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Abstract 

Characterizing the Role of the T Cell Receptor Repertoire in T Cell Development and Function 

By 

Benjamin David Solomon 

Doctor of Philosophy in Biology and Biomedical Sciences 

Immunology 

Washington University in St. Louis, 2018 

Professor Chyi-Song Hsieh, Chair 

Expansion and memory of immune cells in response to stimulation of diversified antigen 

receptors is the hallmark of adaptive immunity. Here, we use antigen receptor sequencing and in vivo 

analysis of monoclonal cell populations to elucidate the development and function of two T cell 

populations: Foxp3+RORγt+ CD4+ T cells and γδ T cells. Foxp3+RORγt+ T cells have recently 

been characterized as an immunoregulatory population highly enriched in the colon lamina propria. 

However, their developmental origin and relation to RORγt- Treg and RORγt+ TH17 cells remains 

unclear. Here, we show that despite sharing a subset of TCR specificities with TH17 cells, 

Foxp3+RORγt+ T cells first acquire a Foxp3+RORγt- phenotype before co-expressing RORγt, 

suggesting that Foxp3+RORγt+ cell development can occur via an RORγt- Treg intermediate. 

While γδ T cells are considerably well studied relative to Foxp3+RORγt+ T cells, the 

importance antigen receptor diversification to γδ T cell function is still poorly understood.  In order 

to comprehensively assess the paired-chain γδ T cell repertoire during inflammation, we developed a 

fixed-TCRδ system. We show that experimental autoimmune encephalomyelitis (EAE) results in 

dramatic clonal expansion of γδ T cells and that a single expanded TCR clone is sufficient to 

exacerbate immune pathology. Together, this suggests that γδ T cells can exhibit the clonal 



x 

 

expansion characteristic of an adaptive immune response and that this response is physiologically 

significant to the outcome of EAE. 
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Chapter 1: Introduction 
 

Expansion and retention of immune cells base on interactions between antigens and 

diversified antigen receptors is the hallmark of adaptive immunity. Not only does this phenomenon 

underlie the principal effector mechanisms of adaptive immune cells, but it is also crucial for 

understanding their development and physiology. In this thesis, we apply antigen receptor 

sequencing and in vivo analysis of monoclonal T cell populations to two relatively poorly understood 

T cells subsets, Foxp3+RORγt+ regulatory T cells and γδ T cells, in order to elucidate their 

development and contribution to adaptive immunity.  

 

Regulatory T cells in mucosal tolerance 

Inflammatory bowel disease 

Inflammatory bowel disease (IBD) is one of the most common chronic gastrointestinal 

diseases, affecting as many as 1.4 million individuals in the United States (Loftus, 2004). A multitude 

of evidence currently suggests that an inappropriate immune response directed against normal, 

commensal microbes is a major component of IBD pathogenesis (Abraham and Cho, 2009; Bonen 

and Cho, 2003; Hardenberg et al., 2011; Khor et al., 2011). In order to elucidate how this abnormal 

immune response arises, it is important to understand how tolerance to commensal, though foreign, 

microorganisms is maintained in healthy individuals. Originally identified for their role in 

maintaining tolerance to self-antigens (Hsieh et al., 2012), Foxp3+ regulatory T (Treg) cells are also 

necessary for maintaining mucosal tolerance (Barnes and Powrie, 2009). However, Treg cells appear 

susceptible to adopting the inflammatory phenotype of the related RORγt+ T helper (TH)17 T cell 

subset (Koenen et al., 2008; Komatsu et al., 2009; Korn et al., 2009; Lee et al., 2009). This potential 

plasticity between Treg and TH17 cells may represent a component of IBD pathogenesis. 
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Interactions between the immune system and commensal microbiota  

During steady-state, the majority of CD4+ T cells are found in the mucosal lamina propria 

(Maynard and Weaver, 2009). Treg and TH17 CD4+ T cells are particularly enriched in intestinal 

tissue, with Treg cells primarily localizing to the colonic lamina propria, while TH17 cells are mostly 

restricted to the small intestine lamina propria (Ivanov et al., 2008). The enrichment of Treg and 

TH17 cell in mucosal tissues suggests that these cells play a role in regulating the immune response to 

the microbiota. Indeed, in germ free (GF) mice, which lack commensal organisms, the generation of 

mucosal Treg and TH17 cells is impaired (Ivanov et al., 2009; Lathrop et al., 2011).  

In addition, several bacterial species appear capable of promoting the differentiation of 

mucosal Treg cells. For example, both Bacteroides fragilis, though TLR2-mediated detection of 

bacterial PSA  (Mazmanian et al., 2005, 2008; Round and Mazmanian, 2010; Round et al., 2011), as 

well as several Clostridium species (Atarashi et al., 2011) generate protective Treg cell populations. 

Similarly, several gut bacteria promote the differentiation of TH17 cells including segmented 

filamentous bacteria (SFB) (Ivanov et al., 2008, 2009) and an enterotoxigenic strain of B. fragilis 

(ETBF) (Wu et al., 2009), which stands in stark contrast to the Treg cell-promoting non-

enterotoxigenic strain (NTBF) described above.  

An unresolved question in our understanding of mucosal tolerance is the role of antigen 

specificity in the induction of mucosal T cell subsets. The dependence on TLR2 for PSA-mediated 

colonic Treg cell induction suggests that this interaction is antigen independent. However, our lab 

has demonstrated that the T cell receptor (TCR) repertoire of colonic Treg cells is unique compared 

to the repertoire’s of Treg cells in other tissues, as well as other mucosal T cell subsets and that 

many of these TCRs appear to be specific to bacterial components (Lathrop et al., 2011). Similarly, 
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interactions between specific TCR sequences and SFB-derived antigens have recently been shown to 

contribute towards SFB-mediated TH17 induction (Yang et al., 2014) . 

 

Treg and TH17 cellular plasticity 

In the conventional view of CD4+ T cell differentiation, these multiple cell lineages are 

considered mutually exclusive and terminally differentiated. This is supported by in vitro observations 

that the characteristic cytokines produced by each lineage are capable of inhibiting the development 

of alternative subsets. However, it is now clear that CD4+ T cell subsets are far more plastic than 

previously thought. For example, Treg cells downregulate Foxp3 upon transfer to lymphopenic 

hosts and begin to express inflammatory cytokines, including IL-17 instead (Komatsu et al., 2009). 

Additional studies using lineage tracking mice capable of identifying “ex-Treg cells” have generated 

conflicting results regarding the true extent of Treg cell plasticity (Rubtsov et al., 2010; Zhou et al., 

2009). However, additional evidence suggests that ex-Treg cells may arise from the outgrowth of a 

small sub-population of unstable cells within the larger Foxp3+ population (Miyao et al., 2012). The 

identity and functional role of these unstable cells remains unclear. 

Lineage tracing mice have also been used to track the fate of “ex-TH17 cells” that have lost 

the expression of IL-17. In the context of experimental autoimmune encephalomyelitis (EAE), a 

significant proportion of TH17 cells lose their expression of IL-17 as the disease progresses. In 

addition, at peak disease severity, approximately 50% of all IFNγ producers are ex-TH17 cells (Hirota 

et al., 2011). Ex-TH17 cells have also been shown to contribute to the population of TH1 cells in H. 

hepaticus infection (Ding and Morrison, 2013) as well as the pool of follicular helper T (TFH) cells in 

the Peyer’s patches during normal gut homeostasis (Hirota et al., 2013). However, while certain 

conditions seem to promote a non-inflammatory variant of TH17 cells (Lee et al., 2012b), it remains 

to be seen if TH17 cell are capable of adopting a Treg cell phenotype in vivo. 
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Foxp3 and RORγt co-expression 

CD4+ T cell subsets are typically defined by the expression lineage specific transcription 

factors. For Treg and TH17 cells, these transcription factors are Foxp3 and RORγt, respectively. 

Interestingly, despite the fact that Foxp3 and RORγt can directly inhibit one another (Zhou et al., 

2008), a large proportion of CD4+ T cells co-express these two transcription factors in mucosal 

tissues (Ohnmacht et al., 2015). Furthermore, despite the expression of RORγt in these cells, they 

are believed to largely immunoregulatory due to their lack of IL-17 expression and ability to produce 

increased IL-10 (Lochner et al., 2008). In addition, Foxp3+RORγt+ cells appear protective in 

several models of inflammation including immune-mediated diabetes (Tartar et al., 2010) and colitis 

(Ohnmacht et al., 2015; Sefik et al., 2015; Yang et al., 2015) 

However, the significance of RORγt expression in this cellular population remains unclear. 

Foxp3+RORγt+ T cells have been implicated in the control of TH17 inflammation, suggesting that 

RORγt expression is needed to target RORγt-expressing TH17 cells (Sefik et al., 2015; Yang et al., 

2015). However, an additional report demonstrated that Foxp3+RORγt+ cells are important for 

control of TH2-mediated inflammation, with little effect on the TH17 population (Ohnmacht et al., 

2015).  In addition, it has also been shown that RORγt+ TH17 cells can come to acquire Foxp3 

expression when cultured with dendritic cells (DC)s stimulated with agonists for dectin-1, a pattern 

recognition receptor for fungal cell wall constituents (Osorio et al., 2008). Thus it is unclear if 

RORγt expression represents the basis for a suppressive mechanism acquired by Treg cells or 

instead reflects an origin in plastic TH17 cells. 

In Chapter 2 of this thesis, we seek to address this question through characterization of the 

Foxp3+RORγt+ TCR repertoire, as well as developmental analysis of a monoclonal population of 

these cells. We will show that (1) Foxp3+RORγt+ develop via a RORγt- Treg intermediate and (2) 
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that they share a limited set of high frequency antigen specificities with the TH17 population. 

Together, these observations suggest that RORγt expression in Foxp3+RORγt+ cells does not 

represent TH17 plasticity and, instead, reflects their convergence with TH17 cells on a shared set of 

antigen specificities. 

 

 

γδ T cells at the intersection of innate and adaptive immunity 
 

αβ vs γδ T lymphocytes 

Similar to the more numerous and well-studied αβ T cell, γδ T cells comprise a population of 

thymically derived lymphocytes that express a characteristic TCR, generated through the actions of 

recombination activating gene (RAG). As reflected in their names, the precise difference between αβ 

and γδ T cells is based on the usage of distinct genetic loci in generating rearranged TCR transcripts. 

For instance, the γδ TCRγ chain utilizes gene segments exclusively contained in the TRG locus. 

However, a multitude of developmental and functional differences underlie this simple genetic 

distinction.  

Perhaps most illustrative of the difference between these two T cell lineages is that, 

compared to αβ T cells, a generalized model of γδ T cell development and function has remained 

elusive. While αβ T cells go through a concerted sequence of developmental events, numerous 

modes of thymic γδ T cell development have been described (Bandeira and Itohara, 1991; 

Kreslavsky et al., 2008). Nearly all αβ T cells recognize peptide antigens in the context of MHC 

presentation, whereas γδ T cells can recognize nearly any class of molecule, with or without the aid 

of presenting molecules (Born et al., 2012). Finally, while αβ T cells follow a general life cycle of 

antigen-dependent clonal expansion, γδ T cells can perform a range of functions spanning adaptive 
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and innate immunity (Vantourout and Hayday, 2013). As a result of these barriers to generalization, 

the biological advantage of maintaining this third antigen receptor-expressing lineage has remained a 

puzzle.  

 

γδ T cells as adaptive or innate immune cells 

 Given their expression of a recombined antigen receptor, γδ T cells were initially assumed to 

represent an additional lineage of adaptive immune cell. However, subsequent research soon showed 

that γδ T cells defy simple classification, exhibiting characteristic features of both innate and 

adaptive immune cells. This dual nature is perhaps best exhibited in the diversity of the γδ TCR 

repertoire. Interestingly, due to the unique orientation of RSS sequences in the TCRD locus, 

recombined TCRδ chains can include two D-gene segments, exponentially increasing theoretical γδ 

TCR diversity (Elliott et al., 1988). In fact, despite having approximately 10-fold fewer V-gene 

segments to choose from compared to αβ T cells, the γδ TCR has the highest theoretical diversity of 

any antigen receptor, immunoglobulins included. Such potential diversity would clearly be 

advantageous for an adaptive immune response.  

However, while many γδ T cells do indeed express diversified receptors, actual γδ TCR 

repertoire diversity is markedly limited relative to its theoretical potential, even when compared to 

other in vivo antigen receptor repertoires. As an extreme example, Vγ5+ dendritic epidermal γδ T 

cells (DETC) are nearly monoclonal, expressing a single germline configuration TCR (Asarnow et 

al., 1988). Despite representing a rearranged antigen receptor, such molecular homogeneity is more 

reminiscent of the pattern recognition receptors used primarily by innate immune cells. 

In addition, γδ T cells are capable of behaving in ways similar to both adaptive and innate 

immune cells. For example, many γδ T cells exit the thymus expressing a CD44-hi CD25+ 

phenotype typically associated with activated αβ T cells. As a result, these cells can rapidly respond 
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to inflammatory stimuli. In fact, such “pre-activated” cells are often capable of responding to 

inflammatory cytokines alone, bypassing the requirements of antigen stimulation and APC co-

stimulation normally required for αβ T cell responses (Jensen et al., 2008). The speed of this 

response, often within hours, is typically associated with innate immune function. Yet, other γδ T 

cells leave the thymus as CD44-lo CD25+ cells and, like other adaptive immune cells, require TCR 

stimulation for activation (Zeng et al., 2012).  

 

γδ T cell function 

 As mentioned previously, γδ T cells fulfill many biological roles. Most reminiscent of other 

immune cells is their ability to contribute to the inflammatory response generated against pathogens. 

γδ T cells can participate in the immune response against all classes of infectious organisms 

including bacteria such as Listeria (Hiromatsu and Yoshikai, 1992) and mycobacteria (Shen et al., 

2002), viral infections including West Nile virus (Wang et al., 2006) and vaccinia virus (Selin et al., 

2001), as well as eukaryotic parasites such as Plasmodium (Hviid et al., 1996). However, while γδ T 

cells expand and contribute to immune memory in some of these infections (Sheridan et al., 2013), 

in others, their role is more similar to that of NK cells and other components of innate immunity 

(Mokuno et al., 2000). 

As a corollary to their role during infection, γδ T cells also contribute to the pathogenesis of 

autoimmune reactions. γδ T cells clearly participate in the development of collagen induced arthritis, 

as TCRδ-deficient mice show protection against diseases pathology (Roark et al., 2007). Similarly, 

mice lacking γδ T cells are also protected against the development of EAE (Spahn et al., 1999). 

However, while the majority of published research implicates γδ T cells in the exacerbation of 

autoimmunity, there is some evidence that they can also contribute to immune regulation. For 

example, in EAE, while the Vγ4+ population of γδ T cells does indeed contribute to disease 
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pathology, the Vγ1+ population appears to limit autoimmune reactivity (Blink and Miller, 2009), 

suggesting that the role of γδ T cells in autoimmunity is multifaceted. 

 As reflected in the prominence of DETCs and other γδ T cells at barrier surfaces, γδ T cells 

can also play a role in wound healing. In γδ T cell deficient mice, closure of epidermal wounds is 

significantly delayed as a result of reduced keratinocyte proliferation. This delay is likely due to 

decreased availability of keratinocyte stimulation by KGF-1 and -2, which are highly produced by 

DETCs (Jameson et al., 2002). The participation of γδ T cells in wound healing also reflects their 

probable contribution to tissue stress surveillance. For instance, one of the best characterized γδ T 

cell ligands in mice, T-10, is specifically upregulated during cellular stress (Chien and Konigshofer, 

2007). Indeed, the position of the DETC TCR is relocated in the direction of tissue wounds, 

suggesting that the role of these epidermal resident cells is to survey for local tissue damage 

(Chodaczek et al., 2012).  

 In addition, γδ T cells also contribute to several unconventional lymphocyte processes.  

For example, in humans, γδ T cells can serve as excellent antigen presenting cells, as activated γδ T 

cells efficiently take up antigen, traffic to lymph nodes, and express both MHC1 and MHC2 

molecules (Brandes et al., 2005). γδ T cells may also participate in the induction of central immune 

tolerance, as interactions between thymic DETC cells and medullary thymic epithelial cells (mTECs) 

induces the latter’s expression of autoimmune regulator (AIRE), which is responsible for the 

promiscuous expression of non-thymic self-antigens during negative selection (Roberts et al., 2012). 

Altogether, the functions of γδ T cells are highly diverse. 

 

γδ T cell antigens 

 As stated above, γδ T cells recognize a diverse range of biomolecules. Perhaps the best 

characterized γδ TCR ligands are phosphoantigens. Phosphoantigens are intermediates in the 
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isoprenoid synthetic pathways used by both eukaryotic hosts and prokaryotic pathogens like 

mycobacteria. Recognition of these soluble molecules by the TCR requires the aid of cell surface 

accessory molecules including butyrophilin 3A1 and the F1-ATPase (Scotet et al., 2005; Vavassori et 

al., 2013). However, not all γδ T cell antigens require association with additional proteins, or even a 

cell surface, as γδ T cells from NOD mice are reportedly able to recognize soluble insulin peptide 

(Zhang et al., 2010).  

 In mice, the most well characterized γδ T cell ligands are the MHC-1 like molecules T-10 

and T-22. These cell surface proteins are recognized by the TCR clones KN6 and G8, as well as a 

large percentage of the circulating γδ T cell population, as identified by T-10/22 tetramers (Crowley 

et al., 2000). Despite their relation to MHC-1, T-10 and T-22 present no peptide and are themselves 

the ligand of corresponding γδ TCRs (Wingren et al., 2000). Moreover, in addition to the small 

molecule and protein antigens described so far, γδ TCRs have also been shown to recognize lipids 

such cardiolipin and α-Galactosylceramide, both in the context of the cell surface molecule CD1d 

(Dieudé et al., 2011; Uldrich et al., 2013).  

 Yet, how antigen specificity contributes to the role of γδ T cells during an immune response 

remains unclear. In Chapter 3, we will show that (1) inflammation associated with EAE results in a 

shift in the γδ TCR repertoire and (2) that clones that expand during EAE can specifically 

exacerbate EAE pathogenesis. Together, these observations suggest that γδ T cells are capable of 

adaptive immune-like clonal expansion and that this expansion directly contributes to the course of 

an inflammatory response in a TCR-dependent manner.   
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Chapter 2: Development of Foxp3+RORγt+ 

T cells from Treg cells 
 

 

This chapter was previously published and is reproduced here with the permission of the American Association of 

Immunologists. Original citation: B. D. Solomon and C.-S. Hsieh, “Antigen-specific development of mucosal 

Foxp3+RORγt+ T cells from regulatory T cell precursors.,” J. Immunol., vol. 197, no 9, pp. 3512-3519, Nov 

2016. PMCID: PMC5101183. DOI: https://doi.org/10.4049/jimmunol.1601217.  

 

2.1 Abstract 

Foxp3+RORγt+ T cells have recently been characterized as an immunoregulatory population highly 

enriched in the colon lamina propria. However, their developmental origin and relation to RORγt- 

Treg and TH17 cells remains unclear. Here, we use a fixed TCRβ system to show that the TCR 

repertoire of the Foxp3+RORγt+ population is mostly distinct compared to other colonic T cell 

subsets. However, a fraction of these TCRs are also found in the TH17 subset, suggesting that TCR 

repertoire overlap may contribute to the reported ability of Foxp3+RORγt+ cells to regulate TH17 

immunity. Naïve transgenic T cells expressing a Foxp3+RORγt+ restricted TCR first acquire a 

Foxp3+RORγt- phenotype before co-expressing RORγt, suggesting that Foxp3+RORγt+ cell 

development can occur via an RORγt- Treg intermediate.   

  

https://doi.org/10.4049/jimmunol.1601217
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2.2 Introduction 
 

The maintenance of tolerance towards commensal bacteria represents a unique challenge for 

the host immune system. In order to protect against infection from pathogenic microbes, the host 

must be capable of clearing harmful bacteria, while simultaneously limiting responses that target 

commensal, though no less foreign, species. This balance is achieved in part by the induction of 

effector and tolerogenic CD4+ T cell responses by specific commensal species. For example, 

segmented filamentous bacteria is capable of promoting the differentiation of retinoid orphan 

receptor (ROR)γt-expressing T helper (TH)17 cells, which are able to promote anti-bacterial 

responses (Ivanov et al., 2009). Conversely, Clostridial species (Atarashi et al., 2013) are capable of 

promoting the differentiation of forkhead box P3 (Foxp3)-expressing regulatory T (Treg) cells, which 

can limit inflammation (Josefowicz et al., 2012). Dysregulation between these subsets and 

subsequent loss of immune homeostasis is thought to represent an important component of 

inflammatory bowel disease (IBD) pathogenesis (Frank et al., 2007).  

The classical model of CD4+ T cell differentiation involves the generation of several 

unambiguous subsets, distinguished by expression of lineage-defining transcription factors. 

However, this paradigm has been challenged in the case of Treg cells as several subsets of Foxp3+ 

cells have been identified that co-express transcription factors normally associated with effector 

lineages.  This has led to the hypothesis that effector transcription factor co-expression allows Treg 

cells to specifically target corresponding effector subsets for suppression (Zheng et al., 2009). For 

example, T-bet+ Treg cells are involved in restraining TH1-mediated gut inflammation (Koch et al., 

2009). However, the precise developmental origin of such transcription factor co-expressing Treg 

cells is incompletely understood.  
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Recently, a subset of intestinal CD4+ T cells co-expressing both Foxp3 and RORγt was 

identified (Ohnmacht et al., 2015; Sefik et al., 2015; Yang et al., 2015). While small numbers of these 

cells have been found in other peripheral lymphoid tissues (Lochner et al., 2008, 2011), the lamina 

propria appears uniquely enriched for this population. Foxp3+RORγt+ cells are dependent on the 

presence of commensal bacteria and are capable of producing IL-10. Moreover, the absence of these 

cells exacerbates pathogenesis of several models of mucosal autoimmunity, suggesting that these 

Foxp3+RORγt+ T cells represent another Treg cell subset.  

Yet, the unique shared developmental requirements of Treg and TH17 cells suggest an 

alternative interpretation for the role of Foxp3+RORγt+ T cells. TGFβ can promote the peripheral 

development of both Treg and TH17 cells from naïve CD4+ T cells (Zhou et al., 2008). This raises 

the possibility that, instead of a stable Treg subset, Foxp3+RORγt+ T cells could represent a 

common precursor of both Treg and TH17 cells, as previously proposed (Zhou et al., 2008). Thus, 

the relationship between Treg, TH17, and Foxp3+RORγt+ T cells remains poorly defined.  

Here, we use TCR sequencing and a TCR transgenic (TCRtg) system to elucidate the 

relationships between these Foxp3+RORγt+ cells and conventional Treg and TH17 cells. We found 

that the TCR repertoire of Foxp3+RORγt+ cells is largely unique compared to other colonic T cell 

subsets suggesting that TCR specificity is sufficient to mediate Foxp3+RORγt+ cell development. 

Yet, we also observe a subset of Foxp3+RORγt+ TCRs that are shared with TH17 cells and may 

contribute to the ability of this population to suppress TH17 inflammation. Naïve T cells expressing 

a TCR restricted to the Foxp3+RORγt+ subset likely develop via an RORγt- Treg intermediate 

without significant TH17 differentiation. In addition, we show that, similar to TH17 cells, Foxp3+ 

cells are partially dependent on CX3CR1+ antigen presenting cells (APCs) for subsequent RORγt 

expression. Together, our data suggest that the dominant portion of Foxp3+RORγt+ T cells 

develop as a subset of Treg cells.  
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2.3 Materials and Methods 
 

Mice 

TCliβ TCRtg Tcrα+/- mice, used as previously described (Hsieh et al., 2006), were bred to Foxp3IRES-

Thy1.1 (Liston et al., 2008), a gift from A. Rudensky (MSK); and RORγtgfp, obtained from Jackson 

Laboratory (stock# 007572). CT2 transgenic mice were generated as described (Bautista et al., 2009) 

with microinjection into B6 × 129 fertilized eggs and backcrossed 5+ generations to B6 background. 

CD11cCre Notch2fl/fl (McCright et al., 2006) were a gift from Ken Murphy (WashU). CX3CR1DTR 

(Diehl et al., 2013) were purchased from Jackson Laboratory (stock# 025629) and bred to CD11cCre. 

CD45.1 mice are housed together and interbred to maintain microbial integrity as assessed by CT2 

transfer experiments.  Animal experiments were performed in a specific pathogen-free facility under 

the guidelines of the Institutional Animal Care and Use Committee at Washington University. 

 

Cell isolation and flow cytometry 

Lamina propria tissue was isolated and digested in RPMI media containing 3% FBS, 20mM HEPES, 

1mM DTT, and 50mM EDTA for 20min at 37º C. Additional washes in RPMI + 22.5mM EDTA 

was done to completely remove IELs. Remaining tissue was minced and digested in digested in 

28.3µg/mL liberase TL (Roche) and 200µg/mL RNase 1 (Roche) for 30min at 37º C to release 

lamina propria lymphocytes. Suspended cells were filtered through a 40µm filter prior to use. Distal 

mLN was isolated due to its lymphatic drainage of the colon (Mowat and Agace, 2014). 

Fluorescently conjugated antibodies were purchased from Biolegend and eBioscience. Samples were 

sorted and analyzed with a FACSAria IIu (BD) and data was processed in FlowJo (Treestar).   

 

TCR sequencing 
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CD4+Vα2+ cells were sorted from TCliβ TCRtg Tcrα+/- Foxp3IRES-Thy1.1RORγtgfp/+ mice at ≥8wks old 

(mean age 18 weeks). TCRα cDNA was prepared using a Cα-specific primer for reverse 

transcription. cDNA libraries were generated using a nested PCR protocol with specific to TRAV14. 

Paired end reads were generated from 250 cycle sequencing using Illumina MiSeq at the Washington 

University Center for Genome Sciences. V, J, and CDR3 regions were then determined with a 

custom BLAST application using sequence data from IMGT (Lefranc, 2003). 

 

Adoptive transfer experiments 

Naïve (CD4+ CD44-lo CD62L-hi CXCR3- Foxp3- RORγt-) T cells were FACS purified from 

peripheral LNs and spleen of Foxp3IRES-Thy1.1RORγtgfp/+Rag1-/- TCRtg mice. CD45.2 TCRtg mice were 

used for transfer experiments into wild type CD45.1 hosts. CD45.1 TCRtg mice were used in 

experiments with CD45.2 DC-deficient hosts. 5x104 cells were injected retro-orbitally into 3 week 

old hosts and analyzed 3 weeks post-transfer, unless otherwise indicated. 

 

Statistical analysis 

Diversity profiles were generated using Renyi entropy values with alpha/order values ranging from 0 

(natural logarithm of species richness) through 2 (natural logarithm of the inverse Simpson index) 

(Jost, 2006; Pacholczyk et al., 2007). This includes alpha = 1, which represents the commonly used 

Shannon entropy. Evenness was calculated from the ratio of each point on the diversity profile to 

Renyi entropy at alpha = 0, resulting in an evenness profile of relative evenness indices (RLE0,alpha) 

(Jost, 2010). Pielou’s evenness represents the special case of RLE0,alpha=1. Euclidean distance was used 

to generate hierarchical clusters from these diversity profiles and Pearson correlation was used for 

clustering of Evenness profiles (Greiff et al., 2015). Coverage was calculated as described (Chao and 

Jost, 2012). For multiple comparisons of individual TCR enrichment between samples, Benjamini-
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Hochberg false discovery rate adjusted p-values were used. To generate TCR perturbation scores, 

CDR3 sequences within a sample were represented by their amino acid length to generate a 

spectratype distribution (Bergot et al., 2015). These spectratype distributions were then compared 

using the Morisita-Horn index and hierarchically clustered. All statistical analysis was performed in R 

(v3.3.0) with the use of the vegan (v2.3-5, diversity and similarity analysis), DESeq2 (v1.12.0, 

differential TCR usage), and pvclust (v2.0-0, bootstrapped dendrograms) packages.  Mann-Whitney 

U or Kruskal-Wallis with post-hoc Dunn’s tests were used for between group analysis. Our 

analytical code can be found at https://github.com/BenSolomon/Solomon-Hsieh-JI-2016. 

  

https://github.com/BenSolomon/Solomon-Hsieh-JI-2016
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2.4 Results  
 

Sequencing of the Foxp3+RORγt+ TCR repertoire 

Similar to data reported in recent publications, we found enrichment of Foxp3+RORγt+ T 

cells in mucosal tissue, particularly the colon lamina propria (Fig. 2.1). To address how this 

population relates to other colonic T cell subsets, we asked whether Foxp3+RORγt+ T cells utilized 

the same TCR repertoire as other Foxp3+ or RORγt+ cells.  In order to circumvent analytical 

problem posed by the diversity of the fully polyclonal TCR repertoire, we analyzed TRAV14 TCRα 

transcripts from a TCRβ-tg system in which TCR diversity is restricted to the TCRα chain (Hsieh et 

al., 2006). From mucosal tissues we sorted (Fig. 2.2) and sequenced (Fig. 2.3) mature CD4+ T cells 

(CD44-hi CD62L-lo) into RORγt- Treg (Foxp3+RORγt-) and Foxp3+RORγt+ populations, as well 

as TH17 (Foxp3- RORγt+) and remaining RORγt- T effector (TEff) cell (Foxp3- RORγt-) 

populations. In order to limit overlap with TH1 cells, all populations except the RORγt- TEff 

population were further gated to exclude CXCR3+ cells (Yamamoto et al., 2000) (Fig. 2.4).  

We first quantified the diversity of the Foxp3+RORγt+ TCR repertoire using Renyi 

entropies, which depict population diversity across a spectrum of orders that increasingly weight 

unique TCR sequences according to their abundance (Jost, 2010). Higher Renyi entropy values 

indicate greater sequence diversity and a steeper decrease in entropy with increasing order reflects a 

TCR repertoire more dominated by high frequency clones. Compared to the RORγt- TEff and 

RORγt- Treg populations, the Foxp3+RORγt+ and TH17 T cell populations appear to have lower 

overall diversity (Fig. 2.5), with a larger proportion of the repertoire composed of high frequency 

clones (Fig 2.6).  

The relationship between the diversity patterns of Foxp3+RORγt+ and TH17 cell repertoires 

can be further quantified using hierarchical clustering. A distance metric can be calculated between 
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two samples’ Renyi diversity profiles (Greiff et al., 2015), as defined by each sample’s series of 

entropy values across a range of orders. Similarly, a correlation metric can be applied to evenness, a 

quantitative measure of clonal dominance reflected in the steepness of a curve of Renyi entropies 

(Jost, 2010). An evenness profile can be calculated from a series of Renyi entropies relativized to 

their order 0 entropy. Correlation and clustering of population diversity and evenness profiles across 

all tissues groups samples into two broad sets, one composed mainly of TH17 and Foxp3+RORγt+ 

cell samples and the other composed mostly of RORγt- TEff and RORγt- Treg cell samples (Fig. 

2.7). Thus, these data suggest that the TCR repertoire diversity of Foxp3+RORγt+ cells is closer to 

that of the TH17 cell population and that these cells may be driven by a more restricted set of 

antigens than other Foxp3+ cells. 

 

Foxp3+RORγt+ cells share limited sequence similarity with TH17 cells 

 To assess similarity of the Foxp3+RORγt+ and TH17 cell repertories at the level of antigen 

specificity, we compared the usage of individual TCR sequences across each of the sequenced 

populations. For most of the sequenced subsets, the majority of top clones for each population are 

largely unshared by any of the other populations (Fig. 2.8). However, the Foxp3+RORγt+ T cell 

population shares several of its more common TCR specificities with the TH17 population. 

We further quantified this repertoire overlap using the Morisita-Horn (MH) index. This 

index represents the probability that the sequence drawn from each of the two populations being 

compared will represent the same TCR, relative to the probability that two sequences drawn from all 

possible sequences, regardless of population, will represent the same TCR. This metric results in a 

continuum of values from 0, indicating complete dissimilarity, to 1, indicating complete similarity. 

Similar to previous observations of effector T cells in our lab, the repertoires of each of the four 

sorted populations were largely unique. However, the Foxp3+RORγt+ and TH17 repertoires 
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demonstrated some degree of similarity that was significantly greater than that between the Foxp3+ 

RORγt+ population and any other sequenced subset (Fig. 2.9). We also utilized TCR repertoire 

perturbation scores, which applies the MH-similarity index to TCR’s according to their amino acid 

lengths (i.e. CDR3 spectratype), rather than the TCR CDR3 amino acid sequences (Bergot et al., 

2015), to compare the general structure of TCRs between samples. This also showed that the 

Foxp3+RORγt+ repertoire frequently cluster with the TH17 (Fig. 2.10).  

However, analysis of the repertoire at the level of individual TCRs revealed that only a 

limited number of shared high frequency clones accounts for the repertoire similarity seen between 

these two populations (Fig 2.11). This is further supported by the difference in Pearson and 

Spearman correlation values for comparisons of TCR frequencies between populations. Pearson 

correlation is more affected by outliers, like the high frequency TCRs shared by the Foxp3+RORγt+ 

and TH17 populations, while Spearman correlation is less affected. We observe that, while a modest 

correlation between the Foxp3+RORγt+ and TH17 populations is suggested by Pearson correlation, 

this relationship is reduced or absent when considering Spearman correlation (Fig 2.12). These data 

suggest that the Foxp3+RORγt+ population possesses a largely unique TCR repertoire, yet shares a 

limited subset of high frequency antigen receptor sequences with the TH17 population.  

 

TCR specificity can mediate acquisition of the Foxp3+RORγt+ phenotype 

Though limited to a subset of clones, the similarity seen between the Foxp3+RORγt+ TCR 

repertoire and TH17 TCR repertoire raises the possibility that Foxp3+RORγt+ cells could represent 

a developmental subset of the TH17 population. However, as previous work has characterized 

Foxp3+RORγt+ cells as immunoregulatory, this population could represent a developmental subset 

of Treg cells instead. In order to distinguish between these alternatives, we utilized a monoclonal T 

cell-based approach. From our sequencing data, we identified several TCRs highly enriched in the 
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Foxp3+RORγt+ T cell population. Moreover, as the majority of Foxp3+RORγt+ TCRs are 

restricted to this population, we narrowed our search to TCRs with high relative enrichment 

compared to all other sorted populations (Fig. 2.13, 2.14). Notably, the TCR CT2, previously 

identified by our lab as a colonic Treg TCR specific to gut bacteria (Lathrop et al., 2011), was the 

single most highly represented TCR in the Foxp3+RORγt+ T cell population.  

We first sought to test whether this TCR could specifically mediate Foxp3+RORγt+ T cell 

development using TCR transgenic (TCRtg) mice expressing CT2. We adoptively transferred sorted 

naive Foxp3-RORγt- TCRtg cells into wild type host mice. By 3 weeks post-transfer, these cells 

showed significant co-expression of Foxp3 and RORγt, with greater than 50% of all colonic Treg 

cells expressing RORγt (Fig. 2.15). While the proportion of Foxp3+ cells expressing RORγt is 

similar for transferred polyclonal cells, this conversion is much less efficient than CT2 TCRtg cells. 

With polyclonal cells, only ~1% of all cells transferred become Foxp3+ RORγt+, compare to ~13% 

of all CT2 TCRtg cells at 3 weeks in the distal mesenteric LN (Fig 2.16). This suggests that different 

TCRs have varying ability to mediate Foxp3+RORγt+ T cell development and, thus, that antigen 

specificity is an important determinant for differentiation into this phenotype. This is further 

supported by the observation that an alternative mucosal Treg TCR, CT6, also mediates 

Foxp3+RORγt+ conversion, but to a lesser degree than CT2 (Fig. 2.16).   

 

CT2 TCRtg T cells develop into Foxp3+RORγt+ T cells via a Treg cell intermediate 

 To more precisely delineate the developmental relationships between Foxp3+RORγt+, 

Treg, and TH17 cells, we next performed kinetic experiments using this monoclonal TCR system. 

After transfer of naïve CT2 cells into wild type hosts, we analyzed Foxp3 and RORγt expression in 

the transfer population at multiple time points. Foxp3 expression was first observed as early as day 4 

post-transfer. RORγt expression followed by day 7 post-transfer and was mostly restricted to the 
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Foxp3+ population (Fig 2.17). By 3 weeks post-transfer, RORγt expression is substantial and 

entirely restricted to the Foxp3+ population in both the colon and distal mLN. 

 We also validated these results in a polyclonal setting. We obtained similar results as seen 

with CT2 TCRtg cells, although the kinetics and extent of differentiation were somewhat diminished 

in the polyclonal population (Fig 2.18). In addition, the TH17 population was more prevalent in the 

polyclonal setting. Together, these data suggest that the majority of Foxp3+RORγt+ T cells begin as 

naïve CD4+ T cells in the periphery and pass through a RORγt- Treg intermediate before co-

expressing RORγt. 

 

CX3CR1+ APCs can provide signals for Foxp3+RORγt+ differentiation 

 There are several phenotypically distinct APC subsets found in the gut, several of which 

support the differentiation of particular CD4+ T cells subsets. For example, monocyte-derived 

MHC2-hi APCs (Panea et al., 2015) contribute to the development of mucosal TH17 cells, while 

Treg cells in the gut broadly require CD103+ cDCs (Coombes et al., 2007). Recent work from our 

lab suggests that mucosal Treg development is also partially dependent on the CD11b+ fraction of 

CD103+ DCs in a monoclonal setting (Nutsch et al.). Previous work has demonstrated that 

CD11c+ DCs are necessary for Foxp3+RORγt+ T cell development (Ohnmacht et al., 2015), but 

the role of specific APC subsets remains unclear. 

To test whether there are similar APC requirements for Foxp3 and RORγt expression in 

RORγt+ Treg cells, we adoptively transferred naïve CT2 TCRtg T cells into hosts that lack specific 

subsets of APCs. Since we have previously demonstrated a role for Notch2-dependent 

CD103+CD11b+ DC in CT2 Treg development, we first tested if RORγt+ Treg cells are similarly 

dependent on this DC. While we confirmed a general defect in Foxp3+ cells development, DC-
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specific Notch2 deficiency in host mice (Satpathy et al., 2013) did not specifically affect RORγt+ Treg 

cells (Fig 2.19).  

Because of their reported contribution to SFB-mediated TH17 induction, we also tested the 

role of CX3CR1+ APCs in Foxp3+RORγt+ T cell development using CX3CR1-DTR mice. These 

mice express DTR upon CD11c-Cre mediated excision of a Loxp-Stop cassette, resulting in loss of 

the of the CX3CR1+ APC population after DT treatment. Indeed, we observed a specific defect in 

the generation of RORγt-expressing Treg cells (Fig 2.20), similar to the impaired development of 

RORγt+TH17 cells reporter previously. Interestingly, we also observed a deficit in overall Foxp3+ 

cell frequencies in absence of CX3CR1+ APCs. This shows that the CX3CR1+ APC may be 

involved in the differentiation of multiple T cell subsets and are important for the specific 

development of RORγt+ Treg cells. 
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2.5 Discussion 
 

The expression of Foxp3 or RORγt in T cells leads to the acquisition of generally antagonistic 

cellular phenotypes. Yet, a significant proportion of gut lamina propria T cells co-express these two 

transcription factors.  Despite evidence suggesting that these Foxp3+RORγt+ T cells play a 

regulatory, rather than inflammatory role, it is still unclear how these cells develop in relation to 

classical Treg and TH17 cells. Here, we present data which shows that Foxp3+RORγt+ T cells are a 

developmental subset of regulatory T cells. 

 Among CD4+ T cell subsets, Treg and TH17 cells possess a unique relationship. Peripheral 

development of both subsets can be induced by TGFβ raising the possibility that Treg and TH17 

cells share a developmental intermediate (Zhou et al., 2008). The identification of Foxp3+RORγt+ 

T cells represents an appealing candidate for such an intermediate. However, using our TCRtg 

system, we demonstrate that the first cells to arise from naïve precursors are RORγt- Treg cells, 

preceding the appearance of Foxp3+RORγt+ T cells by several days. These TCRtg cells infrequently 

develop into TH17 cells, despite reaching a Foxp3+RORγt+ state, suggesting that this is a mature 

rather than intermediate phenotype. This conclusion is supported by data showing the stability of 

the Foxp3+RORγt+ T cell gene expression profile (Yang et al., 2015).  

 If Foxp3+RORγt+ T cells do represent a subset of Treg cells, one might expect to see more 

similarity between the TCR repertoires of these two populations. However, as previously reported, 

>70% of all Foxp3+RORγt+ T cell development occurs by 9 weeks of age (Ohnmacht et al., 2015). 

As the mice in our experiments were sequenced at a mean 17 weeks of age, the majority of cells in 

our data set capable of differentiating into Foxp3+RORγt+ cells likely had already done so. 

Therefore, even if the Foxp3+RORγt+ population is a subset of Treg cells, these two groups could 

still appear distinct by TCR sequencing. 
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In fact, the repertoire of Foxp3+RORγt+ cells appears largely distinct from all sequenced 

populations. The simplest explanation for this observation is that Foxp3+RORγt+ cells recognize a 

distinct set of antigens. However, it remains possible that they may recognize the same antigens, but 

that different affinities to these or other antigens results the differential expression of Foxp3 or 

RORγt, akin to that seen with Treg cell selecting ligands in the thymus (Lee et al., 2012a; Shafiani et 

al., 2013). Future studies will be required to determine the precise features of antigen specificity that 

dictate Foxp3+RORγt+ development.  

Yet, the Foxp3+RORγt+ population does share some TCR sequences with the TH17 

population and, though they represent a limited subset of the overall repertoire, this raises the 

question of how these clones develop. One possibility is that cells with these shared TCRs 

sequentially develop from TH17 to Foxp3+RORγt+ cells, in contrast to the CT2 TCR studied. 

Alternatively, the Foxp3+RORγt+ and TH17 phenotypes may develop via parallel pathways due to 

stochastic expression of cytokines or other signals associated with the cognate antigen. Further 

studies with additional TCRs are required to determine the extent that CT2 represents 

Foxp3+RORγt+ development, as well as establish the progression of transcription factor expression 

in cells expressing TCR shared by Foxp3+RORγt+ and TH17 repertoires.  

Notably, our sequencing data differs from that of a previous study which found no 

repertoire similarity between Foxp3+RORγt+ T cells and any other subset (Yang et al., 2015). 

However, these experiments used samples pooled from the spleen and peripheral lymph nodes, two 

tissues in which the population of RORγt+ Treg cells is dramatically smaller than that seen in the 

lamina propria. Given the relationship between Foxp3+RORγt+ T cells and the gut microbiota, we 

believe our analysis, which includes the lamina propria, more accurately reflects the physiology of 

these cells. Moreover, the use of fully polyclonal mice in the former study can make identification of 

shared clones difficult due the unknown TCRαβ pairing, as well as the greater diversity in the TCR 
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repertoire. Our use of a fixed TCRβ system restricts the TCR repertoire to a size capable of 

revealing clonal relationships, such as that seen between the Foxp3+RORγt+ and TH17 cell 

populations. 

The developmental path of Foxp3+RORγt+ cells is reflected in their requirements for 

specific APC subsets. As we have shown previously (Nutsch et al.) and in this report, Foxp3+ T cell 

development is influenced by Notch2-dependent, CD103+CD11b+ DCs. Moreover, we demonstrate 

that development of the RORγt+ fraction of Treg cells is specifically affected by the loss of 

CX3CR1+ APCs. Although future studies are required to determine the specific role of these APC 

subsets, one hypothetical model consistent with the current data is that naïve T cells first upregulate 

Foxp3 in response to signals from CD103+CD11b+ DCs and then express RORγt in response to 

CX3CR1+ APC-derived factors.  

Several groups have demonstrated that co-expression of effector T cell transcription factors 

by a Treg cell confers upon it the ability to specifically regulate the corresponding effector T cell 

subset. In the case of T-bet+ Treg cells, this is achieved, in part, by the T-bet-mediated expression 

of the chemokine receptor CXCR3, which allows these cells to traffic to the same locations as 

CXCR3-expressing TH1 cells (Koch et al., 2009). However, it remains to be shown whether these 

Treg subsets recognize antigens similar to those of their corresponding effector subsets and if such 

an overlap in TCR specificity contributes to the function of these Treg cells.  

Here, we show that a noticeable fraction of high frequency Foxp3+RORγt+ TCR clones are 

shared with the TH17 population. As previous work demonstrated that TH17 inflammation is 

enhanced in the absence of RORγt+ Treg cells (Sefik et al., 2015; Yang et al., 2015), our observation 

suggests effector-specific Treg populations can share antigen specificities with their target effector 

populations. TCR-dependent activation of these cells would be expected to occur at the same sites 

of corresponding TH17 activation, thus providing TH17-specific regulation. Loss of these clones in 
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Foxp3CreRORγtflx could account for the reported TH17-regulatory phenotype. One caveat to this 

model comes from an additional study, which instead reported that RORγt+ Treg cells are involved 

in regulating type-2 immunity (Ohnmacht et al., 2015). However, as we did not specifically sequence 

the Th2 subset, we cannot rule out the possibility of a similar set of Foxp3+RORγt+ TCRs that 

overlap with this population. Future work is needed to determine the role of overlap in antigen 

specificity for regulatory T cell control of specific effector T cell subsets. 
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2.6 Figures 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 – Frequency of mucosal Foxp3+RORγt+ T cells 

Representative FACS plots of CD4+ CD44-hi CD62L-lo CXCR3- cells in indicated tissues and 

associated quantification. n=6, each of 2 pooled mice. Error bars = ± 1 s.e.m. 
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Figure 2.2 – Sorting purity 

Representative post-sort purity of sequencing populations. Gated on CD4+ CD44-hi CD62L-lo 

CXCR3- cells.  
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Figure 2.3 – Sequencing coverage of TCR repertoire 

(A) Representative rarefaction curves for indicated sequencing populations. (B) Mean of calculated 

population coverage across all sequencing experiments for indicated populations and tissues. n=6, 

each of 2 pooled mice. Error bars = ± 1 s.e.m. 
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Figure 2.4 – CXCR3 expression in mucosal T cell populations 

Frequency of CXCR3+ cells within indicated populations of CD4+ CD44-hi CD62L-lo cells. n=6, 

each of 2 pooled mice. Error bars = ± 1 s.e.m. 

 

  

RORγt- T
Eff RORγt- TregT

H
17Foxp3+RORγt+

R
O
R
γt
- T

E
ff

R
O
R
γt
- T

re
g

T H
17

Fox
p3

+R
O
R
γt
+

R
O
R
γt
- T

E
ff

R
O
R
γt
- T

re
g

T H
17

Fox
p3

+R
O
R
γt
+

Colon

mLN

Colon mLN

26.3

45.6 16.6

8.7 15.9 9.4

16.419.2

C
X

C
R

3

CD4

0

10

20

30

0

10

20

30

40

F
re

q
u

e
n

c
y
 o

f 
C

X
C

R
3

+



30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 – Reduced TCR diversity in Foxp3+RORγt+ T cells 

Mean Renyi entropy of indicated populations. Increasing entropy indicates higher population 

diversity. Increasing order indicates increasing weight on high frequency clones. n=6, each of 2 

pooled mice. Error ribbon = ± 1 s.e.m. 
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Figure 2.6 – Dominance of most common TCR clones in Foxp3+RORγt+ T cells 

(A) Mean clonal frequency of top 25 clones in each population. (B) Oligoclonality indicated by 

average cumulative frequency of top 25 clones. n=6, each of 2 pooled mice. Error bars/ribbon = ± 

1 s.e.m. (*) adjusted p-value < 0.05. P-values reflect FDR corrected Wilcox rank sum test.   
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Figure 2.7 – Clustering of Foxp3+RORγt+ and TH17 T cell populations by TCR repertoire 

diversity and evenness  

(A) Polyclonality indicated by average Pielou’s evenness (evenness at order = 1) for each population 

in indicated tissues. Hierarchical clustering of (B) diversity and (C) evenness profiles calculated 

from TCR sequence counts. n=6, each of 2 pooled mice. Error bars = ± 1 s.e.m.  
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Figure 2.8 – Relative proportions of top 25 TCRs from mucosal T cell populations 

Top 25 TCR sequences from each population plotted by mean relative frequency in each 

population. The TCR CT2 is indicated. n=6, each of 2 pooled mice.   
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Figure 2.9 – TCR repertoire similarity of mucosal T cell populations 

(A) Mean Morisita-Horn (MH) similarity index (0=complete dissimilarity, 1=identical) between 

indicated populations. (B) Dendrogram based on similarity values in A. (C) Hierarchical clustering 

of all sequenced populations and tissues based on Euclidean distance of combined set of Morisita-

Horn values from each mouse for a given population and tissue. Dendrogram node values indicates 

bootstrap reproducibility of branch point. Error bars = ± 1 s.e.m. P-values reflect FDR corrected 

Wilcox rank sum test.   
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Figure 2.10 - Clustering of Foxp3+RORγt+ and TH17 T cell populations by CDR3 length 

(A) Spectratype analysis of TCRs from sorted populations. Lines represent mean frequency of 

indicated sequence length for each population. (B) Hierarchical clustering of TCR perturbation 

calculated from MH distance (inverse of MH similarity with 0=identical, 1=complete dissimilarity) 

of spectratype profiles (set of relative frequency for each sequence length) between individual 

sequencing samples of indicated populations and tissues. n=6, each of 2 pooled mice.  
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Figure 2.11 – Few, high-frequency clones contribute to Foxp3+RORγt+ and TH17 repertoire 

similarity 

Mean clonal frequencies (top) or ratio (bottom) of all TCRs with ≥0.01% clonal frequency in either 

of indicated populations in the colon. n=6, each of 2 pooled mice.  
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Figure 2.12 – Correlation between TCR frequencies in mucosal T cell populations 

Pearson (rP) and Spearman (rS) correlation of TCR frequencies between indicated populations. n=6, 

each of 2 pooled mice.  
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Figure 2.13 – Identification of top TCRs in Foxp3+RORγt+ T cell population 

Enrichment of TCRs in Foxp3+RORγt+ population relative to indicated population vs. FDR 

adjusted p-value. Red dots are TCRs > 2-fold enriched in the Foxp3+RORγt+ population over both 

Treg and TH17 populations with an adjusted p-value < 0.05. Blue X indicates TCR CT2. Green 

cross indicates TCR CT6. n=6, each of 2 pooled mice.  
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Figure 2.14 – Table of top Foxp3+RORγt+ TCRα sequences 

Top 10 Foxp3+RORγt+ TCRα sequences from indicated tissues, sorted by frequency, meeting 

criteria of ≥1 log2fold enrichment and ≥0.1 false discovery rate adjusted p-value for comparison 

with both the RORγt- Treg and TH17 populations, calculated by DESeq2. Bold indicates CT2 

sequence  
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Figure 2.15 – CT2 efficiently adopts a Foxp3+RORγt+ phenotype 

Phenotype of transferred CT2-TCRtg CD4+ cells in indicated tissues 3 weeks after transfer of 5x104 

naïve cells into WT hosts. n≥5 for each group. Data representative of ≥2 independent experiments. 

Error bars = ±1 s.e.m.  
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Figure 2.16 – CT2 Foxp3+RORγt+ T cell differentiation is TCR dependent 

Frequencies of indicated populations from distal mLN of WT host mice 3 weeks after transfer of 

5x104 naïve cells. n≥5 for each group. Data representative of ≥2 independent experiments. Error 

bars = ±1 s.e.m 
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Figure 2.17 – Naïve CT2 T cells adopt a Foxp3+RORγt+ phenotype via a RORγt- Treg cell 

intermediate 

Phenotype of transferred CD4+ cells at indicated time points after transfer of 5x104 naïve CT2 

TCRtg cells into WT hosts. n≥5 for each group/time point. Data representative of ≥2 independent 

experiments. Error ribbon = ±1 s.e.m. 
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Figure 2.18 – Naïve polyclonal T cells adopt a Foxp3+RORγt+ phenotype with limited prior 

TH17 differentiation 

Phenotype of transferred CD4+ cells at indicated time points after transfer of 5x104 naïve polyclonal 

cells into WT hosts. n≥5 for each group/time point. Data representative of ≥2 independent 

experiments. Error ribbon = ±1 s.e.m. 
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Figure 2.19 – RORγt+ Treg cell development is not significantly affected in the absence of 

Notch2-expressing APCs  

Phenotype of CT2 TCRtg CD4+ cells in Notch2+ APC-deficient host mice 3 weeks after transfer 

of 5x104 naïve cells. n≥7 for each group. Data representative of ≥2 independent experiments. Error 

bars = ±1 s.e.m. 
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Figure 2.20 - RORγt+ Treg cell development is significantly impaired in the absence of 

CX3CR1-expressing APCs 

Phenotype of CT2 TCRtg CD4+ cells in CXC3R1-APC deficient host mice 10 days after transfer of 

5x104 naïve cells. For deletion of CX3CR1+ APCs, DT was administered (20ng/g) for two days 

prior to transfer and (5ng/g) every other day after transfer until analysis. n≥7 for each group. Data 

representative of ≥2 independent experiments. Error bars = ±1 s.e.m. 
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Chapter 3: Antigen-specific exacerbation of 

CNS inflammation by clonally expanded γδ T 

cells  
 

3.1 Abstract 
 

γδ T cells represent a unique intersection of adaptive and innate immunity. While capable of 

responding rapidly to inflammatory stimuli in a manner reminiscent of many innate immune cells, γδ 

T cells express a somatically rearranged antigen receptor similar to B and T lymphocytes. Yet, 

despite its evolutionary conservation, the importance of a diversified γδ TCR is unclear. Here, we 

describe a fixed-TCRδ system that allows high-throughput analysis of the paired chain γδ TCR 

repertoire in vivo. Using this system, we show that γδ T cells with diversified T cell receptors clonally 

expand during experimental autoimmune encephalomyelitis (EAE). Moreover, these expanded 

clones directly contribute to disease pathogenesis, as a single γδ T cell clone enriched during EAE is 

capable of exacerbating disease severity in a TCR-specific manner.   
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3.2 Introduction 
 

Importance of the γδ TCR 

The importance of the TCR for the development and function of αβ T cells is well 

understood. αβ T cells require stimulation through their TCR during thymic maturation in order to 

proceed through several developmental checkpoints. Moreover, all conventional αβ T cells exit the 

thymus displaying a naïve phenotype and require antigen-mediated TCR stimulation to clonally 

expand, activate, and exert their various effector functions throughout the course of an immune 

response. 

 However, for γδ T cells the importance of TCR is much less clear. While TCR signaling 

does play a role in thymic development (Kreslavsky et al., 2008), it remains to be shown if this 

process depends on stimulation via idiotype-specific ligands as is required for αβ T cell positive and 

negative section. Moreover, in the thymus, γδ T cells are capable of acquiring a pre-activated 

phenotype normally associated with antigen-experienced peripheral cells. This allows cells to 

respond directly to inflammatory cytokines in the absence of antigen. For example, “natural” IL-17 

producing γδ T (nTγδ17) cells leave the thymus with a CD44-hi CD62-lo IL-1R+ IL-23R+ 

phenotype (Jensen et al., 2008) and can produce IL-17 within several hours of inflammatory 

cytokine stimulation (Shibata et al., 2007), compared to the several days needed for IL-17 production 

by TH17 αβ cells or γδ T cells that exit the thymus with a CD44-lo CD62-hi phenotype (Zeng et al., 

2012, 2014). In addition, the γδ TCR repertoire contains a high frequency of TCR sequences 

arranged in germline configuration, suggesting limited pressure for extensive receptor diversification. 

Together, this has led many to suggest that the γδ TCR functions merely as a pattern recognition 

receptor or may even be irrelevant to the function of mature γδ T cells (Kapsenberg, 2009). 
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However, several lines of evidence argue against a marginalized view of the γδ TCR. 

Notably, though γδ T cells expressing a pre-activated phenotype can produce effector molecules in 

response to inflammatory cytokines alone, this response is significantly blunted by inhibitors of TCR 

signaling (Zeng et al., 2012). Similarly, genetic defects in components of TCR signaling can impair 

the function of pre-activated γδ T cells, while defects in the signaling pathways of several pattern 

recognition receptors do not (Duan et al., 2010; Wencker et al., 2014). Finally, unlike what would be 

expected of an irrelevant or vestigial gene, the primate TRG locus shows a high rate of evolutionary 

change and appears to be undergoing selection for diversifying mutations and against inactivating 

mutations (Kazen and Adams, 2011). 

  

Diversity of the γδ TCR repertoire  

 The γδ TCR repertoire has an extremely high theoretical diversity (Davis and Bjorkman, 

1988), yet is notably restricted in vivo, even compared to other lymphocyte lineages. However, rather 

than a general property of the entire γδ TCR repertoire, this reduced diversity appears to be due to 

an averaging of γδ T cells subsets with high TCR diversity and populations with low or even 

monoclonal diversity. On one extreme of this spectrum are epidermal dendritic T cells (DETCs), a 

subset of Vγ5+ γδ T cells that bear a single germline configuration TCR sequence (Asarnow et al., 

1988). Yet despite its highly restricted repertoire, the DETC TCR appears to have functional 

importance, as it is required for keratinocyte-mediated activation of DETCs (Havran et al., 2016). 

Moreover, DETCs exhibit a sustained level of TCR signaling at steady state and the sub-cellular 

localization of this signaling is redirected in response to nearby epidermal wounds (Chodaczek et al., 

2012).  

 In contrast to DETCs, many populations of γδ T cells possess diverse TCR repertoires, 

particularly those that reside in peripheral lymphoid tissue, such as the spleen and lymph nodes. For 
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example, the TCR repertoire of Vγ4+Vδ4+ γδ T cells is moderately diverse in naïve mice, with the 

highest frequency TCR clones representing approximately 5-20% of the entire repertoire (Roark et 

al., 2007). Moreover, upon immune challenge in collagen induced arthritis (CIA), the TCR repertoire 

of this population of cells becomes substantially more oligoclonal, with the top frequency clones 

representing 20-50% of the entire repertoire. Thus, the γδ TCR repertoire appears to span a range of 

diversity, with the TCR able to directly contribute to function at both ends of this spectrum.   

 

γδ T cell memory 

 How then does a diverse antigen receptor repertoire contribute to the function of T cells? 

For αβ T cells, it is believed that the purpose of a diverse TCR repertoire is to provide a sufficiently 

broad range of antigen-specific lymphocytes so as to be capable of recognizing novel immune 

challenges and establish subsequent immune memory. Initially, γδ T cells appeared to lack the ability 

to generate memory. For example, though γδ T cells contribute to the protective immune response 

against West Nile virus (WNV), there is no difference between the response of γδ T cells during 

primary and secondary challenge (Wang et al., 2006). Interestingly, while having no memory 

response of their own in WNV infection, γδ T cells do play a role in the ability of CD8+ αβ T cells 

to form WNV-specific immune memory. As such, γδ T cell-deficient mice do exhibit decreased 

resistance to secondary WNV infection, though this is a direct consequence of impaired CD8+ T 

cell memory (Wang et al., 2006). 

 However, recent evidence has led investigators to reexamine the ability of γδ T cells to form 

memory responses. In the imiquimod-induced model of psoriasis, Vγ4Vδ4 γδ T cells expand in 

draining lymph nodes and eventually traffic back to dermal tissue. Secondary challenge results in 

enhanced proliferation of these dermal-resident cells. This memory response is intrinsic to γδ T 

cells, as γδ T cells transferred from imiquimod-sensitized mice into healthy hosts still demonstrate 
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an enhanced response when the hosts are subsequently challenged (Ramírez-Valle et al., 2015). 

Similarly, S. aureus infection results in an expansion of Vγ6+ γδ T cells, which further expand upon 

secondary challenge. Moreover, transfer of expanded γδ T cells from S. aureus challenged mice to 

naïve hosts provides a small protective advantage when the hosts are similarly immunized (Murphy 

et al., 2014). Finally, γδ T cells are also capable of contributing to the memory response to oral 

Listeria infection and this response correlates with the specific expansion of Vγ6+ γδ T cells 

(Sheridan et al., 2013). 

 

γδ TCR specificity in clonal expansion 

However, whether this memory response can be attributed directly to antigen recognition by 

the γδ TCR remains to be shown. Certain γδ T cell phenotypes, such as the nTγδ17 cell subset, are 

imprinted in the thymus and correlate with specific Vγ and Vδ containing TCRs, particularly those 

in germ line conformation (Shibata et al., 2014). Thus, it is possible that the TCR only contributes to 

the thymic development of such γδ T cell clones and their expansion during an immune response is 

dictated by the imprinted phenotype, rather than the TCR itself.  

By comparison, the involvement of the TCR in clonal expansion and memory of αβ T cells 

has been well described.  The αβ TCR 2D2, identified based on its expansion during experimental 

autoimmune encephalomyelitis (EAE), is an illustrative example. T cells that transgenically express 

2D2 can directly recognize myelin oligodendrocyte (MOG) peptide and contribute towards the 

pathogenesis of both spontaneous and transferred EAE (Bettelli et al., 2003).  

Though limited, there is some evidence that suggests expanded γδ TCR clones are capable of 

directly contributing to an immune response. In the imiquimod model of psoriasis discussed above, 

Vγ4+Vδ4+ γδ T cells specifically involved in the memory response upregulate Nur77, while 

Vγ4+Vδ4- γδ T cells, which are not involved in the memory response, do not. Nur77 is a 
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transcription factor whose expression has previously been described to correlate with stimulation of 

the TCR (Moran et al., 2011), suggesting that only the cells involved in imiquimod induced 

expansion and memory are receiving TCR stimulation. Notably, the Vγ4+Vδ4+ γδ T cell fraction is 

the same population to clonally expand in collagen induced arthritis (CIA) (Roark et al., 2007). 

Moreover, in the γδ T cell memory response to oral listeria, internalization of the Vγ6 TCR results in 

loss of γδ T cell memory, while internalize of other γδ TCRs has no effect (Sheridan et al., 2013). 

However, evidence of a specific T cell clone like 2D2 that expands in response to cognate antigen 

and actively contributes to the associated immune response is still lacking for γδ T cells.   

 

γδ T cells in EAE 

 In looking for TCR mediated expansion and function, there are many possible immune 

models with reported γδ T cell involvement to investigate. However, one of the clearest examples of 

γδ T cell contribution to an immune phenotype can be found in EAE, a mouse model of multiple 

sclerosis (MS). In multiple variations of the EAE model, TCRδ-deficient mice, which lack all γδ T 

cells, exhibit decreased disease severity (Blink and Miller, 2009; Petermann et al., 2010; Spahn et al., 

1999). Indeed, in the hands of some investigators, TCRδ-deficient mice are completely resistant to 

developing EAE. Moreover, enriched numbers of γδ T cells are readily found in the CNS of WT 

mice with active EAE. These observations are mirrored in human MS patients, where γδ T cells can 

be detected in CNS plaques (Freedman et al., 1991). Moreover, γδ T cells isolated from these lesions 

are capable of lysing oligodendrocytes in vitro. Together, these observations suggest that γδ T cells 

can actively contribute to demyelinating pathology. 

 γδ T cell may contribute to EAE in several ways. IL-17 is an important component of EAE 

pathogenesis (Komiyama et al., 2006; Yang et al., 2008) and γδ T cells are a significant, if not the 

principal source of IL-17 during EAE (Price et al., 2012). In addition, γδ T cells contribute several 
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other pro-inflammatory cytokines during EAE, as the levels of IL-1, IL-6, TNF, and IFNγ, are 

diminished in γδ T cell deficient mice (Rajan et al., 1998). γδ T cells may also contribute to the 

pathogenicity of αβ T cells, as γδ T cell deficient mice have reduced αβ T cell CNS infiltration during 

EAE (Spahn et al., 1999). Even upon transfer with autoreactive αβ T cells, TCRδ-deficient mice still 

exhibit decreased EAE disease severity (Odyniec et al., 2004), although conflicting data has also 

been reported (Clark and Lingenheld, 1998).    

 However, not all evidence is in agreement regarding the pathological role for γδ T cells in 

EAE and MS. For instance, at least one group has reported that antibody-mediated depletion of γδ 

T cells results in enhanced EAE disease severity. However, in a more recent study of antibody-based 

depletion of γδ T cells using TCRD-GFP mice, Blink et al. demonstrated that several anti-γδ antibody 

clones (UC7, UC3, and 2.11) actually result in cellular activation and downregulation of cell surface 

TCR molecules (Blink et al., 2014). Since the γδ TCR is the only reliable way to detect γδ T cells by 

cell surface staining, this would give the erroneous appearance of a loss of γδ T cells, when in truth, 

only the means to detect them by flow cytometry has been lost. Moreover, these investigators 

showed that γδ T cells can be categorized into at least two subsets in relation to their role in EAE 

pathogenesis. As indicated by anti-Vγ4 antibody-mediated activation, Blink et al. showed that Vγ4+ 

γδ T cells enhance disease pathology. Conversely, using anti-Vγ1 antibodies, they showed that Vγ1+ 

γδ T cell activation can constrain EAE severity. These opposing functions within the γδ population 

could explain why different investigators could observe different outcomes when manipulating the 

bulk γδ T cell population in EAE. 

 Despite a clear role for γδ T cells in EAE and MS, the role of antigen specificity in disease 

pathology remains uncertain. The limited studies of the γδ TCR repertoire during EAE and MS have 

consistently reported significant TCR oligoclonality, whether it be in CNS tissue from EAE-

immunized mice (Olive, 1995) or the plaques and CSF of MS patients (Shimonkevitz et al., 1993; 
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Wucherpfennig, 1992). However, of these oligoclonal TCR sequences, many are found in a germ-

line VDJ conformation, suggesting little diversification of the TCRs involved. Indicative of this 

trend, one study noted that all CNS sequences detected were composed of a monoclonal Vγ6-Jg1 

germline TCR rearrangement, although only Vγ6 TCRs were sequenced and no TCRδ sequencing 

was performed (Olive, 1995). This raises the possibility that the clonal expansion seen in EAE and 

MS might not represent antigen specificity, but instead antigen-independent proliferation of an 

already monoclonal population. However, as the sequencing methodologies used in EAE and MS 

repertoire studies have substantial limitations, the role of the γδ TCR in these immune processes 

remains an open question.    

 

Limitations of current γδ TCR data 

One of the major limitations of currently available γδ TCR repertoire data comes from the 

technology used to obtain it. The majority of our understanding of the γδ TCR repertoire comes 

from early studies relying on Sanger sequencing, where the number of DNA reads obtained is 

limited to the number of individual sequencing reactions carried out. Typical repertoire sequencing 

studies of this kind analyze less than 100 DNA reads (Elliott et al., 1988; Olive, 1995, 1996; Takagaki 

et al., 1989) and, as such, even if taken from only a single sample, are unlikely to detect TCR 

sequences that represent less than 1% of the total repertoire. Although the γδ T cell repertoire is 

more restricted, the average αβ TCR frequency is approximately 0.001% (Casrouge et al., 2000), 

suggesting that previous studies may be drastically undersampling the γδ TCR repertoire. By 

comparison, deep-sequencing methodologies can yield millions of DNA reads, offering a much 

more comprehensive picture of the γδ T cell repertoire. However, compared to the study of the αβ 

TCR repertoire, the application of deep-sequencing to the γδ TCR repertoire has been extremely 

limited (Kashani et al., 2015; Schumacher et al., 2014; Sherwood et al., 2011; Wei et al., 2015). 
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 Another major challenge in studying the γδ TCR repertoire comes from the fact that the two 

receptor chains that jointly contribute to TCR antigen specificity are encoded by separate genes, 

TRG and TRD. As a result, the in vivo pairing of TCRγ and TCRδ sequences cannot be determined 

from transcripts obtained from a bulk population of γδ T cells. To date, repertoire studies have 

either had to acknowledge this as a limitation to the data obtained from bulk samples or sequence 

individual cells. Early approaches of single cell sequencing relied on the generation of γδ T cell 

hybridomas, from which individual clones could be cultured in vitro and then sequenced (Shin et al., 

2005). Current methods now incorporate automated single cell sorting, which increases the number 

of total cells that can be analyzed in a single cell sequencing approach (Wei et al., 2015). However, 

both strategies are still limited to the number of cells that can be independently processed, usually 

on the order of tens to hundreds.  

 In order to address this same problem in the context of the αβ TCR repertoire, our lab and 

others have previously utilized transgenic mice in which one chain of the TCR remains fixed, while 

the second chain is left free to rearrange (Correia-Neves et al., 2001; Hsieh et al., 2006; Lathrop et 

al., 2011; Merkenschlager et al., 1994). Sequences from the freely rearranging TCR chain can then be 

obtained from a bulk sample and pairing to the sequence of the fixed TCR chain can be inferred. As 

such, fixed TCR systems represent a way to obtain paired-chain sequence data without the need for 

single cell analysis. When combined with a deep-sequencing platform, this has provided a 

significantly more comprehensive view of the αβ TCR repertoire. Yet, such methods have yet to be 

applied to the study of the γδ TCR repertoire. 

 Here we utilize a fixed TCRδ-retroviral bone marrow chimera system to investigate the 

response of the γδ TCR repertoire to inflammatory stimuli and the role this response plays in the 

resulting immune response. Using EAE, we show that the γδ TCR repertoire can shift significantly 
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in response to inflammation. Moreover, using a TCR clone isolated during this response, we show 

that γδ T cells can contribute to immune pathology in a TCR dependent manner.  

  



57 

 

3.3 Materials and Methods 
 

Cell isolation and flow cytometry 

IELs were isolated by digesting intestinal tissue in RPMI media containing 3% FBS, 20mM HEPES, 

1mM DTT, and 50mM EDTA for 20min at 37º C. Additional washes in RPMI + 22.5mM EDTA 

was done to completely remove IELs. Suspended cells were filtered through a 40µm filter prior to 

use. CNS lymphocyte isolation was performed as described (Lin et al., 2016). Briefly, mice were 

perfused with PBS and the spinal cord and brain were dissected. CNS tissue was then digested with 

500µg/mL collagenase I (Sigma-Aldrich) and 10µg/mL DNAse I (Sigma-Aldrich) in the presence of 

0.1µg/mL TLCK trypsin inhibitor (Sigma-Aldrich) and 10mM HEPES in HBSS followed by 

enrichment by Percoll gradient. Fluorescently conjugated antibodies were purchased from Biolegend 

and eBioscience. TCRγδ (GL3) antibodies were used at 0.8µg/mL and CD3 (145-2C11) antibodies 

were used at 2µg/mL. Samples were sorted and analyzed with a FACSAria IIu (BD) and data was 

processed in FlowJo (Treestar). 

 

TCR sequencing 

cDNA was prepared from RNA of sorted populations using gene specific, reverse transcription 

primers. cDNA libraries were then prepared by multiplex PCR containing forward primers for each 

TRV and reverse primers for each TRC. 250-cycle paired-end sequences were then obtained using 

Illumina MiSeq at the Washington University Genome Sequencing Center. TRV, TRJ, and TRC 

segments were then identified using a custom BLAST program incorporating sequence data from 

IMGT (Lefranc, 2003). 

 

 



58 

 

TCR retroviral bone marrow chimeras 

Retrogenic mice were generated as described previously (Holst et al., 2006; Lee et al., 2012a). Briefly, 

TCRβ- x TCRδ- (for fixed-TCRδ retrogenic mice) or RAG- (for full TCRγδ retrogenic mice) bone 

marrow was obtained and retrovirally transduced with the indicated TCR-IRES-Thy1.1 expression 

vector. Lethally irradiated (950 rads) mice were then injected with transduced bone marrow and 

congenically distinguished filler bone marrow as indicated by the experiment at a 4:1 ratio. At 6-8 

weeks mice were utilized for experiments.  

 

EAE immunization 

EAE immunization was performed as described (Lin et al., 2016). Briefly, mice were immunized 

with 100µg of MOG35-55 (CS Bio Co.) in CFA s.c. Mice were additionally immunized with 300ng of 

pertussis toxin i.p. on days 0 and 2. For sorting or FACS analysis, mice were analyzed at d12 post-

immunization. 

 

T cell hybridoma assays 

Hybridoma cells expressing GFP under an NFAT promoter were retrovirally transduced with 

D3G1-IRES-Thy1.1. Hybridomas were then stimulated with plate bound anti-CD3 antibody 

overnight and assessed for GFP expression by flow cytometry. 

 

Statistical analysis 

Diversity profiles were generated using Renyi entropy values with alpha/order values ranging from 0 

(natural logarithm of species richness) through 2 (natural logarithm of the inverse Simpson index) 

(Jost, 2006; Pacholczyk et al., 2007). This includes alpha = 1, which represents the commonly used 

Shannon entropy. Coverage was calculated as described (Chao and Jost, 2012). For multiple 
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comparisons of individual TCR enrichment between samples, Benjamini-Hochberg false discovery 

rate adjusted p-values were used. All statistical analysis was performed in R (v3.3.0) with the use of 

the vegan (v2.3-5, diversity and similarity analysis), and DESeq2 (v1.12.0, differential TCR usage) 

packages.  Mann-Whitney U or Kruskal-Wallis with post-hoc Dunn’s tests were used for between 

group analysis.  
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3.4 Results 
 

Deep sequencing of the TCRγ and TCRδ repertoires 

 In order to comprehensively investigate the γδ TCR repertoire, we designed a multiplex 

DNA sequencing system capable of detecting all γδ TCR transcripts. TCR transcripts that have 

successfully undergone VDJ rearrangement and mRNA splicing can utilize one of several V-gene 

segments and, in the case of TCRγ transcripts, multiple C-gene segments (Lefranc, 2003). In order 

to account for all possible combinations of these gene segments contributing to the 3’ and 5’ ends of 

a TCR transcript, our multiplex system included multiple forward and reverse primers, each specific 

to a corresponding V- or C-gene segment, respectively. TCR transcripts were PCR amplified using 

these primers and sequenced using the high-throughput Illumina MiSeq platform. 

  In order to test the ability of our multiplex amplification to successfully amplify all possible 

TCRγδ gene families, we first performed sequencing experiments utilizing each V-gene-specific 

primer individually. Notably, the TCRδ locus is located within the larger TCRα locus and TCRδ 

transcripts can utilize a subset of TCRα V-gene (TRAV) segments in addition to TRDV segments 

(Lefranc, 2003). Therefore, our TCRδ sequencing workflow also included several TRAV specific 

primers. Overall, TRDV and TRAV containing sequences were highly specific to the corresponding 

V-gene primer used (Fig. 3.1). The minimal cross reactivity observed with some primers was largely 

restricted to those TCRδ transcripts utilizing TRAV V-segments. This is not surprising as, in 

general, TRAV gene families show closer homology from one to the other than TRGV gene 

families.  

 Our TCRγ primers we also able to detect sequences utilizing all TRGV genes segments (Fig. 

3.1). However, due to the high sequence homology between TRGV1, TRGV2, and TRGV3 gene 

families, primers specific to these segments exhibited a substantial degree of cross reactivity. Unlike 
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the TCRδ locus, which only contains one C-gene, the TCRγ gamma locus contains three Cg genes 

and the use of a particular TRGC segment is reported to correspond directly to a subset of TRGV 

and TRGJ genes. Our sequencing system was able to detect transcripts containing each of the three 

TRGC segments and confirm a unique pattern of upstream VJ-segment usage associated with each 

C-region. Specifically, TRGC4 associates with the TRGJ4 and TRGV1 gene segments, TRGC2 

associates with the TRGJ2 and TRGV2 genes, and TRGC1 associates with the TRGJ1 J-segment and 

the TRGV4, 5, 6, and 7 V-segments (Fig. 3.2).  

 Across all experiments described in this study, our sequencing approach was able to detect a 

high number of unique TCRδ and TCRγ CDR3 sequences. As discussed previously, the use of 

Sanger sequencing has limited the vast majority of γδ TCR repertoire studies to typically fewer than 

100 sequence reads, often equating to a considerably smaller number of unique CDR3 amino acid 

sequences. Yet in our data, we detect approximately 400,000 TCRδ CDR3 sequences and close to 

25,000 TCRδ CDR3 sequences (Fig. 3.3), demonstrating the degree of improved repertoire 

coverage we obtain with a deep sequencing approach. 

 

TRV usage and diversity 

 We next sought to validate our sequence data against several well described aspects of the γδ 

TCR repertoire. One of the earliest described features of the γδ TCR repertoire is the restricted use 

of certain Vγ and Vδ chains in different tissues (Vantourout and Hayday, 2013). Indeed, we 

observed similar biases in TRV gene usage based on the tissue sequenced, with several well 

characterized patters (Fig. 3.4). For instance, the skin is one of the only tissues with notable 

TRDV4 or TRGV5 expression, both associated with the TCR of highly restricted DETC cells. 

In addition to TRV gene usage, γδ TCR diversity is also reported to vary by tissue and TRV 

gene families. Interestingly, we found that, in general, TCR diversity if relatively uniform across 
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tissues within a particular TRV gene family (Fig. 3.5). As suggested by the data described above, it 

instead appears that it is the relative proportion of γδ T cells bearing these different TRV genes that 

determines the apparent repertoire restriction of the tissue as a whole. We also noted that, overall, 

TCRδ diversity is greater than TCRγ diversity. This is not unexpected, as TCRδ transcripts can 

incorporate a second D-gene segment, creating a second opportunity for diversifying N- and P- 

nucleotides at the joint region (Vantourout and Hayday, 2013). 

This observation is also reflected in the overall length of γδ TCR sequences, as the 

incorporation of a second D-gene segment would be expected to lead to longer TCRδ transcripts. 

As a result, the CDR3 loop of TCRδ chains often protrudes from the surface of the TCR structure 

and may contribute to the γδ TCR’s ability to bind certain ligands in an immunoglobulin-like fashion 

(Chien et al., 2014). In support of this, we observed that TCRδ CDR3 sequences are typically longer 

than TCRγ CDR3 sequences (Fig. 3.6). Interestingly, with the exceptions of TRDV4 and TRGV5, 

the TCRγ and TCRδ chain V-genes could be differentiated based on the uniformity of CDR3 amino 

acid length distributions, with TRDV genes having the most variability in length.  

  

Ontogeny of the γδ TCR repertoire 

 An additional unique feature of the γδ TCR repertoire is that different Vγ gene are used 

preferentially at different times during ontogeny (Vantourout and Hayday, 2013). The reported 

sequence begins with Vγ5+ DETC cells, followed by Vγ6+ and Vγ4+ cells during the embryonic 

period. Vγ4+ T cell development continues throughout the life of the mouse and is joined by 

expression of the remaining Vγ families in the neonatal period. However, as these original 

observations were not made using information at the clonal level we sought to determine if subtler 

changes in the CDR3 repertoire could be detected throughout ontogeny.  
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 We first confirmed that our data mirrored the TRV kinetic patterns previously observed. 

Using mature, CD24-lo thymocytes, we assessed the γδ TCR repertoire at birth, 1 week of age, and 6 

weeks of age (Fig. 3.7). At birth, we can still detect transcription of TCRs utilizing TRV segments 

previously attributed to fetal development, such as the TRDV4 and TRGV5 genes of the DETC 

TCR. In fact, we were able to detect significant levels of TRGV5 up to 1 week of age. However, 

these early TRV segments are eventually replaced by high diversity TRV segments like TRDV4 and 

TRGV4.  

 We then further characterized this repertoire progression in the context of TCR diversity. 

Interestingly, regardless of the TRV gene used, the γδ TCR repertoire appears to get more diverse 

with age (Fig. 3.7). While it is not surprising that overall diversity would increase with age, it was 

unexpected that this would hold true for all groups of TRV segments, given that certain TRV-

containing TCRs are mostly constrained to early development. This is surprising given the 

association of restricted repertoires and preferential TRV usage in early life. Due to the 

characteristic fetal development of γδ T cells, some have argued that the functions of these cells is 

mostly relevant to this period in a host’s life cycle. However, the fact that γδ TCR diversity 

continues to grow even after birth would suggest that γδ T cells remain relevant in adults.  

 

Polyclonal γδ T cells clonally expand during EAE 

 As discussed previously, a major limitation of all methods currently used to analyze the γδ 

TCR repertoire is their inability to obtain paired TCRγ and TCRδ sequence information with the 

throughput of deep-sequencing. In order to address this, we developed a fixed-TCRδ retroviral bone 

marrow chimera system to generate TCR “retrogenic” mice. In this approach, a single TCRδ chain is 

fixed in developing γδ T cells, while the TCRγ locus can freely rearrange. As there is only one TCRδ 

sequence to which resulting TCRγ transcripts can pair with, we are able to determine the complete 
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sequence of a γδ TCR from TCRγ sequences alone. Therefore, we can obtain full TCRγδ sequences 

from bulk populations, rather than limited single cell samples. 

 To study the dynamics of the γδ TCR repertoire, we chose to utilize EAE as a disease 

model, due to its well described involvement of γδ T cells (Spahn et al., 1999). In order to obtain a 

TCRδ sequence likely to be used by γδ T cells involved in EAE inflammation, we first sequenced 

the TCRδ repertoire of polyclonal mice immunized for EAE. Immunized mice displayed a 

noticeable shift in their TCRδ repertoire, suggesting an antigen specific γδ T cell response during 

EAE (Fig. 3.8). We then analyzed the use of specific clones in these immunized mice and identified 

the TCR D3 for its approximately 10-fold enrichment in the draining LN of immunized mice 

relative to control mice, as well as its representation in inflamed CNS tissue (Figs. 3.9, 3.10).   

 

Fixed-TCRδ retrogenic mice provide enhanced coverage  

We then proceeded to generate fixed-TCRδ retrogenic mice using this TCR, termed D3G0 

(D3 for the TCRδ chain and G0 reflecting the absence of a retrovirally expressed TCRγ chain). We 

first tested whether γδ T cells in the fixed-TCRδ system develop normally. A thymic CD4 and CD8 

double negative (DN) γδ T cell phenotype is often considered indicative of appropriate γδ T cell 

lineage commitment. Alternatively, CD4 and CD8 double positive (DP) γδ T cells are often 

abnormal and develop into cells phenotypically resembling αβ T cells (Kreslavsky et al., 2008). We 

find that D3-expressing γδ T cells develop normally, with almost all cells found in the DN fraction 

(Fig. 3.11). Moreover, the cellular fraction derived from the retrovirally transduced bone marrow 

efficiently generates γδ T cells, with approximately 2/3rd of all γδ T cells in these mice expressing 

D3G0, while the remaining 1/3rd represent polyclonal γδ T cells derived from the WT bone marrow 

compartment. Finally, we confirmed that these phenotypes were stable, as only mature γδ T cells 

reach the peripheral lymphoid tissue.  
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Single cell γδ T cell sorting and sequencing is a common approach currently used to address 

the challenge of pairing TCRγ and TCRδ sequences. Therefore, we compared the repertoire 

coverage obtained from sequencing the TCRγ repertoire of our fixed-TCRδ retrogenic mice to that 

obtained from a recent single cell sorting-based repertoire study (Wei et al., 2015). As expected, our 

method provided substantially improved repertoire sampling, with essentially complete coverage in 

the tissues assayed (Fig. 3.12). This is compared to the single-cell sorting method which, while 

achieving high coverage in several tissues shown to have limited overall diversity, appeared to cover 

less than 50% of the γδ TCR repertoire in high diversity tissues. Together, these data suggest that 

our methodology will significantly enhanced repertoire resolution. 

 

Clonal expansion of fixed-TCRδ γδ T cells in EAE 

 Interestingly, we noticed that the TCRγ repertoire observed in cells expressing the D3G0 

TCR did not significantly differ from the TCRγ repertoire of the polyclonal fraction of γδ T cells 

within the same mouse (Fig. 3.13). Additionally, we compared the TCRγ repertoires of cells 

expressing two additional fixed-TCRδ sequences, D1G0 and D2G0, and found that they showed no 

difference to the TCRγ repertoire of D3G0 γδ T cells. This suggests that that the TCRδ chain used 

by a γδ T cell does not impart restriction on what TCRγ sequences it can pair with. 

 To test if the choice of TCRδ chain has no bearing on the TCRγ repertoire during 

inflammation, we immunized D3G0 retrogenic mice for EAE. Unlike what we observed during 

homeostasis, the TCRγ repertoires of polyclonal and D3G0-expressing γδ T cells diverged during 

EAE (Fig 3.13). As the TCRδ sequence seems to affect the choice of TCRγ chain during an 

immune response, but not during homeostasis, this suggests that specific antigen interaction is not 

important for γδ T cell thymic development, but does contribute to the peripheral function of these 

cells.  
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 During EAE, D3G0 expressing γδ T cells are capable of trafficking to the CNS (Fig. 3.14), 

suggesting that the repertoire changes observed above are due to active involvement in the immune 

response. As might be expected given the divergence of polyclonal and D3G0 associated TCRγ 

repertoires in EAE, the TCRγ repertoire of γδ T cells expressing D3G0 changed substantially 

between EAE and healthy control mice (Fig. 3.15). Moreover, this shift included an expansion of 

TRGV4-utilizing clones, which are associated with a subset of γδ T cells that have been previously 

implicated in EAE pathology (Blink et al., 2014).  

 When analyzing specific TCRγ sequences, we identified the TCR G1 for its prominent 

representation during EAE. G1 is significantly enriched in the draining LNs of EAE immunized 

mice, with a greater than 6-fold increase over health control samples (Fig 3.16). Moreover, G1 

represented a dramatically high proportion of all D3G0-associated TCRγ sequences in the CNS, 

reaching 15% of all sequences (Fig 3.17). This enrichment appears to be due to clonal expansion of 

the entire population of G1-expressing cells rather than a founder event by a single clone, as the 

distribution of DNA sequences used to encode the G1 CDR3 region are similar between mice and 

between immunized and control conditions (Fig. 3.16). Together, the repertoire changes and 

specifically enriched TCR clones that we observe strongly suggests antigen-dependent clonal 

expansion of γδ T cells can occur during EAE. 

 

Generation of full γδ TCR retrogenic mice 

 Having demonstrated significant expansion of individual γδ TCR clones during EAE, we 

next sought to determine how these clones contribute to the pathogenesis of EAE. To do this, we 

utilized γδ T cells bearing both the D3 TCRδ and G1 TCRγ chains, termed D3G1. To observe these 

cells in vivo, we modified our fixed-TCRδ system in order to express both γδ TCR chains in RAG-

deficient bone marrow, which would otherwise generate no lymphocytes. These mice also contain 
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congenically marked TCRδ-deficient bone marrow. Thus, these mice have a normal complement of 

lymphocytes, with the exception of γδ T cells, which are derived entirely from the D3G1-expressing 

bone marrow. After generating D3G1 retrogenic mice, we first assessed the thymic development of 

D3G1-expressing γδ T cells. Notably, the proportion of retrogenic γδ T cells in these mice was 

significantly smaller than the fraction observed in fixed-TCRδ mice, perhaps due to intraclonal 

competition of γδ T cells all expressing the same TCR. However, as with our fixed-TCRδ retrogenic 

mice, the majority of D3G1-expresssing T cells developed normally as DN thymocytes (Fig. 3.18). 

However, we did observe a noticeable fraction of D3G1 γδ T cells with a DP phenotype, suggesting 

some developmental abnormalities with these retrogenic cells. However, peripheral D3G1 γδ T cells 

are all DN, suggesting that any aberrantly developing D3G1 thymocytes do not leave the thymus. 

Indeed, analysis of cellular maturity showed that DP D3G1 γδ T cells have a CD24-hi immature 

phenotype, whereas the mature CD24-lo phenotype is largely restricted to the DN D3G1 γδ T cells.   

 

D3G1-expressing γδ T cells can contribute to EAE pathology  

 In order to determine if D3G1-expressing γδ T cells can contribute to EAE, we immunized 

D3G1 retrogenic mice and TCRδ-deficient bone marrow chimeras. While both groups developed 

clinical signs of EAE at approximately the same time, D3G1 retrogenic mice developed significantly 

more severe disease (Fig. 3.19). On average, the clinical signs observed in the D3G1 group were one 

full grade higher than TCRδ- only control bone marrow chimeras. Moreover, D3G1 retrogenic mice 

exhibited enhanced EAE mortality when compared to TCRδ-deficient bone marrow chimeras. As 

the latter specifically lacks all γδ T cells, while D3G1 retrogenic mice possess only D3G1 expressing 

γδ T cells, this suggests that the D3G1 TCR alone is sufficient to mediate this increase in disease 

severity. In addition, we confirmed that D3G1-expressing γδ T cells are capable of trafficking to the 
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CNS during EAE (Fig. 3.20), further supporting the conclusion that they can directly contribute to 

disease pathogenesis. 

 

The response of D3G1 in EAE is antigen specific 

 However, it is possible that simply the presence of any γδ T cell population, and not D3G1-

expressing cells specifically, is sufficient to enhance EAE severity. To evaluate this alternative 

hypothesis, we performed additional TCR retrogenic experiments using the addition of congenically 

marked WT bone marrow. These mice contain both D3G1-expressiong γδ T cells, as well as 

polyclonal γδ T cells, which can be distinguished by congenic markers. Upon immunization with 

EAE, the reaction of these two γδ T cell fractions, which differ only in their use of TCRs, can be 

compared.  

 Using these mice, we first looked at the expansion of the two γδ T cell fractions in EAE. In 

control retrogenic mice the population of D3G1 TCR-expressing cells is relatively small compared 

to the polyclonal population of γδ T cells. However, Upon EAE immunization, the D3G1-

expressing population expands significantly (Fig. 3.21). In fact, D3G1 γδ T cells come to represent 

the majority of γδ T cells in retrogenic mice during EAE, while the proportion of polyclonal cells 

correspondingly shrinks. Moreover, this response is unique to the brachial and axillary lymph nodes, 

which drain the sites of the MOG-CFA subcutaneous immunization. In comparison, the distant 

inguinal lymph nodes show no change in the proportion of D3G1 to polyclonal γδ T cells during 

EAE. Together, this data suggests that D3G1 TCR-bearing γδ T cells respond in an antigen-specific 

manner to MOG-CFA immunization during EAE. 

 

D3G1 γδ T cells display a pre-activated phenotype and can produce IL-17 
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 We then sought to determine how D3G1 γδ T cells could be contributing to EAE 

pathogenesis. As discussed earlier, some γδ T cells leave the thymus already expressing a cell surface 

phenotype associated with lymphocyte activation. While assaying D3G1 γδ T cells for such markers, 

we found that these cells are uniformly CD25+ and CD44-hi in healthy control mice (Fig. 3.22). γδ 

T cells can also be categorized based on their ability to naturally produce high levels of the 

inflammatory cytokine IL-17. Indeed, under homeostatic conditions approximately 20% of all 

D3G1-expressing γδ T cells produce IL-17, compared to only 2% of the polyclonal γδ T cell 

population. As the role of IL-17 is well described in the pathogenesis of EAE (Komiyama et al., 

2006; Yang et al., 2008), this data suggests that D3G1 γδ T cells can contribute to neuropathology 

through their production of this cytokine. 

 Next, we evaluated how several markers of activation change during the course of EAE in 

D3G1 γδ T cells. Interestingly, while these markers, including CD25, CD44, CD69, and Nur77 all 

increase within the polyclonal population of γδ T cells, they remain constant or even decrease in 

D3G1 γδ T cells (Fig. 3.23). For CD25 and CD44, this result is not surprising, given that nearly 

100% of D3G1 γδ T cells express these markers even in the absence of EAE. However, the lack of 

CD69 or Nur77 upregulation was puzzling given their relation to TCR signaling and our previous 

data suggesting that D3G1 γδ T cells contribute to EAE in an antigen-dependent manner.   

 

Downregulation of the γδ TCR upon stimulation 

As mentioned above, Nur77 is regarded as a downstream marker of TCR signal transduction 

(Moran et al., 2011).  Therefore, we were particular surprised to see a significant decrease in Nur77 

expression within D3G1-expressing γδ T cells during EAE. Since some examples of inconsistent γδ 

T cell data have been resolved upon recognition that TCR downregulation can render cells 
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undetectable by flow cytometry (Blink et al., 2014), we sought to determine if this could also be the 

reason behind the apparent downregulation of Nur77.  

To test this, we generated T cell hybridomas expressing the D3G1 TCR in vitro. The 

hybridomas harbored an NFAT-driven GFP construct, allowing us to visualize TCR stimulation via 

GFP signal. These D3G1 hybridomas readily expressed GFP upon stimulation with anti-CD3 

antibodies. However, when stratified based on the level of TCRγδ expression, the cells with highest 

GFP expression were those with the lowest TCRγδ expression (Fig 3.24). Moreover, we noted that 

the population of TCRγδ-lo cells was increased upon stimulation. These results were not due to 

non-specific GFP expression, as GFP was entirely absent without CD3 stimulation. Together, this 

data suggests that strong TCR stimulation can result in downregulation of the γδ TCR, and that the 

apparent decrease in Nur77 expression during EAE, could instead be caused by loss of the ability to 

detect highly activated cells via TCRγδ expression.  
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3.5 Discussion 
 

γδ T cells play numerous roles within the host immune system. Yet, the contribution of the 

TCR to the function of γδ T cells during the course of an immune response remains unclear. Here, 

we present data demonstrating that these cell expansion during EAE leads to the enrichment of 

clones that can take part in associated immune pathology in a TCR dependent manner.  

We believe our study represents a substantial improvement in the analysis of the γδ TCR 

repertoire. As discussed previously, nearly all available studies of γδ TCR specificity rely on low 

coverage sequencing that likely undersample the total repertoire. Through the use of deep 

sequencing, we have been able to comprehensively reevaluate many long standing views regarding γδ 

TCR diversity. For the most part, our data supports much of the current understanding of the γδ 

TCR repertoire. For example, we observe a similar progression in the use of Vγ gene families during 

ontogeny, as well as varying amounts of TCR diversity between anatomical locations. However, our 

data also expands on several of these features. For instance, thymic development of the Vγ5+ 

DETC TCR is considered to be restricted to fetal development (Garman et al., 1986), yet we show 

that this TCR can be detected up to 8 days after birth. Similarly, we demonstrate that the nTγδ17 

phenotype, whose development is also thought to be restricted to the fetal period (Shibata et al., 

2014), can arise in the adult mouse, as D3G1-expressing γδ T cells acquire this phenotype in bone 

marrow chimeras. 

We also show that TCR diversity increases with age, which is in agreement with previous 

data describing the limited repertoire diversity of fetal and neonatal γδ T cells (Elliott et al., 1988). 

However, we additionally observe that this increase in diversity also holds when evaluating the γδ 

TCR repertoire within each TRV gene family. This is surprising, as the increase in γδ TCR diversity 

with age was presumed to be due to the abundant production of γδ T cells utilizing low diversity 
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TRV gene segments, such as TRGV5, in early life later being supplanted by γδ T cells utilizing high 

diversity TRV segments, such as TRGV1. Instead, we show that diversity increases in age across 

nearly all TRV gene families, regardless of the level of expression of the particular TRV gene.  

Our sequencing methodology further improves on previous approaches in its ability to 

maintain TCRγ and TCRδ sequence pairing. The majority of available γδ TCR repertoire data is 

unable to account for this pairing, as sequences are derived from bulk γδ T cell samples. Those 

studies that do maintain TCRγ and TCRδ sequence pairing do so via single cell methods that further 

limits possible coverage of the repertoire. Our use of a fixed-TCRδ system addresses this obstacle, 

as we are able to infer TCRγ and TCRδ pairing from TCRγ sequencing alone, allowing for the use of 

deep sequencing methodologies.  

 One potential caveat to this system is the choice of TCRδ sequence in fixed-TCRδ 

retrogenic mice.  However, we show that the use of several different fixed-TCRδ sequences does 

not significantly alter the appearance of the TCRγ repertoire. Yet, it should be noted that all tested 

TCRδ sequences in this study belong to the same Vδ family and future experiments should 

incorporate sequences from other Vδ families to determine the generalizability of these results. 

However, emerging technologies, such as droplet sequencing (Lan et al., 2016), may soon allow for 

deep sequencing of paired γδ TCR transcripts without the need for a complex TCR retrogenic 

system.  

 Data obtained from our fixed-TCRδ system demonstrate that the γδ TCR repertoire shifts 

in response to EAE associated inflammation. Interestingly, in the absence of EAE, we observe that 

the TCRγ repertoire associated with a fixed-TCRδ chain is no different from that of a fully 

polyclonal population, suggesting that a particular TCRδ chain imparts no restriction on possible 

TCRγ binding partners during homeostasis. This observation is in agreement with previous data 

showing that B2M-deficient mice have no defect in the production of γδ T cells that recognize 
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B2M-containing molecules (Jensen et al., 2008).  However, we also note that during EAE, the TCRγ 

repertoires of fixed-TCRδ and polyclonal γδ T cells populations do diverge. Together, this suggests 

that while antigen specificity is not significant for thymic development of γδ T cells, it plays an 

important role in the peripheral functions of these cells. 

One such function we demonstrate is the ability of D3G1-expressing γδ T cells to contribute 

to EAE pathogenesis in a TCR-specific manner. However, one caveat to our data is the lack of 

additional TCRs with which to compare the results obtained with D3G1. However, in the absence 

of an additional TCR, we provide several pieces of evidence to support a TCR-dependent view of 

D3G1 γδ T cell function. First, the development and function of D3G1 expressing γδ T cells is 

uniform. If the TCR played no role in the character of these γδ T cell, one would expect D3G1 

expressing cells to exhibit a range of phenotypes, consistent with the diversity of the polyclonal γδ T 

cell population. This distinction is made clear in retrogenic experiments by direct comparison to 

internal controls of polyclonal γδ T cells, which do show phenotypic diversity similar to that the γδ 

T cell population in a wild type mouse. The results obtained using D3G1 retrogenic cells are similar 

to those obtained using αβ TCRtg cells, such as CT2, in which the expression of a single TCR 

specificity drives the development of a largely uniform cellular phenotype.  

In addition, the expansion of D3G1 expressing cells relative to the polyclonal population 

during EAE also suggests the importance of the TCR. While the polyclonal population harbors 

many different TCRs, if the TCRs themselves had no role in the response to EAE, one would 

expect this population to have a similar degree of responsiveness during EAE as D3G1-expressing 

γδ T cells. Instead, the expansion of the polyclonal γδ T cell population during EAE is significantly 

lower than that of the D3G1 population. As the major difference between these two populations 

relates to the particular TCR they express, these results are consistent with a TCR-dependent 

process.  
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Nonetheless, future study with additional TCRs will be beneficial to determine how much γδ 

TCR variation is needed to manifest different phenotypes. For example, KN6, one best studied γδ 

TCRs, shares the same TRGV4 segment as D3G1. As Vγ4+ γδ T cells are broadly implicated in 

EAE pathogenesis (Blink and Miller, 2009), KN6 could serve as a control to determine if the 

contribution of the D3G1 TCR can be attributed to its CDR3 specificity or simply its TCRγ family.  
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3.6 Figures 
A 

 TRDV Primer 

TRDV Sequence DV1 DV2 DV2 DV4 DV5 AV12 AV13 AV14 AV15 AV16 AV18 AV21 AV4 AV9 

TRDV1 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 

TRDV2-2 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.32 

TRDV4 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TRDV5 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 

TRAV4-2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 

TRAV4D-3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.00 

TRAV4D-4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.00 0.31 0.00 

TRAV12N-3 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TRAV13-2 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TRAV13-4/DV7 0.00 0.00 0.00 0.00 0.00 0.00 0.37 0.00 0.00 0.03 0.00 0.00 0.00 0.00 

TRAV13-5 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TRAV13D-1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TRAV13D-2 0.00 0.00 0.00 0.00 0.00 0.00 0.57 0.00 0.00 0.07 0.00 0.00 0.00 0.00 

TRAV13D-3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TRAV13D-4 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TRAV13N-1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TRAV13N-4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TRAV14-1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.05 

TRAV14-2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.37 0.00 0.00 0.00 0.00 0.00 0.21 

TRAV14-3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TRAV14D-1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 

TRAV14D-3/DV8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.00 0.00 0.00 0.00 0.00 0.00 

TRAV15-1/DV6-1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 

TRAV15-2/DV6-2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.00 0.00 

TRAV15D-1/DV6D-1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TRAV15D-2/DV6D-2 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 

TRAV15N-1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.00 

TRAV16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 

TRAV16D/DV11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.73 0.00 0.00 0.00 0.00 

TRAV16N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

TRAV18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.54 0.00 0.00 0.00 

TRAV21/DV12 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 

B 

 
TRGV Primer 

TRGV Sequence TRGV1A TRGV2A TRGV4B TRGV5B TRGV6 TRbGV7B 

TRGV1 0.99 0.55 0 0 0 0 

TRGV2 0.01 0.45 0 0 0 0 

TRGV4 0 0 1 0 0.52 0 

TRGV5 0 0 0 1 0 0 

TRGV6 0 0 0 0 0.19 0 

TRGV7 0 0 0 0 0.29 1 

 

Figure 3.1 – Specificity of TCRδ and TCRγ sequencing primers 

(A) Frequency of TCR reads using indicated TRDV/TRAV V-gene segments for each Vδ 

sequencing primer. (B) Frequency of TCR reads using indicated TRGV V-gene segments for each 

Vγ sequencing primer.   
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Cg1 Cg2 Cg4 

 
Jg1 Jg2 Jg4 Jg1 Jg2 Jg4 Jg1 Jg2 Jg4 

TRGV1 0 0 0 0 0 0 0 0 1 

TRGV2 0 0 0 0 0.75 0 0 0 0.25 

TRGV4 1 0 0 0 0 0 0 0 0 

TRGV5 0.98 0 0 0.02 0 0 0 0 0 

TRGV6 1 0 0 0 0 0 0 0 0 
 

 

Figure 3.2 – Usage of Cγ gene segments by Vγ gene families 

Frequency each Cγ-gene and associated Jγ-gene is utilized with indicated TRGV Vγ segment in 

TCRγδ sequencing reads. 
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Colon IEL mLN pLN Skin Spleen Thymus All 

TCRδ 3320 6797 38074 58133 428 130310 119446 400370 

TCRγ 1248 2154 3184 4559 486 9655 13356 24834 

 

Figure 3.3 – Table of unique TCRγ and TCRδ sequences obtained from all sequencing data 
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Figure 3.4 – Tissue specific Vγ usage 

 

Relative use of indicated TRV gene segments by TCR transcripts from indicated tissues. n≥4 for 

each tissue. Data representative of ≥2 independent experiments. Error bars = ±1 s.e.m. 
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Figure 3.5 – Increased diversity of TCRδ sequences compared to TCRγ sequences 

 

Mean Renyi entropy of (A) TCRγ and TCRδ sequences as well as (B) stratified by specific TRV 

usage and tissue source. Increasing entropy indicates higher population diversity. Increasing order 

indicates increasing weight on high frequency clones. n≥4 for each tissue/TCR. Data representative 

of ≥2 independent experiments. Error ribbon = ±1 s.e.m. 
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Figure 3.6 – TCRδ sequences have a longer 

CDR3 region than TCRγ sequences 
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Figure 3.7 – Changes in Vγ usage and diversity with age 

 

Relative usage of (A) TCRδ and (B) TCRγ V-gene segments at indicated time points after birth. 

Renyi entropy of (C) TCRδ and (D) TCRγ V-gene segments at indicated time points after birth. 

Increasing entropy indicates higher population diversity. Increasing order indicates increasing weight 

on high frequency clones. n≥5 for each time points. Data representative of ≥2 independent 

experiments. Error ribbon = ±1 s.e.m. 

 

  



83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 – EAE causes a shift in the polyclonal γδ TCR repertoire 

 

Morisita horn index of similarity (0=complete dissimilarity, 1=identical) between indicated 

experimental groups using TCR sequences obtained from draining lymph nodes. In EAE group, 

cells isolated 12 days after immunization. n≥9 for each experimental group. Data representative of 2 

independent experiments. Error bars = ±1 s.e.m. P-value reflects Wilcox rank sum test. 
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Figure 3.9 – Identification of TCRδ sequences enriched in polyclonal mice during EAE 

 

Enrichment of TCRδ sequences in mice immunized for EAE relative to healthy control mice vs. 

FDR adjusted p-value. Red dots are TCRs > 2-fold enriched in EAE group with an adjusted p-value 

< 0.05. Blue X indicates D3 TCRδ sequence utilized in subsequent experiments. n≥9 for each 

experimental group. Data representative of 2 independent experiments.  
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CDR3 sequence TRV log2FoldChange 
Adjust 
P-value 

CNS 
frequency 

FCALMERHIGGIRATDKLVFG TRDV2-2 4.582133 0.0002 0.0141 

FCALMERADGGIRATDKLVFG TRDV2-2 4.030265 0.0018 0.0040 

FCALMERGVGGIRATDKLVFG TRDV2-2 3.598694 0.0035 0.0034 

FCALMERGGGIRATDKLVFG TRDV2-2 3.420161 0.0006 0.1061 

LCAIPATDKLVFG TRAV13-2 3.154277 0.0210 0.0016 

LCAIPATDKLVFG TRAV13-4/DV7 3.154277 0.0210 0.0016 

LCAIPATDKLVFG TRAV13N-1 3.154277 0.0210 0.0016 

LCAIYRRATDKLVFG TRAV13-4/DV7 2.943935 0.0280 NA 

YCASGHIGGIRAPDKLVFG TRDV5 2.93261 0.0210 0.0005 

FCALMERGGGGIRATDKLVFG TRDV2-2 2.831978 0.0165 0.0173 

FCALMERGAGGIRATDKLVFG TRDV2-2 2.795652 0.0270 0.0098 

YCASGYIGGIRGDKLVFG TRDV5 2.707134 0.0249 0.0016 

LCAMPSTDKLVFG TRAV13-4/DV7 2.703019 0.0458 NA 

LCAMPSTDKLVFG TRAV13D-2 2.703019 0.0458 NA 

LCAMPSTDKLVFG TRAV13N-1 2.703019 0.0458 NA 

FCALMERGSGGIRATDKLVFG TRDV2-2 2.642604 0.0394 0.0030 

LCAMEDGGIRATDKLVFG TRAV13-4/DV7 2.623673 0.0475 NA 

LCAMEDGGIRATDKLVFG TRAV13D-1 2.623673 0.0475 NA 

LCAMEDGGIRATDKLVFG TRAV13D-2 2.623673 0.0475 NA 

YCASGYIGGIRPATDKLVFG TRDV5 2.613362 0.0472 NA 

 

Figure 3.10 – Table of top TCRδ sequences enriched in EAE immunized mice  

 

Enrichment of top 20 TCRδ sequences in mice immunized for EAE relative to healthy control mice 

with FDR adjusted p-value and CNS frequencies. Data representative of 2 independent experiments. 

NA indicates sequence was not detected in CNS γδ T cell population. Bold indicates the D3 TCRδ 

sequence.  
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Figure 3.11 – Development of fixed-TCRδ retrogenic mice 

(A) Outline of fixed-TCRδ retrogenic mouse setup. (B) Representative FACS plots of thymic and 

pLN lymphocytes of D3G0 fixed-TCRδ retrogenic mice. Thy1.1 represents an expression marker 

for the D3G0 construct.  
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Figure 3.12 – Fixed-TCRδ retrogenic mice allow for greater γδ TCR repertoire coverage than 

single cell sorting 

(A) Rarefaction and (B) coverage of TCRγ repertoire in indicated populations. For rarefaction, 

dashed lines indicated actual population richness. Data from Wei et al. based on single cell sorting 

from indicated population and subsequent TCR sequencing. For fixed-TCRδ sequencing, sampling 

data derived from representative mouse.   
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Figure 3.13 – Fixed-TCRδ chain does not constrain TCRγ repertoire during homeostasis 

(A) Morisita horn index of TCRγ repertoire similarity (0=complete dissimilarity, 1=identical) 

between fixed-TCRδ retrogenic mice utilizing three different TCRδ sequences. n≥2 for each fixed-

TCRδ sequence. (B) Morisita horn similarity between TCRγ repertoire of polyclonal and fixed-TCR 

fractions of D3G1 mice kept as healthy controls or during EAE. In EAE group, cells isolated 12 

days after immunization. n≥9 for each experimental group. Data representative of 2 independent 

experiments. Error bars = ±1 s.e.m.  
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Figure 3.14 – D3G0 γδ T cell can traffic to the CNS during EAE 

Representative FACS plots from indicated populations in D3G0 fixed-TCRδ retrogenic mice 

immunized for EAE. Thy1.1 represents an expression marker for the D3G0 construct, 

discriminating D3G0 fixed-TCRδ cells (Thy1.1+) and fully polyclonal cells (Thy1.1-). 
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Figure 3.15 – EAE causes a shift in the TCRγ repertoire of D3G0 retrogenic mice 

(A) Morisita horn index of similarity (0=complete dissimilarity, 1=identical) between indicated 

experimental groups of D3G0 retrogenic mice. (B) Relative usage of TRGV1 and TRGV4 gene 

segments by TCR sequences from indicated populations. In EAE group, cells isolated 12 days after 

immunization. n≥9 for each experimental group. Sequences obtained from the draining LN. Data 

representative of 2 independent experiments. Error bars = ±1 s.e.m. P-value indicates results of 

Wilcox rank sum test. 
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Figure 3.16 – Identification TCRγ sequences enriched 

in D3G0 retrogenic mice during EAE 

 

  

(A) Enrichment of TCRγ sequences in D3G0-fixed 

retrogenic mice immunized for EAE relative to healthy 

control mice vs. FDR adjusted p-value. Red dots are TCRs > 

2-fold enriched in EAE group with an adjusted p-value < 

0.05. Blue X indicates G1 TCRγ sequence utilized in 

subsequent experiments. n≥9 for each experimental group. 

Data representative of 2 independent experiments (B) 

Relative usage of indicated DNA sequences encoding the G1 

TCRγ. Each bar represents 1 mouse. (C) Junctional 

composition of G1-encoding sequence reads. 

O
th

e
r

D3G0

Polyclonal

TA
C

T
G

T
T

C
C

T
A

C
G

G
C

C
TA

TA
TA

G
C

T
C

A
G

G
T

T
T

T
C

A
C

A
A

G
G

TA
T

T
T

G
C

A

TA
C

T
G

T
T

C
C

T
A

C
G

G
C

T
TA

TA
TA

G
C

T
C

A
G

G
T

T
T

T
C

A
C

A
A

G
G

TA
T

T
T

G
C

A

T
A

C
T

G
T

T
C

C
T

A
C

G
G

T
C

TA
TA

TA
G

C
T

C
A

G
G

T
T

T
T

C
A

C
A

A
G

G
TA

T
T

T
G

C
A

0

25

50

75

0

25

50

75

0

25

50

75

EAE - CNS

EAE - pLN

Control - pLNP
e

rc
e

n
ta

g
e

 o
f 

a
ll 

D
3

G
1

 D
N

A
 r

e
a

d
s

Log
2
 Fold Change

WT EAE

L
o

g
1

0
 p

-v
a

lu
e

6

4

0

0 224

2

D3G1

A

C

B

TRGV N P TRGJ

tgt.............. tcc tacggct tat atagctcaggttttcacaagg tattt

tgt.............. tcc tacggc ctat atagctcaggttttcacaagg tattt

tgt.............. tcc tacggt ctat atagctcaggttttcacaagg tattt



92 

 

 

CDR3 Sequence TRV log2FoldChange 
Adjust 
P-value 

CNS 
Frequency 

YCAVWIRVSGTSWVKIFA TRGV1 3.00 0.14 NA 

YCAVWLGGTSWVKIFA TRGV1 2.98 0.13 NA 

YCAVWIRASGTSWVKIFA TRGV1 2.91 0.12 0.0001 

YCAVWIRASGTSWVKIFA TRGV2 2.91 0.12 0.0001 

YCAVWTGPGTSWVKIFA TRGV1 2.76 0.16 NA 

YCSYGFYSSGFHKVFA TRGV4 2.73 0.10 0.0114 

YCSYGLYSSGFHKVFA TRGV4 2.71 5.0E-08 0.1466 

YCAVWQRSGTSWVKIFA TRGV1 2.60 0.21 NA 

YCAVWQRSGTSWVKIFA TRGV2 2.60 0.21 NA 

YCAVWTGGTSWVKIFA TRGV1 2.57 0.23 NA 

YCAVWIEGAGTSWVKIFA TRGV1 2.54 NA NA 

YCAVWMVSGTSWVKIFA TRGV1 2.53 NA NA 

YCAVWMVSGTSWVKIFA TRGV2 2.53 NA NA 

YCAVWINIGTSWVKIFA TRGV1 2.51 NA NA 

YCAVWINIGTSWVKIFA TRGV2 2.51 NA NA 

YCAVWGPTGTSWVKIFA TRGV1 2.50 NA NA 

YCAVWKRSGTSWVKIFA TRGV1 2.50 0.25 NA 

YCAVWKRSGTSWVKIFA TRGV2 2.50 0.25 NA 

YCAVWTGSGTSWVKIFA TRGV1 2.49 0.23 0.0001 

YCAVWTGSGTSWVKIFA TRGV2 2.49 0.23 0.0001 

 

 

Figure 3.17 - Table of top TCRγ sequences enriched in D3G0 retrogenic mice during EAE 

Enrichment of top 20 TCRγ sequences in D3G0 retrogenic mice immunized for EAE relative to 

healthy control mice with FDR adjusted p-value and CNS frequencies. Data representative of 2 

independent experiments. NA indicates sequence was not detected in CNS γδ T cell population. 

Bold indicates the G1 TCRγ sequence.  
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Figure 3.18 – Development of full-TCRγδ retrogenic mice 

(A) Outline of full TCRγδ retrogenic mouse setup. (B) Representative FACS plots of thymic and 

pLN lymphocytes from D3G1 retrogenic mice. Thy1.1 represents an expression marker for the 

D3G1 construct. (C) Expression of CD24 as a maturity marker for indicated populations of γδ T 

cells.  
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Figure 3.19 – D3G1 γδ T cells are sufficient to exacerbate EAE  

(A) Clinical disease scores and (B) survival of EAE-immunize mice. Experimental groups include 

D3G1 retrogenic mice (n = 22) or TCRδ- bone marrow chimeras (n = 11) containing no γδ T cells. 

(*) indicates p < 0.05. Error ribbon = ±1 s.e.m. 
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Figure 3.20 – D3G1 γδ T cells can traffic to the CNS 

Representative FACS plots from indicated tissues of D3G1 retrogenic mice immunized for EAE. 

Previously gated on CD3+ lymphocytes with exclusion of Thy1- (residual host cells, post-

irradiation) γδ T cells.  
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Figure 3.21 – D3G1 γδ T cell expansion in EAE is TCR-specific 

D3G1 mice, with additional congenically marked WT compartment, immunized for EAE or kept as 

controls. Representative plots and quantification of D3G1 and polyclonal γδ T cell proportions. n≥9 

for each experimental group. Data representative of 2 independent experiments. Error bars = ±1 

s.e.m. P-value indicates results of Wilcox rank sum test.  
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Figure 3.22 – D3G1 γδ T cells exhibit a pre-activated phenotype 

Representative FACS plots of indicated populations from D3G1 retrogenic mouse with additional 

WT bone marrow compartment.  
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Figure 3.23 – D3G1 γδ T cell activation markers do not increase during EAE 

Proportions of indicated γδ T cell fractions expressing corresponding activation markers in EAE-

immunized or control mice. n≥9 for each experimental group. Data representative of 2 independent 

experiments. Error bars = ±1 s.e.m. P-value indicates results of FDR-corrected Wilcox rank sum 

test. 
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Figure 3.24 – The γδ TCR is downregulated upon activation 

Representative FACS plots of D3G1 expressing T cell hybridomas bearing an NFAT-GFP reporter 

construct. Indicated cells stimulated by culture in plate coated with 25 µg/mL of anti-CD3.  
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Chapter 4: Conclusions and Future Directions 

RORγt+ Treg cells in immune tolerance 

Role of transcription factor co-expression in Treg cells 

 In our study, we show that TCR specificity is sufficient to drive the development of 

Foxp3+RORγt+ cells and that these cells can develop through an RORγt-Foxp3+ intermediate. 

These observations, combined with data demonstrating that Foxp3+RORγt+ can play an immune 

regulatory role, strongly suggest that these cells represent a subset of Treg cells that co-express 

RORγt. As discussed previously, the co-expression of a generally pro-inflammatory transcription 

factor with Treg cell-specific Foxp3 is surprising, though not unprecedented. Examples of Treg cell 

subsets co-expressing T-bet (Koch et al., 2009), GATA-3 (Wang et al., 2011), IRF4 (Zheng et al., 

2009), and STAT3 (Chaudhry et al., 2009) have all been previously identified. While all of these Treg 

populations have been shown to possess immunoregulatory properties, the necessity for 

transcription factor co-expression is not completely understood. 

 The clearest explanation for transcription factor co-expression in Treg cells comes from T-

bet+ Treg cells. T-bet expression allows these cells to traffic to sites of TH1 inflammation due to the 

upregulation of chemokine receptors shared with T-bet+ TH1 cells (Koch et al., 2009). Similarly, 

STAT3+ Treg cells express CCR6, which is used by TH17 cells for trafficking to mucosal tissues 

(Wang et al., 2009a). However, for both STAT3+ and T-bet+ Treg cells, the role of chemokine 

receptors in target suppression is still speculatively based on correlation and future study using 

Foxp3-specific deletion of these receptors is needed.  

Interestingly, in the absence of CCR6, mice develop a TH1 mediated colitis, with a loss of 

both mucosal TH17 and Treg cells (Wang et al., 2009b). This suggests that loss of CCR6 affects the 
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homing of both TH17 cells and their corresponding STAT3+ Treg cells. However, given that 

immune pathology occurs in the absence of the effector subset they are proposed to most 

specifically target, it is clear that the immunoregulatory function of STAT3+ Treg cells extend 

beyond a simple one-to-one relationship with TH17 cells. Moreover, this represents a disconnect 

between the TH17 suppression of STAT3+ Treg cells and the proposed TH1 suppression of CCR6+ 

Treg cells. While these alternatives are not necessarily mutually exclusive, the readily distinguished 

phenotypes of STAT3 and CCR6 deficient mice suggest that additional mechanisms likely underlie 

the suppressive capabilities of transcription factor co-expressing Treg cells and additional study is 

necessary to uncover them.  

 

Antigen specificity of RORγt+ Treg cells 

 With our TCR sequencing data, we demonstrate that, though largely distinct, the 

Foxp3+RORγt+ TCR repertoire shares a set of high frequency TCRs with the TH17 repertoire. This 

overlap of antigen specificity lends support to the hypothesis that RORγt+ Treg cells can suppress 

TH17 mediated inflammation. However, since the majority of RORγt+ Treg TCRs are not shared 

with TH17 cells, this raises the question of what particular ligands are recognized by the remainder of 

this population. One possible hypothesis is that RORγt+ Treg and TH17 cells do, in general, 

recognize ligands derived from the same source of antigens, but that the difference in TCR 

repertoire reflects variation in specific TCR epitopes or TCR affinities to the same epitopes. A 

similar phenomenon is observed with thymically derived Treg cells, which can recognize antigens 

shared with conventional CD4+ T cells, despite possessing a distinct TCR repertoire (Lee et al., 

2012a). In this case, the difference in repertoire reflects the fact that Treg cells utilize TCRs that 

have higher affinity for the same ligand than conventional CD4+ T cells.  
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In addressing this possibility for RORγt+ Treg and TH17 cells, segmented filamentous 

bacteria (SFB) may represent a useful tool. SFB promotes the differentiation of both 

Foxp3+RORγt+ (Sefik et al., 2015) and TH17 cells (Ivanov et al., 2009) and comparisons of the 

TCR repertoires used by these populations in response to SFB could demonstrate whether the two 

subsets depend on the same TCR sequences to recognize this bacterium. If they do not, SFB-

reactive TCRs unique to either RORγt+ Treg or TH17 cells could be used to investigate the basis of 

TCR discrimination between these two populations.  

 Alternatively, the majority of RORγt+ Treg cells might recognize entirely distinct ligands 

from TH17 cells. In addition to SFB, Sefik et al. identify multiple cultured bacteria that, when used to 

monocolonize mice, can promote RORγt+ Treg cell development (Sefik et al., 2015). However, as 

limited information is available regarding individual bacteria capable of inducing RORγt- Treg and 

TH17 cells, it is currently difficult to discern how specific these bacteria are to the development of 

RORγt+ Treg cells compared to other mucosal T cell populations. Moreover, as the commensal 

microbiota typically contains a vast number of microbial species, it is hard to predict the precise 

significance of results obtained from mice monocolonized with a single species.  

 Identifying the antigen to CT2 will be beneficial in determining what unique RORγt+ Treg 

ligands might look like. CT2 represents a TCR that is highly specific to the Foxp3+RORγt+ T cell 

population and shows essentially no TH17 development. Thus, if RORγt+ Treg cells do recognize 

unique antigens, the CT2 TCR ligand represents an excellent candidate for such an antigen. 

However, while we have previously shown that CT2 does indeed react to commensally derived 

antigens (Lathrop et al., 2011), we have yet to determine what the precise source of these antigens 

are and further study will be needed to identify them.  
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Antigen-specific γδ T cell responses 

Generalized role for γδ T cells in neuroinflammation 

While our data and others’ suggest that γδ T cells clearly contribute to the pathogenesis of 

EAE, autoimmune inflammation is certainly not a desirable outcome for a host organism. 

Therefore, while these studies provide information as to how γδ T cells function, they do not 

directly help reveal the immunological benefit that has evolutionarily maintained γδ T cells since the 

emergence of the vertebrate immune system (Criscitiello et al., 2010). One possible explanation of 

our observations is that the γδ T cell response during EAE may reflect a beneficial response of 

neuroprotection towards CNS-tropic pathogens. Interestingly there are several CNS viral infections 

that have noted γδ T cell involvement. For example, γδ T cells alone are sufficient to protect mice 

from herpes simplex virus (HSV)-1 encephalitis in the absence of αβ T cells, while the absence of 

both αβ and γδ T cell lineages leads to significant mortality in response to viral infection (Sciammas 

and Kodukula, 1997). Moreover, γδ T cells can also recognize HSV-1 glycoproteins directly via their 

TCR (Sciammas and Bluestone, 1998; Sciammas et al., 1994). 

γδ T cells play an even more prominent role in West Nile virus (WNV) infection. In contrast 

to HSV-1, both αβ and γδ T cells are necessary for protection against WNV infection, as mice 

lacking either populations show increased encephalitis-related mortality (Wang et al., 2003). 

Moreover, the response of γδ T cells to WNV is dependent on IFNγ (Shrestha et al., 2006) and 

helps to promote the memory response of CD8+ αβ T cells (Wang et al., 2006). Most interesting is 

the reciprocal role of Vγ1+ and Vγ4+ γδ T cells during WNV infection. Treatment with anti-Vγ4 

antibodies promotes host survival to WNV, while anti-Vγ1 antibody treatment enhances WNV 

lethality (Welte et al., 2008). As discussed in Chapter 3, Blink et al. demonstrated that such antibody 

treatment results in γδ T cell activation (Blink et al., 2014), suggesting that activated Vγ4+ contribute 



104 

 

towards the protective anti-WNV response, while enhanced Vγ1+ γδ T cell responses are 

detrimental.   

Notably, these results with WNV are the inverse of what has been reported for EAE. 

Whereas activated Vγ4+ γδ T cells are protective during WNV, they are pathologic in EAE. 

Similarly, whereas Vγ1+ γδ T cells blunt EAE severity, they enhance the lethality of WNV (Blink 

and Miller, 2009). A hypothesis consistent with these observations is that the Vγ4+ γδ T cell 

response is a natural mechanism of protection against CNS-tropic pathogens while Vγ1+ γδ T cells 

play a more immunomodulatory role. Future studies could utilize our fixed TCRδ-system to assess 

whether the repertoire of γδ TCRs that expand during the course of WNV infection are similar to 

those seen during EAE. Moreover, as D3G1-expressing γδ T cells exacerbate EAE pathogenesis, 

this TCR could be used to test whether γδ T cells that contribute to EAE can expand and contribute 

towards host survival in the context of WNV infection. 

 

Antigen specificity of D3G1 γδ T cells 

 As discussed in the Chapter 1, antigen specificity is one of the major ways in which αβ and 

γδ T cells differ. Whereas αβ T cells almost exclusively recognize peptide antigens in the context of 

MHC presenting proteins, γδ T cells recognize diverse classes of molecules, largely in the absence of 

any presenting mechanism. However, for most of the known γδ TCR ligands, the physiological role 

of that particular TCR:ligand interaction is unclear. For example, one of the most well studied γδ 

TCRs, KN6, recognizes the MHC-1 like molecules T-10 and T-22 (Ito et al., 1990), yet the biological 

significance of this interaction is unknown. T-10 and T-22 appear to be upregulated in response to 

cell stress, but there is no evidence suggesting this upregulation has any effect on the function of 

KN6 γδ T cells.  
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Given the role we show for the D3G1 TCR in EAE, this TCR may represent an ideal system 

to study biologically relevant γδ TCR:ligand interactions in vivo. However, a major obstacle that must 

first be overcome is to identify the D3G1 ligand. Fortunately, there are some clues to what this 

ligand could be. In the study of γδ T cell response during collagen induced arthritis (CIA), the 

authors performed γδ TCR sequencing to demonstrate clonal expansion of γδ T cells during disease 

(Roark et al., 2007). While this data was not gathered in a way that preserves information regarding 

TCRγ and TCRδ sequencing pairing, the most enriched TCRγ and TCRδ chains during CIA are 

identical to those of the D3G1 TCR. This suggests that the D3G1 TCR ligand may be shared by 

CIA and EAE.  

The induction of CIA and EAE is similar, both involving the injection of an immunogenic 

peptide emulsified in complete Freund’s adjuvant (CFA). As CFA is shared by both of these models, 

it represents a natural candidate for a source of D3G1 TCR ligands. Moreover, in the study of CIA, 

CFA alone, in the absence of collagen peptide, was sufficient to promote γδ T cell proliferation.  

Interestingly, γδ T cells are already known to recognize antigens from mycobacteria, which represent 

a principal component of CFA (Happ et al., 1989; O’Brien et al., 1989; Shen et al., 2002). However, 

we have attempted to use our D3G1 TCR expressing hybridomas to test direct reactivity to CFA in 

vitro without success. 

Though binding of the γδ TCR to soluble ligand has been demonstrated for some antigens 

(Zhang et al., 2010), the interaction of D3G1 may be more complex. Instead the D3G1 TCR may 

require the presence of a cell surface accessory molecule, such as that seen with butyrophilin-

mediated recognition of phosphoantigens by human γδ T cells (Vavassori et al., 2013). Alternatively, 

the D3G1 ligand may itself be a cell surface molecule, simply upregulated in response to 

components of CFA. While preliminary experiments using CFA treated cells as a source of D3G1 

ligand have yet to identify an antigen, further systematic analysis is needed. In addition, the use of 
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soluble TCR molecules as an MHC tetramer-like reagent may also be useful in identifying a cell 

surface ligand. 
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