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ABSTRACT OF THE DISSERTATION

Distributed Quantile Regression Analysis and a Group Variable Selection

Method

by

Liqun Yu

Doctor of Philosophy in Mathematics,

Washington University in St. Louis, May, 2018.

Professor Nan Lin, Chair

This dissertation develops novel methodologies for distributed quantile regression analysis

for big data by utilizing a distributed optimization algorithm called the alternating direction

method of multipliers (ADMM). Specifically, we first write the penalized quantile regres-

sion into a specific form that can be solved by the ADMM and propose numerical algo-

rithms for solving the ADMM subproblems. This results in the distributed QR-ADMM

algorithm. Then, to further reduce the computational time, we formulate the penalized

quantile regression into another equivalent ADMM form in which all the subproblems have

exact closed-form solutions and hence avoid iterative numerical methods. This results in the

single-loop QPADM algorithm that further improve on the computational e�ciency of the

QR-ADMM. Both QR-ADMM and QPADM enjoy flexible parallelization by enabling data

splitting across both sample space and feature space, which make them especially appealing

for the case when both sample size n and feature dimension p are large.

Besides the QR-ADMM and QPADM algorithms for penalized quantile regression, we

also develop a group variable selection method by approximating the Bayesian information

criterion. Unlike existing penalization methods for feature selection, our proposed gMIC

xi



algorithm is free of parameter tuning and hence enjoys greater computational e�ciency.

Although the current version of gMIC focuses on the generalized linear model, it can be

naturally extended to the quantile regression for feature selection.

We provide theoretical analysis for our proposed methods. Specifically, we conduct nu-

merical convergence analysis for the QR-ADMM and QPADM algorithms, and provide

asymptotical theories and oracle property of feature selection for the gMIC method. All

our methods are evaluated with simulation studies and real data analysis.
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Chapter 1

Introduction

In this chapter, we briefly introduce the quantile regression and its penalized version, and

discuss the challenges for quantile regression under the big data context.

1.1 Quantile Regression

Quantile regression, first proposed in the seminar paper [40], provides a useful approach

to studying the relationship between a response variable and a set of covariates, particularly

when the data are heterogeneous. Assume that the data are generated according to the

following model,

yi = xi�(⌧) + ✏i, i = 1, . . . , n,

where xi = (xi1, . . . , xip)T are generated from a distribution g(x), and ���(⌧) = (�1, . . . , �p)T 2

Rp with ⌧ being the quantile of interest. We assume that the conditional distributions of

the error ✏i | xi ⇠ fi(·|xi) are independent and satisfy Fi(0|xi) = ⌧ . Then the conditional

quantile of the response variable yi given xi, denoted as Q⌧ (yi|xi), can be expressed as

Q⌧ (yi|xi) = xT
i �(⌧).

We denote the sample response vector by yyy = (y1, y2, . . . , yn)T 2 Rn and the design matrix

1



by X = (x1x1x1,x2x2x2, . . . ,xnxnxn)T 2 Rn⇥p. In the classical setting where n > p, we can estimate ���(⌧)

by solving

�̂̂�̂�(⌧) = arg min
���2Rp

⇢⌧ (y �X�), (1.1)

where ⇢⌧ (u) = u[⌧ � I(u < 0)] for u 2 R is the so-called check loss function with I(·) being

the indicator function, and ⇢⌧ (yyy�X���) =
Pn

i=1 ⇢⌧ (yi�xixixi
T���). An extensive theoretical study

of the quantile regression can be found in [39]. Specifically, the asymptotic normality of the

estimate �̂̂�̂�(⌧) in (1.1) is established as follows,

p
n(�̂(⌧)� �(⌧))

d
! N(0,⌃) (1.2)

where ⌃ = ⌧(1� ⌧)D�1E(xxT )D�1 with D = E(xxTf(0|x)).

When dealing with high dimensional data, i.e., when p is large, penalization is often

required for shrinkage and feature selection. Especially when p � n, the estimation problem

(1.1) is ill-posed, in which case penalization becomes necessary to obtain reliable estimation.

Specifically, the penalized quantile regression can be written in the following form,

�̂̂�̂�(⌧) = arg min
���2Rp

n
⇢⌧ (yyy �X���) + P�(���)

o
, (1.3)

where P�(·) is a penalty function and the scalar � > 0 is a tunable penalization parameter.

Common choices of P�(·) in (1.3) include the Lasso [69],

P�(���) = �k���k1, (1.4)

the elastic net [96],

P�(���) = �(�2k���k
2
2 + �1k���k1), �1,�2 � 0, (1.5)
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the MCP [89],

P�(����0) = �
pX

j=1

✓
|�j|�

�j

2a�

◆
I(0  |�j| < a�) +

a�2

2
I(|�j| � a�)

�
, a > 1, (1.6)

and the SCAD [19],

p�(���) = �
pX

j=1


|�j|I(0  |�j| < �) +

a�|�j|� (�2
j + �2)/2

a� 1
I(�  |�j| < a�)

+
(a+ 1)�2

2
I(|�j| > a�)

�
, a > 2.

(1.7)

For p � n, the theory for penalized linear quantile regression has been recently investi-

gated by [3] for the Lasso penalty and by [74] for the non-convex penalties such as SCAD or

MCP.

1.2 Challenges for Quantile Regression under the Big

Data Context

Owing to the advances in information technologies, massive amount of data are being gen-

erated every day. While the abundance of “big data” has blessed us with unprecedented

opportunities for knowledge discovery, it imposes fundamental challenges for quantile re-

gression, both statistically and computationally [18, 33, 35, 84]. Especially when data size

is too big to store and/or process in a single computer, distributed computational and sta-

tistical approaches become necessary.

From the computational perspective, the challenges for solving the quantile regression

optimization problems was earlier discussed in [11]. But the discussion was not under the

big data context, and was restricted to the unpenalized case (1.1). As mentioned in [11],

the optimization problem (1.1) can be written as a linear programming (LP) problem and

3



solved by the simplex method [32] or the interior point method (IP) [37]. However, these

LP methods cannot be generalized to penalized quantile regression with nonlinear penalties.

Further, as noticed by [11], the simplex method is computationally infeasible for data beyond

a few thousand examples and a few tens of features. The IP, on the other hand, is more

scalable and can e�ciently solve LP problems with moderate data size, but it still comes

short when dealing with data beyond medium scale (typically a few million samples by a

few hundred features) [82]. Big data (large n) can be too large for a single computer to

process. Sometimes the data collection process itself is distributed. This often requires

parallel algorithms that solve problems cooperatively across a group of computers, along

with the modern distributed computing frameworks. Besides, to solve the penalized quantile

regression optimization (1.3) (large p), algorithms other than the traditional LP algorithms

become necessary.

From the statistical perspective, a potential solution to solving large-scale quantile re-

gression is to resort to the divide-and-combine (DC) strategy. The DC strategy has been

extensively exploited for statistical estimation and inference. The basic idea of DC is to con-

duct statistical analysis for di↵erent subsets/blocks of data and combine the subset results

in a way that preserves the statistical e�ciency. It is very useful when the data size is too

large for a single computer to process and direct analysis on the entire data is infeasible,

or when data transferring is prohibitive due to the large amount of communication over-

head or security/privacy reasons. A DC procedure is expected to produce statistical results

that are asymptotically equivalent to the results from the entire data. An early work in

this area is the aggregated estimating equation (AEE) in [45, 62]. The AEE combines local

estimating equation estimators by forming a certain weighted average. The AEE estima-

tor is shown to be asymptotically equivalent to the global estimator as long as the number

of subsets does not grow too fast with sample size. The e↵ectiveness of DC for statistical

analysis crucially relies on how the aggregation of local estimators is made. Typically, a

4



successful combination of local estimators involves aggregating local gradients and Hessians;

see [13, 29, 36, 45, 62, 73] for examples. Another benefit of DC-based approaches is that

they often enables data compression and online implementation for streaming data. The DC

o↵ers a unique opportunity for circumventing large-scale optimization in quantile regression

by dividing the large problems into smaller ones. However, since existing DC-based statis-

tical procedures rely on gradients and Hessian matrices of the loss functions, there are still

technical di�culties to overcome before applying similar ideas to the non-smooth quantile

regression problem.

In this thesis, we provide solutions to large-scale quantile regression from the computa-

tional perspective by deriving distributed and scalable optimizations algorithms for solving

the penalized quantile regression optimization problem (1.3). Specifically, we write the penal-

ized quantile regression problem (1.3) into specific forms that can be solved by an distributed

optimization algorithms called the alternating direction method of multipliers (ADMM) and

derive specific numerical algorithms to solve the ADMM subproblems. To reduce the time for

solving the ADMM subproblems, we propose to introduce new variables to (1.3) that results

in a new ADMM form in which all subproblems have closed-form solutions by utilizing the

Majorization-Maximization. Then, as an independent but closely related topic, we develop

a new group-type feature selection method termed group minimum information criterion

(gMIC) by minimizing a smooth version of the Bayesian information criterion. Compared to

existing penalization methods for feature selection, the gMIC is free of parameter tuning and

is hence computationally e�cient. Currently, the gMIC is developed under the context of

generalized linear models. The same idea can however be generalized to quantile regression

models for feature selection.

This thesis is organized as follows. In Chapter 2 we provide an extensive review of the

ADMM algorithm and its application to large-scale model fitting. We show that most dis-

tributed statistical model fitting problems including the quantile regression can be reduced

5



to optimization on a connected network and e�ciently solved by distributed numerical al-

gorithms like the ADMM. In Chapter 3, we present our first algorithm, the distributed

QR-ADMM algorithm, for large-scale penalized quantile regression. In Chapter 4, we com-

bine the Majorization-Maximization and the ADMM and propose the single-loop QPADM

algorithm for penalized quantile regression. The QPADM further improve on the compu-

tational e�ciency of the QR-ADMM algorithm in that all subproblems of QPADM have

closed-form solutions, and hence do not require iterative numerical methods to solve. In

Chapter 5, we introduce the gMIC algorithm. Finally, Chapter 6 concludes the thesis.

Parts of the materials in this thesis are published in a book and peer-review journals.

Please refer to [46, 85, 86] for more details.

6



Chapter 2

The ADMM and Its Application to

Distributed Statistical Modeling

The alternating direction method of multiplier (ADMM) is a distributed convex opti-

mization algorithm that solves a wide range of convex optimization problems. It was first

introduced in the 1970s and has become popular in recent years due to its capability of

solving large-scale optimization problems arising from the modern statistics and machine

learning fields. In this chapter, we review the ADMM algorithm together with some of its

variants. We show that many large-scale statistical model fitting problems can be expressed

as distributed optimization problems and solved e↵ectively and e�ciently by the ADMM.

Besides its wide range of applications, the ADMM is also scalable to modern-scale network

big data by utilizing the computing power of modern distributed computing frameworks.

We investigate di↵erent ways of parallelizing the ADMM for the distributed model fitting

problems and present the consensus ADMM for distributed network analyses. Then, as a

separate but closely related topic, we spare an independent section for a discussion on solv-

ing the ADMM subproblems, where a special technique for avoiding expensive numerical

methods in the ADMM updates are shown.
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2.1 Introduction to the ADMM Algorithm

The ADMM was first introduced by [22, 23] in the 1970s as a general convex optimization

algorithm. It enjoys the ease of applicability and has proven to produce great empirical per-

formances for a broad range of problems. It became popular recently due to its capability of

solving large-scale optimizations that are now becoming more and more common in practice.

In this section, we give a brief overview of the ADMM and also present some of its variants.

2.1.1 The ADMM Algorithm

The ADMM solves the following general optimization problem,

min
xxx,zzz

{f(xxx) + g(zzz)} s.t. Axxx+Bzzz = ccc, (2.1)

where xxx 2 Rm, zzz 2 Rn are the parameters of interest, A 2 Rs⇥n, B 2 Rs⇥(p+1) are constant

matrices , ccc 2 Rs is a constant vector, and f and g are the convex objective functions. The

ADMM solves (2.1) by iteratively minimizing its augmented Lagrangian

L⇢(xxx,zzz,uuu) := f(xxx) + g(zzz) + uuuT (Axxx+Bzzz � ccc) +
⇢

2
||Axxx+Bzzz � ccc||22

in the primal variables xxx and zzz and updating the dual variable uuu via dual ascent, where ⇢

is the tunable augmentation parameter. Specifically, the ADMM carries out the following

updates at iteration k,

xxxk+1 := argminxxx f(xxx) +
⇢
2 ||Axxx+Bzzzk � ccc+ uuuk/⇢||22,

zzzk+1 := argminzzz g(zzz) +
⇢
2 ||Axxx

k+1 +Bzzz � ccc+ uuuk/⇢||22,

uuuk+1 := uuuk + ⇢(Axxxk+1 +Bzzzk+1
� ccc).

(2.2)

8



In general, the updates in (2.2) are easily solvable compared to (2.1), although sometimes

they may not have closed-form solutions and require approximation or iterative methods.

The formulation (2.1) is general enough to cover a wide range of problems in statistics,

machine learning, engineering, finance, etc. As a matter of fact, the ADMM has been

intensively used in these fields for a broad range of applications. A partial list of applications

can be found in [4, 5, 10, 16, 21, 47, 64, 71, 83].

As a motivating example, let us consider the statistical model fitting problems. Under

such a scenario, the function f is usually the loss function related to the data and g is

the regularization on model parameters. One of the most commonly used models is the

`1-penalized linear regression (Lasso, [69]),

min
���2Rp

kyyy �X���k22 + �k���k1, (2.3)

which can be written into the following equivalent ADMM form,

min
���,���2Rp

kyyy �X���k22 + �k���k1 s.t. ��� = ���,

where yyy 2 Rn is the response vector, X 2 Rn⇥p is the design matrix, ��� 2 Rp is the model

coe�cient vector, and k · kp denotes the `p norm. Following (2.2), the problem (2.3) is then

solved by iteratively carrying out the updates

���k+1 := argmin��� kyyy �X���k22 + (uuuk)T��� + ⇢
2k��� � ���k

k
2
2,

���k+1 := argmin���
⇢
2k��� � ���k+1

� uuuk
k
2
2 + �k���k1,

uuuk+1 := uuuk + ⇢(���k+1
� ���k+1),

(2.4)

where the ���-update has a closed-form solution and the ���-update can be solved by soft-

9



thresholding,

���k+1 =

✓
���k+1 + uuuk

�
�

⇢
111p

◆

+

✓
����k+1

� uuuk
�

�

⇢
111p

◆

+

. (2.5)

The ADMM algorithm (2.2) has O(1/k) convergence rate (k is the iteration number) for

general convex problems. Faster convergence rate can be achieved with stronger assumptions,

e.g., the strong convexity of the functions f(·) and g(·), and/or full-column rank conditions

on the matrices A and B. It is worth mentioning that, the ADMM was originally designed

only for convex problems, but was later extended to many noncovex problems, with the

convergence established under more strict assumptions compared to the convex case. We

refer the readers to [6] for a comprehensive review of the ADMM algorithm.

2.1.2 Some Variants: Stochastic and Online ADMM Algorithms

Several stochastic and online variants of ADMM has been proposed for improvement of

computational e�ciency and streaming data processing. In this section, we present some

stochastic and online ADMM algorithms while refer readers to [55, 68, 72, 91, 92, 94] as a

non-exclusive list for a deeper investigation.

Stochastic ADMM

In (2.2), the updates (usually the xxx-update) sometimes have no closed-form solutions and

require iterative methods. This results in a double-loop algorithm where the inner loop

consists of the iterative method for the updates and the outer loop consists of the ADMM

iterations. This can be computationally demanding. To address this issue, stochastic versions

of ADMM were proposed. The idea is to linearize the xxx-update in (2.2) so that it has a

closed-form solution.

In [55], a basic version of stochastic ADMM was proposed. At iteration k, the xxx-update

10



is linearized at xxxk from the previous iteration,

xxxk+1 := argmin
xxx

hf 0(xxxk),xxxi+
⇢

2
||Axxx+Bzzzk � ccc+ uuuk/⇢||22 +

kxxx� xxxk
k
2
2

2(k + 1)
, (2.6)

where the last term penalizes the divergence between the solutions from two subsequent

iterations. In [91], the xxx-update (2.6) is further linearized as

xxxk+1 := argmin
xxx

hf 0(xxxk),xxxi+ ⇢hAxxxk +Bzzzk � ccc+ uuuk/⇢,xxxi+
kxxx� xxxk

k
2
2

2(k + 1)
. (2.7)

A more complicated stochastic version was proposed in [94]. Assume that we have n data

samples and

f(xxx) =
nX

i=1

`i(xxx),

where each `i is the loss function corresponding to the i-th sample. At time t, an index

k(t) 2 {1, 2, . . . , n} is randomly selected. Then we define

⌧i(t) =

8
>><

>>:

t i = k(t),

⌧i(t� 1) otherwise.

The xxx-update (2.7) is then replaced by

xxxk+1 := argmin
xxx

(
nX

i=1

hf 0(xxx⌧i(t),xxxi+ Lkxxx� xxx⌧i(t)k
2
2

)
+ ⇢hAxxxk +Bzzzk � ccc+ uuuk/⇢,xxxi, (2.8)

where L is a constant. Essentially equation (2.8) means that instead of linearizing all `i, i =

1, 2, . . . , n at the same point xxxk, we linearize `i at the xxx value when the sample i was last

visited. Compared to (2.6) and (2.7), equation (2.8) results in a faster convergence rate.
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Online ADMM for Data Stream

The standard formulation of ADMM in (2.1) and (2.2) corresponds to the batch setting where

we assume the function f is deterministic. For example, in statistical model fitting, e.g. (2.3),

this means that the whole data (X,yyy) are collected before fitting the model. Besides being

computationally ine�cient and challenging for storage when X is large, this assumption

is also unrealistic in practice. Especially in network applications, data are collected in a

streaming fashion, with new data coming in every day or even every second. An ideal

scenario is to update results, e.g., xxx,zzz in (2.1) or ��� in (2.3), on the fly and only store results

instead of historical data.

Under data streaming scenarios, the problem (2.1) is reformulated as follows,

min
xxx,zzz

TX

t=1

(ft(xxx) + g(zzz)) s.t. Axxx+Bzzz = ccc. (2.9)

At time T , f(xxx) =
PT

t=1 ft(xxx) and ft only corresponds to a single data sample or a small

batch of samples. For example in (2.3), the problem can be reformulated as

min
���,���

TX

t=1

(kyyyt �Xt���k
2
2 + k���k1) s.t. ��� = ���,

where (Xt, yyyt) is a single sample or a batch of samples collected at time t.

In [72], the online ADMM (OADM) algorithm was proposed to solve (2.9). At time t,

we consider solving

(xxxt+1, zzzt+1) = arg min
Axxx+zzz=ccc

ft(xxx) + g(zzz) + ⌘B�(xxx,xxxt), (2.10)

where ⌘ � 0 is the learning rate and B�(xxx,xxxt) �
↵
2 kxxx � xxxtk

2
2 (for some constant ↵) is the

Bregman divergence. The problem (2.10) itself can be solved by the ADMM iteratively so

12



that the constraint is exactly satisfied, but this results in a double-loop algorithm, which

is computationally unappealing. The OADM solves (2.10) by only one pass through the

ADMM iteration. The intuition is that, instead of requiring (xxxt, zzzt) to satisfy the linear

constraint for every t, OADM only requires the constraint to be satisfied in the long run.

Specifically, the problem (2.9) is written into the following form,

min
xxxt,zzzt

TX

t=0

ft(xxxt) + g(zzzt) s.t.
TX

t=1

kAxxxt +Bzzzt � ccck22 = o(T ),

so that the cumulative constraint violation grows at a sub-linear rate, i.e., o(T ).

The augmented Lagrangian of (2.10) at time t is

L⇢t(xxx,zzz,uuu) = ft(xxx) + g(zzz) + uuuT (Axxx+Bzzz � ccc) + ⌘B�(xxx,xxxt) +
⇢

2
kAxxx+Bzzz � ccck22

and at time t the OADM consists of just one pass through the following updates,

xxxt+1 := argminxxx ft(xxx) + uuut(Axxx+Bzzzt � ccc) + ⇢
2kAxxx+Bzzzt � ccck22 + ⌘B�(xxx,xxxt),

zzzt+1 := argminzzz g(zzz) + uuut(Axxxt+1 +Bzzz � ccc) + ⇢
2kAxxxt+1 +Bzzz � ccck22,

uuut+1 := uuut + ⇢(Axxxt+1 +Bzzzt+1 � ccc).

(2.11)

In [72], the authors only considered the case where each iteration only processes one sample.

Since in (2.10) and (2.11) there is no limitation on how many samples ft can depend on, the

OADM can be naturally applied to the more general case where each iteration takes a batch

of newly collected data.
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2.2 Distributed Model Fitting with ADMM

Besides being easily applicable to a wide range of problems, another main advantage of

ADMM is its ease of parallelization and hence the ability to solve large-scale problems. Many

network applications involve large amount of data collected and stored distributedly across

a network. In this section, we show how the ADMM is parallelized under the distributed

model fitting context, which is commonly encountered in network applications. Two ways

of parallelization, i.e., splitting across examples and splitting across features, are presented.

Followed by this, we introduce the block-splitting ADMM recently proposed by [56]. The

block-splitting ADMM o↵ers a more flexible parallelization scheme by enabling splitting

across both examples and features, which is appealing when both the sample size and feature

dimension are large.

2.2.1 ADMM for Distributed Model Fitting

This part follows Chapter 8 of [6]. We start with the problem setup then discuss how the

ADMM is parallelized.

Problem Setup

A general convex model fitting problem can be written as

min
���2Rp

l(X��� � yyy) + r(���), (2.12)

where X 2 Rn⇥p is the design matrix, bbb 2 Rn is the response vector, l(·) is the loss function,

and r(·) is the regularization. In practice, the loss function l is often additive, i.e.

l(X��� � yyy) =
nX

i=1

li(xxx
T
i ��� � yi),

14



where xxxi denotes the i-th row of X (i-th sample). The regularization r(·) is also assumed to

be additive. For example, r(·) can be the `2-norm or Lasso [69]. Specifically,

r(���) =
pX

j=1

r(�j).

Splitting across Examples

Here we discuss how to solve problem (2.12) in parallel with a large number of samples (large

n) and a moderate number of features (relatively small p). First, we partition X and yyy by

rows,

X =

2

66664

X1

...

XN

3

77775
, yyy =

2

66664

yyy1
...

yyyN

3

77775
,

where each Xi 2 Rni⇥p (
PN

i=1 ni = n) denotes a block (subset) of data. Next, we write

problem (2.12) into the following equivalent form,

min
���i,zzz2Rp

NX

i=1

li(Xi���i � yyyi) + r(zzz) s.t. ���i = zzz, i = 1, 2, . . . , N. (2.13)

Problems (2.12) and (2.13) are equivalent since we force each local ���i equal to a global zzz. A

direct application of (2.2) to (2.13) results in the following update,

���k+1
i := argmin���i2Rp li(Xi���i � yyyi) + ⇢/2k���i � zzzk + uuuk

i /⇢k
2
2,

zzzk+1 := argminzzz r(zzz) + (N⇢/2)kzzz � �̄��
k+1

� ūuuk/⇢k22,

uuuk+1
i := uuuk

i + ���k+1
i � zzzk+1,

(2.14)

where �̄��
k+1

= (1/N)
PN

i=1���
k+1
i and ūuuk+1 = (1/N)

PN
i=1uuu

k+1
i , and xxx, zzz, A and B in (2.1)

corresponds to (���1T, . . . ,���T
N)

T , zzz, INp, and �[Ip . . . Ip]T 2 RNp⇥p, respectively.

The first update in (2.14) can be carried out in parallel for each data block. In practice,
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the data blocks Xi, i = 1, . . . , N are distributed across N computing nodes with each

computing node i storing data block i and carrying out updates with subscript i. The

second update requires gathering variables to form the average. Notice that (2.14) does not

require r(·) to be separable.

Splitting across Features

In (2.12), when sample size n is not too large but the dimension p is high, the ADMM can

be parallelized in a di↵erent way. First, the data matrix is partitioned across columns, X =

[X1 . . . XN ] with Xi 2 Rn⇥pi (
PN

i=1 pi = p). And the features are also split correspondingly,

��� = (���T
1 , . . . ,���

T
N)

T . Problem (2.12) is then written as

min
���

l

 
NX

i=1

Xi���i � yyy

!
+

NX

i=1

r(���i),

or equivalently,

min
���,zizizi

l

 
nX

i=1

zzzi � yyy

!
+

NX

i=1

r(���i) s.t. Xi���i � zzzi = 0, i = 1, . . . , N. (2.15)

Applying (2.2) to (2.15) with some algebraic manipulation gives the following updates,

���k+1
i := argmin���i r(���i) + (⇢/2)kXi���i �Xi���k

i � z̄zzk +X���
k
+ uuuk/⇢k22,

z̄zzk+1 := argminz̄zz l(Nz̄zz � ���) + (N⇢/2)kz̄zz �X���
k+1

� ūuuk/⇢k22,

uuuk+1 := uuuk +X���
k+1

� zzzk+1,

(2.16)

where z̄zz = (1/N)
PN

i=1 zzzi, ūuu = (1/N)
PN

i=1uuui, and X��� = (1/N)
PN

i=1 Xi���i.

The ���i-update in (2.16) can be carried out in parallel where the update with subscript i

is conducted on a local machine i that stores the i-th block of features. The second and third

updates involves aggregation across di↵erent blocks of features. Notice that the formulation
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(2.16) does not require the loss function l(·) to be separable.

2.2.2 Flexible Parallelization via Block Splitting

Section 2.2.1 showed how the ADMM is parallelized across examples or features. In [56],

a block splitting formulation of ADMM that can be parallelized across both examples and

features was proposed. In modern big data applications, the data sometimes are not only

big in size (large n), but also high-dimensional (large p). The block splitting ADMM is

especially appealing for such problems. The rest of this section follows [56].

The block splitting aims to solve the following problem,

min
xxx2Rm,zzz2Rn

{f(xxx) + g(zzz)} s.t. xxx = Azzz, (2.17)

where A 2 Rm⇥n, and functions f and g are assumed to be block separable, i.e.,

f(xxx) =
MX

i=1

fi(xxxi), g(zzz) =
NX

j=1

gj(zzzj),

where xxx = (xxxT
1 , . . . ,xxx

T
M)T and zzz = (zzzT1 , . . . , zzz

T
M)T . And xxxi 2 Rmi , zzzj 2 Rnj with

PM
i=1 mi = m

and
PN

j=1 ni = n. Correspondingly,

A =

2

66666664

A11 A12 . . . A1N

A21 A22 . . . A2N

...
...

. . .
...

AM1 AM2 . . . AMN

3

77777775

with Aij 2 Rmi⇥nj .
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As a result of the block splitting above, problem (2.17) is written as

min
xxx2Rm,zzz2Rn

MX

i=1

fi(xxxi) +
NX

j=1

gj(zzzj) s.t. xxxi =
NX

j=1

Aijzzzj, i = 1, . . . ,M, (2.18)

Setting rrr = X��� � yyy, the distributed model fitting problem (2.12) is a special case of (2.18)

with xxx = rrr + yyy, zzz = ���, f(xxx) = l(xxx� yyy) = l(rrr), fi(xxxi) = l(xxxi � yyyi) = l(rrri), g(·) = gj(·) = r(·),

and A = X.

Problem (2.18) can be further written as

minxxx2Rm,zzz2Rn

PM
i=1 fi(xxxi) +

PN
j=1 gj(zzzj)

s.t. zzzj = zzzij, xxxi =
PN

i=1xxxij, i = 1, . . . ,M

xxxij = Aijzzzij, i = 1, . . . ,M, j = 1, . . . , N,

(2.19)

or equivalently,

minxxx2Rm,zzz2Rn

PM
i=1 fi(xxxi) +

PN
j=1 gj(zzzj) +

PM
i=1

PN
j=1 Iij(xxxij, zzzij)

s.t. zzzj = zzzij, xxxi =
PN

i=1xxxij, i = 1, . . . ,M,
(2.20)

where Iij is the indicator function of the graph of Aij, i.e.,

Iij(xxxij, zzzij) =

8
>><

>>:

0 if xxxij = Aijzzzij,

1 otherwise.

Problem (2.20) can be solved by the formulation of ADMM for the generic convex constrained

optimization problem

min
w

'(w) s.t. w 2 C, (2.21)

where '(·) is a convex function and C is a closed convex set. Moving the constraint to the
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objective function, we have the following equivalent problem,

min
w

'(w1/2) + IC(w
1) s.t. w1/2 = w1, (2.22)

where IC(·) is the indicator function of C. Denoting the value of w1/2 at k-th iteration as

wk+1/2 and the value of w1 at k-th iteration as wk+1, from (2.2), problem (2.22) is solved by

wk+1/2 := prox'(w
k
� w̃k),

wk+1 := argminw1 IC(w1) + (⇢/2)kw1
� (wk+1/2 + w̃k)k22

= ⇧C(wk+1/2 + w̃k),

w̃k+1 := w̃k + wk+1/2
� wk+1,

(2.23)

where prox'(⌫) = argminw ('(w) + (⇢/2)kw � ⌫k22) , ⇧C is the projection onto C, and w̃

is the dual variable equivalent to uuu in (2.2). Applying (2.23) to (2.20) with w consisting

of xxx, zzz, (xxxij, zzzij), i = 1, . . . ,M, j = 1, . . . , N , and '(w) =
PM

i=1 fi(xxxi) +
PN

j=1 gj(zzzj) +
PM

i=1

PN
j=1 Iij(xxxij, zzzij), we have the following updates,

xxxk+1/2
i := proxfi(xxx

k
i � x̃xxi

k),

zzzk+1/2
j := proxgj(zzz

k
j � z̃zzj

k),

(zzzk+1/2
ij ,xxxk+1/2

ij ) := ⇧ij(zzzkij � z̃zzij
k,xxxk

ij � x̃xxij
k)

zzzk+1
j :=

⇣
zzzk+1/2
j +

PM
i=1 zzz

k+1/2
ij

⌘
/(M + 1)

xxxk+1
i := xxxk+1/2

i �

⇣
xxxk+1/2
i �

PN
j=1xxx

k+1/2
ij

⌘
/(N + 1)

xxxk+1
ij := xxxk+1/2

ij +
⇣
xxxk+1/2
i �

PN
j=1xxx

k+1/2
ij

⌘
/(N + 1)

z̃zzk+1
j := z̃zzkj + zzzk+1/2

j � zzzk+1
j ,

x̃xxk+1
i := x̃xxk

i + xxxk+1/2
i � xxxk+1

i ,

z̃zzk+1
ij := z̃zzkij + zzzk+1/2

ij � zzzk+1
j ,

(2.24)

where ⇧ij denotes the projection onto {(ccc,ddd) 2 Rm+n
|ddd = Aijccc}. The formulation (2.24)
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involves some simplification process, we refer the readers to [56] for technical details.

In (2.24), each of the M xxxk+1/2
i -updates, N zzzk+1/2

j -updates, and the MN (zzzk+1/2
ij ,xxxk+1/2

ij )-

updates can be carried out in parallel on di↵erent machines, so do the updates in the last

three equations of (2.24). The fourth to sixth lines of (2.24) involves aggregation and hence

communication between di↵erent machines. In [56], the communication details are described

with graphs, and parallel implementation of (2.24) on Amazon EC2 is also presented in the

simulation part. We refer interested readers to [56] for details.

2.3 Distributed ADMM for Big Data Optimization

In many applications, data are often collected and stored across a distributed network con-

sisting of computing nodes from di↵erent locations. For many of these applications, the

tasks reduce to distributed model fitting across a connected cluster of computing nodes.

This results in optimizing a global object function which is a combination of local objective

functions known by the local computing nodes only. For example, in spam filtering, emails

are distributed across user computers or over the cloud. The goal is to build a spam filter

that detects spams. This involves building a classifier by minimizing some global loss func-

tion (e.g., number of misclassification for all users), which is a sum of local loss function

(number of misclassification for each user).

Due to the distributed nature of such applications, it is often unrealistic to collect and

process all data in a single computer. On one hand, transferring local data to a center results

in huge communication overhead. On the other hand, in most real applications, the data are

almost surely too large for a single computer to store or process. Hence, algorithms that are

capable of solving problems collectively over the network are required for such applications.

The ADMM is one such algorithm. In the previous section, we presented the paral-

lelization of ADMM for distributed model fitting problems. The distributed model fitting
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problem is a special case of a generic problem in network applications called the consensus

problem. In this section, we present several versions of the distributed ADMM algorithms

for optimization over network big data that solve the consensus problem in di↵erent ways.

The distributed ADMM is communication e�cient and flexible to the network topology.

2.3.1 The Consensus Problem

Consider the optimization

min
xxx

f(xxx) =
NX

i=1

fi(xxx), (2.25)

where the goal is to find a global variable xxx that minimizes the global object function f that

can be split into N objective functions f1, . . . , fN . Equivalently, we solve

min
xxx

NX

i=1

fi(xxxi), s.t. xxxi = zzz, i = 1, 2, . . . , N. (2.26)

Problem (2.26) is called the global consensus by the fact that all local variables xxxi, i =

1, . . . , N are forced to agree with the global variable zzz. Sometimes, we consider adding

certain regularization on the global variable zzz, which results in the regularized consensus

problem

min
xxx

NX

i=1

fi(xxxi) + g(z), s.t. xxxi = zzz, i = 1, 2, . . . , N, (2.27)

where g is the regularization function.

A direct application of (2.2) to (2.26) and (2.27) gives us the following updates

xxxk+1
i := argminxxxi fi(xxxi) +

⇢
2 ||xxxi � zzz + uuuk/⇢||22,

zzzk+1 := 1
N

PN
i=1

�
xxxk+1
i + uuuk

i /⇢
�
,

uuuk+1
i := uuuk

i + ⇢(xxxk+1
i � zzzk+1),

(2.28)
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and

xxxk+1
i := argminxxx fi(xxxi) +

⇢
2 ||xxxi � zzz + uuuk/⇢||22,

zzzk+1 := argminzzz g(zzz) +
N⇢
2 ||zzz � x̄xxk+1

� ūuuk/⇢||22,

uuuk+1
i := uuuk

i + ⇢(xxxk+1
i � zzzk+1),

(2.29)

respectively, where the upper bar denotes the average over i = 1, 2, . . . , N .

In practice, the functions fi’s are often only known to a local agent i (e.g., local proces-

sors or computing nodes), and solving the consensus problem involves minimizing the global

objective cooperatively across local agents. For example, the distributed model fitting prob-

lem (2.13) in Section 2.2 is a special case of consensus problem with fi being the local loss

function li, which depends on the i-th block of data, and is hence only known to agent i that

stores the local data Xi and yyyi.

The consensus problem finds its application in many fields, e.g., in signal processing and

wireless communication, see Chapter 7 of [6] and the references therein.

An Extension: the Asynchronous Consensus ADMM

In (2.28) and (2.29), the updates are synchronized. Each agent i conducts the xxxi and uuui-

updates and sends the result to the master. After receiving updates from all agents, the

master updates zzz with the aggregated xxx and uuu values from across agents 1, 2, . . . , N . The

master then sends the updated zzz to each agent for the next iteration. This can be problematic

in practice. Since the master cannot proceed without receiving updates from all agents, the

overall performance is decided by the slowest agent in the network. The master and all other

agents have to wait until the slowest agent to finish its updates before they can proceed to

the next iteration.

To address this issue, an asynchronous version of the consensus ADMM (2.26) and (2.27)

was proposed in [90]. In the asynchronous consensus ADMM, the master and each agent

keep their own timeline. The master keeps the master clock k which starts at 1 and increases
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by 1 after each zzz-update; agent i keeps its worker clock ki which also starts at 1 and increases

by 1 after each uuui-update. For the master node, it does not have to wait until all agents

finish. Instead, it can proceed after receiving updates from at least S (1  S  N) agents.

In practice, S can be much smaller than N . The master then carries out the zzz-update with

the S updated xxxi, uuui values and N � S outdated xxxi, uuui values. The updated zzz value is then

sent back only to the S agents that sent their updates to the master in the latest iteration,

and each of the remaining N � S agents that did not send updates to the master uses the

latest zzz value it received. For agent i, denoting the latest zzz-value it received as z̃zzi, then each

agent i updates xxxi and uuui with the outdates z̃zzi. To make sure that the asynchronization

works, a constraint called bounded delay condition is imposed. The bounded delay condition

requires that updates from each agent has to be served at least once every ⌧ iterations, where

⌧ � 1 is a user-defined parameter. A counter ⌧i is kept by the master for each agent i. Each

⌧i increases as the master clock k increases. But once the master receives the updates from

agent i, the corresponding ⌧i is reset to 1. The bounded delay condition guarantees the

freshness of the updates from each agents.

The convergence of the asynchronous consensus ADMM was analyzed in [90]. The con-

vergence rate of O(N⌧
TS ) is established, where T denotes the iteration number. Decreasing S

and increasing ⌧ result in slower convergence rate but may benefit from faster speed when

there are slow agents in the network, as indicated by the simulations in [90].

2.3.2 Distributed ADMM for the Consensus Problem

In the previous section, we showed how the ADMM is applied to solving the consensus prob-

lem. The problem formulation (2.26) and (2.28) or (2.27) and (2.29) results in a centralized

network topology where all agents communicate with a center (master). The centralized

network topology may incur communication ine�ciency and instability. On the one hand,

the center is overloaded with communication with the whole network. And establishing a
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direct connection between all agents and the center can be expensive or unrealistic in prac-

tice. On the other hand, the performance of such centralized network depends crucially on

the center. The success of the entire network is at stake if anything goes wrong inside the

center. To increase robustness of the network and improve communication e�ciency, several

distributed consensus ADMM formulations were proposed. The word “distributed” means

decentralization, i.e., all computing nodes in the network are treated equally and there is no

master role in the network. The topic of the limitation of centralization and the prospect of

decentralization is far beyond the scope of this chapter, we strongly recommend readers to

the amazing book of Kevin Kelly [38], which provides profound insights about the connec-

tion between decentralization and the emergence of machine intelligence. In the following,

we present the distributed consensus ADMM algorithm.

Problem Formulation

We follow the distributed ADMM formulation of [76]. Consider a network represented by an

undirected connected simple graph with N nodes and M edges, G = {V,E}, where V and

E denote the sets of nodes (agents) and edges (connection between agents) of the network,

respectively. We assume nodes are ordered from 1 to N and denote the edge between nodes

i and j as eij (i < j). To simplify the notation, we assume the functions fi in (2.25) are

univariate and replace the notation of variable xxx by x for the remainder of this section.

To concisely represent the distributed ADMM formulation, we define the edge-node in-

cidence matrix of the network G as a matrix A 2 RM⇥N , with each row corresponding to

an edge and each column corresponding to a node. The row corresponding to the edge eij,

denoted by [A]eij , has 1 in its i-th coordinate and �1 in its j-th coordinate and 0 for other
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coordinates. Specifically, the elements of A is given by

[A]
eij
k =

8
>>>>>><

>>>>>>:

1 if k = i,

�1 if k = j,

0 otherwise.

Now instead of requiring all local xi’s in (2.25) to be equal to a global z, we only require

local variables xi’s to be equal to variables of its neighboring nodes. This requirement is

represented concisely as

min
xxx=(x1,...,xN )T

NX

i=1

fi(xi) s.t. Axxx = 0. (2.30)

Since the graph G is connected, problem (2.30) is equivalent to (2.25) and (2.26).

The Distributed Consensus ADMM

For each node i in network G, we partition its neighbors into the predecessors and the

successors, defined by P (i) = {j | eij 2 E, i > j} and S(i) = {j | eij 2 E, i < j}. In [76],

the authors applied the ADMM to (2.30) with the variables updated in a sequential order

from x1 to xN . This results in the distributed ADMM algorithm as follows,

xk+1
i := argminxi fi(xi) +

⇢
2

P
j2P (i) kx

k+1
j � xi �

1
⇢u

k
jik

2
2 +

⇢
2

P
j2S(i) kx

k
j � xi �

1
⇢u

k
ijk

2
2,

uk+1
ji := uk

ji � ⇢(xk+1
j � xk+1

i ),

(2.31)

where each agent i updates xi and the uji’s it owns, i.e., uji’s for all j 2 P (i).

For the formulation (2.31), the xi-update and uji update only rely on the xj values

from its neighboring nodes in the network, and hence the communication is only between

neighboring nodes, i.e., the communication is decentralized.
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Decentralization on Colored Networks

One drawback of the formulation (2.31) is that, the variables are updated sequentially. Each

agent finishes its own update and sends the results to its successors, and an agent can-

not proceed before receiving updates from all its predecessor. This node-by-node updating

mechanism may require significant amount of time for each iteration of ADMM. To allow for

certain amount of parallelization, a di↵erent version of distributed ADMM was proposed in

[53].

The distributed ADMM formulation of [53] relies on the existence of coloring scheme for

the network. To be specific, a coloring scheme is an assignment of colors to the nodes in the

network such that no adjacent nodes have the same color. In practice, we want to use as

few colors as possible for a network.

Assume that there are C colors in the coloring scheme. Without loss of generality, we

assume that the nodes are ordered such that the first C1 nodes have color 1, and the next C2

nodes have color 2, and so on. The variable’s xxx = (x1, . . . , xN)T and the edge-node matrix

A are split accordingly,

xxx = (x1, . . . , xC1| {z }
x̄xx1

, . . . , xN�CN+1, . . . , xN| {z }
x̄xxC

)T ,

and

A = [A1, . . . , AC ].

Problem (2.30) is then written as

min
xxx

CX

c=1

X

i2Cc

fi(xi) s.t. A1x̄xx1 + . . .+ ACx̄xxC = 0, (2.32)

where Cc is the set consisting of the indices of nodes with color c.
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Compared to the standard ADMM in (2.1), the problem (2.32) is called the extended

ADMM form since there are more than two sets of variables when C > 2. The extended

ADMM algorithm solves (2.32) by the following updates,

x̄xxk+1
1 := argminx̄xx1 L⇢(x̄xx1, x̄xxk

2, . . . , x̄xx
k
C ;uuu

k),

...

x̄xxk+1
C := argminx̄xxC L⇢(x̄xx

k+1
1 , . . . , x̄xxk+1

C�1, x̄xxC ;uuuk),

uuuk+1 := uuuk + ⇢
PC

c=1 Acx̄xxk+1
c ,

(2.33)

where L⇢ is the Lagrangian

L⇢(x̄xx1, . . . , x̄xxC ;uuu) =
NX

i=1

fi(xi) + uuuT (A1x̄xx1 + . . .+ ACx̄xxC) +
⇢

2
kA1x̄xx1 + . . .+ ACx̄xxCk

2
2.

Explicitly, we have

x̄xxk+1
c = argmin

x̄xxc

X

i2Cc

fi(xi) + uuukTAcx̄xxc +
⇢

2
kAcx̄xxc +

X

d<c

Adx̄xx
k+1
d +

X

d>c

Adx̄xx
k
dk

2
2. (2.34)

Denoting the set of nodes neighboring i as Ni and Di = |Ni| and utilizing the fact that nodes

with the same color are not adjacent to each other, the x̄xxc-update (c = 1, 2, . . . , C) (2.34)

can be simplified as

x̄xxk+1
c = argmin

x̄xxc

X

i2Cc

✓
fi(xi) + vki xi +

Di⇢

2
x2
i

◆
, (2.35)

where

vki := �k
i � ⇢

X

j2Ni,j<i

xk+1
j � ⇢

X

j2Ni,j>i

xk
j , with �k

i =
X

j2Ni,j<i

uk
ji �

X

j2Ni,j>i

uk
ji.
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Notice that the update (2.35) can be parallelized for nodes with color c,

xi = argmin
x1

fi(xi) + vki xi +
Di⇢

2
x2
i for i 2 Cc.

Since the xi-updates does not depend directly on uuu, the uuu-update can also be simplified to

�k+1
i = �k

i + ⇢
X

j2Ni

(xk+1
i � xk+1

j ), i = 1, 2, . . . , N,

which is carried out in parallel for i = 1, 2, . . . , N .

If we take a close look at the update (2.35), we can find that the communication is still

only between neighboring nodes. The di↵erence between (2.34) and (2.31) is that, instead of

updating variables sequentially node-by-node, (2.35) updates variables color-by-color, with

the updates inside each color being completely parallel. As a result, if we can find a coloring

scheme that contains only a few colors (compared to the number of nodes), the computational

speed can be significantly improved.

In this section, two versions of distributed ADMM algorithms are presented. We finish

this section by mentioning that there are other versions of distributed ADMM algorithms,

and encourage readers to make the exploration. For example, [48] applies a simple distributed

ADMM for optimization in modern communication networks, [28] proposed an online version

of distributed ADMM for network applications.

2.4 Solving the ADMM Updates

An iteration of the ADMM consists of several updates, each of which is a subproblem that

solves a small optimization problem. In practice, how e�ciently the subproblems are solved

is crucial to the performance of ADMM. Until now, we have put aside this very important

part of the ADMM, i.e., how to solve the ADMM updates. Intentionally or unintentionally,
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we have treated the updates of ADMM as a black box, with the belief that these subproblems

are guaranteed to be solved accurately and e�ciently. In many real applications, however,

the ADMM updates can be highly nontrivial and expensive to solve. This is typical when no

closed-form solutions are available for the subproblems. Meanwhile, the performance of the

ADMM heavily depends on the accuracy and e�ciency of the solutions of the subproblems.

Especially in the distributed case, e.g., (2.14) and (2.16), where each computing node in the

network may only have very limited computing power, e�cient algorithms for the ADMM

subproblems becomes crucial.

When closed-form solutions do not exist, one usually resort to iterative numerical methods

for the ADMM updates. Numerical methods, including the Newton’s method (see Section

3.3 of [54]) and the coordinate descent (CD) (see Section 9.3 of [54]), can be applied to

a wide range of optimization problems, but may entail significant computational cost. In

this section, we present an alternative approach for e�ciently solving the ADMM updates.

Following the “Unwrapping ADMM” proposed in [24], we show that by writing problems

into specific ADMM forms, the solutions of the resulted updates can be obtained without

numerical methods. To be concrete, we use the model fitting problem (2.12) for illustration

throughout this section. Similar ideas may be applied to a broader range of problems.

2.4.1 Solving the Updates with Iterative Methods

Naively, problem (2.12) can be formulated into the ADMM form

min
���,zzz

{l(X��� � yyy) + r(zzz)} s.t. ��� = zzz. (2.36)
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Applying (2.2) to (2.36) gives us the following updates,

���k+1 := argmin���2Rp l(X��� � yyy) + (⇢/2)k��� � zzzk + uuuk/⇢k22,

zzzk+1 := argminzzz r(zzz) + (⇢/2)kzzz � ���k+1
� uuuk/⇢k22,

uuuk+1 := uuuk + ���k+1
� zzzk+1.

(2.37)

In (2.37), the solution of zzz-update is usually presented as the proximal mapping,

���k+1 := proxr(���
k+1

� uuuk/⇢, ⇢),

where the proximal mapping for a function f is defined as

proxf (vvv, ⇢) := argmin
xxx

f(xxx) + (⇢/2)kxxx� vvvk22.

The proxy can usually be e�ciently evaluated with explicit solutions for a wide range of

penalty functions r(·). On the other hand, in the ���-update the coordinates of ��� are cou-

pled and hence closed-form solutions are not available except when the loss function l(·) is

quadratic. Depending on the form of the loss function, either Newton’s method or the CD

can be applied to solve the �-update. This results in a double-loop algorithm that could be

time consuming.

2.4.2 Reformulating the Problem to Avoid Iterative Methods

The Unwrapping ADMM [24] suggests that, if a problem can be written into the following

form,

min
xxx,yyy

f(yyy) s.t. yyy = Dxxx, (2.38)
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with f(·) being a decomposible function, i.e., f(yyy) =
Ps

i=1 fi(yi) for yyy 2 Rs, then it can be

e�ciently solved by the ADMM. To be specific, the ADMM solution for (2.38) is

xxxk+1 := argminxxx kDxxx� yyyk + uuuk
k
2
2 = (DTD)�1DT (yyyk � uuuk),

yyyk+1 := argminyyy f(yyy) + (⇢/2)kyyy �Dxxxk+1
� uuuk/⇢k22,

uuuk+1 := uuuk +Dxxxk+1
� yyyk+1,

(2.39)

and when f(yyy) is decomposable, the yyy-update is coordinate-wise decoupled and simple solu-

tions are readily available.

As an application of the unwrapping ADMM, problem (2.12) can be reformulated into

the following “Unwrapped form”,

min
���,zzz

g(zzz) s.t. D��� � zzz = (0, . . . , 0, yyyT )T 2 Rp+n, (2.40)

where D =

0

B@
Ip

X

1

CA and g(zzz) =
Pp+n

i=1 gi(zi) with

gi(zi) =

8
>><

>>:

r(zi) for i  p,

l(zi) for i > p.

Then (2.39) results in

���k+1 := (DTD)�1DT
�
zzzk + (0, . . . , 0, yyyT )T � uuuk/⇢

 
,

zk+1
i := argminzi r(zi) + (⇢/2)(zi � dididi · ���k+1

� ui)2, i = 1, 2, . . . , p,

zk+1
j := argminzj l(zj) + (⇢/2)(zj � djdjdj · ���k+1

� uj)2, j = p+ 1, , . . . , p+ n,

uuuk+1 := uuuk +D���k+1
� zzzk+1

� (0, . . . , 0, yyyT )T ,

(2.41)

where djdjdj denotes the j-th row of matrix D.
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Compared to the (2.37), the updates in (2.41) are decomposed into coordinate-wise opti-

mizations, where the solutions are easily achievable without iterative methods. Also, the Un-

wrapping ADMM facilitates a natural parallel implementation, where the zzz- and uuu-updates

can be completely parallelized, and the matrix evaluation DTD = Ip +
PN

i=1 X
T
i Xi only

need to be computed separately across the network and aggregated once before the iteration

starts (the data are split by rows with Xi being the i-th subsample).

The Unwrapping ADMM enjoys easy implementation and low computational cost, but

may be restrictive because not all problems can be written into the unwrapped form (2.38).

Furthermore, as commented by [61], a more di�cult subproblem of ADMM at each itera-

tion helps make more progress towards the global minimum and may hence converge faster.

Compared to (2.37) where time consuming numerical methods are applied to solve the sub-

problems, the Unwrapping ADMM may result in a slower convergence in practice.

2.5 Conclusion

In this chapter, we presented the ADMM algorithm and its applications to large-scale sta-

tistical optimizations. Compared to traditional convex optimization algorithms, the ADMM

enjoys two major advantages. First, it is a general purpose optimization tool that are found

useful for a broad scope of research fields and applications, with comparable and often bet-

ter performances to domain-specific algorithms. Second, under general context, the updates

of ADMM often lend themselves to parallel implementations, which facilitates the paral-

lel implementations of the ADMM and grant it the strength to solve large-scale problems.

Throughout this chapter, we have seen that the flexible formulation of the ADMM enables

it to represent a variety of problems. This flexibility, combined with its easy parallelization,

places the ADMM among the most powerful tools for large-scale optimization. We did not

dive deep into the detailed implementation of the ADMM in this chapter. Here we only
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point out that the ADMM computation naturally falls into the MapReduce computation

paradigm [17] and can be implemented in modern distributed computing frameworks like

the Hadoop [78] and Spark [88]. We refer the readers to Chapter 10 of [6] for a detailed

discussion of implementing ADMM under distributed computing environments.
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Chapter 3

ADMM for Penalized Quantile

Regression in Big Data

Traditional linear programming algorithms for quantile regression, e.g., the simplex method

and the interior point method, work well for data of small to moderate sizes. However, these

methods are di�cult to generalize to high-dimensional big data for which penalization is

usually necessary. Further, the massive size of contemporary big data calls for the develop-

ment of large-scale algorithms on distributed computing platforms. The traditional linear

programming algorithms are intrinsically sequential and not suitable for such frameworks.

In this chapter, we discuss how to use the popular ADMM algorithm to solve large-scale

penalized quantile regression problems. The ADMM algorithm can be easily parallelized

and implemented in modern distributed frameworks. Simulation results demonstrate that

the ADMM is as accurate as traditional LP algorithms while faster even in the nonparallel

case.
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3.1 The QR-ADMM Algorithm

In this section we propose to solve the penalized quantile regression problem (1.3) based on

ADMM.

Problem (1.3) can be formulated into the following equivalent ADMM form,

min
���,rrr

{⇢⌧ (rrr) + P�(���)} s.t. yyy �X��� = rrr, (3.1)

with Lagrangian

L�(rrr,uuu,���) = ⇢⌧ (rrr) + uuuT (yyy �X��� � rrr) +
�

2
||yyy �X��� � rrr||22 + P�(���).

Following (2.2), we have the updating rules for (3.1) as follows,

���k+1 := argmin���
�
2

����1uuuk + yyy �X��� � rrrk
��2
2
+ P�(���),

rrrk+1 := argminrrr ⇢⌧ (rrr) +
�
2

����1uuuk + yyy �X���k+1
� rrr

��2
2
,

uuuk+1 := uuuk + �(yyy �X���k+1
� rrrk+1).

(3.2)

The rrr-update in (3.2) has a closed form solution,

rrrk+1 :=
h
��1uuuk + yyy�X���k+1

� ⌧��1111n
i

+
�

h
� ��1uuuk

� yyy +X���k+1 + (⌧ � 1)��1111n
i

+
. (3.3)

The computational di�culty mainly lies in the ���-update, especially when we use non-

convex penalties. The ���-update can be viewed as a penalized least square problem with

pseudo response ��1uuuk +yyy�rrrk and penalty P�. In the following, we derive in details how to

solve the ���-update in (3.2) with the Lasso (1.4), elastic net (1.5), MCP (1.6) and SCAD (1.7)

penalties. Methods for solving the ���-update with other penalties may be similarly derived.
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���-update for the Lasso Penalty

When P�(���) = �k���k1, the ���-update in (3.2) solves the following Lasso penalized least

square problem with response ��1uuuk + yyy � rrrk at the kth iteration of the ADMM,

���k+1 := argmin
���

�����1uuuk + yyy � rrrk
�
�X���

��2
2
+ 2���1

k���k1. (3.4)

The problem (3.4) can be iteratively solved by the coordinate descent method (CD). The

idea is to alternatively optimize the object function in �j , j = 1, 2, . . . , p, by treating all

other �i’s, i 6= j, as fixed. Denote the ��� value at the kth iteration of the ADMM and after

the tth inner CD iteration as ���k(t). Set

sjsjsj
k(t) =

�
��1uuuk + yyy � rrrk

�
�

 
X

i<j

�k(t+1)
i xixixi +

X

i>j

�k(t)
i xixixi

!
, j = 1, . . . , p, (3.5)

then

�k(t)
j := argmin

�j

ksjsjsj
k(t)

� xjxjxj�jk
2
2 + 2���1

|�j|. (3.6)

It follows that

�k(t)
j :=

sign(xjxjxj
Tsjsjsjk(t))(|xjxjxj

Tsjsjsjk(t)|� ���1)+
kxjxjxjk

2
2

, (3.7)

where s̄0̄s0̄s0k(t) denotes the elementwise mean of the vector s0s0s0k(t). The inner CD iterations

terminate until two consecutive ���k(t+1) and ���k(t) are su�ciently close.

An alternative approach to CD is to use approximation. For example, (3.4) can be

approximated by

�k+1�k+1�k+1 := argmin
���

�
n⇥

XT
�
X���k

� ��1uuuk
� yyy + rrrk+1

�⇤T
(��� � ���k) + bk� � �k

k
2
2

o
+ �

pX

j=1

|�j|,

(3.8)

where the part of the objective function in the brace serves as a majorization to the quadratic
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function in (3.4) when constant b > 0 is large enough. Let vvvk = ���k
�bXT

�
X���k

� ��1uuuk
� yyy + rrrk+1

�
,

problem (3.8) then has the following closed-form solution,

���k+1 =
⇥
vvvk � �b��11p1p1p

⇤
+
�
⇥
�vvvk � �b��11p1p1p

⇤
+
. (3.9)

This avoids iterations to solve the ���-update but may result in more iterations for the ADMM

to converge.

���-update for the Elastic Net Penalty

When P�(���) = �(�2k���k22 + �1k���k1), the ���-update in (3.2) is,

���k+1 := argmin
���

�����1uuuk + yyy � rrrk
�
�X���

��2
2
+ 2���1(�2k���k

2
2 + �1k���k1) (3.10)

Similar to (3.7), the tth CD update of (3.10) is

�(t)
j :=

sign(xjxjxj
Tsjsjsjk(t))(|xjxjxj

Tsjsjsjk(t)|� ��1��1)+
kxjxjxjk

2
2 + 2��2��1

. (3.11)

���-update for the MCP or SCAD Penalty

When the non-convex MCP or the SCAD penalty is applied, the ���-update in (3.2) becomes

non-convex. For non-convex problems, the CD may get stuck in a local minima. Fortunately,

for the ���-update, CD is still guaranteed to converge to a global minimum, see Theorem 4

in [50]. In the following, we derive the CD iterations for the ���-update with MCP or SCAD

penalty.

Similar to (3.6), at the t-th update of the CD, we update �j, j = 1, . . . , p, by

�(t)
j := argmin

�j

`j(�j) = ksjsjsj
k(t)

� xjxjxj�jk
2
2 + 2��1P�(�j), (3.12)

37



where P�(·) is the MCP or SCAD penalty. The function `j(�j) is a continuous and piecewise

quadratic function in �j and approaches +1 when �j ! ±1, for either the SCAD or the

MCP penalty. So the global minimum for (3.12) exists and is among the critical points of

`j.

For the MCP penalty,

`j(�j) /

8
>>>>><

>>>>>:

kxjxjxjk
2
2 · �

2
j � 2(xjxjxj

Tsjsjsjk(t))�j, if |�j| � a�,

(�kxjxjxjk
2
2 � a�1) �2

j � 2
⇥
�xjxjxj

Tsjsjsjk(t) + �
⇤
�j, if �j 2 (�a�, 0],

(�kxjxjxjk
2
2 � a�1) �2

j � 2
⇥
�xjxjxj

Tsjsjsjk(t) � �
⇤
�j, if �j 2 (0, a�).

The solution to (3.12) is the one that gives the minimum `j value among the following

candidate critical points,

�j =

⇢
0,
xjxjxj

Tsjsjsjk(t)

kxjxjxjk
2
2

,
�xjxjxj

Tsjsjsjk(t) ± �

�kxjxjxjk
2
2 � a�1

�
. (3.13)

The last three points in (3.13) are only counted as critical points when they are in (�1,�a�)[

(a�,+1), (�a�, 0) and (0, a�), respectively.

Similarly, for the SCAD penalty, we have

`j(�j) /

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

kxjxjxjk
2
2�

2
j � 2xjxjxj

Tsjsjsjk(t)�j, if |�j| � a�,

�
�kxjxjxjk

2
2 �

1
a�1

�
�2
j � 2

�
�xjxjxj

Tsjsjsjk(t) +
a�
a�1

�
�j if �j 2 (�a�,��],

�
�kxjxjxjk

2
2 �

1
a�1

�
�2
j � 2

�
�xjxjxj

Tsjsjsjk(t) �
a�
a�1

�
�j, if �j 2 (�a�,��],

�kxjxjxjk
2
2�

2
j � 2

⇥
�xjxjxj

Tsjsjsjk(t) + �
⇤
�j, if �j 2 (��, 0],

�kxjxjxjk
2
2�

2
j � 2

⇥
�xjxjxj

Tsjsjsjk(t) � �
⇤
�j, if �j 2 (0,�].
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And the solution to (3.12) is then among the critical points,

�j =

(
0,
xjxjxj

Tsjsjsjk(t)

kxjxjxjk
2
2

,
�xjxjxj

Tsjsjsjk(t) ±
a�
a�1

�kxjxjxjk
2
2 �

1
a�1

,
�xjxjxj

Tsjsjsjk(t) ± �

�kxjxjxjk
2
2

)
. (3.14)

And the last five points in (3.14) are only counted as critical points when they are in

(�1,�a�) [ (a�,+1), (�a�,��), (�, a�), (��, 0) and (0,�), respectively.

Compared to LP algorithms, the QR-ADMM is significantly faster especially when the

dimension p is large. The time complexity of IP for unpenalized quantile regression was

derived in [58]. Each iteration of the IP has complexity O(np2) and the final purification step

requiresO(np3) operations. On the other hand, in each iteration of the ADMM update for the

unpenalized quantile regression, the ���-update, which takes O(np2+p3) for the first iteration

and O(np2) for each of later iterations, dominates the computation time in (3.2).Considering

that the fact that ADMM can have slow convergence sometimes, the QR-ADMM seems not

to necessarily dominate the IP in terms of time. But as we can see in the simulation part,

the QR-ADMM does converge fast enough for the penalized quantile regression problems we

consider.

The QR-ADMM is very similar to the QICD algorithm in [57]. The QICD is also a

double-loop algorithm for solving the MCP and SCAD penalized quantile regression. The

outer loop of QICD uses Majorization-Minimization (MM) that approximates the objective

function (1.3) by replacing the non-convex penalty with a linear approximation. The inner

loop uses CD to solve (1.3) with the linearized penalty. The QICD has shown to perform well

in terms of both computation speed and accuracy for solving penalized quantile regression

with SCAD or MCP penalty, but cannot be easily parallelized. A comparison of the QR-

ADMM and the QICD is given in Section 3.3.
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3.1.1 Convergence of the QR-ADMM

The convergence of ADMM for convex problems has been well established in the literature.

The penalized quantile regression with convex penalties, e.g., the Lasso or elastic net, belongs

to this case.

Due to the lack of convexity, the convergence of ADMM for non-convex problems re-

quires strong assumptions on the objective functions. To the best of our knowledge, all

current work in the non-convex ADMM literature requires f or g to have a Lipschitz con-

tinuous first derivative in order to guarantee the convergence. Without such assumptions,

the Fejér monotonicity of the sequences generated by ADMM cannot be established and as

a consequence the convergence of ADMM remains unknown, see [26, 43, 93] for technical

details. For MCP or SCAD penalized quantile regression, neither the loss function ⇢⌧ (·)

nor the penalty has a Lipschitz continuous first derivatives. Consequently, convergence is

unrealistic to establish without further assumptions.

In the following, we first establish the convergence of the QR-ADMM for convex penal-

ties. The proof follows standard arguments in the ADMM literature and is provided in the

Appendix. Then we explore the convergence of the QR-ADMM for non-convex penalties.

Specifically, we provide an assumption under which the QR-ADMM converges to a stationary

solution of the PQR with non-convex penalties.

First, we state the following assumptions.

Assumption 3.1.1 The unaugmented Lagrangian L0 = ⇢⌧ (rrr)+uuuT (yyy�X����rrr)+P�(���) has

a saddle point (r⇤r⇤r⇤,�⇤�⇤�⇤,u⇤u⇤u⇤).

Assumption 3.1.2 The rrrk’s generated by (3.2) are bounded.

Assumption 3.1.3 The matrix X has full column rank.
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Assumption 3.1.4 The rrrk’s generated by (3.2) satisfies the following condition: for any

i 2 {1, 2, . . . , n}, if the signs of rki and rk+1
i are di↵erent, then |rki � rk+1

i | > 2� for some

constant � > 0.

We have the following theorems,

Theorem 3.1.1 For convex penalties, e.g., the (group) Lasso and elastic net, when Assump-

tion 3.1.1 holds, ⇢⌧ (rrrk)+P�(�k�k�k) converges to the minimum of problem (3.1). If Assumption

3.1.3 also holds, then (rrrk,���k) converges to a solution of (3.1).

Proof The proof of this theorem is in the Appendix.

Theorem 3.1.2 For non-convex penalties, e.g., the MCP and SCAD, when Assumption

3.1.4 holds and � > 1/(
p
2�), then any cluster point (a point is a cluster point of a sequence

if there is a subsequence that converges to this point) of (rrrk,���k,uuuk) is a stationary point of

(3.1). If further Assumptions 3.1.2 and 3.1.3 hold, then (rrrk,���k,uuuk) converges to a stationary

point of (3.1).

Proof The proof of this theorem is in the Appendix.

Remark Assumptions 3.1.1 and 3.1.3 are standard assumptions for convergence of the

ADMM. Assumption 3.1.2 is by no means restrictive since in practice, we restrict ourselves

to finding a finite solution ���, and hence rrr.

Remark Assumption 3.1.4 is a technical assumption needed for the proof and is subject

to further relaxation. We emphasize that without Lipschitz continuity condition on the ob-

jective functions, such assumptions on the sequences generated by ADMM are necessary to

establish the convergence. For example, the convergence analyses of non-convex ADMM in

[34, 65, 81] all make uncheckable assumptions on the sequences generated by the ADMM.

Although Assumption 3.1.4 may need further theoretical backup, it can be justified empiri-

cally as we observe that the signs of rki ’s all remain unchanged after several iterations for all

41



the simulations we consider in this chapter. As a matter of fact, although the convergence

of ADMM for non-convex problems remains largely open, it is observed to work well for a

wide range of non-convex applications, see [26] and the references therein.

3.1.2 Extension to Multivariate Quantile Regression

The multivariate quantile regression requires a definition of quantiles for multivariate distri-

butions. There are controversies on the definition of quantiles for multivariate distributions.

However, this topic is beyond the scope of this paper. Our goal here is not to address these

controversies, but to demonstrate the potential of using QR-ADMM to solve multivariate

quantile regression problems. Specifically, we show that the QR-ADMM can be used to

parallelize the computation for a multivariate quantile regression procedure. In the follow-

ing, we use the quantile contour definition and the resulted multivariate quantile regression

procedure in [77] to illustrate our point.

Suppose that a m-dimensional random variable YYY has a c.d.f. F (·). The vector YYY is

centralized such that the marginal sample median on all components are at the origin. [77]

defined a central ⌧ -interval as [Fuuu(
1�⌧
2 ), Fuuu(

1+⌧
2 )], where Fuuu is the conditional c.d.f. of YYY in

direction uuu. The reference quantile contour of YYY is defined as the surface

(
xxx 2

[

uuu2Sm�1


Fuuu(

1� ⌧

2
), Fuuu(

1 + ⌧

2
)

�)
,

which can be parameterized by a function g⌧ (���) in the polar system. The sample reference

quantile contour g⌧ can then be estimated by minimizing

2X

k=1

nX

i=1

⇢ 1+⌧
2

�
rki � g⌧ (�i�i�i

k)
�
, (3.15)

over a family of smooth function g⌧ , where (r1i ,�i�i�i
1) and (�r2i ,�i�i�i

2) are the coordinates of YiYiYi
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and �YiYiYi respectively in the p-dimensional polar system.

Having this definition of quantile contour, the multivariate quantile regression prob-

lem is formulated in [77] as a two-step procedure. Denoting the response matrix as Y =

(yyy1, . . . , yyym) 2 Rn⇥m and the design matrix as X, the first step is to solve the following

conditional quantile estimation problems for ⌧ 2 (0, 1),

Q⌧ (yyyi|yyy1, . . . , yyyi�1, X) =
i�1X

k=1

yyy0k,i↵↵↵k,i(⌧) +X���i(⌧), i = 1, . . . ,m. (3.16)

In (3.16), the conditional quantile functions are in linear form. This is exact when (Y,X) are

jointly Gaussian. For non-Gaussian distributions, e.g., the general elliptical distributions,

the linear form (3.16) is considered as an approximation. The coe�cients ���i(⌧)’s and ↵↵↵k,i’s

are estimated for several quantile levels and are then extended to ⌧ 2 (0, 1) by splines.

This gives the conditional distributions of Yi|Y1, . . . , Yi�1, X. In the second step, to get the

quantile contour of Y at X̃, N samples are drawn from the conditional distribution Y |X̃ as

follows: First, generate Ui
i.i.d.
⇠ U(0, 1) for i = 1, . . . ,m. Then sequentially for i = 1, 2, . . . ,m,

draw sample yi as the Ui-th quantile of the conditional distribution Yi|Y1, . . . , Yi�1, X̃. Then

(yi, . . . , ym) form a random sample of Y . After taking N samples, (3.15) is used to estimate

the quantile contour of Y |X̃.

The QR-ADMM algorithm can be applied to each step of the procedure. In the first

step, the function g⌧ (���) for ��� = (�1, . . . , �m�1)T can be estimated by the additive model,

g⌧ (���) =
m�1X

j=1

fj(�j) with fj =
qX

l=1

ajlhjl(�j), (3.17)

where hjl’s are the base functions. After some algebraic manipulation, problem (3.15) is
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formulated as follows,

aaa1, . . . , aaam�1 = argmin
aaa1,...,aaam�1

⇢ 1+⌧
2

 
rrr �

m�1X

j=1

Hjaaaj

!
, (3.18)

where rrr = (r1, . . . , rn,�r1, . . . ,�rn) 2 R2n, Hj 2 R2n⇥q with (Hj)i,l = (Hj)i+n,l = hil(�i,j),

and aaaj = (aj1, . . . , ajq)T 2 Rq. In high-dimensional settings, a penalty can also be added to

(3.18) for feature selection. Problem (3.18) can be solved by combining the block descent

and QR-ADMM. First, aaaj’s are sequentially updated by treating all other aaah’s (h 6= j) as

fixed. Then the minimization problem (3.18) for aaaj is in the standard quantile regression

form (1.1) or (1.3) if penalization is applied, and can hence be solved by the QR-ADMM.

The second step assumes the standard quantile regression model assumption (3.16), so the

parameters can also be estimated by the QR-ADMM.

In terms of scalability of QR-ADMM, the first step involves solving m � 1 quantile

regression with size 2n ⇥ q alternatively. For multivariate quantile regression applications,

the dimensionality of the responsem is typically a small number and may not raise scalability

concerns. For large n and/or q, the QR-ADMM can be parallelized in both n and q directions

and hence scales well, as discussed in Section 3.2. For the second step, QR-ADMM solves

m quantile regression problems with size no larger than n⇥ (p+m). Again, when n or p is

large, the QR-ADMM can be parallelized to scale to the data size.

3.2 Parallelization of QR-ADMM

The main advantages of the ADMM is its capability of parallelized implementation in modern

distributed computing frameworks. When the data are too large for a single computer to

store or process, computing frameworks that store and analyze the data distributedly become

necessary. In this section, we demonstrate that the ADMM can be easily carried out in a
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distributed way for (penalized) quantile regression. The resulted parallel algorithms can

be e�ciently implemented in large-scale computation frameworks like the Hadoop [78] and

Spark [88].

3.2.1 Parallelization of QR-ADMM

By splitting the data (y,X) into di↵erent blocks and apply the ADMM, we can achieve a

parallelized version of the QR-ADMM algorithm. In the following, we present three ways to

parallelize the QR-ADMM.

Splitting along n

First, assume that the data are split into M blocks as follows, each block being a subset of

the whole data,

yyy =

0

BBBBBBB@

y1y1y1

y2y2y2
...

yMyMyM

1

CCCCCCCA

, and correspondingly, X =

2

66666664

X1

X2

...

XM

3

77777775

.

The problem (1.3) is then written as

min
rbrbrb,���

(
MX

b=1

⇢⌧ (rbrbrb) + P�(���)

)
s.t. ybybyb �Xb�b�b�b = rbrbrb,�b�b�b = ���, b = 1, 2, . . . ,M. (3.19)

45



This results in the following updating,

���k+1 := argmin
���

M�

2

����� � �̄̄�̄�k
� ⌘̄̄⌘̄⌘k

��2
2
+ P�(���),

rbrbrb
k+1 := argmin

rbrbrb

⇢⌧ (rbrbrb) +
�

2
||ybybyb �XbXbXb�b�b�b

k+1 + ububub
k
� rbrbrb||

2
2,

�b�b�b
k+1 := (XT

b Xb + I)�1
�
XT

b (ybybyb � rbrbrb
k+1 + uk

bu
k
bu
k
b )� ⌘kb⌘

k
b⌘
k
b + ���k+1

�
,

ububub
k+1 := ububub

k + ybybyb �Xb�b�b�b
k+1

� rbrbrb
k+1,

⌘b⌘b⌘b
k+1 := ⌘b⌘b⌘b

k + �b�b�b
k+1

� ���k+1,

(3.20)

where �̄̄�̄�k = M�1
PM

b=1�b�b�b
k and ⌘̄̄⌘̄⌘k = M�1

PM
b=1 ⌘b⌘b⌘b

k. The last four updates in (3.20) with

subscript b depend only on the b-th block of data, so they can be solved distributedly in

parallel. But there does exist some communication cost between di↵erent blocks of data

in each iteration. All (�b, ⌘b�b, ⌘b�b, ⌘b)Mb=1 values need to be aggregated by a center to conduct the

���-update, and the center broadcasts the updated ��� back to each block updating.

Splitting along p

When data are of ultra-high dimensionality, a necessary choice for parallelization is to split

along the p direction. First, the data matrix X is partitioned along its columns,

X = [X1, X2, . . . , XN ],

and conformably,

��� = [�1�1�1, �2�2�2, . . . , �N�N�N ].

Then we get the following optimization problem,

min
zbzbzb,�b�b�b

(
⇢⌧ (yyy �

NX

b=1

zbzbzb) +
NX

b=2

P�(�b�b�b) + P�((�1�1�1))

)
s.t. Xb�b�b�b = bibibi, b = 1, 2, . . . , N, (3.21)
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with ADMM updates,

z̄zzk+1 := argmin
z̄zz

⇢⌧ (yyy �Nz̄zz) +
N�

2
kz̄zz �N�1

NX

b=1

Xb�b�b�b
k
� uuuk

k
2
2,

�b�b�b
k+1 := argmin

�b�b�b

P�(�b�b�b)I(b 6= 1) + P�((�1�1�1))I(b = 1)

+
�

2
kXb�b�b�b �Xb�b�b�b

k
� z̄zzk+1 +N�1

NX

i=1

Xb�b�b�b
k + uuuk

k
2
2,

uuuk+1 := uuuk +N�1
NX

b=1

Xb�b�b�b
k+1

� z̄zzk+1.

(3.22)

In (3.22), each �b�b�b-update only depends on the b-th subset of the features, and hence can be

parallelized.

Splitting along both n and p

More generally, we can patition the data matrix X into M ⇥ N blocks and parallelize the

ADMM algorithm in both the n and p directions, as discussed in [56],

X =

2

66666664

X11 X12 . . . X1N

X21 X22 . . . X2N

...
...

. . .
...

XM1 XM2 . . . XMN

3

77777775

,

where Xij 2 Rmi⇥nj . Correspondingly, the yyy, rrr and ��� vectors in (2.8) can be splitted into

M and N subvectors,

yyy = (y1y1y1, . . . , yMyMyM), rrr = (r1r1r1, . . . , rMrMrM), ��� = (�1�1�1, . . . ,�N�N�N),
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where ririri 2 Rmi , and �j�j�j 2 Rnj . Problem (1.3) is now reformulated as

minri,�jri,�jri,�j

nPM
i=1 ⇢⌧ (ririri) +

PN
j=1 p�(�j�j�j)

o
,

s.t. �j�j�j = �ij�ij�ij, i = 1, . . . ,M,

yiyiyi � ririri =
PN

j=1 rijrijrij, i = 1, . . . ,M,

rijrijrij = Xij�ij�ij�ij, i = 1, . . . ,M, j = 1, . . . , N.

(3.23)

Following [56], we have

ririri
k+1/2 := argmin

rrr
⇢⌧ (rrr) +

�

2
krrr � (ririri

k
� r̃iriri

k)k22,

�j�j�j
k+1/2 := argmin

���
P�(���) +

�

2
k��� � (�j�j�j

k
� �̃j�j�j

k
)k22,

(�ij�ij�ij
k+1/2, rijrijrij

k+1/2) :=
Y

ij

(�j�j�j
k
� �̃ij�ij�ij

k
, rijrijrij

k + r̃iriri
k),

�j�j�j
k+1 :=

 
�j�j�j

k+1/2 +
MX

i=1

�ij�ij�ij
k+1/2

!
/(M + 1),

ririri
k+1 := ririri

k+1/2
�

 
ririri

k+1/2
� yiyiyi +

NX

j=1

rijrijrij
k+1/2

!
/(N + 1),

rijrijrij
k+1 := rijrijrij

k+1/2
�

 
ririri

k+1/2
� yiyiyi +

NX

j=1

rijrijrij
k+1/2

!
/(N + 1),

�̃j�j�j
k+1

:= �̃j�j�j
k
+ �j�j�j

k+1/2
� �j�j�j

k+1,

r̃iriri
k+1 := r̃iriri

k + ririri
k+1/2

� ririri
k+1,

�̃ij�ij�ij
k+1

:= �̃ij�ij�ij
k
+ �ij�ij�ij

k+1/2
� �ij�ij�ij

k+1,

(3.24)

where
Q

ij(aaa, bbb) is defined as the projection of (aaa, bbb) onto the plane bbb = Xijaaa.
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3.3 Simulation Studies

In this section, we conduct simulations to investigate the performance of the QR-ADMM

algorithm. Specifically, we show how the QR-ADMM scales to the data size and how the way

we divide the data and parallelize the QR-ADMM a↵ects the performance. A comparison

is made between the QR-ADMM and the IP, and the QR-ADMM and the QICD. All the

simulations are implemented in R on a PC with the Intel Core i7 2.2 GHz CPU and a 8GB

RAM.

3.3.1 The QR-ADMM VS the IP

We start with a simple model similar to that of Section 3.10 in [39] to illustrate how the

QR-ADMM scales to n and p,

Y = X���⇤ + ✏✏✏, (3.25)

where elements of X 2 Rn⇥p and the error term ✏✏✏ are both i.i.d from the t-distribution with

p degrees of freedom, and ���⇤ is generated from N (111p, 2Ip). To test the scalability of the

QR-ADMM, we consider three steps. First, we fix p = 5 and let n increase from 5⇥ 105 to

5⇥ 106 with step-size 5⇥ 105. Then we fix n = 5, 000 and increase p from 200 to 1,800 with

step-size 200. Finally, we let n increase from 10,000 to 100,000 with step-size 10,000 and set

p = b
p
nc.

Both the IP and the QR-ADMM are applied to estimate ���⇤, with ⌧ = 0.5, 0.7, 0.9. Each

simulation is repeated 100 times. We define the `1 relative error of an estimator �̂̂�̂� as

k�̂�� � �⇤�⇤�⇤
k1

k�⇤�⇤�⇤
k1

,
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and define the adjusted check loss as

⇢⌧ (yyy �X�̂̂�̂�)� ⇢⌧ (yyy �X�⇤�⇤�⇤).

Figures 3.1–3.3 show the comparison for ⌧ = 0.9. Plots for other quantiles show similar

results and are hence omitted. We can see in Figure 3.2 that at about the same level of

accuracy, the QR-ADMM is significantly faster than the IP, especially when p is large. We

notice a significant gap between the check losses in Figure 3.3. But the di↵erence is negligible

compared to the magnitude of the check losses.

We also compare the performance on the following heterogeneous model,

Y = X1���1 + (X2���2) · ✏✏✏. (3.26)

To generate X = [X1, X2] in (3.26), we first simulate X̃ = [X̃1 X̃2] i.i.d. from N (0, 32), with

X1 consisting of the first b0.9pc columns of X and X2 consisting of the rest of the columns,

and then set X1 = X̃1 and X2 = �(X̃2), where � is the c.d.f. of the standard normal

distribution. Elements of ���1 and ���2 are all set to 1. And we generate the error ✏✏✏ from

N (0, IIIn). So ���⇤ = (0,���1,���2 · ✏⌧ ), where ✏⌧ is the ⌧ -th sample quantile of ✏✏✏. For this model,

the QR-ADMM reaches the same level of accuracy in a slightly shorter time compared to

the IP.

As we can see in the simulations, the QR-ADMM is at least comparable to (often better

than) the IP in the nonparallel case. This matches the common observation in practice that

the ADMM is at least comparable to very specialized algorithms [6].
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Figure 3.1: Time performance of IP and the QR-ADMM algorithm for (3.25) with ⌧ = 0.9.
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Figure 3.2: A comparison of accuracy between the IP and the QR-ADMM for ⌧ = 0.9.

3.3.2 The QR-ADMM VS the QICD

The QICD [57] is a non-parallelized algorithm for the MCP and SCAD penalized quantile

regression that was shown to be both fast and accurate compared to previous approaches, e.g.,

the LLA [57]. We compare the time, estimation and feature selection accuracy of the QR-

ADMM and the QICD in the nonparallel case based on our own implementations. Following

[57], we generate our data in the following way. First, we generate (X̃1, X̃2, . . . , X̃p)T ⇠

N (0,⌃⌃⌃), where ⌃⌃⌃ is the covariance matrix with elements �ij = 0.5|i�j|. Then we set X1 =

�(X̃1) and Xk = X̃k for k = 2, 3, . . . , p. Then we generate the response according to the
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Figure 3.3: A comparison of accuracy between the IP and the QR-ADMM in terms of check
loss for ⌧ = 0.9.

following model,

Y = X6 +X12 +X15 +X20 + 0.7X1✏, (3.27)

where ✏ are the i.i.d standard normal errors. For the 0.5 quantile, X1 has no e↵ect; but for

other quantiles, X1 does have an e↵ect. Here we set n = 300 and p = 1, 000. Then we fit pe-

nalized quantile regression with the MCP or SCAD penalty at quantile ⌧ = 0.3, 0.5, and 0.7.

We repeat the simulation for 100 times. The result is summarized in Table 3.1. In Table 3.1,

Size is the average number of nonzero elements in the estimation; P1 is the percentage that

X6, X12, X15, X20 are selected; P2 is the percentage that X1 is selected; AE is the `1 distance

between the estimate and the true ���; SD is the standard deviation of AE; Time means the

running time of the algorithms.

As we can see from Table 3.1, in the nonparallel case, the accuracy and feature selection

performance of the QR-ADMM and the QICD are close, with the QICD being a little faster.

But they both are very fast compared to the other computing algorithms for the MCP/SCAD

penalized quantile regression, e.g., the LLA, see [57].
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Method Size P1 P2 AE SD Time (Sec)
QR-ADMM-SCAD (⌧ = 0.5) 8.62 100% 0% 0.063 0.018 1.46
QR-ADMM-SCAD (⌧ = 0.3) 11.15 100% 80% 0.068 0.018 1.73
QR-ADMM-SCAD (⌧ = 0.7) 10.97 100% 83% 0.069 0.019 1.70
QICD-SCAD (⌧ = 0.5) 8.23 100% 0% 0.067 0.018 0.53
QICD-SCAD (⌧ = 0.3) 11.63 100% 78% 0.070 0.018 0.90
QICD-SCAD (⌧ = 0.7) 11.19 100% 76% 0.071 0.019 0.96
QR-ADMM-MCP (⌧ = 0.5) 8.60 100% 0% 0.062 0.017 1.22
QR-ADMM-MCP (⌧ = 0.3) 10.96 100% 80% 0.072 0.018 1.50
QR-ADMM-MCP (⌧ = 0.7) 10.97 100% 84% 0.076 0.019 1.50
QICD-MCP (⌧ = 0.5) 8.37 100% 0% 0.067 0.018 0.63
QICD-MCP (⌧ = 0.3) 11.54 100% 79% 0.070 0.018 0.86
QICD-MCP (⌧ = 0.7) 11.23 100% 79% 0.071 0.019 0.93

Table 3.1: Comparison of QR-ADMM and QICD.

3.3.3 Parallelizing the QR-ADMM

In this subsection, we investigate how the way we split the data a↵ects the performance

when we parallelize the QR-ADMM. We consider two cases where the data X are split along

n and along p separately. We emphasize that the parallel implementation of the QR-ADMM

algorithm is actually pseudo-parallel. We implement the parallel versions of the QR-ADMM

algorithm in a sequential way by stacking up the supposedly parallel subproblems of the

ADMM. As part of the future work, we plan to have a truly parallel implementation of the

QR-ADMM algorithm in distributed computing frameworks like the Spark [88].

Splitting along n

We simulate data according to model (3.27) but now with n = 1, 000, 000 and p = 100, and

uses the Lasso penalty for feature selection. The data are randomly and evenly split into

N = 10, 102, 103 and 104 blocks separately and we monitor the convergence of the algorithm.

The experiment is repeated 100 times and the average convergence is recorded. The result

for ⌧ = 0.9 is shown in Figure 3.4. Simulation results of ⌧ = 0.5 and ⌧ = 0.7 are omitted

here.
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Figure 3.4: Convergence of QR-ADMM for model (3.27) with n = 1, 000, 000, p = 10 and
⌧ = 0.9 starting from the 20th iteration. The split is along n.

As we can see in Figures 3.4, for a wide range of partition numbers, the QR-ADMM

converges fast with high accuracy in a few tens of iterations. More partitions generally

result in slower convergence, but the trend is not always monotonic.

Splitting along p

We still consider model (3.27), with n = 300 and p = 1000. The SCAD penalty is used for

sparsity. The data X is evenly split into N = 1, 10, 50, 100, and 500 blocks along p and we

keep track of the convergence. The result for ⌧ = 0.9 is summarized in Figure 3.5.

In Figure 3.5, all other cases converges fast to high accuracy within 100 iterations except

for N = 500. Again, more partitions generally yields slower convergence. The partition

number does not have a great impact on the convergence rate.
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Figure 3.5: Convergence of QR-ADMM for model (3.27) with n = 300, p = 1, 000 and
⌧ = 0.9 starting from the 20th iteration. The splitting is along p.

3.4 Conclusions and Discussions

In this chapter, we discuss using the ADMM to solve large-scale penalized quantile regression

problems. We derive the QR-ADMM algorithm for solving penalized quantile regression with

di↵erent penalties and present possible ways to parallelize the QR-ADMM algorithm. The

convergence results are established for all the penalties we consider. The simulation studies

show that the QR-ADMM is comparable to the IP and the QICD in terms of accuracy and

faster than the IP even in the nonparallel case. The capability of parallelized implementation

and the potential to solve large-scale problems distinguishes the QR-ADMM from algorithms

like the IP and the QICD.

It is also worth mentioning that, in real implementations of the ADMM, more compli-

cated strategies than (3.20), (3.22), and (3.24) can be involved. Some of these strategies are

already discussed in Chapter 2. For example, in (3.20), (3.22), and (3.24), the centralized

communication may not be e�cient in communication, e.g., when some computing nodes

(which process some local blocks of data) are distant from the center. To solve the commu-

nication e�ciency problem, several decentralized ADMM were proposed, see [53, 76], etc.
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Synchronization is also a problem in (3.20), (3.22), and (3.24). The iteration cannot proceed

before all blocks finish their updates. So the overall computing speed is limited by the slow-

est block. The asynchronized ADMM proposed in [90] addresses the problem. In practice,

one should always consider using such strategies to improve the implementation e�ciency of

the ADMM algorithm for large-scale problems.

56



Chapter 4

A Single-loop Algorithm for

Distributed Non-convex Penalized

Quantile Regression

Compared to traditional LP methods, the QR-ADMM algorithm we proposed in Chapter

3 can be easily parallelized. And we have shown that, the QR-ADMM is significantly faster

than traditional LP solvers, even when parallelization is not applied. The QR-ADMM al-

gorithm is a double-loop algorithm where the outer loop is the ADMM iterations and the

inner loop is the coordinate descent for solving the �-update. Motivated by the parallel

implementation in (3.20), we further introduce an auxiliary parameter and write (1.3) into a

di↵erent ADMM form other than (3.1). We show that this new formulation of the problem,

together with a convex approximation for the �-update when non-convex penalty is applied,

will result in a single-loop algorithm where all the updates of the ADMM have closed-form

expressions. This can further improve on the computational e�ciency of the QR-ADMM.
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4.1 The Single-loop QPADM Algorithm

As in Chapter 3, by formulating the penalized quantile regression (1.3) into the equivalent

form (2.1), a direct application of ADMM will result in the updates in (3.2). However, the

�-update in (3.2) has no closed-form solution and hence iterative numerical methods like

the coordinate descent is required. This results in a double-loop algorithm. We comment

that the reason �-update in (3.2) has no closed-form solution is due to the fact that the

coordinates of � are entangled with each other as � is multiplied with X. We show in

the following that, by introducing a new variable, we can disentangle X and � and hence

simplify the �-update.

we first split the data into M blocks as follows,

yyy =

✓
yyyT1 yyyT2 . . . yyyTM

◆T

, and correspondingly, X =


XT

1 XT
2 . . . XT

M

�T
,

where yyyb 2 Rnb , Xb 2 Rnb⇥p, and
PM

b=1 nb = n. Then we rewrite problem (1.3) into the

following equivalent problem by introducing the new variables ���b’s,

min
rrrb,���b,���

(
MX

b=1

⇢⌧ (rrrb) + P�(���)

)
s.t. yyyb �Xb���b = rbrbrb,���b = ���, b = 1, 2, . . . ,M. (4.1)

To see why (4.1) follows the standard ADMM form (2.1), we define

A = [A1 A2] with A1 = �


Ip . . . Ip 0p⇥n

�T
2 R(Mp+n)⇥p , A2 =


0n⇥Mp In

�T
2 R(Mp+n)⇥n,

and

B =

2

66664

Ip XT
1

. . . . . .

Ip XT
M

3

77775

T

2 R(Mp+n)⇥Mp, ccc =

2

64
000

yyy

3

75 2 RMp+n, xxx =

0

B@
���

rrr

1

CA , zzz =

0

BBBB@

���1

...

���M

1

CCCCA
.
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Then (4.1) can be written exactly as (2.1) with f(xxx) = ⇢⌧ (rrr) + P�(���) and g(zzz) = 0. The

resulted updates (2.2) can be explicitly written as

���k+1 := argmin
���

M�

2

����� � �̄̄�̄�k
� ⌘̄̄⌘̄⌘k/�

��2
2
+ P�(���),

rrrk+1
b := argmin

rrrb
⇢⌧ (rrrb) +

�

2
||yyyb �Xb���

k
b + uuuk

b/� � rrrb||
2
2,

���k+1
b := (XT

b Xb + I)�1
�
XT

b (yyyb � rrrk+1
b + uuuk

b/�)� ⌘⌘⌘kb/� + ���k+1
�
,

uuuk+1
b := uuuk

b + �(yyyb �Xb���
k+1
b � rrrk+1

b ),

⌘⌘⌘k+1
b := ⌘⌘⌘kb + �(���k+1

b � ���k+1),

(4.2)

where �̄̄�̄�k = M�1
PM

b=1���
k
b and ⌘̄̄⌘̄⌘k = M�1

PM
b=1 ⌘⌘⌘

k
b . The xxx-update in (2.2) is separated into

the ���-update and rrr-update in (4.1) since AT
1A2 = 0. We call the Quantile regression with

Parallel ADMm (QPADM) algorithm.

Compared to (3.2), the formulation (4.1) avoids CD by introducing new variables ���b. All

updates in (4.1) including the ���-updates, now can be solved without iterative methods, as

shown at the end of this section.

The updates in (4.1) with subscript b depend only on the bth block of the data. When

M > 2, data blocks (Xb, yyyb) can be processed in di↵erent computers and hence paralleliza-

tion can be easily achieved. The parallelization of ADMM was discussed in [6] where the

implementation of ADMM on a distributed computing framework called Hadoop [17, 78]

was presented. We point out that a new generation of distributed computation framework

called Spark [88] is faster for iterative computation and hence more suitable for QPADM.

We leave the parallel implementation of QPADM to future work.

The matrix inversion in the ���b-update in (4.1) takes considerable amount of time when p

is large. We suggest to use the Woodbury matrix identity [79] (XT
b Xb + I)�1 = I �XT

b (I +

XbXT
b )

�1Xb, when p is larger than nb. This makes the QPADM suitable for the case when

both n and p are large. We can choose a split M such that for each b we have nb ⌧ p, so
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the ���b-updates can be implemented e�ciently with Woodbury’s identity.

Now we show that the updates in (4.1) can be solved without iterative numerical methods.

This is clear except for the ���-update. In the following, we derive the solution of the ���-update

with the Lasso, SCAD, and MCP penalties. The ���-update for other penalties may be derived

in a similar manner.

For the Lasso penalty P�(���) = �k���k1, the ���-update of QPADM is solved by

���k+1 = (�̄̄�̄�k + ⌘̄̄⌘̄⌘k/� � �/(M�)111p)+ � (��̄̄�̄�k
� ⌘̄̄⌘̄⌘k/� � �/(M�)111p)�. (4.3)

For the SCAD and MCP penalties, the ���-update is nonconvex. Motivated by the ma-

jorization step in QICD, at iteration k + 1, we linearize the penalty P�(���) as

P�(���) =
pX

j=1

P�(|�j|) ⇡
pX

j=1

P�(|�
k
j |) + P 0

�(|�
k
j |+)(|�j|� |�k

j |). (4.4)

Replacing P�(���) with the RHS of (4.4) results in

���k+1 := argmin
���

nM�

2

����� � �̄̄�̄�k
� ⌘̄̄⌘̄⌘k/�

��2
2
+

pX

j=1

P 0
�(|�

k
j |+)|�j|

o
. (4.5)

Denoting vvvk� :=
⇥
P 0
�(|�

k
1 |+), . . . , P

0
�(|�

k
p |+)

⇤T
, then (4.5) has a closed-form solution

���k+1 = (�̄̄�̄�k + ⌘̄̄⌘̄⌘k/� � �vvvk�/(M�))+ � (��̄̄�̄�k
� ⌘̄̄⌘̄⌘k/� � �vvvk�/(M�))�. (4.6)

Neither (4.3) nor (4.6) requires iterative computation.
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4.2 Discussion on the Convergence of QPADM

The convergence of ADMM for convex problems is well studied in the literature. For example,

[52] showed the convergence of ADMM under three assumptions: first, f and g are both

convex; second, the global minimum exists for problem (2.1); third, A and B have full column

ranks. It is easy to check that these assumptions hold for (4.1) with convex penalties, so the

convergence of QPADM is guaranteed for convex PQR. We summarize this as the following

theorem,

Theorem 4.2.1 For convex penalties P�, the QPADM converges to the solution of (1.3),

i.e., ���k generated by the QPADM converges to a point ���⇤ that solves (1.3).

Proof The proof is similar to that of Theorem 3.1.1 and we omit it here.

As commented in Chapter 3, while the convergence behavior of ADMM for convex prob-

lems is well understood, the convergence of ADMM for nonconvex problems remains un-

known. Some recent works, including [26, 43, 75], analyzed the convergence of nonconvex

ADMM. Their convergence results crucially rely on the Lipschitz-continuity of the subderiva-

tive of the objective function, which is not satisfied in our case. Hence the convergence

analysis techniques in the literature cannot be directly applied. Although the behavior of

nonconvex ADMM remains largely open, the convergence has been widely observed in prac-

tice, see the discussions in [26, 75]. We acknowledge that the convergence of nonconvex

QPADM needs further theoretical backup as the convergence properties of the ADMM for

general nonconvex problems are now still under development, but we emphasis that the

QPADM works well for nonconvex PQR in all our simulation studies, as shown in the next

section.
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4.3 Simulation Study

We evaluate the computational e�ciency, estimation accuracy and feature selection accuracy

of the QPADM, and compare it with the QICD. We implemented the QPADM in R and

used the R package “QICD” for the QICD simulations. All simulations were conducted on

a PC with Core i7 4-core processor and 8GB RAM.

The simulation setup is similar to that in Chapter 3, and we repeat it hear for clarity.

First, we generate (X̃1, X̃2, . . . , X̃p)T ⇠ N (0,⌃⌃⌃), where ⌃⌃⌃ is the covariance matrix with

elements �ij = 0.5|i�j|, 1  i, j  p. Then we set X1 = �(X̃1) and Xk = X̃k for k =

2, 3, . . . , p. We consider the following heteroscedastic regression model,

Y = X6 +X12 +X15 +X20 + 0.7X1✏, (4.7)

where ✏
i.i.d
⇠ N (0, 1). Three quantile levels were considered: ⌧ = 0.3, 0.5 and 0.7. Notice

that the e↵ect of X1 is only present for ⌧ = 0.5. We chose (n, p) = (300, 1000), (30000, 1000)

and (30000, 100) respectively, all with M = 1. The simulations were repeated 100 times.

Tables 4.1–4.3 summarize the results for the SCAD penalty. Results for the MCP penalty

are left to Appendix B.1. In the tables, size is the number of nonzero coe�cients; P1 is the

percentage that X6, X12, X15, X20 were selected; P2 is the percentage that X1 was selected;

AE is the `1 estimation error; Time measures the running time of the algorithms. Numbers

in the parenthesis represent standard deviations.

Following the recent work of [41], we choose the � that minimizes

HBIC(�) = log
⇣ nX

i=1

⇢⌧ (yi � xixixi
T �̂��(�)

⌘
+ |S�|

log(log n)

n
Cn, (4.8)

where �̂��(�) is the PQR estimator with the tuning parameter �, S� ⌘ {j : �̂�,j 6= 0, 1  j 

p}and |S�| is its cardinality, and Cn is a sequence of positive constants diverging to infinity
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as n increases such that Cn = O(log(p)).

The QPADM performs similarly to QICD in terms of model selection accuracy and

estimation accuracy. When n is relatively small (Table 1), QPADM is slightly slower than

the QICD. In fact, QPADM spends most of the time on the matrix inversion while the

iterations of QPADM is cheap compared to the iterations of QICD. The computational

advantage of QPADM becomes more evident when n gets larger (Tables 4.2 & 4.3). This is

because, as n increases, the amount of time spent on the matrix inversion (O(p3)) becomes

less significant and the time required for the iterations dominates. This is further supported

by the results in Table 4.3.

Setting M > 1 is sometimes necessary when data are too large for a single computer to

store and process. We illustrate the advantage of parallelization of QPADM using the same

simulation setup as above for (n, p) = (30000, 100). The block number M is set to 1, 10, and

100 respectively. Denoting the time cost of the matrix inversion (XT
b Xb+ I)�1 as T 0

b and the

time at iteration k for the ���-update and updates with subscript b as T k
��� and T k

b , respectively,

the total time cost after iteration K is calculated as TK = max {T 0
1 , . . . , T

0
M} +

PK
k=1 T

k
��� +

PK
k=1 max

�
T k
1 , . . . , T

k
M

 
. This mimics a real parallel computing framework where the master

which conducts the ���-update waits until all workers which conduct updates with subscript

b to finish their work before it proceed to the next iteration. The time and estimation

accuracy in terms of `1 estimation error were compared for di↵erent M ’s. The results for

⌧ = 0.3 with SCAD penalty are shown in Figure 4.1. All other cases follow the same pattern,

see Appendix B.1 for more details.

As can be seen from Figure 4.1, increasing the block number M does not have significant

impact on the convergence but reduces the computational time. One factor that is not

considered in this simulation is the communication time. When implementing QPADM

in a real distributed framework, increasing M will increase the communication overhead.

As a result, the computational gain of increasing M will be exceeded by the increase in
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communication cost at some point.

Method Quantile Size P1 P2 AE Time (Sec)
QPADM ⌧ = 0.3 6.17(1.97) 100% 87% 0.051(0.024) 1.57(0.29)

⌧ = 0.5 4.42(0.61) 100% 0% 0.040(0.021) 1.65(0.33)
⌧ = 0.7 6.21(2.54) 100% 91% 0.049(0.024) 1.68(0.33)

QICD ⌧ = 0.3 7.33(3.68) 100% 86% 0.049(0.025) 0.91(0.64)
⌧ = 0.5 4.19(0.49) 100% 0% 0.039(0.020) 1.57(1.52)
⌧ = 0.7 7.17(3.94) 100% 90% 0.051(0.026) 1.33(1.36)

Table 4.1: Comparison of QPADM and QICD for (n, p) = (300, 1000), SCAD.

Method Quantile Size P1 P2 AE Time (Sec)
QPADM ⌧ = 0.3 5.00(0.00) 100% 100% 0.0036(0.0016) 44.97(1.66)

⌧ = 0.5 4.01(0.00) 100% 0% 0.0037(0.0019) 46.02(1.71)
⌧ = 0.7 5.00(0.00) 100% 100% 0.0039(0.0018) 45.43(1.75)

QICD ⌧ = 0.3 5.04(0.17) 100% 100% 0.0032(0.0015) 99.83(13.29)
⌧ = 0.5 4.10(0.33) 100% 0% 0.0039(0.0014) 125.39(16.35)
⌧ = 0.7 5.14(0.27) 100% 100% 0.0030(0.0014) 129.98(17.72)

Table 4.2: Comparison of QPADM and QICD with (n, p) = (30000, 1000), SCAD.

Method Quantile Size P1 P2 AE Time (Sec)
QPADM ⌧ = 0.3 5.00(0.00) 100% 100% 0.0030(0.0011) 3.05(0.63)

⌧ = 0.5 4.00(0.00) 100% 0% 0.0029(0.0011) 3.59(0.58)
⌧ = 0.7 5.00(0.00) 100% 100% 0.0030(0.0012) 3.98(0.64)

QICD ⌧ = 0.3 5.04(0.17) 100% 100% 0.0027(0.0011) 11.98(3.64)
⌧ = 0.5 4.16(0.37) 100% 0% 0.0026(0.0011) 21.73(11.25)
⌧ = 0.7 5.04(0.16) 100% 100% 0.0026(0.0009) 24.99(14.12)

Table 4.3: Comparison of QPADM and QICD with (n, p) = (30000, 100), SCAD.

We point out that our implementation of the QPADM is kept as simple as possible with

no special implementation-level optimization or tuning. The computational advantage of

QPADM may not be fully illustrated by the simulations results above.
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Figure 4.1: Comparison of QPADM with SCAD penalty for di↵erent M values.

4.4 Conclusion and Discussion

In this chapter, we propose the single-loop QPADM algorithm for the penalized quantile

regression problem (1.3). It is computationally advantageous compared to QICD since each

of its iteration can be solved without iterative methods. The simulation study showed

that the QPADM performs similarly as QICD in terms of statistical accuracy and can be

significantly faster when n is large. More importantly, unlike the QICD, the QPADM is a

distributed algorithm that can be implemented in distributed framework like Spark. This

gives QPADM the ability to solve large scale problems. As can be seen from the simulation

studies in Section 4.3, our current “parallel” implementation of the QPADM is actually

pseudo-parallel. We implement the parallel QPADM in a sequential way be stacking up the

supposedly parallel ADMM updates. As a future work, we intend to implement the parallel

QPADM algorithm in Spark.
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To the best of our knowledge, the approach of introducing new variables to the ADMM

to avoid iterative methods for the updates is novel in the literature. It can potentially

be generalized to other statistical model fitting problems, when the inner-loop of ADMM

requires time-consuming iterative algorithms.
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Chapter 5

Group Sparsity via Approximated

Information Criteria

We propose a new group variable selection and estimation method, and illustrate its

application to the generalized linear model (GLM). This new method, termed “gMIC”, is

derived as a smooth approximation the information criterion. The gMIC is formulated in two

steps. First, a smooth unit dent function is applied for the approximation of the information

criterion. Then, the approximated information criterion is further reparameterized in a way

that yields sparse estimation from a smooth programming problemCompared to existing

group variable selection and estimation methods, the gMIC is free of parameter tuning and

hence computationally advantageous. We establish the oracle property of the proposed

method that is supported by both simulation studies and real examples. We emphasize

that, although our current work on gMIC focuses on GLM, it may be naturally extended to

variable selection for quantile regression.
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5.1 Introduction

Consider data that consist of {(yi,xi) : i = 1, . . . , n}, where yi is the response and xi =

(xi1, . . . , xip)T 2 Rp is the p-dimensional predictor vector. A regression model tries to find

the relationship between the responses yi’s and the linear combinations of the covariates xi’s.

For example, a generalized linear model [51] links the mean response E(yi) to the covariates

xi through the linear predictor xT
i � via certain link function, where � = (�1, . . . , �p)T 2 Rp

is the vector of regression coe�cients. The linear model is a special case of GLM where

the link function is the identity function. Concerning variable selection, the true � is often

sparse in the sense that some of its components are zeros.

Standard approaches to variable selection and estimation include the best subset selection

(BSS) and penalization methods. In BSS, an information criterion, for example, the Akaike

Information criterion [1] (AIC) or the Bayesian information criterion [63] (BIC), is used

to evaluate and compare all possible models, and the “best” model is selected accordingly.

To this end, we assume that either there is no nuisance parameter involved or the nuisance

parameters and � are orthogonal [15]. Hence we simply denote the log-likelihood function

as L(�). Specifically, the BSS solves

�̂ = argmin
�

{�2L(�) + �0k�k0} , (5.1)

where the `0-norm of a vector � 2 Rp, denoted as k�k0, is defined as the number of non-

zero elements in �. The penalization parameter �0 depends on the information criterion

used, but is fixed a priori. For example, the parameter �0 is set to 2 or ln(n) for AIC or

BIC, respectively. The computation of (5.1) is NP-hard [9] as we need to go through all

possible combinations of the variables. This makes it infeasible even for moderately large

p. Penalization methods can be thought of as the (convex or non-convex) relaxation of

the AIC or BIC that leads to tractable computation. It enforces sparsity to the model by
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approximating the `0-norm k�k0 with a nonnegative continuous penalty function. That is,

penalization methods solve

�̂ = argmin
�

(
�2L(�) + �

pX

j=1

P (|�j|)

)
, (5.2)

where P (·) is the penalty function. Common choices of the penalty function include the

convex Lasso [69], adaptive Lasso [95], elastic net [96], and the non-convex SCAD [19] and

MCP [89], among others. These penalty functions have a common feature that they are

symmetric around 0 and “sharp” at 0, that is, P (x) = P (�x) and limx!0+ P 0(x) � � for

some � > 0. For example, in Lasso, the penalty function is P (|�|) = |�| with � = 1. From

the optimization perspective, such penalty functions provide consistent momentum to push

small coe�cients towards 0 when solving (5.2), e.g., with gradient descent, resulting in a

solution �̂ with some coordinates being exactly 0. A geometric interpretation of why such

penalties will result in sparse estimation of � can be found in [69]. A key di↵erence between

(5.1) and (5.2) is that the penalization parameter � > 0 in (5.2) is not fixed a priori, but

needs to be tuned, typically by cross-validation. We refer readers to [20] and [49] for an

overview of penalization methods.

The BSS method and penalization methods as formulated in (5.1) and (5.2) are for

individual variable selections, that is, each individual variable comes into or leaves the model

as a unit. However in practice, the components in � appear in groups under many scenarios.

For example, dummy variables introduced by multi-level categorical variables, basis functions

based on one variable in basis expansion, and genes that share a common biological function

or participate in the same metabolic pathway [80], all form natural groups of variables. In

such applications, group variable selection where the entire group of variables comes into

or leaves the model as a unit is essential. On one hand, for interpretability reasons, we

may want the entire group of variables (for example, when interpreted as a factor) to be
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included in or excluded from the model. On the other hand, group variable selection results

in better estimation and variable selection performance in the presence of group structures,

as indicated by [31].

To incorporate the group sparsity structure, we assume that the columns of the data

matrix X = (x1, . . . ,xn)T 2 Rn⇥p can be partitioned into K subsequent groups as X =

(X1, . . . , XK). Each Xk 2 Rn⇥mk consists of a subset of columns of X corresponding to the k-

th group of variables, where mk is the number of variables in the k-th group for k = 1, . . . , K,

satisfying
PK

k=1 mk = p. Accordingly, the components of � are also partitioned intoK groups

as � = (�T
1 ,�

T
2 , . . . ,�

T
K)

T , where �k = (�k1, . . . , �kmk
)T 2 Rmk contains the coordinates of

the k-th group of variables. Throughout this chapter, we consider the dimension p and

the partition of variables as fixed. And for any vector uuu 2 Rp, we denote its k-th group

subcomponent according to this partition as uuuk.

Several extensions of penalization methods have been proposed to facilitate group-level

variable selection. The group Lasso [87] replaces the `1-penalty on single variables in the

Lasso by the `2 penalty on the groups. It solves the following optimization,

min
�

(
�2L(�) + �

KX

k=1

mkk�kkMk

)
, (5.3)

where k�kM is defined as

k�kM =
q

�T
M�,

with a positive-definite matrix M, and mk’s adjust for the group sizes. The positive-definite

matrices Mk’s are usually set to the identity matrices Imk
’s for k = 1, 2, . . . , K. As shown

in [87], the penalty k · kM imposes sparsity at group level, i.e., the grouped variables �k will

be exactly 0 for some k’s. The group versions of SCAD and MCP can be similarly derived

by replacing the `0-norm in these penalties with `2 penalties on the groups of variables. We

refer the readers to [30] for a comprehensive review of group-type selection with penalization

70



methods.

While the group extensions of penalization methods has been widely adopted and studied

in the literature, the BSS method has not yet been considered for group variable selection

to the best of our knowledge. The BSS method enjoys two advantages over penalization

methods. First, it does not involve parameter tuning. In penalization method, the penal-

ization parameter � needs to be tuned. This means �̂ is computed for each � over a grid

of tuning parameters, which is computationally expensive. In BSS (5.1), the parameter

�0 is fixed and hence requires no tuning. With a proper approximation, an approximated

solution of problem (5.1) can potentially be e�ciently solved using existing optimization

algorithms. This could compare favorably to penalization methods in terms of computation

as the approximated BSS solution only needs to be computed once with a fixed �0. Second,

penalization methods often use cross-validation to select the tuning parameter � which may

result in di↵erent models selected with di↵erent training/validation partitioning of the same

data, but the BSS does not su↵er such problems.

In this chapter, we propose an alternative to penalization methods for group variable

selection by minimizing an approximated “group version” of the Bayesian information cri-

terion. The proposed method, named “group minimum information criterion” (gMIC), is

derived as follows. First, we propose a group version of the information criterion for group

variable selection. Then, a smooth approximation of the information criterion is applied.

Finally, we apply a specific form of reparameterization to the approximated information cri-

terion that results in a sparsity-generating yet smooth programming problem that can be

e�ciently solved by existing optimization tools. Previous attempts of this idea on individual

variable selection can be found in [66] and [67].

The remainder of this chapter is organized as follows. Section 5.2 presents our proposed

method in details. In Section 5.3, we derive the oracle properties of the gMIC estimator.

Section 5.4 is a discussion on the inference of �. In Section 5.5, we conduct simulations and
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present real data examples to illustrate the performance of gMIC. Section 5.6 concludes the

chapter with some discussion.

5.2 The Group MIC Formulation

First, we modify the information criterion (5.1) to facilitate group variable selection. Specif-

ically, we replace the `0 penalty on the cardinality of � by a penalty on the cardinality at

the group level,

�̂ = argmin
�

(
�2L(�) + �0

KX

k=1

mkI(�k 6= 0)

)
. (5.4)

The formulation (5.4) serves as a generalization of the information criterion in (5.1). With

the practical assumption that an entire group of variables enter (all non-zero) or leave (all

zero) the model, (5.4) is equivalent to (5.1). However, compared to (5.1), (5.4) enforces

variable selection at the group level.

To solve the discrete optimization problem (5.4) one needs to fit a generalized linear

model for each combination of the groups of the variables, which can be computationally

demanding. As a solution to avoiding the computational complexity, we consider applying

smooth approximation to the discrete problem (5.4). This results in a single smooth opti-

mization problem that can be e�ciently solved by existing smooth programming algorithms.

In this chapter, we consider using a specific type of functions, called unit dent functions, for

this approximation. A unit dent function w(x) is a continuous and even function that equals

0 at x = 0 and monotonically increases with limx!1 w(x) = 1. The approximation is done

in two steps as we detail below.

First, the information criterion (5.4) is approximated by the smooth unit dent function

72



tanh(·) as follows,

�̂ = argmin
�

(
�2L(�) + �0

KX

k=1

mk tanh(ank�kk
2
Mk

)

)
, (5.5)

where tanh(ank�kk
2
Mk

) approximates the indicator function 1(�k 6= 0), as shown in Figure

5.1. The parameter an adjusts for the approximation accuracy and may be dependent on n.

Generally, any smooth unit dent function can be used as an approximation to the problem

(5.4). Here we select the unit dent function tanh(·) because it has a simple form and its

derivative can also be easily calculated.

As indicated in Figure 5.1 below, the direct approximation (5.5) results in a smooth

optimization problem. However, noticing that the tanh(·) function is “flat” at 0, this ap-

proximation will not result in sparse estimation of �.

−2 −1 0 1 2

0.
0

0.
4

0.
8

1.
2

tanh(aβ2)

β

l0−norm
●

●

a=1

a=2

Figure 5.1: The tanh(·) function as an approximation to the `0-norm.
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To enforce sparsity, we apply the following one-to-one reparameterization as the second step,

�k = �kw(�k), k = 1, 2, . . . , K, (5.6)

where w(�k) := tanh(an k�kk
2
2), and �k and �k both correspond to the k-th group of vari-

ables. Then we reformulate the problem (5.5) as

�̂ = argmin
�

(
�2L(W�) + �0

KX

k=1

mkw(�k)

)
, (5.7)

where W is a K ⇥ K block-diagonal matrix with the k-th block being w(�k)Imk
. After

solving (5.7), the solution for �̂ can be computed as �̂ = W(�̂)�̂.
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(b) w(�) as a function of �

Figure 5.2: The reparameterization.

The reparameterization (5.6) is shown in Figure 5.2. The intuition why the smooth

reparameterization (5.6) generates sparse estimation is explained as follows. Although the

tanh(·) part in (5.7) as a function of � is still smooth at 0 and does not generate sparse
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estimation of �, it will shrink the estimation of � towards 0. Then, notice in Figure 5.2a

that the derivative of � w.r.t. � goes to infinity when � goes to zero. This will drastically

“squeeze” the estimation of � towards 0 when � is near 0. As a result, this reparameterization

will generate an estimate of � with some very small coordinates (e.g, less than 10�6) that

can be virtually regarded as 0. Another point of view is to treat w(�k) in (5.7) as a penalty

of �. This penalty, although being smooth at 0 as a function of �, is “sharp” as a function

of �, as show in Figure 5.2b. In theory, this sharp penalty of � should generate sparse

estimate of � if we plug in � into (5.7) and solve the optimization w.r.t. �. In practice,

since � does not have a well defined expression in terms of �, we solve (5.7) w.r.t. � instead

for computational convenience and recover � after solving for �. Due to smoothness, this

practice does not directly recover the sparsity for the estimate of �, but rather generates

some small coordinates that are close to zero. These small coordinates of �, are further

shrunk towards 0 when converting the estimate of � to the estimate of �. In practice, sparse

estimation of � is achieved after applying some very small threshold, e.g., 10�6.

We emphasize that the parameter an can be fixed without tuning. It plays the same role

as the additional shape parameter in SCAD and MCP, both being fixed. Unlike penalization

methods whose performance crucially relies on the tuning of the penalization parameter �,

the performance of gMIC is insensitive to the choice of an. Empirically, we show in the

simulation study in Section 5.5 that the performance of gMIC stabilizes for a wide range of

an’s. Theoretically, we prove that as long as an = O(n), the performance of the gMIC is

guaranteed, see Section 5.3 for details.

In principle, the gMIC approximation can be applied to any information criterion. For

simplicity of discussion, we focus on approximating the BIC as an illustration and henceforth

set the parameter �0 to ln(n) in this chapter. For notational simplicity, we also set the

positive definite matrices Mk’s to the identity matrices Imk
, k = 1, 2, . . . , K in all theoretical
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derivations. That is, we formulate the gMIC estimator as the solution

�̂ = argmin
�

(
�2L(W�) + ln(n)

KX

k=1

mk tanh(ank�kk2)

)
. (5.8)

The simulated annealing in [2] followed by the modified BFGS in [42] is applied to solve the

non-convex optimization problem (5.8). Due to the non-convexity of the objective function,

the uniqueness of solution to (5.8) is not guaranteed. For the theoretical analysis in the next

section, we focus on any local minimum of problem (5.8).

5.3 Asymptotic Properties

Assume that {(xi, yi) : i = 1, . . . , n} are i.i.d. copies from a density f(x, y;�0), where �0

denotes the true regression vector. Without loss of generality, the groups in �0 have been

arranged such that �0 = (�T
0(1),�

T
0(0))

T , where �0(1) = (�T
01, . . . ,�

T
0K1

)T consists of all K1

nonzero components and �0(0) = 0 consists of(K �K1) groups of all the zero components.

Denote p1 =
PK1

k=1 mk and p0 = p� p1 so that �0(1) 2 Rp1 and �0(0) 2 Rp0 . Let I = I(�0) be

the Fisher information for the full model (that is, the model with all variables included), and

let I1 be the Fisher information corresponding to the reduced true model setting �0(0) = 0.

It is well known that I1 equals the p1-th principal submatrix of I.

For theoretical exploration, we consider the gMIC estimator e� obtained from minimizing

the following objective function

Qn(�) = �2L(�) + ln(n)
KX

j=1

mk tanh(an k�kk
2
2), (5.9)

where �k = wk�k with wk = tanh(an k�kk
2
2) for k = 1, . . . , K. As a generic notation, we use

e� and b� to denote the gMIC and MLE estimators, respectively. The MLE estimator b� will

be used in the proof of Theorems 5.3.1. Throughout the chapter, we shall use k · k for the

76



Euclidean norm k · k2 as default.

We first establish a lemma concerning the reparameterization step, which will later be

used in the proof of Theorems 5.3.1 and 5.4.1.

Lemma 5.3.1 Given �,� 2 Rm that satisfies � = w� with w = w(�) = tanh(ak�k2), we

have

(i) k� � �k =
2k�k

exp(�2ak�k2) + 1
.

(ii) As a function of �, w(·) is not di↵erentiable at � = 0. For � = (�j)
m
j=1 with �j 6= 0,

dw

d�
= 2a(1� w2)

�
w Im + 2a(1� w2)��T

 �1
�.

Proof The proof can be found in Appendix A.3.

We then introduce some regularity conditions that are required to establish our main

results.

Assumption 5.3.1 (The regularity conditions)

(A) The first and second logarithmic derivative of f satisfies

E�


@ log f(x, y;�)

@�j

�
= 0 for j = 1, . . . , d

and

Ijk(�) = E�


@

@�j
log f(x, y;�)

@

@�k
log f(x, y;�)

�
= E�


@2

@�j@�k
log f(x, y;�)

�
.

(B) The Fisher information matrix

I(�) = E

(
@

@�
log f(x, y;�)

� 
@

@�
log f(x, y;�)

�T)
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is finite and positive definite at � = �0.

(C) There exists an open subset ! that contains the true parameter point �0 such that for al-

most all (x, y) the density f(x, y;�) admits all third derivatives (@3f(x, y;�))/(@�j@�k@�l)

for all � 2 !. Furthermore, there exist functions Mjkl such that

����
@3

@�j@�k@�l
log f(x, y;�)

����  Mjkl(x, y) for all � 2 !,

where mjkl = E�0
[Mjkl(x, y)] < 1 for j, k, l.

Assumptions (A)–(C) are the same as conditions (A)–(C) in [19] and are standard in

related literature. The following theorem shows that there exists a local minimizer e� of

Qn(�) that is
p
n-consistent to �0 and this

p
n-consistent e� enjoys the ‘oracle’ property

under some standard assumptions.

Theorem 5.3.1 Let {(xi, Yi) : i = 1, . . . , n} be n i.i.d. copies from a density f(x, Y ;�0).

Concerning group sparsity, we assume that none of the components of �0k is zero for k =

1, . . . , K1 while �0k = 0 for k = K1+1, . . . , K. Following [19], under the regularity conditions

(A)–(C), we have the following conclusions when an = O(n),

(i). (
p
n-Consistency) there exists a local minimizer e� of Qn(�) that is

p
n-consistent

for �0 in the sense that ke� � �0k = Op(n�1/2).

(ii). (Sparsity and Asymptotic Normality) Partition e� in (i) as (e�
T

(1), e�
T

(0))
T in a similar

manner to �0. With probability tending to 1 as n ! 1, e� must satisfy that

e�(0) = 0

and
p
n(e�(1) � �0(1)) ! N

�
0, I�1

1

�
.
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Proof The proof can be found in Appendix A.4.

The regularity conditions (A)–(C) essentially assure asymptotic normality of the ordinary

maximum likelihood estimators. The additional assumption that �k has no zero component

for k = 1, . . . , K1 meets the need in the common applications of group sparsity such as

dummy variables introduced for a categorical predictor or basis functions based on one

variable in basis expansion.

Theorem 5.3.1 essentially established the “oracle” property of the gMIC estimator in

the usual sense. The feature selection consistency of gMIC is also established in the second

conclusion of Theorem 5.3.1. The asymptotic distribution of the “zero” part of the model

parameter, i.e., �(0), on the other hand, is not available here. This is very common under

regularized estimation scenarios where the asymptotic properties of the ”zero” part of the

estimators are typically missing.

Another observation is that, from the theoretical perspective, the gMIC is insensitive to

the choice of an. As long as an goes to infinity at the same rate with n, the above asymptotic

results are guaranteed. This observation is further supported by the numerical examples in

Section 5.5, where we found that the performance of gMIC is insensitive to the choice of an.

As a result, the parameter a can be fixed a priori without tuning.

5.4 Inference of � via �

We aim to make inferences about the gMIC estimate at the group level. Specifically, we

want to test if �k = 000 for a specific group k. This goal is not directly achievable from

Theorem 5.3.1, where the asymptotic distribution is only available for selected variables,

i.e., for �k 6= 000. Observe that the objective function (5.7) is smooth in �k, so the statistical

properties, or more specifically, the asymptotic normality, of �̃ is readily available following

standard M-estimator arguments. Also, notice that the reparameterization (5.6) is a bijection
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between �k and �k, and �k = 000 if and only if �k = 000. Consequently, testing �k = 000 is

equivalent to testing �k = 000, which can be done based on the asymptotic distribution of �̃.

In particular, we establish the asymptotic normality of �̃ in the following theorem,

Theorem 5.4.1 Let �0 be the reparameterized parameter vector associated with �0. Under

the regularity conditions (A)–(C) in [19], and that an = O(n), we have

p
n[D(�0)(�̃ � �0) + bn]

d
! N(0, I�1(�0)), (5.10)

where D(�0) is a K ⇥K block diagonal matrix with the k-th block being

Dk(�0) = {wkImk
+ 2an(1� w2

k)�0k�
T
0k}

��
�=�0

,

and the asymptotic bias

bn = {�L̈(�0)}
�1 ln(n)

2
diag

�
2an(1� w2

k)D
�1
k (e�k)e�k

 K

k=1
. (5.11)

And D and bn satisfy (i) limn!1[D(�0)]ii = I{�0i 6= 0}, limn!1[D(�0)]ij = 0 (i 6= j) and

(ii) bn = op(1).

Proof The proof can be found in Appendix A.5.

5.4.1 Testing H0 : �k = 0 v.s. H1 : �k 6= 0

Based on Theorem 5.4.1, a Wald-type test statistic for the k-th group of variable can be

defined by

�2
W,k := n(D̃k�̃k + b̃nk)

T I(�̃k)(D̃k�k + b̃nk),

where D̃k and b̃n are the estimate of Dk and bn, by replacing �0 with �̃. And the matrix

I(�̃k) is taken from the diagonal blocks of I(�̃) corresponding to the k-th group of variables,
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i.e.,

I(�̃) =

2

66664

I(�̃1) ⇤ ⇤

⇤
. . . ⇤

⇤ ⇤ I(�̃K)

3

77775
, with I(�̃k) 2 Rmk⇥mk

Further simplification of �2
W,k can be made by ignoring D̃k, D̃jj, b̃nk, and b̃nj, and as D̃k

approaches the identity for nonzero �k’s and 0 for zero �k’s, and b̃ ! 0. This results in

�2
W,k := n�̃T

k I(�̃k)�k. (5.12)

Under H0, the test statistic �2
W,k in (5.12) has an asymptotic �2

mk
-distribution. Then at

significance level ↵, we reject H0 when �2
W,k > �2

mk,1�↵. The p-value of the test for the k-th

group of variables can also be calculated from �2
W,k as

p-value = P (X > �2
W,k where X ⇠ �2

mk
), (5.13)

where �2
W,k is computed from (5.12).

5.4.2 Confidence Region of �k

Theorem 5.4.1 can also be used to construct confidence intervals for individual �j’s (j =

1, . . . , p) and confidence regions for the grouped variables �k’s (k = 1, . . . , K). Specifically,

a 100(1� ↵)% confidence interval of �j is given by

(D̃jj �̃j + b̃nj)± z1�↵/2

q
I�1(�̃)jj/n,

which can be simplified as

�̃j ± z1�↵/2

q
I�1(�̃)jj/n. (5.14)
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by ignoring both D̃jj and b̃nj since b̃nj = op(1). A 100(1 � ↵)% confidence region for �k is

given by

n
� 2 Rmk : n

⇥
D̃k(� � �̃k) + b̃nk

⇤T
I(�̃k)

⇥
D̃k(� � �̃k) + b̃nk

⇤
 �2

mk,1�↵

o
,

which can be simplified as

n
� 2 Rmk : n

�
� � �̃k

�T
I(�̃k)

�
� � �̃k

�
 �2

mk,1�↵

o
. (5.15)

5.5 Empirical Study

In this section, we conduct numerical simulations to evaluate the performance of gMIC and

compare it with available group variable selection methods, including the gLasso, the gSCAD,

and the gMCP. Two real data examples are also included to demonstrate the applications of

gMIC. We implement the gMIC algorithm in R [60] and use the R package grpreg [7] for the

computation of gLasso, gSCAD and gMCP. The penalization parameter � of gLasso, gMCP,

and gSCAD was selected by 10-fold cross-validation based on residual sum of squares for

linear models and deviance for logistic and log-linear (Poisson) models. All simulations and

real data analyses were done on a MAC laptop with a 1.6GHZ core i5 processor and a 4GB

RAM. The R code for this chapter can be find in https://github.com/liqun730/gMIC.

5.5.1 Numerical Simulations

This section presents simulation studies in di↵erent linear models and generalized linear

models designed to assess gMIC and compare it with other methods.
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Experiment 1

We first consider the linear regression model Y = X��� + ✏✏✏, where ✏✏✏ ⇠ N (0, �2I) with �2 = 1.

The design matrix X 2 Rn⇥p contains p = 12 predictors that are evenly divided into 4

groups. X is generated from N (0,⌃) with ⌃ = ⌃1 + ⌃2. Matrix ⌃1 has diagonal elements

equal to 1 and o↵-diagonal elements equal to ⇢1 = 0.1 or 0.3 indicating weak or moderate

levels of dependencies between groups, and matrix ⌃2 is a block diagonal matrix with 4

blocks, each block being a 3⇥ 3 matrix with diagonal elements 1 and o↵-diagonal elements

⇢2 = 0.7 indicating strong within group dependencies. Two sample sizes n = 100, 300 were

considered. For each n, �, ⇢1 and ⇢2 combination, we fit three di↵erent models:

Model A: ��� = (2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0)T ;

Model B: ��� = (0.67, 0.67, 0.67, 0.67, 0.67, 0.67, 0, 0, 0, 0, 0, 0)T ;

Model C: ��� = (5, 5, 5, 0.5, 0.5, 0.5, 0, 0, 0, 0, 0, 0)T .

Model A corresponds to strong and balanced signals across groups of variables; Model B

corresponds to balanced but weak signals; Model C corresponds to imbalanced signals across

groups of variables, which increases the di�culty of detecting the group of variables with

weaker signal (the second group). The parameter a was fixed at a = 100. The simulation was

repeated 200 times and the average performance was recorded. We consider six metrics of

performance, including mean squared error (MSE) defined as (�̃��0)
TE(XTX)(�̃��0)

where �0 is the true model parameter, Size defined as the number of non-zero groups, False

Positive (FP), False Negative (FN), Correct % representing the percentage of correct

model selection, and Time measuring the average time in seconds for a single run under

each setting.

The performance for � = 1 is shown in Table 5.1 below for ⇢1 = 0.1. The simulation

results for ⇢1 = 0.3 does not vary much. Except for the gLasso which has comparably inferior
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Performance
Method Model n MSE Size FP FN Correct % Time
gMIC Model A n = 100 0.083 2.015 0.015 0.000 0.985 0.052

n = 300 0.061 2.000 0.000 0.000 1.000 0.053
Model B n = 100 0.088 2.010 0.010 0.000 0.990 0.051

n = 300 0.059 2.025 0.025 0.000 0.975 0.049
Model C n = 100 0.088 2.030 0.030 0.000 0.970 0.048

n = 300 0.061 2.000 0.000 0.000 1.000 0.050
gLasso Model A n = 100 0.230 2.270 0.270 0.000 0.740 0.063

n = 300 0.106 2.105 0.105 0.000 0.900 0.079
Model B n = 100 0.240 2.205 0.205 0.000 0.810 0.064

n = 300 0.103 2.045 0.045 0.000 0.955 0.084
Model C n = 100 0.224 2.280 0.280 0.000 0.750 0.064

n = 300 0.105 2.075 0.075 0.000 0.930 0.078
gSCAD Model A n = 100 0.170 2.000 0.000 0.000 1.000 0.063

n = 300 0.124 2.000 0.000 0.000 1.000 0.078
Model B n = 100 0.187 2.000 0.000 0.000 1.000 0.062

n = 300 0.122 2.000 0.000 0.000 1.000 0.077
Model C n = 100 0.165 2.020 0.020 0.000 0.985 0.060

n = 300 0.108 2.000 0.000 0.000 1.000 0.075
gMCP Model A n = 100 0.134 2.000 0.000 0.000 1.000 0.063

n = 300 0.106 2.000 0.000 0.000 1.000 0.077
Model B n = 100 0.168 2.000 0.000 0.000 1.000 0.063

n = 300 0.117 2.000 0.000 0.000 1.000 0.081
Model C n = 100 0.187 2.015 0.015 0.000 0.990 0.060

n = 300 0.126 2.000 0.000 0.000 1.000 0.074

Table 5.1: Experiment 1: Comparison of gMIC with other methods with � = 1, a = 100,
and the cross-group correlation ⇢1 = 0.1.
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performance when the sample size is small, all other methods do very well in selecting variable

groups, with similar performances. Note that the gMIC seems to win out in terms of MSE.

This indicates that gSCAD and gMCP apply extra or unnecessary shrinkage to nonzero

estimates. Also, the gMIC is faster than other methods, a result from the fact that no

selection of the tuning parameter is involved in the computation of gMIC.

To check the stability of the gMIC with respect to an, we simulated data from each model

with ⇢1 = 0.1, n = 200, 300, 400, 500 and �2 = 1, 4. For each simulated data set, the gMIC

is applied with a = (25, 50, 75, 100, . . . , 500). We plot the percentage of correct model

selection against a. Figure 5.3 below, , showing such plots for Model C, indicates that the

gMIC performance is insensitive to the choice of a. We omit the results for model A and B

here for simplicity as they lead to the same conclusion.
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Figure 5.3: Experiment 1: Performance of the gMIC for model A with di↵erent choices of a
on the percentage of correct model selection.
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Experiment 2

To test the performance of gMIC when strong cross-group correlations are present, we follow

Experiment 1 from [87]. First, the latent variables Z1, Z2, . . . , Z15 were generated from the

multivariate normal distribution N(0,⌃) where ⌃ij = 0.5|i�j|. Then define Xi to be 0 if

zi < ��1(1/3); 2 if ��1(1/3) < zi < ��1(2/3); and 1 otherwise. The response variable Y is

generated from the following model,

Y = 1.8I(X1 = 1)� 1.2I(X1 = 0) + I(X3 = 1) + 0.5I(X3 = 0) + I(X5 = 1) + I(X5 = 0) + ✏,

(5.16)

where ✏ ⇠ N(0, �2). The discretization of Zi’s imposes a natural group structure as the

dummy variables I(Xi = 0), I(Xi = 1), and I(Xi = 2) form a group of variables.

The sample sizes n were set at 200, 300, and 500. The variance �2 was set to the values

that gave the signal-to-noise ratio (snr) of 2, and the approximation parameter a was set to

100. The simulation was repeated 200 times. Table 5.2 below is a summary of simulation

results of gMIC and other methods.

From Table 5.2, the performance of gMIC is comparable to gSCAD and gMCP in terms

of group variable selection, but consistently superior in terms of MSE and computing time.

The gLasso performs poorly for this model compared to other methods. There may be two

reasons for this. First, the gLasso introduces too much biases to the estimation, as can be

seen from the MSE column. Besides this, another reason for the deteriorated performance of

gLasso may be a result of the presence of strong correlations among groups of variables here.

It is well-known that when two variables are strongly correlated, the Lasso tends to select one

of them at random, which results in false negative selections, see [96]. To counter the e↵ect

of false negative selections that increases the residual sum of squares, the cross-validation is

in favor of a small � during parameter tuning, an observation that was also made in [25].
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Performance
Method n MSE Size FP FN Correct % Time
gMIC n=200 0.217 2.885 0.005 0.120 0.880 0.093

n=300 0.180 2.940 0.000 0.060 0.940 0.099
n=500 0.127 2.995 0.000 0.005 0.995 0.108

gLasso n=200 0.541 3.380 0.380 0.000 0.735 0.118
n=300 0.414 3.255 0.255 0.000 0.805 0.128
n=500 0.273 3.175 0.175 0.000 0.870 0.151

gSCAD n=200 0.524 3.125 0.155 0.030 0.875 0.119
n=300 0.385 3.040 0.040 0.000 0.965 0.129
n=500 0.238 3.025 0.025 0.000 0.975 0.156

gMCP n=200 0.454 2.960 0.010 0.050 0.945 0.118
n=300 0.341 2.990 0.005 0.015 0.980 0.129
n=500 0.224 2.995 0.000 0.005 0.995 0.153

Table 5.2: Experiment 2: A comparison of group MIC and other methods.

This in turn results in an increase in the false positive rate, as can be seen from the FP

column of Table 5.2. The comparison of gMIC and other methods for other signal-to-noise

ratios does not vary much, so we omit these results here.

Again, we check the stability of gMIC for model (5.16) to the choice of parameter a. As

shown in Figure 5.4 below, the performance of gMIC does not vary much across a wide range

of a.

Experiment 3

In this subsection, we conduct simulations for the logistic regression model,

y|x,� ⇠ Binomial(p|x,�), where logit(p|x,�) = x�,

and the Poisson model,

y|x,� ⇠ Poisson(exp(x�)),
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Figure 5.4: Experiment 2: performance of the gMIC with di↵erent choices of a on the
percentage of correct model selection with di↵erent signal-to-noise ratios (snr).

where � = (1, 1, 1, 0.5, 0.5, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0)T 2 R15. We split the parameter vector �

evenly into 5 groups. The design matrix X is generated from

X ⇠ N(0,⌃) with ⌃ = ⌃1 + ⌃2

where ⌃1 is the matrix with diagonal elements equal to 1 and o↵-diagonal elements equal

to ⇢1 = 0.1, and ⌃2 is a block diagonal matrix with ten blocks, where each block is 3 ⇥ 3

matrix with diagonal elements 1 and o↵-diagonal elements ⇢2 = 0.6. The covariance matrix ⌃

indicates that there are weak correlations (⇢1 = 0.1) between covariates from di↵erent groups

and relatively strong correlations (⇢2 = 0.6) among covariates in the same group. The sample

size is chosen at n = 300, 500. The performance of gMIC is evaluated at a = 100 for both

logistic regression and Poisson regression models for each n. The simulation was repeated
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200 times and the results are summarized in Table 5.3 and Table 5.4 below.

Performance
Method n MSE Size FP FN Correct % Time
gMIC n=300 0.146 2.000 0.000 0.000 1.000 0.164

n=500 0.133 2.000 0.000 0.000 1.000 0.165
gLasso n=300 2.936 2.505 0.505 0.000 0.645 0.300

n=500 2.408 2.330 0.330 0 .000 0.740 0.388
gSCAD n=300 0.852 2.000 0.000 0.000 1.000 0.182

n=500 0.441 2.000 0.000 0.000 1.000 0.247
gMCP n=300 0.936 1.995 0.000 0.005 0.995 0.184

n=500 0.467 2.000 0.000 0.000 1.000 0.250

Table 5.3: Experiment 3: Comparison of gMIC and other methods for logistic regression
model.

Performance
Method n MSE Size FP FN Correct % Time
gMIC n=300 0.091 2.000 0.000 0.000 1.000 0.135

n=500 0.081 2.000 0.000 0.000 1.000 0.150
gLasso n=300 3.104 2.705 0.705 0.000 0.520 0.203

n=500 2.132 2.525 0.525 0.000 0.595 0.278
gSCAD n=300 0.344 2.000 0.000 0.000 1.000 0.196

n=500 0.205 2.000 0.000 0.000 1.000 0.237
gMCP n=300 0.357 2.000 0.000 0.000 1.000 0.205

n=500 0.255 2.000 0.000 0.000 1.000 0.221

Table 5.4: Experiment 3: Comparison of gMIC and other methods for Poisson regression
model.

The gMIC, gSCAD, and gMCP work exceptionally well for the logistic and Poisson

models, with correct models selected for almost all of the 200 repetitions. However, gMIC

still wins out in both ME and computing time. The notably inferior performance of gLasso

may still be the result of introducing too much bias to the estimation and the presence of

cross-group correlation. Among all the methods, the gMIC has significantly smaller MSE
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and faster computational time. We comment that, similar to Experiment 1 and Experiment

2, the performance of gMIC is still stable across a wide range of a for the logistic regression

models and Poisson regression models.

Inference of � via �

In this subsection, we conduct inference of � via �. Since we are considering group variable

selection, we report the p-value for testing an entire group of variables instead of a single

variable, i.e., the test is in the form of H0 : �k = 0 v.s. H1 : �k 6= 0, where the p-value

is computed according to (5.13). Further, we compute the confidence region for each group

of variables according to (5.15) and report its empirical coverage probability. We present

the inference results for the linear model in Experiment 2 and the logistic regression model

in Experiment 3. The size of the tests were fixed at ↵ = 0.05 and the 95% confidence

regions were computed. For Experiment 2, we consider n = 100, 200, 300 and signal-to-

noise ratios snr = 0.5, 1. For the logistic regression model in Experiment 3, we consider n =

200, 300, 400, and the “strong” model � = (1, 1, 1, 0.5, 0.5, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0)T 2 R15

and the “weak” model � = (0.33, 0.33, 0.33, 0.17, 0.17, 0.17, 0, 0, 0, 0, 0, 0, 0, 0, 0)T 2 R15. For

both models, the parameter a were fixed at a = 100. The inference results based on 1, 000

repetitions are summarized in Tables 5.5 and 5.6. To save space, we omit X6 to X15 and

only include the empirical coverages for X1 to X5 in Table 5.5. The empirical coverages of

X6 to X15 are all around the nominal 95% coverage, similar to those of X1 to X5. Empirical

power is based on the p-value (5.13) and empirical coverage is based on the confidence region

(5.15).
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Empirical Power Empirical Coverage
n SNR X1 X3 X5 X1 X2 X3 X4 X5

n=100 0.5 0.595 0.110 0.154 0.937 0.956 0.951 0.930 0.940
1 0.994 0.312 0.465 0.943 0.937 0.942 0.951 0.940

n=200 0.5 0.922 0.223 0.287 0.941 0.949 0.946 0.932 0.939
1 1.000 0.646 0.828 0.948 0.929 0.926 0.943 0.932

n=300 0.5 0.988 0.290 0.437 0.937 0.941 0.953 0.945 0.956
1 1.000 0.847 0.959 0.948 0.938 0.929 0.936 0.960

Table 5.5: Experiment 2: Inference of � via �.

Empirical Power Empirical Coverage
n Model �1 �2 �1 �2 �3 �4 �5

n=200 strong 1.000 1.000 0.969 0.964 0.953 0.954 0.955
weak 1.000 0.690 0.962 0.726 0.966 0.961 0.961

n=300 strong 1.000 1.000 0.958 0.962 0.956 0.966 0.954
weak 1.000 0.814 0.958 0.779 0.981 0.983 0.973

n=400 strong 1.000 1.000 0.956 0.956 0.961 0.960 0.968
weak 1.000 0.889 0.963 0.860 0.992 0.994 0.993

Table 5.6: Experiment 3: Inference of � via � for the logistic regression model.

Summary of the Simulation Results

From Experiments 1–3 we can see that the gMIC produces comparable performances com-

pared to the gMCP and gSCAD in terms of model selection accuracy. Compared to other

methods, the gMIC generates smaller ME’s, an indication that the gMIC penalty introduces

less bias to the estimation compared to the MCP or SCAD penalty. The gMIC is not sen-

sitive to the choice of parameter a, as its performance stays stable for a wide range of a. In

practice, we find that setting a = min(n, 100) typically yields good performance.

The gMIC is also faster than other methods. The computational advantage of gMIC

comes from the fact that it does not require parameter tuning for �. We emphasize that

the gMIC code was written in R with no specific implementation level optimization, while

the gLasso, gSCAD, and gMCP were implemented in the R package grpreg with intensive

usage of C++. So the computational advantage of gMIC over other methods may not be
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fully uncovered here. The grpreg package also used a fast group descent algorithm proposed

in [8] to accelerate the computation. We point out that this group descent algorithm could

also potentially be used for gMIC, which could be a future research avenue.

5.5.2 Real Data Examples

We analyze the mpg dataset from the UCI Machine Learning Repository [44] and the birthwt

dataset from the R packageMASS [70]. Either dataset has categorical features which induce

naturally grouped dummy variables. A linear model and a logistic regression model were used

for the mpg dataset and the birthweight dataset separately. The gLasso, gSCAD, gMCP,

and gMIC were used to conduct model selection for both datasets. For model interpretability

concern, an intercept term is always included and unpenalized in all these approaches.

The mpg Data

The mpg dataset was first used in the 1983 American Statistical Association Exposition for

testing several graphical analysis packages, and was later used in [59] for the study of city-

cycle fuel consumption in miles per gallon. The dataset consists of 395 samples and 7 covari-

ates, including 6 numerical variables (cylinders, displacement, horsepower, weight,

acceleration, model year) and 1 categorical variable (origin, 3 categories). The cate-

gorical variable origin introduces two dummy variables origin2 and origin3, which form

a group of variables. The response is the mpg, a continuous variable indicating the fuel e�-

ciency of a car in term of miles-per-gallon. We generate dummy variables for the categorical

variable origin and fit a group penalized linear regression with gLasso, gSCAD, gMCP, and

gMIC. For gMIC, the standard error of the estimation �̂ was obtained from Theorem 5.3.1

(ii) and a single p-value is computed for each group of variables according to (5.13) and is

hence reported only once for origin2 and origin3. Table 5.7 summarizes the results. We put

NA’s in the Intercept row since the intercept is not a part of the variable selection process
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Full model gMIC
�̂ SE �̂ SE p-value gLasso gSCAD gMCP

Intercept 23.450 0.166 23.450 0.166 0.000 NA NA NA
cylinders �0.347 0.569 0.000 0.990 X X
displacement 2.036 0.771 0.000 1.000
horsepower 0.309 0.202 0.000 1.000
weight �6.084 0.496 �5.649 0.495 0.000 X X
acceleration 0.433 0.213 0.000 1.000
year 2.936 0.186 2.771 0.182 0.000 X X X
origin2 1.019 0.212 0.776 0.170 0.000 X
origin3 1.063 0.214 0.879 0.210

Table 5.7: A comparison of model selection between gMIC, gLasso, gSCAD, and gMCP for
the mpg data.

as we always include an intercept for the model.

The gMIC and gLasso have the same selected model while the gSCAD and gMCP

failed to select the origin. Two sub-models with cylinders+weight+year+origin or

cylinder+year+origin were fit, and in both of the submodels the origin appeared to be

highly significant. A submodels with year+weight+cylinder was also considered, in which

the cylinder has a p-value over 0.7 while weight is highly significant. These observations pro-

vided evidence that weight and origin, instead of cylinders, should have been selected by

the gSCAD and gMCP. The p-values obtained from (5.13) also support the selection result

of gMIC.

The Birthweight Data

The birthweight data were collected at Baystate Medical Center, Springfield, Mass during

1986. The dataset used here was obtained from the R package grpreg and is a reparameter-

ized version of the birthwt data in the R package MASS. The birthweight dataset contains

189 observations and 16 predictors. The response is the binary indicator of low birthweight

(1-low and 0-normal) and the predictors describe features of mothers who were giving birth
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Full model gMIC
�̂ SE �̂ SE p-value gLasso gSCAD gMCP

Intercept �0.953 0.182 �0.924 0.181 0.000 NA NA NA
age1 0.089 0.234 0.000 0.000 1.000
age2 0.122 0.226 0.000 0.000
age3 �0.296 0.252 0.000 0.000
weight1 �0.656 0.276 �0.682 0.280 0.007 X X X
weight2 �0.160 0.291 �0.196 �0.209
weight3 �0.315 0.237 �0.294 0.205
race 0.325 0.172 0.366 0.174 0.053 X X X
smoke 0.326 0.172 0.328 0.166 0.065 X X X
ptl �0.131 0.176 0.000 1.000
height 0.477 0.182 0.494 0.178 0.006 X X X
ui 0.342 0.164 0.318 0.120 0.049 X X X
ftv2 �0.078 0.186 0.000 1.000
ftv3 0.214 0.178 0.000

Table 5.8: A comparison of model selection between gMIC, gLasso, gSCAD, and gMCP for
the birthwt data.

to the babies. The age variable is further categorized into four levels (0: under 18; 1: 18

to 25; 2: 25 to 30; 3: over 30). The 16 predictors include the categorical age with four

levels, weight (polynomial terms with degree up to 3), race (black or white), smoke, ptl

(previous premature labors), height, ui (presence of uterine irritability), and ftv (ftv2,

ftv3 indicating number of physician visits). A penalized logistic regression was fit to the

data with gLasso, gSCAD, gMCP and gMIC. The model selection results are summarized

in Table 5.8. Again, the selection and p-value calculation were conducted at a group level

and hence we only present them for the first variable of each group. All methods selected

the same model.
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5.6 Conclusion and Discussion

We proposed the gMIC method for group variable selection. Derived as an approximation

to BIC, the gMIC does not involve parameter tuning compared to existing group variable

selection methods. We established the oracle property of the gMIC estimator. The simulation

results indicate that the gMIC has comparable performance compared to other group variable

selection methods while being computationally more e�cient. The gMIC is insensitive to

the approximation parameter an in theory, since the oracle property holds as long as an goes

to infinity with n. This is further supported by the empirical study, as we found that the

gMIC performance is stable for a wide range of an values in all the simulations. On these

bases, we recommend fixing the approximation parameter an at min(100, n), in gMIC.

The gMIC can be thought of as a bridge between the penalization methods and infor-

mation criteria as it inherits the benefits of both sides. On one hand, like the penalization

methods, the gMIC has a continuous objective function that can be solved e�ciently with

existing optimization tools. On the other hand, as an approximation of the information cri-

terion, the gMIC involves no parameter tuning, and is hence computationally advantageous

compared to penalization methods where the penalization parameter needs to be tuned.

With the fixed parameter an, The computational complexity involved in gMIC is essentially

equivalent to that of a penalization method with a fixed penalty parameter. In this chapter,

we considered variable selection with a fixed dimension p. Under high-dimensional settings,

dimensionality grows with sample size. The gMIC can potentially be extended to high-

dimensional model selection by approximating the Extended BIC in [12]. We leave this to

our future work.

Finally, we would like to emphasize that, although we illustrate the application of gMIC

in the generalized linear model, it shall be considered as a general approach for group variable

selection. The gMIC can be naturally extended to other models, for example, the Cox PH
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model [14] and especially, the quantile regression model. By replacing the penalty term in

(1.3) with the gMIC penalty, we can conduct group variable selection for quantile regression

too. This, combined with distributed optimization algorithms similar to Chapters 3 and 4

(we do emphasize that the ADMM is not able to solve the non-linear gMIC)can further reduce

the computational time for large-scale quantile regression. This can be very interesting future

work.
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Chapter 6

Conclusion and Future Work

In this thesis, we provide solutions to distributed quantile regression analysis for big data.

Specifically, we propose distributed and scalable numerical optimization algorithms for solv-

ing the quantile regression optimization based on the distributed ADMM algorithm. The

QR-ADMM and QPADM algorithms proposed in Chapters 3 and 4 provide e�cient numer-

ical tools for penalized quantile regression optimization. They enjoy the favorable property

of great scalability by enabling easy and flexible parallelization, and have shown to signifi-

cantly outperform traditional linear programming methods even in non-parallel case. As an

independent but closely related topic, Chapter 5 proposed a computationally e�cient group

variable selection method that is free of parameter tuning. The gMIC method, although

proposed under the generalized linear model context, can be directly applied to quantile

regression for feature selection.

The current thesis aims to address large-scale penalized quantile regression via the nu-

merical approaches. An interesting future work is to derive divide-and-combine strategies for

quantile regression aggregation. As current DC-based methods, including the aggregated es-

timating equation [45] and the distributed one-step estimator [29] focus on smooth problems,

they can not be directly applied to the non-smooth quantile regression. An idea to extend
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DC for the non-smooth quantile regression is through kernel smoothing. For example, [27]

applied a specific form of kernel smoothing to the `1 loss function in median regression. We

can apply similar kernel smoothing for the quantile check loss too. For high-dimensional

cases, a type of high-dimensional distributed learning algorithm of special interest to us is

the approximate Hessian methods in [36, 73]. In [36, 73], the global loss function is approxi-

mated with Taylor expansion where the global Hessian matrix is approximated by the local

Hession. Based on this approximation, a distributed method can be derived. Essentially

with smooth approximations, all these methods can be applied to quantile regression. We

have done some preliminary theoretical analysis and simulation studies on this topic, and the

results look very promising. Another important future work is to implement our algorithms

in distributed computing frameworks. As can be seen in the simulation studies in Chapters

3 and 4, we currently implement our parallel algorithms in a non-parallel way by stacking up

the parallel components of the computation. As a next step, we plan to have truly parallel

implementations of these algorithms on distributed computing frameworks like the Spark

[88].

Some other future work is related to the gMIC method. First, one may want to extend

the gMIC to the varying p case when the dimension p grows with n. One may borrow

ideas from the extended BIC in [12]. Second, as the current theoretical analysis of the

gMIC method focuses on GLM, it would be beneficial to extend the theoretical framework

to penalized quantile regression too. Finally, combining the gMIC with methods proposed

in previous chapters can be a challenging while highly rewarding task. Since it is di�cult

to write the gMIC into the ADMM form, approaches proposed in Chapters 3 and 4 may be

directly applied to solving the gMIC optimization. Other than the ADMM, one may need

to resort to other distributed optimization tools for distributed gMIC optimization.
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Chapter 7

Appendix

A.1. Proof of Theorem 3.1.1

Proof The proof of Theorem 3.1.1 mainly follows from the proof in [6]. We reproduce it

here for completeness.

Without loss of generality, we assume that the columns of X are normalized. Define

eeek := yyy �X���k
� rrrk and V k := ��1

kuuuk
� uuu⇤

k
2
2 + �krrrk � rrr⇤k22. Our goal is to show that V k is

decreasing w.r.t. the iteration number k. First, since (rrr⇤,���⇤,uuu⇤) is the saddle point of L0,

we have

L0(rrr
⇤,���⇤,uuu⇤)  L0(rrr

k+1,���k+1,uuu⇤) (7.1)

for any k. Rearranging (7.1) we have

p⇤ = ⇢⌧ (rrr
⇤) + P�(�

⇤
�0�⇤
�0�⇤
�0)  ⇢⌧ (rrr

k+1) + P�(�
k+1
�0�k+1
�0�k+1
�0 ) + (uuu⇤)Teeek+1 = pk+1 + (uuu⇤)Teeek+1. (7.2)

Also, since ���k+1 is the minimum at the (k + 1)-th update, we have 0 2 @���L�(rrrk,���k+1,uuuk),
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i.e. 0 2 @�P�(�
k+1
�0�k+1
�0�k+1
�0 ) � XTuuuk + �XT (X���k+1 + rrrk � yyy). Plugging in uuuk = uuuk+1

� �eeek+1 and

rearranging, we have 0 2 @�P�(��0��0��0
k+1)�XT

�
uuuk+1 + �(rrrk+1

� rrrk)
�
, from which we have the

conclusion that

���k+1 = argmin
�

P�(��0��0��0)�
�
uuuk+1 + �(rrrk+1

� rrrk)
�T

X���.

Remark. The above aguements cannot hold for a non-convex penalties since a non-convex

function does not have a subdi↵erencital. So for non-convex penalized quantile regression

we need di↵erent techniques to prove.

Similarly for rrr, we have

rrrk+1 = argmin
rrr

⇢⌧ (rrr)� (uuuk+1)Trrr. (7.3)

Then we have

P�(�
k+1
�0�k+1
�0�k+1
�0 )�

�
uuuk+1 + �(rrrk+1

� rrrk)
�T

X���k+1
 P�(�

⇤
�0�⇤
�0�⇤
�0)�

�
uuuk+1 + �(rrrk+1

� rrrk)
�T

X���⇤, (7.4)

and also

⇢⌧ (rrr
k+1)� (uuuk+1)Trrrk+1

 ⇢⌧ (rrr
⇤)� (uuuk+1)Trrr⇤. (7.5)

Adding (7.4) and (7.5) and using the fact that yyy �X���⇤
� rrr⇤ = 0, we have

pk+1
� p⇤  �(uuuk+1)Teeek+1

� �(rrrk+1
� rrrk)T (eeek+1 + rrrk+1

� rrr⇤) (7.6)

Adding up (7.2) and (7.6) and replacing uuuk+1 and uuuk+1
�uuuk by uuuk and uuuk+1

�uuu⇤
� (uuuk

�uuu⇤),

respectively, and after some simplification, we have

V k+1
� V k

 ��kek+1ek+1ek+1
k
2
2 � �krrrk+1

� rrrkk22 + 2�eeek+1(rrrk+1
� rrrk). (7.7)
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Finally from (7.3), we have

⇢⌧ (rrr
k+1) + (uuuk+1)Trrrk+1

 ⇢⌧ (rrr
k) + (uuuk+1)Trrrk, (7.8)

and

⇢⌧ (rrr
k) + (uuuk)Trrrk  ⇢⌧ (rrr

k+1) + (uuuk)Trrrk+1. (7.9)

Adding up (7.8) and (7.9), we have

(uuuk+1
� uuuk)(rrrk+1

� rrrk) = �eeek+1(rrrk+1
� rrrk)  0.

So in (7.7), we actually have

V k+1
� V k

 ��kek+1ek+1ek+1
k
2
2 � �krrrk+1

� rrrkk22. (7.10)

Since V k > 0, we have eeek+1 = yyy�X���k+1
�rrrk+1

! 0 and rrrk+1
�rrrk ! 0.And since V k

 V 0,

the sequences uuuk and rrrk, k = 1, 2, . . . , are bounded. So from (7.6), we have the convergence

of the objective funciton: pk+1
! p⇤. And also rrrk+1

! r̃̃r̃r⇤, uuuk+1
! ũ̃ũu⇤, and X���k+1

! yyy � r̃̃r̃r⇤

for some r̃̃r̃r⇤ and ũ̃ũu⇤. If Assumption 3.1.3 holds, then the convergence of X���k+1 implies the

convergence of ���k+1: ���k+1
! �̃̃�̃�⇤. And we have

lim
k!1

pk+1 = lim
k!1

⇢⌧ (rrr
k+1) + P�(�

k+1
�0�k+1
�0�k+1
�0 ) = ⇢⌧ (r̃̃r̃r

⇤) + P�(�̃
⇤
�0�̃⇤
�0�̃⇤
�0) = p⇤

and yyy �X�̃̃�̃�⇤ = r̃̃r̃r⇤. That is, r̃̃r̃r⇤ and �̃̃�̃�⇤ is a solution of (3.1).

A.2. Proof of Theorem 3.1.2

To prove Theorem 3.1.2, we need the following lemmas,
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Lemma 1 The Lagrangian L(rrrk+1,���k+1,uuuk+1) is decreasing w.r.t. k, and we have

L�(uuu
k+1, rrrk+1,���k+1)� L�(uuu

k, rrrk,���k)  (
1

4�2�
�

�

2
)krrrk+1

� rrrkk2  0.

Proof From the optimality condition of the rrr-update in (3.2), we have,

0 2 @⇢⌧ (rrr
k+1) + �

�
rrrk+1

� ��1uuuk
� yyy +X���k+1

�
,

where @ is the subdi↵erential of a nonsmooth function. Plugging in the uuu-update, we have

uuuk+1
2 @⇢⌧ (rrrk+1).

Since Assumption 3.1.4 holds, when |uk+1
i �uk

i | = 1, rk+1
i and rki have di↵erent signs and

so |rk+1
i � rki | � 2�; otherwise, |uk+1

i � uk
i | = 0. So we always have

kuuuk+1
� uuuk

k
2
2 

1

4�2
krrrk+1

� rrrkk22. (7.11)

We then split the successive di↵erence of augmented Lagrangian by

L�(uuu
k+1, rrrk+1,���k+1)� L�(uuu

k, rrrk,���k)

=L�(uuu
k+1, rrrk+1,���k+1)� L�(uuu

k, rrrk+1,���k+1) + L�(uuu
k, rrrk+1,���k+1)� L�(uuu

k, rrrk,���k)
(7.12)

The first term on the RHS of (7.12)

L�(uuu
k+1, rrrk+1,���k+1)�L�(uuu

k, rrrk+1,���k+1) = (uuuk+1
�uuuk)T (yyy�X���k+1+rrrk+1) = ��1

kuuuk+1
�uuuk

k
2
2.
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The second term on the RHS of (7.12) can be bounded by

L�(uuu
k, rrrk+1,���k+1)� L�(uuu

k, rrrk,���k)

=L�(uuu
k, rrrk+1,���k+1)� L�(uuu

k, rrrk,���k+1) + L�(uuu
k, rrrk,���k+1)� L�(uuu

k, rrrk,���k)

L�(uuu
k, rrrk+1,���k+1)� L�(uuu

k, rrrk,���k+1) + 0



n
h@rrrL(uuu

k, rrrk+1,���k), rrrk+1
� rrrki �

�

2
krrrk+1

� rrrkk2
o
= �

�

2
krrrk+1

� rrrkk2.

where the last inequality comes from the fact that L is �
2 -strongly convex w.r.t rrr. Combining

the above two parts, when � > 1p
2�
,

L�(uuu
k+1, rrrk+1,���k+1)� L�(uuu

k, rrrk,���k)  ��1
kuuuk+1

� uuuk
k
2
2 �

�

2
krrrk+1

� rrrkk2

 (
1

4�2�
�

�

2
)krrrk+1

� rrrkk2  0,

where the second last inequality comes from (7.11). Our conclusion then follows.

Remark. The relationship between uuuk+1
� uuuk and rrrk+1

� rrrk is crucial to establish the

monotonicity of the Lagrangian. When function ⇢⌧ is Lipschitz continuous, this relationship

can be achieved from the fact that uuu = @⇢⌧ (rrr). Since here @⇢⌧ does not have Lipschitz

continuity, Assumption 3.1.4 becomes necessary to establish (7.11).

Lemma 2 limk!1 L�(uuuk, rrrk,���k) = L⇤ for some constant L⇤.

Proof Based on Lemma 1, we only need to prove that L�(uuuk, rrrk,���k) is bounded below.

L�(uuu
k, rrrk,���k) = ⇢⌧ (rrr

k) + �uuuk(yyy �X���k
� rrrk) +

�

2
kyyy �X���k

� rrrkk2 + P�(��0��0��0)

= ⇢⌧ (rrr
k) + P�(��0��0��0) + (uuuk)T (uuuk

� uuuk�1) +
�

2
kuuuk

� uuuk�1
k
2,

which is bounded below since uuuk is uniformly bounded by max(⌧, 1� ⌧).
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Now we are ready to prove Theorem 3.1.2.

Combining the conclusions of Lemma 1 and Lemma 2 we have rrrk+1
� rrrk ! 0, and

hence X(�k�k�k
� �k+1�k+1�k+1) = rrrk+1

� rrrk ! 0.

Let (r⇤r⇤r⇤,�⇤�⇤�⇤,uuu⇤) be any cluster point of (rkrkrk,�k�k�k,uuuk), then by the definition of ���k, rrrk,uuuk, and

taking limit w.r.t. k, we have

yyy �X���⇤ = rrr⇤,

0 2 @⇢⌧ (rrr
⇤) + uuu⇤,

���⇤ = argmin
���

�

2

��uuuk + yyy �X��� � rrrk+1
��2
2
+ P�(��0��0��0).

(7.13)

That is, (���⇤, rrr⇤,uuu⇤) is a stationary point of (3.1).

If Assumptions 3.1.2 and 3.1.3 also hold, then rrrk ! r̃̃r̃r⇤ and ���k
! �̃̃�̃�⇤ for some r̃̃r̃r⇤ and �̃̃�̃�⇤,

and uuuk = @⇢⌧ (rrrk) ! @⇢⌧ (r̃̃r̃rk) := ũ̃ũuk. And again by the definition of ���k, rrrk,uuuk, and taking

limit w.r.t. k, we have (7.13) holds for r̃̃r̃r⇤, �̃̃�̃�⇤ and ũ̃ũu⇤. That is, (�̃̃�̃�⇤, r̃̃r̃r⇤, ũ̃ũu⇤) is a stationary

point of (3.1).

A.3. Proof of Lemma 5.3.1

We will use the following two matrix inequalities in Lemma 6.3.1.0, whose proofs are omitted.

Lemma 6.3.1.0 Suppose that A = (aii0) 2 Rm⇥m is a symmetric matrix and x = (xi) 2 Rm

is an m-dimensional vector.

(i) If |aii0 |  M0 for i, i0 = 1, . . . ,m, then x
T
Ax  mM0kxk

2.

(ii) If A � 0 with eigenvalues d1 < d2 < · · · < dm, then kAxk  dmkxk.

We now prove Lemma 5.3.1.
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Proof We omit (i) and prove (ii) by the inverse function theorem. This is because

dw

d�
=

d�

d�
·
dw

d�
=

✓
d�

d�

◆�1

·
dw

d�

= 2a(1� w2)
�
w Ivvm + 2a(1� w2)��T

 �1
�.

The matrix d�/d� is not invertible at � = � = 0.

A.4. Proof of Theorem 5.3.1

Proof (i) It su�ces to show that, 8" > 0, 9 a large constant C > 0 s.t.

Pr

⇢
inf

kuk=C
Qn(�0 +

u
p
n
) > Qn(�0)

�
� 1� ".

This implies the existence of a local minimum e� of Qn(�) within the ball {�0 + u/
p
n :

kuk  C} and hence e� is
p
n-consistent for �0.

For notational convenience, we simply denote it as w(�k) when w(�k) = tanh(ak�kk
2
2)

is treated as a function of �k. Consider

Dn = Qn(�0 +
u
p
n
)�Qn(�0)

= �2

⇢
Ln(�0 +

u
p
n
)� Ln(�0)

�
+ ln(n)

KX

k=1

mk

⇢
w(�0k +

uk
p
n
)� w(�0k)

�

� �2

⇢
Ln(�0 +

u
p
n
)� Ln(�0)

�
+ ln(n)

K1X

k=1

mk

⇢
w(�0k +

uk
p
n
)� w(�0k)

�

= �
2
p
n
u
T
rL(�0)�

1

n
u
T
r

2L(�0)u{1 + op(1)}+
ln(n)
p
n

K1X

k=1

mku
T
k

dw(�0k)

d�k

{1 + o(1)}

= I + II + III (7.14)

The third step is obtained since
PK

k=K1+1 w(�0k) = 0 and
PK

k=K1+1 w(�0k + uk/
p
n) � 0.
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Under regularity conditions (A)–(C) in Lemma 5.3.1, rL(�0) is Op(
p
n). Thus the term I

is Op(kuk). Since r
2L(�0) = �nI, the term II equals

�
1

n
u
T (�nI)u{1 + op(1)} = Op(u

T
Iu),

which dominates the term I if kuk = C is su�ciently large. We next bound term III and

show that it is also dominated by term II. By Lemma 5.3.1(ii),

III =
ln(n)
p
n

K1X

k=1

mk,u
T
k

�
2an(1� w2

k)Ak
�1�0k

 
{1 + o(1)}

where matrix Ak = wk Ivm + 2an(1 � w2
k)�0k�

T
0k ⌫ 0. Let �min(A) denote the minimum

eigenvalue of a symmetric matrix A. By the Cauchy-Schwarz inequality, III is bounded by

2an ln(n)
p
n

K1X

k=1

mk(1� w2
k)kukk · kAk

�1�0kk


2an ln(n)

p
n

K1X

k=1

mk(1� w2
k)

�min(Ak)
kukk · k�0kk (by Lemma 0),


2an ln(n)

p
n

K1X

k=1

mk(1� w2
k)

�min(wk Ivm)
kukk · k�0kk

=
2 ln(n)
p
n

K1X

k=1

mkan(1� w2
k)

wk
kukk · k�0kk.

The third inequality holds since �min(Ak) � �min(wk Ivm) as an application of the variational

theorem. For for 1  k  K1, kk�0kk is bounded from below. Hence

an(1� w2
k)

wk
=

an sech(an k�0kk
2)

tanh(ank�0kk
2)

=
2an

exp(ank�0kk
2)� exp(�ank�0kk

2)
,

which is bounded if either an is set as a constant or limn!1 an = 1. As a result, term III is of

order O(ln(n)kuk/
p
n) and dominated by term II as well. In view of I � 0 under regularity
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conditions, term II > 0 and hence Dn > 0 with probability tending to one as n ! 1. This

completes the proof of (i) of Theorem 5.3.1.

(ii) It su�ces to show that, for any
p
n-consistent � = (�T

(1),�
T
(0))

T such that k�(1)��0(1)k =

Op(1/
p
n) and k�(0)k = Op(1/

p
n), @Qn(�)/@�j has the sign as �j for any component �j of

�(0) with probability tending to 1 as n ! 1. In this case, Qn decreases when �j < 0 and

increases when �j > 0, hence reaches a local minimum at �j = 0.

Suppose that �j is in the k-th group, for k 2 {K1+1, . . . , K}. The quantity @Qn(�)/@�j

is
@Qn(�)

@�j
= � 2

@Ln(�)

@�j
+ ln(n)mk

@wk

@�j
= I + II

for j = (p1+1), . . . , p when evaluated at �. Note that �j = Op(1/
p
n) yet �j 6= 0 for �j 2 �(0).

By standard arguments (see [19]) and using the fact that k� � �0k = Op(1/
p
n), the first

term I is of order Op(
p
n) under the regularity conditions. It remains to show that term II

is of higher order than Op(
p
n) and has the same sign as sign(�j). To this end, consider

@wk

@�j
=

2an�j(1� w2
k)

wk + 2an�2
j (1� w2

k)
=

4an�j
exp(ank�kk

2) + exp(�ank�kk
2) + 4an�2

j

(7.15)

by Lemma 5.3.1(ii). Since an = O(n) and �jwk = �j = Op(1/
p
n), it follows that �j =

Op(1/
p
n) and an�2

j = Op(1). Thus @wk/@�j in (7.15) is Op(1/�j) = Op(
p
n) and hence

term II is Op{ln(n)
p
n}, dominating term I. Besides, the sign of term II is the same as

sign(�j) = sign(�j) as seen in (7.15).

With slight abuse of notations, define

b�(1) = argmax
{�: �(0)=0}

Ln(�)

to be the oracle estimator. We prove the desired asymptotic normality of e�(1) by showing
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that

ke�(1) �
b�(1)k = op(1/

p
n) (7.16)

and then making an appeal to Slutsky’s theorem.

First of all, since both e�(1) and b�(1) are
p
n-consistent to �0(1), it follows immediately by

the triangular inequality that ke�(1) �
b�(1)k = Op(1/

p
n). By the definition of e�(1), it must

satisfy
ln(n)

2

@
PK

k=1 mkwk(�̃k)

@�j
= rjLn(e�(1)) (7.17)

for j = 1, . . . , p1, where rjLn(e�(1)) = @Ln/@�j evaluated at e�(1). Expanding the RHS of

(7.17) at b�(1) yields

ln(n)

2

@
PK1

k=1 mkwk(e�k)

@�j
= rjLn(b�(1)) + (e�(1) �

b�(1))
Tr2

jLn(b�(1))

+ (e�(1) �
b�(1))

Tr3
jLn(xi)(e�(1) �

b�(1)), (7.18)

whererjLn(b�(1)) = 0 by the definition of b�(1); r2
jLn(b�(1)) 2 Rp1 is the j-th column vector of

the Hessian matrix (or the negative observed total Fisher information matrix I1n) evaluated

at b�(1); and

r3
jLn(xi) =

✓
@3Ln(xi)

@�j@�j0@�j00

◆

j0,j00=1,...,p1

2 R
p1⇥p1 .

for some xi falling between e�(1) and b�(1). Note that I1n/n
p
! I1.

Define v = (vj)
p1
j=1 2 R

p1 with vj =
PK

k=1 mk@wk/@�j for the LHS of (7.18). Define

vector r = (rj) 2 R
p1 such that rj equals the remainder term on the RHS of (7.18). One

regularity condition states that every third derivative element in r3Ln/n is bounded in

probability. By Lemma 0, we have

|rj|/n  C · ke�(1) �
b�(1)k

2, (7.19)
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for some constant C w.p.t.1 as n ! 1. In matrix form, (7.18) now becomes

e�(1) �
b�(1) =

1

n

✓
I1n

n

◆�1

r �
ln(n)

2n

✓
I1n

n

◆�1

v

) ke�(1) �
b�(1)k 

�����

✓
I1n

n

◆�1
r

n

����� +
ln(n)

2n

�����

✓
I1n

n

◆�1

v

����� = I + II.

With some algebra, it can be shown that the first term I is Op(ke�(1) �
b�(1)k

2) = Op(1/n)

and dominates the second term II, which is of order Op{ln(n)/ exp(nmaxk k�
2
0kk

2)}. Thus,

the proof is completed

A.5. Proof of Theorem 5.4.1

Proof First, note that � � �w(�) = �{1 � tanh(ank�k2)} = 2�/{exp(2ank�k2) + 1}. It

follows that |k�0kk � k�0kk| = O{exp(�2ank�0kk)} for �0k 6= 0 and 0 otherwise. Since the

function � = �w(�) is continuous and so is its inverse, it follows by the continuous mapping

theorem that �̃
p
! �0.

To explore the asymptotic normality, we consider �̃ as a local minimizer of Qn(·). Since

the objective function Qn(�) is smooth in �, �̃ satisfies the first-order necessary condition

@Qn(�̃)/@� = 0, which leads to

�2
@L(�̃)

@�

@�(�̃)

@�
+ ln(n)

@
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k w(�̃k)
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= 0
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+ 2an(1� w2

k)�̃k�̃
T
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@�k

◆K

k=1

() L̇(�̃) =
ln(n)

2
{2an(1� w2

k)D
�1
k (�̃k)�k}

K
k=1,

where the matrix Dk is defined previously in Theorem 5.4.1. Next, applying Taylor’s expan-
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sion of L̇(�̃) at �0 gives

ln(n)

2
{2an(1� w2

k)D
�1
k (�̃k)�k}

K
k=1 =

˙L(�0) + L̈(�0)

 
@�

@�

����
�=�0

!
(�̃ � �0) + rn,

where rn denotes the remaider term. We notice that

✓
@�
@�

���
�=�0

◆
is equal to the block

diagonal matrix Dk(�0) defined in Theorem 5.4.1. It follows that

D(�0)(�̃ � �0) =
n
�L̈(�0)

o�1
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L̇(�0)�

ln(n)

2
{2an(1� w2

k)D
�1
k (�̃k)�k}

K
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�
.

Therefore,

p
n[D(�0)(�̃ � �0) + bn] =

(
�
L̈(�0)

n

)�1
L̇(�0)
p
n

+ r
0
n, (7.20)

where bn is defined in ( refbias), and the remainder term is

r
0
n =

(
�
L̈(�0)

n

)�1
rn
p
n
.

Under the regularity assumptions, standard arguments yield
n
�L̈(�0)/n

o�1 p
! I�1(�0);

L̇(�0)/
p
n

d
! N(0, I(�0)); and r

0
n = op(1) as n ! 1. Bringing these results into (7.20) and

an appeal to Slutsky’s Theorem give the desired asymptotic normality in (5.10).

Note that the elements Dij of the block diagonal matrix D(�0) in Theorem 5.4.1 are

evaluated at �0. Then for any k 2 {1, 2, . . . , K}, since an ! 1 as n ! 1 and variables in

the same group are either all zero or all nonzero, we have

[Dk(�0)]ii = wk + 2an(1� w2
k)�

2
0k,i !

8
>><

>>:

1 if �0k,i 6= 0,

0 otherwise,

as n ! 1,
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and for i 6= j,

[Dk(�0)]ij = 2an(1� w2
k)�0k,i · �0k,j ! 0 as n ! 1.

To study the limit of bias bn, we rewrite (5.11) as

bn =

(
�L̈(�0)

n

)�1
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2
p
n
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1
p
n
· 2an(1� w2

k)D
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�K

k=1

. (7.21)

To prove that bn = op(1), it is su�cient to show that

bn,k :=
1
p
n
· 2an(1� w2

k)D
�1
k (e�k)e�k = Op(1)

for all k = 1, 2, . . . , K. From Lemma 0 (ii), we have
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1
p
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· 2an

1� w2
k

wk
ke�kk =

1
p
n
·

4anke�kk
exp(anke�kk2)� exp(�anke�kk2)

.

When �0,k 6= 0, we have e�k = �0,k +Op(n�1/2). Then anke�kk ! 1 and hence bn,k ! 0

at an exponential rate. When �0,k = 0, we have ke�kk = Op(n�1/2) = ke�kk tanh(anke�kk
2) ⇡

anke�kk
3. So ke�kk = Op(n�1/2) with an = O(n). In this case,

1
p
n
· 2an

1� w2
k

wk
ke�kk ⇡

2anke�kk

anke�kk
2
·

1
p
n
=

2
p
nke�kk
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So in this case, the bias goes to zero with rate ln(n)/
p
n. This completes the proof.
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B.1. Additional Simulation Results for Chapter 4

Simulation results for the MCP penalty with M = 1

In Chapter 4, the performance of the QPADM fwith SCAD penalty were shown. In the

following, we show the performance of the QPADM with the MCP penalty.

Method Quantile Size P1 P2 AE Time (Sec)
QPADM ⌧ = 0.3 5.80(1.56) 100% 94% 0.048(0.023) 1.65(0.31)

⌧ = 0.5 4.31(0.64) 100% 0% 0.036(0.022) 1.54(0.29)
⌧ = 0.7 6.80(1.42) 100% 93% 0.043(0.024) 1.67(0.33)

QICD ⌧ = 0.3 7.56(3.82) 100% 92% 0.050(0.026) 0.99(1.13)
⌧ = 0.5 4.24(0.59) 100% 0% 0.040(0.020) 1.51(1.30)
⌧ = 0.7 6.80(3.62) 100% 93% 0.049(0.026) 1.46(1.59)

Table 7.1: Comparison of QPADM and QICD with n = 300, p = 1, 000.

Method Quantile Size P1 P2 AE Time (Sec)
QPADM ⌧ = 0.3 5.00(0.00) 100% 100% 0.0040(0.0016) 45.09(1.55)

⌧ = 0.5 4.00(0.00) 100% 0% 0.0042(0.0019) 47.16(1.68)
⌧ = 0.7 5.00(0.00) 100% 100% 0.0037(0.0017) 44.81(1.57)

QICD ⌧ = 0.3 5.02(0.14) 100% 100% 0.0031(0.0016) 99.37(11.46)
⌧ = 0.5 4.16(0.37) 100% 0% 0.0033(0.0015) 121.47(16.35)
⌧ = 0.7 5.08(0.25) 100% 100% 0.0032(0.0014) 118.35(16.17)

Table 7.2: Comparison of QPADM and QICD with n = 30, 000, p = 1, 000.

Method Quantile Size P1 P2 AE Time (Sec)
QPADM ⌧ = 0.3 5.00(0.00) 100% 100% 0.0032(0.0011) 3.43(0.56)

⌧ = 0.5 4.00(0.00) 100% 0% 0.0031(0.0011) 3.54(0.67)
⌧ = 0.7 5.00(0.00) 100% 100% 0.0030(0.0015) 3.42(0.58)

QICD ⌧ = 0.3 5.06(0.24) 100% 100% 0.0027(0.0011) 12.21(3.33)
⌧ = 0.5 4.08(0.27) 100% 0% 0.0026(0.0011) 22.33(11.71)
⌧ = 0.7 5.02(0.15) 100% 100% 0.0026(0.0009) 25.45(19.00)

Table 7.3: Comparison of QPADM and QICD with n = 30000, p = 100.
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Parallel QPADM: More Results

In Chapter 4 only showed the performance of parallel QPADM for the SCAD penalty with

quantile level ⌧ = 0.3, while the simulation were done with ⌧ = 0.3, 0.5, 0.7 for both the

SCAD and MCP penalties. We include the remaining results in the following.
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Figure 7.1: Comparison of QPADM with SCAD penalty for di↵erent M values at ⌧=0.5.
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Figure 7.2: Comparison of QPADM with SCAD penalty for di↵erent M values at ⌧=0.7.
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Figure 7.3: Comparison of QPADM with MCP penalty for di↵erent M values at ⌧=0.3.
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Figure 7.4: Comparison of QPADM with MCP penalty for di↵erent M values at ⌧=0.5.
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Figure 7.5: Comparison of QPADM with MCP penalty for di↵erent M values at ⌧=0.7.
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