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Figure 4.6. Druggable kinase-substrate cascades originating from (a) AKT1 (b) BRAF and 

(c) EGFR in the 77 breast cancer samples. The samples in the heatmap were ordered by the 

phosphoprotein level of each of the kinases. For each node in each network diagram, the 

color represents the relative level of basal compared to luminal A/B breast cancers, where 

blue indicates higher level in luminal and red indicates higher level in basal tumors. For the 
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Kinase-substrate 

pairs correlated with clinical and immune features 

Lastly, we sought to identify kinase-substrate pairs associated with clinical characteristics of 

breast cancer. We conducted regression analysis between the correlation score for each kinase-

substrate pair and pathogical stage and survival adjusted for their PAM50 subtypes (Methods). 

175 pairs showed potential association (P < 0.05) with pathogical stage (Figure 4.7a); pairs 

stemmed from MAP kinases, including MAPK11:PPP1R13L p.S113, MAPK9:STAT3 p.S727 

and MAPK8:NFATC1 p.S359, showed top correlations with earlier clinical stage. 83 pairs are 

potentially associated with survival using the Cox proportional hazards model (Figure 4.7b). 

Notably, these pairs are dominated by 32 CDK1 and 29 CDK2 trans-regulated pairs correlated 

with protective effects (Hazard Rate Ratio < 1) in breast cancer survival.  

 

We identified 160 pairs potentially associated (P < 0.05, 40 pairs with FDR < 0.05) with 

transcriptomically-derived immune score as calculated by the ESTIMATE algorithm131 

(Methods, Figure 4.7c,d). We then specifically asked whether the associated pairs showed direct 

overlap with the immune-related genes. Our analysis showed that 15 pairs positively associated 

with the immune scores have their respective substrates as immune genes; the significant 

enrichment of immune genes in identified pairs (15/160 vs. 11/918, Fisher’s Exact Test, P = 

3.58e-07) validated our approach. The remaining 145 pairs (the top 6 pairs shown in Figure 4.7d) 

represent signaling networks simultaneously activated with up-regulation of the immune genes 

and functions.  

 

edges, the darkness of the color is scaled by the correlation coefficient and the width is scaled 

by -log(FDR) of the association. 
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Figure 4.7.  Clinical association of kinase-substrate pairs. (a) Volcano plot showing 

association of kinase-substrate pairs with pathological stage. Positive coefficient denotes 

higher kinase-substrate scores associating with more advanced pathological stage. (b) 

Volcano plot showing association of kinase-substrate pairs with survival. Hazard rate ratios 

greater than 1 denote higher kinase-substrate scores associating with poor survival. (c) 

Volcano plot showing association of kinase-substrate pairs with transcriptome-based immune 

signature score, as calculated by the ESTIMATE algorithm. Positive coefficients denote 

higher kinase-substrate scores associating with higher immune scores. The color of each pair 

indicates whether its kinase or substrate belongs to the immune gene list used by 

ESTIMATE. (d) Top kinase-substrate pairs (P < 1e-6) associated with immune scores where 
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4.3 Discussion 

 

Herein, we present a quantitative characterization of kinase-substrate pairs in breast cancer 

(Figure 4.1d). The high-throughput dataset generated by LC-MS/MS enabled global assessment 

of 33,239 phosphosites, 19,521 of which were not observed in two of the most comprehensive 

phosphosite databases, UniProt and Phospho.ELM (Figure 4.1a,b). Our analysis allowed us to 

identify 2,134 (387 cis and 1,747 trans) kinase/substrate regulatory relationships; using the same 

pipeline, analysis based on RPPA-detected phosphosites only found 4 and seldom interrogated 

more than one phosphosite on a protein, further stressing the need of evaluating interactions in 

vivo through global phosphoproteomics. Strikingly, our study discovered 806 novel regulated 

phosphosites (Figure 4.1e) from a wide spectrum of genes and gene families, regulated by 

various protein kinases. This result clearly suggests that more regulated, likely cancer-specific 

phosphosites will emerge in additional, even larger mass spectrometry based cancer proteome 

studies. While our analyses advances towards a more comprehensive cataloging of phospho-

regulations, expanding the current sample size would be required to fully establish and discover 

associations (Figure 4.7). The serine-rich dataset in this study may also be complemented by 

other techniques enriching for tyrosine residues132-134.      

 

We identified 61.4% (387/630) phosphosites of kinases showing significant cis-regulation, many 

of which were concentrated in known or nominated breast cancer genes such as ERBB2, 

RRPS6KA4, NEK9, RIPK2 and PAK1 (Figure 4.2). In contrast, only 4.51% (1,747/38,710) 

each dot indicates one breast cancer sample. 
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trans kinase-substrate pairs showed significant co-regulation (Figure 4.3). It is possible that trans 

substrate usage may be highly tissue-specific and some of the previously curated pairs do not 

interact in breast cancer. Another possibility is that some kinase-substrate pairs established 

through in vitro evidence are not relevant in physiological environments, although the validation 

rate for in vivo and in vitro pairs do not differ significantly. Future investigation using data 

across tissue and cancer types would be pivotal in addressing whether we observe tissue-specific 

usage of kinase-substrate pairs. Such studies could also reveal the consistently high/low pairs 

(Figure 4.1d) in each cancer type and highlight cancer-specific signaling.  

 

Our direct, quantitative observation of kinase-substrate pairs complement previous studies 

focusing on singleton drivers. Conventionally, pathways were mostly constructed by linking 

single candidate driver genes (such as significantly mutated genes or focally amplified genes) 

through known interactions. Our approach detects the co-regulation of the gene pairs in vivo, and 

thus directly validates the signaling impact of driver events in each sample. This approach also 

enabled us to build relevant sub-cascades stemming from potentially druggable kinases AKT1, 

BRAF and EGFR (Figure 4.6). To compare with other network-generating studies, we also 

constructed a network of all observed regulations. However, such approaches may obfuscate 

activated subnetworks as downstream phosphorylation targets could be mediated by multiple 

kinases.  

 

This first large-scale examination of over 33,000 phosphosites in breast cancers sets a foundation 

for druggable analysis of kinase-substrate pairs beyond singleton druggable events (Figure 4.5). 

Predictive value of response to targeted treament has been limited in samples for some clearly-
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definied driver events in cancer (ex. PIK3CA mutation status failing to predict treatment 

response to PI3K inhibitor). Co-occurrence of downstream activating events, as we have 

observed for AKT1, BRAF, ERBB2, IGF1R and RAF1 (Figure 4.5b), may further support 

targeted inhibition. In both breast cancer PDXs showing ERBB2:ERBB2 p.S1151 cis outlier 

pairs, lapatinib treatment significantly reduced tumor growth120. Resistance mechanisms often 

consists of rewiring of signaling pathways and could be further explored through high-

throughput proteomics and approaches developed in this study. Further, we identified outlier 

kinase-substrate pairs in samples without singleton events for kinases including EGFR, MAPK3 

and MAPK14 (Figure 4.5b). Inhibition of the MAP2K1/2 (MEK1/2) upstream of MAP kinases 

surpressed the MAPK signaling pathway and its combinatory treatment with RTK inhibitors 

have resulted in tumor regression of triple-negative breast tumors29. Our discovery of MAPK 

mediated pairs reveals therapeutic opportunities.  

 

In conclusion, signaling networks are crucially important in cancer. However, large-scale omic 

studies to date have mainly focused on singling out individual driver events and rarely 

investigate their signaling impact. Studying kinase-substrate relations in vivo, and most 

particularly in tumor samples from patients undergoing therapy will uncover the wiring of 

signaling networks in each tumor and likely improve treatment approaches.  
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4.4 Methods 

 

Sample Description 

Samples of human breast cancer were as described in the CPTAC marker paper23,27. These 

comprise of 77 breast cancer samples that showing unimodal distribution in proteomes, their 3 

technical replicates and 3 normal breast samples. Samples of the 24 PDX breast cancer were as 

described previously120.  

 

Data Generation 

TCGA genomics data 

The TCGA somatic mutation data, level-3 segment-based copy number data, level-3 normalized 

RNA expression data, were downloaded from firehose (archive date 2014-10-17). We then 

converted the segment-based copy number data to the gene-based copy number data by using the 

RefSeq database (version 20130727). The CNV ploidity number is divided by 2 and then log2-

transformed to obtain the final CNV levels for analysis. We also log2-transformed the RSEM 

values of RNA expression data. 

TCGA RPPA data 

Normalized RPPA data of TCGA tumors were downloaded from The Cancer Protein Atlas 

(TCPA , archive date 2015-10-30). The RPPA data were normalized across batches using 

replicates-based normalization (RBN) as previously described135.  

 

Global Proteomics data 
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Global proteomics data for the human samples were downloaded from the Mertins et al. breast 

cancer study83. Global proteomics data for the PDX samples were downloaded from the Huang 

et al. breast cancer PDX study120. As previously described, 2-component Gaussian mixture 

model-based normalization algorithm was used to normalize the data and accomandate both 

consistently and differentially-expressed proteins and phosphosites within each sample. Further, 

proteins and phosphosites were required to have observed (non-missing) iTRAQ ratios in at least 

30 samples and an overall standard deviation larger than 0.5 (across all samples where they were 

observed). 

   

Protein and phosphorylation databases 

UniProt: We applied HotSpot3D (v1.1.1) which accesses crystal structures from RCSB Protein 

Data Bank (PDB) and calculates residue distances using the average distance-measure option in 

preprocessing (structures processed January 2017)74. We used a custom Perl script to retrieve 

phosphosites, active sites, and binding sites (ie. features matching MOD_RES, ACT_SITE, 

BINDING, or SITE) from UniProt (date accessed 1/30/2017)136.  

PhosphositePlus: We downloaded the PhosphositePlus124,137 database (2/11/2016). We then 

extracted the kinase-substrate pairs where both are proteins are from human from the kinase-

substrate database for downstream analysis.  

To identify phosphosites known in cancer, we filtered the disease-associated sites database for 

cancer terms (ex. cancer, *oma and leukemia). The sites that were not matched to a valid 

genomic coordinate by transvar were excluded, and the remainder sites were further reviewed to 

retain 261 sites, where 84 unique sites were quantified in our dataset.  
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Phospho.ELM: We downloaded the phospho.ELM database from PhosphositePlus (2/11/2016). 

We then extracted the phosphosites mapping to human proteins, and reverse-translated to their 

unique genomic positions using transvar.  

PhosphoNetwork: We downloaded the Supplementary Tables from Newman et al.31 and derived 

the predicted kinase-substrate pairs from the file comKSI.csv. We then further filtered out the 

pairs already observed in PhosphositePlus and combine the remaining pairs with pairs from 

PhosphositePlus for analysis.  

 

Bioinformatics analyses 

Cross data type and database integration 

All gene names were converted to HUGO Gene Nomenclature Committee’s approved gene 

names for comparison across levels and datasets. To match the exact phosphosite (ex. 

PIK3CA:NP_006209.2:s312) across databases, all phosphosites are reversely-mapped to their 

genomic position (ex. chr3:g.178921452_178921454) using transvar 71.  

 

Regulated kinase-substrate pairs regression analysis 

We obtained 3,245 unique kinase-substrate pairs in the PhosphositePlus database and an 

additional 1,752 kinase-substrate pairs from the PhosphoNetwork database. We then applied the 

linear regression model as implemented in glm function in R to test for the relation between 

kinase and substrate phosphosite. The tests are independently conducted for cis and trans 

interactions in the cohort of 77 human breast cancer samples. For cis-interactions, we used 

kinase protein expression as the independent variable and each of the kinase’s phosphosite level 

as the dependent variable. For trans-interactions, we used kinase phospho-protein expression and 
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the substrate’s protein expression as independent variables and the substrate’s phosphosite level 

as the dependent variables. For each kinase-substrate-phosphosite pair to be tested, we required 

both kinase protein/phosphoprotein expression and phosphosite phosphorylation to be observed 

in at least 10 samples in the respective datasets and the overlapped dataset. The resulting p 

values were adjusted using the Benjamini-Hochberg procedure to FDR. 

 

We determined kinase-phosphosite pairs as validated if they showed P value under 0.05 and 

positive regression coefficients in the PDX cohort. For the kinase-phosphosite pairs showing top 

significant associations in the regression analysis, we calculated the average of phosphorylation 

level for each of the substrate phosphosite and protein expression of the kinase within each of 4 

breast cancer subtypes (Basal, Her2, LumA and LumB) for display in Figure 4.2 and 3.3. 

 

Kinase group and family enrichment analysis 

To test for whether kinases showing significant cis or trans correlations are enriched in kinase 

groups and families, we applied one tailed Fisher’s exact test under a null hypothesis that the 

odds ratio of associated kinases in the family are not greater. The universe of kinases for each of 

the cis and trans test was defined as the total tested kinase, and the 2-by-2 table is constructed by 

(1) whether the kinase belongs to the kinase group/family, and (2) whether the kinase has any 

significant correlations.  

 

Structural and co-phosphorylation analysis 

We used HotSpot3D74 to generate pairwise linear and 3D distance between residues within 1,288 

proteins with available PDB structure. The active sites are mapped based on data from the RSCB 
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PDB as of January 2017 (http://www.rcsb.org/pdb/home/home.do). Pearson’s correlation 

coefficients and adjusted P values are then calculated for each pair of two phosphosites within 

these proteins. We limited this correlation analysis to pairs of phosphosites jointly observed in at 

least 5 samples in the breast cancer cohort. For linear examinations of association landscapes, the 

lolliplots were generated and modified using the PCGP protein painter 

(http://explore.pediatriccancergenomeproject.org/proteinPainter). 

 

Druggable kinase-substrate pairs and cascades analysis 

We compiled a list 76 druggable genes along with their respective drugs, from established public 

databases as previously described120. We then limit the analysis to the 68 genes with per-sample 

average RSEM value greater than 100. We searched for significantly associated kinase-substrate 

pairs where either the kinase or substrate belongs to the set of druggable genes. The score of each 

pair is calculated as the sum of standardized kinase and substrate phosphosite levels:  

!"#$%&'(&)*&+,%+' =
!"#$%&' − /"#$%&'

0"#$%&'
+	!&)*&+,%+' − /&)*&+,%+'0&)*&+,%+'

 

 

whereby / is the mean and 0 is the standard deviation.  

 

To identify druggable outliers in the conventional method, we scanned for events at the somatic 

mutation, CNV, RNA and protein expression for each gene. CNV, RNA, and protein expression 

outliers are identified as the ones greater than 2 interquartile ranges (IQR) above median as 

previously described 83. We then complemented this conventional single-event analysis by 

identifying outliers using the kinase-substrate score. 
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To define the druggable cascade of each of the druggable kinase, we extracted all significantly 

associated cis phosphosites and its first-degree correlated trans substrate phosphosites. We then 

expanded one level beyond and extracted additional trans phosphosites associated with the 

phosphoprotein level of the first-degree substrates. The resulting cascades were visualized using 

heatmap showing levels of each protein/phosphoprotein/phosphosite and a network diagram 

using Cytoscape 138.  

 

Clinical and immune correlation analysis 

We conducted association analysis between the score for each kinase-substrate pair and 

pathogical stage, survival, radiation therapy, and immune signatures adjusted for their PAM50 

subtypes. For continuous variables, including pathogical stage and immune scores, we used a 

Gaussian linear regression. For whether the sample has gone through radition therapy, we used a 

logistic regression model. We used the Cox proportional Hazards model for survival analysis. 

The resulting p values were adjusted to FDR using the Benjamini-Hochberg procedure. 
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Conclusion 

 

Revealing fundamental interactions between DNA, RNA and protein empowered 

research and application of molecular biology in the past century. Similarly, omics data at each 

level urgently require integration. I plan build a research program to further develop 

bioinformatics tools and integrate large-scale omics. Inference between genomics variants, 

transcriptome, proteome, PTMs and signaling networks will facilitate our understanding of each 

oncogenic event. Finally, their integration will help us understand the molecular dynamics of 

cancer at a comprehensive scale and inform personalized medicine.  
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