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ABSTRACT OF THE DISSERTATION

Index Theory for Invariant Elliptic Operators on Manifolds
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Professor Xiang Tang, Chair

In this thesis, we study 𝐺-invariant elliptic operators, and in particular Dirac operators, on

the space of invariant sections of a Hermitian bundle over a (non-compact) manifold with a

proper and cocompact Lie group action. Weprovide a canonicalway to define theHilbert space

of invariant sections for proper and cocompact actions, and prove that the 𝐺-invariant Dirac

operators, and more generally, elliptic operators, are Fredholm for the Hilbert space we con-

structed. Using the framework developed in this thesis, we give a new proof of a generalized

Lichnerowicz Vanishing Theorem for proper cocompact group actions as an application.
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Chapter 1

Introduction

1.1 Summary

A fundamental result for elliptic operators on closed (compact and without boundary) mani-

folds is that they are Fredholm operators. In 1963, M. F. Atiyah and I. M. Singer proved their

famous theorem using the method of K-theory and pseudo-differential operators. The Atiyah-

Singer index theorem connects the analytical and topological invariants of an elliptic operator

and gives a topological formula for the index of an elliptic operator on any closed oriented

smooth manifold [AS63; AS68].

It is then very natural to ask what one could say for elliptic operators on non-compact mani-

folds. Manyworks has been donewhen themanifold admits a proper cocompact𝐺-action. For

example, Mathai and Zhang in [MZ10] defined an invariant index (the Mathai-Zhang index)

for 𝐺-equivariant elliptic differential operators on Sobolev spaces of invariant sections. Tang,

Yao and Zhang showed a generalized de Rham Laplace-Beltrami operator on manifolds with

a proper cocompact action is elliptic [TYZ13]. Ma and Zhang, in their paper which solves the

1



Vergne conjecture [MZ14], studied the index problem for Dirac operators on manifolds with

boundaries. Wang in 2014 proved an 𝐿2-index theorem for elliptic pseudodifferential opera-

tors invariant under proper cocompact actions of unimodular locally compact groups [Wan14].

[PPT15] provides a unification of several well-known equivariant index theorems for proper

compact actions of Lie groupoids. In Hochs andMathai’s paper [HM17], they showed that the

invariant, transversally 𝐿2-index of deformed Dirac operator on twisted spinor bundles over a

Spin𝑐-manifold can be well-defined.

In this thesis, we study 𝐺-invariant elliptic operators, and in particular Dirac operators, on

the space of invariant sections of a Hermitian bundle over a (non-compact) manifold with

a proper and cocompact Lie group action. Instead of using local cut-off functions to define

Sobolev space as in [MZ10], we show a canonical way of defining the Hilbert space of invari-

ant sections for proper and cocompact actions, and prove that the 𝐺-invariant Dirac operators,

and more generally, elliptic operators, are Fredholm for the Hilbert space. The thesis is con-

structed as follows. In Chapter 1 we recall some basic definitions and results of Lie groups,

vector bundles and Dirac operators. Their detailed proofs and other relavent discussions can

be found in [LM89] and [BGV04]. InChapter 2wewill explain how to define theHilbert spaces

in a canonical way using the proper and cocompact action when the manifold is not necessar-

ily compact. We will show that self-adjointness still holds for 𝐺-invariant Dirac operators in

the new space we construct. In the second half of Chapter 2 we state and prove our main the-

orem by assuming the existence of parametrix. In Chapter 3 and 4 we show the existence of

parametrix by reviewing the theory of pseudo-differential operators first. Finally in Chapter 5

we providede a new proof of a generalized Lichnerowicz vanishing theorem as an application.
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1.2 Lie Group Actions

In this section we recall some definitions of Lie group and Lie group action on manifolds and

bundles. Throughout this thesis, 𝐺 is assumed to be a Lie group and𝑀 a smooth manifold of

dimension 𝑛.

Definition 1.1. Ameasure 𝜇 on 𝐺 is called left (or right) invariant if 𝜇(𝑆) = 𝜇(𝑔𝑆) (or 𝜇(𝑆) =

𝜇(𝑆𝑔) for right invariance) for all measurable sets 𝑆 ⊆ 𝐺. According to Haar’s theorem, a

left (or right) measure always exists for any Lie group and is unique up to multiplication by a

positive constant. Such an invariant measure is called a Haar measure.

For a left Haar measure 𝜇 on𝑀, 𝜈(𝑆) ∶= 𝜇(𝑆𝑔) is also left invariant. So from uniqueness we

know

𝜇(𝑆𝑔) = Δ(𝑔)𝜇(𝑆) (1.1)

for any measurable 𝑆 ⊆ 𝐺 with Δ(𝑔) > 0.

Definition 1.2. The function Δ ∶ 𝐺 → ℝ+ defined in (1.1) is called the modular function of

𝐺. It is a group homomorphism from 𝐺 to the multiplicative group ℝ+. A Lie group is called

unimodular if Δ is identically equal to 1.

Next let us recall some definitions of Lie group actions on manifolds and vector bundles.

Definition 1.3. Let𝐺 ↷ 𝑀 be a (left) Lie group𝐺-action on a smoothmanifold𝑀. The action

is called proper if the map 𝜌 ∶ 𝐺 × 𝑀 → 𝑀 × 𝑀 defined by (𝑔, 𝑥) ↦ (𝑔𝑥, 𝑥) is proper (the

inverse of a compact set is compact); and cocompact if the quotient space𝑀/𝐺 is compact, or

equivalently, if there is a compact subset 𝐾 ⊆ 𝑀 such that the image of 𝐾 under the 𝐺-action

covers𝑀.
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Definition 1.4. Letℰ be a (complex) vector bundle endowedwith a (left)𝐺-action. The bundle

is called 𝐺-equivariant if

(i) It is compatible with the 𝐺-action on the base manifold𝑀:

ℰ ℰ

𝑀 𝑀

𝑔

𝜋 𝜋
𝑔

for any 𝑔 ∈ 𝐺. If 𝑥 ∈ 𝑀 and 𝑣 ∈ ℰ𝑥, we can write the 𝐺-action as

𝑔(𝑥, 𝑣) = (𝑔𝑥, 𝛾𝑔 ⋅ 𝑣),

where 𝛾𝑔 ∶ ℰ𝑥 → ℰ𝑔𝑥 is the map on fibers induced by the 𝐺-action on ℰ.

(ii) The induced map 𝛾𝑔 ∶ ℰ𝑥 → ℰ𝑔𝑥 is linear.

The above definition of 𝐺-equivariant bundles gives rise to the 𝐺-action on sections of ℰ.

Definition 1.5. Assume ℰ is a 𝐺-equivariant vector bundle and let 𝑠 ∈ Γ(ℰ) be a section of ℰ.

The 𝐺-action on ℰ induces a 𝐺-action on Γ(ℰ):

𝑔𝑠(𝑥) ∶= 𝛾𝑔 ⋅ 𝑠(𝑔−1𝑥).

To avoid any confusion, for the rest part of this thesis, 𝑔𝑠(𝑥) will always denote the evaluation

of the section 𝑔𝑠 at 𝑥; and we will use the induced fiber map 𝛾𝑔 to specify the group action on

the bundle.

Suppose ℰ is a 𝐺-equivariant (complex) vector bundle, and ℰ∗ the dual bundle of ℰ. Then ℰ∗

also carries a 𝐺-action and is 𝐺-equivariant under such action. More precisely, for (𝑥, 𝜉) ∈ ℰ∗,
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the group action is given by 𝑔(𝑥, 𝜉) ∶= (𝑔𝑥, ̃𝛾𝑔 ⋅ 𝜉), where ̃𝛾𝑔 ∶ ℰ∗𝑥 → ℰ∗𝑔𝑥 satisfies

⟨𝛾𝑔 ⋅ 𝑣, ̃𝛾𝑔 ⋅ 𝜉⟩𝑔𝑥 = ⟨𝑣, 𝜉⟩𝑥, for all 𝑣 ∈ ℰ𝑥. (1.2)

The wedge bracket ⟨⋅, ⋅⟩ is the pairing on the fiber.

In the end of this section, let us recall the definitions of principal bundle and associated bundle.

Definition 1.6. A principal 𝐺-bundle 𝑃 𝜋−→ 𝑀 is a fiber bundle 𝑃 with a right 𝐺-action on the

fibers satisfying

𝜋(𝑝⋅ 𝑔) = 𝜋(𝑝)

for all 𝑝 ∈ 𝑃 and 𝑔 ∈ 𝐺, and such that the 𝐺-action is free and transitive on the fibers. There-

fore each fiber of 𝑃 is diffeomorphic to 𝐺 itself, and its base𝑀 ≅ 𝑃/𝐺.

Definition 1.7. If 𝑃 is a principal 𝐺-bundle and 𝐸 is a left 𝐺-space. The associated bundle

𝑃 ×𝐺 𝐸 is the fiber bundle (𝑃 × 𝐸)/ ∼ , where the equivalence relation is defined by

(𝑝⋅ 𝑔, 𝑓) ∼ (𝑝, 𝑔⋅ 𝑓)

for all 𝑝 ∈ 𝑃, 𝑔 ∈ 𝐺 and 𝑓 ∈ 𝐸. In particular, if 𝐸 is a vector space which carries a linear

representation of 𝐺, then 𝑃 ×𝐺 𝐸 is a vector bundle over𝑀.

1.3 Differential Operators

Definition 1.8. Let ℰ be a complex vector bundles over 𝑀. A differential operator of order

𝑘 is a linear map 𝐷 ∶ Γ(ℰ) → Γ(ℰ), where Γ(ℰ) denotes the space of smooth section of ℰ,

satisfies the following property. In any coordinate neighborhood𝑈 of𝑀 and local trivialization

5



ℰ|𝑈 ≅ 𝑈 × ℂ𝑝, the operator 𝐷 has the form:

𝐷 = ∑
|𝛼|⩽𝑘

𝐴𝛼(𝑥)
𝜕|𝛼|
𝜕𝑥𝛼

where each 𝐴𝛼(𝑥) is a smooth matrix-valued function.

Next we define the principal symbol of a differential operator. A detailed and more general

discussion about the symbols of pseudo-differential operators can be found in Chapter 3.

Definition 1.9. Suppose 𝐷 is a differential operator of order 𝑘. Let 𝜉 be a covector in the

cotangent plane 𝑇∗𝑥𝑀 and in local coordinates 𝜉 = ∑𝑖 𝜉𝑖 d𝑥𝑖. The principal symbol 𝜎′𝐷 ∶

𝑇∗𝑀 → End(ℰ) assigns an endomorphism of ℰ𝑥 to each point (𝑥, 𝜉) ∈ 𝑇∗𝑥𝑀:

𝜎′𝐷(𝑥, 𝜉) ∶= 𝐢𝑘 ∑
|𝛼|=𝑘

𝐴𝛼𝜉𝛼. (1.3)

Definition 1.10. A differential operator 𝐷 is called elliptic if its principal symbol 𝜎′𝐷(𝑥, 𝜉) is

invertible for all 𝜉 ≠ 0.

1.4 Dirac Operators

In this section we introduce a specific class of elliptic operators: the Dirac operators. We will

first recall the definition of connections and Clifford bundles.

1.4.1 Connections

Definition 1.11. Letℰ be a vector bundle over𝑀. Recall that a connection onℰ is a differential

operator

∇ ∶ Γ(ℰ) → Γ(𝑇∗𝑀 ⊗ ℰ)

6



such that ∇(𝑓𝑠) = d𝑓 ⊗ 𝑠 + 𝑓∇𝑠 for any 𝑓 ∈ 𝐶∞(𝑀) and 𝑠 ∈ Γ(ℰ). Moreover, if ℰ is equipped

with an inner product (or Hermitian product for complex vector bundles), then we call a con-

nection Riemannian if

d(𝑠, 𝑡) = (∇𝑠, 𝑡) + (𝑠, ∇𝑡)

for any 𝑠, 𝑡 ∈ Γ(ℰ).

In particular, for a connection ∇ on the tangent bundle, the torsion tensor is a vector-valued

2-form:

𝑇(𝑋, 𝑌) ∶= ∇𝑋𝑌 − ∇𝑌𝑋 − [𝑋,𝑌]

for two vector fields 𝑋,𝑌. A connection is called torsion-free if the torsion tensor 𝑇 = 0. For

a Riemannian manifold, there exists a Riemannian, torsion-free connection on the tangent

bundle, called the Levi-Civita connection, and will be denoted by 𝛁.

1.4.2 Clifford Algebra and Clifford Bundle

Suppose that 𝑉 is a real vector space with a quadratic form 𝑞(⋅, ⋅). Let

𝒯(𝑉) ∶=
∞
∑
𝑟=0

(⨂
𝑟
𝑉)

be the tensor algebra (over ℝ) of 𝑉 and ℐ𝑞(𝑉) the ideal in 𝒯(𝑉) generated by elements of the

form

ℐ𝑞(𝑉) ∶= ⟨𝑣 ⊗ 𝑣 + 𝑞(𝑣, 𝑣) 𝟙 ∶ 𝑣 ∈ 𝑉⟩.

Definition 1.12. The Clifford algebra of 𝑉, denoted by 𝐶ℓ(𝑉, 𝑞), is defined to be the quotient

𝐶ℓ(𝑉, 𝑞) ∶= 𝒯(𝑉)/ℐ𝑞(𝑉). (1.4)
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Alternatively, 𝐶ℓ(𝑉, 𝑞) is the unital algebra generated by the vector space 𝑉 subject to the

following relations

𝑣 ⋅ 𝑤 + 𝑤 ⋅ 𝑣 = −2𝑞(𝑣, 𝑤) 𝟙.

We denote 𝜄 ∶ 𝑉 = ⨂1𝑉 ↪ 𝒯(𝑉) 𝜋−→ 𝐶ℓ(𝑉, 𝑞) the natural embedding of 𝑉 into 𝐶ℓ(𝑉, 𝑞).

The Clifford algebra plays an essential role in studying spin geometry and Dirac operators.

Next we summarize some of its important properties. A more comprehensive discussion can

be found in [LM89, Chap. 1].

Proposition 1.13 (Universal Property, [LM89, Chap. 1, Proposition 1.1]). Given an associative

unital algebra𝒜 (overℝ) and a linear map 𝑓 ∶ 𝑉 → 𝒜 such that 𝑓(𝑣) ⋅ 𝑓(𝑣) + 𝑞(𝑣, 𝑣) 𝟙 = 0 for

all 𝑣 ∈ 𝑉, there exists a unique algebra homomorphism ̃𝑓 ∶ 𝐶ℓ(𝑉, 𝑞) → 𝒜 such that 𝑓 factors

through ̃𝑓, i.e., 𝑓 = ̃𝑓 ∘ 𝜄.

A direct consequence of Proposition 1.13 is that any transformation

𝛼 ∈ O(𝑉, 𝑞) ∶= {𝑓 ∈ GL(𝑉) ∶ 𝑓∗𝑞 = 𝑞}

of 𝑉 extends to an automorphism of 𝐶ℓ(𝑉, 𝑞). Take 𝛼(𝑣) ∶= −𝑣 and we still denote the ex-

tended automorphism by 𝛼 ∶ 𝐶ℓ(𝑉, 𝑞) → 𝐶ℓ(𝑉, 𝑞). Since 𝛼2 = 𝐼, we can decompose 𝐶ℓ(𝑉, 𝑞)

into

𝐶ℓ(𝑉, 𝑞) = 𝐶ℓ0(𝑉, 𝑞) ⊕ 𝐶ℓ1(𝑉, 𝑞) (1.5)

where 𝐶ℓ𝑖(𝑉, 𝑞) = {𝜓 ∈ 𝐶ℓ(𝑉, 𝑞) ∶ 𝛼(𝜓) = (−1)𝑖𝜓} are the eigenspaces of 𝛼 satisfying

𝐶ℓ𝑖(𝑉, 𝑞) ⋅ 𝐶ℓ𝑗(𝑉, 𝑞) ⊆ 𝐶ℓ(𝑖+𝑗)(𝑉, 𝑞), (1.6)
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where the indices are taken modulo 2. A decomposition (1.5) of an algebra satisfying (1.6) is

called a ℤ2-grading and the algebra is called a ℤ2-graded algebra. So 𝐶ℓ(𝑉, 𝑞) is a ℤ2-graded

algebra. The subalgebra 𝐶ℓ0(𝑉, 𝑞) is called the even part and the subspace 𝐶ℓ1(𝑉, 𝑞) is called

the odd part.

The next proposition shows that the Clifford algebra as vector space can be identified with the

exterior algebra:

Proposition 1.14 (see [LM89, Chap. 1, Proposition 1.2 & 1.3]). Suppose {𝑒1, … , 𝑒𝑛} is an orthog-

onal basis of (𝑉, 𝑞), then 𝐶ℓ(𝑉, 𝑞) is a real vector space with a basis

{𝑒0 ∶= 𝟙, 𝑒𝑖1𝑒𝑖2 ⋯𝑒𝑖𝑘 ∶ 1 ⩽ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘 ⩽ 𝑛}.

Compared to the exterior algebra⋀∗𝑉, we conclude that there is a canonical vector space isomor-

phism
⋀∗𝑉 ≅−→ 𝐶ℓ(𝑉, 𝑞),

𝑒𝑖1 ∧ 𝑒𝑖2 ∧⋯ ∧ 𝑒𝑖𝑘 ↦ 𝑒𝑖1𝑒𝑖2 ⋯𝑒𝑖𝑘 .

Note that the exterior algebra is also ℤ2-graded: ⋀
∗𝑉 = ⋀even𝑉 ⊕ ⋀odd𝑉. So the canonical

isomorphism above also preserves the gradings.

Using Clifford algebras, we can consider the Clifford bundles and Clifford modules:

Definition 1.15. Let𝑀 be a Riemannian manifold of dimension 𝑛, the Clifford bundle 𝐶ℓ(𝑀)

is the fiber bundle of Clifford algebras over 𝑀 such that each fiber 𝐶ℓ𝑥(𝑀) is the Clifford

algebra 𝐶ℓ(𝑇∗𝑥𝑀) of the Euclidean space 𝑇∗𝑥𝑀.

Alternatively, from Proposition 1.13 we know that 𝑂(𝑛) acts on 𝐶ℓ(𝑇∗𝑥𝑀), so the Clifford mod-

ule can be represented as an associated bundle: 𝐶ℓ(𝑀) = 𝑂(𝑀) ×𝑂(𝑛) 𝐶ℓ(ℝ𝑛), where 𝑂(𝑀)

is the orthogonal frame bundle, a principal 𝑂(𝑛)-bundle over𝑀. Using the associated bundle

9



definition, it is clear that the Levi-Civita connection on𝑀 (or equivalently, 𝑂(𝑀)) is extended

to 𝐶ℓ(𝑀).

Definition 1.16. Let𝑀 be a Riemannian manifold and ℰ a ℤ2-graded vector bundle (i.e. ℰ =

ℰ0 ⊕ ℰ1) over𝑀 with a (real or complex) metric such that ℰ0 and ℰ1 are orthogonal. We call

ℰ a Clifford module if there is an action 𝐶ℓ(𝑀)⊗ ℰ → ℰ which makes each fiber ℰ𝑥 a module

over the algebra 𝐶ℓ(𝑇∗𝑥𝑀) and that the action respects the ℤ2-grading:

𝐶ℓ𝑖(𝑀) ⋅ ℰ𝑗 ⊆ ℰ𝑖+𝑗 mod2.

In the rest of this thesis, we will denote the action of 𝐶ℓ(𝑀) on ℰ by 𝐜(𝑎)𝑠 for 𝑎 ∈ Γ(𝐶ℓ(𝑀))

and 𝑠 ∈ Γ(ℰ). The actions 𝐜 is called the Clifford multiplication.

Remark 1. From now on, we will denote ℰ0 by ℰ+ and ℰ1 by ℰ−.

1.4.3 Definition of Dirac Operators

Definition 1.17. Assume ℰ is a Clifford module equipped with a Rimannian connection ∇.

The Dirac operator /𝖣 ∶ Γ(ℰ) → Γ(ℰ), is a first-order differential operator defined by

/𝖣𝑠 ∶= ∑𝐜(𝑒𝑖)∇𝑒𝑖𝑠, (1.7)

for 𝑠 ∈ Γ(ℰ), where {𝑒𝑖} is a local orthonormal frame and {𝑒𝑗} is the dual coframe.

Formula (1.7) is well-defined (i.e., independent of the choice of local frames) because it can be

viewed as a composition:

/𝖣 ∶ Γ(ℰ) ∇−→ Γ(𝑇∗𝑀 ⊗ ℰ) ↪ Γ(𝐶ℓ(𝑀) ⊗ ℰ) → Γ(ℰ).
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A well-known property of the Dirac operator is that it is elliptic:

Theorem 1.18 ([LM89, Chap. 2, Lemma 5.1]). Let /𝖣 be the Dirac operator on the bundle ℰ

defined above. Then for any (𝑥, 𝜉) ∈ 𝑇∗𝑀 we have that

𝜎′/𝖣(𝑥, 𝜉) = 𝑖 𝐜(𝜉), (1.8)

𝜎′/𝖣2(𝑥, 𝜉) = ‖𝜉‖2. (1.9)

In particular, both /𝖣 and /𝖣2 are elliptic operators.

We usually impose two more conditions on the Clifford module ℰ when studying Dirac opera-

tors. We first require the Clifford multiplication of covectors to be skew symmetric:

(𝐜(𝛼)𝑠1, 𝑠2)𝑥 + (𝑠1, 𝐜(𝛼)𝑠2)𝑥 = 0 (1.10)

for 𝑠1, 𝑠2 ∈ Γ(ℰ) and 𝛼 ∈ 𝑇∗𝑥𝑀. We also require the connection ∇ on ℰ to be a module deriva-

tion:

∇(𝐜(𝑎)𝑠) = 𝐜(𝛁𝑎) + 𝐜(𝑎)∇𝑠 (1.11)

for 𝑎 ∈ 𝐶ℓ(𝑀) and 𝑠 ∈ Γ(ℰ), where 𝛁 is the Levi-Civita connection on 𝐶ℓ(𝑀).

Definition 1.19. A Clifford module ℰ endowed with a Riemannian connection ∇ satisfies

condition (1.10) and (1.11) is called a Dirac bundle.

Lemma 1.20 ([LM89, Chap. 2, Proposition 5.3]). TheDirac operator /𝖣 of anyDirac bundle over

a Riemannian manifold𝑀 is formally self-adjoint, i.e.,

∫
𝑀
( /𝖣𝑠1, 𝑠2)Ω = ∫

𝑀
(𝑠1, /𝖣𝑠2)Ω

for any sections 𝑠1, 𝑠2 ∈ Γ(ℰ) with compact supports, whereΩ is the Riemannian volume form.
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Due to the self-adjointness property, the kernel and cokernel of /𝖣 are isomorphic. However,

since Clifford multiplication respects grading, it is obvious that the Dirac operator is odd: i.e.,

Γ(ℰ+)
/𝖣−→ Γ(ℰ−) and Γ(ℰ−)

/𝖣−→ Γ(ℰ+). So we can restrict the Dirac operator on subbundles ℰ+

and ℰ− and have:

/𝖣+ ∶ Γ(ℰ+) → Γ(ℰ−) and /𝖣− ∶ Γ(ℰ−) → Γ(ℰ+). (1.12)

The self-adjointness of /𝖣 implies that /𝖣− is the adjoint of /𝖣+, so ker /𝖣− ≅ coker /𝖣+.

Definition 1.21. Let /𝖣 be a Dirac operator on a Dirac bundle ℰ and let /𝖣+ and /𝖣− be operators

in (1.12). Suppose dimker /𝖣+ and dim coker /𝖣+ are both finite, then the index of /𝖣+ is

index /𝖣+ = dimker /𝖣+ − dim coker /𝖣+ = dimker /𝖣+ − dimker /𝖣−. (1.13)

Definition 1.22 (Fredholm Operator). We call a bounded operator Fredholm if it has a finite-

dimensional kernel and cokernel. We call a closed unbounded operator Fredholm if it has a

closed range and a finite-dimensional kernel and cokernel.

It is well-known (see for example [LM89, Chap. 3, Theorem 5.2]) that elliptic operators on a

compactmanifold are Fredholm. So by Theorem 1.18, the index (1.13) is well-defined for Dirac

operators on compact manifolds.
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Chapter 2

Manifolds with Proper and Cocompact

Group Actions

In this chapter, we first introduce some useful results of proper and cocompact Lie group ac-

tions, and then we will look at the properties of 𝐺-invariant elliptic operators and define a

Hilbert space of invariant sections. In the end of this chapter, we present an index theorem for

invariant elliptic operators.

2.1 Proper and Cocompact Actions

Let 𝐺 be a Lie group and𝑀 a spin manifold with an orientation preserving proper and cocom-

pact (left) Lie group 𝐺-action. One important result of such action is the existence of a cut-off

function on𝑀 (see [Bou04, Chap. VII,§2.4]):
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Lemma 2.1. There is a compactly-supported non-negative smooth function 𝑐(𝑥) on𝑀 such that

∫
𝐺
𝑐(𝑔−1𝑥) d𝑔 = 1, ∀𝑥 ∈ 𝑀. (2.1)

The measure d𝑔 in (2.1) is the (left) Haar measure on 𝐺 and we shall call such function 𝑐(𝑥) a

cut-off function.

Proof (see [Tu99, Proposition 6.11]). Take a collection of precompact sets {𝑈𝜆}∞𝜆=1 covering𝑀

and for each 𝑈𝜆 we find some 𝑓𝜆 ∈ 𝐶𝑐(𝑀) such that 𝑓𝜆 = 1 on 𝑈𝜆. Since⋃
∞
𝜆=1 𝜋(𝑈𝜆) covers

the compact space𝑀/𝐺, where 𝜋 ∶ 𝑀 → 𝑀/𝐺 denotes the projection map, we can choose a

finite subcovering⋃𝑛
𝑖=1 𝜋(𝑈𝜆𝑖) that covers𝑀/𝐺. Define

𝑓 =
𝑛
∑
𝑖=1

𝑓𝜆𝑖 and ℎ(𝑥) = ∫
𝑔∈𝐺

𝑓(𝑔−1𝑥) d𝑔. (2.2)

Obviously, ℎ(𝑥) is (left) 𝐺-invariant. Since⋃𝑛
𝜆=1 𝜋(𝑈𝜆𝑖) covers 𝑀/𝐺, ℎ(𝑥) vanishes nowhere

on𝑀. Let 𝑐(𝑥) ∶= 𝑓(𝑥)/ℎ(𝑥), so that

∫
𝐺
𝑐(𝑔−1𝑥) d𝑔 = ∫

𝐺

𝑓(𝑔−1𝑥)
ℎ(𝑔−1𝑥) d𝑔 =

∫𝐺 𝑓(𝑔−1𝑥) d𝑔
ℎ(𝑥) = 1. ■

Corollary 2.2. Let 𝐺(𝑥) denote the orbit of 𝑥 ∈ 𝑀 under 𝐺-action. Then the support of the

cut-off function 𝑐(𝑥) intersects with each orbit 𝐺(𝑥) for any 𝑥 ∈ 𝑀.

Proof. The support of 𝑐(𝑥) is the same as the support of 𝑓 = ∑𝑛
𝑖=1 𝑓𝜆𝑖 in (2.2). For any 𝑥 ∈ 𝑀,

its equivalent class [𝑥] ∈ 𝑀/𝐺 is covered by some 𝜋(𝑈𝜆𝑗), so we conclude that 𝐺(𝑥) intersects

with 𝑈𝜆𝑗 , thus supp 𝑐, non-trivially for any 𝑥 ∈ 𝑀. ■
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Using the cut-off function 𝑐(𝑥)wecan construct a𝐺-invariantRiemannianmetric 𝑔 (see [MZ10,

formula (2.3)]). Let Ω be a (left) 𝐺-invariant volume form on 𝑀 and 𝐶∞(𝑀)𝐺 the space of

smooth (left) 𝐺-invariant functions on𝑀. For any two smooth (left) 𝐺-invariant functions 𝜙

and 𝜓 on𝑀 we define a Hermitian product using 𝑐(𝑥):

(𝜙, 𝜓)𝑐 ∶= ∫
𝑀
𝑐(𝑥)𝜙(𝑥)𝜓(𝑥)Ω. (2.3)

Lemma 2.3. The sesquilinear form ( ⋅, ⋅ )𝑐 in (2.3) is non-degenerate, and thus defines a Hermi-

tian product on 𝐶∞(𝑀)𝐺.

Proof. Assume there exists a smooth function 𝜙 such that ∫𝑀 𝑐(𝑥)|𝜙(𝑥)|2Ω = 0, then we must

have 𝑐(𝑥)|𝜙(𝑥)|2 = 0, thus 𝜙 = 0 within the support of 𝑐. Moreover, since the support of 𝑐

intersects with each orbit 𝐺(𝑥) non-trivially, for any 𝑦 outside supp 𝑐 we can find some 𝑥 ∈

supp 𝑐 and 𝑔 ∈ 𝐺 satisfying 𝑔⋅ 𝑥 = 𝑦. So we have 0 = 𝑐(𝑥)|𝜙(𝑥)|2 = 𝑐(𝑥)|𝜙(𝑦)|2, which shows

𝜙 also vanishes anywhere outside supp 𝑐. ■

It is worth noting that the Hermitian product in (2.3) is independent of the choices of cut-off

functions if the Lie group is unimodular. Recall that a Lie group is unimodular if its Haar

measure is both left and right invariant.

Corollary 2.4. Let 𝑐1, 𝑐2 ∈ 𝐶𝑐(𝑀) be two non-negative functions satisfying (2.1). If 𝐺 is a uni-

modular Lie group, then ‖⋅‖𝑐1 = ‖⋅‖𝑐2 .

Proof. For a unimodular group 𝐺, we can rewrite (2.1) into ∫𝐺 𝑐2(𝑔𝑥) d𝑔 = 1. For any 𝜙 ∈

𝐶∞(𝑀)𝐺, we have

‖𝜙‖2𝑐1 = ∫
𝑀
(∫

𝐺
𝑐2(𝑔𝑥) d𝑔) 𝑐1(𝑥)|𝜙(𝑥)|2Ω. (2.4)
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Since both 𝑐1 and 𝑐2 are compactly-supported, Fubini’s theorem applies and we have

∫
𝑀
(∫

𝐺
𝑐2(𝑔𝑥) d𝑔) 𝑐1(𝑥)|𝜙(𝑥)|2Ω = ∫

𝐺
d𝑔∫

𝑀
𝑐2(𝑔𝑥)𝑐1(𝑥)|𝜙(𝑥)|2Ω

= ∫
𝐺
d𝑔∫

𝑀
𝑐2(𝑥)𝑐1(𝑔−1𝑥)|𝜙(𝑔−1𝑥)|2Ω

= ∫
𝐺
𝑐1(𝑔−1𝑥) d𝑔∫

𝑀
𝑐2(𝑥)|𝜙(𝑥)|2Ω

= ‖𝜙‖2𝑐2 .

(2.5)

Therefore the Hermitian product in (2.3) is canonical for unimodular Lie groups. ■

Definition 2.5. We denote 𝐿2𝐺(𝑀) to be the completion of 𝐶∞(𝑀)𝐺 with respect to (⋅, ⋅)𝑐.

2.2 Dirac Operators on the Space of Invariant Sections

Definition 2.6. Suppose that ℰ is a ℤ2-graded 𝐺-equivariant Hermitian bundle on 𝑀 and

let Γ(ℰ)𝐺 denote the space of 𝐺-invariant sections of ℰ. For any 𝑠1, 𝑠2 ∈ Γ(ℰ)𝐺, we define a

Hermitian product similar to (2.3):

(𝑠1, 𝑠2)𝑐 ∶= ∫
𝑀
𝑐(𝑥)(𝑠1, 𝑠2)𝑥 d𝑥,

where (𝑠1, 𝑠2)𝑥 is the Hermitian product on fiber ℰ𝑥. We denote the completion of Γ(ℰ)𝐺 by

𝐿2𝐺(ℰ). If we restrict the Hermitian product on sections of even/odd subbundles ℰ±, then the

completion of Γ(ℰ±)𝐺 is denoted by 𝐿2𝐺(ℰ±).

2.2.1 Unimodular Group

In this section we present a theorem about the duality of Dirac operators in the case of uni-

modular groups. The Lie group 𝐺 throughout this section is assumed to be unimodular.
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Theorem 2.7. If /𝖣+ ∶ Γ(ℰ+) → Γ(ℰ−) is a 𝐺-invariant Dirac operator on𝑀, then

( /𝖣+𝑠1, 𝑠2)𝑐 = (𝑠1, /𝖣−𝑠2)𝑐 (2.6)

for any 𝑠1 ∈ Γ(ℰ+)𝐺, 𝑠2 ∈ Γ(ℰ−)𝐺, where /𝖣− is the odd part of /𝖣. In other words, /𝖣− is the

adjoint of /𝖣+ ∶ 𝐿2𝐺(ℰ+) → 𝐿2𝐺(ℰ−).

To prove Theorem 2.7, we first need a modified version of the divergence theorem:

Lemma 2.8. For any 𝐺-invariant vector field 𝑋 on𝑀 we have

∫
𝑀
𝑐(𝑥) tr(𝛁𝑋)Ω = 0, (2.7)

where 𝛁 is the Levi-Civita connection.

Proof. The Lie derivative ℒ𝑋(𝑐(𝑥)Ω) = 𝑐(𝑥)ℒ𝑋Ω + 𝑋(𝑐)(𝑥)Ω and since ℒ𝑋Ω = tr(𝛁𝑋)Ω, we

have

∫
𝑀
𝑐(𝑥)tr(𝛁𝑋)Ω = ∫

𝑀
ℒ𝑋(𝑐(𝑥)Ω) −∫

𝑀
𝑋(𝑐)(𝑥)Ω. (2.8)

Notice that ℒ𝑋(𝑐(𝑥)Ω) is exact due to Cartan’s magic formula. It suffices to show that

∫
𝑀
𝑋(𝑐)(𝑥)Ω = 0. (2.9)

Given the fact that Ω is 𝐺-invariant and by (2.1) we know

Ω = ∫
𝐺
𝑐(𝑔−1𝑥)(𝑔−1)∗Ω d𝑔.

Hence

∫
𝑀
𝑋(𝑐)(𝑥)Ω = ∫

𝑀
𝑋(𝑐)(𝑥)∫

𝐺
𝑐(𝑔−1𝑥)(𝑔−1)∗Ω d𝑔. (2.10)
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Let us denotes the support of 𝑐 by𝑊, which is compact. The function 𝑋(𝑐)(𝑥)𝑐(𝑔−1𝑥) is sup-

ported on the pre-image of𝑊×𝑊 through the map 𝜌 ∶ 𝐺 ×𝑀 → 𝑀 ×𝑀, 𝜌(𝑔, 𝑥) = (𝑔−1𝑥, 𝑥).

The map 𝜌 is proper since the 𝐺-action is proper. Therefore, supp𝑋(𝑐)(𝑥)𝑐(𝑔−1𝑥) is compact

and we can use Fubini’s theorem to write (2.10) into

∫
𝐺
d𝑔∫

𝑀
𝑋(𝑐)(𝑥)𝑐(𝑔−1𝑥)(𝑔−1)∗Ω

=∫
𝐺
d𝑔∫

𝑀
(𝑔−1)∗(𝑋(𝑐)(𝑔𝑥)𝑐(𝑥)Ω)

=∫
𝐺
d𝑔∫

𝑀
𝑋(𝑐)(𝑔𝑥)𝑐(𝑥)Ω

=∫
𝑀
𝑐(𝑥)(∫

𝐺
𝑋(𝑐)(𝑔𝑥) d𝑔)Ω.

(2.11)

The modular function Δ = 1 for unimodular Lie groups, so (2.11) becomes

∫
𝑀
𝑐(𝑥)(∫

𝐺
𝑋(𝑐)(𝑔𝑥) d𝑔)Ω = ∫

𝑀
𝑐(𝑥)(∫

𝐺
𝑋(𝑐)(𝑔−1𝑥) d𝑔)Ω. (2.12)

If we let 𝛼 = d𝑐, thanks to the 𝐺-invariance of 𝑋, we have

𝑋(𝑐)(𝑔−1𝑥) = ⟨𝛼, 𝑋⟩𝑔−1𝑥 = ⟨𝛼(𝑔−1𝑥), (d𝑔−1)𝑥𝑋⟩ = ⟨(𝑔−1)∗𝛼,𝑋⟩𝑥, (2.13)

and (𝑔−1)∗𝛼 = (𝑔−1)∗d𝑐 = d((𝑔−1)∗𝑐) = d(𝑐(𝑔−1𝑥)). Because the pairing ⟨ ⋅, ⋅ ⟩ is continuous

and that 𝑐(𝑔−1𝑥) is compactly-supported in 𝐺 ×𝑀, we conclude

∫
𝐺
𝑋(𝑐)(𝑔−1𝑥) d𝑔 = ∫

𝐺
⟨ d𝑐(𝑔−1𝑥), 𝑋 ⟩𝑥 d𝑔

= ⟨∫
𝐺
d𝑐(𝑔−1𝑥) d𝑔, 𝑋 ⟩𝑥

= ⟨ d(∫
𝐺
𝑐(𝑔−1𝑥) d𝑔), 𝑋 ⟩𝑥 = 0,

(2.14)

18



where in the last equation, we have used (2.1). ■

Now we proceed to prove Theorem 2.7 using Lemma 2.8:

Proof of Theorem 2.7. Locally we can write the Dirac operator as:

/𝖣 = ∑
𝑖
𝐜 (d𝑥𝑖)∇𝜕𝑖

where 𝐜 (d𝑥𝑖) is the Clifford multiplication of d𝑥𝑖.

For any 𝑠1, 𝑠2 ∈ Γ(ℰ)𝐺, let𝑋 be a vector filed on𝑀 given by ⟨𝛼, 𝑋⟩ = (𝑠1, 𝐜 (𝛼)𝑠2) for any 1-form

𝛼, where (⋅, ⋅) is the Hermitian product. There is a relation between /𝖣+ and /𝖣− (see [BGV04,

Proposition 3.44]):

( /𝖣+𝑠1, 𝑠2)𝑥 = (𝑠1, /𝖣−𝑠2)𝑥 − tr(𝛁𝑋)𝑥, (2.15)

where the connection in 𝛁𝑋 is the Levi-Civita connection of the Riemannian metric.

We prove that𝑋 is 𝐺-invariant, i.e., ⟨𝛼, 𝑋⟩𝑔𝑥 = ⟨𝛼, 𝑔∗(𝑋)⟩𝑔𝑥 for any 1-form 𝛼 and 𝑔 ∈ 𝐺, where

𝑔∗(𝑋) is the pushforward of 𝑋 by 𝑔 ∶ 𝑀 → 𝑀. By definition we have

⟨𝛼, 𝑋⟩𝑔𝑥 = (𝑠1, 𝐜(𝛼(𝑔𝑥))𝑠2)𝑔𝑥,

⟨𝛼, 𝑔∗(𝑋)⟩𝑔𝑥 = ⟨𝑔∗𝛼,𝑋⟩𝑥 = (𝑠1, 𝐜(𝑔∗𝛼)𝑠2)𝑥.

Since 𝑠1 and 𝑠2 are both 𝐺-invariant and ℰ is a 𝐺-equivariant bundle, we have that 𝑠𝑖(𝑔𝑥) =

𝛾𝑔 ⋅ 𝑔−1𝑠𝑖(𝑥) = 𝛾𝑔 ⋅ 𝑠𝑖(𝑥), where 𝛾𝑔 ∶ ℰ𝑥 → ℰ𝑔𝑥 is the 𝐺-action on the fibers. Notice ℰ is also an

equivariant Clifford module, which implies

𝐜(𝛼(𝑔𝑥))𝑠2(𝑔𝑥) = 𝐜(𝛼(𝑔𝑥))(𝛾𝑔 ⋅ 𝑠2(𝑥)) = 𝛾𝑔 ⋅ (𝐜(𝑔∗𝛼(𝑥))𝑠2(𝑥)).
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Therefore we compute using the above formulae of 𝑠𝑖(𝑔𝑥) and 𝐜(𝑔∗𝛼)𝑠2(𝑥) that

⟨𝛼, 𝑋⟩𝑔𝑥 = (𝑠1(𝑔𝑥), 𝐜(𝛼(𝑔𝑥))𝑠2(𝑔𝑥))𝑔𝑥 = (𝛾𝑔 ⋅ 𝑠1(𝑥), 𝛾𝑔 ⋅ (𝐜(𝑔∗𝛼(𝑥))𝑠2(𝑥)))𝑔𝑥
= (𝑠1(𝑥), 𝐜(𝑔∗𝛼(𝑥))𝑠2(𝑥))𝑥 = ⟨𝑔∗𝛼,𝑋⟩𝑥 = ⟨𝛼, 𝑔∗(𝑋)⟩𝑔𝑥,

(2.16)

where between the two lines we have used the 𝐺-invariance of the Hermitian product. For-

mula (2.16) holds for all 𝛼, so 𝑋 = 𝑔∗(𝑋) for all 𝑔, which shows that 𝑋 is 𝐺-invariant. Now if

we multiply both sides of (2.15) with the cut-off function 𝑐 and integrating over𝑀 we have

( /𝖣+𝑠1, 𝑠2)𝑐 = (𝑠1, /𝖣−𝑠2)𝑐 −∫
𝑀
𝑐(𝑥)tr(𝛁𝑋)Ω,

= (𝑠1, /𝖣+𝑠2)𝑐

for any 𝑠1, 𝑠2 ∈ Γ(ℰ)𝐺. ■

2.2.2 Non-unimodular Group

When 𝐺 is non-unimodular, we need to modify our definition of the Hilbert space. Let Δ be

the modular function on 𝐺 and 𝜆 = Δ1/2. A section 𝑠 ∈ Γ(ℰ) is called 𝜆-invariant if

𝑔𝑠 = 𝜆(𝑔)𝑠. (2.17)

By definition, 𝑔−1𝑠(𝑥) = 𝛾𝑔−1 ⋅ 𝑠(𝑔𝑥). For a 𝜆-invariant section 𝑠, 𝑔−1𝑠 = 𝜆(𝑔−1)𝑠. We have

𝑠(𝑔𝑥) = 𝛾𝑔 ⋅ 𝑔−1𝑠(𝑥) = 𝜆(𝑔−1) 𝛾𝑔 ⋅ 𝑠(𝑥). (2.18)
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Let 𝑋 be a vector field such that ⟨𝛼, 𝑋⟩ ∶= (𝑠1, 𝐜(𝛼)𝑠2) for sections 𝑠1, 𝑠2 satisfying (2.17), we

have

⟨𝛼, 𝑋⟩𝑔𝑥 = (𝑠1(𝑔𝑥), 𝐜(𝛼(𝑔𝑥))𝑠2(𝑔𝑥))

= (𝜆(𝑔−1) 𝛾𝑔 ⋅ 𝑠1(𝑥), 𝜆(𝑔−1) 𝛾𝑔 ⋅ (𝐜(𝑔∗𝛼)𝑠2(𝑥)))

= Δ−1(𝑔)(𝑠1(𝑥), 𝐜(𝑔∗𝛼)𝑠2(𝑥))

= Δ−1(𝑔)⟨𝛼, 𝑔∗(𝑋)⟩𝑔𝑥

(2.19)

for any 1-form 𝛼. We conclude

𝑋(𝑔𝑥) = Δ−1(𝑔) 𝑔∗(𝑋). (2.20)

In the case when 𝐺 is not unimodular we should change (2.12) into

∫
𝐺
𝑋(𝑐)(𝑔𝑥) d𝑔 = ∫

𝐺
Δ−1(𝑔) 𝑋(𝑐)(𝑔−1𝑥) d𝑔, (2.21)

Imitating our calculation in (2.13), we get

Δ−1(𝑔) 𝑋(𝑐)(𝑔−1𝑥) = Δ−1(𝑔) ⟨d𝑐, 𝑋⟩𝑔−1𝑥

= Δ−1(𝑔) ⟨d𝑐(𝑔−1𝑥), 𝜆2(𝑔)𝑔−1∗ (𝑋)⟩

= Δ−1(𝑔) 𝜆2(𝑔) ⟨(𝑔−1)∗d𝑐, 𝑋⟩𝑥

= ⟨(𝑔−1)∗d𝑐, 𝑋⟩𝑥.

Together with (2.14) we have

∫
𝐺
𝑋(𝑐)(𝑔𝑥) d𝑔 = ∫

𝐺
⟨(𝑔−1)∗d𝑐, 𝑋⟩ d𝑔 = 0.

To summarize, we have the following lemma:
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Lemma 2.9. For a smooth vector field 𝑋 on𝑀 satisfying 𝑋(𝑔𝑥) = Δ−1(𝑔)𝑔∗(𝑋), we have

∫
𝑀
𝑐(𝑥)tr(𝛁𝑋)Ω = 0. (2.22)

Definition 2.10. For all sections of ℰ satisfying (2.17), we define a Hermitian product

(𝑠1, 𝑠2)𝜆 ∶= ∫
𝑀
𝑐(𝑥)(𝑠1, 𝑠2)𝑥Ω (2.23)

on the space of these sections denoted as Γ𝜆(ℰ)𝐺. Using the Hermitian product (⋅, ⋅)𝜆, we can

complete Γ𝜆(ℰ)𝐺 into a Hilbert space 𝐿2𝜆(ℰ), and obviously 𝐿2𝜆(ℰ) = 𝐿2𝐺(ℰ) for unimodular

groups.

The following theorem is a generalization of Theorem 2.7 for non-unimodular groups.

Theorem 2.11. Let /𝖣 be a 𝐺-invariant Dirac operator on ℰ. For two sections 𝑠1 ∈ Γ𝜆(ℰ+) and

𝑠2 ∈ Γ𝜆(ℰ−) we have

( /𝖣+𝑠1, 𝑠2)𝜆 = (𝑠1, /𝖣−𝑠2)𝜆. (2.24)

Proof. First we notice /𝖣 does act on Γ𝜆(ℰ)±: 𝑔( /𝖣𝑠) = /𝖣(𝑔𝑠) = /𝖣(𝜆(𝑔)𝑠) = 𝜆(𝑔) /𝖣𝑠 for all 𝑠 ∈

Γ(ℰ), 𝑔 ∈ 𝐺. To show equation (2.24), we integrate both sides of (2.15), which still holds true

for 𝑠1 ∈ Γ𝜆(ℰ+) and 𝑠2 ∈ Γ𝜆(ℰ−), and get

( /𝖣+𝑠1, 𝑠2)𝜆 − (𝑠1, /𝖣−𝑠2)𝜆 = −∫
𝑀
𝑐(𝑥)tr(𝛁𝑋)Ω.

We conclude our proof by noting that 𝑋 satisfies formula (2.20), so by Lemma 2.9

∫
𝑀
𝑐(𝑥)tr(𝛁𝑋)Ω = 0. ■
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2.3 Fredholmness

In this section we will present our main theorem: a 𝐺-invariant Dirac operator /𝖣 on 𝐿2𝜆(ℰ)

is Fredholm. Note that /𝖣 is odd and formally self-adjoint, so we can represent /𝖣 as /𝖣 =

( /𝖣∗+
/𝖣+ ). We will prove the Fredholmness of /𝖣 by showing that the kernel and cokernel of

/𝖣+ ∶ 𝐿2𝜆(ℰ+) → 𝐿2𝜆(ℰ−) are finite-dimensional, and the range of /𝖣+ is closed.

2.3.1 Integral Kernels

Definition 2.12. Let 𝜋1, 𝜋2 ∶ 𝑀 ×𝑀 → 𝑀,𝜋1(𝑥, 𝑦) = 𝑥, 𝜋2(𝑥, 𝑦) = 𝑦 be two projections. We

define a vector bundle ℰ ⊠ ℰ∗ over𝑀 ×𝑀 (see [BGV04], Chap. 2) as

ℰ ⊠ ℰ∗ ∶= 𝜋∗1ℰ ⊗ 𝜋∗2ℰ∗. (2.25)

A smooth section 𝑘(𝑥, 𝑦) ∈ Γ(ℰ ⊠ ℰ∗) is called an integral kernel.

Recall from formula (1.2) that the 𝐺-action on ℰ naturally induces an action on ℰ∗, which

is also 𝐺-equivariant. Since 𝑔𝜎(𝑥) = ̃𝛾𝑔 ⋅ 𝜎(𝑔−1𝑥) by definition for 𝜎 ∈ Γ(ℰ∗), we have that

⟨𝑔𝑠, 𝑔𝜎⟩𝑔𝑥 = ⟨𝑠, 𝜎⟩𝑥 for sections 𝑠 ∈ Γ(ℰ) and 𝜎 ∈ Γ(ℰ∗).

The next lemma shows a 𝐺-invariant integral kernel supported near the diagonal defines a

compact operator on 𝐿2𝜆(ℰ).

Lemma 2.13. Assume 𝑘(𝑥, 𝑦) is a 𝐺-invariant section of ℰ ⊠ ℰ∗, which is supported in an 𝜖-

neighborhood of the diagonal in𝑀 ×𝑀, then the integral operator �̂� ∶ 𝐿2𝜆(ℰ) → 𝐿2𝜆(ℰ),

�̂�𝑠(𝑥) = ∫
𝑀
𝑘(𝑥, 𝑦)𝑠(𝑦) d𝑦, (2.26)
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is compact, where d𝑦 is the𝐺-invariant measure on𝑀. The term 𝑘(𝑥, 𝑦)𝑠(𝑦) above is the pairing

of 𝑠(⋅) ∈ Γ(ℰ) with 𝑘(𝑥, ⋅) ∈ Γ(ℰ∗).

Proof. We first show the section �̂�𝑠(𝑥) is 𝜆-invariant:

𝑔(�̂�𝑠)(𝑥) = 𝛾𝑔 ⋅ �̂�𝑠(𝑔−1𝑥) = 𝛾𝑔 ⋅ ∫
𝑀
𝑘(𝑔−1𝑥, 𝑦)𝑠(𝑦) d𝑦

= 𝛾𝑔 ⋅ ∫
𝑀
𝑘(𝑔−1𝑥, 𝑔−1𝑦) 𝑠(𝑔−1𝑦) d𝑦.

(2.27)

Since 𝑠 is 𝜆-invariant, by equation (2.18) we have

𝑠(𝑔−1𝑦) = 𝜆(𝑔) 𝛾𝑔−1 ⋅ 𝑠(𝑦).

Similarly, since 𝑘 ∈ ℰ ⊠ ℰ∗ is 𝐺-invariant,

𝑘(𝑔−1𝑥, 𝑔−1𝑦) = (𝛾𝑔 ⊠ ̃𝛾𝑔)−1 ⋅ 𝑘(𝑥, 𝑦) = (𝛾𝑔−1 ⊠ ̃𝛾𝑔−1)⋅ 𝑘(𝑥, 𝑦).

Putting the above two equations together, by (2.27) we have

𝑔(�̂�𝑠)(𝑥) = 𝜆(𝑔) 𝛾𝑔 ⋅ ∫
𝑀
(𝛾𝑔−1 ⊠ ̃𝛾𝑔−1)⋅ 𝑘(𝑥, 𝑦) 𝛾𝑔−1 ⋅ 𝑠(𝑦) d𝑦. (2.28)

For a fixed 𝑥, since the 𝐺-actions on ℰ and ℰ∗ are compatible, we have

⟨ ̃𝛾𝑔−1 ⋅ 𝑘(𝑥, 𝑦), 𝛾𝑔−1 ⋅ 𝑠(𝑦)⟩𝑔−1𝑦 = ⟨𝑘(𝑥, 𝑦), 𝑠(𝑦)⟩𝑦. (2.29)
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So we can simplify (2.28) as

𝑔(�̂�𝑠)(𝑥) = 𝜆(𝑔) 𝛾𝑔 ⋅ ∫
𝑀
(𝛾𝑔−1 ⊠ ̃id)⋅ 𝑘(𝑥, 𝑦)𝑠(𝑦) d𝑦

= 𝜆(𝑔)∫
𝑀
𝑘(𝑥, 𝑦)𝑠(𝑦) d𝑦

= 𝜆(𝑔)�̂�𝑠(𝑥).

(2.30)

Nowwe proceed to show that �̂� is bounded. Let𝑊 denote the support of 𝑐 and𝑊 be a compact

set containing an 𝜖-neighborhood of 𝑊. Recall from the proof of Lemma 2.1 that there is a

collection of open subsets {𝑈𝜆𝑖 ⊆ 𝑀} and bump functions {𝑓𝜆𝑖} such that⋃
𝑛
𝑖=1 𝜋(𝑈𝜆𝑖) = 𝑀/𝐺

and 𝑓𝜆𝑖 |𝑈𝜆𝑖
= 1. Let 𝑈0 = ⋃𝑛

𝑖=1𝑈𝜆𝑖 so that 𝑓 = ∑𝑓𝜆𝑖 ⩾ 1 on 𝑈0. We know from Corollary 2.2

that 𝑈0 intersects with each orbit 𝐺(𝑥) non-trivally, so the collection {𝑔𝑈0}𝑔∈𝐺 covers𝑀 and

therefore𝑊. Choose a finite covering {𝑔1𝑈0, … , 𝑔𝑘𝑈0} of𝑊 and let

𝐶𝑖 = ( sup
𝑥∈𝑊

ℎ(𝑥)) ⋅ ( sup
𝑦∈𝑊

‖𝛾𝑔𝑖(𝑦)‖2)

for ℎ(𝑥) defined in (2.2), where ‖ ⋅ ‖ denotes the operator norm.

Recall that for any 𝜆-invariant section 𝑠(𝑥) of ℰ, we have by equation (2.18):

𝑠(𝑔𝑥) = 𝜆(𝑔−1) 𝛾𝑔 ⋅ 𝑠(𝑥).
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So if we set 𝑧𝑖 ∶= 𝑔−1𝑖 𝑥, then 𝑠(𝑥) = 𝑠(𝑔𝑖𝑧𝑖) = 𝜆(𝑔−1𝑖 ) 𝛾𝑔𝑖 ⋅ 𝑠(𝑧𝑖). Therefore

‖𝑠‖2𝐿2(𝑔𝑖𝑈0) = ∫
𝑔𝑖𝑈0

|𝑠(𝑥)|2 d𝑥

= Δ(𝑔−1𝑖 )∫
𝑔𝑖𝑈0

|𝛾𝑔𝑖 ⋅ 𝑠(𝑧𝑖)|2 d𝑥

⩽ Δ(𝑔−1𝑖 ) ( sup
𝑧𝑖∈𝑊

‖𝛾𝑔𝑖(𝑧𝑖)‖2)∫
𝑥∈𝑔𝑖𝑈0

|𝑠(𝑧𝑖)|2 d𝑥

= Δ(𝑔−1𝑖 ) ( sup
𝑧𝑖∈𝑊

‖𝛾𝑔𝑖(𝑧𝑖)‖2)∫
𝑧𝑖∈𝑈0

|𝑠(𝑧𝑖)|2 d𝑧𝑖.

(2.31)

Since 𝑓 ⩾ 1 on 𝑈0, 𝑐(𝑧𝑖)|𝑠(𝑧𝑖)|2 = 𝑓(𝑧𝑖)|𝑠(𝑧𝑖)|2/ℎ(𝑥) ⩾ |𝑠(𝑧𝑖)|2/ℎ(𝑧𝑖) for any 𝑧𝑖 ∈ 𝑈0, so on 𝑈0
we have |𝑠(𝑧𝑖)|2 ⩽ ℎ(𝑧𝑖)𝑐(𝑧𝑖)|𝑠(𝑧𝑖)|2. Therefore (2.31) gives

‖𝑠‖2𝐿2(𝑔𝑖𝑈0) ⩽ Δ(𝑔−1𝑖 ) ( sup
𝑧𝑖∈𝑊

‖𝛾𝑔𝑖(𝑧𝑖)‖2)∫
𝑈0

|𝑠(𝑧𝑖)|2 d𝑧𝑖

⩽ Δ(𝑔−1𝑖 ) ( sup
𝑧𝑖∈𝑊

‖𝛾𝑔𝑖(𝑧𝑖)‖2)∫
𝑈0

ℎ(𝑧𝑖)𝑐(𝑧𝑖)|𝑠(𝑧𝑖)|2 d𝑧𝑖

⩽ Δ(𝑔−1𝑖 ) ( sup
𝑧𝑖∈𝑊

‖𝛾𝑔𝑖(𝑧𝑖)‖2) ⋅ ( sup𝑍𝑖∈𝑊
ℎ(𝑧𝑖))∫

𝑀
𝑐(𝑧𝑖)|𝑠(𝑧𝑖)|2 d𝑧𝑖

= 𝐶𝑖
Δ(𝑔𝑖)

‖𝑠‖2𝜆.

(2.32)

Recall that {𝑔1𝑈0, … , 𝑔𝑘𝑈0} covers𝑊, so

‖𝑠‖2𝐿2(𝑊) ⩽ (
𝑘
∑
𝑖=1

𝐶𝑖
Δ(𝑔𝑖)

)‖𝑠‖2𝜆. (2.33)
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For a fixed (𝑥, 𝑦) ∈ 𝑀 ×𝑀, let ‖𝑘(𝑥, 𝑦)‖ denote the operator norm of 𝑘(𝑥, 𝑦) ∈ End(ℰ𝑦, ℰ𝑥). If

𝑠 is a 𝜆-invariant section of ℰ, then

‖�̂�𝑠‖2𝜆 = ∫
𝑀
𝑐(𝑥)|�̂�𝑠(𝑥)|2 d𝑥

= ∫
𝑀
𝑐(𝑥)||∫

𝑀
𝑘(𝑥, 𝑦)𝑠(𝑦) d𝑦||

2
d𝑥

⩽ ∫
𝑊
𝑐(𝑥)(∫

𝑊
|𝑘(𝑥, 𝑦)𝑠(𝑦)|2 d𝑦) d𝑥

⩽ ∫
𝑊
𝑐(𝑥)(∫

𝑊
‖𝑘(𝑥, 𝑦)‖2|𝑠(𝑦)|2 d𝑦) d𝑥

= ∫
𝑊
(∫

𝑊
𝑐(𝑥)‖𝑘(𝑥, 𝑦)‖2 d𝑥)|𝑠(𝑦)|2 d𝑦.

(2.34)

Let ℎ(𝑥, 𝑦) ∶= 𝑐(𝑥)‖𝑘(𝑥, 𝑦)‖2 be a smooth function defined on (𝑥, 𝑦) ∈ 𝑊 ×𝑊. So

∫
𝑊
𝑐(𝑥)‖𝑘(𝑥, 𝑦)‖2 d𝑥 = ∫

𝑊
ℎ(𝑥, 𝑦) d𝑥 ⩽ ∫

𝑊
ℎ(𝑦, 𝑦) d𝑥 +∫

𝑊
|ℎ(𝑥, 𝑦) − ℎ(𝑦, 𝑦)| d𝑥

= ∫
𝑊
𝑐(𝑦)‖𝑘(𝑦, 𝑦)‖2 d𝑥 +∫

𝑊
|ℎ(𝑥, 𝑦) − ℎ(𝑦, 𝑦)| d𝑥

⩽ 𝜅𝑐(𝑦) + 𝜂,

(2.35)

for constants

𝜅 ∶= measure(𝑊) ⋅ sup
𝑦∈𝑊

‖𝑘(𝑦, 𝑦)‖2

and

𝜂 ∶= measure(𝑊) ⋅ sup
(𝑥,𝑦)∈𝑊×𝑊

|ℎ(𝑥, 𝑦) − ℎ(𝑦, 𝑦)|.

27



Therefore we conclude from equation (2.34) and (2.35) that �̂� is bounded:

‖�̂�𝑠‖2𝜆 ⩽ ∫
𝑊
(∫

𝑊
𝑐(𝑥)‖𝑘(𝑥, 𝑦)‖2 d𝑥)|𝑠(𝑦)|2 d𝑦

⩽ ∫
𝑊
(𝜅𝑐(𝑦) + 𝜂)|𝑠(𝑦)|2 d𝑦

⩽ 𝜅∫
𝑊
𝑐(𝑦)|𝑠(𝑦)|2 d𝑦 + 𝜂∫

𝑊
|𝑠(𝑦)|2 d𝑦 = 𝜅‖𝑠‖2𝜆 + 𝜂‖𝑠‖2𝐿2(𝑊)

⩽ (𝜅 + 𝜂∑ 𝐶𝑖
Δ(𝑔𝑖)

)‖𝑠‖2𝜆.

(2.36)

To prove compactness, we need to show for any bounded sequence {𝑠𝜇} in 𝐿2𝜆(ℰ), there is a

Cauchy subsequence of {�̂�𝑠𝜇}. According to (2.33) if {𝑠𝜇} is bounded in 𝐿2𝜆(ℰ), it is also bounded

in 𝐿2(𝑊). Since the restriction of �̂� on a compact set𝑊,

�̂�|𝑊𝑠(𝑥) ∶= ∫
𝑊
𝑘(𝑥, 𝑦)𝑠(𝑦) d𝑦, 𝑥 ∈ 𝑊,

is a compact operator on 𝐿2(𝑊), we can find a subsequence {�̂�𝑠𝑗} converges to some (locally-

defined) section 𝑡 in 𝐿2(𝑊). Since each �̂�𝑠𝑗 is 𝐺-invariant, the limit 𝑡 is locally 𝐺-invariant,

that is, if 𝑥, 𝑦 ∈ 𝑊 and 𝑦 = 𝑔𝑥 for som 𝑔 ∈ 𝐺, then we must have 𝛾𝑔 ⋅ 𝑡(𝑥) = 𝑡(𝑦). Hence we

can extend 𝑡 to a 𝐺-invariant section on ℰ, which we will still denote by 𝑡, using the 𝐺-action:

∀𝑥 ∈ 𝑀, there is some 𝑔 ∈ 𝐺 such that 𝑔−1𝑥 ∈ 𝑊 and

𝑡(𝑥) ∶= 𝛾𝑔 ⋅ 𝑡(𝑔−1𝑥).
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It is easy to check the subsequence {�̂�𝑠𝑗} also converges to 𝑡 in 𝐿2𝜆(ℰ):

‖�̂�𝑠𝑗 − 𝑡‖2𝜆 = ∫
𝑊
𝑐(𝑥)|�̂�𝑠𝑗(𝑥) − 𝑡(𝑥)|2 d𝑥

⩽ (sup 𝑐(𝑥)) ⋅ ‖�̂�𝑠𝑗(𝑥) − 𝑡(𝑥)‖2𝐿2(𝑊) → 0. ■

2.3.2 Parametrix

Next we will show that /𝖣+ ∶ 𝐿2𝜆(ℰ+) → 𝐿2𝜆(ℰ−) is of closed range and has a (co)kernel of finite

rank by looking at the properties of its paramatrix 𝑄:

Theorem 2.14. There is a densely defined closed operator 𝑄 ∶ 𝐿2𝜆(ℰ) → 𝐿2𝜆(ℰ) such that the

Schwartz kernels of both (𝑄 /𝖣+ − 𝐼) and ( /𝖣+𝑄 − 𝐼) are smooth functions on 𝑀 × 𝑀 that are

supported near the diagonal of𝑀 ×𝑀 and invariant with respect to the diagonal (left) 𝐺-action.

According to Lemma 2.13, (𝑄 /𝖣+−𝐼) and ( /𝖣+𝑄−𝐼) defined above extend to compact operators,

which implies that /𝖣+ ∶ 𝐿2𝜆(𝒮+) → 𝐿2𝜆(ℰ−) as a densely defined operator which has a closed

range and a (co)kernel of finite rank. Therefore, we conclude:

Corollary 2.15. The Dirac operator /𝖣 = ( /𝖣∗+
/𝖣+ ) ∶ 𝐿2𝜆(ℰ) → 𝐿2𝜆(ℰ) is Fredholm.

The proof of Theorem 2.14 works in the exactly same way for 𝐺-invariant elliptic operators,

and we have:

Theorem 2.16. Let 𝐷 be a 𝐺-invariant elliptic operator on ℰ, then the induced operator 𝐷 ∶

𝐿2𝜆(ℰ) → 𝐿2𝜆(ℰ) is Fredholm.

In the next chapter, we will recall the theory of pseudo-differential operators onmanifolds and

prove Theorem 2.14.
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Chapter 3

Pseudo-differential Operators

In this chapter we will define pseudo-differential operators (ψDOs for short) on manifolds

through a coordinate-free approach and develop the corresponding symbol calculus for our

definition. We will then look at symbols for differential operators, and construct an “inverse”

symbol for elliptic differential operators. In the next chapter, we will use the “inverse” symbol

to construct a parametrix we need in Theorem 2.14.

The study ofψDOs started inmid 1960s bymanymathematicians, most notably Lars Hörman-

der. In ℝ𝑛, it can be viewed as a generalization of Fourier transformation; while the calculus

ofψDOs on manifolds is traditionally defined using local coordinates. However, in late 1970s,

H. Widom suggested a method of defining full symbols of ψDOs using an affine connection

and developed a version of symbol calculus with local coordinates and standard local phase

function [Wid78; Wid80]. In early 1990s, Yu. Safarov gave a new definition of ψDOs in a

coordinate-free way, by using invariant oscillatory integrals over the cotangent bundle [Saf97;

MS11]. We will introduce Safarov’s definition of ψDOs after a brief review of the case of ℝ𝑛.
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Throughout the chapter, 𝐃𝛼
𝑥 = (−𝐢)|𝛼|(𝜕|𝛼|/𝜕𝑥𝛼) are partial derivatives with respect to local

coordinates {𝑥𝑘}, and 𝐶∞
𝑐 denotes the space of smooth functions with compact support and𝒟′

is the space of distributions.

3.1 ψDOs on ℝ𝑛

Let 𝑃 = ∑|𝛼|⩽𝑚 𝐴𝛼(𝑥)𝐃𝛼 be a differential operator of order𝑚 acting on functions in 𝐶∞
𝑐 (ℝ𝑛).

Using the Fourier inversion formula, we have

𝑃𝑢(𝑥) = (2𝜋)−𝑛/2∫𝑒𝐢⟨𝑥,𝜉⟩ 𝑃𝑢(𝜉) d𝜉 = (2𝜋)−𝑛/2∫𝑒𝐢⟨𝑥,𝜉⟩ 𝜎𝑃(𝑥, 𝜉) 𝑢(𝜉) d𝜉,

where

𝜎𝑃(𝑥, 𝜉) = ∑
|𝛼|⩽𝑚

𝐴𝛼(𝑥)𝜉𝛼 (3.1)

is called the full symbol of 𝑃, and the leading homogeneous term (in 𝜉) of 𝜎𝑃 is called the

principal symbol.

If we replace the symbol by a larger class of smooth functions 𝑝(𝑥, 𝜉) which satisfies that for

any index 𝛼, 𝛼′, there is a constant 𝐶𝛼,𝛼′ > 0 such that for all 𝑥, 𝜉,

|𝐃𝛼
𝑥𝐃𝛼′

𝜉 𝑝(𝑥, 𝜉)| ⩽ 𝐶𝛼𝛼′(1 + |𝜉|)𝑚−|𝛼′|, (3.2)

we can define an integral operator ̃𝑃 ∶ 𝐶∞
𝑐 (ℝ) → 𝐶∞(ℝ𝑛):

̃𝑃𝑢(𝑥) = (2𝜋)−𝑛/2∫𝑒𝐢⟨𝑥,𝜉⟩ 𝑝(𝑥, 𝜉) 𝑢(𝜉) d𝜉,

which is called a pseudo-differential operator on ℝ𝑛.
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Remark 2. The symbol class defined in (3.2) is denoted by S𝑚1,0(ℝ𝑛) in [Hör07] by Hörmander,

and it is the only class we need throughout the thesis.

It is worth noting here, that for a general manifold we cannot have full symbols like (3.1) di-

rectly because such calculation depends on the coordinate system. However, the principal

symbol can be correctly defined on the cotangent bundle, which is invariant under change of

coordinates.

A more comprehensive discussion ofψDOs onℝ𝑛 can be found in [Hör07; Tay81], along with

many other books.

3.2 ψDOs onManifolds

In this section we introduce Safarov’s definition of ψDOs on manifolds and summarize a few

important properties. Detailed proofs and discussions can be found in [Saf97] and [MS11].

Let 𝑀 be a smooth 𝑛-dimensional Riemannian manifold with a torsion-free connection Γ, 𝑥

a point of 𝑀, and 𝜉 a covector in 𝑇∗𝑥𝑀. Given a coordinate system {𝑥𝑘} and a vector field

𝑣 = ∑𝑘 𝑣𝑘(𝑥) 𝜕𝑥𝑘 on𝑀, the horizontal lift

∇𝑣 = ∑
𝑘
𝑣𝑘(𝑥) 𝜕𝑥𝑘 + ∑

𝑖,𝑗,𝑘
Γ𝑖𝑗𝑘(𝑥)𝑣𝑘(𝑥)𝜉𝑖 𝜕𝜉𝑗 (3.3)

is a vector field on𝑇∗𝑀, where Γ𝑖𝑗𝑘 are Christoffel symbols of Γ. We denote by∇𝑖 the horizontal

lift of the vector field 𝜕𝑥𝑖 .
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3.2.1 Classes of Symbols

Definition 3.1. The symbol class S𝑚(Γ) consists of all smooth functions 𝑎(𝑥, 𝜉) ∈ 𝐶∞(𝑇∗𝑀)

satisfying

|𝜕𝛼𝜉 ∇𝑖1 ⋯∇𝑖𝑞 𝑎(𝑥, 𝜉)| ⩽ 𝐶𝐾,𝛼,𝑖1,…,𝑖𝑞(1 + |𝜉|)𝑚−|𝛼| (3.4)

using any coordinates {𝑥𝑘} and for all 𝛼 and 𝑖1, … , 𝑖𝑞, when 𝑥 runs over a compact set𝐾. We call

𝑎(𝑥, 𝜉) ∈ S𝑚(Γ) a symbol of order𝑚 and define S−∞ = ∩𝑚S𝑚(Γ) to be the class of smoothing

symbols, which consists of all functions with all their derivatives vanishing faster than any

power of |𝜉| as |𝜉| → ∞.

Analogously, functions 𝑎(𝑦; 𝑥, 𝜉) ∈ 𝐶∞(𝑀 × 𝑇∗𝑀) are called amplitudes of order 𝑚 if in any

coordinate systems {𝑥𝑘}, {𝑦𝑘} and for all 𝛼, 𝛽 and 𝑖𝑖, … , 𝑖𝑞,

|𝜕𝛽𝑦 𝜕𝛼𝜉 ∇𝑖1 ⋯∇𝑖𝑞𝑎(𝑦; 𝑥, 𝜉)| ⩽ 𝐶𝐾,𝛼,𝛽,𝑖1,…,𝑖𝑞(1 + |𝜉|)𝑚−|𝛼| (3.5)

when (𝑥, 𝑦) runs over a compact𝐾 ⊆ 𝑀×𝑀. Traditionally, the class of𝑚-th order amplitudes

is also denoted by S𝑚(Γ).

Remark 3. In fact, a Riemannian structure is not necessary to define symbol classes. It suffices

to replace the Riemannianmetric |⋅| in (3.4) and (3.5) by a positive function homogeneous in 𝜉

of degree 1. Thus we can define the symbol and amplitude class for general smooth manifolds.

The following lemma lists some basic properties of symbols and amplitudes.

Lemma 3.2. If 𝑎 ∈ S𝑚1(Γ), 𝑏 ∈ S𝑚2(Γ) and let𝑚 = max{𝑚1, 𝑚2}, then

𝑎𝑏 ∈ S𝑚1+𝑚2(Γ), 𝜕𝛼𝜉 𝑎 ∈ S𝑚−|𝛼|(Γ), ∇𝑣1 ⋯∇𝑣𝑞𝑎 ∈ S𝑚(Γ)

for any vector fields 𝑣1, … , 𝑣𝑞.
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Moreover, for a multi-index 𝛼 with |𝛼| = 𝑞, define ∇𝛼
𝑥 = 1

𝑞!
∑∇𝑖1 ⋯∇𝑖𝑞 where the sum is taken

over all ordered collections of indices 𝑖1, … , 𝑖𝑞 corresponding to 𝛼. With this notation we have

∇𝛼
𝑥𝑎(𝑥, 𝜉) ∈ S𝑚(Γ).

Sometimes it is convenient to write a symbol into a formal series:

Definition 3.3. Let 𝑎(𝑥, 𝜉) ∈ S𝑚(Γ) and 𝑎𝑘(𝑥, 𝜉) ∈ S𝑚𝑘(Γ), where𝑚𝑘↘ −∞ as 𝑘 → ∞. We

shall use the notation

𝑎 ∼ ∑
𝑘
𝑎𝑘, as |𝜉| → ∞,

if 𝑎 −∑𝑘
𝑗=0 𝑎𝑗 ∈ S𝑚𝑘+1 for all 𝑘. Such formal series of symbols is called asymptotic.

The next lemma ([Saf97, Lemma 3.2]) allows us to construct new symbols from asymptotic

series.

Lemma 3.4. Let 𝑎𝑘 ∈ S𝑚𝑘(Γ) where𝑚𝑘↘ −∞ as 𝑘 → ∞ and let𝑚 = max{𝑚𝑘}. Then there

exists a symbol 𝑎 ∈ S𝑚(Γ) such that 𝑎 ∼ ∑𝑘 𝑎𝑘, and such 𝑎 is unique modulo S−∞.

3.2.2 Definition ofψDOs

By the Schwartz kernel theorem, for any linear operator 𝐴 ∶ 𝐶∞
𝑐 (𝑀) → 𝒟′(𝑀), there exists a

distribution 𝒜(𝑥, 𝑦) ∈ 𝒟′(𝑀 ×𝑀) such that

⟨𝐴𝑢, 𝑣⟩ = ⟨𝒜(𝑥, 𝑦), 𝑢(𝑦)𝑣(𝑥)⟩

for all 𝑢, 𝑣 ∈ 𝐶∞
𝑐 (𝑀). Such distribution 𝒜(𝑥, 𝑦) is called the Schwartz kernel of 𝐴.

Definition 3.5. A linear operator 𝐴 ∶ 𝐶∞
𝑐 (𝑀) → 𝐶∞(𝑀) with the Schwartz kernel 𝒜(𝑥, 𝑦)

is called a ψDO of order 𝑚 if 𝒜(𝑥, 𝑦) is smooth outside the diagonal in 𝑀 × 𝑀 and in each
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coordinate chart 𝑈 × 𝑈 ⊆ 𝑀 ×𝑀, 𝒜(𝑥, 𝑦)modulo a smooth function can be represented by

𝒜(𝑥, 𝑦) = ∫
ℝ𝑑
𝑒𝐢(𝑥−𝑦)⋅𝜉 𝑎(𝑦; 𝑥, 𝜉) d𝜉

for some𝑚-amplitude 𝑎(𝑦; 𝑥, 𝜉).

A ψDO is called properly supported if both projections supp𝒜 → 𝑀 are proper, and in partic-

ular, differential operators are properly supported ψDOs. The class of operators with smooth

kernels are called smoothing operators and is denoted by Ψ−∞. Clearly, any ψDO is a sum of

a properly supported ψDO and a smoothing operator.

Next we will focus on a more special class ofψDOs, but first let us recall the definition of den-

sities on manifolds: a 𝜅-density 𝜇 on a manifold is a “function” which behaves under change

of coordinates in the following way:

𝜇(𝑦) = | det{𝜕𝑥𝑖/𝜕𝑦𝑗}|𝜅𝜇(𝑥). (3.6)

Let 𝑥, 𝑦 be two points of 𝑀 and {𝑥𝑘}, {𝑦𝑘} coordinate systems at 𝑥 and 𝑦 respectively; and let

us consider the determinant 𝑝𝑦,𝑥 = | detΦ𝑦,𝑥| for parallel transport Φ𝑦,𝑥 ∶ 𝑇∗𝑥𝑀 → 𝑇∗𝑦𝑀 with

respect to the connection Γ on 𝑀. Obviously 𝑝𝑦,𝑥 depends on the choice of coordinates at 𝑥

and 𝑦 and we can check easily 𝑝𝑦,𝑥 is a 1-density in 𝑦 and (−1)-density in 𝑥.

Definition 3.6. We denote by Ψ𝑚(Γ) the class which consists of all ψDOs 𝐴 such that its

Schwartz kernel 𝒜(𝑥, 𝑦) is smooth outside the diagonal in 𝑀 × 𝑀 and within a sufficiently

small neighborhood of the diagonal, 𝒜(𝑥, 𝑦) has the form of an oscillatory integral

𝒜(𝑥, 𝑦) = (2𝜋)−𝑑𝑝𝑦,𝑥∫
𝑇∗𝑥𝑀

𝑒𝐢⟨exp−1𝑥 (𝑦),𝜉⟩ 𝑎(𝑥, 𝜉) d𝜉, 𝑎(𝑥, 𝜉) ∈ S𝑚(Γ). (3.7)

We call 𝑎(𝑥, 𝜉) ∈ S𝑚(Γ) the symbol of the ψDO A and denote it by 𝜎𝐴(𝑥, 𝜉).
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Remark 4. We notice that the integral (3.7) over 𝑇∗𝑥𝑀 depends on the coordinates {𝑥𝑘}, or

equivalently, the choice of basis of 𝑇∗𝑥𝑀. However, when combined with the weight factor

𝑝𝑦,𝑥, (3.7) becomes a 0-density in 𝑥 and 1-density in 𝑦, and is thus a well-defined Schwartz

kernel. See [MS11] for a similar but more general discussion.

Remark 5. For a Riemannian manifold, the Lebesgue measure on a cotangent plane is canon-

ical, independent of the choice of 𝜉. In this case, we need to further assume the coordinates

{𝑥𝑘} at 𝑥 is orthonormal so that 𝑝𝑦,𝑥 becomes a 0-density in 𝑥 and 1-density in 𝑦.

The next Proposition states that the operator defined above is a ψDO in the sense of Defini-

tion 3.5.

Proposition 3.7. The Schwartz kernel (3.7) defines a ψDO.

Proof (see [Saf97, § 4.1]). Let 𝑈 ⊆ 𝑀 be a small coordinate chart such that exp−1𝑥 (𝑦) is well-

defined for all𝑥, 𝑦 ∈ 𝑈. Within𝑈×𝑈, wehave exp−1𝑥 (𝑦) = (𝑥, 𝑦)⋅Ψ(𝑥, 𝑦)𝜉 for all (𝑥, 𝑦) ∈ 𝑈×𝑈,

whereΨ(𝑥, 𝑦) is a smooth non-degenerate 𝑛×𝑛matrix. By a change of variable 𝜁 = Ψ𝜉 in (3.7),

we conclude

𝒜(𝑥, 𝑦) = (2𝜋)−𝑑𝑝𝑦,𝑥| detΨ|−1∫𝑒𝐢(𝑥,𝑦)⋅𝜁 𝑎(𝑥, Ψ−1𝜁) d𝜁, ∀(𝑥, 𝑦) ∈ 𝑈 × 𝑈.

We finish our proof by noting that 𝑝𝑦,𝑥| detΨ|−1𝑎(𝑥, Ψ𝜁) is an amplitude of order𝑚. ■

Wemay replace the symbol in (3.7) by an amplitude 𝑎(𝑦; 𝑥, 𝜉) ∈ S𝑚(Γ) of the same order, and

such defined 𝒜(𝑥, 𝑦) still defines a ψDO in Ψ𝑚(Γ). Precisely, we have

Lemma 3.8 ([Saf97, Proposition 4.5]). If 𝑎(𝑦; 𝑥, 𝜉) ∈ S𝑚(Γ), then the oscillatory integral

𝒜(𝑥, 𝑦) = (2𝜋)−𝑑𝑝𝑦,𝑥∫
𝑇∗𝑥𝑀

𝑒𝐢⟨exp−1𝑥 (𝑦),𝜉⟩ 𝑎(𝑦; 𝑥, 𝜉) d𝜉
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coincides with the Schwartz kernel of a ψDO 𝐴 ∈ Ψ𝑚(Γ) such that

𝜎𝐴(𝑥, 𝜉) ∼ ∑ 1
𝛼!𝐃

𝛼
𝜉∇𝛼

𝑦 𝑎(𝑦; 𝑥, 𝜉)|𝑦=𝑥 ∈ S𝑚(Γ) (3.8)

as |𝜉| → ∞.

In fact, the classes Ψ𝑚(Γ) are independent of the connection Γ and will later be denoted by

Ψ𝑚 if no specific connection is needed, so the choice of Γ affects only the full symbols. If

𝑎 ∈ S−∞ is a smoothing symbol (or amplitude), then the distribution in (3.7) is smooth and

the corresponding ψDO is in Ψ−∞.

Finally at the end of this section we need to point out the symbol 𝜎𝐴 for a ψDO 𝐴 ∈ Ψ𝑚 is

unique modulo S−∞:

Corollary 3.9 ([Saf97, Corollary 4.6]). Themap𝐴 ↦ 𝜎𝐴 is an isomorphism of the factor-classes

Ψ𝑚/Ψ−∞ and S𝑚/S−∞.

3.2.3 Composition ofψDOs

In this section we look at the composition of twoψDOs. The following theorem, of which the

proof can be found in [Saf97, § 8.1, 8.2], is of vital importance to our calculations in this thesis.

Theorem 3.10. Let𝐴 ∈ Ψ𝑚1 and 𝐵 ∈ Ψ𝑚2 , and at least one of the ψDOs are properly supported.

Then 𝐴𝐵 ∈ Ψ𝑚1+𝑚2 and

𝜎𝐴𝐵(𝑥, 𝜉) ∼ ∑
𝛼,𝛽,𝛾

1
𝛼!

1
𝛽!

1
𝛾! 𝑃𝛽,𝛾𝐃

𝛼+𝛽
𝜉 𝜎𝐴(𝑥, 𝜉)𝐃𝛾

𝜉∇𝛼
𝑥𝜎𝐵(𝑥, 𝜉), (3.9)
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as |𝜉| → ∞, where 𝑃𝛽,𝛾 ∈ 𝐶∞(𝑇∗𝑀) are polynomials in 𝜉 satisfying

deg𝑃𝛽,𝛾 ⩽ min{|𝛽|, |𝛾|, 13(|𝛽| + |𝛾|)}, (3.10)

so that (3.9) forms an asymptotic series.

3.3 Symbols of Differential Operators

For a fixed point 𝑥 ∈ 𝑀 and local coordinates {𝑥𝑘} near 𝑥, there is a unique normal coordinate

system {𝑦𝑘} centered at 𝑥 such that the Jacobian (𝜕𝑦𝑖/𝜕𝑥𝑗) = 𝐼. For such choice of coordinates

{𝑥𝑘} and {𝑦𝑘}, we denote 𝑝𝑦,𝑥 by 𝜏𝑥(𝑦), which is considered as a function of 𝑦. Note 𝜏𝑥(𝑦) here

is indeed a function, i.e., a 0-density in 𝑦, for that {𝑦𝑘} is determined by {𝑥𝑘}.

Suppose 𝐴 is a differential operator, one can define its full symbol 𝜎𝐴(𝑥, 𝜉) as (see [Saf97, §5])

𝜎𝐴(𝑥, 𝜉) = 𝐴(𝑦,𝐃𝑦)(𝑒𝑖(𝑦−𝑥)⋅𝜉𝜏−1𝑥 (𝑦))|𝑦=𝑥, (3.11)

which is a sum of endomorphisms that is positively homogeneous in 𝜉. For example, if

𝐴 = ∑
𝑘
(−𝐢) ⋅ 𝑎𝑘𝜕𝑥𝑘 + 𝑎0

is a first-order differential operator with 𝑎𝑘, 𝑎0 ∈ 𝐶∞(𝑀), then its symbol is

𝜎𝐴(𝑥, 𝜉) = ∑
𝑘
𝑎𝑘(𝑥)𝜉𝑘 + 𝐢∑

𝑗,𝑘
𝑎𝑘(𝑥)Γ𝑗𝑘𝑗(𝑥) + 𝑎0(𝑥)

for an arbitrary coordinate system {𝑥𝑘}. Note that the leading term∑𝑘 𝑎𝑘(𝑥)𝜉𝑘 is exactly the

principal symbol, which we will denote by 𝜎′𝐴.
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3.4 Elliptic Differential Operators

Recall that a differential operator𝐴 ∶ Γ(ℰ) → Γ(ℰ) is elliptic if the principal symbol 𝜎′𝐴(𝑥, 𝜉) ∈

End(ℰ𝑥) is invertible for all 𝜉 ≠ 0. By formula (3.11), the full symbol of an elliptic operator 𝐴

of order𝑚 has the form

𝜎𝐴(𝑥, 𝜉) = 𝑎𝑚(𝑥, 𝜉) +⋯+ 𝑎0(𝑥, 𝜉) (3.12)

where 𝑎𝑚 = 𝜎′𝐴 is the principal symbol and each 𝑎𝑘(𝑥, 𝜉) is homogeneous in 𝜉 of degree 𝑘. If

𝜉 ≠ 0, we can rewrite formula (3.12) into

𝜎𝐴(𝑥, 𝜉) = 𝑎𝑚(𝑥, 𝜉)[𝐼 + 𝑏−1(𝑥, 𝜉) +⋯+ 𝑏−𝑚(𝑥, 𝜉)]

= 𝑎𝑚(𝑥, 𝜉)[𝐼 +
𝑏−1(𝑥, 𝜂)

𝑡 +⋯+ 𝑏−𝑚(𝑥, 𝜂)
𝑡𝑚 ]

(3.13)

where 𝑏𝑘−𝑚(𝑥, 𝜉) = 𝑎𝑘(𝑥, 𝜉) ⋅ 𝑎−1𝑚 (𝑥, 𝜉) is homogeneous in 𝜉 of degree 𝑘 − 𝑚 and |𝜂| = 1 is a

covector such that 𝜉 = 𝑡𝜂 for some 𝑡 > 0.

For a compact subset 𝐾 ⊆ 𝑀, let

𝑅(𝐾) = (𝑚 + 1) ⋅ (∑
𝑘

sup
𝑥∈𝐾,|𝜂|=1

|𝑏−𝑘(𝑥, 𝜂)| + 1) (3.14)

so that
|||
𝑏−𝑘(𝑥, 𝜂)

𝑡𝑘
||| ⩽

|||
𝑏−𝑘(𝑥, 𝜂)

𝑡
||| <

1
𝑚 + 1

for all |𝜉| = 𝑡 > 𝑅(𝐾), and

|||∑
𝑘
𝑏−𝑘(𝑥, 𝜉)||| =

|||∑
𝑘

𝑏−𝑘(𝑥, 𝜂)
𝑡𝑘

||| <
𝑚

𝑚 + 1.
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Therefore for all (𝑥, 𝜉) ∈ 𝑇∗𝑀 with 𝑥 ∈ 𝐾 and |𝜉| > 𝑅(𝐾),∑𝑘 𝑏−𝑘(𝑥, 𝜉) has no eigenvalue of

−1, so [𝐼 + ∑𝑘 𝑏−𝑘(𝑥, 𝜉)], and thus 𝜎𝐴(𝑥, 𝜉), is invertible. Moreover, we observe the symbol

𝜎𝐴(𝑥, 𝜉) of an elliptic differential operator 𝐴 of order 𝑚 satisfies the following condition: for

any compact 𝐾 ⊆ 𝑀, there is a positive constant 𝑐𝐾 such that

(1 + |𝜉|)𝑚 ⩽ 𝑐𝐾 |𝜎𝐴(𝑥, 𝜉)|, (3.15)

for all (𝑥, 𝜉) ∈ 𝑇∗𝑀 with 𝑥 ∈ 𝐾 and |𝜉| ⩾ 𝑅(𝐾).

Remark 6. The proof of formula (3.15) above generalizes [Shu01, Proposition 5.1].

The next lemma shows the inverse of𝐴, if exists, is a symbol. Its proof andmore general results

can be found in [Saf97, § 10].

Lemma 3.11. Suppose the symbol 𝜎𝐴(𝑥, 𝜉) of a ψDO 𝐴 ∈ Ψ𝑚(Γ) satisfies (3.15). If 𝑏(𝑥, 𝜉) ∈

End(ℰ) and for any compact 𝐾 ⊆ 𝑀, there exists a positive constant 𝑟𝐾 such that for all (𝑥, 𝜉) ∈

𝑇∗𝑀 with 𝑥 ∈ 𝐾, |𝜉| > 𝑟𝐾 ,

𝜎𝐴(𝑥, 𝜉) ⋅ 𝑏(𝑥, 𝜉) = 𝐼,

then 𝑏(𝑥, 𝜉) ∈ S−𝑚(Γ). Clearly such symbol 𝑏(𝑥, 𝜉) is unique modulo endomorphisms that van-

ish for large |𝜉|.

Let us fix a locally finite covering {𝑉𝛼} of𝑀 such that each 𝑉𝛼 is precompact and let 𝒞 ∶= {𝑉𝛼}.

For each (𝑥, 𝜉) ∈ 𝑇∗𝑀, let 𝜒(𝑥, 𝜉) be a smooth function on 𝑇∗𝑀 such that

𝜒(𝑥, 𝜉) = {
1, if 𝑥 ∈ 𝐾, |𝜉| ⩾ 𝑅(𝐾) + 1

0, if 𝑥 ∈ 𝐾, |𝜉| ⩽ 𝑅(𝐾)
for all compact 𝐾 ∈ 𝒞, (3.16)
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so 𝜒(𝑥, 𝜉)𝜎−1
𝐴 (𝑥, 𝜉) is well-defined on 𝑇∗𝑀 and for any (𝑥, 𝜉) with 𝑥 ∈ 𝐾, |𝜉| > 𝑅(𝐾) + 1,

𝜎𝐴(𝑥, 𝜉)𝜒(𝑥, 𝜉)𝜎−1
𝐴 (𝑥, 𝜉) = 𝐼.

Therefore by Lemma 3.11, 𝜒(𝑥, 𝜉)𝜎−1
𝐴 (𝑥, 𝜉) ∈ S−𝑚 and will be denoted by 𝜎 (−1)

𝐴 (𝑥, 𝜉). To

summarize our discussion in this section, we have

Corollary 3.12. If 𝐴 is an elliptic differential operator of order 𝑚, then there exists a symbol

𝜎 (−1)
𝐴 (𝑥, 𝜉) ∈ S−𝑚(Γ) such that

𝜎𝐴(𝑥, 𝜉) ⋅ 𝜎 (−1)
𝐴 (𝑥, 𝜉) = 𝐼

for large |𝜉|.

Remark 7. In general, the subsets

𝑈1 = {(𝑥, 𝜉) ∈ 𝑇∗𝑀 ∶ 𝑥 ∈ 𝐾, |𝜉| ⩾ 𝑅(𝐾) + 1 for all compact 𝐾 ∈ 𝒞}

and

𝑈2 = {(𝑥, 𝜉) ∈ 𝑇∗𝑀 ∶ 𝑥 ∈ 𝐾, |𝜉| ⩽ 𝑅(𝐾) for all compact 𝐾 ∈ 𝒞}

are not closed in 𝑇∗𝑀. But 𝜒(𝑥, 𝜉) in (3.16) is well-defined since the closures 𝑈1 and 𝑈2 are

disjoint.
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Chapter 4

Proof of Theorem 2.14

Since the Lie group action on𝑀 is cocompact, the injectivity radii at points of𝑀 has a lower

bound 𝐿. Consider a smooth cut-off function 𝜒(𝑥, 𝑦) ∶ 𝑀 ×𝑀 → [0, 1]:

𝜒(𝑥, 𝑦) = {
1 if dist(𝑥, 𝑦) ⩽ 𝐿/2;

0 if dist(𝑥, 𝑦) ⩾ 𝐿.

Now let𝛁 denote the Levi-Civita connection on𝑀, and for any symbol 𝑎(𝑥, 𝜉) ∈ S𝑚(𝛁), let us

define an integral operator

𝐴𝑢(𝑥) = ∫
𝑀
(∫

𝑇∗𝑥𝑀
𝑒−i⟨exp−1𝑥 (𝑦),𝜉⟩ 𝜒(𝑥, 𝑦)𝑎(𝑥, 𝜉) d𝜉) 𝑢(𝑦) d𝑦, (4.1)

of which the Schwartz kernel near the diagonal in𝑀 ×𝑀 can be represented as

𝒜(𝑥, 𝑦) = 𝑝𝑦,𝑥∫
𝑇∗𝑥𝑀

𝑒−i⟨exp−1𝑥 (𝑦),𝜉⟩ 𝑎(𝑥, 𝜉)𝑤(𝑥, 𝑦) d𝜉, (4.2)
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where 𝑤(𝑥, 𝑦) = (2𝜋)𝑑√𝑔(𝑦)/𝑝𝑦,𝑥. We set the coordinate system at 𝑥 to be orthonormal, so

𝑝𝑦,𝑥 is a 0-density in 𝑥 and 1-density in 𝑦 and that the factor 𝑤(𝑥, 𝑦) is a well-defined non-

vanishing function of both 𝑥 and 𝑦. Clearly the amplitude 𝑎(𝑥, 𝜉)𝑤(𝑥, 𝑦) belongs to class

S𝑚(𝛁), so by Lemma 3.8 and formula (3.8), 𝐴 is a ψDO with symbol

𝜎𝐴(𝑥, 𝜉) ∼ 𝑎(𝑥, 𝜉)𝑤(𝑥, 𝑦)|𝑥=𝑦 + ∑
|𝛼|≥1

(D𝛼
𝜉𝑎(𝑥, 𝜉)∇

𝛼
𝑦𝑤(𝑥, 𝑦))|𝑦=𝑥 (4.3)

as |𝜉| → ∞. Here we use the notation 𝑤(𝑥, 𝑦)|𝑦=𝑥 instead of 𝑤(𝑥, 𝑥) to emphasize that the

coordinates {𝑥𝑘} and {𝑦𝑘} at 𝑥 and 𝑦 are in general different. As a consequence, the weight

factor 𝑝𝑦,𝑥 ≠ 1 in general for 𝑦 = 𝑥.

The Dirac operator /𝖣+ is elliptic, so by Corollary 3.12 its symbol has an inverse for large |𝜉|,

which we denote by 𝜎(−1)/𝖣+ (𝑥, 𝜉). Consider an operator �̃� similar to the one defined in (4.1):

�̃�𝑢(𝑥) = ∫
𝑀
(∫

𝑇∗𝑥𝑀
𝑒−i⟨exp−1𝑥 (𝑦),𝜉⟩ 𝜒(𝑥, 𝑦) ̃𝑎(𝑥, 𝜉) d𝜉) 𝑢(𝑦) d𝑦,

where ̃𝑎(𝑥, 𝜉) = 𝜎−1/𝖣+ (𝑥, 𝜉) 𝑎(𝑥, 𝜉)𝑤
−1(𝑥, 𝑦)|𝑦=𝑥 ∈ S𝑚−1(𝛁). Obviously, �̃� is a properly sup-

ported ψDO, so by Theorem 3.10,

𝜎/𝖣+�̃� ∼ ∑
𝛼,𝛽,𝛾

1
𝛼!

1
𝛽!

1
𝛾! 𝑃𝛽,𝛾(𝑥, 𝜉)D

𝛼+𝛽
𝜉 𝜎/𝖣+(𝑥, 𝜉)D

𝛾
𝜉∇

𝛼
𝑥𝜎�̃�(𝑥, 𝜉)

= 𝜎/𝖣+(𝑥, 𝜉) ⋅ 𝜎�̃�(𝑥, 𝜉) + 𝑅1(𝑥, 𝜉)
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as |𝜉| → ∞, where 𝑅1(𝑥, 𝜉) ∈ S𝑚−𝑟(𝛁) for some positive 𝑟. (More precisely, 𝑟 ⩾ 2/3 by (3.10).)

Also by (4.3) we have

𝜎/𝖣+(𝑥, 𝜉) ⋅ 𝜎�̃�(𝑥, 𝜉) ∼ 𝜎/𝖣+(𝑥, 𝜉)[ ̃𝑎(𝑥, 𝜉)𝑤(𝑥, 𝑦) + ∑
|𝛼|≥1

(D𝛼
𝜉 ̃𝑎(𝑥, 𝜉)∇𝛼

𝑦𝑤(𝑥, 𝑦))]|𝑦=𝑥

= 𝑎(𝑥, 𝜉) + 𝜎/𝖣+(𝑥, 𝜉) ⋅ ∑
|𝛼|≥1

(D𝛼
𝜉 ̃𝑎(𝑥, 𝜉)∇𝛼

𝑦𝑤(𝑥, 𝑦))|𝑦=𝑥

= 𝑎(𝑥, 𝜉) + 𝑅2(𝑥, 𝜉),

where 𝑅2(𝑥, 𝜉) ∈ S𝑚−1(𝛁) as |𝜉| → ∞. Therefore we conclude

𝜎/𝖣+�̃� ∼ 𝑎(𝑥, 𝜉) − 𝑎′(𝑥, 𝜉), (4.4)

where 𝑎′ ∈ S𝑚−𝑟(𝛁) for some positive 𝑟. Similarly we have

𝜎�̃� /𝖣+ ∼ 𝑎(𝑥, 𝜉) − 𝑎″(𝑥, 𝜉), 𝑎″(𝑥, 𝜉) ∈ S𝑚−𝑟(𝛁). (4.5)

Let 𝑎1 ≡ 1 and 𝑎𝑘+1 = 𝑎′𝑘 for 𝑘 ∈ ℕ+, where 𝑎′𝑘 ∈ S−𝑘𝑟(Γ) is the symbol in (4.4) when we

replace 𝑎 by 𝑎𝑘, then there exists a symbol 𝑎 ∈ S0(Γ) uniquemodulo S−∞ such that 𝑎 ∼ ∑𝑘 𝑎𝑘
by Lemma 3.4. Therefore by setting 𝑞(𝑥, 𝑦) = 𝜎−1/𝖣+ (𝑥, 𝜉) 𝑎(𝑥, 𝜉)𝑤

−1(𝑥, 𝑦)|𝑦=𝑥 ∈ S−1(𝛁), the

associated integral operator

𝑄𝑢(𝑥) = ∫
𝑀
(∫

𝑇∗𝑥𝑀
𝑒−i⟨exp−1𝑥 (𝑦),𝜉⟩ 𝜒(𝑥, 𝑦)𝑞(𝑥, 𝜉) d𝜉) 𝑢(𝑦) d𝑦 (4.6)

satisfies 𝑄/𝖣+ = 𝐼 mod Ψ−∞.
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Analogously, we can construct a differentψDO𝑄′ by replacing𝑎′𝑘 by𝑎″𝑘 in (4.5), so that /𝖣+𝑄′ =

𝐼 mod Ψ−∞. Noticing 𝑄 = 𝑄/𝖣+𝑄′ = 𝑄′ mod Ψ−∞, we conclude that 𝑄/𝖣+ = /𝖣+𝑄 =

𝐼 mod Ψ−∞.

To finish our proof, we need to show that the Schwartz kernels of (𝑄 /𝖣+−𝐼) and ( /𝖣+𝑄−𝐼) are

𝐺-invariant and supported near the diagonal of𝑀 ×𝑀. Let 𝐿 still denote the lower bound of

injectivity radii, and let𝜙 and𝜓 be two arbitrary test functions satisfying dist (supp 𝜙, supp𝜓) >

𝐿, so that 𝜙(𝑥)𝜓(𝑦) is supported outside the 𝐿-neighborhood of the diagonal. One can easily

see from (4.6) that supp𝑄𝜙 ⊆ 𝑁𝐿(supp𝜙), where𝑁𝐿(supp𝜙) is the 𝐿-neighborhood of supp𝜙.

So

⟨(𝑄 /𝖣+ − 𝐼) 𝜙, 𝜓⟩ = ⟨( /𝖣+𝑄 − 𝐼) 𝜙, 𝜓⟩ = 0.

Therefore the Schwartz kernels of (𝑄 /𝖣+−𝐼) and ( /𝖣+𝑄−𝐼) vanish outside the 𝐿-neighborhood

of the diagonal. The invariant property of the Schwartz kernel is due to the 𝐺-invariance of

𝑞(𝑥, 𝜉).
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Chapter 5

Application

In this chapter wewill generalize the Lichnerowicz vanishing theorem for spinor bundles with

a proper and cocompact action. In 2013, Z. Liu has proved the Mathai-Zhang index vanishes

for a spinmanifold which carries a𝐺-invariant Riemannianmetric of positive scalar curvature

if the group 𝐺 in unimodular [Liu13]. W. Zhang in 2015 extended Liu’s result to general Lie

groups [Zha15]. We provide a new proof of the same result using our framework developed in

this thesis.

5.1 Preliminaries

First we introduce some basic concepts and the classical Lichnerowicz theorem for compact

manifolds. Let 𝒮 → 𝑀 be a spinor bundle on an even-dimensional spin manifold 𝑀 with a

Levi-Civita connection ∇𝒮 ∶ Γ(𝒮) → Γ(𝑇∗𝑀 ⊗ 𝒮) and /𝖣 the Dirac operator associated to ∇𝒮.

The second covariant derivative is defined by the composition:

∇𝑇∗𝑀⊗𝒮∇𝒮 ∶ Γ(𝒮) ∇𝒮
−−→ Γ(𝑇∗𝑀 ⊗ 𝒮) 1⊗∇𝒮+𝛁⊗1−−−−−−−−→ Γ(𝑇∗𝑀 ⊗𝑇∗𝑀 ⊗ 𝒮) (5.1)
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so that

(∇𝑇∗𝑀⊗𝒮∇𝒮 𝑢)(𝑋, 𝑌) = ∇𝒮
𝑋∇𝒮

𝑌 𝑢 − ∇𝒮
(𝛁𝑋𝑌) 𝑢,

where 𝛁 is the Levi-Civita connection on𝑀. The connection Laplacian Δ𝒮 ∶ Γ(𝒮) → Γ(𝒮) is

defined by

Δ𝒮 𝑢 ∶= −tr(∇𝑇∗𝑀⊗𝒮∇𝒮 𝑢). (5.2)

Here the trace tr(𝐸) is the contraction of any 𝐸 ∈ Γ(𝑇∗𝑀 ⊗ 𝑇∗𝑀 ⊗ 𝒮) with the metric tensor

𝑔 = 𝑔𝑖𝑗 𝜕𝑥𝑖 ⊗ 𝜕𝑥𝑗 .

The Riemannian curvature 𝑅 on a Riemannian manifold𝑀 is a (1, 3)-tensor defined by

𝑅(𝑋, 𝑌)𝑍 ∶= 𝛁𝑋𝛁𝑌𝑍 − 𝛁𝑌𝛁𝑋𝑍 − 𝛁[𝑋,𝑌]𝑍.

Given a local frame {𝜕𝑥𝑖} of the tangent bundle 𝑇𝑀, we define a (0, 4)-tensor 𝑅𝑖𝑗𝑘𝑙 using the

Riemannian metric 𝑔:

𝑅𝑖𝑗𝑘𝑙 ∶= 𝑔(𝑅(𝜕𝑥𝑖 , 𝜕𝑥𝑗)𝜕𝑥𝑘 , 𝜕𝑥𝑙).

A scalar curvature 𝐬𝐜𝐚𝐥 is a real number defined by

𝐬𝐜𝐚𝐥 ∶= ∑
𝑙𝑚
𝑅𝑙𝑚𝑙𝑚.

Theorem 5.1 (Lichnerowicz Formula, see [LM89, Chap. II,Theorem 8.8]). Let 𝑀 be a spin

manifold and suppose 𝒮 is a spinor bundle over𝑀 endowed with a Riemannian connection ∇𝒮.

Then

/𝖣2 = Δ𝒮 + 𝐬𝐜𝐚𝐥
4 . (5.3)
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5.2 Spinor Bundles over Compact Manifolds

Theorem 5.2 (Lichnerowicz Vanishing Theorem, see [LM89, Chap. II,Corollary 8.9]). Let𝑀

be a compact spin manifold and 𝒮 a spinor bundle over𝑀. Suppose the scalar curvature of𝑀 is

non-negative and strictly positive at some point. Then ker /𝖣 = 0 and ind( /𝖣) = 0.

Proof. By the Lichnerowicz formula (5.3), for any section 𝑢 ∈ Γ(𝒮) we have

∫
𝑀
( /𝖣2𝑢, 𝑢)Ω = ∫

𝑀
(Δ𝒮𝑢, 𝑢)Ω + 1

4 ∫𝑀
𝐬𝐜𝐚𝐥 ⋅ ‖𝑢‖2Ω (5.4)

where Ω is a volume form on𝑀, and (⋅, ⋅) is the Hermitian product of 𝒮.

Let {𝑒𝑖} be an local orthonormal frame on 𝑇𝑀. Since

Δ𝒮𝑢 = −∑
𝑖
(∇𝒮

𝑒𝑖∇𝒮
𝑒𝑖 − ∇𝒮

𝛁𝑒𝑖𝑒𝑖
)𝑢

we have

(Δ𝒮𝑢, 𝑢) = −∑
𝑖
(∇𝒮

𝑒𝑖∇𝒮
𝑒𝑖𝑢 − ∇𝒮

𝛁𝑒𝑖𝑒𝑖
𝑢, 𝑢),

and

(∇𝒮
𝑒𝑖∇𝒮

𝑒𝑖𝑢, 𝑢) = −(∇𝒮
𝑒𝑖𝑢,∇𝒮

𝑒𝑖𝑢) + 𝑒𝑖(∇𝒮
𝑒𝑖𝑢, 𝑢)

because the connection is compatible with the Hermitian product of 𝒮. Hence we have

(Δ𝒮𝑢, 𝑢) = ∑
𝑖
(∇𝒮

𝑒𝑖𝑢,∇𝒮
𝑒𝑖𝑢) − 𝑒𝑖(∇𝒮

𝑒𝑖𝑢, 𝑢) + (∇𝒮
𝛁𝑒𝑖𝑒𝑖

𝑢, 𝑢) (5.5)
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Let 𝛼 be a one-form such that for any smooth vector field 𝑋, 𝛼(𝑋) ∶= −(∇𝒮
𝑋𝑢, 𝑢). The diver-

gence of 𝛼 is

div 𝛼 = tr(𝛁𝛼) = ∑
𝑖
𝑒𝑖𝛼(𝑒𝑖) − 𝛼(𝛁𝑒𝑖𝑒𝑖) = ∑

𝑖
−𝑒𝑖(∇𝒮

𝑒𝑖𝑢, 𝑢) + (∇𝒮
𝛁𝑒𝑖𝑒𝑖

𝑢, 𝑢). (5.6)

Together with (5.5) we have

(Δ𝒮𝑢, 𝑢) = (∇𝒮𝑢,∇𝒮𝑢) + div 𝛼. (5.7)

Since ∫𝑀 div(𝛼)Ω = 0, by taking the integral of both sides of (5.7), we have

∫
𝑀
(Δ𝒮𝑢, 𝑢)Ω = ∫

𝑀
‖∇𝒮𝑢‖2Ω.

If 𝑢 is in the kernel of the Dirac operator /𝖣, then

0 = ∫
𝑀
( /𝖣2𝑢, 𝑢)Ω = ∫

𝑀
‖𝛁𝑢‖2Ω+ 1

4 ∫𝑀
𝐬𝐜𝐚𝐥 ⋅ ‖𝑢‖2Ω.

Under the hypothesis that 𝐬𝐜𝐚𝐥 > 0 we know 𝛁𝑢 = 0 and d(𝑢, 𝑢) = (𝛁𝑢, 𝑢) + (𝑢, 𝛁𝑢) implies

‖𝑢‖ is a constant. Together with∫𝑀 𝐬𝐜𝐚𝐥⋅‖𝑢‖2Ω = 0we conclude 𝑢 = 0, that is, the kernel of /𝖣

vanishes. Since /𝖣 is self-adjoint, its cokernel also vanishes. We conclude that ind( /𝖣) = 0. ■

As a consequence of the Atiyah-Singer Index Theorem, one has from Theorem 5.2 the follow-

ing theorem:

Corollary 5.3 ([LM89, Chap. II,Theorem 8.11]). Let𝑀 be a compact spin manifold of dimen-

sion 4𝑘. If𝑀 admits a metric of positive scalar curvature, then the �̂�-genus �̂�(𝑀) = 0.
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5.3 Spinor Bundles with Lie Group Action

In this section 𝒮 → 𝑀 is still a spinor bundle on an even-dimensional spin manifold, and

the scalar curvature of 𝑀 is non-negative and positive at some point. Let 𝐺 be a Lie group

acting on𝑀 properly and cocompactly, and assume the 𝐺-action preserves the spin structure

of𝑀. We also assume 𝐺 acts on 𝒮 equivariantly. Then we have the following generalization of

Theorem 5.2:

Theorem 5.4. Suppose 𝑀 is a even-dimensional spin manifold, 𝒮 is a spinor bundle over 𝑀.

Let 𝐺 be a Lie group which acts on 𝑀 properly and cocompactly. We assume that 𝐺 acts on 𝒮

equivariantly and that the Dirac operator /𝖣 associated to the Levi-Civita connection ∇𝒮 on the

spinor bundle 𝒮 is 𝐺-invariant. If 𝑔 is a 𝐺-invariant Riemannian metric on 𝑀 and the scalar

curvature with respect to 𝑔 is non-negative and strictly positive at some point on𝑀, then the index

of /𝖣 as a Fredholm operator on 𝐿2𝜆(𝒮) is 0.

Proof. Let 𝑐(𝑥) be a cut-off function in (2.1) and Ω is a 𝐺-invariant volume form. For any

𝑢 ∈ Γ𝜆(𝒮)𝐺, by the Lichnerowicz formula we have

∫
𝑀
𝑐(𝑥)( /𝖣2𝑢, 𝑢)Ω = ∫

𝑀
𝑐(𝑥)(Δ𝒮𝑢, 𝑢)Ω + 1

4 ∫𝑀
𝐬𝐜𝐚𝐥 ⋅ ‖𝑢‖2Ω. (5.8)

Together with (5.7) and Lemma 2.9 we have

∫
𝑀
𝑐(𝑥)(Δ𝒮𝑢, 𝑢)Ω = ∫

𝑀
𝑐(𝑥)‖𝛁𝑢‖2Ω.

Therefore if 𝑢 is in the kernel of /𝖣, then

0 = ∫
𝑀
𝑐(𝑥)( /𝖣2𝑢, 𝑢)Ω = ∫

𝑀
𝑐(𝑥)‖𝛁𝑢‖2Ω+ 1

4 ∫𝑀
𝑐(𝑥) 𝐬𝐜𝐚𝐥 ⋅ ‖𝑢‖2Ω.
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So if 𝐬𝐜𝐚𝐥 > 0, similar to the proof of Theorem 5.2, we must have 𝑢 = 0 and that ker /𝖣 = {0}.

By Theorem 2.11, /𝖣 is self-adjoint in 𝐿2𝜆(𝒮), so its cokernel is also trivial. We conclude that the

index of /𝖣 in 𝐿2𝜆(𝒮) is 0. ■
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