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The top two (a) and (b) represent vertices with connected quark flow, while
the bottom two (c) and (d) represent disconnected quark flow diagrams. In
the chiral and full QCD theory, these are all connected vertices. Note: there
is another form of vertex (a) and (d) not shown here, where the two valence
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The interactions of quarks and gluons form most of the visible matter around us. Yet,

extracting precise predictions from the field theory describing them, Quantum Chromody-

namics (QCD), is notoriously difficult. By simulating the QCD interaction on a Euclidean

space time lattice, the field theory can be regularized non-perturbatively and familiar statis-

tical techniques from classical statistical mechanics can be applied. Then, by systematically

improving each component of the process, high precision results can be obtained. Some of

the possible components to be improved include the discretization of the continuum action,

the determination of the lattice scale(s), the generation of gauge field ensembles, and the

interpolations to physical quark masses.

This work focuses on two primary analyses. Both start from the MILC collaboration’s gauge

field ensembles with Nf = 2+1+1 flavors of highly improved staggered quarks (HISQ). The

first analysis focuses on high precision scale setting. Gradient flow is used to smooth the
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gauge configurations and determine the relative lattice spacings for continuum extrapola-

tions. The relative scale is set through two theoretically motivated observables,
√
t0 and w0.

The continuum value and mass dependence for each of these scales is extracted to aid with

future scale setting. With the lattice spacing set, the second analysis uses staggered chiral

perturbation theory to fit lattice data for pseudoscalar meson masses and decay constants.

This allows simultaneous interpolation of results to physical quark masses and control of

discretization artifacts introduced by the staggered formalism. After extrapolation of the

results to the continuum, preliminary results for the pion and kaon decay constants and light

quark masses are obtained.
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Chapter 1

Introduction

The Standard Model of particle physics has enjoyed widespread acceptance as a description

of the fundamental interactions. However, there exist several frontiers where the current

version of the Standard Model has not explained experimental observations. In addition,

the range of energy scales over which the model has been explored, both experimentally and

theoretically, is limited. To test possible extensions of the Standard Model and efficiently

explore uncharted territory, high precision techniques are required. This work contains high

precision calculations of the properties of fundamental particles in the part of the Standard

Model that describes the strong interactions of quarks and their bound states: Quantum

Chromodynamics (QCD). In this chapter, the stage is set for these calculations with a

review of the theoretical foundations of Lattice QCD and a presentation of the data sets

used to perform the calculations.
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1.1 Lattice QCD

Quantum field theories suffer from the problem of divergences, which arise from the infinite

number of degrees of freedom of a field defined at every point in continuous space-time. In

particular, there is no lower limit of the wavelength of modes of the field in Fourier-transform

space, and thus no upper limit on the energy and momentum of the modes. QCD has the

additional feature that the strength of the interaction between particles at long distances is

so strong that the theory is inherently non-perturbative. Both the non-perturbative nature

of QCD and the issue of divergences must be addressed in calculations of properties of bound

states of quarks, such as protons and neutrons or, as considered in this work, pions and kaons.

In order to regularize the divergences, continuous space-time can be replaced with a discrete,

finite-volume lattice. Lattice regularization is appropriate for non-perturbative calculations

because the theory becomes well defined without reference to a perturbative expansion. This

makes the lattice an ideal approach for studying QCD.

The introduction of the lattice motivates several questions, such as how the particle fields

of QCD should be represented, how the action should be modified, and how well the lattice

approximates reality. The lattice also has inherent benefits, such as a finite number of degrees

of freedom. This allows the lattice theory to be simulated by computer, making it possible

to perform precise calculations and extrapolations of observable quantities. In this section

the lattice is introduced to continuum QCD and some of the resulting questions and benefits

are explored in greater depth.
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1.1.1 Quantum Chromodynamics

The Standard Model of particle physics classifies all known elementary particles and pro-

vides a model of the three relevant interactions between these particles: strong, weak, and

electromagnetic. (The fourth fundamental interaction, gravity, is extremely weak and gener-

ally irrelevant for elementary-particle interactions.) Each of these interactions is represented

as a gauge-invariant quantum field theory, where the force between fermionic fields (half-

integer-spin particles) is carried by a specific gauge boson field (integer-spin particle). Since

each interaction is gauge invariant, with a unique symmetry group, the interactions are often

identified by this group. Two of these interactions, electromagnetism and the weak force,

are best understood when unified into the electroweak force with gauge group U(1)×SU(2).

The remaining interaction, the strong force, is described by the SU(3) gauge group. The

associated field theory is called Quantum Chromodynamics (QCD).

The fermionic fields of QCD represent six flavors of quarks and antiquarks, which can be

organized into three generations based on their masses and quantum numbers: up (u) and

down (d), strange (s) and charm (c), and bottom (b) and top (t). Each flavor of quark carries

three color charges (“red,” “green,” and “blue”) which transform as a triplet under the gauge

group. The gauge field of QCD represents eight massless species of gluons labeled by a

combination of color and anticolor and in direct correspondence with the eight generators of

SU(3); the gauge fields thus transform in the adjoint representation of the gauge group. The

gluons of QCD are the only massless gauge fields in the Standard Model that can directly

interact with each other (i.e., they possess color charge). The reasons why gluons have color

charge and the consequences of their interaction is worth further exploration.
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The QCD Lagrangian

The Lagrangian of QCD, and all gauge-invariant quantum field theories, can be derived

by starting from the Lagrangian of a free fermionic field ψ(x) [78].1 Applying a local gauge

transformation to the kinetic energy term will change the Lagrangian because the derivative,

which connects the field at different locations, does not transform simply under gauge trans-

formations. To account for this, a 4-component gauge field Aµ(x) (µ = 0, 1, 2, 3) is introduced

to define a covariant derivative that does transform simply. Specifically, let V (x) ∈ SU(3)

specify a local gauge transformation where

ψ(x) → V (x)ψ(x), (1.1)

Aµ(x) → V (x)

(
Aµ(x) +

i

g
∂µ

)
V †(x), (1.2)

and g ∈ R is a gauge coupling constant. One can define the covariant derivative /D,

/D = γµ(∂µ − igAµ), (1.3)

where γµ are the 4 Dirac matrices in Euclidean space and the repeated index µ is implicitly

summed over. Then the gauge transformation of /Dψ is identical to the transformation of ψ.

/Dψ(x)→ V (x) /Dψ(x). (1.4)

1Unless specifically noted, I will be working exclusively in “Euclidean space,” where the t of Minkowski
space is replaced with it so that the metric is Euclidean. See Sec. 1.1.4 for further details.
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With the covariant derivative in place, the fermion Lagrangian Lfermion with mass m is now

invariant under the local gauge transformation.

Lfermion [ψ,m,A, g] = ψ̄
(
/D −m

)
ψ. (1.5)

The full QCD Lagrangian is then formed by adding Lfermion for each flavor of quark and

introducing a kinetic energy term Lgauge for Aµ that is also locally gauge invariant. 2

LQCD =

 Nf∑
i=1

Lfermion [ψi,mi, A, g]

+ Lgauge (1.6)

The simplest kinetic energy term for Aµ can be constructed from the square of the gauge

field strength,

Fµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ] (1.7)

Lgauge = −1

2
Tr [FµνFµν ] . (1.8)

Under a gauge transformation, Fµν(x) transforms covariantly:

Fµν(x)→ V (x)Fµν(x)V †(x), (1.9)

from which it follows that Lgauge is gauge invariant.

The equations of motion come from varying the Lagrangian with respect to Aµ (and its

derivatives); therefore, cubic and quartic terms in Aµ or its derivatives in the Lagrangian lead

2The different fermions in Eq. (1.6) have independent masses; however, the bare coupling g of each fermion
to the gauge field is the same. This is because the coupling constant g can be defined independently of the
fermions through the self-interaction of the gauge field.
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to non-linear equations of motion, which are interpreted as self-coupling. One can therefore

see that the coupling of gauge fields to one another arises from the non-zero commutator in

Fµν(x). In other words, the non-zero coupling of gauge fields with one another is a direct

consequence of the non-Abelian structure of the gauge group.

The Running Coupling Constant

One of the most important consequences of gluons self-interacting is the effect on the energy-

scale dependence of the strong coupling constant g. This effect can be inferred through the

beta function β(g) = µ dg
dµ

of QCD, where µ is an energy-scale. At one loop in perturbation

theory, the beta function for SU(N) gauge field theory is [78]

β(g) = − b0g
3

(4π)2
, b0 =

11

3
N − 2

3
Nf . (1.10)

The term in b0 proportional to N arises from loops involving interactions between the gauge

fields while the term proportional to Nf comes from fermionic interactions. In a U(1) gauge

field theory where gauge fields cannot interact, the term proportional to N does not appear.

The presence of this gauge-field interaction term in theories like QCD is important because

it changes the sign of the beta function.

Since b0 is positive for SU(N) gauge groups with sufficiently small numbers of fermions,

such as QCD where N = 3 and Nf = 6, the beta function is negative. In such a theory,

the running coupling αs(µ) = g2(µ)/4π will be small at large energies, and it will be large

at small energies. This effect is so important that the two limiting cases are given names:

asymptotic freedom and confinement.
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Asymptotic freedom refers to interactions at large energy (or small separations) where the

coupling is sufficiently small and perturbation theory in αs can be applied. In the this regime,

quarks are effectively free. Confinement refers to the opposite end of the spectrum, where

quarks at large separations (or small energy) possess a very large coupling. As a consequence,

the potential energy of the interaction between quarks increases with separation. This is

opposite to the usual expectation developed from classical theories of electromagnetism and

gravity where interactions at large distances can be safely ignored. As the separation between

quarks increases, there will eventually be enough potential energy to create quark-antiquark

pairs. These new quark pairs bind with the original quarks to form bound states. As a

result, quarks are never found free in everyday circumstances where the temperatures are

too low to produce significant energy; they are confined to bound states.

Chiral Symmetry [78, 71]

Aside from local gauge symmetry, there are several other important symmetries that can

be inferred from the continuum QCD Lagrangian in Eq. (1.6). This section focuses on the

vector and larger chiral symmetries, where flavors of right and left handed light quarks are

independently mixed. In the limit of massless quarks the chiral symmetry is exact, but it

can be applied to theories with light quark masses. In Secs. 1.1.5 and 1.2.2 this symmetry

is shown to have several important implications for tuning lattice simulations to physical

quark masses.
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Since vector and chiral symmetries may mix flavors, the Lagrangian of Eq. (1.6) is best

expressed in matrix form. In the case of N fermionic fields denoted by field ψi with mass mi

for i = 1, ...N , the free fermion Lagrangian is

Lfermion,N = ψ̄( /D −M)ψ (1.11)

where ψ = (ψ1, ψ2, ..., ψN), /D = IN /D, and M is a diagonal matrix with Mii = mi. In

the case of degenerate masses, this Lagrangian clearly has a new symmetry under rotations

U ∈ U(N) of the N flavors of fermions.

ψ → Uψ, ψ̄ → ψ̄U † (1.12)

This is referred to as the vector symmetry U(N). The vector symmetry is seen to be a

subgroup of the larger chiral symmetry group after the original field ψ is decomposed into

its left and right-handed chiral projections, ψ = ψL + ψR.

ψR =
1

2
(1 + γ5)ψ, ψ̄R = ψ̄

1

2
(1− γ5) (1.13)

ψL =
1

2
(1− γ5)ψ, ψ̄L = ψ̄

1

2
(1 + γ5) (1.14)
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Notice, the left (right) handed projector for particles is the right (left) handed projector for

anti-particles. In terms of these projections, the Lagrangian for N massive quarks becomes

Lfermion,N = ψ̄L /DψL + ψ̄R /DψR − ψ̄LMψR − ψ̄RMψL. (1.15)

The two projections decouple in the kinetic term due to the presence of γµ in /D. This allows

the U(N) symmetry of massless (special case of degenerate) fermions to be expanded to

U(N)L × U(N)R where the left and right handed chiral projections transform separately.

ψL → ULψL, ψ̄L → ψ̄LU
†
L (1.16)

ψR → URψR, ψ̄R → ψ̄RU
†
R (1.17)

While the Lagrangian possesses chiral symmetry, the measure [dψ̄][dψ] does not respect the

complete chiral symmetry. Specifically, the axial symmetry U(1)A where the singlet left and

right handed portions are treated differently UL = U †R = exp(iθ)IN is lost due to this chiral

anomaly. The remaining chiral symmetry is SU(N)L × SU(N)R × U(1)V .

1.1.2 Lattice Regularization

Most continuum quantum field theories exhibit divergences due to the infinite degrees of free-

dom available to virtual particles traveling around internal loops. Specifically, every loop in

perturbation theory that contains a particle with momentum p unconstrained by momentum

conservation contributes a factor of
∫
d4p. This integral will diverge unless enough internal
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particles that depend on the momentum p are present to make the contributions from large

momentum quickly diminish. To deal with these divergences and perform calculations that

are finite at each step for observables the theory is regularized by introducing a maximum

energy scale (a “cutoff”), which effectively keeps the number of degrees of freedom finite.

There are several methods for introducing this energy scale, such as placing an upper bound

on the momenta, decreasing the dimension of spacetime, or replacing continuous spacetime

with a discretized version. After any of these methods are used, the energy scale introduced

by regularization is removed from physical observables by renormalizing all the parameters

and fields of the theory in terms of observable quantities.

In QCD, a non-perturbative method of regularizing the integrals is required for low energy

scales due to the large coupling at these scales; lattice regularization meets this criterion. In

lattice field theories, continuous space-time is replaced with a lattice of points separated by

a finite spacing a. In general, this spacing can be different for each dimension but all further

discussion will be restricted to cases where a is uniform across dimensions. The Fourier

transform of any function on the lattice will be periodic in momentum space with a period

of 2π/a. Therefore, the momentum of particles is restricted to the interval (−π/a, π/a]

which effectively introduces a momentum cutoff of π/a on all fields. When lattice theory

is simulated on a computer, the theory needs to be restricted to a finite volume V = L4

(L = Na) as well. In this case, there is also an infra-red momentum cutoff with magnitude

2π/Na. The effects of both cutoffs must eventually be removed by taking a→ 0 and L→∞.

Controlling the errors introduced by extrapolating a to 0 requires a systematic study of how

the parameter a is introduced into the path integral and what affects it may have on any

symmetries of the continuum theory.
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1.1.3 Lattice Action and Fields [63]

A naive modification of the continuum field theory when placed on the lattice would be to

place all fields on the sites of the lattice and replace all derivatives with appropriate finite

differences. However, this will not work because, as shown in the derivation of the continuum

QCD Lagrangian in Sec. 1.1.1, the gauge fields form the covariant derivative needed to

maintain the gauge invariance of the Lagrangian. Since the gauge fields are modifications

to the derivative which, when replaced with a finite difference, links adjacent lattice sites,

the gauge fields must be placed on the links between sites. With this modification, the

Lagrangian of Lattice QCD is derived using a similar procedure to the derivation of any

other field theory Lagrangian.

Gauge Fields on the Lattice

The gauge fields sit on all links of the lattice. The link variable Uµ(x) ∈ SU(3) associated

with the gauge field at a specific link is identified by the location x of a site on one end of

the link and the direction µ to the connected site x+ µ̂a. To construct the lattice version of

Lgauge a combination of link variables that is invariant under a local gauge transformation

V (x) must be derived.

Under a local gauge transformation, the link variables transform covariantly as

Uµ(x)→ V (x)Uµ(x)V †(x+ aµ̂). (1.18)

Since the gauge transformations at different sites are independent of one another, a gauge

invariant product of links must form a closed loop. The simplest such loop is a 1× 1 square

11



in two dimensions, called the plaquette Ux;µ,ν . The gauge action is then formed from the

sum of the trace over all plaquettes

Sg =
β

3

ν<µ∑
x,µ,ν

ReTr [1− Ux;µ,ν ] (1.19)

Ux;µ,ν = Uµ(x)Uν(x+ µ̂a)U †µ(x+ ν̂a)U †ν(x) (1.20)

where β is a parameter related to the coupling constant g.

To express β in terms of the continuum gauge field coupling g, the link variables are defined

from the gauge fields and required to have a lattice action corresponding to the continuum

action in the limit a→ 0. Defining the link variable in terms of the path-ordered exponential

of the gauge fields along the corresponding link,

Uµ(x) = P exp
{
iagA′µ(x)

}
, A′µ(x) =

1

a

∫ x+µ̂a

x

dyνAν(y) (1.21)

yields a leading order action

Sgauge = −βg
2

12

∫
d4xTr [Fµν(x)Fµν(x)] +O(a2). (1.22)

By setting β = 6/g2, this action reproduces the continuum action (see Eq. (1.8) as a → 0.

With the link variable and an associated lattice gauge action that matches continuum QCD,

the lattice fermion action can now be defined using an appropriate substitute for the covariant

derivative.

12



Fermion Fields on the Lattice

To create a lattice action for the fermionic field, a discretization must be chosen for the

covariant derivative appearing in the fermion portion of the Lagrangian in continuum gauge

field theory (Eq. (1.5)). In a free fermion field theory one could start by replacing the partial

derivative at site x with a finite difference, preferably a symmetric difference in order to keep

the operator Hermitian,

∂µψ(x)→ 1

2a
[ψ(x+ aµ̂)− ψ(x− aµ̂)] . (1.23)

However, this action is not locally gauge invariant. The construction of the discretized

covariant derivative is similar, but requires the inclusion of link variables, which act as

parallel transporters of the field ψ along the links

Dµψ(x)→ ∇µψ(x) =
1

2a

[
Uµ(x)ψ(x+ aµ̂)− U †µ(x− aµ̂)ψ(x− aµ̂)

]
. (1.24)

Substituting this covariant derivative into Eq. (1.5) and replacing integrals over space-time

with sums yields the fermion lattice action (in Euclidean spacetime, see Sec. 1.1.4)

Sfermion =
∑
x

a4ψ̄(x)

(∑
µ

γµ∇µ +m

)
ψ(x) . (1.25)

While locally gauge invariant, the ‘naive’ action of Eq. (1.25) does not match the desired

continuum theory due to an increase in the number of fermions of the theory. In fact, for

each dimension of space-time, the process of replacing the first order Dirac equation with

a suitable finite difference equation doubles the number of solutions. In other words, in 4-

dimensional space-time, there are 16 solutions of the of the Dirac equation, rather than just

13



one. This doubling is directly inferred from the poles of the fermion propagator in momentum

space. Since doubling occurs even in the free theory, consider the inverse propagator for free

fermions in momentum space derived from Eq. (1.25) with Uµ(x) = 1 for all links.

aS−1(ap) = am+ i
∑
µ

γµ sin(apµ) (1.26)

One can quickly infer that poles for a massless fermion occur at the sixteen corners of the

momentum space hyper-cube, where apµ = 0 or π for each µ. In Feynman diagrams, the

fifteen extraneous fermions contribute as virtual particles in loops, and thus affect all physical

observables even if they do not appear in external lines. Therefore, to correctly match the

continuum theory, which has only one particle per fermionic field, the extraneous doublers

must be removed. Various modifications can be made to the naive fermion action or path

integral to partially or completely remove the doublers. This thesis focuses on the staggered

formalism, which is explained further in Sec. 1.2.2.

1.1.4 The Path Integral Formulation [78, 32]

The path integral formulation of quantum field theory is the main starting point for calcula-

tions of observable phenomena. In Minkowski spacetime for a scalar field φ(x), the partition

function is defined as

Z[J ] =

∫
[dφ]ei[S(φ)+Jφ] (1.27)

where S is the associated action of the theory under investigation, J represents an external

source, and the integral is over all possible configurations of the field φ in space-time. The
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expectation value of an observable property O[φ(x)] is then calculated through the variation

of the partition function with respect to the external source.

〈O[φ(x)]〉 =
1

Z
O

(
δ

iδJ(x)

)
Z[J ]

∣∣∣∣
J=0

(1.28)

=
1

Z[0]

∫
[dφ]O(φ)eiS(φ) (1.29)

To perform calculations on the lattice, importance sampling is used to numerically estimate

the integral. However, importance sampling of the above integral is impossible due to the

sign problem; the phase exp(iS) oscillates rapidly and produces drastic cancellations between

different parts of the integration region. To get around this problem, a Wick rotation, t→ it

and S → iS, is used to move from Minkowski spacetime to Euclidean spacetime.

Z[J ] =

∫
[dφ]e−[S(φ)+Jφ], 〈O[φ(x)]〉 =

1

Z

∫
[dφ]O(φ)e−S(φ) (1.30)

The partition function of QCD on the Euclidean lattice is defined as

Z =

∫
Πx[dψ(x)dψ̄(x)]Πx,µ[dUµ(x)]e−[Slat(ψ,ψ̄,U)+η̄ψ+ψ̄η+JU ] (1.31)

where Slat is an appropriately discretized action; η, η̄, and J are external sources of the

quarks and gluons; and the path integral is over the quark and antiquark fields ψ, ψ̄ at

each site and link variables U on each link. Specifically, [dψ(x)dψ̄(x)] is the measure over

all flavors (and tastes, see Sec. 1.2.2) of the Grassmann variables representing the quarks
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and [dUµ(x)] is the Haar measure for SU(3). As in the case of a scalar field, observables

may be calculated by evaluating specific functional derivatives of the partition function with

respect to the sources. But, before evaluating these derivatives the partition function can be

partially simplified by using the specific form of the action for lattice QCD.

After choosing a formulation of lattice fermions that removes the doublers in the continuum

limit, the action of lattice QCD with external sources can be expressed as

Slat = ψ̄Mψ + η̄ψ + ψ̄η + Sg (1.32)

where the quarks’ degrees of freedom have been written in matrix form and Sg absorbs

all terms not involving the fermion fields. For example, if the naive fermions discussed in

Sec. 1.1.3 are chosen, then the element of M connecting position x to y is

Mx,y =

(∑
µ

γµ∇µ +m

)
δx,y. (1.33)

The important point for this discussion is that the action is quadratic in the field ψ, which

means the integrand in the partition function is Gaussian in ψ and can be analytically

integrated. Performing the integration yields a determinant factor as well as a propagator

connecting the quark’s external sources due to the leftover from completing the square

Z =

∫
Πx,µ[dUµ(x)]det[M ]eη̄M

−1η−Sg . (1.34)

Observable quantities can now be calculated from a simpler integral
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〈
O(ψ, ψ̄, U)

〉
=

1

Z

∫
Πx,µ[dUµ(x)]O(− δ

δη̄
,
δ

δη
,− δ

δJ
)det[M ]eη̄M

−1η−Sg
∣∣∣∣
η,η̄=0

(1.35)

=
1

Z[0]

∫
Πx,µ[dUµ(x)]O′(M−1, U)det[M ]e−Sg . (1.36)

For the final expression, O is redefined as O′ in order to implicitly show that only observables

with pairings of ψ with ψ̄ would yield non-zero derivatives, inserting factors of the propagator

M−1 in the process.

Now that the oscillating phase factor from Minkowski space has been replaced with a positive

definite exponential and the resulting integral is simplified, importance sampling is used to

estimate the observable. Specifically, a subset of size N drawn from all possible gauge

field configurations is created where the probability of drawing a specific configuration from

the subset approaches the probability distribution of the full set of configurations in the

limit N → ∞. The required probability distribution Weq[U ] can be read off directly from

Eq. (1.36)

P [U ] =
1

Z[0]
det[M ]e−Sg(U), (1.37)

where det[M ] clearly must be real and positive semi-definite. Finally, the expectation value

of the observable is approximated by the average over the subset of gauge configurations

〈O〉 ≈ 1

N

∑
{Ui}

O′(M−1, Ui). (1.38)
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In summary, to perform a calculation on the lattice two major steps must be taken: choosing

an action to approximate the continuum and generating an important subset of the possible

gauge configurations for that action. After these steps, an observable of interest is chosen,

measured, and averaged over the ensemble of gauge configurations. However, the calculation

is not done at this point. The lingering effects of lattice regularization must be removed.

Also, the chosen action may have a set of bare couplings (such as the quark masses) that

do not exactly correspond to reality. To reach a calculation of the observable that can be

compared to experimental observations, several gauge ensembles must be generated, and the

results must be extrapolated to realistic conditions.

1.1.5 Physical Observables

To compare lattice computations to experimental observations all parameters that are not

set to realistic values must be extrapolated or interpolated to match reality. Such parameters

almost always include the quark masses, the volume of spacetime, and the lattice spacing. To

perform these fits you generally need two things: a data set consisting of a reasonable range

of the independent variable(s) and a model for the dependence of the lattice computation

on the variable(s). The first requirement is further complicated by the fact that none of the

dimensionful independent variables are known ahead of performing the simulation. To pin

down the values of the lattice spacings, quark masses, etc. the overall scale must first be set.

Scale Setting

Based on careful inspection of the full lattice action defined in Eq. (1.19) and Eq. (1.25),

the parameters for generating an ensemble of gauge field configurations are the coupling β
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(or g), the dimensionless quark masses am, and the number of lattice points along each

dimension N = L/a. Notice, all of these parameters are dimensionless. As a consequence,

the only observables that can be calculated directly from an ensemble are also dimensionless

(e.g. aMπ or a ratio like MK/Mπ). To extract a number that has dimension, a reference

scale must be set for the ensemble using a different observable (whose value is taken from

experiment or from a prior lattice computation extrapolated to the continuum).

One might be tempted to break apart one or more of these dimensionless quantities and

attempt to treat the lattice spacing a as an additional input parameter. The problem with

this is that a is not an independent variable; a is a function of g Furthermore, the relationship

between g and a is too complicated to evaluate with the required amount of precision ahead

of simulations. Instead, a relationship between a and each simulation value of g is determined

by extrapolating a dimensionless quantity to zero coupling, then removing the reference scale.

To clarify this procedure, consider a mass independent scale setting scheme where the scale

derived in the chiral limit (am→ 0) applies at non-zero masses as well. Let mx be some ob-

servable of interest with mass dimension and let mr be a reference scale with mass dimension

and known continuum value. Computations of these observables on each ensemble result in

the dimensionless quantities Mx(g) = amx and Mr(g) = amr. The continuum value mx is

then computed from the continuum extrapolation of the ratio of the ensemble results [77].

mx = mr lim
g→0

Mx(g)

Mr(g)
, (1.39)
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where g → 0 is equivalent to a→ 0 by asymptotic freedom. This leads to a natural definition

of a(g) and mx(a) away from the continuum that depends on the choice of reference scale

a(g) =
Mr(g)

mr

, mx(a) =
Mx[g(a)]

a
, mx = lim

a→0
mx(a). (1.40)

This definition of a sets the value of mr(a) = mr to be constant. So, if the values of a

determined from two reference scales with different g dependence are compared, they will

differ by discretization corrections.

With a reference scale chosen and measured, any dimensionful or dimensionless quantities

can now be computed on the ensemble. All that is left is to perform the extrapolations to

realistic conditions.

Extrapolations/Interpolations

As previously mentioned, there are three primary extrapolations or interpolations that take

place in lattice QCD simulations. The lattice spacing must be extrapolated to zero to match

the continuum, the effects of simulating on a finite volume must be removed while taking into

account any boundary conditions, and for each flavor of simulation quark mass, results must

be interpolated or extrapolated to ‘physical’ quark mass values that reproduce a collection

of known hadron masses (one hadron for each unique quark mass).

The most basic model for continuum extrapolations would be a Taylor series in powers of

a2.3 If improvements are made to the lattice action the coefficient of the leading term can

3Odd powers of a are not allowed when there is sufficient chiral symmetry, which is the case in all of this
work.
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be reduced or the entire leading term can be replaced with combinations like αsa
2 where

αs = g2
s/(4π) and gs is the renormalized coupling constant. The number of powers included in

the Taylor series depends on the range of a included in the data set(s) and is often allowed

to vary between multiple fits, which contributes some systematic error to the continuum

results.

For the finite volume corrections, the simplest methodology is to simulate in large enough

volumes that the difference between infinite spacetime and the simulations is negligible.

To verify that the difference is small enough, two different volumes can be simulated for a

relatively cheap ensemble (e.g. larger lattice spacing) and compared. In some cases, such as

where chiral perturbation theory is applicable, the precise functional form of the finite volume

corrections is known and can be accounted for while performing the other extrapolations.

Removing the finite volume corrections and re-performing the other extrapolations then

yields a measure of the impact from finite volume corrections.

As in the previous two cases, light quark masses can be interpolated to the physical values

by a naive approach as well as a more sophisticated approach. This work focuses on the

use of chiral perturbation theory to provide a well defined expansion in powers of the quark

masses mq up to next-to next-to leading order (NNLO), O(m2
q), then adds on higher order

terms as necessary to reach quark masses closer to the physical strange mass.

Quarks that are heavier than strange may be treated in several ways. In the MILC HISQ

ensembles [12], the next-heaviest quark, the charm quark, is included directly in simulations

as a dynamical quark flavor. Results computed with the dynamical charm quark mass close

to physical can be re-tuned at leading order based on the observable’s dependence on the

effective energy scale of QCD ΛQCD (see Sec.2.3.2). Higher order effects, if required, can

be accounted through heavy quark effective theory and enter as an expansion in powers of
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1/mc. For simulations involving still-heavier quarks or that don’t treat the charm quark as

dynamic, the quarks may be integrated out of the theory by scaling ΛQCD.

Chiral Perturbation Theory [71]

Chiral perturbation theory (χPT) is one example of an effective theory that can be used to

control extrapolations. χPT is an effective theory that describes QCD in the low energy

regime. In this regime, the effective theory is built as an expansion in the momentum p of

the lightest mesons. When the mass mq is zero, the symmetry is exact, but even in the case

of non-zero quark masses, χPT can be written simultaneously as an expansion in powers of

the light quark masses and momenta. Once the effective Lagrangian is constructed based

on chiral and other symmetries, the functional form used for extrapolations is formed by

expanding both the Lagrangian and desired operator to the required order in p2 and mq.

While the original continuum Lagrangian is expressed in terms of the quark fields, the chiral

effective theory is expressed in terms of the light hadrons since they are the lowest mass

excitations of QCD.

The presence of eight hadrons significantly lighter than the rest suggests the full chiral

symmetry for the three light quarks SU(3)L × SU(3)R × U(1)V is spontaneously broken

down to the U(3)V . This spontaneous chiral symmetry breaking would usually produce

eight massless Goldstone bosons, one for each degree of freedom lost in the restriction of

the chiral group to its vector subgroup. However, the explicit chiral symmetry breaking of

the light quark mass terms gives each of these Goldstone bosons a non-zero mass through

perturbative corrections. Even with non-zero masses, these eight hadrons represent the
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lowest mass excitations of QCD and are therefore the fundamental degrees of freedom of the

effective continuum Lagrangian.

The original three light-mass quark fields u, d, and s can be packaged into a new bosonic

field Φ =
∑8

a=1 φaTa, where Ta refers to the eight generators of the broken symmetry group

SU(3). This field can also be re-expressed based on the quark content of the eight Goldstone

bosons.

Φ =


π0
√

2
+ η√

6
π+ K+

π− − π0
√

2
+ η√

6
K0

K− K̄0 − 2η√
6

 ∼

u

d

s


(
ū d̄ s̄

)
(1.41)

A unitary field Σ is then created as the exponential of the hermitian, traceless field Φ.

Σ = ei2Φ/f (1.42)

Under the full chiral transformation, Σ is transforms as

Σ→ ULΣU †R, Σ† → URΣ†U †L. (1.43)

Aside from the new field Σ, the explicitly chiral-breaking mass term must also be incorporated

into the effective theory. Spurion analysis is used to systematically account for how the mass

breaks the chiral symmetry. The constant mass matrix M is temporarily elevated as a field

and allowed to transform to preserve the chiral symmetry,

M → ULMU †R, M † → URM
†U †L (1.44)
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Using the above transformation properties, the effective leading order chiral Lagrangian can

be built. The terms must satisfy all symmetries of the full theory, most noticeably chiral

symmetry. Gauge invariance is trivial at the level of the chiral theory because the meson fields

Φ and Σ are themselves gauge invariant. Since Σ is unitary, the leading order term involving

only Σ must contain derivatives. By Lorentz (or 4-dimensional Euclidean) invariance, the

minimum number of derivatives needed is two. With M included, a combination with Σ

would also respect the symmetry. This yields the following leading order Lagrangian.

LLO =
f 2

8
Tr
(
∂µΣ∂µΣ†

)
− µf 2

4
Tr
(
MΣ† +M †Σ

)
(1.45)

Substituting in Eq. (1.41) and expanding to tree level yields the meson masses at leading

order in terms of the quark masses. In the case where mu = md → ml, the masses are

m2
π = 2µml

m2
K = µ(ml +ms) (1.46)

m2
η =

1

3
µ(2ml + 4ms).

and the Gell-Mann-Okubo relation can be quickly verified.

m2
η =

1

3

(
4m2

K −m2
π

)
(1.47)

To reach higher precision results, the effective Lagrangian must be expanded to higher orders

and loops must be included in the expansions of observables. To keep the power counting

straight, notice that the squared meson mass m2
B is of approximately the same order as
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a typical quark mass mq from the tree level expressions. So, factors of on-shell meson

momentum p2 ∼ m2
B arising from the partial derivative operations will correspond to roughly

the same order as quark masses entering through M . Next order terms have 4 derivatives,

2 derivatives and 1 factor of M , or 2 factors of M .

1.2 Gauge Ensembles

One of the key requirements for measuring anything on the lattice is an ensemble of gauge

configurations representative of the distribution in Eq. (1.37). The generation of this ensem-

ble is nontrivial due to the large dimension of the path integral that needs to be sampled

from and the unknown normalization constant Z[0]. Section 1.2.1 is an introduction to the

process of ensemble generation, and gives an overview of Markov Chains and the Metropo-

lis Algorithm. Then, the more complicated generation algorithms employed for the MILC

ensembles are summarized in Sec. 1.2.3.

To compare to physical results, an assortment of ensembles must be generated so that extrap-

olations can be performed over the lattice spacing, quark masses, and volume. Furthermore,

varios considerations need to be taken into account when choosing the action and bound-

ary conditions so that extrapolations can be made with more precise models and controlled

expansions. Improvements to the fermion action, with specific attention on the staggered

quark formalism, are covered in Sec. 1.2.2. Then, the specific range of ensemble parameters

and fermion improvements employed in the generation of the MILC ensembles are outlined

in Sec. 1.2.3.
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1.2.1 Ensemble Generation [63]

An ensemble of gauge configurations is generally created as a sequence, called a Markov chain,

where each individual gauge configuration in the sequence is generated from the previous

member. The process associated with transforming one gauge configuration into another is

characterized by a transition probability whose elements P [U ′, U ] determine the likelihood

of transitioning from the gauge configuration U to U ′. By accounting for all the possible

ways of transitioning into a new configuration U ′, the transition probability can also be

interpreted as a transformation of the ensemble probability distribution W [U ]

W [U ′] =

∫
[dU ]P [U ′, U ]W [U ] ≡ PW, (1.48)

where the latter form is expressed as matrix multiplication. For the generated sequence of

gauge configurations to correspond to a sample from the desired probability density Weq

specified in Eq. (1.37), the transition probability must satisfy a few conditions. To reach

the desired distribution from any initial configuration, repeated application of the transition

probability must move the distribution towards Weq. This can be summarized as a limiting

procedure,

lim
n→∞

P nW = Weq (1.49)
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Once the equilibrium distribution is reached, the sequence must continue to sample from the

same distribution. In other words, the equilibrium distribution must be an eigenvector of

the transition probability with eigenvalue 1 (due to normalization).

PWeq = Weq (1.50)

As long as the equilibrium distribution satisfying these two properties is unique for a given

transition probability, the Markov chain initialized from an arbitrary gauge configuration

will eventually converge to the required equilibrium distribution.

While these properties are straightforward to understand, it is difficult to immediately check

if a transition probability satisfies them. Instead, a handful of simpler conditions are usually

imposed which are sufficient to guarantee the above conditions. Chief among these is strong

ergodicity

P [U ′, U ] > 0. (1.51)

In practice, strong ergodicity may not be satisfied by a single update; however, P [U ′, U ] can

be redefined to include any finite number of transitions. In this sense, strong ergodicity is

satisfied when any gauge configuration is reachable from any other after a finite number of

transitions. The second simpler condition that is often employed is detailed balance.

P [U ′, U ]Weq[U ] = P [U,U ′]Weq[U ′] (1.52)
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Detailed balance requires that during any transition at equilibrium, the probability that is

redistributed from configuration U to U’ is balanced by the probability redistributed from

the reverse process, U’ to U. When applied together, strong ergodicity and detailed balance

are sufficient to derive Eqs. (1.49) and (1.50). Detailed balance is sufficient here but it is not

necessary; in practical applications most algorithms do not satisfy detailed balance.

The equilibrium density is shown to be an eigenvector by directly applying detailed balance

to the left hand side of the eigenvalue equation, where the eigenvalue 1 results from the

normalization of the transition probability.

PWeq ≡
∫

[dU ]P [U ′, U ]Weq[U ] =

(∫
[dU ]P [U,U ′]

)
Weq[U ′] = Weq (1.53)

Deriving the limiting condition in Eq. (1.49) is more involved, but is a direct consequence

of the transition probability being positive definite, e.g. strong ergodicity. The Perron-

Frobenius theorem states that there must exist a unique maximum eigenvalue and corre-

sponding eigenvector for positive matrices. By proving the eigenvalue 1 associated with the

equilibrium density is the largest eigenvalue for the transition matrix, this theorem shows

the equilibrium distribution is a unique eigenvector and all other eigenvalues must be less

than one. As a consequence, all contributions to an initial density that are orthogonal to

the equilibrium density decay away with successive transitions.

Showing λ = 1 is the maximum possible eigenvalue is a straightforward result after integrat-

ing the magnitude of each side of the eigenvalue equation PW = λW . Both integrations

result in an overall normalization constant C from the potential eigenvector W .
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|λ|C = |λ|
∫

[dU ′] |W [U ′]|

=

∫
[dU ′] |λW [U ′]|

=

∫
[dU ′]

∣∣∣∣∫ [dU ]P [U ′, U ]W [U ]

∣∣∣∣
≤

∫
[dU ′]

∫
[dU ]P [U ′, U ] |W [U ]|

=

∫
[dU ] |W [U ]|

≡ C

Cancelling this factor yields the desired result of |λ| ≤ 1.

Now that the simpler conditions of strong ergodicity and detailed balance are understood

to be sufficient, the main question still remains: how can a transition probability satisfying

these conditions be constructed. Many algorithms exist that meet these conditions. In this

section we’ll focus on Metropolis algorithms.

The Metropolis algorithm is best summarized as an accept-reject procedure. The first step

is to randomly modify the individual links of a gauge configuration U to produce a potential

next configuration U ′. Then, the modified gauge configuration is either accepted or rejected

based on the relative weight of each configuration in the equilibrium probability density

r = Weq[U ′]/Weq[U ]. Specifically, if the new gauge configuration has a lower action (higher
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probability) then the gauge configuration is accepted. If the new gauge configuration has a

higher action, then it is randomly accepted with probability r.

P [U ′, U ] ∝ min(1, r) (1.54)

Detailed balance can be verified by simple inspection of each case (r > 1 and r < 1). Strong

ergodicity depends primarily on how new gauge links are proposed. Often it is impractical

to update all the links simultaneously, due to the high likelihood that r << 1. Instead, an

individual update might only change one or a smaller subset of links at a time. In such a

case ergodicity is restored by repeatedly applying the Metropolis step until every link within

the lattice has been considered for update.

One additional feature of the Metropolis algorithm that makes it more advantageous for

lattice field theory computations is its independence from any normalization constant. In

the case of lattice field theory, the overall normalization constant Z[0] is not calculable,

so its necessary to have an algorithm that avoids it. Some alternatives to the Metropolis

algorithm, like heat bath, still require a partial normalization to be calculated.

1.2.2 Improving Lattice Fermions

The naive fermion action in Eq. (1.25) will result in a doubling of the number of fermions

for each dimension on the Euclidean lattice. The doublers are not directly a problem on the

lattice, but the extra fermions must be removed in the continuum limit where any remaining

doublers would effect results through internal loops. Wilson fermions attempt to remove the

effects of doublers from loops in the continuum by givig them mass os O(1/a) on the lattice,
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so they decouple int the continuum limit. However, this breaks chiral symmetry and results

in additive mass renormalization. Staggered fermions provide an alternative formulation

that respects a subset of the original chiral symmetry while addressing the doubler problem

in the continuum.

Staggered Fermions

Staggered fermions were first invented by J. Kogut, L. Susskind, and T. Banks [51, 7, 79]. The

basic approach of staggered fermions is to decouple the spin components of naive fermions at

the lattice sites and redistribute them at adjacent sites. In the process, the original sixty-four

naive fermion components are first reduced to sixteen components (four spin by four taste),

then finally four components by using the fourth root procedure to remove the unwanted

tastes from the continuum loops.

The first reduction in the number of fermion components starts by spin diagonalizing the

fermion action at each lattice site [10]. A local transformation Γ(x/a) is applied to the fields

within the Dirac space

ψ(x)→ Γ(x/a)χ(x), Γ(x/a) = γ
(x1/a)
1 γ

(x2/a)
2 γ

(x3/a)
3 γ

(x4/a)
4 . (1.55)

Based on this definition, Γ(x/a) has the property that it diagonalizes all of the gamma

matrices appearing in the action alongside the covariant derivative. In this case, the leftover
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diagonal matrix is the identity times a factor of −1 for each gamma matrix that has to be

commuted through γµ.

ηx,µ ≡ Γ†(x/a)γµΓ(x/a+ µ̂) = (−1)(x1/a+...+xµ−1/a) (1.56)

Because the resulting action is diagonal, the spin components decouple at each site and it

is sufficient to keep only one component. The resulting action is known as the staggered

fermion action for one flavor.

SKS =
∑
x

a4χ̄(x)

(∑
µ

ηx,µ∇µ +m

)
χ(x) (1.57)

At this point the degrees of freedom associated with the sixteen components of the remain-

ing four doublers are spread out over the lattice sites as the one-component fermion field

χ(x). To untangle these degrees of freedom, the remaining components need to be grouped

together across the lattice sites. Because the remaining spin dependence in ηx,µ depends

only on whether x is an even or odd numbered site along each dimension, combining adja-

cent sites into a unit representing all the possible combinations of even/odd indexes between

dimensions is appropriate. This unit corresponds to the unit hypercube.

To translate the staggered action in Eq. (1.57) into a form that sums over the hypercubes of

the lattice, each lattice site x is replaced by the combination of the origin of the containing

hypercube y and the offset to one of the corners of a hypercube τ [63].

x = 2y + aτ, τµ = 0, 1 (1.58)
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Note that, the separation between the origins of adjacent hypercubes is a′ = 2a to avoid

including any site in multiple hypercubes. To complete the translation of sites to hyper-

cubes the sum over sites is replaced with a sum over the corners of each hypercube and the

dependence of η only on τ is made explicit.

SKS =
1

16

∑
y

∑
τ

(a′)4χ̄(2y + aτ)

(∑
µ

ητ,µ∇µ +m

)
χ(2y + aτ) (1.59)

Finally, the fields χ(2y+aτ) at each corner of the hypercubes are combined into 24 component

fields qαi(y), labeled by two indices: spin (1 ≤ α ≤ 4) and taste (1 ≤ i ≤ 4) [10, 63].

qαi(y) =
1

8

∑
τ

Γαi(τ)U(y, τ)χ(2y + aτ) (1.60)

q̄αi(y) =
1

8

∑
τ

χ̄(2y + aτ)U †(y, τ)Γ†αi(τ) (1.61)

Here, U(y, τ) is a fixed product of links from the origin of each hypercube to the respective

corners, and it is used to transport the field χ(2y + aτ) to the origin y so that the kinetic

energy term stays locally gauge invariant. The factors of Γ determine both the spin and taste

transformation properties of q and q̄. As a consequence, the products of q̄ with q summed

over all taste and spin indices are reducible to a single sum over the corners of the hypercube.
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The substitution of q into the action of Eq. (1.59) can be expressed as an expansion in powers

of the lattice spacing a′ about the continuum

SKS = (a′)4
∑
y

q̄(y)

{∑
µ

(γµ ⊗ I)∇µ +m(I ⊗ I) +O(a′)

}
q(y), (1.62)

where the direct products are a mixture of spin and taste bases and the new first derivative

operator is over the doubled lattice spacing a′

∇µq(y) =
1

2a′
[
U(y, 2µ̂)ψ(y + a′µ̂)− U †(y − a′µ̂, 2µ̂)ψ(x− aµ̂)

]
. (1.63)

As an example of the kind of operators that appear in the O(a′) terms and above, consider the

free staggered quark theory where Uµ(x) = 1 [10, 63]. Here, no O(a′2) or higher terms appear

and the remaining O(a′) correction explicitly breaks the taste-symmetry of the continuum

terms.

SKS = (a′)4
∑
y

q̄(y)

{∑
µ

(γµ ⊗ I)∇µ +m(I ⊗ I) + a′
∑
µ

(γ5 ⊗ ξµξ5)∆µ

}
q(y), (1.64)

ξµ are matrices that act in taste space but are otherwise equivalent to the usual Dirac

matrices γµ, and ∆µ is a second derivative operator over the doubled lattice spacing.

∆µq(y) =
1

a′2
[
U(y, 2µ̂)q(y + a′µ̂)− 2q(y) + U †(y − a′µ̂, 2µ̂)q(x− aµ̂)

]
(1.65)
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Since all of the potentially taste-breaking terms, like the above second derivative correction,

appear at O(a) or higher, taste symmetry is restored in the continuum at the price of four

degenerate tastes of quarks. The apparent O(a) corrections are misleading, however. In

the interacting theory, it is possible to prove that O(a) effects are artifacts of our particular

choice of spin-taste definitions, and the true physical corrections are O(a2) [73, 56, 54]. In

the non-interacting case, the corrections may be removed completely [46].

To finally remove all artifacts of the original doublers from lattice results, the effects of the

remaining four degenerate continuum tastes must be reduced to that of a single species at

the loop level [10]. To do this, recall that when fermions are integrated out of the continuum

partition function they leave behind a factor of det(M) for each flavor of quark present in

the gauge configuration distribution. Since the four tastes act identically to quark flavors

and are degenerate in the continuum, they each eventually contribute the same detM . By

replacing det(M) with det1/4(M) in the partition function, the four tastes are effectively

reduced to one in the continuum. This procedure is known as the fourth-root procedure and

the resulting lattice fermions are known as rooted, staggered quarks.

Staggered Symmetry [10]

Aside from the computational efficiency of staggered fermions, a primary reason staggered

fermions are used in chiral analysis is because they retain a subgroup of the chiral symmetry

of the continuum. This can be seen most clearly by considering the one component field

χ. Start by defining a site as even or odd depending on whether
∑

µ xµ/a is even or odd.

Since the derivative term connects the quark fields at adjacent sites D always switches site

parity. In comparison, the mass term maintains parity since it connects fields at the same
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site. If he mass term is set to zero, the Lagrangian displays an exact even-odd U(1)e×U(1)o

symmetry.

χ(x) → exp

iαe, x = even

iαo, x = odd

χ(x), (1.66)

¯χ(x) → χ̄(x) exp

−iαo, x = even

−iαe, x = odd

 , (1.67)

The division of the fermion components into even and odd sets that transform separately

is reminiscent of the left and right handed projections transforming under separate flavor

transformations. However, there is one important distinction on the lattice. The axial

transformation U(1)ε where αe = −αo → α is not a taste singlet, and the symmetry is

therefore not violated by the anomaly. This is most evident in the spin-taste basis

q(y)→ exp [iα(γ5 ⊗ ξ5)] q(y), q̄(y)→ ¯q(y) exp [iα(γ5 ⊗ ξ5)] . (1.68)

Note that while the U(1)ε symmetry is an axial symmetry, it is not the taste-singlet axial

symmetry U(1)A which is still broken by the anomaly. Instead, each of the U(1)ε symmetries

are residual subgroups of the larger chiral symmetry group applied on the lattice.

Because the even-odd symmetry is an exact symmetry in the massless limit and it is sepa-

rately satisfied for each flavor, there can be no additive mass renormalization terms. When
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combined with other lattice symmetries that prevent mass-like terms from forming by con-

necting components of the staggered field on adjacent sites (such as shift symmetries), this

ensures that the mass renormalization is only multiplicative.

The Asqtad Improvement [10]

To reach high precision a systematic improvement program must be followed to reduce all

lattice artifacts of a given order. This often starts with an improvement of the action used

to generate gauge ensembles. Here I will explain in detail the O(a2) tadpole improvement

procedure (called asqtad) for staggered quarks, first developed in [30, 55, 52, 67, 68, 23] While

additional improvements are made to the final MILC ensembles analyzed in this work, the

asqtad improvement provides an illustrative example of the systematic approach required

to reach higher precision without resorting to brute force and the associated computational

cost.

The asqtad improvement procedure addresses several different sources of discretization arti-

facts. First and foremost, there are leading convergence issues introduced by the discretiza-

tion of fermions on the lattice. These appear at one loop due to so-called tadpole diagrams,

where internal gluons with high momenta compete with the explicit a2 dependence from

the vertex of the loop. To counteract the effect of tadpole diagrams, a mean field approach

is taken which effectively rescales all links in the action by a constant called the tadpole

factor µ0. After this, the taste-breaking lattice artifacts of the staggered formalism must

be addressed. Taste breaking effects in the interacting theory are due to the exchange of

gluons carrying total momentum with one or more components near π/a. To address the

additional exchange of gluons with transverse momentum components near π/a or 0 between
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two staggered fields, the gauge links can be fattened by adding alternative paths between ad-

jacent sites of the lattice. However, fattening the links causes O(a2) corrections to be added

to the low-momentum coupling of the gluon with the quarks. To cancel those corrections

an additional “staple” term is added, called the “Lepage term.” To remove O(a2) artifacts

in the first derivative term in Eq. (1.64), the so called “Naik/three hop term” is added to

the first order derivative. All of these improvements taken together represent the asqtad

improvement procedure for staggered fermions.

The tadpole improvement can be quickly derived by expanding the gauge links in terms

of the continuum field, and evaluating the resulting lattice perturbation theory in terms of

an expansion in both a and g. Expanding Eq. (1.21) about a = 0 and inserting into the

interaction ψ̄Uψ yields the expected continuum interaction term, followed by a first order

lattice artifact representing a vertex between two quarks and two gluons.

Uµ(x) = P

{
1 + iagA′µ(x)− a2g2

2
A′µ(x)2 + . . .

}
, (1.69)

While the expansion explicitly pulls out a factor of a2, contractions of gluons at this vertex

also yield factors of the lattice spacing from ultraviolet divergences. Simple power counting

with one gluon loop leads a factor of p2 ∝ 1/a2 which cancels the explicit a2 dependence.

To improve the rate of convergence to the continuum, the high momentum contributions

of Aµ(x) within the loop must be integrated out, leaving only lower momentum dynamical

gauge fields. This is equivalent to replacing the standard link with a scaled link that correctly

reproduces the mean value of a link µ0 at first order.

U ′µ(x) = µ0Uµ(x),
〈
U ′µ(x)

〉
≈
〈
µ0

(
1 + iagA′µ(x)

)〉
= µ0 (1.70)
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To leave the action invariant, the overall coefficient 1/µ4
0 of the plaquette is absorbed into

the coupling g2 → g′2 = g2/µ4
0. Finally, the value of µ0 can be determined either by directly

computing the mean link after fixing the gauge or, more commonly, by measuring through

the fourth root of the plaquette without gauge fixing.

µ0 =

〈
1

3
TrUx;µν

〉1/4

(1.71)

With the tadpole improvement implemented, the next issue to address is the additional

lattice artifacts introduced by the staggered formalism. These artifacts introduce interactions

with explicit a dependence, and they contribute to tree level masses of mesons. Therefore,

it is especially important to diminish the taste artifacts because they control part of the

continuum extrapolation as well as the interpolation to physical quark masses.

The dominant contribution of the taste artifacts comes from the exchange of gluons with

momentum components of p = 0, π/a, except when all components are near 0; that is the

physical case. This interaction is provided by the kinetic energy term ψ̄γµ∇µψ, and could

therefore by corrected by altering the gauge links within the covariant derivative. This

alteration must maintain the local gauge invariance of the action, remove the interaction

term when the components of the momentum of the exchanged gluon are near 0 or π/a (but

not all near 0), and vanish in the continuum limit. The addition of various orders4 of the

lattice Laplacian of the gauge link fits these requirements.

4the Lepage term ∆2l
ν Uµ(x) is explained in further detail later in this section
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∆l
νUµ(x) ≡ 1

a2

[
Uν(x)Uµ(x+ aν̂)U †ν(x+ aµ̂) (1.72)

+ U †ν(x− aν̂)Uµ(x− aν̂)Uν(x− aν̂ + aµ̂)− 2Uµ(x)
]

∆2lUµ(x) → Uµ(x) +
a2

4

∑
ν 6=µ

∆l
νUµ(x) +

a4

32

∑
ρ 6=ν 6=µ

∆l
ρ∆

l
νUµ(x) (1.73)

+
a6

384

∑
σ 6=ρ 6=ν 6=µ

∆l
σ∆l

ρ∆
l
νUµ(x)− a2

4

∑
ν 6=µ

∆2l
ν Uµ(x)

The lattice Laplacian essentially fattens the link it acts on by adding 1× 1 products of links

in a direction ν transverse to the original link direction µ. Since everything it adds is a

product of links connecting the same original two lattice sites, it maintains the same gauge

covariance as the original link.

To see that the interaction vanishes for momentum near the corners of the Brillouin zone,

start by considering any momenta with the longitudinal momentum component at π/a. In

this case, the forward and backward terms of the covariant derivative in the µ direction add

to give a factor of cos(apµ/2), which vanishes regardless of what the other components of

momentum are. For the cases where the longitudinal momentum is 0, we can expand Uµ(x)

to first order in g to find the equivalent transformation for Aµ(x), and then transform to

momentum space. Doing this explicitly up to the first order Laplacian yields

Aµ(p)→ Aµ(p) +
1

4

∑
ν 6=µ

[
2Aµ(p) (cos(apν)− 1) + 4 sin

(apµ
2

)
sin
(apν

2

)
Aν(p)

]
(1.74)
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For the case of a single non-zero, transverse component p = (0, pν , 0, 0) with pν = π/a, the

first term in the sum precisely cancels the original gauge field. For concreteness ν is set

equal to 2 in the preceding example without loss of generality. Similarly, for two and three

transverse components of π/a, the second and third power Laplacian terms are needed to

complete the cancellation of the original field, respectively.

The Lepage term ∆2l
ν Uµ(x) is added to cancel O(a2) modifications of the low-energy quark-

gluon interaction introduced by the Laplacian terms. The Lepage term is essentially a

modification of the lattice Laplacian with the 1× 1 staple extended to a 2× 1 staple in the

ν direction. Both the Lepage term and the lattice Laplacian terms satisfy

∆l
νUµ(x) ≈ ∆2l

ν Uµ(x) ≈ aDνFν,µ +O(a2) (1.75)

The coefficient is chosen to cancel the O(a2) corrections introduced by the various Laplacian

terms. Furthermore, the Lepage term vanishes at all of the corners of the Brillouin zone so

that the corrections introduced by the Laplacian terms are unaffected.

Finally, to complete the asqtad improvement, the discretization artifacts originating from

the free staggered fermion propagator are canceled. This is achieved by adding the Naik

term to the covariant derivative.

∇µχ(x) → ∇µχ(x)− a2

6
∇3
µχ(x) (1.76)

=
9

8
∇µχ(x)− 1

48a
[Uµ(x)Uµ(x+ aµ̂)Uµ(x+ 2aµ̂)χ(x+ 3aµ̂)

−U †µ(x− aµ̂)U †µ(x− 2aµ̂)U †µ(x− 3aµ̂)χ(x− 3aµ̂)
]

41



As evident above, when the Naik term is expressed as an action on the single component

staggered field χ(x), it produces links between sites that are three of the original lattice

spacings apart. This is required to ensure the couplings between different tastes remains the

same.

1.2.3 Overview of MILC Ensembles [12]

At this point, sufficient theoretical background has been provided to present and understand

the MILC Collaboration’s gauge ensembles. This includes the justifications for parameter

ranges such as quark masses and lattice spacings, the various improvements to the action,

and how the ensembles are generated.

Tables 1.1 and 1.2 provide an overview of the parameters specifying each ensemble in this

work. The only parameters that can be estimated before the complete simulation are the

lattice dimensions, ratio fo quark masses, and number of generated configurations. More

precise values of the lattice spacing and masses determined from a combination of gradient

flow and staggered chiral perturbation theory analysis are results of the latter sections.

There are four lattice spacings, ranging from a ≈ 0.15 fm down to a ≈ 0.06 fm. Finer MILC

gauge ensembles at a ≈ 0.42 fm and 0.03 fm are currently being generated, but are not

included in this analysis. However, a table with preliminary scale values calculated on these

in-progress ensembles is included in Appendix A. All of the ensembles included in this work

have Nf = 2 + 1 + 1 flavors of staggered quarks, where the up and down quark masses are

set equal to ml and the charm quark mass is tuned close to its physical value. There is one

ensemble at a ≈ 0.12fm where the up and down quark masses are are not equal (m′l1 = 0.1ms,
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m′l2 = 0.25ms, m
′
s = 0.45ms) in order to probe for isospin breaking effects; however, that

ensemble has not yet been included in this preliminary analysis.

The ensembles can be broadly divided into two subsets depending on whether the simulation

strange quark mass is approximately set equal to or lower than the physical strange quark

mass. The subset of ensembles with nearly-physical strange-quark masses cover all four

lattice spacings, and contains three values of the ratio of the simulation light quark mass

to the physical strange quark mass m′l/ms: 1/5, 1/10, and 1/27 which is approximately the

ratio for the physical light quark mass. The subset of ensembles with lighter-than-physical

strange-quark masses are all at a ≈ 0.12fm and the values of m′l and m′s are primarily selected

to help understand and control strange-quark mass dependence and the extrapolation to the

chiral limit (all quark masses vanishing).

In addition to the extra lighter-than-physical strange-quark mass ensembles at a ≈ 0.12fm,

there are two additional volumes simulated for the m′l/m
′
s = 1/10, nearly-physical strange-

quark mass ensemble. The three volumes with these parameters provide a check that finite

volume effects, which typically are proportional to exp(−MπL), are under control.

The action for the MILC Nf = 2 + 1 + 1 gauge ensembles is composed of a one-loop

Symanzik improved gauge action and the highly improved staggered quark (HISQ) action.

The Symanzik improved gauge action is achieved through the addition smeared plaquettes

to the Wilson action, specifically 2 × 1 and 1 × 1 × 1 loops. The coefficients of these ad-

ditions are tuned perturbatively at one loop order in the interacting theory and the links

are then tadpole improved. This reduces the discretization errors from the gauge action to

O(α2
sa

2, a4).
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β ≈ a (fm) m′l/m
′
s N3

s ×Nt MπL Mπ (MeV) Nlats

5.80 0.15 1/5 163 × 48 3.8 314 1020
5.80 0.15 1/10 243 × 48 4.0 214 1000
5.80 0.15 1/27 323 × 48 3.2 130 1000
6.00 0.12 1/5 243 × 64 4.5 299 1040
6.00 0.12 1/10 243 × 64 3.2 221 1020
6.00 0.12 1/10 323 × 64 4.3 216 1000
6.00 0.12 1/10 403 × 64 5.4 214 1028
6.00 0.12 1/27 483 × 64 3.9 133 1000
6.30 0.09 1/5 323 × 96 4.5 301 1011
6.30 0.09 1/10 483 × 96 4.7 215 1000
6.30 0.09 1/27 643 × 96 3.7 130 1031
6.72 0.06 1/5 483 × 144 4.5 304 1016
6.72 0.06 1/10 643 × 144 4.3 224 1166
6.72 0.06 1/27 963 × 192 3.7 135 583

Table 1.1: HISQ gauge configuration ensembles with strange and charm quark masses set
at or very close to their physical values. The columns from first to last show the coupling
β = 10/g2 for HISQ, approximate lattice spacing, the ratio of the simulation masses of the
light quark to the strange quark, the lattice dimensions, the product of the Goldstone pion
mass and the spatial extent of the lattice, the Goldstone pion mass in MeV, and the number
of equilibrated gauge configurations. The pion masses have been converted to physical units
using Fp4s [13].

The HISQ action is an extension of the asqtad improved quark action, designed to further

reduce taste violations at O(α2
sa

2). While the asqtad action addressed the free staggered

fermion propagator and taste violations due to the exchange of a single gluon, taste can

still be transformed if the quark field interacts with multiple gluons. The HISQ action adds

additional smearings of the gauge links in the covariant derivative in order to reduce, but not

eliminate, artifacts of multiple gluon exchanges. Let the asqtad link transformation outlined

in Eq. (1.73) be denoted by Ff7L but with the coefficient of the Lepage term smearing

doubled. Also, let the same transformation without the 1 × 2 Lepage term be denoted by

Ff7. Then the HISQ transformation can be expressed as a series of steps,
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m′l/ms m′s/ms N3
s ×Nt Nlats

0.10 0.10 323 × 64 1020
0.10 0.25 323 × 64 1020
0.10 0.45 323 × 64 1020
0.10 0.60 323 × 64 1020
0.25 0.25 243 × 64 1020
0.20 0.60 243 × 64 1020
0.175 0.45 323 × 64 1020

Table 1.2: HISQ gauge configuration ensembles with lighter-than-physical strange quark
masses. All ensembles have a lattice spacing of a ≈ 0.12fm and charm-quark mass as close
to its physical value. The columns in order show the approximate ratio of the simulation light
quark masses to the physical strange quark mass, the approximate ratio of the simulation
strange-quark mass to the physical strange-quark mass, the lattice dimensions, and the
number of equilibrated configurations.

Uµ(x) → Xµ(x) = Ff7LWµ(x) (1.77)

Wµ(x) = UFf7Uµ(x)

∇µ[U ]χ(x) →
(
∇µ[X]− a2

6
(1 + ε)(∇µ)3[W ]

)
χ(x) (1.78)

where U is a projection operator onto U(3) or SU(3) that bounds the smeared links and the

last equation is the modified Naik term. In the second equation, square brackets are used to

denote which form of the links are used in the operator and ε is introduced as a correction

to compensate for O[(am)4] and O[αs(am)2] errors [44, 10].
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While the HISQ action reduces taste violations and makes it possible to simulate quark

masses near charm dynamically, it does not systematically eliminate all taste-violating, two-

gluon exchange interactions. Therefore, the orders at which taste-violating and overall dis-

cretization errors appear are left unchanged; the coefficients are however significantly re-

duced. The non-interacting one-loop Symanzik improved gauge action is O(α2
sa

2) due to

perturbative treatment of the coefficients to one-loop (including dynamical quark loops).

The generic discretization error of the tree-level asqtad action is O(αsa
2), and the removal

of single gluon taste-exchange interactions reduces the taste violation errors to O(α2
sa

2).

Two algorithms were employed to generate the MILC Gauge ensembles used in this work,

both based on a form of hybrid molecular dynamics (HMD) algorithm. In all HMD algo-

rithms a fictitious momentum field is introduced so that the gauge fields can be evolved along

a classical trajectory of the Hamiltonian in fictitious time. While the gauge fields evolve,

the momentum field is periodically refreshed by a Gaussian heatbath (a Markov Chain al-

gorithm satisfying detailed balance Eq. (1.52), like the Metropolis algorithm). The primary

difficulty with performing this evolution is evaluating the contribution to the force on the

gauge fields from the fermion determinant. Most enhancements to the basic HMD algorithm

in lattice QCD focus on improvements to this calculation. In particular, both the rational

hybrid molecular dynamics (RHMD) and rational hybrid monte carlo (RHMC) algorithms

are employed in this work to balance the need for sufficient precision of the fermion force

with increased computational complexity.

The RHMD algorithm [49] starts by replacing the fourth root of the determinant of the

fermion matrix M in the path integral with a Gaussian integral over a new pseudo-fermionic

field φ whose action is φ̄M−1/4φ. Then, a rational function is used to approximate M−1/4.

This rational approximation is the primary practical advantage of the RHMD algorithm,
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but because of that approximation, as well as inevitable numerical errors in the molecular

dynamics updates, it is not an exact algorithm. The RHMC algorithm [49, 35, 37, 36] is

a further extension of the RHMD algorithm which applies a Metropolis accept or reject

step at the end of each trajectory. The addition of the accept or reject step makes the

RHMC algorithm exact with the consequence of a slower evolution, since a new gauge field

configuration is not reached with every trajectory.

For the finer lattices (a ≈ 0.09fm and ml/ms = 1/27, and all a ≈ 0.06fm) where the

evaluation of the fermion force is well behaved and the imprecision of RHMD is not a

significant factor in any observables of interest, the RHMD algorithm is employed. On

coarser lattices (a ≈ 0.09fm and ml/ms ≥ 1/10, and all a ≥ 0.12fm), RHMC is used. For

two ensembles in between (a ≈ 0.09fm and ml/ms = 1/27, a ≈ 0.06fm and ml/ms = 1/10),

both algorithms were employed in order to ensure that the deviations of RHMD from RHMC

were not significant compared to statistical error.
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Chapter 2

Gradient Flow and Scale Setting [17]

2.1 Introduction

Scale setting holds central importance in lattice QCD for two reasons. First, the continuum

extrapolation of any quantity, dimensionful or dimensionless, requires a precise determination

of the relative scale between ensembles with different bare couplings. Second, the precision

to which one may determine a dimensionful quantity in physical units is limited by the

precision of the scale in physical units (the absolute scale). Because scale setting limits the

precision of so many calculations, it is important to identify quantities with the highest level

of precision to set the scale.

To make progress towards this goal a thorough understanding of the restrictions on quantities

that may be used for scale setting is required. In principle, any dimensionful quantity that is

finite in the continuum limit may be employed. The relative scale may be set by calculating

a dimensionful quantity and comparing its value in lattice units at different lattice spacings

for the same quark masses. For absolute scale setting, one needs to compare the quantity in

lattice units to the physical value. If the quantity is experimentally accessible the comparison
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to the physical value is straightforward. For a quantity that is inaccessible to experiment, its

physical value in the continuum is inferred by comparison to an experimental quantity. In

other words, an experimental quantity may be used directly for relative and absolute scale

setting, but a quantity that is inaccessible to experiment requires the lattice measurement

of a second, experimentally accessible quantity for absolute scale setting. The use of a non-

experimental quantity for scale setting may still be worthwhile if it can be determined on

the lattice with small statistical and systematic errors for relatively small computational

cost. This is due to the large gain in control over continuum extrapolations at the cost

of a small decrease in the precision of absolute scales. This has led to the consideration

of theoretically-motivated, but not experimentally measurable, quantities such as r0 and r1

[76, 21], Fp4s [12], and, more recently,
√
t0 [58] and w0 [31] from gradient flow [65, 59].

The ideal scale-setting quantity has small statistical and systematic errors. However, since

systematic errors arise from a variety of sources, such as discretization effects, dependence on

the simulation (possibly unphysical) quark masses, finite volume effects, and excited states,

it is difficult to reduce all error sources simultaneously. For example, the scales r0 and r1

are computed from asymptotic fits in time t to the heavy quark potential V (r) with quark

separation r, such that r2dV/dr = 1.65 or 1, for r = r0 and r1, respectively [76, 21]. The

statistical errors in V (r) are generally small, but they grow with t/a and may become a

problem at small lattice spacings where larger values of t/a are needed to reduce systematic

errors from excited states [12]. As another example, consider Fp4s, the fictitious pseudoscalar

decay constant with degenerate valence quarks of mass mv = 0.4ms and physical sea-quark

masses [12]. The value of the valence-quark mass is chosen to be heavy enough to make

it not too expensive to compute the correlators, but light enough for chiral perturbation

theory to apply. However, Fp4s has strong dependence on the valence-quark mass. Thus,

relatively small errors in determining ams, the physical value of the strange-quark mass in
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lattice units, may lead to significant errors in aFp4s through the value of the valence mass,

amv = 0.4ams. Further, the required asymptotic fits to correlators are difficult to automate

and usually require significant human intervention.

Gradient flow [65, 59] has received considerable attention [77, 57, 70, 3] over the past few years

because it is a theoretically-grounded smoothing operation that is simple to implement and

can be used to obtain precisely determined scales. The basis for scale setting with gradient

flow is the determination of the flow time for which a dimensionless, precise, and easily-

computable quantity is smoothed to a predefined value. The original quantity proposed by

Lüscher, t0, is defined through the gauge field energy density [58]. Most modifications focus

on reducing discretization errors in the same underlying flow or observable [77, 31, 47, 43].

All of these scales can be easily computed to a statistical precision of 0.1% or less, and have

small quark-mass and discretization dependence. Finite-volume effects, the only remaining

source of systematic error for relative scale setting, may also be kept very small.

Here, we present our computation of the gradient-flow scales
√
t0/a and w0/a on the MILC,

(2+1+1)-flavor, highly improved staggered quark (HISQ) ensembles [11, 12]. The HISQ

configurations used in this analysis cover lattice spacings from a ≈ 0.15 to 0.06 fm and include

ensembles with physical, or heavier than physical, light-quark masses, and physical, or lighter

than physical, strange-quark mass. The charm-quark mass is kept near its physical value.

We perform a continuum extrapolation and interpolation to physical quark masses of w0Fp4s

and
√
t0Fp4s to determine the two scales in physical units, using our previous determination

of Fp4s in physical units [13]. We find
√
t0 = 0.1416(+8

−5) fm and w0 = 0.1717(+12
−11) fm, where

statistical and all systematic errors have been added in quadrature.

We start with a review of the relevant theoretical details, including the gradient-flow equation

in Sec. 2.2.1, definitions of the scales t0 and w0 in Sec. 2.2.2, chiral perturbation theory for
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flow quantities in Sec. 2.2.2, and lattice-spacing dependence in Sec. 2.2.2. The computational

setup is described in Sec. 2.3.1. We discuss the raw lattice results in Sec. 2.3.2, include a

brief comparison of the results for different ensemble-generation algorithms in Sec. 2.3.2, and

estimate the integrated autocorrelation lengths in Sec. 2.3.2. Adjustments for charm-quark

mass mistuning are performed in Sec. 2.3.2, and a simple extrapolation to the continuum

of the results on the physical-mass ensembles is presented in Sec. 2.3.2. Section 2.3.3 then

describes the quark-mass interpolation and continuum extrapolation. We present our results

for w0 and
√
t0 in physical units in Sec. 2.4.1, and include comparisons with our earlier

preliminary results. The continuum mass dependence of w0 is deduced from our fits in

Sec. 2.4.2 and used to compare the scales determined from w0 to those determined from

Fp4s in Ref. [13]; knowing the continuum mass dependence will be useful in determining the

scales of new ensembles. Section 2.5 compares our results to those of other collaborations,

and tabulates the precision of various methods for relative scale-setting.

Preliminary versions of this analysis have been described in Refs.[16] and [15].

2.2 Theoretical Framework

This section summarizes the theoretical details of gradient flow from Refs. [65, 59, 58, 31,

43, 8] that are relevant to the scale-setting analysis in later sections.

2.2.1 Diffusion Equation

Gradient flow [65, 59] is a smoothing of the original gauge fields A towards stationary points

of the action S. The new, smoothed gauge fields B(t) are functions of the ‘flow time’ t and
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are updated according to the diffusion-like equation below, where g0 is the bare coupling.

dBµ

dt
= −g2

0

∂S

∂Bµ

= DνGνµ , Bµ(0) = Aµ , (2.1)

DνX = ∂νX + [Bν , X] , Gνµ = ∂νBµ − ∂µBν + [Bν , Bµ] .

On the lattice, the Yang Mills action is replaced by an appropriate discretized version. The

gauge links V (t) are updated in time according to

dV (t)i,µ
dt

= −g2
0

∂S(V )

∂Vi,µ
Vi,µ , Vi,µ(0) = Ui,µ (2.2)

The change of V (t) with flow time explicitly follows the steepest descent of the action with

respect to the gauge field, with an additional factor of Vi,µ in the lattice formulation to

ensure gauge covariance. For more details on the SU(3)-valued derivative, see the Appendix

of Ref. [58].

As the flow time t increases, the gauge fields diffuse and short-distance lattice artifacts are

removed. After modifying the flow equation with a flow-time-dependent gauge transforma-

tion of the field one can explicitly see the suppression of high momenta in the leading-order

perturbative expansion of the gauge field in powers of the coupling g0 [58]:

Bµ(x, t) ≈ 1

(4πt)2

∫
d4yAµ(y)e−(x−y)2/(4t) , B̃µ(p, t) ≈ Ãµ(p)e−tp

2

. (2.3)

The expansion also shows that the kernel in position space smooths over a sphere of root-

mean-square radius
√

8t, which implies that discretization effects will be highly suppressed

for flow times t� a2/8.
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2.2.2 Gradient-flow Scales

The process of gradient flow introduces a dimensionful, independent variable, the flow time.

Since all quantities calculated from smoothed gauge links will be functions of the flow time,

one may define a scale by choosing a reference time at which a chosen dimensionless quantity

reaches a predefined value. If the dimensionless quantity is also finite in the continuum limit,

then the reference time scale will be independent of the lattice spacing up to discretization

corrections in powers of a2. One of the easiest, dimensionless quantities to calculate with

only gauge fields is the average total energy within a smoothed volume V ∝ t2. This is

equivalent to calculating the product of the energy density and squared flow time t2〈E(t)〉.

Lüscher has shown that the energy density is finite to all orders (when expressed in terms

of renormalized quantities) [60], so t2〈E(t)〉 is a suitable candidate for setting the scale. A

fiducial point c is chosen, and the reference scale is defined to be the flow time t0 where

t20〈E(t0)〉 = c . (2.4)

The fiducial point should be chosen so that for simulated lattice spacings a and volumes

V = L3T (with T ≥ L), the reference timescale t0 falls between a�
√

8t0 � aL. The value

of c = 0.3 has been found, empirically, to satisfy this relation [58, 31]. A larger fiducial point

of c = 2/3 has also been proposed in order to reduce discretization errors, at the expense of

somewhat larger finite-volume effects [77].

The renormalized expansion of 〈E(t)〉 to second order in g shows t2〈E(t)〉 is approximately

constant [58]. For small flow times this agrees with computational results, but for larger

flow times (including the scale t0) t2〈E(t)〉 is found empirically to be linear in t [58, 31].

The transition of 〈E(t)〉 from t−2 to t−1 dependence is nonperturbative. However, we expect
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discretization errors to enter primarily for small flow times, before the lattice details are

smoothed away. In accordance with this expectation, empirical evidence suggests that dis-

cretization effects have little impact on the slope of t2〈E(t)〉 at larger times [31]. Assuming

the property is general, an improvement to the scale t0 is computed by considering the slope:

[
t
d

dt
t2〈E(t)〉

]
t=w2

0

= c , (2.5)

where w0 is the improved scale. Again, the value of the fiducial point c = 0.3 or c = 2/3 is

chosen to avoid discretization and finite volume effects.

Chiral Perturbation Theory

Because both scales t0 and w0 are defined in terms of the energy density 〈E(t)〉, and the

energy density is a local, gauge-invariant quantity, chiral perturbation theory can be applied

to determine the quark-mass dependence of the scales. This is an advantage over some other

scales, such as r0 or r1, for which no chiral perturbation theory expansion is available. The

mapping of 〈E(t)〉 to the chiral effective theory has been carried out by Bär and Golterman

in Ref. [8]. The expansion for
√
t0 in the Nf = 2 + 1 case in terms of the pion and kaon mass

is

√
t0 =

√
t0,ch

[
1 + k1

2M2
K +M2

π

(4πf)2

+
1

(4πf)2

(
(3k2 − k1)M2

πµπ + 4k2M
2
KµK +

1

3
k1(M2

π − 4M2
K)µη + k2M

2
ηµη

)
(2.6)

+ k4
(2M2

K +M2
π)2

(4πf)4
+ k5

(M2
K −M2

π)2

(4πf)4

]
,
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where t0,ch is the value of t0 in the chiral limit, the chiral logarithms are represented with the

shorthand µQ = (MQ/4πf)2 log (MQ/µ)2, and the ki are low energy constants (LECs) that

depend on the flow time. Note that chiral logarithms enter only at next-to-next-to-leading

order (NNLO). The scale w0 has the same expansion form to NNLO, but with different

coefficients ki. This is because the flow-time dependence of 〈E(t)〉 appears only in the LECs,

allowing the differences between Eqs. (2.4) and (2.5) to be absorbed into redefinitions of the

LECs.

One can generalize Eq. (2.6) to staggered chiral perturbation theory in order to explicitly

take into account discretization effects from staggered taste-symmetry violations. In this

paper, however, we have used simple polynomial expansions to parametrize lattice-spacing

effects. There are two reasons for this choice. First, the quark-mass dependence of the

gradient-flow scales is already small, as will be evident in Sec. 2.4.2, and nontrivial staggered

effects would come in only with the chiral logarithms, which are of NNLO. For HISQ quarks,

such effects are very small. Second, the number of undetermined coefficients in staggered

chiral perturbation theory expansions would be too large in comparison to the number of

independent data points available for interpolations. Unlike analyses of pseudoscalar masses

or decay constants, here we have no valence quarks whose masses could be varied to increase

the size of the dataset.

Discretization Effects

In determining the scales t0 and w0, lattice artifacts enter in three places: the action used

to generate the initial configurations, the action of the gradient flow, and the choice of

observable. Because ensemble generation is expensive, the action chosen for generating the
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gauge configurations is fixed in practice. Therefore, we only consider improvements to the

gradient flow and energy density.

Empirical results suggest partial improvements of the flow or the energy density can yield

smaller O(a2) terms. By using the tree-level improved Symanzik action instead of the Wilson

action in the flow, the BMW collaboration found smaller cutoff effects for both gradient-

flow scales on their Wilson-clover ensembles with 2-HEX smearing (with scale set by MΩ)

[31]. Similarly, using the symmetric, cloverleaf definition of the field strength tensor Gµν

in 〈E〉 = GµνGµν/4, instead of the simpler sum over the plaquettes, yielded cutoff effects

in
√
t0/r0 that were five times smaller [58]. Of course, applying partial improvements at

different steps is not guaranteed to produce smaller cutoff effects in the final result. Also,

for each case, the lattice-spacing dependence of the gradient-flow scale cannot be cleanly

separated in the numerical results from the dependence of the additional quantity used to

set the scale in the extrapolation to the continuum.

A detailed examination of the discretization effects on gradient-flow scales has been recently

carried out in Ref. [43]. The net lattice-spacing dependence from all three stages of the

calculation (dynamical action, flow, and observable) is determined at tree level in the gauge

coupling from a calculation of 〈E(t)〉 at finite lattice spacing. For the clover observable

chosen in this study

F (t) ≡ 〈t2E(t)〉 =
3(N2 − 1)g2

0

128π2

(
1 + C2a

2/t+O(a4/t2) +O(g2
0)
)
, (2.7)

C2 = 2cf +
2

3
cg −

1

24
, (2.8)

where the coefficient cf describes the gradient-flow action, and cg describes the original gauge

action used to generate the ensembles [43]. For our choices of Symanzik one-loop-improved
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gauge action (cg = −1/12 at tree level) and Symanzik tree-level gradient flow (cf = −1/12),

we have C2 = −19/72. Unfortunately, our choices of actions and observable lead to larger

tree-level discretization terms than from many other combinations of common choices of

action for the flow and observable. For more detail see Table 1 in Ref. [43].

Utilizing the known a2 dependence of F (t), improved scales are defined in Ref. [43] by

cancelling the tree-level contributions to F (t) in the implicit definitions of t0 and w0.

[
t2〈E(t)〉

(1 + C2(a2/t) + C4(a2/t)2 + ...)

]
t=t0,imp

= c . (2.9)[
t
d

dt

t2〈E(t)〉
(1 + C2(a2/t) + C4(a2/t)2 + ...)

]
t=w2

0,imp

= c (2.10)

We compute the improved scales timp and wimp and compare to the a2 dependence of the

unimproved scales in Sec. 2.3.2. An additional theoretical handle on the comparison can be

made by expanding the unimproved scales directly as a power series in a2 and calculating

the coefficients.

The lattice-spacing dependence of the gradient-flow scales are proportional to C2 and depend

on the continuum flow-time dependence of F (t) and its derivatives F ′(t) = t d
dt
F (t) and

F ′′(t) = t2 d
2

dt2
F (t) evaluated at the corresponding scale t = t0,cont or t = w2

0,cont. The next-

to-leading-order coefficients are given by

t0 = t0,cont

(
1− T2

a2

t0,cont

)
, T2 = C2

F

F ′
≈ −0.3568(2) , (2.11)

w2
0 = w2

0,cont

(
1−W2

a2

w2
0,cont

)
, W2 = C2

F ′ − F
F ′′ + F ′

≈ 0.070(2) , (2.12)
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Note that the coefficients T2 and W2 are identical to those derived for the improved scale

in Ref. [43]; however, the a2 coefficients in the above expression are −T2 and −W2 because

Eq. (2.11) relates the (unimproved) scales at finite lattice spacing to the continuum scales.

The numerical evaluation of F , F ′, and F ′′ for the estimates of T2 and W2 has been performed

on the a ≈ 0.06 fm, physical quark-mass ensemble (see Table 2.1). No systematic errors are

included in these estimates; however, the systematic errors are expected to be small. We may

conclude that |T2| > |W2|. This result, combined with the fact that the ratio W2/T2 depends

only on the continuum flow-time dependence of F , implies that w2
0 will have smaller tree-

level discretization errors than t0 for any choice of dynamical action, flow, and discretization

of 〈E〉.

2.3 Details of the Computation

We compute the scales
√
t0/a, w0/a,

√
t0,imp/a, and w0,imp/a on the MILC Nf = 2 + 1 + 1

HISQ ensembles [12, 11]. Tables 2.1 and 2.2 list the parameters and relevant observables

for ensembles with the strange sea-quark mass tuned near its physical value, and well below

its physical value, respectively. Table 2.3 gives the values of aFp4s at physical quark masses

and associated lattice spacings, which are needed for continuum extrapolations. The lattice

spacings are calculated with a mass-independent scale-setting scheme; the continuum value

Fp4s = 153.90(9)(+21
−28)MeV is taken from Ref. [13], where fπ was used to set the absolute scale.

Physical values of ams at each lattice spacing [13] are also tabulated. Using the physical

quark-mass ratio mc/ms = 11.747(19)(+59
−43) [13], these values of ams determine values of the

physical charm-quark mass for each ensemble in lattice units, which in turn will be used to

adjust for mistunings of the charm sea-quark mass in Sec. 2.3.2. Finally, Table 2.3 lists the
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β ≈ a(fm) m′l/m
′
s am′s am′c N3

s ×Nt aMπ aMK

5.80 0.15 1/5 0.0650 0.838 163 × 48 0.23653(22) 0.40261(25)
5.80 0.15 1/10 0.0640 0.828 243 × 48 0.16614(10) 0.38067(16)
5.80 0.15 1/27 0.0647 0.831 323 × 48 0.10180(09) 0.37093(16)
6.00 0.12 1/5 0.0509 0.635 243 × 64 0.18917(15) 0.32358(20)
6.00 0.12 1/10 0.0507 0.628 323 × 64 0.13424(09) 0.30813(15)
6.00 0.12 1/10 0.0507 0.628 403 × 64 0.13400(06) 0.30821(09)
6.00 0.12 1/27 0.0507 0.628 483 × 64 0.08153(04) 0.29851(11)
6.30 0.09 1/5 0.0370 0.440 323 × 96 0.14055(17) 0.24061(18)
6.30 0.09 1/10 0.0363 0.430 483 × 96 0.09852(08) 0.22688(12)
6.30 0.09 1/27 0.0363 0.432 643 × 96 0.57215(04) 0.21946(09)
6.72 0.06 1/5 0.0240 0.286 483 × 144 0.09438(16) 0.16191(16)
6.72 0.06 1/10 0.0240 0.286 643 × 144 0.06713(06) 0.15452(09)
6.72 0.06 1/27 0.0220 0.260 963 × 192 0.03887(03) 0.14269(06)

Table 2.1: HISQ ensembles with near-physical strange sea-quark mass. The first three
columns list the gauge coupling constant, the approximate lattice spacing, and the ratio of
light-to-strange sea-quark mass. The fourth and fifth column list the strange and charm
sea-quark mass, respectively. (Quark masses with primes indicate simulation values of the
ensemble, whereas unprimed masses indicate physical values.) All but two ensembles can
be uniquely identified by the second and third columns. To differentiate between the two
a ≈ 0.12 fm, m′l/m

′
s = 1/10 ensembles we use the dimensions of the lattice, N3

s ×Nt, given in
column six. The last two columns give the taste-Goldstone pion and kaon masses in lattice
units.

effective coupling constant αs calculated from taste violations of the HISQ pions in Ref. [13].

The couplings are then scaled by a constant so that αs = αV (q∗ = 1.5/a) for β = 5.8, where

αV is determined from the plaquette [40, 12].

2.3.1 Computational Setup

We solve the gradient-flow differential equation numerically using the Runga-Kutta algorithm

generalized to SU(3) matricies, as originally proposed by Lüscher [58]. The routine discretizes

the flow time with a step size ε and computes the gauge configuration at a later flow time

t = nε by iterating from the initial gauge configuration. The total error of the integration
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≈ m′l/ms ≈ m′s/ms am′c N3
s ×Nt aMπ aMK

0.10 0.10 0.628 323 × 64 0.13181(10) 0.13181(10)
0.10 0.25 0.628 323 × 64 0.13250(09) 0.17385(11)
0.10 0.45 0.628 323 × 64 0.13275(10) 0.21719(12)
0.10 0.60 0.628 323 × 64 0.13324(10) 0.24509(13)
0.175 0.45 0.628 323 × 64 0.17491(10) 0.23199(12)
0.20 0.60 0.635 243 × 64 0.18850(17) 0.26382(18)
0.25 0.25 0.640 243 × 64 0.20903(19) 0.20903(19)

Table 2.2: HISQ ensembles with a lighter-than-physical strange sea-quark mass. All en-
sembles have gauge coupling constant β = 6.00 and lattice spacing a ≈ 0.12 fm. The first
two columns list the approximate values of the light sea-quark mass m′l and strange sea-
quark mass m′s in units of the physical strange-quark mass ms. All of the ensembles may be
uniquely identified by these two columns. The remaining columns are equivalent to those in
Table 2.1.

β ≈ a(fm) ams aFp4s a(fm) αs
5.80 0.15 0.06863(+53

−39) 0.119376(36) 0.15305(+57
−41) 0.58801

6.00 0.12 0.05304(+41
−30) 0.095403(28) 0.12232(+45

−33) 0.53796
6.30 0.09 0.03631(+29

−21) 0.068570(19) 0.08791(+33
−24) 0.43356

6.72 0.06 0.02182(+17
−13) 0.044237(12) 0.05672(+21

−16) 0.29985

Table 2.3: Values of ams, aFp4s, a (in fm), and αs adjusted to physical values of the quark
masses, for various couplings β. All results are from the analysis presented in Ref. [13]. The
first two columns list the gauge coupling and approximate lattice spacing. The next two
columns list the strange mass and Fp4s in lattice units. The lattice spacing from Fp4s =
153.90(9)(+21

−28) MeV, in a mass independent scheme, is listed in the fifth column. The final
column tabulates the strong coupling constant αs determined from the taste splittings (see
text). For ams and a, the errors are the sum in quadrature of statistical and systematic
errors. Only statistical errors are shown for aFp4s.
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up to flow time t scales like ε3. For all ensembles analyzed in this paper, we find that the

scales
√
t0/a and w0/a determined at a step size of ε = 0.07 cannot be differentiated, within

statistical errors, from those at ε = 0.03. We therefore consider ε = 0.03 to be a conservative

step size, and employ it for all results presented below.

Both the Wilson and Symanzik tree-level action for the gradient flow have been implemented

and are publicly available in the current release of the MILC code [62]. This computation uses

the Symanzik tree-level improved action in the gradient flow and the symmetric, cloverleaf

definition of the field-strength tensor Gµν in 〈E〉 = GµνGµν/4.

2.3.2 Measurements of Gradient-Flow Scales

Tables 2.4 and 2.5 show the results for
√
t0/a, w0/a,

√
t0,imp/a, and w0,imp/a on the HISQ

ensembles. The scales
√
t0,imp/a and w0,imp/a were improved to O(a8) at tree level using

Eq. (2.9) and the coefficients calculated in Ref. [43] for Symanzik-Symanzik-Clover. For the

ensembles with the smallest lattice volumes, all configurations are included in the computa-

tion. As the volumes and cost become larger, a fraction of the configurations are run. The

configurations in each subset are spaced uniformly across the ensembles, with spacings cho-

sen to help reduce autocorrelations. The total number of generated configurations, number

of configurations in the gradient-flow calculation, and molecular-dynamics time separation

between the included configurations are also tabulated for each ensemble in Tables 2.4 and

2.5.

The error shown with each scale is statistical. It is determined by performing a jackknife

analysis over the included subset of configurations in each ensemble. The jackknife bin size

is set to be at least twice the integrated autocorrelation length of the energy density, which is
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≈ a(fm) m′l/m
′
s Nsim/Ngen τ

√
t0/a w0/a

√
t0,imp/a w0,imp/a

0.15 1/5 1020/1020 5 1.1004(05) 1.1221(08) 0.9857(04) 1.1069(10)
0.15 1/10 1000/1000 5 1.1092(03) 1.1381(05) 0.9932(02) 1.1258(06)
0.15 1/27 999/1000 5 1.1136(02) 1.1468(04) 0.9969(02) 1.1361(04)
0.12 1/5 1040/1040 5 1.3124(06) 1.3835(10) 1.2003(05) 1.3870(11)
0.12 1/10 (323 × 64) 999/1000 5 1.3228(04) 1.4047(09) 1.2100(04) 1.4096(09)
0.12 1/10 (403 × 64) 1000/1028 5 1.3226(03) 1.4041(06) 1.2098(03) 1.4089(06)
0.12 1/27 34/999 140 1.3285(05) 1.4168(10) 1.2152(05) 1.4225(11)
0.09 1/5 102/1011 50, 60 1.7227(08) 1.8957(15) 1.6280(08) 1.9053(16)
0.09 1/10 119/1000 36 1.7376(05) 1.9299(12) 1.6423(05) 1.9406(12)
0.09 1/27 67/1031 32, 48 1.7435(05) 1.9470(13) 1.6478(05) 1.9583(13)
0.06 1/5 127/1016 48 2.5314(13) 2.8956(33) 2.4618(12) 2.9049(33)
0.06 1/10 38/1166 96 2.5510(14) 2.9478(31) 2.4810(14) 2.9582(30)
0.06 1/27 49/583 48 2.5833(07) 3.0119(19) 2.5133(07) 3.0223(19)

Table 2.4: Values of the gradient-flow scales on the physical strange-quark HISQ ensembles
listed in Table 2.1. The first two columns are the approximate lattice spacing and ratio of
light to strange sea-quark mass, with the lattice dimensions appended as needed to iden-
tify each ensemble uniquely. The next column shows the ratio of number of configurations
included in the gradient-flow calculation to the number of configurations in the ensemble.
The fourth column lists the molecular-dynamics time separation τ between configurations
included in the gradient-flow calculation. Multiple values are listed for cases where indepen-
dent streams of the same ensemble did not use the same τ .

m′l/ms m′s/ms Nsim/Ngen τ
√
t0/a w0/a

√
t0,imp/a w0,imp/a

0.10 0.10 102/1020 20 1.3596(06) 1.4833(13) 1.2441(06) 1.4932(13)
0.10 0.25 204/1020 20 1.3528(04) 1.4676(10) 1.2378(04) 1.4764(10)
0.10 0.45 205/1020 20 1.3438(05) 1.4470(10) 1.2296(05) 1.4544(11)
0.10 0.60 107/1020 20 1.3384(08) 1.4351(16) 1.2247(07) 1.4418(17)
0.175 0.45 133/1020 20 1.3385(05) 1.4349(13) 1.2248(05) 1.4415(14)
0.20 0.60 255/1020 20 1.3297(06) 1.4170(12) 1.2166(06) 1.4225(12)
0.25 0.25 255/1020 20 1.3374(07) 1.4336(14) 1.2236(06) 1.4402(15)

Table 2.5: Values of the gradient-flow scales on the HISQ lighter-than-physical strange-quark
ensembles listed in Table 2.2. The first two columns are identical to those in Table 2.2 and
used to identify the ensembles. The latter six columns are equivalent to those in Table 2.4.
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determined in Sec. 2.3.2. In many cases the bin size is larger than would be naively estimated

by increasing the bin size until the statistical error plateaus, which is further evidence for

the conservative nature of our estimates of autocorrelation lengths.

Considering the low cost and ease of computation, we originally intended to analyse all

configurations from the HISQ ensembles. However, the desired statistical accuracy is often

reached well before an entire ensemble is analyzed, and the cost, although low compared to

configuration generation, is significant enough that analyzing all configurations would be an

inefficient use of resources at present. If higher-precision scales are needed in the future, it

would be straightforward to complete the analysis on the full ensembles.

Comparison of RHMC and RHMD

As discussed in Ref. [12], two generation algorithms were employed for the HISQ ensem-

bles: rational hybrid Monte Carlo (RHMC) and molecular dynamics (RHMD). As a check

of the consistency of these two algorithms, we compute the ratio of w0 computed on RHMC-

generated configurations divided by w0 computed on RHMD-generated configurations for

the same bare gauge coupling and quark masses. For a ≈ 0.09fm, m′l/m
′
s ≈ 1/27, the

ratio is wRHMC
0 /wRHMD

0 = 1.0009(12). For a ≈ 0.06fm, m′l/m
′
s ≈ 1/10, the ratio is

wRHMC
0 /wRHMD

0 = 1.0002(26). For some configuration streams the pattern of fluctuations of

w0/a with molecular-dynamics time is not sufficient to reliably estimate the mean and stan-

dard deviation over that single stream. However, in the particular cases used for calculating

the ratio, this issue is not evident. Figure 2.1 shows the fluctuations of the relevant streams

for each ratio. For all fluctuations of w0/a on a single stream, the length of the fluctuation

in molecular-dynamics time units is small compared to the entire molecular-dynamics time

span of the stream.
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Figure 2.1: The scale w0/a measured on individual configurations as a function of the
simulation time in molecular-dynamics time units. Configuration streams generated with
RHMC and RHMD are respresented by solid-red and dashed-blue lines, respectively.
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Autocorrelation Lengths

We compute the autocorrelation function of 〈E(t, τ)〉 as a function of the flow time t and the

number, τ , of molecular-dynamics time units separating configurations. For the ensembles

at a ≈ 0.15 and 0.12 fm, where the full ensembles have been analyzed, we have a reliable

estimate of the statistical error of the autocorrelation function for all values of τ . For

the finer lattice spacings a ≈ 0.09, 0.06 fm, estimating the autocorrelation functions for τ

smaller than the separations listed in Tables 2.4 and 2.5 is impossible without calculating

the gradient flow on more configurations. To address this, we have analyzed an additional 50

and 25 equilibrated configurations separated with τ = 24 from the m′l/ms = 1/10, a = 0.09

and 0.06 fm ensembles, respectively. Most of these configurations are not included in the

calculation of the gradient-flow scales; we keep the configurations used for computing the

scales uniformly spread over each ensemble, with constant separation in τ .

Once the autocorrelation function of 〈E(t)〉 is computed, we integrate the function over the

separation τ for each step in flow time t. To estimate the statistical error in the integrated

autocorrelation length l, we first perform a jackknife analysis with a bin size b large enough

that the statistical error is (approximately) unchanged with further increases in bin size.

After determining l and estimating all errors, we take the upper bound as a conservative

estimate of l and recalculate the statistical error with bin size b ≥ 2l. If the new statistical

error estimate leads to a new, higher upper bound l that does not satisfy b ≥ 2l, then this

procedure is repeated until the condition is met.

Since the autocorrelation function at fixed t exponentially decays to 0 as a function of τ , and

the statistical noise increases with τ , an integration region is chosen to cut off noise from

autocorrelations at larger τ . This produces an additional systematic error associated with
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the value of τcut, the cut-off in τ of the integration region. The systematic error from τcut

is estimated by the difference between the largest and smallest integrated autocorrelation

lengths for different ‘reasonable’ choices of the cutoff. A choice of the cutoff τcut is deemed

reasonable if two criteria are met. First, τcut must be larger than or equal to the first sep-

aration τmin for which the autocorrelation function is within 2σstat of 0. This ensures the

largest contributions to the integrated autocorrelation function are included in the integra-

tion. Second, the deviation between the integrated autocorrelation length on the full dataset

and those on the first or second halves is no more than 3σstat. This criterium is designed

to eliminate situations where the number of data points are so few that the sample mean

and sample standard deviation are not meaningful. Figure 2.2 illustrates the procedure for

estimating the integration error on the a≈0.12 fm, ml/ms = 0.1 ensemble. To choose τcut for

the central estimate of the integrated autocorrelation length, the integration region yielding

the largest integrated autocorrelation length is chosen. With this choice our estimates cover

the worst-case scenario, consistent with using the upper bound as a conservative estimate.

However, we emphasize that our statistics are limited on the finer ensembles, and it is pos-

sible that there longer-range tails to the autocorrelation function that we are not including

in the integrated autocorrelation length.

The integrated autocorrelation lengths with statistical and systematic error combined in

quadrature are plotted in Fig. 2.3. Notice the autocorrelation length for 〈E(t)〉 appears

to asymptotically increase for increasing flowtimes, as expected for a smoothing operation.

The top of the range for our estimate of the integrated autocorrelation length at large flow

times is 58 and 65 molecular dynamics time units for the a ≈ 0.09fm and a ≈ 0.06fm, m′l =

m′s/10, physical strange-quark mass ensembles, respectively. In comparison, the integrated

autocorrelation length of the topological charge appears to be roughly 40 and 300 molecular

dynamics time units for the a ≈ 0.09fm and a ≈ 0.06fm, m′l = m′s/5, physical strange-quark
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Figure 2.2: The jackknifed, integrated autocorrelation length versus flow time for different
choices of the upper limit of the integration region, τcut. The data is from the a≈ 0.12 fm,
m′l/m

′
s = 0.1 ensemble. The plots correspond to the largest and smallest ‘reasonable’ values

of τcut, where the statistical errors are not completely uncontrolled. The autocorrelation
lengths for the full ensemble (solid line) and for the two halves of the ensemble (dashed
lines) are plotted for each value of τcut. The estimate of the systematic error associated
with the the choice of τcut for large flow times is denoted by the black vertical line.
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Figure 2.3: The integrated autocorrelation length (in molecular-dynamics time units) as a
function of flow time for ensembles with m′l/m

′
s = 0.1 and different lattice spacings. The

thickness of the colored regions show the full range of the 1σ errors, obtained by adding,
in quadrature, the statistical error and systematic variation with τcut. Dashed vertical lines
denote the flow times that determine w0 on each ensemble where the color of the line matches
the color of the shaded region. The range of flow times that determine

√
t0 is similar.

mass ensembles [12]. This suggests the autocorrelation length for 〈E(t)〉 at large flowtimes

is comparable to or smaller than the autocorrelation length of the topological charge.

Charm-Quark Mass Mistuning

Mistunings of the charm-quark mass on our ensembles vary between 1% and 11%. It is

therefore important to account for the leading-order corrections in the charm-quark mass to
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the quantities we consider. Given any low-energy quantity Q that is proportional to a power

p of Λ
(3)
QCD in the effective three-flavor low-energy theory, the leading order heavy-quark mass

dependence can be determined using the relation between Λ
(3)
QCD and Λ

(4)
QCD of the four-flavor

theory [25, 26].

Λ
(3)
QCD = Λ

(4)
QCD

(
mc

Λ
(4)
QCD

)2/27
∂Λ

(3)
QCD

∂mc

=
2

27

Λ
(3)
QCD

mc

(2.13)

For a pedagogical discussion see Ref. [61]. Equation (2.13) neglects discretization errors and

physical 1/mc corrections, and assumes that the lattice scale-setting procedure is independent

of the heavy-quark mass. Given Q = k(Λ
(3)
QCD)p, where k and p are independent of mc, the

partial derivative of Q with respect to mc at leading order is then

∂Q

∂mc

= kp
(

Λ
(3)
QCD

)p−1 ∂Λ
(3)
QCD

∂mc

=
2p

27

Q

mc

. (2.14)

For a dimensionless ratio, such as Fp4s/w
−1
0 , where both dimensional quantities share the

same power p, the leading-order dependence on mc will cancel. Higher-order corrections

are negligible, even at the level of precision of this work. However, dependence on mc will

remain for dimensionless ratios where the powers are not identical because there is leading

dependence on the light-quark masses. For example, Mπ/Fp4s, where Mπ ∝ (mlΛ
(3)
QCD)(1/2),

must be adjusted by (−2/54)(Mπ/Fp4s)(δmc/mc) where δmc is the mistuning of the charm-

quark mass.

In this work, we must adjust six quantities: aMπ, aMK ,
√
t0/a, w0/a,

√
t0,imp/a, and

w0,imp/a. When performing the continuum extrapolations and physical-mass interpolation,

all six quantities will be scaled by aFp4s. The products of aFp4s and the gradient-flow scales

would normally not need to be corrected to leading order in 1/mc. However, for the values
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≈ a(fm) m′l/m
′
s aMπ aMK

√
t0/a w0/a

0.15 1/5 0.23619(22)[−34] 0.40204(25)[−57] 1.1035(05)[031] 1.1253(08)[032]
0.15 1/10 0.16598(10)[−16] 0.38030(16)[−37] 1.1113(03)[022] 1.1403(05)[022]
0.15 1/27 0.10169(09)[−11] 0.37051(16)[−41] 1.1161(02)[025] 1.1494(04)[026]
0.12 1/5 0.18904(15)[−13] 0.32335(20)[−22] 1.3142(06)[018] 1.3854(10)[019]
0.12 1/10 (323×64) 0.13420(09)[−04] 0.30804(15)[−09] 1.3236(04)[007] 1.4055(09)[008]
0.12 1/10 (403×64) 0.13396(06)[−04] 0.30812(09)[−09] 1.3233(03)[007] 1.4049(06)[008]
0.12 1/27 0.08151(04)[−02] 0.29843(11)[−08] 1.3292(05)[008] 1.4176(10)[008]
0.09 1/5 0.14039(17)[−16] 0.24033(18)[−27] 1.7267(08)[039] 1.9000(15)[043]
0.09 1/10 0.09849(08)[−03] 0.22681(12)[−07] 1.7386(05)[010] 1.9311(12)[011]
0.09 1/27 0.05719(04)[−03] 0.21936(09)[−10] 1.7451(05)[016] 1.9488(13)[018]
0.06 1/5 0.09400(16)[−38] 0.16125(16)[−65] 2.5518(13)[205] 2.9190(33)[234]
0.06 1/10 0.06686(06)[−27] 0.15390(09)[−62] 2.5716(14)[206] 2.9716(31)[238]
0.06 1/27 0.03885(03)[−02] 0.14262(06)[−07] 2.5860(07)[027] 3.0150(19)[031]

Table 2.6: Results for adjusted meson masses and gradient-flow scales, on the physical
strange-quark ensembles listed in Tables 2.1 and 2.4. The adjustment corrects for charm-
mass mistunings, as explained in the text. The first two columns are the approximate lattice
spacing and ratio of light-to-strange sea-quark mass, with the lattice dimensions appended
as needed to uniquely identify each ensemble. The remaining four columns list the masses
aMπ, aMK and gradient-flow scales

√
t0, w0 with associated statistical error in parentheses

and change from the data before charm-quark mass adjustment in square brackets. The
adjustments for

√
t0,imp and w0,imp are similar.

of aFp4s taken from Ref. [13], an interpolation of aFp4s to physical masses (including charm)

at a fixed lattice spacing has already been performed. To correctly adjust the ratios, we

define the lattice spacing to have no charm-quark mass dependence and directly adjust the

remaining quantities. The values of aMπ, aMK ,
√
t0/a, and w0/a after correction for charm-

quark-mass mistuning are listed in Tables 2.6 and 2.7. The adjustments for
√
t0,imp/a and

w0,imp/a are similar to those for
√
t0/a and w0/a, and are therefore not shown.

Simple Continuum Extrapolation

A simple continuum extrapolation can be quickly performed by including only the physical

quark-mass ensembles. With just these ensembles, light-quark and strange-quark mass mis-

tuning effects cannot be accounted for, and the statistical error will be larger than from a
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m′l/ms m′s/ms aMπ aMK

√
t0/a w0/a

0.10 0.10 0.13177(10)[−04] 0.13177(10)[−04] 1.3603(06)[08] 1.4842(13)[08]
0.10 0.25 0.13247(09)[−04] 0.17380(11)[−05] 1.3535(04)[08] 1.4685(10)[08]
0.10 0.45 0.13271(10)[−04] 0.21713(12)[−06] 1.3446(05)[08] 1.4478(10)[08]
0.10 0.60 0.13320(10)[−04] 0.24502(13)[−07] 1.3392(08)[08] 1.4359(16)[08]
0.175 0.45 0.17487(10)[−05] 0.23192(12)[−07] 1.3393(05)[08] 1.4357(13)[08]
0.20 0.60 0.18837(17)[−13] 0.26364(18)[−18] 1.3316(06)[18] 1.4189(12)[20]
0.25 0.25 0.20883(19)[−21] 0.20883(19)[−21] 1.3400(07)[26] 1.4364(14)[28]

Table 2.7: Results for adjusted meson masses and gradient-flow scales, on the lighter-than-
physical strange-quark ensembles listed in Tables 2.2 and 2.5. The adjustment corrects for
charm-mass mistunings, as explained in the text. The first two columns are identical to those
inTable 2.2 and are used to identify the ensembles. The latter four columns are equivalent to
those in Table 2.6. The adjustments for

√
t0,imp and w0,imp are similar to the original scales

and are not listed here.

fit to the complete dataset. Nevertheless, this extrapolation is useful because it provides a

check on the final value from the more complicated fits and highlights the degree of improve-

ment in discretization errors of w0 over
√
t0, as well as the scales

√
t0,imp and w0,imp over the

originals
√
t0 and w0.

To perform the continuum extrapolation we multiply by the values of aFp4s listed in Table 2.3

to create a dimensionless quantity that is finite in the continuum limit. We choose aFp4s to

keep the statistical errors smaller than what they would be from an experimentally accessible

quantity such as fπ. To convert the final result to physical units, however, we must use

Fp4s = 153.90(09)(+21
−28) MeV, which was computed with the scale set by afπ. The advantage

of using aFp4s to set the intermediate scale is that it yields smaller relative scale errors from

different ensembles, and thus aids in the extrapolation to the continuum.

Plots of
√
t0Fp4s and w0Fp4s as a function of a2 are shown in Fig. 2.4. The discretization

improvement of w0 over
√
t0 is immediately evident in the differences between the coarsest

and finest ensembles. In addition, the plot shows that the a2 dependence is not trivial for w0.

This is not unexpected because we are using a highly improved configuration action (which
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Figure 2.4: Simple continuum extrapolations for
√
t0Fp4s and w0Fp4s over physical quark-

mass ensembles only. Statistical error bars are present, but they are nearly invisible on this
scale. Three fits to each dataset are shown. The red, dot-dashed line is a linear fit in a2

to the three finer ensembles (a < 0.15 fm), the blue dashed line is a linear fit in a2 to all
four ensembles, and the green solid line is a quadratic fit in a2 to all four ensembles. The
continuum extrapolation points, calculated from

√
t0,imp and w0,imp, are shown in magenta

with error bars representing the sum of statistical and systematic uncertainties in quadrature.
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(
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and improved scales, respectively. The continuum extrapolation points, calculated from the
improved scales, are shown in black with error bars representing the sum of statistical and
systematic uncertainties in quadrature.
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directly affects aFp4s) for a statistically precise measurement. The importance of higher order

terms in a2 and αsa
2 can be seen directly in the differences between the improved and original

w0, as well as the difference between
√
t0 and w0. The situation is further complicated by

effects of quark-mass mistunings between ensembles with approximately same ratio ml/ms.

This is explored in more detail in the full fit analysis in Sec. 2.3.3. For now, we include linear

fits in a2 with or without the coarsest a ≈ 0.15fm ensemble and quadratic fits in a2 to all

four ensembles.

Figure 2.5 compares the improved scales
√
t0,imp and w0,imp with the unimproved ones

√
t0

and w0. As before, we consider linear fits with or without the coarsest (a ≈ 0.15 fm)

ensemble, and quadratic fits with all four ensembles. For the unimproved scales the fit

curves are functions of a2; for the improved scales they are functions of αsa
2, since tree-level

discretization errors have been removed. The improvement at tree level is obvious for
√
t0,

where the αsa
2 dependence of

√
t0,imp is close to linear, and the slope is considerably less steep

than for
√
t0. The difference between w0 and w0,imp is much smaller, and is contaminated here

by mistuning effects, so we postpone discussion until after we correct for such mistunings.

The continuum value is extracted from the quadratic fit in αsa
2 to the full dataset on the

improved scales. The systematic error from the extrapolation is estimated by the largest

differences between this fit and the other fits considered. This yields the simple estimates

for the gradient-flow scales
√
t0 = 0.1418(1)(+18

− 4) fm and w0 = 0.1710(4)(+ 7
−12) fm. Here we

do not included any errors (statistical or systematic) from the determination of Fp4s so that

we can make a cleaner comparison with the extrapolations of the full dataset.

74



2.3.3 Full Continuum Extrapolation

Using all of the ensembles listed in Tables 2.1 and 2.2, we now perform a combined contin-

uum extrapolation and interpolation to physical quark masses. Compared with the simple

continuum extrapolation over the physical quark-mass ensembles only, the full approach has

greater statistics, provides a handle for precise tuning of the light-quark and strange-quark

masses to their physical values, and allows for better control and analysis of the systematic

errors from discretization effects.

We break the analysis into two main sections. First, the functional forms and parameter

variations for controlling mass and lattice-spacing dependence are outlined. Second, we

present the results from our fits of the lattice data to the models from the first section.

Models of Mass and Lattice-Spacing Dependence

To perform the combined continuum extrapolation/quark-mass interpolation there are three

functional forms that must be chosen: quark-mass terms, lattice-spacing terms, and terms

that combine both (cross terms).

For the mass dependence we use the chiral expansion outlined in Sec. 2.2.2 with Mπ and

MK as independent variables, standing in for the quark-mass dependence. For each fit we

include the expansion up to LO (just a constant), NLO (which adds an analytic term linear

in the squared meson masses, but no chiral logarithms), or NNLO (chiral logarithms and

terms up to quadratic in the squared meson masses). In the fits to Eq. (2.6) the rho meson

mass is used for µ and Fp4s is used for f . Since Fp4s is larger than typical stand-ins for f ,
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we also repeated all the fits while scaling the values of Fp4s by the physical ratio of fπ/Fp4s.

This did not appreciably alter the results.

For the lattice-spacing dependence we use a Taylor-series ansatz in powers of a2, αsa
2, and

α2
sa

2. For the unimproved scales
√
t0 and w0, the first order term in lattice spacing, a2, is

always included. Higher orders are optionally included up to a6, αsa
2, and α2

sa
2. For the

improved scales
√
t0,imp and w0,imp, the first order in either αsa

2 or a4 is always included.

Higher orders are optionally included up to a8, (αsa
2)2, and α2

sa
2. Even though the scales

√
t0,imp and w0,imp are improved to order a8 at tree level, the a4 through a8 terms are included

for fits because aFp4s has leading corrections of αsa
2 and a4. For both scales, the number of

lattice-spacing terms in a single fit is not allowed to exceed three. Together with the value

of the scale in the continuum limit, this ensures that at most four parameters describe the

a-dependence of the data from our four unique lattice spacings.

For cross terms, we include all products of chiral and lattice-spacing terms whose total order

is no higher than the largest non-cross term included in the fit function. Also no cross terms

are constructed from the highest orders of mass or lattice-spacing terms. For example, a

fit including a6 and the chiral expansion to NNLO would include a term like a4(M/(4πf))2

but not include a2(M/(4πf))4. For the purpose of counting orders, we assume the power

counting αs ∼ (ΛQCDa)2 ∼ (M/(4πf))2.

Once the functional form is chosen, we also consider various restrictions of the dataset. As

already suggested from the naive fit to the physical quark-mass ensembles only, the a ≈ 0.15

fm ensembles may require higher orders of a2 to be included. So we consider fits that include

or drop these ensembles. Furthermore, when the a ≈ 0.15 fm ensembles are dropped,

we do not include more than two lattice spacing terms to ensure the three unique lattice

spacings represented by the dataset are not parameterized by four or more variables. A
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second restriction on the dataset is determined by the kaon mass. The lighter-than-physical

strange-quark ensembles have strange-quark masses all the way down to 1/10 the physical

strange-quark mass. Including these ensembles along with the physical-mass ensembles that

comprise most of out data requires more complex chiral forms to cover the large range in

m′s. We therefore consider seven different lower bounds for the kaon masses included in the

fit, ranging from just below the physical strange-quark mass, to near zero, which includes

all the ensembles.

For all scales, there are three chiral expansions and seven choices of lower bound for the

kaon mass. For the original scales
√
t0 and w0, there are six lattice-spacing expansions with

the a ≈ 0.15 fm ensembles included and three lattice-spacing expansions with the a ≈ 0.15

fm ensembles not included. This produces a total of 3 × (6 + 3) × 7 = 189 different fits.

For the improved scales
√
t0,imp and w0,imp, there are nine lattice-spacing expansions with

the a ≈ 0.15 fm ensembles included, five lattice-spacing expansions with the a ≈ 0.15 fm

ensembles not included. This produces a total of 3× (9 + 5)× 7 = 294 different fits.

Fits to the Lattice Data

We gauge the acceptability of each of the fits outlined in Sec. 2.3.3 using the p-value and

the proximity of the fit curve to the data from our most important ensemble, the one with

physical quark-masses and a ≈ 0.06 fm. Figure 2.6 shows the acceptability for the original

and improved scales with p-value as the x-axis, deviation from the physical a ≈ 0.06 fm

ensemble as the y-axis, and the size (radius) of each data point proportional to the number

of degrees of freedom. We define ‘acceptable’ fits as those with p > 0.01. Acceptable fits

are those inside the black box in Fig. 2.6. Note that, for all the scales considered, fits

with acceptable p-values are usually close to the result from the a ≈ 0.06 fm physical-mass
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ensemble. For w0Fp4s and
√
t0Fp4s no acceptable fit deviates by more than 2 or 2.5 σstat,

respectively.

To determine a central value and systematic error from the choice of fit we construct his-

tograms in Fig. 2.7 of the continuum results from fits with p > 0.01. The number of

acceptable fits is further refined after careful examination of the continuum extrapolations

for outlying members. For
√
t0Fp4s, all fits simultaneously including a2, αsa

2, and α2
sa

2 were

dropped due to extreme curvature outside the interpolation range (0.06 fm < a < 0.15 fm).

For the same reason, all fits to w0,impFp4s simultaneously including a4, αsa
2, and (αsa

2)2

were dropped.

For each of
√
t0 and w0, the central fit is chosen by locating the fits closest to the median

with p > 0.1 and at least twice as many data points as parameters. If there are several fits

that satisfy this criteria, the fit with the larger dataset is chosen. The central fits to
√
t0

and w0 are both to the improved scales, include the chiral expansion to NNLO with the full

range of kaon masses, and include the lattice spacing terms a4, a6, and αsa
2 with the full

range of lattice spacings. The fits have 9 free parameters and 20 data points. For
√
t0 the

central fit has χ2/dof = 12.9/11, p = 0.30, and is 0.7σ higher than the physical a ≈ 0.06 fm

ensemble. For w0 the central fit has χ2/dof = 12.0/11, p = 0.37, and is 0.5σ higher than

the physical a ≈ 0.06 fm ensemble. The central fits are shown in Fig. 2.8. The dashed lines

indicate how well the fit describes the data by showing the fit function evaluated at the same

masses and lattice spacing as the data points. The three solid bands show the lattice-spacing

dependence at fixed quark masses, tuned to a physical value for the strange-quark mass and

the indicated ratio of the light-quark to strange-quark mass. One clearly sees the effects of

retuning the quark masses from their run values.
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Figure 2.6: The ‘acceptability’ for the various fits considered for the t0 scales (
√
t0 and√

t0,imp, top) and w0 scales (w0 and w0,imp, bottom). Fit acceptability is parameterized by
the p-value (x-axis) and the proximity to the results from the physical-mass a ≈ 0.06 fm
ensemble in units of σstat (y-axis). The size of the points is proportional to the number of
degrees of freedom. The space within the black box contains fits with 0.01 < p < 1.0 and
a deviation of less than 2.5σstat or 2σstat for the t0 and w0 scales, respectively. This box
determines the acceptable subset of fits considered in subsequent analysis. The central fit
chosen from this analysis is denoted by the star.
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√
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For the fit to
√
t0,impFp4s, the lattice-spacing dependence at finer lattice spacings (a ≤ 0.09

fm) is dominated by the αsa
2 contribution. The a4 contributions start to become compa-

rable to those from αsa
2 for a>∼ 0.12 and produce the curvature evident in Fig. 2.8 (top).

The lattice-spacing dependence of w0,impFp4s is milder than for
√
t0,impFp4s, but also more

complicated. For small a<∼ 0.06 fm, the contributions to the fit from both αsa
2 and a4 are

fairly small and have opposite signs, so that w0,impFp4s is nearly constant as a→ 0. For in-

termediate lattice spacings a4 contributions dominate, while a6 starts to become important

for a > 0.12 fm, giving the downward curvature for large a seen in in Fig. 2.8 (bottom).

It is revealing to examine the central extrapolations plotted through only the physical mass

ensembles for all four gradient-flow scales, as was done in Fig. 2.5 for the naive extrapolation.

This plot is presented in Fig. 2.9. Compared to the simpler fits to just the physical-mass

ensembles in Sec. 2.3.2, quark-mass mistunings in the physical quark-mass ensembles are

accounted for here. This leads the two coarsest physical-mass ensembles (a = 0.12 and

a = 0.15 fm) to shift down when retuned to the precise ratio ml/ms = 1/27. For the

fits to
√
t0Fp4s and

√
t0,impFp4s the difference is visible but has only a small effect on the

continuum extrapolation. For the fits to w0Fp4s and w0,impFp4s the shift is very important

as the fluctuation in the data points across the range of a2 is comparable to the size of the

effect of mass retuning.

For both
√
t0 and w0, the tree-level improved version of each scale eliminates a2 errors and

reduces a4 and a6 contributions. The improvement in
√
t0 is obvious in Fig. 2.9. For w0 the

quark-mass retuning allows the reduced a2 dependence of w0,impFp4s relative to w0Fp4s to

become visible at small lattice spacing. Specifically for a<∼ 0.06 fm (the extreme left of the

plot), the dominant contribution to w0Fp4s is the a2 term, while w0,impFp4s is a mixture of the

a4 and αsa
2 contributions of opposite signs, with each contribution approximately one third
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Figure 2.8: The central fits to the gradient-flow scales
√
t0,impFp4s and w0,impFp4s, plotted as

a function of αsa
2. These are used to compute

√
t0 (top) and w0 (bottom) at physical quark

masses and in the continuum, as indicated by the black stars. Only m′s≈ms ensembles are
plotted, but the fits include all m′s ≤ ms ensembles. Dashed lines represent the fit through
each ensembles’ actual quark masses and lattice spacing, while the solid bands are for varying
lattice spacing at fixed quark masses retuned to the physical strange-quark mass and the
ratio of m′l/m

′
s specified in the legend.
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the magnitude of the a2 term for w0Fp4s. Thus the slope of w0,impFp4s as a→ 0 is significantly

smaller than that of w0Fp4s. However, for intermediate and larger lattice spacings, there is

no reduction in the lattice-spacing dependence of w0,impFp4s relative to w0Fp4s.

2.4 Continuum Results

2.4.1 Scales in Physical Units

We compute our final estimate of the gradient-flow scales in physical units by evaluating the

continuum-extrapolated, physical-quark-mass-interpolated value of
√
t0Fp4s and w0Fp4s for

the best fit in Sec. 2.3.3 and dividing by the physical value of Fp4s (see Sec. 2.3).

√
t0 = 0.1416(1)stat(

+6
−2)t0,extrap(

+3
−2)Fp4s,extrap(2)FV(3)fπ PDG fm (2.15)

w0 = 0.1717(2)stat(
+10
−10)w0,extrap(

+3
−2)Fp4s,extrap(2)FV(3)fπ PDG fm (2.16)

The first error is statistical and is from the corresponding central fit discussed in Sec. 2.3.3.

The remaining, systematic, errors are from: continuum extrapolation/chiral interpolation

(estimated by variations among fits), corresponding continuum and chiral errors on Fp4s in

physical units, residual finite-volume effects on Fp4s, and the error in Fp4s from the exper-

imental error in fπ [66], respectively. The error from the choice of fit for the gradient-flow

scale is estimated using the histograms in Fig. 2.7. For
√
t0, where tree-level improvement

dramatically reduces our observed discretization errors, we consider only the range of results

from the continuum extrapolation of
√
t0,imp; we take the maximum differences of those fits

from the central fit as the error. In other words, we use the full range of the fits shown

in green in Fig. 2.7, but do not consider the red outliers at the left of the histogram. For

83



0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

αsa
2  (fm2 )

0.110

0.115

0.120

0.125

0.130

0.135

(s
ca

le
)F

p
4s

w0,impFp4s

w0Fp4s√
t0 Fp4s√
t0,impFp4s

Figure 2.9: Continuum extrapolations for the original (
√
t0 and w0) and improved (

√
t0,imp

and w0,imp) gradient-flow scales times Fp4s plotted for physical quark-mass ensembles only.
All fits include the chiral expansion to NNLO and are fit to the full range of kaon masses.
For
√
t0Fp4s the fit is quadratic in a2 and drops the coarsest ensembles at a ≈ 0.15fm. For

w0Fp4s the fit is cubic in a2 and covers the full range of a. For the improved scales the plotted
lines are from the central fits discussed in this section. The continuum-extrapolation points
are shown in black with error bars representing only the statistical error.

84



w0, only a mild improvement in the observed a2 dependence occurs after removing tree-level

discretization errors. We consider all fits, both to w0 and to w0,imp and take, conservatively,

the maximum differences of all those fits (both green and red in Fig. 2.7) from the central

fit as the error. The remaining extrapolation errors, residual finite-volume effects, and error

from the experimental value of fπ come directly from the analysis of Fp4s [13].

The results in Eqs. (2.15) and (2.16) may be compared to the earlier, simple estimates of

√
t0 = 0.1418(1)(+18

− 4) fm and w0 = 0.1710(4)(+ 7
−12) fm from the physical quark-mass ensem-

bles in Sec. 2.3.2. For both
√
t0 and w0, the extrapolated values agree, within the earlier

systematic errors. (Note that the earlier result did not include the uncertainties from Fp4s

and fπ, which give the last three errors in Eqs. (2.15) and (2.16).) For
√
t0, the agreement

is exact within quoted precision and both extrapolations lead to similar statistical uncer-

tainties. The main improvement of extrapolating
√
t0,impFp4s over the full set of ensembles

is the narrower systematic uncertainty in the continuum, physical mass extrapolation. For

w0, the central value from the simpler fit is slightly lower. This shift is attributable to the

quark-mass re-tuning and higher-order discretization terms only accessible to the full ex-

trapolation. Also, the full extrapolation to w0,impFp4s leads to a statistical error two times

smaller. Overall, the addition of non-physical quark mass ensembles reduces uncertainties

and improves control over the continuum extrapolation without significantly deviating from

our initial estimate.

The results presented in this work have evolved from preliminary results presented previously.

In chronological order, the estimates from two earlier proceedings are w0 = 0.1711(2)(8) fm in

Ref. [16], and
√
t0 = 0.1422(2)(5) fm and w0 = 0.1732(4)(8) fm in Ref. [15]. For comparison

to the results in this work, we have altered the original results by keeping only the statistical

and systematic error from the choice of fit form to
√
t0Fp4s or w0Fp4s. We have dropped
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all other systematic errors, which are shared across all results. For both scales, all results

agree within 2σ of the current results. Compared to the result in Ref. [16], those in Ref. [15]

account for charm-quark mass mistunings, use aFp4s, instead of afπ, to set the scale, and

consider a larger selection of discretization terms. However Ref. [15] uses an incorrect value

of amc for the physical quark-mass, a ≈ 0.06 fm ensemble when adjusting for charm-quark

mass mistunings. The mistake is fixed in the current work and is responsible for most of

the downward shift relative to the scales presented in Ref. [15]. Compared to Ref. [15], the

current work also incorporates the tree-level improved versions of each scale and refines the

selection of discretization terms.

2.4.2 Continuum Meson-Mass Dependence

Using the best fits and datasets chosen in Sec. 2.3.3, we determine the continuum meson-mass

dependence of w0 under a mass-independent scale-setting scheme. The resulting function is

useful for prediction of the scales on future ensembles, as well as for explicit comparison of

the mass dependence of w0 to that of other scale-setting quantities. To predict a scale one

measures w0/a (or w0,imp/a), aMπ, and aMK on a subset of the ensemble to be generated.

Then, by evaluating the function at the corresponding dimensionless variables P = (w0Mπ)2

and K = (w0MK)2 one can determine the continuum value of w0 in physical units at those

masses, w0(P,K), and compute the resulting scale a = w0(P,K)/(w0/a). This procedure

was originally suggested in Ref. [31].

The functional form of the meson-mass dependence w0(P,K) is chosen to be the same as

the chiral expansion to NNLO, in agreement with the best fit chosen in Sec. 2.3.3. The
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coefficients are determined by solving the implicit equation

w0 = f(P = (w0Mπ)2, K = (w0MK)2) (2.17)

numerically for w0 = w0(P,K). Using the best fit h(a, (Mπ/Fp4s)
2, (MK/Fp4s)

2) = w0Fp4s of

Sec. 2.3.3, the implicit function is defined as

w0(P,K) = h(0, P/(w0Fp4s)
2, K/(w0Fp4s)

2)/Fp4s , (2.18)

where Fp4s is evaluated at physical quark masses and in the continuum. Note, the first

parameter is set to 0, denoting the continuum limit. We find

w0(P,K) = 0.1852− 0.0474(2K + P )− 0.0448PµP − 0.1229KµK (2.19)

− 0.0158 (P − 4K)µη − 0.0307 η µη + 0.0094 (2K + P )2 + 0.0447 (K − P )2

where µz = z log(z/Λ), with Λ = (Mρ/
√

8πFp4s)
2 ≈ 0.3170, and η = (4K − P )/3. The error

in w0(P,K) is approximately the same as for our continuum determination of w0 at physical

masses. Figure 2.10 plots this function over a large range of values of P and K. Values

corresponding to the HISQ ensembles and to the physical-mass point are overlaid to give a

sense of the range of meson masses for which this function is valid. The leading (2K + P )

dependence can be observed in the roughly linear shape for each line of constant K and

the approximately constant vertical gap between lines of fixed K, independent of P . The

separation of points within the clusters of physical strange-quark mass ensembles that were

simulated close to the physical ratios ml/ms = 1/5, 1/10, and 1/27 is due to quark-mass

mistunings and discretization errors.
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Figure 2.10: The continuum mass dependence of w0 as a function of P = (w0Mπ)2 for fixed
values of K = (w0MK)2. The black points and star illustrate the values of the pion and kaon
mass that correspond to various HISQ ensembles and to the physical point, respectively.
The three boxes enclose the physical strange mass ensembles with different ratios of m′l/m

′
s.

From the left to rightmost box the ratios are m′l/m
′
s = 1/27, 1/10, and 1/5.
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Using Eq. (2.19) and the results for w0,imp/a on the HISQ ensembles, we recalculate a(fm)

for each ensemble and check that the results are consistent with the original lattice spacings

set through Fp4s. Table 2.8 lists the lattice spacings determined through Fp4s in Ref. [13] and

w0 in this work. The scales determined from w0 are almost independent of quark masses for

fixed β, showing that the procedure is working as designed, and can be used to find consistent

scales of new ensembles, even if they do not have physical quark masses. Lattice spacings

determined from Fp4s and w0 on the physical quark-mass ensembles agree as the continuum

limit is approached, and are close over the whole range of lattice spacings. This fitting

procedure may be repeated to find
√
t0 as a function of P ′ = (

√
t0Mπ)2 and K ′ = (

√
t0MK)2.

As might be expected from the large slope seen for
√
t0 in Fig. 2.5, the resulting function

shows large discretization effects at the coarser scales. The discretization errors appear as

large variations in the scale determinations on coarse ensembles for different quark masses

with fixed β. We thus do not include the results in Table 2.8.

2.5 Discussion and Conclusions

With the continuum results complete, we compare with computations of gradient-flow scales

performed by other collaborations. Table 2.9 shows a selection of those calculations and

their final results in comparison with our own. The same results are also plotted in Fig. 2.11.

Differences are shown divided by the joint error, except for HPQCD. Because HPQCD uses

a subset of the HISQ ensembles employed here, we do not use the joint sigma, which would

double count several sources of error; instead, we use the larger of the two collaborations’

total error. Our results for both scales are compatible with those of the three other published

continuum-limit calculations by HPQCD, HotQCD, and BMW; the largest difference is 1.9σ.
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β m′l/m
′
s (aFp4s)/Fp4s(fm) w0/(w0,imp/a)(fm)

5.80 1/5 – 0.1515(+11
− 9)

5.80 1/10 – 0.1513(+11
−10)

5.80 1/27 0.15305(+57
−41) 0.1512(+11

− 9)
6.00 1/5 – 0.1210(+9

−8)
6.00 1/10 (323 × 64) – 0.1208(+9

−8)
6.00 1/10 (403 × 64) – 0.1209(+9

−8)
6.00 1/27 0.12232(+45

−33) 0.1208(+9
−7)

6.30 1/5 – 0.0876(+7
−5)

6.30 1/10 – 0.0876(+6
−6)

6.30 1/27 0.08791(+33
−24) 0.0876(+6

−5)
6.72 1/5 – 0.0568(+4

−4)
6.72 1/10 – 0.0566(+4

−4)
6.72 1/27 0.05672(+21

−16) 0.0567(+4
−3)

Table 2.8: Values of the lattice spacing determined from aFp4s[13] and w0,imp/a on the
physical strange-quark HISQ ensembles listed in Table 2.1. The first two columns list the
coupling β and ratio of light to strange sea-quark mass, with the lattice dimensions appended
as needed to uniquely identify each ensemble. Since we do not have a function corresponding
to Eq. (2.19) for Fp4s, mass-independent scale setting with Fp4s is performed on the physical
quark-mass ensembles only.
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Collaboration Nf

√
t0 (fm) ∆

√
t0/σ w0 (fm) ∆w0/σ

MILC [This work] 2+1+1 0.1416(1)(+8
−5) – 0.1717(2)(+12

−11) –
HPQCD [42] 2+1+1 0.1420(8) +0.5 0.1715(9) −0.2
ETMC* [41] 2+1+1 – – 0.1782 –
HotQCD [14] 2+1 – – 0.1749(14) +1.8

BMW [31] 2+1 0.1465(21)(13) +1.9 0.1755(18)(04) +1.7
QCDSF-UKQCD* [48] 2+1 0.153(7) +1.6 0.179(6) +1.2

ALPHA* [33] 2 0.1535(12) +8.3 0.1757(13) +2.3

Table 2.9: Continuum results for the gradient-flow scales
√
t0 and w0 from different collab-

orations [42, 41, 31, 33, 48, 14]. The last two columns tabulate the difference between the
results of other collaborations and this work, relative to one joint sigma. For HPQCD, whose
errors are not independent of ours, we simply use the larger error for the comparison. Results
of the three collaborations marked with an asterisk are preliminary conference results.

Our best agreement is with HPQCD, the latter of which performed an independent analysis

on the same HISQ congurations but without the a = 0.06 fm ensembles. We also agree with

the published, single-lattice-spacing result for
√
t0 = 0.1414(7)(5) fm from TWQCD [34].

Furthermore, we agree within 2σ with all but one collaboration’s preliminary results:
√
t0

and w0 calculated by the ALPHA collaboration. This may be due to the difference in the

number of flavors; however, it is unclear why the Nf dependence would be so much stronger

for
√
t0 than for w0.

Finally, we compare the relative lattice scale found from
√
t0, w0, and other quantities used

for scale setting. Here, we only compare the relative percent statistical error, since the sources

of systematic error vary considerably between the quantities considered. In addition, while

discretization errors are common to all scale-setting quantities, the errors due to a single

quantity cannot be definitively identified, since one always calculates dimensionless ratios

of two quantities. Table 2.10 compares the percent error for various scale-setting quantities

in lattice units measured on the HISQ physical quark-mass ensembles. Both gradient-flow

scales are determined more precisely than r1/a and afπ. The precision of
√
t0/a is on a
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≈ a(fm)
Statistical Error (%)

r1/a afπ aFp4s
√
t0/a w0/a

0.15 0.36 0.11 0.03 0.02 0.03
0.12 0.25 0.08 0.03 0.04 0.07
0.09 0.33 0.09 0.03 0.03 0.07
0.06 0.12 0.11 0.03 0.03 0.06

Table 2.10: Percent statistical error for several scale-setting quantities including r1, fπ, Fp4s,
and the gradient-flow scales

√
t0/a and w0/a on the physical quark mass HISQ ensembles

listed in Tables 2.1 and 2.4. The statistical errors in the improved scales
√
t0,imp and w0,imp

are comparable to the original gradient-flow scales. The first column is the approximate
lattice spacing and can be used to uniquely identify each ensemble.

par with the most precise, aFp4s. This low statistical error was an original motivation for

computing the scale from gradient flow. Note further that
√
t0/a and w0/a have only been

determined on a small subset of the configurations at finer lattice spacings, while the aFp4s

values come from the entire ensembles, so there is considerable room for improvement for the

gradient-flow scales. In addition, lower systematic errors — in particular, low dependence

on quark masses — may make the gradient-flow scales preferable to aFp4s for relative scale

setting. Statistical errors for w0/a are larger than those of
√
t0/a. This is one factor that

leads to our slightly more precise continuum extrapolated value for
√
t0 compared to w0. On

the other hand, Fig. 2.9 makes a fairly convincing case that the discretization effects for w0

are much smaller than those for
√
t0. It is conceivable that the small slope for w0 is due to

an accidental cancellation between its discretization errors and those of Fp4s. However, the

argument following Eq. (2.12) above, as well as the empirical evidence given in Ref. [31],

indicate that w0 does in fact have significantly smaller a2 dependence than
√
t0. Finally, we

remark that the small error of aFp4s, in comparison with that of afπ, is what motivates us

to use aFp4s for our continuum extrapolations of the gradient- flow scales, as discussed in

Sec. 2.3.2.

92



0.140 0.145 0.150 0.155 0.160√
t0 (fm)

0.170 0.175 0.180 0.185
w0 (fm)

N
f
=

2
N
f
=

2
+

1
N
f
=

2
+

1
+

1

This Work '15

HPQCD '13

ETMC* '12

HotQCD '14

BMW '12

QCDSF-UKQCD* '14

ALPHA* '14

Figure 2.11: The continuum values of
√
t0 and w0 separated by collaboration and grouped

by the number of flavors. References for each collaborations’ work can be found in Table 2.9.
Those results for collaborations marked with an asterisk are preliminary. Our results for√
t0 and w0 are consistent within two standard deviations to all other results except the

preliminary calculations from the ALPHA collaboration.
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In conclusion, we have computed the continuum, physical mass values of
√
t0 and w0, and

find
√
t0 = 0.1416(+8

−5) fm and w0 = 0.1717(+12
−11) fm, in reasonable agreement with most

independent calculations, and with excellent agreement with the results of HPQCD, who

used a subset of the same HISQ ensembles employed here. We have estimated an upper

bound on the integrated autocorrelation lengths at different lattice spacings and found no

autocorrelation lengths above 65 molecular-dynamics time units. Compared to our prelimi-

nary work, the continuum extrapolation is better controlled through the removal of tree-level

discretization errors and the use of aFp4s over afπ to set the scale, the quark-mass interpo-

lation is constrained using chiral perturbation theory, and the charm-quark mass has been

adjusted to correct for mistunings. Finally, we have calculated the continuum meson-mass

dependence for use in future scale-setting applications.

94



Chapter 3

Chiral Analysis

This chapter develops preliminary results for the quark masses and light pseudoscalar decay

constants. The results are the culmination of several improvements to previous MILC results,

including the highly improved staggered quark action, inclusion of the charm quark as a

fourth dynamical flavor, finer lattices with light quarks near the physical light masses, using

gradient flow for improved relative scale setting, and more.

Because quarks and gluons are the elementary particles of QCD, any refinement of quark

properties is useful to a wide range of other applications. For example, quark masses are

involved in determinations of the Higgs coupling to QCD and flavor structures of beyond

Standard Model physics. Light quark masses are especially useful to studies of chiral per-

turbation theory as they determine the amount of explicit chiral symmetry breaking.

The primary use of the pseudoscalar decay constants and other form factors are their im-

pact on determinations of the CKM matrix elements. For example, in the purely leptonic

decay of a kaon into an intermediate W boson, the decay width depends on both the QCD

based decay constant fK+ and weak matrix decay element |Vus|. By determining the decay

constants precisely in lattice computations and combining these results with experimental
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decay widths, the strength of the flavor-changing CKM elements can be determined. Similar

procedures can be applied to extract |Vus| from the kaon semileptonic form factor f+(0) and

experimental results for K semileptonic decays [9]. In both cases, |Vus| can in turn be used

to bound potential unitarity violations of the CKM matrix predicted by beyond Standard

Model physics. In addition, a clearly significant difference between the values of |Vus| ex-

tracted from each decay would indicate a failure of the Standard Model, and the existence

of new physics.

After a short introduction, this chapter is broken into two primary parts: theory and analysis.

The primary goal of the theory section is providing formulas for masses and decay constants

developed from partially quenched, rooted staggered chiral perturbation theory. The analysis

section then incorporates these formulas to extrapolate MILC HISQ ensemble results to the

continuum, physical quark-mass limit.

3.1 Introduction

For lattice observables to be directly compared to experimental results they must be de-

termined at realistic values of the quark masses and in the continuum. However, including

simulations at quark masses that are heavier than physical light quark masses still provides

several advantages.

1. Gauge configuration generation algorithms slow down as the quark mass becomes

lighter. Therefore, more precise lattice results can be generated at heavier quarks

for the same computational cost.
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2. Quark masses can only be approximated before the simulation is run. Having simu-

lations with additional quark masses allows results to be interpolated to the precise

physical quark masses with lower systematic errors

3. Several results of significance to chiral effective theories need to be computed at the

chiral limit (vanishing quark mass). From this perspective, the physical light mass is

just one of several useful points for controlling extrapolations to the chiral limit.

4. In several lattice effective theories, such as staggered chiral perturbation theory, the

continuum extrapolation and quark mass interpolation are related. Therefore, improv-

ing control of the quark mass interpolation by including a wider variety of masses also

helps reduce systematic errors in the continuum extrapolation.

To achieve high precision lattice results, these simulations at non-physical quark masses are

essential.

A related essential tool for achieving high precision lattice results, especially when additional

computational resources are not an option, are Symanzik effective theories (SET) [80]. A

SET models a given lattice action as a continuum effective field theory plus higher-dimension

correction operators multiplied by powers of the lattice spacing, where the functional form

is the most general expression up to a certain order in a that maintains all the symmetries of

the lattice action. This allows models for continuum extrapolations to be constrained based

on the specific action being simulated, reducing the resulting systematic errors on continuum

results. Lattice artifacts can also be reduced at finite lattice spacing by using the terms of

the effective Lagrangian to create improved lattice actions that vanish up to a given order

in the SET.
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In this work, SET is used to extend the meson momentum p2 and quark mass mq expansion

of χPT to include the discretization corrections from staggered quarks in powers of a2.

The combined effective theory, called staggered chiral perturbation theory, then provides a

systematic framework for simultaneously extrapolating in the lattice spacing a and quark

mass mq.

3.2 Theoretical Framework

In Secs. 1.1.1 and 1.1.5 the foundations for continuum chiral perturbation theory (χPT)

were outlined, based on the spontaneously broken left and right-handed chiral symmetries

of the continuum theory. The associated continuum Lagrangian could in principle be used

to model the quark mass dependence of lattice observables; however, this is only possible

after results are extrapolated close enough to the continuum that remaining discretization

artifacts are negligible. In the case of staggered fermions, this approach is not practical due

to the significant size of taste artifacts that depend on the lattice spacing. Instead, χPT

results are reformulated to explicitly account for staggered quarks and allow quark-mass and

continuum extrapolations to be performed simultaneously.

This section focuses on the reformulation of χPT for staggered quarks on the lattice, called

staggered chiral perturbation theory (SχPT). With the addition of the fourth root procedure

the theory is called rooted staggered chiral perturbation theory (rSχPT). Section 3.2.1 fo-

cuses on deriving the rSχPT Lagrangian from the new symmetries of the lattice and replica

procedure. Partial quenching is also briefly discussed. This allows for quark masses in in-

ternal loops to be different from external quark masses, improving the available range of

external quark masses without necessitating completely new sets of gauge configurations.
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Finally, the results for light pseudoscalar masses and decay constants in partially quenched

rSχPT are outlined in Sec. 3.2.2.

3.2.1 Staggered Chiral Perturbation Theory [4, 5, 53]

Staggered Symanzik Effective Theory

To extend continuum chiral perturbation theory to staggered quarks, a Symanzik effective

theory (SET) must be developed [80]. The theory only applies to physical momenta, p �

π/a. In other words, the lattice spacing is small enough that the momentum cutoff, π/a, is

much larger than any physical momentum of interest. The general form of a SET is therefore

an expansion in inverse powers of the cutoff

LSET =
∞∑
n=0

anL(n+4), (3.1)

where L(n+4) is of mass dimension n + 4. Each term L(n+4) must contain the most generic

expression of dimension n + 4 that still satisfies all the symmetries of the original lattice

Lagrangian. Furthermore, symmetries that appear in the different limits of the lattice La-

grangian must be respected by LSET. For example, the staggered fermion action has an

exact SU(4) taste symmetry and an approximate SUL(4Nf )×SUR(4Nf ) chiral symmetry in

the continuum limit. This symmetry will be preserved in L(4), though the higher dimension

terms may break either or both.

To finish building the SET, each term in Eq. (3.1) must be identified up to the desired

order in a. The leading order term L(4) must be the Lagrangian of continuum QCD, with

99



the corresponding χPT. In the staggered formalism, there are no dimension five operators

that satisfy all the lattice symmetries. Therefore, the corrections to the continuum χPT

Lagrangian start at O(a2). These corrections appear as four-quark operators (dimension

3/2 × 4 = 6), where one or more gluons with net momentum π/a are exchanged between

two quark lines. Because the exchanged gluons could change color, spin, or taste, but not

flavor, the flavors of the quark and antiquark fields creating and annihilating each line must

be summed together to ensure the correction is a scalar and color singlet. The possible

transformations of the remaining degrees of freedom can be captured by inserting one of the

associated matrices of SU(3) or SU(4) for color and spin/taste, respectively.

Oss′tt′cc′ = q̄i (γs ⊗ ξt ⊗ λc) qiq̄j (γs′ ⊗ ξt′ ⊗ λc′) qj (3.2)

In the preceeding equation i, j denote flavor, s, s′ denote spin, t, t′ denote taste, and c, c′

denote color indices. To establish SχPT the combined chiral and taste indices need to be

explicit for each operator so that a spurion analysis can be performed (see Sec. 1.1.5); how-

ever, the chiral symmetry is independent of the color space. Therefore, the color indices are

not explicitly needed to match terms in SET to those in SχPT. Also, while the coefficients

dcc′ of each operator are potentially different, when they are matched to the encompass-

ing SχPT operator the coefficient will be arbitrary. Therefore, for this work, all distinct

color singlet contractions are implicitly summed over and a simplified set of operators are

considered.

Oss′tt′ =
∑
cc′

dcc′Oss′tt′cc′ = q̄i (γs ⊗ ξt) qiq̄j (γs′ ⊗ ξt′) qj (3.3)

100



To find the set of allowed Oss′tt′ for the SET the staggered symmetries must be enforced.

The four symmetries that need to be considered to fully constrain the operators are the

U(1)ε symmetry of Eq. (1.68), shift symmetry, rotations, and parity. Each symmetry leads

to a specific new constraint.

The U(1)A symmetry can be applied to each flavor independently, which requires each of the

two quark bilinears in Oss′tt′ to be invariant. For the quark bilinear to be invariant, γs ⊗ ξt

must anticommute with γ5 ⊗ ξ5. In other words, one of either the spin or taste generators

must anticommute with γ5 or ξ5 while the remaining generator commutes. This implies

scalar (S), pseudoscalar (P), and tensor (T) generators can only be paired with vector (V),

and axial-vector (A) generators.

Under the appropriate redefinition of the staggered fields q(y), the shift symmetry can be

defined as a vector taste transformation of the staggered field

q(y)→ (I ⊗ ξµ)q(y), q̄(y)→ q̄(y)(I ⊗ ξµ). (3.4)

Under this transformation, each quark bilinear ismultiplied by a factor of ±1 depending on

the value of t and µ. For Oss′tt′ to remain invariant, each quark bilinear must be multiplied

by the same factor for every value of µ. Since the set of ±1 factors is distinct for each value

of ξt, this implies ξt = ξt′ .

Finally, the rotational and parity symmetries are enforced. On the lattice, the rotational

symmetry is limited to 90◦ rotations. This slightly relaxes the usual Lorentz constraint on

contracting indexes; Lorentz indices (space-time, spin, and taste) can be repeated any even

number of times before contracting, not just twice. Because χt = χt′ , γs must be able to
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contract with γs′ . Parity then requires that γs = γs′ . Finally the possible contractions of

spin and taste indices must be determined.

There are two ways the spin and taste indices may be contracted, separately or together.

Denote the two types of operators as type A and type B, respectively. If the spin and taste

indices are contracted separately, then there are no additional constraints on the allowed

values of t, t′, s and s′. There are therefore 12 allowed type-A operators corresponding to the

12 allowed quark bilinear taste-spin pairings.

{[S ⊗ V ], [S ⊗ A], [P ⊗ V ], [P ⊗ A], [T ⊗ V ], [T ⊗ A], (3.5)

[V ⊗ S], [V ⊗ P ], [V ⊗ T ], [A⊗ S], [A⊗ P ], [A⊗ T ]}

If the spin and taste indices are contracted together, then there must be four, six, or eight

spin/taste indices available to contract. However, vector and axial-vector spins cannot be

paired with vector or axial-vector tastes in the quark bilinears due to the U(1)A symmetry,

and similarly for tensor taste/spins. Therefore, the only available contraction is with six

spin/taste indices. This requires one of the spin or taste matrices to be a tensor, with

the other being a vector or axial-vector. There are therefore four type-B operators, again

corresponding to the allowed quark bilinear taste-spin pairings.

{[V ⊗ T ], [A⊗ T ], [T ⊗ V ], [T ⊗ A]} (3.6)
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Power Counting

The full SχPT Lagrangian is constructed by systematically expanding in powers of the

momentum p2, quark masses mq, and taste splittings a2δ. The effects of the first two param-

eters have been explored in Sec. 1.1.5; the momentum p2 of the pseudo-Goldstone bosons

arises from the chirally-invariant partial derivatives in the continuum Lagrangian, and the

quark masses µmq arise from the explicitly chiral-symmetry-braking quark-mass matrix M .

The last parameter, the pseudo-Goldstone taste splittings, is a new parameter arising from

the introduction of the discretization errors of the staggered quarks into chiral perturbation

theory.

In order to expand simultaneously in powers of all three parameters, a power counting

scheme needs to be established. Simulation results show that the typical taste splitting of

squared meson masses constructed from two light quarks is about the same order as M2
π .

[12]. Therefore, for light pseudoscalar observables, p2 ∼ M2 ∼ µmq ∼ a2δ. This means the

taste breaking artifacts of the staggered formalism are considered leading order and must

be included in the leading order SχPT Lagrangian. However, care must be made to revisit

this power counting scheme as lattice actions improve and taste-artifacts are reduced. Also,

if one were to focus exclusively on ensembles with a ≈ 0.09fm or finer, it might be possible

to consider taste splitting artifacts as next-to-leading order.

Staggered Chiral Perturbation Theory

Just as in the derivation of continuum χPT, SχPT is built on the assumption that the

full chiral symmetry in the continuum, chiral limit is spontaneously broken to the vector

symmetry. One difference introduced by the staggered fermions is the additional continuum
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SU(4) taste symmetry. This implies the full chiral symmetry in the continuum limit is

a larger SUL(4Nf )× SUR(4Nf )× U(1)V symmetry. When this symmetry is spontaneously

broken to the vector subgroup, SU(4Nf )×U(1)V , the taste symmetry remains and (4Nf )
2−1

Goldstone bosons are created. In a similar fashion to what was done before, the Goldstone-

boson fields are packaged into a single field

Σ(x) = exp iΦf (3.7)

where Φ is a 4Nf×4Nf matrix and the factor of two is dropped so that the additional factors

of 4 from traces over taste in the continuum Lagrangian are cancelled. The elements of Φ

are have distinct flavors and taste. When expressed in a flavor-block form, Φ is

Φ =



U π+ K+ · · ·

π− D K0 · · ·

K− K̄0 S · · ·
...

...
...

. . .


(3.8)

where each 4× 4 block Q is a matrix in taste space expanded in the 16 taste generators Ta.

Q =
16∑
a=1

QaTa, Ta = {ξ5, iξµ5, iξµν(µ < ν), ξµ, I} (3.9)

With these definitions, the leading order continuum chiral Lagrangian is

Lcont
LO =

f 2

8
Tr
(
∂µΣ∂µΣ†

)
− 1

4
µf 2Tr

(
MΣ† +MΣ

)
+
m2

0

24
[Tr(Φ)]2 (3.10)
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where the last term is the only one not already derived in the Lagrangian in Eq. (1.45).

This term accounts for the anomalous contribution to the mass of η′, which is a flavor and

taste singlet. The η′ will decouple as it gets heavier [75]. Normally, Φ must be traceless

in order to ensure Σ has determinant 1; however, this complicates the quark content of the

diagonal elements in Φ. Including m0 explicitly in the Lagrangian and delaying taking the

limit m0 →∞ allows conditions on the trace of Φ to be avoided, which simplifies U , D, and

the other diagonal elements to uū, dd̄, etc.

To extend the continuum-limit staggered chiral Lagrangian to finite lattice spacing, O(a2)

chiral operators need to be added that reflect the same sets of symmetries as the four quark

operators of the SET. To start, the original quark fields are expanded into left and right

handed components qi = qLi + qRi using the usual projections. In each quark bilinear, the

substitution results in four possible terms

q̄As,tq = q̄LAs,tq
L + q̄RAs,tq

R + q̄LAs,tq
R + q̄RAs,tq

L (3.11)

where As,t = γs⊗ ξt. If γs is S, P, or T then [γ5, γs] = 0 and the terms with uniform chirality

vanish. For all other cases γs is either V or A and the terms with mixed chirality vanish.

q̄As,tq =


q̄LAs,tq

L + q̄RAs,tq
R γs = V,A

q̄LAs,tq
R + q̄RAs,tq

L γs = S,P,T

(3.12)

Because these operators explicitly break the combined chiral-taste symmetry (except when

ξt = S), the taste matrices ξt are temporarily elevated to the spurions Ft1 and Ft2 with
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transformation properties designed to keep the symmetry in tact. The corresponding trans-

formation properties in SUL(4Nf ) × SUR(4Nf ) depend on the chirality of the quark fields

surrounding it.

q̄ξtq →


(
q̄LL†

) (
LFt1L

†) (LqL)+
(
q̄RR†

) (
RFt2R

†) (RqR) ξt = P,T(
q̄LL†

) (
LFt1R

†) (RqR)+
(
q̄RR†

) (
RFt2L

†) (LqL) ξt = V,A

(3.13)

After the Lagrangian is built, both spurions are set equal to the values they replaced

Ft1,t2 → aξt ⊗ Iflavor (3.14)

The complete set of operators now transforming under SUL(4Nf ) × SUR(4Nf ) rotations

includes Σ, M , their hermitian conjugates, and the set of 10 spurions Ft1, Ft2 for ξt =

[S, P, V,A, T ]. In order to maintain shift symmetry, Ft1 and Ft2 must contract among them-

selves after the spurions are set to their original values. This guarantees that any term with

a spurion has another spurion and is at least O(a2). The mass matrices M and M † and

derivatives ∂µΣ and ∂µΣ† can not be included with the spurion fields at O(a2). This is be-

cause the mass matrices are O(mq) ∼ O(a2)5 and the derivatives must always come in pairs

with O(p2) ∼ O(a2). Therefore, the only fields that can combine with spurions at leading

order are Σ or Σ†.

5In such expressions, factors of the QCD scale ΛQCD, needed to make the dimensions match, are omitted
for simplicity.
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For the case of ξt = P or T there is only one possible term

Tr(Ft1ΣFt2Σ†)→ a2Tr(ξtΣξ
†
tΣ
†) (3.15)

For the case of ξt = V or A there are three possible terms

Tr(Ft1Σ†)Tr(Ft2Σ) → a2Tr(ξtΣ
†)Tr(ξ†tΣ) (3.16)

Tr(Ft1Σ†)Tr(Ft1Σ†) + h.c. → a2Tr(ξtΣ
†)Tr(ξtΣ

†) + h.c. (3.17)

Tr(Ft1Σ†Ft1Σ†) + h.c. → a2Tr(ξtΣ
†ξtΣ

†) + h.c. (3.18)

where h.c. stands for hermitian conjugate and F †t1 = Ft2. Adding everything up leads to

eight linearly independent chiral operators of type-A at leading order.

Due to the contraction of space-time and taste indices, type-B operators must contain deriva-

tives ∂µΣ or ∂µΣ† to provide the space-time indices that contract with taste indices on ξt.

Because the derivative and taste matrix pairs each provide factors of O(a2), the overall order

of any type-B operator is at least O(a4). Therefore, they can be neglected at leading order.

This leaves the eight type-A operators as the only terms. The complete, leading-order SχPT

Lagrangian is

LLO =
f 2

8
Tr(∂µΣ∂µΣ†)− 1

4
µf 2Tr(MΣ +MΣ†) +

m2
0

24
(Tr(Φ))2 + a2V , (3.19)
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with the taste-violating potential

−V = C1Tr(ξ5Σξ5Σ†) +
C3

2
[Tr(ξνΣξνΣ) + h.c.]

+
C4

2
[Tr(ξν5Σξ5νΣ) + h.c.] +

C6

2
Tr(ξµνΣξνµΣ†)

+
C2V

4
[Tr(ξνΣ)Tr(ξνΣ) + h.c.] +

C2A

4
[Tr(ξν5Σ)Tr(ξ5νΣ) + h.c.]

+
C5V

2
[Tr(ξνΣ)Tr(ξνΣ

†)] +
C5A

2
[Tr(ξν5Σ)Tr(ξ5νΣ

†)], (3.20)

Replicas, Rooting, and Partial Quenching SχPT

With the leading order Lagrangian constructed for SχPT, the fourth root procedure needs

to be accounted for in order to remove the unwanted tastes from the chiral effective theory.

These extra tastes enter expectation values through the fermion operator determinant, and

a determinant factor appears for each flavor and taste of quark appearing in the action. In

Feynman diagrams, contributions from the determinant correspond to closed internal quark

loops, and taking the determinant to the 1/4 power is equivalent to multiplying each such

loop by factor of 1/4. Therefore, one way to address the effect of extra tastes would be to

parameterize the number of quarks in the action, evaluate observables, and then take the

limit as the parameter approaches 1/4. This is known as the replica procedure [20, 38, 22].

To perform the replica procedure, each quark (flavor and taste) is replicated in the action

nr times. This replication factor could be distinct for each flavor and taste; however, it only

needs to be distinct if the final value is going to be different. In this case, every unaltered

staggered quark is left with four degenerate tastes in the continuum limit. So, instead of

setting nr = 1 after computing expansions, nr is set to 1/4.
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An alternative way to to interpret the replica procedure that produces equivalent results,

is through quark flow [72, 4]. In quark flow, each term and corresponding meson diagrams

are re-expressed in terms of the underlying quark fields. For some diagrams, this results in

internal quark lines that form completely closed loops, such as in Fig. 3.3(a). For each such

loop, a factor of 1/4 can be manually inserted to remove the unwanted tastes. While the

quark flow procedure is not obviously systematic, like the replica procedure, it does provide

a clearer illustration of how the quarks are acting within χPT diagrams in QCD.

Replicas can be applied in more cases than the fourth-root procedure. Any scenario where

the number of quarks participating in an internal loop needs to be controlled is amenable

to the technique. One such scenario is partial quenching [24]. In partial quenching, the

quark masses appearing in expectation values are split into two sets: valence {mval} and sea

{msea}.6 The valence quark masses {mval} are present in operator expectation values, while

the sea quark masses {msea} contribute through the determinant and therefore only appear

in internal loops.

〈O〉 =

∫
[dU ] det[M({msea})]e−S[{msea},{mval}]Ô({mval}) (3.21)

To apply the replica procedure to reproduce the effects of partial quenching in χPT, new

flavors of quarks are added to the action that represent the valence quarks. Then, the replica

procedure is used separately for the sea and valence quark sets. Valence quarks need to be

removed from internal quark loops, so their replication factor is set to zero. Sea quarks still

act as normal (nr = 1 in SχPT, or nr = 1/4 in rSχPT).

6The separation of quarks used by partial quenching can be generalized to mixed actions where different
quark actions are used for the valence and sea; this work only focuses on the use of different masses.
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The reason why partial quenching is useful simplifies down to reducing systematic errors with

minimal cost. The low energy constants (LECs) of rSχPT scale different linear combinations

of the sea and valence quark masses. By manipulating the valence quark masses separately

from sea quark masses, the dependence of observables on each of the LECs can be extracted.

Additionally, the computational cost associated with generating different gauge ensembles is

usually much higher than the cost of evaluating correlation functions on the ensembles. It

is therefore cheaper to get more statistics through varying the valence masses than the sea

masses. Modern simulations usually choose many different values of valence quark masses

for each particular choice of sea quark masses.

3.2.2 Masses and Decay Constants

Meson Masses at Leading Order

To find the leading order corrections to the Goldstone masses, Eq. (3.19) is expanded to

quadratic order in the field Φ. Both the chiral-violating quark mass term and taste-violating

potential may in principle alter the masses of the Goldstone bosons. The effects from the

mass term were previously worked out in Eq. (1.46). Now the contributions from V may be

added.

Upon a quick inspection of the potential V , there are two types of terms distinguished by the

number of traces multiplied together. When expanded to quadratic order in Φ, the terms

with two traces multiplied together have only one field in each trace and therefore do not mix

flavors. Therefore, terms with the product of two traces only result in mass terms for the

flavor-neutral mesons U , D, S, etc. at leading order (LO). On the other hand, terms with

a single trace will mix flavors even at LO and are therefore capable of altering any meson
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mass. The full potential V is often split into two potentials U , U ′ based on this property.

The potential U collects all of the terms with a single trace, and U ′ collects all the terms

with a product of two traces.

Focusing on the flavor mixing potential U , the corrections to the meson masses at tree level

are all of the form

M2
xy,t = µ(mx +my) + a2∆(ξt) (3.22)

where mx and my are the masses of the valence masses making up the meson and a2∆(ξt) is

the taste splitting arising from U . The taste-splitting factor ∆(ξt) does not depend on the

lattice spacing (except weakly through powers of αs) or quark masses (sea or valence). The

factor does depend on the taste-structure of the meson, denoted by ξt. This is a result of the

‘accidental’ SO(4) rotational symmetry preserved by type A four quark operators, but not

by type B operators. Since type B operators do not enter at this order of the Lagrangian,

the taste splittings are degenerate within any of the groups {P,V,T,A, S}. The five different

taste splittings are

∆(ξ5) = 0 (3.23)

∆(ξµ) =
16

f 2
(C1 + 3C3 + C4 + 3C6) (3.24)

∆(ξµν) =
16

f 2
(2C3 + 2C4 + 4C6) (3.25)

∆(ξµ5) =
16

f 2
(C1 + C3 + 3C4 + 3C6) (3.26)

∆(I) =
16

f 2
(4C3 + 4C4) (3.27)
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The taste-pseudoscalar meson is the only one with no taste splitting, due to the Uε(1) axial

symmetry for each flavor.

For flavor-mixing mesons, Eq. (3.22) is sufficient because the remaining contributions from

U ′ can only effect flavor-neutral mesons. For the flavor-neutral mesons, expanding U ′ to

quadratic order reveals two new vertices that mix the flavor-neutral mesons with each other.

The effect of these vertices on the flavor-neutral propagators needs to be combined with the

explicit mass terms of U . Once the new propagators are derived, the masses can be inferred

from the poles of the full propagator.

Due to the SO(4) symmetry at this order, the different vertices can be grouped by the taste

structure of the mesons, similar to the taste splittings from U . No new vertices appear for

the scalar, pseudoscalar, and tensor tastes because every term in U ′ only contains traces of

Σ with the vector ξµ or axial-vector ξµ5 generators. The remaining taste structures, V and

A, appear symmetrically in the potential U ′. This implies that the O(Φ2) contributions to

the Lagrangian and associated vertices for each taste structure will follow the same form

(just substitute V or A for t).

LLO = . . .+
1

2
a2δ′t (Ut +Dt + St + . . .)2 + . . . (3.28)

−a2δ′t ≡ −a2 16

f 2
(C2t − C5t) (3.29)

In the expansion of (U +D + S + . . .)2 it is clear that each vertex allows one flavor neutral

meson to connect to another, with potentially different flavor. While the chiral vertices

are clearly connected, the underlying quark flow diagram is not connected. Because of the

112



DVUV

(a)
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u

d
d

(b)

-a
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δ’

V

-a
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δ’

V

Figure 3.1: An illustration of the hairpin diagram for mixing a vector U with a vector
D meson [4]. The sub figure (a) shows the vertex in the chiral theory while (b) shows the
disconnect quark flow diagram. The taste and flavor of the mesons may be changed to any
exchange of flavor neutral mesons U , D, and S and any one of the tastes A, V, I. Both
diagrams only vary by the vertex factor and exterior labels when U and D under such an
exchange.

underlying disconnected quark flow, the diagram referring to these first order corrections

to the flavor-neutral propagators in chiral effective theory is often referred to as a hairpin

diagram (see Fig. 3.1).

To reformulate the neutral meson propagators and extract their masses, the hairpin diagram

needs to be summed to all orders with all possible internal meson lines. A convenient

procedure for carrying out the re-summation was first introduced in [74]. Some of the

important results are summarized here.

Denote the free, meson propagator with neutral flavor M (e.g. U , D, S, . . . ) and taste

structure t by G0,t,M . The inverse free propagator is read off from the Lagrangian as

G−1
0,t,M = q2 +m2

Mt
, (3.30)
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where m2
Mt

are the masses with corrections from U in Eq. (3.22). In the interacting theory,

there will be propagators connecting one flavor to another. Is is therefore useful to promote

the free propagator into flavor space.

(
G−1

0,t

)
MN

= G−1
0,t,MδMN (3.31)

In flavor space, the interaction vertices for a given taste Ht can then be combined with the

inverse free propagator to form the inverse propagator G−1
t in the interacting theory.

G−1
t = G−1

0,t +Ht, (Ht)MN = a2δ′t (3.32)

Note, the elements of Ht are constant for all flavors M and N .

Performing the re-summation of the hairpin diagrams is equivalent to inverting Eq. (3.32).

After performing several manipulations, the fully interacting propagator is

Gt = G0,t +Dt, Dt = −G0,tHtG0,t

detG−1
0,t

detG−1
t

(3.33)

The elements of the disconnected contribution Dt can be expressed explicitly in terms of the

quark masses by expanding each determinant in terms of the operator’s eigenvalues.

(Dt)MN = −a2δ′t
1

(q2 +m2
Mt

)(q2 +m2
Nt

)

∏
O

(q2 +m2
Ot)∏

F

(q2 +m2
Ft)

(3.34)
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The first two factors in the denominator come from (G0HG0)MN and are due to the external

mesons of the propagator. If directly evaluating the two-point correlation function, the

masses mMt and mNt will be the valence quark masses of the external lines. If the propagator

appears in an internal loop, then these masses will correspond to each of the possible sea

and valence quark masses allowed in the loop.

The second fraction contains the two eigenvalue expansions of the determinants. The nu-

merator is a product over the eigenvalues of the inverse, free propagator, with masses for

each of the flavor-neutral mesons in the original basis: Ut, Dt, St, etc. The denominator

is a product over the eigenvalues of the inverse, full propagator. As can be inferred from

Eq. (3.33), the poles of the full propagator occur at the eigenvalues of the full, neutral-meson,

mass matrix. For both of these eigenvalue products, the masses come from the iteration over

internal quark loops formed between the vertices of two hairpin diagrams. As such, only sea

quark masses will appear.

With the full propagator derived in terms of the quark masses, the poles can now be ex-

tracted. The two poles corresponding to the external quark masses (valence or sea) are easy

to infer. Since they come from the inverse, free propagator G−1
0,t they will correspond to the

masses already derived from U in Eq. (3.22). The only remaining poles are each of the m2
Ft

resulting from the eigenvalues of the inverse, full propagator G−1
t . The mass matrix that

needs to be diagonalized is X, where

G−1
t = q2I +Xt, Xt =



m2
Ut

+ a2δt a2δt a2δt . . .

a2δt m2
Dt

+ a2δt a2δt . . .

a2δt a2δt m2
St

+ a2δt . . .

...
...

...
. . .


(3.35)
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In the case of Nf = 2 + 1 flavors without replication (nr = 1), the eigenvalues are,

m2
π0
t

= m2
Ut = m2

Dt (3.36)

m2
ηt =

1

2

(
m2
Ut +m2

St + 3a2δ′t − Z
)

(3.37)

m2
η′t

=
1

2

(
m2
Ut +m2

St + 3a2δ′t + Z
)

(3.38)

Z =

√(
m2
St
−m2

Ut

)2 − 2a2δ′t
(
m2
St
−m2

Ut

)
+ 9(a2δ′t)

2

When replicas are taken into account two important modifications occur. With nr replicas

of Nf flavors, there will be a total of nr ×Nf eigenvalues. Out of all the eigenvalues, most

will be one of the Nf distinct values corresponding to the original mass basis m2
Ut

, m2
Dt

, mSt

etc, each of which has a multiplicity of nr−1. These will cancel against the additional nr−1

factor for each original mass in the numerator of Eq. (3.34). The remaining Nf eigenvalues

correspond to more complicated combinations of the original mass basis and are almost the

same as the results in Eqs. (3.36) through (3.38). The only difference introduced into these

equations by the replica procedure is the replacement of δ′t by nrδ
′
t.

Before moving on to the one loop calculations, there is one more interaction in the leading

order Lagrangian whose effects need to be determined: the singlet mass term

1

24
m2

0 (TrΦ)2 =
2

3
m2

0 (UI +DI + SI + . . .)2 . (3.39)

The singlet interaction is almost identical to the previous vector and axial taste interactions

for flavor-neutral mesons. The only differences are the vertex factor of −4
3
m2

0 instead of

−a2δ′t, and the taste index referring to the singlet instead of vector or axial taste. Both of

these differences can be accounted for through a simple substitution into the previous results,
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with one additional step: taking the limit m0 → ∞ for observable quantities. Evaluating

Eqs. (3.36) through (3.38) with the above substitutions and with the replica factor of nr =

1/4 taken into account yields

m2
π0
I

= m2
UI

= m2
DI

(3.40)

m2
ηI

=
1

3

(
m2
UI

+ 2m2
SI

)
(3.41)

m2
η′I
∼ m2

0. (3.42)

Taking the limit m0 → ∞ in Eq. (3.34) leads to a cancellation between the explicit vertex

factor δ′I and the denominator factor of (q2 +m2
0). Thus, the taste singlet η′ decouples from

the theory.

Next-to-Leading Order rSχPT Results

With the leading order (LO) rSχPT Lagrangian in hand, one loop results can now be

calculated. While results could be calculated for any of the non-singlet taste structures,

of particular interest in this work are the true Goldstone (pseudoscalar-taste) pseudoscalar

meson masses and decay constants. Furthermore, all results are evaluated in the partially

quenched theory with three dynamical quark flavors (u, d, and s) and two valence flavors (x

and y). The pseudoscalar mesons of interest are therefore composed of two valence quarks

x and ȳ. Let these mesons be denoted by P+
5 , where the taste structure is explicit but the

quark content is left implicit.
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To find next-to-leading order (NLO) results the one loop results need to be combined with

new analytic terms at the same order (i.e. second order in the small quantities p2 ∼ m ∼ a2).

This section focuses on the derivation of the chiral log contributions at one loop and combines

the results with analytic terms defined in [45].

To calculate the mass and decay constant for the true Goldstone meson, it turns out it

is sufficient to find the self energy Σ(p2) [4, 5]. This is not very surprising for the mass

computation; the mass of P+
5 is provided by the self-energy shift in the pole of the propagator.

(
m1−loop

P+
5

)2

= m2
P+
5

+ Σ(−m2
P+
5

) (3.43)

For the decay constant, it is not immediately obvious that only the self energy needs to be

calculated. The pseudoscalar decay constant fP+
5

is defined in terms of the expectation value

of the axial current j
P+
5

µ5 .

〈0|jP
+
5

µ5 |P+
5 (p)〉 = −ifP+

5
pµ, j

P+
5

µ5 =
−if 2

8
Tr
[
ξ5PP

+ (
∂µΣΣ† + Σ†∂µΣ

)]
(3.44)

Here, PP+ is a projection operator that selects the flavor content x and ȳ. When the expecta-

tion value is evaluated at one loop, corrections enter from both wavefunction renormalization

and the expansion the axial current to O(Φ3). It turns out that the axial current expan-

sion term is proportional to the wavefunction renormalization term, with a proportionality

constant of −4 [5]. Overall, this results in a correction of

fP+
5

= f

[
1− 3

2

dΣ(p2)

dp2

]
p2=−m2

P+
5

(3.45)
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To understand the way valence and sea quarks appear in the contributions to the self energy,

it is helpful to characterize the possible vertices and tadpole diagrams by their quark flow

content. This is done for diagrams with two external P+ mesons in Figures 3.2 and 3.3,

originally published by C. Aubin and C. Bernard [4].

The vertices that need to be considered come from the LO Lagrangian expanded to O(Φ4)

and include the kinetic energy term containing two derivatives, the mass term with one

mass matrix M , and the two forms of the staggered potential U and U ′ with single or double

trace terms, respectively. The single trace terms (kinetic energy, mass, and U) must share

flavor indices with adjacent fields Φ in the trace and this pattern must cycle around the

entire product in the trace. Therefore, only connected vertices as in Fig. 3.2(a) and (b)

may contribute. Furthermore, the valence quarks entering the loop from vertex (b) must

be different and therefore require a disconnected propagator. The only tadpole diagrams

satisfying these criterion are Fig. 3.3(a), (g), and (h) for vertex (a) and Fig. 3.3(i) and (j)

for vertex (b).

After addressing the connected vertices, the only remaining Lagrangian terms are in U ′.

Each term in U ′ is composed of two traces and must therefore produce disconnected vertices

like Fig. 3.2(c) and (d). Luckily, the explicit taste structure of any term in U ′ is either vector

or axial, which ensures the number of meson fields in each trace is odd and only vertex (d)

is possible. The only compatible tadpole diagrams with vertex (d) are Fig. 3.3(e) and (f).

This implies tadpole diagrams Fig. 3.3 (b), (c) and (d) never appear in this calculation.
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Figure 3.2: Quark flow diagrams for each of the possible flavor contractions of four mesons,
where two mesons are the pseudoscalar boson composed of x and ȳ quarks. The top two
(a) and (b) represent vertices with connected quark flow, while the bottom two (c) and (d)
represent disconnected quark flow diagrams. In the chiral and full QCD theory, these are all
connected vertices. Note: there is another form of vertex (a) and (d) not shown here, where
the two valence quarks x and ȳ swap roles.
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(a) (b)

(e) (f)

(d)(c)

(h)(g)

(i) (j)

Figure 3.3: Potential quark flow contributions to the self-energy tadpole diagram. The
corresponding vertices for each diagram are shown in Figure 3.2. Fig. 3.2(a) corresponds
to tadpoles (a), (g), and (h); Fig. 3.2(b) corresponds to tadpoles (i), and (j); Fig. 3.2(c)
corresponds to only (b) and (c); and Fig. 3.2(d) corresponds to (e) and (f). Diagrams (f),
(h), and (j) represent full disconnected propagators in the loops. Diagrams (g) and (i) use
a single iteration of the disconnected two-point vertex and have no internal quark loops.
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Based on the list of tadpole diagrams, the self energy can be expressed as a simple sum of

the contributions for each allowed case listed above.

Σ(p2) =
1

16π2f 2
[(σa + σg + σh)a + (σi + σj)b + (σe + σf )d] (3.46)

The subscripts on σ(p2) in Eq. (3.46) denote the contributing tadpole diagram from Fig. 3.3

and the subscript on the groups denotes the vertex in Fig. 3.2.

In each contribution, the vertices tend to contribute in similar ways. For connected vertices,

the kinetic energy term contributes p2 + q2, where the derivative operators either act on

both the external (momentum p) or internal (momentum q) meson lines. Similarly, the

mass matrix contributes only for connected vertices and yields one continuum, tree-level

expression mass term for the external lines, m2
P+
5

= µ(mx+my), and another for the internal

lines. The last of the connected vertex contributions, the single trace potential, contributes

the taste splittings a2∆(ξt) based on the taste of the internal meson (∆(ξ5) = 0 for the P+
5 ).

The last possible vertices are the disconnected terms of U ′, each of which yields a factor of

a2δ′t.
7

The value of each diagram is then determined by the symmetry factors and possible propa-

gators in each loop. For tadpole (a), each of the flavors Q and tastes B of mixed sea-valence

mesons (e.g. xū) contributes to the final inner loop.

σa(p
2) = − 1

12

∑
Q,B

∫
d4q

π2

[
p2 + q2 +

(
m2
P+
5

+m2
Q5

)
+ a2∆(ξB)

]
1

q2 +m2
QB

. (3.47)

7The disconnected vertex associated with m2
0 for taste ξI does not contribute as it only connects two

fields together.
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In comparison, not every taste contributes non-zero results to the tadpole diagrams for (g)

and (h). Combining the two diagrams together, the results for vector-tastes V = B and

axial-tastes A = B are non-zero and identical up to the taste index.

(
σg(p

2) + σh(p
2)
)
B

= −1

3

∫
d4q

π2

[(
p2 + q2 +m2

P+
5

+m2
X5

+ a2∆(ξB)
)

(DB)XX

+
(
p2 + q2 +m2

P+
5

+m2
Y5

+ a2∆(ξB)
)

(DB)Y Y

]
. (3.48)

Here, X = x̄x and Y = ȳy refer to the flavor-neutral, valence mesons and D is the potentially

mixing flavor-neutral propagator defined in Eq. (3.33) The only other taste structure with a

non-vanishing contribution is the singlet. The only difference from the vector/axial case is

the overall factor.

(
σg(p

2) + σh(p
2)
)
I

= − 1

12

∫
d4q

π2

[(
p2 + q2 +m2

P+
5

+m2
X5

+ a2∆(ξB)
)

(DI)XX

+
(
p2 + q2 +m2

P+
5

+m2
Y5

+ a2∆(ξB)
)

(DI)Y Y

]
(3.49)

The total contribution from diagrams (g) and (h) is the total over the three non-vanishing

tastes: σg + σh =
∑

B=µ,µ5,I(σg + σh)B.

Just like diagrams (g) and (h), (i) and (j) only contribute through the vector, axial, and

singlet tastes and use a disconnected propagator in the loop. The primary difference in this

case is the change in flavor (X to Y or vice versa) over the disconnected propagator. Note,
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there is no mass contribution m2
X , m2

Y or a related term in the numerator because the mass

matrix that previously provided such terms does not have off-diagonal entries containing

quark masses (see Eq. (3.35)).

(
σi(p

2) + σj(p
2)
)
B

= −2

3

∫
d4q

π2

[(
p2 + q2 −m2

P+
5

+ a2∆(ξB)
)

(DB)XY

]
(3.50)(

σi(p
2) + σj(p

2)
)
I

=
1

6

∫
d4q

π2

[(
p2 + q2 −m2

P+
5

+ a2∆(ξI)
)

(DI)XY
]

(3.51)

Also, in the case of (i) and (j), the singlet taste contribution has the opposite sign of the

vector and axial taste contributions. Basically, the sign changes for diagrams with vertex

(b) but does not change for diagrams with vertex (a) because the order of the taste matrices

arising from external and internal fields in the kinetic energy and mass traces depends on

how the flavor indices are contracted at the vertex. For vertex (b), each internal field must

appear between the external fields at the vertex. Therefore, to cancel the taste matrices

the internal taste matrix (ξI , ξν , or ξν5) has to be commuted with the external taste matrix

(ξ5). This results in an overall sign difference between the singlet and vector/axial cases.

For vertex (a), the internal fields start out adjacent to each other in the vertex. Therefore,

no commutation is required and the overall sign is independent of the internal field’s taste.

The final contributions are from the disconnected vertices in U ′. The vertex gives an explicit

factor of a2δ′B for each of the contributing tastes (vector and axial). Furthermore, because
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tadpole diagram (e) does not contain any vertices in the internal propagator, it only con-

tributes the simple propagator, in contrast to the full disconnected propagators of diagram

(f).

σe =
∑

B=µ,µ5

−2

3
a2δ′B

∫
d4q

π2

[
1

q2 +m2
XB

+
1

q2 +m2
YB

]
(3.52)

σf =
∑

B=µ,µ5

−2

3
a2δ′B

∫
d4q

π2

∑
M=U,D,S

((DB)XM + (DB)YM) (3.53)

Upon review of Eqs. (3.43) through (3.53), we see that the integrals that yield non-vanishing,

chiral logs in the self energy and its derivative (evaluated at p2 = −m2
P+
5

) are all of the same

basic rational forms. In the self energy, all of the integrands are of the form

I [n,k] ({m};{µ}) ≡
∏k

a=1(q2 + µ2
a)∏n

j=1(q2 +m2
j)
, (3.54)

where {m} and {µ} denote the set of masses iterated over in the denominator and numerator,

respectively, and n and k are the sets’ cardinalities. Note, the masses appearing in {m} are

not necessarily unique; however, for the cases considered here every integrand contains at

most one double pole, and one or more single poles. In the case where all poles are single,

the integrand can be re-expressed in terms of the residues at each pole

I [n,k] ({m};{µ}) =
n∑
j=1

R
[n,k]
j ({m};{µ})
q2 +m2

j

, (3.55)
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where

R
[n,k]
j ({m};{µ}) ≡

∏k
a=1(µ2

a −m2
j)∏

i 6=j(m
2
i −m2

j)
. (3.56)

If one double pole at q2 = −m2
l is present, a similar procedure may be followed. To apply the

residue expansion, the integrand is re-expressed as the derivative of an exclusively simple-pole

integrand

I [n,k]
dp (m`; {m};{µ}) = − d

dm2
`

(∏k
a=1(q2 + µ2

a)∏n
j=1(q2 +m2

j)

)
(3.57)

=
R

[n,k]
` ({m};{µ})
(q2 +m2

`)
2

+
n∑
j=1

D
[n,k]
j,` ({m};{µ})

(q2 +m2
j)

, (3.58)

with

D
[n,k]
j,` ({m};{µ}) ≡ − d

dm2
`

R
[n,k]
j ({m};{µ}) . (3.59)

With this substitution, the logarithmic portion of the result for each loop integral is a

coefficient in terms of R
[n,k]
j and D

[n,k]
j,` times one of two chiral logs.

I1 ≡
∫

d4q

(2π)4

1

q2 +m2
→ 1

16π2
`(m2) ≡ m2 ln

m2

Λ2
(3.60)

I2 ≡
∫

d4q

(2π)4

1

(q2 +m2)2
= − ∂

∂m2
I1 →

1

16π2
˜̀(m2) ≡ −

(
ln
m2

Λ2
+ 1

)
(3.61)

where Λ is the chiral scale. Note that both the divergent and analytic terms are dropped

from these results. The divergent terms will be absorbed into the renormalized LECs and
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the analytic terms will be part of the more general analytic expression appended to the final

NLO result.

The above forms of the chiral logs `(m2) and ˜̀(m2) apply in infinite volume. For the large but

finite volumes typical in computer simulations, modifications are added. The modifications

arise from replacing the integral over the Fourier momenta in the three spatial dimensions

with corresponding discrete Fourier sums, which result in the Bessel functions K0 and K1

of imaginary argument. For more details [4] provides a brief overview of the derivation, and

further details can be found in [19]. The final results are simply quoted here for completeness.

`(m2) ≡ m2

(
ln
m2

Λ2
+ δ1(mL)

)
, (3.62)

˜̀(m2) ≡ −
(

ln
m2

Λ2
+ 1

)
+ δ3(mL), (3.63)

where

δ1(mL) =
4

mL

∑
~r 6=0

K1(|~r|mL)

|~r|
, (3.64)

δ3(mL) = 2
∑
~r 6=0

K0(|~r|mL) , (3.65)

and ~r is a three dimensional vector with integer components. After substituting the above

results into Eqs. (3.43) and (3.45), the NLO expressions need to be completed by including

the analytic terms at order O(x2) where x ∼ a2 ∼ mq. This involves a combination of

continuum χPT LECs at NLO (the various Li’s defined in [71]) and new terms from rSχPT

corresponding to the next order of the SET. These new operators will all yield terms that
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are O(mqa
2), because a2 has to be included to form operators distinct from the continuum,

and O(a4) operators cannot contribute to these results: the Goldstone mass must vanish

in the chiral limit, and any operator contributing to the decay constant must contain two

derivatives. Because the leading order meson mass and decay constant come from terms of

O(mq) in the Lagrangian, this allows the effects of the new operators to be combined into

single terms of the form a2C for the mass and a2F for the decay constant.

Since the analysis of the next section is based on Nf = 2 + 1 + 1 HISQ ensembles, the mass

and decay constant formulas at NLO in the Nf = 2 + 1 rSχPT are quoted here. For the full

Nf = 1 + 1 + 1 rSχPT expressions and various other useful limits, see [4, 5].

The Goldstone mass is

(m1−loop

P+
5

)2

(mx +my)
= µ

{
1 +

1

16π2f 2

(
− 2a2δ′V

∑
jV

R
[4,2]
jV

`(m2
jV

)−
(
V → A

)
+

2

3

∑
jI

R
[3,2]
jI

`(m2
jI

)
)

+
16µ

f 2
(2L8 − L5) (mx +my)

+
32µ

f 2
(2L6 − L4) (2ml +ms) + a2C

}
, (3.66)

where the the residue terms for tastes V (or A) and I are shorthand for

R
[4,2]
jV

= R
[4,2]
jV

(
{mXV ,mYV ,mηV ,mη′V

}; {mUV ,mSV }
)
, (3.67)

R
[3,2]
jI

= R
[3,2]
jI

({mXI ,mYI ,mηI}; {mUI ,mSI}) . (3.68)
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The result for the decay constant is significantly more complicated due to the presence of

double poles.

f 1−loop

P+
5

= f

{
1 +

1

16π2f 2

[
− 1

32

∑
Q,B

`
(
m2
QB

)
+

1

6

(
R

[2,2]
XI

({M(5)
XI
})˜̀(m2

XI
)

+R
[2,2]
YI

({M(5)
YI
})˜̀(m2

YI
) +

∑
jI

D
[2,2]
jI ,XI

({M(5)
XI
})`(m2

jI
) +

∑
jI

D
[2,2]
jI ,YI

({M(5)
YI
})`(m2

jI
)

−2
∑
jI

R
[3,2]
jI

({M(6)
I })`(m

2
jI

)

)
+

1

2
a2δ′V

(
R

[3,2]
XV

({M(7)
XV
})˜̀(m2

XV
)

+R
[3,2]
YV

({M(7)
YV
})˜̀(m2

YV
) +

∑
jV

D
[3,2]
jV ,XV

({M(7)
XV
})`(m2

jV
)

+
∑
jV

D
[3,2]
jV ,YV

({M(7)
YV
})`(m2

jV
) + 2

∑
jV

R
[4,2]
jV

({M(8)
V })`(m

2
jV

)

)
+
(
V → A

)]

+
16µ

f 2
(2m` +ms)L4 +

8µ

f 2
(mx +my)L5 + a2F

}
, (3.69)

The numerator masses for all of the residue terms are implicitly set to

{µ} = {mU ,mS} , (3.70)

and the explicit mass sets in the denominators are

129



{M(5)
Z } ≡ {mη,mZ} ,

{M(6)} ≡ {mη,mX ,mY } ,

{M(7)
Z } ≡ {mη,mη′ ,mZ} ,

{M(8)} ≡ {mη,mη′ ,mX ,mY } , (3.71)

3.3 Computational Analysis

The previous section covered the foundations of staggered chiral perturbation theory (SχPT)

and how it can provide a model of the combined lattice spacing and quark mass dependence of

the pseudoscalar meson masses and decay constants. This section summarizes the procedure

of extracting physical observables from lattice computations using the model from SχPT as

a base. There are three parts to the presentation. First, the complete model and inputs to

the chiral analysis are summarized. Then, the procedures for optimizing fits of the model

to lattice data are outlined. Finally, the optimized fit function is compared to the ensemble

results in order to provide a deeper context for the previous two parts, as well as to set the

stage for the continuum, physical quark-mass results in the next section.

3.3.1 Fit Structure

For sufficiently light masses and small lattice spacings, a next to leading order expansion in

a2 and mq may be sufficient; however, that is not the case in these simulations. To study

the kaon, χPT must be extended up to the mass of the strange quark. While the strange
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quark is still significantly lighter than the charm quark, it is not light enough to neglect

higher order corrections in mq. Also, the largest lattice spacing included in the MILC HISQ

ensembles is approximately a ≈ 0.15fm. In order to include the results from the coarsest

lattice, higher order effects in a2 or αsa
2 should be considered. This is particularly relevant

when fitting results based on improved actions/observables, such as the HISQ action, which

diminish lower order discretization effects.

In this work, the next to leading order results of rSχPT are extended up to fourth order

corrections. Specifically, at a fixed lattice spacing a and finite spatial volume V = L3, the

full model g can be summarized as

g = g0

[(
1 + g

(1)
0 + g

(1)
1 + g

(2)
0 + g

(2)
1 + g

(2)
2

)
sys

+
(
g

(3)
0 + g

(4)
0

)
tree

]
. (3.72)

The superscript n on g(n) denotes the overall order of the correction in combined powers of

mq and a2, where the usual power counting a2 ∼ mq is employed. The subscript denotes the

number of internal loops included in contributing diagrams The various orders are grouped

into two sets ‘sys’ and ‘tree’ depending on whether loops are included. In other words, the

first set is a fully systematic χPT expansion while the latter set is only comprised of analytic

terms based on the chiral symmetries. For each order and loop content, each term is further

elaborated below.

The functional form g is used to fit the two observables: m2
P+
5

/(mx + my) and fP+
5

. Both

quantities must be fit simultaneously because they share some of the LECs of χPT as

parameters. Depending on which observable is being predicted, g0 is either f or µ, the

associated LO LEC for χPT.
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The next term g
(1)
0 is the collection of all analytic terms at NLO in rSχPT, summarized at

the ends of Eqs. (3.66) and (3.69). The other NLO term g
(1)
1 collects all the 1-loop chiral

logs contained in the rest of those equations. Note, the finite volume dependence of this

model only enters through the chiral logs at NLO; higher order corrections for finite volume

are not needed here. The remaining three systematic terms at NNLO are based on χPT

with continuum quarks (i.e. not SχPT). The first term g
(2)
0 is a combination of new analytic

terms parameterized by two sets of five new LECs, Q1 through Q5 for m2
P+
5

and Q6 through

Q10 for fP+
5

. The second term g
(2)
1 is a collection of new one loop diagrams, partially based

on the analytic NLO terms in g
(1)
0 . The final systematic term g

(2)
2 is a collection of partially

quenched two-loop diagrams first calculated by [27, 29, 28]. The two loop diagrams are

complicated expressions and computationally expensive to compute compared to the other

terms in g. We wish to thank J. Bijnens for providing the Fortran library used to compute

all of the NNLO loop contributions in this work.

The final two terms are not based on a fully systematic χPT expansion; instead they are

only comprised of analytic terms in the valence and sea quark masses. While these analytic

terms are not explicitly derived from NNNLO χPT , they do obey all the chiral symmetries.

This ensures that g
(3)
0 and g

(4)
0 are equivalent to the collection of χPT analytic terms that

would be derived at each order.

The functional form described in Eq. (3.72) is sufficient for studying any one lattice spacing.

Given a value of a, the leading order corrections for each taste of meson are added to the

masses in loops; the disconnected vertices a2δ′t are defined; the disconnected propagators are

re-expressed in terms of the full mass matrix basis π0, η, and η′; and the a2 analytic terms

are added to the full NLO expansion. For the HISQ action, these taste artifacts are expected
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to be order α2
sa

2, which implies that the disconnected vertices become α2
sa

2δ′t for t = V,A

and similarly for the analytic terms.

However, one subtle point is that, to this point, we have only included discretization effects

that break the continuum symmetries of the theory. This means that any continuum LECs

determined by a simulation at finite lattice spacing will possess discretization corrections to

their associated continuum values. These discretization corrections are not taste-artifacts,

so they will follow the leading generic discretization corrections. For this HISQ action this

is expected to be O(αsa
2). Next order corrections could be either a4, αsa

4, or (αsa
2)2. For

the leading order term g0, corrections are added up to second order. For all other terms in

g(1) through g(3) only first order discretization corrections are added. Based on this, g0 is

replaced by

g0 → g0

[
1 + dg1αsa

2 + dg2a
4 + dg3αsa

4 + dg4(αsa
2)2
]

(3.73)

where dgi are new parameter sets determined independently for each LEC (e.g. g0 = µ and

g0 = f). Any combination of second order corrections may be considered in individual fits;

in this preliminary work we only consider fits with dg3 = 0. Including the the additional

form αsa
4 in the fits is not expected to cause any significant changes; this will be tried in

the future.

Fit Inputs

The functional form in Eq. (3.72) is dependent on several variables. The complete set of

dependencies includes the lattice spacing a, the strong coupling constant αs, the physical
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β ≈ a(fm) a/w0,imp αs amp4s

5.80 0.15 0.8823(3) 0.58801 0.02746(6)
6.00 0.12 0.7040(5) 0.53727 0.02122(5)
6.30 0.09 0.5107(3) 0.42387 0.01452(4)
6.72 0.06 0.3306(2) 0.29134 0.00873(2)

Table 3.1: The values of inputs to the χPT functional form in Eq. (3.72) that are constant
for fixed coupling β, excluding taste splittings. From left to right the columns list the
gauge coupling constant β, the approximate lattice spacing a, the relative lattice spacing
a/w0,imp set through gradient flow (see chapter 2), the strong coupling constants αs, and
amp4s = 0.4ams where ms is the strange quark mass in lattice units extrapolated to physical
values of the dynamical quark masses [13]. For both a/w0,imp and amp4s the quoted errors are
a combination of statistical and systematic errors from retuning to physical quark masses.

β ≈ a(fm) µ5 µν µ I
5.80 0.15 3.119934e-02 6.005524e-02 8.861347e-02 1.176413e-01
6.00 0.12 1.601204e-02 3.064779e-02 4.970139e-02 6.207202e-02
6.30 0.09 5.417633e-03 1.039458e-02 1.570553e-02 1.977797e-02
6.72 0.06 1.108087e-03 2.153787e-03 2.946609e-03 3.858016e-03

Table 3.2: Taste splittings for each of the non-Goldstone tastes and values of the gauge
coupling β [12]. Taste splittings are calculated on ensembles with m′l = m′s/5 at each β,
with the two valence quark masses set equal to the light sea quark mass am′l. After the
gauge coupling β, listed in the first column, the remaining columns all show w2

0,imp∆(ξt) =
w2

0,imp(m2
P+
t
−m2

P+
5

) where t is indicated by the column header.

value of the strange quark mass in lattice units ams, the four non-zero taste splittings a2∆(ξt)

for t ∈ {µ, µν, µ5, I}, the spatial volume V = L3, the collection of Nf = 2 + 1 + 1 sea quark

masses, and the two valence quark masses mx, my. For completeness, each variable is briefly

summarized here with tabulated values wherever it is feasible. The values of the first seven

variables (a, αs, ams, and all a2∆t) are held fixed across ensembles with the same coupling

β. Their values are listed in Tables 3.1 and 3.2. The remaining variables are independently

set on each gauge ensemble or, in the case of valence masses, each operator measured on

each gauge ensemble.
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In this chiral analysis, the relative lattice spacing is determined using the gradient flow

analysis presented in Ch.2. Specifically, the tree level improved scale w0,imp/a is chosen

for its reduced discretization errors. An additional benefit of using any of the gradient

flow scales in this analysis is their minimal mass dependence; this means any unintended

remaining mass dependence in the lattice spacings will be minimal compared to the expected

mass dependence of m2
P+
5

and fP+
5

.

Using the expected α2
sa

2 dependence of the taste splittings, we may define the strong coupling

constant up to a proportionality constant by measuring the average taste splitting

αs ∝
(w0,imp

a

)√ 1

16
[a2∆(ξ5) + 4a2∆(ξµ5) + 6a2∆(ξµν) + 4a2∆(ξµ) + a2∆(ξI)] (3.74)

The overall constant is then set so that αs = αV (q∗ = 1.5/a) where αV is the coupling in the

asqtad heavy quark potential determined through the average plaquette in [40, 12].

The taste splittings themselves are calculated as the average difference of squares of the

meson masses with the specified taste and the true Goldstone mP+
5

a2∆(ξt) = 〈(amP+
t

)2 − (amP+
5

)2〉. (3.75)

In these simulations, the taste splittings are computed for mesons with equal valence quarks

on the m′l = m′s/5 approximately physical strange quark mass ensembles at each β.
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The final variable held fixed for fixed β is the physical value of the strange quark mass in

lattice units ams. This variable is needed to scale the bare quark masses in each simulation

into common units. In this analysis, a related quantity called amp4s = 0.4ams is used instead.

In either case, this variable is given an initial value based on previous simulations [13] and

then redetermined as an output of the chiral analysis. The new value of amp4s can then be

fed back into the fit to be determined again. This procedure is repeated until there is no

statistical difference between what is put into the model and what is predicted by the model.

Out of the remaining three variables input into the functional form in Eq. (3.72), the spatial

volume V/a3 = N3
s in lattice units is already listed in Tables 1.1 and 1.2. The only quantities

that need to be specified are the values of sea and valence quark masses for each ensemble and

operator. These values are tabulated for the nearly-physical strange quark mass ensembles in

Table 3.3. For all lighter-than-physical strange quark mass ensembles (tabulated in Table 1.2)

the valence quark masses are the same as the physical strange quark mass ensemble with

a ≈ 0.12 fm and m′l = m′s/10. For all of the ensembles, both nearly-physical and lighter

than physical strange quark mass, the valence mass generally runs from approximately the

physical strange quark mass down either to a tenth of the physical strange quark mass or to

the physical light quark mass (for ensembles with nearly-physical light sea quark masses).

The values of m2
P+
5

and fP+
5

are computed for all distinct pairs of masses drawn from the

available collection on each ensemble. This ensures both the pion and kaon values are

accessible to interpolations (i.e. mx = my = m′l, and mx = m′l with my = m′s).

Fit Outputs

With the variable dependencies of the functional form in Eq. (3.72) summarized, the only

remaining input to the fitting procedure is the lattice simulation data to be fit: the Goldstone
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β m′l/m
′
s am′l am′s am′c mv/m

′
s

5.80 1/5 0.01300 0.0650 0.838 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0
5.80 1/10 0.00640 0.0640 0.828 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0
5.80 1/27 0.00235 0.0647 0.831 0.036, 0.07, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0
6.00 1/5 0.01020 0.0509 0.635 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0
6.00 1/10 0.00507 0.0507 0.628 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0
6.00 1/27 0.00184 0.0507 0.628 0.036, 0.073, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0
6.30 1/5 0.00740 0.0370 0.440 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0
6.30 1/10 0.00363 0.0363 0.430 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0
6.30 1/27 0.00120 0.0363 0.432 0.033, 0.066, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0
6.72 1/5 0.00480 0.0240 0.286 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0
6.72 1/10 0.00240 0.0240 0.286 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0
6.72 1/27 0.00080 0.0220 0.260 0.036, 0.068, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0

Table 3.3: The sea and valence quark masses used for computing light pseudoscalar masses
and decay constants for ensembles with nearly-physical am′s. All primed masses denote
simulation values of the masses, as opposed to physical values. The ensembles are ordered
by the gauge coupling β in the first column, followed by the value of the light sea quark mass
relative to the strange quark mass am′l/am

′
s in the second column. For completeness, the

next three columns list the three distinct flavors of sea quark masses in lattice units. The final
column lists all available valence quark masses for each ensemble. The light pseudoscalar
mass and decay constant are computed for every distinct pair of valence quarks mx,my chosen
from the values for mv (with replacement).
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masses m2
P+
5

and decay constants fP+
5

. For each ensemble and available pair of valence

masses, the meson mass is determined by extracting the lowest energy contribution to the

zero momentum two-point correlator for P+
5 . Starting from the vacuum state |0〉, the quark

bilinear O†
P+
5

can be used to create a taste- and spin-pseudoscalar meson (the Goldstone

meson), where

OP+
5

(~x, t) = q̄(γ5 ⊗ ξ5)q. (3.76)

The two-point correlator is then defined as the average over space of the vacuum expectation

value of creating and later annihilating a Goldstone meson. With the meson created at point

x and annihilated a time t later, the zero momentum two -oint correlator is defined as

CP+
5 ,P

+
5

(t) =
1

L3

∑
~y

〈OP+
5

(~y, t)O†
P+
5

(~x, 0)〉 (3.77)

The mass can be related to the correlator by inserting a complete set of energy states and

using the usual time dependence of the bilinear operator in the Heisenberg picture,

CP+
5 ,P

+
5

(t) =
∑
n

cn(~x)e−(En−E0)t ∼ c1(~x)e
−m

P+
5
t

(3.78)

where the coefficient c1(~x) is

c1(~x) =
1

L3

∑
~y

〈0|OP+
5

(~y, 0)|1〉〈1|O†
P+
5

(~x, 0)|0〉 (3.79)
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, where |1〉 is the first excited state (here, a state of a single Goldstone meson at rest).

The mass is finally extracted by fitting to the asymptotic behavior of CP+
5 ,P

+
5

(t) for t→∞.

The decay constant can also be related to the two-point correlator through the 1 particle

creation/annihilation amplitudes contained in the coefficient c1(~x). [6, 1, 50].

fP+
5

= (mx +my)

√
L3c0(~x)

4mP+
5

(3.80)

In practice the point source at x does not provide a good signal for the ground state in

Eq. (3.78). In this work the point source is replaced with both random-wall and Coulomb-

wall sources to help alleviate the low signal to noise ratio. For more details see [13].

3.3.2 Fitting Procedures

Given all the required inputs and outputs for evaluating Eq. (3.72) on the HISQ gauge

ensembles generated by MILC, the next step is to find the collection of parameters at each

order that minimizes χ2 between the fit’s predictions and the collection of simulated mass

and decay constant data. This fitting procedure is non trivial due to the large number of

data points and a parameter space with high dimensionality. Specifically, the full data set

includes 1792 measurements of masses/decay constants and the full N4LO fit function has

132 parameters. Reaching an optimal parameter set within a reasonable amount of time is

further complicated by the computational complexity of evaluating the two-loop part of the

NNLO fit function (g
(2)
2 in Eq. (3.72)).

To help reach the optimal parameter set, Gaussian priors are utilized to direct the search

through parameter space to physically reasonable solutions. For example, all discretization
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effects are given priors corresponding to 1 − σ deviations from the continuum values. To

help constrain the LECs of SχPT at NLO and χPT at NNLO, the fit is also done in two

stages.

As a first stage, only the lighter than physical strange quark mass ensembles at a ≈ 0.12fm

are considered. Furthermore, an upper bound is placed on the quark masses such that all

sea quark masses and the sum of the valence quark masses is not greater than 2.0 in mp4s

units. Since the resulting dataset is only composed of a single lattice spacing and sufficiently

small quark masses, it allows all of the discretization corrections to LECs to be set to zero

and for the higher N3LO/N4LO analytic terms to be dropped. This first stage is the only

fit that is fully systematic in the sense that all χPT effects (chiral logs from loops as well as

analytic terms) are included up through the given order (NNLO).

The second stage is to constrain the LEC’s determined from the systematic fit, add the results

at larger quark masses and other lattice spacings back into the dataset, and re-perform the

fit with discretization corrections and NNNLO/NNNNLO analytic contributions included.

In practice, the full dataset is still not utilized because the sum of valence masses can be too

large for the analytic terms at NNNNLO to reasonably account for. So, an upperbound of

2.75 in mp4s is implemented for the sum of valence quark masses. With this upper bound,

physics of the kaon can still be explored. In this work, the second stage fit will be referred

to as the full or non-systematic fit, depending on the context.

Once the second stage is complete, preliminary results can be calculated from the optimized

parameter set and fit function evaluated in the continuum limit and at physical values of

the quark masses. However, at this point there are several systematic issues that need to be

accounted for to reach final results. Several of these issues require re-optimizing the fit with

an altered set of constraints or an altered dataset.
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For example, altering the dataset by reducing the effective number of datapoints is often

necessary to converge on an optimal parameter set. As the number of valence quark masses

considered grows, the statistical precision at each ensemble remains constant since the un-

derlying set of configurations does not change. Because additional valence quark masses are

generally helpful when performing chiral extrapolations, there is a tendency for the number

of datapoints to grow without increasing statistical precision. This limited precision can

introduce noise into the fit to χ2. On a percentage basis, small eigenvalues of the covariance

matrix will be affected the most, and may lead to fits with unphysically high or low χ2 values.

The solution to this problem is to effectively limit the number of datapoints fed into the fit

routine. In this work two approaches are considered for limiting the amount of data fed to

the optimized fit: spectral value decomposition (SVD) and manually removing datapoints

(thinning).

At the first stage, spectral value decomposition (SVD) is used to eliminate the smallest eigen-

values from the inverse covariance matrix. Below a certain threshold, the small eigenvalues

mostly contribute noise to the determination of χ2 without contributing physically relevant

constraints on the parameter space. By setting these eigenvalues to zero, the total value

of χ2 is reduced significantly more than the number of degrees of freedom, which makes it

easier for the fit routine to reach a minimum. However, the precise value of the threshold

could introduce systematic biases if set too high. Therefore, after reaching a converged fit,

any SVD thresholds should be varied and the fit should be allowed to re-converge. An alter-

native to SVD is to manually thin the data set before constructing the covariance matrix.

One advantage of this approach is the lack of an arbitrary threshold; instead, the thinning

routine can be based on physical properties of the ensemble.
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At the second stage, the same SVD threshold is kept in place, but several features of the

dataset are changed. For instance, the fit is run both with and without the a ≈ 0.15fm

ensembles. From earlier studies with gradient flow it is apparent that highly improved

actions can sometimes complicate the problem by revealing previously-hidden higher order

contributions at small lattice spacings. Removing the coarsest ensembles helps check the

size of these higher order contributions.

After the full fit is optimized, the systematic fit will need to be repeated. This is primarily

due to the analytic taste-violating LECs and to the disconnected vertex factors a2δt, all of

which depend on the lattice spacing. Since the systematic fit only includes a single lattice

spacing, these parameters cannot be fully determined by the systematic fit and are therefore

left without a prior in the full fit. However, if the full fit significantly modifies the optimal

value of any of these factors, then the systematic fit needs to be rerun with them either fixed

or constrained within priors from the full fit.

Lastly, the effects of amp4s need to be included. Since amp4s is used to scale the quark masses

in the dataset, but is also an output of the optimized fit, the first versions of the optimized fit

are likely to predict slightly different values of amp4s than what is initially input. Therefore,

to make the fit self-consistent, each fit that returns an inconsistent value of amp4s needs to

be re-optimized with a dataset containing quark masses scaled by the new value of amp4s.

In summary, the full fitting procedure is a looping two-stage process. Each iteration of the

fit goes through a systematic stage consisting of one lattice spacing but fully systematic

NNLO χPT, then a secondary stage with all or most of the lattice spacings and higher order

chiral and discretization effects parameterized in the fit functional form. Between iterations

of the fits, systematic effects due to higher order discretization effects and lattice-spacing

142



dependent LECs are explored. Finally, the iterations continue until the value of amp4s is

determined self-consistently.

For the preliminary results presented in this work, the first iteration has been carried out.

While the various systematic effects cannot be explored, the first iteration does yield con-

tinuum, physical-mass results that are likely to change by only small amounts with the

remaining iterations.

3.3.3 Central Fits

The systematic fit for the first iteration of amp4s is a fit to the seven ensembles at a ≈ 0.12

fm with mx +my,m
′
s < 2.0 in mp4s units. The cutoff on the quark masses is determined by

attempting fits with several cutoffs and varying orders of the χPT expansion. Specifically,

the cutoff of 2.0 is the largest cutoff that does not require O(N3LO) or higher terms and

still converged with p > 0.1. In addition to the quark mass cutoff, an SVD eigenvalue cutoff

of 10−3 is used to decrease the noise in determinations of χ2. Without this noise reduction,

the fluctuations in χ2 near a minimum make it impossible for the gradient descent based

optimizer to converge on a minimum.

The final systematic fit that serves as the basis for the LECs of the full fit has a χ2/dof =

89.6/99 and p = 0.76 with priors treated as additional degrees of freedom. If the priors

are excluded, the fit has χ2/dof = 85.4/94 and p = 0.74. The only priors constraining the

systematic fit are on the five LECs L0 through L3 and L7, with the deviation from the prior

less than 2σ in all cases. For L0 through L2, the deviations are less than 1σ.
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From the systematic fit, several variations of a full fit to additional lattice spacings have been

attempted. None of the fits reached a state where the norm of the logarithmic derivative

of χ2 with respect to the parameters is small enough to be considered fully converged. As

a result, any predictions made with these fits underestimate statistical errors, due to the

relatively steep curvature of χ2 compared to a true minimum. Since such a fit is unreliable

for error determination, only the current best fit is explored here.

The current best full fit, keeps the LO and most of the NLO LECs determined from the

systematic fit fixed. Among the NLO LECs, the two neutral mixing vertices a2δ′µ, a2δ′µ5 and

the two analytic a2 coefficient F , C are allowed to vary without priors. The NNLO LECs are

also allowed to vary, but given Gaussian priors that match the central value and deviations

predicted by the systematic fit. Both N3LO and N4LO analytic terms are then added and

allowed to vary with no priors. For every LEC below N4LO, discretization terms are also

added as specified in Sec. 3.3.1. For the two LO discretization terms, both variations of

higher order discretizations in Eq. (3.73) are included. No higher order charm quark mass

corrections are included.

The dataset used to optimize the current best fit uses SVD with a cutoff of 10−3 (consistent

with the systematic fit), and removes all points where mx + my < 2.75 in mp4s units. All

three a ≈0.15 fm ensembles are removed from the analysis, as well as the a ≈ 0.12 fm, nearly-

physical quark mass ensemble. All four ensembles are removed from consideration because

they are not essential for the continuum extrapolation and they contribute an abnormally

large percentage of the total χ2/dof compared to other ensembles. For the coarse a ≈ 0.15

fm ensemble, the large χ2 is likely due to neglecting higher order discretization corrections.

For the a ≈ 0.12 fm, nearly-physical quark mass ensemble the complication comes from

being left out of the systematic fit at a ≈ 0.12 fm. All of the physical strange-quark mass
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ensembles at a ≈ 0.12 fm can only deviate from the systematic fit based on their mass

content. This constraint is hardest to fulfill for the lighter quark masses, where higher order

effects have relatively less impact.

The current best fit has a χ2/dof = 570.3/366 and p = 3.9 × 10−9 with priors treated as

additional degrees of freedom. If the priors are excluded, the fit has χ2/dof = 477.8/301

and p = 9.9× 10−9.

To gain some deeper insight into how the fit is performing, Figures 3.4, 3.5, 3.6, and 3.7

plot the pion-like and kaon-like Goldstone boson mass and decay constant as a function

of the average valence quark mass. For all of the plots, only the nearly-physical strange

quark mass ensembles that are included in the fit are shown. All of the lighter-than-physical

strange-quark mass ensembles are also included in the fit, but do not appear on these plots.

Results for the pion-like Goldstone boson are shown in Figures 3.4 and 3.5. A Goldstone

boson is considered pion-like if both valence quark masses are set equal, and the physical

point (black star in each figure) is defined where both valence quark masses equal the light

sea-quark mass. For each nearly-physical m′s ensemble included in the plot, each point

corresponds to a unique value of mx = my, and the line is the interpolation of the central fit

evaluated at sea quark masses, lattice spacing, and lattice volume identical to that ensemble.

Finally, the continuum line is evaluated at zero lattice spacing, infinite volume, and the

physical sea-quark masses determined in Sec. 3.4.1.

Results for the kaon-like Goldstone boson are shown in Figures 3.6 and 3.7. A Goldstone

boson is considered kaon-like if one valence quark mass equals the sea strange-quark mass,

and the physical point (black star in each figure) is defined where the free valence quark

equals the physical up-quark mass determined in Sec. 3.4.1. Each ensemble’s points, best
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Figure 3.4: Plot of the Goldstone pion-like meson mass m2
π+
5

/(mx +my) in w0,imp units for

mπ+
5

and mp4s units for the quark masses mx and my, versus the average valence quark mass

(mx + my)/2 for all of the nearly-physical strange quark mass ensembles including in the
central fit. All points are pion-like because both valence quarks are set equal to each other.
Symbols denote different lattice spacings and the color denotes the ratio of the light and
strange sea-quark masses, as per the legend. The fit evaluated at physical sea-quark masses
and continuum is denoted by the dark orange “Continuum” line, and the point at physical
valence quark masses is indicated by the black star.
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Figure 3.5: Plot of the Goldstone pion-like decay constant fπ+
5

in w0,imp units versus the

average valence quark mass (mx + my)/2 for all of the nearly-physical strange quark mass
ensembles including in the central fit. The rest of the figure description is similar to Fig. 3.4.
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fit line, and the continuum line are defined similarly to the pion-like figures. One obvious

difference for the kaon-like figures is the number of datapoints. Due to the valence quark

mass cutoff of mx + my < 2.75 in mp4s units, all of the free valence quark masses included

in the plot have to be less than 0.45. This is because the lightest, nearly-physical simulation

strange quark mass is approximately 2.3 in mp4s units.

Between both the pion-like and kaon-like plots one trend is clear: the continuum line closely

follows the two finest nearly-physical quark mass ensembles at a ≈ 0.09 fm and especially

at a ≈ 0.06 fm. This implies that both the discretization corrections and quark mass mis-

tunings of the a ≈ 0.06 fm, nearly-physical quark mass ensemble are small, and it suggests

that there will be very little variability in the central value of physical predictions. This

may explain why the current preliminary results in Sec. 3.4 are in such good agreement with

FLAG averages despite the poor confidence of the fit; what matters most is the fit matches

data on the a ≈ 0.06 fm, nearly-physical quark mass ensemble.

For points where the agreement with the fit is not ideal, there are a several features that

could be examined. As an example, consider the largest deviation in Fig. 3.4, which occurs

on the a ≈ 0.06 fm, m′l = m′s/5 ensemble evaluated at the lightest valence quark mass. In

this regime, the sea quark masses are at their heaviest while the valence quark masses are

considerably lighter than even the light sea-quark mass. As a result, the partially-quenched

pion receives significant finite volume corrections; the total finite volume correction is 8% of

the total contributions to the pion mass. Considering that the NLO finite volume corrections

are on the same order as the entire NLO and NNLO corrections, it’s possible that finite

volume effects at NNLO are not negligible for this ensemble as well. Finally, the nearby

points at slightly heavier valence quark masses also deviate on the same side of the fit
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Figure 3.6: Plot of the Goldstone kaon-like meson mass m2
K+

5

/(mx +my) in w0,imp units for

mK+
5

and mp4s units for the quark masses mx and my, versus the average valence quark mass

(mx + my)/2 for all of the nearly-physical strange quark mass ensembles including in the
central fit. All points are kaon-like because one valence mass is set equal to the sea strange-
quark mass while the other is free to change. Symbols denote different lattice spacings and
the color denotes the ratio of the light and strange sea-quark masses, as per the legend. The
fit evaluated at physical sea-quark masses and continuum is denoted by the dark orange
“Continuum” line, and the point where the free quark is set equal to the physical mu is
indicated by the black star.
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Figure 3.7: Plot of the Goldstone kaon-like decay constant fK+
5

in w0,imp units versus the

average valence quark mass (mx + my)/2 for all of the nearly-physical strange quark mass
ensembles including in the central fit. The rest of the figure description is similar to Fig. 3.6.
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(though within 2σ). While the finite volume effects are likely still large, this may also be

explained by the large correlations between measurements on the same underlying ensemble.

3.4 Continuum Results

3.4.1 Extraction Procedure

In order to extract physical results from the central fit, the fit must be evaluated in the

continuum and at physical values of each of the light quark masses. The continuum is fairly

easy to reach; just set a = 0 in the input to the central fit. However, evaluating the fit at

physical quark masses is less trivial.

To determine what values of the sea quark masses correspond to the physical values, the

predictions of the central fit are tuned to reproduce three experimentally known quantities:

mπ0 , mK0 , and mK+ . The quark masses that reproduce all three experimental results when

corrected for isospin-breaking and electromagnetic effects are then defined as the physical

quark masses for mu, md, and ms.

The value of mc is not determined from this analysis; however, the dynamical effects from

mistunings in the simulation charm quark masses are taken into account. Leading order

effects on the meson masses in w0 units are taken into account using the same procedure

described in Sec. 2.3.2. Higher order effects could also be included as corrections to the LO

χPT LECs; however, they are not included at this time because their effects are expected

to be negligible.
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To clarify the procedure for adjusting the u, d, and s quark masses, start with the case of

Nf = 2 + 1 flavors and let the central fit function for m2
P+
5

evaluated in the continuum be

denoted by g(mx,my;ml,ms) where all quark masses are in units of mp4s. Also define the

pion-like and kaon-like outputs of the central fit to be gπ(ml,ms) ≡ g(ml,ml,ml,ms) and

gK(ml,ms) = g(ml,ms,ml,ms).

Given an initial set of values for the two unique sea masses ml, ms, the goal is to determine

a new set of values m′l,m
′
s such that gπ(m′l,m

′
s) and gK(m′l,m

′
s) are closer to the physical

values mπ and mK (in the isospin-symmetric theory with no QED), respectively. This can be

accomplished by repeatedly performing linear extrapolations in ml and then in ms, updating

ml and ms after each iteration. Let dm be a very small mass increment. Then the new values

of the sea quark masses are given by

m′l = ml +
2dm

gπ(ml + dm,ms)− gπ(ml − dm,ms)
[mπ − gπ(ml,ms)] (3.81)

m′s = ms +
2dm

gK(m′l,ms + dm)− gK(m′l,ms − dm)
[mK − gK(m′l,ms)] (3.82)

Finally, the update process is repeated until the fit function is within some desired tolerance

of both mπ and mK . The final values of the quark masses are then the physical values of

the down and strange quark mass.

To determine the up quark mass, a similar linear extrapolation procedure is carried out.

The primary difference is that the sea quarks are now held fixed and one valence quark mx
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is allowed to vary. The update procedure now matches to mK+
8 and the output of interest

is gK+(mx) ≡ g(mx,ms,ml,ms) where ml and ms are fixed at the physical values from the

previous interpolations. The update step is given by

m′x = mx +
2dm

gK+(mx + dm)− gK+(mx − dm)
[mK+ − gK+(mx)] (3.83)

After iterating until convergence is reached, the final value of m′x is defined as the physical

value of mu.

Electromagnetic and Isospin Corrections

As mentioned before, the “physical” meson masses m2
π, m2

K , and m2
K+ in this section corre-

spond to pure QCD within a mostly isospin-symmetric theory. To define these three masses

in terms of the experimentally measured pions and kaons, both the missing electromagnetic

effects and broken isospin need to taken into account.

The experimental neutral pion mass m2
π0 is a sufficient substitute for the adjusted pion mass

m2
π. This is because the experimental value of m2

π0 has suppressed leading-order isospin cor-

rections of O[(mu−md)
2] and all neutral mesons have vanishing electromagnetic corrections

in the chiral limit [2, 39].

8While the physical isospin-symmetric theory is partially broken by the new light valence mass in mK+ ,
the sea quark masses are still isospin symmetric and no QED effects are included in the value of mK+ we
match to. The excluded effect of isospin violation in the sea is negligible.
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Obtaining the value of the completely isospin symmetric kaon mass m2
K from experimental

masses requires both isospin and electromagnetic corrections. Isospin corrections are handled

at leading order by computing the isospin average kaon mass, in the pure QCD theory [2]

m2
K ≡

1

2

(
m2
K+ +m2

K0

)
QCD

(3.84)

Next-to-leading order isospin corrections are suppressed, in a similar fashion to those in m2
π0 .

Electromagnetic contributions to the experimental kaon masses can be determined through

the parameter ε that quantifies the violations of Dashen’s theorem [39], which states the

kaon and pion electromagnetic mass splittings are equal in the chiral limit

(m2
K+ −m2

K0
)EM = (1 + ε)(m2

π+ −m2
π0)EM. (3.85)

Since the experimental pion mass difference ∆π = m2
π+ −m2

π0 is almost entirely determined

by electromagnetism [2, 45], Eq. (3.85) can be rewritten as

(m2
K+ −m2

K0
)EM = (1 + ε′)∆π, (3.86)

where ε′ is parameter closely related to ε. By separating the electromagnetic kaon mass

contributions ∆γ
K+ , ∆γ

K0 from the experimental values, solving for the pure QCD masses,
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and substituting into Eqs. (3.84) and (3.86), the adjusted kaon mass can be determined

entirely in terms of experimental masses and the constants ε′ and ∆γ
K0

m2
K =

1

2

[(
m2
K+ +m2

K0

)
expt
− 2∆γ

K0 − (1 + ε′)∆π

]
. (3.87)

The most recent MILC results for ε′ and ∆γ
K0 can be found in Ref. [18].

Finally, the last adjusted mass m2
K+ needs electromagnetic corrections. The different valence

mass in m2
K+ accounts for the leading order isospin corrections in χPT, and higher orders

can be neglected, as for the isospin average m2
K . The electromagnetic correction is derived

similarly to Eq. (3.87)

m2
K+ =

(
m2
K+

)
expt
−∆γ

K0 − (1 + ε′)∆π. (3.88)

For completeness, the values for all three adjusted masses are

mπ0 = 134.977 MeV (3.89)

mK = 494.495 MeV (3.90)

mK+ = 491.405 MeV (3.91)

Experimental values are taken from PDG [69] and all errors are dropped because no system-

atic errors have been computed on the results in this work, which are preliminary.
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3.4.2 Preliminary Results

With the physical values of md, mu, and ms set, the decay constants fK+ and fπ ≈ fπ+ in

pure QCD 9 can be calculated by evaluating the central fit in the continuum. The preliminary

results for the first iteration’s central fit are:

fπ = 130.7(4)MeV, (3.92)

fK+ = 156.0(3)MeV, (3.93)

fK+/fπ = 1.194(2). (3.94)

All errors are only statistical and, because the central fit has not reached a minimum of χ2,

these statistical errors may be underestimated. However, the current best fit is also on a

significantly reduced data set, so we ultimately are able to decrease the statistical errors by

adding back in more of the data.

The current FLAG averages [2] are used to establish a baseline for comparison within the

lattice community10. The ratio of the preliminary results with the FLAG averages are

9fπ is the same as fπ+ to leading order in mu −md[2].
10For fπ+ , the Nf = 2 + 1 simulation average is used because there is not a currently listed Nf = 2 + 1 + 1

result.
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fπ+

fπ+,FLAG

= 1.003(11)[11]{3}, (3.95)

fK+

fK+,FLAG

= 1.0008(30)[25]{17}, (3.96)

(fK+/fπ+)

(fπ+/fK+)FLAG

= 0.9993(45)[42]{17}. (3.97)

The total propagated error assuming all contributions are independent is listed in parenthe-

ses, the total error from the FLAG result is in square brackets, and the statistical error from

this work is in braces. All of the results are currently within 1σ for this work’s statistical

error and within 0.3σ for the total propagated error. This suggests that, even if systematic

errors and a potentially larger statistical error are taken into account, the final results will

likely not change much. Also, the current FLAG average for fK+ at Nf = 2+1+1 is predom-

inantly determined by previous results from the MILC and HPQCD Collaborations on the

same HISQ ensembles as this work. Therefore, a conservative comparison for fK+ or the ra-

tio should really neglect the statistical error and just focus on systematic effects. If the most

recent MILC/HPQCD results included in the FLAG averages are used and only compared

using systematic errors, then all of the results still agree within 1−σ: fK+ = 155.92(13)(+34
−23)

and fK+/fπ+ = 1.1956(10)(+26
−18) [13].

The light quark mass ratios can also be evaluated

mu/md = 0.470(3), (3.98)

ms/ml = 27.48(5) (3.99)
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and compared to the current FLAG averages

(mu/md)

(mu/md)FLAG

= 0.999(120)[120]{6}, (3.100)

(ms/ml)

(ms/ml)FLAG

= 1.0065(127)[125]{18}. (3.101)

The quoted error types are the same as the errors quoted for the decay constants. For the

quark mass ratios, systematic errors should not be ignored. For instance, systematic errors on

the mu/md ratio are expected to be an order of magnitude larger than the current statistical

error in this work [2]. Fortunately, the preliminary result for mu/md is in agreement with the

FLAG average well within 1σ of this work’s statistical error. For the larger ms/ml ratio, the

neglected systematic errors are required to bring the current result into alignment. When

compared with the FLAG average error taken into account ((ms/ml)FLAG = 27.30(34)) the

difference is only about 0.5σ.

3.5 Conclusions

This chapter presented the first iteration and preliminary results for a high precision chiral

analysis of light pseudoscalars on the MILC Collaboration’s HISQ ensembles. A systematic

chiral expansion at NLO in rSχPT and NNLO in continuum χPT was successfully applied

to ensembles for the single lattice spacing a ≈ 0.12 fm. A combined continuum extrapolation

and chiral interpolation based on the LECs from the systematic fit is in progress. The current

optimal fit, though not fully converged, is highly constrained by the nearly-physical quark
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mass ensembles at a ≈ 0.06 fm and a ≈ 0.09 fm. As a consequence, the preliminary results

for the decay constants fπ+ and fK+ , their ratio fK+/fπ+ , and the quark mass ratios ms/ml

and mu/md are all in close agreement with current lattice community averages.

The quark masses are properties of elementary particles in QCD. As such, many different

phenomenological as well as theoretical results rely on them. For example, the light quark

masses govern the extent of explicit chiral-symmetry breaking in the continuum. The de-

cay constants are not experimentally measureable, but lattice results can be combined with

experimental decay rates to predict the CKM matrix elements |Vus| and |Vud|. In this pre-

liminary result, the prediction of fK+ , and therefore |Vus| from leptonic decays, is in good

agreement with FLAG. As a consequence, the existing tension in the values of |Vus| deter-

mined from leptonic and semileptonic decays will likely be reinforced by this work, or even

sharpened if the final precision is higher than previous results.

3.5.1 Future Work

The most pressing next step is reaching a converged fit with a reasonable χ2 per degree of

freedom on a set of ensembles with a range of lattice spacings and quark masses. Although

the preliminary results will most likely not change drastically, an error budget cannot be

established without first reaching the minimum χ2 for such a fit.

Once a fully converged fit is reached, the next step is running through the systematic and

full fit optimizations again, with the value of amp4s for each lattice spacing replaced by the

prediction from the first fully converged fit. Fortunately, the current value of m
(1)
p4s = 0.4ms in

159



the continuum limit and in units of the original m
(0)
p4s (where the iteration number is denoted

by the superscript) is equal to unity within 1σstat.

m
(1)
p4s

m
(0)
p4s

= 1.002(6) (3.102)

Given this agreement, its possible that updating the value of amp4s will not significantly

change the optimized fit results. Instead the slight variation in results will go towards a

measurement of the systematic error arising from the final imprecision of amp4s determined

self-consistently from the fit. It is also possible for the fit to converge on a statistically

different value of amp4s on the next iteration due to the removal of the statistical error

originally propagated from the external values of amp4s. In this case, several more iterations

of amp4s may be required.

Once a fully converged fit is found and the values of amp4s are settled, the final step is

calculating a complete error budget. Several variations of the dataset, model, and parame-

terizations will be run to assess systematic errors from thinning, higher order discretization

choices, finite volume effects beyond NLO chiral level that was included in the fit, charm

quark mass mistuning, etc. Also, for quantities extrapolated to physical units and/or com-

pared to experimental quantities, there will be external systematic errors coming from the

scale setting quantity, experimental inputs, isospin/EM effects, and others. Each of these

errors needs to be carefully sourced and tabulated to derive a total error budget. We can

also check that the continuum results are independent of the chiral scale Λ chosen in the

chiral logarithms, as required by chiral perturbation theory.

Aside from completing the current version of this analysis, there are also several additions

that could be made to improve the final analysis. Given the considerable impact of the finer,
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nearly-physical mass ensembles on final results, it would be very interesting to include the

a ≈ 0.042 fm and a ≈ 0.03 fm MILC HISQ ensembles in this work. The gradient flow scales

for these finer ensembles have been estimated and are included in Appendix A.

Another revision that could prove beneficial is changing how the statistical errors from the

relative lattice spacings w0,imp/a are propagated into the chiral analysis. Currently, the

variance of each lattice spacing modifies a corresponding block of the covariance matrix

dealing with ensembles at that lattice spacing. This routine has a tendency to inflate the

error everywhere and hide smaller correlations. An alternative, recently employed in [18],

is to treat the lattice spacings as parameters to the fit, and constrain them using Bayesian

priors. This technique avoids modifying the covariance matrix, while still allowing the fit to

dynamically account for expected variations in the lattice spacing.
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Appendix A

Gradient Flow on New Ensembles

In this appendix we tabulate the results of running gradient flow on three new ensembles.

The details of the ensembles can be found in the most recent MILC/Fermilab Collaboration

paper [18]. All quoted errors are statistical only.

≈ a(fm) m′l/m
′
s

√
t0/a w0/a

√
t0,imp/a w0,imp/a w0/(w0,imp/a) fm

0.042 1/5 3.331(7) 3.881(20) 3.277(7) 3.889(20) 0.0440(5)

0.042 1/27 3.3861(15) 4.024(03) 3.3309(15) 4.033(3) 0.0437(4)

0.03 1/5 19.27(4) 5.263(11) 18.97(4) 5.266(13) 0.0316(4)

Table A.1: Values of the gradient-flow scales on the HISQ nearly-physical strange-quark

ensembles with a < 0.06 fm. described in [18]. The first two columns identify the ensemble

by the approximate lattice spacing and sea-quark mass ratio (similar to “Key” in [18]). The

next four columns are the results for the four gradient flow scales in lattice units discussed in

2. The last column is the predicted lattice spacing w0/(w0,imp/a) in fm, where w0 is evaluated

at the ensemble meson masses by using the continuum mass dependence of w0 presented in

Sec.2.4.2.
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