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ABSTRACT OF THE DISSERTATION

Essays on Macroeconomics

by

Sangmin Aum

Doctor of Philosophy in Economics

Washington University in St. Louis, 2018

Professor Yongseok Shin, Chair

My dissertation investigates how technological progress shapes economy. Technological

changes have heterogeneous effects on economic agents as they are often biased toward

certain tasks or sectoral activities. The dissertation aims at understanding the sources of

heterogeneity and their impacts on aggregate outcomes, focusing on economic growth and

labor allocation.

The first chapter investigates a bi-directional relation between technology and occupational

structure (job allocation). Jobs have polarized in the U.S. since at least the 1980s, but the

growth of high-skill jobs has been stagnated since 2000s (skill demand reversal). I document

that software innovation has increased compared to equipment innovation and relate this

changes in the direction of innovation to the skill demand reversal, based on a novel empirical

observation: The intensity of software- and equipment-use by occupation represents the

cognitive- and routine-task intensity, respectively. I then propose a general equilibrium model

that endogenously explains both employment share and software innovation trends. The

productivity growth in the equipment-producing sector replaces the middle-skill occupations

which use equipment more intensively. Thus the demand for equipment declines, resulting in

more software innovation than equipment innovation. This, in turn, leads to a skill demand
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reversal by enhancing the productivity of high-skill occupations. Quantitative analysis shows

that the model explains approximately 70 to 80% of the rise in software and skill demand

reversal in the data.

The second chapter, joint work with Tim Lee and Yongseok Shin, investigates the role

of differential productivity growth across jobs (routinization) and industries to explain a

slowdown in aggregate growth in the U.S. since the 2000s. In the model, complementarity

across jobs and industries in production leads to aggregate productivity slowdowns, as the

relative size of those jobs and industries with high productivity growth shrinks. We find

that this effect was countervailed by the evolution of computer industry: Its productivity

growth was extraordinarily high during the 1980s and 1990s and, at the same time, computer

output became an increasingly more important input in production across all industries

(computerization). It was only as the productivity growth in the computer industry slowed

down in the 2000s that the negative effect of differential productivity growth across jobs

became apparent for aggregate productivity.

In the third chapter, Dongya Koh, Raul Santaeulalia-Llopis, and I document a rise of

intellectual property products (IPP) captured by up-to-date national accounts in 31 OECD

countries. These countries gradually adopt the new system of national accounts (SNA2008)

that capitalizes IPP—which was previously treated as an intermediate expense in the pre-

SNA1993 accounting framework. We examine how the capitalization of IPP affects stylized

growth facts and the big ratios (Kaldor, 1957; Jones, 2016). We find that the capitalization

of IPP generates (a) a decline of the accounting labor share, (b) an increase in the capital-to-

output ratio across time, and (c) an increase in the rate of return to capital across time. The

key accounting assumption behind the IPP capitalization implemented by national accounts is

that the share of IPP rents that are attributed to capital, χ, is equal to one. That is, national

accounts assume that IPP rents are entirely owed to capital. We argue that this assumption

xii



is arbitrary and extreme. More reasonable assumptions about the split of IPP rents between

capital and labor—for example, based on the cost structure of R&D—generate a secularly

trendless labor share, a constant capital-to-output ratio, and a constant rate of return across

time. We discuss the implications of these new measures of IPP capital—conditional on

χ—for cross-country income per capita differences using standard development and growth

accounting exercises.
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Chapter 1

The Rise of Software and Skill

Demand Reversal

1.1 Introduction

The employment shares of high- and low-skill occupations grew relative to that of middle-skill

occupations in the United States since at least the 1980s. While many studies have focused

on the long-run trend of this process of job polarization, less attention has been given to its

shorter-run dynamics. When broken down decade-to-decade, the rise of high- and low-skill

occupations has shown distinct patterns: The rise of high-skill occupations has stagnated,

while that of low-skill occupations has accelerated since the late 1990s. We will refer to this

phenomena as skill demand reversal following Beaudry et al. (2016) (figure 1.2).

This paper provides a technology-based explanation for skill demand reversal. We first

document that skill demand reversal was accompanied higher growth in software innovation

relative to other types of innovation (figure 1.4), and argue that this change in the direction
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of innovation was closely related to changes in the occupational structure of the U.S. economy.

This is done by combining two datasets—the National Income and Product Account (NIPA)

and O*NET Tools and Technology Database. The newly merged dataset shows that the

average amount of investments in software and/or equipment by occupation are strongly linked

to the tasks of each occupation. Namely, software is used intensively by cognitive (high-skill)

occupations, while equipment is used intensively by routine (middle-skill) occupations.

We then provide a unified framework that can explain both skill demand reversal and

the rise of software relative to equipment endogenously. The model has three novel features.

First, the model features workers of heterogeneous skill sorting into heterogeneous tasks, and

also different types of capital (software and equipment). Second, technological changes in the

model are embodied into different types of capital, and innovators endogenously choose which

type of technology (or capital) to improve. These two features enable us to simultaneously

analyze the static and dynamic implications of interactions between technology and the

labor market. Last but not least, technological changes (embodied in different types of

capital) alter job allocations because all workers use both types of capital, but with different

intensities depending on their occupations. This departs from the typical assumption that

only particular kinds of occupations are affected by a specific type of technical change, and

also implies that impact of one type of technological change on the labor market can change

the subsequent direction of technological change.

In the model, the intensities at which each occupation use software and equipment can be

measured directly from the newly merged dataset mentioned above. Equipment and software

are modeled as a composite of infinitesimal varieties provided by innovators who are free

to choose a type of capital to innovate, so the amount of innovation toward each type of

capital can also be directly mapped into capital investment data in the National Accounts,

facilitating quantification of the model.
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After characterizing the equilibrium, we prove a series of comparative statics in response

to one exogenous change: an increase in the productivity of the equipment-producing sector.1

Increased productivity in equipment production lowers the price of equipment, which leads to

job polarization if different occupations are complementary in production. Since middle-skill

occupations use equipment most intensively, labor flows out from these jobs and into high-

and low-skill jobs. But the decline in middle-skill employment also means that the demand

for equipment declines, inducing innovators to shift their focus away from equipment and

more toward enhancing software. In turn, the rise of software leads to skill demand reversal

if jobs are complementary: Middle-skills jobs were already declining (job-polarization), the

employment share of high-skill jobs decelerates since they use software most intensively, and

consequently skill demand becomes concentrated in low-skill jobs.

We verify the empirical validity of the model’s mechanism using the fact that the decline

in the relative price of equipment to software varies across industries. The model predicts: i)

A negative relationship between the speed of decline in the relative price of equipment to

software and the growth of middle-skill employment relative to high-skill employment; and

ii) A positive correlation between the speed of decline in the relative price of equipment to

software and the relative growth of software innovation to R&D other than software. We

confirm significant correlations in both cases.

Confident of the mechanism, we use the model directly to quantify its importance. Our

quantitative analysis shows that the channel of directed technical change can account for more

than two-thirds of the rise of software and skill demand reversal. The former is measured by

the relative size of software investment to equipment investment, and the latter is measured

by a gap between the actual series and the level implied by the linear trend of the 1980s.
1We also document a faster increase in the productivity of the equipment-producing sector in the data.
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The results have two important implications. First, software and equipment capital

measured in the National Accounts is a good proxy for the technological changes shaping

the structure of the labor market. Since technological changes have significant impacts on

many economic variables, careful investigation of the composition of capital investment can

be fruitful in understanding economic phenomena other than job polarization as well.

Second, a technological change that directly affects a particular group of occupations

could lead to other types of technological change that eventually affect other occupations.

Hence, innovation policy targeting a specific group of products may have to consider this

dynamic general equilibrium effect. This paper also shows that recent technical changes

reduce cognitive intensive occupations as long as those occupations use software intensively.

Moreover, while not explicitly analyzed here, changes in the demand for high-skill occupations

will also change the expected returns to skill acquisition, consequently altering individuals’

education decisions and labor supply.

Related Literature The relationship between polarization and increases in the productiv-

ity of middle-skilled occupations, which are intensive with respect to routine tasks, is well

documented in the literature (e.g., Autor et al., 2006; Autor and Dorn, 2013; Goos et al., 2014,

among others). Though fewer, there are also studies that have discussed the flattening of

the demand for high-skilled workers around 2000, such as Beaudry et al. (2016) and Valletta

(2016). This paper contributes to this literature by analyzing both polarization and skill

demand reversal in a unified framework, and extends it by linking labor market phenomena

to changes in the composition of capital investment.

Several papers analyze the consequences of task-specific technological change on the labor

market with an assignment model (Costinot and Vogel, 2010; Lee and Shin, 2017; Michelacci

and Pijoan-Mas, 2016; Stokey, 2016; Cheng, 2017, among others). We include a similar

4



assignment feature, but characterize tasks by their different uses of two types of capital, and

also introduce endogenous task-specific technological change generated from innovations on

each type of capital. By doing so, we obtain a direct mapping of two distinctive task-specific

technological changes to observed data.2 Also, we explain why a particular type of technology

may or may not change.

Recent studies by Bárány and Siegel (forthcoming) and Lee and Shin (2017) show that

either task-specific technological change or sector-specific technological change can lead to

both job polarization and structural change. Since a single type of technological change can

result in both phenomena, it is not easy to conclude whether the source of technological

change has been task- or sector-specific. Our paper implies that the technological change

embodied in a particular type of capital could be a source of task-specific technological change

that can generate both phenomena.

Acemoglu and Restrepo (2016) and Hémous and Olsen (2016) also analyze the interaction

between technological change and the labor market with the directed technical change

framework of Acemoglu (2002). While they provide new insights on how automated technology

evolves and affects labor market outcomes, the interpretation of the technology with respect

to the observable data is not straightforward. Our technological changes are directly measured

from investment in software and equipment in the National Accounts, so the changes are

easy to interpret. Our tasks also have a clear interpretation as they are mapped directly to

different occupations in the data.
2Cheng (2017) also obtains the routine-biased technological change from the data by measuring different

capital intensities across occupations. Different from ours, Cheng (2017) measures the capital intensities across
occupations from industry level capital share and the variations in the composition of occupations across
industries, and confirms that the middle-skill occupations are capital intensive. Summing the equipment
and software, our dataset also shows that the total capital is intensively used in the middle jobs. We show,
however, that the distinction between equipment and software is important as the software is not used
intensively by the middle jobs.
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A seminal paper by Krusell et al. (2000) links changes in the price of equipment capital to

skill-biased technical change to analyze the effects of technological change on labor market

outcomes. They emphasize that skill-capital complementarity (capital substitutes low-skill

labor more than high-skill labor) is key to understanding how a rise in the productivity of

capital leads to higher demand for high-skill workers. In contrast to Krusell et al. (2000), in

our model, the substitutability between labor and capital is same across occupations. Instead,

we assume that occupations vary in how intensively they use different types of capital, and

that the occupations are complementary to one another.

The work by Krusell et al. (2000) and our paper do not contradict each other, as the worker

classifications are essentially different.3 They classify workers by education, and we classify

workers by occupation. Low-educated workers may well be able to do what high-educated

workers usually do (though less efficiently), whereas workers in certain occupations may not

be able to do what workers of other occupations usually do. Indeed, recent papers such as

Goos et al. (2014) and Lee and Shin (2017) highlight complementarity between tasks as a

key to understanding task-level employment changes (i.e., polarization). In this regard, our

paper complements Krusell et al. (2000) by linking capital to task-based employment.

Another important feature of this paper is distinguishing software capital from equipment

capital. Software investment is becoming increasingly important, as evidenced by its rapid

rise as a share of total investment. Aum et al. (2017) analyzes the role of computer capital

(hardware and software) in shaping the dynamics of aggregate productivity. Koh et al. (2018)

emphasizes the importance of software capital (more broadly, intellectual property products

capital) in accounting for the declining labor share in the US. Whereas their analysis focuses

on the relation between total labor and capital, we emphasize the separate roles of software

and other types of investment in shaping the distribution of occupational demand. Though
3They also classify workers into two types, while we consider more.
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not a primary focus of this paper, our model also generates a decline in the labor share

caused by higher software investment, and we also show that there is a significant correlation

between labor share declines and software intensity at the industry-level.

The rest of the paper is organized as follows. In section 1.2, we summarize the relevant

empirical facts. In section 1.3, we present the model and characterize its equilibrium. In

section 1.4, we conduct analytical comparative statics and in section 1.5, verify that the

model’s predictions hold empirically across industries. In section 1.6, we calibrate the model

to quantify how important its mechanism is for accounting for the rise of software and skill

demand reversal. Section 1.7 concludes.

1.2 Key Facts

We document several data observations in this section. First, equipment-producing industries

have experienced much faster TFP growth than that of software-producing industries. Second,

the pattern of polarization shows that the rise of high-skill occupations slowed with a greater

increase in low-skill occupations since the late 1990s. Third, software development expendi-

tures have increased relative to other R&D expenditures. Meanwhile, a share of software

investment in total investment has also increased whereas that of equipment investment has

decreased. Fourth, most importantly, we show that middle-skill occupations use equipment

intensively, whereas high-skill occupations use software intensively. Moreover, the intensity

of equipment and software across tasks is closely correlated with routine task intensity and

cognitive task intensity. Again, our main hypothesis is that the first observation – together

with the fourth observation – can generate both the second and the third observations.

7



1.2.1 Productivity of Equipment / Software Production

The input-output table published by BEA reports the industrial composition of equipment

and intellectual property products (IPP) investment, where the IPP investment consists of

software, R&D, and others. From the table, we can obtain the weights on detailed industries

producing equipment and software investment goods. On the basis of these weights, we

compute the total factor productivity (TFP) of equipment- and software-producing industries

according to the Törnqvist index.

Using Industry Accounts from BEA, we first compute an industry i’s TFP growth between

time u and t as

log(TFPi,t/TFPi,u) = log(yi,t/yi,u)−
αi,t + αi,u

2
log(ki,t/ki,u),

where y is the real value added per employment, k is the real non-residential capital divided

by the number of employment, and α is one minus the labor share.

From the input-output table of each year (t), we obtain the share of each industry

commodity in equipment investment (ωe
i,t) and software investment (ωs

i,t). Then, the TFPs of

the equipment- and software-producing industries are computed by

log(TFPe,t/TFPe,t−1) =
∑
i

ωe
i,t + ωe

i,t−1

2
log(TFPi,t/TFPi,t−1),

log(TFPs,t/TFPs,t−1) =
∑
i

ωs
i,t + ωs

i,t−1

2
log(TFPi,t/TFPi,t−1).

The results are presented in figure 1.1, which shows that equipment-producing sector has

experienced much faster increase in the productivity than software-producing sector.
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Figure 1.1: TFP of equipment / software producing industries
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1.2.2 The Pattern of Job Polarization

Figure 1.2 shows the changes in employment share across skill percentile by decade from

1980, computed from Census/ACS data. Each point in the skill percentile represents a group

of occupations representing 1% of the labor supply in 1980, sorted by average log hourly

wage in 1979.

The figure shows clear U-shaped changes in employment share from 1980 to 2010. By

assessing the three lines separately, however, we see that the rise in high-skill occupations

is strongest in the first two decades while that of low-skill occupations accelerates during

2000-2010. Moreover, the range of shrinking occupations shifts toward the right across

decades.

Similar observations are also in the annual data from CPS when occupations are classified

into three groups: cognitive (high-skill), routine (middle-skill), and manual (low-skill)4. We
4The classification of occupations is based on one-digit SOC. The cognitive occupations are management,

professionals, and technicians. The routine occupations are machine operators, transportation, sales and
office, mechanics, and miners and production.
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Figure 1.2: Changes in employment structure in the US by decade
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Note: Each point on the horizontal axis is a group of occupations composing 1%
of total employment in 1980, sorted by 1979 average log wage.

compare two different trends – a linear trend from 1980 to 1995 and an HP trend including

all data points – of the employment share of each occupational group. Figure 1.3 confirms

that there are breaks in the trends of employment shares of cognitive (high-skill) occupations

and manual (low-skill) occupations in the late 1990s. Interestingly, the decline in routine

(middle-skill) occupations follows similar trends before and after 1995.

1.2.3 Rising Software Innovation and Investment

We now turn to the R&D composition in the US. NIPA does not report expenditures on

software development directly but the series can be obtained from Crawford et al. (2014) or

from differences between R&D in NIPA excluding software development and R&D recorded

in the innovation satellite account which includes software development. Figure 1.4 shows the

size of software development relative to R&D expenditures from manufacturing industries,
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Figure 1.3: Employment share of cognitive, routine, and low-skill services occupations
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HP trend with smoothing parameter 100. All vertical axes represent 15%p of the
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with and without chemical-related R&D’s 5, across years. Both show an increasing pattern,

especially during the late 1990s, suggesting that the changes in the pattern of polarization

could be related to increasing software innovation.
5We view R&D expenditures funded by manufacturing industries except chemicals-related industries as

the expenditures most related to R&Ds on equipment.
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Another observation to note is that software investment, as well as software innovation,

has also increased faster than other types of investment. From NIPA, we compute the share

of software investment and equipment investment of total non-residential investment and

plot the results in figure 1.5. Figure 1.5a shows an increasing trend of software investment

while figure 1.5b shows a decreasing trend of equipment investment. Moreover, the downward

trend of equipment share has accelerated since the mid-1990s.

Figure 1.4: Software innovation compared to equipment related R&D1)
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Note: 1) R&D expenditures funded by manufacturing industries excluding chemical-
related industries.
2) The blue line is the linear trend of 1990 to 1995, and the red (dash) line is the
HP trend with smoothing parameter 100.

1.2.4 Capital Use by Occupation

We provide data evidence that documents strong connections between the use of different

types of capital across occupations. Specifically, we construct capital use by occupation data

by combining two data sources – NIPA and O*NET Tools and Technology Database.

12



The O*NET Tools and Technology database provides information about the types of tools

and technology (software) used by each occupation. One caveat of this dataset is that it

does not provide information about the value of each item. To address this shortcoming, we

attempt to link capital items in O*NET Tools and Technology to NIPA data obtained from

the Bureau of Economic Analysis (BEA).

Specifically, we make a naive concordance between the UN Standard Product and Services

Code (UNSPSC), a product classification system used in the O*NET database, and 25

categories of non-residential equipment in NIPA table 5.5 (details can be found in the

appendix A.1). Then, we distribute the total amount of a particular type of equipment

investment to each occupation by means of the number of tools included in the investment

category according to the concordance.

For example, suppose that firms have invested USD 20 billion in metalworking machinery

in the NIPA table. According to the constructed concordance, metalworking machinery

Figure 1.5: Investment share in private non-residential investment
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includes a total of 139 commodities in UNSPSC. Some occupations use none of the 139

commodities, and other occupations use various numbers of the commodities in the category.

Because we know the number of employment by occupation, we can calculate the total

number of metalworking machinery items used by all workers in a given year. Then, we can

approximate the amount attributed to an individual occupation by distributing the total USD

20 billion investment according to the number of items used by the occupation. Subsequently,

dividing by the number of employees provides an estimate of the per capita investment in

metalworking machinery by occupation.

The per capita investment in equipment by occupational skill group is shown in figure 1.6a,

where an occupational skill group is defined as a group representing 1% of total employment

among all occupations ranked by mean hourly wages. We also plot the routine-intensive task

share – a share of routine-intensive employment out of total employment within the skill

group – in the same figure. Here, routine-intensive employment is defined as employment

in occupations with the highest one-third routine task index of all occupations, where the

routine task index is computed using the O*NET task database following Acemoglu and

Autor (2011).

In figure 1.6b, we plot software investment per capital across the same wage percentile,

and the cognitive-intensive task share defined similarly to the routine-intensive task share.

Again, the cognitive task index is computed following Acemoglu and Autor (2011).

We can see from the figures that middle-skill workers use equipment more intensively,

whereas high-skill workers use software more intensively. Moreover, the use of equipment

closely follows the routine task share while the use of software is closely related to the cognitive

task share. We further illustrate the use of equipment subitem by occupation in figures 1.6c

(industrial equipment) and 1.6d (industrial and information processing equipment). Among
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Figure 1.6: Use of equipment and software across skill percentile
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(d) Industrial + IT + Other equipment

.1
.2

.3
.4

.5
.6

S
ha

re
 o

f r
ou

tin
e 

in
te

ns
iv

e 
jo

b

3
3.

5
4

4.
5

5
20

10
 U

S
D

 th
ou

sa
nd

0 20 40 60 80 100
Skill Percentile (ranked by occupation’s 2009 mean log wage)

IT+Ind+Oth equipment use (left) Routine job share (right)
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the equipment subitems, industrial equipment is most strongly correlated with routine task

intensity.
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1.3 Model

There is a continuum of individuals endowed with human capital h ∈ [1, h̄] drawn from a

measure M(h). Specifically, we assume that:

Assumption 1 (distribution) The measure of skill, M : [1, h̄] 7→ [0, 1] is a cumulative

distribution function with a differentiable probability distribution function, µ : [1, h̄] 7→ R+.

There is a continuum of tasks τ ∈ [0, τ̄ ], and final goods are produced by combining task

output T (τ) according to:

Y =

(∫
τ

γ(τ)
1
εT (τ)

ε−1
ε dτ

) ε
ε−1

. (1.1)

The task output is produced by integrating human capital specific task production y(h, τ)

across all skill levels used for the production of task τ :

T (τ) =

∫
h∈L(τ)

y(h, τ)dh. (1.2)

The human capital specific task production, y(h, τ), depends not only on worker human

capital h but also on task τ that the worker is performing. Specifically, the functional form

of y(h, τ) is given by

y(h, τ) =

[{
αh(τ) (b(h, τ)l)

σe−1
σe + αe(τ)E

σe−1
σe

}σe(σs−1)
(σe−1)σs

+ αs(τ)S
σs−1
σs

] σs
σs−1

, (1.3)

where l(h) represents the level of employment of workers with human capital h, S and E

represent software and equipment, respectively.

16



The function b(h, τ) captures the productivity of a worker with human capital h when she

performs task τ . We assume that b(h, τ) is strictly log supermodular.

Assumption 2 The function b(h, τ) : [1, h̄]× [0, τ̄ ] 7→ R+ is differentiable and strictly log

supermodular. That is,

log b(h′, τ ′) + log b(h, τ) > log b(h, τ ′) + log b(h′, τ),

for all h′ > h and τ ′ > τ .

As shown in Costinot and Vogel (2010), assumption 2 helps to ensure positive assortative

matching (PAM). In other words, the higher human capital h is, the higher τ task she will

perform in equilibrium. Not only how each occupation utilizes a worker’s human skill, but

tasks are also different in to which intensities they use two types of capital. This second

feature is essential to understanding the differential effects of capital-embodied technical

change on various occupations. 6

The software and equipment available for workers are given by

S =

(∫ Ns

0

s(k)νsdk

) 1
νs

and E =

(∫ Ne

0

e(k)νedk

) 1
νe

, (1.4)

where each variety of capital (s(k) and e(k)) is provided by a permanent patent owner under

monopolistic competition.
6 Many studies following Krusell et al. (2000) consider a production technology in which capital substitute

a certain group of workers more or less than others. In our model, the substitutability between capital
and human skill is same across occupations. We still have differential effects of capital-embodied technical
change on various occupations for three reasons. First, each occupation utilizes human skill differently.
Second, occupations rely on capital with various intensities. Third, any changes in the relative productivity
in occupation-level alter relative demand for occupations through the final production, combining all tasks.
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The production technology of software or equipment is

s(k) = Asx, e(k) = Aex,

where x is the amount of final goods used to produce software or equipment. The production

technology implies that the marginal costs of producing software and equipment are given by

the inverse of productivity, qs := 1/As and qe := 1/Ae.

New software and equipment are created from R&D expenditures Zs and Ze, and the laws

of motion for total varieties follow

Ṅs = Zs/ηs and Ṅe = Ze/ηe. (1.5)

Finally, the representative household has CRRA preference given by

∫ ∞

s

e−ρtC(t)
1−θ − 1

1− θ
dt,

and the resource constraint in the economy is

C + qe

∫ Ns

0

s(k)dk + qs

∫ Ne

0

e(k)dk + Ze + Zs ≤ Y. (1.6)

1.3.1 Static Equilibrium

To characterize the static equilibrium, we take the total varieties of software and equipment,

Ne and Ns, as given. We first define the equilibrium.
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Definition 1 (Static equilibrium) The static equilibrium consists of the price function

p(τ), w(h), ps(k), and pe(k), the quantity function T (τ), l(h, τ), s(k, τ), e(k, τ), and the

quantity Y such that:

1. Given p(τ), final goods producer solves

max Y −
∫
τ

p(τ)T (τ)dτ,

given equation (1.1).

2. For each task, the task output is produced to solve

max p(τ)T (τ)−
∫
h

w(h)l(h, τ)dh−
∫ Ns

0

ps(k)s(k, τ)dk −
∫ Ne

0

pe(k)e(k, τ)dk,

given equation (1.2), w(h), ps(k), and pe(k).

3. A capital provider solves

max πs(k) =

∫
τ

[ps(k)s(k, τ)− qss(k, τ)] dτ,

max πe(k) =

∫
τ

[pe(k)e(k, τ)− qee(k, τ)] dτ,

given the marginal cost qs and qe.

4. All workers choose the highest-paying occupation (task).

5. The labor market clears µ(h) =
∫
τ
l(h, τ)dτ .

From the final goods production, the demand for task output T (τ) is given by

p(τ) =

(
γ(τ)Y

T (τ)

) 1
ε

, (1.7)
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and the price function p(τ) satisfies
∫
τ
γ(τ)p(τ)1−εdτ = 1.

Since we assume that the capital producer maximizes profit under monopolistic competition,

we obtain the price of the software and equipment as

ps(k) =
1

Asνs
and pe(k) =

1

Aeνe
, for all k.

By substituting this result into the first-order conditions from task output production, we

can show that the wage function w(h) satisfies

w(h) ≥


p(τ)1−σs −

(
αs(τ)

σs
1−σs

AsN
ϕs
s νs

)1−σs


1−σe
1−σs

−

(
αe(τ)

σe
1−σe

AeN
ϕe
e νe

)1−σe


1

1−σe

αh(τ)
− σe

1−σe

︸ ︷︷ ︸
:=ω(τ)

×b(h, τ), (1.8)

with equality when l(h, τ) > 0.

Equation (1.8) shows that the wage function w(h) can be expressed as a product of

terms depending only on τ (ω(τ)) and human capital task-specific productivity b(h, τ). The

existence of PAM between h and τ follows.

Lemma 1 (Positive assortative matching) Under assumptions 1 and 2, there exists a

continuous and strictly increasing assignment function ĥ : [0, τ̄ ] 7→ [1, h̄] such that ĥ(0) = 1

and ĥ(τ̄) = h̄.

The proof is same as the proof of Lemma 1 in Costinot and Vogel (2010) and is omitted.

The equilibrium assignment ĥ is characterized by:
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Lemma 2 (Equilibrium assignment function) The equilibrium assignment function ĥ(τ),

price function p(τ), and the wage rate ω(τ) satisfy the following system of differential equa-

tions.

d logω(τ)
dτ

= −∂ log b(ĥ(τ), τ)
∂τ

, (1.9)

ĥ′(τ) =
γ(τ)p(τ)σs−εαh(τ)

σsψ(τ)σe−σsY

ω(τ)σeb(ĥ(τ), τ)µ(ĥ(τ))
, (1.10)

p(τ) =
[
ψ(τ)1−σs + αs(τ)

σs (νsAsN
ϕs
s )σs−1] 1

1−σs , (1.11)

with ĥ(0) = 1, ĥ(τ̄) = h̄, and
∫
γ(τ)p(τ)1−εdτ = 1,

ψ(τ) :=
[
αh(τ)

σeω(τ)1−σe + αe(τ)
σe (νeAeN

ϕe
e )σe−1] 1

1−σe , ϕe :=
1−νe
νe

, and ϕs :=
1−νs
νs

.

Proof In appendix A.3.

After the assignment function ĥ is obtained, all the equilibrium quantities and prices can

be computed.

1.3.2 Dynamic Equilibrium

Now consider a dynamic equilibrium where technology evolves endogenously. The HJB

equations for innovators are given by

r(t)Vs(k, t)− V̇s(k, t) = πs(k, t), (1.12)

r(t)Ve(k, t)− V̇e(k, t) = πe(k, t), (1.13)
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with profit functions,

πs(k) =

∫
τ

[ps(k)s(k, τ)− qss(k, τ)]dτ =
1− νs
νsAs

∫
τ

s(k, τ)dτ, (1.14)

πe(k) =

∫
τ

[pe(k)e(k, τ)− qee(k, τ)]dτ =
1− νe
νeAe

∫
τ

e(k, τ)dτ. (1.15)

The free entry condition ensures that

Ve ≤ ηe, with equality if Ze > 0, and Vs ≤ ηs, with equality if Zs > 0.

If both R&D’s are positive, we have ηeVe = ηsVs, and from equations (1.12) and (1.13),

r(t) = πe(t)/ηe = πs(t)/ηs. (1.16)

Finally, from the household’s problem, we have a standard Euler equation:

Ċ(t)

C(t)
=
r(t)− ρ

θ
, (1.17)

and the transversality condition:

lim
t→∞

[
e−

∫ t
0 r(s)ds (Ne(t)Ve(t) +Ns(t)Vs(t))

]
= 0.

Now, we have a characterization of the steady state equilibrium in the following lemma.
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Lemma 3 (Steady state equilibrium) There exist νe < 1 and νs < 1 sufficiently large

that are compatible with the unique steady state equilibrium, i.e.,

πe/ηe = πs/ηs = ρ, (1.18)

and every variable remains constant. Moreover, when σs = σe = 1,

max
{

1−νs
νs

αs(τ)
αh(τ)

+ 1−νe
νe

αe(τ)
αh(τ)

}
< 1 ensures the existence of the steady state equilibrium.

Proof In appendix A.3.

Intuitively, high enough νe and νs ensure profits by providing additional variety not too

large, which makes the rate of return on increasing variety strictly decreasing on the total

varieties. As the rate of return is strictly decreasing in the size of varieties, we have a certain

level of varieties that equates the rate of return and time preference (ρ), leading to the

existence of the steady state.

We consider only a case with no growth steady state as no standard balanced growth

path exists when the task production is a general CES function. Note that the source of

growth (increasing variety) is a capital-augmented technological change in our model. It

is well-known that no balanced growth path would exist for a capital-augmented technical

change if the production function is not of the Cobb-Douglas form (e.g. Grossman et al.,

2017). 7

A detailed analysis of the transitional dynamics is not the primary focus of this paper.

Instead, we focus on the differences between the static equilibrium (where Ns and Ne are
7In the Cobb-Douglas task production case (σs = σe = 1); however, a sustained growth can be obtained

by assuming strictly positive population growth, as in Jones (1995). We still have every task growing at a
different rate, so the most labor intensive task (the slowest-growing task) would dominate the economy in the
limit under complementarity between tasks (ε < 1), which is similar to the results in Ngai and Pissarides
(2007) and Acemoglu and Guerrieri (2008).
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fixed) and the steady state throughout the paper. We confirm numerically that the obtained

steady state is saddle-path stable in the quantitative analysis. When the steady state is

saddle-path stable, the transitional dynamics will be similar to that of the Neo-classical

growth model, as a key is that the production function is strictly concave in the varieties.

Exogenous vs Endogenous Productivity Our model has both exogenous and endoge-

nous productivity for equipment and software. Exogenous productivity is augmented in

capital production, Ae or As, and captures how well one can produce equipment or software

that has already been introduced into the economy. For example, when equipment production

became faster as a result of using a faster computer in the production process, this shift would

be captured in the increase in Ae. Instead, endogenous productivity, Ne or Ns, captures an

introduction of new types of capital to the economy. For example, the development of the

Uber application supporting drivers would be captured by an increase in Ns.

1.4 Comparative Statics

In this section, we restrict our attention to the case with σe = σs = 1, ηe = ηs and νe = νs to

obtain analytical comparative statics. Specifically, we assume:

Assumption 3 The elasticities of substitution between labor and equipment/software are

one, i.e., σs = σe = 1. The individual task production function is then

y(h, τ) = (b(h, τ)l(h))αh(τ)Eαe(τ)Sαs(τ).
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Additionally, we put some structures on the intensity functions αh(τ), αe(τ), and αs(τ) to

reflect the fact that high-skill workers use software intensively and middle-skill workers use

equipment intensively, i.e.,

Assumption 4 (intensities) The functions αh(τ) : [0, τ̄ ] 7→ (0, 1], αs(τ) : [0, τ̄ ] 7→ (0, 1]

and αe(τ) : [0, τ̄ ] 7→ (0, 1] satisfy the following.

2.1 αs(τ) is differentiable and increasing on [0, τ̄ ].

2.2 αe(τ) is differentiable, increasing on [0, τe] and decreasing on [τe, τ̄ ].

2.3 αe(τe) > αs(τe), αs(τ̄) > αe(τ̄), and αe(0) = αs(0).

Now, we show that an increase in the productivity of equipment production (Ae ↑)

leads to polarization and the rise of software and skill demand reversal when the tasks

are complementary. Specifically, we focus on three main predictions of the model: (1) the

polarization induced by the rise of equipment-producing productivity in the static equilibrium,

and (2) the subsequent rise of software innovation, and (3) the decreasing demand for high-

skilled employment in the steady state.

Job Polarization

First, we show the impact of an increase in the equipment productivity (Ae) on equilibrium

assignment function ĥ(τ) in the static equilibrium (i.e., when Ne and Ns are fixed). We

consider A1e < A2e and denote the equilibrium assignment functions corresponding to A1e

and A2e as ĥ1 and ĥ2, respectively.
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Proposition 1 (Polarization) Consider A1e < A2e. Suppose ε < 1 and assumptions 1 to

4. For sufficiently small α′
h(τ), we have τ ∗ ∈ (0, τ̄) such that ĥ1(τ ∗) = ĥ2(τ

∗), ĥ1(τ) < ĥ2(τ)

for τ ∈ (0, τ ∗), and ĥ1(τ) > ĥ2(τ) for τ ∈ (τ ∗, τ̄).

Proof In appendix A.3.

Proposition 1 states that there will be a shrinking employment of task around τ ∗ where

corresponding equipment intensity αe(τ
∗) is relatively higher than αe(0) and αe(τ̄). Figure

1.7 illustrates the change in the assignment function with A1e (blue solid line) and A2e > A1e

(red dashed line). For a given task τ ∈ [τ ∗ − ε, τ ∗ + ε], we can see that employment decreases

because we have higher ĥ2(τ) on the left side of τ ∗ and lower ĥ2(τ) on the right side of τ ∗.

As shown in section 1.2, tasks with higher equipment intensities are consistent with

routine-intensive tasks; hence, the proposition states that decreasing routine employment can

be caused by a decrease in the price of equipment.

The condition of sufficiently small α′
h(τ) is assumed because the impact of the change in

equipment price on human capital depends on the relative size of αe to αh, not αe alone. The

Figure 1.7: Equilibrium comparison: A1e vs A2e > A1e
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ĥ2(τ
∗ + ε)
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condition is sufficient but not necessary. As we show via numerical examples in appendix

A.4, α′
h(τ) need not be too small.

The intuition under the proposition is as follows. An increase in the equipment productivity

(Ae) leads to a decrease in the price of equipment (qe). This increases the productivity of

all tasks but to a greater extent for tasks with higher equipment intensities. When the

production is complementary in the tasks (ε < 1), the rise of relative productivity causes

factors to flow out to other tasks, which results in polarization.

The intuition is similar to other papers in the literature, for example, Lee and Shin (2017),

Goos et al. (2014), and Cheng (2017): The technological change making the middle-skill

tasks more productive reduces demand for the middle jobs when the tasks are relatively more

complement than the relation between workers and technology. Our model enables a more

direct mapping to the data due to the intensity function αe(τ) and αs(τ), meaning that it

is not the technology affects a certain occupational group only but affects occupations to

different extents. Cheng (2017) also introduces heterogeneous intensities across occupations.

Ours differs from Cheng (2017) that we focus on the equipment among capital, which is

a specific component used by middle-skill occupations intensively. We also highlight that

the changes in the occupational structure itself can lead to another type of task-specific

technological change, which we explore in the following propositions.

The Rise of Software

The profits from providing software and equipment are proportional to the demand, which in

turn, is proportional to the task output times the factor intensity of the task. Hence, changes

in the relative size of task production result in changes in the profit from providing each type

of capital according to the corresponding factor intensity.
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We know from proposition 1 that the employment share around τ ∗ (in the middle) shrinks.

As long as α′
h(τ) is small, the share of task production around τ ∗ also has to decrease.

Meanwhile, αe(τ
∗) > αs(τ

∗), together with αe(τ̄) < αs(τ̄) and αe(0) = αs(0) (assumption 4),

imply that a decrease in production share around τ ∗ actually decreases e more than s, and an

increase in production share around τ̄ increases s more than e. Therefore, providing software

becomes more profitable for innovators. Innovators then focus innovation toward software,

resulting in higher Ns/Ne in the new steady state.

Although this prediction is valid for most reasonable quantifications, we have to impose

tight restrictions on the structures of the intensities over the entire range of τ ∈ [0, τ̄ ] to

prove the analytical proposition as we are comparing the ratio of two integrations over all

τ (πe/πs ∝
∫
αe(τ)p(τ)T (τ)dτ/

∫
αs(τ)p(τ)T (τ)dτ). To express the analytical proposition

in a simple way, we consider an approximation with three discrete tasks (j = 0, 1, 2 for low,

middle, and high) in this subsection. Specifically, consider a production technology given by

Y =

(∑
j

γ
1
ε
j T

ε−1
ε

j

) ε
ε−1

for j = 0, 1, 2, (1.19)

with Tj = (b(h, j)l(h))αh,jEαe,jSαs,j . The detailed derivation of the equilibrium conditions for

this approximation can be found in appendix A.2.

With this approximation, assumptions 1 and 4 are replaced by the following.

Assumption 5 (distribution-II) The measure M : [1, h̄] → [0, 1] has a differentiable p.d.f.

µ(h), where µ(h) is sufficiently small everywhere.

Assumption 6 (intensities-II) The discrete intensities satisfy the following.

6.1 αe,1

αh,1
> αe,0

αh,0
≈ αe,2

αh,2
.
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6.2 αe,0 ≈ αs,0, αe,1 > αe,2, and αs,2 > αs,1.

In assumption 5, we add the requirement for µ(h) to be sufficiently small to consider the

discretization as an approximation of continuous tasks matched with a continuum of skills8.

Assumption 6.1 states that task 1 is the most equipment intensive, relative to labor,

compared to task 0 and task 2. Assumption 6.2 states that middle-skill tasks use equipment

more than software, high-skill tasks use software more than equipment, and low-skill tasks

use software and equipment similarly.

Again, consider an exogenous increase in the productivity of equipment, A1e < A2e. Denote

the total varieties in the previous steady state as Ns1 and Ne1 and those in the new steady

state as Ns2 and Ne2. Then, we have:

Proposition 2 (Rise of software) Consider A1e < A2e with discretized tasks (1.19), where

equipment variety is at least as large as software variety in the original equilibrium (Ne1 ≥ Ns1).

Suppose ε < 1, νe = νs, assumptions 2, 5, and 6. In the new steady state, software variety

increases more than equipment variety, i.e., Ns2/Ne2 > Ns1/Ne1.

Proof In appendix A.3.
8For discretized tasks, the assignment function ĥ(τ) becomes a sequence of threshold human capital ĥj .

When the ĥj ’s change, it not only affects demand for labor around the threshold level but also the total labor
supply given to each task,

∫ ĥj

ĥj−1
µ(h)dh. We ignore indirect effects resulting from changes in

∫ ĥj

ĥj−1
µ(h)dh by

assuming µ(ĥj) and µ(ĥj−1) are sufficiently small.
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Skill Demand Reversal

We now show that an increase in Ns results in skill demand reversal (i.e., a decrease in

the demand for high-skilled labor). We consider Ns2 > Ns1, and denote ĥ1 and ĥ2 as the

equilibrium assignment corresponding to Ns1 and Ns2, respectively.

Proposition 3 (Skill demand reversal) Consider Ns2 > Ns1 and suppose ε < 1 and

assumptions 1 to 4. With sufficiently small α′
h(τ), the matching function shifts upward

everywhere, i.e., ĥ2(τ) > ĥ1(τ) for all τ ∈ (0, τ̄).

Proof In appendix A.3.

Note that an increase in variety increases the productivity of software-intensive tasks more

than that of other tasks (equation (1.11)). Following the same intuition as in the case of

polarization, this would lead to a reallocation of labor from high-skill tasks to lower-skilled

tasks under complementarity (ε < 1). The change in assignment function is depicted in figure

1.8, which shows that all workers downgrade their tasks.

This proposition, together with proposition 2, impies that skill demand reversal results

from the increase in software innovation induced by the increase in Ae. Note that, when Ae

increases, Ne should also increase; otherwise, πe/ηe > ρ. The proposition 2, however, confirms

that the variety of software would increase more than that of equipment. Accordingly, we

have the following transition dynamics.

First, increases in Ae lead to immediate polarization according to proposition 1. Second,

Ns jumps to equate πe and πs. Ns and Ne rise from then on until Ne and Ns reach the

new steady state. Since increasing Ne will lead to polarization, the resulting steady state
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Figure 1.8: Equilibrium comparison: Ns1 and Ns2 > Ns1
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equilibrium itself would be a mix of polarization and skill demand reversal. As Ns increases

more quickly, the skill demand reversal effect becomes stronger.

Again, the technical assumption of sufficiently small α′
h(τ) is required for proof, but it does

not need be that small quantitatively. We provide numerical examples, including the case

with a general CES task production, in appendix A.4 to illustrate the comparative statics.

1.5 Empirical Evidence

This section checks a validity of the model’s predictions using industry data. Specifically, we

test two predictions. First, the model predicts a negative relationship between changes in the

relative price of software to equipment and changes in middle-skill employment relative to

high-skill employment. Second, the model implies a positive correlation between changes in

the relative price of software to equipment and changes in software innovation relative to

other innovation. Note that, in our model, the prices of equipment and software are inversely

related to productivity in the equipment- and software-producing sectors, respectively.
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We measure the relative price of equipment to software by dividing nominal investment

by real investment, provided by BEA. They are different by industry as each industry uses

a different combination of subitems within the category of equipment or software. For the

relative employment of middle-skill to high-skill occupations, we use the employment of routine

occupations divided by the employment of cognitive occupations by industry, computed from

Census data. Finally, the relative size of software innovation to other innovation is measured

by own account software investment (in-house software investment by firms) divided by R&D

excluding software. Details of the data construction are presented in appendix C.1.

Figure 1.9a shows the differences in the growth of middle-skill and high-skill employment

against changes in software price relative to equipment price. Figure 1.9b shows the changes

in software innovation net of R&D expenditures excluding software against changes in the

relative price. The first has a negative relation, and the second has a positive relation,

consistent with the model’s predictions.

To determine whether these relations are statistically significant, we estimate the following

regression:

∆ log yi,t = a+ ct +∆ log(qs,i,t/qe,i,t) + εi,t,

where yi,t is either the ratio of routine (middle-skill) employment to cognitive (high-skill)

employment or the ratio of in-house software investment to R&D expenditures excluding

software. The estimation results, which show significant relations between the two variables,

are given in table 1.1.
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Table 1.1: Estimation results

Routine/Cognitive Sft/R&D (excl. sft.)

Sft price/ -0.220∗∗∗ -0.152∗∗ +0.747∗∗ +0.717∗∗∗
Eqp price (0.000) (0.014) (0.016) (0.001)

Fixed Effects Yes No Yes No

R2 0.172 0.054 0.117 0.064
p-values in parentheses.

Figure 1.9: Changes in the relative price and employment / innovation
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1.6 Quantitative Analysis

In this section, we use the discretized model (appendix A.2) to map the tasks to ten

occupational groups consistent with one-digit SOC code (as in table 1.3). Specifically, the

following production technology is used for the quantitative analysis.

Y =

(∑
j

γ
1
ε
j T

ε−1
ε

j

) ε
ε−1

, and (1.20)

Tj =Mj


αh,j

(∫ ĥj

ĥj−1

b(h, j)µ(h)dh

)σe−1
σe

+ αe,jE
σe−1
σe

j


σe(σs−1)
(σe−1)σs

+ αs,jS
σs−1
σs

j


σs

σs−1

.

Sources of Exogenous Variation Note that we have two types of exogenous productivity

(Ai’s and Mj’s), as well as endogenous productivity (Ni’s). The changes in exogenous

productivities (Ai’s and Mj’s) are sources of exogenous variation in this section. What do

these different productivities represent?

First, Ae and As capture how well a given technology produces already-introduced equip-

ment or software. In other words, increases in Ai capture improvements in the production

process, not the varieties of tools that occupations can utilize. To map Ai’s as data, we use

the TFP of equipment- or software-producing industries.

Second, Mj’s are additional task-specific productivities introduced to match changes in

the employment share of routine occupations in the model with data exactly. Recall that the

changes in Ae or As also act as task-specific productivity in our model. A natural question

is how much of the changes in the employment share between occupations can be captured

only through Ae and As. We answer this question in one of the exercises in this section.
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Third, Ne and Ns are endogenous productivities that capture varieties of software or

equipment that workers can use to do their tasks. We view changes in Ne or Ns roughly

correspond to R&D expenditures on each kind of capital in the data.

One may wonder how we can distinguish the productivity embodied in capital (Ai’s) from

dis-embodied technical change (Ni’s). Regarding identification, increases in Ae and As result

in the decline in the price of equipment and software, whereas changes in Ne and Ns do not

alter the price of capital. Indeed, the price of equipment decreases more quickly than that

of software, and the TFP of equipment-producing industries increases faster than that of

software. To the contrary, software development expenditures rise more quickly than other

types of R&D. These observations are consistent with our distinction between Ai’s and Ni’s.

Scenarios Given the changes in exogenous productivities, we perform two main exercises.

The first is to investigate the extent to which endogenous innovation of software explains

the changes in the pattern of polarization. For this exercise, we match the changes in the

employment share of middle-skill occupations with Ai’s and Mj ’s and look at the employment

dynamics of high- and low-skill occupations generated from the model with innovation and

without innovation.

The next exercise aims to determine the extent to which changes in the productivity of

the equipment- and software-producing sectors only account for the shifts in the employment

share between occupations. To address this question, we repeat the simulation with all the

other parameters fixed, assuming constant Mj for all middle-skill occupations.

Finally, as a sensitivity analysis, we test how the simulation results change by varying

the elasticity of substitution between tasks, mark-ups, and alternative measures for the

productivity of the equipment- and software-producing sectors. Importantly, we confirm that
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observed changes in the price of equipment and software are consistent with the changes in

the TFPs.

Following the literature, we label high-, middle-, and low-skill occupations as cognitive,

routine, and manual occupations, respectively. Cognitive occupations include management,

professionals, and technicians. Routine occupations are administrative, machine operators,

transportation, sales, mechanics, and production workers. Finally, manual occupations are

low-skilled services occupations. The reason we use ten occupational groups rather than

three occupational groups is that we use the changes in the payroll share of each occupational

group to calibrate the elasticity of substitution between tasks, which is the most crucial

parameter driving the mechanism.

1.6.1 Calibration

We calibrate most of the parameters according to the 1980 data assuming a steady state. For

the functional forms, we set the productivity function b(h, j) as

b(h, j) =


h̄ if j = 0

h− χj if j ≥ 1

and the skill distribution M(h) as

M(h) = 1− h−a.

The weight parameters in the final production (γj’s) are taken from the employment

share by occupation in 1980. The χj’s and a are determined to match income share across

occupational groups in 1980. Between-factor intensities by task (αh, αe, αs) are matched to
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equipment and software investment by occupational group9 and labor share in 1980. For the

benchmark analysis, we map the equipment in the model to industrial equipment in the data

as it has the closest relation with the routineness of occupations (figure 1.5).

There are two categories of parameters that are difficult to identify from only 1980 data:

(1) the elasticity of substitution (ε, σe and σs), and (2) markup-related parameters (νe and

νs). We use various methods to identify these parameters.

For the elasticity of substitution between tasks, we set ε to minimize the root-mean-squared

error of the changes in payroll share between 1980 and 2010 by occupation. That is, we

set ε to minimize
[∑J

τ=1

[
(wm

τ,2010 − wm
τ,1980)− (wd

τ,2010 − wd
τ,1980)

]2
/J
] 1

2 , where ωτ is a payroll

share of occupational group τ . Intuitively, occupations are complementary when changes in

quantity share (employment share) and changes in the relative price (relative wage) move

in the same direction. Figure 1.10 shows that this is the case as relative wages of cognitive

and manual occupations to routine occupations both have increased while the employment

share of routine occupations has decreased (figure 1.3). The resulting parameter value for the

elasticity of substitution between tasks is 0.301, which confirms the complementarity between

tasks. We also perform a robustness check by varying the value of ε in subsection 1.6.4.

For the elasticity of substitution between factors in task production (σe and σs), we match

linear trends of aggregate labor share and labor share only with equipment capital. To

illustrate the identification process, note that factor share in a given task τ can be derived as

follows:
9We assume that the number of commodities used by each occupation is the same and attribute the

capital investment in 1980 to each occupation to get occupational use of equipment and software in 1980.
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LS−s =
wL

wL+ peẼ
=

1

1 +
(

αe

αh

)σe

(νeAeN
ϕe
e ω)σe−1

, (1.21)

LS =
wL

wL+ peẼ + psS̃

=
1

1 +
(

αe

αh

)σe

(νeAeN
ϕe
e ω)σe−1 +

ασs
s

(
νsAsN

ϕs
s

)σs−1

ω1−σeασe
h

(
ασe
h ω1−σe+ασe

e

(
νeAeN

ϕe
e

)σe−1
)σe−σs

1−σe

,
(1.22)

where LS−s is the labor share without software and LS is the standard labor share. From

equation (1.21), it is straightforward to see that the labor share without software does not

directly depend on the elasticity of substitution between labor and software, σs.

The fact that the aggregate labor share and labor share with equipment capital only show

different trends from 1980 to 2010 makes this strategy even more useful (figure 1.14a). The

labor share with equipment capital only has an increasing trend, whereas the aggregate labor

Figure 1.10: Log of relative wage
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Table 1.2: Estimation results: markup

Equipment1) Software2)

b .228 .473
(.000) (.113)

N 333 37
Note: 1) Industries 331, 332, 333, 334, 335,
3361MV, 3364TO, 337, and 339.
2) Industry 511. 3) p-values in parentheses.

share has a declining trend. 10 It is easy to predict σe < 1 and σs > 1 on the basis in the

trends of total labor share and increasing productivity (both exogenous and endogenous) of

capital.

We estimate the markup-related parameters νe and νs separately using the Industry

Account and Fixed Asset Table from BEA, following Domowitz et al. (1988). Specifically, we

estimate

∆ log qit − αLit∆ log lit − αmit∆ logmit = ci + b∆ log qit + εit,

where q is gross output/capital, l is employment/capital, m is intermediate input/capital,

and αLit and αMit are the labor and intermediate shares, respectively. We estimate this

relation for the equipment-producing industry (industry 3 in the BEA industry codes) and

software-producing industry (industry 511). To control for endogeneity, GDP growth is used

as an instrumental variable. Once estimated, νe and νs can be obtained by calculating 1− b.

The estimation results are presented in table 1.2.
10 We compute the labor share with equipment capital only following Koh et al. (2018). To be specific, a

standard asset pricing formula gives Ri = (1 + r)qi − q′i(1− δi), where Ri is the gross return on capital type
i, qi is the relative price of capital type i, δi is a depreciation rate of capital type i, and r is the net rate of
return. The no arbitrage condition implies that the net rate of return, r, is common across i. Using the fact
that one minus labor share is equal to

∑
i RiKi/Y under the CRS production technology, we can impute the

gross rate of return on equipment, Re. The labor share with equipment capital only then can be computed
by CE/(CE +ReKe), where CE is the compensation of employees and Ke is the equipment capital stock.
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Table 1.3: Parameters by occupation

αe αs αh γ χ

Low-skilled services 0.190 0.009 0.801 0.004

Administrative 0.060 0.186 0.754 0.711 0.000
Machine operators 0.644 0.017 0.339 0.077 0.002
Transportation 0.551 0.016 0.433 0.037 0.027
Sales 0.084 0.019 0.898 0.004 0.029
Technicians 0.265 0.020 0.714 0.002 0.071
Mechanics 0.696 0.020 0.285 0.135 0.071
Production 0.528 0.022 0.450 0.022 0.096

Professionals 0.133 0.012 0.854 0.005 0.097
Management 0.019 0.013 0.969 0.004 0.097

Target Equipment, software, and labor share Employment Income share

Table 1.4: Remaining parameters

Value Obtained from

σs 1.425 Labor share with and without software in 2010
σe 0.974

νe 0.772 Estimation (table 1.2)
νs 0.527

ε 0.301 Changes in average wage by occupation

Table 1.3 and 1.4 summarizes all the calibration results. Detailed calibration procedure is

in appendix A.6.

1.6.2 Simulation Results: With Changes in Ai’s and Mj’s

We assume the economy was in a steady state in 1980 and compute a new steady state

corresponding to the exogenous changes (Ae, As, Mj’s). We then assess how well the model

explains the shifts in the trends of high-skilled and low-skilled employment with and without

endogenous software innovation.

The Pattern of Occupational Employment Figure 1.11a displays the annualized

changes in employment during the first two decades (blue bar) and last decade (light blue
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bar) by occupational group. Figures 1.11b and 1.11c show the same series generated from the

model with endogenous innovation (varying Ne and Ns) and without innovation (no changes

in Ne and Ns), respectively.

The blue bar (changes during 1980-2000) is higher than the light blue bar (changes during

2000-2010) for cognitive occupations and lower for manual occupations, as highlighted in

section 1.2. As shown in Figures 1.11b and 1.11c, these changes in the pattern appear only

in the simulation with endogenous innovation, i.e., with increases in Ns/Ne. The increase in

cognitive occupation during the last decade in the data is 0.31%p lower than the average of

the first two decades, whereas in the model, it is 0.26%p lower with endogenous innovation

and only 0.05%p lower without endogenous innovation. For manual occupations, the change

in the increases between 2000-2010 and 1980-2000 is +0.26%p in the data and +0.22%p in

the full model. By contrast, the model without innovation shows a change of +0.01%p only.

Figure 1.12 shows a decadal pattern from 1980 to 2010. The deviation from the initial

trend in cognitive occupation in the model captures 75% of the actual deviation in the data

(figure 1.12a and 1.12b), where the deviation from the initial trend in manual employment

in the model is 70% of that in the data (figure 1.12c and 1.13a). The model captures not

only the magnitude but also the timing of changes in the trends, as it produces much larger

changes during 2000-2010 than during the first two decades. Without endogenous innovation,

the simulation generates almost no variation in the trends of high- and low-skill employment.

The Rise of Software The ratio of software investment to industrial equipment investment

increases from 0.16 to 1.7 in the data, a more than tenfold increase. Since we match the

initial level of relative investment 0.16 exactly by calibration, we compare the level of the

ratio in 2010 to determine how well the model explains the rise of software. The full model

with innovation explains 63% of the rise of software investment relative to that of equipment
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(figure 1.13a). If we remove the endogenous innovation channel (i.e., no changes in Ns and

Ne), the model generates only 19% of the change in the software to equipment ratio (green

dashed line).

In figure 1.13b, we plot the ratio of software variety to equipment variety (Ns/Ne). There is

no clear counterpart for the varieties in the data as we do not have data of R&D on equipment.

As a crude measure, we compare the varieties Ne/Ns to the cumulated software development

and the cumulated R&D funded by manufacturing industries, excluding chemicals. Both

show an increasing pattern, and the ratio between varieties in the model increases faster in

the last decade.

The Decline of Labor Share Although the labor share dynamics are not a goal of this

exercise, they merit further discussion. Note that we use labor share trend as a target variable

to calibrate the elasticity of substitution (σe and σs); therefore, it is not surprising that the

labor share in the model exactly matches the labor share trend in the data. What is new is

Figure 1.11: Simulation results – changes in employment shares
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Figure 1.12: Simulation results – employment shares by decade
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Figure 1.13: Simulation results – relative investment and labor share
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that the simulation without endogenous software innovation produces an almost flat labor

share (figure 1.14b).

This occurs because an elasticity of substitution between equipment and labor (σe) is

close to one, and hence exogenous variation does not generate declining labor share without

software innovation. Therefore, the declining labor share in our model is mostly a result of

endogenously increasing software investment. We highlight a negative correlation between

software investment and labor share not only in the time series (figure 1.14a) but also in the

industrial variation, especially during 2000-2010 (figures 1.14c and 1.14d). We believe that a

detailed investigation of the relation between labor share and software capital is meaningful

future research.

1.6.3 Simulation Results: With Changes in Ai’s Only

Recall that we the use exogenous variation in the middle-skill specific technical change

(changes in Mj) in addition to the evolution of the productivities of capital to match the

changes in the employment share of the middle-skill occupations exactly. The natural question

is how much of the observed changes in the productivities alone explain the variation in the

share of employment by occupation.

The results are shown in figure 1.15. The changes in equipment price explain 78%, 75%,

and 69% of the changes in cognitive, routine and low-skilled services employment. Two

characteristics are noteworthy.

First, all occupational groups move in the same direction as the data, meaning that

the differential growth of sectoral productivities – together with differences in the use of

capital – captures routine-biased technical change quite well. The analysis suggests that a
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Figure 1.14: Labor share and software
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Note: 1) The labor share only with equipment capital is constructed following Koh et al. (2018).
The solid lines are HP trend with smoothing parameter 100. They are normalized to 0 in 1980.
2) Industry 514 (with changes in labor share greater than 1 in both periods) has been excluded
from this figure.

differential productivity growth on the sector level (among capital-producing sectors) could

be an underlying source of routine biased technological change.

Second, the decadal pattern of changes in occupational employment is also similar to that

of the data, even without additional task-specific technical change (figure 1.15a and 1.15b).

Moreover, changes in TFP generates 75% of job polarization (declines in routine occupations)
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in magnitude. We conclude that the evolution of the productivities embodied in equipment

and software has been crucial in generating a pattern consistent with the data.

The analysis suggests that two further studies would be helpful in understanding the

changes in the occupational structure caused by capital-embodied technical change. The first

is to look at heterogeneity in sector-level production more closely. The second is an attempt

to obtain a better productivity measure for various capital items.

1.6.4 Sensitivity

We assess how the results vary by the elasticity of substitution between tasks (ε), markups

(νe and νs), and measures for A’s.

The Elasticity of Substitution between Tasks Regarding the elasticity of substitution

between tasks, we expect the model’s explanatory power to increase as ε decreases as the

model mechanism is amplified when the tasks are more complementary. Table 1.5 confirms

this intuition.

Markups As can be seen in figure 1.16, the price-to-cost margins of equipment- and

software-producing industries exhibit different trends. The changes in market structure also

affect innovational incentives. To examine the importance of the time-varying markups, we

map the variations in the price-to-cost margin into changes in νe and νs. With time-varying

markups, explanation for the pattern of cognitive employment share decreases and that of

manual employment share increases.

Alternative Measures for AeAeAe and AsAsAs Another way to measure the capital-embodied

productivity is to compute the inverse of the price of equipment and software. We compare

the simulation results with the inverse of the price of equipment and software as Ae and As.
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The sensitivity analysis shows that the price series give a bit lower explanatory power for

changes in employment share but higher explanation for the increase in software investment

than a case with the benchmark.
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Table 1.5: Sensitivity

The elasticity of substitution between tasks (ε)
Data Innov. No innov.

Cognitive benchmark -4.16 -3.11 (.75) -0.61 (.15)
(dev. from trend) ε = .1 -4.16 -3.63 (.87) -0.60 (.14)

ε = .5 -4.16 -2.97 (.72) -0.64 (.15)
ε = .7 -4.16 -2.57 (.62) -0.63 (.15)

Low skilled benchmark 3.50 2.45 (.70) -0.05 (-.01)
(dev. from trend) ε = .1 3.50 2.97 (.85) -0.06 (-.02)

ε = .5 3.50 2.31 (.66) -0.02 (-.01)
ε = .7 3.50 1.90 (.54) -0.03 (-.01)

Soft/eqp benchmark 1.68 1.06 (.63) 0.32 (.19)
(lev. in 2010) ε = .1 1.68 1.08 (.65) 0.31 (.19)

ε = .5 1.68 1.21 (.72) 0.34 (.21)
ε = .7 1.68 1.30 (.78) 0.37 (.22)

Markup-related parameters (νe and νs)
Data Innov. No innov.

Cognitive benchmark -4.16 -3.11 (.75) -0.61 (.15)
(dev. from trend) time-varying -4.16 -2.72 (.65) -0.55 (.13)

Low skilled benchmark 3.50 2.45 (.70) -0.05 (-.01)
(dev. from trend) time-varying 3.50 2.64 (.76) -0.44 (-.13)

Soft/eqp benchmark 1.68 1.06 (.63) 0.32 (.19)
(lev. in 2010) time-varying 1.68 0.97 (.58) 0.33 (.20)

Alternative measure for Ae and As

Data Innov. No innov.

Cognitive Ind eqp -4.16 -2.05 (.49) -0.39 (.09)
(dev. from trend) Total eqp -4.16 -1.75 (.42) 0.33 (-.08)

Ind+IT -4.16 -2.24 (.54) -0.11 (.03)

Low skilled Ind eqp 3.50 1.39 (.40) -0.27 (-.08)
(dev. from trend) Total eqp 3.50 1.09 (.31) -0.99 (-.28)

Ind+IT 3.50 1.57 (.45) -0.55 (-.16)

Soft/eqp Ind eqp 1.68 1.06 (.63) 0.42 (.25)
(lev. in 2010) Total eqp 0.35 0.63 (1.83) 0.12 (.35)

Ind+IT 0.59 0.76 (1.27) 0.19 (.33)
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Figure 1.15: Simulation results: no task-specific technological changes (constant Mj’s)
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1.7 Conclusion

We provided a model with heterogenous tasks and two types of capital whose varieties are

determined endogenously through a firm’s innovation. We showed both analytically and

quantitatively that the mechanism in the model is important in understanding the impact of

capital-augmented technical change on the structure of the labor market.

One important implication is that two types of capital – software and equipment– measured

in National Accounts, provide a good proxy for recent technological changes. Understanding

the impact of a technical change on the economy has always been an important topic. One

of the main difficulties is that technological change is not easy to measure, especially in

aggregate analyses. This paper shows that the investigation of different types of capital can

be a meaningful process to capture recent technological changes.

Our paper also implies that a technological change affecting a small group of occupations

leads to other types of innovation, eventually affecting a broader set of occupations. Note that

the same intuition applies to sectoral technical changes. This paper analyzes the technical

change in the context of task-biased technological change, but a task-biased technical change

is strongly linked to a sector-biased technical change, as emphasized in Lee and Shin (2017)

and Bárány and Siegel (forthcoming).

Our model has many useful extensions that can be implemented easily. For example,

further decomposition of equipment capital into subcategories will be helpful in understanding

more detailed changes in occupational structure through technological changes embodied in

capital. Further, integrating a multi-sector structure would provide additional interesting

implications with respect to the relation between polarization and structural changes and the

evolution of task-specific and sector-specific productivity, as in Aum et al. (2017).
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Though not as straightforward, the analysis herein could also lead to many interesting

future research topics. For example, by using firm-level software and equipment investment

data, we may generate interesting implications on the impact of technological change on

firm-level heterogeneity and occupation-level heterogeneity. Many countries are attempting

to broaden the types of capital measured in National Accounts (System of National Account

2008). A multi-country extension would also be meaningful, enabling the analysis of trade or

offshoring in addition to technological changes.
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Chapter 2

Computerizing Industries and

Routinizing Jobs: Explaining Trends

in Aggregate Productivity

This chapter was coauthored with Tim Lee and Yongseok Shin.

2.1 Introduction

Amid the sluggish recovery following the Great Recession, much attention has been given to

the slowdown in productivity growth in the United States economy (sometimes referred to as

“secular stagnation”). We dissect this trend in aggregate productivity by developing a model

in which technological progress is both sector- and occupation-specific,11 to better understand
11Throughout the text, we will use “sector” and “industry” interchangeably, as well as “occupations” and

“jobs.”
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which sectors and occupations contribute most to trends in aggregate productivity.12 In

particular, we pay special attention to the computer sector (hardware and software), which

enjoyed an impressive rise in productivity even as the rest of the economy lagged behind.

Computers have become an important factor of production for all other sectors, especially

since the 1990s (which we call “computerization”), so we separate them from other machinery

equipment as a distinct type of capital. Using the model, we quantify the importance

of the computer sector and compare it against “routinization” (i.e., faster technological

progress specific to occupations that involve routine or repetitive tasks) in explaining trends

in aggregate productivity.

We find that a downward trend in aggregate productivity growth was already present since

the 1970s, but that this was more than compensated for by the extraordinary productivity

growth of the computer sector in the 1980s and 1990s. It was only when the computer

sector’s productivity growth came down to normal levels in the 2000s that the deceleration

in aggregate productivity became abruptly apparent. This generated the illusion that the

aggregate productivity slowdown has its roots in the 2000s, even though the slowdown had

already been underway in the preceding decades.

In our analysis, the driving force of the aggregate productivity slowdown is complementarity

across occupations and across industries in production: Those occupations and industries

with above-average productivity growth shrink in terms of value-added and employment

shares, and their contributions toward aggregate productivity growth becomes smaller even

when their productivity continues to grow fast. This is related to “Baumol’s disease,” i.e.,

that aggregate productivity growth can slow down because sectors with high productivity
12Our model will admit an aggregate productivity that is distinct from conventional measures of total

factor productivity (TFP), which assumes a homogeneous of degree one (HD1) production function in the
two factors of capital and labor. When distinction is necessary, we will refer to our version with three factors
(capital, labor and computers) simply as “productivity,” and the two-factor residual as “TFP.”
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growth may decline in importance (e.g., manufacturing). However, our results show that it is

the shrinkage of occupations with fast occupation-specific productivity growth, not sectors,

that accounts for most of the downward trend in aggregate productivity growth.

Another novel element of our analysis is the computer sector. When sectors are comple-

mentary to one another, the extraordinarily high productivity growth of the computer sector

should reduce its relative importance, and hence its contribution to aggregate productivity

growth over time (Baumol’s disease). However, because we model the computer sector’s

output as a distinct type of capital used in the production of all sectors (including itself), its

productivity growth and the accompanying fall in its price boost the demand for computers

from all sectors. Consequently, the computer sectors’s contribution to aggregate productivity

remained important for a prolonged period of time, more than offsetting the negative effect

of routinization on aggregate productivity growth for over two decades. We also show that

computerization accounts for most of the decline in the labor income share since the 1980s.

In our model, individuals inelastically supply labor to differentiated jobs. Each sector uses

all these jobs, but with different intensities. Sectors are complementary across one another

for the production of the final good. Within each sector, jobs are also complementary to one

another, and labor is combined with capital for sectoral production. Most important, we

divide capital into computer capital (including software) and the rest (i.e., all capital not

produced from the computer sector), and assume that the substitutability between labor

and computer capital may differ across sectors. We model computer and software as capital

used by all other sectors rather than an intermediate input, because the computer share of

all investment is substantially larger than its share of all intermediates (14 vs. 2 percent,

averaged between 1980 and 2010).
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It should be noted that computerization and routinization are empirically distinct phenom-

ena. Computer and software usage increased the most for high-skill or cognitive occupations,

not middle-skill or routine occupations, justifying our choice to model productivity growth in

both dimensions (sector- and occupation-specific). We then estimate the degree of comple-

mentarity across sectors, and calibrate the growth rates of the sector- and occupation-specific

productivities, substitutability/complementarity across jobs, and substitutability between

computer capital and labor, using detailed data on employment shares and computer capital

by industry and by occupation. Our estimation and calibration verify that as long as produc-

tivity growth rates are positive, (i) sectors are complementary to one another for final good

production;13 (ii) jobs are complementary to one another within sectors; and most important,

(iii) computer capital is in fact substitutable with labor in all sectors.

Given the structure of our model and estimated/calibrated parameters, we find that when

sector- and occupation-specific productivities grow at constant but different rates, aggregate

productivity growth declines over time due to the two types of complementarity (across jobs

within sectors, and across sectors in final good production). Jobs and sectors with highest

productivity growth shrink in terms of employment and value-added. Then low-growth jobs

and sectors gain more weight when computing aggregate productivity growth, resulting in its

slowdown. As productivity growth slows down, output growth slows down even more.

The mechanics of our model is consistent with our empirical findings: Since the 1980s,

sectors that rely heavily on routine jobs experienced the highest growth in their TFP’s, as

measured by conventional growth accounting.14 These occupations, and the sectors that rely

relatively more on them, also saw their employment shares fall.
13Or consumption, which we do not model.
14That is, assuming an HD1 production function with two factors, capital and labor. By “measured,”

we mean productivity or TFP obtained directly from the data by growth accounting, as opposed to being
computed from our model.
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Next, we find that the fall in aggregate productivity growth in the longer run is more due

to the differential growth across occupations (i.e., routinization) rather than the differential

growth across sectors. In fact, if all occupation-specific productivities had grown at a common

rate from 1980, holding all else equal, aggregate productivity growth rates would have stayed

nearly constant through 2010. This contrasts with Baumol’s disease, which emphasizes the

differential sector-specific productivity growths, especially the slow productivity growth of

the service sector.

The natural question is then why the downward trend in aggregate productivity growth

did not manifest itself until the 2000s. In our model, the slowdown in aggregate productivity

growth can be temporarily arrested and even reversed if certain sectors or jobs experience

faster-than-usual technological progress. We find that this is exactly what happened during

the 1990s, when the computer sector recorded impressive productivity growth. Without

the technological progress specific to the computer industry, aggregate productivity growth

during the 1990s would have been 0.5 percent per year, instead of 0.8 percent. It is only

after the subsequent slowdown in the computer sector’s productivity growth in the 2000s

that the longer-run downward trend in aggregate productivity growth became apparent. Our

analysis confirms that if productivity growth in the computer sector had been completely

absent, aggregate productivity growth would have declined monotonically since 1980. In fact,

although our focus is on the slowdown toward the end of the sample period in Figure 2.1, a

slowdown is also apparent in the 1970s to early 1980s.

In the data, sectors with higher measured TFP growth saw their employment shares decline,

except for the computer sector. The same happens in our model because all sectors use

computer capital in production. Then, as the computer sector’s productivity growth reduces

the price of computer capital, all sectors use more computers, which contributes to output

growth in addition to the computer sector’s direct contribution to aggregate productivity
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Source: National Income and Product Accounts (NIPA) from the Bureau of Economic Analysis (BEA). TFP
is measured as the Solow residual assuming a homogeneous of degree one production function with two
factors, capital and labor.

growth.15 Indeed, if there had been no productivity growth in the computer sector and hence

no computerization, output per worker growth would have been 1.5 percent per year during

the 1990s, rather than the 3.5 percent observed in the data. In other words, the sluggish

growth of aggregate productivity and output in the 2000s was not abnormal. It was the

faster-than-trend growth during the 1990s driven by the outburst of the computer sector’s

productivity that was extraordinary.

Treating computer capital as a separate production factor as we do also has implications

for the measurement of aggregate productivity. We find that conventional TFP accounting

with only two factor inputs, with all types of capital being summed up into a single category,

overstates aggregate productivity growth by 0.4 percentage points per year when averaged
15As discussed earlier, this model element is also important for understanding why the direct contribution

of the computer sector to aggregate productivity growth did not dwindle in importance despite the comple-
mentarity across sectors. The computer sector’s production share has been stable over time: 3.1 percent in
the 1980s, 3.4 percent in the 1990s, 3.9 percent in the 2000s, and 3.4 percent in the 2010s.
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between 1980 and 2010. That is, ignoring different types of capital, which differ in their

rental and depreciation rates, can bias productivity measurements upward.

Lastly, we relate computerization to the decline in the labor income share. In our model,

the labor share decline is caused by the substitutability between labor and computer capital,

as the computer sector becomes more productive. We find that computerization during the

1990s accounts for most of the decline in the labor share between 1980 and 2010 (4 out of

5 percentage points), even the model does not target the labor share at all. This implies

that computer capital alone is more important than all other machinery and equipment in

explaining the decline in the labor share.

Related literature In our model, employment shifts across sectors—or “structural change”—

occur due to differential sector- and occupation-specific productivity growth as in Lee and

Shin (2017). Most studies in the structural change literature that consider sector-specific pro-

ductivity growth, e.g., Ngai and Pissarides (2007), have paid little attention to its implications

for changes in aggregate productivity. In fact, most were interested in obtaining balanced

growth. However, since as far back as Baumol (1967), it was well known that complementarity

between industries can lead to an increase in the employment share of the low productivity

growth sector, consequently leading to a slowdown in aggregate productivity. A recent study

by Duernecker et al. (2017) is a notable exception. They explicitly consider Baumol’s disease

in a multi-sector model, and evaluate whether structural change is quantitative important

for explaining the aggregate productivity slowdown. In our analysis, we model differential

progress across occupation-specific technologies in addition to heterogeneous sector-specific

productivity growth, and find that it was the dispersion of occupation-specific productivities

that was more important for the aggregate productivity slowdown in the United States.16

16Aum et al. (2017) document occupation-specific and sector-specific shocks at a higher frequency—during
and after the Great Recession.
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Our work also relates to studies on the importance of information technology (IT) in

explaining the evolution of productivity (e.g., Byrne et al., 2016; Syverson, 2017). In particular,

Acemoglu et al. (2014) investigate the relationship between productivity growth and IT capital

intensity by industry, and conclude that IT usage has little impact on productivity. While we

emphasize the role of computerization, our analysis is consistent with theirs. Computerization

is important for shaping aggregate productivity growth in our analysis, but there is no direct

effect of computerization on the productivity of other industries. Instead, computerization

affects industry level output and value-added through an increase in the use of computer

capital.

In many empirical analyses related to routinization, the price of information and commu-

nication technology (ICT) capital is often used as a proxy for routine-biased technological

change (e.g., Goos et al., 2014; Cortes et al., 2017). However, when we break down com-

puter usage by occupation, we find that computerization and routinization are two distinct

phenomena, with different implications for the macroeconomy. Related, the first chapter of

this dissertation analyzes increasing investment in software in a model that also features

routinization. While the first chapter focuses on its impact on changes in occupational

employment, the second chapter focuses on its implications for aggregate productivity.

Finally, Karabarbounis and Neiman (2014) suggest that the decline in the labor income

share could be due to a decline in the price of capital. Since the decline in the price of capital

is mostly driven by the price of computer-related equipment, and it mirrors the productivity

increase in the computer industry, our analysis concurs with their explanation of the declining

labor share. Furthermore, our results show that a specific component of capital—computer

hardware and software—can be more important than all other types of capital. This is in

line with Koh et al. (2016), who emphasize the importance of intellectual property products

capital (including software) for the decline of the labor share.
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Figure 2.2: PC use by occupation and PC industry TFP
Source: (a) IPUMS Census, BEA NIPA and O*NET. (b) BEA Industry Accounts. The computer industry
includes industries 334 and 511 (for hardware and software, respectively). See footnote 18 and text for the
data and accounting behind the graphs.

2.2 Empirical Evidence

We begin by establishing that routinization and computerization are two distinct phenomena.

For the empirical analysis, occupational data is from the decennial censuses and industrial

data from the BEA industry accounts. We consider industries at the 2-digit level, resulting

in 60 industries. In particular, we label industry 334 (computers and electronic products)

the “hardware” industry and 511 (publishing industries including software) the “software”

industry. The combination of both is the “computer sector.”

In Figure 2.2(a), the horizontal axis is occupational employment shares (percentile),

in ascending order of each occupation’s 1980 average wage.17 The figure shows that the

routine-task intensity (RTI) of occupations (Autor and Dorn, 2013) is high for middle-wage

occupations, as is well known in the routinization/polarization literature, but that high-wage

occupations tend to use computers more.18 So at the occupational level, an increase in the
17The ordering of occupational mean wages barely changes from 1980 to 2010.
18Computer usage is approximated from 2010 NIPA Tables 5.5.5 (Private Fixed Investment in Equipment

by Type), 5.6.5 (Private Fixed Investment in Intellectural Properties by Type), and the O*NET Tools and
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use of computers (i.e., computerization) should be distinguished from routinization, which is

typically understood as faster productivity growth among middle-wage or routine-intense

tasks.

Computerization in our model is a consequence of the fast productivity growth of the

computer industry. We first employ conventional accounting to measure each industry’s TFP

growth: the growth rate of real value-added net of the growth of capital and labor inputs,

weighted by the income share of each factor. Specifically, industry i’s measured TFP growth

between time s and t is

log TFPit

TFPis

= log Yit
Yis

− αis + αit

2
· log Lit

Lis

− 2− αis − αit

2
· log Kit

Kis

,

where Y is real value-added, L is employment, K is the net real stock of non-residential fixed

capital, and α is the labor share (compensation of employees divided by value-added).19

Figure 2.2(b) depicts the log-TFP of computer-related industries (BEA industry code

334 for hardware and 511 for software) and the average of the log-TFP of all industries

excluding agriculture and government (weighted according to the Törnqvist index). The TFP

of hardware shows an average annual growth rate of 16 percent, far higher than the average

across all industries. Software also features higher TFP growth compared to the average.

The TFP of the “computer industry”—the value- added weighted average of hardware and

Technology database as follows. In NIPA Table 5.5.5, we assume that “computers and peripheral equipment”
are produced by industry 334, and in Table 5.6.5, that “software” are produced by industry 511. O*NET
lists all the tools and technology that are used for each occupation. O*NET occupation codes can be easily
mapped to the census, and tools and technology are coded using the UNSPSC commodity system. We
assume that 4321xxxx corresponds to “hardware,” which includes all computers and peripheral equipment,
and that 4323xxxx corresponds to “software.” Then we count the number of distinct commodities needed in
each occupation, multiply it by the employment share of that occupation, and assume that hardware and
software investment is allocated across occupations proportionately to this number. Finally, we standardize
this measure of computer investment by occupation to have a mean of zero and standard deviation of 1.
While this may be a crude measure for computer usage, it is highly correlated with data from the CPS, which
reports computer use intensity by occupation. See Appendix A for more details.

19Later when we separately consider computer capital, TFP computed here would be a misspecification.
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Figure 2.3: Computer use in production over time
Source: BEA Input-Output Tables and Fixed Asset Tables (FAT). In panel (a), hardware and software are
industries 334 and 511. In panel (b), hardware and software are investments into “computers and peripheral
equipment” and “software” in the FAT.

software—shows that the hardware industry mostly determines the TFP of the computer

industry. Note that the exceptionally fast growth of the computer industry’s TFP slowed

down since around the early 2000s.

Reflecting the fast growth of the computer industry’s measured TFP, the use of computer

and software also rose substantially until the late 1990s. Figure 2.3(a) shows the computer

and software share of total intermediates over time. Figure 2.3(b) plots the share of computers

and software in total non-residential investment. In both figures, it is clear that there was a

steep rise in the importance of computers in the 1980s to 1990s, which stagnated starting in

the 2000s.20

We now turn to disaggregated evidence at the industry level, which will support our

hypotheses of heterogeneous growth rates and complementarity across jobs and industries.

Because job or occupation-level productivity is not directly measurable, we first establish

two new empirical patterns, utilizing the fact that industries differ in the composition of
20The data behind Figures 2.3(a) and (b) come from BEA’s Input-Output Tables and Fixed Assets Tables,

respectively.
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Figure 2.4: Routinization and industry TFP and employment
Source: IPUMS Census and BEA Industry Accounts. Hardware and Software are industries 334 and 511,
respectively. In panel (a), routine jobs are defined as occupations above the 66 percentile in terms of the RTI
index (Autor and Dorn, 2013). In panel (b), FTPT is full-time plus part-time workers.

their workers’ occupations. Figure 2.4(a) shows that the routine job share of an industry is

positively correlated with its measured TFP growth (log difference) between 1980 and 2010

(consistent with routinization), where routine jobs are defined as occupations that are above

the 66 percentile in terms of the RTI index following Autor and Dorn (2013). Figure 2.4(b)

shows that TFP growth and employment growth are negatively correlated across industries,

consistent with complementarity across jobs and/or industries.21

However, note that the computer industry is a conspicuous outlier. In Figure 2.4(a),

despite having a routine job share around the median, not only is the computer industry’s

TFP growth 10 times larger than other industries at similar levels of routineness, it is in fact

2 to 4 times larger than the next two industries with the highest levels of TFP growth overall.

Despite this, as shown in Figure 2.4(b), its employment barely fell. With complementarity

across industries, a high productivity growth sector should lose value-added and employment

shares. A possible explanation is that other industries depend heavily on the computer
21Employment in this figure is full-time plus part-time workers (FTPT). Full-time equivalent (FTE)

employment shows similar patterns, but is only available by industry from 1997 onward. For this period,
there are level differences between the two measures, but dynamic patterns are similar for both.

63



Hardware

Software

−
2

0
2

4
V

al
ue

 a
dd

ed
 g

ro
w

th
 (

19
80

−
20

10
)

0 2 4 6 8
Computer capital growth (1980−2010)

(a) Hardware

Hardware

Software

−
2

0
2

4
V

al
ue

 a
dd

ed
 g

ro
w

th
 (

19
80

−
20

10
)

2 4 6 8 10
Computer capital growth (1980−2010)

(b) Software

Figure 2.5: Growth of Value-added Output and Computer Capital
Source: BEA Industry Accounts and FAT Nonresidential Detailed Estimates by Industry and Type. Hardware
and Software are industries 334 and 511, respectively. Hardware capital is the net stock of “computers and
peripheral equipment” and software capital the net stock of “software” by industry.

industry, so that even as its productivity grows the size of this sector would not shrink as

long as other industries rely on it more. If so, those industries with faster growth in computer

capital should grow faster than those that use computers less intensively in terms of output:

since computer capital is a factor in production, it would not necessarily increase productivity.

Figure 2.5 confirms the positive relationship between the growth of computer capital (total

investment into hardware and software from 1980-2010) for an industry and its value-added

growth between 1980 and 2010.

2.3 Model

The model for our quantitative analysis builds on those in Goos et al. (2014) and Lee and

Shin (2017), both of which simultaneously analyze an economy’s occupational and industrial

structure. In particular, the latter explicitly models how workers of heterogeneous skill sort

into different occupations, and also industries that differ in the intensity with which they

combine workers of different occupations for production. Here we ignore selection on skill,
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but instead expand previous models by letting all industries use output from the computer

sector as a capital good in production, an important channel through which the productivity

gains of the computer industry affect aggregate production.

Environment A representative household maximizes its discounted sum of utility

∞∑
t=0

βtu(Ct)

subject to the sequence of budget constraints,

Ct + It + pI,tFt ≤ Yt,

where I is investment in traditional capital (machinery and equipment excluding computer

hardware and software), F investment in computer capital, and pI the price of computers.

The final good is the numeraire, which can be used for consumption and traditional capital

investment. The law of motion for each type of capital satisfies

Kt+1 = It + (1− δK)Kt, St+1 = Ft + (1− δS)St,

where (K,S) are traditional and computer capital, respectively, and (δK , δS) their depreciation

rates. In what follows, we drop the time subscript unless necessary, and simply denote next

period variables with a prime.

Within the representative household is a unit mass of identical individuals who supply

labor inelastically to one of J occupations, indexed by j ∈ {1, . . . , J}. The final good is

produced by combining products from I sectors, which we index by i ∈ {1, . . . , I}. To be

specific, final good production combines industrial output using a CES aggregator with the
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elasticity of substitution ε:

Y =

[
I∑

i=1

γ
1
ε
i Y

ε−1
ε

i

] ε
ε−1

.

In each sector, a representative firm organizes the J occupations to produce sectoral output

Yi according to

Yi = AiK
αi
i Z

1−αi
i , (2.1)

where Ai is industry i’s exogenous sector-specific productivity and Zi a computer-labor

composite that combines computer capital Si with an occupation composite Xi:

Zi =

[
ω

1
ρi
i S

ρi−1

ρi
i + (1− ωi)

1
ρiX

ρi−1

ρi
i

] ρi
ρi−1

, Xi =

[
J∑

j=1

ν
1
σ
ij (MjLij)

σ−1
σ

] σ
σ−1

.

Each Lij is the number of occupation j labor (i.e., workers) used in sector i, and Mj is the

exogenous occupation-specific productivity of job j that differs across occupations but not

sectors. The parameters ωi and νij are CES weights that differ by sector, as well as ρi, the

elasticity of substitution between computers and labor in sector i. However, we assume that

the elasticity of substitution across occupations, σ, is identical across sectors. There are

several reasons we let the ρ’s vary across sectors but not σ, which we discuss in Section 2.4.2.

Since each industry uses all types of occupations but with different intensities νij , changes

in Mj would have differential effects on the occupation composite Xi, and thus on Zi, the

computer-labor composite. Ultimately, it will manifest itself as differential effects on sectoral

productivity and output. In contrast, changes in Ai affects sectoral productivity and output

directly.
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Computer capital Si is also used in all sectors, and without loss of generality we will

assume that the computer industry is industry i = I. So the total amount of computer capital

in the economy is S =
∑I

i=1 Si and F is the total amount of newly produced computers.

While the model assumes that computer capital is required for production in all industries,

there is no other input-output linkage among the rest. Each industry rents traditional capital

and computer capital at rates RK and RS.

Equilibrium The final good firm takes prices pi as given and solves

max

{
Y −

I∑
i=1

piYi

}
. (2.2)

Each sector i firm takes all prices as given and chooses capital, computer capital and labor

to solve

max

{
piYi −RKKi −RSSi − w

J∑
j=1

Lij

}
, (2.3)

where pi is the price of the sector i good, RK the rental rate of traditional capital, RS

the rental rate of computer capital, and w the wage rate—which is equal across jobs since

individuals do not differ in skill. In a competitive equilibrium,

1. Final good producers choose Yi to maximize profits (2.2), so

γiY /Yi = pεi for i ∈ {1, . . . , I}. (2.4)

Since we normalized the final good price to 1,

I∑
i=1

γip
1−ε
i = 1

1
1−ε = 1
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is the ideal price index.

2. All sector i firms maximize profits (2.3). The first-order necessary conditions are

RK = αipiYi/Ki, (2.5a)

RS = (1− αi) · (piYi/Zi) · (ωiZi/Si)
1
ρi , (2.5b)

w = (1− αi) · (piYi/Zi) · [(1− ωi)Zi/Xi]
1
ρi ·
[
νijM̃jXi/Lij

] 1
σ (2.5c)

where M̃ :=Mσ−1.

3. Capital, computer and labor markets clear:

K =
I∑

i=1

Ki, S =
I∑

i=1

Si, L =
I∑

i=1

Li =
I∑

i=1

[
J∑

j=1

Lij

]
(2.6)

where Li :=
∑

j Lij is the total amount of labor used in sector i.

4. The rental rates satisfy

u′(C)

βu′(C ′)
= 1 + r = R′

K + (1− δK) = [R′
S + (1− δS)p

′
I ] /pI , (2.7)

and the transversality conditions hold.

lim
t→∞

βtu′(Ct)Kt = 0, lim
t→∞

βtu′(Ct)St = 0.

Equilibrium Characterization From (2.4) and (2.5a), we find that

αipiYi/αIpIYI = Ki/KI = (αi/αI) (γi/γI)
1
ε · (Yi/YI)

ε−1
ε

⇒ αipiyi/αIpIyI = ki/kI = (αi/αI) (γi/γI)
1
ε · (yi/yI)

ε−1
ε · (Li/LI)

− 1
ε ,
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where yi := Yi/Li is output per worker and ki := Ki/Li is capital per worker in sector i. So

using (2.1), we can write

Ai

AI

=

(
αI

αi

) ε
ε−1

· k
ε

ε−1
−αi

i

k
ε

ε−1
−αI

I

· z
1−αI
I

z1−αi
i

·
(
γILi

γiLI

) 1
ε−1

(2.8)

where (zi, si) is the labor productivity and computer per worker in sector i. From (2.5c),

holding i fixed we obtain Lij/Li1 = νijM̃j/νi1M̃1 for all j, so

Lij =
(
Ṽ 1−σ
i · νijM̃j

)
· Li and Xi = ṼiLi, where Ṽi :=

(
J∑

j=1

νijM̃j

) 1
σ−1

. (2.9)

Then the equilibrium allocations of (Lij, Zi) can be expressed as

Lij/Li = νijM̃jṼ
1−σ
i , and (2.10)

Zi =

[
ω

1
ρi
i S

ρi−1

ρi
i + V

1
ρi
i L

ρi−1

ρi
i

] ρi
ρi−1

⇒ zi := Zi/Li =

[
ω

1
ρi
i s

ρi−1

ρi
i + V

1
ρi
i

] ρi
ρi−1

(2.11)

where Vi := (1− ωi)Ṽ
ρi−1
i . Plugging these expressions into (2.5b)-(2.5c) we obtain

RS = (1− αi) · (piyi/zi) · (ωizi/si)
1
ρi , (2.12a)

w = (1− αi) · (piyi/zi) · (Vizi)
1
ρi , (2.12b)

and taking the wage-computer rent ratio (w/RS) across all sectors, we can express all other

sectors’ computer capital per worker relative to the computer sector’s:

(Vi/ωi) · si = [(VI/ωI) · sI ]
ρi
ρI (2.13)
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and plugging this expression into the definition of zi in (2.11), we obtain

zi = V
1

ρi−1

i

[
1 + (ωi/Vi) [(VI/ωI) · sI ]

ρi−1

ρI

] ρi
ρi−1

. (2.14)

Thus, all zi’s can be obtained given sI , the computer sector’s computer capital per worker,

and exogenous parameters. Similarly, taking the wage-capital rent ratio (w/RK) across all

sectors using (2.5a) and (2.12b), we obtain

(1− αi)αI

(1− αI)αi

· ki
kI

=

(
z

ρi−1

ρi
i /z

ρI−1

ρI
I

)/(
V

1
ρi
i /V

1
ρI
I

)
, (2.15)

and since all zi’s are functions of sI , all ki’s can be obtained given sI and kI ’s, the computer

sector’s traditional capital per worker. So the equilibrium allocation can be found from (2.8)

subject to the market clearing conditions (2.6).

Discussion In our model, sector- and occupation-specific productivities are exogenous

(Ai and Mj, respectively). In particular, sector-specific productivities Ai are distinct from

“sectoral productivity” which refers to the productivity of a sector in an accounting sense.

And since the occupation-specific productivities affect sectoral productivity through Vi :=

(1 − ωi)(
∑

j νijM̃j)
ρi−1

σ−1 , sectoral productivity depends on Mj’s as well as Ai. Specifically,

sectoral productivity in our model is obtained by decomposing output into factors:

ŷi =

Âi + (1− αi)
1

ρi − 1

V
1
ρi
i

z
ρi−1

ρi
i

V̂i


︸ ︷︷ ︸

Sectoral Productivity

+ αi︸︷︷︸
K share

k̂i + (1− αi)
ω

1
ρi
i s

ρi−1

ρi
i

z
ρi−1

ρi
i︸ ︷︷ ︸

S share

ŝi, (2.16)

where x̂ := d logx.
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The above is our definition of productivity in the subsequent quantitative analysis, which is

distinct from traditional measures of TFP.22 A rise inMj , the occupation-specific productivity

of job j, raises sectoral productivity through changes in Vi. In this case, all sectoral productiv-

ities would move in the same direction (either up or down), but their growth rates will differ

depending on the sector-specific parameters included in the expression for sectoral productiv-

ity in (2.16), as well as the endogenous response of zi. And since the production technology

is homogeneous of degree one (HD1), aggregate productivity is a sectoral output-weighted

average of the sectoral productivities. Hence changes in the exogenous productivities Ai or

Mj affect aggregate productivity both directly by changing all sector’s sectoral productivities,

but also indirectly by altering sectoral output shares.

Last but not least, changes in AI , the computer industry’s sector-specific productivity, has

further repercussions on aggregate output. As other industries, changes in AI alter aggregate

productivity both directly (by increasing the computer sector’s sectoral productivity) and

indirectly (by altering the output share of the computer industry). But in addition, it

lowers the price of computers (pI) and consequently the rental rate of computer capital

(RS), leading to a rise in the use of computers for industries whose elasticity of substitution

between computers and labor (ρi) is larger than one. Consequently, not only because it raises

aggregate productivity, but also because it increases the use of computers in all sectors, a

rise in AI contributes more to an increase in aggregate output than any other sector-specific

productivity does.

22The difference is that conventional TFP measurements separate only capital and labor, while we are
taking out computers as a distinct type of capital with its own income share.
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Industry BEA industry code

Mining 211, 212, 213
Construction 23
Durable goods manufacturing 311FT, 313TT, 315AL, 322, 323, 324, 325, 326
Non-durable goods manufacturing 321, 327, 331, 332, 333, 335, 3361MV, 3364OT, 337, 339
FIRE 521CI, 523, 524, 531, 532RL
Health 621, 622HO
Other high-skill services 512, 513, 514, 5411, 5412OP, 5415, 55, 61
Trade (Retail & Wholesale) 42, 44RT
Other low-skill services 22, 481, 482, 483, 484, 485, 486, 487OS, 493, 561, 562, 624,

711AS, 713, 721, 722, 81

Computer 334, 511

Table 2.1: Industry classification
Refer to BEA Industry Accounts for names of industries. The computer industry comprises hardware
(computer and electronic products) and software (publishing industries).

2.4 Quantitative Analysis

For the quantitative analysis, we classify industries into ten groups as summarized in Table

2.1. We exclude the agricultural sector and government. In Table 2.2, we classify occupations

into ten groups which broadly correspond to one-digit occupation groups in the census. We

then fit the model exactly to the data for 1980, and let only the exogenous occupation- and

sector-specific productivities (Mj, Ai) grow at a constant rate. Thus, a major test of the

model is how well it replicates the data in 2010, or equivalently, the growth of sectoral and

aggregate variables from 1980 to 2010.

2.4.1 Calibration

Aggregate production function The parameters of the final good production function

are estimated outside of the model using real and nominal value-added data by industry.
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Occupation Occupation code

High skill
Management 4 - 37
Professionals 43 - 199

Middle skill
Mechanics & Construction 503 - 599
Miners & Precision workers 614 - 699
Technicians 203 - 235
Sales 243 - 283
Transportation 803 - 889
Machine operators 703 - 799
Administrative support 303 - 389

Low skill services 405 - 498

Table 2.2: Occupation classification
Consistent occupation code (occ1990dd) constructed following Autor and Dorn (2013).

Specifically, we estimate the sectoral weights γi and complementarity parameter ε from

log(piYi/pIYI) =
1

ε
(γi/γI) +

ε− 1

ε
log(Yi/YI), for i = 1, · · · , I − 1.

This system of equations is estimated by iterated feasible generalized nonlinear least squares

method. To reflect constraints on the parameters (ε > 0 and 0 < γi < 1), we estimate the

unconstrained coefficents b and ci’s in

log(pi,tYi,t/pI,tYI,t) = (1 + eb)ci + eb log(Yi,t/YI,t) + εi,t,

where ε = 1/(1 + eb) and γi = eci/(1 +
∑
eci).

Each sector i in the model consists of several industries in the BEA Industry Accounts, to

which we apply the Törnqvist index to obtain the price index of sector i. Real quantities

Yi are similarly aggregated up from the detailed BEA data. The aggregate price index is

normalized to 1 in 1963, the initial year in the data. The sample period for the estimation
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Table 2.3: Estimation results

Parameters Estimates

ε 0.765∗∗∗ (0.002)

γ1 0.084∗∗∗ (0.001)
γ2 0.159∗∗∗ (0.002)
γ3 0.099∗∗∗ (0.003)
γ4 0.124∗∗∗ (0.002)
γ5 0.142∗∗∗ (0.001)
γ6 0.087∗∗∗ (0.002)
γ7 0.057∗∗∗ (0.002)
γ8 0.094∗∗∗ (0.003)
γ9 0.117∗∗∗ (0.002)

AIC -1001.432
Standard errors in parentheses. ∗

p < 0.10, ∗∗
p < 0.05, ∗∗∗

p < 0.01

covers 1980 to 2010, which is our main interest. The point estimates for ε and γi are presented

in Table 2.3.

Parameters calibrated without simulation In the calibration, we fix the traditional

capital share of only the computer industry (αI) from the data. Though computing the total

capital share is straightforward (i.e., 1 minus labor share), computing the traditional capital

share according to our model is not. To obtain this number for the computer industry, we

follow Koh et al. (2016), which we briefly describe below.

We begin by specifying an empirical no-arbitrage condition for rental prices. The return

on both types of capital must be equal to the interest rate 1 + r′, so

[R′
K + (1− δ′K)p

′
K ]/pK = [R′

S + (1− δ′S)p
′
I ]/pI (2.17)

where pK is the price of traditional capital and pI the price of computers. Note that this is

different from the model’s no-arbitrage condition (2.7) in that we have included the price

of capital, which in the model we had normalized to be equal to the price of the final
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Parameters Value Obtained from

σ 0.815 Mean absolute distance of the changes in the employment share
r + δS 0.300 Average depreciation rate of computer capital from FAT

Table 2.4: Calibrated Parameters

consumption good. Next, since sectoral production is HD1 in all factor inputs (traditional

and computer capital, and labor), for the computer industry we have

1− labor shareI =
RKKI

pIYI
+
RSSI

pIYI
.

We solve for RK and RS from these two equations assuming a steady state (R′
K = RK , R

′
S =

RS and pK = p′K , pI = p′I), plugging in for all other variables using data on the quantities,

prices and depreciation rates of each type of capital (from BEA FAT Nonresidential Estimates

by Industry and Type); and the computer industry’s real and nominal value-added, and its

labor share (from BEA Industry Accounts).23 Once we know RS, we can set αI = RSSI/pIYI

since all other variables are recovered directly from the data. We rely only on data from 1980.

Although the above procedure can be used for all industries, in our calibration we only

use it to compute the computer industry’s traditional capital share. All other industries’

traditional capital shares are calibrated directly from the model as explained below. Appendix

Figure B1(a) compares the traditional capital shares obtained using the above procedure

against those predicted by the calibration, which confirms that they are generally consistent.

Method of Moments The rest of parameters are recovered from simulating model mo-

ments to match corresponding data moments. To be precise, we plug the data for Lij (from

the IPUMS Census), and (ki, si) (from the BEA FAT Nonresidential Estimates by Industry
23 We take the weighted average across industries 334 and 511 (software and hardware) to obtain this value

for the computer industry, which in our quantitative model comprises both. For each industry, computer
capital is the sum of the net stock of “computers and peripheral equipment” and “software.”
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and Type) directly into the equilibrium equations, assuming a steady state in both 1980 and

2010, respectively. The detailed procedure is as follows:

1. Guess σ.

(a) Fix αI as above, and guess AI,1980 and ρi’s.

i. For 1980: obtain (νij, ωi, αi, Ai,1980) given guess.

- NormalizeMj = 1 for all j. Then the industry-specific occupation weights

νij ’s and Ṽi are recovered from (2.9)-(2.10) using data on 1980 employment

shares..

- From (2.12a) of industry I, and replacing for yi using (2.1) and zi using

(2.11), ωI must solve

RS = (1− αI) · AIk
αI
I ·

[
ω

1
ρI
I s

ρI−1

ρI
I + (1− ωI)

1
ρI Ṽ

ρI−1

ρI
I

] 1−ρIαI
ρI−1

· (ωI/sI)
1
ρI ,

given data on kI and sI in 1980. The solution ωI ∈ (0, 1) if 1 < (1 −

αI)AI(kI/sI)
αI .

- Given ωI , obtain all other ωi’s from (2.13) (since V := (1− ωi)Ṽ
ρi−1
i ).

- For all i 6= I, compute αi’s from (2.15) by replacing for zi using (2.14),

and plugging in data on (ki, si).

- Exogenous sector-specific productivities Ai,1980’s are recovered from (2.8)

and AI,1980.

ii. For 2010: obtain Mj,2010 and updated guesses for the substitutability between

computers and workers, ρnewi .
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- Choose the Mj’s that yields the best fit of (2.10) across all i given 2010

employment shares:

Mj

M1

=

[∑
i

(
Li ·

Lij

Li1

· νi1
νij

)]/∑
i

Li,

Using this we can compute Ṽi for 2010 using (2.9).

- From (2.15), we set ρnewI to get the best fit of

ρnewI · I =
∑
i

 log(ωI ṼI)− log((1− ωI)sI)

log
[(

1− αI(1−αi)ki
αi(1−αI)kI

)
ṼI

]
− log

(
sIαI(1−αi)ki
αi(1−αI)kI

− si

)


given data on (ki, si) in 2010.

Note that we need si/sI < (1 − αi)αIki/(αi(1 − αI)kI) < 1 or si/sI >

(1−αi)αIki/(αi(1−αI)kI) > 1 for ρnewI to be a real number. We exclude

those industries with (ki, si) for which this condition is not satisfied only

when we compute ρnewI .

- Compute the implied ρnewi ’s that are consistent with the 2010 si’s, i.e.,

ρnewi =
ρnewI log

(
1−ωi

ωisiṼi

)
ρnewI log

(
ṼI

Ṽi

)
+ log

(
1−ωI

ωIsI ṼI

)
(b) Iterate over ρi’s till ρi ≈ ρnewi .

(c) Set AI,1980 so that yI equals the computer industry’s real value-added per worker

in the data. Iterate over AI,1980 till convergence.

2. Iterate over σ to minimize
∑

j |`dj,2010 − `mj,2010|, where `j is the employment share of

occupation j.
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In the outermost loop of the above procedure, note that we use occupation employment shares

in aggregate. The industry-specific occupation weights νij’s were recovered only from within

industry employment shares by occupation. Once we have recovered all the parameters,

1. Get Ai,2010’s to match measured productivity by sector in (2.16) to 2010 data.24

2. Between 1980 and 2010, we assume that the Mj,t’s, and all Ai,t’s except AI , grow at

constant rates, so:

Mj,t =Mj,1980(Mj,2010/Mj,1980)
(t−1980)/30,

Ai,t = Ai,1980(Ai,2010/Ai,1980)
(t−1980)/30.

3. The computer sector’s exogenous productivity (AI) for other years are chosen so that

the sectoral productivity of the computer sector in (2.16) is equal in the data and

model.

2.4.2 Properties of the Benchmark Model

The calibration results are summarized in Tables 2.5 to 2.7. Since changes in Mj affect

occupational employment across all industries, we can identify occupation-specific productivi-

ties separately from the sector-specific productivities. Specifically, occupational employment

data alone gives enough information to identify the Mj’s, from Equation (2.10). Given

this, we can identify the sector-specific Ai’s to fit measured sectoral productivities from the

data using (2.16). The calibrated values for Mj’s show that routine intensive occupations,

such as machine operators or mechanics, indeed experienced much faster growth in their
24We compute traditional and computer capital income shares, and measure sectoral productivity directly

from the data. Hence, the model’s sectoral output may differ from the data.
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Figure 2.6: Computer per worker growth between 1980 and 2010
Source: BEA Industry Accounts and FAT. See Table 2.1 for details of the industry classification. Computer
capital is measured as the sum of “computers and peripheral equipment” and “software” by industry, available
in FAT Table 3.1.

occupation-specific productivities. And as expected, the sector-specific productivity of the

computer industry (AI) grew exceptionally fast especially during the 1990s.

It is also noteworthy that the ρi’s are identified from how computer capital per worker (si)

and traditional capital per worker (ki) evolve differently across industries. Roughly speaking,

when an industry that increases computers per worker more than other industries also uses

more traditional capital per worker, the elasticity of substitution ρi tends to be greater than

one (Equation 2.15). But since traditional capital is a constant share of production in our

model, our model admits ρi > 1 for sectors whose output per worker increases with computers

per worker. Since this is indeed the case for most industries in the data, as we saw in Figure

2.5, all calibrated ρi’s are larger than 1.25 This also implies that computerization leads to a

decline in the labor share both at the sector and aggregate levels.
25Figure 2.5 shows that some small industries have a negative relationship in the data, but this is no longer

the case once we aggregate the 60 industries into 10 more broadly defined sectors.
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Param/Target Const FIRE Health High
serv.

Low
serv. Dur Mine Non-

durable Trade Comp-
uter

γ outside 0.084 0.159 0.099 0.124 0.142 0.087 0.057 0.094 0.117 0.037
ρ si,2010 1.699 1.213 1.413 1.461 1.415 1.263 1.445 1.559 1.419 1.840
ω si,1980 0.001 0.094 0.003 0.025 0.006 0.028 0.020 0.009 0.008 0.020
α ki,1980 0.167 0.374 0.301 0.454 0.475 0.333 0.793 0.402 0.186 0.322

Table 2.5: Industry specific parameters
Industry weights γi and the computer industry’s traditional capital income share αI are estimated directly
from the data using the BEA Industry Accounts and FAT, while the rest are calibrated according to a method
of moments. See text for details.

In turn, sectors with higher computer per worker growth would also have higher values of

ρi, as in Figure 2.6. This is illustrated in Figure 2.6(a), which plots computer per worker

growth in the data against the ρi’s. While panel (a) makes it clear how the relative values of

ρi are identified across sectors, note that the relationship is not exactly linear, even though

the model fits computer capital per worker exactly by assumption as shown in panel (b)—

since their empirical values are directly fed into step 1.ii of our calibration. This is because

computers are not substituting labor directly, but only indirectly through the occupation

composite Xi.26

Model Fit The model-implied employment share changes fit the data better by occupa-

tion than by industry (Figure 2.7). This is because the Mj’s directly affect occupational

employment through (2.10), and once we match sectoral productivity growth by industry

using (2.16), employment by industry is pinned down by (2.8).

This is also an indirect consequence of assuming constant σ’s across all industries. Note

that nowhere in our calibration did we separately target 2010 traditional capital per worker,

nor employment share changes by industry. Our calibration step 1.ii and Equation (2.15)
26Related, since computers substitute a composite of labor rather than each occupation separately, the values

of the substitutability parameters ρi’s are potentially sensitive to σ, which measures the complementarity
across occupations. We find that this is not the case for a wide range of values for σ lower than its benchmark
value, as shown in Appendix Table B1. While ρi’s are sensitive to much larger values of σ, then it becomes
impossible to fit other moments in the data (employment shares and TFP by industry).
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L serv. Admin. Mach Sales Trans Tech Mech Mine. Prof. Mngm

Const 0.009 0.058 0.027 0.009 0.218 0.016 0.564 0.015 0.021 0.061
FIRE 0.048 0.444 0.005 0.225 0.015 0.014 0.013 0.004 0.021 0.211
Health 0.328 0.172 0.005 0.004 0.006 0.122 0.009 0.011 0.293 0.050
H serv. 0.109 0.222 0.010 0.020 0.022 0.043 0.037 0.007 0.420 0.110
L serv. 0.375 0.143 0.025 0.041 0.129 0.012 0.080 0.023 0.070 0.101
Durable 0.022 0.115 0.372 0.021 0.102 0.027 0.081 0.136 0.049 0.076
Mining 0.017 0.103 0.047 0.010 0.195 0.051 0.121 0.311 0.065 0.080
Non-dur 0.028 0.118 0.386 0.039 0.135 0.023 0.050 0.106 0.036 0.079
Trade 0.025 0.150 0.022 0.406 0.152 0.005 0.066 0.042 0.022 0.110
Computer 0.016 0.165 0.310 0.059 0.042 0.062 0.041 0.070 0.124 0.111

Table 2.6: Industry-occupation specific weights on labor (νij)
Calibration results for νij from a method of moments. Empirical targets are within-industry employment
shares by occupation in 1980.

Target: emp. share by ind. and occ. in 2010 Target: measured productivity in 1980 and 2010
Mj 1980 1990 2000 2010 Ai 1980 1990 2000 2010

Low serv. 1.000 1.000 1.000 1.000 Const 14.125 10.394 7.648 5.628
Admin. 1.000 1.384 1.914 2.649 FIRE 17.924 17.267 16.633 16.023
Machine 1.000 2.273 5.168 11.749 Health 6.155 6.460 6.780 7.115
Sales 1.000 0.590 0.348 0.205 High serv. 1.385 1.624 1.904 2.232
Trans 1.000 1.263 1.595 2.014 Low serv. 0.050 0.053 0.057 0.060
Tech 1.000 0.736 0.542 0.399 Durable 0.198 0.191 0.185 0.179
Mechanics 1.000 1.610 2.591 4.171 Mining 3.048 3.104 3.161 3.219
Mine. 1.000 1.444 2.085 3.010 Non-durable 0.701 0.708 0.716 0.724
Prof. 1.000 0.553 0.306 0.169 Trade 0.269 0.373 0.516 0.714
Mngm 1.000 0.461 0.212 0.098 Computer 1.945 3.667 13.624 26.618

Table 2.7: Occupation- and sector-specific productivity
Occupation-specific productivities are normalized to 1 in 1980. For 2010, we minimize the distance between
the model and data on within-industry employment shares by occupation averaged across all industries in
the IPUMS Census. The computer industry’s 1980 sector-specific productivity is chosen to minimize the
distance between model and data on its real value-added per worker in the BEA Industry Accounts, while
all other industries’ productivities are implied by the model and data on capital and labor data relative
to the computer sector from the Industry Accounts and FAT. All sector-specific productivities in 2010 are
recovered from our expression for sectoral productivity in (2.16), using the Industry Accounts data and our
calibrated parameters. Except for the computer sector-specific productivity AI , all Ai’s are assumed to grow
at a constant rate from 1980 to 2010.
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Figure 2.7: Changes in employment shares between 1980 and 2010
Data Source: occupation data are from IPUMS Census, and industries from BEA Industry Accounts. See
Table 2.2 for details of the occupation classification.

exploit all three factors at once, per industry, using only data on 2010 computer capital per

worker by industry. This makes it clear that we can only let one of ρ or σ vary by sector.27

Both would affect how factor input ratios, and in particular computer capital per worker

si, change across sectors in response to changes in Mj’s. But one of our major goals is to

quantitatively compare how aggregate productivity is affected by complementarity across

occupations (shifts in Mj through σ) relative to complementarity across industries (shifts in

Ai through ε). How to implement such a comparison becomes less obvious if σ’s vary across

sectors.

More important, letting the elasticity of substitution between computers and labor (ρi)

vary across sectors directly captures how computer capital per worker evolves differentially

across sectors, as we discussed above. If we were to instead let σ vary, the effect is only

indirect since computer-labor substitution would differ across sectors only due to differential

shifts in relative labor demand. That is, unlike the clear relationship between ρi and the
27Since the Vi’s are functions of σ.
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growth of computer per worker si as seen in Figure 2.6(a), there would be no systematic

relationship between σ and si since it would also depend on the sector-specific occupation

weights νij’s.

Thus, our exact fit to computer capital per worker growth, to some extent, comes at the

expense of a lesser fit to employment share changes and traditional capital per worker growth

by industry. See Figures 2.7(b) and 2.8(b). This indicates that the unit elasticity assumption

between traditional capital and other factors, and also the assumption that the elasticity is

constant across sectors, may be too stringent. Still, both changes in employment shares and

traditional capital per worker by industry are qualitatively consistent with the data.

More assuringly, even though we did not use any data on output per worker growth—

neither by industry nor in aggregate—nor aggregate productivity, the model prediction of

output per worker growth by industry is remarkably close to the data, Figure 2.8(a). Most

importantly for our purposes, the model generates a slowdown in aggregate output and

productivity growth starting in 2000, similarly as in the data, as shown in Figure 2.9 and

tabulated in Appendix Table B2. The fit to aggregate productivity is especially remarkable

considering that we assume constant productivity growth rates for Mj and Ai—other than

AI—and do not target any aggregate variables in 2010.

Lastly, the model-implied factor income shares by industry are also generally consistent

with the data (Appendix Figure B1). Partly because of this, the aggregate labor share in

the model closely tracks the trend in the data, both in direction and magnitude (Figure

2.10), despite not being targeted at all at the sectoral nor aggregate levels. Recall that

our production technology assumes that traditional capital’s income share is constant by

construction. Thus, our results suggest that computer hardware and software, which are a

83



Cons FIRE Hlth Hser Lser ManD Mine M−ND Trad Comp
−2

0

2

4

6

8

10

12

14

 

 
Data
Model

(a) Output per worker
Cons FIRE Hlth Hser Lser ManD Mine M−ND Trad Comp

−1

0

1

2

3

4

5

 

 

Data
Model

(b) Tradition capital per worker

Figure 2.8: Log changes of y and k between 1980 and 2010
Data Source: BEA Industry Accounts and FAT. See Table 2.1 for details of the industry classification.
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Figure 2.9: Aggregate production
Data Source: BEA NIPA. Exact numbers for the plots are tabulated in Appendix Table B2.
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Figure 2.10: Changes in labor share: model vs. data
Data Source: BEA NIPA and Industry Accounts. See Table 2.1 for details of the industry classification.

subset of total capital that accounts for 14 percent of all investment, can be responsible for

the vast majority of the fall in the labor share (4 out of 5 percentage points) since 1980.28

2.4.3 Counterfactual Analysis

In this section, we investigate the underlying factors that shape aggregate output and

productivity, focusing on routinization and computerization. Routinization in our model

is a faster increase in the occupation-speciifc productivity, Mj, of certain occupations.

Computerization is driven by the computer industry-specific term, AI , which propagates

through all industries because computer capital is used in the production of all industrial

goods.

In our model equilibrium, this propagation happens by shifting the price of computer

capital. High AI shrinks the computer sector employment because of complementarity, but
28As a direct consequence of not fitting capital per worker growth by sector, the model fit to the fall in

labor shares by sector is poorer than in aggregate. Aggregate capital per worker k in the data is directly fed
into the model.
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also lowers the relative price of computers. This, in turn, leads to a drop in the rental rate

of computer capital, which induces all sectors to use more computers. This prevents the

computer sector from shrinking.

Aggregate productivity Note that the growth rates of occupation- and sector-specific

productivities (Mj and Ai) were assumed to be constant for the entire sample period except

for the computer sector’s (AI). Nonetheless, in the benchmark calibration, aggregate TFP

increases almost linearly from 1980 to 2000, slowing down in the last decade (Figure 2.11).29

We now show that the high growth rate of the computer sector-specific productivity (AI)

prevented a potential slowdown in aggregate productivity that would have appeared between

1990 and 2000. Figure 2.11 shows that, if we assume AI were constant between 1980 and 2010,

aggregate productivity growth would have slowed down since 1990. Without the growth in

AI , aggregate productivity would have grown by only 13 percent from 1980 to 2010, one-third

lower than the benchmark growth rate of 20 percent over the same period. This magnitude

is surprising considering the fact that the computer sector’s share of aggregate output is only

3 to 4 percent throughout the observation period.

When all occupation- and sector-specific productivities grow at constant rates over time,

complementarity across jobs and sectors induces the faster growing jobs and sectors to shrink

in relative size, reducing their weights in the computation of aggregate productivity. Hence,

as long as occupation- and sector-specific productivities grow at different rates, aggregate

productivity growth must slow down over time. So both the dispersions in the growth rates of

occupation-specific productivities (Mj) and in sector-specific productivities (Ai’s) contribute

to the aggregate productivity slowdown. To find out which dispersion is more important for

the slowdown, we conduct the following exercises.
29Aggregate productivity growth is measured as d log(y) − (traditional capital share) · d log(k) −

(computer share) · d log(s).
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Figure 2.11: Aggregate Productivity without Computerization
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Figure 2.12: Aggregate Productivity without Complementarity
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Figure 2.13: Aggregate Output without Computerization

In the first exercise, we force all Mj’s to grow at the same rate m for all j (i.e., no

routinization) while leaving the growth rates of Ai’s to be different from one another as in

the benchmark. Second, we force all Ai’s to grow at a common rate a while leaving the

growth rates of Mj’s heterogeneous as in the benchmark. The common growth rates m and

a are set so that aggregate productivity grows at the same rate as in the first decade of our

benchmark calibration. The results are shown in Figure 2.12, which shows that routinization,

or the dispersion in the growth rates of Mj , is more important in explaining the decline in the

growth rate of aggregate productivity. Without routinization, the growth rate of aggregate

productivity remains near 0.8 percent per year throughout the three decades. In contrast,

even when all sector-specific productivities grow at a common rate, aggregate productivity

growth falls almost as much as in the benchmark. Of course for the latter exercise, we are

also ruling out the faster growth of the computer sector, which partially explains the gap

between the benchmark growth rate and this counterfactual growth rate in the 1990s.

Output Fast-growing computer sector-specific productivity directly boosts aggregate pro-

ductivity, which leads to an acceleration of aggregate output growth. Furthermore, there is
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Figure 2.14: Output Growth by Industry without Computerization
In panel (a), we plug in model-simulated income shares and quantities into the accounting equations in
(2.18). In panel (b), we plug in data from NIPA and FAT directly. See Table 2.1 for details of the industry
classification.

an additional effect on aggregate output, since all sectors use more computer capital. Figure

2.13 shows the total effect of computerization on aggregate output. If AI were to remain

constant between 1980 and 2010, aggregate output growth from 1980 to 2010 would be 63

percent, or only about half of the growth in the benchmark. As expected, this is a larger

impact than that on aggregate productivity.

Figure 2.14 shows output growth by industry with and without AI growth. Due to the

substitutability between computer and labor, all industries benefit from computerization.

Unsurprisingly, the computer industry itself is affected the most, followed by finance and

high-skilled services. The construction industry has the least to gain (in terms of output

growth) from computerization.

Labor share Because the model calibration yields sector-specific elasticities of substitution

between labor and computer capital (ρi) that are larger than 1, computerization results
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Figure 2.15: Changes in Labor Income Shares by Industry
“no comp”: no computerization. “common m”: no complementarity across jobs. “common a”: no complemen-
tarity across industries. See Table 2.1 for details of the industry classification.

in the decline of labor shares in all sectors. Figure 2.15 shows changes in labor shares by

industry for various counterfactual exercises. Among all these exercises, the only two that

affect labor shares are when we eliminate computerization either explicitly (in red); or by

assuming common growth rates across all industries (in sky-blue). So we can conclude that

the growth in AI is the only important driving force behind the decline of the labor share.

Computer capital in the measurement of TFP In our benchmark, we measured

aggregate productivity growth between times s and t as follows:

log(At/As) = log(Yt/Ys)−
1

2

(
LIt
Yt

+
LIs
Ys

)
log(Lt/Ls)−

1

2

(
SIt
Yt

+
SIs
Ys

)
log(St/Ss)

− 1

2

(
KIt
Yt

+
KIs
Ys

)
log(Kt/Ks), (2.18a)
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where LI is labor income, SI is computer capital income, and KI is traditional capital

income. But typically, the standard way we compute TFP growth (the Solow residual Â) is

log(Ât/Âs) = log(Yt/Ys)−
1

2

(
LIt
Yt

+
LIs
Ys

)
log(Lt/Ls)

− 1

2

(
KIs + SIt

Yt
+
KIs + SIs

Ys

)
log[(Kt + St)/(Ks + Ss)]. (2.18b)

Note that At and Ât can differ, especially when the gross rate of return on computer capital

and traditional capital are different. By inspection of (2.17), we see that this happens when

either the investment prices and/or the depreciation rates of the two types of capital differ.

In particular, the gross rate of return on computer capital is generally higher than traditional

capital because the former depreciates more quickly. This implies that the standard way of

computing TFP without separating out computer capital will overestimate the growth rate

of aggregate productivity.

In Figure 2.16, we compare aggregate productivity from our benchmark calibration (A)

against the TFP (standard Solow residual, Â), both according to our model (panel a) and in

the data (panel b). For panel (a), we plug in our model-simulated data into (2.18). For panel

(b), we impute all variables needed in (2.18) directly from the data. The figure confirms

that the aggregate productivity growth is overestimated by about 10 percentage points over

the past 30 years if computer capital is not explicitly separated, both in the data and also

according to our model.

Summary of quantitative analysis There are two main findings from our quantitative

analysis. First, constant occupation- and sector-specific technological progress necessarily

slows down aggregate productivity growth over time, given complementarity across jobs

and industries. Second, it was the dispersion in the growth rates across occupations (i.e.,

routinization) that was most responsible for the aggregate productivity slowdown. This
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Figure 2.16: Comparing different measures of TFP’s
In panel (a), we plug in model-simulated income shares and quantities into the accounting equations in (2.18).
In panel (b), we plug in data from NIPA and FAT directly.

negative impact of routinization on the growth rate of aggregate productivity was more

or less perfectly counterbalanced by the impressive technological progress specific to the

computer industry and its spillover through inter-industry linkages during the 1980s and the

1990s. The slower pace of the computer sector’s productivity growth in recent years—and the

associated deceleration of computer usage by other industries since 2000—is finally revealing

the negative impact that decades of routinization has had on aggregate productivity growth.

2.5 Concluding Remarks

We presented a model in which productivities grow at heterogeneous rates across occupations

(routinization), and also across industries. In particular, to understand the effect of the rise of

the computer industry on aggregate productivity, we let its output be used in the production

of all industries as a distinct type of capital.
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We showed that when occupations and industries are complementary to one another

and occupation- and sector-specific productivities grow at different rates, routinization in

particular causes a slowdown in aggregate productivity. But such a slowdown was averted

prior to the 2000s in the U.S., thanks to the rapid rise of the computer industry’s productivity.

It was only after the productivity of this sector slowed down that routinization began to

reveal its negative impact on aggregate productivity growth.

The main message of our model is that multiple layers of the economy (i.e., occupations and

sectors) can interact to generate interesting time trends that can help us reconcile evidence at

the occupation and sector levels with aggregate trends. Moreover, we have also highlighted

the importance of inter-industry linkages by showcasing that a single industry—in our case

the computer industry—can have large effects on aggregate variables once such a propagation

mechanism is taken into account.

In reality, all industries are interlinked, not only by providing intermediate inputs to one

another as emphasized in some recent models (Acemoglu et al., 2012; Atalay, 2017) but also

by serving different types of capital in which all industries need to invest (as we have modeled

here). Modeling such additional layers of complexity is left for future research.
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Chapter 3

Growth Facts with Intellectual

Property Products: An Exploration

of 31 OECD New National Accounts

This chapter was coauthored with Dongya Koh and Raül Santaeulália-Llopis.

3.1 Introduction

In 2009, the United Nation Statistical Commission adopted the new System of National

Accounts (SNA) from 2008.30 The most notable update in the new system is the capitalization

of (some) intangibles in national accounts which recognizes the growting importance of

intangibles in the economy. In SNA08, the intangible capital measured by the national

accounts is labeled as intellectual property products (IPP). To be precise, the set of IPP
30 European Commission, International Monetary Fund, Organisation for Economic Co-operation and

Development, United Nations, and World Bank, System of National Accounts 2008 (New York: 2009)

94



measured by national accounts includes R&D and artistic originals, in addition to computer

software introduced since SNA 1993. By 2016, most OECD countries have implemented the

new system.31

We construct a new data set using new national accounts for 31 OECD countries that

have implemented SNA08. We then use these database to document the secular behavior of

economic growth and the big ratios (à la Kaldor (1957) and Jones (2016)) for these countries.

We find 1) a decline of labor income share, 2) a rise of capital-output ratio, and 3) a rise

of the rate of return to capital. We show that the new secular behavior of the big ratios

that we document is entirely driven by the reclassification of IPP from expense to capital. In

particular we show that treating IPP as expense, as in the pre-SNA93 accounting framework,

we would find a relatively trendelss labor income share, capital-to-output ratio, and rate of

return.

The main accounting assumption behind the capitalization of IPP implemented by national

accounts is that all IPP rents are attributed to capital.32 Specifically, the increase in IPP

investment on the national products accounts is moved to gross operating surplus (hence,

capital income) on the national income accounts. We argue that this accounting assumption

that follows SNA08 guidelines is arbitrary and extreme. Indeed, we show that the assumption

that all IPP rents are capital income is crucial in generating the new facts. Once we relax

this assumption based, for example, on the cost structure of R&D (as in Koh et al. (2018)),

we go back to the familar secular behavior of the big ratios in the pre-SNA93 accounting

framework.
31 A few exceptions are Turkey, Chile, and Japan.
32 See a detailed description of the capitalization IPP implemented by the Bureau of Economic analysis

(BEA) in the U.S in Koh et al. (2018).
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The introduction of IPP as capital in national accounts poses some challenges for mea-

surement that are not present for tangible capital (i.e., structures and equipment) (Corrado

et al., 2005; McGrattan and Prescott, 2005). Indeed, although it is loable that IPP is treated

as capital in national accounts given the long-run nature of its provided services, it is unclear

what are the best assumptions behind the capitalization. First, most IPP is simply unob-

served. Even within the context of the IPP items incorporated in national accounts (which

are arguably better measured), a large part of their production (such as software or R&D) is

conducted in-house without observable transactions for their valuation and pricing. Currently

the national accounts measure this own account production based on costs (plus made-up

nonmarket markups). Second, it is not obvious how to preserve the product-income identity

in the presence of intangibles. Currently the national accounts equate rents generted from

IPP to IPP invesment expenditure and then attribute all these rents to GOS. This is not

justfied empirically. Indeed, many workers directly related to the production of intangibles

(e.g., R&D lab managers) are paid a wage below their marginal value product in exchange of

future equity in the firm (McGrattan and Prescott, 2010, 2014). We show that once we relax

the SNA08 assumption on attributing all IPP rents to capital we find that the labor share of

income, the capital-to-output ratio, and the rate of return are relatively trendless.

That the factor income share is sensitive to the distribution of IPP income has important

implications on the quantitative importance of IPP capital as well, even though it does

not alter the amount of IPP capital. For example, when IPP rents go more to labor, the

contribution of IPP would work more through labor and less through capital. With the

labor share observed in data, the contribution of IPP capital accounts for about a quarter of

Solow residual in level and growth accounting. The additional explanationatory power from

IPP capital goes down to half, however, once relaxing the extreme assumption on the rent

allocation based on the cost structure of R&D activities.
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The paper is structured as follows. In Section 3.2 we describe the capitalization of IPP in

the national accounts. In Section 3.3 we show the effects of IPP capitalization on economic

growth and the big ratios including the labor share of income, the capital-to-output ratio, and

the rate of return on capital. We conduct a development accounting exercise in Section 3.4

and a growth accounting exercise in Section 3.5. Section 3.6 concludes.

3.2 IPP Capitalization in the National Accounts

In 2009, the United Nation Statistical Commission adopted the new System of National

Accounts, SNA 2008. The most notable update in the new system is an attempt to better

measure the intangible capital in a national economy. In SNA 2008, the intangible capital

measured by the national accounts of OECD countries is labeled as intellectual property

products (IPP). IPP accounts include include R&D and artistic originals, in addition to

computer software introduced since SNA 1993. By 2016, most OECD countries have imple-

mented the new system.33 Koh et al. (2018) explain in detail this accounting change using

the US national income and product accounts.

Since most countries have implemented SNA 2008 very recently, and are still updating

data figures, we build a new dataset that combines data from individual national sources

with the OECD stats database. We construct capital series by type (i.e. tangible, IPP,

and aggregate) using the perpetual inventory method with type specific depreciation rates

obtained from the consumption of fixed capital data whenever available. For countries with

no information on the consumption of fixed capital (either directly or indirectly from capital

stock data), we use estimated depreciation rates corresponding to the level of log GDP per

capita.34 The labor share is also adjusted for self employed income using data for mixed
33 A few exceptions are Turkey, Chile, and Japan.
34 These include Spain, Mexico, and Portugal.
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income or number of self employment, whichever provides longer data. The resulting dataset

has 907 country-year observations covering 31 OECD countries for various time periods (see

our Appendix for details). In documenting the growth facts, we exclude sample with GDP

per capita less than 10,000 USD (in 2005), which is near 1940 in US, to focus on economies

that are near balanced growth path in the sense of Kaldor (1957) and Jones (2016). This

drops 37 out of 907 observations and makes no difference in our results.

Three major differences between our dataset and the Penn World Table (PWT) are

noteworthy. First and most importantly, ours has IPP capital separately whereas PWT

does not. This separation is essential for our study of the effects of IPP capitalization on

growth and the big ratios across time and space. Second, we used longer series of mixed

income or self employment data in general compared to PWT in the adjustment of labor

share. Third, we used information of time varying depreciation rates for the construction of

capital stock while PWT assumes constant depreciation rates for each capital type. These

depreciation rates have implications for the measures of the stock of capital and hence growth

and development accounting decompositions.

What does the IPP capitalization entails for the national product and income accounts?

After the revision, expenditures on IPP capital (XI) are treated as investment, and so the

identity between the national product and national income is,

Y = C +XT +XI = RK︸︷︷︸
gross operating surplus

+ WL︸︷︷︸
compensation of employees

. (3.1)

Instead, before the revision, IPP investment was treated as an expense. Because the revision

has the key accounting assumption that all IPP investment, XI , is moved to gross operating

surplus, GOS, we can summarize the result of the revision in the SNA as following. From

the national income identity, production, expenditure and income side before the revision
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can be expressed as

YPre−SNA2008 = C +XT = (RK − χXI)︸ ︷︷ ︸
gross operating surplus

+ (WL− (1− χ)XI)︸ ︷︷ ︸
compensation of employees

. (3.2)

where χ refers to the fraction of IPP expenses coming from capital owners, whereas 1− χ is

the fraction of IPP expenses from workers. That is, χ captures the distribution of IPP rents

across factors of production. The main accounting assumption behind the IPP capitalization

implemented by national statistical offices—following the SNA2008 guidelines—is that χ = 1.

McGrattan and Prescott (2010) refer to χXI and (1−χ)XI as expensed and sweat investment,

respectively. The current accounting practice under the SNA 2008 adds the entire XI to

the gross operating surplus, which implicitly assumes χ = 1. In reality, χ is not neccessarily

one as workers in R&D activities often get paid less than their marginal productivity with

a promise of future equity compensation (McGrattan and Prescott, 2010). This is relevant

as Koh et al. (2018) show that setting χ = 1 has quantitative implications for the secular

behavior of the labor share in the U.S.

3.3 The Effects of IPP Capitalization on Growth and

the Big Ratios

First discuss the effects of IPP capitalizaiton on output growth and dispersion (Section 3.3.1).

Second, we show that the decline of the accounting labor share observed in OECD countries

can be explained by the capitalization of IPP (Secction 3.3.2). The capitalizaiton of IPP is

also behind an increase in the capital-to-output ratio (Section 3.3.3) and in the rate of return

to capital (Section 3.3.4).
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Table 3.1: IPP investment at current PPP rates (Billions) in 2011

IPP inv IPP inv IPP inv IPP inv
AUS 29.8 (3.4) ESP 41.3 (3.0) ISL 0.2 (2.3) NZL 4.2 (3.3)
AUT 16.2 (5.1) EST 0.7 (2.6) ISR 9.8 (4.9) POL 10.2 (1.4)
BEL 17.1 (4.4) FIN 10.7 (6.0) ITA 53.8 (2.9) PRT 7.6 (3.2)
CAN 44.1 (3.4) FRA 117.9 (5.7) KOR 81.5 (6.1) SVK 2.5 (2.0)
CHE 24.6 (6.3) GBR 85.3 (4.3) LUX 1.2 (3.1) SVN 1.8 (3.7)
CZE 9.8 (3.8) GRC 4.8 (1.9) MEX 7.5 (0.4) SWE 25.9 (7.6)
DEU 121.9 (4.1) HUN 5.7 (3.0) NLD 33.0 (5.0) USA 783.8 (5.7)
DNK 11.7 (6.0) IRL 11.7 (6.4) NOR 9.8 (3.7)

Notes: We write in parenthesis the proportion (%) of IPP investment in value added.

3.3.1 Effects of IPP Capitalization on Output Growth and Disper-

sion

Under the new SNA (2008) the production of IPP, xI , is added to the pre-accounting measures

of value added. This procedure has been gradually implemented by OECD countries. Precisely,

the accouting change implies an increase in value added in the OECD output by 4% on

average in 2011. Table 3.1 summarizes the effects of the IPP capitalization on value added

for all our OECD countries in year 2011. The largest change occurs in the US with a value

added that increases by 783.8 billions, the lowest change is by 0.2 billions in Iceland.

The accounting increase in value added due to the capitalization of IPP in percentage

terms, γy, is captured by this ratio,

γy = log y

y − xI
, (3.3)

where y is value added xI is IPP investment, and the denominator, y − xI , captures value

added before the capitalization of IPP. We plot γy for the OECD across time (panel (a1),

Figure 3.1) and across space (panel (a2), Figure 3.1). The increasing importance of IPP
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investment across time and space is clear. Precisely, we find that γy increases from 0.9% in

1930 to 5.8% in 2014 on average in OECD countries. Across space, when a country’s GDP

per capita is near 8,000 USD (in 2005 PPP), γy is 0.7% on average. The γy increases to 5.7%

on average when the GDP per capita attains near 70,000 USD (in 2005 PPP).

Naturally, the growth rate of value added also changes with the capitalization of IPP. The

OECD value added growth rate currently averages 3.20% from 1950 to 2011, while this figure

is 3.13 with the pre-SNA93 that expenses IPP. To be precise, we plot the changes over time

for γy (:= dγy) which is the difference between the growth rate of value added corresponding

to the current accounting and the growth rate of the pre-SNA93 accounting value added for

the OECD across time (panel (b1), Figure 3.1) and across space (panel (b2), Figure 3.1).

The difference between the growth rates has no clear trend over time and space, remaining at

around 0.07% on average across time and space.

An interesting aspect of the IPP capitalization is that it increases value added proportionally

more for countries with larger IPP investment. If countries that have large IPP investments

are income-rich countries before the accounting change, then IPP capitalization can increase

the dispersion of cross-country incomes. If countries that have large IPP investments are poor

countries before the accounting chnage, then IPP capitaliation can decrease the dispersion of

cross-country incomes. In Figure 3.2, we show the difference between cross-country standard

deviation of log value added per capita before and after IPP capitalization across time. The

cross-country standard deviation of value added per capita increases for all years with the

capitalization of IPP (+ .77% on average between 1995 and 2011).
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Figure 3.1: The Effects of IPP Capitalization on Value Added, 31 OECD countries

(a) Percentage Increase in Value Added due to IPP Investment (γy)

(a1) Across Time (a2) Across Space
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(b) Increase in Value Added Growth due to IPP Investment (dγy)

(b1) Across Time (b2) Across Space
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Notes: Where γy is constructed as in equation (3.3). The average time series are based on the estimated time
fixed effects using GDP (PPP) as weight.
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Figure 3.2: The Effects of IPP Capitalization on Cross-Country Income Variation

(a) Level (b) Difference
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3.3.2 Effects of IPP Capitalization on the Accounting Labor Share

The accounting labor share is experiencing a global decline that has attracted lots of attention

(?). Figure 3.3 shows this decline across time (panel (a)) and space (panel (b)) for OECD

countries. The accounting labor share is defined as

LS = 1− GOS

Y
.

where GOS is gross operating surplus and Y is gross domestic income.

To measure the effects of the capitalization of IPP on the accounting LS, we follow the

strategy in Koh et al. (2018) by constructing a counterfactual pre-SNA93 accounting LS in

which IPP items are expensed as opposed to capitalized,

LSPre−SNA93 = 1− GOS −XI

Y −XI

,
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where XI is investment in IPP. Because Y > GOS, IPP capitalization unambiguously reduces

labor share. Moreover, the revision can generate a declining trend for the labor share if the

IPP investment is growing faster than value added which it does.

Figure 3.3 depicts accounting LS under the current SNA2008 scenario where IPP is

capitalized and the pre-SNA1993 scenario where IPP is expensed. The time path of OECD

labor share is obtained by the year fixed effects weighted by the dollor output as time

coverages are different by countries35 Both graphs show that the accounting LS declines in

OECD countries across time and space under the current SNA2008, but the trend vanishes

when IPP is expensed, i.e., under the pre-SNA2008 scenario. That is, the decline of the

accounting LS is fully explained by the capitalization of IPP.

Figure 3.3: Effects of IPP Capitalization on Labor Share, 31 OECD Countries

(a) Across Time (b) Across Space
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The current accouting assumes that the IPP investment from the national product side is

entirely attributed to GOS in national income (i.e. χ = 1), see Section 3.2. This assumes
35 We estimate LSi,t = ci + βtt+ εi,t and then plot β̂t where its 1950 value is normalized to the weighted

average of 1950 labor share.
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Figure 3.4: Labor Share in R&D Based on Cost Structure, 31 OECD Countries
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that the workers do not fund the R&D activities. However, it is widely happening in the

R&D activities that workers get paid less than their contribution (marginal productivity)

for a promise of future compensation such as stock options. We argue that this should be

understood as evidence of χ < 1. That is, workers also fund R&D investment, and their

contribution should be understood as labor income, not capital income.

However, estimating χ is not a trivial matter as it requires a detailed micro-level information

on the R&D activities. For now, we use the information based on the cost structure of R&D

to examine the value of χ different from one. Specifically, we set χ = 1 − LSR&D, where

1 − LSR&D is a fraction of capital expenses in total cost of R&D, obtained from OECD

statistics database. Figure 3.4 confirms that LSR&D is clearly different from 0, and has a

slightly increasing trend over the development path (log GDP per capita). For example, for

the US it raises from roughly 45% to 65% over the past 20 years.
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Figure 3.5: Labor Share with alternative distributions of IPP rents, χ’s

(a) Across Time (b) Across Space
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χ=1 χ=1−LSR&D χ=0

With our proxy for χ based on the cost structure of R&D, we compute an alternative

labor share as following.36

LSχ=1−LSR&D
= 1− GOS − (1− χ)XI

Y
.

We find that the role of χ is critical in understanding labor share decline. In particular,

the decline of the labor share vanishes when relaxing the assumption that all the rents on

IPP investment go to capital (χ = 1). For our estimate of χ based on the cost structure of

R&D activities labor share is trendless across time (panel (a), Figure 3.5) and space (panel

(a), Figure 3.5). These findings extend to the OECD countries the accounting results in Koh

et al. (2018) for the U.S.
36 More precisely, we also adjust for the mixed income in computing labor share with any values for χ.

That is, the labor share is LS = [CE + (1 − χ)XI × (Y −MI)/Y ]/(Y −MI) where MI is mixed income
(mainly proprietors’ income).
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Figure 3.6: Effects of IPP Capitalization on the Capital to Output Ratio, 31 OECD Countries

(a) Across Time (b) Across Space
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(c) Tangible Capital to Output Ratio (d) IPP Capital to Output Ratio
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3.3.3 Effects of IPP Capitalization on the Capital-to-Output Ratio

We plot the aggregate capital to output ratio with the current SNA08 and pre-SNA93 where

all IPP was expensed. To replicate the pre-SNA93 scenario we compute the capital to output

ratio as KT

Y−XI
where KT is tangible capital and we remove investment in IPP from output in

the denominator. It is clear that the capital to output ratio that incorporates IPP capital
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grows over time, while the capital to output ratio of the pre-IPP capitalization accounting is

relatively trendless and consistent with the Kaldor facts (panel (a), Figure 3.6). Similarly, the

capital to output ratio across space is larger when IPP is capitalized (panel (b), Figure 3.6).

Although in this case we find relatively trendless capital-to-ouptut ratios across space in both

scenarios, with and wihout IPP capitalization.

We decompose the sources behind the increase in the aggregate capital to output ratio.

We compare the ratio of tangible capital KT to output Y (panel (c), Figure 3.6) and the

ratio of IPP capital KI to output Y (panel (d), Figure 3.6). It is clear that it is the increase

in the ratio of IPP capital to output over time that generates the increase in the aggregate

capital to output ratio. Instead, the ratio of tangible capital to output decreases over time.

But is IPP capital accurately measured? A very important caveat of these findings is

that the construction of the series of capital is based on the perpetuary inventory method

(consistent with the procedure followed in the fixed asset tables of the national accounts)

and this requires measures of unobserved IPP prices and unobserved IPP depreciation rates.

National accounts capitalize structures and equipment, as well as IPP, using separate laws

of motion for capital to obtain the series for KT and KI (see the appendix for the details).

Therefore, the construction of the capital stock series implies that we need to use data on

IPP prices and IPP depreciation rates which are unobservable and, we argue, subject to

questionable assumptions in their construction. Precisely, in the US, the BEA does not

provide an accounting measure of IPP depreciation but an economic one (Koh et al., 2018).

To estimate R&D depreciation—aimed at capturing obsolescence and competion which are

not directly observable—the BEA uses an economic model that maximizes profits over R&D

choices with ad-hoc assumptions on the effect of R&D on profits (Li and Hall, 2016). Hence,

treating the BEA IPP depreciation as measurement is only logically consistent with theory

that complies with the BEA economic model that estimates IPP depreciation. In addition,
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the estimation of IPP depreciation requires IPP prices that we do not observe because

there are no transactions of in-house production of intangibles and because R&D projects

are heterogeneous in nature. Because we simply do not observe transactions of in-house

production, the estimates of IPP prices for in-house production are hard to measure. A useful

approach to estimate intangible capital that is unobservable is introduced in McGrattan and

Prescott (2010). Instead, the BEA uses an input cost index as a proxy for the R&D output

price change. However, an input cost index does not capture the impact of productivity

change on real R&D output. Argumenting that R&D increases aggregate productivity, the

BEA uses the economy-wide measure of multifactor productivity (MFP) from the BLS to

proxy for unobserved R&D productivity and subtracts the growth rate of MFP from the input

cost index (Crawford et al., 2014). Again, this is breeding ground for logical inconsistencies

between theory and measurement if theory does not comply with the MFP from the BLS.

3.3.4 Effects of IPP Capitalization on the Rate of Return

The rate of return under the current system of national accounts is plotted across time and

space in Figure 3.7. We find an increasing pattern for the rate of return in both cases. Instead,

using the pre-SNA1993 accounting we go back to the standard Kaldor facts that deliver a

rate of return that is relatively constant across time and space, see Figure 3.7.

Now we turn to an investigation of the quantitative importance of the IPP capital by level

and growth accounting exercises in the following sections.
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Figure 3.7: Effects of IPP Capitalization on the Rate of Return to Capital, 31 OECD
Countries

(a) Across Time (b) Across Space
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3.4 Development Accounting with IPP Capital

We first focus on the standard production function approach to level (or development)

accounting. Second, we look at the product side (i.e., expenditures) of the national product.

3.4.1 Production Function Approach

We conduct a standard development accounting exercise with the introduction of IPP capital

in national accounts. Consider the following constant returns to scale (CRS) production

function,

yj,t = aj,tk
θI,j,t
I,j,t k

θT,j,t

T,j,t h
θh,j,t
j,t (3.4)

where yj,t is output for country j in period t. The factor inputs of production are tangible

capital, kT,j,t, IPP capital, kI,j,t, and labor in efficiency units, hj,t. Each of these factors of
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Table 3.2: Cross-Country Differences in Output per Capita: Value Added and the Importance
of IPP Measured by National Accounts

(a) With χ = 1 (SNA, 2008)
1996 1999 2002 2005 2008 2011

Measure (A):
Success 0.42 0.45 0.44 0.48 0.54 0.53
Success without IPP 0.32 0.34 0.32 0.36 0.41 0.40
Difference 0.10 0.11 0.12 0.12 0.13 0.13

Measure (B):
Success 0.54 0.54 0.53 0.59 0.63 0.61
Success without IPP 0.41 0.41 0.38 0.45 0.48 0.45
Difference 0.13 0.13 0.15 0.14 0.15 0.16

(b) With χ = 1− LSR&D

1996 1999 2002 2005 2008 2011
Measure (A):

Success 0.37 0.39 0.38 0.42 0.47 0.46
Success without IPP 0.33 0.34 0.32 0.37 0.41 0.40
Difference 0.04 0.05 0.06 0.05 0.06 0.06

Measure (B):
Success 0.50 0.50 0.48 0.55 0.58 0.56
Success without IPP 0.43 0.43 0.41 0.48 0.51 0.49
Difference 0.06 0.07 0.07 0.07 0.07 0.07

Notes: Success measure is fraction of variance explained by factor inputs. IPP explanation refers difference
between success measure with IPP and without IPP out of output variation unexplained by traditional factors.

production contribute to output according to their respective coefficients θ, where θI,j,t +

θT,j,t + θh,j,t = 1.

We assume competitive markets which together with CRS technology implies that the

coefficients θ are the factor shares of income. In terms of measurement, we compute each of
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these shares as:

θh,j,t =
whj,t + (1− χj,t)xI,j,t

yj,t
, (3.5)

θI,j,t =
χj,txI,j,t
Yk,t

, (3.6)

θT,j,t =
yj,t − whj,t − xI,j,t

yj,t
= 1− θI,j,t − θh,j,t, (3.7)

Again, consistently with the current system of national accounts (SNA, 2008) we use the

accounting assumption that χj,t = 1 ∀j, t. We parallelly examine the implications of this

assumption by using the cost structure of R&D (χj,t = 1 − LSR&D,j,t). Detailed data

construction procedure for the level accounting is described in the appendix. Note that if

xI = 0, then we are back to the previous accounting (SNA 1993 where IPP capital was not

capitalized). If xI > 0 and χ = 1, then we are in the current system of national accounts

(SNA, 2008).

The quantitative assessment of the importance of the IPP capital in accounting for the

cross-country differences in output, we need measures of IPP capital. National accounts

for each country provides these measures constructed using the perpetual inventory method

given series for IPP investment, IPP prices and IPP depreciation rates. As we discussed

earlier, these series of capital are subject to substantial mismeasurement and are in large part

of the result of accounting assumptions behind the series of IPP investment, IPP prices and

IPP depreciation rates. For now, we take these series as given.
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To see the impact of IPP on the cross-country per capita income differences we write

production (3.4) for each period t in logs as,

log(yj,t) = log(aj,t + θI,j,t log(kI,j,t) + θT,j,t log(kT,j,t) + θh,j,t log(hj,t)︸ ︷︷ ︸
log(q−I,j,t)︸ ︷︷ ︸

log(qj,t)

.

where qj,t = k
θI,j,t
I,j,t k

θT,j,t

T,j,t h
θh,j,t
j,t captures the set of observable factor inputs in the national

accounts and q−I,j,t = k
θT,j,t

T,j,t h
θh,j,t
j,t excludes IPP capital. To see the impact of IPP on the

cross-country per capita income differences we compare measures of accounting success with

and without IPP capital. Our two measures of accounting success follow Caselli (2005). First,

we define,

Success A =
var(log qj,t)
var(log yi,t)

Success A, without IPP =
var(log q−I,j,t)

var(log yi,t)

Because total factor productivity potentially comoves with the observable factor inputs we

also use the following alternative measure of success:

Success B =
var(log qj,t) + cov(log qj,t,log aj,t)

var(log yi,t)

Success B, without IPP =
var(log q−I,j,t) + cov(log q−I,j,t,log aj,t)

var(log yi,t)

Table 3.2 shows the results. With IPP capital, the success measure (A) increases by 10%

in 1996, from 32 to 42%, and by 13% in 2011, from 40 to 53% (see panel (a) in Table 3.2).

We find a similar increasing pattern of the contribution of IPP capital to cross-country per

capita income differences over time using success measure (B). Precisely, we find that IPP

capital increases success measure (B) by 13% in 1996, from 41 to 54%, and by 16% in 2011,

from 45 to 61%. However, the results change with the value of χ, which can be easily seen
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Table 3.3: Decomposition of the output variance in 2011

IPP related h related k related
var(kI) cov(kI , h) cov(kI , k) var(h) cov(h, kT ) var(kT )

χ = 1 (SNA08) 9.5 6.6 35.5 37.3 6.6 233.9
χ = 1− LSR&D 2.0 3.1 16.2 40.1 6.9 233.9
Difference -7.5 -3.5 -19.3 +2.7 +0.2 +0.0

Table 3.4: Additional fraction explained by IPP capital in 2011

δI δI = 0 δI = δT
χ = 1 (SNA08) 0.22 0.20 0.23
χ = 1− LSR&D 0.10 0.08 0.10

from equation (3.5) to (3.7). Even though χ does not alter the level of IPP capital, it changes

factor shares. Indeed, the additional explanation from the IPP capitalization goes down to

less than a hal, when relaxing the extreme assumption that χ = 1 to χj,t = 1 − LSR&D,j,t,

see panel (b) in Table 3.2.

Why does the explanation decrease with χ < 1? The reduction in χ essentially lowers

the IPP capital share with higher labor share. When the labor’s contribution becomes

more important, our understanding on cross country income differences gets smaller. This

is because the variation in human capital is less useful for the understanding of the cross

country income disparities than that of capital, at least for the human capital measured by

the average years of schooling a la Barro-Lee in the PWT. Yet the precise measurement on

human capital has not reached consensus (Schoellman and Hendricks, 2017, and references

therein).

Note that the IPP rents going to labor makes workers’ compensation higher but not their

human capital better. When a country increases IPP investment, its additional contribution

works through both labor and capital. The indirect channel working through additional
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compensation to labor explains less for the increase in output, as long as the level of human

capital remains same. Therefore, it would be important to distinguish wage and human

capital in the level accounting exercise, which is consistent with the point made in Caselli

and Ciccone (2017) or Schoellman and Hendricks (2017).

To see how much the explanation coming from the variation in human capital is small

using the Barro-Lee measures of human capital from the PWT, we decompose the variance

of output as following:

var(log y) = var(log a) + 2[cov(a, θh logh) + cov(a, θI log kI) + cov(a, θT log kT )]︸ ︷︷ ︸
TFP related

+ var(θh logh) + cov(θh logh, θI log kI) + cov(θh logh, θT log kT )︸ ︷︷ ︸
Human capital related

+ var(θI log kI) + cov(θh logh, θI log kI) + cov(θI log kI , θT log kT )]︸ ︷︷ ︸
IPP capital related

+ var(θT log kT ) + cov(θh logh, θT log kT ) + cov(θI log kI , θT log kT )]︸ ︷︷ ︸
Tangible capital related

Table 3.3 shows the decomposition result, which confirms that the larger success from

IPP and smaller success from human capital under the current accounting (χ = 1). The

magnitude of additional explanation from IPP capital is larger than that of human capital,

resulting in larger overall success in the case with χ = 1.

Another parameter to consider a variation is the depreciation of IPP capital (δI). In the

accounting of IPP capital, the depreciation of IPP capital is higher than that of traditional

capital. Different values for the depreciation may also change the level accounting results,

as it alters the amount of IPP capital accumulated in the national economy. We examine

the sensitivity of the level accounting to various depreciation rates; benchmark depreciation
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rate (δI = δ̂I), no depreciation (δI = 0), and depreciation rate of traditional capital (δI = δ̂T ).

Contrary to the case of χ, changes in δI do not affect the results of level accounting much

(see table 3.4).

3.4.2 Level Accounting from the Product Side of National Ac-

counts

Because the production of IPP is equated to IPP investment in national accounts, an

alternative approach to document the role of IPP in explaining cross-country differences in

output per capita is conducting the analysis from the product side of the accounts, i.e.,

y = c+ xI + xT + g (3.8)

where c is private consumption, xI is investment in IPP, xT is investment in tangible assets,

and g is government expenditure.

The level accounting from the product side of the accounts is interesting because it does

not rely on measures of IPP capital (which requires measures of IPP prices and depreciation).

At the same time it does not require mesaures of the factor share. Because the product

side is additive (3.8), we can directly measure the contribution of its components to the

cross-country variation in the level output. For example, to study the role of IPP investment

we compute,

var(xI,j,t) + cov(xI,j,t, yj,t − xI,j,t)

var(yj,t)
. (3.9)

Note that because we do not take logs the variance of output across countries depends on

its average. This is however irrelevant for our analysis as we are interested in the percentual
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Table 3.5: Cross-Country Differences in Output per Worker: Contribution of IPP from the
Product Side of National Accounts (%)

1996 1999 2002 2005 2008 2011
Eq (3.9) (investment PPP) 4.0 4.5 4.7 4.6 5.2 6.4
Eq (3.9) (GDP PPP) 3.7 4.4 4.8 4.5 4.9 5.6

Notes: We use the decomposition in (3.9)

contribution of each of the components in the product side of the accounts (3.8) to output

variation.

A difficulty is that the product components do not add up to the value added (y) when

considering the price dispersion across countries. For example, we convert the unit of each

product component into USD using the PPP rates that are different across items in the

previous subsection. Therefore, we consider two different cases, one with xI converted by

investment PPP rate (as in the previous subsection) and another with xI converted by GDP

PPP rate.

Our results are in Table 3.5. We find that IPP investment explains about 4.8% of GDP

variation on average. When using investment PPP, its explanation increases, but the difference

is not significant. Because national accounts equate IPP investment to IPP income, we can

use this result from the product side of the national accounts to validate the value of χ

on the income side of the accounts. In this direction, we note that our results for the IPP

contribution to cross-country income per capita differences is much more similar to the our

preferred case with χ = 1− LSR&D (4.3% on average) than the SNA08 assumption of χ = 1

(8.9% on average). This suggests a value close to our choice χ = 1− LSR&D is preferred.
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3.5 Growth Accounting with IPP capital

In this section, we do growth accounting exercise. Many studies have attempted to account

for the importance of innovational activities in economic growth. Related, Corrado et al.

(2005, 2009) extend the standard growth accounting to incorporate a precisely measured

innovation-related capital. The main difference with respect to Corrado et al. (2005, 2009) is

that we focus on the implication of income allocation of the R&D activities (i.e. χ) in the

growth accounting.

Note that under the assumption of constant return to scale and competitive market,

growth accounting exercise is insensitive to exact form of production function. Specifically,

given any constant return to scale production function y = af(kI , kT , h), we have

dy

y
= θT

dkT
kT

+ θI
dkI
kI

+ θh
dh

h
+
da

a
,

where y, kT , kI , h, and a are output per employment, traditional capital per employment, IPP

capital per employment, average human capital, and total factor productivity, respectively.

The θf ’s are the income share of factor input f .

Hence, the TFP growth from year s to year u can be approximated by

log(au/as) = log(yu/ys)− θ̄T log(kT,u/kT,s)− θ̄I log(kI,u/kI,s)− θ̄h log(hu/hs), (3.10)

where θ̄ is average factor share between s and u, y is GDP per worker, kT is traditional

capital per worker, kI is IPP capital per worker, and h is average human capital (measured

by the years of schooling). Decomposition of growth of output from a specific time period s

to u is straightforwad by summing up each of four components. Similar to section 3.4, we
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Table 3.6: IPP explanation for growth (log(zu/zs)/[log(zu/zs)+ log(au/as)]) : OECD average

δI δI = 0 δI = δT
χ = 1 (SNA08) 0.25 0.55 0.49
χ = 1− LSR&D 0.12 0.26 0.23

define the additional IPP explanation as log(kI,u/kI,s)/[log(kI,u/kI,s) + log(au/as)] and do

the growth accounting exercise with various χ’s and δI ’s.

Table 3.6 shows the summarized results with detailed results in table C4 and C5 in

appendix C.2. On average, IPP capital contributes around 9% of output growth, which is

slightly less than one half of the TFP (22%). This means that the additional IPP explanation

is 25% under the benchmark χ (= 1) and δI . Again, the additional explanation from the IPP

capital goes down to 12% with χ = 1− LSR&D < 1, which is less than half of the case with

χ = 1. The reason is similar to the case with level accounting: average human capital grows

less than IPP capital itself.

Of course, the IPP growth increases when the depreciation rate is lower. For example,

with no depreciation in IPP capital (δI = 0), the IPP’s explanation goes up to even higher

than that of TFP (IPP explanation of 55%). But the fraction explained by IPP capital

again is reduced to a half when relaxing the assumption on the distribution of IPP rent (i.e.,

χ = 1 → χ̂).

3.6 Conclusion

We document the rise of intellectual property products (IPP) captured by up-to-date national

accounts in 31 OECD countries. These countries gradually adopt the new system of national

accounts (SNA2008) that capitalizes IPP—which was previously treated as an intermediate

expense in the pre-SNA1993 accounting framework. We examine how the capitalization of
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IPP affects stylzed growth facts and the big ratios (Kaldor, 1957; Jones, 2016). We find that

the capitalization of IPP generates (a) a decline of the accounting labor share, (b) an increase

in the capital-to-output ratio across time, and (c) an increase in the rate of return to capital

across time. The key accounting assumption behind the IPP capitalization implemented by

national accounts is that the share of IPP rents that are attributed to capital, χ, is equal

to one. That is, national accounts assume that IPP rents are entirely owed to capital. We

argue that this assumption is arbitrary and extreme. More reasonable assumptions about

the split of IPP rents between capital and labor—for example, based on the cost structure of

R&D—generate a secularly trendless labor share, a constant capital-to-output ratio, and a

constant rate of return across time. We discuss the implications of these new measures of IPP

capital—conditional on χ—for cross-country income per capita differences using standard

development and growth accounting exercises.
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Appendix A

Appendix to Chapter 1

A.1 Use of Equipment and Software by Occupation

The capital use by occupation data is constructed by combining BEA NIPA and O*NET Tools

and Technology Database. In NIPA table 5.5, the investment on non-residential equipment

are categorized by 25 types. In UNSPSC, the classification system used in O*NET Tools and

Technology database, there are 4,300 commodities, which are in 825 classes, in 173 families,

and in 36 segments.

To construct a mapping between two, we firstly assign one of NIPA investment types

to the relevant segment in UNSPSC. Often, it is apparent that a segment includes several

types of equipment investment in NIPA. In this case, we use the family categories in the

assignment procedure. Again, if a family apparently includes several types in NIPA, we use

classes. Through this procedure, we could make a rough concordance between a subset of

UNSPSC and the types of equipment investment in NIPA. The constructed concordance is

shown in table A1.
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Next, we assume that two tools have same price if they are classified in the same cate-

gory. For example, the “metal cutting machines” in UNSPSC is assigned to “metalworking

machinery” in NIPA investment type. The value of using the metal cutting machines are

then the amount of investment in metalworking machinery divided by total use of all the

commodities in the metalworking machinery category, where the total use of all the tools

in the metalworking machinery is defined as sum of a number of total employment of each

occupation times a number of UNSPSC commodities assigned to the metalworking machinery

that each occupation uses.

The method is assuming that the number of tools above well represent the value of

them, only within the NIPA investment category. Across the NIPA investment categories,

each number of tools used would get different weights, according to the average amount of

investment given to each tool. The procedure may make a big difference from average number

of tools if a category with many commodities had small values compared to a category with

few commodities. However, as more differentiated categories are usually advanced (and hence

have expensive items), we expect not much difference from the adjustment.
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Table A1: Concordance between NIPA equipment investment types and UNSPSC

NIPA UNSPSC

Line Title Code Title

3 Information processing equipment
4 Computers and peripheral

equipement
43210000 Computer Equipment and Accessories

5 Communication equipment 43190000, 45110000 Communications Devices and Accessories, Audio and visual pre-
sentation and composing equipment

6 Medical equipment and in-
struments

42000000 Medical Equipment and Accessories and Supplies

9 Nonmedical instruments 41000000 Laboratory and Measuring and Observing and Testing Equip-
ment

10 Photocopy and related
equipment

45100000, 45120000 Printing and publishing equipment, Photographic or filming or
video equipment

11 Office and accounting equip-
ment

44100000, 31240000 Office machines and their supplies and accessories, Industrial
optics

12 Industrial equipment
13 Fabricated metal products 27000000, 31150000,

31160000, 31170000,
40140000, 40170000

Tools and General Machinery, Rope and chain and cable and
wire and strap, Hardware, Bearings and bushings and wheels
and gears, Fluid and gas distribution, Pipe piping and pipe fit-
tings

14 Engines and turbines 26101500, 26101700 Engines, Engine components and accessories
17 Metalworking machinery 23240000, 23250000,

23260000, 23270000,
23280000

Metal cutting machinery and accessories, Metal forming machin-
ery and accessories, Rapid prototyping machinery and acces-
sories, Welding and soldering and brazing machinery and acces-
sories and supplies, Metal treatment machinery

18 + 19 Special industry machinery,
n.e.c. + General indus-
trial, including materials
handling, equipment

23100000, 23110000,
23120000, 23130000,
23140000, 23150000,
23160000, 23180000,
23190000, 23200000,
23210000, 23220000,
23230000, 23290000,
24100000, 24110000,
31140000, 40000000

Raw materials processing machinery, Petroleum processing ma-
chinery, Textile and fabric machinery and accessories, Lapidary
machinery and equipment, Leatherworking repairing machin-
ery and equipment, Industrial process machinery and equip-
ment and supplies, Foundry machines and equipment and sup-
plies, Industrial food and beverage equipment, Mixers and their
parts and accessories, Mass transfer equipment, Electronic man-
ufacturing machinery and equipment and accessories, Chicken
processing machinery and equipment, Sawmilling and lumber
processing machinery and equipment, Industrial machine tools,
Material handling machinery and equipment, Containers and
storage, Moldings, Distribution and Conditioning Systems and
Equipment and Components

20 + 41 Electrical transmission, dis-
tribution, and industrial ap-
paratus + Electrical equip-
ment, n.e.c.

26101100, 26101200,
26101300, 26110000,
26120000, 26130000,
26140000, 39000000

Electric alternating current AC motors, Electric direct current
DC motors, Non electric motors, Batteries and generators and
kinetic power transmission, Electrical wire and cable and har-
ness, Power generation, Atomic and nuclear energy machinery
and equipment, Electrical Systems and Lighting and Compo-
nents and Accessories and Supplies

21 Transportation equipment
22 + 25 Trucks, buses, and truck

trailers + Autos
25100000 Motor vehicles

26 Aircraft 25130000 Aircraft
27 Ships and boats 25110000 Marine transport
28 Railroad equipment 25120000 Railway and tramway machinery and equipment

29 Other equipment
30 Furniture and fixtures 56000000 Furniture and Furnishings
33 Agricultural machinery 21000000 Farming and Fishing and Forestry and Wildlife Machinery and

Accessories
36 Construction machinery 22000000 Building and Construction Machinery and Accessories
39 Mining and oilfield machin-

ery
20000000 Mining and Well Drilling Machinery and Accessories

40 Service industry machinery 48000000 Service Industry Machinery and Equipment and Supplies
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A.2 Discrete Approximation of the Model

This section discusses equilibrium conditions with discrete approximation of the model. For

the approximation, assumption 1 and 4 are replaced by assumption 5 and 6 in section 1.3

and 1.4.

The task production is given by equation (1.19) with tasks discretized into j = 0, 1, · · · , J .

Now the tasks are discrete, so workers are sorted into each task according to cutoff level of

human capital ĥj. More preciesely, we have a sequence of human capital {ĥj}j=0,··· ,J+1 such

that a worker with h ∈ [ĥj, ĥj+1) are sorted into task j with ĥ0 = h and ĥJ+1 = h̄.

For a worker with exactly the threshold level of human capital should be indifferent

between tasks so that

ωjb(ĥj, j) = ωj−1b(ĥj, j − 1), for all j, for , j = 1, · · · , J (A.2.1)

replacing the original equilibrium condition (1.9).

The task production is solving

max pjTj −
∫
h

w(h)l(h)dh−
∫ Ne

k=0

pe(k)e(k)dk −
∫ Ns

k=0

ps(k)s(k)dk,

which gives the FOCs,

w(h) = ωjb(h, j) = pjT
1
σs
j H

1
σe

− 1
σs

j

(∫ ĥj+1

ĥj

b(h, j)µ(h)dh

)− 1
σe

b(h, j),

1

Aeνe
= pjT

1
σs
j H

1
σe

− 1
σs

j (Ne)
σe−1
σeνe

−1e
− 1

σe
j ,

1

Asνs
= pjT

1
σs
j (Ns)

σs−1
σsνs

−1s
− 1

σs
j ,

[129]



using the fact that pe = 1/(Aeνe), ps = 1/(Asνs), ej(k) = ej, and sj(k) = sj in equilibrium,

and Hj :=
[
αh,j(

∫ ĥj+1

ĥj
b(h, j)µ(h)dh)

σe−1
σe + αe,j(

∫ Ne

k=0
e(k)νedk)

σe−1
σeνe

] σe
σe−1 .

Combining the FOCs, we get

pj =

[(
ασe
h,jω

1−σe
j + ασe

e,j (νeAeN
ϕe
e )σe−1) 1−σs

1−σe + ασs
s,j (νsAsN

ϕs
s )σs−1

] 1
1−σs

, for j = 0, · · · , J

(A.2.2)

which replaces equation (1.11).

The demand for each task is from

maxY −
∑
j

pjTj,

which gives

pj =

(
γjY

Tj

) 1
ε

.

Combining this with FOCs, we obtain

pε−σs
j =

γjα
σs
h,j

(
ασe
h,jω

1−σe
j + ασe

e,j (νeAeN
ϕe
e )σe−1)σe−σs

1−σe Y

ωσe
j

∫ ĥj+1

ĥj
b(h, j)µ(h)dh

, for j = 0, · · · , J, (A.2.3)

replacing equation (1.10).

Now the equilibrium thresholds ĥj ’s, wage rate ωj ’s and prices pj ’s are obtained by solving

equation (A.2.1) to (A.2.3), which are 3J + 1 equations with the same number of unknowns.
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A.3 Proof

Proof of lemma 2 Since assignment function ĥ(τ) is strictly increasing, its inverse τ̂(h)

is well-defined. From the demand for task, equation (1.7), we know that there will be strictly

positive task output T (τ) > 0 (and hence l(h, τ̂(h)) > 0) for all τ ∈ [0, τ̄ ]. The equation (1.8)

and lemma 1 then implies

w(h) = ω(τ̂(h))b(h, τ̂(h)) ≥ ω(τ̂(h′))b(h, τ̂(h′)), and

w(h′) = ω(τ̂(h′))b(h′, τ̂(h′)) ≥ ω(τ̂(h))b(h′, τ̂(h)).

Combining these two inequalities, we have

b(h, τ̂(h′))

b(h, τ̂(h))
≤ ω(τ̂(h))

ω(τ̂(h′))
≤ b(h′, τ̂(h′))

b(h′, τ̂(h))

Let τ = τ̂(h) and τ ′ = τ̂(h′). Since τ̂ has an inverse function ĥ, above inequality is equivalent

to
b(ĥ(τ), τ ′)

b(ĥ(τ), τ)
≤ ω(τ)

ω(τ ′)
≤ b(ĥ(τ ′), τ ′)

b(ĥ(τ ′), τ)

By taking log on both sides and dividing by τ ′ − τ ,

log b(ĥ(τ), τ ′)− log b(ĥ(τ), τ)
τ ′ − τ

≤ −(logω(τ ′)− logω(τ))
τ ′ − τ

≤ log b(ĥ(τ ′), τ ′)− log b(ĥ(τ ′), τ)
τ ′ − τ

As τ ′ − τ → 0, we have
d logω(τ)

dτ
= −∂ log b(ĥ(τ), τ)

∂τ
,

which is the equation (1.9).
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Now consider the task production. For notational convenience, we introduce

H(h, τ) =

[
αh(τ)(b(h, τ)l(h))

σe−1
σe + αe(τ)

(∫ Ne

0

e(k, τ)νedk

)σe−1
σeνe

] σe
σe−1

From

max p(τ)T (τ)−
∫
h

w(h)l(h, τ)dh−
∫ Ns

0

ps(k)s(k, τ)dk −
∫ Ne

0

pe(k)e(k, τ)dk,

we have the following first order conditions:

w(h) ≥ αh(τ)p(τ)T (τ)
1
σsH(h, τ)

σs−σe
σeσs l(h)−

1
σe b(h, τ), (A.3.1)

pe(k) = αe(τ)p(τ)T (τ)
1
σsH(h, τ)

σs−σe
σeσs

(∫ Ne

0

e(k, τ)νe
)σe−1−νeσe

νeσe

e(k, τ)νe−1, (A.3.2)

ps(k) = αs(τ)p(τ)T (τ)
1
σs

∫ Ns

0

s(k, τ)νsdk

σs−1−νsσs
νsσs

s(k, τ)νs−1, (A.3.3)

In equipment- and software-producing sector, we solve

max pe(k)e(k)− e(k)/Ae, max ps(k)s(k)− s(k)/As

subject to (A.3.2) and (A.3.3). The solution gives

pe = 1/(νeAe), ps = 1/(νsAs) for all k. (A.3.4)

Substituting (A.3.4) into the FOCs, we get

p(τ) =

[{
αh(τ)

σeω(τ)1−σe + αe(τ)
σe (νeAeN

ϕe
e )σe−1} 1−σs

1−σe + αs(τ)
σs (νsAsN

ϕs
s )σs−1

] 1
1−σs

,
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by combining the FOCs, which is the equation (1.11).

Again from equation (A.3.1) to (A.3.3), the task production T (τ) can be expressed by

T (τ) = p(τ)−σsω(τ)σeαh(τ)
−σe
(
αh(τ)

σeω(τ)1−σe + αe(τ)
σe (νeAeN

ϕe
e )σe−1)σs−σe

1−σe

∫
h

b(h, τ)l(h, τ)dh

(A.3.5)

From the labor market clearing condition and lemma 1, we have

l(h, τ) = µ(h)δ[τ − τ̂(h)],

where δ is a Dirac delta function. Then we have

∫
h

b(h, τ)l(h, τ)dh =

∫
τ ′
b(ĥ(τ ′), τ)µ(ĥ(τ))δ[τ − τ ′]ĥ′(τ ′)dτ ′ = b(ĥ(τ), τ)µ(ĥ(τ))ĥ′(τ).

Combining this with equation (1.7) and (A.3.5), we have

ĥ′(τ) =
γ(τ)p(τ)σs−εαh(τ)

σs
(
αh(τ)

σeω(τ)1−σe + αe(τ)
σe (νeAeN

ϕe
e )σe−1)σe−σs

1−σe Y

ω(τ)σeb(ĥ(τ), τ)µ(ĥ(τ))
,

which is the equation (1.10).

Proof of lemma 3 In steady state, if it exists, r = πs/ηs = πe/ηe = ρ from the Euler

equation (1.17). Then Ẋ/X = 0 for X = C, E, S, Ne, and Ns follow from usual argument.

What we need to show is that there exist Ns and Ne that satisfy πs/ηs = πe/ηe = ρ.

We start with the following lemma.
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Lemma 4 Fix p(τ) and ĥ(τ). There exists a pair (νs, νe) ∈ (0, 1)× (0, 1) such that s(τ) is

strictly decreasing in Ns and e(τ) is strictly decreasing in Ne.

Proof Combining equation (A.3.1) to (A.3.3) (FOCs), we have

s(τ) = N−1
s Nϕs(σs−1)

s (νsAs)
σs αs(τ)

σsαh(τ)
− σe

1−σe b(ĥ(τ), τ)µ(ĥ(τ))ĥ′(τ)

×
[(
p(τ)1−σs − αs(τ)

σs (νsAsN
ϕs
s )σs−1) 1−σe

1−σs − αe(τ)
σe (νeAe(Nsnes)

ϕe)σe−1

] σe
1−σe

×
(
p(τ)1−σs − αs(τ)

σs (νsAsN
ϕs
s )σs−1)σs−σe

1−σs , (A.3.6)

and

e(τ) = N−1
e Nϕe(σe−1)

e (νeAe)
σe αe(τ)

σeαh(τ)
− σe

1−σe b(ĥ(τ), τ)µ(ĥ(τ))ĥ′(τ)

×
[(
p(τ)1−σs − αs(τ)

σs (νsAs(Ne/nes)
ϕs)σs−1) 1−σe

1−σs − αe(τ)
σe (νeAeN

ϕe
e )σe−1

] σe
1−σe

, (A.3.7)

where nes := Ne/Ns.

From equation (A.3.6) and (A.3.7), we can express

∂ log s(τ)
∂Ns

= − 1

Ns

+ s1(τ ;ϕs), (A.3.8)

∂ log e(τ)
∂Ne

= − 1

Ne

+ e1(τ ;ϕe), (A.3.9)

and it’s straightforward to check that limϕs↓0 |s1(τ ;ϕs)| = 0, limϕe↓0 |e1(τ ;ϕe)| = 0, and

∂s1/∂ϕs > 0, ∂e1/∂ϕe > 0. This implies that there should be 0 < νs < 1 and 0 < νe < 1

which make s(τ) strictly decreasing in Ns and e(τ) strictly decreasing in Ne.
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Lemma 5 Fix p(τ) and ĥ(τ). With νe and νs close to one, we have the following:

lim
Ns→0

s(τ) = ∞, lim
Ne→0

e(τ) = ∞, lim
Ns→∞

s(τ) = 0, lim
Ne→∞

e(τ) = 0.

Proof By substituting νe = 1 and νs = 1 (and hence ϕe =
1−νe
νe

= 0 and ϕs =
1−νs
νs

= 0) into

equation (A.3.6) and (A.3.7), we have

s(τ) = N−1
s (νsAs)

σs αs(τ)
σsαh(τ)

− σe
1−σe b(ĥ(τ), τ)µ(ĥ(τ))ĥ′(τ)

×
[(
p(τ)1−σs − αs(τ)

σs (νsAs)
σs−1) 1−σe

1−σs − αe(τ)
σe (νeAe)

σe−1

] σe
1−σe

×
(
p(τ)1−σs − αs(τ)

σs (νsAs)
σs−1)σs−σe

1−σs , (A.3.10)

and

e(τ) = N−1
e (νeAe)

σe αe(τ)
σeαh(τ)

− σe
1−σe b(ĥ(τ), τ)µ(ĥ(τ))ĥ′(τ)

×
[(
p(τ)1−σs − αs(τ)

σs (νsAs)
σs−1) 1−σe

. 1− σs − αe(τ)
σe (νeAe)

1−σe

] σe
1−σe

(A.3.11)

The result is straightforward from equation (A.3.10) and (A.3.11).

Since πe and πs are proportional to integration of s(τ) and e(τ), lemma 4 and 5 imply the

existence of unique steady state under some νe and νs large enough, fixing static equilibrium.

Note that both ĥ and µ(h)dh are bounded above by assumtion and boundary conditions,

and p(τ) is also bounded as
∫
τ
γ(τ)p(τ)1−εdτ = 1. Hence, the existence follows when πe and

πs are continuous in Ne and Ns even when considering changes in static equilibrium. Recall

that p(τ) and ĥ(τ) could be obtained from the system of differential equations (1.9) to (1.11).

Since all functions in equation (1.9) to (1.11) are differentiable, πe and πs are also continuous

in Ne and Ns and the desired result follows.
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Intuitively, large νe and νs mean small returns to introducing additional variety, in turn,

meaning decreasing rete of return. To see this intuition more clearly, recall that the task

production function is given by

T (τ) =

[{
αh(τ)

(
b(ĥ(τ), τ)µ(ĥ(τ))ĥ′(τ)

)σe−1
σe

+ αe(τ)N
σe−1
σeνe
e e(τ)

σe−1
σe

}σe(σs−1)
(σe−1)σs

+αs(τ)N
σs−1
σsνs
s s(τ)

σs−1
σs

] σs
σs−1

, (A.3.12)

as s(k, τ) = s(τ) and e(k, τ) = e(τ) in equilibrium. The production is homogeneous of degree

one in labor, Ne and Ns when νe → 1 and νs → 1. Since labor is fixed component, the

production features strict concavity along Ne and Ns, meaning decreasing returns to scale in

terms of total varieties.

The second part of lemma (3) is when σe = σs = 1. In this case,

p(τ)T (τ) =
ω(τ)b(ĥ(τ), τ)µ(ĥ(τ))ĥ′(τ)

αh(τ)
, (A.3.13)

s(τ) =
νsAsαs(τ)p(τ)T (τ)

Ns

, (A.3.14)

e(τ) =
νeAeαe(τ)p(τ)T (τ)

Ne

. (A.3.15)

Combining the FOCs, T (τ) satisfies

p(τ)T (τ) = p(τ)
1

αh(τ)κ(τ)NΨes(τ)
s

(
Ne

Ns

)Ψe(τ)

B(τ), (A.3.16)

where κ(τ) := (αs(τ)νsAs)
αs(τ)
αh(τ) (αe(τ)νeAe)

αe(τ)
αh(τ) , Ψes(τ) := 1−νs

νs

αs(τ)
αh(τ)

+ 1−νe
νe

αe(τ)
αh(τ)

, Ψe(τ) :=

1−νe
νe

αe(τ)
αh(τ)

, and B(τ) := b(ĥ(τ), τ)µ(ĥ(τ))ĥ′(τ) are introduced to simplify notation.
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From equation (A.3.14) and (A.3.15), it is apparent that s(τ) and e(τ) are dcreasing in

Ns and Ne respectivley when Ψes(τ) < 1, which is a condition given in lemma 3.

Proof of proposition 1 (job polarization) Substituting p(τ) out from equation (1.9) to

(1.11), we have

ĥ′(τ) =
γ(τ)αh(τ)

1−αh(τ)(1−ε)Y

b(ĥ(τ), τ)µ(ĥ(τ))ω(τ)1−αh(τ)(1−ε)
×[(

αs(τ)νsAsN
(1−νs)/νs
s

)αs(τ) (
αe(τ)νeAeN

(1−νe)/νe
e

)αe(τ)
]ε−1

(A.3.17)

d logω(τ)
dτ

= −∂ log b(ĥ(τ), τ)
∂τ

(A.3.18)

First, we show ĥ1 and ĥ2 has to cross at least once. Suppose there is no crossing. Since

ĥ1(0) = ĥ2(0) and ĥ1(τ̄) = ĥ2(τ̄), we have

(
ω1(0)

ω2(0)

)1−αh(0)(1−ε)

=
ĥ′2(0)

ĥ′1(0)

(
Ae2

Ae1

)(1−ε)αe(0)

, (A.3.19)(
ω1(τ̄)

ω2(τ̄)

)1−αh(τ̄)(1−ε)

=
ĥ′2(τ̄)

ĥ′1(τ̄)

(
Ae2

Ae1

)(1−ε)αe(τ̄)

, (A.3.20)

from equation (A.3.17). Combining,

(
ω1(τ̄)/ω1(0)

ω2(τ̄)/ω2(0)

)1−αh(0)(1−ε)(
ω1(τ̄)

ω2(τ̄)

)(αh(0)−αh(τ̄))(1−ε)

=
ĥ′2(τ̄)/ĥ

′
2(0)

ĥ′1(τ̄)/ĥ1
′(0)

(A.3.21)

Since ĥ(τ) is strictly monotone and continous, with no crossing on entire (0, τ̄), we

have to have either (i) ĥ′2(τ̄)/ĥ′2(0) < ĥ′1(τ̄)/ĥ
′
1(0) and ĥ1(τ) < ĥ2(τ) for τ ∈ (0, τ̄), or (ii)

ĥ′2(τ̄)/ĥ
′
2(0) > ĥ′1(τ̄)/ĥ

′
1(0) and ĥ1(τ) > ĥ2(τ) for τ ∈ (0, τ̄). However, from equation (A.3.18)

and log supermodularity of b(h, τ), we have ω1(τ̄)/ω1(0) > ω2(τ̄)/ω2(0) with ĥ1(τ) < ĥ2(τ).
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With small enough αs(τ̄), (ω1(τ̄)/ω2(τ̄))
(αh(0)−αh(τ̄))(1−ε) goes close to one, and hence equation

(A.3.21) contradicts log supermodularity of b(h, τ).

Second, we show that when ĥ1(τ) and ĥ2(τ) cross at any three points τa < τb < τc, we

have ĥ′1(τa)/ĥ′1(τb) < ĥ′2(τa)/ĥ
′
2(τb) with ĥ2(τ) > ĥ1(τ) for τ ∈ (τa, τb) and ĥ′1(τc)/ĥ

′
1(τb) <

ĥ′2(τc)/ĥ
′
2(τb) with ĥ1(τ) > ĥ2(τ) for τ ∈ (τb, τc).

From equilibrium condition (A.3.17),

(
ω1(τb)/ω1(τa)

ω2(τb)/ω2(τa)

)1−αh(τa)(1−ε)(
ω1(τb)

ω2(τb)

)(αh(τa)−αh(τb))(1−ε)

=
ĥ′2(τb)/ĥ

′
2(τa)

ĥ′1(τb)/ĥ
′
1(τa)

(
Ae2

Ae1

)(1−ε)(αe(τb)−αe(τa))

(A.3.22)(
ω1(τc)/ω1(τb)

ω2(τc)/ω2(τb)

)1−αh(τc)(1−ε)(
ω1(τb)

ω2(τb)

)(αh(τb)−αh(τc))(1−ε)

=
ĥ′2(τc)/ĥ

′
2(τb)

ĥ′1(τc)/ĥ
′
1(τb)

(
Ae2

Ae1

)(1−ε)(αe(τc)−αe(τb))

(A.3.23)

With small enough α′
h(τ), these equations are approximated to

(
ω1(τb)/ω1(τa)

ω2(τb)/ω2(τa)

)1−αh(τa)(1−ε)

≈ ĥ′2(τb)/ĥ
′
2(τa)

ĥ′1(τb)/ĥ
′
1(τa)

(
Ae2

Ae1

)(1−ε)(αe(τb)−αe(τa))

(A.3.24)(
ω1(τc)/ω1(τb)

ω2(τc)/ω2(τb)

)1−αh(τc)(1−ε)

≈ ĥ′2(τc)/ĥ
′
2(τb)

ĥ′1(τc)/ĥ
′
1(τb)

(
Ae2

Ae1

)(1−ε)(αe(τc)−αe(τb))

(A.3.25)

The only possibility that this can hold at the same time is when αe(τb) > αe(τa) and

αe(τb) > αe(τc) so that the signs of exponent term with respect to (Ae2/Ae1) are different. Recall

that ω1(τb)/ω1(τa) < ω2(τb)/ω2(τa) implies ĥ′2(τb)/ĥ′2(τa) > ĥ′1(τb)/ĥ
′
1(τa) from equilibrium

condition (A.3.18) and log supermodularity of b(h, τ). Since qe1 > qe2, αe(τb) > αe(τa),

and αe(τb) > αe(τc), we must have ω1(τb)/ω1(τa) > ω2(τb)/ω2(τa) and ω1(τc)/ω1(τb) <

ω2(τc)/ω2(τb), which implies ĥ1(τ) < ĥ2(τ) for τ ∈ (τa, τb) and ĥ1(τ) > ĥ2(τ) for τ ∈ (τb, τc).
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The proof in the first part rules out any even number of crossings and no crossing. The

second part implies they have to cross only a single time on τ ∈ (0, τ̄) as they already meet at

0 and τ̄ . Then the result follows from the second part of proof.

Proof of proposition 2 (the rise of software) We firstly show that the production

share of middle skill task (task 1) falls and that of high skill task (task 2) rises in re-

sponse to the decline of price of equipment in a discretized model as well. To be specific, we

prove the following lemma first.

Lemma 6 Fix Ne and Ns. Consider a decline of the price of equipment; d logAe > 0 and

suppose ε < 1 and assumption 2, 5, and 6. Then we have d log p1 < 0 and d log p2 > 0.

Proof From the equilibrium conditions (A.2.1) to (A.2.3),

2∑
j=0

γjp
1−ε
j = 1

pj =

(
ωj

αh,j

)αh,j
(

1

νeAeαe,j

)αe,j
(

1

νsAsαs,j

)αs,j

N−ϕeαe,j
e N−ϕsαs,j

s , for j = 0, 1, 2

wj−1b(ĥj, j − 1) = wjb(ĥj, j), for j = 1, 2

ωj−1

∫ ĥj

ĥj−1
b(h, j − 1)µ(h)dh

ωj

∫ ĥj+1

ĥj
b(h, j)µ(h)dh

=
αh,j−1γj−1

αh,jγj

(
pj−1

pj

)1−ε

, for j = 1, 2,

with σs = σe = 1.
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Let ∆x = d log(x). Then by differentiating above and using assumption 5,

∆pj = αh,j∆ωj − αe,j∆Ae (A.3.26)

∆ωj−1 = ∆ωj +∆b(ĥj, j)−∆b(ĥj, j − 1) (A.3.27)

∆ωj−1 −∆ωj = (1− ε)(∆pj−1 −∆pj) (A.3.28)
2∑

j=0

γjp
1−ε
j ∆pj = 0 (A.3.29)

Eliminating ωj’s,

(
1

αh,0

− (1− ε)

)
∆p0 =

(
1

αh,1

− (1− ε)

)
∆p1 +

(
αe,1

αh,1

− αe,0

αh,0

)
∆Ae (A.3.30)(

1

αh,2

− (1− ε)

)
∆p2 =

(
1

αh,1

− (1− ε)

)
∆p1 +

(
αe,1

αh,1

− αe,2

αh,2

)
∆Ae (A.3.31)

Since 1/αh,j > (1− ε) for all j’s and αe,1/αh,1 > αe,j/αh,j for j = 0, 2, it is easy to check that

∆p1 < 0 by substituting equation (A.3.30) and (A.3.31) into equation (A.3.29).

Substituting equation (A.3.30) and (A.3.31) into equation (A.3.29), we also have

[
γ0p

1−ε
0

(
1

αh,2
− (1− ε)

1
αh,0

− (1− ε)

)
+ γ2p

1−ε
2 + γ1p

1−ε
1

(
1

αh,2
− (1− ε)

1
αh,1

− (1− ε)

)]
∆p2

+γ0p
1−ε
0


(

αe,1

αh,1
− αe,0

αh,0

)
−
(

αe,1

αh,1
− αe,2

αh,2

)
1

αh,0
− (1− ε)

∆Ae

−γ1p1−ε
1

αe,1

αh,1
− αe,2

αh,2

1
αh,1

− (1− ε)
∆Ae = 0 (A.3.32)
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By assumption 6 and ε < 1, we have

[
γ0p

1−ε
0

(
1

αh,2
− (1− ε)

1
αh,0

− (1− ε)

)
+ γ2p

1−ε
2 + γ1p

1−ε
1

(
1

αh,2
− (1− ε)

1
αh,1

− (1− ε)

)]
> 0,

γ0p
1−ε
0


(

αe,1

αh,1
− αe,0

αh,0

)
−
(

αe,1

αh,1
− αe,2

αh,2

)
1

αh,0
− (1− ε)

 = 0,

γ1p
1−ε
1

αe,1

αh,1
− αe,2

αh,2

1
αh,1

− (1− ε)
> 0,

implying ∆p2 > 0 from equation (A.3.32).

Now we show that lemma 6 implies a relative increase of software variety in the new steady

state. Note that the profits from providing software and equipment variety are given by

πs =
∑
j

1− ν

νAs

sj and πe =
∑
j

1− ν

νAe

ej.

From the FOC and using (A.3.4) (pe = 1/(νAe) and ps = 1/(νAs)), demand for equipment

and software for each task are ej = νeAeαe,jpjTj/Ne and sj = νsAsαs,jpjTj/Ns.

From lemma 3, we know πe/η = πs/η = ρ in any steady state equilibrium, and hence,

dπe = (1− ν)

[
(1− ε)(αe,0p

−ε
0 dp0 + αe,1p

−ε
1 dp1 + αe,2p

−ε
2 dp2)Y

+(
∑
j

αe,jp
1−ε
j )dY − 1

Ne

∑
j

αe,jp
1−ε
j Y dNe

]
= 0

dπs = (1− ν)

[
(1− ε)(αs,0p

−ε
0 dp0 + αs,1p

−ε
1 dp1 + αs,2p

−ε
2 dp2)Y

+(
∑
j

αs,jp
1−ε
j )dY − 1

Ns

∑
j

αe,jp
1−ε
j Y dNs

]
= 0

[141]



Combining,

(1− ε)[(αe,1 − αs,1)p
−ε
1 dp1 + (αe,2 − αs,2)p

−ε
2 dp2]

=
∑
j

αe,jp
1−ε
j

[
dNe

Ne

− dY

Y

]
−
∑
j

αs,jp
1−ε
j

[
dNs

Ns

− dY

Y

]
=
∑
j

αs,jp
1−ε
j

[
dNe − dNs

Ns

−
(
1− Ne

Ns

)
dY

Y

]
< 0,

where the last equality is from no arbitrage condition (1.16) (Ns

Ne
=

∑
j αs,jγjp

1−ε
j∑

j αe,jγjp
1−ε
j

), and the

inequality is from lemma 6 and assumption 6.

Hence, we have

dNs > dNe + (Ne −Ns)
dY

Y
.

Since decrease in the price of equipment raise the level of production, we have dY /Y > 0.

Hence, with the condition given in this proposition (Ne ≥ Ns), (Ne −Ns)dY /Y ≥ 0 and so

dNs > dNe. Finally, since Ne ≥ Ns, we have

dNs/Ns > dNe/Ne,

which was to be shown.

Proof of proposition 3 (skill demand reversal) Suppose they cross at least once. It

means that we have at least three points τa < τb < τc such that ĥ1(τa) = ĥ2(τa), ĥ1(τb) = ĥ2(τb),
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and ĥ1(τc) = ĥ2(τc). Then, we have

(
ω1(τb)/ω1(τa)

ω2(τb)/ω2(τa)

)1−αh(τa)(1−ε)(
ω1(τb)

ω2(τb)

)(αh(τa)−αh(τb))(1−ε)

=
ĥ′2(τb)/ĥ

′
2(τa)

ĥ′1(τb)/ĥ
′
1(τa)

(
Ns2

Ns1

)ϕs(1−ε)(αs(τb)−αs(τa))

(A.3.33)(
ω1(τc)/ω1(τb)

ω2(τc)/ω2(τb)

)1−αh(τc)(1−ε)(
ω1(τb)

ω2(τb)

)(αh(τb)−αh(τc))(1−ε)

=
ĥ′2(τc)/ĥ

′
2(τb)

ĥ′1(τc)/ĥ
′
1(τb)

(
Ns2

Ns1

)ϕs(1−ε)(αs(τc)−αs(τb))

(A.3.34)

where ϕs ≡ (1− νs)/νs.

With small enough α′
h(τ), above equations can be approximated to

(
ω1(τb)/ω1(τa)

ω2(τb)/ω2(τa)

)1−αh(τa)(1−ε)
ĥ′1(τb)/ĥ

′
1(τa)

ĥ′2(τb)/ĥ
′
2(τa)

≈
(
Ns2

Ns1

)ϕs(1−ε)(αs(τb)−αs(τa))

(A.3.35)(
ω1(τc)/ω1(τb)

ω2(τc)/ω2(τb)

)1−αh(τc)(1−ε)
ĥ′1(τc)/ĥ

′
1(τb)

ĥ′2(τc)/ĥ
′
2(τb)

≈
(
Ns2

Ns1

)ϕs(1−ε)(αs(τc)−αs(τb))

(A.3.36)

Again, since matching function is continuous and monotone, and b(h, τ) is log supermodular,

signs of log of LHS in both equation (A.3.35) and (A.3.36) should be different. However, since

αs(τ) is strictly increasing, signs of log of RHS in equation (A.3.35) and (A.3.36) are same,

which is contradiction.

Finally, to show ĥ2(τ) < ĥ1(τ) for τ ∈ (0, τ̄), recall that equilibrium condition (A.3.17)

implies

(
ω1(τ̄)/ω1(0)

ω2(τ̄)/ω2(0)

)1−αh(τ̄)(1−ε)
ĥ′1(τ̄)/ĥ

′
1(0)

ĥ′2(τ̄)/ĥ
′
2(0)

=

((
Ns2

Ns1

)ϕs ω2(0)

ω1(0)

)(1−ε)(αs(τ̄)−αs(0))

(A.3.37)

Since (1− ε)(αs(τ̄)−αs(0)) > 0 and Ns2 > Ns1, we have to have ω1(τ̄)/ω1(0) > ω2(τ̄)/ω2(0),

which implies ĥ2(τ) > ĥ1(τ).

[143]



A.4 Numerical Examples: Continuous Tasks

To illustrate the comparative statics, we provide some numerical examples. For this example,

we set:

b(h, τ) = h− τ, M(h) =
1− h−a

1− h̄−a
, γ(τ) = 1,

αe(τ) = −2.5(τ − .5)2 + .6, and αs(τ) = .3τ + .025.

For the parameter values, we use τ̄ = 1, h̄ = 4, dτ = .005, a = 2.5, ε = 0.7, νs = 0.65,

νs = .8, ηs = ηe = As = Ae = 1, θ = 1, and ρ = .03.

In the inner loop, we solve static equilibrium given Ns and Ne. The equilibrium assignment

function is computed from equation (1.9) to (1.11). Specifically, we use ĥ(0) = 1 and guess

ĥ′(0) and ω(0). With the guess, differential equation is solved using finite difference method.

We iterate until ĥ(1) = 4 and
∫
p(τ)1−εdτ = 1 using Gauss-Newton method.

Then in the outer loop, we search for Ns and Ne that equate πs/ηs = πe/ηe = ρ, again

using Gauss-Newton method.

Factor intensities and the equilibrium assignment function in this example are shown in

figure A1. The equipment intensity αe(τ) is increasing on τ ∈ [0, 0.5] and decreasing on

τ ∈ [0.5, 1], while the software intensity αs(τ) is increasing from 0 to 1. We can also see that

the equilibrium assignment function ĥ(τ) is strictly increasing on τ .

Now we compare equilibrium with Ae = 1 and Ae = 5 in figure A2. The assignment

function in the original equilibrium (with Ae = 1), in the static equilibrium (with Ae = 5)

and the new steady state (with Ae = 5) are depicted in figure A2(a). As expected from
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proposition 1 through proposition 3, we see that the assignment function in the static

equilibrium (blue line) cross with the original assignment function (black line) at the middle

of τ . The assignment function in the steady state (red line) is generally located above the

assignment function in static equilibrium (blue line).

To see the changes in the employment structure more clearly, we also plot changes in

the employment share by skill percentile in figure A2(b), similar to the graph shown in

figure 1.2(a). To be specific, the horizontal axis shows the tasks (τ̂(h)) corresponding to

each percentile in the skill distribution M, and the vertical axis shows the changes in the

employment share of those tasks from the original equilibrium to new static equilibrium (blue

line) and from the new static equilibrium to new steady state (red line). For example, the

first two points on the horizontal axis is two task τ̂1(h1) and τ̂1(h2) where τ̂1 represents the

original (inverse) assignment function and h1 = 1 and h2 = M−1(1). Then the first point

on the blue line is difference between M(ĥ2(τ̂1(h1)))−M(ĥ2(τ̂1(h2)) and M(h2)−M(h1),

where ĥ2 is the assignment function in the static equilibrium corresponding to Ae = 5.

Figure A1: Factor intensities and assignment function

(a) Intensities α(τ)
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(b) Assignment function ĥ(τ)
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Figure A2: Equilibrium comparison with Ae = 1 and Ae = 5

(a) Assignment function ĥ(τ)
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(b) Changes in employment by skill percentile
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For the relative size of software variety to equipment variety, it was initially .74 in the

original equilibrium, and increases to .77 in the new steady state, which is about 6% increase.

CES Task Production To characterize the analytical results, we assume unitary elasticity

between labor and capital. However, the crucial characteristic is that the elasticity of

substitution between labor and capital is greater than the elasticity of substitution between

tasks (ε). Furthermore, we expect that task production need not be Cobb-Douglas in

generating responses consistent with propositions 1 to 3, at least numerically.

What could we expect if the elasticity of substitution between labor and capital is different

from one? We predict that the larger the elasticity of substitution between labor and

equipment becomes, the higher the polarization effect would appear. We also expect that the

skill demand reversal effect (decreasing high-skill demand) and the rise of software would be

enhanced as the elasticity of substitution between labor and software increases.
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Figure A3: Equilibrium comparison with Ae = 1 and Ae = 5: CES task production

(a) Changes in employment with σe = 1.2
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(b) Changes in employment with σs = 1.2
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Intuitively, when the elasticity of substitution between equipment and labor is greater

than one, a decrease in the price of equipment lowers the demand for middle-skill tasks not

only through the adjustment in the assignment but also through the adjustment between

labor and equipment within a task. Additionally, when the elasticity of substitution between

software and labor is greater than one, corresponding increases in software would substitute

high-skill labor more than before.

To confirm the intuition, we provide several numerical illustrations in figure A3 (details can

be found in appendix A.4). As expected, the magnitude of the decreasing middle increases as

σe increases, and the decrease in high-skill demand is enhanced as σs increases.

A.5 Data Construction for Section 1.5

For relative employment by industry, we use a ratio of employment of routine occupations and

employment of cognitive occupations. Routine occupations include machine operators, office

and sales, mechanics, construction and production, and transportation occupations. Cognitive
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occupations are management, professionals, and technicians. The level of employment is

obtained from Census 1980, 1990, and 2000, and American Community Survey (ACS) 2010,

received from IPUMS. We made a concordance between consistent industry code ind1990

and indnaics using employment in Census 2000. Then employment by indnaics is merged

into 61 BEA industry code based on a concordance between BEA industry code and NAICS.

The price of equipment and software by industry is from Section 2 of Fixed Asset Table

from BEA. The price index is constructed by dividing nominal investment by real investment.

We use private non-residential equipment investment by industry for the benchmark, although

other series (e.g. industrial equipment) also give similar results.

For growth of software innovation, we use log difference of own account software investment

by industry, which captures software investment made in-house by firms. We believe this as

a good proxy for software innovation, as in-house software investment is made to develop

new software for firm’s production process.

It is not straightforward to measure R&D for equipment related innovation from industry

level data, as BEA records R&D expenditures only by sources of funds. We think that R&D

expenditures funded by equipment producing industries are likely to be used for equipment

related innovation, but they should be only a subset of total equipment related innovations.

It is also likely that most of these expenditures are used by equipment producing industries,

not others, which makes it difficult to capture industry variation. Therefore, we use total

R&D expenditures other than software as a benchmark series for Ne, and examine robustness

using many different combinations of R&D data. All combinations, including a case with

own-account software only, show similar positive relation against relative price.

[148]



A.6 Calibration Procedure

This section describes the detailed calibration procedure. We normalize exogenous variables

Mj’s, Ae, and As to one in 1980.

1. We start from ĥj’s that correspond to employment share of occupation j in 1980 and

fix ε, σs and σe arbitrarily.

2. By indifference between tasks at the threshold level of skills, we have

wj

wj−1

=
ĥj − χj−1

ĥj − χj

,

and so wj = w0

∏j
k=1(ĥk − χk−1)/(ĥk − χk). Therefore, payroll share of occupation j is

given by ∏j
k=1(ĥk − χk−1)/(ĥk − χk)

∫ ĥj

ĥj−1
(h− χj)h

−a−1dh∑
j

∏j
k=1(ĥk − χk−1)/(ĥk − χk)

∫ ĥj

ĥj−1
(h− χj)h−a−1dh

.

We set 8 parameters χj ’s and 1 parameter a to minimize distance between payroll share

in data and the model for 9 occupations.

3. Guess αj,e and αj,s. We find γj’s that match with ĥj’s in equilibrium.

4. We iterate over αj,e and αj,s untill aggregate labor share, Ej and Sj in the model match

with aggregate labor share, equipment and software investment by occupation in data.

5. We solve for Mj’s for routine occupations (j = 2, 3, 4, 5, 7, 8) to match employment

share of routine occupations in data. Note that we already have different values of Ae

and As for each period obtained from data.

6. Iterate over σs and σe so that labor share with and without software match with trend

implied level in 2010.
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7. Iterate over ε so as to minimize an average distance between changes in payroll share

by occupation in the model and data.

The procedure gives all the parameters needed to be calibrated. For νe and νs, we use

estimated value as described in the section 1.6.
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Appendix B

Appendix to Chapter 2

B.1 Tables and Figures Not Included in Text

Const FIRE Health High
serv.

Low
serv.

Dur Mine Non-
durable

Trade Comp-
uter

σ = .1 1.577 1.260 1.497 1.579 1.447 1.222 1.423 1.462 1.505 1.828
σ = .5 1.593 1.245 1.473 1.546 1.436 1.225 1.422 1.473 1.480 1.825
σ = .7 1.624 1.229 1.444 1.506 1.423 1.234 1.426 1.498 1.451 1.825
σ = .815 1.699 1.213 1.413 1.461 1.415 1.263 1.445 1.559 1.419 1.840

Table B1: Calibrated ρi’s across various σ’s
For each value of σ, the ρi’s are calibrated as explained in Section 2.4.1 except that σ is fixed. We found that
for values of σ above its benchmark value of 0.815, the model fit quickly becomes exponentially poor with no
solution as it approaches 1. The reason is that occupation-specific productivities Mj become so large that it
becomes impossible to simultaneously match employment share changes and measured TFP by industry.
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Output Productivity
Data Model Data Model

1980- 3.41 3.81 0.43∗ 0.85
1990- 3.75 3.28 1.26 0.73
2000- 1.54 1.30 0.44 0.34

Table B2: Model Fit to Aggregate Output and Productivity
Data source: BEA NIPA. ∗Although average productivity growth seems low in the data for the 1980s, this is
more of a cyclical phenomena in the early 1980s that persisted from the late 1970s. For example, average
productivity growth from 1982-1990 is 1.18%.
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Figure B1: Factor income shares by industry: model vs. data
In the model, traditional capital income shares are computed by first fixing that of the computer industry’s
to 1980 data as explained in Section 2.4.1, and then calibrating them for all other industries using a method
of moments. Data traditional capital income shares are computed by applying the procedure in Section 2.4.1
too all industries in 1980. All data from BEA NIPA and FAT.
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Appendix C

Appendix to Chapter 3

C.1 The Data

C.1.1 Data sources

We use National Accounts data of countries following SNA 08, which are AUS, AUT, BEL,

CAN, CHE, CZE, DEU, DNK, ESP, EST, FRA, FIN, GBR, GRC, HUN, IRL, ISL, ISR, ITA,

KOR, LUX, MEX, NLD, NOR, NZL, POL, PRT, SVK, SVN, SWE, and USA. Data are

from either OECD statistics or National statistical offices, which gives longer or conceptually

more accurate series. The data sources are summarized in table C1 and C2.

C.1.2 Investment

We classify type of investments by traditional and IPP. Traditional investment includes

dwellings, other buildings and structures, and equipments & weapon systems. We exclude
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Table C1: National sources

Country Name of Institution Name of Table
AUS Australian Bureau of Statistics Australian System of National Accounts
AUT Statistics Austria National Accounts
BEL NBB statistics National Accounts
CAN Statistics Canada System of macroeconomic accounts
CHE Swiss Statistics National Accounts
CZE Czech Statistical Office National Accounts
DNK Statistics Denmark National accounts and government finances
DEU Statistisches Bundesamt National Accounts
ESP National Statistics Institute National Accounts
EST Statistics Estonia National Accounts
FIN Statistics Finland National Accounts
FRA National Institute of Statistics and Economic Studies National Accounts
GBR Office for National Statistics National Accounts
GRC Hellenic Statistical Authority National Accounts
HUN Hungarian Central Statistical Office Integrated economic accounts
IRL Central Statistical Office National Accounts
ISL Statistics Iceland National Accounts
ISR Bank of Israel National Accounts
ITA Italian National Institute of Statistics National Accounts
KOR Bank of Korea National Accounts
LUX Grand-Duchy of Luxembourg National Accounts
NLD Statistics Netherlands Macroeconomics table
NOR Statistics Norway National Accounts
NZL Statistics New Zealand National Accounts
POL Central Statistical Office of Poland National Accounts
PRT Statistics Portugal National Accounts
SVK Statistical Office of the Slovak Republic Macroeconomic Statistics
SVN Statistical Office RS National Accounts
SWE Statistics Sweden National Accounts
USA Bureau of Economic Analysis National Income and Product Account
OECD OECD Statistics National Accounts

cultivated biological resources from both classification of which shares in total investments is

less than 1% on average.

Since statistical office does not provide real value of traditional investment, we construct

it from subitems – dwellings, other buildings and structures, and equilpments & weapon

systems – using Törnqvist index. Specifically, price change of traditional investment (πT
t ) is

πT
t = ωR

t π
R
t + ωS

t π
S
t + ωE

t π
E
t ,
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Table C2: Data sources by country

Variables
CE MI GVA SE5) Pc NI RI NK RK CFC D

AUS NS NS NS – NS NS NS NS NS NS NS
AUT OECD OECD OECD OECD OECD OECD OECD OECD OECD OECD –
BEL OECD OECD OECD OECD OECD OECD OECD OECD OECD OECD –
CAN OECD OECD OECD OECD OECD OECD OECD NS – OECD –
CHE OECD OECD OECD – OECD OECD OECD NS NS OECD –
CZE OECD OECD OECD OECD OECD OECD OECD OECD OECD OECD –
DEU OECD OECD OECD OECD OECD OECD OECD NS NS OECD –
DNK NS NS NS NS NS NS NS NS NS NS –
ESP OECD OECD OECD OECD OECD OECD OECD – – OECD –
EST OECD OECD OECD OECD OECD OECD OECD OECD OECD OECD –
FRA OECD OECD OECD – OECD OECD OECD NS OECD OECD NS
FIN OECD NS OECD OECD OECD OECD OECD OECD OECD NS –
GBR NS NS NS OECD NS OECD OECD OECD OECD OECD NS
GRC OECD OECD OECD OECD OECD OECD OECD OECD OECD OECD –
HUN OECD OECD OECD OECD OECD OECD OECD OECD OECD OECD –
IRL OECD OECD OECD OECD OECD OECD OECD OECD OECD OECD –
ISL OECD – OECD – OECD OECD OECD – – OECD –
ISR OECD OECD4) OECD OECD OECD OECD OECD OECD OECD OECD –
ITA OECD OECD OECD OECD OECD OECD OECD OECD OECD OECD –
KOR OECD OECD4) OECD OECD OECD OECD OECD NS NS NS –
LUX OECD – OECD OECD OECD OECD OECD OECD – – –
MEX OECD OECD OECD OECD OECD OECD OECD – – OECD –
NLD OECD OECD OECD OECD OECD OECD OECD OECD OECD OECD –
NOR OECD NS OECD OECD OECD OECD OECD OECD – NS –
NZL OECD OECD4) OECD OECD OECD OECD NS NS OECD NS –
POL OECD NS OECD OECD OECD OECD OECD OECD OECD NS –
PRT OECD OECD OECD – OECD OECD OECD OECD OECD OECD –
SVK OECD OECD OECD OECD OECD OECD OECD OECD OECD OECD –
SVN OECD OECD OECD – OECD OECD OECD OECD OECD OECD –
SWE NS NS NS OECD NS NS NS OECD OECD NS –
USA NS NS NS – NS NS NS NS NS NS NS

Notes: 1) CE: compensation of employees, MI: gross mixed income, GVA: gross value added at basic price,
SE: total employment / (total employment - # of self employee), Pc: price index of private consumption, NI:
nominal investment by type, RI: real investment by type, NK: nominal net capital stock by type, RI: real net
capital stock by type, CFC: consumption of fixed capital from income account, D: consumption of fixed
capital by type.
2) NS refers to national source.
3) Marked as OECD when OECD series and NS series are same.
4) Gross operational surplus of households sector is used instead of MI for ISR, KOR, and NZL.
5) SE is used (and appeared here) only when it is longer available than mixed income.
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where R, S, E refer to dwellings (R), other buildings and structures (S), and equipments

& weapon systems (E), ω refer to two-year moving average of nominal share of each item

in total investments, and π’s refer to price changes. Then the price index of traditional

investment is given by P T
t =

∏t
i=0(1 + πT

i ), with πT
0 = 0. Nominal investment is simply sum

of subitems (ITt = IRt + ISt + IEt ) and real investment is nominal investment divided by price

index (XT
t = ITt /P

T
t ).

C.1.3 Depreciation rates

Depreciation rates is defined as consumption of fixed capital divided by capital stock at end

of previous year. When both real value of consumption of fixed capital (CFC) and capital

stock data are available, we use data (AUS, GBR, and USA) where real value of traditional

capital and traditional consumption of fixed capital are constructed using Törnqvist index as

above. When only nominal value of CFC is available (FRA), depreciation rate is obtained by

δit =
NCFCi

t

NKi
t−1 × PKi

t/PK
i
t−1

,

where NCFC is nominal CFC in data, NK is nominal capital in data, and PK is price of

capital in data for IPP and Törnqvist index for traditional, and i ∈ {T, IPP}.

However, most countries do not provide CFC data by asset type. For these countries, we

consider two estimates of CFC from data. Firstly, we can estimate real value of CFC by asset

type using

ˆRCFC
i

t = RKi
t−1 +X i

t −RKi
t ,

where RK is real value of capital, X is real value of investments, and i ∈ {T, IPP}. It

is worth noting that price of capital is different from price of investment in data since all

subitems in each category differ in terms of both depreciation rates and price changes. When
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RK is not available in data (e.g. CAN, ESP, ISL, LUX, MEX, and NOR), however, we use

price of investment for price of capital.

Secondly, we can estimate nominal value of CFC by

ˆNCFC
i

t = NKi
t−1 ×

PKi
t

PKi
t−1

+ I it −NK i
t ,

where NK is nominal capital, I is nominal investments, and i ∈ {T, IPP}. Note that

ˆNCFC/ ˆRCFC is not simply PK since price of investment and capital are different.

The prices of CFC, capital, and investment are all different since composition of subitems

are different. In this sense, RCFC should be better measure for true depreciation rates than

NCFC. However, we can use more information with NCFC, which is total CFC that can be

obtained from income accounts. Specifically, we can obtain one of NCFC as residual from

total CFC of income accounts, for example, ˆNCFC
T

t = CFCt − ˆNCFC
IPP

t .

Note that dep rates are actually stable for countries with CFC data available, but CFC

estimated above could fluctuate due to re-valuation and inventory adjustment. Hence, in

practice, we plot depreciation rates from both ˆRCFC and ˆNCFC, and then chooses dep

rates that are more stable. If they are similar, we went with RCFC. The countries with

RCFC are AUT, CHE, DEU, FIN, GRC, HUN, ISR, ITA, LUX, NLD, and PRT. Those with

NCFC are BEL, CAN, CZE, EST, IRL, KOR, NOR, NZL, POL, SVK, SVN, and SWE.

C.1.4 Capital

Depending on methods of getting depreciation rates, it is possible that RK in data is not

compatible with implied depreciation rates. Importantly, this includes cases where we get

depreciation rates from CFC data. This is because in data, capital is adjusted for revaluation
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and inventories, where gross fixed capital formation does not include them. To make capital

series to be compatible with investment data in a standard model sense, we construct real

value of capital as following.

Ki
t+1 = (1− δit)K

i
t +X i

t , (C.1.1)

with Ki
0 being nominal capital data of base year.

Note that above methods require estimated δ which requires data for capital and investment.

In many countries, however, we have longer investment series available than capital series.

For these countries (AUT, CAN, CHE, CZE, ESP, EST, FIN, FRA, GBR, ISL, ITA, KOR,

LUX, MEX, NLD, POL, PRT, SVK, SVN, and SWE), it could be useful to consider extension

of capital series.

With X i
t given as data, what we need is δit for those years without capital data. For the

depreciation rates, we use fitted value obtained from the following regression.

δij,t = βj + γ log(GDP per capitaj,t) + εj,t,

where j refers each country. To make GDP per capita comparable across countries, we use

constant PPP rates obtained from PWT 8.1.37

With estimated depreciation rates δ̂j,t at hands, we can get capital series by computing

Ki
t =

Ki
t+1 −X i

t

1− δ̂it
. (C.1.2)

The problem with this method, however, is that it is very sensitive to even very small error in

base year because errors are accumulated across the extension. To be precise, when NK0 in
37 To be specific, PPP rates (pppr) is obtained from pppr = q gdp/rgdpo, where q gdp is real GDP in

national currency from NA data of PWT 8.1 and rgdpo is output-side real GDP at chained PPPs. We then
multiply 1/pppr to our series of real GDP with SNA 08. We assume ppprt=pppr2011 for t > 2011.
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data is a little bit different from K0 that could have been obtained if we had data for K−10,

estimated K̂−10 from NK0 can be very different from true K−10 because the small difference

in time 0 is accumulated from t = 0 to t = −10. To see this more clearly, it is useful to see

an example.

Figure C1 compares K from equation (C.1.1) with K0 = K1929 (call this K1, a blue line)

and K from equation (C.1.2) with K0 = K2005 (call this K2, a red line). Because of reasons

stated above, K1 is not exactly same with Kt in data. Since we use exactly same δt, K1 has

to be equal to K2 if K12005 = K2005. However, K1 is a little bit different from K at 2005

and this makes K2 a lot different from K1 as time goes back.

One way to mitigate this problem is to set a restriction on the initial movement of capital.

Since errors are accumulated, magnitude of K1/K0 becomes really big (either positive or

negative as can be seen in graphs) if there was an error in base period. By restricting K1/K0

to be a reasonably small number (e.g. fitted growth rate of capital against log GDP per

capita), we can mitigate the exploision problem as can be seen by a black line in figure C1.

Precisely, the black line is obtaind by equation (C.1.1), with

Ki
1 = ĝi0K

i
0, K

i
1 = (1− δ̂i0)K

i
0 +X i

0 → Ki
0 =

X i
0

ĝi0 + δ̂i0
, (C.1.3)

where ĝi0 and δ̂i0 are fitted growth rate and depreciation rate of capital against log GDP

per capita. Note that the assumption we use is not a steady state assumption because we

use estimated depreciation rates that are fluctuating over time. Rather, our assumption is

simply stating that the growth rate of capital from the initial period to next period is set to

fitted growth rate. From then on, we use exactly same procedure of making capital series via

equation (C.1.1) using freely moving depreciation rates, δ̂jt .
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Figure C1: Extended capital by different methods

(a) Traditional, USA (b) IPP, USA

(c) Traditional, AUS (d) IPP, AUS

Notes: Benchmark: K ′ = K(1 − δ) + X with K0 =data, Method 1: K = (K ′ − X)/(1 − δ) for t < 2005,
Method 2: K ′ = K(1− δ) +X with K0 = X0/(g + δ).

In practice, we plot capital series obtained from equation (C.1.2) (method 1), and if capital

series go up or become negative as time goes back, we use the restriction (C.1.3) (method 2).

As a result, we apply method 2 to traditional capital of NLD, ITA, and PRT, and to IPP

capital of AUT, CAN, CZE, EST, FRA, GBR, IRL, ITA, NLD, POL, SVK, SVN and SWE.

We have three countries in our sample with no capital stock available in data (ESP, ISL,

and MEX). For these countries, we set initial level of capital as a fitted value from the
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following regression,

log
(
Ki

Y

)
= β + γ log(GDP per capitaj,t) + εj,t,

and then apply equation (C.1.1). Since Mexico gives decreasing IPP capital near initial

period, we apply method 2 (equation (C.1.3)) for IPP capital of Mexico.

C.1.5 Labor Share

We adjust for mixed income following Koh, Santaeulàlia-Llopis, and Yu (2015) in constructing

our baseline labor share. To begin with, we classify Gross Domestic Income into unambiguous

capital income (UCI), unambiguous income (UI), and ambiguous income (AI). Unambiguous

capital income (UCI) is the gross operating surplus (GOS) which does not include gross

mixed income (GMI) in the National Accounts. Note that both gross operating surplus and

gross mixed income includes consumption of fixed capital. Adding compensation of employees

(CE) to unambiguous capital income (UCI), we get unambiguous income (UI=UCI+CE).

Ambiguous income is income other than UI, which is sum of gross mixed income and tax

net of subsidy (AI=GMI+Tax-Sub). We assume gross capital income share in ambiguous

income is same as gross capital income share of unambiguous income. Then the total capital

income can be obtained by summing up unambiguous capital income and capital income in

ambiguous income (KI=UCI+θ×AI, θ =UCI/UI). Finally, labor share is one minus capital
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share which is capital income divided by total income (LS=1-KI/GDI).

Unambiguous Capital Income, UCI = GOS

Unambiguous Income, UI = CE+ UCI

Ambiguous Income, AI = GMI+ Tax− Sub

Capital Income, KI = UCI+ AI× θ, θ = UCI/UI

Labor Share, LS = 1− KI
UI+ AI

= 1− KI
GDI

(C.1.4)

The differences between ours and Koh, Santaeulàlia-Llopis, and Yu (2015) are that we do not

adjust for Business Current Transfer Payments in gross operating surplus due to limited data

availability (table C3) and that we use gross operating surplus not net operating surplus.

However, the Business Current Transfer Payments is only 0.5% of GDI on average and

does not affect trend of labor share. The BEA only provides proprietor’s income excluding

consumption of fixed capital, i.e net mixed income. Hence we have to use net labor share to get

accurate labor income of proprietors for US. Net capital income share of unambiguous income

is θ̃=NOS/(CE+NOS) and so total capital income becomes KI=NOS+θ̃×NMI+θ×(Tax-

Sub)+DEP, where θ is gross capital share and θ̃ is net labor share. Labor share is then

computed by LS=1-KI/GDI.

To avoid confusion, we call net operating surplus excluding net proprietor’s income as net

operating surplus (NOS). Note, however, that Net operating surplus in NIPA table includes

(net) proprietor’s income so that net operating surplus in NIPA table is different from what

we call NOS here (see table C3).

In cases where longer series of self employee are available (i.e. AUT, BEL, CAN, CHE,

CZE, DEU, DNK, ESP, EST, FIN, GRC, IRL, ISR, ITA, KOR, MEX, NLD, NOR, NZL,

POL, PRT, and SVK), we extend labor share in equation (C.1.4) with self employee adjusted
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labor share as

LSt−1 = LSt × (LSSE
t−1/LS

SE
t ),

where LSSE = CE
GDI-(Tax-Sub) ×

Total employment
Total employment - # of self employees . In words, LSSE is labor share

adjusted with assumption that average wage of self employees is same with that of employees.

Since average wage of self employees is usually less than that of employees, LSSE is likely to

overestimate the level of labor share. However, LSSE gives similar pattern with our baseline

labor share and we only reflect changes in labor share to extend our baseline labor share

which we believe the best measure for labor share in the economy. The exceptions are LUX

and ISL where only LSSE is available (LUX) or neither MI nor SE is available (ISL).

An adjustment of IPP effects on labor share is as following. From the standard represen-

tative firm’s profit maximizing problem, we have

Ri
t+1 = (1 + rt+1)

1

V i
t

− (1− δit+1)
1

V i
t

,

Table C3: Structure of income account: BEA NIPA and OECD National Accounts

BEA NIPA (USA) OECD NA
GDI GDI
Compensation of employ (CE) Compensation of employ (CE)
Taxes (Tax) Taxes (Tax)
Subsidies (Sub) Subsidies (Sub)
Net operating surplus (NOS+NMI)
Net intersts
Business current transfer payments
Proprietor’s income (NMI) Gross operating surplus (GOS)
Rental income Gross mixed income (GMI)
Corporate profits
Current surplus of government enterprises

Consumption of fixed capital (DEP)
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where R is gross return, r is net return, V i = P c/P i, and i ∈ {T, IPP}. Also, labor share in

data can be expressed as

LS = 1− RTKT

Y
− RIPPKIPP

Y
,

from any constant returns to scale production function.

Assuming common net return for T and IPP (i.e. no arbitrage), these constitute three

equations for three unknowns RT , RIPP , and r. Then the labor share without IPP (LST ) is

obtained by

LST = 1− RTKT

Y −RIPPKIPP
.

Note that this adjustment is available only when our capital series are available. Since

capital was extended up to a point with investment data available, we have LST whenever

investment data are available. However, for some countries in our sample, labor share data

covers longer periods than investments. To extend LST up to a point when LS data starts,

we estimate following regression.

difj,t = βj + γ log(GDP per capitaj,t) + εj,t,

where difj,t = LST

LS
− 1 = RIPPKIPP

Y
. Then extended LST is computed by

L̂S
T

j,t = LSj,t × (1 + ˆdif j,t).

C.2 Growth Accounting Results
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Table C4: Growth Accounting with χ = 1

Growth rates Percent explained time
country y h k z tfp h k z tfp s t

AUS 1.51 0.10 0.70 0.14 0.57 6.4 46.2 9.4 38.0 1985 2012
AUT 1.39 0.34 0.41 0.17 0.47 24.3 29.6 12.3 33.8 1977 2014
BEL 0.66 0.24 0.20 0.14 0.09 36.2 30.2 20.6 13.0 1996 2014
CAN 1.14 0.36 0.63 0.11 0.04 31.2 55.7 9.4 3.7 1982 2010
CHE 0.91 0.17 0.00 0.16 0.57 19.1 0.3 17.5 63.2 1995 2013
CZE 2.47 0.25 1.06 0.04 1.12 10.0 42.9 1.8 45.4 1994 2014
DEU 0.57 0.17 0.25 0.08 0.06 30.2 44.7 14.9 10.2 1992 2014
DNK 1.74 0.38 0.64 0.20 0.53 21.6 36.9 11.4 30.2 1967 2013
ESP 0.47 0.39 1.08 0.13 -1.13 83.4 230.8 27.1 -241.3 1996 2011
EST 5.17 0.49 2.45 0.21 2.01 9.4 47.5 4.1 39.0 1996 2013
FIN 1.87 0.46 0.55 0.52 0.34 24.6 29.2 28.0 18.3 1976 2014
FRA 2.29 0.47 0.91 0.15 0.77 20.5 39.5 6.4 33.6 1961 2014
GBR 1.70 0.42 0.76 0.13 0.39 24.8 44.8 7.5 23.0 1981 2014
GRC 0.78 0.36 1.42 0.07 -1.08 46.4 181.3 9.5 -137.2 1996 2013
HUN 1.82 0.47 0.44 0.20 0.71 26.0 24.3 11.0 38.7 1996 2013
IRL 3.48 0.27 1.70 0.45 1.05 7.9 48.9 13.0 30.3 1996 2013
ISL 1.98 0.45 1.11 0.09 0.34 22.4 56.1 4.4 17.1 1998 2011
ISR 1.12 0.44 0.21 0.02 0.45 39.1 18.6 1.8 40.5 1996 2014
ITA 1.18 0.53 0.55 0.07 0.03 45.0 46.9 5.7 2.4 1971 2014
KOR 4.30 0.87 2.57 0.40 0.45 20.2 59.8 9.4 10.5 1970 2013
LUX 0.63 0.56 0.25 0.23 -0.41 89.3 39.9 36.7 -65.8 1997 2012
MEX 0.72 0.25 1.57 0.00 -1.10 35.0 219.0 -0.3 -153.6 2004 2011
NLD 0.69 0.29 0.45 0.15 -0.20 42.0 64.7 22.1 -28.8 1981 2014
NOR 2.46 0.38 0.60 0.17 1.30 15.5 24.4 7.1 53.0 1971 2013
NZL 0.41 0.04 0.91 0.15 -0.68 9.5 219.1 35.6 -164.2 1972 2011
POL 3.24 0.43 1.60 0.07 1.14 13.3 49.3 2.1 35.2 1996 2013
PRT 0.91 0.49 0.96 0.06 -0.60 53.9 105.3 6.7 -65.9 1996 2013
SVK 2.81 0.41 0.41 0.06 1.93 14.7 14.5 2.2 68.6 1996 2013
SVN 2.11 0.29 0.55 0.11 1.14 14.0 26.3 5.4 54.3 1996 2013
SWE 2.14 0.20 0.90 0.09 0.96 9.1 41.8 4.4 44.7 1993 2013
USA 1.63 0.36 0.56 0.13 0.57 22.3 34.5 8.1 35.0 1950 2014
OECD 1.75 0.37 0.85 0.15 0.38 20.9 48.6 8.7 21.8

Notes: Growth rates are computed by 100× (ln(xt)− ln(xs))/(t− s), where t and s refers to final and initial
point. OECD refers to average.

[165]



Table C5: Growth Accounting with χ = χ̂

Growth rates Percent explained time
country y h k z tfp h k z tfp s t

AUS 1.51 0.10 0.70 0.08 0.63 6.6 46.0 5.4 42.0 1985 2012
AUT 1.39 0.35 0.41 0.08 0.55 25.0 29.5 5.7 39.9 1977 2014
BEL 0.66 0.25 0.20 0.06 0.16 37.6 30.1 8.7 23.7 1996 2014
CAN 1.14 0.37 0.63 0.05 0.10 32.1 55.4 4.2 8.3 1982 2010
CHE 0.91 0.18 0.00 0.07 0.66 20.0 0.3 7.3 72.4 1995 2013
CZE 2.47 0.25 1.06 0.03 1.14 10.3 42.7 1.1 46.0 1994 2014
DEU 0.57 0.18 0.25 0.03 0.10 31.3 44.4 6.0 18.4 1992 2014
DNK 1.74 0.39 0.64 0.07 0.64 22.3 36.6 4.3 36.7 1967 2013
ESP 0.47 0.40 1.08 0.06 -1.06 85.4 229.5 12.0 -226.9 1996 2011
EST 5.17 0.49 2.45 0.14 2.09 9.5 47.4 2.7 40.4 1996 2013
FIN 1.87 0.47 0.54 0.27 0.58 25.2 29.1 14.6 31.2 1976 2014
FRA 2.29 0.49 0.90 0.06 0.84 21.4 39.1 2.7 36.8 1961 2014
GBR 1.70 0.43 0.76 0.07 0.44 25.4 44.6 3.9 26.1 1981 2014
GRC 0.78 0.37 1.41 0.04 -1.04 47.5 180.0 4.8 -132.3 1996 2013
HUN 1.82 0.48 0.44 0.12 0.78 26.4 24.2 6.6 42.8 1996 2013
IRL 3.48 0.29 1.69 0.20 1.30 8.3 48.7 5.7 37.4 1996 2013
ISL 1.98 0.46 1.11 0.03 0.38 23.0 56.1 1.8 19.1 1998 2011
ISR 1.12 0.47 0.21 0.00 0.45 41.5 18.3 0.4 39.8 1996 2014
ITA 1.18 0.54 0.55 0.03 0.06 46.0 46.6 2.5 4.9 1971 2014
KOR 4.30 0.89 2.55 0.23 0.63 20.8 59.3 5.3 14.6 1970 2013
LUX 0.63 0.58 0.25 0.09 -0.29 91.4 39.8 14.7 -45.8 1997 2012
MEX 0.72 0.25 1.57 0.00 -1.10 35.1 218.9 -0.2 -153.8 2004 2011
NLD 0.69 0.30 0.44 0.05 -0.11 43.7 64.2 7.3 -15.3 1981 2014
NOR 2.46 0.39 0.60 0.07 1.40 16.0 24.2 2.8 57.0 1971 2013
NZL 0.41 0.04 0.91 0.07 -0.60 9.7 218.9 17.3 -145.9 1972 2011
POL 3.24 0.44 1.59 0.04 1.17 13.5 49.1 1.3 36.1 1996 2013
PRT 0.91 0.50 0.96 0.03 -0.58 54.8 104.8 3.8 -63.5 1996 2013
SVK 2.81 0.42 0.40 0.04 1.94 14.9 14.4 1.5 69.1 1996 2013
SVN 2.11 0.30 0.55 0.06 1.20 14.3 26.1 2.7 56.8 1996 2013
SWE 2.14 0.21 0.89 0.05 1.00 9.6 41.6 2.3 46.5 1993 2013
USA 1.63 0.38 0.56 0.05 0.65 23.1 34.3 3.1 39.5 1950 2014
OECD 1.75 0.38 0.85 0.07 0.45 21.5 48.4 4.2 26.0

Notes: Growth rates are computed by 100× (ln(xt)− ln(xs))/(t− s), where t and s refers to final and initial
point. OECD refers to average.
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