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Alcohol is one of the most widely used psychoactive substances and accounts for 5% of global 

disease burden. The goal of the present work is to help advance efforts to both identify prognostic 

markers of risk, and to understand the mechanisms by which alcohol consumption impacts health. 

Early life stress is one of the strongest predictors of mental illness, including alcohol dependence, 

and has been hypothesized to impact risk via modulation of striatal reward functions and reward 

learning. Studies examined the effect of stress on reward learning and processing, and tested for 

moderation by genetic and environmental risk. Results were largely null showing no impact of 

early life stress or acute laboratory manipulated stress on behavioral or neural indices of reward 

learning. There were also suggestive results indicating that genetic risk may moderate the effects 

of early life stress. These findings challenge suggestions that stress-induced anhedonia may 

underlie the pathogenic effects of stress, but must also be considered in the context of study 

design differences (timing of stress manipulation and magnitude of rewards used). The final study 

in this work took the opposite approach, identifying replicable and genetically-conferred 

reductions in gray matter volume of frontal gyri, which prospectively predicted alcohol use. 

Further, gene expression analyses in the post-mortem human frontal cortex identified replicable 
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associations with genetic risk for alcohol consumption, which implicated changes in spliceosomal 

and endocytotic pathway components. These results suggest that alcohol consumption does not 

drive reduced brain volume, but rather that these associations are attributable to shared genetic 

factors.  



 

1 

 

Chapter 1: Introduction 

1.1 Why study alcohol consumption? 

Alcohol use and its associated negative outcomes are ubiquitous international public 

health concerns. Alcohol is one of the most widely used psychoactive substances (82% of the 

U.S. population reports lifetime use), is one of the earliest used (29.6% of children aged 12-17 

report lifetime use) (Substance Use and Mental Health Administration, 2015), and use is 

frequently initiated prior to other substances of abuse (Barry et al., 2016). The consequences of 

alcohol use are substantial; it accounts for 6% of deaths globally, 5% of the global disease burden 

(World Health Organization, 2014), and costs associated with alcohol use amount to more than 

1% of the gross national product in high-and-middle-income-countries (Rehm et al., 2009). 

Moreover, alcohol use is associated with a host of physical and mental health conditions, including 

numerous forms of cancer and depression (Kessler et al., 1996; Rehm et al., 2010), further 

compounding the negative impact of alcohol on public health and the global economy. It is thus 

critical to advance efforts to both identify prognostic markers of risk, and to understand the 

mechanisms by which alcohol consumption impacts health.   

 

1.2 Consequences and correlates of alcohol consumption 

1.2.1 Comorbidities 

 Alcohol dependence is frequently observed to be co-morbid with a wide array of other 

psychiatric disorders, including abuse of other substances, depression, anxiety, post-traumatic 

stress disorder (PTSD), bipolar disorder, as well as borderline and antisocial personality disorders 

(Bierut et al., 1998; Conditions & Conditions, 2004; Grant et al., 2008; Kessler et al., 1996). The 
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associations between alcohol dependence and its comorbidities are complex, as there is evidence 

for bi-directional risk with several disorders (i.e. depression, anxiety, PTSD, and several 

personality disorders; see ‘Mechanisms of Risk’ below). Of these comorbidities, there is evidence 

that alcohol dependence increases risk for depression, anxiety, and cannabis dependence (Barry 

et al., 2016; Boden & Fergusson, 2011; Jeanblanc, 2015; Schlossarek et al., 2016). Moderate 

alcohol consumption has been observed to be associated with reduced risk for depression and 

anxiety (Bellos et al., 2013), while abstinence has been observed to be associated with increased 

risk, though this may be attributable to confounds with abstinence, such as the inclusion of former-

drinkers (Bell et al., 2014).  

 

1.2.2 Cognition 

 Chronic alcohol abuse and dependence are associated with accelerated cognitive decline 

and increased risk for dementia (Topiwala & Ebmeier, 2017). There is some evidence, from large 

longitudinal epidemiological studies, that moderate alcohol consumption (i.e. 1-2 drinks per day) 

is associated with improved cognition (Piumatti et al., 2018), though these associations are not 

consistently observed (Topiwala & Ebmeier, 2017). The context in which alcohol is consumed 

may also be important, with some data suggesting that the benefits of moderate consumption in 

older adults are mediated by social-drinking (i.e. maintaining an active social life into old age) 

(Dunbar et al., 2017), and concerns remain that confounds such as socioeconomic status and 

intelligence are driving the purported health benefits (Topiwala & Ebmeier, 2017).   

 Alcohol use in adolescence and young adulthood has been associated with lower 

performance across a variety of neuropsychological tasks, including attention, verbal memory, 

visuospatial functioning, processing speed, and executive functioning (Jacobus & Tapert, 2013). 

While these associations appear to be largely driven by heavy drinkers (Brown et al., 2000; 
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Squeglia et al., 2010), there is also some evidence of a dose-dependent relationship (Squeglia et 

al., 2010). Taken together with evidence that an earlier age of initiating alcohol consumption is 

associated with increased risk for an alcohol use disorder later in life (Aiken et al., 2018; Hingson 

et al., 2010), these results emphasize that alcohol consumption during adolescence and young 

adulthood may be detrimental to long-term cognitive health.  

 Beyond executive functioning and related processes, impulsivity-related constructs are 

among the most frequently observed correlates of alcohol use and dependence, across both 

adolescence and adulthood (Heinrich et al., 2016; Jonker et al., 2014; Loxton & Dawe, 2001; 

Stautz & Cooper, 2013; Tapper et al., 2015). This includes reward sensitivity, behavioral 

impulsivity, negative urgency, and risk sensitivity (Jentsch et al., 2014), where alcohol use and 

dependence have been found to be associated with increased impulsivity. In addition to 

associations with current drug use, executive functioning deficits and increased impulsivity/reward 

sensitivity may contribute to future risk (see ‘Mechanisms of Risk’, below) (Coskunpinar & Cyders, 

2013).    

 

1.2.3 Brain function and structure 

 In line with its effects on cognition, alcohol dependence is associated with widespread 

reductions in brain volume of regions known to be important for executive functioning, long term 

memory, and reward processes. This includes the dorsal lateral prefrontal cortex, middle frontal 

cortex, anterior cingulate cortex, insula, superior temporal cortex, precentral gyrus, thalamus, 

hippocampus, striatum, and cerebellum (Spear, 2018; Yang et al., 2016). While only a limited 

number of longitudinal studies have been conducted in adults, there is evidence that alcohol 

dependence is associated with accelerated age-related shrinkage of the frontal cortex (Sullivan 

et al., 2018).  Alcohol consumption has also been reported to be associated with lower intracranial 
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volume (ICV) (Paul et al., 2008) and hippocampal volume (Sullivan et al., 2018; Topiwala et al., 

2017), lower volume of the cerebellum, insula, caudate and operculum (Thayer et al., 2017), and 

in a sample with comorbid psychiatric disorders (i.e. schizophrenia and bipolar disorder), wide-

spread cortical thinning, particularly in the frontal cortex and insula (Lange et al., 2017).  

 In adolescents, heavy drinking is correlated with lower volume and thickness in the frontal 

and temporal cortices (Pfefferbaum et al., 2016; Whelan et al., 2014), as well as lower volume of 

the hippocampus, cerebellum, insula, cingulate, cuneus, and striatum (Heikkinen et al., 2016; 

Lisdahl et al., 2013; Nagel et al., 2005; Squeglia et al., 2014; Thayer et al., 2017). Longitudinal 

studies have found that the initiation of heavy drinking in adolescence is associated with 

accelerated age-related shrinkage of the frontal and temporal cortices (Luciana et al., 2013; 

Pfefferbaum et al., 2017; Squeglia et al., 2015). Twin analyses have also found some evidence 

for putatively causal effects of heavy alcohol consumption on reduced volume of the hippocampus 

and temporal cortex (Wilson et al., 2017, 2015). Notably, the one longitudinal study to report also 

examining moderate alcohol use did not find any associations (Pfefferbaum et al., 2017). 

 Rodent models have strongly implicated striatal dopamine neurotransmission, particularly 

in the context of reward paradigms, in the etiology of addiction (Spoelder et al., 2017; Wang et 

al., 2015). Thus, a large body of work has focused on the effects of alcohol addiction and 

dependence in humans on reward task-related brain activity via functional magnetic resonance 

imaging (fMRI) (Balodis & Potenza, 2015). Studies using drug-associated cues have largely found 

evidence for increased activation at the time of cue receipt in an extended network of reward-

associated regions, including the caudate, insula, amygdala, anterior cingulate, and orbitofrontal 

cortex (Diekhof et al., 2008; Geyer et al., 2010). In contrast, studies using monetary rewards have 

largely found evidence for reduced activation of the striatum during reward anticipation, though 

this evidence is more mixed (Balodis & Potenza, 2015). Differences in findings across studies 
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have been attributed to differences in duration of illness, as well as potential moderating effects 

of socioeconomic status (Balodis & Potenza, 2015; Hommer et al., 2011).  

The largest functional neuroimaging study to specifically examine adolescent drinking 

behavior to date (n=692), found that binge drinking was associated with reduced prefrontal and 

inferior frontal activation during reward anticipation, as well as increased activation of the 

hippocampus and caudate (Whelan et al., 2014). A later study that included the same sample 

(N=1,544) found that alcohol consumption was positively correlated with caudate activity during 

reward anticipation (Jia et al., 2016). Beyond reward processing, and in line with data supporting 

an effect of alcohol abuse on executive functions, heavy drinking or binge drinking in adolescence 

has been associated with differences in frontal and parietal activation during working memory and 

cognitive control tasks across several studies, though the direction of effect is not always 

consistent (Feldstein Ewing et al., 2014). Some have proposed that this might be interpreted with 

a shifted “inverted-U” model (Squeglia et al., 2014), where initial damage to the system (i.e. 1-2 

years of binge drinking) requires compensatory activity to maintain performance (i.e. greater 

activity), but after several years of damage it’s too difficult to maintain performance, resulting in 

reduced activation. 

 

1.3 Risk for alcohol consumption 

1.3.1 Environmental risk 

 Early life stress (ELS) is arguably the single strongest environmental predictor of risk for 

psychopathology, including alcohol dependence (Enoch, 2011). Model simulations from a large 

cross-sectional survey found that as much as 21% of the population risk for substance use may 

be attributable to ELS (Green et al., 2013). Beyond the abundant cross-sectional evidence, 
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longitudinal prospective studies have also repeatedly found that ELS predicts the future onset 

and severity of alcohol use (Cornelius et al., 2016; Harrington et al., 2011; Mersky et al., 2013; 

Ramos-Olazagasti et al., 2017). Recent and acute stress are also associated with increased 

alcohol consumption (Casement et al., 2013; Magrys & Olmstead, 2015; McGrath et al., 2016) 

possibly as a coping mechanism (Park et al., 2004), and there is some evidence that the effect of 

recent stress may be stronger in people who also experienced ELS (Young-Wolff et al., 2012).  

 In addition to stress, circadian disruption is also associated with increased risk for alcohol 

dependence (Hasler et al., 2012), and circadian disruption is hypothesized to be one of the 

mechanisms by which stress impacts health outcomes (Sarkar, 2012). There is a bi-directional 

relationship between alcohol use and the circadian system. Moderate alcohol consumption 

induces sleepiness (Roehrs & Roth, 2001), while binge drinking and alcohol dependence are 

associated with disrupted sleep homeostasis, reduced sleep quality, and disrupted biological and 

cellular rhythmicity (Huang et al., 2010; Roehrs & Roth, 2001; Thakkar et al., 2015). Conversely, 

chronotype and sleep quality are associated with future risk for alcohol dependence (Hasler et 

al., 2017; Logan et al., 2017; Wong et al., 2018), and shift work is associated with sleep disruption 

and increased alcohol consumption (Morikawa et al., 2013). The circadian system has also been 

proposed to mediate some of the effects of stress on risk for alcoholism, as the major stress 

system hormones are regulated via circadian mechanisms (Nader et al., 2010).  

 

1.3.2 Genetic risk 

 Twin studies indicate that both alcohol dependence and consumption are moderately 

heriTable 2.(dependence: 49% (Verhulst et al., 2015); consumption: 33% (Mbarek et al., 2015)). 

Moreover, cross-sectional genome-wide association studies (GWAS) have found that a 

substantial portion of the heritability is captured by common single nucleotide polymorphisms 
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(SNPs; dependence: 10-30% (Palmer et al., 2015; Walters et al., 2018); consumption: 13% 

(Clarke et al., 2017)). These results indicate that, as with most human traits, both genetic and 

environmental factors influence risk. Perhaps the best-known single variant which predicts alcohol 

dependence and consumption is rs671 in the aldehyde dehydrogenase (ALDH2) gene, the A-

allele of which results in a catalytically inactive version of the protein (Edenberg, 2007), and in 

turn slows metabolism of acetaldehyde (the second step in the alcohol metabolism pathway). This 

allele, which is most common in East-Asian populations, results in the well-known flushing of the 

face, in addition to significant discomfort, thereby resulting in reduced risk for alcohol dependence 

(Jorgenson et al., 2017).  

Thanks to relatively recent large-scale collaborations, such as the Psychiatric Genetics 

Consortium (PGC), large nation-wide studies like the UK Biobank, and the increase in public-

interest in personal health technologies like the company 23andMe, there has been a surge of 

extremely large-sample GWAS (i.e. N = 50k–120k) for numerous phenotypes, including several 

alcohol use and dependence phenotypes (Clarke et al., 2017; Crist et al., 2018; Jorgenson et al., 

2017; Sanchez-Roige et al., 2017; Schumann et al., 2016; Walters et al., 2018). These studies 

have finally reached the sample-size threshold necessary to identify dozens of loci that survive 

statistical correction for multiple comparisons (i.e. correcting for an estimated effective 1 million 

independent comparisons at p<5x10-8). Some findings recapitulate what was already known 

about the etiology of alcohol use and dependence, including several associations in alcohol 

dehydrogenase genes expressed in the liver (i.e. ALDH2, ADH1B, ADH1C, and ADH5).  

Other associations from GWAS provide new and complimentary insights. Loci near the 

autism candidate susceptibility gene AUTS2 have been associated with both alcohol phenotypes 

and insomnia (Jorgenson et al., 2017; Schumann et al., 2016; Stein et al., 2018), highlighting the 

reciprocal relationship of these phenotypes. Recent as-yet unpublished work has found an 

association between alcohol consumption and a locus spanning the Corticotropin Releasing 
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Hormone Receptor 1 (CRHR1), one of the primary receptors for CRF, which regulates the HPA 

axis and the stress response (Crist et al., 2018; Sean M. Smith & Vale, 2006).  In addition to 

these, several associations with genes that are known to play important roles in brain function 

and development have been found. These include AUTS2 (Schumann et al., 2016), which has 

been implicated in human-specific evolution and neuronal development (Oksenberg & Ahituv, 

2013). Variants in CADM2 have been identified (Clarke et al., 2017; Crist et al., 2018) - a brain-

enriched cellular adhesion protein also associated in GWAS of executive functioning and risk-

taking (Ibrahim-Verbaas et al., 2016; Strawbridge et al., 2017). Variants in a more well-known 

gene, DRD2, have also been found (Clarke et al., 2017; Crist et al., 2018). DRD2 is the dopamine 

D2 receptor, a classic schizophrenia candidate-gene, which is well-known to play a role in striatal 

functioning and has also been found in recent GWAS of schizophrenia and sleep duration (Cade 

et al., 2016; Ripke et al., 2014). Replicable associations with KLB,, a gene encoding a protein 

which binds the liver enzyme FGF21, have been found (Clarke et al., 2017; Schumann et al., 

2016),  though intriguingly it has been demonstrated that KLB may exert its influence on alcohol 

consumption via a neuronal mechanism (Schumann et al., 2016).  

Another confirmation that GWAS of alcohol use and dependence have identified replicable 

genetic predictors of alcohol phenotypes come from studies of polygenic risk scores. A polygenic 

risk score (PRS) is a metric reflecting an individual’s genetic burden for a disease of interest. PRS 

are typically calculated by averaging the number of disease-associated alleles, weighted by their 

effect-size, from independent samples (Bogdan et al., 2018). While PRS do not capture the total 

amount variance attributable to genetics, they do replicably predict risk. Initial PRS analyses have 

found that a PRS for alcohol dependence and consumption replicably predict these same 

phenotypes in independent samples (Clarke et al., 2016, 2017; Kapoor et al., 2016; Li et al., 2017; 

Savage et al., 2018; Taylor et al., 2016). Though the effect sizes of PRS analyses are small 

(typically <0.5%), recently developed methods (Turley et al., 2018) can be used to generate 
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modest improvements (>2%; Baranger, unpublished data).  Thus, further work is needed before 

the association between polygenic risk scores for alcohol phenotypes and other traits can be 

reliably examined.  

In addition to the identification of genetic associations, recently developed methods permit 

GWAS researchers to examine the extent to which genetic associations may correlate across 

disorders -  using only the statistical associations with each phenotype - even in samples that are 

only partially overlapping or fully independent (i.e. LD-Score regression (Bulik-Sullivan et al., 

2015)). This approach can help to establish whether it is plausible that two traits share causal 

genetic risk factors, as two traits will show a higher genetic correlation if they share more causal 

variants. It should be noted that this method is not a test for causality per se, as it is correlation-

based. For instance, smoking and lung cancer have a high genetic correlation (Bulik-Sullivan et 

al., 2015) in large part because smoking causes lung cancer, not simply because genetic variants 

associated with smoking independently increase risk for lung cancer (though this may also be 

true).  As expected, alcohol use and dependence show genetic correlations with the use of other 

addictive and psychoactive substances, namely tobacco and cannabis use (Clarke et al., 2017; 

Walters et al., 2018). Alcohol dependence is also consistently associated with other psychiatric 

disorders, including depression, schizophrenia, and ADHD, echoing the epidemiological literature 

on the consistent comorbidities of psychiatric disorders (Crist et al., 2018; Walters et al., 2018). 

These patterns of genetic correlations suggest that many of the risk associations are not specific 

to any one disorder, but rather that they indicate a general increased genetic vulnerability to many 

psychiatric disorders (i.e. the omnigenic model (Boyle et al., 2017)). 

Interestingly, alcohol consumption and dependence show divergent genetic correlations 

with other health outcomes. Alcohol consumption is positively correlated with education and HDL 

cholesterol, and negatively correlated with BMI, obesity, and related health outcomes (Clarke et 

al., 2017; Sanchez-Roige et al., 2017). In contrast, alcohol dependence is not associated with 
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these health outcomes, and is negatively correlated with education (Crist et al., 2018; Walters et 

al., 2018). These divergent results may be driven by differences in the socioeconomic (SES) 

distribution of alcohol dependence, where dependence and binge-drinking are more prevalent in 

low SES populations, and consumption without dependence is more prevalent in high SES 

populations (Crist et al., 2018). However, these correlations also echo the somewhat controversial 

observations of putative cardiovascular health-benefits associated with moderate alcohol 

consumption (Roerecke et al., 2014), and suggest that alternative explanations for those findings, 

such as more alcohol consumption among individuals genetically predisposed towards increased 

cardiovascular health (e.g. the “sick quitter” hypothesis and survivor bias (Shaper et al., 1988)), 

bear further consideration.  

 

1.3.3 Genetic-by-environmental risk 

 Genes and the environment can impact risk independently, but there is growing evidence 

that they also interact with one another to increase or decrease risk for alcohol phenotypes. There 

is a large amount of evidence from twin studies for gene-by-environment (GxE) effects – 

comparisons of heritability between families with different environmental exposures, or within 

twins across time, may indicate the presence of a GxE effect if the heritability estimate differs 

depending on the environmental background. Broadly, results indicate that a permissive 

environment (e.g. low parental knowledge or wider availability)  magnifies the effects of genetic 

risk for alcohol consumption (Young-Wolff et al., 2011). For instance, heritability for alcohol use 

is higher in twins who report that more of their friends drink (Dick et al., 2007), and heritability is 

higher in young adults who live in areas with more businesses selling alcohol (Slutske et al., 

2018). Similarly, a study using polygenic risk scores found that high genetic risk was predictive of 

increased alcohol problems in adolescents in permissive environments, but were not predictive 
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of use in adolescents in non-permissive environments (Salvatore et al., 2014). Finally, there is 

growing evidence that environmental stressors moderate genetic risk. A recent GxE GWAS 

identified a variant that was associated with increased risk for alcohol misuse in African American 

participants who were trauma-exposed, and decreased risk in trauma-free controls (Polimanti et 

al., 2018). Notably, this variant was in the gene PRKG1, which has been implicated in learning, 

memory, and circadian processes.   

 

1.4 Predicting risk 

1.4.1 Alcohol use and mental illness 

 Several psychiatric disorders are associated with increased risk of alcohol consumption, 

problematic drinking, and alcohol dependence. Longitudinal studies have found that both 

depression and anxiety predict future risk in adults (Crum et al., 2001; Kushner et al., 2000; 

Prisciandaro et al., 2012) as well as in adolescents and young adults (Aalto-Setälä et al., 2002; 

Webster-Stratton, 2001; King et al., 2004; Kumpulainen, 2000; Marmorstein et al., 2010; Nichter 

& Chassin, 2015), and there is some evidence that these effects may be moderated by sex 

(DeMartini & Carey, 2011; JianLi Wang & Patten, 2001). In line with the large body of evidence 

that early life stress increases risk for alcohol use and dependence (see ‘Environmental Risk’ 

above), post-traumatic stress disorder (PTSD) has also been observed to prospectively predict 

alcohol use, both in college (Read et al., 2013) and combat veteran (Black et al., 2018; Gaher et 

al., 2014; Possemato et al., 2015) samples. Similarly, borderline and antisocial personality 

disorders have both been observed to be predictive of future alcohol use problems (Rosenström 

et al., 2018; Stepp et al., 2005), as have externalizing disorders (e.g. ADHD and conduct disorder) 

(Farmer et al., 2016; Wilens et al., 2011). 
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 Recent genetic studies have also observed that genetic risk (ascertained via polygenic 

risk score) for some disorders is correlated with, and predictive of, substance and alcohol use. 

Genetic risk for depression, bipolar disorder, schizophrenia, and ADHD have been observed to 

be correlated with alcohol use and dependence (Andersen et al., 2017; Carey et al., 2016, 2017; 

Du Rietz et al., 2018), though the associations with schizophrenia may not be specific to alcohol 

dependence (Hartz et al., 2017). This work builds on evidence from genetic correlation analyses 

(see ‘Genetic Risk’ above) by providing further evidence that the associations between alcohol 

phenotypes and other psychiatric disorders can at least partially be attributable to shared genetic 

risk factors.  

 

1.4.2 Cognition 

 Several cognitive phenotypes are predictive of future alcohol use. While there is abundant 

evidence that chronic alcoholism impairs executive functions (see ‘Consequences and Correlates’ 

above), there is also some evidence that poor working memory precedes the initiation of alcohol 

use (Khurana et al., 2013; Peeters et al., 2015). Beyond these, impulsivity and related 

externalizing constructs (e.g. risk taking) are strongly implicated in the etiology of alcohol use and 

dependence (Dick et al., 2010). Several longitudinal studies of adolescents have found that 

behavioral and self-report measures of impulsivity and reward sensitivity predict future alcohol 

use (Fernie et al., 2013; Nigg et al., 2006; Stautz et al., 2016; Tapert et al., 2014). Additional 

distinct pathways leading to alcohol use have been observed, particularly drinking to cope with 

negative affect (Verheul et al., 1999). However, this pathway is suggested to have largely 

divergent neural and cognitive underpinnings (Nikolova et al., 2015), and as such will not be 

discussed in detail here.  
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Differences in impulsivity and reward phenotypes are related to environmental risk factors 

like stress and sleep, and there is some evidence from longitudinal studies that impulsivity partially 

mediates the effects of early life stress (Oshri et al., 2017) and sleep problems (Wong et al., 2010) 

on risk for later alcohol use. Indeed, impulsivity and reward learning behaviors have been 

observed to vary diurnally (Byrne & Murray, 2017; Whitton et al., 2018), and sleep quality and 

chronotype correlate with impulsivity measures (Kandeger et al., 2018; McGowan et al., 2016). 

Similarly, early life stress is associated with differences in impulsivity and reward sensitivity (Birn 

et al., 2017; Kamkar et al., 2017; Kim et al., 2018), and acute stress manipulations have also 

found that stress can modify reward sensitivity and learning (Bogdan et al., 2010; Bogdan & 

Pizzagalli, 2006; Bogdan et al., 2011; Corral-Frías et al., 2016).  

 Impulsivity and other externalizing behaviors also likely predict future alcohol use and 

dependence because, in part, they share some underlying genetic risk factors. Building on 

evidence from twin studies showing a genetic overlap of ADHD and alcohol dependence  

(Edwards et al., 2012; Quinn et al., 2016), twin studies have also shown genetic overlap of 

impulsivity measures and alcohol outcomes (Khemiri et al., 2016; Rosenström et al., 2018). 

Similarly, a family history of alcoholism is associated with increased impulsivity in non-alcoholic 

adolescents and adults (Acheson et al., 2011; Andrews et al., 2011; Jones et al., 2017; Sanchez-

Roige et al., 2016; Sugaparaneetharan et al., 2016). Recently, a GWAS of self-reported risk-

taking found that risk taking has a positive genetic correlation with alcohol consumption (Jones et 

al., 2017), and polygenic risk for alcohol use has been found to be associated with sensation 

seeking (seeking out novel or exciting experiences) (Li et al., 2017).  

1.4.3 Brain function and structure 

 Differences in brain function and structure are proposed to mediate the effects of risk 

factors on future impulsivity, risk behavior, and reward learning, which in turn lead to increased 
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risk for alcohol use and dependence. Activation of the striatum, prefrontal cortex, insula, and 

cingulate correlate with risk taking, reward processing, and impulsivity in adolescents 

(Blankenstein et al., 2018; Braams et al., 2015; Schreuders et al., 2018; Silverman et al., 2015) 

and young adults (Chase et al., 2017; Hariri et al., 2006). Striatal reward activation has also been 

found to be predictive of future impulsivity behavior in a small sample of adolescents (van 

Duijvenvoorde et al., 2014). Reduced volume and thickness of many of these same regions, 

particularly the frontal cortex, insula, and cingulate, have been associated with both self-report 

and behavioral impulsivity in adults and adolescents (Bjork et al., 2009; Holmes et al., 2016; 

Pehlivanova et al., 2018; Tschernegg et al., 2015).  

 There is also evidence that activity and structure of these regions is predictive of future 

alcohol use in adolescents. Three studies have combined brain function and structure in machine 

learning analyses predicting future adolescent drinking behavior. Whelan et al., 2014 found that 

increased volume of the precentral gyrus, reduced volume of superior frontal gyrus, and increased 

reward and inhibition-related activity of these regions at age 14, contributed to the model 

prediction of age 16 binge drinking behavior. Squeglia et al., 2016 found that a thinner cortex and 

reduced working memory activation, particularly of frontal and temporal regions, in drug-naive 

adolescents ages 12-14 contributed to the model prediction of moderate-to-heavy drinking at age 

18. Bertocci et al., 2017 found that in adolescents ages 10-17, increased reward-related prefrontal 

activity, decreased insula activity, and a thicker cingulate contributed to the prediction of initiation 

of substance and alcohol use 2 years later.  

Studies focusing on brain structure in adolescence have been less successful. One study 

has found that reduced volume of the nucleus accumbens was predictive of future initiation of 

regular alcohol and substance use (Urošević et al., 2015). Lower baseline volume of the cingulate 

and pars triangularis has also been reported to predict future heavy drinking in a small study of 

adolescents (Squeglia, et al., 2014). However, these results were not replicated in two recent 
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larger analyses (Pfefferbaum et al., 2017; Seo et al., 2018) which have found that baseline gray 

matter volume in adolescents was not predictive of who later made the transition to heavy 

drinking. It is difficult to say why this literature is mixed. One possible reason is that studies 

focusing on initiation or level of use report relatively more statistically significant associations than 

those testing whether a threshold of alcohol consumption is surpassed - dichotomizing behavior 

in this way may mask effects (Altman, 2006). Another potential reason is that studies of heavy 

drinking adolescents often combine low and non-drinking participants in the control group 

(Pfefferbaum et al., 2017; Seo et al., 2018). This approach helps attain a sufficiently large sample 

size; however, it is likely that some of the non-drinkers have never exposed to alcohol, and as 

such may actually be predisposed towards heavy drinking.  

  Studies of reward-related activity in adolescence have generally met with more success. 

Heightened activity of reward regions during risky decision making is predictive of future binge 

drinking (Morales et al., 2018), and future onset of substance and alcohol use is predicted by 

heighten striatal activation to monetary rewards (Stice et al., 2013). Blunted striatal anticipatory 

activity has also been found to predict future problematic alcohol and drug use in adolescents 

(Büchel et al., 2017), though the opposite direction of effect (i.e. heightened anticipatory activity) 

has also been reported (Heinrich et al., 2016; Heitzeg et al., 2014). There is some evidence that 

this effect may be moderated by the age of initiation - heightened anticipatory activity is predictive 

of initiation at age 14, but not age 16 in one study (Heinrich et al., 2016), which might explain 

these divergent findings.  

 There is additionally evidence that genetic risk for alcohol use influences the structure and 

function of regions implicated in alcohol use. The effects of alcohol use on accelerated gray-

matter shrinkage have been found to be moderated by a family history of alcoholism, wherein 

adolescents with a family history show a steeper decline across the brain (Pfefferbaum et al., 

2017), though it was not tested whether family history predicted baseline volume. Non-drinking 
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adolescents with a family history of alcohol dependence have also been observed to have thinner 

frontal and parietal cortices (Henderson et al., 2018). A study of female adolescent twins found 

evidence that the majority of volumetric reductions (amygdala, and frontal and temporal cortex) 

were attributable to genetic vulnerability (Wilson et al., 2015). Few studies have examined 

possible genetic effects in adults – there is one report of reduced amygdala volume associated 

with alcoholism, which was fully attributable to familial risk (Dager et al., 2015).  

 Studies of reward related activity have also found evidence for an influence of alcohol-

related genetic risk. Blunted striatal response to reward anticipation has been reported in young 

adults with a family history of alcoholism (Andrews et al., 2011; Yau et al., 2012). The direction of 

this association appears to be flipped in adolescence, with increased striatal response to reward 

anticipation and alcohol cues in adolescents with a family history of alcohol use (Nguyen-Louie et 

al., 2017; Stice & Yokum, 2014). Further evidence comes from the largest GWAS of reward-

related brain activity to date (reward anticipation), which was conducted in a sample of 

adolescents (Jia et al., 2016). They identified a variant associated with reward anticipation in 

VSP4, a gene which has been shown to influence alcohol reward sensitivity in rodents.  

 There is abundant evidence that brain structure and function are influenced by 

environmental risk factors for alcohol use, including stress and circadian variables. Research on 

the effects of stress on brain structure has largely focused on corticolimbic circuitry implicated in 

the stress response itself – namely the amygdala, hippocampus, and frontal cortex (Bogdan et 

al., 2015). Reduced volume of the hippocampus has been observed in PTSD (Logue et al., 2018) 

and with childhood stress (Dahmen et al., 2018; Whittle et al., 2017), though notably the 

association with childhood stress is not consistently observed (Marečková et al., 2018). There is 

also some evidence that the effect may be moderated by genetic risk (Pagliaccio et al., 2014) or 

the subtype of early adversity (King et al., 2018). In contrast, while largely negative associations 

between PTSD and amygdala volume have been reported (Logue et al., 2018), studies in children 
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have reported positive associations (Evans et al., 2016; Tottenham et al., 2010), though again 

this is an inconsistent association (Pagliaccio et al., 2014). It should be noted that for both the 

amygdala and hippocampus, there is some evidence that the method of delineating the 

boundaries of the structures influences whether positive or negative associations are observed 

(Lyden et al., 2016). Associations between stress and structure of the frontal cortex are similarly 

inconsistent, with both negative (Besteher et al., 2017; Haddad et al., 2015; Savic, 2015) and 

positive associations (Evans et al., 2016; Michalski et al., 2017) reported, for both early life and 

recent stress.  

 Associations between stress and reward-related activity of the brain are largely more 

consistent than structural associations. Early life stress has been widely reported to be associated 

with reduced striatal activity at reward anticipation (Boecker et al., 2014; Goff & Tottenham, 2014; 

Hanson et al., 2015; Novick et al., 2018; Teicher et al., 2016), though there are also reports of 

positive associations at reward receipt (Kamkar et al., 2017). Acute stress manipulations have 

similarly been associated with blunted striatal activity, particularly at reward receipt (Bogdan et 

al., 2011; Kumar et al., 2014; Lewis et al., 2014; Montoya et al., 2014; Porcelli et al., 2012).  

 There is a growing body of work indicating that circadian variables are associated with 

brain structure and function. Sleep disturbances in early childhood have been associated with 

reduced brain volume, particularly of the prefrontal cortex (Kocevska et al., 2016) and an evening 

chronotype has been associated with reduced gray matter in the orbitofrontal cortex (Takeuchi et 

al., 2015). There is more evidence implicating the circadian system in reward related brain activity. 

Striatal activation to reward receipt has been observed to vary diurnally, though evidence is 

conflicting as to whether its minimum is in the evening (Hasler et al., 2014) or afternoon (Byrne et 

al., 2017). An evening chronotype has been associated with elevated striatal and frontal activation 

to reward receipt (Hasler et al., 2017, 2013), and a variety of phenotypes related to a lack of sleep, 
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including sleep deprivation and insomnia, are associated with blunted prefrontal activation to 

reward receipt (Casement et al., 2016; Hasler, Dahl, et al., 2012; Mullin et al., 2013).  

   

1.5 Aims of the current work 

 The research highlighted in this Introduction suggests a mechanistic path leading from risk 

factors to alcohol use and dependence. These effects are likely mediated via brain structure and 

function, which subsequently drive differences in behavior that increase risk. The following studies 

were designed to further examine, replicate, and expand on this work. Building on links between 

early life stress, striatal reward activity, and alcohol dependence, the first study (Chapter 2) 

examined whether a previously identified interaction between a circadian genetic risk variant and 

stress, which predicted alcohol consumption, replicates in an independent sample and is 

mediated by striatal reward activity. The subsequent study (Chapter 3) examined the interaction 

between different forms of stress – early life and acute – and how these risk factors impact reward 

learning behavior and reward processing. The final study in this work (Chapter 4) took a different 

approach, focusing on the associations between non-disordered alcohol consumption and brain 

structure. While correlations between alcohol use and brain structure in adults have been widely 

reported in the literature, the causal nature of this relationship remains unknown, as the majority 

of reports are correlational. I hypothesized that structural associations are primarily attributable to 

shared genetic factors, and thus would be predictive of future alcohol-related behaviors.  
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2.1 Abstract 

Increasing evidence suggests that the circadian and stress regulatory systems contribute to 

alcohol use disorder (AUD) risk, which may partially arise through effects on reward-related neural 

function. The C allele of the PER1 rs3027172 single nucleotide polymorphism reduces PER1 

expression in cells incubated with cortisol and has been associated with increased risk for adult 

AUD and problematic drinking among adolescents exposed to high levels of familial psychosocial 

adversity. Using data from undergraduate students who completed the ongoing Duke 

Neurogenetics Study (n=665), we tested whether exposure to early life stress (ELS; Childhood 

Trauma Questionnaire) moderates the association between rs3027172 genotype and later 

problematic alcohol use (Alcohol Use Disorders Identification Test) and ventral striatum (VS) 

reactivity to reward (card-guessing task while functional magnetic resonance imaging data were 

acquired). Initial analyses found that PER1 rs3027172 genotype interacted with ELS to predict 

both problematic drinking and VS reactivity; minor C allele carriers, who were also exposed to 

elevated ELS reported greater problematic drinking and exhibited greater ventral striatum 

reactivity to reward-related stimuli. When gene x covariate and environment x covariate 

interactions were controlled for, the interaction predicting problematic alcohol use remained 

significant (p<0.05, corrected) while the interaction predicting VS reactivity was no longer 

significant. These results extend our understanding of relationships between PER1 genotype, 

early life stress, and problematic alcohol use, and serve as a cautionary tale on the importance 

of controlling for potential confounders in studies of moderation including gene x environment 

interactions.   
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2.2 Introduction 

Observable psychiatric symptoms (e.g., insomnia/hypersomnia) and biological rhythm 

perturbation (e.g., dysregulated diurnal cortisol) have been linked to variability in circadian rhythm 

function (Chong et al., 2012; Nader et al., 2009; Wirth et al., 2013; Wulff et al., 2009). 

Accumulating cross-species evidence highlights a bidirectional relationship between the circadian 

system and alcohol consumption;  circadian manipulations induce changes in alcohol 

consumption while alcohol intake impacts  circadian rhythm-related gene expression (Gamsby et 

al., 2013; Kovanen et al., 2010; McCarthy et al., 2013; Spanagel et al., 2005). Further evidence 

suggests that stress, one of the most potent provocateurs of alcohol use (Enoch, 2011), may play 

an important role in links between alcohol use and circadian rhythm dysregulation, through 

interaction with the stress-regulatory neuroendocrine hypothalamic pituitary adrenal (HPA) axis 

(Sarkar, 2012). 

The circadian system is governed by a system of transcriptional repressors (i.e., Period 

genes: PER1, PER2, PER3; Cryptochrome genes: CRY1, CRY2) and enhancers (i.e., CLOCK 

and BMAL1) that influence numerous downstream clock-responsive genes to maintain a 24-hour 

biochemical (e.g., hormone production), physiological (e.g., brain function, body temperature), 

and behavioral (e.g., sleep. eating) cycle (Sarkar, 2012).  The maintenance of this daily oscillation 

is disrupted by stress (Meerlo et al., 2002) with intriguing evidence that mutual interactions among 

the circadian system and HPA axis may mediate these effects (Nader et al., 2010) and importantly 

contribute to problematic alcohol use (Blomeyer et al., 2013; Dong & Bilbao, 2011). The period 1 

gene (PER1) plays a prominent role integrating the circadian system and HPA axis, with recent 

evidence that it may be critical for understanding problematic drinking behavior. mPer1 null 

mutant mice (mPer1Brdm1) have increased ethanol intake and conditioned place preference 

(Gamsby et al., 2013). Moreover, highlighting the potential etiologic role of stress and the HPA 

axis in this relationship, these mice display stress-induced (social defeat, swim stress, or foot 
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shock) increases in ethanol consumption (Dong & Bilbao, 2011)  and impaired glucocorticoid 

rhythmicity (Dallmann et al., 2006).  

While the specific mechanisms by which stress and circadian disruption modulate alcohol 

consumption remain to be elucidated, evidence suggests that altered neural processing of 

rewards may play a mediating role. Indeed, it has be shown that that individuals with alcohol use 

disorders and those at genetic risk for their development have differential ventral striatum 

responses to non-alcohol rewards (Beck et al., 2009; Yau et al., 2012). Further, knocking out 

mPer1 or reducing its expression in rodents abolishes conditioned place preference to drug 

reward (Abarca et al., 2002; Y. Liu et al., 2007), and sleep deprivation is associated with enhanced 

striatal reactivity to rewards in humans (Mullin et al., 2013; Venkatraman et al., 2011). Moreover, 

early life stress (ELS) is associated with reduced D2 dopamine receptor positive cells in the 

striatum of rodents (Li et al., 2013) and reduced ventral striatal activation to rewards in human 

participants (Boecker et al., 2014; Dillon et al., 2009).  

In humans, a single nucleotide polymorphism (SNP) within PER1, rs3027172, has been 

associated with individual differences in cortisol-dependent gene expression as well as 

problematic drinking in the context of environmental adversity (Dong & Bilbao, 2011). Specifically, 

the minor C allele at rs3027172, which leads to reduced PER1 expression in B-lymphoblastoid 

cell lines incubated with cortisol, predicts elevated rates of alcohol dependence among adults and 

problematic drinking among adolescents exposed to prenatal familial psychosocial adversity. 

Using data from the ongoing Duke Neurogenetics Study (n=665), which assesses a wide range 

of behavioral, experiential, and biological phenotypes in university students, the present study 

examined whether PER1 rs3027172 genotype and ELS interact to predict problematic alcohol 

use. We further examined whether PER1 rs3027172 genotype and ELS predict variability in 

reward-related ventral striatum reactivity, which may play a mediating role linking PER1 

rs3027172 genotype and ELS to problematic alcohol use. 
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2.3 Materials and Methods 

2.3.1 Participants 

Overlapping neuroimaging and genetic data that were fully processed by January 6th 2014 were 

available from 727 participants who completed the Duke Neurogenetics Study (DNS). The DNS 

assesses a wide range of behavioral, experiential, and biological phenotypes among young-adult 

(i.e., 18-22 year-old) college students. Each participant provided informed written consent prior to 

participation in accord with the Declaration of Helsinki and guidelines of the Duke University 

Medical Center Institutional Review Board. Participants received $120 remuneration.  All 

participants were in good general health and free of DNS exclusion criteria: (1) medical diagnosis 

of cancer, stroke, diabetes requiring insulin treatment, chronic kidney or liver disease or lifetime 

psychotic symptoms; (2) use of psychotropic, glucocorticoid or hypolipidemic medication, and (3) 

conditions affecting cerebral blood flow and metabolism (e.g., hypertension).  Current DSM-IV 

Axis I and select Axis II disorders (Antisocial Personality Disorder and Borderline Personality 

Disorder) were assessed with the electronic Mini International Neuropsychiatric Interview 

(Sheehan et al., 1998)⁠ and Structured Clinical Interview for the DSM-IV Axis II (SCID-II) (First et 

al., 1996). These disorders are not exclusionary as the DNS seeks to establish broad variability 

in multiple behavioral phenotypes related to psychopathology.   

The final sample consisted of 665 participants after quality assurance (age=19.64±1.24; 

294 males; 123 with a DSM-IV Axis I disorder; 305 European Americans, 73 African Americans, 

187 Asians, 39 Latinos, and 61 of Other/Multiple racial origins according to self-reported ethnicity). 

Participants were excluded (n=62) for scanner-related artifacts in fMRI data (n=5), incidental 

structural brain abnormalities (n=2), a large number of movement outliers in fMRI data (n=31; see 

ART below), poor behavioral performance or an inadequate feedback schedule (n=11), outlier 

status according to ancestrally-informative principal components (n=6), scanner malfunction 
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(n=2), incomplete fMRI data collection (n=1), missing or uncollected task behavioral data (n=1), 

and subjects falling asleep (n=2). An additional participant was excluded as they did not complete 

the questionnaires used for these analyses (n=1). Comparison of participants excluded due to 

lack of neuroimaging data to those included found no significant differences (Supplemental 

Table 2.1). 

 

2.3.2 Self-report Questionnaires 

Participants completed a battery of self-report questionnaires to assess past and current 

experiences and behavior. The Childhood Trauma Questionnaire (CTQ; (Bernstein et al., 2003), 

the Alcohol Use Disorders Identification Test (AUDIT; (Saunders et al., 1993), and the Pittsburgh 

Sleep Quality Inventory (PSQI; (Buysse et al., 1989)) were used for the present study. The CTQ 

is a 28-item, retrospective screening tool used to detect the occurrence and frequency of 

emotional, physical, and sexual abuse as well as emotional and physical neglect before the age 

of 17 (α = 0.654). The instrument’s five subscales, each representing one type of abuse or neglect, 

have robust internal consistency and  convergent validity with a clinician-rated interviews of 

childhood abuse (Scher et al., 2001). The AUDIT is a 10-item scale developed by the World Health 

Organization to screen for hazardous or dependent alcohol use patterns by assessing the 

frequency and nature of consumption (α = 0.799); a score of 8 or greater is considered indicative 

of hazardous or harmful use (Saunders et al., 1993). While the AUDIT was originally developed 

to screen for alcohol use problems and high-risk drinking in primary care settings, evidence 

suggests that it is a valid assessment for college student populations as well (Kokotailo et al., 

2004). The PSQI is a 19-item scale that is widely used and considered a reliable measure of 

global sleep quality and sleep-related symptoms over the past 1 month (α = 0.727). Scores range 

from 0 to 21, with poorer sleep quality associated with a higher score.  
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2.3.3 Genotyping 

DNA was isolated from saliva derived from Oragene DNA self-collection kits (DNA Genotek) 

customized for 23andMe (www.23andme.com). DNA extraction and genotyping were performed 

through 23andMe by the National Genetics Institute (NGI), a CLIA-certified clinical laboratory and 

subsidiary of Laboratory Corporation of America. One of two different Illumina arrays with custom 

content was used to provide genome-wide SNP data, the HumanOmniExpress or 

HumanOmniExpress-24 (Do et al., 2011; Eriksson et al., 2010; Hu et al., 2016; Tung et al., 2011).   

PER1 rs3027172 was directly genotyped for 324 participants. It was imputed for the 

remaining 403. Imputation was run separately for participants genotyped on the Illumina 

HumanOmniExpress and the Illumina HumanOmniExpress-24 arrays using bi-allelic SNPs only, 

the default value for effective size of the population (20,000), and chunk sizes of 3Mb and 5Mb 

for the respective arrays.  Within each array batch, genotyped SNPs used for imputation were 

required to have missingness < 0.02, Hardy-Weinberg equilibrium P > 10−6, and MAF > 0.01.  

The imputation reference set consisted of 2,504 phased haplotypes from the full 1000 Genomes 

Project Phase 3 dataset (May 2013, over 70 million variants, release “v5a”).  Imputed SNPs were 

retained if they had high imputation quality (INFO >0.9), low missingness (<5%), and MAF > 0.01. 

PER1 rs3027172 had excellent imputation metrics (INFO=0.997, Certainty=0.999). Genotype 

frequencies did not deviate from Hardy-Weinberg Equilibrium across any ancestral group (HWE: 

χ2 = 1.97, p = 0.85; HWE Caucasian: χ2 = 1.03, p = 0.78; African-American: χ2 = 0.96, p = 0.90; 

Asian1: χ2 = 0.24, p = 0.93; Asian2: χ2 = 0.38, p = 0.95; Hispanic: χ2 = 0.65, p = 0.82; Other χ2 = 

1.83, p = 0.85).  

To account for differences in ancestral background in the full sample, we used 

EIGENSTRAT (v. 5.0.1) (Price et al., 2006) to generate principal components; k-means cluster 

plotting and visual inspection of the top 10 components revealed that the top 5 principal 

components account for divergent ancestral groups within the population (Supplemental Fig. 1). 
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Six participants were identified as outliers, as they were more than 6 standard deviations from the 

mean on these top 5 components, and were excluded from analyses. Ancestral subsamples were 

determined based on self-report (Caucasian, African American, Hispanic, Asian, or Other), except 

in the case of the Asian sample, which, based on visual inspection of the principal components 

produced by EIGENSTRAT, was composed of two genetically distinct subsamples.  Self-reported 

Asians were thus further divided into two subsamples (Asian1: n=47; Asian2: n=147) based on k-

means clustering of the first two principal components.   

 

2.3.4 BOLD fMRI paradigm 

A number guessing paradigm (Delgado et al., 2000) was used to probe reward-related VS activity. 

Our blocked design consisted of a pseudorandom presentation of 3 blocks each of predominantly 

positive (80% correct guess) and negative (20% correct guess) feedback. There are 5 trials during 

each block. During each task trial, subjects had 3s to guess, via button press, whether the value 

of an upcoming visually presented card would be < or > 5 (index and middle finger, respectively). 

The numerical value of the card was presented for 500ms followed by appropriate feedback (i.e., 

green “up” arrow for positive feedback on a correct trial; red “down” arrow for negative feedback 

on an incorrect trial) for an additional 500ms. A crosshair focus point was then presented for 3s 

for a total trial length of 7s.  One incongruent trial type was included within each task block to 

prevent subjects from anticipating the feedback for each trial and maintain subject’s engagement 

and motivation to perform well. The six task blocks were interleaved with three control blocks. 

During control blocks, subjects were instructed to make button presses during the presentation of 

an “x” (3s), which was followed by an asterisk (500ms) and a yellow circle (500ms). Each block 

was preceded by a 2s instruction of “Guess Number” (for task) or “Press button” (for control), 

resulting in a total block length of 38s and a total task length of 342s. Subjects were unaware of 

the fixed outcome probabilities associated with each block and were led to believe that their 
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performance would determine their net monetary gain, although all subjects received $10 upon 

completion of the task. 

 

2.3.5 BOLD fMRI acquisition 

Participants were scanned using a research-dedicated GE MR750 3T scanner equipped with 

high-power high-duty-cycle 50-mT/m gradients at 200 T/m/s slew rate, and an eight-channel head 

coil for parallel imaging at high bandwidth up to 1MHz at the Duke-UNC Brain Imaging and 

Analysis Center. A semi-automated high-order shimming program was used to ensure global field 

homogeneity. A series of 34 interleaved axial functional slices aligned with the anterior 

commissure-posterior commissure (AC-PC) plane were acquired for full-brain coverage using an 

inverse-spiral pulse sequence to reduce susceptibility artifact [TR/TE/flip angle=2000 ms/30 

ms/60; FOV=240 mm; 3.75×3.75×4 mm voxels (selected to provide whole brain coverage while 

maintaining adequate signal-to-noise and optimizing acquisition times); interslice skip=0].  Four 

initial RF excitations were performed (and discarded) to achieve steady-state equilibrium.  To 

allow for spatial registration of each participant’s data to a standard coordinate system, high-

resolution three-dimensional structural images were acquired in 34 axial slices co-planar with the 

functional scans (TR/TE/flip angle=7.7 s/3.0 ms/12; voxel size=0.9×0.9×4 mm; FOV=240 mm, 

interslice skip=0). 

 

2.3.6 BOLD fMRI data analysis 

The general linear model of Statistical Parametric Mapping 8 (SPM8) 

(http://www.fil.ion.ucl.ac.uk/spm) was used for whole-brain image analysis. Individual subject data 

were first realigned to the first volume in the time series to correct for head motion before being 

spatially normalized into the standard stereotactic space of the Montreal Neurological Institute 
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(MNI) template using a 12-parameter affine model. Next, data were smoothed to minimize noise 

and residual differences in individual anatomy with a 6mm FWHM Gaussian filter. Voxel-wise 

signal intensities were ratio normalized to the whole-brain global mean. Then the ARTifact 

Detection Tool (ART) (http://www.nitrc.org/projects/artifact_detect/) was used to generate 

regressors accounting for images due to large motion (i.e., >0.6mm relative to the previous time 

frame) or spikes (i.e., global mean intensity 2.5 standard deviations from the entire time series). 

Participants for whom more than 5% of acquisition volumes were flagged by ART (n = 30) were 

removed from analyses. A 5mm sphere based on the maximum voxels from Hariri et al. (Hariri et 

al., 2006) was used to ensure adequate ventral striatal coverage; no subjects had <90% coverage 

of the region.   

 Following preprocessing steps outlined above, linear contrasts employing canonical 

hemodynamic response functions were used to estimate task-specific BOLD responses for each 

individual using a “Positive Feedback > Negative Feedback” contrast. Individual contrast images 

(i.e., weighted sum of the beta images) were used in second-level random effects models 

accounting for scan-to-scan and participant-to-participant variability to determine mean contrast-

specific responses using one-sample t-tests.  A voxel-level statistical threshold of P < 0.05, family 

wise error corrected for multiple comparisons across the bilateral ventral striatal region of interest, 

and a cluster-level extent threshold of 10 contiguous voxels was applied to these analyses.  The 

bilateral ventral striatal region of interest (ROI) was defined by a 5mm sphere based on the 

maximum voxels from Hariri et al. (2006), created with the Wake Forest University PickAtlas 

(Lancaster et al., 2000; Maldjian et al., 2003) (Supplemental Figure 2.2)  

BOLD parameter estimates from clusters within the left and right ventral striatal ROIs 

exhibiting a main effect for the “Positive Feedback > Negative Feedback” contrast were extracted 

using the VOI tool in SPM8 (http://www.fil.ion.ucl.ac.uk/spm) and exported for regression 

analyses.  Bilateral ROI values were calculated by weighting mean activity in each hemisphere 

by cluster size and then averaging across the hemispheres.  Extracting parameter estimates from 
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clusters activated by our fMRI paradigm, rather than those specifically correlated with our 

independent variables of interest, precludes the possibility of any correlation coefficient inflation 

that may result when an explanatory covariate is used to select a region of interest. We have 

successfully used this strategy in prior studies (Carré et al., 2012; Corral-Fríasa et al., 2015). 

 

2.3.7 Statistical Analyses  

Extracted neuroimaging data values were winsorized (to ±3 SDs; n=11) to maintain variability 

while limiting the influence of extreme outliers before being analyzed in PASW Statistics (Version 

19; SPSS Inc.; Chicago, IL). A regression-based moderation model was tested using the 

PROCESS macro for SPSS (Hayes, 2013) to examine the independent and interactive effects of 

early life stress (i.e., CTQ score) and PER1 rs3027160 genotype on problematic alcohol use (i.e., 

AUDIT score) and reward-related ventral striatum reactivity (i.e., positive reward > negative loss). 

CTQ scores were log-transformed for all analyses, as they had a high positive skew 

(Supplemental Table 2.2.) As there were only 20 PER1 rs30271672 minor allele (C) 

homozygotes in the sample (3.0%), and 162 PER1 rs30271672 heterozygotes, PER1 genotype 

was coded as the presence or absence of the minor-allele, consistent with prior studies (Dong & 

Bilbao, 2011). A power analysis conducted with Quanto (v.1.2.4) using the effect size previously 

observed by Dong and colleagues, and our observed genotype frequency and CTQ distribution, 

revealed  that the current sample has 80% power to detect GxE interaction effects greater than 

β=0.119 (Gauderman, 2002a, 2002b). Initial moderation analyses were conducted using sex, age 

(i.e., above or under 21; the legal drinking age in North Carolina), sleep quality (PSQI score), the 

presence of a psychiatric diagnosis, and the top 5 principal components accounting for divergent 

ancestral groups within the population (Supplemental Figure 2.1). Sleep quality was included as 

a covariate as sleep disruption is associated with increased risk for drug problems (Wong et al., 

2010), and variants within other circadian genes have been associated with sleep phenotypes 
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(Hu et al., 2016). Controlling for sleep quality thus permits examination of the effects of PER1 

rs3027160 independent of any potential associations of sleep quality. Consistent with 

recommendations (Keller, 2014), additional follow-up moderation analyses included 18 additional 

terms for gene x covariate and environment x covariate interactions to better account for potential 

confounds to GxE research (e.g. PER1 rs3027160 x sex, etc.; (Keller, 2014)). Thus, two a priori 

analyses were conducted, yielding a bonferroni correction significance threshold of p<0.025. 

Given the ethnic diversity of the sample, post-hoc analyses in each of the six ancestral 

subsamples were conducted with recalculated covariate interaction terms. All covariates were the 

same as in the full-sample analyses, with the exception of the ancestral principal components, 

which were not included. Additionally, as only 23.6% of the sample had an AUDIT score of 8 or 

more, which qualifies as hazardous use of alcohol, an additional post-hoc logistic regression 

analysis was conducted in the full-sample to examine whether the interaction of PER1 rs3027172 

and CTQ also predicts the likelihood of an AUDIT score of 8 or more, indicative of more severe 

problematic drinking.  

 

2.4 Results 

2.4.1 Associations with sample demographics 

Consistent with prior observations, men reported more problematic alcohol use (Hasin et al., 

2007) and had higher bilateral reward-related VS reactivity to monetary gains (Nikolova et al., 

2012; Spreckelmeyer et al., 2009); Supplemental Table 2.3). Ethnicity predicted self-report 

measures of stress, sleep, and alcohol use (Supplemental Table 2.4). Notably, African American 

and Asian 2 participants were characterized by relatively greater CTQ scores and reduced AUDIT 

scores, while Caucasian participants reported reduced CTQ scores and elevated AUDIT scores. 

African American participants also reported higher PSQI scores. PER1 rs3027160 genotype 
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groups differed by ethnicity, wherein the minor allele carrier group had a higher percentage of 

Caucasian and a lower percentage of Asian1 and Asian2 participants (Supplemental Table 2.5; 

Supplemental Figure 2.1). Consistent with a prior report (Dong et al., 2011), PER1 rs3027160 

genotype groups differed according to AUDIT scores such that C allele carriers reported higher 

levels of problematic drinking (Supplemental Table 2.5); notably, however, this effect did not 

remain after controlling for covariates (see below). PER1 rs3027160 genotype groups did not 

differ by CTQ scores, suggesting the lack of rGE.  

 

2.4.2 PER1 rs3027160 and Early Life Stress Interact to Predict 

Problematic Drinking 

There was no main effect of PER1 genotype or CTQ scores on AUDIT scores after accounting 

for covariates (PER1: β=0.025, t=0.662, p=0.508; CTQ: β=-0.039, t=-0.983, p=0.325; 

Supplemental Table 2.5). Initial moderation analyses found that the interaction of PER1 with 

early life stress (CTQ scores) significantly predicted problematic drinking (ΔR2=0.0067, β=0.086, 

t=2.275, p=0.023) after accounting for main effects and covariates. This interaction remained 

significant after accounting for 2-way interactions between covariates with PER1 rs3027160 and 

CTQ scores (an additional 18 covariates; ΔR2=0.0106, β=0.124, t=2.86, p=0.004; Supplemental 

Table 2.6). Post-hoc analyses revealed that minor (C) allele carriers who retrospectively reported 

elevated early life stress (Johnson-Neyman significance for log-transformed CTQ values greater 

than 3.57, equivalent to 35.5) endorsed increased problematic drinking (Figure 2.1). Participants 

were partitioned into three groups based on the distribution of CTQ-scores (low = 3.22 – 3.37; 

medium = 3.37 – 3.59; high = 3.59 – 4.08) for post-hoc examination of simple slopes. These 

analyses revealed that PER1 rs3027160 was associated with increased problematic drinking only 

in the high CTQ group (β=1.908, t= 2.474, p=0.014). These results are consistent with prior 
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reports of increased heavy drinking among adolescent PER1 rs3027172 minor-allele carriers who 

have experienced high levels of psychosocial adversity (Dong & Bilbao, 2011).  We further 

examined whether the PER1xCTQ interaction predicted the likelihood of an AUDIT score over 8 

(defined as the threshold for hazardous use). Logistic regression revealed that the PER1xCTQ 

interaction was significantly associated with this AUDIT threshold of hazardous use (ΔR2=0.0087, 

β=0.5908, z=2.128, p=0.033; Supplemental Table 2.7).  

Given the ethnic diversity of the sample, post-hoc analyses were conducted in each 

ancestral sub-sample (Supplemental Table 2.8, Supplemental Figure 2.3). In these analyses 

the interaction of PER1 and CTQ scores predicting AUDIT scores was only significant in one of 

the six subsamples (Asian 1; ΔR2=0.1527, β=0.6178, t=3.4560, p=0.002), which was notably 

small (n=38 major allele homozygotes, 6 minor allele carriers). However, in five other subsamples 

the interaction coefficient was also positive (i.e.  Caucasian N=305, β=0.0146, p = 0.812; African-

American N=73, β=0.2195 p = 0.096; Asian 2 N=143, β=0.152, p = 0.063; Other N=61, β=0.1000, 

p = 0.480) and the shape of the interaction resembled the results from the Asian 1 subsample 

and the entire sample. The only subsample that did not show a similar pattern with regard to 

directionality was the Hispanic subsample, which was also the smallest (n=39, β= -0.0222, p = 

0.4797). Finally, the original association of PER1xCTQ with AUDIT scores was repeated including 

participants originally excluded due to lack of imaging data (n=719); results did not meaningfully 

change (ΔR2=0.0119 β=0.129, t=3.18, p=0.002; Supplemental Table 2.9).  

 

2.4.3 PER1 rs3027160 and Early Life Stress Do Not Interact to Predict 

Ventral Striatal Reactivity 

Initial moderation analyses found that PER1 rs3027160 genotype interacted significantly with 

early life stress (CTQ scores) to predict bilateral ventral striatal reactivity (ΔR2=0.0068, β=0.0838, 
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t=2.145, p=0.032). In the context of high early life stress, minor-allele carriers had elevated ventral 

striatal reactivity. However, this interaction became non-significant after accounting for gene 

(PER1 rs3027160) x covariate and environment (CTQ) x covariate interactions (ΔR2=.0021, 

β=0.056, t=1.231, p=0.219; Supplemental Figure 2.4, Supplemental Table 2.10). Post-hoc 

analyses indicated that the CTQ x genotype interaction was no longer significant after the 

inclusion of the CTQ x ancestral principal component 1 (PC1) interaction term (β=-12.3664, t=-

2.51, p=0.012; Supplemental Figure 2.5), and the CTQ x PSQI interaction term (β=-0.07234, t=-

3.114, p=0.002; Supplemental Figure 2.6). PC1 correlates with PER1 genotype (Pearson’s r = 

-0.237, p<0.001 and membership to the White, African American, Asian 2, and Hispanic 

subgroups (White: Pearson’s r = -0.625, p<0.001, African American: Pearson’s r = -0.177, 

p<0.001; Asian 2: Pearson’s r = 0.951, p<0.001, Hispanic: r=-0.099, p<0.05), and the CTQxPC1 

interaction term correlates with membership to the African American and Asian2 subgroups 

(African American: Pearson’s r = -0.150, p<0.001; Asian2: r=0.228, p<0.001). This suggests that 

analyses that did not account for gene x covariate and environment x covariate interactions, were 

confounded by an interaction between ancestral origin and early life stress. Lastly, given the 

ethnic diversity of the sample, post-hoc analyses were conducted in each ancestral sub-sample 

(Supplemental Table 2.11). In these analyses the interaction of PER1 and CTQ scores predicting 

ventral striatal reactivity  was only significant in one of the six subsamples (African American; 

ΔR2=0.0556, β=-0.31384, t=-2.082, p=0.042). Notably the direction of this interaction is negative, 

while the coefficient in the full sample is positive. However, in the five other subsamples the 

coefficient (i.e., positive) and shape of the interaction was in the same direction as in the full-

sample analysis. Because the PER1 x CTQ interaction was not associated with individual 

differences in reward-related ventral striatum activity when accounting for gene x covariate and 

environment x covariate interactions we did not test a mediational model. 
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2.5 Discussion 

This study examined whether the PER1 SNP, rs3027172, interacts with early life stress to predict 

problematic alcohol use and ventral striatum reactivity to reward. Two primary findings emerged. 

First, consistent with past research (Dong & Bilbao, 2011), minor C allele carriers who were 

exposed to elevated levels of childhood stress, had higher problematic alcohol use (Fig. 1). 

Second, in contrast to initial analyses suggesting that this interaction also predicts reward-related 

ventral striatum reactivity, when we appropriately accounted for gene x covariate and environment 

x covariate interactions (Keller, 2014), this interaction was no longer significant. Collectively, these 

findings provide additional evidence that psychosocial adversity during childhood confers risk for 

problematic drinking in rs3027172 C allele carriers, but suggest that this association is not driven, 

at least primarily, by effects on reward-related ventral striatum reactivity. More broadly, these 

findings highlight the need to account for gene x covariate and environment x covariate 

interactions in gene x environment and other forms of moderation-based research (Keller, 2014). 

  

2.5.1 PER1 rs3027172 Genotype and Early Life Stress Interact to 

Predict Problematic Alcohol Use 

Consistent with a prior report showing that mPer1Brdm1 knockout mice and human minor C allele 

carriers at rs3027172 have increased alcohol consumption in the context of prenatal adversity 

(Dong et al., 2011), we found that young-adult C allele carriers had increased problematic alcohol 

use in the context of elevated early life stress. Notably, while Dong et al. (2011) evaluated 

psychosocial adversity within the family during the year prior to birth, early life stress was 

evaluated in the present study as stress experienced during childhood. However, contrary to Dong 

et al. (2011), who observed a main effect of PER1 genotype on risk for alcohol abuse in their 

second sample, consisting of 2,184 Caucasian adults, we did not find any significant main-effects 
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of PER1 rs3027172 after accounting for covariates (notably, this main effect was significant and 

in the direction reported by Dong et al., 2011 when covariates were not included; Supplemental 

Table 2.5). It is possible that we did not observe such a main effect due to our younger aged 

sample, the smaller sample size, and ethnic heterogeneity.  

Given that PER1 expression is sensitive to stress, it is not entirely surprising that the minor 

C allele was only associated with increased problematic alcohol use in the context of early life 

stress. mPer1 expression in rodents is upregulated in peripheral tissues by acute stress 

(Yamamoto et al., 2005), and downregulated in the nucleus accumbens by chronic stress 

(Spencer et al., 2013). Accumulating evidence suggests these stress effects may be mediated 

through the HPA axis. In human and rodent cell cultures, PER1 is upregulated by 

dexamethasone, a glucocorticoid receptor agonist (Polman et al., 2012; Reddy et al., 2009) with 

evidence that PER1 is the most sensitive, of all genes, to low doses of dexamethasone (Reddy 

et al., 2012). Moreover, rs3027172 is located in the PER1 promoter in a region that is similar to 

an E2-box binding site for members of the Snail transcription factor family. Snail transcription 

factors are well-known for their central role in mesoderm formation (Nieto, 2002), are expressed 

throughout the adult brain (Dong & Bilbao, 2011), and have been repeatedly shown to be 

regulated by stress hormones (for recent examples see (Cheng et al., 2013; Nesan & Vijayan, 

2013; Shan et al., 2014). The minor C allele, which eliminates the similarity of this site to an E2-

box, appears to reduce affinity of Snail1 for this binding site, and results in a 4-fold reduction of 

PER1 mRNA expression in B-lymphoblastoid cell lines following incubation with cortisol (Dong & 

Bilbao, 2011). Together, these results suggest that the C allele at rs3027172 may increase risk 

for stress-associated problematic alcohol use by disrupting affinity of the Snail1 transcription 

factor with the PER1 promoter and thereby reducing stress-related PER1 expression. However, 

as PER1 expression and cortisol were not assessed in participants of this study, this interpretation 

remains speculative.  
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2.5.2 PER1 rs3027172 Genotype, Early Life Stress, and Reward-related 

Ventral Striatum Reactivity:  The Need to Account for Covariate 

Interactions 

A recent review (Keller, 2014) highlights that gene x environment interaction studies have not 

appropriately controlled for interactions between confounding variables and variables of interest, 

likely contributing to the low replication rate (27%) of gene x environment findings (Duncan & 

Keller, 2011). Thus, following these recommendations, terms accounting for potentially 

confounding early life stress and PER1 genotype interactions with covariates were added to the 

PER1 x ELS models predicting problematic alcohol use and ventral striatum reactivity (Keller, 

2014).  The PER1 x ELS interaction continued to predict problematic alcohol use even after these 

additional covariates were added. However, the PER1 x ELS interaction no longer significantly 

predicted ventral striatum reactivity after including gene x covariate and environment x covariate 

interaction terms. Post-hoc examination of these analyses revealed that the addition of CTQ x the 

first ancestral principal component (PC1) and CTQ x PSQI were significantly associated with 

ventral-striatal reactivity. As PC1 correlates with PER1 genotype and the CTQxPC1 interaction 

term correlates with membership to the African American and Asian2 ethnic subgroups, this result 

may reflect relatively low numbers of minor-allele carriers in these populations (Supplemental 

Table 2.4), as well as ethnic subgroup differences in early life stress exposure and drinking 

behavior.  

 

2.5.3 Incidental Findings 

It is intriguing that those with high ELS and poor sleep quality were characterized by 

relatively blunted VS reactivity to reward (Supplemental Figure 2.6), as sleep disruption, similar 

to stress, is also predictive of drug and alcohol problems (Wong et al., 2010). Sleep disruption 



 

37 

 

has been previously associated with blunted striatal activation during a reward task (Holm et al., 

2009), and familial risk for alcoholism has been linked to blunted striatal reactivity to reward in 

young adults (Yau et al., 2012). Thus, this incidental finding would suggest that the blunted ventral 

striatum reactivity observed may reflect that these participants, who experienced elevated levels 

of childhood stress and report greater levels of current sleep disruption, are at greater risk for 

drug and alcohol abuse, and warrants further study.   

 

2.5.4 Limitations 

The present study is not without its limitations. It is first important to consider that 

participants were university students, and thus results may not be entirely generalizable to the 

broader population. Epidemiological data suggest that alcohol use is heaviest in young adult years 

(Fillmore et al., 1991; Naimi et al., 2003) with problematic usage tapering off in the majority of 

individuals when they reach their mid-20s (Jackson et al., 2001).  Given that more problematic 

usage in college is predictive of later alcohol use disorder (Schulenberg et al., 2001), these data 

identify important factors (i.e., early life stress and PER1 variation) contributing to risk for 

problematic drinking in college, which in turn, confers risk for post-college alcohol use disorder. 

With regard to early life stress, CTQ total scores in this sample (i.e., M=33.24) were comparable 

to other community (e.g., metropolitan Memphis, Tennessee area, n=1,007, M = 31.7; (Scher et 

al., 2001) and college samples (e.g., UCSD; n=949, M = 35.2; (Wright et al., 2001), but are 

considerably lower than those typically observed in clinical samples (e.g., alcohol dependent 

inpatients n=100, M = 42.8; (Schäfer et al., 2007), and major depressive disorder and bipolar 

outpatients n=40, M = 47.8; (S. Watson et al., 2007).  These results suggest that the moderating 

effect of PER1 variation on problematic drinking arises at early life stress levels that are slightly 

above average (i.e. 35.5, See Johnson-Neyman area of significance in Figure 2.1).  However, it 
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is important to consider that this relatively high functioning college student population may have 

had other protective factors that may have counteracted the effects of early life adversity.  

Second, we must consider the limitations of our phenotypic assessments.  With the 

exception of reward-related ventral striatum reactivity measures and PER1 variation, all other 

variables relied upon self-report.  It is particularly important to note that the retrospective recall of 

stress, occurring either recently or early in life, may encompass errors or be influenced by current 

mood or perception (Monroe, 2008).  However, reports have demonstrated that the early life 

stress questionnaire used here and clinician-rated childhood abuse interviews demonstrate 

convergent validity (Scher et al., 2001).  Another consideration is that while our blocked fMRI 

paradigm increases power to measure VS reactivity, it does so at the cost of some specificity 

(e.g., separating anticipation of reward from outcome, evaluating reward learning).  This is 

particularly important in light of observations that reward processing is not a monolithic 

phenomenon and can be dissected into anticipatory, consummatory, and learning components 

(Berridge et al., 2009). Thus the finding of no association between the PER1 x ELS interaction 

and VS reactivity in the present study does not rule out the possibility that this interaction may be 

associated with the neurobiological correlates of specific phases of reward processing.  

Third, while the PER1 x ELS interaction predicting problematic alcohol usage was 

significant in the full sample when accounting for ancestrally informative principal components, it 

did not reach significance in our largest ancestral subsamples (Supplemental Table 2.8). 

However, consistent with results from the entire sample, each ancestral subsample (with the 

exception of Hispanics), showed an interactive effect similar to that observed in the full sample. 

The lack of significance in our larger subsamples and power analysis suggests that subsample 

analyses were underpowered to detect the association. Notably, this effect did reach statistical 

significance in the Asian 1 subsample. Future research in various ancestral populations would be 

informative to clarify whether this association differs according to ancestral origin.  Lastly, it is also 

possible that the findings in the full sample reflect a false positive, despite our best efforts to 



 

39 

 

control for potentially confounding variables (Keller, 2014), a prior report that is consistent with 

these data (Dong & Bilbao, 2011), and rodent work which is consistent with these results (Dong 

& Bilbao, 2011). Given the lack of consistency in many gene x environment interaction studies 

(Duncan & Keller, 2011) as well as the lack of significance in the European/European American 

subsample of the present study (the largest subsample), further replication of the reported results 

is clearly needed. 

Fourth, our study did not collect measures of HPA axis function such as cortisol. Given 

evidence that rs3027172 genotype influences PER1 expression in the context of cortisol (Dong 

et al., 2012), it will be important for future research to assess whether early life stress-related 

differences in cortisol mediate relationships between genotype and brain function and behavior. 

Ideally such investigation would be within the context of longitudinal studies. 

Fifth, because this study is cross-sectional, we are unable to firmly establish predictive 

relationships between PER1 genotype, ELS, and drinking behavior. That is, although our models 

imply a direction of effect, we cannot definitively determine if variability in one variable precedes 

variability in another. In particular, as already noted, the CTQ is retrospective and may be biased 

by current state. However, given the nature of our measures, a causal relationship is plausible. 

PER1 rs3027172 genotype was established prior to the onset of behavior, and our self-report 

measures assess the occurrence of events that are non-temporally overlapping. The CTQ assess 

early life stress before the age of 17, and the AUDIT assess drinking behavior in the past year – 

all participants are over 18.  

These limitations notwithstanding, the results of the present study extend evidence that 

early life stress increases problematic alcohol use in PER1 rs3027172 minor C allele carriers 

(Dong & Bilbao, 2011). Moreover, the lack of significant ventral striatum results after appropriately 

controlling for potential interactive confounds, highlights the need for interaction research to 

properly control for covariates in an effort to reduce false-positive reports (Keller, 2014).  
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Figure 2.6.1: PER1 rs3027160 and Early Life Adversity Interact to Predict 
Problematic Drinking. (ΔR2=0.0106, β=0.124, t=2.86, p=0.00438).  

C minor-allele carriers report increased problematic drinking behavior (AUDIT scores) in the 
context of early life stress (CTQ scores). The purple-shaded region denotes the regions of 
significance (i.e., CTQ log-transformed >3.57, equivalent to a score of 35.5).  
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2.6 Supplemental Information 

Supplemental Table 2.6.1. Effect of exclusion due to non-availability of imaging data on self-
report variables, self-report ethnicity, PER1 rs3027172 genotype, and presence of psychiatric 
diagnosis. PER1 rs3027172 was unavailable for two participants excluded due to lack of 
imaging data.  

 
CTQ = childhood trauma questionnaire, AUDIT = alcohol use disorders identification test. PSQI 
= Pittsburgh Sleep Quality Inventory.  
* = analyses were run as a chi-squared test. All others were run as t-tests. 
 
 
 
 
Supplemental Table 2.6.2. Distribution and skewness of self-report variables. 
 

  
N Minimum Maximum Mean 

Std. 
Deviation 

Skewness 

Statistic Statistic Statistic Statistic Statistic Statistic Std. Error 

CTQTot 665 25 59.0405 33.24115 7.953584 1.282 0.095 

PSQI 665 0 12.8329 4.907513 2.530686 0.739 0.095 

AUDITTOT 665 0 18.0477 4.985393 4.149198 0.862 0.095 

 
 
 
 
 
 
 
 
 

 Included (SD) 
n=665 

Not included (SD) 
n=62 

t/x2 p 

CTQ 33.06 (7.65) 33.36 (8.41) -0.266 0.791 

AUDIT 4.84 (3.72) 5.01 (4.22) -0.301 0.763 

PSQI 4.76 (2.54) 4.93 (2.60) -0.492 0.623 

PER1 rs3027172 
(carriers) * 

n=182 n=17 0.006 0.939 

Gender (Male)* n=293 n=26 0.104 0.747 

Psychiatric Diagnosis* n=52 n=4 0.120 0.729 

Caucasian* n=305 n=27 0.123 0.726 

African American* n=73 n=10 1.477 0.222 

Asian* n=187 n=14 0.870 0.351 

Hispanic* n=39 n=5 0.483 0.487 

Other* n=62 n=5 0.107 0.743 

Age 19.47 (1.20) 19.64 (1.24) -1.070 0.385 
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Supplemental Table 2.6.3. Effect of gender on self-report variables, VS reactivity, presence of 
psychiatric diagnosis, and ancestral subsamples.   

 
CTQ = childhood trauma questionnaire, AUDIT = alcohol use disorders identification test. PSQI 
= Pittsburgh Sleep Quality Inventory. VS = ventral striatum. 
* = analyses were run as a chi-squared test. All others were run as t-tests. 

 Men (SD) 
n=293 

Women (SD) 
n=372 

t/x2 p 

CTQ 33.59 (8.05) 32.96 (7.88) 1.016 0.310 

AUDIT 6.15 (4.53) 4.07 (3.57) 6.633 <0.001 

AUDIT>8* n=102 n=55 36.451 <0.001 

PSQI 4.77 (2.35) 5.02 (2.66) -1.248 0.213 

Bilateral VS Reactivity 0.0882 (0.168) 0.0588 (0.142) 2.431 0.015 

Psychiatric Diagnosis* n=25 n=27 0.369 0.543 

Caucasian* n=146 n=159 3.316 0.069 

African American* n=17 n=56 14.356 <0.001 

Asian 1* n=24 n=20 2.102 0.147 

Asian 2* n=60 n=83 3.27 0.568 

Hispanic* n=20 n=19 0.877 0.349 

Other* n=26 n=35 0.56 0.812 

Age 19.69 (1.28) 19.6 (1.21) 0.971 0.35 



 

44 

 

Supplemental Table 2.6.4. Effect of Eigenstrat-determined ancestral background on age, self-report variables, VS reactivity, and 
PER1 rs3027172 frequency. 

 
Means are presented with SD indicated in (). 
CTQ: Childhood Trauma Questionnaire  
AUDIT: Alcohol Use Disorders Identification Test 
PSQI: Pittsburgh Sleep Quality Index 
Post-hoc t-tests of CTQ scores showed significant differences (ps < .05) for C<AA, C<A2, AA>A1, AA>H, AA>O, A2>A1, A2>H, and 
A2>O. For AUDIT scores there were significant differences (ps < .05) for C>AA, C>A2, C>O, H>AA, and H>A2. For PSQI scores 
there were significant differences (ps < .05) for AA>C, AA>A1, AA>A2, AA>O, and O>A1.  
Post-hoc comparison of PER1 minor-allele frequencies showed that the C subsample had more minor-allele carriers than expected, 
while the A1 and A2 subsamples had fewer minor-allele carriers than expected.  
* = analyses were run as a chi-squared test. All others were run as ANOVAs. 
 

 Caucaisan (C) 
n=305 

African American 
(AA) n=73n=73 

Asian1 (A1) 
n=44 

Asian2 (A2) 
n=143 

Hispanic (H) 
n=39 

Other (O) 
n=61 

F/X2 p 

CTQ 31.09 (6.71) 37.13 (9.64) 33.27 (7.64) 35.99(8.55) 32.89 (7.52) 33.07 (7.05) 12.340 <0.001 

AUDIT 5.5 (4.21) 4.27 (4.14) 4.93 (4.91) 4.20 (3.56) 6.26 (4.61) 4.35 (3.84) 3.457 0.004 

AUDIT>8* n=85 n=13 n=10 n=26 n=14 n=9 12.703 0.026 

PSQI 4.81 (2.38) 5.75 (2.59) 4.36 (2.67) 4.81 (2.57) 5.12 (2.97) 4.88 (2.58) 2.241 0.049 

Bilateral 
VS Reactivity 

0.0824 
(0.1436) 

0.0650 (0.1516) 0.0965 
(0.1663) 

0.0625 
(0.1719) 

0.0147 
(0.1545) 

0.0673 
(0.1572) 

1.722 0.127 

Age 19.74 (1.23) 19.6 (1.13) 19.14 (1.15) 19.62 (1.25) 19.59 (1.33) 19.69 (1.09) 1.895 0.093 

Psychiatric 
Diagnosis* 

n=23 n=9 n=1 n=12 n=3 n=4 4.171 0.525 

PER1 minor 
C carriers* 

n=117 
(MAF=0.44) 

n=15 
(MAF=0.21) 

n=6 
(MAF=0.14) 

n=14 
(MAF=0.10) 

n=12 
(MAF=0.36) 

n=18 
(MAF=0.30) 

47.018 <0.001 
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Supplemental Table 2.6.5. Effect of PER1 rs3027172 on self-report variables, VS reactivity, 
presence of psychiatric diagnosis, and ancestral subsamples.   
 

 
Mean values presented with SD indicated in () 
CTQ: Childhood Trauma Questionnaire 
AUDIT: Alcohol Use Disorders Identification Test 
PSQI: Pittsburgh Sleep Quality Index 
* = analyses were run as a chi-squared test. All others were run as t-tests. 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 Major 

Homozygotes (T/T) 

n=483 

Minor-Carriers 

(C/T & C/C) 

n=182 

t/x2 p 

CTQ 33.49 (7.83) 32.58 (8.26) 1.321 0.187 

AUDIT 4.79 (4.13) 5.50 (4.16)  -1.970 0.049 

AUDIT>8* n=106 n=51 2.706 0.100 

PSQI 4.79 (2.57) 5.21 (2.40) -1.871 0.062 

Bilateral VS Reactivity 0.0659 (0.1579) 0.0873 (0.1452) -1.585 0.113 

Psychiatric Diagnosis* n=33 n=19 2.386 0.122 

Caucasian* n=188 n=117 34.246 <0.001 

African American* n=58 n=15 1.919 0.166 

Asian 1* n=38 n=6 4.470 0.035 

Asian 2* n=129 n=14 28.318 <0.001 

Hispanic* n=27 n=12 0.241 0.623 

Other* n=43 n=18 0.155 0.694 

Gender* Male n=208 Male n=85 0.710 0.399 

Age 19.64 (1.27) 19.65 (1.16) -1.30 0.896 
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Supplemental Table 2.6.6. Per1 rs30272172 and Early-life adversity significantly interact to 
predict problematic drinking behavior (AUDIT) even after controlling for gene x covariate and 
environment x covariate interactions.  
 

    Standardized Coefficients 

Model   Beta t Sig. 

1 (Constant) 0.00000 0.14       0.888 

  PER1xCTQ 0.08311 2.275 0.023 

  PER1 0.02511 0.662 0.508 

  CTQ -0.03906 -0.983 0.326 

  Sex -0.45919 -6.44 <0.001 

  Age 0.00819 2.812 0.005 

  PC1 -0.94253 -2.054 0.040 

  PC2 0.48167 2.093 0.037 

  PC3 0.38632 0.407 0.684 

  PC4 -0.05730 -0.596 0.552 

  PC5 -0.08322 -0.196 0.845 

  Diagnosis 0.01705 0.569 0.569 

  PSQI 0.08971 6.244 <0.001 

2 (Constant)  -0.401 0.689 

  PER1xCTQ 0.12440 2.86 0.004 

  PER1 0.03167 0.763 0.446 

  CTQ -0.05656 -1.378 0.169 

  Sex -0.44912 -6.192 <0.001 

  Age 0.02641 2.606 0.009 

  PC1 -0.27623 -2.45 0.015 

  PC2 0.95930 1.878 0.061 

  PC3 0.17948 0.763 0.446 

  PC4 -0.52154 -0.541 0.588 

  PC5 -0.08764 -0.267 0.789 

  Diagnosis 0.00535 0.36 0.719 

  PSQI 0.04061 5.973 <0.001 

  PER1xSex 0.04154 1.12 0.263 

  PER1xAge 0.02270 0.332 0.740 

  PER1xPC1 -0.67215 -0.661 0.509 

  PER1xPC2 -0.02694 -0.105 0.917 

  PER1xPC3 1.15016 0.889 0.374 

  PER1xPC4 -0.04809 -0.093 0.925 

  PER1xPC5 -3.13558 -1.52 0.129 

  PER1xDiagnosis -0.07169 -0.695 0.488 

  PER1xPSQI 0.00197 0.555 0.579 

  CTQxSex 0.23220 1.465 0.143 

  CTQxAge 0.03737 1.274 0.203 

  CTQxPC1 10.71769 2.293 0.022 

  CTQxPC2 -1.28053 -0.825 0.410 
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  CTQxPC3 -0.28992 -0.625 0.532 

  CTQxPC4 0.60554 0.269 0.788 

  CTQxPC5 0.15017 0.144 0.885 

  CTQxDiagnosis 0.27597 0.532 0.595 

  CTQxPSQI 0.00408 0.185 0.853 
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Supplemental Table 2.6.7. Per1 rs30272172 and Early-life adversity significantly interact to 
predict the likelihood of an AUDIT score over 8, which qualifies as problematic drinking 
behavior, controlling for gene x covariate and environment x covariate interactions.  

 

    Standardized Coefficients 

Model   Beta z Sig. 

1 (Constant)  -11.601 <0.001 

  PER1xCTQ 0.59076 2.128 0.033 

  PER1 0.20794 0.75 0.453 

  CTQ -0.46378 -1.569 0.117 

  Sex -2.59750 -5.505 <0.001 

  Age 0.05302 0.819 0.413 

  PC1 -0.74866 -0.956 0.339 

  PC2 6.28589 1.555 0.120 

  PC3 1.03993 0.735 0.462 

  PC4 -3.86224 -0.634 0.526 

  PC5 -2.27352 -1.112 0.266 

  Diagnosis 0.06259 0.702 0.483 

  PSQI 0.19009 4.389 <0.001 

  PER1xSex 0.00788 0.033 0.973 

  PER1xAge -0.18799 -0.448 0.654 

  PER1xPC1 0.03211 0.005 0.996 

  PER1xPC2 0.84776 0.446 0.656 

  PER1xPC3 3.28782 0.436 0.663 

  PER1xPC4 1.02101 0.333 0.739 

  PER1xPC5 -23.06285 -1.83 0.067 

  PER1xDiagnosis -0.45885 -0.728 0.467 

  PER1xPSQI 0.01236 0.552 0.581 

  CTQxSex 0.95418 0.939 0.348 

  CTQxAge 0.20031 1.068 0.285 

  CTQxPC1 52.17043 1.658 0.097 

  CTQxPC2 -16.40813 -1.443 0.149 

  CTQxPC3 -0.97334 -0.341 0.733 

  CTQxPC4 13.86418 0.934 0.350 

  CTQxPC5 3.83533 0.539 0.590 

  CTQxDiagnosis 3.11261 1.019 0.308 

  CTQxPSQI 0.02583 0.185 0.853 
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Supplemental Table 2.6.8. The interaction of Per1 rs30272172 and Early-life adversity 
predicting problematic drinking behavior (AUDIT) in each of the six ethnic subsamples.  

  Caucasian   African American  Asian 1  

  Standardized Coefficients Standardized Coefficients Standardized Coefficients 

  Beta t Sig. Beta t Sig. Beta t  Sig. 

(Constant)  0.219 0.827   0.103 0.918   1.011 0.3201 

PER1xCTQ 0.0146 0.238 0.812 0.2195 1.691 0.096 0.6178 3.456 0.0017 

PER1 -0.0047 -0.086 0.932 0.0770 0.686 0.496 0.0165 0.134 0.8943 

CTQ -0.0409 -0.714 0.476 -0.0917 -0.819 0.416 -0.3424 -2.151 0.0397 

Sex -0.6471 -4.296 <0.001  -1.6955 -4.581 <0.001  -0.4672 -1.068 0.2939 

Age 0.0381 1.716 0.087 0.1216 2.235 0.029 -0.0283 -0.625 0.5364 

Diagnosis -0.0006 -0.031 0.976 -0.0408 -0.871 0.387 0.1510 1.048 0.3032 

PSQI 0.0473 3.997 <0.001  0.0400 2.146 0.036 0.0564 3.029 0.005 

PER1xSex 0.0109 0.250 0.803 0.1255 0.877 0.384 0.7021 2.761 0.0097 

PER1xAge 0.0336 0.258 0.797 0.2633 0.629 0.532 1.2691 2.281 0.0298 

PER1xDiagnosis -0.0487 -0.236 0.813 -0.2486 -0.277 0.783 NA NA NA 

PER1xPSQI -0.0034 -0.664 0.507 0.0162 1.056 0.295 -0.1093 -1.650 0.1094 

CTQxSex 0.2892 0.976 0.330 1.3655 2.632 0.011 0.0925 0.657 0.5161 

CTQxAge 0.0525 1.058 0.291 -0.0059 -0.063 0.950 -0.0589 -0.255 0.8004 

CTQxDiagnosis 2.5393 1.673 0.096 1.4537 0.675 0.503 NA NA NA 

CTQxPSQI -0.0047 -0.076 0.940 0.0344 0.362 0.719 -0.1976 -3.302 0.0025 

  Asian 2  Hispanic Other  

  Standardized Coefficients Standardized Coefficients Standardized Coefficients 

  Beta t Sig. Beta t Sig. Beta t  Sig. 

(Constant)   0.095 0.925   0.175 0.862   0.347 0.7302 

PER1xCTQ 0.1523 1.873 0.063 -0.0222 -0.108 0.915 0.1000 0.713 0.4797 

PER1 -0.0127 -0.139 0.890 0.6533 0.980 0.337 0.0832 0.545 0.5881 

CTQ 0.1450 1.664 0.099 -0.2743 -0.499 0.623 -0.1926 -1.141 0.26 

Sex -0.3372 -1.394 0.166 -0.0112 -0.022 0.983 -0.8170 -1.954 0.0569 

Age 0.0505 2.104 0.037 0.1068 1.338 0.194 -0.0460 -0.651 0.5185 

Diagnosis 0.0428 2.085 0.039 -0.1103 -0.160 0.874 -0.1178 -1.683 0.0993 

PSQI 0.0252 2.494 0.014 0.0843 3.012 0.006 -0.0175 -0.641 0.5248 

PER1xSex 0.1679 1.105 0.271 0.0009 0.006 0.995 -0.1219 -0.821 0.4161 

PER1xAge 0.1753 0.383 0.702 -0.4935 -1.149 0.262 -0.1824 -0.304 0.7622 

PER1xDiagnosis -0.3491 -0.719 0.474 -0.8346 -0.064 0.950 -0.0298 -0.051 0.9599 

PER1xPSQI 0.0062 0.773 0.441 0.0525 3.164 0.004 -0.0083 -0.653 0.517 

CTQxSex 0.0151 0.071 0.943 -0.5481 -0.751 0.460 1.3979 2.135 0.0383 

CTQxAge -0.0661 -1.120 0.265 -0.3051 -2.187 0.039 0.2007 1.879 0.0667 

CTQxDiagnosis -4.3074 -2.478 0.015 6.3800 0.129 0.898 -3.4493 -0.427 0.6717 

CTQxPSQI 0.1233 2.443 0.016 -0.5383 -2.394 0.025 -0.0586 -0.448 0.6567 
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Supplemental Table 2.6.9. Per1 rs30272172 and Early-life adversity significantly interact to 
predict problematic drinking behavior (AUDIT) when including participants originally excluded 
due to lack of neuroimaging data (n=719) 
 

    Standardized Coefficients 

Model   Beta t Sig. 

1  Estimate t p 

  (Constant) 0.00000 -0.481 0.631 

  PER1xCTQ 0.12899 3.18 0.002 

  PER1 0.02569 0.64 0.522 

  CTQ -0.06265 -1.588 0.113 

  Sex -0.24119 -6.742 <0.001 

  Age 0.07908 2.224 0.027 

  PC1 -0.11301 -2.763 0.006 

  PC2 0.08501 2.181 0.030 

  PC3 0.03582 0.929 0.353 

  PC4 -0.01396 -0.394 0.694 

  PC5 -0.00892 -0.253 0.801 

  PSQI 0.24666 6.687 <0.001 

  Diagnosis 0.01260 0.322 0.748 

  PER1xSex 0.03121 0.872 0.383 

  PER1xAge 0.00386 0.103 0.918 

  PER1xPC1 -0.02551 -0.518 0.605 

  PER1xPC2 0.01055 0.277 0.782 

  PER1xPC3 0.04689 1.001 0.317 

  PER1xPC4 -0.00723 -0.191 0.848 

  PER1xPC5 -0.05228 -1.491 0.136 

  PER1xPSQI 0.03204 0.822 0.412 

  PER1xDiagnosis -0.03303 -0.958 0.338 

  CTQxSex 0.05196 1.411 0.159 

  CTQxAge 0.04450 1.272 0.204 

  CTQxPC1 0.09390 2.41 0.016 

  CTQxPC2 -0.03406 -1.005 0.315 

  CTQxPC3 -0.02481 -0.671 0.503 

  CTQxPC4 0.00100 0.028 0.978 

  CTQxPC5 0.01056 0.284 0.777 

  CTQxPSQI 0.00569 0.169 0.866 
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Supplemental Table 2.6.10. Per1 rs3027172 and Early-life adversity do not significantly 
interact to predict ventral striatal reactivity when controlling for gene x covariate and 
environment x covariate interactions.  
 

    Standardized Coefficients 

Model   Beta t Sig. 

1 (Constant)  0.132 0.895 

  PER1xCTQ 0.08380 2.145 0.032 

  PER1 0.06695 1.651 0.099 

  CTQ -0.04072 -0.958 0.338 

  Sex -0.17220 -2.258 0.024 

  Age -0.00505 -1.62 0.106 

  PC1 -0.00742 -0.015 0.988 

  PC2 0.01349 0.055 0.956 

  PC3 0.63155 0.622 0.534 

  PC4 0.07347 0.714 0.475 

  PC5 0.30387 0.669 0.504 

  Diagnosis 0.01000 0.312 0.755 

  PSQI -0.01828 -1.19 0.235 

2 (Constant)  1.315 0.189 

  PER1xCTQ 0.05643 1.231 0.219 

  PER1 0.06268 1.434 0.152 

  CTQ -0.01241 -0.287 0.774 

  Sex -0.18633 -2.437 0.015 

  Age -0.01375 -1.287 0.199 

  PC1 0.05786 0.487 0.627 

  PC2 -0.03814 -0.071 0.944 

  PC3 0.10406 0.42 0.675 

  PC4 1.13770 1.12 0.263 

  PC5 0.38340 1.107 0.269 

  Diagnosis 0.01820 1.16 0.246 

  PSQI -0.00526 -0.734 0.463 

  PER1xSex 0.06082 1.556 0.120 

  PER1xAge -0.02018 -0.28 0.780 

  PER1xPC1 -0.46548 -0.434 0.664 

  PER1xPC2 -0.29333 -1.082 0.280 

  PER1xPC3 -0.73396 -0.538 0.590 

  PER1xPC4 -0.32851 -0.605 0.545 

  PER1xPC5 -1.67776 -0.772 0.441 

  PER1xDiagnosis -0.16886 -1.553 0.121 

  PER1xPSQI 0.00510 1.364 0.173 

  CTQxSex 0.27827 1.666 0.096 

  CTQxAge -0.00593 -0.192 0.848 

  CTQxPC1 -12.36640 -2.51 0.012 

  CTQxPC2 0.20059 0.123 0.902 
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  CTQxPC3 0.59427 1.215 0.225 

  CTQxPC4 -0.99835 -0.421 0.674 

  CTQxPC5 -1.87894 -1.714 0.087 

  CTQxDiagnosis -0.45213 -0.826 0.409 

  CTQxPSQI -0.07234 -3.114 0.002 
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Supplemental Table 2.6.11. The interaction of Per1 rs30272172 and Early-life adversity 
predicting ventral striatal reactivity in each of the six ethnic subsamples.  
 

  Caucasian African American Asian 1 

  Standardized Coefficients Standardized Coefficients Standardized Coefficients 
  Beta t Sig. Beta t Sig. Beta t Sig. 

(Constant)  0.501 0.617  0.184 0.855  0.294 0.771 
PER1xCTQ 0.08772 1.351 0.178 -0.31384 -2.082 0.042 0.21491 0.808 0.426 
PER1 0.00996 0.17 0.865 0.12838 0.985 0.329 0.02570 0.14 0.889 
CTQ 0.06633 1.093 0.275 -0.00964 -0.074 0.941 0.08035 0.339 0.737 
Sex -0.26175 -1.642 0.102 -0.94633 -2.202 0.032 -0.14133 -0.217 0.830 
Age -0.01687 -0.718 0.473 -0.08550 -1.353 0.181 0.02846 0.423 0.676 
Diagnosis 0.02733 1.238 0.217 0.07216 1.327 0.190 -0.07073 -0.329 0.744 
PSQI -0.00625 -0.499 0.618 -0.02841 -1.314 0.194 -0.00181 -0.065 0.948 
PER1xSex 0.02901 0.627 0.531 -0.02871 -0.173 0.864 -0.19436 -0.513 0.612 
PER1xAge 0.07696 0.559 0.576 0.16653 0.343 0.733 -0.58885 -0.711 0.483 
PER1xDiagnosis -0.24471 -1.122 0.263 0.68997 0.661 0.511 NA NA NA 
PER1xPSQI -0.00108 -0.202 0.840 0.00491 0.275 0.784 0.09226 0.935 0.357 
CTQxSex 0.61757 1.97 0.050 -0.64824 -1.076 0.286 0.08910 0.425 0.674 
CTQxAge 0.04816 0.917 0.360 -0.08222 -0.753 0.454 0.15804 0.46 0.649 
CTQxDiagnosis -1.16741 -0.727 0.468 -0.82865 -0.331 0.742 NA NA NA 
CTQxPSQI -0.09890 -1.506 0.133 -0.13670 -1.24 0.220 -0.07186 -0.807 0.426 

  Asian 2 Hispanic Other 

  Standardized Coefficients Standardized Coefficients Standardized Coefficients 
  Beta t Sig. Beta t Sig. Beta t Sig. 

(Constant)   0.538 0.592  1.244 0.226   0.019 0.985 
PER1xCTQ 0.01329 0.156 0.876 0.25508 0.908 0.373 0.16067 1.105 0.275 
PER1 0.00206 0.021 0.983 -0.99849 -1.091 0.287 0.03870 0.245 0.808 
CTQ -0.18459 -2.027 0.045 -0.86761 -1.149 0.263 0.13523 0.773 0.444 
Sex -0.50103 -1.981 0.050 0.08126 0.114 0.910 0.47581 1.098 0.278 
Age -0.00034 -0.013 0.989 -0.15828 -1.445 0.162 -0.06020 -0.822 0.415 
Diagnosis -0.01393 -0.649 0.517 1.11597 1.183 0.249 0.07887 1.087 0.283 
PSQI -0.00495 -0.469 0.640 0.01784 0.464 0.647 -0.01529 -0.541 0.591 
PER1xSex -0.10256 -0.646 0.520 0.20057 1.055 0.302 0.30156 1.959 0.056 
PER1xAge -0.39560 -0.828 0.409 0.37238 0.632 0.534 -1.03469 -1.666 0.103 
PER1xDiagnosis -0.52694 -1.038 0.301 -23.38020 -1.306 0.204 -0.21398 -0.351 0.728 
PER1xPSQI 0.01587 1.884 0.062 0.01315 0.577 0.570 -0.00374 -0.285 0.777 
CTQxSex 0.37678 1.702 0.091 -0.37181 -0.371 0.714 0.15417 0.227 0.821 
CTQxAge -0.11857 -1.921 0.057 -0.04776 -0.249 0.805 0.07997 0.722 0.474 
CTQxDiagnosis 0.12147 0.067 0.947 -89.10560 -1.316 0.201 4.74235 0.566 0.574 
CTQxPSQI -0.04378 -0.83 0.408 -0.42551 -1.378 0.181 -0.15048 -1.109 0.273 
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Supplemental Figure 2.6.1. Ancestral principal components. 
 

 
Ancestral principal components 1 – 3 generated using Eigenstrat. Color coding is of self-report of 
ethnicity. Based on these results participants who self-report as ‘Asian’ were split into two 
subgroups (Asian1 and Asian2) as their ancestral principle components separated into two 
distinct clusters according to k means clustering. 
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Supplemental Figure 2.6.2. Ventral striatal activation from the Positive>Negative feedback 

contrast of the Corticostriatal Reactivity task.  

 

 

 

Statistical parametric map illustrating bilateral VS activation clusters for the contrast “positive 

reward> negative loss” with bilateral spherical 5mm ROIs centered on the points of peak activation 

from Hariri et al. (2006), overlaid onto a canonical structural brain image Montreal Neurological 

Institute coordinates and statistics (p<.05, family-wise error whole-brain corrected and ≥10 

contiguous voxels): left hemisphere: x= -12, y= 8, z= -10, t = 13.59, P<.001, right hemisphere: x 

= 12, y = 10, z= -8, t=12.63, p<.001.   
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Supplemental Figure 2.6.3. The interaction of Per1 rs30272172 and Early-life adversity 

predicting problematic drinking behavior (AUDIT) in each of the six ethnic subsamples.
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Supplemental Figure 2.6.4. PER1 rs3027172 and Early-Life Adversity Do Not Significantly 

Interact to Predict VS reactivity. (ΔR2=.0021, b=0.056, t=1.231, p=0.219). 
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Supplemental Figure 2.6.5. Ancestral Principal Component 1 and Early-Life Adversity Interact 
to Predict VS reactivity. (ΔR2=.0133, b=-0.132, t=-3.014, p=0.003).  
 

 
 
The interaction of the ancestral principal component 1 (PC1) and CTQ scores was found to 
significantly predict ventral striatal (VS) reactivity when included as a covariate in the analysis 
examining the interaction of PER1 rs3027172 and CTQ scores predicting VS reactivity (see 
Results; b=-12.3664, t=-2.51, p=0.01231). Follow-up analyses examining the interaction of PC1 
and CTQ scores on VS reactivity, with age, sex, the other four ancestral principal components, 
PSQI, and presence of a psychiatric diagnosis, and interactions between these variables and 
variables of interest (PC1 and CTQ scores) as covariates, found that the PC1xCTQ interaction 
remained significant (ΔR2=.0133, b=-0.132, t=-3.014, p=0.003). It was found that there was a 
significant negative relationship between CTQ scores and VS reactivity among participants with 
higher PC1 values (Johnson-Neyman significance for PC1 values greater than 0.0275). 
Participants were split into three PC1 groups based on the group standard deviation (low= -0.028 
- -0.037, medium = -0.038 - 0.037, high = 0.038 - 0.0704).   Examination of simple-slopes revealed 
a significant negative relationship between CTQ-scores and VS reactivity in the high PC1 group 
of participants (b=-0.173, t=-2.594, p=0.010). This group of high PC1 participants consists 
predominantly of members of the Asian2 subgroup (see Fig. S1).  
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Supplemental Figure 2.6.6. Sleep Quality and Early-Life Adversity Interact to Predict VS 
reactivity. (ΔR2=.0107, b=-0.1211, t=-2.682, p=0.007).  
 

 
 
The interaction of PSQI scores (sleep quality) and CTQ scores was found to significantly predict 
ventral striatal (VS) reactivity when included as a covariate in the analysis examining the 
interaction of PER1 rs3027172 and CTQ scores predicting VS reactivity (see Supplemental Table 
2.6.6; b=-0.0723, t=-3.114, p=0.0019). Follow-up analyses examining the interaction of PSQI and 
CTQ scores on VS reactivity, with age, sex, the five ancestral principal components, and presence 
of a psychiatric diagnosis, and interactions between these variables and variables of interest 
(PSQI and CTQ scores) as covariates, found that the PSQIxCTQ interaction remained significant 
(ΔR2=.0107, b=-0.1211, t=-2.682, p=0.007). It was found that there was a significant negative 
relationship between CTQ scores and VS reactivity among participants with higher PSQI values 
(Johnson-Neyman significance for PSQI scores greater than 7.3). Participants were split into 
three PSQI groups based on the group standard deviation (low= 0 – 4, medium = 5 - 6, high = 7 
- 12). Examination of simple-slopes revealed a significant negative relationship between CTQ-
scores and VS reactivity in the high PSQI group of participants (b=-0.176, t=-2.592, p=0.012).  
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Chapter 3: No effect of acute and early-life stress 

in a reward learning and processing paradigm 
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3.1 Abstract 

 It is clear that both early-life and acute stress contribute to the etiology of a host of 

psychiatric disorders, particularly depression and addiction. A large body of work points to altered 

functioning of corticostriatal circuits, leading to changes in reward behavior, as a possible 

mechanism underlying this association. While both acute and early-life stress have been studied 

independently, less is known about how these forms of stress interact, with regard to their impact 

on reward behaviors and circuits. The present study sought to examine whether early-life stress 

was associated with differences in within-subject effects of an acute-stress manipulation, on 

reward-learning behavior and concurrent event-related potentials (ERPs).  

 Female participants with elevated early-life stress (ELS; N=35) were recruited, as were 

female controls who were matched by group on age, ethnicity, income, and parental education 

(N=36). Participants completed a within-subject acute stress manipulation, consisting of both a 

trier social-stress test and a cold-pressor test – a counterbalanced control session occurred on a 

separate visit. Following the acute-stress or control manipulation, participants performed a signal 

detection reward-learning task while EEG data was collected. Self-report and physiological stress-

responses were collected throughout both stress and control visits. Outcomes were analyzed with 

mixed-effect models. 

 All the stress-responses showed an effect of the acute-stress manipulation (i.e. anxiety, 

negative affect, salivary cortisol, and heart rate). While participants quickly learned the reward-

associations, hypothesized effects of acute stress on reward learning (i.e. response bias), which 

have been previously reported, were not observed. ELS was not associated with reward learning 

or accuracy, nor did ELS interact with acute stress. Analyses of ERPs were largely negative as 

well, though a nominally significant effect of ELS on the feedback related negativity (FRN) in the 

predicted direction (i.e. reduced) was observed. An unexpected interaction between acute stress 

and ELS was observed in analyses of reaction-time (RT), wherein control participants were slower 
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than ELS participants during the control visit, and acute stress had opposite effects on their 

behavior – control participants sped-up, while ELS participants slowed-down.  

 We propose that increased motivation, as the rewards used here were larger than in prior 

work, may account for the null-effect of acute stress on reward learning. The unexpected 

interaction between ELS and acute stress on RT may reflect the inverted-U effect of stress 

hormones on hippocampal-dependent memory processes. Broadly, this work demonstrates that 

the effect of acute stress on reward behaviors may be smaller than previously reported, and may 

be moderated by motivation and demographic variables.
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3.2 INTRODUCTION 

Nearly half of all Americans will meet the criteria for a psychiatric disorder during their life 

(Kessler et al., 2005). The societal burden of such illness is large, both in terms of lives lost and 

in terms of economic cost, estimated at $2.5T worldwide (Bloom et al., 2011). While it remains 

unknown why some people become ill and others do not, stress during periods of development is 

one of the best predictors. Almost 40% of cases, particularly mood, anxiety, and substance abuse 

disorders, are associated with childhood adversity experienced before the age of 18 (Green et 

al., 2013). The pathogenic effects of stress are not restricted to events occurring during childhood; 

indeed, the risk for alcohol use and mood disorders increases following particularly stressful life 

events (Goodyer et al., 2000; Kendler, 1999; Keyes et al., 2013). As such, to completely 

understand how stress confers psychopathology risk, it is critical to examine how early life stress 

influences susceptibility to acute stress. Such knowledge will contribute to our understanding of 

psychiatric etiology, which ultimately may help improve psychiatric nosology and treatment.  

One mechanism by which stress may increase risk for psychopathology is via disrupted 

reward processing. Various forms of stress-related psychopathology (e.g., depression, substance 

use disorders, PTSD) are associated impaired performance on tasks that are dependent on 

reward processing and associative learning (Diekhof et al., 2008; Nielen et al., 2009; Pizzagalli et 

al., 2008). Moreover, differential activation of reward regions during reward processing has been 

associated with future psychopathology (Bress et al., 2013; Gotlib et al., 2010). Research 

indicates that acute and early-life stress also produce similar behavioral reward learning deficits 

in controls (Berghorst et al., 2013; Bogdan & Pizzagalli, 2006; Pechtel & Pizzagalli, 2011, 2013). 

Notably, in healthy controls, performance on reward learning tasks both at baseline and under 

acute stress is associated with depression symptoms, particularly anhedonia (Bogdan & 

Pizzagalli, 2006; Pizzagalli et al., 2005). These effects extend to rodent research as well, where 

early-life and acute stress manipulations induce depression-like symptoms, such as reduced 
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interest in rewards (Hays et al., 2012; Leventopoulos et al., 2009; Matthews & Robbins, 2003; 

Rüedi-Bettschen et al., 2005), increased addiction susceptibility (Cruz et al., 2008; Der-Avakian 

& Markou, 2010; Kippin et al., 2008; Will et al., 1998), and impaired reward learning and decision 

making (Graham et al., 2010; Shafiei et al., 2012). 

The mesolimbic dopaminergic pathway regulates many of the core processes underlying 

reward learning. Neurons in this pathway, which originates in the ventral tegmental area (VTA) 

and connects the nucleus accumbens (NAc) within the ventral striatum (VS), amygdala, 

hippocampus, and medial prefrontal cortex, carry signals indicating whether a reward is expected 

(reward prediction; RP) and whether the expected reward was received (reward prediction error; 

RPE) (Fiorillo et al., 2003; Nomoto et al., 2010; Schultz, 2000, 2007, 2013). In humans, these 

signals can be indexed via non-invasive functional magnetic resonance imaging (fMRI) of 

structures within the mesolimbic dopaminergic pathway, or by event-related potentials (ERPs) at 

the scalp. The feedback-related negativity (FRN) ERP is generally considered the best index of 

the neural RPE (Sambrook & Goslin, 2015), while the P300 (P3) ERP is correlated with RP signals 

at stimulus presentation (Goldstein et al., 2006; Pfabigan et al., 2014). Studies of the effects of 

stress on reward processing have found that both acute and early life stress blunt RPE signals, 

though this is largely in the context of tasks that do not have a learning component (Bogdan et 

al., 2011; Glienke et al., 2015; Kumar et al., 2014; Lewis et al., 2014; Novick et al., 2018; Porcelli 

et al., 2012). The impact of stress on RP signals remains less clear, as studies have found mixed 

results (Dillon et al., 2009; Kumar et al., 2014; Porcelli & Delgado, 2017). Even so, the effects of 

stress on the brain’s reward circuitry has been proposed to mediate its effects on reward learning, 

and may also partially mediate the effects of stress on risk for psychopathology (Corral-Fr??as et 

al., 2015; Mclaughlin & Lambert, 2016).  

 No human studies, to our knowledge, have examined the combined effects of acute and 

early-life stress on reward learning behavior or neural activity during reward processing. However, 

a recent meta-analysis has found that early-life adversity is consistently associated with blunted 
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cortisol release to an acute stressor (Bunea et al., 2017). This finding echoes rodent research on 

the combined effects of acute stress and maternal separation - while acute stress increases the 

dopamine content of the nucleus accumbens, animals who experienced maternal separation 

exhibited no change in response to acute stress (Jahng et al., 2010). At present, the effects of 

acute stress in an ELS population on reward learning behavior, or on the neural activation of 

reward regions, remains unknown. The current study had three aims. First, to replicate prior 

associations of acute and early life stress with cortisol reactivity, reward learning, and reward 

processing. Second, to extend this literature by examining whether reward processing ERPs 

mediate associations between stress and reward learning behavior. Third, to test whether early 

life stress moderates the effects of acute stress on reward learning and reward processing.  
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3.3 METHODS 

3.3.1 Participants 

Eighty-five female participants aged 18-35 were recruited from the community according to 

reported high (n=43; moderate/severe abuse) or low (n=42; no/minimal abuse) early life stress 

(ELS) exposure.  Groups were recruited to be matched on age, education, college student status, 

ethnicity, income, and parental education. Only women were recruited due to gender differences 

in stress-related biology that are theorized to increase stress-related psychopathology risk in 

women (Desantis et al., 2011). Exclusion criteria included history of psychosis, current use of 

psychotropic medications, and history of a head trauma resulting in a loss of consciousness. The 

study was advertised using the Washington University School of Medicine Research Participant 

Registry, the Washington University Undergraduate Research Participant Pool, flyers posted 

throughout the St. Louis metropolitan area, and social media posts. The study protocol was 

approved by the Washington University in St. Louis IRB and participants received a median of 

$124 in remuneration for completing the study (additional payment details are provided in the 

protocol section). 

 A survey including demographic questions and the Childhood Trauma Questionnaire 

(CTQ) (Bernstein et al., 2003) was distributed to assess eligibility of interested potential 

participants. The CTQ asks participants to retrospectively report on the occurrence and frequency 

of emotional, physical, and sexual abuse as well as emotional and physical neglect before the 

age of 17. The instrument’s five subscales, each representing one type of abuse or neglect, have 

robust internal consistency and  convergent validity with a clinician-rated interviews of childhood 

abuse (Scher et al., 2001). Participants reporting moderate-severe physical (i.e., ≥10), sexual 

(i.e., ≥8), and/or emotional abuse (i.e., ≥13) during childhood (n=43) on the CTQ were recruited 

for the high ELS group. The CTQ neglect subscales were not used, due to concerns that cultural 

differences in standards of childcare (Grassi-Oliveira et al., 2014), as well as evidence that the 



 

67 

 

abuse subscales are most robustly predictive of mental health outcomes (Schilling et al., 2016), 

and poor psychometric validity of the physical neglect subscale in some samples (Karos et al., 

2014). 

Following study completion by each individual in the high ELS group, an individual was 

recruited for the low ELS group who was individually matched on age, education, college student 

status, ethnicity, income, and parental education to ensure that these potentially confounding 

variables did not differ across groups. Participants in the low ELS group were required to report 

no or minimal physical, sexual, or emotional abuse (i.e., CTQ scores ≤ 7, 5, 8 on these scales 

respectively) and a total CTQ score <36. With the exception of the endorsement of psychotic 

hallucinations and/or delusions, no psychiatric diagnosis or symptoms were exclusionary. Groups 

were not matched based on psychiatric conditions due to concerns that doing so would result in 

groups that are resilient to stress (i.e., participants in the high ELS group with no psychopathology) 

and/or vulnerable to psychopathology (i.e., participants in the low ELS group with 

psychopathology) that would complicate the interpretability of data. The recruitment survey was 

completed 1,233 times with 909 respondents (74%) meeting inclusion criteria (the majority of 

excluded respondents were male or had an intermediate CTQ score). Of these respondents, 226 

(25%) met criteria for the moderate/high ELS group (hereafter referred to as “high ELS”); all were 

contacted and 43 (19%) were successfully recruited to the study. Once a high ELS participant 

completed the full study protocol (see below), we identified potential individually-matched low ELS 

participants (N=182), of whom 42 (23%) were successfully recruited.  

Of 85 participants recruited, two withdrew. One did not tolerate the stress induction and 

chose to end the study (high ELS group); the other was unable to schedule a time to complete 

the second session (low ELS group). An additional three participants were excluded, one due to 

non-completion of the take home portion of the study protocol (low ELS group), and two endorsed 

hallucinations or delusions during the clinical interview (both high ELS group). The sample size, 

prior to data analysis and data exclusion due to poor performance (see below) was 80, with 40 
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participants in each group, which was our planned enrollment target due to observed effects of a 

laboratory acute stress on our primary variables of interest (i.e., response bias and ERP 

components) in samples of 40 (Bogdan & Pizzagalli, 2006; Bogdan et al., 2011). Following data 

exclusions and quality control procedures (described below), there were 35 high and 36 low ELS 

participants with complete behavioral data (Table 3.1) and 34 high and 35 low ELS participants 

with complete EEG data.   

 

3.3.2 Study Protocol Overview 

Study sessions occurred between 1-5 pm within 14 days of one another (6.4±1.6 days). 

Participants first completed informed consent with a senior laboratory member, who subsequently 

was not among those administering the acute stress manipulation (see below). Participants were 

informed that they would be asked to give a public speech on one of the two visits, and that a cold 

arm wrap would be placed on their arm during one of the two visits. Participants were randomized 

to receive a social and physical stress-induction on either the first or second visit counterbalanced 

with a control procedure. Participants matched across ELS groups received the stress 

manipulation in the same order. Salivary cortisol, heart rate and self-reported anxiety and negative 

and positive affect were collected throughout both visits. Figure 3.1A provides a schematic of a 

study session. Participants then completed a probabilistic reward learning task while 

electroencephalography (EEG) data were acquired on two separate laboratory visits. Participants 

completed additional self-report questionnaires on stress and mood and collected diurnal cortisol 

samples at home between the two visits. At the end of the second visit participants completed a 

structured clinical interview (MINI (Sheehan et al., 1998)), conducted by a trained clinician, which 

was used to identify lifetime and current psychiatric diagnosis, which with the exception of 

psychotic hallucinations and delusions, were not exclusionary or matched across groups. 

Participants who met criteria for a diagnosis and were not already receiving treatment were 
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provided with a list of local mental health resources. They were then debriefed as to the nature 

and goals of the study, the stress manipulation, and the task design. Participants were 

compensated $10/hour (~2 hours per visit), $20 for the take-home portion, and could win up to 

an additional $32 each time they completed the reward learning task (median total payment was 

$124).  

 

3.3.3 Stress Manipulation 

The stress induction, which combined the Trier Social Stress Test (TSST) (Buske-Kirschbaum et 

al., 1997) and a cold-pressor (CP) (Porcelli et al., 2012), was modeled after prior reports, which 

have found that combining social-cognitive (TSST) and physical stressors (CP) leads to an 

elevated and more prolonged stress-response(du Plooy et al., 2014).  

TSST: Immediately prior to the probabilistic reward learning task and EEG data 

acquisition, an experimenter brought participants into a room with a desk and a curtain blocking 

half the room from view. Participants were first told that they have five minutes to prepare a five-

minute speech on why they are qualified for a job that they are actually qualified for (e.g., they 

cannot claim to have super powers), and that they should try to be as compelling as possible, as 

if it were an actual job interview. After the five minutes, the curtain was drawn back to reveal video 

equipment (video camera, standing microphone, video screen, and bright lights). Two evaluators 

unknown to the participant wearing lab coats (one male and one female) entered the room, and 

sat facing the participant. The evaluators had no other interaction with the participant during either 

visit. The participant was told that they were being evaluated by the two experimenters in front of 

them and the study PI, who was viewing the session via video broadcast in another room. They 

were further informed that recorded video and audio would be used to assess verbal and non-

verbal communication abilities. They were then given five minutes to deliver their speech, during 

which time the two experimenters did not provide any feedback, either facial or verbal, before, 

during, or after the performance. Following completion of the speaking task participants were 
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immediately administered a five minute math task by the two experimenters, in which they were 

asked to serially count down from a large prime (i.e. 1873) by another (i.e. 13) as fast and 

accurately as possible. On every error they were asked to stop and start again, and they were 

asked to go faster, regardless of their actual speed. When participants did not make an error for 

30 seconds in a row, they were asked to start again with another large prime number and a 

different incremental decrease  

CP: Following the TSST, participants were escorted to the EEG recording room. After the 

EEG net was fitted to a participants head, a cold pressor arm wrap (2-4oC) was applied for two-

minutes to further enhance the stress manipulation (Porcelli et al., 2012). The cold pressor was 

not socially evaluated, and was administered by the same study experimenters who collected the 

rest of the study data. The cold-pressor was subsequently re-administered half-way through the 

EEG protocol (15 minutes later) during the second task break (a 3-minute rest between the 

second and third blocks of the EEG task – see below), in order to further prolong the stress 

response. 

Control Condition: In the control condition, which occurred on a separate day, 

participants were asked to copy a magazine article for five minutes in an empty room (a different 

room than the one used for the stress manipulation) by an experimenter who was not involved in 

the stress session. They then read a magazine article aloud for five minutes in the same room, 

and finally counted backwards from 5,000 by 1 at their own pace for five minutes, without any 

experimenter feedback. Instead of a cold pressor, a room temperature arm wrap was applied for 

two minutes, which was also applied during the break midway through the reward learning task. 

This control procedure takes the same amount of time and involves all the same physical activities 

(e.g. standing for five minutes). The order of sessions (stress/control) was counterbalanced 

across participants but kept consistent in pairs matched by group status (moderate-severe early 

life stress, none/minimal early life stress). 
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3.3.4 Stress Manipulation Assessment 

Participant response to the acute-stress manipulation was assessed with self-reported mood, 

salivary cortisol, and heart rate. Self-reported Mood. Self-reported anxiety and negative and 

positive affect were assessed with the 20-item State Trait Anxiety Inventory - State (STAI-S) and 

20-item Positive and Negative Affect Scale (PANAS) (Spielberger, 1983; Watson et al., 1988). 

These measures were administered four times – both at the beginning and end of the study visit, 

and participants completed them twice immediately after the stress-induction, once with reference 

to how they felt during the stressor, and once on how they were currently feeling. Both have been 

previously shown to be sensitive to acute stress manipulations (Bogdan & Pizzagalli, 2006).  

Salivary Cortisol. Salivary samples were collected using Salivettes to assess cortisol at 

4 time points: 1) 15 minutes after arriving the lab, after the first round of self-report questionnaires, 

2) immediately following the stress/control procedure, 3) halfway through the probabilistic reward 

learning task (concurrent with the second cold pressor), and 4) at the end of the study visit. 

Cortisol was measured using enzyme-linked immunoabsorbent assay produced by DRG 

International (SLV-4635) according to manufacturer instructions. 

More specifically, prior to use kits, reagents, and samples were brought to room 

temperature on the lab benchtop. Samples were centrifuged (3,000 g) for 10 minutes. Next, 120 

µL of each sample, standards (0.0, 2.0, 5.0, 10.0, 20.0, 40.0, 80.0 ng/mL), and high and low 

cortisol control samples (to allow for inter-plate comparison) were aliquoted to a 96 well plate. 

Then, 100 µL from each well was then transferred to a 96 well ELISA plate pre-coated with mouse 

anti-cortisol antiserum, which was used for the remainder of the assay. Horseradish peroxidase-

conjugated cortisol (200 µL) was added to each well on the ELISA plate and incubated on a mixer 

for 60 minutes. After emptying well contents, plates were washed 3 times with wash solution (400 

µL/well) using an ELx50 plate washer (BioTek; Winooski, Vermont, USA). Residual wash solution 

was removed before 200 µL oftetramethylbenzidine (TMB) substrate solution was added to each 

well. The plate was then incubated on a mixer for 30 minutes. The reaction was stopped by adding 
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400 µL of 0.5M H 2SO4 stop solution and then read at 450 nm using an Epoch microplate 

spectrophotometer (BioTek; Winooski, Vermont, USA) and calculated using Gen5 software 

(BioTek; Winooski, Vermont, USA). Cortisol concentrations (ng/mL) were calculated from the 

optical densities by the Gen5 software using 4-parameter logistic regression.  

Heart Rate. The Mio Alpha (mioglobal.com) wrist-worn heart rate watch was used to 

measure heart rate during the study. This wrist-watch was chosen to measure heart rate due to 

its comfort, minimal invasiveness, and accuracy of measurement (Parak & Korhonen, 2014; 

Spierer et al., 2015; Wallen et al., 2016). The wrist watch was placed on participants at the 

beginning of each visit, and was removed prior to the EEG session, so as to reduce avoidable 

noise in the EEG signal. Baseline heart rate was computed as average beats-per-minute (bpm) 

while participants completed initial STAI-S and PANAS assessments, and were measured for an 

EEG net. Stress response heart rate was computed as the average bpm during the 10-minute 

period of the stress induction or control procedure during which participants were standing (i.e. 

the speaking and math portions). Due to technical difficulties, heart rate data was not available 

for at least one session for 9 participants.  

 

3.3.5 Behavioral Task 

Participants completed a probabilistic reward learning task on both study visits (Figure 3.1B). The 

task is a visual discrimination task with disproportionate rewards, which has previously been 

shown to be sensitive to the effects of acute stress(Bogdan et al., 2010; Bogdan & Pizzagalli, 

2006; Bogdan et al., 2011; Tripp & Alsop, 1999). In addition to overall accuracy and reaction time, 

the task allows the calculation of discriminability, a measure of a participant’s ability to 

perceptually distinguish two similar stimuli (which can serve as an index of overall task difficulty), 

and response bias (the main performance variable of interest), which reflects a participant’s 

tendency to select one stimulus.  
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In each trial, participants are presented with a face that is missing a mouth (Figure 3.1B). 

A mouth is briefly shown (100ms) and participants will indicate whether the mouth was long or 

short. Importantly, the size difference between the long and short stimuli is small (1mm), 

combined with the short stimulus presentation, makes discrimination difficult.  Rewards (25 cents) 

are delivered for some, but not all, correct trials. While long and short stimuli are presented in 

equal number, correct responses to one (the “rich” stimulus) are rewarded three times more 

frequently than correct responses to the other (the “lean” stimulus). This manipulation typically 

induces a response bias, our primary behavioral measure, which provides an index of how well a 

participant modifies behavior according to reward reinforcement history (i.e., how likely they are 

to respond that a given stimulus is the “rich” one) (Pizzagalli et al., 2005). Which stimulus was 

“rich” was counterbalanced across sessions and participants. Reward feedback for correct 

responses was given according to a pseudo-randomized schedule, so that if a participant failed 

to make a correct response for a trial in which feedback was scheduled, reward feedback was 

delayed until the next correct identification of the same stimulus type (rich or lean). Reward 

feedback was presented for 1500ms and was followed by a blank screen for 250ms. If feedback 

was not given (i.e. the subject was inaccurate or was accurate but no feedback was scheduled), 

a blank screen was displayed for 1750ms. Participants completed four 80-trial blocks of the task 

(i.e. 40 rewards per block, 30 to the rich stimulus, and 10 to the lean), with a 30-second rest 

between the first and second, and third and fourth blocks, and a longer 3-minute rest between the 

second and third blocks. Relative to prior reports using this task (Bogdan & Pizzagalli, 2006; 

Pizzagalli et al., 2005), the task was in two ways: first, we increased the duration (i.e., 4 blocks of 

80 trials) to increase the number of trials available for lean feedback presentations for ERP 

components; second, the amount of reward provided (i.e.,$0.25) was increased to facilitate 

recruitment and task engagement. 

 As in prior reports, a two-step procedure was used to identify outlier responses (Bogdan 

et al., 2010; Bogdan & Pizzagalli, 2006; Bogdan et al., 2011). First, trials with RTs <100 or >1500 
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ms were excluded. Second, for each subject, trials with RTs (following natural log transformation) 

falling outside the mean > 3 SDs were removed. Participants were excluded from all further 

analyses if >10% (i.e. 32) of trials for either of the two visits were removed for poor RT (N=8), or 

if they failed to achieve > 50% accuracy across either of the two sessions (50% is chance 

performance; N = 1).  The final sample of N=71 participants consisted of N=35 ELS and N=36 

controls. Following outlier removal, response bias (the main variable of interest) and 

discriminability were computed as follows:  

 

 

 

Response bias: 

log 𝑏 =
1

2
log (

(𝑅𝑖𝑐ℎ𝑐𝑜𝑟𝑟𝑒𝑐𝑡  + 0.5 ) ∗ (𝐿𝑒𝑎𝑛𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 0.5)

(𝑅𝑖𝑐ℎ𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡  + 0.5 ) ∗ (𝐿𝑒𝑎𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 0.5)
) 

Discriminability: 

log 𝑑 =
1

2
log (

(𝑅𝑖𝑐ℎ𝑐𝑜𝑟𝑟𝑒𝑐𝑡  + 0.5 ) ∗ (𝐿𝑒𝑎𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 0.5)

(𝑅𝑖𝑐ℎ𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡  + 0.5 ) ∗ (𝐿𝑒𝑎𝑛𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 0.5)
) 

 

 

3.3.6 EEG collection and processing 

EEG data were collected using a 128-channel sensor net (Electrical Geodesics) and Netstation 

software at the Behavioral Research and Imaging Neurogenetics (BRAIN) Lab at Washington 

University.  EEG data was sampled at 500 Hz (16-bit precision; bandwidth, 0.01–100 Hz; 

impedances <45 kΩ) and referenced to the vertex. Data were resampled to 250 Hz and gross 

artifacts were manually removed. BrainVision software was used for ERP analyses (Brain 

Products). Spatially weighted linear interpolations were used to replace noisy channels and an 

independent component analysis was applied to remove common artifacts (e.g., eye blinks). For 
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each trial, EEG epochs were extracted 200 ms before and 800 ms after stimulus presentation and 

reward feedback for correct identification of the rich and lean stimuli. A manually evaluated semi-

automatic artifact removal (±75µV criterion) was then applied to identify any remaining artifacts. 

Next, data were filtered (1–30 Hz; 12 dB roll-off), baseline-corrected (-200 to 0 ms before 

stimulus), and re-referenced to the average reference. The FRN was quantified 200–400 ms 

following reward feedback, and its peak scored for electrode sites Cz and FCz, where the FRN is 

maximal. The FRN was calculated for both lean and rich stimulus feedback, as well as each 

separately. As lean stimuli are rewarded three times less frequently than rich stimuli, increased 

FRN amplitude to lean rewards relative to rich rewards represents the RPE signal (greater activity 

to a less-likely reward). The P300 was quantified 250-350 ms stimulus presentation, and its peak 

latency scored at electrode sites Pz and CPz, where the P300 is maximal. The P300 was 

calculated for both lean and rich stimulus presentation, as well as each separately. Similar to the 

FRN, as rich stimuli are rewarded three times more frequently than lean, increased P300 

amplitude to rich stimuli relative to lean represents the reward prediction (RP) signal (greater 

activity to a more likely reward). Two participants were excluded from EEG data analysis due to 

poor quality data (N=69 for EEG analyses – one from each group) 

 

3.3.7 Statistical Analyses 

Sample demographics and comparisons were computed in R (3.3.2) (R Core Team, 2014). Post 

quality control data were winsorized (to ± 3 SDs) to maintain variability while limiting the influence 

of extreme outliers that had no evidence to support exclusion. Variables with high skew (>1 or <-

1) were transformed prior to analyses. Left-skewed variables were log-transformed, while right-

skewed variables were squared.   

 The  R ‘nlme’ package (Pinheiro et al., 2017) was used to fit a series of multilevel linear 

models with within subject effects of Condition (i.e., acute stress or control) and Time/Block (e.g., 

Block 1, 2, 3,4 of the reward learning task or cortisol measurement point) as well as the between 
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subject effect of Early Life Stress Group (i.e., moderate-sever, no/minimal) on stress manipulation 

(e.g., cortisol), behavioral performance (e.g., response bias), and EEG variables (e.g., FRN) of 

interest. Analyses of stimulus-specific task behavior (i.e., reaction time, accuracy, ERP 

components) included an additional within subject random slope for Stimulus (i.e., rich, lean). 

Models included both random intercept (i.e. participant) and random slope (i.e. manipulation 

condition, task block, cortisol time-point) components, with a continuous autoregressive 

correlation structure. Time/Block was first coded as both a linear and quadratic effect due to 

expectations that our collection protocol would result in quadratic effects for stress manipulation 

outcomes (i.e., an increase following the manipulation followed by a return to baseline), while 

behavioral reward and ERP components outcomes were expected to have linear components 

based on prior work. In instances where both linear and quadratic effects did not improve model 

fit, only the significant effect was retained in analyses.  

All models controlled for age, socioeconomic status (SES), ethnicity (as several dummy-

coded variables), and visit order (i.e. stress-first vs control-first). Covariates were Z-scored, and 

second-order interactions between covariates and primary variables were added (i.e. analyses 

testing whether the change in performance differed between stress conditions – a stress x block 

interaction – additionally controlled for interactions between all other covariates in the model and 

stress and block) (Baranger et al., 2016; Keller, 2014). SES was computed using self-reported 

parental education and family income – mother and father’s education was each z-scored and 

then averaged, which was then averaged with the z-score of family income. 
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3.4 RESULTS 

3.4.1 Demographics 

As per the design of our matched recruitment strategy, the high ELS group reported greater ELS 

on the CTQ relative to the low ELS group, but did not differ on demographic variables, including 

age, college student status, ethnicity, parental education, or income (Table 3.1). The two groups 

did not differ in the number of days that occurred between the two visits, though the difference in 

the start times was larger in the low relative to high ELS participants. Consistent with an extensive 

body of evidence that early life stress increases risk for mental illness (Green et al., 2013), the 

ELS group had almost three-times the rate of psychiatric diagnoses as the low ELS group (74% 

vs 25%; Table 3.1). This was driven primarily by increased rates of depression, though anxiety 

disorders, which are well-documented to be highly comorbid with depression, also differed 

between groups.  

  

3.4.2 Stress-response Manipulation Check 

Self-reported mood, cortisol, and heart rate data show that the stress-induction was successful 

(Figure 3.2 A-E). Across measures (i.e. STAI, PANAS, and salivary cortisol), the addition of a 

linear-change parameter (in addition to quadratic change) worsened model-fit (i.e. increased BIC) 

– thus models with four observations (i.e. everything but heart-rate) only include a quadratic 

parameter for measurement time-point. There were significant main-effects of stress-induction 

and time-point, as well as a significant stress x time interaction for all stress outcomes (Figure 

3.2; Table 3.2).  Post-hoc comparisons revealed that cortisol, heart rate, anxiety, and negative 

affect were maximized while positive affect was minimized during/following the stress 

manipulation relative to baseline and the conclusion of the experiment. A significant main-effect 

of ELS Group was observed for the STAI and PANAS-Negative Affect scales due to reports of 

elevated anxiety and negative affect throughout both visits within the moderate/severe relative to 
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the no/minimal ELS group (Table 3.2).  Correlations of the effect of stress (i.e. the within-subject 

change) found a strong correlation between STAI-S and PANAS-N (r(69)=0.78, p=7.7x10-17), and 

a moderate correlation between salivary cortisol and heart rate (r(61)=-0.382,p=0.002) (Figure 

3.2E).  

Contrary to our expectations based on prior literature (e.g. (Bunea et al., 2017)), ELS 

group did not moderate the impact of acute stress on cortisol, heart rate, or self-reported mood 

(Table 3.2). As these hypothesized moderations were not observed, exploratory analyses tested 

whether scores on the CTQ abuse-subscales were correlated with the response to stress (i.e. 

within-subject change between sessions in multilevel models that did not include ELS group as a 

covariate). Nominally significant associations between PANAS-N scores and emotional and 

sexual abuse (CTQ-Emotional Abuse: r(69)=0.37, p=0.002; CTQ-Sexual Abuse: r(69)=0.28, 

p=0.016) were observed. As PANAS-N scores were fit with a quadratic model, a more negative 

effect-size indicates a larger change in response to the stress manipulation. Thus these 

correlations show that participants with higher emotional and sexual abuse reported less of an 

increase in negative affect in response to the stress manipulation. No associations with the other 

outcomes (including cortisol and heart-rate) were observed.  

 

3.4.3 Primary Analyses of Behavioral Task Performance 

A main effect of block revealed that as expected response bias increased across the four blocks 

of the task (Table 3.3, Figure 3.3A), indicating that participants successfully modified their 

behavior according to reward history over time. Addition of a quadratic term worsened model-fit 

across analyses of performance; as a result only the linear effect of block was included. Contrary 

to hypotheses, there were no simple effects of the Condition or ELS Group were on response 

bias (Table 3.3). There were no simple effects of Condition, ELS Group, or Block on 

discriminability  
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 (Figure 3.3B). However, the interaction of stress-condition and counterbalancing was significant 

(Table 3.3), which was driven by a larger increase in discriminability on the second visit if the first 

visit was the control-manipulation.  

Analyses of stimulus-specific effects (i.e., rich/lean) revealed expected strong effects of 

Stimulus Type on both accuracy and reaction time due to increased rich accuracy and reduced 

reaction time to the lean stimulus (Table3, Figure 3.3C&D). There was also an expected, but 

small, Stimulus Type x Block interaction wherein accuracy to lean stimuli decreased across 

blocks. Further, a Condition x ELS Group interaction also emerged for reaction time (Table3); low 

ELS participant’s RT was faster in the stress condition, while high ELS participant’s RT was 

slower. Figure 3.3E).   

Post-hoc Exploratory Analyses: The robust response bias observed in block 1 of our 

task suggests that reward contingencies were learned quickly; however, restricting analyses to 

only the first 2 blocks, each split into sub-blocks of 40 trials (i.e., 4 sub-blocks), recapitulated our 

observed null effects. Further, because data were completed on separate days and prior exposure 

on this task can influence performance, we restricted analyses to only data acquired during the 

first study session, making our stress manipulation Condition factor a between subject variable; 

again null effects were observed.  

 

3.4.4 ERP analysis 

ERPs were collapsed across blocks for analyses to maximize trial numbers due to evidence of 

response bias within the first block. ERP waveforms provide observable evidence of FRN and 

P300 components (Figure 3.4). Similar to behavioral results and contrary to our hypotheses, 

there was no consistent simple effects of Condition, ELS Group, or an ELS Group x Condition 

interaction for the FRN (stats) or P300; further, there was no evidence of a differential P300 or 

FRN amplitude to stimulus type (i.e., rich or lean: stats) (Figure 3.4; Table 3.4).  A weak effect of 

ELS was observed in one of the FRN channels, Cz, where ELS participants had a lower overall 



 

80 

 

response to reward feedback. However, this effect was not observed in the other channel, though 

the direction of effect was the same. The FRN channel FCz showed an interaction between the 

stress manipulation and counterbalancing, where the stress manipulation was associated with a 

reduced FRN only in participants who experienced the stress manipulation in their second visit 

(Figure 3.4; Table 3.4). There were no significant associations between the FRN or P300 and 

task performance.  
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3.5 DISCUSSION 

The present study examined the effects of acute and early-life stress on reward learning and 

processing.  Two primary findings emerged. First, in contrast to prior studies, we found no 

evidence that acute or early life stress were associated with variability in behavioral reward 

learning (i.e., response bias) or related neural indices (i.e., FRN, P300). Second, we found no 

evidence that ELS moderated the effects of acute stress on stress-related reactivity, or behavioral 

or neural indices of reward learning. Collectively these findings challenge prior studies suggesting 

that acute stress may disrupt novel reward learning and challenge the concept of stress-induced 

anhedonia as a mechanism through which stress promotes psychopathology. 

 

3.5.1 Acute and Early Life Stress: Response Bias.  

In contrast to hypotheses and prior observations ( Bogdan et al., 2010; Bogdan & Pizzagalli, 2006; 

Bogdan et al., 2011), the acute-stress manipulation was not associated with a change in response 

bias. Further analyses found that stress responses (e.g. salivary cortisol) did not moderate the 

effect of acute stress on response bias. It was also hypothesized that ELS would be associated 

with reduced response bias, as ELS is a strong predictor of depression (Green et al., 2013), and 

depression is associated with reduced response bias (Huys et al., 2013; Pechtel et al., 2013;  

Pizzagalli et al., 2005; Vrieze et al., 2013). This effect was not observed, nor was ELS observed 

to moderate the effect of acute stress, which was also hypothesized. While the observed null 

effects were unexpected, we did find that our acute stress manipulation reliably induced 

physiological and emotional changes consistent with a stress manipulation, and that our task 

reliably induced behavioral change according to reinforcement contingencies (i.e., response 

bias). This same effect was also apparent as a stimulus x block interaction in the analysis of 

accuracy. As in prior reports, participants were more accurate, and responded faster, to rich 
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stimuli (Bogdan et al., 2011). As such, these null effects cannot be attributed to an inefficient 

stress manipulation or task  

Unexpectedly, the effect of the acute stress manipulation on overall reaction time (RT) 

was moderated by ELS. Control participants responded more slowly than ELS participants during 

the control condition, yet ELS participants attained the same behavioral accuracy. Further, 

responses to the stress manipulation differed. While control participants responded more slowly 

under stress, ELS participants were faster to respond. This effect did not differ between rich and 

lean stimuli, suggesting that it is not accounted for by models such as altered reward sensitivity 

(Pizzagalli et al., 2005) or increased habitual responding (Schwabe & Wolf, 2009), which predict 

that the effect would vary as a function of the expected value of the stimulus. Instead, this 

interaction between acute stress and ELS echoes work on the inverted-U relationship between 

stress and memory performance, wherein an intermediate-level of stress promotes performance, 

but too-little or too-much stress hinders performance (Finsterwald & Alberini, 2014). This inverted-

U relationship has largely been described with relation to hippocampal dependent processes 

(Baldi & Bucherelli, 2005; Salehi et al., 2010; T. M. Schilling et al., 2013) - the interaction of acute 

stress and ELS on RT may reflect the role of the hippocampus in the encoding of salient rewards 

and guiding attention (Delgado & Dickerson, 2012; Goldfarb et al., 2016; Jafarpour et al., 2017; 

Murty & Adcock, 2014).   

We suggest four possible explanations for our non-replication of prior work. First, it is 

possible that prior findings (Bogdan et al., 2010; Bogdan & Pizzagalli, 2006; Bogdan et al., 2011) 

may represent false positives. Second, as the major psychosocial portion of the stress 

manipulation concluded prior to the reward learning task, it is possible that participants were not 

still experiencing stress during the reward learning task and may have even experienced relief. 

While we attempted to combat this by including a physical cold pressor that was reapplied, 

evidence does suggest that self-reported mood and cortisol levels had returned to baseline at the 

end of the behavioral task. Prior reports of acute stress inducing behavioral reward learning 
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deficits all used concurrent stressors (e.g., thereat of shock). Third,  recent work corroborates our 

report of no effect of an acute-stress manipulation in reward paradigms, and has suggested that 

acute-stress effects may only be present the subset of participants with large cortisol or 

inflammatory responses to the stressor (Berghorst et al., 2013; Lewis et al., 2014; Treadway et 

al., 2016). However, we observed no correlation between stress-response and the effect of stress 

on reward-learning or that participants who were physiologically or emotionally response to the 

manipulation; as such it is improbable that this consideration accounts for our null findings. Fourth, 

the rewards used in the current study were larger than those used in prior work using the same 

task ($0.25 vs. $0.05 (Bogdan et al., 2010; Bogdan & Pizzagalli, 2006; Bogdan et al., 2011)). This 

may have increased motivation, leading to increased dopamine release (Berke, 2018) and faster 

learning of reward associations (Mosberger et al., 2016; Wang et al., 2017), ultimately rendering 

behavior less sensitive to the effects of our mild acute stress manipulation.  

 

3.5.2 Acute and Early Life Stress: FRN and P300.  

 Analyses of ERP data found no evidence that amplitude (FRN and P300) differed between 

rich and lean stimuli in either the stimulus presentation or reward feedback phases, contrary to 

hypotheses. The behavioral data suggests that learning took place quite quickly, as performance 

and reaction time did not change across blocks. As such, the prediction-error hypothesis (Schultz, 

2007) would predict that no prediction error signal would be present after learning (Glimcher, 

2011), which may explain why FRN amplitudes at feedback did not differ. However, if this is the 

case, then it is surprising that the P300 showed no difference at stimulus presentation. We note 

that the P300 has largely been characterized as a potential reward prediction signal in the context 

of varying reward magnitude and valence (Bellebaum et al., 2010; Pfabigan et al., 2014), not 

varying probability of the same magnitude reward, as is the case in the present study. Indeed, 

prior work has found that at reward feedback the P300 correlates with reward magnitude (Yeung, 

2004), so it may also code for reward magnitude at stimulus presentation. As potential reward 
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magnitude does not differ between lean and rich stimuli in the present study ($0.25 for both), a 

signal which codes for reward magnitude would not be expected to differ between them.  

 Finally, we note that few of the hypothesized associations with early life stress (ELS) were 

present. Apart from a small effect of ELS on the FRN in one of the two channels (Cz:  β=-0.192, 

p=0.037), which was in the predicted direction but does not survive correction for multiple 

comparisons, hypothesized effects on the stress response, task behavior, and ERPs were not 

present. We employed a matched-group design, where control participants were recruited only if 

they matched an ELS subject on four demographic variables: age, ethnicity, family income, and 

parental education. This recruitment strategy was more stringent than most prior work, in which 

control groups are matched only by frequency (i.e. group means do not differ), or not matched at 

all. As a result, observed group differences (i.e. RT differences) are likely not attributable to these 

variables, and conversely, it is possible that prior reports may be biased by some confounding. 

We did not observe correlations between demographic variables and outcomes, though one effect 

of matching by group is that we are at reduced power to detect such associations, as we have 

constrained the variance of demographic variables. 

  The present study is not without its limitations. First, while we selected our sample size 

based on effects reported in prior work (Bogdan et al., 2010; Bogdan & Pizzagalli, 2006; Bogdan 

et al., 2011), it has since become increasingly clear that much of the literature, not only the work 

cited here, is underpowered (Nord et al., 2017). Indeed, a recent meta-analysis reports that the 

effect of ELS on salivary cortisol in response to acute stress is smaller than we had initially 

anticipated (Bunea et al., 2017). A benefit of our within-subject design is that we are well-powered 

to detect within-subject effects (i.e. the effects of acute stress on the change in response-bias). 

However, we are also likely underpowered to detect some of our original research questions, 

particularly between-subject comparisons of effects for which there was only one measurement 

(i.e. whether ELS moderates the effect of acute-stress on the change in response-bias). Second, 

a growing body of work suggests that the developmental timing of early life stressors is important, 
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and that stressors occurring before late adolescence may have a larger impact on reward function 

(Novick et al., 2018). However, our early-life stress measure, the Childhood Trauma 

Questionnaire (CTQ) did not assess when stressors occurred. Further work is needed to examine 

the effects of when stressors occur on future outcomes. Third, we have proposed increased 

motivation to be the primary factor underlying our null-effect of acute stress. However, we did not 

collect a measure of participant motivation - our interpretation is purely speculative.  

While there is abundant evidence that acute and early-life stress effect reward processing 

(Holly & Miczek, 2016; Novick et al., 2018; Vaessen et al., 2015), the present study shows that 

these effects may be more subtle than the literature might suggest. Indeed, we demonstrate that 

it is possible to induce a robust stress-response that only minimally impacts reward behavior and 

processing. We propose that enhanced reward motivation may underlie these unexpected results.   
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Table 3.1. Comparison of control and Early-life Stress (ELS) groups  

 
Control (N=36) ELS (N=35) t/χ2 p-value 

Age 22.14 (4.37) 
[18-33] 

22.63 (4.69)  
[18-35] 

-0.4548 0.6507 

College Student* N=19 (52.78%) N=20 (57.14%) 0.0172 0.8958 

Caucasian* N=11 (30.56%) N=9 (25.71%) 0.0359 0.8497 

African American* N=8 (22.22%) N=9 (25.71%) 0.0044 0.9469 

Asian/American* N=11 (30.56%) N=13 (37.14%) 0.1127 0.7371 

Hispanic* N=5 (13.89%) N=2 (5.71%) 0.5731 0.4490 

Multi-racial/Other Ethnicity* N=1 (2.78%) N=2 (5.71%) 6.00x10-4 0.9801 

Mother’s Education 3.75 (1.08) 
 [1-5] 

3.6 (1.12) 
[1-5] 

0.5753 0.5669 

Father’s Education 3.94 (1.16) 
 [1-5] 

3.57 (1.44)  
[1-5] 

1.1873 0.2394 

Family Income 4.03 (1.50)  
[2-6] 

3.80 (1.64)  
[1-6] 

0.6095 0.5442 

SES 0.12 (1.16)  
[-2.29-1.71] 

-0.01 (1.24) 
 [-2.29-1.71] 

0.76 0.4499 

Days Between Visits 6.22 (1.73)  
[2-9] 

6.43 (1.38) 
 [3-9] 

-0.5575 0.5790 

Difference in time of visits 
(min.) 

47.08 (64.66) 
 [0-180] 

10.71 (25.61)  
[0-120] 

3.1316 0.0030 

CTQ Total 29.72 (2.86) 
 [25-35] 

52.77 (14.18)  
[37-108] 

-9.4287 2.42x10-11 

CTQ Emotional Abuse 6.44 (1.48)  
[5-11] 

13.77 (4.15) 
 [6-24] 

-9.8475 1.63x10-12 

CTQ Physical Abuse 6.14 (1.29) 
 [5-9] 

9.17 (3.45)  
[5-19] 

-4.8773 1.50x10-5 

CTQ Sexual Abuse 5.06 (0.33) 
 [5-7] 

8.84 (5.22) 
 [5-22] 

-4.2665 0.0001 

Any Diagnosis* N=9 (25%) N=26 (74.29%) 15.331 1.00x10-4 

Number of Diagnoses 0.39 (0.72) 
 [0-2] 

1.46 (1.27)  
[0-5] 

-4.3366 6.38x10-5 

Depression/Episode* N=9 (25%) N=25 (71.43%) 13.5252 2.00x10-4 

Bipolar/Mania/Hypomania* N=1 (2.78%) N=3 (8.57%) 0.2957 0.5866 

Anxiety/Panic/Agoraphobia* N=1 (2.78%) N=11 (31.43%) 8.4325 0.0037 

Alcohol/Substance Use* N=2 (5.56%) N=1 (2.86%) 0 1 

Anorexia/Binge Eating* N=1 (2.78%) N=3 (8.57%) 0.2957 0.5866 

Antisocial Personality* N=0 (0%) N=1 (2.86%) 2.00x10-4 0.9887 

Obsessive Compulsive* N=0 (0%) N=2 (5.71%) 0.544 0.4608 

Post-Traumatic Stress* N=0 (0%) N=5 (14.29%) 3.5654 0.059 

* = test run as chi-squared test. All others run as t-tests.  

Data is presented as Mean (SD) [Range].  

CTQ = Childhood Trauma Questionnaire; SES = Socioeconomic Status 
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Table 3.2. Effect of stress manipulation on stress-response 

Outcome Variable Beta SE df t-value p-value 

STAI-S Condition -0.394 0.034 478 -11.422 6.99x10-27 
 

Time-Point - quadratic -8.965 0.510 478 -17.565 1.18x10-53 
 

ELS 0.263 0.058 63 4.541 2.58x10-5 
 

Condition x Time-Point 7.703 0.632 478 12.194 5.75x10-30 
 

Condition x Time-Point x ELS -0.490 0.632 478 -0.776 0.438 

PANAS-Negative Condition -0.382 0.040 478 -9.660 2.77x10-20 
 

Time-Point - quadratic -7.918 0.520 478 -15.219 6.19x10-43 
 

ELS 0.191 0.056 63 3.441 0.001 
 

Condition x Time-Point 8.395 0.773 478 10.860 1.05x10-24 
 

Condition x Time-Point x ELS 0.944 0.774 478 1.220 0.223 

PANAS-Positive Condition 0.103 0.036 478 2.859 0.004 
 

Time-Point - quadratic 1.534 0.585 478 2.621 0.009 
 

ELS -0.119 0.096 63 -1.238 0.220 
 

Condition x Time-Point -1.443 0.679 478 -2.124 0.034 
 

Condition x Time-Point x ELS -0.057 0.680 478 -0.083 0.934 

Salivary Cortisol Condition -0.206 0.039 473 -5.237 2.46x10-7 
 

Time-Point - quadratic -1.478 0.526 473 -2.813 0.005 
 

ELS 0.011 0.088 63 0.130 0.897 
 

Condition x Time-Point 2.197 0.545 473 4.031 6.46x10-5 
 

Condition x Time-Point x ELS 0.353 0.545 473 0.647 0.518 

Heart Rate Condition -0.102 0.047 171 -2.153 0.033 
 

Time-Point - linear 8.304 0.473 171 17.573 3.71x10-40 
 

ELS 0.051 0.081 55 0.630 0.532 
 

Condition x Time-Point -1.679 0.620 171 -2.710 0.007 
 

Condition x Time-Point x ELS 0.945 0.621 171 1.522 0.130 

 

Results of multi-level models examining the effects of the stress manipulation on stress 
outcome measures. Condition = stress manipulation or control visit. Time-Point = quadratic 
change across four measurements or linear change from baseline to manipulation (heart rate 
only). ELS = early life stress participant. STAI-S = State-Trait Anxiety Inventory – State; PANAS 
= Positive and Negative Affect Scale. Heart rate data was available for N=63 of the full N=73 
sample. Effect sizes are standardized (i.e. all variables were z-scored prior to analyses).  
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Table 3.3. Effect of stress manipulation on task performance 
Outcome Variable Beta SE df t-value p-value 

Response-bias Condition 0.024 0.048 461 0.504 0.615 
 

Block 1.858 0.782 461 2.377 0.018 
 

Counterbalancing 0.094 0.073 57 1.289 0.203 
 

ELS -0.075 0.065 57 -1.145 0.257 
 

Condition x Block 0.046 0.911 461 0.051 0.959 
 

Condition x Counterbalancing 0.077 0.053 461 1.460 0.145 
 

Condition x Block x ELS -0.582 0.924 461 -0.630 0.529 

Discriminability Condition -0.018 0.033 461 -0.548 0.584 
 

Block 1.064 0.658 461 1.617 0.107 
 

Counterbalancing 0.067 0.099 57 0.681 0.499 
 

ELS -0.039 0.089 57 -0.439 0.662 
 

Condition x Block 1.021 0.725 461 1.408 0.160 
 

Condition x Counterbalancing -0.113 0.037 461 -3.052 0.002 
 

Condition x Block x ELS 0.350 0.736 461 0.476 0.634 

Accuracy Condition -0.025 0.026 1016 -0.975 0.330 
 

Stimulus -0.363 0.027 1016 -13.319 2.01x10-37 
 

Block 0.813 0.737 1016 1.103 0.270 
 

Counterbalancing 0.050 0.065 63 0.775 0.441 
 

ELS -0.024 0.059 63 -0.401 0.689 
 

Condition x Block 1.089 0.862 1016 1.264 0.207 
 

Stimulus x Block -1.652 0.777 1016 -2.126 0.034 
 

Condition x Counterbalancing -0.071 0.029 1016 -2.463 0.014 
 

Condition x ELS -0.008 0.026 1016 -0.299 0.765 

Reaction time Condition -0.006 0.025 1016 -0.232 0.816 
 

Stimulus 0.066 0.015 1016 4.441 9.91x10-06 
 

Block -0.659 0.500 1016 -1.318 0.188 
 

Counterbalancing -0.101 0.114 63 -0.889 0.378 
 

ELS -0.077 0.104 63 -0.741 0.461 
 

Condition x Block 0.898 0.652 1016 1.376 0.169 
 

Stimulus x Block 0.396 0.500 1016 0.791 0.429 
 

Condition x Counterbalancing 0.034 0.028 1016 1.232 0.218 
 

Condition x ELS -0.080 0.025 1016 -3.163 0.002 

Results of multi-level models examining the effects of the stress manipulation on task behavior. 
Condition = stress manipulation or control visit. Block = linear change across the four task 
blocks. ELS = early life stress participant. Effect sizes are standardized (i.e. all variables were z-
scored prior to analyses).  
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Table 3.4. Effect of stress manipulation on ERPs during task 

Outcome  Variable Beta SE df t-value p-value 

FRN - FCz  Condition -0.011 0.059 190 -0.180 0.857  
 Stimulus 0.007 0.028 190 0.270 0.787  
 ELS -0.053 0.099 61 -0.529 0.599  
 Condition x Stimulus 0.011 0.031 190 0.344 0.731  
 Condition x Counterbalancing -0.165 0.063 190 -2.602 0.010 

FRN - Cz  Condition -0.088 0.072 190 -1.222 0.223  
 Stimulus -0.020 0.023 190 -0.863 0.389  
 ELS -0.192 0.090 61 -2.134 0.037  
 Condition x Stimulus 0.025 0.027 190 0.940 0.348  
 Condition x Counterbalancing -0.083 0.077 190 -1.087 0.278 

P300 - 
CPz 

 Condition 0.068 0.057 190 1.198 0.232 

 
 Stimulus 0.011 0.028 190 0.395 0.693  
 ELS 0.087 0.093 61 0.942 0.350  
 Condition x Stimulus 0.036 0.034 190 1.075 0.284  
 Condition x Counterbalancing -0.020 0.062 190 -0.328 0.743 

P300 - Pz  Condition 0.067 0.058 190 1.154 0.250  
 Stimulus 0.033 0.031 190 1.077 0.283  
 ELS 0.007 0.093 61 0.075 0.941  
 Condition x Stimulus 0.042 0.034 190 1.222 0.223  
 Condition x Counterbalancing 0.011 0.065 190 0.172 0.863 

 
Results of multi-level models examining the effects of the stress manipulation on ERPs 
collected during task. FRN = 200-400ms after reward feedback. P300 = 250-350ms after 
stimulus presentation. Condition = stress manipulation or control visit. ELS = early life stress 
participant. Effect sizes are standardized (i.e. all variables were z-scored prior to analyses).  
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Figure 3.1. Study Design and task 

 

 

A 

 

 

 

 

 

 

 

 

B 

 

 

 

 

A: Schematic of study visit and the timing of stress induction. B: Reward Learning task  – 
mouths differed by 10mm.  If a reward was not scheduled, or if the participant was incorrect, 
and blank screen was shown for the same period of time. 
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Figure 3.2. Self-report and physiological responses to stress manipulation 

 

A-E: Boxplots display median and quartiles of distribution; notches represent 95% CI of median. F: Values are Pearson’s correlation 
(r), colored by their significance. STAI-S = State-Trait Anxiety Inventory – State; PANAS = Positive and Negative Affect Scale. 
Associated statistics are reported in Table 3.2. 
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Figure 3.3. Effects of stress manipulation on task performance 

 
A-E: Boxplots display median and quartiles of distribution; notches represent 95% CI of median. Condition = Stress manipulation or 
control visit. ELS = early life stress subject.  Associated statistics are reported in Table 3.3.
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Figure 3.4. Effects of stress manipulation on scalp ERPs 

 
ERP responses to reward feedback and stimulus onset at a priori electrodes, averaged across 
all trials and all participants. A,B,D,E,G,H,J,K:  Dashed gray-line indicates when the feedback 
or stimulus was displayed. Gray box highlights the selected are that was averaged for analyses. 
Difference (yellow lines) was computed as the difference of rich and lean.  
C,F,I,L: Boxplots display median and quartiles of distribution; notches represent 95% CI of 
median. Condition = Stress manipulation or control visit. ELS = early life stress subject. AUC = 
Area Under the Curve. Associated statistics are reported in Table 3.4. 



 

94 

 

 

 

 

 
 

 
 

 

 

Chapter 4: Convergent evidence for 

predispositonal effects of brain volume on 

alcohol consumption 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Author’s Note: The material in this chapter was formatted for a Brief Report journal 
submission.  
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Convergent evidence for predispositional  effects of brain volume on alcohol consumption. 
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4.1 Abstract 

Alcohol consumption accounts for 5% of global disease burden. Using family and longitudinal 

data from three samples spanning childhood/adolescence to middle age, we demonstrate that 

replicable and genetically-conferred reductions in gray matter volumes of frontal gyri prospectively 

predict alcohol use. Further, gene expression in the frontal cortex is associated with genetic risk 

for alcohol consumption. Frontal volume is a promising prognostic biomarker for alcohol 

consumption liability.  

 

4.2 Results and Discussion 

Alcohol use and its associated negative consequences are ubiquitous international public health 

concerns. Worldwide, the average person aged 15 or older consumes 6.2 liters of alcohol 

annually, and alcohol use accounts for 6% of deaths and 5% of disease burden (World Health 

Organization, 2014). Consequently, it is critically important to advance efforts for prevention and 

identify individual differences that can serve as prognostic biomarkers of liability.  

 Neuroimaging studies have shown that alcohol consumption and use disorder are 

associated with smaller subcortical and cortical brain volumes, particularly among regions that 

feature prominently in emotion, memory, reward, cognitive control, and decision making (Lange 

et al., 2017; Yang et al., 2016). While there is evidence that these associations may arise as a 

consequence of drinking (e.g., reduced neurogenesis in non-human primate models, greater gray 

matter decline among adolescents following initiation of heavy drinking, gray matter normalization 

following abstinence among dependent individuals) (Kühn & Gallinat, 2013; Pfefferbaum et al., 

2017; Taffe et al., 2010), emerging data suggest that these neural signatures may reflect 
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preexisting vulnerabilities that precede and predict drinking initiation and escalating use (Dager 

et al., 2015; Squeglia & Gray, 2016). 

Here, we first identify replicable gray matter volume correlates of alcohol use.  We then 

test whether reduced volume is: (1) attributable to shared predisposing factors (e.g., shared 

genetic influence) and/or results from alcohol use, (2) prospectively predictive of future drinking 

in young adulthood, and (3) predictive of drinking initiation in adolescence. To this end, we used 

data from 3 independent neuroimaging samples with family or longitudinal data: the Duke 

Neurogenetics Study (DNS; N=1,303) (Nikolova et al., 2015); Human Connectome Project (HCP; 

N=897) (David C. Van Essen et al., 2013); and Teen Alcohol Outcomes Study (TAOS; N=223) 

(Swartz et al., 2015) (Supplemental Information). Finally, we examined whether genetic risk for 

alcohol consumption is associated with genes and genetically-conferred differences in gene 

expression  that are preferentially expressed in the regions identified by neuroimaging analyses 

and/or the brain more generally. Here, we applied gene-set enrichment, partitioned heritability, 

and transcriptome-wide (TWAS) (Gusev et al., 2016) analyses to genome-wide association study 

(GWAS) summary statistics from the  UK Biobank (N=112,117) (Clarke et al., 2017) and 

AlcGen/CHARGE+ (N = 70,460) (Schumann et al., 2016) studies of alcohol consumption, and 

RNA-seq data from GTEX (N=81-103) (The GTEx Consortium et al., 2015) and the Common 

Mind Consortium (N=452) (Fromer et al., 2016). 

 Consistent with prior observations in unselected samples (Lange et al., 2017), as well as 

those with alcohol use disorder (Yang et al., 2016), whole brain discovery analyses in the DNS 

revealed that greater alcohol consumption is associated with lower gray matter volume across 8 

clusters (Figure 4.1; Supplemental Table 4.4.1), encompassing regions identified in prior studies 

(Lange et al., 2017; Squeglia & Gray, 2016; Yang et al., 2016). The associations with two of these 

clusters (right insula, right superior/middle frontal gyrus) replicated within an ROI analysis in the 

HCP (Figure 4.1; Supplemental Table 4.4.1). 
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Family-based analyses in the HCP (N=804) revealed that alcohol consumption and gray 

matter volume of the right insula and right middle/superior frontal gyrus are moderately to largely 

heritable (Figure 4.2A; Supplemental Table 4.4.2). Moreover, decomposition analyses showed 

that phenotypic correlations between frontal and insular gray matter volume and alcohol 

consumption are attributable to shared genetic, but not environmental, influences (Figure 4.2B; 

Supplemental Table 4.4.2). Analyses within twin and sibling pairs in the HCP concordant or 

discordant for the extent of alcohol use revealed that, relative to siblings concordant for low 

alcohol use, siblings concordant for high use or discordant for use (i.e., one high use, one low 

use) had lower insular and frontal gray matter volumes (Figure 4.2 C&D; Supplemental Table 

4.4.3). Further, brain volumes did not differ between low and high alcohol-using members of 

discordant pairs. As shared genetic and familial factors are matched within pairs, this pattern of 

results suggests that smaller gray matter volume of frontal gyri and insula are preexisting 

vulnerability factors associated with alcohol use, as opposed to a consequence of alcohol use. 

Using available longitudinal data from the DNS (N=674), we found that lower gray matter volume 

of the right frontal gyri, but not insula, predicted increased future alcohol consumption, over and 

above baseline consumption, but only in individuals who are under the legal age of drinking (i.e., 

younger than 21) in the United States (Figure 4.3A; Supplemental Table 4.4.4). Similarly, in the 

TAOS longitudinal sample of children and adolescents, lower right middle and superior frontal 

gyrus volume predicted the initiation of alcohol use at an earlier age in those who were 

nondrinkers at baseline (Figure 4.3B&C; Supplemental Table 4.4.5). 

Gene-based association and partitioned heritability enrichment analyses of the UK 

Biobank GWAS of alcohol consumption revealed enrichment only among brain gene-sets. 

Moreover, Brodmann Area 9, which is in the frontal region in which we observed a negative 

association between volume and alcohol consumption that is attributable to shared genetic 

influence and predictive of drinking initiation, was among the regions with strongest enrichment 

(Supplemental Figure 4.4.1, Supplemental Data). A transcriptome-wide association analysis 
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(TWAS) similarly found that genetic risk for alcohol consumption was significantly associated with 

differences in gene expression across the brain, including Brodmann Area 9 (Supplemental 

Figure 4.4.2), which replicated in an independent dataset (Supplemental Figure 4.4.2, 

Supplemental Table 4.4.6). Notably, genetic risk for alcohol consumption was not significantly 

associated with the expression of any gene in the liver (Supplemental Figure 4.4.2).  

 The above analyses in three independent samples provide unique convergent evidence 

that associations between middle/superior frontal gray matter volume and alcohol use are 

genetically-conferred, and predict future use and initiation. Taken alongside evidence that heavy 

alcohol consumption induces gray matter volume reductions (Kühn & Gallinat, 2013; Pfefferbaum 

et al., 2017; Taffe et al., 2010), our data raise the intriguing possibility that genetically-conferred 

reductions in regional gray matter volumes may promote alcohol use from adolescence to young 

adulthood, which may, in turn, lead to accelerated atrophy within these and other regions. Given 

evidence that genetic liability is shared across substance use involvement (Carey et al., 2016), 

our findings may generalize to other substances; this could be tested within genetically-informed 

and longitudinal studies enriched for other substance use, or large prospective studies, such as 

the recently launched Adolescent Brain Cognitive Development (ABCD) study (Volkow et al., 

2017). While enrichment analyses implicate only brain pathways and TWAS identify replicable 

associations between genetic risk for alcohol consumption and gene expression in the frontal 

cortex, we cannot rule out the possibility that our observed effects are partially mediated by altered 

functioning of other pathways, such as alcohol metabolism in the liver (Dick & Agrawal, 2008). 

Regardless, our convergent evidence from three independent samples with familial or longitudinal 

data, as well as evidence of expression enrichment, extends the literature primarily focused on 

alcohol-induced brain atrophy by demonstrating that lower gray matter volume in middle/superior 

frontal gyri and insula may represent a preexisting genetic liability for drinking that could serve as 

a prognostic biomarker. 
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Figure 4.1: Identification of replicable volumetric associations with alcohol 
consumption. 

 
Statistical parametric map illustrating regions of reduced brain volume associated with increased 

alcohol consumption (Supplemental Table 4.4.1), overlaid onto a canonical structural brain 

image Montreal Neurological Institute coordinates and statistics (DNS: p<0.05, family-wise error 

whole-brain corrected, ≥10 contiguous voxels; HCP: p<0.05, family-wise error region-of-interest 

corrected, ≥10 contiguous voxels). Alcohol consumption was not associated with increased 

volume in any region. Notably, in the HCP dataset, the superior frontal gyrus cluster extended 

into the right middle frontal gyrus, and was located relatively far (34 mm dorsal) from the original 

right superior frontal cluster identified in DNS. In contrast, this peak in the HCP was located 11.6 

mm away from the right middle frontal peak identified in the DNS. Thus, for the purposes of post-

hoc analyses, the combined volume of both the right middle and superior frontal gyrus cortices 

was extracted from both samples. Cluster overlap at an uncorrected threshold is shown in 

Supplemental Figure 4.4.3. DNS = Duke Neurogenetics Study. HCP = Human Connectome 

Project. 
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Figure 4.2: Shared genetic predisposition between alcohol consumption and 
brain volume.

 
HCP: A) Alcohol consumption scores (mAUDIT-C) and gray-matter volume of the right insula and 

right middle/superior frontal cortex were all observed to be heritable (mAUDIT-C: 51.79%, 

p<2.2x10-16; insula:  68.83%, p<2.2x10-16; frontal: 74.46%, p<2.2x10-16; Supplemental Table 

4.4.2). B) Significant phenotypic correlations between mAUDIT-C scores and volumes of the right 

insula and middle/superior frontal gyri are attributable to shared genetic (Insula: -0.2314, 

p=0.0022; Frontal: -0.2192, p=0.0054), but not environmental factors (Supplemental Table 

4.4.2). C&D) Distribution of (C) right insula and (D) right middle/superior frontal volumes by 

alcohol exposure group. High = mAUDIT-C score > sample mean + 0.5 SD (i.e. > 4.67); Low = 

mAUDIT-C score < sample mean - 0.5 SD (i.e. < 1.54); Concordant = both siblings are in same 

group; Discordant = one sibling is High, while other is Low. Contrast comparisons found evidence 

for predispositonal effects of brain volume on alcohol consumption in both cases (Insula: Graded 

Liability: β=-0.0037 [-0.0060,-0.0011], t=-1.974, p=0.0491, Predispositonal: β=0.0037 [0.0016, 

0.0043], t=3.479, p=0.0006; Frontal: Predispositonal: β=0.0019 [0.0004, 0.0026], t=2.193, 

p=0.0290; Supplemental Table 4.4.3).  Box and whiskers represent median (notch = 95% CI of 

median) and standard deviations.
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Figure 4.3: Frontal volume prospectively predicts alcohol use and initiation of 
consumption   

 

A) DNS: Participants with reduced volume of the right middle/superior frontal cortex reported 

elevated alcohol consumption before the age of 20.85 years following the neuroimaging 

scan, and after accounting for baseline drinking (Frontal x Age interaction: β=0.150 [0.057, 

0.246], t=3.976, p-fdr=0.008; Supplemental Table 4.4.4). B&C) TAOS: Participants with 

increased volume of the right middle and superior frontal cortex report initiation of alcohol 

consumption at an older age (Mid-Frontal x Age interaction:  β=-57.042 [-118.96, -31.58], 

z=-2.37, p-fdr=0.036; Superior-Frontal x Age interaction:  β=-60.74 [-113.26, -40.91], z=-

2.43, p-fdr=0.036 Supplemental Table 4.4.5).  Analyses were conducted with continuous 

data; partitioned into three equally-sized groups according to volume was done for display-

purposes only. 
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4.3 Methods 

4.3.1 Participants 

Neuroimaging data were drawn from three independent samples: the Duke Neurogenetics Study 

(DNS; n=1,303), the Human Connectome Project (HCP; n=897), and the Teen Alcohol Outcome 

Study (TAOS; n=223).  

Duke Neurogenetics Study (DNS): The DNS (cross-sectional; n=1334) assessed a wide range 

of behavioral, experiential, and biological phenotypes among young-adult (18-22 year-old) college 

students. Each participant provided informed written consent prior to participation in accord with 

the guidelines of the Duke University Medical Center Institutional Review Board and received 

$120 remuneration. All participants were in good general health and free of DNS exclusion 

criteria: (1) medical diagnosis of cancer, stroke, diabetes requiring insulin treatment, chronic 

kidney or liver disease or lifetime psychotic symptoms; (2) use of psychotropic, glucocorticoid or 

hypolipidemic medication, and (3) conditions affecting cerebral blood flow and metabolism (e.g., 

hypertension). DSM-IV Axis I and select Axis II disorders (Antisocial Personality Disorder and 

Borderline Personality Disorder) were assessed with the electronic Mini International 

Neuropsychiatric Interview (e-MINI) (Sheehan et al., 1998) and Structured Clinical Interview for 

the DSM-IV Axis II Personality Disorders (First et al., 1997). These disorders are not exclusionary 

as the DNS seeks to establish broad variability in multiple behavioral phenotypes related to 

psychopathology. Participants were excluded from analyses due to: 1) non-completion of T1 

structural scans (n=10), 2) scanner-related artifacts in MRI data (n=12), 3) incidental structural 

abnormalities (n=4), 4) missing or incomplete data (n=4), and genetic anomalies (e.g., 

Kleinfelter’s syndrome; n=1). The final DNS sample consisted of 1,303 participants after quality 

assurance (Supplemental Table 4.4.7; age=19.70±1.25; 747 female; 258 with a DSM-IV Axis I 

disorder; Supplemental Table 4.4.8).  
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DNS participants were contacted every 3 months after initial study completion, and asked to 

complete a brief online assessment. Participants were entered into a lottery for a $50 gift-card 

following completion of each online assessment. Of the 734 participants who completed at least 

one online assessment (2,075 total responses), 705 completed the AUDIT questionnaire at least 

once, and 679 of these participants were among those included in initial DNS analyses (1,903 

responses; Supplemental Table 4.4.9). Participants completed between 2 and 17 follow-ups 

(M=4.05, SD=2.62), between 28 and 1707 days after study completion (M=413.96, SD=331.22; 

age range: 18.33 - 23.82; Supplemental Figure 4.4.4).  

 

Human Connectome Project (HCP): Data from participants contained in the HCP December 

2015 public data release (N = 970), were considered for analyses. The HCP aims to recruit 1200 

individuals (3-4 siblings per family, most including a twin pair) with the broad goal of examining 

individual differences in brain circuits and their relation to behavior and genetic background ( 

Smith et al., 2015).  Each participant provided informed written consent prior to participation in 

accord with the guidelines of the Washington University in St Louis Institutional Review Board 

and received $400 remuneration, as well as additional winnings ($5) and travel expenses.  All 

participants were aged 22 to 35 years and free of the following exclusionary criteria: preterm birth, 

neurodevelopmental, neuropsychiatric, or neurologic disorders; a full list of exclusions is available 

in prior publication (Van Essen et al., 2012). Participants were excluded from analyses in the 

present study for poor quality structural MRI data (n=73), and non-completion of study 

questionnaires (n=3), resulting in a final sample of 894 (Supplemental Table 4.4.7; 

age=28.82±3.68; age range: 22-37; 393 males; 149 meeting criteria in a phone interview for a 

possible DSM-IV Axis I disorder (Bucholz et al., 1994) Supplemental Table 4.4.8). 

 

Teen Alcohol Outcomes Study (TAOS): TAOS is a longitudinal study designed to examine the 

association between the development of depression and alcohol use disorders by recruiting 
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adolescents aged 11 – 15 (N = 330) at high and low familial risk for depression (high: at least one 

first-degree and one second-degree relative with a lifetime history of major depression; low: no 

first-degree and minimal second-degree relatives (< 20%) with a lifetime history of depression). 

Participant diagnoses were assessed through structured clinical interviews with the adolescent 

and parent separately, using the Schedule for Affective Disorders and Schizophrenia for School-

Age Children—Present and Lifetime Version (Kaufman et al., 1997). Participants were excluded 

if they met criteria for a substance use disorder or reported binge drinking at baseline (based on 

National Institute on Alcohol Abuse and Alcoholism guidelines). Participants were permitted to 

present with anxiety disorders in the high familial depression risk group (specific phobia, N=9; 

social phobia, N=6; panic disorder, N=1; generalized anxiety disorder, N=12). No other forms of 

psychopathology were present within the sample at baseline. 

Participants were contacted every year to complete diagnostic interviews and 

questionnaires, and also underwent a follow-up MRI scanning session during the 2nd-4th year of 

participation (these scans were not used in the present analysis). Participants provided assent, 

and parents provided written informed consent following procedures approved by the Institutional 

Review Board at the University of Texas Health Sciences Center at San Antonio, and received 

$165 remuneration, as well as additional winnings ($10), travel expenses, and $40 for each 

annual follow-up. Participants were excluded from analyses in the present study for non-

completion of the MRI study session (n=17), poor quality structural MRI data (n=13), non-

completion of follow-up visits (n=24), missing baseline self-report measures (n=40), and initiation 

of alcohol use prior to MRI scan (n=14), resulting in a final sample of n=223 (baseline age: 11-15; 

follow-up ages: 12-20; Supplemental Table 4.4.7).   
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4.3.2 Alcohol Use Assessment  

DNS: Participants completed the 10-item Alcohol Use Disorders Identification Test (AUDIT), 

which was developed by the World Health Organization to screen for hazardous or dependent 

alcohol use patterns by assessing the frequency and nature of consumption over the past 12 

months (Babor et al., 2001; Saunders et al., 1993). The AUDIT had reasonable internal 

consistency (α=0.81; M=5.22; SD=4.31; range 0-23). We computed the subscale score of the 3 

items that correspond to the hazardous use or consumption domain of the AUDIT (AUDIT-C; 

Bush et al., 1998) (α=0.85; M=3.76; SD=2.64; range 0-12). Participants completed the AUDIT at 

baseline and during follow-up online assessments. In these follow-up assessments, the AUDIT 

questions were modified and instead asked about alcohol consumption following the participant’s 

last assessment.   

HCP: Participants completed the Semi-Structured Assessment for the Genetics of Alcoholism 

(SSAGA) (Bucholz et al., 1994). From the SSAGA we created a metric, the modified AUDIT-C 

(mAUDIT-C), to approximate the 12-month AUDIT-C (α=0.786; M=3.42; SD=2.65; range 0-12). 

This used questions almost identical to those contained in the AUDIT-C, but with the difference 

that the SSAGA asks about frequency of drinking 5+ drinks in a 24-hour period, while the AUDIT 

asks about 6+ drinks. 

TAOS: Adolescents were assessed at baseline and each annual follow-up session with the 

Substance Use Questionnaire (SUQ) (Molina et al., 2007).  The SUQ assesses lifetime exposure 

to alcohol (e.g., have you ever had a drink, have you ever been drunk, age of first drink) and onset 

of regular use of a substance (i.e., at least once per month for at least six months). The SUQ also 

includes items assessing the average quantity and frequency of use for alcohol, marijuana, 

tobacco, and six other drug classes (sedatives, stimulants, opioids, cocaine, hallucinogens, other 

(e.g., ecstasy)), periods of abstinence, and accessibility of each substance. The SUQ contains 

questions identical to those on the AUDIT-C. Thus, as in HCP analyses, a modified AUDIT-C 

score was created (mAUDIT-C: α=0.893; M=0.45; SD=1.26; range 0-9). Initiation of alcohol 
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consumption was defined as attaining a score of 1 or greater on the mAUDIT-C (i.e. participant 

reports having consumed at least one full alcoholic beverage in the past year; N=82 initiated 

during the study; Age: M = 16.68, SD = 1.39, 14.12 – 19.64 yrs).  

 

4.3.3 Self-report Questionnaires and Behavioral Phenotypes 
Covariates 

Demographic and environmental variables known to be correlated with alcohol consumption were 

included in all analyses. In addition to age (Collins, 2016; Kendler et al., 2014; Meng et al., 2014), 

sex (Collins, 2016; Delker et al., 2016; Grittner et al., 2013; Meng et al., 2014), and ethnicity 

(Cacciola & Nevid, 2014; Delker et al., 2016), socioeconomic status (SES; income and education, 

or parental education) was included, as higher SES participants have been found to consume 

more alcohol, while lower SES is associated with higher rates of alcohol-related problems (Collins, 

2016; Delker et al., 2016; Grittner et al., 2013; Kendler et al., 2014; Meng et al., 2014). Self-report 

of early-life and recent life-stress was also included, given the well-replicated association of stress 

with alcohol use and alcohol-related disorders (Enoch, 2011; Green et al., 2013; Keyes et al., 

2012).  

 

Socioeconomic Status – Income and Education 

DNS: Participants completed three Likert-scale questions, (scores range from 1-11) where higher 

scores reflect having a higher socioeconomic status (more money, education, and respected 

jobs). Participants were asked to place themselves, their biological father during their childhood 

and adolescence, and their biological mother during their childhood and adolescence, on this 

scale. These three responses were averaged to compute a proxy for the participant’s 

socioeconomic status (P-SES: α=0.816; M=7.44; SD=1.70; range 1.33-11). Since all participants 

in the DNS were enrolled in college at the time of the study, parental education (the average of 

the education of the participant’s female and male guardian) was used as a proxy, which ranged 
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from 1 (some high school), to 9 (doctoral degree; MD, PhD, JD, or PharmD) (P-ED: α=0.70; 

M=7.09; SD=1.62). 

HCP: Participants reported their total annual household income on a scale ranging from 1 

(<$10,000), to 8 (>=$100,000) (SES: M=4.97; SD=2.18) as well as the number of years of 

education that they had completed (ED: M=14.89; SD=1.82; range=11-17). 

TAOS: The parents of participants reported their annual income and their spouses annual income 

on a scale ranging from 0 (Less than $10,000) to 7 ($150,000 or more) (Self: M=4.27; SD=1.39; 

range=0-6. Spouse: M=4.12; SD=1.71; range=0-6.). Parents also reported their highest level of 

education and their spouses highest level of education on a 0 (Less than 9th grade) to 6 (Graduate 

or Professional Degree) scale (Self: M=2.67; SD=12.36; range=0-9. Spouse: M=4.03; SD=2.06; 

range=0-9.). An overall estimate of SES was calculated by averaging the standardized values of 

these variables.  

 

Early-life stress 

DNS: Participants completed the 28-item Childhood Trauma Questionnaire (CTQ) (Bernstein et 

al., 2003), which asks participants to retrospectively report on the occurrence and frequency of 

emotional, physical, and sexual abuse as well as emotional and physical neglect before the age 

of 17 (α=0.88; M=33.55; SD=8.76; range 25-76). The instrument’s five subscales, each 

representing one type of abuse or neglect, have robust internal consistency and  convergent 

validity with a clinician-rated interviews of childhood abuse (Scher et al., 2001). Total CTQ scores 

across the 5 subscales were used as a covariate. 

HCP: The HCP did not include a measure of early-life stress.  

TAOS: Participants completed the 28-item CTQ; total scores across the 5 subscales were used 

as a covariate in analyses (α=0.795; M=32.98; SD=8.76; range 25-64). 
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Perceived Stress 

DNS: Participants completed the 10-item version of the Perceived Stress Scale (PSS) (Cohen et 

al., 1983), which instructs participants to appraise how unpredictable, uncontrollable, and stressful 

their daily life was in the preceding week. The PSS had good internal consistency (α=0.86; 

M=14.66; SD=6.08; range 0-37). 

HCP: HCP participants completed the same 10-item version of the PSS, which had good internal 

consistency (α=0.90; M=13.07; SD=5.76; range 0-35).  

TAOS: TAOS participants completed the Stressful Life Events Schedule (SLES) (Williamson et 

al., 2003), which assesses the presence of more than 80 possible stressors in the past 12 months, 

each rated on a 4-point scale (1-4). Each stressor is given a subjective stress score as rated by 

the adolescent and an objective stress rating by a consensus panel. For both subjective and 

objective stress, a summary score derived by summing the squares of each individual stressor.  

Herein we use the total subjective stress (M=31.52; SD=28.79; range 0-156). 

 

Additional Measures in TAOS 

Depressive Symptoms: As the TAOS sample was enriched for participants with a family history 

of depression, self-report of depressive symptoms was included as a covariate in all analyses. 

Participants completed the Mood and Feelings Questionnaire (MFQ) (Angold et al., 1995), a 33-

item measure designed to detect clinically meaningful signs and symptoms of depressive 

disorders in children and adolescents (α=0.68; M=9.03; SD=8.01; range 0-52).  

Tanner Stage: The tanner scale was used to assess pubertal status (Female: M=3.6, SD = 0.9; 

Male: M=2.97, SD=0.8) (Marshall & Tanner, 1969, 1970).  

 

 



 

109 

 

4.3.4 Magnetic Resonance Imaging: Acquisition and Processing of 
Gray Matter Volume Data 

 

DNS: Two identical research-dedicated GE MR750 3 T scanners equipped with high-power high-

duty-cycle 50-mT/m gradients at 200 T/m/s slew rate, and an eight-channel head coil for parallel 

imaging at high band-width up to 1 MHz were used to acquire data at the Duke-UNC Brain 

Imaging and Analysis Center (N=224, 17% of the sample, was scanned on the second scanner. 

Scanner is included as a covariate in all analyses). High-resolution T1-weighted images were 

obtained using a 3D Ax FSPGR BRAVO with the following parameters: TR = 8.148 s; TE = 3.22 

ms; 162 sagittal slices; flip angle, 12°; FOV, 240 mm; matrix =256×256; slice thickness = 1 mm 

with no gap; and total scan time = 4 min and 13 s. Regional gray matter volumes were determined 

using the unified segmentation(Ashburner & Friston, 2005) and DARTEL 

normalization(Ashburner, 2007) modules in SPM12 (http://www.fil.ion.ucl.ac.uk/spm) (Kurth et al., 

2015). Using this approach, individual T1-weighted images were segmented into gray, white, and 

CSF images then non-linearly registered to the existing IXI template of 550 healthy subjects 

averaged in standard Montreal Neurological Institute space, available with VBM8 

(http://dbm.neuro.uni-jena.de/vbm/). Subsequently, gray matter images were modulated for 

nonlinear effects of the high-dimensional normalization to preserve the total amount of signal from 

each region, and smoothed with an 8mm FWHM Gaussian kernel. The voxel size of processed 

images was 1.5×1.5×1.5 mm. A gray matter mask for subsequent analyses was created by 

thresholding the final stage (6th) IXI template at 0.1. 

 

HCP: High-resolution (0.7-mm isotropic voxels) anatomical images were acquired using a 

customized Siemens Skyra 3-T scanner with a 32-channel head coil (Glasser et al., 2013). Briefly, 

relevant steps for this study from the HCP processing pipeline within FSL v5.0.6 (Jenkinson et 

al., 2012) included: (1) Gradient distortion correction, (2) Coregistration and averaging of T1 and 
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T2 runs, (3) Linear registration of T1 and T2 runs, (4) FSL FNIRT brain extraction, (5) Field mad 

distortion correction, and (6) Bias field correction. Additional processing for VBM analyses were 

then applied. Brain-extracted images were grey matter-segmented before being registered to the 

MNI 152 standard space using non-linear registration (Andersson et al., 2007). The resulting 

images were averaged and flipped along the x-axis to create a left-right symmetric, study-specific 

grey matter template. Native grey matter images were then non-linearly registered to this study-

specific template and multiplied by the Jacobian of the warp field to correct for local expansion 

(or contraction) due to the non-linear component of the spatial transformation. These images were 

then smoothed with an isotropic Gaussian kernel with a sigma of 4 mm.  

 

TAOS: Imaging data was collected using a Siemens 3T Trio scanner located at the Research 

Imaging Institute at the University of Texas Health Science Center, San Antonio (UTHSCSA). The 

study used an MRI protocol specifically optimized for GM thickness measurement (Kochunov & 

Davis, 2010). The protocol was designed to collect data to resolve the cortical ribbon across to 

cortex using isotropic spatial resolution of 0.8mm, voxel size =0.5mm.  T1-weighted contrast was 

achieved using a magnetization prepared sequence with an adiabatic inversion contrast-forming 

pulse (scan parameters: TE/TR/TI=3.04/2100/785 ms, flip angle=11 degrees).  

The processing of T1-weighted images consisted of removing non-brain tissues, global 

spatial normalization and radio frequency (RF) inhomogeneity correction. Non-brain tissues such 

as skin, muscle and fat was removed using an automated skull stripping procedure and images 

were corrected for radio-frequency (RF) inhomogeneity (Smith et al., 2006). A retrospective 

motion-correction technique was used to reduce subject motion-related artifacts (Kochunov et al., 

2006). Next, images were imported into the structural analysis package, BrainVisa, and 

processed using its cortical extraction and parcellation pipelines (Kochunov et al., 2006). This 

pipeline extracts the pial and grey matter and white matter (WM) interface surfaces, performs 
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extraction, labeling and verification of sulcal surfaces (Mangin et al., 2004) and segments the 

cortical landscape into 15 cortical regions using the primary sulcal structures.  

 

4.3.5 Statistical analysis 

Sample demographics and comparisons, as well as associations of self-report measures with 

alcohol consumption, were computed in R (3.3.2) (R Core Team, 2014). Self-report questionnaire 

data were winsorized (to ± 3 SDs; DNS: AUDIT-C N=1, P-SES N=5, PSS N=6, CTQ N=25; HCP: 

mAUDIT-C N=3, PSS N=3; TAOS: SLES N=12, CTQ N=8; MFQC = 2) to maintain variability while 

limiting the influence of extreme outliers. Self-report variables with high skew (>1 or <-1) were 

transformed prior to analyses. Left-skewed variables (DNS: CTQ skew=1.34; TAOS: CTQ skew 

= 1.16, SLES skew = 1.23) were log-transformed, while right-skewed variables (DNS: P-ED 

skew=-1.43) were squared.   

 

Discovery: A whole-brain voxel-based morphometry GLM regression analysis was conducted 

using SPM8 in the DNS sample to test whether alcohol consumption (AUDIT-C) is associated 

with differences in gray-matter volume. Covariates included sex, age, self-reported race/ethnicity 

(i.e., not-white/white, not-black/black, not Hispanic/Hispanic), scanner id, intracranial volume 

(ICV), presence of a diagnosis other than alcohol or substance abuse or dependence, perceived 

stress (PSS), parental education (P-ED), early-life stress (CTQ), and perceived economic status 

(P-SES). Analyses were thresholded at p<0.05 FWE with a cluster extent threshold of 10 

contiguous voxels (ke=10) across the entire search volume.  

 

Replication: Replication analyses in the HCP sample examined whether alcohol consumption 

(mAUDIT-C) predicted differences in gray-matter volume only within regions of interest (ROIs) 

where associations were observed in the discovery DNS sample (Figure 4.1, Supplemental 
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Table 4.4.1). ROIs were defined by the AAL atlas (Tzourio-Mazoyer et al., 2002). A voxelwise 

GLM regression limited to these ROIs was conducted using multi-level block permutation-based 

non-parametric testing (FSL PALM v.alpha103; tail approximation p<0.10 with 5,000 

permutations), which accounts for the family-structure of the HCP data while correcting for 

multiple comparisons across space(Winkler et al., 2016, 2014, 2015). Covariates included sex, 

age, self-reported race/ethnicity (i.e., not-white/white, not-black/black, not Hispanic/Hispanic), 

intracranial volume (ICV), twin/sibling status (dizygotic/not, monozygotic/not, half-sibling/not),  

presence of a diagnosis other than alcohol or substance abuse or dependence, perceived stress 

(PSS), education (ED), and economic status (SES). Analyses were thresholded at p<0.05 FWE 

with a cluster extent threshold of 10 contiguous voxels (ke=10) across the entire search volume 

(i.e., across all ROIs collectively).  

 

Post-hoc analyses 

The total anatomical ROI volume of regions which replicated in the HCP (right Insula and right 

Middle/Superior Frontal Gyrus; see Results) were extracted from both datasets for use in post-

hoc analyses. The total volume was used to reduce overestimation of effect sizes that can arise 

from selecting only those voxels that are specifically associated with the variable of interest(Vul 

et al., 2009).  

 

Heritability: Heritability analyses were conducted using a subset of participants from the HCP, 

which excluded singletons and half-siblings (n=804). This resulted in a sample of 293 families, 

including 115 MZ twin-pairs, 64 DZ twin-pairs, and 422 non-twin siblings. The SOLAR-Eclipse 

software package (http://solar-eclipse-genetics.org)(Kochunov et al., 2015), in conjunction with 

the R package ‘Solarius’ (Ziyatdinov et al., 2016), was used for all heritability analyses. SOLAR 

(Sequential oligogenic linkage analysis routines) implements maximum likelihood variance 

decomposition methods to estimate phenotypic heritability (h2; the fraction of phenotypic variance 
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attributable to additive genetic factors), as well as genetic (ρg) and environmental (ρe) correlations 

(the fraction of the correlation between two phenotypes that is attributable to either additive 

genetic or individual-specific environmental factors, respectively). SOLAR was used to estimate 

the heritability of gray-matter volume and alcohol consumption, as well as the co-heritability of 

volume and alcohol consumption. Covariates were identical to neuroimaging analyses. To ensure 

normality of measurements and accuracy of estimated parameters, an inverse normal 

transformation was applied to all continuous traits and covariates prior to analyses.  

 

Discordant twin analysis: Following evidence that alcohol consumption is co-heritable.with 

volume of the right insula and middle/superior frontal gyrus (see Main Text), we examined 

whether same-sex twin and non-twin sibling pairs discordant for alcohol consumption differed 

from each other on brain volume. These analyses examined whether mAUDIT-C was associated 

with insular or middle/superior frontal volume after accounting for sibling-shared genetic 

background and experience. Same-sex siblings were considered “high alcohol consumers” or 

“low alcohol consumers” if their mAUDIT-C score was greater than 0.5 SD above the sample 

mean (mAUDIT-C > 4.67, or less than 0.5 SD below the sample mean (mAUDIT-C < 1.54), 

respectively. Of the original 476 sibling pairs, 214 pairs were removed because they did not meet 

this criteria.   Concordant sibling-pairs were defined as a pair who were both in the same category 

of consumption (i.e. high or low), and additionally scored within 1 SD of each other (19 pairs failed 

to meet this last criteria). Discordant sibling-pairs were defined as a pair where siblings were in 

different categories (i.e. one is high and the other is low). This resulted in 117 concordant low 

alcohol consumer pairs (“low concordant”; mAUDIT-C M=0.84, SD=0.77), 54 concordant high 

alcohol consumer pairs (“high concordant”; mAUDIT-C M=7.13, SD=1.41), and 72 discordant 

sibling pairs (“low discordant”; mAUDIT-C M=1.25, SD=0.73; “high discordant”; mAUDIT-C 

M=6.47, SD=1.67). Participants could be included in more than one pair (N=368 individuals) when 

considering relationships with multiple siblings. Discordancy analyses were conducted using 
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linear mixed models, as sibling pairs are non-independent, using the ‘Psych’ (Revelle, 2015) and 

‘lme4’ (Bates et al., 2015) packages in R to account for the multiple-sibling structure within 

families. Covariates were identical to those used in neuroimaging analyses.  

 Three contrasts were entered into mixed-effect models, which modeled 3 different 

possible associations between brain volume, alcohol consumption, and  familial/predispositonal 

risk(Pagliaccio, Barch, et al., 2015). The first tested whether alcohol consumption may cause 

reduced brain volume, which would be evidenced by a difference in brain volume between the 

exposed and unexposed members of discordant pairs. Both the second and third contrasts tested 

the hypothesis that the association between reduced brain volume and alcohol consumption is 

driven by a shared predisposition towards both. This would be primarily evidenced by the 

discordant pairs – biological siblings who differ in their alcohol consumption – having the same 

volume, which would be reduced relative to concordant unexposed pairs. The second contrast 

tested that brain volume decreases as a function of increasing familial/predispositonal liability (i.e. 

graded liability), which would be additionally evidenced by reduced volume in concordant exposed 

pairs relative to discordant pairs. The third contrast tested whether any amount of shared 

familial/predispositonal risk would be reflected by the same reduction in volume, which would be 

additionally evidenced by no difference in volume between discordant pairs and concordant 

exposed siblings.  

 

DNS longitudinal changes in alcohol consumption: Hierarchical density-based clustering (R 

‘dbscan’ package) (Hahsler et al., 2017), was used to detect and remove outlier responses to the 

follow-up questionnaire. A scree-plot comparison of the minimum-points parameter (minPts; 

minimum number of points in a cluster) and the number of outliers found an elbow at minPts=35 

when time-of-response was represented as time-since-baseline, and subsequently an elbow at 

minPts=14 when time-of-response was represented as participant age. This resulted in the 

removal of 112 responses that occurred more than 1,035 days after the baseline study visit, and 



 

115 

 

the removal of 17 responses that were given by participants older than 23.82 years old. The final 

dataset consisted of 1,756 responses from 674 participants, who gave 1-12 (M: 3.59, SD: 2.10) 

responses, 28-1,034 (M: 350.20, SD: 245.39) days after the baseline visit, between the ages of 

18.33 and 23.82 (M: 20.93, SD: 1.24) years (Supplemental Figure 4.4.4).  

The  R ‘nlme’ package (Pinheiro et al., 2017) was used to fit a longitudinal multilevel linear 

model, examining whether brain-volume in the DNS sample predicted follow-up AUDIT-C 

questionnaire responses over time. The ‘nlme’ package was used as it can model different 

classes of correlation structures between observations, though it does not include logistic models. 

The model included both random intercept and random slope components, with a continuous 

autoregressive correlation structure. Time was coded as both the linear and quadratic age at the 

date of response (baseline or follow-up). Models tested the interaction between brain volume and 

age (i.e. does baseline ROI volume predict a different slope of change in drinking behavior as 

participant’s age?). Covariates were Z-scored, and were identical to neuroimaging analyses, with 

the addition of second-order interactions between covariates and primary variables (Baranger et 

al., 2016; Keller, 2014). Each of the two ROIs were tested in separate models, and p-values were 

FDR corrected (4 tests – middle/superior x linear-age, middle/superior x quadratic-age, etc.).  

 

TAOS longitudinal initiation of alcohol use: The  R ‘lme4 package (Bates et al., 2015) was 

used to fit a longitudinal logistic multilevel model, which tested whether baseline brain volume in 

non-drinking adolescents predicted future initiation of alcohol use. The model included both 

random intercept and random slope components, and time was coded as both the linear and 

quadratic age at the date of response. The model tested the interaction between brain volume 

and age (i.e. does baseline ROI volume predict a different likelihood of initiation as participant’s 

age?). Covariates were Z-scored, and included demographic variables (age, sex, ethnicity, and 

SES), stress (CTQ and SLES), tanner-stage, MFQ-scores, family history of depression, age at 

MRI scan, and intracranial volume. Second-order interactions between covariates and primary 
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variables (e.g., Middle Frontal volume x Sex, Middle Superior volume x SES, Age x Sex, Age x 

SES, etc.) were also included(Baranger et al., 2016). Each of two ROIs were tested in separate 

models - right superior frontal cortex and right middle frontal cortex. Insula volume was excluded 

as it was not significant in the DNS analyses, but given the new sample we considered both right 

middle and right superior frontal ROIs separately. P-values were subsequently FDR corrected (4 

tests).  

 

SNP-Based Enrichment: We tested whether the SNP-based heritability of alcohol consumption 

is enriched in brain-expressed gene-sets and whether this enrichment is specific to any region. 

Stratified LD-score regression (Finucane et al., 2018, 2015) was applied to summary statistics 

from the genome-wide association study of alcohol consumption in the UK Biobank 

(N=112,117) (Clarke et al., 2017). Tissue-enriched gene-sets, provided by the Alkes Group 

(Bulik-Sullivan & Finucane, 2017), were generated using data from the GTEx Consortium (The 

GTEx Consortium et al., 2015).  In this analysis, a gene is assigned to a gene-set if it shows 

greater enrichment in that tissue than 90% of genes. Gene-sets for brain regions were 

generated both by comparing each region to all non-brain tissues, and by comparing each brain 

region to all other regions. It was further tested whether the genetic associations with alcohol 

consumption are enriched in brain-expressed gene-sets. Gene-set analyses were conducted 

with MAGMA (de Leeuw et al., 2015), implemented through FUMA (Watanabe et al., 2017). 

 

Transcriptome-Wide Analysis (TWAS): Following evidence that genetic associations with 

alcohol consumption are enriched in brain-expressed gene-sets, and that the SNP-based 

heritability of alcohol consumption is enriched in these gene-sets, we tested whether genetic risk 

for alcohol consumption is predictive of changes in post-mortem gene expression in the human 

brain. Pre-computed gene-expression RNA-seq weights for nine brain regions and the liver from 

GTEX (The GTEx Consortium et al., 2015) were downloaded and analyzed using the FUSION 
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suite (Gusev et al., 2016). We tested whether genetic risk for alcohol consumption, as determined 

by the results from the UK Biobank GWAS (Clarke et al., 2017), is associated with differential 

RNA expression. Results were bonferroni-corrected for n=9,839 tests across the ten regions. 

Replication of TWAS results was sought using independent GWAS data from an earlier study of 

alcohol consumption (N = 70,460) (Schumann et al., 2016) and computed gene-expression 

weights for the dorsolateral prefrontal cortex from the CommonMind Consortium (Fromer et al., 

2016). As the gene that showed the strongest association in the discovery dataset was not present 

in the replication data, it was examined whether any of the gene-expression associations at p-

fdr<0.05 were significant in the replication data.  

 

 

 

 

 

 

 

 

 

 

 

 

4.4 Supplemental Information 

4.4.1 Results 

 

Comparison of discovery and replication samples 
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Sample comparisons are presented in Supplemental Table 4.4.7. The samples differed by sex, 

which was driven by fewer female participants in the TAOS sample (the DNS and HCP do not 

differ). Consistent with the recruitment of non-overlapping aged samples, HCP participants were 

all older than DNS participants, who were all older than TAOS participants. A significantly larger 

proportion of the participants from the HCP were Caucasian or African/African-American, while 

the DNS had a larger portion of Asian/Asian-American and Multi-racial/Native-American/Other 

participants. TAOS had the largest proportion of Hispanic participants. DNS participants had 

significantly higher AUDIT-C scores, which is unsurprising given observations of elevated 

hazardous alcohol consumption among younger college-aged populations (H. Wechsler et al., 

2002). Similarly, the higher levels of self-reported perceived stress among DNS participants is 

consistent with prior observations of increased stress in college-student samples (Astin, 1998).  

 

Association of covariates with alcohol consumption 

Association of covariates with alcohol consumption are presented in Supplemental Table 4.4.10. 

In the DNS and HCP men reported higher levels of alcohol consumption than women, consistent 

with prior reports of sex-differences in alcohol use (Wilsnack et al., 2009). Notably, in TAOS, sex 

did not differ between initiators and non-initiators. Presence of a non-substance-related diagnosis 

was not associated with alcohol use in either the DNS or HCP. Consistent with prior reports, 

participants of European descent reported increased levels, while participants of African descent 

reported decreased levels (Galvan & Caetano, 2003; Lotfipour et al., 2015). In the DNS 

participants of Asian descent and of Multi-racial or Native-American descent reported the lowest 

amount of alcohol consumption (Lotfipour et al., 2015). These associations did not reach 

significance in the HCP, likely due to the smaller number of participants in these groups in this 

sample. Age was associated with alcohol consumption in all samples, though in differing 

directions, which is consistent with observations in North American samples that alcohol 

consumption increases once young adults turn 21 (legal drinking age), and subsequently 
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decreases as participants age(Fromme et al., 2010; Wilsnack et al., 2009). Of note, in TAOS 

alcohol-consumption initiators were younger at baseline. In the DNS, perceived SES (P-SES) and 

parental education (P-ED) were both positively correlated with alcohol consumption, while no 

association was observed with these phenotypes in the HCP or in TAOS. Perceived stress was 

not associated with alcohol consumption in any sample, which is consistent with some prior 

reports (Esper & Furtado, 2013; Tavolacci et al., 2013). Childhood trauma was associated with 

alcohol consumption in the DNS, and was trending in TAOS, consistent with an extensive 

literature indicating that early trauma increases risk for substance use (Baranger et al., 2016). 

 

Lower gray matter volume associated with alcohol consumption: Clusters in the discovery 

DNS analysis 

The analysis in the DNS discovery sample identified eight clusters of lower gray-matter volume, 

extending across eight different regions, associated with increased AUDIT-C scores (p<0.05 

FWE-corrected, Figure 1, Supplemental Table 4.4.1). Significant clusters included two clusters 

in the right middle frontal cortex, a large cluster extending across the right superior temporal cortex 

and right insula, and clusters in the left medial orbital frontal cortex, bilateral middle cingulum, 

right superior frontal cortex, and right medial superior frontal cortex.  

 

Longitudinal Data Results 

DNS: Differences between longitudinal responders and non-responders are presented in 

Supplemental Table 4.4.9. Participants who completed at least one follow-up questionnaire were 

younger, had lower AUDIT-C and total AUDIT scores. Further, responders were more likely to be 

female and white and less likely to be black. Of the four brain volume x age interactions modeled 

(Frontal x Linear-Age, Frontal x Quadratic-Age, etc.), only the interaction between right 

middle/superior frontal volume and the linear change in age was significant after fdr-correction for 

multiple comparisons (β=0.151, t=3.976, p=0.0007, p-fdr=0.008; Figure 3, Supplemental Table 
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4.4.4). Examination of regions of significance found that lower frontal volume predicted greater 

drinking before the age of 20.85 years.  

 

TAOS: Of the n=223 adolescents who were non-drinkers at baseline that were included in 

analyses, n=82 (36%) reported having consumed at least one full alcoholic beverage during one 

of their follow-up interviews (i.e. they initiated consumption). Of the four brain volume x age 

interactions modeled (Mid-Frontal x Linear-Age, Mid-Frontal x Quadratic-Age, etc.), the 

interactions between both right middle and superior frontal volume and the linear change in age 

were significant after fdr-correction for multiple comparisons (Middle frontal: β=-57.04, t= -2.37, 

p-fdr = 0.036; Superior frontal: β=-60.74, t = -2.43, p-fdr=0.036; Figure 3, Supplemental Table 

4.4.5). 

 

Tissue-specific Enrichment of Alcohol Consumption 

Enrichment analyses found evidence of significant (bonferroni-corrected) enrichment of brain-

enriched gene-sets in the genetic associations of alcohol consumption and the heritability of 

alcohol consumption (Supplemental Figure 4.4.1A&B; Supplemental Data), relative to non-

brain tissues. However, when gene-sets were generated by comparing brain-tissues only to each 

other, no gene-set survived correction for multiple comparisons (Supplemental Figure 4.4.1C; 

Supplemental Data). Notably, Brodmann Area 9 (BA9), which is included in the frontal ROI 

observed in our discovery and replication analyses, was among the significant regions in both 

analyses.  

 

TWAS of Alcohol Consumption and Gene expression in the brain 

TWAS identified several genes whose expression in the human brain was correlated with genetic 

risk for alcohol consumption (Supplemental Figure 4.4.2; Supplemental Data). Six genes 

survived bonferroni-correction for multiple comparison, one of which in the Frontal Cortex – 
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C16orf93. This gene was not present in the replication data set, but two of the three other genes 

which passed fdr-correction in the discovery data were - CWF19L1 and C18orf8. Expression of 

both genes showed significant effects of genetic risk for alcohol consumption – fdr-correction for 

n=2 comparisons – in the same direction as the discovery dataset (Supplemental Table 4.4.6).  

 

4.4.2 Post-hoc Associations of volume with behavior 

Methods 

Following the observation that frontal and insula volume are predictive of future alcohol use and 

initiation, are predispositional to alcohol consumption, and that genetic risk for alcohol 

consumption is associated with changes in gene expression in the frontal cortex (Supplemental 

Results), post-hoc exploratory analyses sought to test whether the effects of volume on alcohol 

consumption are mediated by cognitive or behavioral measures. Associations between total 

volume of the ROI, as well as volume of each significant cluster, and three classes of outcomes 

were tested: impulsivity, negative urgency, and intelligence. As measures of negative urgency 

were not collected in the HCP, associations with neuroticism were additionally examined. The 

association between impulsivity and alcohol consumption is well established (Amlung et al., 2017; 

Dick et al., 2010), and measures of impulsivity have been shown to be associated with the 

structure of both the insula and frontal cortex in large samples (Churchwell & Yurgelun-Todd, 

2013; Holmes et al., 2016; Mackey et al., 2017; Pehlivanova et al., 2018). Negative urgency, a 

facet of impulsivity characterized by risky decision making when one is experiencing negative 

emotions, is associated with problematic drinking (Coskunpinar et al., 2013; Labrie et al., 2013; 

Stamates & Lau-Barraco, 2017), and shows correlations with neural responses to reward (Corral-

Fríasa et al., 2015), as well as with structure of the frontal cortex (Muhlert & Lawrence, 2015).  

Childhood intelligence has been observed to be predictive of adult alcohol consumption (Kubička 

et al., 2001), with evidence of genetic correlations between proxy-measures of IQ (i.e. educational 
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attainment) and alcohol consumption (Clarke et al., 2017), and brain structure has been 

repeatedly linked to intelligence, with evidence that the two share genetic underpinnings (Brouwer 

et al., 2014; Noble et al., 2015; Toga & Thompson, 2005).  

 

Delay Discounting 

In delay discounting tasks participants choose between hypothetical amounts of money available 

immediately or after a delay.  By varying the amount of money available immediately and the 

number of days that one would have to wait for the delayed money, participant ‘indifference points’ 

can be identified wherein the participant is equally likely to choose a smaller reward sooner versus 

a larger reward later. A preference for a smaller reward sooner (i.e., delay discounting) is 

considered a behavioral index of impulsivity (Green et al., 2014). The DNS and HCP used different 

protocols which are described below. 

 

DNS:   All combinations of immediate reward (varying from $0.10 to $105) and delay intervals [0, 

7, 30, 90, 180, 365, or 1825 (i.e., 5 years) days] for the delayed reward of $100 were presented 

on a computer screen in randomized order(Hariri et al., 2006; Nikolova et al., 2015). 146 

participants did not complete the delay discounting task, resulting in a final DNS sample of 1,157 

for delay discounting analyses.  

 

HCP: The delayed-reward amount was set to $200, with delays of 1, 6, 12 (1 year), 36 (3 years), 

60 (5 years), or 120 months (10 years) presented in the order: 6, 36, 1, 60, 120, 12 months (Estle 

et al., 2006). Immediate reward amounts were adjusted on a trial-by-trial basis based upon 

participant response. Six participants did not complete the delayed-discounting task.  

 

Impulsivity  
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DNS participants completed the 30-item self-report Barratt Impulsiveness Scale (BIS) (Patton et 

al., 1995). HCP participants completed the Achenbach Adult Self-Report (ASR) for Ages 18-

59(Achenbach, 2009). As in prior reports (Pagliaccio et al., 2015),  a coarse measure of impulsivity 

(ASR-Imp) was computed from three questions in the ADHD subscale of the ASR. DNS: Barratt 

Impulsiveness Scale assesses the personality/behavioral construct of impulsiveness and had 

good internal consistency (α=0.84; M=61.69; SD=9.55; range 37-113). HCP: Our Achenbach 

Adult Self-Report (ASR) impulsivity composite had acceptable internal consistency (ASR-Imp; 

α=0.79; M=1.29; SD=1.24; range 0-6). 

 

Neuroticism 

Participants in the DNS completed the 240-item NEO Personality Inventory-Revised (Costa & 

McCrae, 1992) (Neuroticism: α=0.85; M=86.04; SD=22.65;  range: 37-113). Six participants did 

not complete the NEO. Participants in the HCP completed the 60-item NEO Five-Factor 

Inventory(Costa & McCrae, 1992) (Neuroticism: α=0.83; M=16.43; SD=7.17; range: 0 - 43). 

 

Negative Urgency 

Participants completed two measures of negative urgency – the Impulsivity sub-scale of the NEO-

PI-R (Costa & McCrae, 1992) (α=0.71; M=17.07; SD=4.60;  range: 3-32), and the substance-sue 

subscale of the brief COPE (BCOPE-sub) inventory. The BCOPE-sub consists of two items that 

assess how frequently respondents use drugs and alcohol as a coping mechanism(Ullman et al., 

2005) (α = 0.92; M=2.53; SD=1.11;  range: 0-8).  

 

Intelligence 

DNS: Intelligence was assessed using the Wechsler Abbreviated Scale of Intelligence Second 

Edition (WASI-II) 2-subtest version (D. Wechsler, 2011), consisting of the Vocabulary and Matrix 

Reasoning subtests. The total score was computed as the sum of age-adjusted performance on 
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the two sub-tests. 28 participants did not complete the WASI-II. HCP: Intelligence was assessed 

using the NIH toolbox (Gershon et al., 2013). Fluid intelligence was assessed using the Flanker 

Inhibitory Control and Attention Test, Picture Sequence Memory Test, List Sorting Test, Pattern 

Comparison Test, and Dimensional Change Card Sort Test. Crystallized intelligence was 

assessed using the Oral Reading and Picture Vocabulary tests. Age-adjusted scores were 

averaged for fluid and crystallized intelligence, respectively, which were then averaged to form a 

measure of intelligence (Casaletto et al., 2016).  

 

Statistical Analysis 

Analyses were conducted in R (3.4.2) (R Core Team, 2014). Covariates were identical to those 

used in neuroimaging analyses. As in other analyses, variables were transformed to correct for 

skew, and were winsorized as needed. All variables were z-scored. Linear regression models 

were used to test whether extracted brain volume predicted behavioral and self-report outcomes. 

Analyses in the  HCP used linear mixed-effects models (Bates et al., 2015), which controlled for 

family as a random effect, and sibling-status (i.e. DZ twin, MZ twin, half-sibling) was entered as 

fixed-effect covariates. FDR-correction for multiple comparisons was applied the entire set of 

analyses for each study.  

 

 

Results 

Extracted volume of the frontal and insula ROI, and volume of each significant cluster, were not 

significantly associated with any of the behavioral measures, in either sample, after correcting for 

multiple testing (Supplemental Tables 4.4.11&4.4.12). This suggests that negative urgency, 

impulsivity, or IQ do not fully mediate the association between brain volume and alcohol 

consumption. Given nominally significant results for some of these analyses within our DNS 
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sample, it is possible that different behavioral mechanisms might represent risk at different ages 

and that these null results may represent type II error that larger samples might detect.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplemental Figure 4.4.1: Tissue-specific Enrichment of Alcohol Consumption Genomic 
Risk 
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Enrichment of alcohol consumption GWAS (UK Biobank, N=112,117) A) associations and B&C) 
heritability, in gene-sets defined by the relative expression of genes across A&B) all tissues, and 
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C) within the brain, in the GTEX data set (Supplemental Data). X-axis and color-scale represent 
the significance of the enrichment. Solid, dashed, and dotted lines represent Bonferroni-corrected, 
FDR-corrected, and nominally significant p-values, respectively.   
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Supplemental Figure 4.4.2: TWAS of alcohol consumption predicting gene expression

 
Genetic risk for alcohol consumption according to the UK Biobank GWAS (N=112,117) is 
associated with differences in human post-mortem gene expression (GTEx; Ns = 81 - 103), 
including frontal cortex BA9 (Supplemental Data). Notably, associations in the liver (far right) do 
not survive bonferroni-correction for multiple comparisons, though four are significant at a less-
stringent FDR-based correction. Y-axis represents the significance of the association. Solid, 
dashed, and dotted lines represent Bonferroni-corrected, FDR-corrected, and nominally 
significant p-values, respectively.   
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Supplemental Figure 4.4.3: Overlap of HCP and DNS clusters at an uncorrected threshold 

 
 
Overlap of volumetric associations in the frontal cortex with alcohol consumption in the DNS (red) and HCP (blue) samples 
(purple=overlap). Associations are displayed at an uncorrected threshold (DNS: p<0.001; HCP: p<0.05).  For display purposes, different 
statistical thresholds were used due to the differential power of the two studies.  
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Supplemental Figure 4.4.4: Distribution of responses to DNS follow-up questionnaire 
 

 
 
Histogram of responses to the DNS online follow-up questionnaire, which was emailed to participants every 3 months.  Color indicates 
whether the clustering algorithm indicated the response to be an outlier or not – outliers occurred > 1053 days after the baseline visit 
and were excluded from analyses. Bins have a width of 10 days.  
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Supplemental Table 4.4.1. Location of volumetric reductions associated with alcohol consumption 

DNS 
       

Index # voxels p-FWE T x (mm) y (mm) z (mm) AAL-Atlas Location 

1 279 0.003 5.24 27 39 25 R Middle Frontal 

1.b 
 

0.01 4.95 32 50 23 R Middle Frontal 

2 344 0.004 5.14 56 3 0 R Superior Temporal 

2.b 
 

0.006 5.05 48 6 -5 R Insula 

3 44 0.005 5.08 0 63 -3 L Medial Orbital Frontal 

4 76 0.007 5.03 38 18 51 R Middle Frontal 

5 64 0.007 5.03 -3 -33 42 L Middle Cingulum 

6 23 0.019 4.8 2 27 30 R Middle Cingulum 

7 17 0.023 4.75 29 62 8 R Superior  Frontal 

8 12 0.029 4.59 2 33 45 R Medial Superior Frontal 

HCP 
       

Index # voxels p-FWE T x (mm) y (mm) z (mm) AAL-Atlas Location 

1 42 0.003 4.92 38 12 0 R Insula 

2 88 0.008 4.7 20 24 42 R Superior/Middle  Frontal 

 
DNS = Duke Neurogenetics Study; HCP = Human Connectome Project. Coordinates are provided in MNI space. 
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Supplemental Table 4.4.2. Heritability and genetic correlation between gray-matter volume 
and alcohol consumption in the HCP 
  

mAUDIT-C Right Insula Right Middle/Superior Frontal Cortex 

h2 (SE) 0.5179 (0.0541) 0.6883 (0.0392) 0.7746 (0.0307) 

p 5.25x10-18 1.97x10-32 3.62x10-40 

ρp - -0.1349 -0.114 

p - 0.0006 0.0033 

ρg (SE) - -0.2314 (0.076) -0.2192 (0.0784) 

p - 0.0022 0.0054 

ρe (SE) - 0.0294 (0.0825) 0.0483 (0.0787) 

p - 0.7214 0.541 

 
h2 = heritability; ρp = phenotypic correlation; ρg = genetic correlation; ρe = environmental 
correlation 
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Supplemental Table 4.4.3. Discordant sibling analysis in the HCP 

Region Variable Estimate t p 

Right Insula ICV -5.78x10-8 
 

-4.629 4.78x10-6 
 

 Sex 0.0052 0.892 0.3733 

 Age -0.0030 -5.571 4.27x10-8 
 

 MZ -0.0057 -1.596 0.1111 

 DZ -0.0124 -2.659 0.0081 

 W 0.0179 2.041 0.0419 

 B -0.0026 -0.253 0.8007 

 A 0.0066 0.525 0.5998 

 SES 0.0002 0.289 0.7726 

 ED 1.20x10-5 
 

0.362 0.7176 

 DX – Non 
Substance 

-0.0054 -1.29 0.1978 

 PSS 0.0002 0.967 0.3343 

 Causal 0.0009 0.412 0.6806 

 Graded -0.0037 -1.974 0.0491 

 Predispositonal 0.0037 3.479 0.0006 

 
   

  

Region Variable Estimate t p 

Right 
Middle/Superior 
Frontal Cortex 

ICV 1.38x10-8 
 

1.315 0.1891 

Sex 0.0124 2.584 0.0103 

Age -0.0029 -6.438 3.01x10-10 
 

 MZ -4.89x10-5 
 

-0.016 0.9871 

 DZ -0.0059 -1.505 0.1329 

 W 0.0139 1.899 0.0583 

 B 0.0208 2.387 0.0175 

 A 0.0217 2.058 0.0402 

 SES 0.0008 1.06 0.2896 

 ED -1.87x10-5 
 

-0.665 0.5067 

 DX – Non 
Substance 

0.0092 2.557 0.0109 

 PSS 0.0002 1.042 0.2980 

 Causal -0.0020 -1.037 0.3006 

 Graded 0.0006 0.411 0.6810 

 Predispositonal 0.0020 2.193 0.0290 

 

SES = Socioeconomic status, PSS = Perceived Stress Scale, ED = education 
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Supplemental Table 4.4.4. Regression analyses of the association between brain volume 
and longitudinal alcohol consumption in DNS 

Variable β Std.Error DF t-value p-value 

(Intercept) 0.114 0.056 1726 2.022 0.043 

Age-linear 0.085 0.037 1726 2.266 0.024 

Age-quadratic -0.019 0.031 1726 -0.618 0.537 

Baseline Age -0.026 0.048 646 -0.546 0.585 

Sex -0.164 0.044 646 -3.698 2.35x10-4 

W 0.161 0.062 646 2.615 0.009 

B 0.032 0.045 646 0.714 0.476 

A -0.047 0.058 646 -0.809 0.419 

H 0.093 0.039 646 2.360 0.019 

DX - Non Substance 0.016 0.035 646 0.440 0.660 

PSS -0.039 0.038 646 -1.025 0.306 

P-SES 0.066 0.041 646 1.594 0.111 

CTQ 0.014 0.038 646 0.375 0.708 

P-ED 0.074 0.040 646 1.845 0.065 

Scanner 0.029 0.032 646 0.932 0.351 

ICV 0.107 0.059 646 1.795 0.073 

Frontal -0.115 0.053 646 -2.185 0.029 

Age-linear x Frontal 0.151 0.038 1726 3.976 7.29x10-5 

Age-quadratic x Frontal 0.007 0.025 1726 0.275 0.783 

Age-quadratic x Baseline Age -0.046 0.018 1726 -2.490 0.013 

Age-quadratic x Sex -0.057 0.022 1726 -2.602 0.009 

Age-quadratic x W -0.001 0.031 1726 -0.022 0.982 

Age-quadratic x B -0.009 0.022 1726 -0.411 0.681 

Age-quadratic x A 0.009 0.028 1726 0.322 0.747 

Age-quadratic x H -0.009 0.021 1726 -0.413 0.679 

Age-quadratic x DX - Non Substance 0.017 0.018 1726 0.953 0.341 

Age-quadratic x PSS 0.023 0.018 1726 1.269 0.205 

Age-quadratic x P-SES 0.019 0.021 1726 0.883 0.377 

Age-quadratic x CTQ 0.015 0.018 1726 0.799 0.424 

Age-quadratic x P-ED -0.006 0.020 1726 -0.284 0.777 

Age-quadratic x Scanner 0.009 0.018 1726 0.479 0.632 

Age-quadratic x ICV -0.026 0.028 1726 -0.936 0.349 

Age-linear x Baseline Age -0.019 0.048 1726 -0.390 0.696 

Age-linear x Sex 0.057 0.031 1726 1.876 0.061 

Age-linear x W -0.014 0.042 1726 -0.325 0.745 

Age-linear x B -0.021 0.030 1726 -0.702 0.483 

Age-linear x A -0.010 0.039 1726 -0.256 0.798 

Age-linear x H 0.042 0.028 1726 1.519 0.129 

Age-linear x DX - Non Substance -0.053 0.025 1726 -2.153 0.031 

Age-linear x PSS -0.015 0.025 1726 -0.595 0.552 

Age-linear x P-SES -0.047 0.028 1726 -1.654 0.098 
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Age-linear x CTQ 0.004 0.026 1726 0.160 0.873 

Age-linear x P-ED 0.024 0.027 1726 0.889 0.374 

Age-linear x Scanner 0.018 0.024 1726 0.764 0.445 

Age-linear x ICV -0.090 0.040 1726 -2.243 0.025 

Baseline Age x Frontal -0.016 0.041 646 -0.386 0.700 

Sex x Frontal 0.073 0.051 646 1.442 0.150 

W x Frontal -0.043 0.065 646 -0.669 0.503 

B x Frontal 0.035 0.046 646 0.758 0.449 

A x Frontal -0.056 0.060 646 -0.924 0.356 

H x Frontal -0.018 0.043 646 -0.429 0.668 

DX - Non Substance x Frontal 0.011 0.034 646 0.322 0.748 

PSS x Frontal 0.023 0.038 646 0.605 0.546 

P-SES x Frontal 0.009 0.043 646 0.213 0.832 

CTQ x Frontal -0.052 0.037 646 -1.407 0.160 

P-ED x Frontal 0.034 0.042 646 0.819 0.413 

Scanner x Frontal 0.001 0.035 646 0.038 0.970 

ICV x Frontal 0.008 0.044 646 0.195 0.846 

Volume of the right middle/superior frontal cortex is associated with future change in alcohol 
consumption (p-fdr=4x10-4). Standardized effects and uncorrected p-values are presented.  
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Supplemental Table 4.4.5. Regression analyses of the association between brain volume 
and future alcohol use initiation in TAOS. 

 Middle Frontal   Superior Frontal   

 β SE z p β SE z p 

(Intercept) -6.64 156.30 -0.04 0.97 -6.35 132.19 -0.05 0.96 

Age-linear 170.77 5767.82 0.03 0.98 157.94 2198.72 0.07 0.94 

Age-quadratic -27.21 4154.01 -0.01 0.99 -25.34 1750.80 -0.01 0.99 

Sex -0.04 0.94 -0.04 0.97 0.15 0.80 0.19 0.85 

W 0.99 1.68 0.59 0.56 0.69 1.38 0.50 0.62 

H -0.18 1.63 -0.11 0.91 -0.23 1.32 -0.17 0.86 

High-risk 0.30 0.82 0.37 0.71 0.05 0.73 0.07 0.95 

GenPop -2.70 1217.35 0.00 1.00 -3.35 1029.61 0.00 1.00 

SLES 0.83 0.93 0.89 0.37 0.94 0.78 1.20 0.23 

SES -0.10 0.83 -0.13 0.90 -0.34 0.70 -0.48 0.63 

CTQ 1.15 0.77 1.50 0.13 1.02 0.68 1.51 0.13 

Tanner -0.51 0.83 -0.61 0.54 -0.28 0.73 -0.39 0.70 

MFQ -0.03 0.85 -0.03 0.97 -0.11 0.71 -0.16 0.88 

Baseline Age -0.01 0.82 -0.01 0.99 0.10 0.71 0.15 0.88 

Intracranial Volume (ICV) -0.81 1.18 -0.68 0.50 -1.07 1.05 -1.02 0.31 

Brain 1.58 114.78 0.01 0.99 2.18 118.72 0.02 0.99 

Age-linear x Brain -57.04 24.04 -2.37 0.02 -60.74 24.99 -2.43 0.02 

Age-quadratic x Brain -11.91 22.47 -0.53 0.60 11.99 21.43 0.56 0.58 

Age-linear x Sex -16.07 23.59 -0.68 0.50 -19.74 20.14 -0.98 0.33 

Age-linear x W -6.29 44.08 -0.14 0.89 -5.61 35.53 -0.16 0.87 

Age-linear x H 2.52 42.77 0.06 0.95 3.35 34.36 0.10 0.92 

Age-linear x High Risk -12.31 20.19 -0.61 0.54 -6.61 18.37 -0.36 0.72 

Age-linear x Gen-Pop -24.67 44924.09 0.00 1.00 -3.90 17124.75 0.00 1.00 

Age-linear x SLES -9.99 24.93 -0.40 0.69 -15.30 21.04 -0.73 0.47 

Age-linear x SES 25.87 21.32 1.21 0.23 26.53 17.57 1.51 0.13 

Age-linear x CTQ 1.92 19.66 0.10 0.92 4.47 17.83 0.25 0.80 

Age-linear x Tanner 16.91 19.24 0.88 0.38 15.46 18.07 0.86 0.39 

Age-linear x MFQ -11.20 19.34 -0.58 0.56 -12.20 16.73 -0.73 0.47 

Age-linear x Baseline Age 10.07 21.73 0.46 0.64 3.79 18.30 0.21 0.84 

Age-linear x ICV 20.43 28.01 0.73 0.47 21.73 25.25 0.86 0.39 

Age-quadratic x Sex 12.71 18.66 0.68 0.50 20.88 15.54 1.34 0.18 

Age-quadratic x W 15.10 30.63 0.49 0.62 4.74 24.89 0.19 0.85 

Age-quadratic x H 6.69 27.90 0.24 0.81 1.36 22.93 0.06 0.95 

Age-quadratic x High Risk 18.42 15.16 1.21 0.22 12.60 13.16 0.96 0.34 

Age-quadratic x Gen-Pop 51.69 32354.53 0.00 1.00 41.45 13636.19 0.00 1.00 

Age-quadratic x SLES -2.61 20.93 -0.12 0.90 0.63 17.27 0.04 0.97 

Age-quadratic x SES -7.67 16.53 -0.46 0.64 -10.84 13.83 -0.78 0.43 

Age-quadratic x CTQ 1.29 17.12 0.08 0.94 -2.24 15.00 -0.15 0.88 

Age-quadratic x Tanner -2.06 15.21 -0.14 0.89 0.47 13.83 0.03 0.97 

Age-quadratic x MFQ -20.32 16.51 -1.23 0.22 -18.46 14.09 -1.31 0.19 
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Age-quadratic x Baseline 
Age 

-11.03 15.32 -0.72 0.47 -5.90 13.37 -0.44 0.66 

Age-quadratic x ICV 18.31 21.99 0.83 0.41 7.89 20.98 0.38 0.71 

Sex x Brain -0.42 0.76 -0.55 0.58 -0.76 0.67 -1.14 0.25 

W x Brain -0.07 1.10 -0.06 0.95 0.39 0.89 0.43 0.67 

H x Brain 0.25 1.06 0.23 0.81 0.52 0.87 0.59 0.56 

High Risk x Brain -0.01 0.59 -0.01 0.99 0.31 0.52 0.60 0.55 

Gen-Pop x Brain 1.95 893.93 0.00 1.00 2.23 924.63 0.00 1.00 

SLES x Brain 0.34 0.60 0.57 0.57 -0.08 0.53 -0.16 0.88 

SES x Brain 0.64 0.64 1.00 0.32 0.67 0.54 1.25 0.21 

CTQ x Brain -0.12 0.66 -0.18 0.86 -0.11 0.57 -0.20 0.84 

Tanner x Brain 0.52 0.65 0.80 0.43 0.25 0.58 0.44 0.66 

MFQ x Brain -0.20 0.70 -0.28 0.78 -0.15 0.58 -0.26 0.79 

Baseline Age x Brain 0.73 0.68 1.07 0.29 0.21 0.51 0.41 0.68 

ICV x Brain -0.83 0.77 -1.09 0.28 -1.00 0.68 -1.48 0.14 

Volume of the right middle and superior frontal cortices are both associated with future initiation 
of alcohol consumption (p-fdr=0.035, 0,035). Standardized effects and uncorrected p-values are 
presented.  
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Supplemental Table 4.4.6. TWAS Discovery and Replication 

  Discovery – GTEX Frontal BA 9 Replication – CMC DLPFC 

Gene CHR Locus Start Locus End TWAS Z TWAS P Locus Start Locus End TWAS Z TWAS P 

C16orf93 16 30772519 30772656 5.0152 5.30E-07 - - - - 

CWF19L1 10 102000000 102000000 -4.1674 3.08E-05 102000000 102000000 -2.11116 0.0348 

PHBP9 10 102000000 102000000 -3.8862 1.02E-04 - - - - 

C18orf8 18 21083473 21110576 3.831 1.28E-04 21083433 21111771 2.1613 0.0307 

* Empty rows in replication data indicate that gene was not present in replication dataset. P-values are all uncorrected – all 

associations listed survive FDR correction.  



 

139 

 

 
Supplemental Table 4.4.7. Comparison of samples  

DNS (N=1303) HCP (N=897) TAOS+ (N=223) t, F, χ2 p 

Age 19.7 (1.25) 18-22 28.82 (3.68) 22-37 13.42 (0.96) 11.61-15.33 F = 5420.39 <1x10-300 

Sex (% Female) 747 (57.33%) 504 (56.19%) 96 (43.05%) χ2 = 15.93 0.000347 

m/AUDIT-C 3.76 (2.64) 0-11.69 3.42 (2.65) 0-11.38 1.26 (1.95) 0-9 F = 89.43 3.38x10-38 

European/ European 
American 

579 (44.44%) 597 (66.56%) 126 (56.5%) χ2 = 105.31 1.35x10-23 

African/African 
American 

148 (11.36%) 155 (17.28%) 3 (1.35%) χ2 = 45.22 1.51x10-10 

Asian/Asian 
American 

353 (27.09%) 45 (5.02%) 4 (1.79%) χ2 = 225.94 8.68x10-50 

Hispanic 83 (6.37%) 73 (8.14%) 73 (32.74%) χ2 = 157.54 6.18x10-35 

Multi-racial/Native 
American/Other 

140 (10.74%) 27 (3.01%) 17 (7.62%) χ2 = 45.29 1.46x10-10 

CTQ 33.39 (8.12) 25-59.81 - 32.98 (7.09) 25-64 t = 0.5 0.478993 

PSS 14.65 (6.05) 0-32.89 13.07 (5.76) 0-35 - t = 37.59 1.03x10-09 

 

 
Comparisons of measures that overlap across samples (DNS, HCP, TAOS). Continuous variables are presented in the format of: Mean 
(Standard deviation) Range. Dichotomous variables show the number of participants in that category, and the total percent of the 
sample that they comprise. Variables were winsorized prior to comparisons. 
+= TAOS comparisons of mAUDIT-C scores were done with the maximum score attained by each participant. 
-=Variable not present in sample. 
DNS = Duke Neurogenetics Study; HCP = Human Connectome Project; TAOS = Teen Alcohol Outcomes Study; AUDIT = Alcohol Use 
Disorder Identification Test; PSS = Perceived Stress Scale; CTQ = Childhood Trauma Questionnaire.  
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Supplemental Table 4.4.8. Frequency of Psychiatric Diagnosis in the DNS and HCP samples.  

Dataset Disorder N 

DNS Any 258 

 Depression 66 

 Bipolar 35 

 Anxiety 50 

 OCD 16 

 PTSD 2 

 Alcohol Abuse 143 

 Substance Abuse 47 

 Eating Disorder 11 

 Autism Spectrum 1 

 Psychosis 3 

HCP Any 311 

 Agoraphobia 55 

 Panic Disorder 53 

 Depression 75 

 Alcohol Abuse/Dependence 176 

 Marijuana Abuse/Dependence 103 

80 participants in the DNS have more than one diagnosis.  
103 participants in the HCP have more than one diagnosis.  
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Supplemental Table 4.4.9. Comparison of DNS subjects who did or did-not complete follow-up questionnaires 
 

No Follow-Up 
(N=624) 

Follow-Up 
(N=679) 

t/χ2 p 

AUDIT-C 4.0492 (2.6632) 3.4993 (2.595) 3.7694 0.0002 

AUDIT Total 5.5913 (4.4163) 4.8778 (4.1872) 2.9869 0.0029 

Age 19.8125 (1.2739) 19.592 (1.2265) 3.1765 0.0015 

P-SES 7.5065 (1.6722) 7.3884 (1.7094) 1.2603 0.2078 

P-ED 7.0232 (1.6025) 7.0751 (1.7291) -0.562 0.5742 

PSS 14.4852 (5.9435) 14.7976 (6.1404) -0.9328 0.3511 

CTQ 33.7902 (8.3233) 33.016 (7.9077) 1.7179 0.0861 

Frontal Volume 0.4834 (0.0559) 0.4815 (0.0564) 0.6047 0.5455 

Insula Volume 0.5498 (0.0539) 0.5505 (0.0547) -0.2484 0.8038 

ICV 1.4877 (0.1451) 1.4754 (0.1384) 1.5573 0.1196 

Sex (number of female respondents)* N=320 (51.28%) N=427 (62.89%) 17.429 2.98x10-05 

Diagnosis (non substance-related) * N=77 (12.34%) N=72 (10.6%) 0.8037 0.3700 

Caucasian* N=253 (40.54%) N=326 (48.01%) 7.0435 0.0080 

African/African American* N=86 (13.78%) N=62 (9.13%) 6.5319 0.0106 

Asian/Asian American* N=171 (27.4%) N=182 (26.8%) 0.0327 0.8564 

Hispanic* N=42 (6.73%) N=41 (6.04%) 0.1582 0.6908 

Multi-racial/Native American/Other* N=72 (11.54%) N=68 (10.01%) 0.6364 0.4250 

 

*=Analysis was run as a chi-squared test, all others were run as t-tests.  

AUDIT = Alcohol Use Disorder Identification Test; CTQ = Childhood Trauma Questionnaire; P-ED = Parental Education; P-SES = 
Perceived Socioeconomic Status; PSS = Perceived Stress Scale. ; ICV = Intracranial Volume
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Supplemental Table 4.4.10. Association of Alcohol Consumption/Initiation with Covariates 

Study DNS 
 

HCP 
 

TAOS*  

Variable statistic (t, F, r) p statistic (t, F, r) p statistic (t, χ2 ) p 

Sex (Female vs Male) t = 9.1624 2.70x10-19 t = 8.7447 1.72x10-17 χ2 = 6.24x10-31 1.0000 
Diagnosis (non Substance-
related) (vs none) 

t = -0.3185 0.7505 t = -0.6746 0.5007 - - 

Ethnicity F = 29.7684 5.82x10-8 F = 2.6516 0.1038 χ2 = 6.5217 0.5890 
European/ European American (vs 
not) 

t = -7.6998 2.84x10-14 t = -3.2474 0.0012 
χ2 = 0.0424 0.8368 

African/African American (vs not) t = 3.1538 0.0019 t = 4.1931 3.89x10-5 - - 

Asian/Asian American (vs not) t = 5.0911 4.54x10-7 t = 1.4615 0.1502 - - 

Hispanic (vs not) t = -0.0295 0.9765 t = -0.9598 0.3398 χ2 = 0.0908 0.7631 
Multi-racial/Native American/Other 
(vs not) 

t = 2.2086 0.0285 t = -0.3249 0.7477 - - 

Age r = 0.126 5.10x10-6 r = -0.1222 0.0002 t = -2.8750 0.0045 
P-SES/SES r = 0.1747 2.15x10-10 r = 0.0102 0.7604 t = -1.7684 0.0789 
PSS/SLES r = -0.0383 0.1669 r = 0.023 0.4908 t = -0.8601 0.3908 
P-ED/ED r = 0.0883 0.0014 r = -0.0153 0.6465 - - 

CTQ r = -0.0966 0.0005 - - t = -1.6842 0.0945 
Scanner (1 vs 2) t = -0.5507 0.5822 - - - - 

High-risk for depression (TAOS-
only) 

- - - - 
t = 0.5780 0.4471 

Tanner stage - - - - t = -2.0118 0.0459 
MFQ - - - - t = 0.2417 0.8094 

 
Association of model covariates with alcohol consumption (AUCIT-C/mAUDIT-C). 
* = For analyses in TAOS, comparisons are between baseline measurements of participants who initiate, and those who do not. 
 Comparisons were run as t-tests, anovas, pearson correlations, or chi-squared tests. SES = Socioeconomic status, PSS = Perceived 
Stress Scale, ED = education, CTQ = Childhood Trauma Questionnaire, MFQ = Mood and Feelings Questionnaire; SLES = Stressful 
Life Events Schedule. DNS = Duke Neurogenetics Study; HCP = Human Connectome Project; TAOS = Teen Alcohol Outcomes Study 
- = Not present in sample, not applicable, or insufficient numbers to run test.  
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Supplemental Table 4.4.11: Brain volume does not predict impulsivity, negative urgency, or intelligence.  
  

DNS 
    

HCP 
    

Y X Beta Δ r2 P P-fdr N Beta Δ r2 P P-fdr N 

Coping  Frontal -0.0876 0.0033 0.0293 0.1529 1303 - - - - -  
Insula -0.0915 0.0036 0.0237 0.1529 1303 - - - - - 

Self-report 
Impulsivity 

Frontal 0.0487 0.0010 0.1909 0.2864 1303 -0.0844 0.0053 0.0103 0.0824 897 

Insula 0.0680 0.0020 0.0692 0.1529 1303 -0.0549 0.0046 0.1045 0.3739 897 

IQ Frontal 0.0760 0.0025 0.0514 0.1529 1275 0.0060 -5.24E-05 0.8295 0.9271 897  
Insula 0.0699 0.0021 0.0764 0.1529 1275 -0.0026 -2.71E-05 0.9271 0.9271 897 

DDT - K Frontal -0.0891 0.0034 0.0436 0.1529 1157 -0.0142 3.62E-05 0.6877 0.9169 891  
Insula -0.0320 0.0004 0.4720 0.5664 1157 0.0534 -0.0089 0.1402 0.3739 891 

NEO - N5 Frontal -0.0636 0.0018 0.1024 0.1756 1302 - - - - -  
Insula -0.0478 0.0010 0.2232 0.2976 1302 - - - - - 

NEO - N Frontal -0.0008 2.64E-07 0.9789 0.9789 1302 -0.0212 -0.0001 0.3848 0.6157 891  
Insula -0.0080 2.73E-05 0.7879 0.8595 1302 -0.0308 0.0014 0.2337 0.4674 891 

Parameters from linear regression models of brain volume predicting behavior. Covariates were the same as in whole-brain 

analyses. Coping = substance-use subscale of the brief COPE. Self-report impulsivity: DNS - Barratt Impulsiveness Scale; HCP - 

Achenbach Adult Self-Report Impulsivity. IQ: DNS: WASI-II; HCP: NIH Toolbox. DDT – K: Delayed discounting task. NEO-N: 

Neuroticism. NEO-N5: Neuroticism Impulsivity subscale. Standardized effect-sizes (ie beta values) are presented. Δ r2: Change in 

model-fit when the x-variable is added (negative values indicate the model-fit decreased).   
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Supplemental Table 4.4.12: Brain volume clusters do not predict impulsivity, negative 

urgency, or intelligence.  

Study Y X Beta Δ r2 P P-fdr N 

DNS BCOPE - Sub Insula_48_6_5 -0.0767 0.0044 0.0127 0.1110 1303 

  MidFrontal_27_39_26 -0.0888 0.0048 0.0089 0.1110 1303 

  MidFrontal_38_18_51 -0.0291 0.0006 0.3762 0.5424 1303 

  SupFrontal_29_62_8 -0.0706 0.0030 0.0392 0.1880 1303 

 BIS Insula_48_6_5 0.0313 0.0007 0.2726 0.5424 1303 

  MidFrontal_27_39_26 0.0402 0.0010 0.2010 0.4825 1303 

  MidFrontal_38_18_51 -0.0006 2.44x10-07 0.9840 0.9924 1303 

  SupFrontal_29_62_8 0.0325 0.0006 0.3053 0.5424 1303 

 IQ Insula_48_6_5 0.0232 0.0004 0.4388 0.5850 1275 

  MidFrontal_27_39_26 0.0793 0.0038 0.0163 0.1110 1275 

  MidFrontal_38_18_51 0.0137 0.0001 0.6669 0.8003 1275 

  SupFrontal_29_62_8 0.0329 0.0007 0.3219 0.5424 1275 

 DDT - k Insula_48_6_5 -0.0315 0.0007 0.3509 0.5424 1157 

  MidFrontal_27_39_26 -0.0223 0.0003 0.5521 0.6974 1157 

  MidFrontal_38_18_51 -0.0321 0.0007 0.3709 0.5424 1157 

  SupFrontal_29_62_8 -0.0644 0.0025 0.0864 0.2593 1157 

 NEO - N5 Insula_48_6_5 -0.0441 0.0014 0.1396 0.3721 1302 

  MidFrontal_27_39_26 -0.0287 0.0005 0.3842 0.5424 1302 

  MidFrontal_38_18_51 -0.0749 0.0037 0.0185 0.1110 1302 

  SupFrontal_29_62_8 -0.0646 0.0025 0.0515 0.2059 1302 

 NEO - N Insula_48_6_5 0.0063 2.98x10-05 0.7788 0.8608 1302 

  MidFrontal_27_39_26 0.0002 3.45x10-08 0.9924 0.9924 1302 

  MidFrontal_38_18_51 -0.0431 0.0012 0.0730 0.2501 1302 

  SupFrontal_29_62_8 0.0067 2.71x10-05 0.7890 0.8000 1302 

HCP DDT - k Frontal_20_24_42 0.0545 -0.0058 0.1084 0.4279 891 
  Insula_38_12_0 0.0258 -0.0012 0.4520 0.5668 891 

 ASR_IMP Frontal_20_24_42 -0.0453 0.0008 0.1605 0.4279 897 
  Insula_38_12_0 -0.0328 0.0034 0.3124 0.5668 897 

 NEO - N Frontal_20_24_42 0.0166 -0.0003 0.4960 0.5668 891 
  Insula_38_12_0 -0.0198 0.0010 0.4195 0.5668 891 

 IQ Frontal_20_24_42 -0.0446 -0.0005 0.0747 0.4279 897 
  Insula_38_12_0 -0.0115 1.84x10-05 0.6506 0.6506 897 

Parameters from linear regression models of brain volume predicting behavior. Covariates were 

the same as in whole-brain analyses. BCOPE - Sub = substance-use subscale of the brief 

COPE. BIS = Barratt Impulsiveness Scale; ASR IMP =  Achenbach Adult Self-Report 

Impulsivity. IQ: DNS: WASI-II; HCP: NIH Toolbox. DDT – K: Delayed discounting task. NEO-N: 

Neuroticism. NEO-N5: Neuroticism Impulsivity subscale. Standardized effect-sizes (ie beta 

values) are presented. Δ r2: Change in model-fit when the x-variable is added (negative values 

indicate the model-fit decreased).   
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Chapter 5: Discussion 

5.1 Summary of primary findings 

The present set of studies adopted a wide range of approaches (i.e., family-based design, 

neuroimaging, EEG, molecular genetics, bioinformatics, and laboratory-based stress induction) 

to identify sources of variance in alcohol-related neural phenotypes, and to test whether reward 

processing may link environmental and genetic risk to alcohol use. Broadly, two primary findings 

emerged. First, as described in Chapter 4, I find convergent evidence that alcohol-related 

reductions in brain volumes represent a genetically-conferred liability that promotes early alcohol 

use. While this may in turn lead to accelerated volume loss within these and other regions, these 

findings challenge predominant interpretations that smaller brain volumes tied to alcohol use 

emerge from the atrophy-inducing effects of alcohol (Pfefferbaum et al., 2017). Second, as 

described in Chapters 2 and 3, in contrast to a wealth of prior literature (Pizzagalli, 2014), I find 

no evidence that stress impacts behavioral or neural reward processing, challenging the notion 

that stress promotes alcohol use via its effects on reward processing. In Chapter 2, I report a 

replication of a previously reported gene-by-environment (GxE) interaction associated with 

alcohol use. While this report suggests that it is possible that genetic background may moderate 

the impact of stress on alcohol consumption, it should also be interpreted with great caution, given 

the caveats discussed below. Collectively, this work emphasizes the utility of neuroimaging 

phenotypes in dissecting the genetic underpinnings of alcohol consumption. 
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5.2 Brain structure, genetic risk, and alcohol use 

 The study presented in Chapter 4 leveraged several neuroimaging, genetic, and gene 

expression datasets to arrive at the conclusion that correlations between alcohol consumption 

and lower brain volume are the result of shared genetic factors influencing both traits. First, we 

identified replicable correlations between alcohol consumption and brain volume across two large 

independent adult data sets. The two regions which replicated – the right superior/middle frontal 

gyrus and the right insula – have both been observed to be reduced in patients with alcohol use 

disorders (Yang et al., 2016), as well as in heavy drinking adolescents (Pfefferbaum et al., 2016; 

Whelan et al., 2014).  Prior studies have also observed correlations between alcohol consumption 

and structure of the insula and frontal cortex (Lange et al., 2017; Thayer et al., 2017). What is 

unique about this first contribution is that we have demonstrated that correlations between alcohol 

consumption and brain volume are replicable when (1) the measures of alcohol consumption are 

the same, and (2) when samples are free of psychosis.   

 Our second contribution was to assess whether there was evidence of a causal or 

predispositional relationship between alcohol consumption and brain volume. Prior longitudinal 

studies have found evidence that heavy alcohol consumption accelerates age-related shrinkage 

of several brain regions in both adults and adolescents (Luciana et al., 2013; Pfefferbaum et al., 

2017; Squeglia et al., 2015; Sullivan et al., 2018), including both the frontal and insular cortex. 

Alternatively, there is also limited evidence from family-based studies of adolescents that genetic 

risk for alcohol dependence and consumption is association with reduced volume of the frontal 

cortex (Henderson et al., 2018; Wilson et al., 2015). We observed that brain volume and alcohol 

consumption were genetically correlated, and that alcohol consumption was predispositional for 

volume of the frontal cortex and insula. Notably, while the predispositional effect was more 

significant in the insula than the frontal cortex, examination of confidence-intervals (CIs) suggests 

that the effects in the two regions are not significantly different, as the CIs overlap. We believe 
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this to be the largest adult family-based study to examine this question. These results suggest 

that the modest correlation between alcohol consumption and lower brain volume in adults is likely 

not attributable to the same mechanisms that drive brain shrinkage in heavy alcohol use. Rather, 

lower brain volume was present before the initiation of alcohol use, and is driven by some of the 

same genetic factors that drive alcohol consumption.  

 Thus, for the third part of Chapter 4, we sought to test our hypothesis that lower brain 

volume is predispositional for future alcohol use. We tested whether brain volume was predictive 

of future alcohol consumption in a sample of young adults, and then whether it was predictive of 

initiation of alcohol use in an independent sample of children and adolescents. The prior literature 

is again inconsistent. While some studies have found that brain structure contributes to the 

prediction of heavy alcohol use in adolescents (Bertocci et al., 2017; Squeglia et al., 2016; 

Squeglia et al., 2014; Urošević et al., 2015; Whelan et al., 2014), others have not  (Pfefferbaum 

et al., 2017; Seo et al., 2018). It is difficult to say where these discrepancies come from. Whelan 

et al. use the same sample that is later used in Seo et al., - the difference between the two is that 

Whelan et al. predict behavior 2 years later, while Seo et al. predict behavior 5 years later. While 

there are some additional differences between studies - Pfefferbaum et al. are unique in not 

including a measure of socioeconomic status in their models, and Seo et al. only examined a 

subset of all brain regions – it is unclear if this is sufficient to account for discrepancies.  

 We observed in the Duke Neurogenetics Study (DNS), a sample of young adults, that 

volume of the middle/superior frontal cortex, but not the insula, was predictive of future alcohol 

consumption, over and above current alcohol consumption. This analysis is unique in several 

regards: (1) As far as we can tell, it is the first to examine whether brain structure is predictive of 

future alcohol use in young adults (not adolescents). (2) It is also the first to examine whether 

brain structure is predictive of a continuous measure of alcohol consumption, rather than 

dichotomizing behavior. (3) The majority of participants responded only within 6 months of their 

MRI session – thus this analysis is also unique in testing whether brain structure is predictive of 
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relatively short-term changes in alcohol consumption behavior – the majority of prior studies cited 

tested whether structure was predictive of behavior 2 years later. As such, it is important to 

emphasize that our results are complimentary to the prior literature. Interpretations of the 

interaction between brain volume and age in the DNS are discussed below (see ‘Brain structure 

and impulsivity’). 

 The primary limitation of our analysis of longitudinal drinking behavior in the DNS is that 

participants had largely already initiated alcohol consumption prior to the baseline study visit, for 

an unknown amount of time. To address this limitation, we sought to test our original hypothesis, 

that brain volume is already lower prior to initiation of alcohol use, in a sample of non-drinking 

children and adolescents from the Teen Alcohol Outcomes Study (TAOS). We found that lower 

volume of both the superior and middle frontal cortex was predictive of an earlier age of alcohol 

use initiation, defined as the age at which the participant first reports consuming a full alcoholic 

beverage. As a reminder, an earlier age of initiation has been associated with increased risk for 

an alcohol use disorder in prior work (Aiken et al., 2018; Hingson et al., 2010). We did not examine 

continuous alcohol consumption as an outcome in this analysis, as only a small handful of 

participants progressed beyond this level of consumption. Again, this result is a unique and 

complimentary contribution to the field, as neither of the two prior studies to examine initiation of 

alcohol use included the superior or middle frontal cortex in their models (Bertocci et al., 2017; 

Urošević et al., 2015).   

 We propose that our neuroimaging results are consistent with a model wherein a portion 

of the genetic risk for alcohol consumption is mediated by changes to brain development. We 

then leveraged several open-access genetic datasets to test whether this model is plausible. 

Using the results of a recent GWAS for alcohol consumption (Clarke et al., 2017), we tested 

whether genetic associations with alcohol consumption, and the heritability of alcohol 

consumption, was enriched in genes that are highly expressed in the brain. We observed that, 

relative to all the other tissues assessed, including the liver, alcohol consumption associations 
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and heritability were enriched only in brain tissues, including the frontal cortex (the insula was not 

present in this dataset). One major limitation of this analysis is that genes are assigned to a tissue 

only if they are more upregulated in that tissue than in others. Indeed, it is clear this approach will 

miss genes that are important for brain function, as each gene set was comprised of the top 10% 

of genes that were highly expressed in each tissue, yet at least 80-95% (Bae et al., 2015) of all 

genes are expressed in the brain during at least one portion of development.  

 To address this limitation, we then sought to test whether genetic risk for alcohol 

consumption was associated with replicable changes in gene expression in the human brain. In 

our discovery sample (The GTEx Consortium et al., 2015) we found significant associations 

across the cortex, striatum, and cerebellum, including in the middle frontal cortex (BA9). Notably, 

associations with gene expression in the liver did not survive bonferroni correction. We then 

sought to replicate our associations with gene expression in the frontal cortex in an independent 

sample, using both a fully independent GWAS of alcohol consumption (Schumann et al., 2016) 

and a fully independent gene expression dataset (Fromer et al., 2016). While the top gene in our 

discovery analysis (C16orf93) was not present in the replication data, two of the genes which 

surpassed FDR-correction were - CWF19L1 and C18orf8/RMC1. Associations with both these 

genes in replication analyses survived FDR correction, and were in the same direction as the 

discovery sample. One limitation of this replication is that the sample consisted of ~50% patients 

with schizophrenia, which may bias the results. To confirm that results are not biased, I have 

since tested whether the identified individual variants, that are both associated with genetic risk 

for alcohol consumption and predictive of gene expression, are replicably associated with gene 

expression in additional independent datasets of participants free of psychosis (these datasets 

were not used in the original analyses as they do not provide open-access subject-level genomic 

data; the Brain Cloud and BRAINEC datasets) (Ryten et al., 2009; Schubert et al., 2015). Both 

identified variants were predictive of the expression of their associated gene in the frontal cortex 
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in both samples, in the same direction as in our original analyses (rs12784396: CWF19L1; 

rs6507716: C18orf8/RMC1).  

 It is worth discussing some additional limitations of this set of analyses. First, similar to the 

concern that our replication data set included patients with schizophrenia, all of the gene-

expression datasets included brain donors with alcohol consumption; indeed, 10 of the donors in 

our original discovery dataset died from substance overdose or alcohol-related liver damage. The 

high correspondence of results across multiple datasets suggests that alcohol consumption is not 

confounding these results, but given the wide prevalence of alcohol use across the world 

(Substance Use and Mental Health Administration, 2015), it will likely be impossible to ever 

definitively confirm in human adults that alcohol use is not a confound. Notably, neither of the 

identified genes have been found to be differentially expressed in the frontal cortex of donors with 

alcoholism (Liu et al., 2006).  A second limitation is that these analyses are only sensitive to 

whether absolute levels of expression differ, and may be less sensitive to genes whose 

expression changes rapidly throughout the day (i.e. circadian genes) (Ferreira et al., 2018; Li et 

al., 2013). Finally, we should note that expression results are not cell-type specific, though we 

hope that in the future such an analysis will be possible (Ecker et al., 2017).  

 Our gene enrichment and expression analyses align with our interpretation of the 

neuroimaging data – it is plausible that differences in brain structure are reflective of genetic risk 

for alcohol consumption, as alcohol consumption associations are enriched in brain-expressed 

genes, and because genetic risk for alcohol consumption predicts replicable differences in gene 

expression in the frontal cortex. While neither of the two genes identified were well-known to us 

(e.g. they are not candidate genes), both are part of pathways that have been implicated in brain 

development. CWF19L1 is a human homolog of Cwf19, a component of the spliceosome (Galej 

et al., 2016). Two reports have identified rare mutations in CWF19L1 as causes of autosomal 

recessive cerebellar ataxia (Burns et al., 2014; Nguyen et al., 2016) – symptoms include loss of 

control of bodily movements, as well as developmental delay and mental retardation, highlighting 
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the importance of CWF19L1 in brain development. C18orf8/RMC1 is part of the endocytic 

pathway, and has been identified as an upstream regulator, directing Rab7 to the late endosome 

(Vaites et al., 2017). Endosomes are sites of essential signal transduction (Murphy et al., 2009), 

and have long been recognized as playing important roles in brain development (Barford et al., 

2017). Indeed, another Rab7 effector, WDR91, which also directs Rab7 to the late endosome, 

was recently identified as being essential for early postnatal brain development in mice (Liu et al., 

2017). While there is scant evidence linking either gene to alcohol consumption, it is plausible 

that differential expression of these genes would result in changes to brain development, which 

could manifest as structural differences.  

  

5.3 Brain structure and impulsivity 

 We have proposed that differences in brain structure, which are linked to genetic risk, 

predispose individuals to alcohol consumption. In the Introduction it was suggested that this effect 

would mediated by impulsivity. Indeed, most impulsivity constructs are associated with alcohol 

phenotypes (Dick et al., 2010), including delayed discounting and response inhibition (Fernie et 

al., 2013; Nigg et al., 2006; Squeglia et al., 2014), and meta-analyses indicate that almost all self-

report measures of impulsivity traits are associated with alcohol outcomes (Stautz & Cooper, 

2013). Moreover, it has been repeatedly observed that brain structure is correlated with impulsivity 

measures, including correlations between the frontal cortex, insula, and striatum with delayed 

discounting (Bjork et al., 2009; Pehlivanova et al., 2018; Tschernegg et al., 2015), and correlations 

between the frontal cortex and cingulate with motor impulsivity and sensation seeking (Holmes et 

al., 2016). However, in the Supplement to Chapter 4 we report that we found no evidence of 

correlations between volume of either the frontal cortex or the insula (both whole ROIs and 

individual significant clusters) with behavioral impulsivity, delayed discounting, or negative 

urgency measures of impulsivity, in either of our two large adult samples. 
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 In retrospect, it is clear that perhaps we omitted an obvious comparison. In addition to 

being correlated with thickness of the middle frontal cortex (Holmes et al., 2016), sensation 

seeking has also been identified as being more strongly correlated with alcohol consumption in 

adolescents than other impulsivity measures (Dick et al., 2010; Stautz & Cooper, 2013). 

Examining the ‘Excitement-seeking’ subscale of the NEO personality questionnaire (see Methods 

in Chapter 4) (Costa & McCrae, 1992), which is a self-report measure of sensation seeking, we 

find that the clusters in the middle frontal cortex and insula, which were significantly associated 

with alcohol consumption, also show a significant negative correlation with sensation seeking. 

This would suggest that the associations between lower brain volume and increased alcohol 

consumption may be partially mediated by increased sensation seeking. However, a measure of 

sensation seeking is not available in our replication dataset (the HCP), and so we are not able to 

independently replicate this observation.  

 The hypothesis that the association between brain volume and alcohol consumption may 

be partially mediated by sensation seeking could also help to explain the interaction between age 

and volume we observed in the analysis predicting future alcohol consumption of young adults. 

In this analysis we observed that participants with lower volume were predicted to consume more 

alcohol than subjects with higher volume, but only until around the age of 21, at which point the 

groups were predicted to drink similar amounts. Coincidentally, a recent large international study 

has found that this age range is when sensation-seeking begins to decline (it peaks at 18-20 years 

old), and is when self-regulation begins to peak (it peaks at 23 years old) (Steinberg et al., 2018). 

If the predispositional effects of brain volume are mediated by sensation seeking, then brain 

volume may have less predictive utility as sensation seeking starts to decline. Additionally, it 

cannot be ignored that the legal drinking age in the United States is 21. Our observation of 

increased consumption prior to this age, only among participants with lower volume, is also 

consistent with findings that environmental context can moderate the expression of 

predispositonal risk (Young-Wolff et al., 2011). 
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 There are some notable differences between the conclusions of our longitudinal analysis 

in the DNS and the results of our co-heritability analyses in the HCP replication sample. Most 

prominently, in the DNS insula volume was not predictive of future drinking behavior, while in the 

HCP both frontal cortex and insula volume are co-heritable with alcohol consumption. We must 

note some more limitations of the DNS longitudinal analysis. As participation in the longitudinal 

follow-up questionnaire was only compensated by the chance to win a gift card (this is not an 

atypical design for questionnaire-based studies), the participants in the subsample are younger, 

drink less, have lower sensation seeking, are more likely to be female, and are more likely to be 

Caucasian, than those participants in the DNS sample who did not respond to the questionnaire. 

Moreover, we must note that total insula volume is less strongly associated with alcohol 

consumption in the DNS than in the HCP, though the effects dos not significantly differ. 

Thus, it seems most likely that the insula may not be longitudinally predictive in the DNS sample 

simply because it is a weaker variable being tested in a healthier subsample analysis. 

 Thus, this work suggests a model in which genetically-conferred reductions in brain 

volume promote early alcohol use, possibly via increased sensation seeking. Moreover, 

bioinformatic analyses are consistent in showing that a model in which genetic risk for alcohol 

consumption directly changes gene expression in the brain is plausible. We note that prior 

research has primarily interpreted correlations between brain structure and volume as indicative 

of alcohol-driven atrophy (e.g. Lange et al., 2017; Thayer et al., 2017), and longitudinal studies 

have found evidence that heavy alcohol use accelerates age-related reductions (Luciana et al., 

2013; Pfefferbaum et al., 2017; Squeglia et al., 2015; Sullivan et al., 2018). However, prior studies 

have also found evidence that reduced volume is predictive of future heavy alcohol use (Bertocci 

et al., 2017; Squeglia et al., 2016; Whelan et al., 2014). Thus we must emphasize that, while our 

results challenge the interpretation that the association between alcohol use and brain structure 

is purely unidirectional, they do not contradict the empirical evidence. We propose that genetic 

risk contributes to lower volume of the frontal cortex and insula, which is predispositional for 
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initiation of alcohol use and alcohol consumption, and that chronic heavy alcohol use then 

accelerates the shrinkage of these regions and others.  

An interesting future direction will be to examine when during development the volumetric 

reduction associated with genetic risk for alcohol first emerges. If they are apparent prior to 

puberty, it might imply that genetic mechanisms important for early brain development are the 

driving force. However, if they appear only after the onset of puberty, changes to the machinery 

governing synaptic pruning would be a likely candidate. It should be noted here that synaptic 

pruning is frequently cited as a possible mechanism for alcohol-induced atrophy (e.g. (Koob et 

al., 2014; Kyzar & Pandey, 2014; Nixon & Mcclain, 2010)). Indeed, if this later possibility is the 

case, one might hypothesize that the differences associated with genetic risk would increase over 

time. This might explain why the genetic correlations observed in the adult HCP sample are so 

strong, yet the prior adolescent literature is mixed. This hypothesis is also convergent with 

observations that the impact of heavy alcohol is moderated by familial risk for alcohol dependence 

(Pfefferbaum et al., 2017), suggesting that environmental and genetic risk may both modulate the 

same molecular processes. One of the strengths of the adolescent TAOS sample is that 

assessments of alcohol use were denser than most of the prior work, occurring annually for up to 

five years after the initial study visit. This rich phenotypic assessment enabled us to detect an 

effect that we likely would not have been able to see had assessments been sparser. Indeed, one 

hypothesis that is compatible both with our work and the prior literature, is that the effects of 

genetic risk for alcohol consumption on brain volume are rather subtle during adolescence, and 

gradually magnify as individuals age.   
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5.4 Early life stress and reward 

 Early life stress (ELS) is arguably the single strongest environmental predictor of risk for 

psychopathology, including alcohol dependence (Enoch, 2011). There is a large body of evidence 

indicating that ELS alters reward-related activity of the striatum (Boecker et al., 2014; Goff & 

Tottenham, 2014; Hanson et al., 2015; Novick et al., 2018; Teicher et al., 2016), which is in turn 

associated with alcohol dependence (Balodis & Potenza, 2015).  This agrees well with studies 

from model organisms, such as rodents, where early-life chronic mild stress is associated with 

reduced dopamine release in the striatum (Willner, 2017) and elevated alcohol intake in adulthood 

(Becker et al., 2011). What then to make of the observations in Chapters 2 and 3 that ELS was 

not associated with striatal reward activity (Chapter 2) or altered reward learning or processing 

(Chapter 3)?  

 Two possible explanations are the timing of ELS and the specific nature of the ELS. Both 

chapters used the same measure of ELS, the Childhood Trauma Questionnaire (CTQ) (Bernstein 

et al., 2003). This scale is widely used and has convergent validity with a clinician-rated interviews 

of childhood abuse (Scher et al., 2001). However, it does not assess when traumatic incidents 

took place, other than that they occurred before the respondent was 18 years old. A growing body 

of literature indicates that the impact of trauma varies depending on the age at which it occurs 

(Tottenham & Sheridan, 2010). While this literature has yet to converge on specific sensitive 

windows, some studies have identified infancy and puberty as the two most vulnerable periods 

(Dunn et al., 2013, 2017). Indeed, given that the brain is constantly changing and developing 

throughout childhood, one might hypothesize that the effect of trauma on adult outcomes (e.g. 

which behaviors are effected) will be dependent on which brain regions are changing the most at 

that time (Teicher et al., 2016). Evidence for similar effects has already been identified in the 

realm of fetal development, where for instance methamphetamine exposure in infant rodents 
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selectively impairs adult long-term memory only when the exposure coincides with hippocampal 

development (the equivalent of the third trimester in humans) (Jablonski et al., 2016).  

 Second, there is evidence that outcomes may vary depending on the specific nature of 

childhood trauma. Theoretical models propose that abuse and neglect will have differential effects 

on risk for psychopathology and underlying neurobiological correlates (Sheridan & McLaughlin, 

2014). Indeed, the CTQ includes subscales for both abuse and neglect. The study in Chapter 3 

recruited only participants who scored high on at least one of the abuse scales, but in Chapter 2 

we combined abuse and neglect. Moreover, it is likely the case that the nature of the trauma 

interacts with the aforementioned developmental effects. The Bucharest Early Intervention 

Project is a famous study in which institutionalized, and largely neglected, infants in Romania 

were randomly selected for foster care, the results of which convinced the Romanian government 

to adopt a nationwide foster care system. The primary result of the project was that intervention 

was most effective before the age of 2, suggesting the presence a developmental period during 

which neglect had its worst effects (Zeanah et al., 2012). More recently, a longitudinal study has 

found that, while both abuse and neglect are broadly associated with both externalizing and 

internalizing disorders (Norman et al., 2012), neglect before the age of 6 is only associated with 

externalizing problems in adolescents (Miller et al., 2018). However, it should be noted that 

another recent study observed no effect of age of exposure for childhood abuse (Dunn et al., 

2017), and that it can be difficult to disentangle the effects of abuse and neglect, given their high 

co-occurrence (Green et al., 2010). 

In retrospect, there is already some evidence for an interaction between stress-type and 

developmental timing on future striatal reward function. Hanson et al. (Hanson et al., 2015) 

observed a negative association between ELS and striatal activation to rewards (N=72). In their 

post-hoc analyses they found that that this effect was driven by participants who experienced 

interpersonal stress (i.e. abuse directed at themselves, or between their parents) during early 
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childhood. While this finding remains to be replicated, it does suggest that consideration of stress-

type and the age at which stress occurred bears further consideration.  

 

5.5 Genetics and neuroimaging – limitations  

 Chapter 2 presents findings that a variant in the circadian gene PER1 moderates the 

impact of ELS on alcohol consumption, an effect which was not mediated by altered reward 

reactivity. The PER1 variant was chosen because a similar gene x environment (GxE) interaction 

with that same variant had been previously reported, and shown to have physiological 

consequences (Dong & Bilbao, 2011). There are two limitations to this analysis. First, a multi-

ethnic sample was used. While the distribution of alleles of the PER1 variant did not differ between 

ethnicities, we did not verify that the underlying correlations between this variant and the 

surrounding genome did not differ between ethnic groups. Such differences (which are an aspect 

of what is termed ‘population stratification’) have been shown to bias results and may generate 

false-negative and false-positive findings (Li et al., 2013). In our analysis of associations in each 

ethnic subsample, we found results that are directionally consistent in 5/6 of ethnicities, but the 

association was only significant in one of these (Asian; N=44), and the weakest association was 

in the largest subsample (Caucasian; N=305). It should be noted that the recent GxE GWAS 

examining the interaction between trauma and genetic risk on alcohol misuse did not identify 

associations at either the variant or gene level with any core circadian clock gene, including the 

PER1 variant used in Chapter 2 (Polimanti et al., 2018).  

 The second limitation of the study in Chapter 2 is the use of a candidate-gene approach. 

Candidate-genes are extremely appealing, as they promise insight into the underlying biological 

mechanism, and provide an ethical extension of findings from gene knock-outs in model 

organisms. The proximal limitation of candidate genes is that they have a very poor track record. 

High profile associations, such as the interaction between the S allele of the 5-HTTLPR serotonin 
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transporter promoter region which was observed to increase risk for depression in the context of 

early life stress, have since not replicated in extremely well-powered studies (Culverhouse et al., 

2018). Associations between candidate genes and neuroimaging phenotypes have similarly failed 

to yield replicable associations (Avinun et al., 2017; Harrisberger et al., 2015). Indeed, analyses 

of GWAS results for schizophrenia have found that, while a handful of candidate genes were 

significantly associated, as a whole, the associations with candidate genes were not higher than 

for any similarly-size random set of genes (Johnson et al., 2017). 

 The field of psychology has perhaps borne the greatest amount of attention surrounding 

the issue of replication and reproducibility, but this is in part a product of the willingness of 

psychologists to engage in large-scale critical self-evaluation (Aarts et al., 2015). Many of the 

issues contributing to the ‘replication crisis’ in psychology likely contribute to the poor replication 

of candidate-genes, particularly the problem of low power, which is a well-recognized contributor 

in imaging genetics (Bogdan et al., 2017). A meta-analysis of 234 neuroscience-related candidate 

gene studies found a median power of 10% (Nord et al., 2017). Candidate-gene associations are 

underpowered partly because, until relatively recently, it was not widely appreciated how small 

genetic effect sizes truly are. Indeed, the largest single replicable association with schizophrenia 

(OR=1.1) (Ripke et al., 2014) would require at least 8,000 schizophrenia cases to be replicated. 

Most candidate gene studies have many fewer participants, for instance the median sample size 

is 262 in Nord et al., 2017. It has been suggested that larger effect sizes would be expected with 

neuroimaging phenotypes, as they are closer to the underlying biology (Rose & Donohoe, 2013). 

However, large-scale GWAS of neuroimaging phenotypes have yet to find evidence that this is 

the case (Adams et al., 2016; Hibar et al., 2017), and direct comparisons of replicable effects 

have found that imaging-associated effects are just as small as schizophrenia-associated ones 

(Franke et al., 2016). It should be noted that the effect size estimates from some case-control 

GWAS may be underestimates (Stringer et al., 2011), as case-status is a somewhat arbitrary 

dichotomization of an underlying continuous phenotype (Plomin et al., 2009), though this is 



 

159 

 

unlikely to change the observation that the majority of candidate gene studies were 

underpowered.  

 What then, can be concluded from Chapter 2? Given the limitations listed above, as well 

as the lack of external replication (Carter et al., 2017), or robust internal replication (Bogdan et 

al., 2017), Chapter 2 may be best regarded as an additional piece of suggestive evidence that 

genetic variation of PER1 contributes to variable long-term outcomes in response to ELS, which 

may be predispositional towards risk for alcohol abuse. In support of this interpretation, 

convergent evidence is found in animal models (Dong & Bilbao, 2011; Sarkar, 2012). However, it 

is quite difficult to translate animal findings to humans, for a variety of reasons, which should 

caution against the over-interpretation of seemingly convergent observations (Bracken, 2009; 

Garner, 2014; Mak et al., 2014). Thus, as is often the case with individual studies, we await further 

evidence.   

 

5.6 Genetics and neuroimaging – future directions  

 Beyond candidate genes, there are several methods that can be brought to bear on 

questions of the influence of genetics on brain function and structure. One approach, adopted in 

Chapter 4, is to use a sample of twins. Twin studies have been used to study the influence of 

genes, and genetic risk, on brain function and structure since the late 1990’s (Jansen et al., 2015). 

There are a handful of open-access twin datasets that include neuroimaging data, including the 

Human Connectome Project (Van Essen et al., 2012) and the Adolescent Brain Cognitive 

Development study (Barch et al., 2017; Casey et al., 2018). An alternative to twin studies, which 

is applicable to datasets that have already been collected, is to use Polygenic Risk Scores (PRS). 

PRS were already described in the Introduction, but briefly, they are a score reflecting an 

individual’s genetic burden for a trait, based on results from independent studies. PRS results, as 

opposed to candidate genes, are replicable, though they only capture a small portion of the total 
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genetic burden (Bogdan et al., 2018). However, what is missed by twin studies and by a standard 

PRS, is that mechanistic hypotheses about particular molecular subsystems cannot be tested, as 

they can with candidate genes. 

 There are several possibilities for how to construct an imaging genetics analysis, if one 

has a mechanistic hypothesis. First, there are GWAS of some relevant quantitative traits. For 

instance, Luykx et al. (Luykx et al., 2014) conducted a GWAS of monoamine levels in 

cerebrospinal fluid, identifying an association with 5-HT1AA levels. The PRS for serotonin 

functioning, derived from these results, has since twice been linked to alcohol use (Wang & 

Chassin, 2018; Wang et al., 2018). Another approach is to manually construct a mechanistic 

score, weighted by the literature of effects of variants on relevant traits (e.g. variants associated 

with protein function or relevant proximal traits) (Iorio et al., 2017; Nikolova et al., 2011; Pagliaccio 

et al., 2015). One hurdle to applying this approach is that for some processes there may not be 

many non-candidate gene studies to draw on. Finally, an emerging approach, applying a logic 

similar to the construction of a mechanistic score, is to rely on large databases to generate scores 

in a data-driven fashion. Several studies have leveraged measures of gene expression to 

generate scores that are predictive of traits such as chronic pain (Parisien et al., 2017), Crohn’s 

disease (Marigorta et al., 2017), and height (Gusev et al., 2016). Recent work suggests that a 

similar approach may be useful in the realm of mental illness – Pergola et al. (unpublished) 

(Pergola et al., 2018) report that a risk score generated from genes that are differentially 

expressed in the prefrontal cortex of patients with schizophrenia is more predictive of treatment 

response than a traditional polygenic risk score. One can imagine that data-driven gene 

expression scores in specific brain regions, that are limited to genes implicated in specific 

processes (e.g. expression of dopamine pathway genes in the striatum), may be a way to combine 

the robust replicability of polygenic risk scores with the mechanistic insights of candidate gene 

studies.  
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 Finally, we note that another emerging approach is the use of bioinformatic analyses to 

drive the generation of, and to identify convergent evidence for, new neuroscience hypotheses. 

Results of GWAS (i.e. summaries of statistical results for all variants tested) for hundreds of traits 

are now public (e.g. 700+ on LD Hub (Zheng et al., 2017)), available for a wide variety of data-

mining approaches. Enrichment analyses can be performed to identify biological pathways that 

may be implicated in the trait (de Leeuw et al., 2015; Watanabe et al., 2017), or as we did in 

Chapter 4, to identify brain regions expressing trait-associated genes (Finucane et al., 2015; The 

GTEx Consortium et al., 2015). New gene sets are still being developed, and there are several 

new ones that offer increased insight into the potential neural underpinnings of traits, including 

cell-type specific gene sets (Mckenzie et al., 2018), and sets of genes whose expression in the 

human brain is spatially and temporally correlated across development (i.e. from fetal to adult  

(Kang et al., 2011; Yousaf et al., 2018)). Gene, cell type, and brain region information can also 

be integrated with results of neuroimaging meta-analyses (i.e. Neurosynth (Fox et al., 2014; 

Yarkoni et al., 2011)) to test for convergent evidence implicating specific cognitive processes. 

Combining these approaches, one could move from a genome-wide association of a trait (or 

multiple traits) to hypotheses about which genes, pathways, cell types, brain regions, and 

cognitive processes are most likely to drive that trait.  

 

5.7 Conclusions 

An overarching feature of this work is that it combines replications of previous research with novel 

extensions. Indeed, the impact and utility this research is a direct result of how it replicates, or 

fails to replicate, prior findings. Results highlight that associations between early-life stress 

(Chapters 2&3) reward processing require further interrogation, suggesting that it will be 

important for future work to examine the potential impacts of the timing and nature of stress. In 

Chapter 3 we use a within-subject design to show that the associations between acute stress 
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and reward processing and behavior are not as robust as suggested by the prior literature, 

suggesting that study-design choices such as reward amount moderate whether or not acute 

stress will impact reward processes. Chapter 4 leverages internal replication and convergence 

to demonstrate that lower brain volume associated with alcohol consumption is likely reflective of 

genetic risk. Integrating this finding with the prior literature, we propose that genetically conferred 

reductions in volume promote early alcohol use, and that genetic risk then interacts with heavy 

alcohol use, further reducing volume. Future work, such as results from the ongoing longitudinal 

developmental ABCD study (Barch et al., 2017; Casey et al., 2018), will be able to directly test 

this hypothesis. Chapter 4 additionally highlights the emerging utility of combining neuroimaging 

research with bioinformatic analyses. Future research will be able to leverage these resources to 

develop new hypotheses with convergent evidence.  
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