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ABSTRACT OF THE DISSERTATION

Regulators on Higher Chow Groups

by

Muxi Li

Doctor of Philosophy in Mathematics

Washington University in St. Louis, 2018

Professor Matt Kerr, Chair

There are two natural questions one can ask about the higher Chow group of number fields:

One is its torsion, the other one is its relation with the homology of GLn. For the first

question, based on some earlier work, the integral regulator on higher Chow complexes

introduced here can put a lot of earlier result on a firm ground. For the second question, we

give a counterexample to an earlier proof of the existence of linear representatives of higher

Chow groups of number fields.

Chapter 1 gives a general picture of the two problems we are talking about. Chapter 2

contains the background material on higher Chow groups. In chapter 3, we showed the full

process of proving the existence of integral regulator on higher Chow complexes, and give

the explicit expression for it, and some direct application. In chapter 4, we introduced the

conjecture of the (rational) surjectivity of the map from linear higher Chow group to the

simplicial higher Chow group, its earlier proof and the counter example. However, it is not a

global counter example, thus the original conjecture is still open.

vi



Chapter 1

Introduction

Higher Chow groups were introduced by S. Bloch in the mid-80’s as a geometric representation

of algebraic K-theory [Bl0]. For X a smooth quasi-projective variety over an infinite field k,

Bloch’s Grothendieck-Riemann-Roch theorem identifies them rationally with certain graded

pieces of K-theory:

CHp(X,n)⊗Q ' GrPγ K
alg
n X ⊗Q. (1.0.1)

There are two representation for higher Chow groups, called the cubical representation and

the symplicial representation, corresponding to �n := (P1 \ {1})n and ∆n := Pn \H, where

H := {x0 + · · · + xn = 0} ' Pn−1. For an infinite field k, we denote CHp(Spec(k), n) by

CHp(k, n). For CHn(k, 2n− 1), there are already the Bloch-Beilinson regulator that gives

us the full result of dimQ(CHn(k, 2n− 1)⊗Q), and two natural questions beyond this will

be the torsion of CHn(k, 2n − 1)Z, and the relationship between H2n−1(GLn(k),Q) and

CHn(k, 2n− 1)⊗Q. We’ll focus on the first question by using the cubical representation in

Chapter 3, and will give more details about the second question along with the simplicial

representation in Chapter 4.
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As Bloch showed, these groups come with natural Chern class maps

AJp,nZ : CHp(X,n)→ H2p−n
D (X,Z(p)) (1.0.2)

to the cohomology of the underlying variety [Bl0a], which “interpolate” Griffiths’s Abel-

Jacobi maps on Chow groups (i.e. K0) and Borel’s regulators on the higher K-theory of

number fields.

While abstractly defined, these maps were successfully computed in many specific cases by

Bloch, Beilinson, Deninger, and others. However, an explicit general formula only emerged in

the work of Kerr, Lewis and Müller-Stach [KLM, KL] in the early 00’s. By introducing a

subcomplex Zp
R(X, •) ı

↪→ Zp(X, •) of cycles in good position with respect to the “wavefront”

set of certain currents on (P1)n, they are able to construct a map of complexes

ÃJ : Zp
R(X, •)→ C2p−•

D (X,Z(p)) (1.0.3)

agreeing rationally with (1.0.2). (The explicit formula shall be recalled in §4).

At first glance, the “KLM formula” (1.0.3) looks well-adapted to detecting torsion. For

example, if X = Spec(k), consider the portion

· · · // Zp
R(k, 2p) ∂ //

W 7→ (2πi)pW∩T2p
��

Zp
R(k, 2p− 1) ∂ //

Z 7→ 1
(2πi)p−1

´
Z R2p−1

��

Zp
R(k, 2p− 2) //

0
��

· · ·

· · · // Z(p)⊕ 0⊕ 0 � � // 0⊕ 0⊕ C // 0⊕ 0⊕ 0 // · · ·

of (1.0.3), where T2p = R2p
<0 ⊂ (P1)2p and R2p−1 is a certain (2p− 2)-current on (P1)2p−1. We

want to detect torsion in CHp(k, 2p− 1) by the middle map; denote the image of Z ∈ ker(∂)

by R(Z) ∈ C/Z(p). In particular, if Z1 := (1− 1/t, 1− t, t−1)t∈P1 ∈ Z2(Q, 3), we find that
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R(Z1) = π2/6 ∈ C/(2πi)2Z, in agreement with the known result that CH2(Q, 3) is 24-torsion

(see [Pe]).

Unfortunately, it appears very difficult to determine whether ı is an integral quasi-isomorphism,

as expected in [KLM]. Indeed, the proof in [KL] that this inclusion of complexes is a Q-

quasi-isomorphism makes essential use of Kleiman transversality in K-theory and hence of

some form of (1.0.1). So the KLM formula only induces a “rational regulator”

AJp,nQ : CHp(X,n)→ H2p−n
D (X,Q(p)). (1.0.4)

It is easy to see the problem: we could have that the class of Z in H2p−1 (Zp
R(k, 2p− 1)) and

its ÃJ-image are m-torsion (but nonzero), whilst Z is a boundary in the larger complex

(hence zero in CHp(k, 2p− 1)). That is, there would be some W ∈ Zp(k, 2p) \Zp
R(k, 2p) with

∂W = Z, but only mZ ∈ ∂ (Zp
R(k, 2p)). Moreover, even if we could improve the result on ı

(and eliminate this particular worry), it would remain inconvenient to find representative

cycles in Zp
R(X,n).

An alternative is to extend KLM to a formula that works on all cycles. Doing this with one

map of complexes on Zp(X, •) is probably too optimistic, as one can’t just wish away the

“wavefront sets” arising from the branch cuts in the {log(zi)}. Our first idea was to try an

infinite family of homotopic maps on nested subcomplexes Zp
ε (X, •) with union Zp(X, •),

by allowing cycles in good position with respect to “perturbations” of these branch cuts by

sufficiently small nonzero “phase” eiε, 0 < ε < ε. Provided one tunes the branches of log in

the regulator currents accordingly, and the same θ is used for each zi, one gets a morphism of

complexes on the ε-subcomplexes. Since the homotopy class of this morphism is independent

of ε, this approach would define an integral refinement of ÃJ provided the ε→ 0 limit of the

“perturbed” subcomplexes gives all of Zp(X, •). Unfortunately, this is not true: there is a
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counterexample involving triples of functions on a curve, see §3.1. So a more subtle approach

is required.

In particular, we need a way to vary phases εi independently for the branches of log(zi),

so as to place weaker demands on our cycles. But this can never lead to a morphism of

complexes from Zp(X, •), since this independence would conflict with the way the Bloch

differential ∂ intersects cycles with all the facets. On the other hand, one has an explicit

Z-homotopy equivalence for the inclusion N p(X, •) ⊂ Zp(X, •) of the normalized cycles, on

which the differential restricts to just one facet [Bl1]. In N p(X, •), we now consider the

“ε-subcomplex” N p
ε (X, •), consisting of cycles which are in good position with respect to the

(eiε1 , . . . , eiεn)-perturbed wavefront set for any (ε1, . . . , εn) belonging to

Bn
ε :=

{
ε ∈ Rn

∣∣∣0 < ε1 < ε, 0 < ε2 < e−1/ε1 , . . . , 0 < εn < e−1/εn−1
}
.

Our main technical results are

Theorem 1. ⋃ε>0 N p
ε (X, •) = N p(X, •).

and

Theorem 2. Given ε, ε′ ∈ BN
ε , the corresponding morphisms

Rε, Rε′ : τ≤NN p
ε (X, •)→ C2p−•

D (X,Z(p)),

induced by the perturbed KLM currents, are integrally homotopic.

These results are proved in §§ 3.2 and 3.4, respectively. It is now easy to deduce that, taken

over all ε, these morphisms induce a map of the form (1.0.2) refining (1.0.4), see §3.5. We

conclude by indicating several applications of the KLM formula to torsion in §3.6 due to

4



[KLM], Petras [Pe], Kerr-Yang [MY] which are now validated by our construction, and

indicate future work in this direction.

We are going to take a revisit of ÃJ : Zp(X, •) → C2p−•
D (X,Z(p)) under the simplicial

representation, where now we take Zp(X, •) the free abelian group on closed irreducible

subvarieties of X×∆m
k of codimension p. Under this construction, we can define the homology

of the subcomplex LZ p(X, •) given by equations linear in the {xi} defines the linear higher

Chow groups LCHp(X,m), which map naturally to CHp(X,m). In chapter 4, we are going

to give a deeper discussion about the relationship between LCHp(X,m) and CHp(X,m).
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Chapter 2

Background on Higher Chow Cycles

2.1 Basic definitions

Definitions in this section follow [KLM].

Let X be a smooth quasiprojective algebraic variety over an infinite field k. An algebraic

cycle on X is a finite linear combination ΣnV [V ] of subvarieties V ⊂ X, where nV ∈ Z.

We define the algebraic n-cube (over k) by

�n := (P1\{1})n,

with face inclusions ρfi : �n−1 → �n (f ∈ {0,∞}) sending (z1, . . . , zn−1) to (z1, . . . , zi−1, f, zi, . . . , zn−1),

and coordinate projections πi : �n → �n−1 sending (z1, . . . , zn) to (z1, . . . , ẑi, . . . , zn). We

call

∂�n :=
⋃

i=1,··· ,n
f=0,∞

(ρfi)∗�n−1

6



the facets of �n, and

∂k�n :=
⋃

i1<···<ik
f1,··· ,fk=0,∞

(ρf1i1)∗ · · · (ρfkik)∗�
n−k

the codimension-k subfaces of �n.

Definition 3. cp(X,n) ⊂ Zp(X ×�n) is the free abelian group on irreducible subvarieties

V ⊂ X ×�n of codimension p such that V meets all faces of X ×�n properly.

Definition 4. The degenerate cycles dp(X,n) ⊂ cp(X,n) are defined as ∑n
i=1 π

∗
i (cp(X,n−1)).

Set Zp(X,n) := cp(X,n)/dp(X,n).

The Bloch differential

∂B :=
n∑
i=1

(−1)i−1(ρ∞∗i − ρ0∗
i ) : Zp(X,n)→ Zp(X,n− 1)

makes Zp(X, •) into a complex, with the higher Chow groups CHp(X,n) given by their

homology. For convenience, we shall often use cohomological indexing:

Definition 5. CHp(X,n) := H−n{Zp(X,−•)}

2.2 A moving lemma

We recall the subcomplex from [KLM]. Henceforth we shall take k to be a subfield of

C, so we can consider the complex analytic spaces associated to components of a cycle Z.

Let cpR(X,n) be the set of all the cycles Z ∈ cp(X,n) whose components (or rather, their

analytizations) intersect X × (Tz1 ∩ · · · ∩ Tzi) and X × (Tz1 ∩ · · · ∩ Tzi ∩ ∂k�n) properly

for all 1 ≤ i ≤ n and 1 ≤ k < n, and dpR(X,n) := cpR(X,n) ∩ dp(X,n). We get a new

complex Zp
R(X,n) := cpR(X,n)/dpR(X,n). It is shown in [KL] that this subcomplex is Q-quasi-

isomorphic to the original one:

7



Theorem 6 (Kerr-Lewis). Zp
R(X, •) '−→ Zp(X, •)

2.3 Normalized cycles

Higher Chow groups may also be computed by complexes of cycles that have trivial boundary

on all but one face.

Definition 7. N p(X,n) := {Z ∈ Zp(X,n)|∂∞i Z = 0 for i < n, ∂0
jZ = 0 for any j}

In this section, we will show that there exist an explict Z-homotopy equivalence for the

inclusion N p(X, •) ⊂ Zp
0(X, •). The following proof is derived from Bloch’s manuscript

[Bl1], by replacing the notations from (A1)n which uses {0, 1} as boundary by (P1 \ {1})n

which uses {0,∞} as boundary. (Also Bloch uses a different definition for the normalized

cycle: N ′p(X, •) := {Z ∈ Zp(X,n)|∂∞i Z = 0 for i > 1, ∂0
jZ = 0 for any j}, so we need to

take a “conjugation” on Bloch’s proof as well.)

Define Zp
∞,i(X, •) = {Z ∈ Zp(X, •)|∂∞j Z = 0 for j < n − i, ∂0

kZ = 0 for any k}.We have

Zp
∞,0(X, •) = N p(X, •), and Zp

∞,i(X, •) ⊂ ZP (X, •) is a subcomplex.

Theorem 8. The inclusion N p(X, •) ⊂ Zp(X, •) is Z-homotopy.

Proof: Consider Zp
∞,n−1(X, •) = {Z ∈ Zp(X, •)|∂0

kZ = 0 for any k}. For any cycle Z ∈

Zp(X,n), we can always add a number of degenerate cycles (for free) to let Z lies in

Zp
∞,n−1(X, •). So we’ll consider Zp

∞,n−1(X, •) instead of general Z ∈ Zp(X,n) in the following

proof.

Given integers l ≤ n− 1, define hl : �n+1 → �n by

hl(z1, . . . , zn+1) := (z1, . . . , zl,
zl+1zl+2

zl+1 + zl+2 − 1 , zl+3, . . . , zn+1)

8



and for Z ∈ Zp(X,n), define H l(Z) := (−1)n−l(hl)−1(Z) ∈ Zp(X,n + 1). For l ≥ n define

H l(Z) = 0. Consider the following map:

φ := · · · (Id− (d ◦H l +H l ◦ d)) ◦ (Id− (d ◦H l−1 + hl−1 ◦ d)) ◦ · · · ◦ (Id− (d ◦H0 +H0 ◦ d))

This map stabilizes in any degree and so defines an endomorphism φ : Zp(X, •)→ Zp(X, •),

and it is homotopy to the identity.

Precisely, we have

d ◦H lZ =
n−l−1∑
k=1

(−1)n−l+k+1∂∞n−k+1Z(z1, · · · ,
zl+1zl+2

zl+1 + zl+2 − 1 , · · · , zn)

+
n∑

k=n−l+1
(−1)n−l+k∂∞n−k+1Z(z1, · · · ,

zlzl+1

zl + zl+1 − 1 , · · · , zn) (2.3.1)

and

H l ◦ dZ =
n∑
k=1

(−1)n−l+k∂∞n−k+1Z(z1, · · · ,
zl+1zl+2

zl+1 + zl+2 − 1 , · · · , zn)

Thus we have

(d ◦H l +H l ◦ d)Z =
n∑

k=n−l+1
(−1)n−l+k∂∞n−k+1Z(z1, · · · ,

zlzl+1

zl + zl+1 − 1 , · · · , zn)

+
n∑

k=n−l
(−1)n−l+k∂∞n−k+1Z(z1, · · · ,

zl+1zl+2

zl+1 + zl+2 − 1 , · · · , zn) (2.3.2)

9



So for Z ∈ Zp
∞,i(X, •), we have (d ◦H l +H l ◦ d)Z = 0 for l ≤ n− i− 2. For l = n− i− 1,

we have

Z ′ := Z − (d ◦H l +H l ◦ d)Z = Z − ∂∞l+1Z(z1, · · · ,
zl+1zl+2

zl+1 + zl+2 − 1 , · · · , zn)

and it’s not hard to check that Z ′ ∈ Zp
∞,i−1. And then, for the next term, Z ′ will be mapped

to some Z ′′ ∈ Zp
∞,i−2. Once we approaches Zp

∞,0 = N ′p(X, •), we’ll have (d◦H l+H l◦d)Z = 0

for all the ls. Thus we have φ : Zp(X, •) → N p(X, •) and φ is the identity on N p(X, •),

and φ composed with the inclusion is homotopy to the identity..

For explict expression of φ in low dimension, we have

φ(Z(z1, z2)) = Z(z1, z2)− (∂∞1 Z)( z1z2

z1 + z2 − 1)

φ(Z(z1, z2, z3)) = Z(z1, z2, z3)− (∂∞2 Z)(z1,
z2z3

z2 + z3 − 1)

− (∂∞1 Z)( z1z2

z1 + z2 − 1 , z3) + (∂∞1 Z)(z1,
z2z3

z2 + z3 − 1) (2.3.3)

10



Chapter 3

Integral regulator

3.1 Simple perturbations

The Kerr-Lewis moving lemma can only yield a rational regulator due to the passage through

K-theory in the proof. Instead, one might consider maps of complexes on a nested family of

subcomplexes of Zp
R(X, •), given by “perturbing” the conditions defining Zp

R(X, •). Though

this turns out to be too naive, it is the first step toward a strategy that works.

Begin by defining Zp
ε (X, •) to be the subcomplex of Zp(X,n) given by the cycles that intersect

X × (T εz1 × · · · × T
ε
zi

) and X × (T εz1 × · · · × T
ε
zi
× ∂k�n) properly for all 1 ≤ j ≤ n, 1 ≤ k < n

and 0 < ε < ε. Here T εz is given by arg(z) = π − ε, the “perturbation” of the branch cut of

log(z) in the currents defined below.

11



In order for this nested family of subcomplexes to be any better than Zp
R(X, •), we must have

that their union gives us the original Zp:

⋃
ε

Zp
ε (X, •) = Zp(X, •). (3.1.1)

Unfortunately, this fails in a very simple case:

Proposition 9. For X = Spec(Q(i)), we have

⋃
ε

Z2
ε (X, 3) ( Z2(X, 3).

Proof. Let F (z) = iz − 1, G(z) = − (1+z)(1+3z)
(1+iz)(1−2z) , and H(z) = iz−1

3+z . Then we have Z =

(F (z), G(z), H(z))z∈P1 ∈ Z2(pt, 3); but for all ε > 0, Z /∈ Z2
ε (pt, 3). More precisely, for

any ε > 0, we have dimR(Z ∩ T εz1 ∩ T
ε
z2 ∩ T

ε
z3) = 0, not −1 (i.e. empty) as required for a

proper-analytic intersection.

Thus we need to find another way to do the “perturbation”, which will be given in the next

section.

3.2 Multiple perturbations

In order to have Zan meet the deformations of {Tzi} for an example like that in the above

proof, we clearly need to make use of the extra degrees of freedom allowed by perturbing each

“branch-cut phase” independently. For convenience, we shall use the multi-index notation

ε := (ε1, . . . , εn) in what follows.

Now we are thinking of T εizi as the location of the jump in the 0-current log(zi); these 0-currents

will appear in the definition of the regulator-currents Rε
Z appearing in the next section. To

12



use these currents to define Abel-Jacobi maps, we will need them to induce morphisms

of complexes from a subcomplex of Zp(X, •) to C2p−•
D (X,Z(p)). Unfortunately, if Z has

boundaries at more than one facet of �n, say ∂1Z = (ρ0
1) ∗ Z and ∂2Z = (ρ0

2)∗Z, the residue

terms in d[R(ε1,...,εn)
Z ] will take the form R

(ε2,...,εn)
∂1Z resp. R(ε1,ε3,...,εn)

∂2Z . This clearly conflicts with

having D(T εZ ,ΩZ , R
ε
Z) = (T ε

′

∂Z ,Ω∂Z , R
ε′

∂Z) for a single choice of ε′, so we shall need to restrict

to the normalized cycles N p(X, •) defined in §2.3.

For ε > 0, define Bε as the set of infinite sequences (ε1, ε2, . . .) satisfying

0 < ε1 < ε, 0 < ε2 < exp(−1/ε1), 0 < ε3 < exp(−1/ε2), . . . , (3.2.1)

and define Bn
ε to comprise the n-tuples ε satisfying (3.2.1).

Definition 10. N p
ε (X, •) := {Z ∈ N p(X, •)|Z intersects X×T ε1z1 ×· · ·×T

εi
zi

and X×T ε1z1 ×

· · · × T εizi × ∂
k�n properly ∀i, k, ε ∈ B•ε}.

Theorem 11. ⋃ε N p
ε (X, •) = N p(X, •)

Proof. Consider the projection (C∗)n → (S1)n ∼= (C/Z(1))n defined by (r1e
iε1 , · · · , rneiεn) 7→

(ε1, · · · , εn), whose fibers are T ε1z1 ×· · ·×T
εn
zn . There is also a natural 2n : 1 map (S1)n → (P1

R)n

by taking slopes: (ε1, · · · , εn) 7→ (tan ε1, · · · , tan εn). The composite map Θn : (C∗)n →

(S1)n → (P1
R)n is real algebraic, sending (x1 + iy1, · · · , xn + iyn) 7→ (y1/x1, · · · , yn/xn).

Now let Z ∈ N p(X,n) be given. Set Z∗ := Z̄∩ (X× (C∗)n), and let Z̃∗ be its resolution. The

intersections of Z∗ with the fibers of Θn
X : X×(C∗)n → X×(P1

R)n are Z∗∩(X×T ε1z1×· · ·×T
εn
zn ).

Write ΘZ for the composition of Z̃∗ → X × (C∗)n with Θn
X . The set of ε for which these

intersections are good is the complement of the non-flat locus ∆ ⊂ (P1
R)n of ΘZ . Since the

flat locus of an algebraic map is Zariski open, ∆ ⊂ (P1
R)n is a real subvariety, which is proper

by dimension considerations.
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Therefore the preimage ∆̃ of ∆ in (S1)n is real analytic. By the form of the inequalities in Bε,

we know that we can choose an ε > 0 such that Bn
ε ∩ ∆̃ = ∅. (This follows from the implicit

function theorem for ∆̃, and the fact that all derivatives of e−1/x limit to 0 at 0.) This means

that Z intersects X × T ε1z1 × · · · × T
εn
zn properly ∀ε ∈ B•ε , as desired.

Repeating the argument for X × (C∗)i × (P1
C)n−i and X × (C∗)i × ({0,∞})k × (P1

C)n−i−k, we

pick the minimum of the required values of ε, so that Z intersects X × T ε1z1 × · · · × T
εi
zi

and

X × T ε1z1 × · · · × T
εi
zi
× ∂k�n properly ∀i, k, ε ∈ B•ε , which means Z ∈ N p

ε (X,n).

3.3 Abel-Jacobi maps

In this section, we’ll use the strategy in [KLM] to define the Abel-Jacobi maps on our

subcomplexes.

3.3.1 Definition of Deligne cohomology

The Deligne cohomology group H2p+n
D (X,Z(p)) is given by the nth cohomology of the complex

C•+2p
D (X,Z(p)) := {C2p+•(X,Z(p))⊕ F pD•(X)⊕D•−1(X)}

with differential D taking (a, b, c) 7→ (−∂a,−d[b], d[c]− b+ δa). Here Dk(X) denotes currents

of degree k on Xan and Ck(X,Z(k)) denotes C∞ (co)chains of real codimension k and

Z(k) = (2πi)kZ coefficients.

14



The cup product in Deligne cohomology is defined on the chain level by

(TX ,ΩX , RX) ∪ (TY ,ΩY , RY )

:= ((2πi)l+nTX ∩ TY ,ΩX ∧ ΩY , (−1)l(2πi)lδTX ·RY +RX ∧ ΩY ).

It becomes commutative upon passage to cohomology. (See [We] for a commutative chain-level

construction.)

3.3.2 KLM Currents

Firstly we’ll review the currents given in [KLM].

The currents on �n are given by Tn := Tz1 ∩ Tz2 ∩ . . . ∩ Tzn , Ωn = dz1
z1
∧ dz2

z2
∧ . . . ∧ dzn

zn
, and

Rn =
n∑
k=1

(−1)(
k
2)(2πi)kδTz1×Tz2×...×Tzk−1

log zk
dzk+1

zk+1
∧ . . . ∧ dzn

zn
.

For currents on X associated to a given Z ∈ Zp
R(X,n), let π1 : Z̃ → �n and π2 : Z̃ → X be

the projections (where Z̃ is a desingularization). Then we have:

ÃJ
p,n

KLM(Z) := (2πi)p−n(π2)∗(π1)∗((2πi)nTn,Ωn, Rn)

3.3.3 Currents on N p
ε (X,n)

Using a similar strategy, for a normalized precycle Z ∈ N p
ε (X,n) and ε ∈ Bn

ε , we send

Z 7→ (2πi)p−n(π2)∗(π1)∗((2πi)nT εn,Ωn, R
ε
n) =: Rn,ε

ε (Z) (3.3.1)
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where T εn = T ε1z1 × T
ε2
z2 × . . .× T

εn
zn , ΩZ = dz1

z1
∧ dz2

z2
∧ . . . ∧ dzn

zn
, and

Rε
n =

n∑
k=1

(−1)(
k
2)(2πi)kδ

T
ε1
z1×T

ε2
z2×...×T

εk−1
zk−1

logεk zk
dzk+1

zk+1
∧ . . . ∧ dzn

zn
.

Here logε(z) is the branch (0-current) with cut at T εz , so that d[logε(z)] = dz
z
− 2πiδT εz .

The formula (3.3.1) induces a map of complexes

R•,εε : N p
ε (X,−•)→ C2p+•

D (X,Z(p)). (3.3.2)

Proposition 12. R•,εε is a map of complex.

Therefore we get for each p, n, ε, and ε ∈ Bε Abel-Jacobi maps (induced by these maps of

complexes)

AJp,n,εε : Hn(N p
ε (X, •))→ H2p−n

D (X,Z(p)).

3.4 Homotopies of Abel-Jacobi maps

3.4.1 Notations

Put

Rzi := (2πiTzi ,
dzi
zi
, log(zi))

Rε
zi

:= (2πiTarg(zi)=π−ε,
dzi
zi
, logε(zi))

where logε(zi) is taking branch cut at arg(zi) = π − ε. We write Targ(zi)=π−ε as T εzi . Define

Sε,ε′zi
:= (−θε,ε′zi

, 0, 0)
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where θε,ε′zi
:= ±δ{arg(zi)∈(ε,ε′)} are 0-currents. (The sign is positive if ε > ε′, negative otherwise.)

Clearly we have

DSε,ε′zi
= Rε

zi
−Rε′

zi
.

3.4.2 Homotopy property

In this subsection we will prove the

Theorem 13. Given ε, ε′ ∈ BN
ε , we have R•,εε '(Z) R•,ε

′
ε .

For a fixed N , consider the following double complex (truncated at N):

Ea,b := C2a+b
D ((P1)a)⊕(Na)2N−a

in which the components in the ath column are the a-“faces” of (P1)N , indexed by I =

{I1, · · · , In−a} ⊂ {1, · · · , N} (with I1 < · · · < In−a) and f : I → {0,∞}. The differentials

of this double complex are given by the Deligne differential D and the alternating sum of

Gysin push-forwards δ = 2πi∑i∈I(−1)sgnI(i)+sgn(f(i))(ρif(i))∗, where sgnI(i) = k for i = Ik, and

sgn(0) = 0, sgn(∞) = 1. So that on the associated simple complex we have D = d+ (−1)bδ.

In this double complex, we consider the set of triples Rε
� := {Rε̂

n := ((2πi)nT ε̂n,Ωn, R
ε̂
n)}n,I,f

in En,−n, where 0 ≤ n ≤ N , {ε̂1, · · · , ε̂n} = {ε1, · · · , εN} \ {εI1 , · · · , εIn} a subsequence.

Proposition 14. Rε
� is a 0-cocycle.
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Proof. According to (5.2),(5.3) and (5.4) in [KLM], generally we have (for Rε
n ∈ (Cn

D(P1)n)I,f :

DRε
n = (−(2πi)n

n∑
k=1

(−1)k((ρ0
i )∗T

{ε1,··· ,ε̂i,··· ,εn}
n−1 − (ρ∞i )∗T {ε1,··· ,ε̂i,··· ,εn}n−1 ,

− 2πi
n∑
k=1

(−1)kΩ(z1, · · · , ẑi, · · · , zn)δ(zi),

− 2πi
n∑
k=1

(−1)kR{ε1,··· ,ε̂i,··· ,εn}(z1, · · · , ẑi, · · · , zn)δ(zi))

= −(−1)n−1δ(
n∑
k=1

(R{ε1,··· ,ε̂k,··· ,εn}n−1,0 +R{ε1,··· ,ε̂k,··· ,εn}n−1,∞ )) (3.4.1)

where for the δ in the last line, we only consider the component mapping into (Cn
D(P1)n)I,f .

This tells us DRε
n + (−1)n−1δ(∑n

k=1(R{ε1,··· ,ε̂k,··· ,εn}n−1,0 +R{ε1,··· ,ε̂k,··· ,εn}n−1,∞ )) = 0 for any n, thus each

component of DRε
� are all 0, so Rε

� ∈ Ker(D) is a 0-cocycle.

For ε, ε′, consider the following (−1)-cochain:

Sε,ε
′

� := {S ε̂,ε̂′ :=
n∑
k=1

(−1)k−1Rεm1
z1 ∪ · · · ∪ R

εmk−1
zk−1 ∪ S

εmk ,ε
′
mk

zk ∪R
ε′mk+1
zk+1 ∪ · · · ∪ R

ε′mn
zn }n,m,i

It satisfies the following key property:

Proposition 15. DSε,ε
′

� = Rε
� −R

ε′

�

Proof.

DSε,ε′n =
n∑
k=1

k−1∑
l=1

(−1)l−1(−1)k−1Rε1
z1 ∪ · · · ∪DR

εl
zl
∪ · · · ∪ Sεk,ε

′
k

zk ∪ · · · ∪ Rε′n
zn

+
n∑
k=1

n∑
l=k+1

(−1)l(−1)k−1Rε1
z1 ∪ · · · ∪ S

εk,ε
′
k

zk ∪ · · · ∪DRε′l
zl ∪ · · · ∪ Rε′n

zn

+
n∑
k=1
Rε1
z1 ∪ · · · ∪DS

εk,ε
′
k

zk ∪ · · · ∪ Rε′n
zn (3.4.2)
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Notice that DRε
zi

= 2πiδ(zi) and DSε,ε
′

zi
= Rε

zi
−Rε′

zi
, we can rewrite this expression as follow

by applying telescoping method and rearranging the order of the summation:

DSε,ε′n = 2πi
n∑
k=1

n∑
l=1,l 6=k

(−1)l−1(−1)kδ(zl)R
ε1
z1 ∪ · · · ∪ S

εk,ε
′
k

zk ∪ · · · ∪ Rε′n
zn

(with the lth term omitted, either before k or after k)

+
n∑
k=1
Rε1
z1 ∪ · · · ∪ (Rεk

zk
−Rε′k

zk) ∪ · · · ∪ Rε′n
zn

= 2πi
n∑
l=1

(−1)l−1δ(zl)

n∑
k=1,k 6=l

(−1)kRε1
z1 ∪ · · · ∪ S

εk,ε
′
k

zk ∪ · · · ∪ Rε′n
zn

+Rε
n −Rε′

n

= −(−1)nδ(
n∑
k=1

(S{ε1,··· ,ε̂k,··· ,εn},{ε
′
1,··· ,ε̂′k,··· ,ε

′
n}

n−1,0 + S{ε1,··· ,ε̂k,··· ,εn},{ε
′
1,··· ,ε̂′k,··· ,ε

′
n}

n−1,∞ )

+Rε
n −Rε′

n (3.4.3)

This tells us DSε,ε′n + (−1)nδ(∑n
k=1(S{ε1,··· ,ε̂k,··· ,εn},{ε

′
1,··· ,ε̂′k,··· ,ε

′
n}

n−1,0 + S{ε1,··· ,ε̂k,··· ,εn},{ε
′
1,··· ,ε̂′k,··· ,ε

′
n}

n−1,∞ ) =

Rε
n −Rε′

n holds for each component of n. Thus DSε,ε
′

� = Rε
� −R

ε′

� holds.

Proof of Theorem 13. The result in Proposition 15 implies at once that Rn,ε
ε (Z)−Rn,ε′

ε (Z) =

DSε,ε′ε (Z) + Sε,ε′ε (∂Z), so that R•,εε ' R•,ε
′

ε as claimed.

3.5 The integral Abel-Jacobi map

Recall our map of complexes from (3.3.2), with nth term

Rn,ε
ε : N p

ε (X,n)→ C2p−n
D (X,Z(p))
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According to our result from the last section, we know that for ε, ε′ ∈ BN
ε , Rn,ε

ε ' Rn,ε′
ε ; that

is to say, they induce the same homomorphism after taking cohomology:

Corollary 16. All the ε ∈ Bε induce the same map:

AJp,nε : Hn(N p
ε (X, •))→ H2p−n

D (X,Z(p)).

Moreover, for ε′ < ε and ε ∈ Bε′ ⊂ Bε, the following diagram commutes:

N p
ε (X, •) � � ı //

R•,εε ((

N p
ε′ (X, •)

R•,ε
ε′vv

C2p−•
D (X,Z(p))

which is straightforward from the definition. By taking homology, we have that the following

diagram commutes as well:

Hn(N p
ε (X, •)) [ı] //

AJp,nε ))

Hn(N p
ε′ (X, •))

AJp,n
ε′uu

H2p−n
D (X,Z(p))

In order to get the integral Abel-Jacobi map, we need the following result:

Theorem 17. CHp(X,n) ∼= lim−→ε Hn(N p
ε (X, •))

Proof. Since ⋃N p
ε (X, •) = N p(X, •), we have

CHp(X,n) ⊆ lim−→ε Hn(N p
ε (X, •)).

20



For the other direction of the equation, consider ξ ∈ CHp(X,n), and ξ̃,ξ̃′ be two representa-

tions of ξ in the following sequence:

Hn(N p
ε (X, •))→ Hn(N p

ε′ (X, •))→ · · · → CHp(X,n)

We need to show that ξ̃ and ξ̃′ will eventually merge at some ε, that is to say, ⋃ ∂N p
ε (X,n+

1) = ∂N p(X,n + 1), which directly comes from the property of normalized cycle and⋃
N p
ε (X, •) = N p(X, •).

Thus we have a well-defined map

AJp,nZ : CHp(X,n)→ H2p−n
D (X,Z(p))

given by AJp,nZ := lim−→ε AJ
p,n
ε . Precisely, for Z ∈ CHp(X,n) and Z̃ ∈ Ker(∂) ⊂ N p

ε (X,n) be

any class mapping to Z and ε, AJp,nZ (Z) = Rn,ε
ε (Z̃) is a well-defined map (that is to say, it

lies in the same homology class for any choice of ε). Thus we have an explicit expression for

the integral Abel-Jacobi map:

AJp,nZ (Z) = lim
ε→0
Rn,ε
ε (Z̃)

Moreover, for Z̃ a representative in Zp
R(X,n) ∩N p(X,n), we know that Z̃ lies in N p

ε for

any ε > 0, and

lim
ε→0
Rn,ε
ε (Z̃) = R(Z̃).

In particular, this means that on cycles belonging to Zp
R(X,n) ∩N p(X,n), our integral AJ

map is given by the KLM formula.
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3.6 Application to torsion cycles

Recent work of Kerr and Yang [MY] provides explicit representatives for generators of

CHn(Spec(k), 2n− 1) where k is an abelian extension of Q, assuming the result we’re giving

here is correct. We’ll check that when n = 2, 3, 4, the cycle given by [MY] satisfies the

normal and proper intersection condition thus belongs to Zp
R(X, 2p − 1) ∩N p(X, 2p − 1).

For n = 5 and higher cases, a normalization of their given generator is needed.

Let ξN be an N th root of 1.

Proposition 18. The cycles given by (4.1), (4.2) and (4.3) in [MY] lie in Zn
R(Q(ξN ), 2n−

1)∩N n(Q(ξN ), 2n− 1). (Notice that for (4.3), we’re choosing the first set of the cycles. The

“Alternate” choice is not normalized.)

The Zn
R part is given by Remark 3.3 in [MY]. For the N n part, it’s not hard to check that

the cycles of n = 2, 3 are normalized. For CH4(Spec(Q(ξ)), 7) (and ξ = ξN), the following

cycles are given by [MY]:

Z = ( t1
t1 − 1 ,

t2
t2 − 1 ,

t3
t3 − 1 , 1− ξt1t2t3, t

N
1 , t

N
2 , t

N
3 ),W1 = 1

2(W (1)
1 + W (2)

1 ),

W (1)
1 = ( t1

t1 − 1 ,
t2

t2 − 1 ,
1

1− ξt1t2
,

(u− tN1 )(u− tN2 )
(u− 1)(u− tN1 tN2 ) ,

u

tN1
,
u

tN2
,

1
u

),

W (2)
1 = ( t1

t1 − 1 ,
t2

t2 − 1 ,
1

1− ξt1t2
,

(u− tN1 )(u− tN2 )
(u− 1)(u− tN1 tN2 ) ,

tN1
u
,
tN2
u
,

u

tN1 t
N
2

),

W2 = −1
2( t1
t1 − 1 ,

1
1− ξt1

,
(v − tN1 u)(v − t−N1 u)

(v − u2)(v − 1) ,
(u− tN1 )(u− vtN1 )

(u− v)2 ,
vtN1
u
,
v

tN1 u
,
u

v
).

and Z̃ = Z + W1 + W2 is a generator of CH4(Spec(Q(ξ)), 7). By the computation in [MY],

we have
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∂Z = −∂0
4Z = −∂∞4 W (1)

1 = −∂∞4 W (2)
1 ,

∂W1 = −1
2∂
∞
3 W (1)

1 + 1
2∂
∞
4 W (1)

1 − 1
2∂
∞
3 W (2)

1 + 1
2∂
∞
4 W (2)

1 ,

∂W2 = 1
2∂
∞
3 W (1)

1 + 1
2∂
∞
3 W (2)

1

We can see that ∂∞3 Z̃ = 0 and ∂∞4 Z̃ = ∂0
4Z̃ which can be cancelled by adding (for free) a

degenerate cycle, so that Z̃ is normalized.

This puts some earlier results on firm ground as well, such as O. Petras’s result in [Pe] that

Z := (1− 1/t, 1− t, t−1) + (1− ξ5/t, 1− t, t−5) + (1− ξ̄5/t, 1− t, t−5)

generates CH2(Q(
√

5, 3) and (since we have R(Z) = Li2(1) + 5(Li2(ξ5) + Li2(ξ̄5)) = 7π2/30)

is 120-torsion.

Also according to [MY], for N = 2 (k = Q) and n = 4, we have | 1
(2πi)4 cD(Z̃ )| = 7

1440 , which

means it is 1440-torsion. The normalization of higher dimension case could be something to

work out in the future.
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Chapter 4

Linear higher Chow cycles

If X is smooth and k is a subfield of C, one has Bloch’s Abel-Jacobi maps

AJ : CHp(X,m)→ H2p−m
H (Xan

C ,Z(p))

into absolute Hodge cohomology, which may be described (⊗Q) in terms of explicit maps of

complexes ÃJ [BKLL15]. The homology of the subcomplex LZ p(X, •) given by equations

linear in the {xi} defines the linear higher Chow groups LCHp(X,m), which map naturally

to CHp(X,m).

This chapter concerns the case CHp(k,m) of a point over a number field, where X = Spec(k).

Working ⊗Q, this is zero unless (p,m) = (n, 2n − 1), in which case CHn(k, 2n − 1)Q ∼=

K2n−1(k)Q ∼= K2n−1(Ok)Q. The linear group LCHn(k, 2n− 1)Q is (for each n ≥ 1) the image

of a canonical homomorphism

ψn : H2n−1 (GLn(k),Q)→ CHn(k, 2n− 1)Q,
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induced by the morphism of complexes

ψ̃n : Cgrp
• (n)→ Zn(k, •)Q

given (for • = m) by

(g0, . . . , gm) 7−→
{

m∑
i=0

xi · giv = 0
}
⊂ ∆m

for some choice of v ∈ kn \ {0}. (Here we consider Cgrp
i resp. Zn(k, i) to be in degree −i.)

Now given an embedding σ : k ↪→ C, the Bloch-Beilinson regulator map (i.e., AJ composed

with projection C/Q(n) � R) sends CHn(σ(k), 2n− 1)Q →
rBe

R, so that composing with all

r = [k : Q] = r1 + 2r2 embeddings maps CHn(k, 2n − 1) → Rr. This factors through the

invariants Rdn [dn := r2 (n even) resp. r1 + r2 (n odd)] under de Rham conjugation, and is

known to be equivalent to 1
2 the Borel regulator rBo : K2n−1(Ok)Q → Rdn [Bu02].

Given the close relation between homology of GLn and the original context of Borel’s theorem,

it is natural to consider the composite morphism of complexes ÃJ ◦ ψ̃n. Replacing k by C,

these should yield explicit cocycles in H2n−1
meas (GLn(C),C/Z(n)) lifting the Borel classes in

H2n−1
cont (GLn(C),R) [BKLL15]. This would also deepen our understanding of the equivalence

of the Beilinson and Borel regulators. The first test of this proposal is to check its simplest

implication:

Conjecture 19. For a number field k, the linear higher Chow cycles surject (rationally) onto

the simplicial higher Chow groups. Equivalently, ψn is surjective for every n ≥ 1.
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4.1 A strategy for surjectivity?

In fact, Conjecture 19 is claimed as Proposition 16 in R. de Jeu’s paper [dJ02]. His approach

is to fit (for each n ≥ 1) ψ̃n into a commuting triangle

Cgrp
• (n) ψ̃n //

r̃Bor &&

Zn(k, •)
r̃Be
��

R[2n− 1].

(4.1.1)

Taking homology yields the diagram

H2n−1(GLn(k),Q) ψn //

rBor
))

CHn(k, 2n− 1)Q
rBe
��
R,

(4.1.2)

in which rBor [resp. rBe] is the Borel [resp. Beilinson] regulator, composed with a choice of

embedding k ↪→ C. By composing with all embeddings (and using Borel’s theorem), we get

a diagram of the form

H2n−1(GLn(k),R) ψn //

∼=
))

CHn(k, 2n− 1)R
∼=
��

Rdn ,

(4.1.3)

proving Conjecture 19.

The problem here is with de Jeu’s choice of Goncharov’s simplicial regulator rGon [Go95]

for r̃Be. While this appears to make (4.1.1) commute, by the calculation on pp. 228-230 of
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[dJ02], it is now known [BKLL15] that rGon is not a map of complexes. Specifically, in

· · · // Z2(k, 2n)

��

∂ // Zn(k, 2n− 1)
rGon
��

// Zn(k, 2n− 2)

��

// · · ·

· · · // 0 // R // 0 // · · ·

(4.1.4)

we do not have rGon(∂C2n) = 0. So we must replace rGon by the “corrected” version in

[BKLL15], which we will denote by regG. It is given on Y ∈ Zn(k, 2n− 1) by

regG(Y ) :=
ˆ
Y (C)

r2n−1
(
x1+···+x2n−1

−x0
, x2+···+x2n−1

−x1
, . . . , x2n−1

−x2n−2

)
, (4.1.5)

which is known to induce rBe.

On the group homology side, de Jeu [dJ02] also uses a formula of Goncharov for r̃Bor; we

denote this by regB. Given (g0, . . . , g2n−1) ∈ Cgrp
2n−1(n), let {fi}2n−1

i=1 denote nonzero rational

functions on Pn−1
C with divisors

Di = {[X] ∈ Pn−1 | (X0, . . . , Xn−1) · giv = 0}

− {[X] ∈ Pn−1 | (X0, . . . , Xn−1) · g0v = 0}.

Then according to [Go93],

regB(g0, . . . , g2n−1) :=
ˆ
Pn−1
C

r2n−1(f1, . . . , f2n−1) (4.1.6)

induces rBor. At least in the n = 2 case we treat below, this formula is correct. (See the

calculation in §4.2 below.) Moreover, it is well-defined for any n, in the sense that the RHS

of (4.1.6) is invariant when we rescale any fi by a constant.
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We tried to emulate the approach in [dJ02] to see if the new diagram (4.1.1) (with r̃Bor = regB

unchanged and r̃Be corrected to regG) commutes, with no success. At this point, we decided

to attempt the first nontrivial case by hand, and arrived at a negative result:

Proposition 20. For n = 2, the amended triangle (4.1.1) does not commute.

4.2 Proof of Proposition 20

In [Go04], Goncharov mentions the formula

ˆ
P1
r3(f1, f2, f3) =

∑
(x1,x2,x3)∈C3

νx1(f1)νx2(f2)νx3(f3)D2(CR(x1, x2, x3,∞)) (4.2.1)

where νx(f) is the order of f at x. One easily verifies that this is correct; it will be required

below.

Now take v =

 1

0

 ∈ C2, and (g0, g1, g2, g3) ∈ C3(2). We can do a change of coordinate to

let g0 =

 1 ∗

0 ∗

, g1 =

 0 ∗

1 ∗

, g2 =

 a ∗

c ∗

, g3 =

 b ∗

d ∗

. For convenience, we set

∆ := ad− bc.

Write z := X1
X0

and f1(z) = z, f2(z) = cz + a, and f3(z) = dz + b. According to (4.1.6) and

(4.2.1), we have

regB(g0, g1, g2, g3) =
ˆ
P1
r3(z, cz + a, dz + b)

= D2
(
bc
ad

)
.

This is consistent with evaluating the cocycle ε2 ∈ H3
cont(GL2(C),R) (cf. Intro. to [BKLL15])

on the “group homology chain” (g0, g1, g2, g3).
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For the other side, applying ψ̃ to this chain produces the linear higher Chow chain Y ⊂ ∆3

cut out by

x0 + ax2 + bx3 = 0 and x1 + cx2 + dx3 = 0.

Parametrizing Y ∼= P1 by t 7→ (∆,∆t, bt−d, c−at), (4.1.5), (4.2.1) and the rescaling property

yield regG(ψ̃(g0, g1, g2, g3)) =

regG(Y ) =
ˆ
P1
r3
(

(d−c)+(a−b−∆)t
∆ , (d−c)+(a−b)t

∆t , at−c
bt−d

)
=
ˆ
P1
r3
(
(c− d) + (∆ + b− a)t, (c−d)+(b−a)t

t
, at−c
bt−d

)
= D2

(
(d−1)∆
b(c−d)

)
−D2

(
(c−1)∆
a(c−d)

)
−D2

(
(b−a)(d−1)
b(d−c)

)
+D2

(
(b−a)(c−1)
a(d−c)

)
.

To check that these two results disagree, put a = 1, b = −1, c = 1 − i, d = 1 + i, so that

∆ = 2 and ad
bc

= −i. Of course, D2(−i) 6= 0. On the other hand,

(d−1)∆
b(c−d) ,

(c−1)∆
a(c−d) ,

(b−a)(d−1)
b(d−c) , (b−a)(c−1)

a(d−c)

are all 1, D2 of which is 0.

4.3 Concluding remarks

Naturally, it is still possible that (4.1.2) commutes, since there we restrict to closed chains.

In fact, even if we don’t accept the proof in [dJ02], there is the earlier result of Gerdes

[Ge91] which gives surjectivity of ψn for n = 2. Moreover, there is the agreement between

the Beilinson and Borel regulators in [Bu02], though this does not involve ψn in any way.

To sum up, we conclude with the
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Question 21. Are there any techniques to prove that (4.1.2) commutes even though the

amended diagram (4.1.1) does not, for n = 2 and more generally? Or is it more likely that

ψn has to be somehow modified?
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