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ABSTRACT OF THE DISSERTATION 

Self-Employment in Later Life: 

Implications for Financial, Physical, and Mental Well-Being 

by 

Cal Joseph Halvorsen 

Doctor of Philosophy in Social Work 

Washington University in St. Louis, 2018 

Professor Nancy Morrow-Howell, Chair 

More than one in five working Americans aged 50 and older are self-employed, yet scholarship 

that examines the relationships between self-employment and personal health and financial well-

being is limited. Using data from six biennial waves of the Health and Retirement Study, a 

nationally-representative panel study of Americans past 50 years of age, this quasi-experimental 

dissertation documents the characteristics of self-employed older adults in comparison to wage-

and-salary workers, as well as compares self-employed and wage-and-salary workers in later life 

on a set of financial well-being and personal health outcomes. This study incorporates inverse 

probability of treatment weighting (also referred to as propensity score weighting) to control for 

selection into the “treatment” of concern, self-employment. Among older Americans, this 

dissertation revealed that age, being male, reporting better health, and having higher levels of 

risk tolerance were predictive of self-employment, among other factors. Further, it found strong 

evidence that self-employment leads to reduced earnings from work, with some evidence that it 

increases health and wealth. This dissertation builds upon previous work while contributing to 

discussions about the causal effects of later-life self-employment, as well as program and policy 

developments to support longer working lives. 
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Chapter 1: Overview 
In a rapidly aging society, there has been increased attention in recent years on longer working 

lives. Recent coverage in the national media by The New York Times, The Washington Post, and 

USA Today all highlight the importance of the subject of longer working lives for many 

Americans, describing the duality of the desire and need to continue working well past 

traditional retirement age (e.g., Davidson, 2017; Farrell, 2017; Jordan & Sullivan, 2017). There 

are many reasons for this interest, including the growing share of the population that is 

approaching or already in retirement, the financial security of this group during retirement, and 

the desire for many to stay engaged in the workforce past traditional retirement age. 

One way that older adults are staying engaged in the workforce later in life is through self-

employment. Often called senior or silver entrepreneurship, the United States Senate Special 

Committee on Aging and the Small Business and Entrepreneurship Committee held a hearing on 

the “challenges and opportunities for senior entrepreneurs” in 2014 (Special Committee on 

Aging, U.S. Senate, 2014). Self-employment is considered one route to promoting financial 

security during retirement while simultaneously contributing to the economy, and over the past 

five to 10 years, programs designed to spur and support self-employment in later life have 

emerged from such organizations as AARP, Encore.org, Senior Entrepreneurship Works, and the 

U.S. Small Business Administration.  

Much of the media attention on this subject has been positive in nature, emphasizing the 

financial benefits of working for oneself and the fulfillment of personal passions through this 

work (e.g., Rogers, 2017; Strauss, 2017; Zwilling, 2017). However, others have presented stories 

that discuss older adults’ movement into on-demand services to secure supplemental income 

during retirement while promoting social engagement, such as driving for Uber (Olson, 2016), 
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providing concierge services for older adults wishing to remain living at home (Moyer, 2017), 

and renting out rooms through Airbnb (Zipkin, 2016). For those who do start their own 

businesses, it has also been pointed out that the consequences of failing these ventures in later 

life, when there are fewer years to make up for the financial loss that a younger entrepreneur 

would have, are potentially dire (Harrison, 2015). While there are certainly potential benefits 

from self-employment in later life—perhaps for those with access to the right contacts and 

sources of support—it is currently difficult to have a clear discussion about this subject when 

there has been so little scholarship on it. As Halvorsen and Morrow-Howell (2017) described in 

their review of the literature and proposed research agenda, we know relatively little about the 

individual characteristics of self-employed older adults and the personal and environmental 

antecedents, workplace characteristics, and personal and societal outcomes from this work. 

1.1 Definitions of Key Concepts 
This section will define and operationalize two terms: self-employment and older adult. Much of 

the content in this section is a summation of scholarship published by Halvorsen and Morrow-

Howell (2017). 

1.1.1 Self-Employment and Entrepreneurship 

Definitions of self-employment vary and in the applied social sciences are often shaped by the 

nature of the dataset being used. Self-employment can include several types of work and is 

defined as working for oneself, compared to working for another person or organization. Self-

employment, in many regards, is a catch-all term for those who might describe themselves as 

consultants, small business owners, entrepreneurs, and social entrepreneurs (Pitt-Catsouphes, 

McNamara, James, & Halvorsen, 2017), as well as freelancers (Platman, 2004) and independent 

contractors (Weller, Wenger, Lichtenstein, & Arcand, 2015). Of course, the nature of the work 
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among these types of self-employed positions may be very different from one another. A dataset 

often used to track self-employment statistics in the U.S., the Current Population Survey, simply 

asks if one is self-employed (Hipple, 2010). The dataset used for this dissertation and that is 

often used to study self-employment among older Americans (e.g., Zissimopoulos & Karoly, 

2009), the Health and Retirement Study, defines self-employment as simply working for oneself 

(Health and Retirement Study, 2016).  

One term that has a growing amount of scholarship devoted to it is entrepreneurship. While 

entrepreneurship has more theoretical underpinnings than self-employment, the two terms are 

often used interchangeably (e.g., Curran & Blackburn, 2001; Singh & DeNoble, 2003; Van 

Solinge, 2014). The term entrepreneurship, which is thought to have originated in France in the 

17th or 18th centuries (Dees, 1998), has been defined in multiple ways. Bygrave and Hofer 

(1991) define entrepreneurship as a process, stating that an entrepreneur is “someone who 

perceives an opportunity and creates an organization to pursue it” (p. 14). Highlighting the view 

of Peter Drucker, a notable author and researcher in the fields of innovation and 

entrepreneurship, Dees (1998) describes an idealized version of entrepreneurship, in which 

simply starting a business for reasons of self-employment does not count as entrepreneurship if it 

is not innovative or change-oriented. In his classic text, The Theory of Economic Development, 

Schumpeter (1934) concurs, stating that an entrepreneur is “an agent who enables or enacts a 

vision based on new ideas in order to create successful innovations” (as cited in Dacin, Dacin, & 

Matear, 2010, p. 44). 

Scholars of self-employment in later life have used various terms when describing those who 

work for themselves or start their own businesses. These include older entrepreneurs (Kautonen, 

2008; Kautonen, Down, & South, 2008), grey/gray entrepreneurs (Harms, Luck, Kraus, & 
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Walsh, 2014; Weber & Schaper, 2004), seniorpreneurs (Maâlaoui, Castellano, & Safraou, 2013), 

and encore entrepreneurs (Civic Ventures, 2011; Crawford & Naar, 2016; U.S. Small Business 

Administration, 2015) as well as simply the self-employed (Zissimopoulos & Karoly, 2007b). 

Another study compared “career” and “later-life” older entrepreneurs, differentiating between 

those who had long run their own businesses and those who were new to it at later ages (Kerr, 

2017). 

Weber and Schaper (2004), in a review of the literature on older entrepreneurs, noted that aspects 

of the entrepreneurship definition are “hard to measure in the business world,” creating a 

category from which empirical measures are “too difficult to collect” (p. 152). Innovation and 

the pursuit of opportunities, two concepts often included in entrepreneurship definitions, are 

examples of this subjectivity. Also difficult to track in survey data and arguably subjective—yet 

argued to be important indicators of outcomes—are motivations for pursuing self-employment or 

entrepreneurship in later life, such as being “pushed” or “pulled” into entrepreneurship 

(Kautonen, 2008; Weller, Wenger, Lichtenstein, & Arcand, 2018), or being “constrained,” 

“rational,” or “reluctant” entrepreneurs (Singh & DeNoble, 2003). Indeed, after subjective 

aspects of these definitions are removed, self-employment—defined as working for oneself—

becomes synonymous with entrepreneurship. However, some scholars have created two 

taxonomies of the self-employed, describing those who were previously unemployed as 

“necessity” entrepreneurs and those who were not as “opportunity” entrepreneurs (Ewing Marion 

Kauffman Foundation, 2017; Fairlie & Fossen, 2018). Following the direction of previous 

scholarship (Halvorsen & Morrow-Howell, 2017; Pitt-Catsouphes et al., 2017), this dissertation 

operationalizes self-employment as working for oneself. Limitations to this operationalization 
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are discussed in Chapter 5, along with ideas for exploring new profiles of self-employed older 

Americans. 

1.1.2 Older Adult and Later Life 

The terms “older adult” and “later life” are certainly imprecise and can encompass several 

different age ranges. However, much of the literature on self-employment in later life includes 

those aged 50 and older (e.g., Curran & Blackburn, 2001; Harms, Luck, Kraus, & Walsh, 2014; 

Maâlaoui, Castellano, & Safraou, 2013; Platman, 2003; Weber & Schaper, 2004). As such, this 

dissertation will also consider Americans working at age 50 and older. Limitations to this 

operationalization and ideas for moving the field forward are discussing in Chapter 5. 

1.2 Purpose of Dissertation 
Broadly described, the purpose of this dissertation is to advance knowledge on the topic of self-

employment in later life in two key areas: the characteristics of older self-employed Americans, 

including sociodemographic variables and metrics of their human, social, and financial capital; 

as well as to estimate the causal effects of self-employment in later life in comparison to working 

for someone else on two financial and two personal health factors. To accomplish this, I will 

conduct theoretically-driven analyses using six waves of data from the nationally-representative 

Health and Retirement Study. 

1.3 Organization of Dissertation 
This dissertation is organized as follows: Chapter 2 presents empirical scholarship that is 

relevant to the topic of self-employment in later life, including the topics of the aging of the 

population, longer working lives, financial security, rates of self-employment in later life, and 

our knowledge of the impact of pertinent programs and policies. It follows with a review of the 

theories and frameworks that have been used to understand this type of work. To close, it 
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describes this dissertation’s research questions and hypotheses. Chapter 3 presents the methods 

of this dissertation, including an overview of the data source and sample, a description of the 

analytical strategy, and information about sensitivity analyses and diagnostics. Chapter 4 

presents detailed findings of this dissertation, with Chapter 5 providing a discussion of the results 

in relation to the existing literature and their implications. 
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Chapter 2: Background and Significance 
In this chapter, I present empirical and theoretical scholarship that is relevant to the topic of self-

employment in later life, concluding with this dissertation’s research questions and hypotheses. 

Sections 2.1 through 2.3, and sections 2.5 and 2.6, are updated and expanded from a literature 

review and conceptual article I previously published (Halvorsen & Morrow-Howell, 2017). 

2.1 Work and Financial Security in an Aging America 
The American population is aging at a rapid pace. In 2014, approximately 110 million 

Americans were aged 50 and older, making up 34 percent of the U.S. population; of those, more 

than 46 million were aged 65 and older. By 2050, the number of Americans aged 50 and older is 

expected to reach more than 160 million—more than 40 percent of the total population (U.S. 

Census Bureau, 2014). The Pew Research Center (2010) estimates that for the 19 years between 

2011 and 2030, roughly 10,000 Americans have already turned or will turn 65 every day. 

Globally, the world population is also experiencing increased numbers of older adults, with those 

aged 50 and older estimated to increase from about one in five (21%) to almost three in 10 (28%) 

people between 2010 and 2030. By 2050, those aged 50 and older are anticipated to make up 

more than one-third of the world population (U.S. Census Bureau, Population Division, 2010). 

The U.S.—like much of the world—is rapidly aging. 

While millions of individuals are approaching their retirement years, many are financially ill-

prepared to cease work entirely. A consistent finding among scholars is that Americans, by and 

large, have not saved enough to retire and have a low level of confidence in their ability to retire 

comfortably. A 2017 study revealed that three in 10 (30%) American workers aged 55 and older, 

including their spouses, had not personally saved anything for retirement, excluding Social 

Security or employer-provided funds (Employee Benefit Research Institute & Greenwald & 
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Associates, 2017). In total, approximately one in six (18%) had less than $1,000 in savings and 

investments, with a similar number (19%) having between $1,000 and less than $50,000 and 

about a quarter (26%) having between $50,000 and less than $250,000 in savings and 

investments. About one third (35%) had $250,000 or more saved for retirement. A previous 

report found that only one in five (20%) American workers aged 55 and older were “very 

confident” that they would have enough money to live comfortably throughout their retirement 

years (Employee Benefit Research Institute & Greenwald & Associates, 2016). The recession 

that began in 2008 made financial matters worse for older adults. By the third quarter of 2011, 

for example, nearly two in five (38%) unemployed Americans aged 62 and older had been out of 

work for at least one year, compared to less than one in 10 (7%) in 2007 (Johnson, 2012). While 

the recession hit younger adults harder, more late-career workers lost their jobs than in previous 

recessions, resulting in a high level of Social Security claims (Munnell & Rutledge, 2013). Given 

these prospects, it is clear why retirement security was chosen as one of the 2015 White House 

Conference on Aging’s four main focus areas (U.S. Department of Health & Human Services, 

2015).  

Globally, there remains a need, for many, for continued income during retirement. Results from a 

2017 survey of 16,000 workers in 15 countries in the Americas, Asia, Australia, and Europe 

revealed that no country received a high score for its residents’ preparedness for retirement, 

while just more than half (53%) of countries were given a medium score. In the six consecutive 

years that this report has been published, no country has ever received a high score in its index, 

which is based on six questions asked of workers that include “Thinking about how much you 

are putting aside to fund your retirement, are you saving enough?” and “How able are you to 

understand financial matters when it comes to planning for your retirement?” (Aegon Center for 
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Longevity and Retirement, 2017, pp. 6-7). Further, responsibility for retirement security is 

continually shifting away from governments and companies to individuals themselves 

throughout the world (Aegon Center for Longevity and Retirement, 2017; Natixis Investment 

Managers, 2017). 

Concerns about financial security during retirement may be one reason why older adults are 

remaining in the work force longer. In the U.S., for example, the proportion of adults aged 55 

and older in the workforce is projected to increase by nearly 10 percent in the 30-year span from 

1994 (at 30.1%) to 2024 (at 39.4%) (U.S. Bureau of Labor Statistics, U.S. Department of Labor, 

2015). This is a reverse of the long-running trend toward lower labor force participation rates 

among older adults. For example, while the participation rate for men aged 55 to 72 has 

increased since the mid-1980s, it is still far under the rate from the previous hundred years 

(Burtless & Quinn, 2002; Munnell, 2015).  

Another way to consider this trend is by looking at the average retirement age. In the U.S., the 

average retirement age for men in 1910 was 74, compared to 63 in 1983—“a drop of about 1.5 

years per decade” (Burtless & Quinn, 2002, p. 3). However, since the 1980s, this trend toward 

earlier retirement ages has stopped and possibly reversed to about age 64 in 2013 (Munnell, 

2015). Further, it appears as though the average retirement age for women has increased 

dramatically over the past half-century from about 55 in the 1960s to 62 in 2013, although that 

figure is harder to track due to the changing work patterns and labor force participation rates of 

women (Munnell, 2015). Reasons for longer working lives are varied and include the outlaw of 

mandatory retirement ages for most American workers, changes in Social Security benefit 

calculations that stopped penalizing workers for working past normal retirement age and delays 

in the Social Security normal retirement age, increased health and education among older adults, 
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less physically demanding jobs, joint decision making between husbands and wives, the decline 

of employer-sponsored post-retirement health insurance coverage, and reductions of defined-

benefit employer pensions (Munnell, 2015; Quinn, Cahill, & Giandrea, 2011). 

2.2 Rates and Trends in Later-Life Self-Employment 
The increasing population of older Americans, combined with financial insecurity and a general 

trend toward longer working lives, are likely major reasons for self-employment being such a 

prominent form of work in later life. It has also been shown to be a “bridge” to retirement, 

providing a flexible way to continue earning income (Cahill, Giandrea, & Quinn, 2013). Using 

data from the Current Population Survey (CPS), the Ewing Marion Kauffman Foundation (2017) 

found, for example, that Americans between the ages of 55 and 64 made up more than one-

quarter (25.5%) of the newly self-employed in 2016. Further, this data shows that for each year 

since tracking began in 1996, Americans between the ages of 55 and 64 had higher rates of self-

employment activity than the average for all adults between the ages of 20 and 64. This is no 

small number: By multiplying the projected 40.5 million Americans between the ages of 55 and 

64 in 2016 (U.S. Census Bureau, Population Division, 2017) by the 0.35 percent monthly startup 

rate of Americans in this age group for the same year (Ewing Marion Kauffman Foundation, 

2017), it is revealed that approximately 145,121 businesses were started each month by 

Americans in this ten-year age range in 2016 alone. 

Considering Americans in the labor force, the percentage of workers who are self-employed has 

been shown to increase with age among both men and women (Hipple, 2010). Among 

Americans in the labor force in 2014, for example, just 7.2 percent of working individuals aged 

16 to 49 were self-employed, compared to 12.8 percent for those aged 50 to 54, 21.1 percent of 

those aged 65 to 69, and 30.2 percent of those aged 75 to 79 (Pitt-Catsouphes et al., 2017). Of 
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course, these statistics only include those who are still working, a group whose numbers decline 

rapidly after traditional retirement age (U.S. Bureau of Labor Statistics, U.S. Department of 

Labor, 2015). Among the entire older adult population both in and out of the labor force, the self-

employment rate has also increased: A 4.2 percent self-employment rate among all Americans 

aged 62 and older in 1988 rose to 5.4 percent by 2015 (Wilmoth, 2016). Further, the U.S. Small 

Business Administration’s Office of Advocacy (2014) reported that just more than half (50.9%) 

of American business owners were age 50 or older. Similar rates exist in Europe. Using data 

from 11 countries in the Survey of Health, Ageing, and Retirement in Europe, for example, 

scholars have shown that the rates of self-employment increase with age among those who 

remain in the workforce (Hochguertel, 2010). Further, more than two in five of those who are 

self-employed in several European countries, including Germany, Sweden, and the United 

Kingdom, are aged 50 and older (Hatfield, 2015). 

Important descriptive statistics regarding self-employment in later life have been published. 

Annual reports by the Kauffman Foundation have shown that self-employment is more common 

among older adults than younger adults (Ewing Marion Kauffman Foundation, 2017) and 

seminal studies by scholars with the RAND Corporation have shown that older self-employed 

adults are more likely to be male, married, and have higher levels of income, assets, and 

educational attainment, yet also less likely to have workplace pensions and health insurance 

(Zissimopoulos & Karoly, 2007b, 2009). The authors also found that those who become self-

employed after the age of 50 are more likely to be female than those who became self-employed 

before the age of 50 and, among retirees, those who are male and married are more likely to 

transition to self-employment than wage-and-salary work. Certain industries have been found to 
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attract older business owners, such as running bed and breakfasts, where the vast majority are 

age 50 or older (Crawford & Naar, 2016). 

2.3 Outcomes of Work and Self-Employment in Later Life 
While self-employment is not specifically considered in much of the published scholarship on 

the health outcomes of work in later life, research does suggest that paid work is positively 

related to well-being. A two wave analysis of older adults using the Health and Retirement Study 

(HRS) found that employment was associated with lower odds of reporting poor or fair health 

(Calvo, 2006). Using seven waves of the HRS, scholars found that fully retiring—completely 

leaving the paid workforce—was negatively associated with several physical and mental health 

indicators (Dave, Rashad, & Spasojevic, 2006). A more recent review of previous research found 

that work, in general, leads to more positive physical and mental health outcomes in later life 

(Staudinger, Finkelstein, Calvo, & Sivaramakrishnan, 2016). Among the self-employed, an older 

study of 564 Israeli business owners aged 25 to 65 revealed that the stress of managing one’s 

own business was negatively related to health and well-being (Lewin-Epstein & Yuchtman-Yaar, 

1991). 

However, the context and meaning of work in later life may mediate this positive relationship. In 

a study of Americans aged 59 to 69, Calvo (2006) found that while having jobs with higher 

physical demands and stress or lower job satisfaction did not change the positive relationship 

between work and self-rated health, these factors were associated with worsened mood. A study 

of individuals aged 50 to 83 found that while being involved in paid work was not associated 

with greater or poorer psychological well-being than not working, workers with higher levels of 

engagement (e.g., feeling “bursting with energy” at work and “enthusiastic” about one’s job) 

reported better psychological well-being than nonworkers; conversely, workers with lower levels 
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of engagement reported worse psychological well-being than nonworkers (Matz-Costa, Besen, 

James, & Pitt-Catsouphes, 2014). The authors argued that these results support the role quality 

perspective, in which psychological well-being varies according to workplace engagement, but 

do not support the role occupancy perspective, in which simply working would be associated 

with higher psychological well-being. As such, there is reason to believe that self-employment in 

later life can produce positive well-being, yet the experience of the work and the quality of the 

engagement may mediate this relationship.  

Overall, self-employed older adults have been shown to be successful in their work. With the 

five-year survival rate of new businesses remaining consistently around 50 percent (U.S. Small 

Business Administration Office of Advocacy, 2014), some studies have shown that older 

entrepreneurs may be more successful than younger ones when considering business survival 

rates (Headd, 2003; Robb et al., 2010). However, while research has shown that older self-

employed adults tend to work longer and are wealthier than those working for someone else, on 

average, they are also less likely to receive key benefits connected to many workplaces, such as 

pensions and health insurance (Zissimopoulos & Karoly, 2007b). Given the difficulties of 

finding new work past the age of 50 for those who lost their jobs, self-employment has been 

documented to be a destination—whether desired or not—for older unemployed adults (Cahill & 

Quinn, 2014). Finally, while adjusting for self-selection bias in this line of research using 

Heckman’s sample selection framework (1979), it was found that self-employed men would 

have generally received higher incomes had they remained working for someone else (Hamilton, 

2000). This study found that respondent labor market experience, a variable that considered age 

and years of education, was higher among the self-employed than those in standard wage-and-

salary positions, yet that this experience had a greater effect on wages for those in wage-and-
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salary positions than those in self-employment. The author pointed to the nonpecuniary 

motivations for pursuing self-employment, such as being one’s own boss, as an explanation for 

this finding.  

Although a major form of work in later life, scholarship that looks at relationships between self-

employment and key financial, physical, and mental health outcomes, while controlling for or 

directly modeling key sociodemographic variables, is limited. Further, given practical and ethical 

constraints, controlled trials to compare the effects of later-life self-employment and other types 

of work have not been conducted, leaving the question, “Compared to what?” when assessing the 

relationships between self-employment and its outcomes. 

2.4 Programs and Policies to Support Self-Employment in 

Later Life 
A few studies have considered how programs and policies may encourage or support self-

employment in later life. The national nonprofit organization, Encore.org (formerly known as 

Civic Ventures), created The Purpose Prize in 2005 to support and highlight the work of social 

entrepreneurs aged 60 and older (see https://www.encore.org/prize for more information); this 

program was acquired by AARP in 2016, after which the age of eligibility for awards dropped to 

50 (Encore.org & AARP, 2016). Investigating the outcomes of this program, researchers found 

that involvement in The Purpose Prize as winners or fellows may have positively influenced 

organizational outcomes, such as media coverage and revenue (Pitt-Catsouphes, Berzin, 

McNamara, Halvorsen, & Emerman, 2016). While this type of prize program is laudable, it 

would be difficult to sustain or replicate on a large scale, as $100,000 prizes were awarded every 

year to up to five older adult social entrepreneurs, with smaller prizes, ranging from $10,000 to 

$50,000, awarded as well (Encore.org, 2016).  

https://www.encore.org/prize


15 

 

In 2012, AARP and the U.S. Small Business Administration (SBA) began a partnership to 

provide in-person and online training and support for Americans aged 50 and older interested in 

starting new businesses (U.S. Small Business Administration, 2012). By 2015, the program 

stated that it had “educated more than 300,000 existing and budding encore entrepreneurs,” 

although it is unclear how many of these individuals would have received services from existing 

SBA and AARP programs had this newly-branded programming not existed (U.S. Small 

Business Administration, 2015). As of this writing and after reviewing the SBA and AARP 

websites, it appears the last in-person events under this program were held the summer of 2016 

and that no formal or informal evaluations of this program has been published. 

In the United Kingdom, a case study described the impact of the Prince’s Initiative for Mature 

Enterprise (PRIME), a program that encouraged self-employment among those aged 50 and 

older while targeting those who were unemployed, receiving disability benefits, former 

caregivers, and retirees. PRIME provided entrepreneurship assistance—sometimes financial—

and advice to participants. Through self-evaluation reports, interviews with staff, and results 

from a survey of PRIME service recipients, the authors found that the program may have played 

a positive social and economic role for potential older entrepreneurs (Kautonen et al., 2008). 

However, this program ended in 2014 (Business in the Community, 2014), although a related 

program, which provides mentoring to help older adults transition into new paid and unpaid 

work, including self-employment, exists in Wales (see http://www.primecymru.co.uk for more 

information). 

Pivoting from programs to policies, local and national public policies may encourage or 

discourage self-employment in later life, as well as lead to better or worse outcomes. The Ewing 

Marion Kauffman Foundation (2016), for example, highlighted how public policies that provide 

http://www.primecymru.co.uk/
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social insurance are linked to higher self-employment rates, such as increasing access to health 

insurance and food stamp (SNAP) benefits. To increase entrepreneurial opportunities across the 

lifespan, the foundation recommended policies that strengthen social insurance programs, 

facilitate asset accumulation, and decrease the bias toward incumbent entrepreneurs (such as 

occupational licensing). Indeed, Fairlie, Kapur, and Gates (2011), using data from the Current 

Population Survey, found that self-employment rates increased from just before turning 65 years 

old to just after—when individuals become eligible for Medicare health insurance—while 

increases were not found for turning other ages between 55 to 75. This provides evidence for 

what the authors called “entrepreneurship lock,” noting that health insurance in the United States 

is so often tied to employers until one becomes eligible for Medicare. Due to the implementation 

of the Affordable Care Act, it is expected that the transition to self-employment will ease for 

those younger than 65 (Blumberg, Corlette, & Lucia, 2014), although initial findings—which do 

not focus solely on or which sometimes excludes those aged 50 to 64—find mixed results 

(Bailey, 2017; Heim & Yang, 2017). More broadly, scholars have questioned the “glorification 

of entrepreneurship” in our society and, in particular, by our policymakers, citing the lack of 

research on the effects of entrepreneurship on families and the billions of dollars spent on 

programs aimed to increase entrepreneurial activity (Jennings, Breitkreuz, & James, 2013). 

2.5 Relevant Theories 
While the literature on self-employment in later life is largely atheoretical, scholars interested in 

later-life self-employment have drawn upon theories and concepts from several disciplines to 

explain the antecedents of and, to lesser degrees, the experiences during and outcomes from self-

employment in later life. 
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It has been suggested that self-employed older adults may be more likely to be successful in their 

work than younger adults due to the accumulation of skills, experiences, wealth, and other assets 

that accumulate over the lifespan. Often, these assets have been described as human capital, 

which includes previous work and life experience, education, and health; social capital, which 

includes personal and professional networks and being married; and financial capital, which 

includes income, wealth, and access to loans (e.g., Bleakley, 2010; McDonald & Mair, 2010; 

Meyskens, Allen, & Brush, 2011; Weber & Schaper, 2004). All else being equal, this line of 

thinking posits that someone with more project management experience or a higher level of 

education (i.e., human capital), for example, might be more successful at managing the daily 

complexities of starting a new venture than someone with less experience or education. Further, 

someone with more liquid assets, such as savings and investments, or a higher credit score that 

might facilitate better terms on a loan (i.e., financial capital), may be better able to handle the 

financial ups and downs of a new startup than someone with fewer liquid assets or a lower credit 

score. Finally, someone with a large personal and professional network or with a reputation for 

being smart in business (i.e., social capital) may be better able to leverage business partners and 

develop a robust client base than someone with a smaller network or unknown reputation. While 

not directly related, these assets are logically linked to age, given that older adults have had more 

time to develop them.  

Of course, human, social, and financial capital may not increase indefinitely and, in fact, may 

decrease after retirement, making it difficult for those who chose to pursue self-employment at a 

point in time after official retirement. For example, a curvilinear relationship between social 

networks and time has been documented, with retirement marking the time when social networks 

stop growing and begin to decline (McDonald & Mair, 2010). Another exception is health, an 
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aspect of human capital, which tends to decline with age (Bleakley, 2010; Federal Interagency 

Forum on Aging Related Statistics, 2016). 

Drawing from the psychological and business literature, the concept of risk aversion or risk 

tolerance has been discussed in relation to self-employment. Within the literature, there is 

disagreement about the relationship between self-employment and risk aversion, with few studies 

considering age in this relationship. Although mixed, Xu & Ruef (2004) note that studies have 

found a link between lower risk aversion and self-employment. However, many of these studies 

are limited due to their small, non-representative samples. Using data from a representative 

group of early-stage American entrepreneurs (n=803 nascent entrepreneurs and n=431 general 

population) from the Panel Study of Entrepreneurial Dynamics, they found that early-stage small 

business owners (called “nascent entrepreneurs” in the study) were more risk averse (i.e., less 

risk tolerant) than the general population in the pursuit of financial gain. This study also found 

that older nascent entrepreneurs were more risk averse than younger entrepreneurs. Using the 

longitudinal Health and Retirement Study of older Americans, Sahm (2008) found that while 

there is a great deal of variation in risk aversion between older adults, there is little variation 

within them over time. 

Several different bodies of work inform the relationship between self-employment and personal 

outcomes among older Americans. For example, scholars have begun to think about work 

characteristics and their impact on older adults. Appannah and Biggs (2015), in their review of 

the literature and proposed framework, offered several factors that influence the aging-

friendliness of an organization’s culture. These include flexibility in the workplace (e.g., part-

time work, working from home, and phased retirement) and job design (e.g., lower stress, 

interesting and meaningful work, and autonomy), as well as inclusion in training and 
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development activities and supportive leadership. Self-employed older adults may, due to the 

very nature of their work, have more control over these factors and therefore may have more 

positive outcomes. Much of the focus on later-life self-employment has been on the motivations 

for pursuing this type of work, instead of the nature of the work and workplace itself. However, 

some studies have examined key aspects of the workplace, such as the number of employees, 

hours worked per week, tenure on the job, receiving pension coverage, industry, and occupation 

(Zissimopoulos & Karoly, 2007b, 2007a, 2009). As such, Halvorsen and Morrow-Howell (2017) 

called for more research to examine the work experiences of self-employed older adults. 

The relationship between self-employment and personal outcomes may also be explained by 

work motivation and job autonomy. Although much of the scholarship on work motivation has 

focused on younger adults or not considered age at all, some studies have examined the 

relationship between work motivation and age (Bertolino, Zacher, & Kooij, 2015; Kanfer & 

Ackerman, 2004; Kooij, Down, & South, 2007). For example, a review of 33 studies on the 

motivation to continue working among older workers found a negative association between work 

motivation and chronological age, biological age (e.g., physical health), and the sense of being 

“old” (Kooij et al., 2007). Considering only self-employment, a cross-sectional survey of nearly 

14,000 adults between the ages of 18 to 64 from 21 developed countries showed that the 

motivation to be self-employed followed an inverted U shape, with the peak age of motivation 

around age 22 with a steady decline after that (Minola, Criaco, & Obschonka, 2016). However, 

actual rates of self-employment among working Europeans (Hochguertel, 2010) and Americans 

(Hipple, 2010; Pitt-Catsouphes et al., 2017) increase with age, suggesting that there are more 

considerations than motivation to pursuing self-employment among older adults.  
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Interestingly, a Swedish study of “hybrid entrepreneurs”—those who simultaneously engage in 

wage-and-salary work and entrepreneurial ventures—revealed findings that were counter to the 

drop in entrepreneurial motivation with age that was documented by Minola, Criaco, & 

Obschonka (2016). The authors identified a U shape when assessing age and the intention to 

move from part-time to full-time entrepreneurship within one year, suggesting that the 

relationship between age and entrepreneurial motivation may be different among those 

considering moving into entrepreneurship for the first time and those who are already part-time 

entrepreneurs who are considering moving in these roles full time (Thorgren, Sirén, Nordström, 

& Wincent, 2016). There may be additional factors that influence the relationship between age 

and the motivation to move into self-employment, too. For example, cultural differences between 

countries, such as the degree to which countries encourage the collective distribution of 

resources and avoid uncertainty, has been found to moderate the relationship between self-

employment motivation and age (Minola et al., 2016). 

Autonomy, or having a high level of control over one’s work, has been shown to be an important 

aspect of work in later life and linked to work motivation, positive job attitudes, and well-being 

(Ng & Feldman, 2015). However, the authors found conflicting results on how chronological age 

influences the relationship between job autonomy and work outcomes in a meta-analysis of more 

than 400 empirical articles. Job autonomy was found to have a stronger relationship in older 

workers than younger workers when considering job self-efficacy, self-rated job performance, 

and emotional exhaustion; however, job autonomy was also found to have a weaker relationship 

in older workers than younger workers when considering job satisfaction, work engagement, job 

stress, and poor mental health. Further, the relationship between job autonomy and self-

employment was not considered in this study. 
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2.6 Conceptual Framework 
Guided by the theories and concepts previously described and adapted from the conceptual 

framework and research agenda proposed by Halvorsen and Morrow-Howell (2017), Figure 1 

lists several characteristics that have been identified as important to self-employment in later life. 

These include sociodemographic factors; human, social, and financial capital; risk tolerance; and 

labor force status. It also lists variables that are a part of and important to the work experience 

itself, including being self-employed or in wage-and-salary employment, occupation and 

industry, time on the job, having employees, and access to health and insurance and retirement 

plans through the job. These attributes, which have been suggested to relate to the aging-

friendliness of the workplace, might influence the relationship between antecedents and 

outcomes (Appannah & Biggs, 2015; Halvorsen & Morrow-Howell, 2017). Indeed, a major 

assumption of this dissertation study is that the work environment, in addition to personal 

characteristics, has an impact on outcomes; this is an extension of previous arguments on the 

productive engagement of older adults (N. Morrow-Howell & Greenfield, 2016). Finally, this 

model illustrates how work in later life might result in a set of financial well-being and personal 

health outcomes. 

Figure 1. Conceptual Model of Predictors and Outcomes of Work in Later Life 
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2.7 Research Questions and Hypotheses 
Using six biennial waves of the nationally-representative Health and Retirement Study (HRS) of 

Americans over the age of 50, this dissertation study has two major aims: to document the 

characteristics of self-employed older adults, and to examine how self-employment in later life 

impacts older adults’ financial well-being and personal health in comparison to wage-and-salary 

work. To complete the second aim, selection into self-employment is controlled for using inverse 

probability of treatment weighting. The two primary research questions for this study are listed 

next, along with their associated hypotheses. Due to the limited published scholarship related to 

Question 2, the hypothesis proposes a relationship between self-employment and only one 

outcome variable. 

Q1. What are the characteristics of self-employed older adults, in comparison to those in 

wage-and-salary work, among older Americans working at baseline? Characteristics 

include sociodemographic variables (e.g., age, gender, race, and ethnicity); levels of 

human (e.g., education and health), social (e.g., marital status and number of people in 

the household), and financial (e.g., total household income and wealth) capital; and risk 

tolerance. 

H1. Within this sample of working Americans aged 50 and older, human, social, and 

financial capital, as well as age and identifying as male and white, are positively 

associated with being self-employed. Given the mixed findings on risk tolerance 

among self-employed older adults, I provide no hypothesis for this characteristic. 

Q2. How does self-employment in later life influence financial well-being and personal 

health, in comparison to wage-and-salary work, among those working at baseline? 
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Financial well-being is operationalized as individual earnings through one’s work and 

total household wealth, and personal health is operationalized as self-reported health and 

total number of depressive symptoms. 

H2. Similar to Hamilton’s (2000) findings among working adults throughout the 

lifespan, I hypothesize that within this sample of working Americans aged 50 and 

older, self-employment leads to reduced income, on average, compared to wage-

and-salary employment. I do not propose hypotheses for the remaining three 

outcomes, given this study’s exploratory nature. 

To conclude, while self-employment is a prominent form of work in an increasingly aging 

society, the scholarship on the characteristics of older adults who pursue it and the outcomes 

from this work, while considering the nature of the work, remain to be developed. This 

dissertation, through an analysis using data from six waves of the nationally-representative 

Health and Retirement Study of Americans over the age of 50, aims to fill this gap. 
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Chapter 3: Methods 
This chapter outlines my dissertation’s methods, including the data and sampling strategy used, 

measurement of all variables, and analytical strategy for both research questions. 

3.1 Data and Sampling Strategy 

3.1.1 Data Source 

This study will use data from six waves of the biennial Health and Retirement Study (HRS), 

from 2004 to 2014. (At the time of final analysis for this dissertation, 2016 data was not yet 

released by the RAND Corporation, although I plan to include the 2016 wave before pursuing 

publication.) Commencing in 1992 and funded by the National Institute on Aging (grant number 

NIA U01AG009740), researchers from the University of Michigan collect data from a 

nationally-representative sample of approximately 20,000 community-dwelling Americans, over 

the age of 50, and their family members every two years. Questions aim to assess the financial, 

physical, and mental well-being of older Americans, their work histories, and family 

characteristics, among other topics. 

Using the HRS dataset has several benefits. First, the HRS is one of the largest longitudinal 

studies in the U.S. on older adults, providing a descriptive, nationally-representative sample. 

Second, because it surveys Americans older than 50, it tracks individuals before and into 

retirement. Third, the wide array of instruments that make up the HRS cover a multitude of 

topics, including concepts important to this study. And finally, the HRS uses a steady-state 

sampling design to introduce a younger cohort every six years, enabling me to include 

Americans who had just passed the age of 50 in my baseline year (Sonnega et al., 2014; Survey 

Research Center, 2008). 
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The data used in this dissertation were substantially derived from Version P of the RAND HRS 

data file, a cleaned and pre-organized dataset that includes newly-created and imputed variables 

of total wealth, total household income, and individual weekly wages, among others. The 

database, developed at the RAND Center for the Study of Aging and funded by the National 

Institute on Aging and the Social Security Administration, is publicly and freely available after 

registering to use the HRS. Four variables regarding formal and informal volunteering that were 

not in the RAND HRS data file were pulled from the RAND Enhanced HRS Fat Files, which 

have the benefit of mirroring the format of the RAND HRS data file by collapsing the raw 

variables from each wave of the HRS into a single respondent-level dataset. 

3.1.2 Sampling Strategy 

Using Version P, which was released in September 2016, I reduced the larger RAND HRS data 

file to only include observations from the six biennial waves within the timeframe of interest, 

2004 through 2014 (waves 7 through 12). These years were chosen to keep the sample as current 

as possible while maximizing available information from the younger cohort of older adults 

added in 2004. Then, the four variables from each of the six RAND Enhanced HRS Fat Files 

were merged with this larger dataset. As shown in Figure 2, a total of 37,495 unique individuals 

are in this larger sample. 

To answer my research questions, this sample was further reduced by including only those who 

reported working for pay at baseline, as the inverse probability of treatment weights used in this 

dissertation, which require a binary treatment variable (i.e., self-employment and wage-and-

salary employment), were created from the baseline data. This group of individuals was then 

followed for five additional waves, through 2014. As a result, the cohort that entered the study in 
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2010 was not included in this analysis. After these exclusion criteria were met, the sample 

included 7,207 unique individuals. 

Figure 2. Sample Flow Chart 

 

Unweighted descriptive statistics for the work status of the sample of older adults who were 

working in 2004 (baseline) show that the average number of waves worked was 3.57 (SD=1.84; 

range: 1 to 6). If the respondents worked the entire time between waves, this means that the 

average number of years worked among respondents working at baseline over the 10-year period 

was about seven years. On average, individuals in this sample were self-employed for 0.87 

waves (SD=1.68; range: 0 to 6) and had wage-and-salary work for 2.71 waves (SD=2.10; range: 

0 to 6). In other words, respondents were more likely to work in wage-and-salary employment. 

Accounting for all six waves included in this study and not just working years, respondents were 

self-employed 14% of the time (SD=0.28) and in wage-and-salary work 45% of the time 

(SD=0.35). The remaining time includes those who were not working due to retirement, 

unemployment, disability, or other reasons; as well as those who did not respond to follow-up 

waves and those who died between waves or moved into an institutional setting. 

Beginning HRS sample (N=37,495)

Includes all respondents from 2004 to 2014.

Working sample (N=7,207)

Dropped 30,288 respondents who did not work or were 
younger than 50 years old in 2004, as well as the 2010 cohort.

Final sample (N=6,473)

Dropped 734 respondents who switched forms of work (e.g., 
self-employment to wage-and-salary work) during the study.
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To incorporate inverse probability of treatment weighting within the proposed analyses for 

Question 2, a binary “treatment” condition for self-employment was created. Under ideal 

conditions, a sample that includes only long-term self-employed and wage-and-salary workers 

would be created to better ascertain the direct effects of these types of work on older adults. 

However, given real-world issues that include retiring from work, changing jobs, study non-

response, death, and other factors, developing this type of sample becomes problematic. In the 

sample of 7,207 individuals who reported working at baseline, for example, only 5% (SD=0.22) 

and 16% (SD=0.36) of respondents remained self-employed or in wage-and-salary work, 

respectively, during the 10-year period captured by the six waves. This seems natural, as this is 

the time of life when many people may leave the workforce. This type of sampling strategy 

would dramatically reduce the sample size and call into question the generalizability of my 

findings. I then conducted a series of tests to determine a rule for placement into the self-

employment “treatment” condition and wage-and-salary employment “control” condition, with 

the goal to balance this study’s needs for maximizing information (i.e., the number of 

observations in the analysis) and precision (i.e., at what point does the inclusion of different 

categories of work or no work add too much noise to the analysis?). Six possible strategies are 

described in detail in Appendix A. 

Given these options, I chose to utilize data from respondents who reported being either self-

employed or in wage-and-salary employment during all waves with reported work (named 

Strategy 1B in Appendix A). In other words, this strategy allows respondents to leave the 

workforce but does not allow them to switch from self-employment to wage-and-salary work, or 

vice versa. As such, it does not include respondents who worked in both self-employment and 

wage-and-salary work during the study period, as that would prevent a clear link between the 
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outcomes assessed in Question 2 and self-employment. This is a conservative decision in that it 

only considers respondents whose work during the study’s timeframe was in a single category, 

yet it also includes those who were not working in, did not respond to, or left the study due to 

death or institutionalization by subsequent surveys. This also allows for the estimation of 

treatment effects after one leaves the workforce. This method will include observations from 

90% (N=6,473) of respondents who reported working at baseline, a reasonable number that 

maximizes the available information. This includes 5,090 respondents working in wage-and-

salary work (78.6%) and 1,383 who in self-employment (21.4%) at baseline.  

Because of this rule, approximately 10% (N=734) of respondents were dropped from analysis 

because they reported working as self-employed and in wage-and-salary positions in different 

waves. In other words, these respondents switched from self-employment to wage-and-salary 

work, or vice versa, within this 10-year timespan. Figure 2 illustrates the creation of the final 

sample, which includes respondents aged 50 and older who were working at baseline (2004) and 

who did not switch forms of work (e.g., self-employment to wage-and-salary) between waves. 

As shown in Table 1, individuals excluded from the sample were different on a range of factors 

from those who remained in the study. On average, they were more likely to have worked for 

more waves than those who remained in the sample (4.42 vs. 3.48) and were about one year 

younger (59.42 vs. 60.51 years) and less likely to be female (42.9% vs. 51.7%). While they 

reported a higher number of years of education, this difference is less than six months, on 

average. They were not statistically different from the final sample in terms of race or ethnicity. 

Understanding the characteristics of respondents who switch from one type of work to another is 

a separate line of questioning that is worthy of another study. However, for this study, I 

determined that the benefits of having “pure” self-employed and wage-and-salary groups 
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outweighed the costs of excluding the relatively few individuals who were employed in both 

forms of work during the study’s period. 

Table 1. Comparing Included and Excluded Samples 

      
 Included  Excluded   

 M(SD) or %  M(SD) or %  p 

      
Respondents 89.8% 

(N=6,473) 

 10.2% 

(N=734) 

  

Waves worked      

As self-employed 0.74 (1.68)  2.04 (1.23)  <0.001 

As wage-and-salary  2.74 (2.17)  2.37 (1.33)  <0.001 

Total 3.48 (1.86)  4.42 (1.41)  <0.001 

Demographics      

Age (Years) 60.51 (0.10)  59.42 (0.25)  <0.001 

Education (Years) 13.20 (0.04)  13.66 (0.11)  <0.001 

Gender     <0.001 

Female 51.7%  42.9%   

Male 48.3%  57.1%   

Race     0.092 

White 79.7%  83.1%   

Black 14.2%  11.6%   

Another race 6.1%  5.3%   

Ethnicity     0.965 

Not Hispanic 91.2%  91.1%   

Hispanic 8.8%  8.9%   

      
Note: Percentages may not add up to 100% due to rounding. 

3.1.3 Final Sample Characteristics 

Figure 3 shows the work and life status, by wave, of the final sample of 6,473 respondents. Each 

column adds up to 100%. By the 2014 wave, about three in 10 (30.2%) of the respondents who 

reported working at baseline remained in the workforce, with 447 maintaining their status as 

self-employed (32.3% retention) and 1,505 as wage-and-salary workers (29.6% retention). The 

number of respondents who retired grew steadily across the waves, resulting in 42.1% of the 

sample being retired by 2014. Reporting one’s status as unemployed, disabled, or otherwise not 

being in the labor force remained low throughout the four follow-up waves (min: 2.2% in 2014; 

max: 5.1% in 2010). Although not the subject of this study, it is possible that the slight uptick in 

these statuses by 2010 was a result of the recession that began around 2008. Indeed, research has 



30 

 

shown similar results among older Americans in the same period (Johnson, 2012). By 2014, 

about 1 in 8 (12.7%) of respondents had died, with a similar number (12.9%) not responding or 

otherwise requesting to be dropped from the survey.  

Figure 3. Work and Life Status by Wave 

 
Notes: N=6,473 for each wave. Only categories with values of more than 5 percent are labeled. For quick-reference, 

respondents who reported working (self-employment or wage-and-salary employment) are in shades of orange, 

those who reported not working (retirement or unemployment/disabled/otherwise not working) are in shades of 

purple, and nonresponse indicators (death or living-yet-nonresponse) are in shades of grey. 

Sample Descriptive Statistics by Wave 

Appendix B lists the sample descriptive statistics for each of the five waves. In all but the final 

few rows, the entries consider only those who remained in and responded to the study in that 

wave. By this study’s design, a full 100% of the sample was working in 2004; however, by 2014, 

about three in five (59.5%) of respondents had stopped working. Overall, slightly more than one 

in five of working respondents were self-employed at each wave. At baseline, the sample’s 

average age was 60.51 years (SD=7.67) and just over half (51.7%) of respondents identified as 

female at baseline. Overall, about four in five (79.7%) respondents identified as white or 

21.37%
14.40% 12.37% 10.18% 8.30% 6.91%

78.63%

57.70%

48.01%

36.75%
29.92%

23.25%

15.48%

23.20%

31.78%
37.96%

42.08%

5.14%
6.77%

9.55%
12.68%

7.26% 8.36% 9.38% 10.77% 12.87%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2004 2006 2008 2010 2012 2014

Self-employed Wage-and-salary
Retired Unemployed/Disabled/Not Working
Died Nonresponse



31 

 

Caucasian, with nearly one in seven identifying as black or African American (14.2%). Less than 

one in 10 respondents identified as Hispanic (8.8%) and just more than one in five (22.4%) were 

veterans. 

The labor force status variable in Appendix B shows that the number of full-time workers 

dropped from 65.0% in 2004 to 22.5% in 2014, with the number of part-time workers falling as 

well, from 13.8% in 2004 to 4.7% in 2014. There was a corresponding rise in the number of 

fully-retired respondents, from none in 2004 (by this study’s design) to 56.5% in 2014. Partially 

retired respondents decreased from 21.3% of the sample in 2004 to 13.3% in 2014. RAND 

researchers created this variable from a series of questions in the HRS survey, as evidence of 

working, being retired, or being disabled could be combined with other statuses and sometimes 

be conflicting. As such, RAND researches attempted to view information from several responses 

while giving precedence to working and retirement (Bugliari et al., 2016, pp. 1399–1400). 

Retention rates remained relatively high throughout the survey, with nearly three in four (74.5%) 

of the baseline respondents taking part in the final wave, ten years after the baseline wave, in 

2014. By this time, about one in six (16.3%) of the baseline respondents had died or otherwise 

been dropped from the sample by request or other reasons. 

3.1.4 Imputation of Missing Data 

To maximize available information while reducing the number of observations dropped from 

analysis and potentially biased results, I imputed missing data. The financial indicators in this 

study were already imputed in a three-step process by RAND researchers, which included 

imputing exact dollar amounts when a value range was revealed by respondents; imputing a 

range when ownership, the holding of assets or debt, or receiving income was revealed by 

respondents; and imputing ownership if nothing was revealed by respondents. The imputation 
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process was progressive, in that ownership was imputed where it was unknown, then ranges were 

imputed where only ownership was known or imputed, and finally exact amounts were imputed 

where ranges were known or imputed (see Bugliari et al., 2016, pp. 23–25, for more 

information). 

The HRS, overall, has a history of high response rates (Health and Retirement Study, 2017). As 

shown in Appendix B, there are generally very few missing responses for the variables used in 

this study at baseline. By the final wave, about 9.2 percent of individuals who were presumed to 

be alive by HRS staff did not respond, which is the reason why several of the maximum missing 

percentages list that number. The largest sources of missing data are related to three variables: 

risk tolerance, occupation, and industry. This is because these questions were only asked of a few 

segments of respondents. Questions relating to risk tolerance were only asked of the newest 

cohort in Wave 7 and those younger than age 65 in Wave 8 (Bugliari et al., 2016, p. 1350), with 

a few exceptions, covering about just more than half (55.9%) of this sample. Questions relating 

to occupation and industry were altered over the course of the HRS due to changes in 

classification codes from the U.S. Census Bureau, with classifications for some respondents 

pulled from previous waves that did not align with the new codes (Bugliari et al., 2016, pp. 

1482–1483, 1490–1491). As a result, the highest rates of missingness are at baseline for both 

occupation (41.7%) and industry (37.8%); however, these rates quickly drop to between 8.1 to 

15.7 percent missing by the third wave.  

Therefore, missing data was imputed for both non-respondents and responding individuals who 

did not answer select questions. Specifically, the mi impute chained command in Stata was used 

to create 20 datasets using multiple imputation by chained equations (“MICE”), which allows for 

separate models for each variable with missing values (Royston & White, 2011). Within the 
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MICE framework, I used predictive mean matching (“PMM”), a method that imputes missing 

data by using values from a linear prediction to sample from the observed data and closely 

matches the distribution of the observed data. This is especially helpful when the normality 

assumption is not met or when the relationship between variables is not linear, as multivariate 

imputation techniques are more sensitive to these issues (Kleinke, 2017; White, Royston, & 

Wood, 2011). As a result, all imputed values are plausible values and have a similar distribution 

to the observed data. Factors shown to be related to the variables with missing data were 

included in the imputation models; for example, gender, which has been shown to be related to 

risk tolerance among older adults, was included (Sahm, 2008).  

Conditional imputation was incorporated for variables pertaining to characteristics of the 

workplace to prevent those who had left the labor force in later waves from receiving unrealistic 

values. For example, only those who were still working but had missing data related to 

occupation received imputed values for blue- or white-collar work; all others were automatically 

placed in the “not working” category for that variable. For most workplace-related variables, less 

than five percent of data were missing among those who were still working. As described 

previously, however, there were higher rates of missing data among those still working in the 

occupation and industry variables due to changes in how and to whom the questions were asked. 

The lowest and highest rates of missing data among those still working were 0.10 percent and 

20.89 percent for occupation, respectively, and 0.38 percent and 35.69 percent for industry, 

respectively. As diagnostics confirmed that some of the best predictors of occupation and 

industry were previous and future waves, these were also used in the imputation equations. 

One consideration while employing PMM is the size of the donor pool of observed values that 

are closest to the predicted value. While the default in Stata is to impute values using the nearest 
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observed observation to the predicted value (k=1), this has been shown to perform poorly in 

several scenarios. Instead, as recommended by Morris, White, and Royston (2014), I directed 

Stata to randomly choose from one of the nearest 10 neighbors (k=10). Further, while PMM 

values are predicted using linear regression, this method can also be used to impute unordered 

categorical covariates and has been shown to be more robust to violations of the normality 

assumption, unlike multivariate imputation (Morris et al., 2014). Pragmatically, in my own 

analysis, the PMM procedure runs with far fewer errors than other forms of MICE. 

While some scholars have recommended imputing a relatively low number of datasets—between 

three and 10, for example—others acknowledge that while this is likely to be more than 

sufficient, 20 datasets is preferable to reduce the amount of power falloff as a result of missing 

data (Graham, Olchowski, & Gilreath, 2007). Given increasing levels of computing power and 

speed, this should not be a problem. Additionally, once the missing data was imputed into 20 

datasets, I reshaped it into long format in Stata before deleting observations beginning at the 

wave that respondents died or were dropped from the study. This way, data from these 

respondents were not used in final analysis. After deleting observations from the deceased and 

those dropped from the study, I reviewed the data from three randomly-chosen datasets using 

numbers from a random number generator to confirm that the imputed data contained plausible 

values with similar distributions to the complete observations; as such, there were no concerns 

for disproportionality among imputed and missing values. Finally, in outcome analysis, separate 

models for each of the 20 datasets were run, after which Rubin’s combination rules were applied 

to create a final set of model estimates (Rubin, 1987).  
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3.2 Measurement 
Both time-variant and -invariant factors are included in this study. Brief descriptions of all 

variables used in this study are described below; however, see Appendix C for more detailed 

information. 

3.2.1 Outcome Variables 

For Question 1, the outcome variable has three categories that include being self-employed, 

working for someone else, or not working for pay. This categorical variable is derived from two 

sources. First, respondents were split into two groups using the labor force status variable created 

by RAND researchers for the RAND HRS data file: those who were working, and those who 

were not. Second, among those who are working, the question, “Do you work for someone else, 

are you self-employed, or what?” in Section J of the HRS was used to determine self-

employment or wage-and-salary work (Bugliari et al., 2016, p. 1395; Health and Retirement 

Study, 2016). This phrasing is similar to that used by the Bureau of Labor Statistics and the U.S. 

Census Bureau’s Current Population Survey. HRS researchers recoded respondents who said 

they ran their own businesses as self-employed. 

Question 2 includes four outcome variables that represent two constructs: financial well-being 

and personal health. Financial well-being is measured using individual earnings from work and 

total household wealth, both measured in U.S. dollars. The individual earnings variable includes 

income only from one’s job, including bonuses, overtime pay, commissions, and tips, as well as 

second job or reserve earnings and professional practice and trade income. It does not include 

income from other sources, such as savings, pensions, and Social Security retirement benefits. 

Total household wealth includes the net value of respondents’ and, when applicable, their 

spouses’ wealth, calculated as the sum of all wealth measures minus all debt. This includes 
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retirement savings (i.e. IRA and Keogh accounts), stocks and bonds, checking and savings 

accounts, and real estate, among others, as well as the value of mortgages and other debt.  

Personal health is measured using a self-rated health question and number of depressive 

symptoms. First, global self-rated health was assessed using answers to the question, “Would 

you say your health is excellent, very good, good, fair, or poor?” This scale was then reverse 

coded so that an increase in value relates to an increase in self-reported health. Additionally, the 

fair and poor categories were combined due to the low number of responses in the poor category 

(3.93% of the observed values), resulting in a four-level variable. Self-rated health, a subjective 

measure, has been shown to be an excellent and consistent predictor of more objective measures, 

such as physician visits and mortality (Miilunpalo, Vuori, Oja, Pasanen, & Urponen, 1997; 

Schnittker & Bacak, 2014). Second, total number of depressive symptoms was measured using 

the modified, eight-item Center for Epidemiologic Studies Depression Scale (“CES-D,” Radloff, 

1977), which includes yes/no answers to questions such as, “Much of the time during the past 

week, you felt depressed” and “…you enjoyed life.”  

3.2.2 Explanatory—or “Treatment”— Variable 

Question 2 includes a binary self-employment indicator as the explanatory variable. When using 

propensity score analysis methods, this is often referred to as the “treatment” variable or 

condition, as propensity score analysis controls for selection into the treatment, enabling scholars 

to estimate treatment effects (Guo & Fraser, 2015). This type of variable is used only to answer 

Question 2, making this a quasi-experimental study. See the Analytical Strategy section of this 

chapter to learn more about how propensity score analysis was employed in this dissertation. 
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3.2.3 Predictor Variables 

Individual characteristics are included in all final models for both Questions 1 and 2. These 

include sociodemographic characteristics; measures of human, social, and financial capital; and 

risk tolerance.  

Sociodemographic variables include age in years, with binary indicators of gender, Hispanic 

ethnicity, and veteran status, and a categorical indicator of race (white, black/African American, 

and all other races). Additionally, an ordinal measure of risk tolerance is included. For this 

dissertation, risk tolerance is operationalized through a six-item categorical variable, ranging 

from least to most risk tolerant, that was asked mostly of respondents less than 65 years old. This 

question was developed by asking respondents to choose between two new hypothetical jobs, 

where one job guaranteed the current family income and the other provided a chance to 

increase—or lose—family income in amounts ranging from 75 percent (i.e., most risk tolerant) 

to 10 percent, or to take the job with guaranteed income (i.e., least risk tolerant). This line of 

questioning ended in 2006, making analysis from 2008 to 2014 difficult when considering risk 

tolerance. However, given the finding from previous research using the HRS that there is little 

change over time in risk tolerance among older adults (Sahm, 2008), baseline risk tolerance is 

considered. Finally, labor force status is included for Question 2; however, it is not included as a 

predictor in Question 1, as the outcome variable—self-employment, wage-and-salary work, or 

not in the workforce—is itself a form of labor force status and the models do not converge with 

its inclusion. 

Human, social, and financial capital are captured through several variables. Human capital is 

assessed by years of education, measured continuously; self-rated health, a four-category 

variable that ranges from “poor/fair” to “excellent,” as described in section 3.2.1; and a binary 
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measure that asks if health problems have limited the kind or amount of paid work completed by 

respondents. Further, three binary measures of health insurance are included in Question 1: 

respondents who received their health insurance from the federal government, including 

Medicare, Medicaid, TRICARE, and other federal sources; from their employers; and from their 

spouses’ employers. Given the larger number of covariates considered in Question 2, I include a 

single binary variable regarding health insurance, simply reporting if respondents have health 

insurance or not. 

Five measures of social capital are considered, including a binary marital status indicator, if a 

spouse is in paid work, the number of people living in the respondents’ households, and separate 

variables that measure the amount of formal and informal volunteering. Regarding volunteering 

as a form of social capital, Gonzales and Nowell (2016) argued that informal (defined as helping 

friends, neighbors, or relatives who did not live with respondents and did not pay for the help) 

and formal (defined as doing volunteer work for religious, educational, health-related or other 

charitable organizations) volunteering is “fundamentally social” (p. 3), increases the quantity and 

quality of an older adult’s social connections, and—importantly for this study—is associated 

with movement into employment during the retirement years. It should be noted that the concept 

of social capital used in this dissertation is consistent with the individual-focused usage in the 

literature on productive engagement in later life (e.g., Gonzales & Nowell, 2016; McNamara & 

Gonzales, 2011; N. Morrow-Howell & Greenfield, 2016); however, there is a rich body of 

sociological scholarship on social capital that considers factors related to social norms, 

reciprocity, trust, and the structure of relationships between and among actors (e.g., Coleman, 

1988) that may also play an important role in relation to self-employment in later life. 
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Financial capital is assessed through five variables. The first is annual individual earnings from 

work. Additional measures include total household wealth, described previously, as well as total 

household income, which measures income from respondents’ and their spouses, but not other 

members of the household. Individual earnings are subtracted from total household income so as 

not to count it twice. Finally, two binary measures indicate if respondents were receiving Social 

Security retirement benefits and if they were receiving pension income at the time of the survey. 

Question 2 also considers several variables that examine the nature of the work experience, 

important considerations when assessing the relationship between type of work (self-

employment or wage-and-salary employment) and financial well-being and personal health 

outcomes from this work. Years of tenure in the current job is measured continuously, with those 

not working in subsequent waves coded as 0. Ordinal variables include level of stress on the job 

as well as job requirements for physical effort; lifting heavy loads; stooping, kneeling, or 

crouching; and having good eyesight, with increasing numbers (from 1 to 4) showing higher 

levels of that attribute and with those not working in subsequent waves coded as 0. Labor force 

status is included as a categorical variable (full-time work, part-time work, partly retired, fully 

retired, and otherwise not in the workforce). Five binary variables indicate the average hours 

worked per week over the course of the year (<35 and 35+), if respondents received a pension 

plan as a benefit from their current job; whether they worked alone or with others in their work 

location; whether respondents were in blue- or white-collar occupations, based off the 2000 

Census codes and following the example set by Jacobs (2016); and whether respondents were in 

goods- or service-producing industries, based off the 2002 Census codes and following the 

example set by Kail and Warner (2013). Technically, each of these five binary variables have a 

third category for those who are not working in subsequent waves; however, that category was 
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only included in one of the variables in outcome analysis while the remaining were dropped, due 

to the perfect prediction that is caused by their redundancy. 

Additionally, all final models include controls for proxy interview status, if the respondent died 

at some point during the study, and if the respondent did not respond to at least one wave in the 

study. Further, all final models include sampling weights, which are discussed in section 3.3.4. 

3.3 Analytical Strategy 
The aims for this study are two-fold: Among Americans aged 50 and older, Question 1 compares 

the characteristics of self-employed and wage-and-salary workers. Then, Question 2 assesses 

how self-employment influences financial well-being and personal health, in comparison to 

wage-and-salary work. In all cases, regression models appropriate to the outcome variable are 

employed. 

3.3.1 Correcting for Serial Correlation 

Because this dissertation uses longitudinal data, observations—or waves—are nested within 

individuals. Further, individuals are nested within households, as both members of married or 

partnered households are individually tracked in the HRS. While clustering does not affect model 

coefficients, it introduces bias in the standard error estimates. This, in turn, decreases trust in 

hypothesis tests by usually, but not always, estimating standard errors that are too small 

(Kennedy, 2008). While there are several approaches to handling this type of clustering, such as 

multilevel or mixed-effects modeling, I used the cluster-robust estimate of the variance-

covariance matrix to determine standard errors and, as a result, final model test statistics. This 

type of sandwich estimator allows for correlation within the identified clusters as well as 

heteroskedasticity (Angrist & Pischke, 2009; Cameron & Trivedi, 2010), and works best when 

there are many clusters, a threshold that my sample exceeds. For example, Angrist and Pischke 
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(2009), while careful not to suggest a hard-and-fast rule, recommended that datasets have at least 

42 clusters. In comparison, my sample has more than 5,000. Further, my analysis controls for 

clustering within the household by including the household identifier as the cluster variable, 

following the authors’ recommendation to use the highest-level clustered-covariance estimator. 

Using the household identifier as the cluster variable then allows for correlation within both 

households and individuals. 

3.3.2 Model Building and Testing 

Final models include both time-variant and -invariant factors. Major time-variant factors include 

labor force status, work characteristics (e.g., hours worked/week and working alone or with 

others), self-rated health, marital status, and total household wealth, among others. Major time-

invariant factors include gender, race, Hispanic ethnicity, and education, among others. For both 

aims, univariates were analyzed for all variables (see Appendix B), as well as bivariate 

associations between the outcome, treatment, and predictor variables (see Appendix D). I also 

ran tests to increase my confidence that the specific assumptions for each model are reasonably 

met, described throughout this section. Model fit was determined by F tests. In all cases, the 

alpha level for indicating significant relationship is 0.05. Results shown in Tables 2 and 3, as 

well as in Tables 9 and 10 in Appendix F, list exponentiated coefficients that are called relative 

risk ratios (RRR) for multinomial logistic regression, odds ratios (OR) for ordered logistic 

regression, and incidence rate ratios (IRR) for negative binomial regression. Accounting for 

serial correlation, cluster-robust standard errors are listed in all multivariate tables. Finally, 

results will be described in terms of the direction and significance of the documented 

relationships to aid theory development. For this dissertation, a discussion of the marginal effects 

and predicted probabilities from my final models will be avoided, given ongoing questions about 
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the limitations of using Rubin’s combination rules with predicted probabilities in multiply-

imputed datasets and the chances of invalid results (StataCorp, 2017). 

To answer Question 1, multinomial logistic regression is employed, as the outcome variable has 

three distinct categories: self-employment, wage-and-salary work, and not working. Before the 

analysis, univariates of all variables were assessed to determine if data transformations were 

necessary, after which I transformed individual earnings, total household wealth, and total 

household income from all sources (minus individual earnings) due to a high level of skewness, 

discussed in the next paragraph. After the models were completed, parameter and significance 

estimates indicated when the hypotheses were supported. 

As Question 2 has four outcome variables, different methods are necessary. For both financial 

well-being variables, I transformed the variables using the inverse hyperbolic sine function (IHS) 

before conducting regression analysis. This can be expressed as: 

Equation 1. Inverse Hyperbolic Sine (IHS) = arcsinh⁡(𝑥) = 𝑙𝑛(𝑥 + √𝑥2 + 1) 

For the individual earnings outcome variable, the IHS transformation can account for the non-

trivial number of respondents who report zero earnings in some years—unlike in a log 

transformation, where the log of zero is undefined—as well as the positive skewness of the data. 

For the total household wealth outcome variable, the IHS transformation accounts for the large 

number of respondents who report negative household wealth (as defined by assets minus debts), 

as well as the positive skewness of the data. The IHS transformation, which was first proposed 

by Johnson (1949), can handle extreme values in dependent variables, including negative and 

zero values, performing better than the more commonly-used tactic of taking the log of values 

after adding a constant (Burbidge, Magee, & Robb, 1988; Friedline, Masa, & Chowa, 2015). As 
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a form of sensitivity analysis, all final models for total household wealth were run with and 

without housing assets included; as the results were largely similar, I chose to keep housing 

assets as a part of this variable and present those findings in Chapter 4. 

Regarding personal health outcomes, self-rated health was measured using a four-item ordinal 

variable. As such, ordered logistic regression was used, which accounts for the rank order of the 

data while not assuming equal differences between the possible values (Kennedy, 2008). A key 

assumption of ordered logistic regression is that the coefficients are equal in a series of 

cumulative logit models in which the response variable is recoded into a series of binary 

variables (Williams, 2016). In other words, the coefficients should have the same relationship 

with the outcome variable, no matter how it is dichotomized (e.g., fair/poor health compared to 

good health and better, or good health or worse compared to very good health or better). To test 

this assumption, I used the Brant test of coefficients (Brant, 1990), rejecting the null hypothesis 

of equal coefficients for the entire model. This significant result was expected once considering 

the large sample size in my study and the high number of covariates in my final model. 

Following the guidance set forth by Williams (2016), I carefully considered the direction of the 

coefficients and their magnitudes, and ultimately determined that the spirit of this assumption 

was met, making the need for partial proportional odds models unnecessary.  

Depressive symptoms, which were measured using a modified CESD scale with answers ranging 

from 0 to 8, required the use of negative binomial regression due to overdispersed nature of the 

data. Poisson regression should not be used, as the variance of total depressive symptoms (at t=1: 

V=2.85) was not equal to the mean (t=1: M=1.09), a strong assumption of Poisson regression 

that, if not met, can dramatically reduce the standard errors and lead researchers to believe in the 
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existence of more statistically-significant explanatory variables than might actually exist 

(Kennedy, 2008). 

Question 2 incorporates two additional estimation procedures. First, all models include a form of 

propensity score analysis, called inverse probability of treatment weighting, to help correct for 

selection into self-employment and wage-and-salary work by including a time-invariant factor 

for self-employment (“treatment”) or wage-and-salary work (“control”). This procedure will be 

described in detail in the next section. Additionally, lagged dependent variables (LDVs) from the 

prior wave are included to prevent the biasing of coefficients that can result from serial 

correlation that is not controlled for using sandwich estimators. After including LDVs, however, 

the magnitude of the coefficients for the explanatory variables can be reduced to values below 

what the real magnitudes may, in reality, be (Angrist & Pischke, 2009; Keele & Kelly, 2006). 

This may also reduce the magnitude of the estimated treatment effect in Question 2. Given the 

consequences of not including LDVs—serial correlation of errors that lead to an overestimation 

of the magnitude of explanatory variables—I decided to keep them in my models, with the 

understanding that the estimated magnitude of the coefficients for the explanatory and treatment 

variables are likely more conservative, and the estimated magnitude for the coefficients for the 

LDVs are likely higher, than in reality. 

3.3.3 Inverse Probability of Treatment Weighting 

To answer Question 2, inverse probability of treatment weighting was employed. In recent years, 

it has become increasingly common for social science researchers who use observational studies 

to utilize statistical adjustment methods that control for selection into the “treatment” of concern; 

in this case, self-employment. These methods are often grouped together into a category called 
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propensity score analysis, or PSA. Propensity scores are the probabilities of receiving the 

treatment, conditional on an observed set of characteristics (Rosenbaum & Rubin, 1983).  

In addition to more traditional covariance control methods, PSA techniques attempt to balance 

the covariates by treatment group, striving to mimic an important quality of randomized-

controlled trials while estimating treatment effects. PSA techniques provide a practical way to 

estimate the counterfactual framework—or potential outcomes—of both the treatment and 

control groups (Guo & Fraser, 2015). As shown in Equation 2, after conducting propensity score 

balancing procedures, it is possible to estimate the average treatment effect (ATE) as the mean 

difference between the outcome measure of the treatment and comparison groups. Here, 𝜏 

signifies the treatment effect, 𝑊 = 1 signifies receiving the treatment, 𝑊 = 0 signifies not 

receiving the treatment, and 𝑌1 and 𝑌0 signify the measured outcome variables for those who 

have and have not received the treatment (Guo & Fraser, 2015, p. 49). 

Equation 2. Average Treatment Effect (ATE) = 𝜏 = 𝐸(𝑌1|𝑊 = 1) − 𝐸(𝑌0|𝑊 = 0) 

Although there are several PSA methods, this study used the inverse probability of treatment 

assignment as weights in outcome analysis. This method, called inverse probability of treatment 

weighting (IPTW), is also known as propensity score weighting (Guo & Fraser, 2015). This 

method provides three key benefits over other PSA methods: IPTW permits the inclusion of most 

or all observations, unlike other forms of propensity score analysis; it does not restrict outcome 

variables to be continuous and normally distributed; and in addition to estimating the ATE 

among the population of older workers overall, IPTW allows for the estimation of the average 

treatment effect for the treated (ATT). This estimates the treatment effect among the self-

employed only, asking, “How would older self-employed Americans perform on a set of 
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outcome variables had they not been self-employed?” Equation 3 shows the formula for 

determining ATT (Guo & Fraser, 2015, p. 49): 

Equation 3. Average Treatment Effect for the Treated (ATT) = 𝐸(𝑌1−𝑌0⁡|⁡𝑋, 𝑊 = 1) 

Two methods to derive the propensity scores were utilized. This first and most common method 

for determining propensity scores is through binary logistic regression (Guo & Fraser, 2015). 

However, simulation studies have shown that the propensity scores created through logistic 

regression can have subpar performance when compared to those created through machine 

learning, a general term for prediction and classification algorithms that have become more 

common as computer power increases (Lee, Lessler, & Stuart, 2009). Therefore, the second 

method for determining propensity scores in this dissertation is generalized boosted modeling 

(GBM), a machine-learning method that has been shown to outperform alternative methods for 

creating propensity scores when assessing prediction error and that is derived by using a 

regression tree method to capture nonlinear effects of pre-treatment variables (Lee et al., 2009; 

McCaffrey, Ridgeway, & Morral, 2004). Specifically, I used the Stata macro for the TWANG 

(Toolkit for Weighting Analysis of Nonequivalent Groups) package that was developed for the R 

statistical environment by researchers at the RAND Corporation (Griffin et al., 2014). Up to 

10,000 iterations and interactions of up to three ways were considered. Unlike logistic 

regression, no consideration of functional covariate form was necessary, as GMB algorithms see 

covariates and their transformations, such as age, age2, and log(age), identically (McCaffrey et 

al., 2004). As such, GBM-derived propensity scores are different than those from binary logistic 

regression due to the inclusion of interactions and nonlinear effects.  



47 

 

A key innovation in this dissertation is its use of 20 datasets through multiple imputation to 

handle missing data; however, special consideration must then be given to how and when the 

propensity scores are derived. Following the example set by Eulenburg and colleagues (2016), I 

first created propensity score weights within each of the 20 datasets before the results of the final 

outcome models were averaged using Rubin’s combination rules. In practice, this means that I 

created four propensity score weights for each of the 20 datasets—ATE and ATT using logistic 

regression, and ATE and ATT using GBM—resulting in 80 sets of propensity scores for each 

respondent. 

To create the propensity scores, variables that have been associated with self-employment in 

later life are used. While some scholars have suggested using all or many available variables 

within a dataset, consensus is forming around the strategy to include only variables that are 

associated with the treatment condition (Austin, 2011; Guo & Fraser, 2015). Following this 

strategy, this study includes sociodemographic variables (age, gender, race, Hispanic ethnicity, 

veteran status, and risk tolerance), as well as measures of human (education, self-rated health, a 

binary indicator of a low or high number of depressive symptoms, and health insurance status), 

social (marital status), and financial capital (total household wealth, total household income, and 

labor force status), which have been associated with later-life self-employment (e.g., Weller et 

al., 2015; Zissimopoulos & Karoly, 2007b). Further, a control for interview by proxy was 

included, as well as HRS sampling weights. Only data from 2004, the baseline year, were 

considered when creating the propensity scores, as variables measured in later years may have 

been influenced by the treatment condition at baseline (Austin, 2011). As such, while the model 

for Question 1 includes observations from all six waves of data, ranging from 2004 to 2014, the 
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models for Question 2 include observations from the final five waves of data, ranging from 2006 

to 2014, while using weights derived from the first wave in 2004. 

A series of imbalance checks were conducted to determine if the covariates were properly 

balanced between treatment groups after taking into account the propensity score weights, as 

recommended by Guo and Fraser (2015). As shown in Appendix E, with few exceptions, both 

forms of propensity score weight derivation—GBM and logistic regression—balanced the 

selection covariates between the self-employment and wage-and-salary employment groups 

when considering both the ATE and ATT. Considering the unbalanced (pre-IPTW) sample, 

bivariate associations were found to be significantly different (p < 0.05) in 14 of the 16 

covariates. With GBM-derived ATE weights, five of the covariates remained significantly 

different. Logistic regression-derived ATE weights, as well as GBM- and logistic regression-

derived ATT weights, all resulted in two or fewer significant covariates after their application. 

Overall, the magnitude of the coefficients was lessoned after applying the propensity score 

weights. These findings increase my confidence in the weighting of the final models for 

Question 2. 

My results for Question 2 are considered “doubly robust,” as they simultaneously attempt to 

estimate treatment effects in two ways: through traditional covariate control in regression 

analysis, and with weighting through IPTW. Doubly-robust estimation of treatment effects has 

been shown to improve upon both methods through their combination, increasing one’s 

confidence in the results in the event that one of the two models is misspecified (Bang & Robins, 

2005). Therefore, I will first estimate the treatment effect using IPTW without covariates in the 

final model, followed by IPTW with covariates. Meaningful differences will be discussed. 
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My final analysis for Question 2, therefore, includes five weight-only models, as well as five 

doubly-robust models, for each of the four outcome variables. This results in 40 final models. 

These models estimate the ATE and ATT from logistic regression and GBM, as well as through 

regression with the HRS-provided sampling weights only. This is completed as a form of 

sensitivity analysis, with general agreement between each model’s parameter estimates leading 

to higher confidence in the findings (Guo & Fraser, 2015). However, it should also be noted that 

recent research indicates that models using propensity scores created through GBM or other 

machine-learning methods are superior when estimating treatment effects, although I still 

consider propensity scores derived from logistic regression, as that is one of the most popular 

methods of propensity score analysis (Lee et al., 2009; Li, Handorf, Bekelman, & Mitra, 2016). 

As such, results that seek to estimate the ATE using GBM-derived propensity scores will be 

reviewed in Chapter 4 as the main models; however, results from models that seek to estimate 

the ATT from GBM-derived propensity scores, the ATE and ATT from logistic regression-

derived propensity scores, and the relationship between self-employment and outcomes from 

simple and multivariate regression without IPTW are included in Appendix F as supplemental 

models. Major differences in results will be discussed. 

3.3.4 Survey Weighting 

The HRS was designed to be nationally-representative of the older, community-dwelling 

American population. However, certain groups, such as those who identify as black or African 

American and residents of Florida, are oversampled. To maintain the representativeness of the 

sample, individual-level survey weights provided by the HRS research team are integrated twice 

in this dissertation’s analysis. Following the two-stage process used in IPTW, the survey weights 

are first incorporated when developing the propensity scores in each of the 20 datasets created 
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through multiple imputation (Stage 1), and again when conducting outcome analysis before the 

estimates are averaged using Rubin’s combination rules (Stage 2). During the second stage, the 

survey weights and inverse probability of treatment weights are multiplied together, resulting in 

a new “grand” weight for outcome analysis (DuGoff, Schuler, & Stuart, 2014; Ridgeway, 

Kovalchik, Griffin, & Kabeto, 2015). 
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Chapter 4: Findings 
To understand the characteristics of self-employed Americans in later life and how self-

employment influences personal health and financial well-being, I will first present the results 

from bivariate tests of association between self-employment and the following factors: 

sociodemographic characteristics; measures of human, social, and financial capital; risk 

tolerance; and work characteristics. To control for potentially confounding variables when 

answering Question 1, I will then present the results from multinomial logistic regression to 

understand what factors are related to being self-employed when controlling for all other 

variables. Finally, to answer Question 2, I will present the results from a series of ordered 

logistic, negative binomial, and OLS regressions that incorporate a variety of weights to estimate 

how self-employment influences personal health and financial well-being. 

4.1 Bivariate Results 
As shown in Appendix D, just more than one in five (21.4%) respondents were self-employed at 

baseline. Within this nationally-representative sample of Americans aged 50 and older, the self-

employed were nearly four years older than those in wage-and-salary work. They were less 

likely to be female and Hispanic, and more likely to identify as white and veterans. They also 

had higher levels of risk tolerance.  

Considering human capital, they were slightly healthier and had slightly higher levels of 

educational attainment, but not meaningfully so. They were much less likely to report having 

health problems that limited their work. Regarding health care, they were less likely to have 

health insurance from any source, on average, yet more likely to have health insurance from a 

governmental source, such as Medicare, Medicaid, or TRICARE. There was no significant 
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difference between the self-employed and those in wage-and-salary work in regard to the number 

of depressive symptoms reported. 

Considering social capital, self-employed respondents were more likely to be married and more 

likely to participate in both formal and informal volunteer activities than those in wage-and-

salary work. Although statistically significant, the number of household members does not 

appear to be a meaningful factor, as the effect size was small. 

The bivariate results from the financial capital variables are particularly interesting, showing 

major differences between the two groups. The self-employed reported earnings that were less 

than half that of their wage-and-salary counterparts at baseline, yet their total household wealth 

was more than three times that of wage-and-salary workers and their household income from all 

sources except individual earnings was more than 2.5 times that of wage-and-salary workers, 

revealing that the self-employed may have a stronger financial safety net, on average. Older self-

employed Americans were much more likely to report receiving Social Security retirement 

benefits and slightly more likely to report receiving pension income than older wage-and-salary 

workers. 

Considering workplace characteristics, self-employed respondents were more likely to report 

part-time work and had, on average, about two more years of tenure on the job than wage-and-

salary workers. Self-employed respondents were also more likely to work at least 35 hours per 

week, less likely to be a part of a workplace pension plan, and more likely to be in a white collar 

(vs. blue collar) occupation and goods producing (vs. service producing) industry. While 

statistically significant, the difference between the level of stress on the job and having a job that 

requires good eyesight was low. There were no significant differences between the two groups 
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regarding other job requirements (having a job that requires lots of physical effort, lifting heavy 

loads, or stopping, kneeling, or crouching). 

As shown in Appendix D, nearly all tests were significant. This may often be due to meaningful 

differences between self-employment and wage-and-salary work; however, the large sample size 

in this study increases the chance of finding statistically-significant results. Further, many of 

these bivariate differences may be attributable to confounders. Age, for example, might explain 

the difference between the self-employed and wage-and-salary workers regrading average tenure 

on the job and being more likely to die or have their responses given by proxy. The next two 

sections, which reveal results for Questions 1 and 2, utilizes covariate control to reduce the effect 

of confounders. Question 2, additionally, uses IPTW to reduce problems that arise from self-

selection into self-employment, creating a quasi-experimental study. 

4.2 Question 1: Characteristics of Self-Employed Older 

Americans 
Question 1 asked, “What are the characteristics of self-employed older adults, in comparison to 

those in wage-and-salary work, among older Americans working at baseline?” To answer this 

question, I considered sociodemographic variables; levels of human, social, and financial capital; 

and risk tolerance. I hypothesized that within this sample of working Americans aged 50 and 

older, human, social, and financial capital, as well as age and identifying as male and white, are 

positively associated with being self-employed. Given the mixed findings on risk tolerance 

among self-employed older adults, I provided no hypothesis for this attribute. 

Table 2 lists the results from multinomial logistic regression using six biennial waves of the 

HRS, ranging from 2004 to 2014. The model was significant: F(56, 3.24 x 106) = 150.6, p < 
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0.001. Sandwich estimates were included to control for serial correlation within households over 

time, which created the robust standard errors shown in the table. To answer Question 1, my 

focus will be to describe the relationship between the self-employed and wage-and-salary 

groups; however, corresponding to Strategy 1B, as outlined in Appendix A, respondents were 

allowed to leave the workforce after baseline. Therefore, Table 2 also includes results that 

compare those not working to the wage-and-salary reference group. These should be interpreted 

with caution, however, as this group includes respondents belonging to several categories, 

including retirees and those who reported being unemployed or disabled. For the purposes of this 

study and due to the small sample sizes of some of these groups (e.g., those who identify as 

disabled), I decided to group them together. 

While controlling for the covariates listed in Table 2 and relative to wage-and-salary work, age 

(RRR = 1.02, p < 0.006) and being male (RRR = 0.33, p < 0.001) were positively associated with 

being self-employed, supporting my hypothesis. Although race was significant in the bivariate 

results, identifying as black (compared to those identifying as white) was not significant in the 

multivariate results (RRR = 0.77, p = 0.088), counter to my hypothesis that self-employed older 

adults were more likely to identify as white. Similarly, the positive relationship between veteran 

status and self-employment found in the bivariate results became nonsignificant in the 

multivariate results. Lastly, self-employed respondents had higher levels of risk tolerance than 

those in wage-and-salary work (RRR = 1.16, p < 0.001). 

Regarding human capital, self-employment, relative to wage-and-salary work, was positively 

associated with self-rated health (RRR = 1.16, p = 0.001); it was also positively associated with 

having health problems that limit one’s ability to work (RRR = 1.40, p = 0.001). Further, self-

employed respondents were less likely to have health insurance from governmental (RRR = 0.71, 
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p = 0.001), workplace (RRR = 0.26, p < 0.001), and spousal (RRR = 0.45, p < 0.001) sources. 

Educational attainment, which was slightly higher among the self-employed in the bivariate 

results, was nonsignificant in the multivariate results: (RRR = 1.04, p = 0.056). As such, my 

hypothesis that self-employment was positively associated with human capital was only partially 

supported. While increased self-rated health was associated with self-employment, educational 

attainment was nonsignificant and factors that could be considered to lead to lower human 

capital, such as health problems limiting work and being uninsured, were significant. 

Regarding social capital, self-employed older adults were less likely to report being married or 

having a partner, compared to those with nonworking spouses (RRR = 2.31, p < 0.001); however, 

there was no significant relationship between those with working and nonworking spouses. 

While they were no more or less likely to report involvement in formal volunteer activities, the 

self-employed were more likely to report involvement in informal volunteer activities in both 

levels of time commitment tracked, compared to those who did not participant in informal 

volunteer activities (<100 hours: RRR = 1.25, p = 0.002; 100+ hours: RRR = 1.50, p < .001). 

Therefore, my hypothesis that self-employment was positively associated with social capital was 

only partially supported. While informal volunteering (compared to not being involved in 

informal volunteer activities) was associated with self-employment, there was no relationship 

between self-employment and formal volunteering, and being married was negatively associated 

with self-employment. 

Regarding financial capital, self-employed respondents earned less than those in wage-and-salary 

work (RRR = 0.70, p < 0.001), yet household wealth (RRR = 1.04, p < 0.001) and household 

income (RRR = 2.22, p < 0.001), with individual earnings subtracted, were positively associated 

with self-employment. They were also less likely to be receiving Social Security retirement 
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benefits (RRR = 0.52, p < 0.001) and pension income (RRR = 0.49, p < 0.001). Consequently, my 

hypothesis that financial capital was positively associated with self-employment was only 

partially supported. While total household wealth and total household income, minus individual 

earnings, were positively associated with self-employment, individual earnings and receiving 

Social Security retirement benefits and pension income were negatively associated with self-

employment. 

To summarize my findings from Question 1, my hypothesis that self-employment among 

Americans aged 50 and older is positively associated with human, social, and financial capital, as 

well as age and identifying as male and white, is partially supported. My finding on risk 

tolerance, which showed higher levels among the self-employed, will aid future theory and 

hypothesis development. 
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Table 2. Multinomial Logistic Regression of Work Status, Relative to Wage-and-Salary Employment 
Variables Self-Employed  Not Working 

 exp(b) Robust SEa t p CI  exp(b) Robust SEa t p CI 

Age 1.02** (0.01) 2.76 0.006 1.00 - 1.04  1.02** (0.01) 3.85 0.000 1.01 - 1.04 

Female (male) 0.33** (0.03) -10.55 0.000 0.25 - 0.43  0.70** (0.05) -4.99 0.000 0.58 - 0.84 

Race (white)            

Black 0.77 (0.12) -1.71 0.088 0.52 - 1.14  1.01 (0.09) 0.06 0.950 0.81 - 1.25 

Other races 1.04 (0.25) 0.17 0.867 0.57 - 1.91  1.11 (0.15) 0.77 0.443 0.78 - 1.58 

Hispanic (not) 0.92 (0.19) -0.41 0.684 0.54 - 1.55  0.92 (0.12) -0.63 0.526 0.65 - 1.30 

Veteran (not) 0.94 (0.12) -0.48 0.632 0.69 - 1.29  0.86 (0.08) -1.76 0.079 0.68 - 1.07 

Risk tolerance 1.16** (0.04) 4.30 0.000 1.06 - 1.26  1.02 (0.02) 0.79 0.428 0.96 - 1.09 

Education, in years 1.04 (0.02) 1.91 0.056 0.99 - 1.09  1.07** (0.01) 5.36 0.000 1.03 - 1.10 

Health, self-rated 1.16** (0.05) 3.30 0.001 1.03 - 1.30  0.95 (0.03) -1.59 0.111 0.88 - 1.03 

Health problems limiting work (no) 1.40** (0.14) 3.27 0.001 1.07 - 1.82  3.37** (0.23) 18.02 0.000 2.83 - 4.01 

Health insurance source            

Government (not) 0.71** (0.08) -3.19 0.001 0.54 - 0.94  0.90 (0.08) -1.22 0.223 0.71 - 1.13 

Work (not) 0.26** (0.03) -13.54 0.000 0.21 - 0.34  0.39** (0.03) -13.89 0.000 0.32 - 0.46 

Spouse’s work (not) 0.45** (0.05) -6.57 0.000 0.33 - 0.62  0.79** (0.07) -2.79 0.005 0.63 - 0.98 

Spouse’s work status (not working)            

Working 1.01 (0.10) 0.09 0.931 0.78 - 1.31  0.54** (0.04) -7.86 0.000 0.45 - 0.66 

Not married 2.31** (0.30) 6.45 0.000 1.65 - 3.23  0.94 (0.08) -0.68 0.493 0.76 - 1.17 

Household members 0.96 (0.04) -0.96 0.336 0.86 - 1.07  0.94* (0.02) -2.17 0.030 0.88 - 1.01 

Formal volunteering, past year (none)            

<100 hours 0.97 (0.08) -0.36 0.720 0.78 - 1.21  0.82** (0.05) -3.11 0.002 0.69 - 0.97 

100+ hours 0.93 (0.10) -0.67 0.501 0.70 - 1.23  0.79** (0.06) -2.98 0.003 0.65 - 0.97 

Informal volunteering, past year (none)            

<100 hours 1.25** (0.09) 3.13 0.002 1.04 - 1.49  1.06 (0.06) 1.07 0.287 0.92 - 1.22 

100+ hours 1.50** (0.15) 4.20 0.000 1.17 - 1.93  1.21* (0.09) 2.39 0.017 0.99 - 1.47 

Individual earningsb 0.70** (0.01) -48.45 0.000 0.68 - 0.71  0.69** (0.00) -66.27 0.000 0.68 - 0.70 

Household wealthb 1.04** (0.01) 4.46 0.000 1.02 - 1.07  1.02** (0.01) 2.76 0.006 1.00 - 1.03 

Household income, less individual earningsb 2.22** (0.13) 13.70 0.000 1.91 - 2.58  1.11** (0.02) 7.27 0.000 1.07 - 1.16 

Currently receiving:            

Social Security retirement benefits (no) 0.52** (0.06) -6.09 0.000 0.39 - 0.68  1.43** (0.13) 3.88 0.000 1.13 - 1.81 

Receiving pension income (no) 0.49** (0.05) -7.25 0.000 0.38 - 0.63  1.75** (0.12) 8.08 0.000 1.46 - 2.09 

Controls            

Dies during the study (no) 1.46** (0.20) 2.74 0.006 1.02 - 2.08  0.77** (0.08) -2.59 0.010 0.60 - 1.00 

Nonresponse during the study (no) 1.29* (0.14) 2.26 0.024 0.96 - 1.72  0.96 (0.08) -0.52 0.601 0.78 - 1.18 

Proxy respondent (no) 1.34 (0.24) 1.61 0.107 0.84 - 2.13  0.80 (0.11) -1.61 0.108 0.56 - 1.14 

Intercept 0.00** (0.00) -11.35 0.000 0.00 - 0.00  0.39* (0.17) -2.19 0.028 0.13 - 1.18 

F test: (56, 3.242e+06) = 150.6, p < 0.001            

Notes: Data from a combined 6 waves of the HRS that include 6,473 individuals (33,092 total observations) in 5,281 households. Individual (m=20) estimates 

combined using Rubin’s combination rules. ** p < 0.01, * p < 0.05, two-tailed tests. a. Exponentiated robust standard errors are derived using the delta rule: 

exp(b)*se(b). b. Transformed using the inverse hyperbolic sine function. 
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4.3 Question 2: The Influence of Self-Employment in Later 

Life 
Question 2 asked, “How does self-employment in later life influence financial well-being and 

personal health, in comparison to wage-and-salary work, among those working at baseline?” 

Financial well-being was operationalized as individual earnings through one’s work and total 

household wealth, and personal health was operationalized as self-rated health and total number 

of depressive symptoms. Following Hamilton’s (2000) findings among working adults 

throughout the lifespan, I hypothesized that within this sample of working Americans aged 50 

and older, self-employment leads to reduced income, on average, compared to wage-and-salary 

employment. However, given this study’s exploratory nature, I did not propose hypotheses for 

the remaining three outcomes. As Question 2 aims to identify the estimated treatment effect that 

self-employment has on the four outcome variables, I will focus on those results. Specifically, I 

will focus on the estimated average treatment effect (ATE) for the population overall, although 

the final two of the four alternative models for each outcome variable in Appendix F estimate the 

average treatment effect for the treated (ATT). Major discrepancies between the main models 

and the alternative models shown in Appendix F will be discussed. I will then cover notable 

findings from the covariates in the doubly-robust models. All models included data from the 

final five biennial waves of this study (2006 to 2014), as the baseline wave (2004) was used to 

create the inverse probability of treatment weights and the addition of lagged dependent 

variables prevented the use of the baseline wave. Further, all models included sandwich 

estimators to account for serial correlation within households over time, with the associated 

robust standard errors shown in the results tables. 
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4.3.1 Personal Health 

Considering the IPTW-only estimation model, self-employment is estimated to have a positive 

influence on self-rated health while controlling for selection into self-employment at baseline 

(OR = 1.19, p = 0.045). However, once controlling for time-variant and -invariant covariates, 

including sociodemographic factors; measures of human, social, and financial capital; and 

workplace characteristics, the positive relationship becomes nonsignificant (OR = 1.13, p = 

0.076). Naturally, the previous wave’s self-rated health measure has a large magnitude (OR = 

4.93, p < 0.001) which, as discussed in Chapter 3, might also have had the effect of reducing the 

magnitude of the estimated treatment effect and the remaining covariates in the model. The 

doubly-robust model was significant: F(43, 189,157) = 76.26, p < 0.001. 

The supplemental models in Appendix F show similar results. While the models without 

incorporating IPTW report some of the largest odds ratios, those with and without covariates that 

incorporate IPTW reveal nonsignificant estimated effects. Considered together, these models 

suggest that while self-employment may lead to increased health, the magnitude of this increase 

becomes nonsignificant when using doubly-robust methods, suggesting that other factors—such 

as sociodemographic factors; measures of human, social, and financial capital; workplace 

characteristics; and the control variables—may play a greater role in self-reported health than 

self-employment itself. 

The results are clearer when considering the number of depressive symptoms; namely, using 

negative binomial regression, self-employment was not found to have a significant effect on the 

number of reported depressive symptoms. The main doubly-robust model was significant: F(42, 

263,541) = 87.36, p < 0.001. The supplemental, weighted-estimation only ATE model, however, 

suggested that self-employment may increase the number of depressive symptoms (IRR = 1.15, 
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p < 0.05), yet once controlling for potential confounders in the doubly-robust estimation, this 

effect became nonsignificant. The supplemental models that estimated the ATT found general 

agreement that self-employment leads to higher numbers of depressive symptoms. 

To summarize, my main and supplemental models suggest that while self-employment may have 

a positive effect on self-rated health, it likely does not influence the number of depressive 

symptoms among the overall population. While the directions of these relationships remain the 

same in all but one of the self-rated health models and all the depressive symptom models, the 

lack of consistent significant or nonsignificant findings decreases my confidence in the findings. 
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Table 3. Estimated Effect of Self-Employment on Personal Health 
Variables Self-Rated Health: Ordered Logistic Regression  Depressive Symptoms: Negative Binomial Regression 

 exp(b) Robust SEb t p CI  exp(b) Robust SEb t p CI 

IPTW estimation only (ATE)a            

Self-employment (wage-and-salary) 1.19* (0.10) 2.01 0.045 1.00 - 1.40  1.04 (0.07) 0.63 0.529 0.92 - 1.18 

            

Doubly-robust estimation (ATE)a            

Self-employment (wage-and-salary) 1.13 (0.08) 1.78 0.076 0.99 - 1.30  1.01 (0.04) 0.13 0.899 0.93 - 1.09 

Age 0.98** (0.00) -4.26 0.000 0.97 - 0.99  0.99** (0.00) -3.10 0.002 0.98 - 1.00 

Female (male) 1.24** (0.08) 3.51 0.000 1.10 - 1.40  1.15** (0.05) 3.58 0.000 1.07 - 1.24 

Race (white)            

Black 0.72** (0.05) -5.16 0.000 0.64 - 0.82  0.97 (0.04) -0.80 0.424 0.89 - 1.05 

Other races 1.15 (0.19) 0.84 0.399 0.83 - 1.57  1.06 (0.08) 0.72 0.470 0.91 - 1.24 

Hispanic 0.69** (0.10) -2.67 0.008 0.53 - 0.91  0.99 (0.06) -0.16 0.874 0.87 - 1.13 

Veteran 1.10 (0.07) 1.39 0.164 0.96 - 1.24  0.93 (0.05) -1.37 0.170 0.84 - 1.03 

Risk tolerance 1.01 (0.02) 0.39 0.697 0.98 - 1.04  1.02 (0.01) 1.73 0.084 1.00 - 1.04 

Health, self-rated            

Concurrent       0.72** (0.02) -15.13 0.000 0.69 - 0.75 

Lagged, t-1 4.93** (0.27) 29.47 0.000 4.43 - 5.48       

Depressive symptoms            

Concurrent 0.81** (0.01) -13.16 0.000 0.78 - 0.83       

Lagged, t-1       1.28** (0.01) 29.17 0.000 1.26 - 1.30 

Education, in years 1.07** (0.01) 6.50 0.000 1.05 - 1.09  0.99 (0.01) -1.35 0.178 0.98 - 1.00 

Health problems limiting work 0.32** (0.02) -17.35 0.000 0.28 - 0.36  1.39** (0.06) 7.18 0.000 1.27 - 1.52 

Has health insurance (does not) 0.92 (0.08) -0.93 0.352 0.78 - 1.09  0.90 (0.05) -1.79 0.073 0.81 - 1.01 

Spouse’s work status (not working)            

Working 1.01 (0.06) 0.12 0.904 0.89 - 1.13  0.94 (0.04) -1.33 0.183 0.87 - 1.03 

Not married 0.97 (0.06) -0.50 0.616 0.85 - 1.10  1.15** (0.05) 3.25 0.001 1.06 - 1.25 

Household members 0.94** (0.02) -2.90 0.004 0.90 - 0.98  1.01 (0.01) 0.81 0.420 0.98 - 1.04 

Formal volunteering, past year (none)            

<100 hours 1.10 (0.06) 1.77 0.077 0.99 - 1.22  0.91* (0.04) -2.51 0.012 0.84 - 0.98 

100+ hours 1.22** (0.09) 2.83 0.005 1.06 - 1.40  0.98 (0.05) -0.42 0.675 0.88 - 1.09 

Informal volunteering, past year (none)            

<100 hours 1.14** (0.06) 2.61 0.009 1.03 - 1.27  0.98 (0.03) -0.69 0.487 0.91 - 1.04 

100+ hours 1.24** (0.09) 2.90 0.004 1.07 - 1.44  1.01 (0.05) 0.10 0.917 0.91 - 1.11 

Individual earningsc 1.00 (0.01) 0.08 0.937 0.99 - 1.01  0.99 (0.00) -1.45 0.146 0.98 - 1.00 

Household wealthc 1.01 (0.01) 1.36 0.173 0.99 - 1.04  0.98* (0.01) -2.50 0.013 0.97 - 1.00 

Household income, less individual earningsc 1.01** (0.00) 2.76 0.006 1.00 - 1.02  1.00 (0.00) -1.81 0.070 0.99 - 1.00 

Currently receiving:            

Social Security retirement benefits 1.10 (0.08) 1.37 0.171 0.96 - 1.26  1.06 (0.05) 1.19 0.232 0.97 - 1.15 

Receiving pension income 1.04 (0.05) 0.94 0.345 0.95 - 1.14  0.98 (0.04) -0.45 0.655 0.91 - 1.06 
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Variables Self-Rated Health: Ordered Logistic Regression  Depressive Symptoms: Negative Binomial Regression 

 exp(b) Robust SEb t p CI  exp(b) Robust SEb t p CI 

Labor force status (full-time)            

Part-time or partly retired 0.90 (0.12) -0.82 0.412 0.70 - 1.16  1.19 (0.12) 1.72 0.085 0.98 - 1.44 

Fully retired 0.52* (0.13) -2.57 0.010 0.31 - 0.85  1.02 (0.24) 0.09 0.925 0.65 - 1.61 

Unemployed or otherwise not working 0.52* (0.14) -2.38 0.017 0.31 - 0.89  1.28 (0.31) 1.00 0.317 0.79 - 2.07 

Job requires…            

lots of physical effort 0.99 (0.05) -0.30 0.767 0.90 - 1.08  1.06 (0.04) 1.62 0.105 0.99 - 1.13 

lifting heavy loads 1.08 (0.05) 1.64 0.101 0.98 - 1.19  1.00 (0.04) -0.06 0.948 0.92 - 1.08 

stooping, kneeling, crouching 0.97 (0.04) -0.84 0.403 0.89 - 1.05  1.00 (0.03) 0.16 0.874 0.95 - 1.06 

good eyesight 1.03 (0.04) 0.74 0.457 0.96 - 1.10  0.93* (0.03) -2.44 0.015 0.88 - 0.99 

Job involves lots of stress 0.95 (0.03) -1.47 0.141 0.89 - 1.02  1.26** (0.04) 7.57 0.000 1.18 - 1.33 

Years at current job 1.00 (0.00) -0.17 0.861 0.99 - 1.00  1.00 (0.00) -0.34 0.733 0.99 - 1.00 

Number of employees (more than one)            

Work alone 1.04 (0.11) 0.35 0.723 0.84 - 1.29  0.96 (0.07) -0.51 0.607 0.83 - 1.12 

Not working 1.72 (0.48) 1.95 0.051 1.00 - 2.97  1.68* (0.42) 2.04 0.042 1.02 - 2.75 

35+ hours worked per week (<35 hours) 0.90 (0.11) -0.82 0.411 0.70 - 1.15  1.11 (0.11) 1.05 0.292 0.92 - 1.34 

Pension from current job 1.07 (0.08) 1.00 0.316 0.94 - 1.23  0.95 (0.05) -0.83 0.405 0.85 - 1.07 

Blue collar occupation (white collar) 1.02 (0.06) 0.31 0.753 0.91 - 1.15  0.96 (0.06) -0.66 0.509 0.85 - 1.08 

Goods producing industry (service producing) 0.98 (0.08) -0.21 0.836 0.85 - 1.15  1.01 (0.06) 0.14 0.891 0.89 - 1.14 

Controls            

Dies during the study 0.59** (0.06) -5.55 0.000 0.49 - 0.71  1.19** (0.07) 3.07 0.002 1.07 - 1.33 

Nonresponse during the study 0.99 (0.07) -0.13 0.893 0.86 - 1.14  1.03 (0.06) 0.51 0.613 0.92 - 1.14 

Proxy respondentd 0.79 (0.10) -1.91 0.057 0.61 - 1.01       

Thresholds:            

Fair/poor to ≥ good 2.80* (1.13) 2.55 0.011 1.27 - 6.19       

≤ Good to ≥ very good 39.77** (16.47) 8.89 0.000 17.66 - 89.53       

≤ Very good to excellent 716.09** (301.59) 15.61 0.000 313.67 - 1,634.79       

Intercept       1.96* (0.63) 2.07 0.038 1.04 - 3.69 

F test (43, 189157) = 76.26, p < 0.001  (42, 263541) = 87.36, p < 0.001 

N 26,502e  25,435f 

Notes: Data from a combined 6 waves of the HRS that include 6,473 individuals. Individual (m=20) estimates combined using Rubin’s combination rules. ** p < 

0.01, * p < 0.05, two-tailed tests. a. ATE = average treatment effect where weight is 1/P for a “treated” case and 1/(1 – P) for a comparison case, where P is 

predicted using generalized boosted modeling from the RAND twang Stata macro; b. Exponentiated robust standard errors are derived using the delta rule: 

exp(b)*se(b); c. Transformed using the inverse hyperbolic sine function; d. By design, proxy respondents did not answer the depressive symptom questions; 

Within e. 5,045 and f. 4,974 households. 
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4.3.2 Financial Well-Being 

Considering individual earnings from work, the IPTW-only estimation model in Table 4 

estimates a strong and negative relationship with self-employment (b = -5.56, p < 0.001). This 

relationship, while reduced in magnitude, continued to hold in the doubly-robust model 

(b = -2.99, p < 0.001). The main doubly robust model was significant: F(43, 4,949) = 475.2, 

p < 0.001). All supplemental models show similar results, estimating self-employment’s negative 

effects on individual earnings with a slightly reduced magnitude once accounting for potential 

confounders. Therefore, my hypothesis that self-employment leads to reduced individual 

earnings, compared to wage-and-salary employment, was supported. 

Considering total household wealth, the IPTW-only (b = 0.41, p = 0.037) and doubly-robust 

(b = 0.30, p = 0.019) estimation models in Table 4 estimated a slight positive relationship with 

self-employment. While the sample-weight only models in Appendix F show stronger positive 

relationships, self-employment was not found to have an effect in most of the IPTW-adjusted 

models. Interestingly, the IPTW-only ATT model estimated that self-employment leads to less 

wealth among the self-employed than if they had worked in wage-and-salary employment (b 

= -0.80, p < 0.05); however, this relationship switched directions and become nonsignificant 

once doubly-robust estimation was performed. 

To summarize, the agreement between the main and supplemental models regarding the negative 

effect of self-employment on income increases my confidence in the findings. However, while 

the main model shows a slight positive relationship between self-employment and total 

household wealth, the supplemental models that incorporate propensity score techniques, while 

mostly displaying the same direction of the relationship, are nonsignificant. 
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Table 4. Estimated Effect of Self-Employment on Financial Health 
Variables Individual Earnings, Transformedb  Total Household Wealth, Transformedb 

 b SE t p CI  b SE t p CI 

IPTW estimation only (ATE)a            

Self-employment (wage-and-salary) -5.56** (0.14) -39.32 0.000 -5.83 - -5.28  0.41* (0.20) 2.09 0.037 0.03 - 0.80 

            

Doubly-robust estimation (ATE)a            

Self-employment (wage-and-salary) -2.99** (0.15) -20.25 0.000 -3.28 - -2.70  0.30* (0.13) 2.35 0.019 0.05 - 0.54 

Age 0.00 (0.01) 0.33 0.740 -0.01 - 0.02  -0.00 (0.01) -0.45 0.654 -0.02 - 0.01 

Female (male) -0.14 (0.12) -1.22 0.222 -0.37 - 0.09  0.03 (0.12) 0.22 0.827 -0.21 - 0.26 

Race (white)            

Black 0.06 (0.14) 0.45 0.654 -0.22 - 0.34  -1.10** (0.23) -4.90 0.000 -1.54 - -0.66 

Other races 0.30 (0.20) 1.46 0.144 -0.10 - 0.70  -0.35 (0.21) -1.64 0.101 -0.77 - 0.07 

Hispanic -0.46** (0.17) -2.73 0.006 -0.79 - -0.13  -0.01 (0.19) -0.07 0.946 -0.39 - 0.37 

Veteran 0.03 (0.13) 0.25 0.806 -0.22 - 0.28  -0.05 (0.15) -0.33 0.745 -0.35 - 0.25 

Risk tolerance -0.02 (0.03) -0.81 0.420 -0.08 - 0.03  -0.03 (0.04) -0.70 0.486 -0.12 - 0.06 

Health, self-rated 0.01 (0.05) 0.13 0.898 -0.09 - 0.11  0.19** (0.05) 4.10 0.000 0.10 - 0.29 

Depressive symptoms -0.02 (0.03) -0.74 0.457 -0.07 - 0.03  -0.08** (0.03) -2.75 0.006 -0.13 - -0.02 

Education, in years 0.03 (0.02) 1.88 0.061 -0.00 - 0.07  0.12** (0.02) 6.32 0.000 0.08 - 0.15 

Health problems limiting work -0.37** (0.11) -3.28 0.001 -0.59 - -0.15  -0.16 (0.14) -1.11 0.266 -0.43 - 0.12 

Has health insurance (does not) 0.51* (0.22) 2.35 0.019 0.08 - 0.93  0.36 (0.20) 1.76 0.079 -0.04 - 0.76 

Spouse’s work status (not working)            

Working 0.22 (0.12) 1.83 0.067 -0.02 - 0.46  -0.42** (0.10) -4.24 0.000 -0.61 - -0.22 

Not married 0.07 (0.13) 0.52 0.605 -0.18 - 0.31  -0.80** (0.11) -7.09 0.000 -1.03 - -0.58 

Household members 0.02 (0.04) 0.39 0.700 -0.07 - 0.10  -0.22** (0.05) -4.01 0.000 -0.33 - -0.11 

Formal volunteering, past year (none)            

<100 hours -0.01 (0.13) -0.04 0.967 -0.25 - 0.24  -0.05 (0.12) -0.46 0.649 -0.29 - 0.18 

100+ hours -0.36** (0.12) -3.00 0.003 -0.60 - -0.13  0.09 (0.11) 0.79 0.427 -0.13 - 0.30 

Informal volunteering, past year (none)            

<100 hours 0.14 (0.09) 1.44 0.149 -0.05 - 0.32  0.02 (0.10) 0.18 0.861 -0.18 - 0.22 

100+ hours -0.03 (0.15) -0.20 0.844 -0.33 - 0.27  0.13 (0.13) 1.05 0.295 -0.12 - 0.38 

Individual earningsb            

Concurrent       0.03* (0.01) 2.34 0.019 0.00 - 0.05 

Lagged, t-1 0.28** (0.02) 16.55 0.000 0.25 - 0.32       

Household wealthb            

Concurrent 0.02* (0.01) 2.21 0.027 0.00 - 0.03       

Lagged, t-1       0.51** (0.03) 18.90 0.000 0.46 - 0.57 

Household income, less individual earningsb -0.10** (0.02) -5.11 0.000 -0.14 - -0.06  0.13** (0.02) 5.90 0.000 0.08 - 0.17 

Currently receiving:            

Social Security retirement benefits -0.40** (0.15) -2.62 0.009 -0.70 - -0.10  0.17 (0.13) 1.34 0.179 -0.08 - 0.42 

Receiving pension income -0.49** (0.13) -3.88 0.000 -0.73 - -0.24  0.11 (0.07) 1.42 0.155 -0.04 - 0.25 
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Variables Individual Earnings, Transformedb  Total Household Wealth, Transformedb 

 b SE t p CI  b SE t p CI 

Labor force status (full-time)            

Part-time or partly retired -0.66 (0.37) -1.76 0.078 -1.39 - 0.07  0.27 (0.20) 1.37 0.171 -0.12 - 0.65 

Fully retired -4.14* (1.97) -2.10 0.035 -8.00 - -0.28  -0.38 (0.32) -1.19 0.234 -1.02 - 0.25 

Unemployed or otherwise not working -2.40 (1.97) -1.22 0.223 -6.25 - 1.46  -1.28** (0.36) -3.51 0.000 -1.99 - -0.57 

Job requires…            

lots of physical effort -0.07 (0.08) -0.86 0.391 -0.23 - 0.09  -0.08 (0.09) -0.96 0.339 -0.25 - 0.09 

lifting heavy loads -0.08 (0.11) -0.74 0.462 -0.29 - 0.13  -0.13 (0.10) -1.29 0.198 -0.32 - 0.07 

stooping, kneeling, crouching 0.02 (0.07) 0.27 0.788 -0.12 - 0.16  0.09 (0.07) 1.29 0.198 -0.05 - 0.24 

good eyesight -0.01 (0.11) -0.05 0.957 -0.21 - 0.20  -0.10 (0.07) -1.41 0.160 -0.25 - 0.04 

Job involves lots of stress 0.22** (0.07) 3.00 0.003 0.08 - 0.37  0.00 (0.09) 0.02 0.985 -0.17 - 0.17 

Years at current job -0.01 (0.01) -1.73 0.084 -0.02 - 0.00  0.02** (0.00) 3.05 0.002 0.01 - 0.02 

Number of employees (more than one)            

Work alone -1.31** (0.21) -6.33 0.000 -1.72 - -0.91  -0.31 (0.18) -1.71 0.087 -0.66 - 0.04 

Not working -0.19 (1.98) -0.10 0.922 -4.07 - 3.69  0.22 (0.41) 0.54 0.593 -0.59 - 1.03 

35+ hours worked per week (<35 hours) -0.78* (0.35) -2.23 0.026 -1.47 - -0.10  -0.10 (0.19) -0.52 0.604 -0.48 - 0.28 

Pension from current job 1.51** (0.16) 9.49 0.000 1.20 - 1.82  0.32** (0.10) 3.13 0.002 0.12 - 0.52 

Blue collar occupation (white collar) 0.22 (0.14) 1.62 0.106 -0.05 - 0.49  -0.09 (0.14) -0.65 0.517 -0.37 - 0.19 

Goods producing industry (service producing) -0.04 (0.17) -0.22 0.822 -0.36 - 0.29  -0.01 (0.18) -0.05 0.956 -0.36 - 0.34 

Controls            

Dies during the study 0.05 (0.19) 0.28 0.778 -0.32 - 0.42  0.01 (0.17) 0.08 0.936 -0.33 - 0.35 

Nonresponse during the study -0.08 (0.13) -0.64 0.523 -0.34 - 0.17  -0.07 (0.21) -0.36 0.721 -0.48 - 0.33 

Proxy respondent -0.01 (0.24) -0.04 0.964 -0.48 - 0.46  0.22 (0.26) 0.86 0.392 -0.28 - 0.72 

Intercept 6.54** (0.87) 7.51 0.000 4.83 - 8.24  3.27** (0.75) 4.37 0.000 1.80 - 4.73 

F test  (43, 4,949) = 475.2, p < 0.001  (43, 4,943) = 79.29, p < 0.001 

N 26,521  26,521 

Notes: Data from a combined 6 waves of the HRS that include 6,473 individuals with 5,046 households. Individual (m=20) estimates combined using Rubin’s 

combination rules. ** p < 0.01, * p < 0.05, two-tailed tests. a. ATE = average treatment effect where weight is 1/P for a “treated” case and 1/(1 – P) for a 

comparison case, where P is predicted using generalized boosted modeling from the RAND twang Stata macro;  b. Transformed using the inverse hyperbolic 

sine function. 
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4.3.3 Covariates of Note 

While not the focus of the study, the doubly-robust models found that females working at 

baseline experienced better health (OR = 1.24, p < 0.001) yet more depressive symptoms 

(IRR = 1.15, p < 0.001) than males, while controlling for all other variables in the models. Those 

who identified as black or African American experienced worse health (OR = 0.72, p < 0.001) 

and lower household wealth (b = -1.10, p < 0.001) in comparison to those who identified as 

white, and those who identified as Hispanic experienced worse health (OR = 0.69, p = 0.008) and 

lower individual earnings (b = -0.46, p = 0.006) than those who did not. Self-rated health and 

number of depression symptoms were negatively associated with one another (ordered logistic 

regression on self-rated health: OR = 0.81, p < 0.001; negative binomial regression on depressive 

symptoms: IRR = 0.72, p < 0.001), and having died during the study time frame was negatively 

associated with self-rated health (OR = 0.59, p < 0.001) and positively associated with depressive 

symptoms (IRR = 1.19, p = 0.002). Volunteering, overall, was associated with better health 

(formal volunteering at 100+ hours: OR = 1.22, p = 0.005; informal volunteering at <100 hours: 

OR = 1.14, p = 0.009; informal volunteer at 100+ hours: OR = 1.24, p = 0.004), and having a 

stressful job was predictive of reporting more depressive symptoms (IRR = 1.26, p < 0.001) yet 

higher earnings (b = 0.22, p = 0.003). Further, reporting health problems that limit one’s ability 

to work (b = -0.37, p = 0.001), in addition to working alone, in comparison to working with 

others (b = -1.31, p < 0.001), was associated with decreased individual earnings. 

4.3.4 Summary of Results 

Among Americans aged 50 and older, the results strongly indicate that self-employment 

negatively influences individual earnings. There is some evidence that self-employment leads to 

better self-rated health and increased total household wealth, although the supplemental models 
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show nonsignificant relationships. Finally, there is little evidence that self-employment 

influences the number of depressive symptoms experienced by older adults. 
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Chapter 5: Discussion and Implications 
Results from Question 1 in Chapter 4 revealed that those who are older, identify as male, have 

higher levels of risk tolerance, and better overall health—yet more health problems that limit 

one’s ability to work—are all predictive of being self-employed past the age of 50, while 

controlling for all other variables in the model. The results also revealed that older self-employed 

Americans are less likely to receive health insurance from any source, less likely to be married, 

and more likely to informally volunteer. They also took home less in individual earnings from 

work, yet had higher levels household wealth and income from all sources (with individual 

earnings removed).  

Regarding the analysis from the quasi-experimental portion of this study, results from Question 2 

strongly indicate that self-employment leads to reduced earnings from work. The main models, 

shown in Tables 3 and 4, used inverse probability of treatment weights created through a form of 

machine learning called generalized boosted modeling that has been shown to outperform other 

IPTW-creation methods, such as logistic regression (Lee et al., 2009; McCaffrey et al., 2004). 

They indicate that self-employment may lead to better health and increased wealth, although they 

do not indicate that self-employment influences depressive symptoms. The supplementary 

models, provided in Appendix F, find results that are most generally in the same direction as the 

main models, but not always statistically significant, especially when doubly-robust methods are 

incorporated. 

These results paint a complex picture about self-employment in an aging America, both 

supporting and raising questions about the excitement that has been shown for this type of work 

in the media, by policymakers, and by program operators. Further, the results from this study 

show how complex the concepts of human, social, and financial capital are, providing an 
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explanation for why my hypothesis that these concepts are positively related to self-employment 

was only partially supported. For example, in this study, social capital was operationalized as 

being married or having a partner and the labor force status of their spouses or partners, the 

number of household members, and the amount of both formal and informal volunteering 

undertaken by respondents. Indeed, only two measures of social capital—not being married or 

partnered and engaging in informal volunteer activities—were associated with self-employment. 

Future research should seek to understand the complexities of these relationships, focusing on 

hypotheses related to specific variables that might explain why certain relationships exist. 

In this chapter, I will discuss some of the implications, limitations, and contributions from this 

study. Instead of dividing this chapter by research question, I will instead divide it by the key 

concepts in the conceptual model that framed this dissertation: sociodemographic characteristics 

and risk tolerance; separate sections for human, social, and financial capital; and the nature of the 

work. I will then conclude with a discussion of this dissertation’s limitations and contributions, 

covering its potential impact on the knowledge base regarding later-life self-employment, as well 

as research methodologies. 

5.1 Results from Questions 1 and 2 

5.1.1 Sociodemographic Characteristics and Risk Tolerance 

This study found that age was positively associated with being self-employed. This might be 

explained by previous scholarship that posits as people age, they want to exert a greater deal of 

control over their work (Ng & Feldman, 2013). Further, they may be experiencing higher levels 

of real or perceived age discrimination, pushing them into self-employment (Hytti, 2005; 

Neumark, Burn, & Button, 2015). This trend has also been documented in previous descriptive 
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and bivariate research that use both the HRS and the Current Population Survey (Pitt-Catsouphes 

et al., 2017; Zissimopoulos & Karoly, 2007b).  

Considering gender, females were less likely to be self-employed than males, relative to wage-

and-salary work. Using an older sample, this replicates a long-running and documented trend 

using data from the Current Population Survey, where self-employment rates for females 

between the ages of 20 and 64 are just less than half that of males (Ewing Marion Kauffman 

Foundation, 2017). In this study’s sample, this difference may be partially explained by labor 

force trends, as men are more likely to be working past the age of 55 than women (U.S. Bureau 

of Labor Statistics, U.S. Department of Labor, 2015). However, there are likely larger cultural 

issues at play, as females have also been shown to have lower levels of “entrepreneurial self-

efficacy,” or self-confidence in one’s ability to pursue self-employment, which could lead to one 

being less likely to pursue this type of work (Wilson, Kickul, Marlino, Barbosa, & Griffiths, 

2009). The authors discussed the importance of engaging women in entrepreneurship education 

programming in MBA and undergraduate coursework while highlighting the need to expand the 

universe that is targeted by this programming to include women of diverse socioeconomic, 

racial, and ethnic backgrounds. Expanding upon this, I would argue that it is important to reach 

women from diverse backgrounds and ages with programming aimed not only to encourage self-

employment, but to increase success in self-employment, given previous scholarship that shows 

that women are more likely to enter this form of work past the age of 50 than before 

(Zissimopoulos & Karoly, 2007b) and my own findings that self-employed older adults make 

less than those who work for someone else. 

Considering race, this study’s bivariate findings suggest that older African Americans are less 

likely to be self-employed than white Americans (13.1% vs. 23.1%), echoing a trend 
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documented in younger national samples (Ewing Marion Kauffman Foundation, 2017). This 

might point to the lack of opportunity to pursue self-employment, given the economic disparities 

and systemic racism that exists within the American context. This relationship, however, became 

nonsignificant in the multivariate model, with the loss of this significant relationship being 

explained by the model’s additional covariates. For example, older African Americans in this 

sample, in comparison to older whites, were younger (64.3 years vs. 65.4 years) with fewer years 

of formal education (12.7 years vs. 13.4 years), more likely to be female (62.2% vs. 51.3%), and 

less likely to be veterans (15.1% vs. 23.4%), among other differences. 

Interestingly, this study’s bivariate results indicate that older Hispanic adults were less likely to 

be self-employed, although no relationship was found in the multivariate analysis. This is 

contrary to what has been documented in younger national samples using the Current Population 

Survey, with nearly one-quarter of newly self-employed adults aged 20 to 64 identifying as 

Latino and whose self-employment rate was nearly twice that of white, non-Latino Americans in 

2016 (Ewing Marion Kauffman Foundation, 2017). While documenting these trends is 

important, future research should look at different racial and ethnic groups to understand why 

individuals are interested in self-employment, what factors lead individuals within these groups 

to make the transition, what unique barriers and facilitators exist during the decision-making 

process and transition, and what programs and policies can increase opportunities to pursue self-

employment for those who choose to. 

While the concept of risk tolerance and its relationship with self-employment or entrepreneurship 

has been covered in the literature, its relationship with age has had less consideration. As such, 

this study contributes to the field by documenting that older self-employed Americans have 

higher levels of risk tolerance, on average, relative to older wage-and-salary employees. Previous 



72 

 

research has shown that age is negatively associated with risk tolerance (Xu & Ruef, 2004), yet 

when considering only older adults, this study shows that those who decide to work for 

themselves are willing to take on more financial risk than those who do not. Including the risk 

tolerance variable, given its higher level of missing data in comparison to the other variables in 

the model, was a methodological risk that I determined was merited to explore its relationship 

with self-employment in later life. Moving forward and with new sources of data, I plan to 

consider new ways to measure risk tolerance. Further, given my findings on the relationship 

between self-employment and gender, race, and ethnicity, future research might look at how risk 

tolerance moderates these relationships and how various forms of economic opportunity—wealth 

or access to lines of credit, for example—influence these relationships. 

Nearly three in 10 veterans in this sample reported being self-employed compared to about two 

in 10 non-veterans, resulting in a significant bivariate test. However, this relationship became 

nonsignificant in the multinomial logistic regression model. Veterans have historically had high 

rates of self-employment (Ewing Marion Kauffman Foundation, 2017), yet this loss of 

significance in the multivariate model can be explained by several covariates. For example, older 

veterans, compared to older non-veterans, are higher in age (67.9 years to 64.3 years) and more 

likely to be male (97.9% vs. 33.4%), white (86.4% vs. 77.9%), partly retired (21.4% vs. 14.4%), 

fully retired (31.4% vs. 28.3%), and to die during the study (12.9% vs. 6.0%). 

5.1.2 Human Capital 

Regarding human capital, the finding that self-employment is associated with both self-rated 

health and having health problems that limit one’s ability to work is perplexing. Self-rated 

health—shown to be a good and consistent predictor of objective health (Miilunpalo et al., 1997; 

Schnittker & Bacak, 2014)—and reporting whether health problems limit one’s ability to work 
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are both arguably subjective. Older self-employed adults may, in fact, feel healthier, on average, 

yet also might seek the flexibility provided by self-employment to work around existing health 

conditions. To mitigate the negative effects of health problems that limit their ability to work, 

acting as their own boss through self-employment may create more aging-friendly work 

environments than working in wage-and-salary employment (Appannah & Biggs, 2015). This 

may or may not be seen in positive light by self-employed respondents, who might have 

transitioned into this type of work out of necessity. Future research could aim to investigate the 

role of self-employment in mitigating the effects of health problems, such as chronic diseases, 

that tend to increase with chronological age. 

Education appears not to be a significant factor (RRR = 1.04, p = 0.056), as shown in Table 2. 

This is counter to previous research on the individual attributes of self-employed older adults. 

For example, Zissimopolous and Karoly (2007b), using earlier waves of the HRS and cross-

tabulations, found that older self-employed adults were more likely to have a bachelor’s degree 

and a doctorate, law, or medical degree than those in wage-and-salary work. Using a continuous 

measure of educational attainment in this study, I also found in my bivariate analysis that years 

of education were positively associated with self-employment, although the magnitude of this 

relationship was small. Interestingly, scholars—using a sample of Americans aged 20 to 64—

have documented the long-running trend of high rates of self-employment among those with less 

than a high school degree (Ewing Marion Kauffman Foundation, 2017). While education might 

make it easier to pursue self-employment, the lack of economic opportunities that come with 

lower levels of educational attainment might push others into self-employment. 

It is also evident that regardless of source, self-employed older adults are less likely to have 

health insurance, raising serious concerns about how to promote health equity among older 
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Americans—especially those who are pre-Medicare eligible—when health insurance is so often 

tied to our employers in the U.S. It is important that we consider how to de-link health insurance 

from the workplace, or at least to provide more accessible and affordable alternatives for self-

employed adults to become insured. These findings have been replicated by Zissimopolous and 

Karoly (2007b) and may be unique to the U.S. among the most economically developed 

countries, where we have a tradition of linking health and pension benefits to our place of 

employment. In fact, scholars have proposed that our health insurance distribution system creates 

an environment that discourages entrepreneurship. Fairlie and colleagues (2011), for example, 

found that those in jobs with health insurance but without access to spousal health insurance are 

less likely to transition to self-employment. They also found that rates of self-employment 

increase once Americans turn age 65 and become eligible for Medicare, although this contrasts 

with a more recent study that found no such association (Ramnath, Shoven, & Slavov, 2017). 

The potential negative association between health insurance and self-employment may not just 

be an American phenomenon, with a recent German study suggesting that the decision to move 

into self-employment is negatively associated with the cost of health insurance for the self-

employed (Fossen & König, 2017). 

As a scholar, I take a more neutral stance on whether we, as a country, should promote self-

employment in later life—at least until we know more about the causes and consequences of this 

form of work. However, it is clear that policies that would increase one’s access to affordable 

health insurance until the Medicare-eligible age of 65, might create a more equitable field for 

those with and without personal safety nets.  

To answer Question 2, this dissertation also investigated how self-employment influences 

personal health, as measured by self-rated health and the number of depressive symptoms, a 
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proxy for mental health. While inconclusive, the findings indicate that self-employment may 

have a small-but-positive influence on self-rated health, but that other variables may play a larger 

role, as shown by the reduction in magnitude and the transition from significance to non-

significance in the doubly-robust estimation of the main model in Table 3. If this result can be 

replicated, it might be explained by the fact that older adults, through being their own bosses, 

have a great deal of autonomy over their work, creating environments that promote well-being 

and are aging-friendly (Appannah & Biggs, 2015; Ng & Feldman, 2013). Further, self-employed 

older adults may be working in roles that they are passionate about, bring a sense of 

accomplishment, and provide flexibility, all aspects of work that have been shown to be 

important to those over the age of 50 who are interested in starting new organizations (Penn 

Schoen Berland & Civic Ventures, 2011). While not considered for this dissertation, future 

research should seek to understand if aspects of autonomy, passion, accomplishment, and 

flexibility influence the relationship between self-employment and health. 

Self-employment was not found to influence the number of depressive symptoms experienced by 

respondents. However, in the IPTW-only estimation in the supplemental models, it was 

estimated to have a positive effect. Similar to my findings for self-rated health, once controlling 

for additional variables through the doubly-robust estimation procedures, this relationship 

vanishes. It is possible, for example, that working alone might lead to increases in depressive 

symptoms; indeed, my bivariate results show that working alone is very common among older 

self-employed adults. As such, the finding that self-employment increases depressive symptoms 

in my IPTW-only models might be explained by working alone, perhaps a proxy for social 

isolation, which has been shown to be predictive of depressive symptoms among older adults 

(Steptoe, Shankar, Demakakos, & Wardle, 2013). As such, the nonsignificant finding for self-



76 

 

employment may be explained by the addition of the working alone control (in addition to other 

variables) in my doubly-robust analysis. Future research might include hierarchical regression 

procedures to identify key concepts or variables that explain this change. 

Finally, the personal health variables used in this dissertation—self-rated health and number of 

depressive symptoms—are subjective. While still good indicators of overall health, future 

research should look to expand our knowledge on the influence of self-employment on health. 

For example, the HRS has objective data on biomarkers and diabetes, among other topics, that 

might be considered for future research. Studies could also look at the role self-employment 

plays in physical activity. 

5.1.3 Social Capital 

Regarding social capital, although previous research found that later-life entrepreneurs were 

more likely to be married (Weller et al., 2015), this study’s multivariate analysis found the 

opposite result. This might be explained by different samples being considered for analysis. For 

example, Weller and colleagues (2015) operationalized entrepreneurs as those whose businesses 

were worth at least $5,000, whereas this study’s operationalization of self-employment did not, 

given the limitations of the HRS dataset. While easy to understand, they also used cross-

tabulations, which do not control for confounding variables. Indeed, my bivariate analysis also 

found that the self-employed were more likely to be married, with this relationship reversed once 

I used a multivariate model. As such, this might indicate that many of those who pursue self-

employment in later life are pursuing “necessity” entrepreneurship, instead of “opportunity” 

entrepreneurship (Ewing Marion Kauffman Foundation, 2017), given that they do not have a 

spouse or partner to rely on for financial or other forms of support. 
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Volunteering was also considered as an aspect of social capital in later life, an argument 

previously made by Gonzales and Nowell (2016). While previous research has shown that older 

adults who work part-time have higher numbers of volunteer hours than those not in the 

workforce (Choi, 2003), the relationship between volunteer engagement and work is 

complicated. For example, volunteering in later life has been shown to be both a destination and 

a means to another form of engagement through paid work, new volunteer roles, and social 

activities (Nancy Morrow-Howell, Lee, McCrary, & McBride, 2014). This dissertation found 

that while formal and informal volunteering were positively associated with self-employment in 

bivariate analyses, only informal volunteering maintained this association in multivariate 

analysis. Further, the likelihood of being self-employed increased with higher amounts of 

informal volunteering, when compared to those who reported no informal volunteer activities. 

Again, this might be explained through the flexibility afforded through being one’s own boss; 

however, it might also be a consequence of working alone and seeking more social interaction, 

given that the bivariate results showed that more than four in five of the self-employed 

respondents in this study worked alone. 

5.1.4 Financial Capital 

To answer Question 1, I found that self-employed older adults earned less income, on average, 

relative to those in wage-and-salary work, when controlling for all other variables in the model. 

Interestingly, they also reported having higher levels of household income from all sources (less 

individual earnings) and slightly higher levels of household wealth. These findings held true in 

both the bivariate and multivariate models. The bivariate models in Appendix D, for example, 

show that older self-employed adults earned less than half that of those in wage-and-salary work 

at baseline, on average, while also reporting about three times more household wealth and nearly 
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four times more in household income, less individual earnings. In the multivariate model, self-

employed older adults were also less likely to be drawing upon Social Security retirement 

benefits and to be receiving pension income, relative to wage-and-salary employment, although 

this relationship was reversed in the bivariate results. 

Question 2, while controlling for selection into self-employment through propensity score 

analysis, found that self-employment is not just associated with lower income, but may actually 

reduce one’s earnings. In other words, the results from this quasi-experimental analysis indicate 

that older adults would have earned more if they had worked for someone else. This finding 

remained true in each of the IPTW-only and doubly-robust estimation models conducted through 

sensitivity analysis. Interestingly, self-employment was also shown to slightly increase one’s 

wealth, in comparison to wage-and-salary work, in the main model. These counterintuitive 

findings—self-employment both decreases earnings while increasing wealth among older 

adults—are, at first, difficult to explain. Using sensitivity analysis, which allows me to look for 

trends using different models, I found that while the estimated effect on individual earnings 

remained negative and significant in each of my models, the positive effect on wealth become 

nonsignificant in my doubly-robust sensitivity analysis. As such, my findings related to wealth, 

while suggestive of a positive association through my main model, are not persuasive. One 

possible explanation is that by this point in their lives, respondents may have built up most of 

their wealth and would see little relative change in it, compared to individual earnings, which 

could dramatically change from year to year. Assuming that self-employment does increase 

wealth, it is possible that for many, self-employment is seen as a wealth builder and less as a 

source of immediate income. Business owners may invest their revenues back into the business 

while growing their asset base, at the cost of taking home a smaller paycheck. Others may simply 
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see their self-employment as a source of continued income but not as a business from which to 

build wealth. 

It should be stressed that the individual earnings variable used in the analysis is from self-

reported data. As such, it is possible that this study’s self-employed respondents underreported 

their income or reduced their income by subtracting business expenses, such as home offices. 

Previous scholarship has shown that underreporting of income among the self-employed in 

household surveys is an ongoing issue (Engström & Hagen, 2017; Hurst, Li, & Pugsley, 2014). 

Nevertheless, these findings raise serious concerns regarding the mechanisms that lead one to 

pursue self-employment in later life and the outcomes from this work. For example, if older 

adults have a built-in safety net at home, perhaps through spousal income or high mutual fund 

balances, then pursuing one’s passion or higher levels of autonomy through self-employment 

might be prominent goals, with earned income as a less important goal. This is an example of 

what has been called the non-pecuniary motivations for entrepreneurship in a study that found 

similar results while controlling for selection into self-employment using Heckman’s sample 

selection framework (Hamilton, 2000; Heckman, 1979). In fact, a recent study using data from 

the Federal Reserve’s Survey of Consumer Finances highlighted the positive association between 

diversified sources of wealth and entrepreneurship in older households, with the likelihood of 

being an entrepreneur—defined here as owning and managing a business worth more than 

$5,000—increasing when dividend and interest income made up at least one fifth of total income 

(Weller et al., 2018). In a major sense, those with higher levels of wealth can more afford to take 

the risk of moving into self-employment. 
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Using American tax return data, a recent study found that the drop in income associated with 

switching from wage-and-salary work to self-employment is larger for older workers than 

younger ones. Among those who transitioned to self-employment, younger workers’ incomes 

increased during the tenure of their self-employment while it declined for older workers 

(Ramnath et al., 2017). The authors suggest that this result supports the idea that self-

employment in later life can be a bridge to retirement. Future research should aim to understand 

if the relationship between self-employment and income remains negative for those from diverse 

socioeconomic, gender, racial, and ethnic backgrounds, among other characteristics. These 

findings could inform the development of targeted programs and policies to increase self-

employment success, however that is measured.   

The finding that self-employed older adults are less likely to participate in workplace pension 

programs foretells a financially-insecure future for many, highlighting a major issue regarding 

the tradeoffs between self-employment and wage-and-salary employment throughout the life 

course. Just like policymakers should consider how to de-link health insurance from the 

workplace to increase insurance uptake among the self-employed so, too, should they consider 

new ways to de-link retirement savings vehicles from the workplace to promote more universal 

retirement savings. Earlier research showed that older Americans in self-employment between 

1992 to 2004 were less likely to participate in retirement savings plans (Zissimopoulos & 

Karoly, 2007a), with this dissertation finding a similar result for older self-employed Americans 

when considering the years 2004 through 2014. Further, the difficulty in preparing for a 

financially-secure retirement is not just an American issue, with a recent Australian study 

highlighting the low levels of retirement savings among self-employed females (Redmond, 

Walker, & Hutchinson, 2017). Research that analyzed data from both the HRS and 
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administrative tax returns found that receiving Social Security retirement benefits increased the 

probability of transitioning from wage-and-salary work to self-employment. This association 

held for those who signed up for benefits at both early and full retirement ages, yet receiving 

private pensions had no association (Ramnath et al., 2017). 

As new businesses have been shown to be important to the growth of our economy (Haltiwanger, 

Jarmin, & Miranda, 2013), advocates for entrepreneurship may want to focus on building a 

stronger social safety net for would-be entrepreneurs. Indeed, the Kauffman Foundation, one of 

the largest funders of entrepreneurship research, has advocated for such policies to make it easier 

for potential entrepreneurs to transition into this type of work (Ewing Marion Kauffman 

Foundation, 2016). Increased safety net programs, such as universal health insurance and 

enhanced food and nutrition programs, might prevent the potentially negative consequences of 

reduced earnings from self-employment while improving upon a variety of other metrics. Put 

simply, increasing our social safety net programs would help to even the playing field, thereby 

closing the self-employment “opportunity gap” between those with and without the means to 

pursue this work or to protect themselves from financial duress (Halvorsen & Morrow-Howell, 

2017). This would increase the number and diversity of individuals who have the opportunity 

experience the potential benefits of self-employment. 

5.1.5 Nature of the Work 

The conceptual framework that guided this dissertation’s design stressed the importance of work 

and workplace characteristics in shaping personal health and financial well-being outcomes. This 

makes conceptual sense, as the nature of the work—such as full- or part-time employment, 

physical effort required and stress involved, hours worked, and occupation and industry, among 

others—could all be argued to predict various outcomes. Some of these attributes, which were 
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included in the doubly-robust estimation models for Question 2, were found to do so. For 

example, moving into full retirement, unemployment, or otherwise not working (while having 

been working at baseline) were associated with worse self-rated health, and having a job with a 

lot of stress predicted more symptoms of depression yet higher individual earnings. With these 

and a few other exceptions, however, the work-related variables were not heavily indicative of 

personal or financial health outcomes. Yet their inclusion, along with the individual-level 

characteristics in the doubly-robust models, added important contextual information to help 

estimate the influence of self-employment on personal and financial health outcomes while 

reducing bias from potentially misspecified propensity score models. 

Why was this study unable to identify key workplace characteristics that predict individual-level 

outcomes? This may, in large part, be due to the large amount of variation within the workplace 

among those both in self-employment and wage-and-salary work. In other words, while this 

study attempted to estimate the overall effects of self-employment on financial well-being and 

personal health, it did not look at the great deal of variation within self-employment, my area of 

interest. As such, I plan to look at similar workplace characteristics in future research that 

considers only older self-employed adults and not those in wage-and-salary positions, asking, 

“What workplace characteristics lead to more positive personal and financial outcomes among 

self-employed older adults?” This would allow me to isolate these factors within one type of 

work and, as a result, aid discussions on creating better workplaces for an aging workforce.  

5.2 Limitations and Contributions 
This study contributes substantively to the literature on self-employment in later life. With any 

study, however, there are limitations that must be taken into consideration. In this section, I 
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outline key limitations and contributions from this dissertation, while providing thoughts on how 

to move forward with future scholarship. 

5.2.1 Variation in Work 

Imagine the work environments for an automotive plant technician, a teacher, a restaurant owner, 

and a human resources consultant working from home. Within these professions there is 

certainly a great deal of variation, and between these professions there is certainly even more. 

This dissertation, which dichotomizes self-employment and wage-and-salary work, treats them 

as two distinct types of work. This is true to a large extent, as those who are self-employed are 

generally in charge of their own work. However, self-employment incorporates several types of 

work, including independent contracting, consulting, small business ownership, 

entrepreneurship, and social entrepreneurship (Pitt-Catsouphes et al., 2017). A limitation to the 

HRS dataset is that it asks only one question—whether respondents work for themselves—to 

determine self-employment status. This does not account for the variation in industries, 

occupations, and work environments within self-employment and wage-and-salary work. To 

address this limitation, this study included several covariates that attempt to assess different 

types of self-employment and wage-and-salary work (e.g., occupation and industry codes, 

working alone or with others, and hours worked per week), offering further descriptions of a 

diverse set of work experiences. As described previously, while variables related to the nature of 

the work were largely unpredictive of the outcomes measured, they did help to account for the 

variation within the workplace, lending greater credibility to the estimated treatment effects of 

self-employment. 
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5.2.2 Consideration of Work Motivations 

This study also had a limited ability to explore the motivations for pursuing self-employment, 

such as job autonomy (Ng & Feldman, 2013) and the level of choice one perceived as having 

when pursuing self-employment. It is possible that among the older self-employed, these 

motivations are more salient than among older wage-and-salary workers. As such, after 

controlling for several important variables, differences in outcomes between older self-employed 

adults and those who work in wage-and-salary positions may be explained by these concepts.  

Regarding the concept of choice when transition to self-employment, and as outlined in 

Halvorsen and Morrow-Howell’s (2017) review article, scholars have theorized about the level 

of choice older adults perceive in their self-employment. Kautonen (2008), for example, 

described how older entrepreneurs can be “pushed” or “pulled” into their work, suggesting that 

pull motivations, such as “I wanted to earn more money” and “I wanted to carry out my own 

ideas,” carried more weight than push motivations, such as “Unemployment or threat of 

redundancy” and “I wanted a less stressful job,” in a study of older Finnish entrepreneurs (p. 9). 

The concept of choice in self-employment has been described in similar ways, as well. Singh and 

DeNobel (2003) identified three archetypes of older entrepreneurs—constrained, rational, and 

reluctant—in their scholarship. Constrained older entrepreneurs were described as those who 

want to become entrepreneurs but have not yet done so due to perceived or real constraints; 

rational older entrepreneurs are those who decide to become self-employed by rational choice, 

such as seeking continued income; and reluctant older entrepreneurs, or those who feel they lack 

other options, such as those undertaking entrepreneurship due to unemployment. While one can 

speculate about the reasoning behind this study’s results, I was unable to directly measure the 
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level of choice self-employed older Americans felt when pursuing their work, leaving this area 

ripe for future qualitative and quantitative work.  

A major push into self-employment might be unemployment. While this dissertation did not 

consider the recession that began in 2008 in final analyses due to the small-but-present increase 

in unemployment among older workers (see Appendix B), other scholars have examined this 

relationship. Also using data from the HRS, researchers found the recession that began in 2008 

predicted a higher likelihood of entering into self-employment from unemployment among older 

adults, but the recession that began in 2001 predicted a lower likelihood of entering into self-

employment from unemployment (Biehl, Gurley-Calvez, & Hill, 2014). The authors cited the 

different length of the recessions, the industries affected, and the number of layoffs as potential 

explanations for this difference. Using the Survey of Income and Program Participation and 

considering Americans aged 16 and older, those who transitioned into self-employment during 

the recession were older, on average, as were those who remained self-employed (Beckhusen, 

2014).  

5.2.3 Examining the Aging Context 

Most quantitative (Bönte, Falck, & Heblich, 2009; Weller et al., 2015; Xu & Ruef, 2004; 

Zissimopoulos & Karoly, 2009) and qualitative (Lewis & Walker, 2013; Maâlaoui et al., 2013; 

Platman, 2003) publications consider chronological age when discussing self-employment in 

later life. That is also true of this dissertation. However, it is likely that other concepts related to 

chronological age, such as perceived future time, are more predictive of self-employment 

motivations, experiences, and outcomes than chronological age itself (Halvorsen & Morrow-

Howell, 2017). For example, Gielnik, Zacher, & Frese (2012) found that while chronological age 
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was negatively associated with venture growth, a focus on opportunities in one’s future work—a 

form of perceived future time—mediated this relationship. 

Further, using “older adult” to constitute individuals aged 50 and older is incredibly broad. Even 

within cultures, this is a heterogeneous group of individuals who come from different 

generations and belong to different subgroups. It is important to understand the historical time 

from when individuals were born (e.g., birth cohorts, such as the baby boom generation) and 

enter into key moments (e.g., graduation, marriage, or having a child), as well as the changing 

age norms (Elder, 1975, 1994). For example, it is possible that women in the “younger old” 

category—those closer to 50—may be more likely to become self-employed than women of 

earlier generations when they were around 50, reflecting changes in culture and the workforce. 

Thus, new and sustained efforts that incorporate the life-span (Kanfer & Ackerman, 2004) and 

life course (Elder, 1975, 1994) perspectives, which are grounded in the fields of psychology and 

sociology, respectively, are needed to understand the heterogeneity of self-employed older adults 

and their trajectories. While this dissertation does not consider birth cohort, it does consider work 

and retirement status (an example of life stage). 

5.2.4 Advances in Methodologies 

Question 1 used multinomial logistic regression, with sandwich estimators to account for serial 

clustering, to estimate relations between individual characteristics and being self-employed, in 

wage-and-salary work, and not working at all. Currently, most published work uses descriptive 

statistics, such as cross-tabulations, to describe self-employment in an aging America and does 

not directly compare self-employed older workers to those who are in wage-and-salary work.  

A major contribution of this study is its incorporation of inverse probability of treatment 

weighting—a form of propensity score analysis—to account for selection into self-employment 
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for Question 2. This technique, along with its use of longitudinal data spanning six waves and 10 

years, creates a quasi-experimental study. While many researchers have used results that include 

propensity score analysis to show causal relations, this family of methods controls only for 

identified and measured predictors of selection into a “treatment,” whereas a well-designed 

randomized control trial would theoretically control for all predictors of selection. Of course, it 

would not be ethical, nor plausible, to conduct such a study to estimate the overall treatment 

effects of self-employment in the general older population. Given the previous scholarship on 

self-employment in later life (e.g., Zissimopoulos & Karoly, 2007b, 2009), key predictors of 

movement into self-employment in older adults have been established that were used when 

estimating propensity scores. However, hidden selection bias likely remains an issue due to the 

omission of key variables that may be associated with becoming self-employed. For example, 

variables that measure the motivation to work, which may be different for older self-employed 

respondents compared to older wage-and-salary respondents, were not available in the dataset to 

be included in this study. Further, the variables included when creating the propensity score 

weights were from baseline in 2004; however, it is possible that measures of these variable prior 

to 2004 had a meaningful effect on self-employment. Given my use of doubly-robust estimation 

procedures and machine-learning techniques to create the propensity scores, which have both 

been shown to decrease bias in the estimation of treatment effects (Bang & Robins, 2005; Li et 

al., 2016; McCaffrey et al., 2004), my confidence in this study’s findings is increased.  

This study estimates the effect of self-employment on personal health and physical well-being 

using a time-invariant treatment variable. To accomplish this, I excluded about 10% (N=734) of 

the sample working at baseline who transitioned from self-employment to wage-and-salary work, 

or vice versa, during the study’s time period. As such, the analyses in this dissertation consider 
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only those who worked in one form of work at baseline and beyond, while allowing them to 

leave the workforce. However, there are methods that estimate treatment effects using time-

varying treatment variables, which would have allowed me to keep these respondents in the 

analysis (e.g., Brand & Xie, 2006; Robins, Hernán, & Brumback, 2000). I aim to incorporate 

these methods in future work. 

The incorporation of multiple imputation in this dissertation is an additional advancement to the 

field. Studies that use data from the HRS commonly use list-wise deletion or do not mention 

their handling of missing data at all. For example, in a search through the past two years in one 

of the highest-regarded academic journals in gerontology, The Gerontologist, I found that most 

studies using the HRS employed list-wise deletion, while many others did not discuss missing 

data or how they handled it at all. While list-wise deletion may not bias the results for certain 

research questions due to the high-response rate in the HRS, the high number of variables used in 

my models, combined with the higher amount of missing data for key work-related variables, 

might lead to heavily biased results. Therefore, the use of multiple imputation in this dissertation 

should increase one’s confidence in the findings, especially when incorporating the work-related 

variables from Question 2. 

Overall, this dissertation will build upon previous work, most notably Zissimopoulos and 

Karoly’s (2007b, 2007a, 2009) publications, while contributing to discussions about the causal 

effects of later-life self-employment and program and policy developments to support longer 

working lives. Because of this study’s large sample size, I was able to incorporate several 

methodologies that increase one’s confidence in the results: sandwich estimators to account for 

serial correlation that require a large number of clusters (Angrist & Pischke, 2009), categorical 

variables during multiple imputation that can cause models to fail to converge from empty cells 
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when there are not enough observations, and large, conceptually-driven models that include 

individual- and work-related variables to answer my research questions. 

5.2.5 Examining the American Context 

This dissertation also advances our knowledge of self-employment in later life in the American 

context. Although scholarship on this topic has benefited from detailed accounts of self-

employment motivations through in-depth interviews, many of these studies were based in other 

highly-developed regions, including central Europe (e.g., Harms et al., 2014; Maâlaoui et al., 

2013), the United Kingdom (e.g., Platman, 2003, 2004), Scandinavia (e.g., Kautonen, 2008), and 

New Zealand (e.g., Lewis & Walker, 2013). As such, this dissertation adds to the literature 

through its consideration of self-employment in the American context. In addition to further 

quantitative research using the HRS and other U.S.-based secondary datasets, such as the Current 

Population Survey, the Kauffman Firm Survey, and the Survey of Consumer Finances, future 

research should look to expand upon the rich qualitative evidence from Europe in the American 

context, covering the antecedents, experiences, and outcomes of this work. 

5.3 Moving Forward 
This dissertation provides direction for program developers and policymakers to create an 

environment that supports self-employment in later life, often promoted as a solution to financial 

insecurity in older adults. In short, the predictors of and outcomes from self-employment in later 

life paint a complicated picture, and program developers and advocates for self-employment in 

later life should pause after reading this dissertation’s results. Yes, self-employment may 

increase an older adult’s self-rated health, yet it is also clearly linked to reduced individual 

earnings and a lack of health insurance. Just who, then, are advocates advocating for? This 

dissertation shows that those who many benefit the most—or, perhaps, harmed the least—from 
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self-employment in later life are those with stronger social and financial safety nets. Until more 

is known about the effects of later-life self-employment and how to increase positive outcomes, 

we, as a society, should be very careful in how and to whom we encourage this risky form of 

work. In short, it is not always a “step up” from working for someone else. 

This dissertation sets the stage for my future research agenda. Already, I, along with Nancy 

Morrow-Howell, proposed several research propositions regarding the antecedents to, 

experiences during, and outcomes from self-employment in later life (Halvorsen & Morrow-

Howell, 2017), with the conceptual framework proposed in that publication guiding this 

dissertation. Areas of interest include exploring later-life self-employment in relation to concepts 

like socioemotional selectivity theory and perceived future time (see Carstensen, 1995; Gielnik 

et al., 2012), generativity and legacy motivations (see Erikson, 1963), and the Big Five 

personality traits (see Brandstätter, 2011). These remain interesting to me and are areas where I 

would like to devote a portion of my future work. 

Research that evaluates entrepreneurship training programs that are open to or designed for older 

adults is also of interest. There is a need to understand how these programs operate, if they serve 

clients better when they include age-specific or age-diverse cohorts, and ways they could 

encourage optimal financial, physical, and mental outcomes. Further, this dissertation showed 

that risk tolerant older adults are more likely to be self-employed and that risk tolerance had no 

relationship with the four outcome variables among older workers overall; however, future 

research might examine how risk tolerance moderates the relationship between antecedents and 

outcomes. If that is known and if the effect is strong, then program developers could implement 

screening questions to identify individuals who exhibit traits that have been shown to be more or 

less successful in self-employment and provide targeted information and assistance to suit their 
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unique needs. A study of Americans aged 18 and older, for example, found that adults who were 

more risk tolerant benefitted more from an entrepreneurship training program, in terms of 

operating a business or having started a business in future points in time (Fairlie & Holleran, 

2012). Depending on the motivations for moving into self-employment (e.g., business growth vs. 

continued income), programs might also highlight a different set of resources to meet their needs. 

An immediate priority, however, is to examine the potential profiles of self-employed older 

adults and to document workplace-related characteristics that lead to better personal and 

financial outcomes among self-employed older adults. The development and success of programs 

and policies to increase positive outcomes from self-employment in later life may depend on 

having a good understanding of these profiles. For example, using the push/pull framework of 

self-employment motivations (Kautonen, 2008; Weller et al., 2018), the antecedents, 

experiences, and outcomes of those who feel pushed and pulled into this work may differ. To 

illustrate this concept, those with lower levels of socioeconomic status may be more likely to 

pursue self-employment as a means to continued income, whereas those with higher levels of 

socioeconomic status may be more likely to pursue self-employment to follow their passions. 

More recent research has considered the role of self-employment as a bridge to retirement, where 

this form of work may provide supplemental or continued income and social engagement 

(Ramnath et al., 2017; Von Bonsdorff, Zhan, Song, & Wang, 2017). In a study using the HRS 

that included Americans who started receiving pension income as a proxy for retirement, income 

was negatively associated with moving into wage-and-salary work as a bridge relative to full 

retirement, and income was positively associated with moving into self-employment as a bridge 

relative to full retirement. Further, income was positively associated with moving into self-

employment as a bridge relative to moving into wage-and-salary work as a bridge (Von 
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Bonsdorff et al., 2017). Research using the HRS has also documented that older adults who 

moved into self-employment as a bridge job during the recession were healthier, on average, than 

those who did not (Cahill et al., 2013). To illustrate this concept, those who pursue self-

employment as a bridge to retirement may see it as a way to earn supplemental income, perhaps 

in combination with existing retirement benefits, while opening new time to pursue family and 

leisure time outside of work.  

Some combination of the push/pull factors and whether the self-employment is acting as a bridge 

to retirement, along with individual characteristics like sociodemographic factors, risk tolerance, 

and human, social, and financial capital, may relate to key subgroups of self-employed older 

adults. So, too, may the duration of the self-employment and the stability of that duration. For 

example, a recent study using Current Population Survey data found that artists are not only 

more likely to move into self-employment, but they are also more likely to quickly move out of 

self-employment, than non-artist professionals (Woronkowicz & Noonan, 2017). The authors 

called this type of movement churning. 

Moving forward, I will also explore different ways to operationalize key concepts used in this 

research. Social capital, for example, has generally been operationalized as individual-level 

factors, such as being married or volunteering, in the literature on productive engagement in later 

life (Gonzales & Nowell, 2016; McNamara & Gonzales, 2011). This differs from more 

community-driven factors that were long established in the sociological literature, such as trust 

and social structures (Coleman, 1988; N. Morrow-Howell & Greenfield, 2016). Depending on 

my data source, I also plan become more discerning in how self-employment is operationalized. 

In this dissertation, for example, it includes older adults who say they work for themselves. 

However, self-employment can be defined in a variety of ways and, in major sense, may be too 
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broad of a category. My future work might consider occupation, industry, revenues, number of 

employees, incorporation status of the businesses, and preceding labor force status as just a few 

ways that the broad category of self-employment could be divided into narrower groups. Or, 

through primary data collection, I might group the self-employed by how they see their work: as 

a business with wealth accumulation as the primary goal, as a job with continued income as the 

primary goal, or something else entirely. Key outcomes of interest may differ as a result. 

Future research should also take into consideration important contextual factors, such as family, 

community, societal, and economic characteristics. Two individuals who otherwise share 

identical characteristics might be driven into different forms of work and experience different 

outcomes due to these factors (Halvorsen & Morrow-Howell, 2017). Indeed, the effects of 

business cycles; governmental policies toward pensions, health care, and other safety net 

programs; tax policies; and access to information and assistance—including lines of credit, 

should be considered when assessing movement into, experiences in, and outcomes from self-

employment in later life. These are areas not deeply considered for this dissertation study but that 

are still important. 

As a social work scholar, however, I remain committed to scholarship that promotes a more 

equitable society. As such, I seek to undertake work that not only makes it easier for older adults 

with fewer resources to pursue self-employment if and when they choose, but also to improve 

outcomes—whether they be financial, social, or physical—from this work. It is imperative that 

my future work combines analysis of the strong secondary datasets that already exist with mixed-

methods primary studies that include both self-employed older adults and those who have chosen 

not to pursue self-employment by choice or a perceived or real lack of opportunity. Through this 
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scholarship, my long-term scholarly agenda aims to reduce disparities by increasing economic 

and social engagement opportunities in later life, especially for those who need them the most. 
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Appendix A: “Treatment” Condition Options 
The inverse probability of treatment weighting used to answer Question 2 requires a binary and 

time-invariant “treatment” variable. Six possible sampling strategies to create this variable are 

outlined below. As described in Section 3.1.2, I employed Strategy 1B, which maximizes the 

amount of information used in the study while taking a conservative stance by not allowing the 

type of work (i.e., self-employed or wage-and-salary) to vary over time. 

 

Strategy 1. Include those who were either self-employed or in wage-and-salary work 100% of 

the time: 

A) During each of the six waves. Respondents who switched to the other category of 

work (i.e., self-employed to wage-and-salary, or vice versa), retired or stopped 

working for other reasons, died or moved to an institutional setting, or did not 

respond to a subsequent wave(s) would be excluded. This most-conservative 

sampling strategy would utilize data from approximately 21% of respondents (5% 

self-employed and 16% wage-and-salary). 

B) CHOSEN STRATEGY. During all waves with reported work. Respondents who 

reported working during three waves, for example, would be included in this 

variable if they were in the same type of work all three times. This would also be 

true for those reporting working during only one wave (baseline) or up to the six 

maximum waves. This sampling strategy would utilize 90% of respondents (19% 

self-employed and 71% wage-and-salary).  

 

Strategy 2. Include those who were in one form of work at least 80% of the time: 

A) Working in one type of work for at least five out of the six waves. This sampling 

strategy would utilize 34% of respondents (8% self-employed and 26% wage-and-

salary). 

B) During all waves with reported work. This would include those who were in one 

type of work at least five out of six waves of reported work, four out of five waves, 

or in all waves if three or fewer were completed. This sampling strategy would 

utilize 92% of respondents (20% self-employed and 72% wage-and-salary).  

 

Strategy 3. Include those who were in one form of work at least 60% of the time: 

A) Working in one type of work for at least four out of the six waves. This sampling 

strategy would utilize 46% of respondents (11% self-employed and 36% wage-and-

salary). 

B) During all waves with reported work. This would include those who were in one 

type of work at least four out of six waves of reported work, three out of four or five 

waves, two out of three waves, or 100% of the time if work was reported for only 

one or two waves. This least-conservative sampling strategy would utilize 98% of 

respondents (23% self-employed and 75% wage-and-salary).  
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Appendix B: Descriptive Statistics 
 

Table 5. Descriptive Statistics by Wave, 2004 to 2014 
Variable 2004  2006  2008  2010  2012  2014  % Missinga 

 M (SD) or % 

N=6,473b 

 M (SD) or % 

N=5,913b 

 M (SD) or % 

N=5,703b 

 M (SD) or % 

N=5,431b 

 M (SD) or % 

N=5,159b 

 M (SD) or % 

N=4,820b 

 Baseline (Max) 

Demographics              

Age 60.51 (7.67)  62.57 (7.63)  64.45 (7.58)  66.57 (7.51)  68.22 (7.30)  69.83 (7.08)  0.0% (9.2%) 

Age, by group              

50-59 50.2%  42.0%  33.2%  20.4%  9.3%  0.5%   

60-69 36.8%  39.4%  42.2%  45.5%  49.7%  52.4%   

70-79 11.3%  15.9%  20.6%  28.2%  33.5%  37.2%   

80+ 1.7%  2.7%  4.0%  5.9%  7.5%  10.0%   

Female 51.7%  51.9%  52.2%  52.7%  53.5%  54.1%  0.0% 

Race             0.0% 

White 79.7%  79.8%  79.8%  79.8%  79.7%  79.4%   

Black 14.2%  14.2%  14.2%  14.2%  14.1%  14.2%   

Another race 6.1%  6.1%  6.1%  6.1%  6.2%  6.4%   

Hispanic 8.8%  8.8%  8.8%  8.9%  9.0%  9.2%  0.0% 

Veteran 22.4%  22.2%  22.0%  21.6%  20.9%  20.3%  0.2% 

              
Human capital              

Education 13.20 (2.96)  13.20 (2.95)  13.22 (2.94)  13.24 (2.92)  13.25 (2.92)  13.26 (2.93)  0.3% 

Self-reported healthc 2.52 (0.96)  2.48 (0.95)  2.37 (0.94)  2.40 (0.92)  2.35 (0.92)  2.28 (0.91)  0.0% (9.2%) 

Depression (CESD score) 1.09 (1.68)  1.20 (1.80)  1.14 (1.77)  1.11 (1.74)  1.13 (1.75)  1.14 (1.79)  7.6% (12.8%) 

Health problem limiting work 14.5%  15.1%  18.3%  23.5%  26.4%  30.5%  0.5% (11.3%) 

Health insurance from…              

federal government 30.6%  39.0%  47.5%  56.4%  63.2%  73.0%  0.3% (9.6%) 

employer 55.9%  50.7%  44.8%  39.3%  34.2%  29.6%  0.5% (10.3%) 

spouse’s employer 17.1%  15.6%  14.6%  12.8%  11.8%  11.5%  0.4% (10.2%) 

              
Social capital              

Married/partnered 74.1%  73.0%  71.5%  69.6%  67.6%  65.8%  0.1% (9.2%) 

Spouse in paid workd 63.6%  58.4%  53.4%  46.1%  41.7%  36.9%  2.5% (11.7%) 

People living in household 2.39 (1.19)  2.31 (1.18)  2.25 (1.11)  2.23 (1.15)  2.18 (1.16)  2.14 (1.12)  0.0% (9.2%) 
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Variable 2004  2006  2008  2010  2012  2014  % Missinga 

 M (SD) or % 

N=6,473b 

 M (SD) or % 

N=5,913b 

 M (SD) or % 

N=5,703b 

 M (SD) or % 

N=5,431b 

 M (SD) or % 

N=5,159b 

 M (SD) or % 

N=4,820b 

 Baseline (Max) 

Formal volunteering             0.2% (9.3%) 

None 62.3%  61.5%  62.7%  59.6%  62.1%  62.0%   

<100 hours/year 21.4%  21.8%  22.1%  24.9%  23.1%  21.8%   

100+ hours/year 16.3%  16.7%  15.3%  15.5%  14.9%  16.2%   

Informal volunteering             0.4% (9.4%) 

None 38.9%  39.0%  41.5%  40.6%  44.5%  46.6%   

<100 hours/year 43.8%  42.4%  43.7%  44.6%  42.8%  40.8%   

100+ hours/year 17.3%  18.6%  14.9%  14.9%  12.8%  12.7%   

              
Financial capital              

Individual earningse $32,575 

(49,844) 

 $31,697 

(95,762) 

 $28,514 

(51,518) 

 $23,499 

(41,056) 

 $20,527 

(45,341) 

 $18,277 

(41,521) 

 0.0% (9.2%) 

Total household incomef $89,081 

(130,686) 

 $96,070 

(405,314) 

 $87,430 

(129,988) 

 $78,828 

(102,240) 

 $79,776 

(124,140) 

 $83,551 

(153,497) 

 0.0% (9.2%) 

Total household wealthg $483,083 

(1,268,024) 

 $576,207 

(1,289,771) 

 $579,923 

(1,376,257) 

 $533,884 

(1,322,156) 

 $538,261 

(1,331,160) 

 $585,814 

(1,285,124) 

 0.0% (9.2%) 

Receiving Social Security 30.8%  39.6%  47.4%  55.9%  62.9%  71.3%  0.0% (9.2%) 

Receiving any pension income 15.1%  17.7%  20.5%  20.8%  29.6%  33.3%  1.1% (10.4%) 

              
Work characteristics              

Working 100%  79.1%  68.5%  56.0%  48.0%  40.5%  0.0% (9.2%) 

Self-employedh 21.4%  20.0%  20.5%  21.7%  21.7%  22.9%  0.0% (9.2%) 

Labor force status             0.0% (9.2%) 

Full-time work 65.0%  52.8%  45.4%  34.6%  28.7%  22.5%   

Part-time work 13.8%  10.2%  8.5%  7.1%  5.7%  4.7%   

Partly retired 21.3%  16.6%  14.7%  14.4%  13.7%  13.3%   

Fully retired 0.0%  16.5%  26.3%  37.8%  47.6%  56.5%   

Unemployed 0.0%  1.7%  2.4%  4.0%  2.4%  1.5%   

Disabled 0.0%  0.7%  0.9%  0.8%  0.6%  0.5%   

Otherwise not in labor force 0.0%  1.5%  1.8%  1.3%  1.4%  1.0%   

Years at current jobh 12.2 (11.9)  13.8 (12.1)  14.4 (12.3)  15.2 (12.5)  15.5 (12.9)  15.9 (13.2)  2.3% (9.7%) 

Blue collar occupationh,i 43.0%  40.5%  40.7%  40.1%  38.4%  36.9%  37.8% (37.8%) 

Goods producing industryh,j 22.5%  21.5%  18.5%  17.5%  16.9%  16.3%  41.7% (41.7%) 

Work aloneg,k 12.4%  10.0%  9.4%  9.4%  8.5%  8.4%  14.6% (17.7%) 

35+ hours worked per weekh 61.6%  62.5%  61.5%  57.4%  56.5%  52.7%  4.00% (11.1%) 
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Variable 2004  2006  2008  2010  2012  2014  % Missinga 

 M (SD) or % 

N=6,473b 

 M (SD) or % 

N=5,913b 

 M (SD) or % 

N=5,703b 

 M (SD) or % 

N=5,431b 

 M (SD) or % 

N=5,159b 

 M (SD) or % 

N=4,820b 

 Baseline (Max) 

Job requires…h              

lots of physical effort 2.17 (1.12)  2.14 (1.10)  2.13 (1.09)  2.10 (1.08)  2.08 (1.07)  2.07 (1.07)  5.2% (10.4%) 

lifting heavy loads 1.61 (0.93)  1.60 (0.92)  1.61 (0.91)  1.60 (0.89)  1.56 (0.86)  1.54 (0.84)  5.2% (11.8%) 

stooping, kneeling, crouching 2.01 (1.07)  2.00 (1.06)  2.00 (1.05)  1.96 (1.03)  1.93 (1.02)  1.94 (1.02)  5.2% (11.0%) 

good eyesight 3.51 (0.80)  3.55 (0.76)  3.56 (0.76)  3.54 (0.76)  3.54 (0.75)  3.55 (0.76)  5.2% (10.2%) 

Job involves lots of stressh 2.65 (0.85)  2.67 (0.85)  2.67 (0.84)  2.59 (0.86)  2.59 (0.85)  2.56 (0.83)  4.8% (10.0%) 

Risk tolerancel 2.30 (1.48)  2.30 (1.48)  2.30 (1.48)  2.30 (1.48)  2.29 (1.48)  2.29 (1.48)  44.1% 

Pension from current jobh 47.7%  49.5%  50.5%  47.0%  51.3%  49.8%  0.7% (9.7%) 

              
Respondent status              

Proxy response 7.4%  4.9%  4.2%  4.8%  4.0%  3.9%  0.0% (9.2%) 

              
Respondent status (all N=6,473)              

Responded to survey 100.0% (6,473)  91.4% (5,913)  88.1% (5,701)  83.9% (5,432)  79.7% (5,159)  74.5% (4,820)   

Nonresponsive, presumed alivem 0.0%  7.0% (455)  8.0% (518)  8.7% (564)  8.7% (566)  9.2% (595)   

Died since last wave 0.0%  1.5% (99)  2.0% (130)  3.2% (209)  2.8% (180)  3.2% (203)   

Total attrition since 2004n 0.0%  1.6% (105)  3.9% (252)  7.4% (478)  11.6% (748)  16.3% (1,058)   

Notes: See Appendix A for how this final sample was created, and Appendix C for details on each variable.  
a Baseline percentages are out of the original sample (N=6,473), with maximum percent missing in any of the six waves considering those who were still alive or 

presumed alive during that wave. Time-invariant variables list only baseline percent missing. 
b Sample size each wave includes the original sample (N=6,473) minus individuals who did not respond to that wave or were otherwise dropped from the sample 

due to death, by request, or other reasons. 
c Ranging from 1 (poor/fair health) to 4 (excellent health). 
d Asked only of those who were married. 
e Includes individual income from wages/salary, bonuses/overtime pay/commissions/tips, second job, military reserve earnings, professional practice, or trade 

income.  
f Includes all income from respondents and spouses, if applicable, but no one else living in the household.  

g Includes the net value of total wealth (assets minus debts), including a second home, for the household. 
h Asked only of those in the labor force. 
i Occupation categories are white collar and blue collar. 
j Industry categories are service producing and goods producing. 
k Self-employed were asked how many people work for their business, including themselves. Wage-and-salary employees were asked how many people work at 

their work location. 
l Asked only of those younger than 65 with 10 exceptions. Range of 1 (least risk tolerant) to 6 (most risk tolerant). 

m Includes those who did not respond to the survey, as well as those who did not report a working status.  

n Cumulative total of all deaths and respondents dropped from the sample by request or other reasons since 2004. This does not necessarily include all those who 

were nonresponsive in each wave—only those who were dropped from the sample altogether due to death, by request, or other reasons. 
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Appendix C: Variable Descriptions 
All data from this dissertation were derived from the RAND HRS (v.P) data file and the RAND 

Enhanced HRS Fat Files, with the sample consisting of respondents who were working for pay in 

2004 in wage-and-salary work or self-employment. Variables from six consecutive waves of the 

HRS were used, from 2004 to 2014 (waves 7 through 12). Not all variables listed here were used 

in final analysis; however, they were used during sample creation or multiple imputation, or to 

gain a better understanding the sample. 

 

Table 6. Variable Names and Descriptions 

Variable name  

Time 

variant  Notes 

     

    Sample characteristics 

rahhidpn     Individual identifier 

hhid    Household identifier 

riwstat  X  Response and mortality status 

rfamr  X  Primary respondent for family-related questions 

rfinr  X  Primary respondent for financial-related questions 

rwtresp  X  Person-level weight, structured to match the makeup of the older American population as 

found by the Current Population Survey 

wave  X  Wave number (7-12) 

     

    Outcome variables 

rwork  X  Question 1: Three-category variable that includes those who are self-employed, in wage-and-

salary work, and not working 

rshltRC  X  Question 2: Self-rated health, ordinal, also a covariate 

rcesd  X  Question 2: Depressive symptoms, count, also a covariate (CESD-8 score) 

riearntrans  X  Question 2: Individual earnings, including wage/salary income, bonuses/overtime 

pay/commissions/tips, second job or military reserve earnings, and professional practice or 

trade income; continuous, inverse hyperbolic sine (IHS) transformation, also a covariate 

hatotbtrans  X  Question 2: Total household wealth, including housing wealth, minus all debts; continuous, 

IHS transformation, also a covariate 

     

    Control variables 

radeath    Death during the study’s timeframe 

raattrition    Non-response at some point during the study’s timeframe 

rproxy  X  Interview conducted by proxy 

     

    Demographics 

ragey_b  X  Age at interview in years 

ragender    Gender, binary 

raracem    Race, categorical (white/Caucasian, black/African American, another race) 

rahispan    Hispanic, binary 

ravetrn    Veteran status, binary 

rariskT    Risk tolerance, ordinal (1=least risk tolerant, 6=most risk tolerant) 

     

    Human capital 

raedyrs    Education (in years), continuous 

rshltRC  X  Self-rated health, ordinal, also an outcome variable 

rhlthlm  X  Health problem limited kind or amount of paid work, binary 

rhigov  X  Health insurance from federal government, including Medicare, Medicaid, VA, etc.; binary 

rcovr  X  Health insurance from current or former employer, binary 

rcovs  X  Health insurance from spouse’s employer, binary 

rinsured  X  Combined indicator for having health insurance; binary 
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Variable name  

Time 

variant  Notes 

     

    Social capital 

rmarried  X  Married or partnered, binary 

hhhres  X  Number of people living in household, count 

swork  X  Spouse in paid work, binary 

rfvol  X  Formal volunteering in past year, categorical (none, <100 hours, 100+ hours) 

rivol  X  Informal volunteering in past year, categorical (none, <100 hours, 100+ hours) 

     

    Financial capital 

riearntrans  X  Individual earnings, including wage/salary income, bonuses/overtime pay/commissions/tips, 

second job or military reserve earnings, and professional practice or trade income; continuous, 

IHS transformation, also an outcome variable 

hitotrtrans  X  Total income from respondent and spouse, minus individual earnings from work from 

respondent; continuous, IHS transformation 

hatotbtrans  X  Total household wealth, including housing wealth, minus all debts; continuous, IHS 

transformation, also an outcome variable 

rss  X  Receiving Social Security retirement benefits, binary 

rpeninc  X  Receiving pension income but not considering spousal pensions, binary 

     

    Work characteristics 

rlaborR  X  Labor force status, categorical (full-time, part-time or partly retired, fully retired, unemployed 

or otherwise not working) 

rhours  X  Hours worked/week/year, categorical (<35/week, 35+/week, not working) 

rjcten  X  Years of tenure in current job, continuous (not working = 0) 

rfsizeC  X  Number of employees at work location, including self, categorical (1, 2 or more, not working 

= 0) 

rjcpen  X  Pension plan from current job, categorical (no, yes, not working) 

rjphys  X  Current job requires lots of physical effort, ordinal (none/almost none of the time = 1, 

all/almost all the time = 4, not working = 0) 

rjlift  X  Current job requires lifting heavy loads, ordinal (none/almost none of the time = 1, all/almost 

all the time = 4, not working = 0) 

rjstoop  X  Current job requires stooping, kneeling, or crouching; ordinal (none/almost none of the time = 

1, all/almost all the time = 4, not working = 0) 

rjsight  X  Current job requires good eyesight, ordinal (none/almost none of the time = 1, all/almost all 

the time = 4, not working = 0) 

rjstres  X  Current job involves lots of stress, ordinal (strongly agree = 1, strongly disagree = 4, not 

working = 0) 

rbluecollar  X  Occupation, categorical (blue collar, white collar, and not working); reduced from 25 codes 

following Cahill, Giandrea, & Quinn (2011) 

rgoodsindustry  X  Industry, categorical (goods producing, service producing, not working); reduced from 19 

codes following Kail & Warner (2013) and Bureau of labor Statistics (2016) 
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Appendix D: Bivariate Statistics 
 

Table 7. Baseline Associations Between Type of Work and Outcome Variables 
Variables Wage-and-Salary 

M(SD) or row % 
 

Self-Employed 

M(SD) or row % 
 p 

At baseline:  78.6%  21.4%   

 n = 5,090  n = 1,383   

      

Age 59.70 (7.22)  63.49 (8.51)  <0.001 

Gender      

Female 84.70%  15.30%   

Male 72.15%  27.85%  <0.001 

Race      

White 76.90%  23.10%   

Black 86.91%  13.09%   

Other races 81.98%  18.02%  <0.001 

Ethnicity      

Hispanic 82.63%  17.37%   

Not Hispanic 78.24%  21.76%  0.015 

Veteran status      

Veteran 70.76%  29.24%   

Not a veteran 80.91%  19.09%  <0.001 

Risk tolerance 2.23 (1.43)  2.69 (1.70)  <0.001 

Health, self-reported 2.50 (0.96)  2.58 (0.98)  0.006 

Depressive symptoms 1.11 (1.71)  1.02 (1.58)  0.071 

Education, in years 13.14 (2.93)  13.42 (3.06)  0.002 

Health problems limiting work      

Yes 80.79%  19.21%   

No 62.62%  37.38%  <0.001 

Has health insurance from any source      

Yes 80.79%  19.21%   

No 62.62%  37.38%  <0.001 

… from the government (e.g., Medicare)      

Yes 68.14%  31.86%   

No 83.35%  16.65%  <0.001 

…from workplace      

Yes 89.02%  10.98%   

No 65.54%  34.46%  <0.001 

…from spouse      

Yes 73.25%  26.75%   

No (including not married) 79.75%  20.25%  <0.001 

Spouse’s work status (not working)      

Not working for pay 77.15%  22.85%   

Working for pay 76.79%  23.21%   

Not married 83.21%  16.79%  <0.001 

Household members 2.43 (1.23)  2.27 (1.00)  <0.001 

Formal volunteering, past year      

None 80.54%  19.46%   

<100 hours 78.02%  21.98%   

100+ hours 72.58%  27.42%  <0.001 

Informal volunteering, past year      

None 81.84%  18.16%   

<100 hours 76.75%  23.25%   

100+ hours 76.63%  23.37%  <0.001 

Individual earnings $37,039 (41,550)  $ 16,147 (70,242)  <0.001 

Household wealth $337,151 (681,353)  $1,020,173 (2,335,214)  <0.001 

Household income, less individual earnings $41,732 (73,249)  $110,879 (201,091)  <0.001 
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Variables Wage-and-Salary 

M(SD) or row % 
 

Self-Employed 

M(SD) or row % 
 p 

Currently receiving      

…Social Security retirement benefits      

Yes 67.29%  32.71%   

No 83.68%  16.32%  <0.001 

…pension income      

Yes 75.58%  24.15%   

No 79.07%  20.93%  <0.001 

Labor force statusa      

Full-time 83.94%  16.06%   

Part-time or partly retired 68.80%  31.20%  <0.001 

Job requires…      

lots of physical effort 2.16 (1.12)  2.19 (1.14)  0.453 

lifting heavy loads 1.61 (0.94)  1.62 (0.93)  0.790 

stooping, kneeling, crouching 2.01 (1.07)  2.00 (1.08)  0.744 

good eyesight 3.54 (0.78)  3.41 (0.87)  <0.001 

Job involves lots of stress 2.68 (0.84)  2.51 (0.84)  <0.001 

Years at current job 11.86 (11.09)  13.59 (14.28)  <0.001 

Work colleagues/employees      

Work aloneb 15.11%  84.89%   

Work with others 85.57%  14.43%  <0.001 

Hours worked per week      

35+ 70.49%  29.51%   

<35 84.68%  15.32%  <0.001 

Pension plan in current job      

Yes 95.54%  4.46%   

No 63.14%  36.86%  <0.001 

Occupation      

Blue collar 69.40%  30.60%   

White collar 63.21%  36.79%  <0.001 

Industry      

Goods producing 60.07%  39.93%   

Service producing 64.83%  35.17%  0.011 

Dies during the study      

Yes 70.28%  29.72%   

No 79.85%  20.15%  <0.001 

Nonresponse during the study      

Yes 76.74%  23.26%   

No 79.16%  20.84%  0.050 

Proxy respondent      

Yes 70.65%  29.35%   

No 79.27%  20.73%  <0.001 

Notes: N=6,473, not accounting for missing data. Row percentages shown. t tests were run for 

continuous dependent variables and χ2 tests were run for nominal dependent variables.  

a. Because this sample only includes respondents working at baseline, respondents did not 

report being unemployed, disabled, or otherwise not working; however, some moved into these 

categories in future waves. See Appendix B for those descriptive statistics. b. Respondents were 

asked how many people worked at their organization’s location, not at the entire company. 



125 

 

Appendix E: Propensity Score Balancing Check 
Table 5, below, lists results from a set of bivariate models between each covariate used to create 

the inverse probability of treatment weights and the “treatment” indicator (i.e., wage-and-salary 

work or self-employment). The pre-IPTW column is unbalanced; that is, it includes only the 

sampling weights provided by the HRS. The remaining models consider “grand” weights that are 

a product of the sampling weights and inverse probability of treatment weights created to analyze 

the average treatment effect (ATE) using generalized boosted modeling and logistic regression, 

respectively; and the average treatment effect for the treated (ATT) using generalized boosted 

modeling and logistic regression, respectively. Results are discussed in Chapter 3. 

Table 8. Covariate Imbalance Before and After Inverse Probability of Treatment Weighting 
 Pre-IPTW  GBM ATEa  Logit ATEb  GBM ATTa  Logit ATTb 

 b (Robust SE)  b (Robust SE)  b (Robust SE)  b (Robust SE)  b (Robust SE) 

Age 3.19*** (0.27)  0.59* (0.29)  -0.25 (0.36)  -0.42 (0.38)  -0.45 (0.73) 

Female (male) -0.69*** (0.07)  -0.09 (0.10)  0.18 (0.11)  -0.15 (0.08)  0.37 (0.20) 

Race (white)               

Black -0.75*** (0.13)  -0.24 (0.17)  -0.29 (0.24)  -0.22 (0.15)  -0.71 (0.69) 

Other races -0.21 (0.16)  0.03 (0.23)  0.35 (0.24)  -0.05 (0.19)  0.37 (0.23) 

Hispanic (not) -0.21 (0.14)  -0.02 (0.17)  0.33 (0.17)  -0.09 (0.15)  0.32 (0.21) 

Veteran (not) 0.37*** (0.08)  0.06 (0.12)  -0.09 (0.15)  -0.07 (0.10)  -0.22 (0.32) 

Risk tolerance 0.41*** (0.08)  0.08 (0.07)  -0.03 (0.11)  0.11 (0.09)  -0.11 (0.30) 

Self-reported health 0.09* (0.04)  0.07 (0.05)  -0.04 (0.06)  0.02 (0.04)  -0.05 (0.10) 

4+ depressive symptoms (<4) -0.28* (0.14)  -0.39* (0.17)  -0.12 (0.17)  -0.04 (0.16)  0.15 (0.31) 

Education, in years 0.28** (0.10)  0.01 (0.12)  -0.41* (0.16)  -0.03 (0.12)  -0.76** (0.26) 

Has health insurance (does not) -1.11*** (0.10)  -0.25* (0.12)  -0.13 (0.12)  -0.24* (0.12)  -0.41* (0.20) 

Married or partnered (not) 0.31*** (0.09)  0.20 (0.13)  -0.01 (0.13)  0.00 (0.11)  -0.36 (0.21) 

Household incomed 0.22*** (0.05)  0.03 (0.04)  -0.23* (0.09)  0.05 (0.07)  -0.43 (0.22) 

Household wealthd 1.39*** (0.16)  0.56*** (0.15)  0.15 (0.26)  0.09 (0.17)  -0.84 (0.43) 

Part-time worker (full-time) 0.91*** (0.07)  0.28** (0.09)  0.21 (0.12)  -0.06 (0.09)  0.17 (0.26) 

Proxy respondent (not) 0.45*** (0.13)  0.21 (0.18)  0.14 (0.17)  0.26 (0.14)  0.40 (0.22) 

N 6,391  6,391  6,391  6,391  6,391 

Notes: OLS, logistic, and multinomial logistic regression analyses were used, depending on the outcome variable. 

Data are from the 2004 (baseline) wave of the HRS. ATE = average treatment effect where weight is 1/P for a 

“treated” case and 1/(1 – P) for a comparison case. ATT = average treatment effect for the treated where weight is 1 

for a “treated” case and P(1 – P) for a comparison case. P is predicted using a. generalized boosted modeling from 

the RAND twang Stata macro, and b. logistic regression; d. Transformed using the inverse hyperbolic sine function. 

*** p < 0.001, ** p < 0.01, * p < 0.05, two-tailed tests. 
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Appendix F: Alternative Outcome Models 
The following pages contain a set of models that act as a form of sensitivity analysis for 

Question 2. Within each table, the first model considers the sampling weights provided by the 

HRS, while the final three models consider “grand” weights that are a product of the sampling 

weights and inverse probability of treatment weights created to analyze the average treatment 

effect (ATE) using logistic regression, the average treatment effect for the treated (ATT) using 

generalized boosted modeling, and the ATT using logistic regression, respectively. Differences 

in key findings are discussed in Chapter 4. 
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Table 9. Estimated Effect of Self-Employment on Self-Rated Health, Supplemental Models 
 Sample Weights Only  Logit ATE Estimationa  GBM ATT Estimationb  Logit ATT Estimationa 

 exp(b) Robust SEc t  exp(b) Robust SEc t  exp(b) Robust SEc t  exp(b) Robust SEc t 

Weighted estimation only                

Self-employment (wage-and-salary) 1.22** (0.08) 3.24  1.09 (0.11) 0.84  1.07 (0.08) 0.87  1.02 (0.23) 0.09 

                

Doubly-robust estimation                

Self-employment (wage-and-salary) 1.12* (0.05) 2.45  1.11 (0.09) 1.30  1.00 (0.06) -0.06  0.97 (0.11) -0.27 

Age 0.99** (0.00) -4.99  0.98** (0.00) -4.80  0.98** (0.01) -3.17  0.97** (0.01) -3.17 

Female (male) 1.19** (0.05) 4.37  1.27** (0.10) 3.05  1.25** (0.07) 3.75  1.30* (0.14) 2.37 

Race (white)                

Black 0.76** (0.03) -6.03  0.69** (0.06) -4.02  0.77** (0.05) -3.95  0.54** (0.11) -3.02 

Other races 0.88 (0.07) -1.68  1.27 (0.22) 1.35  1.04 (0.12) 0.31  1.08 (0.13) 0.66 

Hispanic 0.84* (0.06) -2.54  0.67** (0.10) -2.71  0.70** (0.07) -3.51  0.59** (0.08) -4.09 

Veteran 1.09 (0.05) 1.85  1.11 (0.08) 1.33  1.22** (0.08) 3.24  1.11 (0.12) 0.97 

Risk tolerance 1.01 (0.01) 0.92  0.98 (0.02) -0.88  1.01 (0.02) 0.58  0.96 (0.03) -1.17 

Self-rated health, lagged 5.14** (0.16) 54.07  5.21** (0.30) 28.30  4.78** (0.21) 35.87  5.28** (0.50) 17.72 

Depressive symptoms 0.81** (0.01) -19.18  0.80** (0.02) -11.04  0.80** (0.01) -12.76  0.74** (0.04) -5.12 

Education, in years 1.07** (0.01) 9.84  1.07** (0.01) 5.69  1.06** (0.01) 6.05  1.06** (0.02) 4.15 

Health problems limiting work 0.34** (0.01) -24.88  0.31** (0.02) -16.59  0.29** (0.02) -18.71  0.30** (0.04) -9.71 

Has health insurance (does not) 0.97 (0.05) -0.58  0.97 (0.09) -0.35  0.96 (0.08) -0.44  1.14 (0.14) 1.02 

Spouse’s work status (not working)                

Working 1.04 (0.04) 1.14  0.98 (0.07) -0.28  0.97 (0.05) -0.57  0.84 (0.11) -1.32 

Not married 1.01 (0.04) 0.23  0.89 (0.06) -1.63  0.88* (0.06) -1.99  0.81 (0.09) -1.86 

Household members 0.95** (0.01) -3.49  0.92** (0.02) -3.70  0.93** (0.02) -3.15  0.90** (0.04) -2.62 

Formal volunteering, past year (none)                

<100 hours 1.13** (0.04) 3.48  1.04 (0.06) 0.56  1.10 (0.06) 1.76  0.91 (0.12) -0.76 

100+ hours 1.19** (0.05) 3.97  1.09 (0.09) 1.12  1.20** (0.08) 2.74  0.98 (0.11) -0.20 

Informal volunteering, past year (none)                

<100 hours 1.12** (0.04) 3.26  1.07 (0.06) 1.12  1.10 (0.05) 1.86  0.98 (0.11) -0.15 

100+ hours 1.21** (0.06) 4.18  1.21* (0.09) 2.51  1.19* (0.08) 2.57  1.31 (0.20) 1.78 

Individual earningsd 1.00 (0.00) 0.05  1.00 (0.01) 0.21  0.99 (0.01) -1.42  1.01 (0.01) 0.90 

Household wealthd 1.01 (0.01) 1.44  1.01 (0.01) 0.90  1.01 (0.01) 0.88  1.01 (0.02) 0.57 

Household income, less individual earningsd 1.01** (0.00) 4.13  1.01** (0.00) 2.93  1.01* (0.00) 2.26  1.01 (0.01) 1.94 

Currently receiving:                

Social Security retirement benefits 1.08 (0.05) 1.78  1.03 (0.08) 0.41  1.08 (0.08) 1.00  0.83 (0.12) -1.32 

Receiving pension income 1.05 (0.04) 1.47  1.08 (0.06) 1.27  1.04 (0.05) 0.70  1.20 (0.15) 1.43 

Labor force status (full-time)                

Part-time or partly retired 0.86 (0.08) -1.74  0.89 (0.12) -0.84  0.73* (0.10) -2.24  0.68* (0.10) -2.53 

Fully retired 0.67 (0.21) -1.29  0.46* (0.15) -2.35  0.44** (0.13) -2.70  0.43* (0.15) -2.38 

Unemployed or otherwise not working 0.67 (0.22) -1.22  0.47* (0.16) -2.23  0.45* (0.15) -2.46  0.37* (0.16) -2.28 
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 Sample Weights Only  Logit ATE Estimationa  GBM ATT Estimationb  Logit ATT Estimationa 

 exp(b) Robust SEc t  exp(b) Robust SEc t  exp(b) Robust SEc t  exp(b) Robust SEc t 

Job requires…                

lots of physical effort 0.99 (0.03) -0.43  0.96 (0.04) -1.05  0.99 (0.04) -0.29  0.90* (0.05) -1.97 

lifting heavy loads 1.05 (0.03) 1.57  1.11* (0.05) 2.25  1.08 (0.05) 1.66  1.12* (0.06) 2.02 

stooping, kneeling, crouching 1.00 (0.03) 0.15  0.97 (0.04) -0.81  1.02 (0.04) 0.55  1.02 (0.05) 0.32 

good eyesight 1.03 (0.03) 1.23  0.99 (0.06) -0.14  1.02 (0.04) 0.51  0.88 (0.12) -0.95 

Job involves lots of stress 0.92** (0.02) -3.48  0.93 (0.04) -1.89  0.95 (0.03) -1.39  0.86** (0.05) -2.63 

Years at current job 1.00 (0.00) 0.24  1.00 (0.00) -0.09  1.00 (0.00) 1.15  1.00 (0.00) 0.33 

Number of employees (more than one)                

Work alone 1.03 (0.07) 0.42  1.15 (0.18) 0.88  1.04 (0.08) 0.46  1.61 (0.46) 1.69 

Not working 1.28 (0.42) 0.76  1.62 (0.59) 1.33  1.78 (0.57) 1.80  0.77 (0.40) -0.51 

35+ hours worked per week (<35 hours) 0.92 (0.08) -1.00  0.98 (0.14) -0.14  0.78 (0.10) -1.85  0.91 (0.15) -0.54 

Pension from current job 1.01 (0.05) 0.22  1.00 (0.10) 0.02  1.03 (0.07) 0.39  0.80 (0.22) -0.81 

Blue collar occupation (white collar) 1.01 (0.05) 0.21  0.99 (0.07) -0.15  0.96 (0.06) -0.55  0.95 (0.09) -0.54 

Goods producing industry (service producing) 1.00 (0.05) -0.03  0.89 (0.09) -1.20  0.93 (0.07) -0.92  0.72* (0.11) -2.10 

Controls                

Dies during the study 0.54** (0.04) -9.04  0.60** (0.06) -5.25  0.56** (0.06) -5.57  0.59** (0.08) -4.15 

Nonresponse during the study 1.01 (0.05) 0.30  0.96 (0.07) -0.56  0.98 (0.06) -0.31  0.90 (0.09) -1.11 

Proxy respondent 0.80* (0.07) -2.53  0.77 (0.11) -1.93  0.79* (0.09) -1.99  0.71* (0.11) -2.29 

Thresholds:                

Fair/poor to ≥ good 3.86** (1.10) 4.71  1.48 (0.73) 0.80  1.77 (0.89) 1.15  0.24 (0.24) -1.41 

≤ Good to ≥ very good 54.06** (15.66) 13.78  22.76** (10.83) 6.57  23.92** (12.03) 6.31  4.73 (4.18) 1.76 

≤ Very good to excellent 1,004.45** (296.47) 23.42  417.30** (201.40) 12.50  423.97** (213.38) 12.02  90.54** (79.76) 5.11 

Intercept                

F test (43, 860397) = 143.5, p < 0.001  (43, 160227) = 65.86, p < 0.001  (43, 309048) = 69.45, p < 0.001  (43, 26106) = 36.62, p < 0.001 

Ne 26,696f  26,696f  26,502g  26,696f 

Notes: Data from a combined 6 waves of the HRS that include 6,473 individuals. Individual (m=20) estimates combined using Rubin’s combination rules.  

** p < 0.01, * p < 0.05, two-tailed tests. ATE = average treatment effect where weight is 1/P for a “treated” case and 1/(1 – P) for a comparison case. ATT = 

average treatment effect for the treated where weight is 1 for a “treated” case and P(1 – P) for a comparison case. P is predicted using a. logistic regression, and 

b. generalized boosted modeling from the RAND twang Stata macro; c. Exponentiated robust standard errors are derived using the delta rule: exp(b)*se(b); d. 

Transformed using the inverse hyperbolic sine function; e. Sample sizes vary due to weighting differences; Within f. 5,027 and g. 5,045 households. 
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Table 10. Estimated Effect of Self-Employment on Depressive Symptoms, Supplemental Models 
 Sample Weights Only  Logit ATE Estimationa  GBM ATT Estimationb  Logit ATT Estimationa 

 exp(b) Robust SEc t  exp(b) Robust SEc t  exp(b) Robust SEc t  exp(b) Robust SEc t 

Weighted estimation only                

Self-employment (wage-and-salary) 1.00 (0.05) 0.02  1.15* (0.08) 2.07  1.17** (0.07) 2.67  1.28* (0.16) 2.01 

                

Doubly-robust estimation                

Self-employment (wage-and-salary) 1.05 (0.04) 1.41  1.07 (0.05) 1.43  1.04 (0.05) 0.79  1.19* (0.09) 2.22 

Age 0.99** (0.00) -3.36  0.99** (0.00) -3.19  0.99 (0.00) -1.94  0.99 (0.01) -1.80 

Female (male) 1.15** (0.04) 4.32  1.19** (0.05) 3.88  1.16** (0.05) 3.20  1.30** (0.10) 3.40 

Race (white)                

Black 0.97 (0.03) -0.81  0.88 (0.07) -1.54  0.97 (0.05) -0.49  0.62 (0.16) -1.90 

Other races 1.05 (0.05) 0.96  1.02 (0.10) 0.26  1.16 (0.09) 1.94  1.21* (0.10) 2.24 

Hispanic 1.05 (0.05) 0.95  0.97 (0.07) -0.49  0.92 (0.06) -1.15  0.88 (0.07) -1.56 

Veteran 0.98 (0.04) -0.41  0.97 (0.06) -0.51  0.96 (0.05) -0.75  0.99 (0.09) -0.14 

Risk tolerance 1.02 (0.01) 1.66  1.02 (0.02) 1.39  1.02 (0.01) 1.43  1.03 (0.02) 1.23 

Self-rated health 0.73** (0.01) -20.24  0.71** (0.02) -12.01  0.71** (0.02) -14.70  0.64** (0.04) -6.75 

Depressive symptoms, lagged 1.28** (0.01) 38.18  1.28** (0.01) 26.87  1.29** (0.01) 26.69  1.27** (0.03) 11.25 

Education, in years 0.99 (0.01) -1.79  0.99 (0.01) -1.02  0.99 (0.01) -1.55  0.99 (0.01) -0.81 

Health problems limiting work 1.36** (0.04) 11.35  1.30** (0.08) 4.17  1.32** (0.06) 6.56  1.12 (0.19) 0.70 

Has health insurance (does not) 0.92* (0.03) -2.24  0.89 (0.06) -1.81  0.87* (0.05) -2.44  0.82** (0.05) -3.32 

Spouse’s work status (not working)                

Working 0.99 (0.03) -0.27  0.93 (0.05) -1.24  1.01 (0.05) 0.18  0.91 (0.07) -1.22 

Not married 1.20** (0.04) 5.72  1.08 (0.06) 1.30  1.22** (0.06) 4.09  1.14 (0.09) 1.58 

Household members 1.01 (0.01) 1.31  1.00 (0.02) -0.22  1.01 (0.02) 0.66  0.97 (0.04) -0.68 

Formal volunteering, past year (none)                

<100 hours 0.92** (0.03) -2.81  1.01 (0.07) 0.10  0.90* (0.04) -2.28  1.22 (0.20) 1.19 

100+ hours 0.90** (0.03) -2.76  1.02 (0.07) 0.26  0.97 (0.05) -0.62  1.12 (0.11) 1.17 

Informal volunteering, past year (none)                

<100 hours 0.98 (0.02) -0.90  0.98 (0.04) -0.53  0.95 (0.03) -1.53  1.00 (0.07) -0.01 

100+ hours 0.98 (0.03) -0.56  0.95 (0.05) -1.01  0.91 (0.05) -1.83  0.84* (0.06) -2.42 

Individual earningsd 1.00 (0.00) -0.86  1.00 (0.01) -0.52  1.00 (0.00) -0.23  1.01 (0.01) 1.07 

Household wealthd 0.99* (0.00) -2.40  0.98** (0.01) -2.91  0.98* (0.01) -2.21  0.98 (0.01) -1.67 

Household income, less individual earningsd 0.99** (0.00) -3.23  1.00 (0.00) -1.45  1.00 (0.00) -1.18  0.99 (0.00) -1.69 

Currently receiving:                

Social Security retirement benefits 1.04 (0.04) 1.25  1.16* (0.07) 2.26  1.00 (0.05) -0.07  1.28* (0.15) 2.07 

Receiving pension income 0.96 (0.03) -1.50  1.03 (0.05) 0.55  1.02 (0.04) 0.51  1.08 (0.07) 1.20 

Labor force status (full-time)                

Part-time or partly retired 1.12 (0.09) 1.39  1.11 (0.12) 1.00  1.03 (0.12) 0.30  0.99 (0.16) -0.05 

Fully retired 1.29 (0.29) 1.12  0.99 (0.24) -0.05  1.35 (0.39) 1.03  1.08 (0.30) 0.28 

Unemployed or otherwise not working 1.57* (0.36) 1.98  1.30 (0.32) 1.04  1.62 (0.49) 1.60  1.44 (0.40) 1.31 
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 Sample Weights Only  Logit ATE Estimationa  GBM ATT Estimationb  Logit ATT Estimationa 

 exp(b) Robust SEc t  exp(b) Robust SEc t  exp(b) Robust SEc t  exp(b) Robust SEc t 

Job requires…                

lots of physical effort 1.07** (0.02) 3.25  1.04 (0.04) 1.02  1.07* (0.03) 2.21  0.99 (0.04) -0.38 

lifting heavy loads 0.97 (0.02) -1.22  0.99 (0.04) -0.27  0.96 (0.03) -1.05  0.98 (0.04) -0.48 

stooping, kneeling, crouching 1.01 (0.02) 0.40  0.99 (0.03) -0.32  1.02 (0.03) 0.50  1.04 (0.04) 1.04 

good eyesight 0.94** (0.02) -3.09  0.88* (0.05) -2.20  0.96 (0.03) -1.28  0.81** (0.06) -2.93 

Job involves lots of stress 1.24** (0.02) 10.72  1.23** (0.04) 5.82  1.26** (0.04) 6.90  1.22* (0.11) 2.11 

Years at current job 1.00 (0.00) -1.56  1.00 (0.00) -1.02  1.00 (0.00) -1.32  0.99* (0.00) -2.38 

Number of employees (more than one)                

Work alone 1.00 (0.05) 0.05  0.89 (0.07) -1.49  1.03 (0.06) 0.54  0.89 (0.11) -0.93 

Not working 1.30 (0.30) 1.12  1.21 (0.37) 0.62  1.27 (0.40) 0.75  0.74 (0.23) -0.98 

35+ hours worked per week (<35 hours) 1.09 (0.08) 1.10  1.05 (0.11) 0.51  0.95 (0.11) -0.45  0.95 (0.15) -0.33 

Pension from current job 0.95 (0.03) -1.41  0.96 (0.06) -0.66  0.90 (0.05) -1.80  0.94 (0.07) -0.78 

Blue collar occupation (white collar) 0.99 (0.04) -0.17  1.03 (0.07) 0.39  0.92 (0.05) -1.47  1.12 (0.08) 1.57 

Goods producing industry (service producing) 1.05 (0.04) 1.05  1.14 (0.08) 1.71  1.01 (0.07) 0.11  1.25* (0.12) 2.35 

Controls                

Dies during the study 1.13** (0.04) 3.02  1.18* (0.08) 2.42  1.14* (0.07) 2.05  1.18* (0.09) 2.20 

Nonresponse during the study 1.06 (0.04) 1.36  1.01 (0.06) 0.16  1.09 (0.06) 1.47  0.96 (0.09) -0.38 

Intercept 1.65* (0.36) 2.27  3.61** (1.64) 2.83  1.71 (0.53) 1.71  6.82* (5.54) 2.36 

F test (42, 1.02x106) = 121.4, p < 0.001  (42, 244039) = 65.59, p < 0.001  (42, 309314) = 66.22, p < 0.001  (42, 134729) = 42.99, p < 0.001 

Ne 25,620f  25,620f  26,435g  25,620f 

Notes: Data from a combined 6 waves of the HRS that include 6,473 individuals. Individual (m=20) estimates combined using Rubin’s combination rules.  

** p < 0.01, * p < 0.05, two-tailed tests. ATE = average treatment effect where weight is 1/P for a “treated” case and 1/(1 – P) for a comparison case. ATT = 

average treatment effect for the treated where weight is 1 for a “treated” case and P(1 – P) for a comparison case. P is predicted using a. logistic regression, and 

b. generalized boosted modeling from the RAND twang Stata macro; c. Exponentiated robust standard errors are derived using the delta rule: exp(b)*se(b); d. 

Transformed using the inverse hyperbolic sine function; e. Sample sizes vary due to weighting differences; Within f. 5,001 and g. 4,974 households. 
 

 

  



131 

 

Table 11. Estimated Effect of Self-Employment on IHS-Transformed Individual Earnings, Supplemental Models 
 Sample Weights Only  Logit ATE Estimationa  GBM ATT Estimationb  Logit ATT Estimationa 

 b Robust SE t  b Robust SE t  b Robust SE t  b Robust SE t 

Weighted estimation only                

Self-employment (wage-and-salary) -5.62** (0.12) -46.86  -5.74** (0.25) -23.15  -4.78** (0.20) -23.88  -6.02** (0.68) -8.79 

                

Doubly-robust estimation                

Self-employment (wage-and-salary) -2.80** (0.11) -26.55  -3.03** (0.17) -18.00  -2.63** (0.14) -18.26  -2.77** (0.19) -14.90 

Age 0.01 (0.00) 1.38  0.00 (0.01) 0.15  -0.01 (0.01) -1.06  -0.01 (0.01) -0.58 

Female (male) -0.12* (0.06) -2.18  -0.27* (0.13) -2.06  -0.09 (0.11) -0.80  -0.34* (0.14) -2.39 

Race (white)                

Black -0.10 (0.06) -1.51  0.22 (0.18) 1.20  0.13 (0.13) 0.96  0.53** (0.20) 2.58 

Other races 0.00 (0.10) 0.05  0.27 (0.24) 1.13  -0.04 (0.19) -0.19  -0.01 (0.19) -0.04 

Hispanic -0.34** (0.11) -3.11  -0.36* (0.19) -1.96  -0.19 (0.23) -0.81  -0.14 (0.21) -0.67 

Veteran 0.08 (0.07) 1.13  0.08 (0.16) 0.49  0.09 (0.13) 0.63  0.08 (0.17) 0.46 

Risk tolerance -0.02 (0.02) -1.06  -0.02 (0.05) -0.49  0.00 (0.04) 0.10  -0.01 (0.06) -0.23 

Self-rated health 0.03 (0.03) 1.18  -0.01 (0.06) -0.09  -0.05 (0.06) -0.90  0.03 (0.07) 0.38 

Depressive symptoms -0.01 (0.01) -0.47  0.01 (0.03) 0.20  -0.00 (0.03) -0.15  0.07 (0.04) 1.83 

Education, in years 0.05** (0.01) 4.70  0.04* (0.02) 2.15  0.04* (0.02) 2.06  0.04 (0.02) 1.93 

Health problems limiting work -0.39** (0.07) -5.85  -0.40** (0.12) -3.45  -0.39** (0.12) -3.36  -0.23 (0.14) -1.66 

Has health insurance (does not) 0.47** (0.11) 4.20  0.57** (0.20) 2.87  0.37 (0.19) 1.94  0.38* (0.19) 2.06 

Spouse’s work status (not working)                

Working 0.21** (0.06) 3.33  -0.05 (0.15) -0.35  0.12 (0.13) 0.95  -0.40** (0.14) -2.79 

Not married 0.11 (0.07) 1.56  -0.00 (0.15) -0.03  0.02 (0.14) 0.12  -0.07 (0.18) -0.38 

Household members 0.01 (0.02) 0.50  -0.02 (0.04) -0.52  0.01 (0.05) 0.23  0.01 (0.05) 0.19 

Formal volunteering, past year (none)                

<100 hours -0.00 (0.06) -0.03  -0.07 (0.12) -0.55  -0.01 (0.13) -0.04  -0.19 (0.16) -1.19 

100+ hours -0.27** (0.07) -3.92  -0.32 (0.18) -1.79  -0.26 (0.14) -1.81  -0.18 (0.20) -0.93 

Informal volunteering, past year (none)                

<100 hours 0.02 (0.05) 0.33  0.17 (0.10) 1.68  0.12 (0.10) 1.13  0.32 (0.16) 1.96 

100+ hours -0.03 (0.07) -0.44  0.02 (0.17) 0.09  -0.12 (0.15) -0.84  0.01 (0.19) 0.05 

Individual earnings, laggedc 0.33** (0.01) 39.11  0.29** (0.02) 15.26  0.30** (0.01) 20.66  0.34** (0.02) 18.59 

Household wealthc -0.06** (0.01) -5.54  -0.07** (0.02) -2.85  -0.10** (0.03) -3.86  -0.04 (0.03) -1.13 

Household income, less individual earningsc 0.01** (0.00) 3.14  0.01 (0.01) 1.72  0.01 (0.01) 1.36  0.03** (0.01) 2.81 

Currently receiving:                

Social Security retirement benefits -0.64** (0.09) -7.23  -0.41** (0.15) -2.70  -0.19 (0.16) -1.16  -0.27 (0.21) -1.29 

Receiving pension income -0.23** (0.06) -3.61  -0.51** (0.12) -4.32  -0.33** (0.11) -3.04  -0.31* (0.16) -2.00 

Labor force status (full-time)                

Part-time or partly retired -0.35* (0.14) -2.57  -0.53 (0.35) -1.52  -0.41 (0.32) -1.28  -0.29 (0.29) -0.99 

Fully retired -4.55** (1.10) -4.12  -5.11** (1.85) -2.76  -3.14* (1.52) -2.07  -4.13** (1.35) -3.06 

Unemployed or otherwise not working -2.58* (1.11) -2.31  -3.38 (1.86) -1.82  -1.42 (1.55) -0.92  -2.46 (1.38) -1.78 
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 Sample Weights Only  Logit ATE Estimationa  GBM ATT Estimationb  Logit ATT Estimationa 

 b Robust SE t  b Robust SE t  b Robust SE t  b Robust SE t 

Job requires…                

lots of physical effort -0.01 (0.04) -0.34  -0.06 (0.08) -0.76  -0.01 (0.08) -0.18  -0.06 (0.09) -0.73 

lifting heavy loads -0.03 (0.05) -0.75  -0.09 (0.10) -0.93  -0.14 (0.11) -1.29  -0.13 (0.10) -1.24 

stooping, kneeling, crouching -0.02 (0.03) -0.51  -0.08 (0.08) -1.05  -0.04 (0.08) -0.47  -0.18* (0.08) -2.09 

good eyesight 0.06 (0.04) 1.45  0.06 (0.11) 0.52  -0.01 (0.09) -0.15  0.11 (0.08) 1.40 

Job involves lots of stress 0.10** (0.03) 2.87  0.12 (0.09) 1.36  0.14 (0.08) 1.69  -0.01 (0.08) -0.13 

Years at current job -0.01* (0.00) -2.56  -0.01 (0.01) -1.88  -0.01 (0.01) -1.12  -0.02** (0.01) -2.86 

Number of employees (more than one)                

Work alone -1.13** (0.13) -8.95  -1.15** (0.25) -4.57  -1.17** (0.17) -6.92  -0.88** (0.26) -3.33 

Not working -0.09 (1.10) -0.08  0.64 (1.88) 0.34  -0.93 (1.53) -0.61  -0.56 (1.36) -0.42 

35+ hours worked per week (<35 hours) -0.03 (0.12) -0.27  -0.64 (0.33) -1.91  -0.32 (0.32) -1.01  -0.13 (0.30) -0.44 

Pension from current job 1.03** (0.07) 13.76  1.59** (0.16) 9.87  1.69** (0.17) 9.90  1.60** (0.24) 6.68 

Blue collar occupation (white collar) 0.14* (0.06) 2.23  0.22 (0.15) 1.54  0.32* (0.14) 2.24  0.19 (0.15) 1.32 

Goods producing industry (service producing) -0.07 (0.08) -0.92  0.16 (0.26) 0.63  -0.03 (0.20) -0.15  0.36 (0.26) 1.37 

Controls                

Dies during the study 0.01 (0.10) 0.12  -0.10 (0.18) -0.59  -0.11 (0.17) -0.66  -0.34 (0.18) -1.88 

Nonresponse during the study -0.13 (0.07) -1.76  -0.12 (0.14) -0.84  -0.20 (0.13) -1.53  -0.41** (0.15) -2.68 

Proxy respondent -0.08 (0.13) -0.60  -0.06 (0.22) -0.29  0.03 (0.21) 0.16  -0.01 (0.20) -0.06 

Intercept 5.29** (0.43) 12.36  6.49** (0.96) 6.73  6.88** (0.90) 7.63  6.20** (1.24) 5.01 

F test (43, 5035) = 1270, p < 0.001  (43, 4996) = 383.2, p < 0.001  (43, 4966) = 324.8, p < 0.001  (43, 4709) = 345.4, p < 0.001 

Nd 26,715e  26,715e  26,521f  26,715e 

Notes: Data from a combined 6 waves of the HRS that include 6,473 individuals. Individual (m=20) estimates combined using Rubin’s combination rules.  

** p < 0.01, * p < 0.05, two-tailed tests. ATE = average treatment effect where weight is 1/P for a “treated” case and 1/(1 – P) for a comparison case. ATT = 

average treatment effect for the treated where weight is 1 for a “treated” case and P(1 – P) for a comparison case. P is predicted using a. logistic regression, and 

b. generalized boosted modeling from the RAND twang Stata macro; c. Transformed using the inverse hyperbolic sine function; d. Sample sizes vary due to 

weighting differences; Within e. 5,073 and f. 5,046 households. 
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Table 12. Estimated Effect of Self-Employment on IHS-Transformed Household Wealth, Supplemental Models 
 Sample Weights Only  Logit ATE Estimationa  GBM ATT Estimationb  Logit ATT Estimationa 

 b Robust SE t  b Robust SE t  b Robust SE t  b Robust SE t 

Weighted estimation only                

Self-employment (wage-and-salary) 1.33** (0.14) 9.25  0.15 (0.25) 0.63  0.05 (0.16) 0.30  -0.80* (0.40) -2.00 

                

Doubly-robust estimation                

Self-employment (wage-and-salary) 0.64** (0.10) 6.24  0.23 (0.14) 1.61  0.08 (0.10) 0.78  0.10 (0.11) 0.87 

Age 0.01 (0.01) 0.86  -0.00 (0.01) -0.11  -0.00 (0.01) -0.28  -0.00 (0.01) -0.31 

Female (male) 0.00 (0.08) 0.06  -0.06 (0.12) -0.48  -0.12 (0.10) -1.30  -0.17 (0.10) -1.80 

Race (white)                

Black -0.90** (0.14) -6.44  -1.00** (0.21) -4.81  -1.22** (0.22) -5.58  -0.86** (0.20) -4.32 

Other races -0.43 (0.22) -1.96  -0.38 (0.25) -1.53  -0.36 (0.21) -1.72  -0.24 (0.20) -1.20 

Hispanic 0.00 (0.19) 0.00  -0.21 (0.22) -0.95  -0.18 (0.18) -1.04  -0.18 (0.20) -0.86 

Veteran -0.10 (0.09) -1.08  -0.09 (0.14) -0.64  -0.23* (0.11) -2.20  -0.13 (0.12) -1.09 

Risk tolerance 0.03 (0.03) 1.16  0.00 (0.04) 0.06  0.01 (0.03) 0.32  -0.01 (0.03) -0.35 

Self-rated health 0.19** (0.04) 4.96  0.17** (0.06) 3.02  0.10* (0.04) 2.22  0.12* (0.05) 2.35 

Depressive symptoms -0.12** (0.03) -4.44  -0.06 (0.03) -1.66  -0.07* (0.03) -2.41  -0.04 (0.03) -1.11 

Education, in years 0.10** (0.02) 6.17  0.11** (0.02) 5.81  0.09** (0.01) 5.87  0.13** (0.02) 7.33 

Health problems limiting work -0.23* (0.10) -2.24  -0.23 (0.14) -1.69  -0.14 (0.11) -1.30  -0.19 (0.11) -1.85 

Has health insurance (does not) 0.53** (0.16) 3.30  0.22 (0.20) 1.08  0.26 (0.20) 1.32  0.37 (0.20) 1.84 

Spouse’s work status (not working)                

Working -0.32** (0.08) -3.90  -0.42** (0.10) -4.20  -0.31** (0.09) -3.33  -0.32** (0.10) -3.34 

Not married -0.90** (0.10) -8.80  -0.86** (0.13) -6.61  -0.69** (0.11) -6.49  -0.78** (0.12) -6.25 

Household members -0.24** (0.05) -5.02  -0.25** (0.06) -4.05  -0.25** (0.06) -4.24  -0.27** (0.06) -4.49 

Formal volunteering, past year (none)                

<100 hours 0.09 (0.09) 1.00  -0.08 (0.12) -0.66  0.06 (0.10) 0.65  0.06 (0.10) 0.58 

100+ hours 0.18 (0.09) 1.90  0.12 (0.12) 0.99  0.12 (0.09) 1.44  0.15 (0.09) 1.73 

Informal volunteering, past year (none)                

<100 hours 0.00 (0.08) 0.05  0.02 (0.11) 0.20  0.02 (0.09) 0.24  0.04 (0.09) 0.46 

100+ hours 0.06 (0.10) 0.63  0.16 (0.13) 1.23  0.14 (0.11) 1.22  0.05 (0.11) 0.44 

Individual earningsc 0.03** (0.01) 3.50  0.02 (0.01) 1.52  0.02 (0.01) 1.71  0.03* (0.01) 2.58 

Household wealth, laggedc 0.11** (0.02) 6.10  0.15** (0.02) 7.11  0.19** (0.03) 7.04  0.20** (0.03) 7.96 

Household income, less individual earningsc 0.47** (0.02) 25.44  0.51** (0.03) 20.19  0.51** (0.03) 18.36  0.52** (0.03) 19.66 

Currently receiving:                

Social Security retirement benefits 0.04 (0.10) 0.44  0.22 (0.12) 1.85  0.21 (0.11) 1.85  0.21 (0.12) 1.76 

Receiving pension income 0.08 (0.08) 0.99  -0.10 (0.11) -0.86  0.01 (0.07) 0.20  -0.24** (0.09) -2.58 

Labor force status (full-time)                

Part-time or partly retired 0.26 (0.20) 1.32  0.18 (0.19) 0.93  0.09 (0.16) 0.56  0.19 (0.17) 1.15 

Fully retired -0.25 (0.32) -0.77  -0.36 (0.30) -1.20  -0.08 (0.26) -0.31  -0.06 (0.29) -0.21 

Unemployed or otherwise not working -1.15** (0.38) -3.02  -1.47** (0.41) -3.59  -1.10** (0.35) -3.13  -1.01** (0.37) -2.73 
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 Sample Weights Only  Logit ATE Estimationa  GBM ATT Estimationb  Logit ATT Estimationa 

 b Robust SE t  b Robust SE t  b Robust SE t  b Robust SE t 

Job requires…                

lots of physical effort -0.07 (0.06) -1.28  -0.11 (0.08) -1.37  -0.03 (0.07) -0.46  -0.06 (0.07) -0.84 

lifting heavy loads -0.10 (0.08) -1.23  -0.05 (0.09) -0.58  -0.09 (0.09) -0.95  -0.09 (0.10) -0.89 

stooping, kneeling, crouching 0.01 (0.06) 0.10  0.09 (0.07) 1.27  0.14 (0.07) 1.87  0.07 (0.07) 1.03 

good eyesight -0.11* (0.05) -2.06  -0.09 (0.07) -1.27  -0.10* (0.05) -1.96  -0.07 (0.04) -1.50 

Job involves lots of stress -0.06 (0.06) -1.00  -0.03 (0.08) -0.43  -0.00 (0.07) -0.02  -0.06 (0.07) -0.82 

Years at current job 0.01** (0.00) 4.38  0.01** (0.00) 2.99  0.01** (0.00) 2.76  0.01** (0.00) 3.18 

Number of employees (more than one)                

Work alone -0.22 (0.15) -1.49  -0.26 (0.16) -1.66  -0.43** (0.14) -3.02  -0.30* (0.15) -2.00 

Not working 0.02 (0.36) 0.06  -0.02 (0.40) -0.05  -0.16 (0.35) -0.48  -0.15 (0.33) -0.44 

35+ hours worked per week (<35 hours) 0.01 (0.20) 0.05  -0.08 (0.18) -0.42  -0.15 (0.16) -0.97  -0.04 (0.16) -0.28 

Pension from current job 0.31** (0.09) 3.30  0.30** (0.11) 2.84  0.20* (0.09) 2.25  0.25* (0.13) 2.01 

Blue collar occupation (white collar) -0.08 (0.10) -0.72  -0.04 (0.13) -0.30  -0.16 (0.13) -1.20  0.00 (0.14) 0.03 

Goods producing industry (service producing) 0.13 (0.12) 1.16  -0.02 (0.15) -0.14  0.08 (0.12) 0.64  0.02 (0.13) 0.13 

Controls                

Dies during the study -0.18 (0.15) -1.21  -0.08 (0.21) -0.37  -0.03 (0.17) -0.17  -0.06 (0.18) -0.34 

Nonresponse during the study 0.04 (0.12) 0.31  0.07 (0.15) 0.46  0.06 (0.15) 0.43  0.07 (0.13) 0.56 

Proxy respondent 0.15 (0.16) 0.93  0.20 (0.22) 0.92  0.22 (0.15) 1.43  -0.03 (0.24) -0.11 

Intercept 3.44** (0.67) 5.15  3.44** (0.88) 3.89  3.63** (0.70) 5.21  2.76** (0.78) 3.54 

F test (43, 5046) = 83.29, p < 0.001  (43, 5031) = 78.90, p < 0.001  (43, 4974) = 66.73, p < 0.001  (43, 4960) = 111.6, p < 0.001 

Nd 26,715e  26,715e  26,521f  26,715e 

Notes: Data from a combined 6 waves of the HRS that include 6,473 individuals. Individual (m=20) estimates combined using Rubin’s combination rules.  

** p < 0.01, * p < 0.05, two-tailed tests. ATE = average treatment effect where weight is 1/P for a “treated” case and 1/(1 – P) for a comparison case. ATT = 

average treatment effect for the treated where weight is 1 for a “treated” case and P(1 – P) for a comparison case. P is predicted using a. logistic regression, and 

b. generalized boosted modeling from the RAND twang Stata macro; c. Transformed using the inverse hyperbolic sine function; d. Sample sizes vary due to 

weighting differences; Within e. 5,073 and f. 5,046 households. 
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