour is shown in Fig. 4.8. Figure

4.9 shows the contours for the cases ε = −2.5 and ε = −3.5.

To solve these eigenvalue problems with looping contours, we introduce the change of

variable

s(t) =
1

1− t2 exp
2πit
4 + ε

(4.48)
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which parametrizes the looping path in the complex-s plane in terms of the real variable

t. As t ranges from−1 to +1, the path in the complex-s plane comes in from infinity in the

center of the left Stokes wedge, loops around the logarithmic branch-point singularity at

the origin, and goes back out to infinity in the center of the right Stokes wedge. In term

of the t variable the eigenvalue equation (4.47) has the form

ψ′′(t)

[s′(t)]2
− s′′(t)

[s′(t)]3
ψ′(t)− [s(t)]2+ε ψ(t) = Eψ(t) (4.49)

where ψ(t) satisfies ψ(−1) = ψ(1) = 0.

To solve this eigenvalue problem we use the Arnoldi algorithm, which has recently be-

come available on Mathematica [123]. This algorithm finds low-lying eigenvalues, whether

they are real. We apply the Arnoldi algorithm to (4.49) subject to homogeneous Dirich-

let boundary conditions ψ(−1 + η) = ψ(1 − ψ) = 0 and let η → 0+. There are two

possible outcomes: (i) In this limit, some eigenvalues rapidly approach limiting values;

these eigenvalues belong to the discrete part of the spectrum. (ii) Other eigenvalues be-

come dense to curves in the complex plane as η → 0+; these eigenvalues belong to the

continuous part of spectrum.

4.4.1 ε Slightly Below −2

As soon as ε goes below -2, the eigenvalues explode away from the value −1 (shown at

the left side of Fig. 4.6). In Fig. 4.10 we plot about 100 eigenvalues for ε = −2.0001 and

−2.001. In each plot, we see both discrete and continuous eigenvalues. The continuous

eigenvalues lie on a complex-conjugate pair of curves in the left-half plane; the discrete

eigenvalues also lie in the left-half but closer to the real axis.
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Figure 4.10: Eigenvalues of the Hamiltonian H = p2 + x2(ix)ε for ε = −2.0001 and
−2.001. (The right panels are magnifications of the left panel.) The spectrum lies in the
left-half complex plane and is partly continuous and partly discrete. The eigenvalues in
the continuous part of the spectrum lie on a pair of complex-conjugate curves that ra-
diate away from −1 and as we calculate more eigenvalues, the points on these curves
become denser. The discrete part of the spectrum consists of eigenvalues lying on two
complex-conjugate curves that are much closer to the negative-real axis. There is an elab-
orate structure near ε = −1, As ε goes below −2, the eigenvalues move away from −1;
specially, for ε = −2.0001 the distance from −1 to the nearest eigenvalue is about 0.0005
and for ε = −2.001 the distance to the nearest eigenvalue is about 0.008
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4.4.2 Discrete and Continuous Eigenvalues

While the purpose of Fig. 4.10 is to show that the eigenvalues explode away from −1 as ε

goes below −2, it is also important to show how to distinguish between discrete and con-

tinuous eigenvalues. To illustrate this, we apply the Arnoldi algorithm at ε = −2.6. Our

results are given in Fig. 4.11 for η = 0.01. The spectrum in this case differs qualitatively

from the spectrum near ε = −2; there are now two pairs of curves of continuous eigenval-

ues, and these curves are now in the right-half complex plane. The discrete eigenvalues

are still in the left-half complex plane but further from the negative real axis. There is an

elaborate spectral structure near the origin, and this is shown in Fig. 4.12. (We do not

investigate this structure in this paper and reserve it for furture research.)

We emphasize that when the Arnoldi algorithm is used to study a spectrum, it can only

return discrete values. Thus, one must determine whether an Arnoldi eigenvalue belongs

to a discrete or a continuous part of the spectrum. To distinguish between these two possi-

bilities, we study the associated eigenfunctions and observe how they obey the boundary

conditions. Plots of discrete and continuous eigenfunctions associated with eigenvalues

shown in Fig. 4.11 are given in Figs. 4.13 and 4.14.

In Fig. 4.13 we plot the absolute values of the eigenvalues of the eigenfunctions corre-

sponding to the complex-conjugate pair of eigenvalues E = −1.79± 4.31i for ε = −2.6.

Observe that as t approaches the boundaries −1 and 1, the eigenfunctions decay to 0 ex-

ponentially. We conclude from this that the eigenvalues are discrete. This result can then

be verified by taking finer cell sizes in the Arnoldi algorithm. As the cell size decreases,

the numerical values of E are stable. In contrast, in Fig. 4.14 in which the absolute val-

ues of the eigenfunctions corresponding to the pair of eigenvalues E = −0.01± 0.18i are
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Figure 4.11: Discrete and continuous parts of the spectrum of the PT -symmetric Hamil-
tonian H = p2 + x2(ix)ε for the case ε = −2.6. The discrete eigenvalues (orange squares)
occur in pairs the left-half complex plane. The continuous eigenvalues (blue dots) lie on
two complex-conjugate pairs of curves in the right-half complex plane. As we decrease
the cell size in the Arnoldi algorithm, the dots become dense on these curves. The contin-
uous curves of eigenvalues originate slightly to the left of the origin.

plotted, we see that the eigenfunctions vanish exponentially at one end point but van-

ish sharply at the other end point. We therefore identify these eigenvalues as belonging

to the continuous spectrum. Decreasing the Arnoldi cell size results in a denser set of

eigenvalues along the same curve.
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Figure 4.12: Detail of Fig. 4.11 showing the elaborate near the origin in the complex-
eigenvalue plane for ε = −2.6

4.4.3 Complex Coulomb Potential ε = −3

For the Coulomb potential ε = −3, (4.47) becomes

ψ′′(s)− 1
s

ψ(s) = Eψ(s), (4.50)
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Figure 4.13: Absolute values of the the eigenfunction ψ(t) for the discrete eigenvalue
−1.79± 4.31i for ε = −2.6. The eigenfunctions satisfy homogeneous boundary conditions
ar ±(1− η) for η = 0.01 and look like bound-state eigenfunctions in the sense that the
eigenfunctions decay to 0 exponentially fast at both boundary points. The left and right
panels are interchanged under t→ −t, which corresponds to a PT reflection.

which is a special case of the Whittaker equation

w′′(z) +

[
−1

4
+

κ

z
+

1
4 − µ2

z2

]
w(z) = 0 , (4.51)

with µ2 = 1
4 [89]. The boundary conditions are unusual (they differ from those in con-

ventional atomic physics) in that ψ(s) → 0 as |s| → ∞ with arg(s) = ±2π. Rather than

performing an analytic solution to the eigenvalue problem, we simply present the numer-

ical result, which are obtained by solving (4.49) with ε = −3. Figure 4.15 displays about

100 eigenvalues, which lie on two pairs of complex-conjugate curves in the left-half plane.

These eigenvalues are part of the continuous spectrum. A blow-up of the region around

the origin is shown in Fig. 4.16.

The Coulomb case ε = −3 is a transition point between the regions ε > −3 and ε < −3. In

the first region, the discrete eigenvalues occur in complex-conjugate pairs and there are no
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Figure 4.14: Absolute values of the eigenfunctions for the continuum eigenvalues
−0.01± 0.18i for ε = −2.6. These eigenvalues belong to the continuous spectrum. The
indication that they are part of the continuous spectrum is that at one of the boundary
points the eigenfunctions suddenly drop to 0 rather than decaying exponentially to 0. As
in Fig. 4.13, the left and right panels are interchanged under t → −t, which corresponds
to a PT reflection.

discrete eigenvalues (as we see in Fig. 4.11). In discrete spectrum includes both real and

complex-conjugate pairs of eigenvalues in addition to the continuous spectrum. Figure

4.17 illustrates the typical distribution of eigenvalues in the latter region for the choice

ε = −3.8. In Fig. 4.18 we display the eigenfunction for the real discrete eigenvalue E =

0.0804. Unlike the eigenfunctions in Figs. 4.13 and 4.14, this eigenfunction is symmetric

in t.

4.4.4 Conformal Limit ε→ −4

The limit ε to− 4 is the conformal limit of the theory and thus the behavior of the eigen-

values in this limit is interesting to determine. It is difficult to study this limit because the

eigenvalue equation in the complex-s plane follows a contour that loops around the ori-

gin many times when ε is near −4. Indeed, the number of loops approaches ∞ as ε to− 4
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Figure 4.15: Eigenvalues for the Coulomb case ε = −3. These are no discrete eigenvalues
and the continuum eigenvalues lie on four curves in the left-half complex plane.

and, as a consequence, we are less confident about the dependability of the Arnoldi al-

gorithm that we are using to obtain our numerical result. Nevertheless, we have studied

the spectrum for values of ε that are slightly greater than −4 and examine the trend as ε

moves closer to −4. We find that in this limit the entire spectrum collapses to the origin.

It is not easy to demonstrate this by studying the continuous part of the spectrum; these

points merely become denser in the vicinity of the origin. However, the discrete eigen-

values move toward the origin as ε → −4. In Table 4.3 we show the behavior of the first

three real eigenvalues as δ → 0, where ε = −4 + δ. These data are plotted in Fig. 4.19.

This figure suggests that the eigenvalues vanish linearly with δ.
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Table 4.3: First three real discrete eigenvalues as a function of δ, where ε = −4 + δ. All
the eigenvalues approach 0 as δ → 0. In fact, Fig. 4.19 indicates that they approach zero
in a linear fashion.

First real Second real Third real
δ eigenvalue eigenvalue eigenvalue

0.15 0.173 0.440 0.807
0.12 0.114 0.321 0.628
0.08 0.080 0.230 0.454
0.06 0.060 0.177 0.351
0.04 0.035 0.116 0.236
0.02 0.012 0.049 0.106

4.5 Conclusion

In this paper we have studied the eigenvalues of H in 4.1 for −4 < ε < 0 and we have

shown that there is a rich analytic structure as a function of the parameter ε. We have

identified transition points at the integer values ε = 0,−1,−2,−3. Just above ε = 0 the

eigenvalues are all real and positive but below ε = 0 the eigenvalues split sequentially

into complex-conjugate pairs and all of the eigenvalues but one are complex below about

ε = −0.58. At ε = −1 the real parts of the eigenvalues approaches ∞ but the imaginary

parts of the eigenvalues all vanish.

At the Coulomb value ε = −3 the continuous parts of the spectrum swing around to

the negative complex plane and the discrete eigenvalues disappear. Below the Coulomb

transition the discrete eigenvalues reappear and some of the discrete eigenvalues are now

real. As ε approaches the conformal point −4, the spectrum appears to implode to the

origin.

119



Figure 4.16: Detail of the region around the origin in the complex eigenvalue plane of
Fig. 4.15 for ε = −3. For this figure we have chosen η = 0.999 and have taken the very
small cell size 0.00001.
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Figure 4.17: Eigenspectrum for ε = −3.8. The continuous part of the spectrum (blue dots)
lies on two complex-conjugate pairs of curves in the left-half plane and resembles that of
the Coulomb case (see Fig. 4.15). The discrete part of the spectrum (orange squares)
consists of complex-conjugate eigenvalues in the left-half plane and real eigenvalues on
the positive-real axis.
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Figure 4.18: Plot of the absolute value of the eigenfunction associated with the discrete
real eigenvalue E = 0.0804 for ε = −3.8.

Figure 4.19: First three real eigenvalues of the Hamiltonian p2 + x2(ix)ε plotted as func-
tions of the parameter δ, where ε = −4 + δ. The eigenvalues clearly approach 0 as δ → 0
and we see strong evidence that the eigenvalues vanish linearly with δ.
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Chapter 5

Series Solution of PT -Symmetric

Schrödinger Equation

This chapter contains the materials published in a paper [124], which represents work performed

by me under the supervision of my advisor, C. M. Bender.
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5.1 Numerical Procedure

The area of research known as PT -symmetric quantum theory began with the discovery

that the complex PT -symmetric Schrödinger equation

− ψ′′(z)− (iz)Nψ(z) = Eψ(z) , (5.1)

has real spectra if N > 2 [2, 24, 108]. This is called the region of unbroken PT symmetry.

If 0 < N < 2 the spectrum is partly real and partly complex; this is called the region

of broken PT symmetry. Since this early work, research on PT -symmetric systems has

spread to many other areas of physics such as optics [56, 111, 113] and nonlinear wave

equations [55, 125] to mention just a few.

If N is integer, the eigenfunctions are entire functions and the complex plane splits nat-

urally into N + 2 Stokes wedges. (For the numerical technique described in this paper

N need not be an integer, as we will see in section 5.3). Energy quantization is a conse-

quence of demanding that ψ(z) decay exponentially in a PT -symmetric pair of Stokes

sector. For special values of E one can find solutions that decay in two (noncontiguous)

wedges. (Note that we are using the notation −(iz)N that was used in [2] to represent

PT -symmetric potentials. Subsequently, the notation x2(ix)ε was used. However, the

original notation is more suitable for the series techniques described in this chapter.)

In [126] a technique for finding the eigenvalues of a Schrd̈inger equation (5.1) was ex-

plored that involved expanding the eigenfunctions as formal perturbation series in pow-

ers of the energy E. The technique was moderately effective, although it sometimes re-

quired the use of summation techniques to handle divergent series. In this chapter we
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Figure 5.1: The value of Im c plotted as a function of E. The first few energy levels in the
N = 3 theory appear as roots of Im c.

extend this technique to include series in powers of both iz and E. Consider the double

power series

ψ1 =
∞

∑
p=0

∞

∑
q=0

ap,q(iz)(N+2)p+2qEq , (5.2)

where the ap,q are constants. Because the parameter N appears in the power of iz, if

we insert this series into the Schrödinger equation (5.1), we obtain a particularly simple

recursion relation for the coefficients ap,q:

[(N + 2)p + 2q− 1] [(N + 2)p + 2q] ap,q = ap−1,q + ap,q−1 . (5.3)

Viewing ap,q as a matrix, (5.3) expresses the element ap,q in terms of the elements that

are immediately adjacent. Thus, on fixing the top left element a0,0 one can, in principle,

determine all the other elements. For the convenient choice a0,0 = 1 all the ap,q are pos-

itive rational number. (This is because the PT symmetry of the series representation is

enforced this structure). With this choice ψ1(0) = 1 and ψ′1(0) = 0.
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Figure 5.2: Im c in the N = 7 theory PT symmetric spectra. The upper left plot is for the
wedges centered at θ = π/6 and θ = 5π/6; the upper right plot has wedges centered at
θ = −π/18 and θ = −17π/18; the lower plot has wedges centered at θ = −5π/18 and
θ = −13π/18.

A second solution of the Schrödinger equation is

ψ2(z) =
∞

∑
p=0

∞

∑
q=0

bp,q(iz)1+(N+2)p+2qEq , (5.4)

where the coefficients bp,q satisfy the recursion relation

[(N + 2)p + 2q] [(N + 2)p + 2q + 1] bp,q = bp−1,q + bp,q−1 . (5.5)
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It is convenient to take b0,0 = 1 so that ψ2(0) = 0 and ψ′2(0) = i.

Now consider a linear combination of the two solution

ψ(z) = ψ1(z) + cψ2(z) , (5.6)

where c is a complex constant. By a suitable choice of c one can ensure that ψ(z) decays

exponentially in any one of the N + 2 Stokes sectors. For example, to example, to obtain

decay in the sector centered at (the anti-stokes line) θ = −1
2 π(N − 2)/(N + 2) take

c = − lim
r→∞

ψ1(reiθ)

ψ2(reiθ)

∣∣∣
θ=− 1

2 (N−2)/(N+2)
(5.7)

This works for any E but it only gives a decaying wave function in one of the N + 2

sectors. However, the key point is that if both E and c are real, then the solution will also decay

in the PT image of the sector. This is the crucial step in the numerical procedure because it

makes explicit use the PT symmetry of the potential.

To determine the spectrum associated with a PT symmetric pair of sectors it suffices to

determine the real energies for which c is real. This can be implemented graphically by

plotting Im(c) as a function of E. The zeros of this plot correspond to the energy levels.

In Fig. 5.1 Im(c) is plotted for N = 3. Note that as E increases, Im(c) approaches zero in

an oscillatory fashion. Im(c) has no roots for negative E. To produce this plot we made

two approximations:

i In the double power series (5.2) and (5.4) we retained all terms with p + q ≤ 100.

ii In (5.7) a large finite value of r (in this case r = 8) was taken instead if the r → ∞ limit.
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Table 5.1: Energy levels and c values in the N = 3 theory.

n En cn
0 1.1562670719881132937 0.53871550451988192490
1 4.1092287528096515358 2.32727424075874334001
2 7.5622738549788280413 2.69833514190279036708
3 11.314421820195804397 3.37823419494258452822
4 15.291553750392532 3.90980926012776641
5 19.451529130691 4.41178037226863
6 23.766740435 4.87570168194
7 28.2175249 5.312499663

In matrix language the truncation is anti-diagonal in sense that entries below the p + q =

100 line are discarded. By applying a root-finding algorithm to the approximation for

c(E) we can compute the energy levels and associated values of Re(c). These are given in

table 5.1.

For large values of n the values of cn is approximately −
√

En. To investigate the accuracy

of the numerical scheme one can vary the p + q ≤ 100 truncation and the r value. The

numerical results for the first few energy levels are not affected by taking r = 7 instead of

r = 8 at least to 20 significant figures. Similarly, increasing the truncation to p + q ≤ 150

does not change the first few energy levels (again to 20 significant figures). However, the

higher energy levels are more sensitive to changes in r and to the truncation. We have

quoted E4 to 17 rather that 20 significant figures as the missing three change when the

truncation is improved. For higher n the accuracy drops further. As the double power

series expansions in iz and E, we expect that the truncation is less accurate for higher

energies. Our energy levels are consistent with the Runge-Kutta based reported in [6].

For higher N there is more that one pair of (nonadjacent) PT -symmetric sector [23]. In-

deed, if N is odd, there are 1
2(N− 1) such pairs. If N is even, there are 1

2(N + 2) pairs; one
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Figure 5.3: Eigenfunction for the third excited state for N = 3 plotted along the real axis.

of these pairs is both PT symmetric and P symmetric. The graphical method used here

is also applicable in this case but the energy eigenstates are of the form ψ1 (even parity)

or ψ2 (odd parity). In this case one may have to interchange the roles of ψ1 and ψ2 in (5.7)

to obtain all the eigenvalues. (This is discussed in section 5.3).

To illustrate what happens for large values of N we examine the case N = 7. There are

three PT -symmetric pairs if N = 7. Each pair gives a distinct real and positive spectrum;

Im(c) is plotted in Fig. 5.2 as a function of E for the three pairs.

For higher n the En have ratios 1.41 : 1 : 3.52 [23]. Although our method is adapted to

small n, such behavior is evident in the third excited state; E3 has values 23,702, 16.872,

59.026. The ratios of the energies are different; E0 has values 1.6047, 1.2247, 3.0686.

For the upper spectrum (that is, with wedges centered at θ = π/6 and θ = 5π/6) the cn

values are positive with cn ≈ −
√

En. The plots were produced via the same p + q ≤ 100

truncation but with r = 3 rather that r = 8. Similar result can be obtain for higher N. For

example, the N = 19 model has 9 distinct spectra (4 giving positive cn, 5 with negative

cn).
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Table 5.2: Energy levels and c values in the N = 3 theory.

n 0 1 2 3
m
1 0.5900725330i 0.9820718380i 1.2054807539i 1.3796870779i
2 0 0 0 0
3 0.4625068288i 1.6436915011i 3.0249095421i 4.5257687286i
4 0.3898751086 2.3060330480 5.2092431933 8.9202066199

5.2 Nodes and expectation values

The truncations considered here can be used to identify the nodes and expectation val-

ues of the energy eigenstates. Although our truncation is inaccurate for large enough

|z|, at least for the first few energy levels the nodes are close enough to the origin for

them to be determined with high precision. Returning to the N = 3 case, we note

that all energy eigenfunctions have an infinite string of zeros on the imaginary axis; for

each energy level these lie above the classical turning point at iE1/3
n . In addition, the

nth excited state has n nodes below the real axis (the first excited state has a node at

z = −0.661296226442715413308i). The n nodes arch above and between the classical

turning points at E1/3
n e−iπ/6 and E1/3

n e−i5π/6 [127].

An interesting question considered in [29] is the precise form of the arch for large n. Un-

like the N = 2 harmonic oscillator the node do not lie on the classical trajectory joining

two turning points. In fact, for N = 3 this trajectory is exactly circular with its center at

the turning point on the imaginary axis.

The approximation method introduced here may be used to compute expectation val-

ues. If ψ(z) is an energy eigenstate, then the expectation value of zm is ratio of contour

130



Figure 5.4: Plot of Im c for the N = 1.1, N = 1..5, and N = 1.9 theories. All three of
these theories are in the PT broken region. In the first case there is only one eigenvalue,
in the second case there are three real eigenvalues, and in the third case there are many
real eigenvalues. In all cases the numerical method used here provides highly accurate
results.

integrals1:

〈zm〉 =
∫

C dz ψ(z)zmψ(z)∫
C dz ψ(z)ψ(z)

(5.8)

where C is any curve that divides the complex plane in two and starts in one wedge and

ends in the PT -symmetric wedge. For N = 3 one can simply choose C to be the real line:

1Note that if ψ is not an energy eigenstate, this formula is not valid. Expectation values must then be
computed via modified inner product in terms of a new operator C [38]. This inner product is related to the
Dirac inner product via a nonunitary similarity transformation [128]
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Figure 5.5: Plot of Im c for the N = 2.1 and N = 2.5 theories. These theories are in the
PT unbroken region.

〈zm〉n =

∫ ∞
−∞ dz ψn(z)zmψn(z)∫ ∞
−∞ dz ψn(z)ψn(z)

(5.9)

where ψn is the nth energy eigenstate (n = 0, 1, 2, 3...). As the wave functions decay

exponentially these integrals over the real line are well approximated by integrals over a

finite range [−λ, λ] for sufficiently large λ. We have computed expectation values for the

first few energy eigenstates in the N = 3 model. We have cut off the integrals at λ = 5

and have approximated the ψ1 and ψ2 with the truncation (p + q ≤ 100) describes above.

Plots of the wave functions indicate that the cut off λ = 5 is a good approximation for the

first few eigenstates; a plot of ψ3(x) is given in Fig. 5.3 and the expectation values 〈zm〉n
in the N = 3 are listed in table 5.2.

In our approximation
〈
z2〉

n is small (
〈
z2〉

0 ≈ 10−11). This is because
〈
z2〉

n is exactly zero.

To see why this is true, we note that I =
∫ ∞
−∞ dx x2ψ2(x) = 1

3

∫ ∞
−∞ d(x3)ψ2(x). Upon

integration by parts, we get I = −2
3

∫ ∞
−∞ dx x3ψ(x)ψ′(x).Finally, we use the Schrödinger

equation (5.1) with N = 3 to replace x3ψ(x) with a linear combination of ψ′′(x) and ψ(x)

and observe that each term is an exact derivative that integrates to zero.
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Table 5.3: Eigenvalue in the broken PT regime for noninteger value of N.

N=1.1 N=1.5 N=1.9
n Series Soln. n Series Soln. n Series Soln.
0 1.6836723247 0 1.08692903345877 0 1.0015867791272
1 - 1 3.195783621829 1 2.957492901530
2 - 2 4.42201575335 2 4.85886246929
3 - 3 - 3 6.7482128957
4 - 4 - 4 8.6180610339

5.3 Numerical scheme applied to other potentials

The numerical scheme describe in section 5.1 does not require that N be an integer. There-

fore, we can consider noninteger values of N in both the broken and unbroken PT -

symmetric regions. We first study three values of N in the PT broken region: N =

1.1, 1.5, 1.9. As one can see in [2] there is only one real eigenvalue for N = 1.1, three

real eigenvalues for N = 1.5, and many real eigenvalues for N = 1.9 as indicated by the

results in Fig. 5.4 and table 5.3.

Next we examine two values of N in the PT unbroken region: N = 2.1 and N = 2.5.

In this case there are an infinite number of real eigenvalues and no complex eigenvalues.

Once again, our numerical procedure gives highly accurate results for these cases. See

Fig. 5.5 and table 5.4.

A particularly interesting PT -symmetric potential is V = −(iz)4. While this may naively

appear to be an upside down potential, when we quantize the theory by imposing bound-

ary conditions in a pair of Stokes sectors in the complex plane, we find that the spectrum

is entirely real and positive. (An elementary proof of this is given in [129]). Moreover,

the spectrum of this potential is different from that of the quartic anharmonic oscillator
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Table 5.4: Eigenvalue in the broken PT regime for noninteger value of N.

N=2.1 N=2.5
n Series Soln. n Series Soln.
0 1.003097514661 0 1.048954090261
1 3.06113230366 1 3.43453593249
2 5.16708540045 2 6.05173796085
3 7.2921244575 3 8.7910138373
4 9.4332388593 4 11.6206954696

Figure 5.6: Plot of Im c for the V = −x4 and V = x4.

(V = x4). We can easily apply the numerical techniques described in this chapter to find

the eigenvalues of both of these potentials because both potentials are functions of iz (see

Fig. 5.6).

The eigenvalues for the potentials V = −x4 and V = x4 and also those of the harmonic

oscillator V = x2 listed below in table 5.5. As we can see in Fig. 5.6, for potentials that

are parity symmetric, such as x4, the slope of the curve typically alternates between being

very steep and not very steep when it crosses the horizontal axis. When the slope is steep

it is numerically more difficult for the computer software to determine the precise value of

E. This explains the varying accuracy in the eigenvalues for the x2 potential, for example.

To improve numerical accuracy one can do two things. First, one can compute the curve
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Table 5.5: Eigenvalues of the harmonic oscillator V = x2 (N = 2), the PT -symmetric
quartic oscillator V = −x4 (N = 4), and the conventional anharmonic oscillator V = x4

obtained by using the numerical methods described before.

V = x2 V = −x4 V = x4

n Series Soln. n Series Soln. n Series Soln.
0 1.0000000000004 0 1.4771508111864 0 1.060363864841
1 2.9999999999999993 1 6.0033861147867 1 3.799673009836
2 4.99999999997 2 11.8024336007832 2 7.45569799483
3 6.99999999997 3 18.458818772430 3 11.6447453215
4 9.000000001 4 25.79178997784 4 16.2618260301

using a finer mesh of grid points. Second, one can interchange the roles of ψ1 and ψ2 in

(5.7) to make the curve less steep.

Finally, we emphasize that our numerical technique is not limited to monomial potentials.

It applies equally well to multinomial potentials V(z) that are PT symmetric; this is,

potentials that are real functions of iz. Thus, for the Schrödinger equation (5.1) in which

the potential has the form

V(z) = c1(iz)N + c2(iz)M (5.10)

we define the two solutions ψ1 and ψ2 as triple sums rather that double sums:

ψ1(z) =
∞

∑
p=0

∞

∑
r=0

∞

∑
q=0

ap,q,r(iz)(N+2)p+(M+2)r+2qEq (5.11)

and

ψ2(z) =
∞

∑
p=0

∞

∑
r=0

∞

∑
q=0

bp,q,r(iz)1+(N+2)p+(M+2)r+2qEq (5.12)
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Figure 5.7: Plot of Im c for the anharmonic oscillator potential V = x4 ± x2.

Table 5.6: Eigenvalues of the single-well (V = x4 + x2) and double-well (V = x4 − x2)
quartic anharmonic oscillators obtained by using the numerical methods described. The
numerical accuracy is excellent and is roughly the same for either oscillator.

V = x4 + x2 V = x4 − x2

n Series Soln. n Series Soln.
0 1.39235191352537 0 0.657656758014
1 4.648811867490 1 2.834533175294
2 8.65505000457 2 6.16390133772
3 13.1568037536 3 10.0386458708
4 18.0575574491 4 14.372406513
5 23.2974414415 5 19.085714647

These lead to the two recursion relations

[(N + 2)p + (M + 2)r + 2q] [(N + 2)p + (M + 2)r + 2q− 1] ap,r,q = −c1ap−1,r,q− c2ap,r−1,q + ap,r,q−1

and

[(N + 2)p + (M + 2)r + 2q + 1] [(N + 2)p + (M + 2)r + 2q] bp,r,q = −c1bp−1,r,q− c2bp,r−1,q + bp,r,q−1

which are the generalization of (5.3) and (5.5).
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Table 5.7: This table shows that this numerical methods fail if the potential is not PT
symmetric; that is, it is not a real function of the variable iz.

V = x4 + x
n Wrong! Exact
0 0.991863 0.9305
1 1.53021 3.7819
2 8.42823 7.4351
3 17.4568 11.6283
4 27.8829 16.2478

If we apply these techniques to the massive quartic anharmonic oscillators with either

positive or negative mass terms V(x) = x4 ± x2, we again obtain excellent numerical

results for the low-lying eigenvalues (see Fig. 5.7). Indeed, table 5.6 shows the numerical

scheme works equally well for the single-well and the double-well anharmonic oscillator.

However, if the potential is not a real function of the variable iz, then the numerical meth-

ods described here do not work. To illustrate this we consider the potential V(x) = x4 + x.

Table 5.7 shows that the eigenvalue calculate fails.

In conclusion, we have demonstrated an extremely powerful and highly accurate tech-

nique for computing the eigenvalues (and eigenfunction) of a PT -symmetric potential.

We have established the accuracy of the method by studying a large number of exam-

ples. Our technique is important because it addresses the difficult problem of solving

complex non-Hermitian eigenvalue problems. Most conventional techniques for solving

real Hermitian eigenvalue problem fail to work for complex eigenvalue problems because

complex eigenvalue problems must be solved subject to boundary conditions imposed in

Stokes sectors in the complex plane. Of course, our technique also works very well for

real eigenvalue problem, so long as the real potential is PT symmetric.
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[98] C. M. Bender, M. Gianfreda, Ş. K. Özdemir, B. Peng, and L. Yang, “Twofold transi-
tion in pt-symmetric coupled oscillators,” Physical Review A, vol. 88, no. 6, p. 062111,
2013.

[99] C. M. Bender, M. Gianfreda, and S. P. Klevansky, “Systems of coupled pt-symmetric
oscillators,” Physical Review A, vol. 90, no. 2, p. 022114, 2014.

[100] I. V. Barashenkov and M. Gianfreda, “An exactly solvable-symmetric dimer from a
hamiltonian system of nonlinear oscillators with gain and loss,” Journal of Physics
A: Mathematical and Theoretical, vol. 47, no. 28, p. 282001, 2014.

[101] A. Beygi, S. P. Klevansky, and C. M. Bender, “Coupled oscillator systems having
partial pt symmetry,” Physical Review A, vol. 91, no. 6, p. 062101, 2015.

[102] C. M. Bender and A. Turbiner, “Analytic continuation of eigenvalue problems,”
Physics Letters A, vol. 173, no. 6, pp. 442–446, 1993.

[103] C. M. Bender and S. P. Klevansky, “Families of particles with different masses in pt-
symmetric quantum field theory,” Physical review letters, vol. 105, no. 3, p. 031601,
2010.

[104] C. M. Bender, N. Hassanpour, D. W. Hook, S. Klevansky, C. Sünderhauf, and
Z. Wen, “Behavior of eigenvalues in a region of broken pt symmetry,” Physical Re-
view A, vol. 95, no. 5, p. 052113, 2017.

[105] C. M. Bender, K. A. Milton, M. Moshe, S. S. Pinsky, and L. M. Simmons Jr, “Loga-
rithmic approximations to polynomial lagrangians,” Physical review letters, vol. 58,
no. 25, p. 2615, 1987.

[106] C. M. Bender, K. A. Milton, M. Moshe, S. S. Pinsky, and L. M. Simmons Jr, “Novel
perturbative scheme in quantum field theory,” Physical Review D, vol. 37, no. 6,
p. 1472, 1988.

145



[107] C. M. Bender, K. A. Milton, S. S. Pinsky, and L. M. Simmons Jr, “A new perturba-
tive approach to nonlinear problems,” Journal of Mathematical Physics, vol. 30, no. 7,
pp. 1447–1455, 1989.

[108] C. M. Bender, S. Boettcher, and P. N. Meisinger, “Pt-symmetric quantum mechan-
ics,” Journal of Mathematical Physics, vol. 40, no. 5, pp. 2201–2229, 1999.

[109] P. Dorey, C. Dunning, and R. Tateo, “The ode/im correspondence,” Journal of Physics
A: Mathematical and Theoretical, vol. 40, no. 32, p. R205, 2007.

[110] J. Rubinstein, P. Sternberg, and Q. Ma, “Bifurcation diagram and pattern forma-
tion of phase slip centers in superconducting wires driven with electric currents,”
Physical review letters, vol. 99, no. 16, p. 167003, 2007.
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