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Chapter 1

Introduction

A central theme in operations management is matching supply with demand.

On the supply side, in order to achieve better market coverage and higher profit,

many firms have expanded their product lines and started to offer differentiated prod-

ucts to various demand segments. However, the complexity of the supply-demand

matching problem increases dramatically as more classes of products are introduced.

To mitigate the risk of the mismatches between supply and demand, many firms use

capacity or inventory flexibility to satisfy uncertain demand from multiple classes of

consumers. In particular, consumers whose first-choice product is no longer avail-

able might be upgraded by the firm using a superior product. Such a practice takes

advantage of risk pooling and results in several immediate benefits: First, it gener-

ates additional revenue by serving more demand; second, it increases service level by

reducing lost sales; third, it may lead to a lower inventory investment by hedging

against demand uncertainty. However, for many applications, the capacity/product

allocation has to overcome two obstacles: First, firms usually assign capacity before

demand is fully known as demand arrives over time; second, firms may not be able

to replenish capacity before the end of the selling season due to a long lead time.

On the demand side, consumers are often heterogeneous in terms of product pref-

erence, taste of quality, and sophistication in decision-making. When firms offer mul-

tiple differentiated products to market, consumers will make their product selection

decisions based on their individual preferences as well as the product prices. More-

over, when firms use product upgrade as an operational strategy, different consumers
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may have different perceptions of such a practice. For instance, a naive consumer

may ignore the potential upgrading opportunity, while an opportunistic consumer

may intentionally choose the product that is more likely to be sold out, hoping to

receive a free upgrade. Such a heterogeneity clearly has an impact on firms’ optimal

selling strategies, including product differentiation, pricing, and upgrading policy.

This dissertation is devoted to studying the upgrading practice in capacity man-

agement, while taking the aforementioned factors into account. There are three parts

in this dissertation: Chapter 2 studies firms’ capacity management with upgrading.

In this chapter, we focus on the firms’ capacity investment and allocation decisions

in a dynamic setting. The demand is assumed to be exogenously given. Chapter 3

examines firms’ product differentiation and pricing strategies when consumer hetero-

geneity is taken into account. In this chapter, consumer decisions are endogenized.

Chapter 4 extends the model in Chapter 3 by considering an upgrading problem where

the firm controls the product differentiation by varying the upgrading probability.

The dynamic capacity management problem in Chapter 2 is modelled as follows.

Consider a firm selling N products with differentiated quality in a fixed horizon con-

sisting of T periods. Consumers, who randomly arrive in each period, are divided

into N classes based on their first-choice products. In case of stock-out, the consumer

could be upgraded to a higher quality product at no extra charge. Unsatisfied de-

mand is backlogged and the firm incurs a backlog penalty cost. The firm makes two

decisions: capacity investment at the beginning of the horizon and capacity allocation

in each period throughout the horizon. We characterize the structure of the optimal

allocation policy, which represents a Parallel and Sequential Rationing (PSR) policy.

Then we propose a heuristic that adapts certainty equivalence control (CEC) to ex-

ploit the PSR properties and overcomes the curse of dimensionality in this dynamic

programming model. Numerical studies demonstrate that the heuristic is efficient

and yields a close-to-optimum performance. With the help of the heuristic, we de-

rive several insights into the dynamic capacity management problem using extensive

numerical experiments.
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Chapter 3 and Chapter 4 complement Chapter 2 by shifting the focus to firms’

product differentiation and pricing decisions. Specifically, these two chapters study a

firm’s optimal strategies when selling two differentiated products, the regular prod-

uct and the premium product, to heterogeneous consumers. A single-period model

is proposed where the firm is a monopolist but faces certain capacity constraints.

Consumers arrive to the market and choose which product to purchase (or not to

purchase anything). The firm may adjust product differentiation by varying the

add-on services attached to the regular product. There are two types of consumers,

naive and opportunistic, who may place different valuations on the add-on services.

For example, when the firm offers the free product upgrade as an add-on service, a

naive consumer may be unaware of or unable to evaluate such a potential benefit;

in contrast, an opportunistic consumer may change her product selection decision

after incorporating the potential upgrading opportunity. In Chapter 3, we examine

how product differentiation caused by add-on services affects firms’ pricing decisions

and profits. We find that depending on problem situations, the firm’s profit can be

improved by either reducing or increasing product differentiation. Similarly, altering

the consumer mix (the fraction of naive consumers) may influence the firm’s profit

in both directions. In addition, the firm’s optimal product differentiation and con-

sumer mix decisions hinge upon its capacity limits. In fact, the capacity constraint

on the premium product can serve as an effective device in segmenting the two types

of consumers.

Chapter 4 takes a step forward by developing a more sophisticated model to en-

dogenize the upgrading probability. In reality, an opportunistic consumer makes her

purchase decision in anticipation of the potential product upgrade, whose probability

depends on various factors including firms’ available capacities and other consumers’

decisions. In Chapter 4, we consider a random market size; in addition, we follow

the rational expectations paradigm by assuming the opportunistic consumers can ra-

tionally predict the upgrading probability. It has been found that the opportunistic

behavior can be either beneficial or detrimental to the firm depending on model pa-

3



rameters. For a given fraction of the opportunistic consumers, we also investigate the

firm’s optimal percentage of the leftover premium capacity to be used for upgrading.

Numerical analysis shows that the optimal percentage may vary from 0 to 100% de-

pending on the problem situations. This indicates that the firm needs to be careful

when determining the upgrading frequency.
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Chapter 2

Dynamic Capacity Management with Upgrading

2.1 Introduction

Driven by intensified market competition and rapidly-changing consumer trends,

many firms have expanded their product lines to cater to different customer seg-

ments. On the one hand, by offering products with a wide range of quality, design

and characteristics, firms can reach more consumers, generate additional sales, and

extract higher profit margins. On the other hand, it has caused significant difficul-

ties in matching supply with demand because the demand is less predictable at the

individual segment level than at the aggregate level. Various operational strategies

(e.g., postponement, component commonality, modular design) have been proposed

for firms to enjoy the benefit of product differentiation while mitigating the risk of

mismatches between supply and demand. This chapter studies the influential practice

of upgrading, where products with higher ranks can be used to satisfy demand for

a lower product that is sold out. Such practice takes the advantage of risk pooling

(product substitution essentially allows product/demand pooling), which results in

several immediate benefits: first, it increases revenue by serving more demand; sec-

ond, it enhances customer service by reducing lost sales; third, it may lead to lower

inventory investment by hedging against demand uncertainty.

The practice of upgrading or substitution has been widely adopted in the business

world. In the automobile industry, firms may shift demand for a dedicated capac-

ity to a flexible capacity when the dedicated capacity is constrained (Wall 2003).
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In the semiconductor industry, faster memory chips can substitute for slower chips

when the latter are no longer available (Leachman 1987). More examples in produc-

tion/inventory control settings can be found in Bassok et al. (1999) and Shumsky

and Zhang (2009). Similar practice is ubiquitous in the service industries as well.

For instance, airlines may assign business-class seats to economy-class passengers, car

rental companies may upgrade customers to more expensive cars, and hotels may use

luxury rooms to satisfy demand for standard rooms.

Both practitioners and academics surely understand the importance of the upgrad-

ing practice. Substantial research has been conducted on how to manage upgrading

in a variety of problem settings. Here we contribute to this large body of litera-

ture by studying a dynamic capacity management problem under general upgrading

structure. For convenience, we use the terms “product” and “capacity” exchangeably

throughout the chapter, and similarly for “upgrading” and “substitution” (strictly

speaking, upgrading is one-way substitution). A brief description of our problem is

as follows. Consider a firm selling N products with differentiated quality in a fixed

horizon consisting of T periods. There are N classes of customers who arrive ran-

domly in each period. Each customer requests one unit of the product; in the case

of stock-out, the customer can be satisfied with a higher quality product at no ex-

tra charge. Unsatisfied demand is backlogged and the firm incurs a backlog penalty

cost. The firm needs to first determine the procurement quantity of each product at

the beginning of the horizon, and then decide how to distribute the products among

incoming customers. Due to long ordering lead time, the firm cannot replenish in-

ventory before the end of the horizon; as a result, the firm must dynamically allocate

the products over time, before observing future demand.

This chapter represents an extension of the recent work by Shumsky and Zhang

(2009, referred to as SZ hereafter). As one of the first studies that incorporate dynamic

allocation into substitution models, SZ make a simplifying assumption to maintain

tractability. Specifically, they consider single-step upgrading, i.e., a demand can only

be upgraded by the adjacent product. Clearly, this is a restrictive assumption because
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in many practical situations firms may have incentives to use multi-step upgrading

to satisfy demand. Thus there is a need for a theoretical model that captures the

realistic upgrading structure. The purpose of this chapter is to fill such a gap in

the literature. While relaxing the single-step upgrading assumption, we attempt to

address the following questions as in SZ: What is the optimal initial capacity? How

should the products be allocated among customers over time? Are there any effective

and efficient heuristics for solving the capacity management problem? The main

findings from this chapter are summarized as follows.

We start with the dynamic capacity allocation problem. In each period, the firm

needs to use the available products to satisfy the realized demand. When a product is

depleted while there is still demand for that product, the firm may use upgrading to

satisfy the customers. How to make such upgrading decisions is a key in substitution

models. With the general upgrading structure, the optimal allocation policy is com-

plicated by the fact that the upgrading decisions within a period are interdependent.

Under the backlog assumption, we show that a Parallel and Sequential Rationing

(PSR) policy is optimal among all possible policies. The PSR policy consists of two

stages: In stage 1, the firm uses parallel allocation (i.e., demand is satisfied by the

same-class capacity) to satisfy demand as much as possible. Then in stage 2, the firm

sequentially upgrades leftover demand, starting from the highest demand class; when

upgrading a given demand class, the firm starts with the lowest capacity class. The

optimality of such a sequential rationing scheme depends on an important property.

That is, when using a particular class of capacity to upgrade demand, the upgrading

decision does not depend on the status of the portion of the system below that class.

The PSR can greatly reduce the computational complexity because the upgrading

decisions do not have to be solved simultaneously. As an extension, we also consider

the multi-horizon model with capacity replenishment and show that the PSR policy

remains optimal. Our theoretical results, though intuitive, turn out to be very chal-

lenging to prove. Indeed, our proofs rely on intricate arguments and fully exploit the

special structure of the upgrading problem.

7



Despite the simplified solution procedure given by the PSR, solving the problem

is challenging due to the curse of dimensionality. We search for fast heuristics that

perform well for the firm. We present a heuristic that adapts certainty equivalence

control (CEC) to exploit the PSR properties. Such a heuristic is more appealing than

the commonly used CEC heuristic, and we call it refined certainty equivalence control

(RCEC) heuristic. Through extensive numerical experiments, we find that the RCEC

heuristic delivers nearly optimal profit for the firm: the average profit gap is less than

0.8% among all the experiments and the number is 2.76% at the 90th percentile.

The RCEC heuristic enables us to solve large problems effectively. Thus we can use

numerical studies to derive several insights into the dynamic capacity management

problem. First, compared to single-step upgrading, general upgrading (multi-step

upgrading) can be highly valuable, especially when the initial capacities are severely

imbalanced. Second, given that the optimal upgrading policy is used, the firm’s

profit is not sensitive in the initial capacity. For instance, either the newsvendor

capacities (calculated assuming no upgrading) or the static capacities (calculated

assuming complete demand information) provide nearly optimal profit for the firm.

However, the negative impact of using suboptimal allocation policies could be quite

significant. These findings suggest that from the practical perspective, deriving the

optimal allocation policy should receive a higher priority than calculating the optimal

initial capacity.

The remainder of the chapter is organized as follows. Section 2.2 reviews the

related literature. Section 2.3 describes the model setting. The optimal allocation

policy is characterized by Sections 2.4 and 2.5. Section 2.6 extends the base model

to multiple horizons with capacity replenishment. Section 2.7 proposes the RCEC

heuristic and Section 2.8 presents the findings from numerical studies. The chapter

concludes with Section 2.9. All proofs are given in the Appendices.
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2.2 Literature Review

This chapter falls in the vast literature on how to match supply with demand

when there are multiple classes of uncertain demand. To facilitate the review, we

may divide this literature into four major categories using the following criteria: (1)

whether there are multiple capacity types or a single capacity type; and (2) whether

the nature of capacity allocation is static or dynamic. A problem is called static

if capacity allocation can be made after observing full demand information. The

category that involves the single capacity and static allocation essentially reduces to

the newsvendor model that is less relevant. Thus, below our review focuses on the

representative studies from the other three categories.

The first category of studies involves multiple capacity types and static capacity

allocation. In these studies, firms invest in capacities before demand is realized and

then allocate capacities to customers after observing all demand. Due to the existence

of multiple capacity types, the issue of substitution naturally arises. Van Mieghem

(2003) and Yao and Zheng (2003) provide comprehensive surveys of this category of

studies, which can be further divided into two groups. One group of papers studies the

optimal capacity investment and/or allocation decisions under substitution. Parlar

and Goyal (1984) and Pasternack and Drezner (1991) are among the first to consider

the simplest substitution structure with two products. Bassok et al. (1999) extend the

problem to the general multi-product case. Hsu and Bassok (1999) introduce random

yield into the substitution problem. By assuming single-level substitution, Netessine

et al. (2002) study the impact of demand correlation on the optimal capacity levels.

Van Mieghem and Rudi (2002) propose the notion of newsvendor networks that con-

sist of multiple newsvendors and multiple periods of demand. Similar settings can be

found in the studies on multi-period inventory models with transshipment, including

Robinson (1990), Archibald et al. (1997), and Axsäter (2003). Although these stud-

ies involve multiple periods, replenishment is allowed and capacity allocation in each

period is made with full demand information. The other group of studies focuses on

9



the value of capacity flexibility. Fine and Freund (1990) and Van Mieghem (1998)

consider two types of capacities (dedicated and flexible) and study the optimal in-

vestment in flexibility. Bish and Wang (2004) and Chod and Rudi (2005) incorporate

pricing decisions when studying the value of resource flexibility. Jordan and Graves

(1995) investigate a manufacturing flexibility design problem and discover the well-

known chaining rule: Limited capacity flexibility, configured in a chaining structure,

almost delivers the benefit of full flexibility. Their classic work on the design of flex-

ibility has inspired numerous follow-up studies. For example, recently, Chou et al.

(2010, 2011) have provided analytical evaluations of the chaining structure for both

symmetric and asymmetric problem settings with large scales.

The second category of related literature studies the allocation of a single capac-

ity to multi-class demand in a dynamic environment. This category dates back to

the early work by Topkis (1968), who characterizes the optimal rationing policy that

assigns capacity to different customer classes over time. Since then similar rationing

policies have been applied to various industry settings. For instance, many revenue

management studies focus on how to maximize firms’ revenue through capacity ra-

tioning when there are multiple fare classes for a single seat type; see Talluri and van

Ryzin (2004b) for a review of this literature. A stream of studies on production and

inventory control has also derived threshold policies when serving multiple customer

classes; see Ha (1997, 2000), de Véricourt et al. (2001, 2002), Deshpande et al. (2003),

Savin et al. (2005), Ding et al. (2006) and the references therein.

The third category of studies involves multiple capacity types and dynamic capac-

ity allocation. It differs from the first category mainly in that firms need to allocate

capacities to customers without full demand information. There are relatively few

papers in this category. Shumsky and Zhang (2009) consider a dynamic capacity

management problem with single-step upgrading. They characterize the optimal up-

grading policy and provide easy-to-compute bounds for the optimal protection limits

that can help solve large problems. Xu et al. (2011) consider a two-product dy-

namic substitution problem where customers may or may not accept the substitution
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choice offered by seller. This chapter extends Shumsky and Zhang (2009) to allow

general upgrading. We show that a sequential upgrading policy is optimal for such

a problem and provide fast heuristics that can effectively solve the optimal capac-

ity investment and allocation decisions. Our problem can be framed as a network

revenue management model with full upgrading, where the fares are fixed and the

incidence matrix is the identity matrix (see Gallego and van Ryzin 1997). Gallego

and Stefanescu (2009) introduce two continuous optimal control formulations for ca-

pacity allocation but concentrate on the analysis of deterministic cases. Steinhardt

and Gönsch (2012) study a similar network revenue management problem but al-

low at most one buying request in each period. In contrast, this chapter considers

stochastic and batch demand arrivals in each period. Our work is also related to the

studies on airline revenue management that involve multiple fare products. Talluri

and van Ryzin (2004a) study revenue management under a general customer choice

model. Zhang and Cooper (2005) consider the selling of parallel flights with dynamic

customer choice among the flights. More recent developments include Liu and van

Ryzin (2008a) and Zhang (2011). In these studies, firms need to decide the subset of

products from which a customer can choose from; while in this chapter, firms decide

how to allocate capacities to realized demand. Therefore, both the model settings

and results are quite different between these studies and this chapter.

2.3 Model

Consider a firm managing N types of products to satisfy customer demand. The

products are indexed in decreasing quality so that product 1 has the highest quality

while productN has the lowest quality. There areN corresponding classes of customer

demand, i.e., a customer is called class j if she requests product j (1 ≤ j ≤ N). The

sales horizon consists of T discrete periods. The initial capacities of the products

must be determined prior to the first period and no capacity replenishment is allowed

during the sales horizon. (In Section 2.6, we extend the model to consider multiple
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horizons and allow for replenishment.) Customers arrive over time and the demand in

each period is random. Let Dt = (dt1, d
t
2, · · · , dtN)ᵀ ∈ <N+ denote the demand vector

for period t (1 ≤ t ≤ T ), where superscript ᵀ stands for the transpose operation.

Throughout the chapter we use bold letters for vectors and matrices, and use (Z)i for

the i-th component of vector Z (or (Z)ij for the corresponding element in matrix Z).

For instance, (Dt)i = dti is the demand for product i in period t. We assume demand is

independent across periods; however, demands for different products within a period

can be correlated.

Let rj be the revenue the firm collects from satisfying a class j customer. If

product j is out of stock, then a class j customer could be upgraded at no extra

charge by any product i as long as i < j. If a class j demand cannot be satisfied

in period t, then it will be backlogged to the next period and the firm has to incur

a goodwill cost gj
1. Define G = (g1, · · · , gN) ∈ <N+ . To incorporate service settings

like the car rental industry, we include a usage cost denoted by ui for product i. We

make the following assumptions:

Assumption 2.3.1 (A1) r1 > r2 > · · · > rN .

Assumption 2.3.2 (A2) g1 > g2 > · · · > gN .

Assumption 2.3.3 (A3) u1 > u2 > · · · > uN .

We may define αij = rj + gj − ui (i ≤ j) as the profit margin for satisfying a class

j customer using product i. Based on the above assumptions, we know αij > αik

and αjk > αik (i < j < k). In other words, for a given capacity, it is more profitable

to satisfy a higher class of demand; for a given demand, it is more profitable to

use a lower class of capacity. These assumptions are similar to but more general

than those made in SZ: we have relaxed the single step upgrading assumption in SZ

(αij > 0 only if j = i + 1) and added Assumption (A2) about the backorder costs.

1The backorder assumption is used mainly for tractability. Notice that an unmet demand could be
upgraded in any subsequent periods, so it is reasonable to assume that the customers are willing to
wait for potential upgrades, i.e., unsatisfied demands can be backlogged.
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Note that the above assumptions do not require all αij to be positive. Specifically, if

αij < 0 for some i and j, then the assumptions imply that α1j < · · · < αij < 0 and

αiN < · · · < αij < 0, which are reasonable in practice.

The firm’s objective is to maximize the expected profit over the sales horizon.

There are two major decisions for the firm. First, the firm needs to determine the

initial capacity before the start of the selling season; second, the firm needs to allocate

the available capacities to satisfy demands in each period. Let C = (c1, · · · , cN) ∈ <N+
denote the capacity cost vector, Xt = (xt1, x

t
2, · · · , xtN)ᵀ ∈ <N+ the starting capacities in

period t, and D̃t = (d̃t1, d̃
t
2, · · · , d̃tN)ᵀ ∈ <N+ the backordered demand at the beginning

of period t. We use Yt for the capacity allocation matrix in period t, i.e., (Yt)ij = ytij

is the amount of product i offered to satisfy class j demand (yij = 0 if i > j). Define

Θt(Xt, D̃t) as the optimal revenue-to-go function in period t given the state variable

(Xt, D̃t). Then the buyer’s problem can be formulated as follows:

max
X1∈<N+

Π(X1) = max
X1∈<N+

{
Θ1(X1,0)−CX1

}
, (2.1)

and for each period t (1 ≤ t ≤ T ):

Θt(Xt, D̃t) = E
Dt

{
Θt(Xt, D̃t|Dt)

}
= E

Dt

{
max
Yt

[
H(Yt|D̃t; Dt) + Θt+1(Xt+1, D̃t+1)

]}
,

(2.2)

where

H(Yt|D̃t; Dt) =
∑

1≤i≤j≤N

αijy
t
ij −G(D̃t + Dt), (2.3)

Xt+1 = Xt −Yt1 ≥ 0, (2.4)

D̃t+1 = D̃t + Dt − (Yt)ᵀ1 ≥ 0, (2.5)

Yt ≥ 0, 1 = (1, 1, · · · , 1)ᵀ.

We assume the leftover products have zero value at the end of the selling season,

so ΘT+1 ≡ 0. Note that the optimal revenue-to-go function Θt(Xt, D̃t) is recursively

defined in (2.2). Given the allocation decision Yt, H(Yt|D̃t; Dt) in (2.3) denotes
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the single period revenue, which is the difference between the upgrading revenue and

the goodwill cost. The state transition between two consecutive periods is governed

by (2.4) and (2.5), which represent two constraints for the allocation decision Yt in

period t.

2.4 Parallel and Sequential Rationing (PSR)

This section starts analyzing the upgrading problem given in (2.1). First we intro-

duce several useful definitions and qualitatively characterize the optimal allocation

policy. The formal optimality proof will be presented in the next section. As the first

step, since

Π(0) = −G
T∑
t=1

(T + 1− t)E[Dt] > −∞,

lim
X1→∞

Π(X1) =
T∑
t=1

N∑
i=1

(ri − ui)E[dti]− lim
X1→∞

CX1 = −∞,

(2.6)

and the fact that Π(X1) is continuous in X1 ∈ <N+ , we know there exists a finite

X∗ ∈ <N+ that solves the optimization problem in (2.1).

From Murty (1983) and Rockafellar (1996), for any demand realization DT in

period T , it is straightforward to see ΘT (XT , D̃T |DT ) is concave in the state variable

(XT , D̃T ), which are the right-hand side variables in the linear program defined by

(2.2). Since concavity is preserved under the expectation operation on Dt (1 ≤ t ≤ T )

and the maximization operation with respect to the allocation decision Yt (see, for

example, Simchi-Levi et al. 2014, Proposition 2.1.3 and 2.1.15), Θt is again concave

in (Xt, D̃t) in each period t. Clearly, the function

Θ̂t(Yt|Xt, D̃t; Dt) = H(Yt|D̃t; Dt) + Θt+1(Xt+1, D̃t+1), (2.7)

representing the revenue function in period t given state (Xt, D̃t) and demand real-

ization Dt, is also concave in the allocation decision Yt. The concavity property is

summarized in the following proposition whose formal proof is omitted.
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Proposition 2.4.1 In period t, Θt(Xt, D̃t) is concave in (Xt, D̃t), and

Θ̂t(Yt|Xt, D̃t; Dt) is concave in Yt.

Notice that the allocation decision Yt is constrained by a bounded polyhedron

defined by (2.4-2.5) and Θ̂t in (2.7) is continuous in Yt. Thus, there always exists

an optimal allocation to the general upgrading problem in each period t. For a

given state (Xt, D̃t) and demand realization Dt, there are two types of decisions:

parallel allocations ytii for all i (1 ≤ i ≤ N) and upgrading decisions ytij for classes

i and j (1 ≤ i < j ≤ N). These are dynamic decisions because they will not only

determine the revenue H in the current period but also affect the future revenue

Θt+1(Xt+1, D̃t+1).

It is straightforward to solve the parallel allocation problem. In our model, the

maximum revenue we can get from a unit of capacity i is αii through the parallel

allocation, i.e., capacity i is used to fulfill demand class i. It is suboptimal to satisfy

demand from lower classes using capacity i when there is still unmet demand i.

Further, the expected value of carrying over capacity i to the next period will not

exceed αii, either. Hence the optimal strategy is to use the parallel allocation as much

as possible. That is, ytii = min(dti + d̃ti, x
t
i). Another implication is that in the state

variable (Xt, D̃t), class i (1 ≤ i ≤ N) cannot be positive in both Xt and D̃t. Thus,

we can use a single variable Mt = (Xt − D̃t) = (mt
1,m

t
2, · · · ,mt

N)ᵀ to represent the

state at the beginning of period t (before the parallel allocation): mt
i > 0 means there

is positive capacity for i while mt
i < 0 means there is backordered demand for i. In

the rest of the chapter we will use Mt and (Xt, D̃t) exchangeably.

The more challenging question is how to make the upgrading decisions after the

parallel allocation. The state after the parallel allocation in period t is (mt
1−dt1,mt

2−

dt2, · · · ,mt
N − dtN)ᵀ. Note that mt

i − dti > 0 means that there is leftover capacity i,

while mt
i−dti < 0 implies that there is unsatisfied demand i and capacity i must have

been depleted. The firm needs to decide how much demand should be upgraded using

higher capacities. This is equivalent to a rationing problem, i.e., how much capacity

should be protected to satisfy future demand. The upgrading problem in our model is
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different from the one studied in SZ. Particularly, with the single-step assumption in

SZ, when capacity i is depleted, classes above i and those below i become independent

of each other in future periods, and thus the upgrading problem is greatly simplified

because all the upgrading decisions can be solved independently. However, with

the general upgrading structure in our model, the upgrading decisions after parallel

allocation are no longer isolated. In this case, we may have to solve all decisions

simultaneously, which could be computationally intensive. Fortunately, close scrutiny

shows that the following two observations can greatly reduce the complexity of the

upgrading problem.

First, the upgrading decision ytij of using capacity i to upgrade demand j is in-

dependent of the demands and the capacities below class j. To explain, consider the

last unit of capacity i that could be used to upgrade an unmet demand j. If this unit

is used for upgrading, the immediate value obtained is αij. If such unit is carried over

to the next period, it means that there is a corresponding unsatisfied demand j left

to the next period. Notice that due to the existence of the backlogged demand j, the

specific unit of capacity i will never be used to upgrade the demand below class j in

any future period. This implies that we can solve the upgrading problem sequentially

by starting from the highest class j with mt
j − dtj < 0.

Second, for demand class j with mt
j − dtj < 0, the upgrading decisions ytij, i =

1, ..., j − 1 can also be solved sequentially in i. Consider two capacity classes i and

k (i < k < j) with positive capacities after the parallel allocation. Since αij < αkj

by assumption, we should first evaluate the possibility of using capacity k to upgrade

demand j. After that, we consider using capacity i to satisfy demand j. Interestingly,

we do not need to consider capacity i anymore if all demand in class j is satisfied by

capacity k or we do not use full capacity k to upgrade demand j.

Based on these observations, the upgrading problem can be sequentially solved as

follows:

Step 1 : Identify the smallest j (1 ≤ j ≤ N) with mt
j − dtj < 0 (the highest class

with unmet demand);

16



Step 2 : For the largest i (the lowest capacity class) less than j with mt
i − dti > 0,

determine the upgrading quantity ytij in period t (or equivalently, the quantity of

capacity i to be protected for the next period). When solving ytij, we can ignore the

classes lower than j;

Step 3 : Repeat Step 2 until all capacity classes available for upgrading demand j

have been considered;

Step 4 : Repeat Step 1 until all unmet demand classes have been considered.

To summarize, the firm may allocate capacity using the so-called Parallel and

Sequential Rationing (PSR) policy. Under such a policy, the firm first performs the

parallel allocation on each class to satisfy new demands, and then sequentially decides

upgrading quantities for classes with unmet demand.

The most crucial decision in the sequential upgrading procedure is to determine

ytij in Step 2. Consider the decision about how much capacity i should be used to

upgrade demand j. It is clear that as long as the current upgrade revenue αij is

greater than the expected marginal value in the future, capacity i should be used to

upgrade demand j. Such an upgrading or rationing decision essentially specifies the

protection levels for the capacities. Let pij be the optimal protection level of capacity

i with respect to demand j, i.e., the firm should stop upgrading demand j by capacity

i when the capacity level of i drops to pij. Since Θt(Xt, D̃t) is concave in (Xt, D̃t)

by Proposition 2.4.1, the expected marginal value of capacity i is monotonically in-

creasing as capacity i decreases. Hence, the protection level pij in period t is the

unique lower bound above which using capacity i to upgrade demand j is profitable.

Define ∂
∂p

Θt =
[

∂
∂p+

Θt, ∂
∂p−

Θt
]

as the subdifferential of Θt with respect to some vari-

able p, where ∂
∂p−

Θt and ∂
∂p+

Θt are the left and right derivatives, respectively. Let

Nt = (nt1, n
t
2, · · · , ntN)ᵀ denote the state of the system immediately before the epoch

of determining ytij. The optimal protection levels can be defined as follows.
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Definition 2.4.1 The optimal protection level pij ≥ 0 under state

Nt = (nt1, n
t
2, · · · , ntN)ᵀ is defined as

pij =

p if αij ∈ ∂
∂p

Θt+1(nt1, · · · , nti−1, p, 0, · · · , 0,−p, ntj+1, · · · , ntN),

0 if αij >
∂
∂p+

Θt+1(nt1, · · · , nti−1, p, 0, · · · , 0,−p, ntj+1, · · · , ntN)|p=0.

(2.8)

With the protection levels pij and Nt, the optimal upgrading decision ytij is simply

given by min
(
(nti − pij)+, (−ntj)+

)
where (x)+ = max(x, 0). Notice that there are

0’s between classes i and j since the PSR algorithm does not consider ytij if there

exists a class s (i < s < j) with positive capacity or unmet demand. When class

s has positive capacity, it is more profitable to upgrade demand j with capacity s

instead of capacity i, and it is unnecessary for us to consider ytij if there is capacity

s remaining after solving ytsj. When there is unmet demand for class s, capacity i

should upgrade demand s first, and it would be suboptimal to upgrade demand j if

class s still has unmet demand after upgrading ytis.

In the next section, we will show that

∂

∂p
Θt+1(nt1, · · · , nti−1, p, 0, · · · , 0,−p, ntj+1, · · · , ntN)

is independent of the values of (ntj+1, · · · , ntN). This implies that the upgrading deci-

sion ytij is independent of the demands and the capacities below class j. Later we can

see that when solving pij, it is sufficient to use the first i− 1 components of Mt−Dt

(i.e., the state of the system in period t after the parallel allocation) instead of Nt

(i.e., the state of the system prior to deciding ytij) in the PSR algorithm. This is

a unique and interesting property of the general upgrading problem, allowing us to

simultaneously and independently solve all protection levels based on Mt −Dt.

Before presenting the main results, we wish to further reduce the computation

in the general upgrading problem by exploring its structure. With the single-step

upgrading rule, SZ shows that whenever a capacity (say, i) is depleted, then the entire

problem decoupled into two independent subproblems, where the first subproblem

consists of products above i and the second consists of products below i (see Lemma
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4 in SZ). Under the full-upgrading rule, such a property in SZ clearly does not hold.

However, it can be shown that under certain conditions, our problem can also be

separated into independent subproblems, as stated in the next lemma.

Lemma 2.4.1 Consider an N-class general upgrading problem with state

Nt = (nt1, n
t
2, · · · , ntN)ᵀ in period t. If

∑i
s=k n

t
s ≤ 0 for all class k ≤ i, then the

problem can be separated into two independent subproblems: an upper part consisting

of classes (1, · · · , i), and a lower part consisting of classes (i+ 1, · · · , N).

For convenience, we say class i is separable if it satisfies the condition stated in

Lemma 2.4.1. Notice that nti ≤ 0 is not enough to split the N -class general upgrading

problem since there may be class k (k < i) which can upgrade demands in classes

(i+1, · · · , N). However, the condition in Lemma 2.4.1 determines that none of classes

(1, · · · , i) has enough capacity to upgrade the demand in (i+1, · · · , N) when optimal

upgrading is performed. Specifically, there may exist class k < i with positive capacity

which can upgrade the demand in (i+1, · · · , N), but it is more profitable for capacity

k to satisfy the demand in classes (k + 1, · · · , i) first, which will consume all of class

k’s capacity. Therefore, Lemma 2.4.1 asserts that the entire upgrading problem can

be simplified by decomposition under certain conditions. That is, the profit of the N -

class problem can be written as the sum of the profits from independent subproblems

(1, · · · , i) and (i+ 1, · · · , N) whenever class i is separable. The next section presents

the optimality proof and some useful properties of the PSR policy. These results

apply to all the subproblems as well as to the entire upgrading problem.

2.5 Optimality and Properties of PSR

2.5.1 Optimality

The optimality proof of the PSR policy is by induction. We begin with the last

period T . In the last period, since leftover capacities have no salvage value, the

optimal protection levels must be zero. Specifically, for a given demand realization,
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the upgrading problem in the last period can be viewed as a standard transportation

problem. In addition, the objective function has a special cost structure, i.e., αij >

αi,j+1, αij > αi−1,j for i ≤ j, and αij +αi′j′ = αij′ +αi′j if max(i, i′) ≤ min(j, j′). The

optimal solution can be readily obtained from the following lemma.

Lemma 2.5.1 The PSR algorithm solves the general upgrading problem (2.2) in pe-

riod T with all protection levels being 0.

The zero protection levels in the final period imply greedy upgrading. That is,

after the parallel allocation, the sequential rationing proceeds from class 1 to N and

upgrades the unmet demand by the lowest capacity classes as much as possible. Later

we will show that the PSR algorithm also solves the upgrading problem (2.2) in any

period t; however, the optimal protection levels are not necessarily zero.

To gain more understanding of the general upgrading problem, let us consider

the protection level pij (1 ≤ i < j ≤ N) in period T − 1. Since the optimal pij

is determined by the expected marginal value of ΘT in (2.8), we focus on how the

marginal value depends on the current state NT−1 in period T − 1. By Lemma

2.5.1, ΘT can be evaluated in the following three steps. First, we solve the upgrading

decisions within classes (1, · · · , i − 1); second, we satisfy the upgrading need that

arises within classes (i, · · · , j) (note we may use capacity k < i to upgrade demand);

finally, we use upgrading to satisfy the unmet demand within classes (j + 1, · · · , N).

Lemma 2.5.2 below characterizes the relation between the optimal protection level pij

in period T − 1 and the state NT−1. As a preparation, we first introduce the concept

of effective state.

Definition 2.5.1 Consider a state vector Nt = (nt1, n
t
2, · · · , ntN) in period t (1 ≤ t ≤

T ). For class r (1 ≤ r ≤ N), the effective state N̂t
r = (n̂t1, · · · , n̂tr, ntr+1, · · · , ntN) is

defined as the resulting state after applying the greedy upgrading for classes (1, · · · , r).

In fact, given any state Nt and its effective state N̂t
r, if we use h (1 ≤ h ≤ r)

to denote the highest class with n̂th > 0, then class h − 1 is separable in Nt. To

20



see this, note that given n̂th > 0, there is no upgrade between classes (1, · · · , h − 1)

and (h, · · · , r) when using the greedy upgrading. Thus, for all class k < h, we have∑h−1
s=k n

t
s ≤

∑h−1
s=k n̂

t
s ≤ 0 since there may be upgrade between classes (1, · · · , k − 1)

and (k, · · · , h− 1) when performing the greedy upgrading. Hence, h− 1 is separable,

and classes (1, · · · , h− 1) can be ignored in the subsequent allocation decisions.

Consider a state vector Nt = (nt1, · · · , ntN) in period t. For 1 ≤ i < j ≤ N , define

∆+−
ij Θt(Nt) =

∂

∂n+
i

Θt(Nt)− ∂

∂n−j
Θt(Nt), ∆−+

ij Θt(Nt) =
∂

∂n−i
Θt(Nt)− ∂

∂n+
j

Θt(Nt).

Then we have the following lemma.

Lemma 2.5.2 Consider an N-class general upgrading problem in period T − 1 with

state vector NT−1, where (nT−1
i+1 , · · · , nT−1

j−1 ) ≤ 0 and nT−1
j < 0. Then,

∆+−
ij ΘT (NT−1) = ∆+−

ij ΘT (N̂T−1
i−1 ), ∆−+

ij ΘT (NT−1) = ∆−+
ij ΘT (N̂T−1

i−1 ). (2.9)

In addition, they are independent of the values of (nT−1
j , · · · , nT−1

N ).

Notice that the protection level pij in (2.8) can be equivalently defined

∆+−
ij Θt+1(N) ≤ αij ≤ ∆−+

ij Θt+1(N),

where N = (nt1, · · · , nti−1, p, 0, · · · , 0,−p, ntj+1, · · · , ntN). Thus, Lemma 2.5.2 states

that the optimal protection level pij in period T − 1 is independent of the values of

(nT−1
j , · · · , nT−1

N ), while it is affected by the classes above i through the effective state

(n̂T−1
1 , · · · , n̂T−1

i−1 ). These results provide the rationale behind the sequential rationing

in the PSR algorithm. Clearly, they will significantly simplify the optimal solution

to the upgrading problem. We offer the following intuitive explanation of these re-

sults. First, we explain why ∆+−
ij ΘT (NT−1) and ∆−+

ij ΘT (NT−1) are independent of

(nT−1
j , · · · , nT−1

N ). Before deciding pij or yT−1
ij , without losing generality, we may label

all units of capacity i in an increasing order of importance, with the first unit having

the least importance (i.e., it must be used first in any subsequent period). Meanwhile,

the unsatisfied demand in class j can be treated as a waiting line, which will be sat-

isfied in the first-come first-served sequence. Note that deciding pij is equivalent to
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comparing αij with the expected value of capacity unit 1 in class i. Given the back-

order assumption, capacity unit 1 can only satisfy either a future demand in classes

(i, · · · , j− 1) or the first unit in the waiting line of class j. Hence, the expected value

of capacity unit 1 in class i is independent of states (nT−1
j+1 , · · · , nT−1

N ). Furthermore,

the above argument only relies on the fact that there exists unmet demand j. Thus,

the expected value of capacity unit 1 is also independent of nT−1
j , the length of the

waiting line in class j.

Next, we explain the equalities in (2.9). For any class k (1 < k < i) with positive

capacity, it would not upgrade demand i in any optimal policy if there exists back-

ordered demand r (k < r < i), which is more valuable for capacity k than demand

i. The remaining capacity of class k after upgrading all backordered demands in

classes (k + 1, · · · , i− 1) equals n̂T−1
k as defined in the effective state. Therefore, the

expected future value of capacity i in period T − 1 should equivalently depend on the

effective state (n̂T−1
1 , · · · , n̂T−1

i−1 ), which are non-negative when classes (1, · · · , N) are

not separable. Note that this argument applies to any period t.

Now we are in the position to use induction to prove the optimality of the PSR.

Proposition 2.5.1 1. The PSR algorithm solves the general upgrading problem

in period t;

2. For a state vector Nt with (nti+1, · · · , ntj−1) ≤ 0 and ntj < 0, we have

∆+−
ij Θt+1(Nt) = ∆+−

ij Θt+1(N̂t
i−1), ∆−+

ij Θt+1(Nt) = ∆−+
ij Θt+1(N̂t

i−1).

In addition, they are independent of the values of (ntj, · · · , ntN).

For any given period t under the PSR algorithm, the effective states of all inter-

mediate states for classes (1, 2, . . . , i−1) are the same before we exhaust the capacity

of class i. Thus, Proposition 2.5.1 implies that when solving pij, it is sufficient to

use the first i − 1 components of Mt − Dt, the state of the system in period t af-

ter the parallel allocation. Specifically, for any classes i and j (1 ≤ i < j ≤ N)
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with nti > 0 and ntj < 0, the protection level pij can be immediately determined by

∂
∂p

Θt+1(mt
1 − dt1, · · · ,mt

i−1 − dti−1, p, 0, · · · , 0,−p, 0, · · · , 0).

2.5.2 Properties of Protection Levels

After establishing the optimality of the PSR algorithm, we explore some important

properties related to the optimal protection levels from the PSR algorithm.

First, if both the initial capacity X1 and all demands are integer valued, similar

to SZ, we can prove that there exists an integer valued optimal policy generated by

the PSR algorithm.

Proposition 2.5.2 If initial capacity X1 and demand D1, · · · ,DT are integer valued,

there exists an integer valued optimal policy Y1, · · · ,YT derived by the PSR algorithm.

To further characterize the protection level pij defined in (2.8), we need to deal

with the marginal value of Θt with respect to each capacity level and unmet demand

level. Intuitively, one may think that the profit will be higher if there is an additional

unit of capacity i− 1 (1 < i ≤ N) rather than capacity i. But this is not necessarily

true. When making upgrading decisions, one more unit of capacity from the higher

class i− 1 always provides more flexibility, but such a flexibility does not necessarily

mean higher profit since αij > αi−1,j (i < j) by our model assumption. Similarly,

one more unit of demand in a lower class, which can be upgraded by more classes

of capacities, has similar advantage but can not guarantee greater profit because

αij < αi,j+1 (i ≤ j). However, we can provide some bounds on such profit differences.

With these bounds, we show two different monotone properties of the protection

levels. First, since lower demand has less value for any capacity, the protection level

should increase in the class index of demand.

Proposition 2.5.3 For the same (nt1, · · · , nti−1) in period t (1 ≤ t ≤ T ), pij ≤ pi,j+1

when i < j.
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Because the general upgrading problem in period T is a transportation problem,

ΘT (XT , D̃T ) is submodular in (XT ,−D̃T ) (see Topkis 1998). This implies the pro-

tection level pij in period T − 1 under state NT−1 is decreasing in (nT−1
1 , · · · , nT−1

i−1 ).

In fact, the same monotonicity holds in earlier periods.

Proposition 2.5.4 The optimal protection level pij (1 ≤ i < j ≤ N) in period

t (1 ≤ t ≤ T ) are decreasing in (nt1, · · · , nti−1).

For any class i (1 ≤ i ≤ N), this result assures that the more capacities (or less

back-ordered demands) in classes higher than i, the more upgrades can be offered

by class i. Note that larger (nt1, · · · , nti−1) means higher probability of demand i

being upgraded in remaining periods, which decreases the expected marginal value

of capacity i and gives class i a greater incentive to upgrade lower demands in the

current period.

It is noteworthy that although the result for the last period can be proved using

lattice programming in Topkis (1998), the commonly used preservation property of

supermodularity under optimization operations, Theorem 2.7.6 in Topkis (1998), does

not apply. Therefore, our proof relies heavily on the structure of the general upgrading

problem and fully utilizes the optimality of the PSR algorithm.

One may ask whether the optimal protection levels are decreasing over time, i.e,

the protection level would be lower if there are fewer periods to go. Interestingly,

though this is true in SZ, it does not hold in our upgrading problem. This is mainly

due to the existence of the backorder cost. Note that the purpose of the protection

levels is to balance the goodwill loss of carrying backorders and the revenue loss

of losing future demand from the same class. For early periods that are still far

away from the end of the horizon, because a backorder causes the goodwill loss in

each period until it is upgraded, the protection levels may be lower to avoid high

backorder costs; in contrast, when it is close to the end of the horizon, the protection

levels may come back up because carrying backorders will be less costly.
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We may use a 2-product 3-period example to explain this counter-intuitive result.

Let (2,−2) be the state after the parallel allocation, D2 = (0, 0) and D3 = (1, 0) with

probability 1. Working backwardly to solve the p12 in period 2, since

Θ3(2,−2)−Θ3(1,−1) = α12 − g2 < α12, Θ3(1,−1)−Θ3(0, 0) = α11 − g2,

we have p12 = 1 in period 2 if α11 − g2 > α12. Since D2 = (0, 0), there is

Θ2(2,−2)−Θ2(1,−1) = α12 − g2 < α12, Θ2(1,−1)−Θ2(0, 0) = α11 − 2g2.

Therefore, if α11− g2 > α12 > α11− 2g2, the optimal protection level p12 increases

from 0 in period 1 to 1 in period 2. That is, the protection level does not necessarily

decrease over time in our general upgrading problem2.

2.6 Multiple Horizons with Capacity Replenishment

Now we extend our model to multiple horizons with capacity replenishment.

Specifically, there are K (K ≥ 1) horizons, each consisting of T periods. Demands

across horizons are independent and identically distributed. At the beginning of each

horizon k (1 ≤ k ≤ K), the firm observes the leftover capacity X and unmet de-

mand D̃ carried over from the previous horizon. There are two decisions for the firm

in each horizon: First, the firm decides how much capacity to replenish; second, it

allocates capacity to satisfy demand as formulated in (2.2). For completeness, we

assume unmet demand after the K-th horizon can also be satisfied by purchasing

additional capacity. There is a unit cost vector C = (c1, · · · , cN) ∈ <N+ for capacity

replenishment. The remaining capacity at the end of each horizon incurs a holding

cost h = (h1, · · · , hN) ∈ <N+ . The leftover capacity after the K-th horizon can be

sold at the initial capacity cost, i.e., it has salvage value C. Revenues and costs are

discounted at a rate γ (0 < γ ≤ 1) for each horizon. The rest of the model setting

remains the same as in Section 2.3.

2This counter-intuitive example remains valid for any goodwill cost g2 if the length T satisfies
α11 − (T − 2)g2 > α12 > α11 − (T − 1)g2 and D2 = · · · = DT−1 = (0, 0) and DT = (1, 0).
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In the replenishment model, at the end of the last horizon, leftover capacity and

unmet demand have a positive end-value given by

ΘT+1(XT+1, D̃T+1) = (γC− h)XT+1 + γ(α−C)D̃T+1, (2.10)

where α = (α11, · · · , αNN) is the revenue from parallel allocation. This end-value is

different from the single-horizon model with ΘT+1(XT+1, D̃T+1) ≡ 0 in Section 2.3.

Let Π (X; γC− h; γ(α−C)) denote the optimal profit in the replenishment model

with initial capacity X and K = 1.

From the proof of Proposition 2.4.1, Θt(Xt, D̃t), which is similarly defined as

(2.2) with ΘT+1 ≡ 0 being replaced by ΘT+1 in (2.10), is still concave in (Xt, D̃t). In

particular, Π (X; γC− h; γ(α−C)) is concave in X from the concavity of Θ1(X,0).

Furthermore, similarly as (2.6), we can show that there exists an optimizer X∗ for

the concave function Π (X; γC− h; γ(α−C)):

X∗ ∈ arg maxX∈<N+ Π (X; γC− h; γ(α−C)) . (2.11)

Note that X∗ is the optimal capacity level for the replenishment model with K = 1.

The next proposition characterizes the optimal capacity replenishment and allo-

cation policies in the multi-horizon model, given that the firm starts with an initial

capacity X ≤ X∗. It shows that the structural results from the base model in Section

2.3 remain valid in the multi-horizon model, thus we will focus on the base model in

the rest of the chapter.

Proposition 2.6.1 Suppose the firm starts with an initial capacity X ≤ X∗. The

firm’s optimal replenishment policy in the multi-horizon model is a base stock policy

with the optimal base stock level X∗ in (2.11). Furthermore, the PSR algorithm solves

the optimal allocation decisions within each horizon.

2.7 Heuristics and Benchmark Models

So far we have characterized the structure of the optimal allocation policy for

our dynamic capacity management problem. In this section, we propose an effective

26



heuristic for solving the optimal allocation policy. For future comparison, we also

present two benchmark models that are simplified versions of the general upgrading

problem.

2.7.1 Heuristics

We have shown that the PSR algorithm yields the optimal allocation decisions

Yt for the firm in period t, which essentially consists of the optimal protection levels

for each capacity. These optimal protection levels are defined by (2.8) and can be

solved by backward induction. For instance, the optimal protection levels in period

t depend on the revenue-to-go function Θt+1, which is determined by the protection

levels used in period t+1. To evaluate Θt+1, one needs to derive the optimal protection

levels for all possible states in period t+ 1 (note that these protection levels, though

possessing the appealing properties established earlier, are still state-dependent). Due

to the curse of dimensionality, solving the exact optimal upgrading decisions is quite

difficult for large problems3. Therefore, we need to search for heuristics that can solve

the problem effectively.

Since solving the allocation decision is equivalent to solving the Bellman equation

(2.2) in period t, in order to develop efficient heuristics, we focus on the one-step

lookahead policy which hinges upon reasonable approximations to Θt+1. The basic

idea is as follows. Suppose Θ̄t+1
approx is an easy-to-compute and acceptable approxima-

tion to Θt+1. Given the initial state (Xt, D̃t) and the realized demand Dt in period

t, we solve the following optimization program

max
Yt

[
H(Yt|D̃t; Dt) + Θ̄t+1

approx(Xt+1, D̃t+1)
]
, (2.12)

3To deal with the dimensionality issue, SZ propose a series of bounds to approximate the optimal
protection levels. For instance, when computing the protection level for product i, one may consider
only the capacity for i−1, while assuming the products above i−1 to be either∞ (this gives a lower
bound of the protection level) or 0 (this gives an upper bound). It has been found that under the
single-step upgrading assumption, these bounds are very tight and yield nearly optimal revenue for
the firm. However, such bounds do not work well in our model, where general upgrading is allowed.
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and obtain the corresponding allocation decision Yt
approx(Xt, D̃t|Dt) in period t. Let

Θt
approx be the revenue collected by applying the policy (Yt

approx, · · · ,YT
approx) from

period t to T . For simplicity, we do not distinguish between the policy and the decision

(e.g., Yt
approx and Yt

approx(Xt, D̃t|Dt)), since the proper interpretation is usually clear

from the context. Note that Yt
approx is a suboptimal policy in the general upgrading

problem and Θt
approx 6= Θ̄t

approx in general. Moreover, Θt
approx(Nt) ≤ Θt(Nt) for any

state Nt in period t since Θt(Nt) adopts the optimal policy from period t to T .

As pointed out by Bertsekas (2005b), even with readily available revenue-to-go ap-

proximations, Θt
approx may still involve substantial computational efforts. A number

of simplifications of the optimization in (2.12), including different Θ̄t+1
approx functions,

have been considered. Here we present two of them that stand out both in terms of

computational time and in terms of revenue performance. Because of the linearity in

the upgrading problem, the first natural candidate is the traditional Certainty Equiv-

alence Control (CEC) heuristic in the literature (see Bertsekas 2005a, for example).

The CEC is a suboptimal control which treats the uncertain quantities as fixed typical

values in the stochastic dynamic programming. In our case, we use demand means as

typical values in evaluating the function Θ̄t+1
approx. Thus, under the CEC, expectation

calculations are no longer relevant, which can alleviate the computational burden in

our problem. Specifically, the optimal allocation policy in period t is solved together

with all future periods where the mean demand is used as approximation. That is,
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the optimal allocation decision Yt
CEC in the CEC heuristic will be obtained by solving

the following linear program:

max
(Yt

CEC,Ȳ
t+1,··· ,ȲT )≥0

{
H(Yt

CEC|D̃t; Dt) +
T∑

l=t+1

H(Ȳl|D̃l;µl)

}
(2.13)

s.t. D̃t+1 = D̃t + Dt − (Yt
CEC)ᵀ1,

D̃l+1 = D̃l + µl − (Ȳl)ᵀ1, l = t+ 1, · · · , T(
Yt

CEC +
T∑

l=t+1

Ȳl

)
1 ≤ Xt,

(Yt
CEC)ᵀ1 ≤ D̃t + Dt,(
Yt

CEC +
k∑

l=t+1

Ȳl

)ᵀ
1 ≤ D̃t + Dt +

k∑
l=t+1

µl, k = t+ 1, · · · , T,

where Xt, D̃t, and Dt are the capacities, backorders, and realized demand in period

t, respectively, and (µ1, µ2, · · · , µT ) denote the mean demand vectors.

The solution to (2.13) yields the allocation decisions (Yt
CEC, Ȳ

t+1, · · · , ȲT ) for

periods from t to T , where (Ȳt+1, · · · , ȲT ) are discarded in the subsequent periods.

We implement Yt
CEC as the allocation decision for period t and then move on to solve

problem (2.13) in period t + 1. Let Θt
CEC be the revenue collected by applying the

policy (Yt
CEC, · · · ,YT

CEC) in periods from t to T . Define ΠCEC(X) = Θ1
CEC(X,0) as

the firm’s total revenue given initial capacity X under the CEC heuristic.

Although the above CEC heuristic can simplify our problem, its computational

time is still quite long. Consider an N -product general upgrading problem with t

periods remaining, the CEC heuristic solves the allocation decisions in the current

period as a transportation problem with N classes of capacities and tN classes of

demands, whose running time is O(tN3(log(tN) + N logN)) (see Brenner 2008). In

addition, the optimal allocation is derived from the linear program in (2.13), which

does not use the PSR procedure and the marginal analysis in (2.8). This means that

the CEC might be further improved by exploiting the special properties inherited in

our upgrading problem.
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To this end, we further simplify the revenue-to-go function by applying greedy

upgrading. So the approximation to Θt+1 consists of two components: certainty

equivalence control (CEC) and greedy upgrading. Under the CEC, again the mean

demand is used as an approximation in all future periods. At the same time, Θ̄t+1
approx

is simplified by adopting greedy upgrading from periods t+1 to T rather than solving

the linear program as in the CEC heuristic. Such simplification, though suboptimal,

is much easier to compute than the linear program4. Given these characteristics of

the approximation, we call it refined certainty equivalence control (RCEC) and write

Θ̄t+1
approx as Θ̄t+1

RCEC. In addition to the above approximation, the RCEC heuristic then

calculates the protection levels in (2.8) by replacing Θt+1 with Θ̄t+1
RCEC, and determines

the allocation decision Yt
RCEC in period t by performing the PSR algorithm to solve

the following program

max
Yt

[
H(Yt|D̃t; Dt) + Θ̄t+1

RCEC(Xt+1, D̃t+1)
]
.

Note that Θ̄s
RCEC (s ≥ t+ 1) can be defined recursively as follow:

Θ̄s
RCEC(Xs, D̃s) = H(Ys

µ|D̃s;µs) + Θ̄s+1
RCEC(Xs+1; D̃s+1), (2.14)

where Xs+1 = Xs−Ys
µ1, D̃s+1 = D̃s+µs−(Ys

µ)ᵀ1, Θ̄T+1
RCEC ≡ 0, and Ys

µ =
(
ysij(µ)

)
N×N

is the solution to the following linear program:

max
Ys
µ≥0

{ ∑
1≤i≤j≤N

αijy
s
ij(µ)

∣∣∣(Ys
µ)ᵀ1 ≤ µs + D̃s, Ys

µ1 ≤ Xs

}
.

Given the protection levels derived from Θ̄t+1
RCEC, Yt

RCEC is the allocation policy in

period t solved by the PSR algorithm, and Θt
RCEC is the revenue collected by applying

policy (Yt
RCEC, · · · ,YT

RCEC) in period t to T . Define ΠRCEC(X) = Θ1
RCEC(X,0) as the

firm’s total revenue given initial capacity X under the RCEC heuristic, and XRCEC

as the optimal capacity that maximizes ΠRCEC(X).

4We have tested the heuristic without the greedy upgrading and found that the performance is
almost identical. That is, the use of greedy upgrading in this heuristic can significantly reduce the
computational complexity but has a negligible impact on the revenue performance.
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Now we analyze the running time of the RCEC. Although greedy upgrading

(rather the optimal allocation) is used in Θ̄t+1
RCEC, it can be shown that for any state

Nt = (nt1, · · · , ntN),

∂
∂p

Θ̄t+1
RCEC(nt1, · · · , nti−1, p, 0, · · · , 0,−p, ntj+1, · · · , ntN) (2.15)

is decreasing in p5, so the protection levels can be solved by the binary search, and

it suffices to examine whether the protection level pij is between max(nti + ntj, 0)

and nti. If the binary search calls the greedy upgrading more than twice, then it

implies the case that there remain both surplus capacity i and unmet demand j after

performing the yij allocation. Thus, the number of calls of the greedy upgrading is

at most two when solving each psr (i ≤ s < r ≤ j); otherwise there exists either

surplus capacity s or unmet demand r, and the upgrade quantity yij must be zero

by the PSR. Furthermore, from the sequential procedure defined in PSR, there is no

upgrade between classes (1, · · · , i−1) and (j, · · · , N) in this case, and it is unnecessary

to compute the protection levels between these two sets. Consequently, the N classes

can be partitioned into several blocks, say K blocks, and in each block there exists at

most one pair of i and j such that the greedy upgrading is called more than twice to

determine pij. For the block k (1 ≤ k ≤ K) with size nk (2 ≤ nk ≤ N), the number

of greedy upgradings is no more than O(n2
k + log|X|), where |X| is the upper bound

of the initial capacity in each class. Since there is no upgrade between blocks, to

solve the allocation decision in each period, the total number of calls of the greedy

upgrading would be bounded by O(N2 +N log|X|).

Consider anN -product general upgrading problem with t periods remaining. Since

greedy upgrading can be solved in the running time of O(tN2), from the above analy-

sis, the RCEC has a running time of O(tN3(N+log|X|)) in the worst scenario, which

is significantly shorter than the CEC when |X| is moderate. More appealingly, the

5Since future demands are known, there exists a period s (t+ 1 ≤ s ≤ T ) in which capacity i will be
depleted. From the expression in (2.15), a marginal change of p only affects the greedy upgrading in
period s because both capacity i and backorder demand j change simultaneously in p. In particular,
capacity i is used to sequentially satisfy demands from class i to j in period s. As p increases, the
additional units of capacity i will be used to satisfy demands from lower classes that have smaller
profit margins. Thus, the partial derivative is a decreasing step function of p.
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PSR algorithm can further reduce the computational complexity in practice. Recall

the discussion right after Proposition 2.5.1, the protection level pij (1 ≤ i < j ≤ N)

in period t only depends on the effective capacities above i, which are decided by

Mt − Dt. Thus, we can use parallel computing technique and solve all protection

levels independently based on Mt −Dt.

A common feature of the RCEC and CEC heuristics is that both use mean demand

in future periods as an approximation. However, there is a critical difference between

these two heuristics. In the RCEC, the PSR procedure is used; in particular, the

optimal protection level is determined using (2.8) (i.e., by comparing the upgrading

value to the future marginal value). By contrast, in the CEC, the optimal allocation

is derived from the linear program in (2.13), which utilizes neither the PSR procedure

nor (2.8). From our observations in the numerical study, the adoption of the PSR

algorithm in the RCEC plays an important role in both reducing the computational

complexity and improving the approximation performance, which will be discussed

in Section 2.8.1.

2.7.2 Benchmark Models

For future comparison, we introduce two benchmark models in this subsection.

The first one is called the crystal ball (CB) model. In this model, the firm has perfect

demand forecast when allocating the capacities in each period. Such a benchmark

has been widely adopted in the literature because it offers the “perfect hindsight”

upper bound of the firm’s optimal profit. For instance, it has been used in SZ but

is called static model because the firm essentially faces a static capacity allocation

problem given complete demand information. Let ω represent a sample path of de-

mand (D1, · · · ,DT ) over the sales horizon, and Dt(ω) the demand in period t on
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sample path ω. Then, the firm’s expected profit from period t to T is defined as

Eω[Θt(Xt, D̃t;ω)], where

Θt(Xt, D̃t;ω) = max
Yt,··· ,YT

T∑
l=t

H(Yl|D̃l; Dl(ω))

s.t. D̃l+1 = D̃l + Dl(ω)− (Yl)ᵀ1 l = t, · · · , T
T∑
l=t

Yl1 ≤ Xt,

k∑
l=t

(Yl)ᵀ1 ≤ D̃t +
k∑
l=t

Dl(ω), k = t, · · · , T,

Yl ≥ 0, l = t, · · · , T.

The firm’s optimal profit in the crystal ball model is given by

max
X1∈<N+

ΠCB(X1) = max
X1∈<N+

{
E
ω

[Θ1(X1,0;ω)]−CX1
}
, (2.16)

which can be used to benchmark the performance of our heuristic in the dynamic

upgrading problem.

The second benchmark is the model without product upgrading. In this case, the

firm’s problem reduces to N independent newsvendors (NV) with backorders. The

firm’s expected profit can be written as

max
X1∈<N+

ΠNV(X1) = max
X1∈<N+

{
E

{D1,··· ,DT }

N∑
s=1

T∑
t=1

[
αss min(xts, d

t
s)− gs(d̃ts + dts)

]
−CX1

}
s.t. xt+1

s = (xts − dts)+, d̃t+1
s = d̃ts + (dts − xts)+,

x1
s = (X1)s, d

t
s = (Dt)s, s = 1, · · · , N, t = 1, · · · , T.

(2.17)

Note that although the two benchmark models (CB and NV) are similar to the static

and independent newsvendor models used in SZ, due to the backlog assumption, the

firm has to allocate capacity in each period in our model, rather than accumulate the

demand for the entire selling season and then allocate the capacity as in SZ.
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2.8 Numerical Studies

In this section, we conduct numerical studies to derive insights into the capacity

management problem. First, we test the performance of the RCEC heuristic proposed

in the previous section. After that, by using the heuristic and benchmark models,

we investigate the importance of the allocation mechanism and the capacity sizing

decision. For simplicity, we focus on integral demands.

2.8.1 Performance of RCEC

Due to the complexity of the problem, we use extensive numerical experiments

to test the performance of the heuristics. These experiments are conducted using

MATLAB R2013a on an Intel Core i7-2600 desktop with 12G RAM. We focus on the

RCEC heuristic because it will be used later for further numerical investigation.

The first set of experiments we consider has N = 4 and T = 3. For this problem

size, we are able to use backward induction to evaluate the firm’s optimal profit

Π(X) given in (2.1). Later we will also discuss the performance of the RCEC for

large problem sizes where it is difficult to evaluate Π(X) directly. Given an initial

capacity X ∈ <N+ , define the performance measure as

∆opt =
∣∣∣ΠRCEC(X)− Π(X)

Π(X)

∣∣∣ ∗ 100%, (2.18)

i.e., the percentage of profit loss by using ΠRCEC(X) rather than Π(X).

To calculate Π(X) = Θ1(X,0), we use the Monte Carlo method and consider

a comprehensive range of scenarios, which capture different fluctuation patterns of

demand means along the selling horizon (i.e., variation of E[Dt] from t = 1 to T ), dif-

ferent correlations between classes of demands in each period (i.e., Corr(dti, d
t
j) for all

1 ≤ i ≤ j ≤ N), different demand distributions (i.e., Normal distribution and Poisson

distribution), and various economic parameters (i.e., revenue (r1, · · · , rN), goodwill

cost (g1, · · · , gN), usage cost (u1, · · · , uN) and capacity cost (c1, · · · , cN)). Further-

more, to ensure the robustness of the results, we also test a number of different initial
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capacities X used in (2.18), which consist of both realistic and extreme scenarios. In

total there are 4212 experiments in this numerical study. A full description of the

setup of the numerical study is lengthy and thus given in the appendix.

The statistics for the ∆opt value are reported in Table 2.1. It can be seen that the

Mean Std. Median 90%-percentile Max.

0.40336 1.13279 0.14540 0.77343 17.98673

Table 2.1.: The percentage profit loss (∆opt) of RCEC relative to the optimal solution.

RCEC performs very well in this numerical study. Among all the experiments tested,

the 90th percentile of the profit loss is 0.77%, and the average is 0.40%.

Next we test the performance of the RCEC in larger problems. Specifically, we

consider problems with N = 5 products and up to T = 30 periods. Given such sizes, it

is extremely time-consuming to evaluate the optimal revenue function Π(X). Instead,

we use ΠCB(X) from the crystal ball (CB) model defined in (2.16) as the benchmark

for comparison. Recall that ΠCB(X) is an upper bound of the optimal revenue Π(X)

for any X, and the following relationship holds: ΠCB(X) ≥ Π(X) ≥ ΠRCEC(X).

Define

∆CB =
∣∣∣ΠRCEC(X)− ΠCB(X)

ΠCB(X)

∣∣∣ ∗ 100%.

Then ∆CB is an upper bound of ∆opt, the percentage profit loss of the RCEC (i.e.,

ΠRCEC(X)) relative to the optimal revenue (i.e., Π(X)).

Similar experiment design has been used as Table 2.1 except that now we consider

5 products with several different T values. This allows us to examine up to 4 levels of

upgrading. Also by varying T we can study the impact of the number of periods (or

the frequency of upgrading decisions) on the problem. Specifically, T takes values from

a set {3, 15, 30}. For each T , there are 13260 experiments in total in this numerical

study. To save space, we provide a detailed description in the appendix.

We summarize the statistics of ∆CB for different T ’s in Table 2.2. It shows that

the value of ∆CB is increasing in the number of periods, T . The RCEC ignores the
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randomness of the demand in future periods (recall that the mean demand is used).

Thus, compared to ΠCB(X), more demand information is lost as T increases. Table

2.2 also indicates that the value of ∆CB is very small in general: Even for T = 30, ∆CB

is 5.37% at the 90th percentile, and the average is about 2.37%. This observation has

two implications. First, since ∆CB is the upper bound of ∆opt, we know that ∆opt is

also very small in the tested examples. This means that for the 5-product numerical

experiments, the RCEC also performs well. Second, the observation implies that the

difference between ΠCB(X) and Π(X) is small. In other words, the value of advance

demand information is generally small. Such a result is consistent with some of the

findings reported in the literature. For instance, SZ finds from numerical study that

when the optimal upgrading policy is used, the firm’s expected revenue is consistently

within 1% of the revenue in a static model (i.e., the crystal ball model). Similarly,

Acimovic and Graves (2013) find in a dynamic order fulfillment setting that the

crystal ball model improves the performance of the proposed heuristic by 2%, i.e.,

the performance difference between the crystal ball model and the true optimum is

smaller than 2%.

T Mean Std. Median 90%-percentile Max.

3 0.14000 0.38286 0.00428 0.33580 6.73835

15 1.51822 2.51158 0.23127 4.82826 12.05775

30 2.37289 3.35659 0.42136 5.36783 23.37090

Table 2.2.: The percentage profit loss (∆CB) of RCEC relative to the CB solution.

We now compare the performances of the RCEC and the CEC. Define the ratio

γ =
ΠRCEC(X)

ΠCEC(X)

to measure the relative performances of the two heuristics. So a ratio higher (lower)

than 1 implies that the RCEC outperforms (underperforms) the CEC. We calculate

the ratio for the problem instances used in the numerical study underlying Table 2.2
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(i.e., N = 5 and T = {3, 15, 30}). The statistics of the ratio values are summarized

in Table 2.3 since the results are consistent across different T ’s. Meanwhile, as we

mentioned earlier, we also compare the actual computation time of the CEC and

the RCEC heuristics in these instances. Specifically, we use MOSEK toolbox for

MATLAB version 7 to solve the linear program in (2.13) in the CEC heuristic, and

we apply the binary search to solve the protection levels in (2.8) while replacing Θt+1

by Θ̄t+1
RCEC in (2.14). Similarly, we define

γtime =
Time for solving ΠRCEC(X)

Time for solving ΠCEC(X)
,

whose statistics are also reported in Table 2.3.

We observe that the CEC may outperform the RCEC in some instances (e.g., the

ratio can be as low as 30.58%); however, for the majority of the examples, the RCEC

performs better than the CEC (see, e.g., the 25th percentile column), although the

differences are insignificant. More importantly, the reduction of computation time

from CEC to RCEC is substantial: all else being equal, the average time for solving

a test instance using the RCEC is only 9.64% of that using the CEC.

Mean Std. Min. 25%-percentile Median Max.

γ 1.00118 0.02718 0.30584 1.00001 1.00008 3.14509

γtime 0.09636 0.05614 0.00416 0.06084 0.08606 1.12851

Table 2.3.: Comparison of RCEC and CEC.

Why does the RCEC exhibit a better overall performance? We offer the following

plausible explanation. In both the CEC and RCEC heuristics, we replace the future

random demands by their means in each period. Such an approximation clearly will

change our original problem and result in suboptimal solutions. In the RCEC, the

optimal protection level is determined by comparing two values: The first is the up-

grading value from using the product in the current period; the second is the expected

marginal value of the product if it is saved to the next period. For illustration, consider
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the upgrading of demand j using capacity i in period t. The latter value is defined as

Θ̄t+1
RCEC(Xt+1 + ei, D̃

t+1 + ej|µt+1, · · · , µT ) − Θ̄t+1
RCEC(Xt+1, D̃t+1|µt+1, · · · , µT ), where

es (s = i, j) is the unit vector with 1 in position s. The mean demand approximation

may introduce biases into the two revenue functions. However, since the expected

marginal revenue is defined as the difference of the two revenue functions, these biases

may be cancelled out to some degree. In other words, the inaccuracies introduced

by certainty equivalence control might be reduced in the RCEC heuristic. Note that

such a cancellation effect does not exist in the traditional CEC heuristic. Therefore,

the RCEC generally outperforms the CEC. In addition, the RCEC is more attractive

than the CEC in terms of computational time in our numerical study.

It is worth mentioning that one may also use the deflected linear decision rule

(DLDR) method proposed in Chen et al. (2008) to approximate Θt in the PSR algo-

rithm. Let Θt
DLDR be the revenue collected by using Yt

DLDR’s in the remaining sales

horizon, and denote ΠDLDR(X) = Θ1
DLDR(X,0) as the expected revenue under the

DLDR heuristic. We evaluate ΠDLDR(X) in the numerical study described above and

find that ΠDLDR(X) and ΠRCEC(X) are almost identical in all the problem instances.

In summary, based on the results in Tables 2.1 and 2.2, we conclude that the RCEC

is able to deliver close-to-optimal revenues for the firm in a wide range of problem

situations. In addition, the RCEC greatly reduces the computational complexity of

the original problem. Therefore, in the rest of the chapter, we will use the RCEC to

solve the dynamic capacity management problem.

2.8.2 Value of Optimal Upgrading

Given the efficiency and effectiveness of the RCEC heuristic, we are ready to

derive more insights into the problem using numerical studies. There are a couple

of natural questions we would like to address. First, what is the value of using

multi-step upgrading? Second, what is the value of using the optimal capacity?

Both questions are important from a practical standpoint because managers need to
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know how complex an upgrading structure should be used and how to determine the

initial capacity. This subsection focuses on the first question and the second will be

addressed in the next subsection.

Let Πk
RCEC(X) be the revenue function given initial capacity X and k-level up-

grading (i.e., product i can be used to satisfy class j demand only if i ≤ j ≤ i + k).

Note that when k = 0, no upgrading is allowed, and Π0
RCEC(X) = ΠNV(X), where

ΠNV(X) is the optimal revenue in the newsvendor model in (2.17). Define

∆k
RCEC =

Πk
RCEC(X)− Πk−1

RCEC(X)

Πk−1
RCEC(X)

∗ 100%, k = 1, 2, 3, 4,

which measures the percentage profit gain from one additional level of upgrading

under the RCEC.

We evaluate the values of ∆k
RCEC using the same parameters as those for Table 2.2

except the initial capacities. Intuitively, upgrade is more valuable when the capacity

is unbalanced, i.e., there is excess capacity for some products while there is shortage

for the others. Such unbalance may occur even if the initial capacities are optimally

set, because demand may fluctuate due to seasonality and trend while capacities are

determined for the long term. Thus, when choosing the initial capacity we use the

following procedure. Start with the optimal capacity under the RCEC, i.e., XRCEC;

then set the capacity for one product (say, product j) to 0 while adding capacity

(XRCEC)j to a higher-quality product; finally, scale the entire capacity vector by

different multipliers. Mathematically, for 1 ≤ i < j ≤ 5, we consider all initial

capacity X, whose components are given by

(X)i = λ((XRCEC)i+(XRCEC)j), (X)j = 0, (X)s = λ(XRCEC)s,∀ s ∈ {1, · · · , 5}\{i, j},

where λ ∈ {0.9, 1, 1.1}. There are 10 combinations of the initial capacities for each

λ and parameter set; one example is

X = ((XRCEC)1 + (XRCEC)2, 0, (XRCEC)3, (XRCEC)4, (XRCEC)5).

A full list of the initial capacities are given in the appendix. We believe such a

design captures the possible capacity scenarios that may happen over time as the
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firm allocates products to satisfy realized demand, especially those with unbalanced

capacities. Moreover, the mean of total demand over the selling horizon remains

the same for different T ∈ {3, 15, 30}, which implies that less demand information is

available within each period for larger T . The numerical results are given in Table

2.4.

T Upgrading Level k Mean Median 90%-percentile

3

1 29.75 20.64 51.63

2 5.71 2.09 15.21

3 1.45 0.11 4.99

4 0.25 0.01 0.28

15

1 25.96 20.25 47.44

2 4.86 2.99 12.88

3 0.79 0.04 2.70

4 0.07 0 0.09

30

1 20.38 19.88 45.63

2 3.89 1.63 2.70

3 0.67 0.02 2.02

4 0.05 0 0.07

Table 2.4.: The value of using multi-step upgrading (∆k
RCEC).

There are several observations from Table 2.4. First, we can see that the value of

multi-step upgrading can be highly valuable. For instance, with T = 3, the benefit

of moving from one-step upgrading to two-step upgrading can be as high as 15.21%

at the 90th percentile (i.e., for at least 10% of the scenarios, the value is more than

15.21%). The number becomes 4.99% if we move from two-step upgrading to three-

step upgrading. This result implies that single-step upgrading may not capture the

full benefit of upgrading and multi-step upgrading is critically needed in many cases.
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In particular, Table 2.4 suggests that the firm’s profit increases in the upgrading level

k and the marginal value decreases in k, both of which are quite intuitive.

Second, Table 2.4 indicates that the value of multi-step upgrading decreases in T .

That is, using more upgrading levels will be less beneficial when there are more time

periods in the selling horizon. Close scrutiny reveals that there is a key contributing

factor to this interesting observation. A large T value means there are more time

periods, which allows “chain allocation” to be more likely to happen. To see this,

first consider T = 1. In this case, under single-step upgrading, product 1 cannot be

used to satisfy demand 3. However, with T = 2, it is possible that product 2 is used

to satisfy demand 3 in period 1; and then in the second period, product 1 is used

to satisfy demand 2. These two allocations essentially mean that product 1 is used

to satisfy demand 3. The chain allocation is analogous to multi-step upgrading; the

only difference is that it can be better executed when there are more time periods.

Therefore, multi-step upgrading is less valuable since it can be implemented even

under single-step upgrading, but in a different way.

Finally, the numerical experiments suggest that the multi-step upgrading is most

valuable when the initial capacity is unbalanced. For example, for T = 3, when

the optimal initial capacity XRCEC is used, the incremental value of moving from 2-

level to 3-level upgrading is 0.04% on average; however, for initial capacity X =

((XRCEC)1, (XRCEC)2 + (XRCEC)5, (XRCEC)3, (XRCEC)4, 0), the counterpart value is

5.10%. This indicates that the multi-step upgrading is quite important because un-

balanced capacity may arise over time, even if the problem starts with the optimal

initial capacity.

What is the benefit of using more upgrading levels if the optimal initial capacities

are used? To answer this question, let XRCEC(k) (k = 0, 1, · · · , 4) be the optimal ini-

tial capacities obtained from the RCEC heuristic with k-level upgrading, and redefine

∆k
RCEC =

Πk
RCEC(XRCEC(k))− Πk−1

RCEC(XRCEC(k − 1))

Πk−1
RCEC(XRCEC(k − 1))

∗ 100%, k = 1, 2, 3, 4
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which is the percentage profit gain from one additional level of upgrading under the

RCEC if the corresponding optimal initial capacities are used. Using the same set of

parameters as in Table 2.4, we obtain the numerical results given in Table 2.5.

Upgrading Level k Mean Median 90%-percentile

1 2.80 2.67 4.37

2 0.92 0.81 1.64

3 0.55 0.49 1.35

4 0.50 0.35 1.03

Table 2.5.: The value of using multi-step upgrading (∆k
RCEC) under optimal initial

capacity.

As one may expect, the values of using multi-step upgrading are much smaller

in Table 2.5 because the initial capacities have been accordingly adjusted, and this

lowers the benefit of using more levels of upgrading. However, the value of multi-step

upgrading should not be overlooked either: the profit gain by moving from one-step

to two-step upgrading is 0.92% on average and 1.64% at the 90th percentile6.

2.8.3 Capacity Decision vs. Allocation Mechanism

The profit of the upgrading problem hinges upon both the initial capacity and

the allocation mechanism. This raises an interesting question: which decision is more

important, capacity sizing or allocation mechanism? This is a practical question

because the firm may wish to focus limited resources on improving the decision that

has a bigger impact on profit. To shed some light on this question, we measure the

6In our numerical study, upgrade constitutes 2.78% of the total satisfied demands on average when
the optimal initial capacity is used, and 29.47% when the suboptimal initial capacities are adopted.
If the firm uses frequent upgrading to satisfy customer demand (e.g., the initial capacity is poorly
decided), customers may learn about the upgrading pattern and become opportunistic. That is, a
class i customer may intentionally ask for product j (i < j), hoping that she will be upgraded when
product j is out of stock. Incorporating such a behavior is out of the scope of this chapter and
therefore left for future research.
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importance of each decision using the profit loss when a suboptimal decision is applied

rather than the optimal one. Next, we describe the suboptimal decisions that will be

used.

In our problem, it is time-consuming to derive the optimal initial capacity even if

we can efficiently solve the optimal allocation decision by the RCEC heuristic. So we

consider two simple alternatives. The first alternative is to use the optimal capacity

XCB in the crystal ball model. The crystal ball model is called static model in SZ,

who find that XCB yields nearly optimal revenue for the firm in their single-step

upgrading model. To check whether the result carries over to our general upgrading

model, define

∆XCB
=
∣∣∣ΠRCEC(XCB)− ΠRCEC(XRCEC)

ΠRCEC(XRCEC)

∣∣∣ ∗ 100%

to measure the performance of the crystal-ball capacity XCB. Since the true optimal

capacity is unknown, we use XRCEC as the benchmark for the comparison. With the

same parameters used for Tables 2.2, 2.3 and 2.4, we evaluate ∆XCB
for 780 examples

and summarize the results in Table 2.6 (the first row). It can be seen that ∆XCB
is

generally negligible in the numerical study: The average revenue difference is 0.017%

and the maximum is 1.062%.

Mean Std. Median 90%-percentile Max.

∆XCB
0.01735 5.62378 ∗ 10−2 0 0.043287 1.06237

∆XNV
0.33278 2.91287 ∗ 10−1 0.27123 0.72231 1.62893

∆greedy 5.19543 5.69987 8.22994 12.28855 12.70996

Table 2.6.: Capacity decision vs. allocation mechanism.

An even simpler alternative is to use the newsvendor capacity XNV, i.e., the

optimal capacity under no upgrading. Similarly, in the same numerical study, we

define

∆XNV
=
∣∣∣ΠRCEC(XNV)− ΠRCEC(XRCEC)

ΠRCEC(XRCEC)

∣∣∣ ∗ 100%
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and present the statistics of ∆XNV
in Table 2.6 (the second row). We can see that

∆XNV
is greater than ∆XCB

in general, but it offers reasonably good performance

as well. The average and maximum revenue differences are 0.333% and 1.629%,

respectively. In particular, the number at the 90th percentile is 0.722%, which means

that the newsvendor capacity performs quite well for the majority of the scenarios.

From the above observations, one can see that these simple alternatives to the optimal

capacity perform reasonably well. Therefore, as long as the optimal upgrading policy

is used, the value of using the optimal capacity seems to be very small in our problem

setting.

Next, we consider the impact of using suboptimal allocation policy. We first use

greedy upgrading as the suboptimal policy, which myopically upgrades all unmet

demands by surplus capacities. It serves as a reasonable suboptimal policy because

it is intuitive and straightforward to implement in practice. Furthermore, the RCEC

heuristic incorporates greedy upgrading to simplify its computation. Specifically, let

Πgreedy(X) be the expected profit using greedy upgrading given initial capacity X.

We define

∆greedy =
∣∣∣ΠRCEC(XRCEC)− Πgreedy(XRCEC)

ΠRCEC(XRCEC)

∣∣∣ ∗ 100%

as the profit loss due to greedy upgrading. The same parameters for ∆XCB
and ∆XNV

have been used, and the statistics of ∆greedy are presented in Table 2.6 (the third

row). The average profit loss due to greedy upgrading is 5.195%, which is much

larger than those for ∆XCB
and ∆XNV

. In addition to greedy upgrading, we also test

suboptimal allocation policies that involve only k-step (k = 0, · · · , N − 2) upgrading.

The magnitudes of profit losses are still generally much larger than those for ∆XCB

and ∆XNV
. To save space, the detailed results are presented in the appendix.

The above numerical results suggest that the benefit of choosing an effective al-

location mechanism outweighs that of choosing an accurate initial capacity. Based

on these observations, in practice, the firm may decide the initial capacity by using

simple approximations (e.g., either the NV or CB model) and focus on optimally

allocating the capacity during the sales horizon.
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2.9 Conclusion

This chapter studies a firm’s capacity investment and allocation problem in a

dynamic setting with stochastic demand. There are multiple demand classes, which

can be satisfied by multiple classes of capacities. Demand arrives in discrete time

periods, and the firm needs to make capacity allocation decisions in each period

before observing future demand. A general upgrading structure is considered, which

is broad enough to cover a wide range of practical upgrading situations. One may also

view this as an inventory management problem with one-way dynamic substitution.

We first show that for any given initial capacity, a Parallel and Sequential Ra-

tioning (PSR) policy is optimal for the firm. Under the PSR policy, the firm can

make upgrading decisions in each period sequentially rather than simultaneously,

which greatly reduces the complexity of the capacity allocation problem. Despite

the well-structured PSR policy, the dynamic allocation problem is still subject to the

curse of dimensionality. Thus we propose a Refined Certainty Equivalence Control

(RCEC) heuristic that improves over the traditional CEC methodology by exploiting

the property of the PSR policy. Through extensive numerical experiments, we find

that the RCEC heuristic is highly efficient and yields nearly optimal revenue for the

firm. With the help of the RCEC heuristic, we conduct numerical studies to derive

managerial insights about the dynamic capacity management problem. Our numer-

ical studies indicate that the multi-step upgrading could be significantly valuable,

especially when the capacities are not balanced (either due to suboptimal initial in-

vestment or unexpected demand realizations over time). We find that using simple

approximations (e.g., the NV and CB models) for the initial capacities leads to neg-

ligible profit loss, while the negative impact of using a suboptimal allocation (e.g.,

greedy upgrading) could be quite significant. In this sense, the allocation mechanism

plays a more important role in our problem than the capacity sizing decision.
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Chapter 3

Upgrading, Product Differentiation, and Heterogeneous

Consumers

3.1 Introduction

In order to achieve better market segmentation and extract higher profit margins,

firms often offer more than a single product (or service) to consumers. Examples

include business class and economy class tickets in the airline industry, full-size and

compact-size cars provided by car rental companies, and deluxe and standard rooms

in the hotel industry. In many cases, consumers can choose between a regular product

and a premium product. While both products provide the basic function desired by

consumers, a premium product is bundled with additional services and features that

can yield a higher utility for a consumer. For instance, the basic function of an

air ticket is to fly a passenger to her destination; however, a business class ticket

offers more comfortness (e.g., bigger seat with more leg room) and superior services

(e.g., free checked luggage, more food and drink choices, and early boarding and

unboarding). In contrast, a regular product may only consist of a fraction of features

and services included in the premium product.

Product differentiation is clearly an important decision when firms offer multiple

products in the market. Normally the premium product should entail most, if not

all possible services and features; however, the design of the regular product requires

careful consideration. By adjusting the add-on services/features attached to the reg-

ular product, firms can influence the utility a consumer derives from the product. In
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the airline industry, companies adopt different baggage policies. Southwest Airlines

allow domestic passengers to check two pieces of luggage for free, while many other

airlines charge a fee for checked luggage1. Delta Airlines used to offer two free checked

luggage for the economy class passengers on international flights between north Amer-

ica and Asia, then they began to charge a fee for the second checked luggage, but

they changed back to the old policy recently2. In the hotel industry, some companies

provide complimentary add-on services such as parking, wireless Internet, and access

to fitness center (Shulman and Geng 2012). A particularly interesting add-on service

is upgrading in the aforementioned industries. Sometimes firms upgrade a regular-

class customer to a premium product without charging additional fees. In particular,

firms can control the probability of offering product upgrade by imposing additional

restrictions3.

Increasing consumer diversification stimulates firms’ awareness of consumer het-

erogeneity, which complicates firms’ differentiation decisions. There are several con-

tributing factors to such heterogeneity. First, there is discrepancy in consumers’

acknowledgement of the complete characteristics of the product. For instance, con-

sumers with limited time to research the product may be unaware of the add-on

services (e.g., free parking and Internet) provided by a hotel when making their

reservations (see Shulman and Geng 2012). Second, even with full knowledge of the

product, consumers may have different preferences or purchase intentions over the

same product. In the airline industry, passengers with or without checked bags may

have different valuations of the same economy class ticket with free checked baggage

1Baggage Policies: http://www.southwest.com/html/customer-service/baggage/.
2Delta Airlines’ previous bag fees: http://www.delta.com/content/www/en_US/

traveling-with-us/baggage/before-your-trip/checked/previous-bag-fees.html. Cur-
rent baggage fee policy: http://www.delta.com/content/www/en_US/traveling-with-us/

baggage/before-your-trip/checked.html.
3Delta Airlines’ Medallion Upgrades: http://www.delta.com/content/www/en_US/

traveling-with-us/check-in/requesting-medallion-upgrades.html. American Airlines’
500-Mile Upgrades (Complimentary): http://www.aa.com/i18n/urls/aadvantageupgrades.

jsp?anchorLocation=DirectURL&title=aadvantageupgrades#500MileUpgradesComp. United
Airlines’ Complimentary Premier Upgrades: https://www.united.com/web/en-US/content/

mileageplus/premier/upgrades.aspx.
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service. Lastly, in the upgrading case, consumers may have disparate capabilities in

evaluating the value from potential upgrading. From these observations, a consumer

needs to spend time and effort to accurately assess the value from the add-on services.

In reality, it is natural that some consumers are naive (i.e., they simply ignore the

value from add-on services), while some consumers are strategic (i.e., they are fully

aware of the value from add-on services).

This chapter studies a firm’s optimal strategies when selling two differentiated

products to heterogeneous consumers. We focus on several research questions. First,

how much add-on service the firm should attach to the regular product? As mentioned

above, they may adjust the quality of the regular product by changing the add-on

services included in the product. In the presence of strategic consumers, firms may

also change the product quality by varying the frequency of offering complementary

product upgrade (i.e., the firm can adjust the probability of providing a higher quality

product to consumers who only pay the price of the low quality product). So how does

increasing the add-on service to the regular product affect the firms’ profitability?

Second, what is the impact of consumer behavior on the firm’s optimal strategy?

Consumer heterogeneity clearly affects the firm’s quality and pricing decisions. In ad-

dition, the firm may use various tools to influence consumers’ behavior. For example,

advertisement is a useful tool to improve consumers’ knowledge of the characteris-

tics of the product. Moreover, the firm may intentionally train the consumers to be

more strategic. There are many websites that provide advice to consumers on how

to improve the chance of getting upgrades4. On one hand, these methods can help

naive consumers better understand the regular product and therefore improve their

valuations of the product - this allows the firm to charge a higher price on the reg-

ular product. On the other hand, a more attractive regular product may induce a

strategic consumer to switch from the premium product to the regular one, hoping to

receive a free upgrade - such opportunistic behavior may cannibalize the sales from

4How to get a free upgrade: http://www.cnn.com/2012/03/19/travel/

free-upgrade-strategies/. Top 10 Ways to Get Upgraded on a Flight: http:

//airtravel.about.com/od/travelindustrynews/a/upgrades.htm.
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the premium product. It is natural to explore the impact of consumer heterogeneity

on firms’ optimal strategy and profit. In particular, it is useful to know under what

circumstances the firm can benefit from efforts influencing consumer behavior.

Third, how does capacity constraint affect the firm’s optimal strategy? In most

revenue management settings (e.g., airline, hotel, and car rental settings), the firm

is often constrained by limited capacity, especially for the premium product. Thus

it would be interesting to study the role the capacity constraint plays in the firms’

optimal strategy. Specifically, we will investigate how capacity constraint may change

the insights from the previous two questions.

We propose an analytical framework to address the above questions. In particu-

lar, we study a single-period model where a monopoly firm sells two products with

distinct qualities, i.e., the regular product and the premium product. The premium

product has a limited capacity, whereas the regular product has ample capacity. Con-

sumers arrive to the market, each purchasing at most one unit of either product. All

consumers agree with the valuation of the premium product but they differ on the

valuation of the regular product: opportunistic consumers value the regular product

more than the naive consumers because they are better informed and are more ca-

pable to evaluate the add-on services. Each consumer makes the purchase decision

based on her own individual preference for quality, valuations of these products and

the product prices. The firm’s objective is to maximize its profit by setting the prices

for both products.

We obtain three major results about firms’ optimal strategies under such a model

setting. First, the quality improvement of the regular product can change the firm’s

profit in both directions. The intuition is as follows. When increasing the quality of

the regular product, the firm always decreases its price of the premium product while

increasing the price of the regular product to limit the number of consumers who

appreciate such quality improvement and purchase the regular product instead of the

premium one. However, it is possible that the profit loss from the premium product

dominates the profit gain from the regular product. We find that it happens when the
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quality difference between these two products are moderate, which is quite common

in practice. Our results suggest that firms should conduct product improvement or

upgrade with extra caution.

Second, improving consumers’ knowledge about the regular product through ad-

vertisement may actually hurt the firm when the consumer awareness is low and the

capacity of the premium product is large. The benefit of the advertisement is clear:

since more consumers are aware the true quality of the product, there are more de-

mands for the regular product and the firm may increase the corresponding price.

But in this case, as more advertisement is used, firm has to decrease the price of the

premium product to avoid undesirable capacity leftover. And the profit loss from the

premium product always dominates the additional profit from the regular product.

Finally, the capacity constraint plays an important role in the firm’s optimal

quality improvement and advertising decisions. Specifically, quality improvement of

the regular product and advertising such improvement will be more beneficial when

there is a low capacity for the premium product. Recall that the main negative effect

from quality improvement and advertising is cannibalization, i.e., the firm has to

decrease the price of the premium product to prevent opportunistic consumers from

switching to regular product. A more constrained capacity for the premium product,

which is equal to the number of consumers purchasing the premium product in the

optimal solutions, means the cannibalization effect will be weaker. Thus, the firm

will have stronger incentives to offer more add-on services and publicize such services

when the premium capacity is highly constrained.

The rest of this chapter is organized as follows. Section 3.2 reviews the related

literature. Section 3.3 describes the model setting. Section 3.4 characterized the

impact of the quality improvement and Section 3.5 investigates how the firm should

affect the consumer heterogeneity. Section 3.6 presents the findings from numerical

studies. The chapter concludes in Section 3.7. All proofs are given in the Appendices.
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3.2 Literature Review

This chapter uniquely incorporates the consumer heterogeneity and the capacity

constraint. There are two aspects of the consumer heterogeneity: First, consumers

may have different valuations about the quality of the same product; Second, con-

sumers may have different willingness to pay for the same quality.

The first type of the consumer heterogeneity can be explained by either the

bounded rationality or the strategic behavior. As we mentioned earlier, consumers

may be unable to account for all characteristics that are included in the product

or service and thus make uninformative decisions. The concept of bounded ratio-

nality is introduced by Simon (1955). Conlisk (1996) review extensive evidences for

incorporating bounded rationality in economic models and provided supports both

theoretically and empirically. In our model, the consumer heterogeneity can also be

the result of the strategic behavior. Specifically, when making a purchase decision,

consumers choose from various alternatives, including the options of avoiding the

purchase. For instance, whether or not an air passenger chooses an economy class

ticket at a specific time depends on her expectation of the probability being upgraded

to the business class, which has higher value to her. Such forward looking behavior

has been widely studied in the consumer behavior literature. For instance, Jacobson

and Obermiller (1990), Krishna et al. (1991), Ho et al. (1998) and Su and Zhang

(2008). Although our model does not explicitly incorporate the strategic behavior,

the essence is the same: there exists a difference in valuation of the same product or

service among consumers. It is clear that such difference can be the result of whether

or not the consumer is strategic. And we consider the impact of the difference on

the firm’s pricing decision and the optimal profit as the strategic consumer literature.

However, in contrast to the above literatures, this chapter considers more than one

product that introduces product cannibalization with the firm.

The second type of the consumer heterogeneity is the consumer differentiation.

This topic has been extensively studied in the literature of product line design that
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includes both quality decisions of a quality-differentiated spectrum of goods and the

corresponding pricing decisions. Mussa and Rosen (1978) consider a monopoly firm

deciding the optimal set of price-quality schedules offered to consumers with heteroge-

neous tastes of the qualities, which is modeled by a continuous distribution. Similarly,

Moorthy (1984) analyzes a monopolist serving discrete consumer segments of quality

valuations. By extending the model into duopoly setting, Moorthy (1988) shows the

equilibrium price-quality schedules for each firm facing the marginal production cost

that is quadratic with respect to the quality. As extensions, Chambers et al. (2006)

discuss the impact of variable production cost when duopoly firms decide quality and

price sequentially, Lehmann-Grube (1997) studies the impact of the convex fixed cost

of quality chosen by the firms in the first stage, Rhee (1996) considers the impact

of the consumer’s heterogeneity that is unobservable to the firms and is modeled

as a random variable in the consumer’s utility function, and Ronnen (1991) investi-

gates the consequence of imposing a minimum quality standard in the duopoly case.

When income disparities of the consumers have been privileged against taste differ-

entiation, Gabszewicz and Thisse (1979) characterize the equilibrium prices of the

duopoly firms selling two differentiated products whose qualities are predetermined.

Gabszewicz and Thisse (1980) further extend the model to study the equilibrium

prices in a competitive market with arbitrary number of firms. After incorporating

the firms’ decisions of entering the market, Shaked and Sutton (1982) and Gabszwicz

and Thisse (1986) study the equilibrium when the entry decisions are made simul-

taneously, while Donnenfeld and Weber (1992) explore the equilibrium qualities and

prices when firms sequentially make the entry decisions. Although these studies in-

volve both the optimal quality and price decisions, consumers are assumed to have

the save valuation of the qualities, and the capacity constraint is not considered.

This chapter also exhibits some similarities to the add-on pricing literature in the

sense that we consider how profit is changed when the firm improves the quality of

the regular product, and providing add-on service is clearly one of many possible

quality improvements. Ellison (2005) identified how add-on pricing can actually lead
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to improved profit for the firm by creating an adverse selection problem in the com-

petition. Gabaix and Laibson (2006) were among the first in the add-on literature

to allow for boundedly rational consumers. Shulman and Geng (2012) examine the

consequences of add-on pricing when firms are both horizontally and vertically dif-

ferentiated. This chapter differs from the add-on literature because the firm in our

model do not charge an additional fee for the improved or “add-on” quality, thus,

the firm is unable to achieve price discrimination. In addition, our model innova-

tively considers the capacity constraint, which has great impact on the firms’ optimal

pricing, quality improvement and advertisement decisions.

3.3 Model

Consider a firm selling two differentiated products, product 1 (the premium prod-

uct) and product 2 (the regular product). There is a continuum of consumers in the

market with a deterministic total size 1. Each consumer needs only one unit of the

product. Consumer utility is given by U = θq − p, where q is the product quality,

p is the product price, and θ ≥ 0 is the parameter which measures the intensity of

consumer’s taste for quality. We assume θ is uniformly distributed on [0, 1]. The

consumers unanimously agree on the quality of product 1, denoted by q1 (q1 > 0);

however, they have different perceptions about the quality of product 2. Particularly,

the naive consumers value product 2 at q2 (0 < q2 < q1) while the opportunistic con-

sumers value it at q2 + δ (0 < δ < q1− q2). The parameter δ represent the additional

value from add-on services (e.g., upgrading) discussed in the introduction. The naive

consumers have a lower value for product 2 because they are either uninformed about

the add-on services or they are unable to evaluate the value from the add-on services

(e.g., it is hard to evaluate the probability of receiving an upgrade). We assume there

is r (0 ≤ r ≤ 1) portion of opportunistic consumers in the market (and 1 − r of

naive consumers). Thus r measures how strategic the consumer population is in the

market. Although the firm understands there are two types of consumers, it can-
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not distinguish each individual consumer, and is therefore unable to charge different

prices for product 2. The firm faces exogenously given capacity constraints (e.g., a

flight has limited number of seats, a hotel has certain number of guest rooms). Let

xi (x2 > x1 > 0) be the capacity for product i. For analytical tractability, in the base

model we assume x2 is large enough such that it never constrains the sales. The fact

that the premium capacity is more constrained than the regular capacity is consistent

with most practical situations (e.g., airlines and hotels). Later we will demonstrate

that the qualitative insights will remain after relaxing the assumption about x2. The

marginal usage costs of both products are normalized to zero. The firm’s objective

is to maximize its revenue π(p1, p2) by choosing prices pi (i = 1, 2) for the products.

Since the capacities xi are exogenously given, we will use profit and revenue functions

exchangeably. For notational convenience, define y∨z = max(y, z), y∧z = min(y, z),

and (z)+ = max(z, 0).

To analyze the firm’s problem, we start with consumer demand functions. Define

di(p1, p2) (i = 1, 2) as the total demand for product i under prices (p1, p2). Consider

an opportunistic consumer with a taste parameter θ, he chooses between products 1

and 2 as well as choosing whether to purchase at all. The utilities of buying product

1 and 2 are θq1−p1 and θ(q2 + δ)−p2, respectively. The consumer purchases product

1 if θq1− p1 ≥ θ(q2 + δ)− p2 and θq1− p1 ≥ 0 or product 2 if θ(q2 + δ)− p2 ≥ θq1− p1

and θ(q2 + δ) − p2 ≥ 0. Therefore, given the firm’s prices (p1, p2), an opportunistic

consumer purchases product 1 if his taste parameter θ ∈ [ p1−p2
q1−q2−δ ∨

p1
q1
, 1] or product 2

if θ ∈ [ p2
q2+δ

, p1−p2
q1−q2−δ ∨

p1
q1

]. The same argument can be applied to the naive consumers

by replacing q2 + δ with q2. Thus, the demand for product 1 is

d1(p1, p2) = r

(
1− p1 − p2

q1 − q2 − δ
∨ p1

q1

)+

+ (1− r)
(

1− p1 − p2

q1 − q2

∨ p1

q1

)+

. (3.1)

Similarly, we can derive the demand for product 2 to be

d2(p1, p2) = r

(
1 ∧

(
p1 − p2

q1 − q2 − δ
∨ p1

q1

)
− p2

q2 + δ

)+

+ (1− r)
(

1 ∧
(
p1 − p2

q1 − q2

∨ p1

q1

)
− p2

q2

)+

. (3.2)
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Let R = {(p1, p2) : 0 ≤ p1 ≤ q1, 0 ≤ p2 ≤ q2 + δ} be the feasible region for the

firm, then we only need to focus on R when searching for the firm’s optimal prices.

To see this, suppose (p1, p2) /∈ R constitute the firm’s optimal prices. Without loss

of generality, we assume p1 > q1 and 0 ≤ p2 ≤ q2 + δ, then π(q1, p2) = π(p1, p2) since

d1(p1, p2) = d1(q1, p2) = 0 and d2(p1, p2) = d2(q1, p2) by (3.1) and (3.2). The similar

argument can be applied to p2 > q2 + δ. Hence, we will restrict to the region R in

subsequent analysis.

Now the firm’s optimization problem can be written as follows:

max π(p1, p2) = p1d1(p1, p2) + p2d2(p1, p2)

s.t. d1(p1, p2) ≤ x1, (p1, p2) ∈ R.
(3.3)

Note x1, δ, and r are the key parameters in the firm’s optimization problem. Later

we will investigate how these parameters affect the firm’s optimal revenue.

3.3.1 Analysis of Objective Function

As preparation, we first study the property of the firm’s objective function in (3.3).

Close scrutiny of the demand functions di(p1, p2) (i = 1, 2) reveals that the region R

in (3.3) can be partitioned into sub-regions based on consumers’ purchase decisions.

In particular, R can be divided into 3 regions, Ri (i = 1, 2, 3), where R1 is the region

in which there is demand for product 1 from both types of consumers, R2 is the region

in which the demand for product 1 is only from the naive consumers, and R3 is the

region in which no consumer purchases product 1. Consumers’ purchase decisions

regarding product 2 further split the Ri’s into sub-regions. For example, R11 is the

sub-region in which there is demand for product 2 from both types of consumers.

Table 3.1 summarizes the consumers’ purchase decisions in these different regions,

which are also illustrated by Figure 3.1. A full characterization of the sub-regions is

lengthy and therefore given in the appendix.

From (3.3) and Table 3.1, it is clear that π(p1, p2) has different expressions in

different regions. The following lemma summarizes the properties of π(p1, p2).
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Consumer Type Opportunistic Naive

Product 1 2 1 2

R1

R11 X X X X

R12 X X X

R13 X X

R2

R21 X X X

R22 X X

R3 R3 X X

Table 3.1.: Consumer Purchase Decisions (X means positive demand).

Lemma 3.3.1 The objective function π(p1, p2) is continuous in R. Moreover, π(p1, p2)

is continuously differentiable and jointly concave in (p1, p2) in Ri (i = 1, 2, 3), respec-

tively.

Now we consider the firm’s optimal pricing decisions. From Lemma 3.3.1, the

optimal solution of (3.3) is straightforward if the capacity constraint d1(p1, p2) ≤ x1

does not exist. Let d∗i = di(p
∗
1, p
∗
2) (i = 1, 2) be the demand of product i when the

optimal prices are used, and π∗ = π(p∗1, p
∗
2) the firm’s optimal profit. Actually, it can

be readily shown that in the absence of the capacity constraint, the firm’s optimal

solution is given by

(p∗1, p
∗
2) = (

q1

2
,
q2 + δ

2
), d∗1 =

1

2
, d∗2 = 0, and π =

q1

4
.

That is, the firm only sells the premium product, i.e., there is d∗2 = 0 in the optimal

solution. Furthermore, there must be d∗1 = 1
2
, i.e., only half of the consumers with

θ ≥ 1
2

will be served. This is consistent with the existing results in the product line

design literature (see Mussa and Rosen 1978). In the literature, it has been assumed

that all consumers have the same valuation for the regular product. So we can show

such a result still holds even when the consumers have different valuations for product

2. The intuition is that the firm wants to eliminate product competition between its
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own products when there is no usage cost. Thus, the firm’s prices make the premium

product more attractive than the regular product (or essentially removing the regular

product from the market). From this observation, we will focus on the case x1 ≤ 1
2

in the rest of chapter.5

Figure 3.1.: Feasible Regions.

The analysis of the optimization problem in (3.3) becomes more involved when the

capacity constraint is present, which can be highlighted in Figure 3.1. Note that the

dashed lines in Figure 3.1 are the curves of prices (p1, p2) under which the capacity

x1 is fully utilized, i.e. d1(p1, p2) = x1. Intuitively, the premium product capacity is

precious to the firm, which implies that the firm should always utilize such capacity

to the fullest extent. Recall that only the premium product will be purchased when

5We have assumed the capacities are exogenously given. In reality, the capacity constraint would be
determined by the cost of the capacity. For example, a capacity would be more constrained as its
cost increases.
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the capacity is sufficiently large (i.e., x1 ≥ 1
2
). As x1 decreases from 1

2
, the firm needs

to divert part of the demand of the premium product to the regular product due

to the capacity limit. Since the opportunistic consumers have higher valuation of

the regular product, the firm would charge a price to first divert some opportunistic

consumers would change their decision and purchase the regular product. As x1

further decreases, at certain point, even though all the opportunistic consumers have

been diverted to the regular product, the limited premium capacity can not satisfy

all demand from the naive consumers. Thus, the firm has to change the prices so

that some of the naive consumers will also be diverted to the regular product. Define

parameters kj (j = 1, ..., 6) that are independent of x1 as follows:

k1 =
(1− r)δ
q1 − q2

,

k2 =
1

2

(
1− δ

q1 − q2 − δ

√
rq1(q1 − (q2 + δ)(1− r))

q2(q2 + (1− r)δ)

)
,

k3 =
(1− r)(q2 + (1− 2r)δ)

2(q2 + (1− r)δ)
,

k4 =
(q2 + δ)(1− r)

2q1

,

k5 =
(q2 − δ)(1− r)

2q2

,

k6 =
1

4
(q2 + δ)

(
q2(1− r)

q1

(
q2 + δ

q1

− 2

)
+

q2

q2 + (1− r)δ
− r
)
.

(3.4)
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The firm’s optimal solution can be achieved in one of the four possible regions:

R11, R12, R21, and R22. The corresponding prices, demands and profits are given as

follows:

Region R11 :

(p∗1, p
∗
2) =

(
q2(q2 + δ)

2(q2 + (1− r)δ)
+

(1− x1)(q1 − q2)(q1 − q2 − δ)
q1 − q2 − (1− r)δ

,
q2(q2 + δ)

2(q2 + (1− r)δ)

)
,

(3.5)

d∗1 = x1, d
∗
2 =

1

2
− x1, π

∗ =
q2(q2 + δ)

4(q2 + (1− r)δ)
+
x1(1− x1)(q1 − q2)(q1 − q2 − δ)

q1 − q2 − (1− r)δ
;

Region R12 :

(p∗1, p
∗
2) =

(
q1((1− x1)(q1 − q2 − δ) + 1

2
r(q2 + δ))

q1 − (1− r)(q2 + δ)
,
q2 + δ

2

)
, (3.6)

d∗1 = x1, d
∗
2 =

rq1(1− 2x1)

2(q1 − (1− r)(q2 + δ))
, π∗ =

q1(4x1(1− x1)(q1 − q2 − δ) + r(q2 + δ))

4(q1 − (1− r)(q2 + δ))
;

Region R21 :

(p∗1, p
∗
2) =

(
q1 −

(q1 − q2)x1

1− r
− q2(q2 + (1− 2r)δ)

2(q2 + (1− r)δ)
,

q2(q2 + δ)

2(q2 + (1− r)δ)

)
, (3.7)

d∗1 = x1, d
∗
2 =

1

2
− x1, π

∗ = (q1 − q2)x1

(
1− x1

1− r

)
+

q2(q2 + δ)

4 (q2 + (1− r)δ)
;

Region R22 :

(p∗1, p
∗
2) =

(
q1(1− x1

1− r
),
q2 + δ

2

)
, (3.8)

d∗1 = x1, d
∗
2 =

r

2
, π∗ =

r(q2 + δ)

4
+ q1x1(1− x1

1− r
).

Proposition 3.3.1 characterizes the firm’s optimal solutions.

Proposition 3.3.1 Consider x1 ≤ 1
2
. The firm’s optimal solution is determined by

x1 and the thresholds kj (j = 1, · · · , 6) defined in (3.4). Specifically,

Case 1. If k1 < k2, then

(p∗1, p
∗
2) ∈


R21, if x1 ∈ (0, k1];

R11, if x1 ∈ (k1, k2];

R12, if x1 ∈ (k2, 1
2
).
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Case 2. If k1 ≥ k2, k3 > k4 and k6 ≥ 0: there exists a threshold k̄ ∈ [k4, k3], then

(p∗1, p
∗
2) ∈

R21, if x1 ∈ (0, k̄];

R12, if x1 ∈ (k̄, 1
2
).

Case 3. If k1 ≥ k2, k3 > k4 and k6 < 0: there exists a threshold k̄ ∈ [0∨ k5, k4], then

(p∗1, p
∗
2) ∈


R21, if x1 ∈ (0, k̄];

R22, if x1 ∈ (k̄, k4];

R12, if x1 ∈ (k4, 1
2
).

Case 4. If k1 ≥ k2 and k3 ≤ k4: there exists a threshold k̄ ∈ [k5, k3], then

(p∗1, p
∗
2) ∈


R21, if x1 ∈ (0, k̄];

R22, if x1 ∈ (k̄, k4];

R12, if x1 ∈ (k4, 1
2
).

We may further explain the intuition behind Proposition 3.3.1. Recall that the

opportunistic consumers have higher valuation of the regular product compared to

the naive ones, which implies that there will be more opportunistic consumers buying

the regular product than naive consumers under any price scheme. On the other

hand, the premium product is less attractive to the opportunistic consumers, who

are more sensitive to the price change of the premium product. When capacity

is restrictive, the firm tends to increase the price of the premium product, which

drives the opportunistic consumers to the regular product. Thus, the number of

the opportunistic consumers buying the premium product decreases as the capacity

becomes scarce. Table 3.2 illustrates the optimal solutions in each case described by

Proposition 3.3.1. For instance, if k1 < k2, the optimal solutions are described in

Case 1. As x1 decreases from 1
2

to 0, the optimal solution moves from region R12 to

R11 to R21, which is shown in Table 3.2a.
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Consumer Type Opportunistic Naive

Product 1 2 1 2

R12 X X X

R11 X X X X

R21 X X X

(a) Case 1.

Consumer Type Opportunistic Naive

Product 1 2 1 2

R12 X X X

R21 X X X

(b) Case 2.

Consumer Type Opportunistic Naive

Product 1 2 1 2

R12 X X X

R22 X X

R21 X X X

(c) Case 3 and Case 4.

Table 3.2.: Evolution of the optimal solution (x1 decreases from 1
2

to 0).

3.4 Impact of δ

In this section, we study the impact of improving the quality of the regular product

on the firm’s profit. Specifically, we want to explore the how the firm’s optimal

profit changes when it adjusts the additional quality δ. The firm can influence δ

by either providing more add-on services or increasing the probability of offering

such services (e.g., free upgrades). Since quality improvement is one of the most
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important objectives for most firms, it is interesting to see whether it is beneficial.

As a benchmark, we assume there is no cost in improving the quality of the regular

product. Note such quality improvement only affects the opportunistic consumers’

utilities but not the naive consumers’ utilities.

The next proposition asserts that the optimal solution in region R11 will always

occur when δ is sufficiently small (i.e., close to zero). That is, a small difference in the

valuation of product 2 always leads to an optimal solution in which there are both

types of consumers purchasing both products.

Proposition 3.4.1 For any capacity level x1 ≤ 1
2
, there exists a threshold δ̄1 ∈

(0, q1 − q2) such that the optimal solution of (3.3) belongs to R11 if and only if δ ∈

[0, δ̄1].

To see how the firm’s optimal profit depends on δ, we first present the following

lemma. Let π∗ij denote the firm’s optimal profit occured in region Rij.

Lemma 3.4.1 The firm’s optimal profit π∗11 in (3.5) is concave in δ, π∗12 in (3.6) is

convex and increasing in δ, π∗21 in (3.7) is concave and increasing in δ, and π∗22 in

(3.8) is linearly increasing in δ.

The following proposition states that the optimal value π∗ is increasing in δ if δ

is sufficiently small; However, when x1 is large enough, the optimal profit may also

decrease in δ.

Proposition 3.4.2 If x1 ∈ (0, 1
2
), then

1. ∂
∂δ
π∗(δ) |δ=0> 0;

2. There exists δ̄2 ∈ (0, δ̄1) and a threshold k∗ < 1
5

such that π∗(δ) is decreasing

in δ ∈ [δ̄2, δ̄1] if and only if x1 > k∗, and π∗(δ) is increasing in δ otherwise.

Moreover, the threshold k∗ does not depend on x1 and r.

Proposition 3.4.2 indicates there are two possible curves for π∗(δ). First, if x1 ≤ k∗

(k∗ < 1
5
), then π∗(δ) is monotonically increasing in δ (i.e., increasing the quality
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of add-on services or the probability of offering such services always improves the

firm’s profit). Second, if x1 > k∗, then π∗(δ) is first increasing, then decreasing, and

finally increasing again in δ (i.e., the firm’s profit does not necessarily increases in

δ). The decreasing range is [δ̄2, δ̄1], which falls into region R11 (see the definition of

δ̄1 in Proposition 3.4.1). Why does a higher quality decrease the firm’s profit? To

understand this unexpected result, from (3.5), we can write the partial derivative of

the optimal profit function π11 with respect to δ as follows:

∂π11

∂δ
= x1

∂p∗1
∂δ

+

(
1

2
− x1

)
∂p∗2
∂δ

. (3.9)

Since x1 is a constant, the value of the derivative in (3.9) is determined by
∂p∗1
∂δ

and

∂p∗2
∂δ

. Lemma 3.4.2 shows how the optimal prices (p∗1, p
∗
2) change with respect to δ.

Lemma 3.4.2 Suppose (p∗1, p
∗
2) is in region R11 as (3.5), then p∗1 is concave and

decreasing in δ, and p∗2 is concave and increasing in δ.

With Lemma 3.4.2, we provide the following intuitive explanation for Proposition

3.4.2. When δ increases, product 2 becomes more valuable for the opportunistic

consumers who have already chosen product 2. Thus, the firm will increase p2 to

capture the additional surplus from the increased consumer valuation; this is the

direct, positive effect as measured by (1
2
−x1)

∂p∗2
∂δ

. Meanwhile, increasing δ also makes

product 1 less attractive to the opportunistic consumers. So the firm has to lower

price p1 in order to prevent the opportunistic consumers from switching to product 2

(eventually the total demand of product 1 remains x1). Since decreasing p1 lowers the

firm’s profit from selling product 1, this is the indirect, negative effect as measured

by x1
∂p∗1
∂δ

(the negative effect is due to the firm’s effort to prevent cannibalization).

When δ is small, the competition or cannibalization between the two products is

weak. Therefore, the direct, quality effect dominates the indirect, cannibalization

effect, and the profit increases in δ, as shown in Part 1 of Proposition 3.4.2. As δ

becomes larger, the cannibalization effect becomes stronger, and the profit decreases

in δ if it dominates the positive direct effect. Note that a higher capacity level x1
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enhances the cannibalization effect but weakens the quality effect (a higher x1 means

more demand for product 1 while less demand for product 2). Therefore, when x1 is

relatively large, the latter effect can be easily dominated by the former one, which

results in the non-monotone property of the optimal profit function as illustrated by

Part 2 of Proposition 3.4.2. Figure 3.2 shows two cases of the monotonicity of π∗(δ).

Note that Figure 3.2b represents the most interesting result in Proposition 3.4.2.

(a) x1 ≤ k∗ = 0.157 (b) x1 > k∗ = 0.157

Figure 3.2.: The monotonicity of the firm’s optimal profit π∗(δ) under different values

for x1.

Proposition 3.4.2 presents useful insights into how firms should manage quality for

a product line. The optimal quality improvement decisions may depend on a variety

of factors, such as the capacity of the premium product, the current quality, and so

on. When the premium product is scarce, i.e., x1 is relatively small, improving the

quality of the regular produce will always benefit the firm. That is, offering more

free add-on services will be the optimal strategy. On the other hand, if the capacity

of the premium product is not restrictive, i.e., x1 is relatively large, then the firm

needs to be more cautious when making the quality improvement decisions. In this

case, improving the quality of the regular product may significantly intensify the

competition between the two products and thus hurt the firm’s profit. For instance,
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choosing δ ∈ [0.1, 1.3] decreases the firm’s profit in Figure 3.2b, where q1 = 4, q2 = 2

and x1 = 0.4.

3.5 Impact of r

We proceed to examine the impact of increasing r on firm’s optimal profit. In many

practical situations, the firm can use advertisement to increase consumer awareness

of the add-on services, or provide training to influence consumer behavior (e.g., there

are websites that teach consumers how to obtain free upgrades in airlines and hotels).

That is, a firm may change the parameter value r in our model setting. To help firms

make this decision, it would be helpful to investigate how the firm’s optimal profit

depends on r. To focus on the impact of r on the firm’s optimal profit, we assume

the cost for changing r is zero.

The next lemma shows how the profit functions π∗11 and π∗12 depend r.

Lemma 3.5.1 π∗11 in (3.5) is convex in r, and π∗12 in (3.6) is concave and strictly

increasing in r.

Similar to Proposition 3.4.2, the following proposition shows that the firm’s opti-

mal profit may either increase or decrease in r under different conditions.

Proposition 3.5.1 Suppose δ
q1−q2 <

1
2
. There exists r̄ ∈ (0, 1) and a threshold k̃ ∈

[ δ
q1−q2 ,

1
2
) such that:

1. If x1 ∈
(
k̃, 1

2

)
, then the firm’s optimal profit is decreasing in r ∈ [0, r̄] and

increasing in r ∈ (r̄, 1].

2. If x1 ∈
[

δ
q1−q2 , k̃

]
, then the firm’s optimal profit is increasing in r ∈ [0, 1].

Proposition 3.5.1 indicates when capacity x1 is large and the add-on quality δ is

small, the firm’s optimal profit is non-monotone in r. In addition, the decreasing part

occurs in region R11 only. This result is interesting in two aspects. On one hand, it

implies more consumers know the add-on services could be detrimental to the firm
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(the decreasing part); on the other hand, it means more opportunistic consumers may

also benefit the firm (the increasing part). To help us understand this result, we can

write the partial derivative of the optimal profit function π11 in (3.5) with respect to

r as follows:
∂π11

∂r
= x1

∂p∗1
∂r

+

(
1

2
− x1

)
∂p∗2
∂r

. (3.10)

Lemma 3.5.2 states how the optimal prices (p∗1, p
∗
2) change with respect to r in region

R11.

Lemma 3.5.2 Suppose (p∗1, p
∗
2) is in region R11 as (3.5), then p∗1 is non-monotone

convex in r, and p∗2 is convex increasing in r.

We provide the following intuitive explanation for the fact that optimal profit

may decrease in r as demonstrated by Proposition 3.5.1. When r increases, there is

a larger portion of consumers who are opportunistic and aware of the total value of

product 2. Consequently, the firm should increase p2 to capture the additional surplus

due to the larger portion of high-valuation consumers; this is the direct, positive

effect (which can be also called the advertisement effect), measured by (1
2
− x1)

∂p∗2
∂r

.

Meanwhile, increasing r enlarges the size of opportunistic consumers, which view

product 1 as less attractive. So the firm has to lower price p1 in order to prevent the

opportunistic consumers from switching to product 2 (eventually the total demand

of product 1 remains x1). Thus, p∗1 decreases in r at the beginning, which lowers

the firm’s profit from selling product 1. This is the indirect, negative effect (which

can be also called the cannibalization effect), measured by x1
∂p∗1
∂r

. Moreover, a larger

capacity x1 intensifies the “cannibalization effect” and dampens the “advertisement

effect”. When r is small, the cannibalization effect dominates the advertisement effect,

and the profit will decrease in r, which corresponds to Part 1 of Proposition 3.5.1.

On the other hand, when r is relatively large, the dominance relationship reverses

and the optimal profit increases in r. Figure 3.3 illustrates these two cases using an

numerical example. Note that Figure 3.3b represents the more interesting result in

Proposition 3.5.1.
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(a) x1 ≤ k̃ = 0.127 (b) x1 > k̃ = 0.127

Figure 3.3.: The monotonicity of the firm’s optimal profit π∗(r) under different values

for x1.

3.6 Numerical Studies

So far we have characterized the firm’s optimal pricing strategies and obtained

two main results. § 3.4 shows that the firm’s optimal profit may be lower when

more free add-on services are provided; and § 3.5 gives the conditions under which

advertisement may actually hurt the firm’s profit. In this section, we relax some

model assumptions to check the robustness of these results. First, we introduce a

capacity constraint for regular products as well (§ 3.6.1). Second, we drop the zero

usage cost assumption and assume that the firm incurs a positive cost for each unit of

the premium product that is consumed (§ 3.6.2). Lastly, we consider a random market

size (§ 3.6.3). An analytical investigation is challenging due to the complexity of the

problem; thus we rely on numerical experiments in this section. We have explored a

wide range of parameter settings; however, to save space, we will only present some

representative examples.
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3.6.1 Capacity Constraint for Product 2

The basic model assumes there is unlimited supply of product 2. Now we relax

this assumption by introducing a capacity limit x2 for product 2 (recall there is a

capacity constraint x1 for product 1). Then the firm’s optimization problem in (3.3)

becomes

max
(p1,p2)∈R

π =p1d1(p1, p2) + p2d2(p1, p2)

s.t. d1(p1, p2) ≤ x1, d2(p1, p2) ≤ x2,

R = {(p1, p2)|0 ≤ p1 ≤ q1, 0 ≤ p2 ≤ q2 + δ}.

(3.11)

Figure 3.4 illustrates how the firm’s optimal profit varies with respect to δ and

r when q1 = 4, q2 = 2 and x1 = 0.3. The capacity for product 2 is x2 = 0.13 on

the left-hand panel and x2 = 0.18 on the right-hand panel. We can see that the

qualitative results remain unchanged with a capacity constraint for product 2: The

firm’s optimal profit may decrease in the quality level for the add-on services attached

with product 2 and more advertisement may hurt the firm’s profit.

Figure 3.4.: Firm optimal profit as a function of δ and r (with capacity constraint for

product 2).
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3.6.2 Positive Usage Cost

The usage costs for both products are normalized to zero in the basic model. In

service industries such as airlines and car rental companies, normally there is a usage

cost associated with the product. To account for this fact, we assume there is a

positive usage cost denoted by c for the premium product in this section. Since the

usage cost for the regular product is usually lower than that for the premium product,

we still assume there is a zero usage cost for the regular product. Given the usage

cost c > 0 for product 1, the firm’s optimization problem in (3.3) becomes

max
(p1,p2)∈R

π =(p1 − c)d1(p1, p2) + p2d2(p1, p2)

s.t. d1(p1, p2) ≤ x1, R = {(p1, p2)|0 ≤ p1 ≤ q1, 0 ≤ p2 ≤ q2 + δ}.
(3.12)

A representative numerical example is presented in Figure 3.5. Again, our main

results still hold with different usage cost c’s (e.g., c = 0.1 and c = 0.3) as shown in

Figure 3.5 (q1 = 4, q2 = 2 and x1 = 0.4 in this example).

Figure 3.5.: Firm optimal profit as a function of δ and r (with positive usage cost for

product 1).
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3.6.3 Random Demand Size

In the last part of the numerical study, we incorporate random demand size into

the basic model. Specifically, we assume the demand takes two possible values 1 −

z (0 < z < 1) and 1 + z with equal probability 1
2
. This two-point demand model

is sufficient to capture the nature of random market size (the qualitative results will

not change with a continuous random demand). The prices (p1, p2) are determined

before the realization of the demand. Under this assumption, the demand of product

i (i = 1, 2) can be written as d−i (p1, p2) = (1− z)di(p1, p2) for market realization 1− z

and d+
i (p1, p2) = (1+z)di(p1, p2) for market realization 1+z, where di(p1, p2) is given

in (3.1) and (3.2). Consequently, the new optimization problem becomes

max
(p1,p2)∈R

π =
1

2

(
p1

(
d−1 (p1, p2) ∧ x1 + d+

1 (p1, p2) ∧ x1

)
+ p2

(
d−2 (p1, p2) + d+

2 (p1, p2)
))

s.t. R = {(p1, p2)|0 ≤ p1 ≤ q1, 0 ≤ p2 ≤ q2 + δ}.

(3.13)

Figure 3.6 presents a numerical example with parameters q1 = 4, q2 = 2 and

x1 = 0.4. We can see that the firm’s optimal profit can still be decreasing in both

the quality of the free add-on services and the level of the advertisement. Thus our

results are robust under random demand as well.

3.7 Conclusion

This chapter studies a monopoly firm’s product quality and price decisions in the

presence of the consumer heterogeneity and capacity constraint. The firm provides

both a regular product and a premium product, the latter of which has a higher

quality and limited capacity. Consumers are heterogeneous in two dimensions: First,

they have different tastes for quality; second, they may or may not value the add-on

services attached with the regular product. The firm needs to decide how much add-

on service to offer with the regular product and then how to price the two products.
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Figure 3.6.: Firm optimal profit as a function of δ and r (with random demand size).

We first show that the firm’s optimal pricing strategy depends on the capacity

constraint. With a sufficiently large supply of the premium product, the firm will

just satisfy half of the consumers with only the premium product (i.e., the regular

product will be taken out of the market). With a very limited supply of the premium

product, the firm will always fully utilize the available capacity and prefers to sell it to

consumers whose valuation of the regular product is lower. When the firm improves

the quality of the regular product (by providing more add-on services), its profit may

decrease due to the cannibalization effect (i.e., the quality improvement intensifies the

competition between the firm’s own products and drives the consumers away from

purchasing the premium product). Furthermore, the profit decrease is more likely to

happen when the capacity level of the premium product is higher since the firm has

to lower the price of the premium product to mitigate the cannibalization effect. We

also find that it is not always beneficial to the firm when it uses advertisement to

increase the portion of consumers who value the add-on services associated with the

regular product.
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Chapter 4

Upgrading Under Opportunistic Consumers

4.1 Introduction

To cope with rapidly changing consumer trends, many firms have expanded their

product lines and provided multiple products with different qualities. In addition to

a regular product that includes basic functions desired by consumers, firms usually

offer a premium product that incorporates additional services and features. On one

hand, firms can achieve better market segmentation and extract higher profit by of-

fering both products to consumers. On the other hand, firms face a more complicated

problem in matching the supply with the demand because the demand is more pre-

dictable at the aggregated level than at the individual segment. Product upgrade as

an operational strategy has been widely adopted in practice to mitigate the risk of

mismatches between supply and demand. More details can be found in Chapter 2.

There are differences among consumers in terms of observable characteristics, such

as opportunistic behavior and naive behavior, or in terms of unobservable character-

istics, such as tastes for quality. When firms offer two products with the poten-

tial product upgrade, only the opportunistic (strategic) consumers take the upgrade

probability into account, and the regular product becomes more attractive to an

opportunistic consumer if she may receive a higher quality product with a positive

probability while only paying the price of the regular product. Moreover, for each

product offered by the firm, consumers may have different willingness to pay based

on their tastes for quality. A detailed discussion is in Chapter 3.
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A key assumption made in Chapter 3 is that consumers are heterogeneous in

their perceptions of the quality of the regular product. Recall that δ is the valuation

difference of the regular product between the opportunistic consumers and the naive

ones. As the opportunistic consumers make their purchase decisions in anticipation

of the potential product upgrade, δ can be viewed as the product of the quality

difference between the premium product and the regular one and the probability of

the product upgrade (i.e., obtaining the quality difference). However, as the qualities

of both products are exogenously given, the probability of the product upgrade is

also exogenously decided. Yet in reality, such probability depends on several factors

including the capacity limits, the total number of consumers, and the fraction of

consumers being opportunistic. For instance, a higher capacity limit of the premium

product means there may be more potential leftover capacity that can be used as a

product upgrade. A larger number of consumers has two-fold impacts: First, there are

more consumers who may request the premium product, which results in less leftover

capacity that can be used as upgrade; second, there are also more consumers who

may purchase the regular product, which results in more consumers who are waiting

for the product upgrade. A larger fraction of consumers being opportunistic implies

that more consumers appreciate the potential product upgrade and may compete

for the limited upgrading opportunities. Therefore, the probability of the product

upgrade should be endogenously decided by both the firm and the consumers. And the

opportunistic consumers should strategically learn such a probability by incorporating

all contributing factors into their decision processes. The concept that consumers can

rationally predict the future product availability has been studied in the operations

management literature, for instance, Liu and van Ryzin (2008b), Su and Zhang (2008),

Yin et al. (2009) and Cachon and Swinney (2009).

This chapter studies a monopoly firm’s optimal pricing decisions when selling two

differentiated products to heterogeneous consumers. There are two research questions

that we would like to address: First, is consumers’ opportunistic behavior beneficial

or detrimental to the firm? As we discussed earlier, the opportunistic consumers
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choose between the premium product and the regular product based on their taste

for quality as well as the probability of the future product upgrade. The firm may lose

the sales of the premium product because some opportunistic consumers may instead

purchase the regular product that yields a higher utility. However, as the utility of

buying the regular product becomes higher, the firm may be able to increase the price

of the regular product and extract more profit from the opportunistic consumers. It

is unclear how the firm’s profit may change when combining these two effects.

Second, how should the firm control the probability of the product upgrade? In

service industries, firms may impose various restrictions on the eligibility of receiving

the product upgrade. For example, airlines usually restrict the seat upgrade among

consumers with certain booking codes and give a higher priority to consumers with

elite status when assigning the seat upgrade. Similar examples can be found in the

hotel industry as well as rental car companies. Furthermore, the firm can control

the upgrade probability by adjusting the initial capacities. With a lower capacity

level of the premium product, there may be less leftover capacities that can be used

as an upgrade. Because firms clearly have the ability to adjust the frequency of the

upgrade, we wish to understand how frequently the firm should offer the product

upgrade.

The focus of this chapter is to extend the model in Chapter 3 and capture the

opportunistic behavior. In particular, we study a specific upgrading problem where

the probability of the product upgrade is endogenously determined by the consumer

heterogeneity and the capacity limit. In a single-period model, a monopoly firm offers

two products with differentiated qualities, the regular product and the premium prod-

uct. The premium product has a limited capacity, whereas the regular product has

ample capacity. Consumers with a random size arrive at the market, and each con-

sumer prefers the premium product over the regular one at equal prices and chooses

to buy one of them or nothing. After consumers make their product selections, the

firm randomly distributes a fraction of the leftover capacity of the premium product

to consumers who request the regular product as a free product upgrade. There are
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opportunistic consumers and naive consumers in the market, the former of which

rationally predict the availability of the product upgrade and adjust their purchase

decisions accordingly. The firm decides the prices for both products to achieve profit

maximization.

Two major results about the firm’s optimal strategies are obtained in this model.

First, increasing the probability of the product upgrade has complicated impacts on

the firm’s profit. When increasing such a probability, the regular product becomes

more attractive for the opportunistic consumers, and the firm may decrease the price

of the premium product while increasing the price of the regular product, which

restricts the number of opportunistic consumers changing their purchase decisions

from the premium product to the regular one. Profit is more likely to increase if the

quality difference between the two products is large. Our result suggests that the

firm should pay extra attention when revising its upgrading policy.

Second, influencing consumers’ opportunistic behavior through advertising can

change the firm’s profit in both directions. Consumers become more opportunistic

when exposed to more advertisements or training about the product upgrade. Intu-

itively, more opportunistic consumers may increase the sales of the regular product

due to their anticipation of the product upgrade. However, the profit from the pre-

mium product is reduced at the same time because the cannibalization effect between

the two products becomes more severe. We recommend that firms use advertisements

more wisely based on the model parameters.

The rest of this chapter is organized as follows. Section 4.2 reviews the strategic

consumer behavior literature. The model setting is introduced in Section 4.3. Exten-

sive numerical tests are conducted in Section 4.4 to derive managerial insights. The

chapter concludes in Section 4.5.
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4.2 Literature Review

This chapter extends the model in Chapter 3 by explicitly considering opportunis-

tic (strategic) consumer behavior.

Consumers’ purchase decisions depend on various factors including both future

price and future product availability. Specifically, a group of papers study the scenario

where consumers may strategically delay their purchases in anticipation of future price

changes. For instance, Aviv and Pazgal (2008) study two classes of pricing strate-

gies for a seasonal good with a limited quantity in the presence of forward-looking

(strategic) customers. Elmaghraby et al. (2008) analyze the optimal markdown pric-

ing mechanism in the presence of strategic buyers who request multiple units of the

product. Su (2007) studies a dynamic pricing model with heterogeneous consumers

and shows that the optimal price path could involve either markups or markdowns,

depending on the composition of the customer pool. Another group of papers focus

on the interaction between firms’ inventory decisions and the strategic consumers’

anticipation of future product availability. Liu and van Ryzin (2008b) investigate

the firm’s understocking quantity decisions, which may stimulate early purchase in a

capacity-rationing model with strategic consumers. Liu and van Ryzin (2011) then

extend the model into repeated seasons. Su and Zhang (2008) study a newsvendor

seller facing strategic customers and find that either quantity or price commitment

may improve the seller’s profit. Su and Zhang (2009) further explore the benefit of

product availability in attracting strategic consumer demand. Yin et al. (2009) con-

sider how a fashion retailer can use two different inventory display formats (display all

and display one) to mitigate the adverse impact of the strategic consumer behavior on

the retailer’s profit. Lai et al. (2010) consider a model where the seller has a posterior

price matching policy and give the condition under which the price matching benefits

the firm by eliminating strategic consumers’ waiting incentive. Cachon and Swinney

(2009) show that the value of the seller being able to procure additional inventory
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after obtaining updated demand information is generally much greater when strategic

consumers are present.

In contrast, our model considers a different type of strategic behavior. We study

the opportunistic consumers who anticipate the potential product upgrade while the

above papers consider the anticipation of either the price change or the product avail-

ability. This chapter also extends the firm’s product line by considering two quality

differentiated products whereas the above models are limited to a single product.

Lastly, our model incorporates the consumer differentiation, i.e., consumers have dif-

ferent tastes for quality, which is absent in the models above.

4.3 Model

We consider a model that has three groups of agents. In the supply side, there is

a monopoly firm managing two types of products, product 1 with quality q1 (q1 > 0,

the premium product) and product 2 with quality q2 (0 < q2 < q1, the regular

product). The firm has fixed capacities xi (i = 1, 2) for product i. In the base model,

the capacities are exogenously given, and we will use profit and revenue functions

exchangeably. Similar to Chapter 3, we assume x2 is large enough for analytical

tractability such that it never constrains the sales. The firm decides the prices pi for

product i. After consumers make their decisions, the firm allocates both capacities

to the corresponding demand. During the capacity allocation process, each consumer

has equal probability to receive the product that she requested. Furthermore, the base

model considers the complementary product upgrade, i.e., the firm may offer product

1 to consumers requesting product 2 at price p2 as a courtesy. Specifically, the firm

performs the product upgrade if there remain leftover capacities of product 1 after the

capacity allocation process. However, the firm allocates at most κ (0 ≤ κ ≤ 1) fraction

of the total leftover capacities of product 1 to consumers who originally purchase

product 2. Thus, the firm uses κ to control the quantity or frequency of the upgrade.

Let di (i = 1, 2) be the demand of product i before the capacity allocation, then the
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upgrade occurs if d1 < x1, and the upgrading probability is defined as 1 ∧ κ(x1−d1)+

d2
,

where (z)+ = max(z, 0) and y∧z = min(y, z). For notational convenience, we further

define y ∨ z = max(y, z).

In the demand side, there are two types of consumers, the opportunistic consumers

and the naive consumers. The total mass of the consumers is a random variable Y that

follows the distribution F and is independent of prices (p1, p2). A consumer chooses

between the premium product and the regular one as well as choosing whether to

purchase at all. Each of these consumers has a utility function U = θq − p for a

single unit of product, where q is the product quality, p is the product price, and

θ ≥ 0 is the parameter which measures the intensity of the consumer’s taste for

quality. A consumer receives zero utility if she does not purchase. The utility function

implies that all consumers prefer a higher quality product for a given price, but a

consumer with a larger θ is more willing to pay to obtain the high quality product.

We assume θ is uniformly distributed on the interval [0, 1]. The consumer chooses

the option that yields the highest utility based on her taste for quality and consumer

type. The opportunistic consumers are different from the naive ones in the sense that

only they recognize the possibilities of product 1 being stock-out and the product

being upgraded during the capacity allocation process. Specifically, an opportunistic

consumer forms a private belief ξo = (ξ1
o , uo) over probabilities of receiving product 1 if

requesting product 1 and receiving product 1 if requesting product 2 (i.e., the product

upgrade), respectively. For tractability, we assume that all opportunistic consumers

share the same belief ξo = (ξ1
o , uo). For the opportunistic consumers, the quality of

the premium product is ξ1
oq1, which incorporates the stock-out probability. And the

quality of the regular product is q2 + uo(q1 − q2), which considers the probability of

receiving the product upgrade. In contrast, the quality of product i for the naive

consumers remains qi. r (0 ≤ r ≤ 1) and 1 − r are the probabilities of consumers

being opportunistic and naive, respectively. Note that r is observable to the firm.
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4.3.1 Sequence of Events

We now summarize the timeline in our model. The firm forms the belief ξf =

(s1
f , uf ), which is a belief over the same probabilities as the opportunistic consumers’

belief ξo. Then, the firm optimally decides prices p1 and p2 to maximize the profit

π(p1, p2). Although the firm is informed about different types of consumers, it is

unable to differentiate individual consumers and charge different prices. Both the

opportunistic and naive consumers decide whether to buy and which product to buy.

However, the opportunistic consumers form the belief ξo = (s1
o, uo) and make their

decisions accordingly. Next, the random consumer size Y is realized. Finally, sales

occur at the prices (p1, p2) after the firm allocates the capacities to the corresponding

demand and performs the product upgrade. Our model follows the definition of the

rational expectation equilibrium proposed by Su and Zhang (2008) and requires that

ξf = ξo.

4.3.2 Analysis

To analyze the firm’s profit maximization problem, we start with consumer de-

mand functions. Let di(p1, p2, ξo) (i = 1, 2) be the demand for product i under prices

(p1, p2) and the common belief ξo = (ξ1
o , uo) among the opportunistic consumers. The

utilities of buying product 1 and 2 for an opportunistic consumer with the taste pa-

rameter θ are θξ1
oq1 − p1 and θ (q2 + uo(q1 − q2)) − p2, respectively. The consumer

purchases product 1 if θξ1
oq1 − p1 ≥ θ (q2 + uo(q1 − q2)) − p2 and θξ1

oq1 − p1 ≥ 0 or

product 2 if θ (q2 + uo(q1 − q2)) − p2 ≥ θξ1
oq1 − p1 and θ (q2 + uo(q1 − q2)) − p2 ≥ 0.

Therefore, given the firm’s prices (p1, p2), an opportunistic consumer purchases prod-

uct 1 if her taste parameter

θ ∈
[

p1 − p2

(ξ1
o − uo)q1 − (1− uo)q2

∨ p1

ξ1
oq1

, 1

]
,

or product 2 if

θ ∈
[

p2

q2 + uo(q1 − q2)
,

p1 − p2

(ξ1
o − uo)q1 − (1− uo)q2

∨ p1

ξ1
oq1

]
.

80



The same argument can be applied to the naive consumers by using (q1, q2) instead

of (ξ1
oq1, q2 + uo(q1 − q2)). Therefore, the demand for product 1 is

d1(p1, p2, ξo) = Y

(
r

(
1− p1 − p2

(ξ1
o − uo)q1 − (1− uo)q2

∨ p1

ξ1
oq1

)+

+ (1− r)
(

1− p1 − p2

q1 − q2

∨ p1

q1

)+
)
.

(4.1)

And the demand for product 2 is

d2(p1, p2, ξo) = Y

(
r

(
1 ∧

(
p1 − p2

(ξ1
o − uo)q1 − (1− uo)q2

∨ p1

ξ1
oq1

)
− p2

q2 + uo(q1 − q2)

)+

+(1− r)
(

1 ∧
(
p1 − p2

q1 − q2

∨ p1

q1

)
− p2

q2

)+
)
. (4.2)

Define R = {(p1, p2) : 0 ≤ p1 ≤ q1, 0 ≤ p2 ≤ q1}. We can show that it is sufficient

to only examine R when searching for the firm’s optimal prices. To prove this,

suppose to the contrary that (p1, p2) /∈ R constitute the firm’s optimal prices. We

assume without loss of generality that p1 > q1 and 0 ≤ p2 ≤ q1. For any belief

ξo, there is π(q1, p2) = π(p1, p2) since d1(p1, p2, ξo) = d1(q1, p2, ξo) = Y by (4.1)

and d2(p1, p2, ξo) = d2(q1, p2, ξo) by (4.2). Similarly, we can show that the optimal

p2 ∈ [0, q1]. Hence, we will restrict to the region R in subsequent analysis.

Now the firm’s optimization problem can be written as follows:

max
(p1,p2)∈R

π(p1, p2) = p1 E [d1(p1, p2, ξo) ∧ x1] + p2 E [d2(p1, p2, ξo)] (4.3)

s.t. ξ1
o = E

[
1 ∧ x1

d1(p1, p2, ξo)

]
, (4.4)

uo = E
[
1 ∧ κ (x1 − d1(p1, p2, ξo))

+

d2(p1, p2, ξo)

]
, (4.5)

where x1
d1(p1,p2,ξo)

is defined to be 1 if d1(p1, p2, ξo) = 0, and κ(x1−d1(p1,p2,ξo))
+

d2(p1,p2,ξo)
is defined

to be 0 if d2(p1, p2, ξo) = 0.

4.4 Numerical Studies

Similar to the model in Chapter 3, the profit function (4.3) is not unimodal. Fur-

thermore, the objective is maximized subject to the rational expectation equilibrium
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constraints (4.4) and (4.5), which means that we have to solve a non-linear equa-

tions system for each pair of prices (p1, p2). Due to the complexity of this problem,

the results of this section are derived from extensive numerical tests. This numerical

study includes two parts: the impacts of the firm’s advertising decision and upgrading

decision.

First, we examine how the firm’s advertising decision affects its profit. Recall

that advertisement is a useful instrument to improve the fraction of consumers being

opportunistic. On one hand, advertising the potential product upgrade can educate

naive consumers and make them purchase strategically, which increases the number

of consumers who have a higher valuation of the regular product and allows the firm

to raise the price of the regular product. On the other hand, advertising increases the

number of opportunistic consumers who may switch from the premium product to the

regular product, hoping to get a potential free upgrade, which may cannibalize the

sales from the premium product. In terms of the probability of the product upgrade,

having more consumers purchase the regular product should decrease their individual

probability to receive the product upgrade, however, having less consumers purchase

the premium product should increase such probability. Therefore, it is unknown

how the firm’s profit changes with respect to r, which represents the fraction of the

opportunistic consumers. From Figure 4.1, it is clear that the firm’s optimal profit is

non-monotone in r. Specifically, Figure 4.1a shows that the highest profit is reached

when r = 1 if the quality difference between the two products is large. In this case,

the firm benefits from a higher price for the regular product, which is the result of

the opportunistic behavior. And such a profit gain is amplified by the large κ = 1,

which encourages the opportunistic consumers by offering all leftover capacities of the

premium product as product upgrade. However, Figure 4.1b illustrates a different

scenario where the highest profit is achieved when 0 < r < 1. Note that the quality

difference between the two products is smaller in this case. We offer the following

explanation: The cannibalization effect between the two products is stronger among

the opportunistic consumers, whose valuation of the regular product is greater than
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q2, than among the naive consumers. As r increases from 0 to 1, the firm benefits

from the opportunistic behavior initially. But when r is close to 1, most consumers

are opportunistic. With a small quality difference q1 − q2, the cannibalization effect

becomes dominant and lowers the firm’s profit.

(a) q2 = 0.3 and κ = 1. (b) q2 = 0.7 and κ = 0.5.

Figure 4.1.: Firm optimal profit as a function of r.

The second part of the numerical study considers the firm’s decision about the

upgrading probability. The firm only uses κ fraction of the leftover capacity of the

premium product to upgrade consumers requesting the regular product. When the

firm chooses a larger κ, there is a greater probability of the potential product upgrade,

and the firm may be able to charge a higher price for the regular product because the

opportunistic consumers appreciate the product upgrade. However, with a smaller

κ, there is a bigger quality difference between the regular product and the premium

one for the opportunistic consumers, and the cannibalization effect may be reduced.

Figure 4.2 shows that the firm’s profit can either decrease or increase with respect to κ

and the highest profit may occur in the interior of [0, 1]. Figure 4.2b and 4.2d represent

the most interesting cases. In particular, the highest profit is achieved when 0 < κ < 1

in Figure 4.2b. To understand it, note that r = 0.1 in Figure 4.2b, which is larger than

r = 0.05 in Figure 4.2a. If q2 is small as in Figure 4.2a and 4.2b, increasing κ benefits
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the firm in general because the profit increase from the higher price of the regular

product is larger than the profit loss due to the cannibalization effect between the two

products. However, as r becomes larger, i.e., there is a larger fraction of consumers

who are opportunistic and can be directly affected by the firm’s decision κ, the firm’s

profit may eventually decrease in κ because the number of opportunistic consumers,

who may choose the regular product instead of the premium one in anticipation of

the potential product upgrade, becomes much larger. However, if q2 is large as in

Figure 4.2c and 4.2d, the aforementioned cannibalization effect is already strong even

without the product upgrade (i.e., κ = 0). As r increases from Figure 4.2c to 4.2d,

the firm benefits from the additional profit from selling the regular product to the

opportunistic consumers at a higher price, which can be further increased by offering

a more generous product upgrade. Hence, the firm’s profit can increase in κ when κ

is large.

Last, we examine the impact of changing the quality difference q1 − q2 and the

capacity constraint x1 for the premium product. As q1 is fixed, improving the quality

q2 of the regular product is equivalent to decreasing the quality difference q1−q2. From

Figures 4.3 and 4.4, we can see that the firm’s optimal profit is always increasing in

the quality of q2 as well as the capacity x1. The intuition is straightforward: without

the cost of increasing the quality q2, the firm has a better product to sell, which

implies that the firm is in a better position to generate a higher profit. Even though

the cannibalization effect becomes stronger, the additional benefit from the higher

quality q2 dominates the negative effect. Similar argument can be applied to changing

x1. Acquiring more capacity x1 increases the probability of product upgrade, which

implicitly increases the quality of the regular product. Note that the profit curves

will correspondingly change if we incorporate the cost of the quality improvement or

the capacity acquisition.
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(a) q2 = 0.6 and r = 0.05. (b) q2 = 0.6 and r = 0.1.

(c) q2 = 0.7 and r = 0.05. (d) q2 = 0.7 and r = 0.15.

Figure 4.2.: Firm optimal profit as a function of κ.

4.5 Conclusion

This chapter studies a monopoly firm’s price and upgrading decisions in the pres-

ence of the consumer heterogeneity and capacity constraint. The firm offers both the

regular product and the premium product with capacity limits and uses a fraction of

the leftover capacity of the premium product to upgrade consumers purchasing the

regular product. There are two types of consumers whose total size is a random vari-

able. The opportunistic consumers rationally predict the probability of the potential

product upgrade and make their purchase decisions accordingly, whereas the naive
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(a) κ = 0.5 and r = 0.2. (b) κ = 0.5 and r = 0.8.

(c) κ = 1 and r = 0.2. (d) κ = 1 and r = 0.8.

Figure 4.3.: Firm optimal profit as a function of q2.

consumers ignore such a probability. The firm decides the price for each product to

maximize its profit.

We confirm that the analytical results discussed in Chapter 3 still hold in this

specific upgrading problem. Particularly, the firm’s advertising and upgrading deci-

sions can change the profit in either direction. The firm needs to pay extra attention

to these decisions whose impacts depend on the quality difference between the two

products and other model specifications.
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(a) q2 = 0.2 and κ = 0.5. (b) q2 = 0.2 and κ = 1.

(c) q2 = 0.8 and κ = 0.5. (d) q2 = 0.8 and κ = 1.

Figure 4.4.: Firm optimal profit as a function of x1.
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Chapter 5

Conclusion and Future Research

This dissertation studies the impact of upgrading on firms’ operational strategies.

Three problem settings have been considered. The main results can be summarized

as follows.

Chapter 2 studies a firm’s capacity investment and allocation decisions in a dy-

namic setting with stochastic demand. There are N classes of products, each of which

corresponds to a demand class that arrives in each period. The firm has to decide the

initial capacity for each class of product before the beginning of the selling season,

then allocate capacities to incoming consumers in each period before future demand

is realized. The model considers a general upgrading rule that covers most of the

practical applications. We show that a Parallel and Sequential Rationing (PSR) pol-

icy is the optimal allocation rule in each period for any given initial capacity. The

complexity of the allocation problem can be greatly reduced by the PSR policy, where

the firm first satisfies demand by the same-class capacity as much as possible and then

sequentially upgrades leftover demand. Chapter 2 also proposes an efficient heuristic,

Refined Certainty Equivalence Control (RCEC), that exploits the structural prop-

erties of the PSR policy and yields close-to-optimum solutions for the firm. With

the help of the RCEC heuristic, extensive numerical studies show that the multi-

step upgrading is highly valuable when the capacities are not balanced. Moreover,

it is illustrated that the allocation decision is much more important than the initial

capacity decision for the firm.

89



Chapter 3 studies a monopolist firm’s optimal strategies in the presence of the

consumer heterogeneity and capacity constraint. The firm offers two differentiated

products, the regular product and the premium product, to two types of consumers,

the opportunistic consumers and the naive ones. The difference between the two con-

sumer types is that only the opportunistic consumers appreciate the add-on services

included in the regular product and thus have a higher valuation of the regular prod-

uct. The consumer’s product selection depends on his type and taste for quality. The

firm needs to decide how much add-on service to offer and then how to price the two

products. We show that the firm’s optimal pricing strategy depends on the capacity

constraint. With a limited capacity of the premium product, the firm always fully

utilizes the available capacity and prefers to sell it to naive consumers whose valua-

tion of the regular product is lower. We find that improving the quality of the add-on

services can change the firm’s profit in both directions. Similar result has been found

about influencing the fraction of opportunistic consumers, i.e., a larger fraction of

opportunistic consumers may increase or decrease the firm’s profit. Numerical results

confirm the robustness of these results in more general model settings. Chapter 4

extends Chapter 3 by endogenizing the upgrading probability. A specific upgrading

problem is introduced, where a consumer may be upgraded if there is leftover capacity

of the premium product after satisfying an uncertain demand. An opportunistic con-

sumer rationally predicts the probability of the potential product upgrade and adjusts

his product selection accordingly, while a naive consumer disregards the information

about the product upgrade. The upgrading probability is determined by the capacity

level of the premium product as well as the consumers’ strategic behavior. The main

results in Chapter 3 have been verified in this complex but more realistic setting,

which also provides insight into how firms should control the upgrading frequency.

Future research may be done in the following directions. In Chapter 2, we assume

that firms’ cost parameters are constant over time and unmet demand is backlogged.

There are several interesting extensions of this research. First, it is worthwhile explor-

ing models with general non-stationary model parameters. The PSR policy remains
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optimal if the profit margin is monotonically decreasing over time. However, with

general non-stationary model parameters, the optimal policy is still unknown. Sec-

ond, it is a challenge to analyze models with lost sales. The backorder assumption

used in this chapter is critical for the optimal PSR allocation policy. It is not clear

how the optimal policy looks under the lost-sales assumption. Third, it would be

interesting to take pricing decisions into account, i.e., the firm may adjust prices over

time depending on the evolution of demand and remaining capacity levels.

In Chapter 3, we assume that the initial qualities of both products are exogenously

given and there is only one firm in the market. There are two potential extensions of

this research. First, it would be interesting to incorporate the firm’s decisions about

the initial qualities of the products (i.e., the firm can determine the optimal qualities

of both the premium product and the regular one before deciding the qualities of

the add-on services). Second, though challenging, we may extend our model to a

competitive setting. It would be interesting to see how competition will change the

results derived from our monopoly model.
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Steinhardt, C. and J. Gönsch (2012). Integrated revenue management approaches
for capacity control with planned upgrades. European Journal of Operational Re-
search 223 (2), 380–391.

Su, X. (2007). Intertemporal pricing with strategic customer behavior. Management
Science 53 (5), 726–741.

Su, X. and F. Zhang (2008, October). Strategic customer behavior, commitment,
and supply chain performance. Management Science 54 (10), 1759–1773.

Su, X. and F. Zhang (2009, May). On the value of commitment and availability
guarantees when selling to strategic consumers. Management Science 55 (5), 713–
726.

95



Talluri, K. T. and G. J. van Ryzin (2004a). Revenue management under a general
discrete choice model of consumer behavior. Management Science 50 (1), 15–33.

Talluri, K. T. and G. J. van Ryzin (2004b). The Theory and Practice of Revenue
Management. New York: Springer-Verlag.

Topkis, D. M. (1968). Optimal ordering and rationing policies in a nonstationary
dynamic inventory model with n demand classes. Management Science 15 (3), 160–
176.

Topkis, D. M. (1998). Supermodularity and Complementarity. Princeton University
Press.

Van Mieghem, J. A. (1998). Investment strategies for flexible resources. Management
Science 44 (8), 1071–1078.

Van Mieghem, J. A. (2003, Fall). Capacity management, investment, and hedging:
Review and recent developments. M&SOM 5 (4), 269–302.

Van Mieghem, J. A. and N. Rudi (2002, Fall). Newsvendor networks: Inventory
management and capacity investment with discretionary activities. M&SOM 4 (4),
313–335.

Wall, M. (2003). Manufacturing flexibility. Automotive Industries 183 (10), 44–45.

Xu, H., D. D. Yao, and S. Zheng (2011). Optimal control of replenishment and
substitution in an inventory system with nonstationary batch demand. Production
and Operations Management 20 (5), 727–736.

Yao, D. D. and S. Zheng (2003). Substitutable inventory: Single- and multi-period
models. In J. G. Shanthikumar, D. D. Yao, and Z. Henk (Eds.), Stochastic Modeling
and Optimization of Manufacturing Systems and Supply Chains, Volume 63, pp.
177–201. Boston, MA: Kluwer Academic Publishers.

Yin, R., Y. Aviv, A. Pazgal, and C. S. Tang (2009). Optimal markdown pricing:
Implications of inventory display formats in the presence of strategic customers.
Management Science 55 (8), 1391–1408.

Zhang, D. (2011, Winter). An improved dynamic programming decomposition ap-
proach for network revenue management. M&SOM 13 (1), 35–52.

Zhang, D. and W. L. Cooper (2005, May/June). Revenue management for parallel
flights with customer-choice behavior. Operations Research 53 (3), 415–431.

Zorich, V. A. (2004). Mathematical Analysis, Volume 2. Springer.

96



APPENDICES



Appendix A

Appendices: Dynamic Capacity Management with

Upgrading

Appendix A.1: Preliminary

A.1.1 Notations

The following notations are used in this appendix to simplify our exposition. Con-

sider a vector Z = (z1, · · · , zN) ∈ <N , for 1 ≤ i < j ≤ N , we define

(Z)i = zi

(Z)i,··· ,j = (zi, zi+1, · · · , zj)

Zij = (z1, · · · , zi−1, zi + 1, zi+1, · · · , zj−1, zj − 1, zj+1, · · · , zN).

Notice that the above notations are still valid for Z = (zr, · · · , zk) (1 < r ≤ i ≤ j ≤

k < N) if we artificially set Z = (0, · · · , 0, zr, · · · , zk, 0, · · · , 0) ∈ <N .

For state vector Nt, recall the effective state N̂t
r of classes (1, · · · , r) defined in

Definition 2.5.1. If r = N , we use N̂t instead of N̂t
N to simplify our notation.

Moreover, for class i (1 ≤ i ≤ N) in period t (1 ≤ t ≤ T ), we define

∂−i Θt(Z) =
∂

∂z−i
Θt(Z), ∂+

i Θt(Z) =
∂

∂z+
i

Θt(Z).

Recall ∆−+
ij and ∆+−

ij (1 ≤ i < j ≤ N), we have

∆−+
ij Θt(Z) =

∂

∂z−i
Θt(Z)− ∂

∂z+
j

Θt(Z), ∆+−
ij Θt(Z) =

∂

∂z+
i

Θt(Z)− ∂

∂z−j
Θt(Z).

Using the notations above, the protection level pij = p in period t if and only if

∆+−
ij Θt+1(N) ≤ αij ≤ ∆−+

ij Θt(N) from (2.8), where

N = (nt1, · · · , nti−1, p, 0, · · · , 0,−p, ntj+1, · · · , ntN).
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In the essence of ∆−+
ij and ∆+−

ij , we define the marginal perturbation of class i and

j (referred to as MPij hereafter) as Θt(Z+ ε(ei−ej))−Θt(Z), where ε ∈ < is a small

number and es (s = i, j) is the unit vector with 1 in position s.

A.1.2 Independence Property

Consider a state vector Nt = (nt1, · · · , ntN) and its effective state

N̂t
i−1 = (n̂t1, · · · , n̂ti−1, n

t
i, · · · , ntN) in period t. In Lemma 2.5.2 and A.2.1, we will

show Θt has the following independence property if (nti+1, · · · , ntj−1) ≤ 0 and ntj < 0:

1. In period t (1 ≤ t ≤ T − 1),

∆+−
ij Θt+1(Nt) = ∆+−

ij Θt+1(N̂t
i−1), ∆−+

ij Θt+1(Nt) = ∆−+
ij Θt+1(N̂t

i−1).

2. ∆+−
ij Θt+1(Nt) and ∆−+

ij Θt+1(Nt) are independent of the values of (ntj, · · · , ntN).

Given the independence property of Θt+1, the protection levels in period t have a

similar property. Specifically, consider two different state vectors N = (n1, · · · , nN)

and N′ = (n′1, · · · , n′N) with the same effective state for the first i − 1 classes. If

(ni+1, · · · , nj−1) = (n′i+1, · · · , n′j−1) ≤ 0 and nj = n′j < 0, then the protection level

pij under state N is the same as that under N′. Furthermore, the protection level pij

under state N is independent of the values of (nj, · · · , nN). Hereafter, when speaking

of the independence property, we do not distinguish between Θt+1 and the protection

levels in period t, since the proper interpretation is usually clear from the context.

Remark A.1.1 Note that the independence property holds under the conditions

(nti+1, · · · , ntj−1) ≤ 0 and ntj < 0. However, in the proofs of Lemma 2.5.2 and A.2.1,

we only need ntj ≤ 0 to prove the results of ∆+−
ij Θt+1.

A.1.3 Foundation Results

Lemma 2.4.1 gives the condition of splitting the N -class general upgrading problem

into subproblems, which reduces the complexity of the analysis.
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Lemma 2.4.1 Consider an N-class general upgrading problem with state

Nt = (nt1, n
t
2, · · · , ntN)ᵀ in period t. If

∑i
s=k n

t
s ≤ 0 for all class k ≤ i, then the

problem can be separated into two independent subproblems: an upper part consisting

of classes (1, · · · , i), and a lower part consisting of classes (i+ 1, · · · , N).

Proof. This result holds if none of the optimal policies would upgrade demand j

by capacity k when there remains unmet demand i (k < i < j) in the same period.

For simplicity, we only prove the latter claim in the integer case. For any demand

sample path (Dt, · · · ,DT ), let (Yt, · · · ,YT ) be the optimal decisions. We assume

without loss of generality that yti−1,j = (Yt)i−1,j ≥ 1 (i < j) while there remains

unmet demand i after period t.

We construct decisions Ȳs (s = t, · · · , T ) that yield higher profit than the optimal

decisions, which will be a contradiction. Let Ȳt be the same as Yt except that

ȳti−1,i = yti−1,i+1 and ȳti−1,j = yti−1,j−1. In the remaining periods s (s = t+1, · · · , T ),

we apply allocation decision Ȳs = Ys whenever Ys is feasible. If the optimal decisions

are feasible in periods t+1 to T , the profit increase by using Ȳs (t ≤ s ≤ T ) instead of

the optimal decisions is αi−1,i−αi−1,j+(T−t+1)(gi−gj) > 0, which is a contradiction.

Otherwise, let l (t+1 ≤ l ≤ T ) be the first period that Yl is not feasible. From our

construction, it is clear that there exists ylki ≥ 1 (k < i) in Yl that is not feasible after

applying Ȳs (s = t, · · · , l − 1). Let Ȳl be the same as Yl except that ȳlki = ylki − 1

and ȳlkj = ylkj + 1. Since the states after applying Ȳs (s = t, · · · , l) are the same as

that for Ys (s = t, · · · , l), Ȳs = Ys (s = l + 1, · · · , T ) are feasible in the remaining

periods. Thus, the profit increase by using Ȳs (t ≤ s ≤ T ) instead of the optimal

ones is (l − t)(gi − gj) > 0, which contradicts the optimality assumption.

This concludes our proof. �

Lemmas A.1.1 and A.1.2 illustrate the bounds of the profit differences under dif-

ferent states.
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Lemma A.1.1 Consider a state vector N = (n1, · · · , nN) with ni ≥ 0 and nj ≥

0 (1 ≤ i < j ≤ N). Then,

∂+
i Θt(N)− ∂+

j Θt(N) ≥ uj − ui (A.1)

and

∂−i Θt(N)− ∂−j Θt(N) ≥ uj − ui if ni > 0 and nj > 0. (A.2)

Proof. We use the sample path argument to prove (A.1). For each demand sample

path, it is sufficient to prove

Θt(N + εei)−Θt(N + εej) ≥ ε(uj − ui), (A.3)

where ε > 0, es (s = i, j) is the unit vector with 1 in position s. The same argument

can be applied to (A.2).

Given a demand sample path (Dt, · · · ,DT ), let (Yt, · · · ,YT ) be the corresponding

optimal solutions in period t to T under initial state N + εej in period t. For initial

state N+εei, we sequentially construct solutions (Ȳt, · · · , ȲT ) based on (Yt, · · · ,YT )

from period t to T . Specifically, Ȳl = Yl in period l (t ≤ l ≤ T ) if Yl is feasible,

and we write εl = 0. Otherwise, if Yl is not feasible, from the assumption of the

initial states, the total demands which are satisfied by capacity j in Yl is greater

than the existing capacity j with initial state N + εei, and we denote the difference

as εl (0 < εl ≤ ε1). To construct a feasible solution Ȳl, we use capacity i to satisfy

demands which cannot be fulfilled by capacity j. By applying such (Ȳt, · · · , ȲT ), the

unmet demands in periods t to T are the same for both initial states, and
∑T

l=t εl ≤ ε.

Note that αsi−αsj = uj−ui < 0 for any class s (s ≥ j), and unmet demand vectors

in period t to T are the same for both initial states. Since (Ȳt, · · · , ȲT ) are feasible

solutions to the general upgrading problem with initial state N + εei, we have

Θt(N + εei)−Θt(N + εej) ≥ (uj − ui)
T∑
l=t

εl ≥ ε(uj − ui),

which completes the proof. �
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Lemma A.1.2 Consider a state vector N = (n1, · · · , nN) with ni ≤ 0 and nj ≤

0 (1 ≤ i < j ≤ N). Then,

∂+
i Θt(N)− ∂+

j Θt(N) ≥ rj − ri if ni < 0 and nj < 0

and

∂−i Θt(N)− ∂−j Θt(N) ≥ rj − ri.

Proof. It is similar to the proof of Lemma A.1.1. �

Appendix A.2: Proofs of the Main Results

This section presents the proofs of the main results in the chapter. The proofs

of some intermediate results are lengthy and therefore presented in the Electronic

Companion (§A.5), including Lemmas A.5.1 to A.5.5 and Propositions A.5.1 to A.5.3.

In §A.2.1, we prove the desired properties in period T . §A.2.2 considers a general

period t by following the similar logic for period T . §A.2.3 completes the optimality

proof. §A.2.4 proves two properties of the protection levels.

A.2.1 Final Period T

Lemma 2.5.1 The PSR algorithm solves the general upgrading problem (2.2) in pe-

riod T with all protection levels being 0.

Proof. Note that ΘT+1 ≡ 0 and the solution YT generated by the PSR is a Monge

sequence which solves the general upgrading problem in period T (see Bassok et al.

1999). �

We follow the notations in Chapter 2. Recall the state vector Nt = (nt1, · · · , , ntN) in

period t, and N̂t
i−1 = (n̂t1, · · · , n̂ti−1, n

t
i, · · · , ntN), where (n̂t1, · · · , n̂ti−1) is the effective

state of (nt1, · · · , nti−1). Then, Lemma 2.5.2 shows the independence property of ΘT .
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Lemma 2.5.2 Consider an N-class general upgrading problem in period T − 1 with

state vector NT−1, where (nT−1
i+1 , · · · , nT−1

j−1 ) ≤ 0 and nT−1
j < 0. Then,

∆+−
ij ΘT (NT−1) = ∆+−

ij ΘT (N̂T−1
i−1 ), ∆−+

ij ΘT (NT−1) = ∆−+
ij ΘT (N̂T−1

i−1 ). (A.4)

In addition, they are independent of the values of (nT−1
j , · · · , nT−1

N ).

Proof. For any t = 1, · · · , T , given Dt = (d1, · · · , dN) as realized demand in period

t, we have

∆+−
ij Θt(Nt−1) = ∆+−

ij E
{

Θt(Nt−1|Dt)
}

= E
{

∆+−
ij Θt(Nt−1|Dt)

}
(A.5)

and

∆−+
ij Θt(Nt−1) = ∆−+

ij E
{

Θt(Nt−1|Dt)
}

= E
{

∆−+
ij Θt(Nt−1|Dt)

}
. (A.6)

Both the continuity of Θt(Nt−1|Dt) and the existence of its left and right derivatives

(see Rockafellar 1996) assure the last equality in (A.5-A.6) (see Zorich 2004, P.409).

We focus on ∆+−
ij in (A.4) since the same method applies to ∆−+

ij . For any demand

realization DT = (d1, · · · , dN) in period T , we next show

∆+−
ij ΘT (NT−1|DT ) = ∆+−

ij ΘT (N̂T−1
i−1 |DT ), (A.7)

and it is independent of the values of (nT−1
j , · · · , nT−1

N ).

For any DT , without loss of generality, we assume classes (1, · · · , N) can not be

separated based on NT−1 − DT . Otherwise, from Lemma 2.4.1, we can consider

independent subproblems instead. With this assumption, classes (1, · · · , N) are also

not separable based on N̂T−1
i−1 −DT by Proposition A.5.1 given in the Supplementary

Appendix (§A.5).

To solve the N -class general upgrading problem in period T , we first solve sub-

problems (1, · · · , i−1) with initial state (NT−1)1,··· ,i−1 and (N̂T−1
i−1 )1,··· ,i−1 by the PSR.

Then, we use the PSR to solve the subproblem (1, · · · , N), where the initial states of

classes (1, · · · , i− 1) are the states after solving the subproblem (1, · · · , i− 1) by the

PSR.
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Since the upgrading problem in period T is a transportation problem, given the

special cost structure, the optimal allocation decisions in subproblem (1, · · · , i−1) are

independent from classes (i, · · · , N). Particularly, the optimal decisions within classes

(1, · · · , i − 1) remain unchanged with respect to MPij. Moreover, from Proposition

A.5.2, the result of applying the PSR to subproblem (1, · · · , i− 1) with initial state

(NT−1)1,··· ,i−1 is the same as that with initial state (N̂T−1
i−1 )1,··· ,i−1. In other words, the

initial states in subproblem (1, · · · , N) are the same for both initial states (NT−1,DT )

and (N̂T−1
i−1 ,D

T ). Thus, (A.7) is true. In addition, ∆+−
ij ΘT (NT−1|DT ) is independent

of the values of (nT−1
j , · · · , nT−1

N ) from Lemma A.5.2. This completes the proof. �

A.2.2 Earlier Periods

Lemma A.2.1 proves the independence property of Θt+1 by backward induction.

Lemma A.2.1 Consider an N-class general upgrading problem in period t with state

vector Nt, where (nti+1, · · · , ntj−1) ≤ 0 and ntj < 0. If the PSR algorithm solves the

general upgrading problem in period t + 1 and the independence property holds for

Θt+2, then,

∆+−
ij Θt+1(Nt) = ∆+−

ij Θt+1(N̂t
i−1), ∆−+

ij Θt+1(Nt) = ∆−+
ij Θt+1(N̂t

i−1). (A.8)

In addition, ∆+−
ij Θt+1(Nt) and ∆−+

ij Θt+1(Nt) are independent of the values of

(ntj, · · · , ntN).

Proof. As discussed in the proof of Lemma 2.5.2, ∆+−
ij and ∆−+

ij in (A.8) are

well-defined. We prove the equality regarding ∆+−
ij in (A.8) and the corresponding

independence property for any demand realization Dt+1 = (d1, · · · , dN) in period

t+ 1. From Lemma 2.4.1, we can assume classes (1, · · · , N) are not separable under

Nt −Dt+1, which is also true under N̂t
i−1 −Dt+1 by Proposition A.5.1.

Splitting the N -class general upgrading problem into subproblems: (1, · · · , i− 1),

(1, · · · , j) and (1, · · · , N), we start with the subproblem (1, · · · , i− 1).
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1. Because the protection levels within classes (1, · · · , i − 1) in period t + 1 are

defined by Θt+2, which satisfies the independence property by assumption, the

allocation decisions within classes (1, · · · , i−1) in period t+1 remain unchanged

with respect to MPij. Let N′i−1 be the outcome of applying the PSR algorithm

to subproblem (1, · · · , i − 1) with states ((Nt)1,··· ,i−1, (D
t+1)1,··· ,i−1). Denote

k (1 ≤ k ≤ i−1) as the highest class such that (N′i−1)k,··· ,i−1 ≥ 0 and (N′i−1)k > 0.

Since the PSR is optimal in period t+1 by assumption, we only need to consider

upgrading decisions among classes (k, · · · , N) in the rest of the subproblems.

Similarly, we can define N̂′i−1 and k̂ for subproblem (1, · · · , i − 1) with states

((N̂t
i−1)1,··· ,i−1, (D

t+1)1,··· ,i−1). From Proposition A.5.3, we know that k̂ = k

and (N̂′i−1)k,··· ,i−1 = (N′i−1)k,··· ,i−1. In other words, after solving subproblem

(1, · · · , i − 1), the initial state of classes (k, · · · , N) are the same for both Nt

and N̂t
i−1. Notice that we assume both k and k̂ exist; otherwise, both k and k̂

do not exist from Proposition A.5.3, which means that considering upgrading

decisions in classes (i, · · · , N) is sufficient, which is a simpler case.

2. From the definition of the protection levels, although there is no upgrade be-

tween classes (1, · · · , k − 1) and (k, · · · , N), the states of classes (1, · · · , k − 1)

can still affect the protection levels within classes (k, · · · , N) in period t+1. For-

tunately, the effective state of (N̂′i−1)1,··· ,k−1 is the same as that of (N′i−1)1,··· ,k−1

by Proposition A.5.2. From the independence property assumption of Θt+2, the

protection levels within classes (k, · · · , N) are the same for both initial states.

To summarize, for initial states Nt and N̂t
i−1, the capacities of classes (k, · · · , i−1)

after solving subproblem (1, · · · , i − 1), which can upgrade the demands in classes

(i, · · · , N), are the same. Moreover, the protection levels within classes (k, · · · , N)

are also the same. Therefore, we only analyze the allocation decisions within classes

(k, · · · , N) under initial state Nt, which can again be split into subproblems (k, · · · , j)

and (k, · · · , N).

Apply the PSR to subproblem (k, · · · , j) with state (Nj, (0, · · · , 0, (Dt+1)i,··· ,j)),

where Nj = ((N′i−1)k,··· ,i−1, (N
t)i,··· ,j), and let N′j be the resulting states of classes
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(k, · · · , j) after applying Yj, which are the optimal allocation decisions within classes

(k, · · · , j). Since (Nt)i+1,··· ,j ≤ 0, the protection levels used in subproblem (k, · · · , j),

which determine the upgrades from classes (k, · · · , i), only depend on (N′i−1)k,··· ,i−1

by the independence property assumption of Θt+2. We consider two cases based on

whether there is unmet demand j in N′j:

1. (N′j)j = 0: Define h (k ≤ h ≤ i) as the class which satisfies the last unit of

demand j when the PSR solves subproblem (k, · · · , j). In fact,

h =

r, if r < i and
∑i−1

s=r+1(N′i−1)s ≤ −
∑j

s=i((N
t)s − ds) <

∑i−1
s=r(N

′
i−1)s

i, if
∑j

s=i((N
t)s − ds) > 0.

In this case, N′j is the same as the result of applying the greedy upgrading to

subproblem (k, · · · , j), i.e., N′j = N̂j, where N̂j is the effective state of Nj.

Specifically,

(N̂j)l =



(N′i−1)l, if k ≤ l < h∑i−1
s=h(N

′
i−1)s +

∑j
s=i((N

t)s − ds), if l = h < i∑j
s=i((N

t)s − ds), if l = h = i

0, otherwise,

(A.9)

for class l (k ≤ l ≤ j). Note that class h (k ≤ h ≤ i) must exist since classes

(1, · · · , N) are not separable, and h and N̂j remain the same with respect to

MPij. Furthermore, from the discussion of N′j, we can see that Yj is the same

as optimal allocation decisions given initial state (Nj, (0, · · · , 0, (Dt+1)i,··· ,j)) in

period T where the protection levels are zero. Hence,

Θt+1(Nt|Dt+1)

=ΘT
(
(Nt)1,··· ,i−1 −N′i−1|(Dt+1)1,··· ,i−1

)
+ ΘT

(
Nj|(0, · · · , 0, (Dt+1)i,··· ,j)

)
+ Θt+1

(
((N′i−1)1,··· ,k−1, N̂j, (N

t)j+1,··· ,N)|(0, · · · , 0, (Dt+1)j+1,··· ,N)
)
,

(A.10)
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where the first two terms are the corresponding revenues of subproblems

(1, · · · , i−1) and (k, · · · , j), and the last term is the sum of the current revenue

of subproblem (k, · · · , j) and the expected value in the remaining periods. Thus,

∆+−
ij Θt+1(Nt|Dt+1) = ∆+−

ij ΘT
(
Nj|(0, · · · , 0, (Dt+1)i,··· ,j)

)
, (A.11)

which is clearly independent of (ntj+1, · · · , ntN). Also, (A.11) is independent

of ntj by Lemma A.5.2. Note that the first term in (A.10) has been omitted

from (A.11) since the allocation decisions in subproblem (1, · · · , i − 1) remain

unchanged with respect to MPij. Moreover, the last term in (A.10) has also been

dropped from (A.11) because its initial states remain the same with respect to

MPij.

Similarly, for initial state N̂t
i−1, we have

∆+−
ij Θt+1(N̂t

i−1|Dt+1) = ∆+−
ij ΘT

(
Nj|(0, · · · , 0, (Dt+1)i,··· ,j)

)
since the allocation decisions in subproblem (k, · · · , j) are the same for both

initial state Nt and N̂t
i−1. Therefore, we have

∆+−
ij Θt+1(Nt|Dt+1) = ∆+−

ij Θt+1(N̂t
i−1|Dt+1),

which is independent of the values of (ntj, · · · , ntN) by (A.11);

2. (N′j)j < 0: Since the PSR is optimal in period t+1, there is no upgrade between

classes (k, · · · , j) and (j + 1, · · · , N). By the definition of the effective state,

N̂j in (A.9), which remains unchanged with respect to MPij, is the effective

state of N′j. Thus, the allocation decisions within classes (j+1, · · · , N) stay the

same with respect to MPij by the independence property assumption of Θt+2,
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and we denote N′j+ as the result of applying the PSR to classes (j + 1, · · · , N).

Therefore, we have

Θt+1(Nt|Dt+1)

=ΘT
(
(Nt)1,··· ,i−1 −N′i−1|(Dt+1)1,··· ,i−1

)
+ ΘT

(
Nj −N′j|(0, · · · , 0, (Dt+1)k,··· ,j)

)
+ ΘT

(
(Nt)j+1,··· ,N −N′j+|(0, · · · , 0, (Dt+1)j+1,··· ,N)

)
+ Θt+2

(
(N′i−1)1,··· ,k−1,N

′
j,N

′
j+

)
,

(A.12)

where the first three terms are the corresponding revenues of subproblems (1, · · · , i−

1), (k, · · · , j), and (j, · · · , N), and the last term is the expected revenue-to-go

function. As we discussed earlier, we have

∆+−
ij Θt+1(Nt|Dt+1)

=∆+−
ij ΘT

(
Nj −N′j|(0, · · · , 0, (Dt+1)k,··· ,j)

)
+

∂

∂n+
i

Θt+2
(
(N′i−1)1,··· ,k−1,N

′
j,N

′
j+

)
− ∂

∂n−j
Θt+2

(
(N′i−1)1,··· ,k−1,N

′
j,N

′
j+

)
,

(A.13)

where the first term is independent of (ntj+1, · · · , ntN) by construction. Moreover,

recall that the protection levels used in subproblem (k, · · · , j) only depend on

(N′i−1)k,··· ,i−1, and demand j is not fully satisfied in this case, thus the alloca-

tion decisions Yj as well as Nj −N′j, which is the capacity used in subproblem

(k, · · · , j), do not depend on ntj. Hence, the first term in (A.13) is also indepen-

dent of ntj. Similarly, for initial state N̂t
i−1, we have

∆+−
ij Θt+1(N̂t

i−1|Dt+1)

=∆+−
ij ΘT

(
Nj −N′j|(0, · · · , 0, (Dt+1)k,··· ,j)

)
+

∂

∂n+
i

Θt+2
(

(N̂′i−1)1,··· ,k−1,N
′
j,N

′
j+

)
− ∂

∂n−j
Θt+2

(
(N̂′i−1)1,··· ,k−1,N

′
j,N

′
j+

)
.

(A.14)
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To complete the proof, from (A.13) and (A.14), we use the induction assumption

of Θt+2 to show

∂

∂n+
i

Θt+2
(
(N′i−1)1,··· ,k−1,N

′
j,N

′
j+

)
− ∂

∂n−j
Θt+2

(
(N′i−1)1,··· ,k−1,N

′
j,N

′
j+

)
=

∂

∂n+
i

Θt+2
(

(N̂′i−1)1,··· ,k−1,N
′
j,N

′
j+

)
− ∂

∂n−j
Θt+2

(
(N̂′i−1)1,··· ,k−1,N

′
j,N

′
j+

)
,

(A.15)

which is independent of (ntj, · · · , ntN). First of all, since there is no upgrade

between classes (1, · · · , k − 1) and (k, · · · , N) in period t + 1, and the PSR

sequentially satisfies demands in each class, the marginal change of nti only affects

the state of a single class in N′j, which is the same for both initial states Nt

and N̂t
i−1. Denote such a class as r, then k ≤ r ≤ j. Given (N′i−1)1,··· ,k−1

and (N̂′i−1)1,··· ,k−1 have the same effective state from the previous argument, to

apply the induction assumption, we only need to show (N′j)r+1,··· ,j ≤ 0 where

(N′j)j < 0 by assumption. Suppose to the contrary that (N′j)l > 0 for class

l (r < l < j). Note that initial states (Nt)i+1,··· ,j ≤ 0, thus class l ≤ i. Since

the demands in classes (i, · · · , j) should be satisfied by class l prior to class r

by the PSR, given (N′j)l > 0, there is no upgrade between classes (k, · · · , l − 1)

and (l, · · · , j), i.e., the marginal change of nti should not affect the state of class

r, which is a contradiction. Hence, by applying the induction assumption to

(A.15), we have

∆+−
ij Θt+1(Nt|Dt+1) = ∆+−

ij Θt+1(N̂t
i−1|Dt+1),

which is independent of the values of (ntj, · · · , ntN). This concludes the proof.

�

A.2.3 Optimality

Proposition 2.5.1 1. The PSR algorithm solves the general upgrading problem

in period t;
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2. For a state vector Nt with (nti+1, · · · , ntj−1) ≤ 0 and ntj < 0, we have

∆+−
ij Θt+1(Nt) = ∆+−

ij Θt+1(N̂t
i−1), ∆−+

ij Θt+1(Nt) = ∆−+
ij Θt+1(N̂t

i−1).

In addition, they are independent of the values of (ntj, · · · , ntN).

Proof. In the proof, we show the two properties in Proposition 2.5.1 can be pre-

served under backward induction. The proof of period T is given in the end of this

proof.

Suppose they are true for Θt+1, we verify the two properties for Θt.

1. Optimality of the PSR algorithm

Consider initial state Xt = (x1, · · · , xN) and D̃t = (d̃1, · · · , d̃N), for any demand

realization Dt = (d1, · · · , dN) in period t, we next verify Yt = (yij)N×N derived by

the PSR are optimal in period t. First, from the discussion in Chapter 2, ykk =

min(dk + d̃k, xk) (1 ≤ k ≤ N) in the PSR is optimal.

For upgrading decisions yij (i > j) in Yt, we consider an equivalent representation

of the general upgrading problem in (2.2). Let Z = (z1, · · · , zN)> = Yt1, the optimal

solution W = (wij)N×N in the following linear program is the same as Yt = (yij)N×N

in period t:

max
W≥0

∑
1≤i≤j≤N

αijwij

s.t.
∑
j

wij ≤ zi, i = 1, 2, · · · , N,

∑
i

wij ≤ dj + d̃j, j = 1, 2, · · · , N.

(A.16)

Since the parallel allocation is optimal, zi = xi (1 ≤ i ≤ N) in Z is optimal if

xi ≤ di + d̃i. Furthermore, we need to show the optimality of zi for all classes i’s with

xi > di+ d̃i, i.e., the classes with surplus capacities after the parallel allocation. Since

the general upgrading problem is concave, we only need to examine ∂
∂z+i

Θt+1(N) and

∂
∂z−i

Θt+1(N), where

N = Xt − D̃t −Dt −Yt1 + (Yt)ᵀ1 = Xt − D̃t −Dt − Z + (W)ᵀ1
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is the state at the beginning of period t+ 1.

Without loss of generality, we assume class 1 is the highest class with x1 > d1 + d̃1

and analyze the optimality of z1 by cases.

1. z1 = d1 + d̃1: We only need to prove that increasing z1 is suboptimal since

z1 ≥ y11 = d1 + d̃1. Let k (k > 1) be the highest class with (N)k < 0. Note that

z1 is clearly optimal if class k does not exist, i.e., there is no backlogged demand

in classes (1, · · · , N) in N.

(a) (N)2,··· ,k−1 = 0: When solving the protection level p1k and the allocation

decision y1k by the PSR, (N)1,··· ,k are the states of classes (1, · · · , k). Mean-

while, the upgrading decisions within classes (k + 1, · · · , N) have not been

considered, whose states are the states after the parallel allocation, i.e.,

(Xt − D̃t −Dt)k+1,··· ,N . Thus,

0 ≥α1k −∆−+
1k Θt+1

(
(N)1,··· ,k, (X

t − D̃t −Dt)k+1,··· ,N

)
=α1k −∆−+

1k Θt+1(N) = α1k +
∂

∂z+
1

Θt+1(N),
(A.17)

where the first equality is from the independence property assumption of

Θt+1, and the second equality follows from the fact that N changes to N +

ε(−e1 + ek) when z1 marginally changes to z1 + ε, where ε > 0. Hence,

increasing z1 is suboptimal.

(b) There exists class i (1 < i < k) with (N)i > 0: Without loss of generality,

we assume that i is the lowest class in (2, · · · , k − 1) with (N)i > 0. In

this case, the PSR considers protection level pik and ignores the potential

upgrade from class 1 to k, and we will show it is indeed optimal to do

so. Since (N)1,··· ,k are the states of classes (1, · · · , k) when considering the

protection level pik by the PSR, and N changes to N + ε(−ei + ek) when zi

marginally changes to zi + ε, where ε > 0. We have

0 ≥ αik−∆−+
ik Θt+1

(
(N)1,··· ,k, (X

t − D̃t −Dt)k+1,··· ,N

)
= αik+

∂

∂z+
i

Θt+1(N).
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Moreover, because (N)1 > 0 and (N)i > 0,

∂−1 Θt+1(N)− ∂−i Θt+1(N) ≥ ui − u1

from Lemma A.1.1.

Notice that N changes to N + ε(−e1 + ek) when z1 marginally changes to

z1 + ε, then

∂

∂z+
1

Θt+1(N)− ∂

∂z+
i

Θt+1(N) = ∂−i Θt+1(N)− ∂−1 Θt+1(N). (A.18)

Thus, from αik − α1k = u1 − ui, we have

∂

∂z+
1

Θt+1(N)+α1k ≤
∂

∂z+
i

Θt+1(N)+α1k +u1−ui =
∂

∂z+
i

Θt+1(N)+αik ≤ 0,

(A.19)

which means increasing z1 is not optimal.

2. z1 > d1 + d̃1: Let j (j > 1) be the lowest class with y1j > 0 in Yt. Similar to the

previous case, from the PSR, (N)1,··· ,j are the states after performing the last

unit of upgrade y1j. In this case, N changes to N+ε(e1−ej) when z1 marginally

changes to z1 − ε, where ε > 0, then

0 ≤ α1j −∆+−
1j Θt+1

(
(N)1,··· ,j, (X

t − D̃t −Dt)j+1,··· ,N

)
= α1j +

∂

∂z−1
Θt+1(N).

(A.20)

Thus, decreasing current z1 is costly.

Furthermore, for all class i (1 < i < j) with xi > di + d̃i, zi = xi by the PSR

algorithm. First, we only need to show decreasing these zi’s is not optimal.

When zi marginally changes to zi − ε, there is a chain reaction. From (A.16),

decreasing zi by ε is equivalent to reducing the upgrade yiki by ε, where ki is the

lowest class upgraded by capacity i. Then, unmet demand ki increases by ε unit,

and demand ki will be upgraded by capacity s (1 ≤ s < i), which is the lowest

class with xs > d̃s + ds. Meanwhile, ks, the lowest class of demands upgraded

by capacity s prior to changing zi, has an additional ε unit unmet demand,

which can be similarly analyzed as class ki. The chain reaction continues, and

N changes to N + ε(ei − ej), i.e., the unmet demand j is increased by ε unit.
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When zi marginally changes to zi − ε, only unmet demand j and capacity i

changed in the aforementioned chain reaction, then the objective function in

(A.16) decreases by εαij. Meanwhile, given (N)1 ≥ 0 and (N)i = 0, similar to

(A.18), we have
∂

∂z−1
Θt+1(N)− ∂

∂z−i
Θt+1(N) ≤ u1 − ui

by Lemma A.1.1. Thus, from αij − α1j = u1 − ui,

∂

∂z−i
Θt+1(N) + αij ≥

∂

∂z−1
Θt+1(N) + ui − u1 + αij =

∂

∂z−1
Θt+1(N) + α1j ≥ 0.

Hence, zi = xi is optimal for all class i (1 < i < j) with xi > di + d̃i.

Next, we have to prove that increasing z1 itself is also suboptimal.

(a) (N)j < 0: In this case, the protection level p1j is binding in the PSR, i.e.,

the upgrade between classes 1 and j stops when the quantity of capacity

1 reaches p1j. From the definition of p1j, and the fact that N changes to

N + ε(−e1 + ej) when z1 marginally changes to z1 + ε, we have

0 ≥α1j −∆−+
1j Θt+1

(
(N)1,··· ,j, (X

t − D̃t −Dt)j+1,··· ,N

)
=α1j +

∂

∂z+
1

Θt+1(N).
(A.21)

From (A.20) and (A.21), we know the optimality of z1.

(b) (N)j = 0: The upgrading decision y1j is bounded because there is no un-

met demand j remaining, and we do not have (A.21) directly from solving

p1j. However, similar to the case when z1 = d1 + d̃1, increasing z1 is still

suboptimal. Particularly, if there exists k (k > j) as the highest class with

(N)k < 0, and (N)s = 0 for all class s (j < s < k), then we have (A.17)

that affirms the optimality of z1. On the other hand, if there exists class

i (j < i < k) with (N)i > 0, then (A.19) is valid, which also proves the

optimality of z1.

To summarize, we have proved that z1 is optimal. In addition, if z1 > d1 + d̃1 and

class j is the lowest class with y1j > 0 in Yt, we have also shown the optimality of
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zi (1 < i < j) with xi > di + d̃i. The same argument can be sequentially applied to

the rest of zs’s since (N)1,··· ,s−1 are the states of classes (1, · · · , s − 1) when solving

the protection levels within classes (s, · · · , N) in the PSR algorithm.

Therefore, the PSR algorithm solves the general upgrading problem in period t.

2. Independence property of Θt

As the PSR solves the general upgrading problem in period t, and the independence

property of Θt+1 holds by Property 2 of the induction assumption, all requirements

of Lemma A.2.1 are satisfied, thus the independence property of Θt also holds.

To conclude the proof, we now consider period T . The PSR solves the general

upgrading problem in period T by Lemma 2.5.1. And Lemma 2.5.2 asserts the inde-

pendence property of ΘT . Therefore, we can use the backward induction and complete

the proof. �

A.2.4 Properties of the Protection Levels

Proposition 2.5.2 If initial capacity X1 and demand D1, · · · ,DT are integer val-

ued, there exists an integer valued optimal policy Y1, · · · ,YT derived by the PSR

algorithm.

Proof. The proof is similar to the proof of Proposition 3 in Shumsky and Zhang

(2009). �

Proposition 2.5.3 For the same (nt1, · · · , nti−1) in period t (1 ≤ t ≤ T ), pij ≤ pi,j+1

when i < j.

Proof. Suppose to the contrary that pij > pi,j+1 in period t. Let p̄ =
pij+pi,j+1

2
, and

denote N = (nt1, · · · , nti−1, p̄, 0, · · · , 0, ntj+2, · · · , ntN). From the concavity in Proposi-

tion 2.4.1 and the independence property in Proposition 2.5.1, we have ∆+−
i,j+1Θt+1(N) ≤

αi,j+1 given p̄ > pi,j+1. Similarly, we have ∆+−
ij Θt+1(N) ≥ αij since p̄ < pij.
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However, since αij − αi,j+1 = rj + gj − rj+1 − gj+1 and gj > gj+1,

∆+−
i,j+1Θt+1(N) = ∂+

i Θt+1(N)− ∂−j+1Θt+1(N)

≥∂+
i Θt+1(N)− ∂−j Θt+1(N) + rj+1 − rj = ∆+−

ij Θt+1(N) + rj+1 − rj

≥αij + rj+1 − rj > αi,j+1,

where the first inequality follows from Lemma A.1.2. This is a contradiction. Hence,

pij ≤ pi,j+1 when i < j. �

Appendix A.3: Multi-Horizon Model with Replenishment

Proposition 2.6.1 Suppose the firm starts with an initial capacity X ≤ X∗. The

firm’s optimal replenishment policy in the multi-horizon model is a base stock policy

with the optimal base stock level X∗ in (2.11). Furthermore, the PSR algorithm solves

the optimal allocation decisions within each horizon.

Proof. We prove this proposition by induction. Let Vk(X, D̃) (1 ≤ k ≤ K) denote

the expected revenue-to-go function at the beginning of the k-th horizon with capacity

X and backlogged demand D̃. Where possible, the index of periods in each horizon is

denoted by superscripts while subscripts denote the index of horizons. We inductively

prove the following three properties.

1. The PSR algorithm optimally solves the capacity allocation decisions in the k-th

horizon;

2. The optimal replenishment policy in the k-th horizon is a base stock policy with

the optimal base stock level X∗;

3. If X ≤ X∗, Vk(X, D̃) is affine in X with slope C and D̃ with slope α−C.
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Suppose all properties hold in the (k+1)-th horizon. It suffices to consider capacity

X ≤ X∗. Since Vk+1(X, D̃) is affine in (X, D̃), in horizon k we have

ΘT
k (X, D̃)

= E
DT
k

{
max
YT
k

[
H(YT

k |D̃; DT
k )− hXT+1

k + γVk+1(XT+1
k , D̃T+1

k )
]}

= E
DT
k

{
max
YT
k

[
H(YT

k |D̃; DT
k )− hXT+1

k + γVk+1(X∗, 0) + γC(XT+1
k −X∗) + γ(α−C)D̃T+1

k

]}
= E

DT
k

{
max
YT
k

[
H(YT

k |D̃; DT
k ) + (γC− h)XT+1

k + γ(α−C)D̃T+1
k + γ (Vk+1(X∗, 0)−CX∗)

]}
= E

DT
k

{
max
YT
k

[
H(YT

k |D̃; DT
k ) + (γC− h)XT+1

k + γ(α−C)D̃T+1
k

]}
+ γ (Vk+1(X∗, 0)−CX∗) ,

(A.22)

where γ (Vk+1(X∗, 0)−CX∗) is a constant. From the proof of Proposition 2.5.1,

the PSR algorithm optimally solves the T -th period allocation decisions in the k-

th horizon, where the protection levels are based on ΘT+1(XT+1, D̃T+1) in (2.10).

Moreover, it is clear that ΘT
k (X, D̃) is also concave in (X, D̃) from the proof of

Proposition 2.4.1. Inductively, for t = T − 1, · · · , 1, we know

Θt
k(X, D̃) = E

Dt
k

{
max
Yt
k

[
H(Yt

k|D̃; Dt
k) + Θt+1

k (Xt+1
k , D̃t+1

k )
]}

is concave in (X, D̃), and we can show that the PSR algorithm solves the capacity

allocation decisions for horizon k.

From the Bellman equation, we have

Vk(X, D̃) = max
Z≥X

G(Z),

where G(Z) = Θ1
k(Z,0) + αD̃−C(Z−X + D̃). From (A.22), we have

G(Z) = Π (Z; γC− h, γ(α−C)) + (α−C)D̃ + C(X− γX∗) + γVk+1(X∗, 0).

By the definition of X∗, the optimal replenishment policy in the k-th horizon is a

base stock policy with optimal base stock level X∗. Furthermore, for X ≤ X∗,

Vk(X, D̃) = Π (X∗; γC− h, γ(α−C)) + (α−C)D̃ + C(X− γX∗) + γVk+1(X∗, 0)
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is affine in X with slope C and D̃ with slope α−C.

To conclude the proof, we consider the last horizon profit, VK(X, D̃). Since

ΘT
K(X, D̃) = E

DT
K

{
max
YT
K

[
H(YT

K |D̃; DT
K)− hXT+1

K + γCXT+1
K + γ(α−C)D̃T+1

K

]}
by definition, the optimality of the PSR algorithm can be similarly proved. Mean-

while, if X ≤ X∗,

VK(X, D̃) = max
Z≥X

[
Π (Z; γC− h, γ(α−C)) + (α−C)D̃ + CX

]
,

so the base stock policy is optimal and VK(X, D̃) is affine in X with slope C and D̃

with slope α−C. Therefore, all properties hold for the K-th horizon, which completes

the proof. �

Appendix A.4: Additional Numerical Studies

A.4.1 Numerical study with N = 4 and T = 3

In Table 2.1, we consider problems with size N = 4 and T = 3. For such a problem

size, we can use backward induction to calculate the firm’s optimal revenue, which

serves as a benchmark to evaluate the performance of the RCEC heuristics. Below

we describe the design of the numerical study in detail. The description consists of

three parts: demand patterns, economic parameters, and initial capacity.

Demand patterns

To cover a wide range of demand scenarios, we consider 13 evolution patterns for

product demand means in Table A.1. For each evolution pattern, we define vectors

µt = (µt1, · · · , µtN)ᵀ (t = 1, · · · , T ), where µti is the demand mean of product i in period

t. The demand mean patterns in Table A.1 cover some typical realistic scenarios. For

instance, in pattern 4, the expected demand for high-quality products are higher than

that for low-quality products when the period is close to the end of horizon, which

corresponds to revenue management situations.
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Pattern Description Example (T = 3)

Linear

1. Product 1 demand increases, product 2 demand is flat, product 3 and 4

demands decrease with the same rate.


2 4 6 6

4 4 4 4

6 4 2 2



2. Product 1 demand increases, product 2 demand is flat, product 3 demand

decreases, product 4 demand decreases in half of the rate of product 3.


2 4 6 4

4 4 4 3

6 4 2 2



3. Product 1, 2, 3 and 4 demands are flat.


4 4 4 4

4 4 4 4

4 4 4 4



4. Product 1 and 2 demands increase with the same rate, product 3 and 4

demands decrease with the same rate.


2 2 6 6

4 4 4 4

6 6 2 2


5. Product 1 demand increases, product 2 demand increases in half of the

rate of product 1, product 3 demand decreases, product 4 demand decreases

in half of the rate of product 3.


2 2 6 4

4 3 4 3

6 4 2 2



6. Product 1 and 2 demands increase with the same rate, product 3

demand is flat, product 4 demand decreases.


2 2 4 6

4 4 4 4

6 6 4 2



7. Product 1 demand increases, product 2 demand increases in half of the

rate of product 1, product 3 demand is flat, product 4 demand decreases.


2 2 4 6

4 3 4 4

6 4 4 2



8. Product 1 and 2 demands increase with the same rate, product 3 and 4

demands are flat.


2 2 4 4

4 4 4 4

6 6 4 4



9. Product 1 demand increases, product 2 demand increases in half of the

rate of product 1, product 3 and 4 demands are flat.


2 2 4 4

4 3 4 4

6 4 4 4



Alternating

10. Products 1 and 3 start with positive demand, while products 2 and 4

start with zero demand.


4 0 4 0

0 4 0 4

4 0 4 0


11. Products 1 and 3 start with positive demand, where demand 3 is

smaller than demand 1 in each period, and products 2 and 4 start with zero

demand, where demand 4 is smaller than demand 2 in each period.


6 0 2 0

0 6 0 2

6 0 2 0



12. Products 2 and 4 start with positive demand, while products 1 and 3

start with zero demand.


0 4 0 4

4 0 4 0

0 4 0 4


13. Products 2 and 4 start with positive demand, where demand 4 is

smaller than demand 2 in each period, and products 1 and 3 start with zero

demand, where demand 3 is smaller than demand 1 in each period.


0 6 0 2

6 0 2 0

0 6 0 2



Table A.1.: Demand patterns with 4 products.
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Given an evolution pattern µt (t = 1, · · · , T ) for the demand means, we generate

a sample of random demands for each product in each period. Specifically, given

the demand mean µt in period t, we generate demand Dt by using either Poisson

distribution or multivariate normal distribution with covariance matrix
0.5 0.15 0.075 0.0375

0.15 0.5 0.15 0.075

0.075 0.15 0.5 0.15

0.0375 0.075 0.15 0.5

 ∗ µ
t,

and 
0.5 −0.15 −0.075 −0.0375

−0.15 0.5 −0.15 −0.075

−0.075 −0.15 0.5 −0.15

−0.0375 −0.075 −0.15 0.5

 ∗ µ
t.

The first covariance matrix represents positive correlation between the products, while

the second represents negative correlation between the products. For normal distri-

bution, we truncate the demand realizations at zero and round them to the nearest

integer values. By the above construction, there are total 39 = 3 ∗ 13 demand scenar-

ios.

Economic parameters

We also consider a wide variety of values for the economic parameters while using

the same backorder cost (g1, g2, g3, g4) = (1.0, 0.9, 0.8, 0.7). Recall the upgrading

revenue is given by αij = rj + gj − ui; instead of specifying rj and ui, we choose

to specify αij, which is sufficient for the numerical study. Four different matrices

of α = (αij)4×4 have been considered in the numerical study. The capacity costs

(c1, c2, c3, c4) are decided by ci = 0.3αii (i = 1, · · · , 4) for each matrix.
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1. Matrix 1: The parallel revenue decreases in product class, and the upgrading

revenues are close to the parallel revenue.
16 14 12 10

0 15 13 11

0 0 14 12

0 0 0 13


2. Matrix 2: The parallel revenue decreases in product class, and the upgrading rev-

enues are decreasing in the number of levels of upgrading (e.g., 1-step upgrading

revenue is 11 and 2-step upgrading is either 7 or 8).
16 11 7 4

0 15 11 8

0 0 14 11

0 0 0 13


3. Matrix 3: The parallel revenue decreases in product class, and α12 and α34 are

higher than α23. 
16 14 5 3

0 15 6 4

0 0 14 12

0 0 0 13


4. Matrix 4: The parallel revenue is constant across products, the 2-step upgrading

revenue is constant, and α23 is higher than the other 1-step upgrading revenue.
16 10 9 3

0 16 15 9

0 0 16 10

0 0 0 16
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Initial capacity

When choosing the initial capacity, we start with optimal capacity level XRCEC

using the RCEC heuristic. To ensure the robustness of the results, we also consider a

number of variants of XRCEC, among which some are extreme capacity scenarios. In

particular, we use XRCEC = (xRCEC
1 , xRCEC

2 , xRCEC
3 , xRCEC

4 ) to construct the following

five patterns of initial capacity:

1. X = λXRCEC

2. For each i ∈ {1, 2, 3}: (X)i = λ(xRCEC
i + xRCEC

i+1 ), (X)i+1 = 0, (X)s = λxRCEC
s ,

∀ s ∈ {1, 2, 3, 4} \ {i, i+ 1}

3. For each i ∈ {2, 3, 4}: (X)i = 0, (X)s = λxRCEC
s , ∀ s ∈ {1, 2, 3, 4} \ {i}

4. X = λ(xRCEC
1 + xRCEC

2 , 0, xRCEC
3 + xRCEC

4 , 0)

5. X = λ(xRCEC
1 + xRCEC

3 , xRCEC
2 + xRCEC

4 , 0, 0),

where λ = {0.75, 1, 1.25}. Each pattern corresponds to a realistic or extreme

scenario. For instance, in Pattern 2, a certain product has extremely low inventory

level while the adjacent high-quality product is abundant; in Pattern 5, the last

two products have extremely low investment while there are plenty of higher level

products. Note that in some of the patterns (e.g., Patterns 2-5), upgrading would be

frequently performed. The parameter λ is used to adjust the capacity-demand ratio

(e.g., λ = 0.75 implies that the aggregate capacity level is relatively low). For each

λ, there are 9 initial capacity scenarios; so there are totally 27 capacity scenarios.

To summarize, we test 39 ∗ 4 ∗ 27 = 4212 problem instances by the above construc-

tion. They cover a wide range of possible situations that may arise in practice.

A.4.2 Numerical study with N = 5 and T ∈ {3, 15, 30}

This is the major numerical study in Chapter 2; it serves several purposes. First,

we test the performance of the RCEC heuristic for problems with larger sizes in

Tables 2.2 and 2.3; second, we examine the value of multi-step upgrading in Tables
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2.4 and 2.5; third, we investigate the importance of the allocation mechanism and the

capacity sizing decision in Table 2.6. To make the results comparable across different

T values, we make a couple of assumptions: (1) For each product i, the expected total

demand throughout the sales horizon is the same for different T values; that is, the

sum
∑T

t=1 µ
t
i in each demand evolution pattern µt = (µt1, · · · , µtN) (t = 1, · · · , N) is

the same for different T values, which is set to be 60 for each i. (2) For each parameter

combination, the capacity cost is the same for different T ’s. Below we describe the

design of the numerical study in detail. Again the description consists of three parts:

demand patterns, economic parameters, and initial capacity.

Demand patterns

Similar to the first numerical study in Section A.4.1, we consider 13 demand evo-

lution patterns in Table A.2.

Again, given an evolution pattern µt (t = 1, · · · , T ) for the demand means, we

generate a sample of random demands for each product in each period. Specifically,

given the demand mean µt in period t, we generate demand Dt by using either Poisson

distribution or multivariate normal distribution with a positive covariance matrix

0.5 0.15 0.12 0.09 0.06

0.15 0.5 0.15 0.12 0.09

0.12 0.15 0.05 0.15 0.12

0.09 0.12 0.15 0.5 0.15

0.06 0.09 0.12 0.15 0.5


∗ µt,

and a negative covariance matrix

0.5 −0.15 −0.12 −0.09 −0.06

−0.15 0.5 −0.15 −0.12 −0.09

−0.12 −0.15 0.05 −0.15 −0.12

−0.09 −0.12 −0.15 0.5 −0.15

−0.06 −0.09 −0.12 −0.15 0.5


∗ µt.

121



Pattern Description Example (T = 3)

Linear

1. Product 1 demand increases, product 2 and 3 demands are flat,

product 4 and 5 demands decrease with the same rate.


4 8 8 12 12

8 8 8 8 8

12 8 8 4 4


2. Product 1 demand increases, product 2 and 3 demands are flat,

product 4 demand decreases, product 5 demand decreases in half of

the rate of product 4.


4 8 8 12 8

8 8 8 8 6

12 8 8 4 4



3. Product 1, 2, 3, 4 and 5 demands are flat.


8 8 8 8 8

8 8 8 8 8

8 8 8 8 8



4. Product 1, 2 and 3 demands increase with the same rate, product

4 and 5 demands decrease with the same rate.


4 4 4 12 12

8 8 8 8 8

12 12 12 4 4


5. Product 1 demand increases, product i (i = 2, 3) demand increases

in half of the rate of product i− 1, product 4 demand decreases,

product 5 demand decreases in half of the rate of product 4.


4 4 4 12 8

8 6 5 8 6

12 8 6 4 4



6. Product 1 and 2 demands increase with the same rate, product 3

demand is flat, product 4 and 5 demands decrease with the same rate.


4 4 8 12 12

8 8 8 8 8

12 12 8 4 4


7. Product 1 demand increases, product 2 demand increases in half of

the rate of product 1, product 3 demand is flat, product 4 demand

decreases, product 5 demand decreases in half of the rate of product 4.


4 4 8 12 8

8 6 8 8 6

12 8 8 4 4



8. Product 1 and 2 demands increase with the same rate, product 3,

4 and 5 demands are flat.


4 4 8 8 8

8 8 8 8 8

12 12 8 8 8



9. Product 1 demand increases, product 2 demand increases in half of

the rate of product 1, product 3, 4 and 5 demands are flat.


4 4 8 8 8

8 6 8 8 8

12 8 8 8 8



Alternating

10. Products 1, 3 and 5 start with positive demand, while products 2

and 4 start with zero demand.


8 0 8 0 8

0 8 0 8 0

8 0 8 0 8


11. Products 1, 3 and 5 start with positive demand, where demand

i (i = 3, 5) is smaller than demand i− 2 in each period, and products

2 and 4 start with zero demand, where demand 4 is smaller than

demand 2 in each period.


16 0 8 0 4

0 16 0 8 0

16 0 8 0 4



12. Products 2 and 4 start with positive demand, while products 1, 3

and 5 start with zero demand.


0 8 0 8 0

8 0 8 0 8

0 8 0 8 0


13. Products 2 and 4 start with positive demand, where demand 4 is

smaller than demand 2 in each period, and products 1, 3 and 5 start

with zero demand, where demand i (i = 3, 5) is smaller than demand

i− 2 in each period.


0 16 0 8 0

16 0 8 0 4

0 16 0 8 0



Table A.2.: Demand patterns with 5 products.
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The rest of the details are the same as in the first numerical study and therefore

omitted. There are totally 3 ∗ 13 = 39 demand scenarios.

Economic parameters

For all problem instances, we use the same backorder cost vector (g1, · · · , g5) =

(6.0, 5.7, 5.4, 5.1, 4.8). Four different matrices of α = (αij)5×5 have been considered.

The capacity cost (c1, · · · , c5) are decided by ci = 0.3 ∗ αii (i = 1, · · · , 5) for each

matrix.

1. Matrix 1: Upgrading revenue is close to the parallel revenue.

17 15 13 11 9

0 16 14 12 10

0 0 15 13 11

0 0 0 14 12

0 0 0 0 13


2. Matrix 2: Revenues of 1-step upgrading are identical for different classes.

17 12 8 5 3

0 16 12 9 7

0 0 15 12 10

0 0 0 14 12

0 0 0 0 13


3. Matrix 3: α12 is much smaller than parallel revenue α11. However, α23, α34 and

α45 are close to α22, α33 and α44, respectively.

17 11 9 7 4

0 16 14 12 9

0 0 15 13 10

0 0 0 14 11

0 0 0 0 13
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4. Matrix 4: α12 and α45 are close to parallel revenues α11 and α44, respectively.

However, α23 and α34 are much smaller than α22 and α33.

17 15 10 6 4

0 16 11 7 5

0 0 15 11 9

0 0 0 14 12

0 0 0 0 13


Initial capacity

Similar to the first numerical study, we use XRCEC to construct the following five

patterns of initial capacity.

1. X = λXRCEC

2. For each i, j ∈ {1, 2, 3, 4, 5} with i < j: (X)i = λ ((XRCEC)i + (XRCEC)j) , (X)j =

0, (X)s = λ(XRCEC)s, ∀ s ∈ {1, 2, 3, 4, 5} \ {i, j}

3. For each i ∈ {2, 3, 4, 5}: (X)i = 0, (X)s = λ(XRCEC)s, ∀ s ∈ {1, 2, 3, 4, 5} \ {i}

4. X = λ ((XRCEC)1 + (XRCEC)2, 0, (XRCEC)3 + (XRCEC)4, 0, (XRCEC)5)

5. X = λ ((XRCEC)1, (XRCEC)2 + (XRCEC)4, 0, (XRCEC)3 + (XRCEC)5, 0),

where λ = {0.7, 0.9, 1.0, 1.1, 1.3}. Again the parameter λ is used to adjust the

capacity-demand ratio (e.g., λ = 0.7 implies that the aggregate capacity level is

relatively low). For each λ, there are 17 initial capacity scenarios; so there are totally

85 capacity scenarios.

To summarize, we test 39 ∗ 4 ∗ 85 = 13260 problem instances by the above con-

struction. They cover a wide range of possible situations that may arise in practice.
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A.4.3 Impact of Allocation Mechanism: Suboptimal k-Step Upgrading

We examine the profit loss of adopting suboptimal, k-step upgrading (k = 0, · · · , N−

2). Given XRCEC as the optimal initial capacity under full-step upgrading, define the

profit loss of using only k-step upgrading as

∆k−step =
∣∣∣ΠRCEC(XRCEC)− Πk

RCEC(XRCEC)

ΠRCEC(XRCEC)

∣∣∣ ∗ 100%, k = 0, 1, 2, 3,

where Πk
RCEC(XRCEC) is the revenue from the k-step upgrading. The statistics are

presented in Table A.3. We can see that the magnitudes of profit losses are still

generally much larger than those for ∆XCB
and ∆XNV

(given in Table 2.6).

Mean Std. Median 90%-percentile Max.

∆0−step 4.28559 4.28222 2.84912 9.36076 31.80136

∆1−step 1.08141 1.38881 0.45090 3.36765 7.71787

∆2−step 0.33484 0.56076 0.09118 1.03939 3.53501

∆3−step 0.10276 0.25266 0.00874 0.28810 1.97719

Table A.3.: Profit loss of suboptimal allocation with k-step upgrading.

Appendix A.5: Other

The following lemma shows the relation between N and its effective state N̂.

Lemma A.5.1 Suppose N̂ = (n̂1, · · · , n̂N) is the effective state of N = (n1, · · · , nN),

then
∑j

s=i n̂s ≤
∑j

s=i ns if n̂i > 0, and
∑j

s=i n̂s ≥
∑j

s=i ns if n̂j+1 > 0. Especially,∑N
s=i n̂s ≥

∑N
s=i ns.

Proof. The proof follows from the definition of the effective state. For any class

k (1 ≤ k ≤ N), when applying the greedy upgrading to N, there is no upgrade

between classes (1, · · · , k − 1) and (k, · · · , N) if n̂k > 0, and such an upgrade may
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exist if n̂k ≤ 0. Hence,
∑j

s=i n̂s ≤
∑j

s=i ns if n̂i > 0, and
∑j

s=i n̂s ≥
∑j

s=i ns if

n̂j+1 > 0. The same argument shows that
∑N

s=i n̂s ≥
∑N

s=i ns. �

The next proposition shows that separation can be preserved under the effective

state operation.

Proposition A.5.1 Suppose N̂ = (n̂1, · · · , n̂N) is the effective state of N = (n1, · · · , nN).

For any demand realization D, class i (i < N) is the lowest class which is separable

in N−D if and only if i is the lowest class which is separable in N̂−D.

Proof. Suppose class i is the lowest separable class in N−D but is not separable

in N̂ − D. Then, there exists class a k ≤ i such that
∑i

s=k(n̂s − ds) > 0. First,

we must have k < i; otherwise, ni ≥ n̂i > di ≥ 0, which means class i is not

separable in N −D and is a contradiction. Given k < i, without loss of generality,

we assume k is the lowest class with
∑i

s=k(n̂s − ds) > 0, which also implies n̂k >

dk ≥ 0 since
∑i

s=k+1(n̂s − ds) ≤ 0. Thus,
∑i

s=k ns ≥
∑i

s=k n̂s by Lemma A.5.1, and∑i
s=k(ns−ds) ≥

∑i
s=k(n̂s−ds) > 0 which contradicts the assumption of class i being

separable in N−D. Hence, class i must be separable in N̂−D as well.

Next, we prove that i is the lowest separable class in N̂−D. Suppose to the contrary

that class i′ > i is the lowest separable class in N̂ −D, i.e.,
∑i′

s=k(n̂s − ds) ≤ 0 for

all classes k (1 ≤ k ≤ i′). Then, n̂i′+1 − di′+1 > 0; otherwise, i′ + 1 will be the lowest

separable class. Because class i is the lowest separable class in N−D and i′ > i, there

exists class r ≤ i′ such that
∑i′

s=r(ns − ds) > 0. Given n̂i′+1 > di′+1 ≥ 0 and Lemma

A.5.1, there is
∑i′

s=r n̂s ≥
∑i′

s=r ns and
∑i′

s=r(n̂s − ds) ≥
∑i′

s=r(ns − ds) > 0, which

is a contradiction since
∑i′

s=r(n̂s − ds) ≤ 0. Therefore, class i is the lowest separable

class in N̂−D.

The necessary condition can be similarly proved. This completes the proof. �

For any demand realization D in period t (1 ≤ t ≤ T ), let N̂ be the effective state

of N, Proposition A.5.2 gives the relation between the outcomes of applying the PSR

algorithm to initial states (N,D) and (N̂,D).
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Proposition A.5.2 Suppose N̂ = (n̂1, · · · , n̂N) is the effective state of N = (n1, · · · , nN),

and the PSR algorithm solves the general upgrading problem in period t (1 ≤ t ≤

T ). For any demand realization D in period t, let N′ = (n′1, · · · , n′N) and N̂′ =

(n̂′1, · · · , n̂′N) be the effective states of the outcomes of applying the PSR algorithm to

(N,D) and (N̂,D), respectively. Then, N′ = N̂′ if classes (1, · · · , N) are not sep-

arable under N − D. Especially, N′ and N̂′ are the outcomes of applying the PSR

algorithm to (N,D) and (N̂,D) in period T .

Proof. From Proposition A.5.1, classes (1, · · · , N) are also not separable under

N̂−D.

First, we must have N′ ≥ 0. Suppose to the contrary that class k is the highest

class with n′k < 0. Since N′ is the effective state of the outcome of applying the

PSR to (N,D), there is n′1 = · · · = n′k−1 = 0. Note that any allocation decision is a

transfer between two classes, which is true in both the PSR and the greedy upgrading.

Thus, we have 0 >
∑k

s=r n
′
s ≥

∑k
s=r(ns − ds) for any class r < k, where the second

inequality is strict if there is any upgrade between classes (1, · · · , r−1) and (r, · · · , k)

when applying the PSR or generating the effective state. Hence, class k is separable,

which contradicts the assumption. Similarly, we know N̂′ ≥ 0.

Next, we show N′ = N̂′. Let class k be the lowest class such that n̂′k 6= n′k.

From the above argument, we have
∑N

s=k n
′
s =

∑N
s=k(ns − ds) if there is no upgrade

between classes (1, · · · , k− 1) and (k, · · · , N) in either solving (N,D) by the PSR or

generating the effective state N′. Furthermore, such an upgrade exists only if n′k = 0

by the optimality of the PSR and the definition of the greedy upgrading, in which

case
∑N

s=k n
′
s >

∑N
s=k(ns − ds). The same argument can be applied to (N̂,D). With

these observations, we derive contradictions for all possible cases.

1.
∑N

s=k n̂s =
∑N

s=k ns.

(a) n̂′k > 0, n′k > 0: For both initial states (N,D) and (N̂,D), there is no

upgrade between classes (1, · · · , k − 1) and (k, · · · , N) in either applying
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the PSR or generating the effective state. Moreover, n̂k ≥ n̂′k > 0 implies

that
∑N

s=k n̂s =
∑N

s=k ns by Lemma A.5.1. Thus,

N∑
s=k

(n̂s − ds) =
N∑
s=k

n̂′s 6=
N∑
s=k

n′s =
N∑
s=k

(ns − ds),

which is a contradiction;

(b) n̂′k > n′k = 0: Similar to the previous case, since n̂k ≥ n̂′k > 0, then

N∑
s=k

n̂′s =
N∑
s=k

(n̂s − ds) =
N∑
s=k

(ns − ds) ≤
N∑
s=k

n′s,

which violates the assumption of class k;

(c) n′k > n̂′k = 0: From Lemma A.5.1, we similarly have

N∑
s=k

n̂′s ≥
N∑
s=k

(n̂s − ds) ≥
N∑
s=k

(ns − ds) =
N∑
s=k

n′s,

which is also a contradiction;

2.
∑N

s=k n̂s >
∑N

s=k ns. In this case, n̂k = 0 by the definition of the effective state

N̂. Since n̂′k ≥ 0 from the previous discussion, there is n̂k = n̂′k = 0. Meanwhile,

n′k 6= n̂′k by the assumption of k. From n′k ≥ 0, we must have n′k > n̂′k = 0, and

N∑
s=k

n̂′s ≥
N∑
s=k

(n̂s − ds) >
N∑
s=k

(ns − ds) =
N∑
s=k

n′s,

where the first inequality is from the fact that there might be upgrade between

classes (1, · · · , k − 1) and (k, · · · , N) while solving (N̂,D) by the PSR and

generating the effective state N̂′. This is a contradiction since n′k > n̂′k and∑N
s=k+1 n

′
s =

∑N
s=k+1 n̂

′
s by assumption of k.

Therefore, N = N̂′. Note that the PSR optimally solves the general upgrading

problem with protection levels being 0 in period T by Lemma 2.5.1. Since the greedy

upgrading is equivalent to the PSR with protection levels being 0, we know N′ and

N̂′ are the outcomes of applying the PSR algorithm to (N,D) and (N̂,D) in period

T , which completes the proof. �
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Lemma A.5.2 considers a general upgrading problem with special states in period

T , which can be used to simplify the proof of Lemma 2.5.1.

Lemma A.5.2 Consider an N-class general upgrading problem with states

N = (n1, · · · , nN) and demand realization D in period T . Suppose classes (1, · · · , N)

are not separable based on N−D, (ni+1, · · · , nj−1) ≤ 0 and nj < 0. Then, ∆+−
ij ΘT (N|D)

and ∆−+
ij ΘT (N|D) are independent of the values of (nj, · · · , nN).

Proof. Since ΘT (N|D) is piecewise linear and concave (see Murty 1983), both

∆+−
ij ΘT (N|D) and ∆−+

ij ΘT (N|D) exist.

We focus on the proof of ∆+−
ij , and the same argument applies to ∆−+

ij . We consider

the dual form of the general upgrading problem with initial state (N,D), and let the

dual variables be (λ1, · · · , λN), where λi corresponds to the constraint of class i. The

dual problem is

min
(λ1,··· ,λN )≥0

N∑
s=1

|ns − ds|λs (A.23)

s.t. λs + λr ≥ αsr,

s, r ∈ {s, r|(N−D)s ≥ 0, (N−D)r < 0, 1 ≤ s < r ≤ N}.

1. ni ≥ 0: By Linear Programming theory, there is

∆+−
ij ΘT (N|D) =

λ
∗
i + λ∗j − gj, if ni ≥ di

−λ∗i + λ∗j + αii − gj, if ni < di,

where λ∗ = (λ∗1, · · · , λ∗N) is optimal in the dual problem (A.23).

(a) ni > di: Given classes (1, · · · , N) are not separable, we have y∗kj > 0 for

some class k (1 ≤ k ≤ i). By the complementary slackness in the linear

program, λ∗k + λ∗j = αkj. Assume without loss of generality that i + 1 is

the highest class s (i + 1 ≤ s ≤ j − 1) with ns − ds < 0. Since it is

optimal to first use class i’s remaining capacity ni − di to satisfy demands

from (i + 1, · · · , j), there is y∗i,i+1 > 0, which implies λ∗i + λ∗i+1 = αi,i+1.
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By examining constraints λ∗i + λ∗j ≥ αij, λ
∗
k + λ∗i+1 ≥ αk,i+1 in the dual

problem (A.23), as well as the assumption αkj + αi,i+1 = αij + αk,i+1, we

have λ∗i + λ∗j = αij and ∆+−
ij ΘT (N|D) = λ∗i + λ∗j − gj = αij − gj. Note that

yij > 0 if ns − ds = 0 for all classes s (i + 1 ≤ s ≤ j − 1), which implies

λ∗i + λ∗j − gj = αij − gj.

(b) ni < di: The non-separable assumption implies that there exist classes

r (r < i) and k (k < i) such that y∗ri > 0 and y∗kj > 0. Thus, λ∗k + λ∗j = αkj

and λ∗r+λ
∗
i = αri. We similarly have λ∗r+λ

∗
j = αrj and λ∗k+λ∗i = αki by using

the constraints in (A.23) and the assumption αkj + αri = αrj + αki. Thus,

−λ∗i + λ∗j = αrj − αri and ∆+−
ij ΘT (N|D) = −λ∗i + λ∗j + αii − gj = αij − gj.

Since ΘT (N|D) is piecewise linear in ni and nj, then ∆+−
ij ΘT (N|D) = αij − gj

when ni ≥ 0.

2. ni < 0: In this case,

∆+−
ij ΘT (N|D) = −λ∗i + λ∗j + gi − gj.

Note that this is similar to the case when 0 ≤ ni < di. Hence, −λ∗i+λ∗j = αrj−αri
and ∆+−

ij ΘT (N|D) = rj − ri.

Hence, ∆+−
ij ΘT (N|D) is independent of the values of (nj, · · · , nN), which concludes

the proof. �

Suppose the PSR is optimal in period t. Then similar to Proposition A.5.2, the

following proposition shows the relation between the outcomes of N and its effective

state N̂ after applying the PSR given any demand realization D.

Proposition A.5.3 Suppose N̂ = (n̂1, · · · , n̂N) is the effective state of N = (n1, · · · , nN).

If the PSR algorithm solves the general upgrading problem in period t, and the protec-

tion levels in period t have the independence property. For any demand realization D,

let N′ = (n′1, · · · , n′N) and N̂′ = (n̂′1, · · · , n̂′N) be the outcomes of applying the PSR

algorithm to (N,D) and (N̂,D), respectively.

130



Let k be the highest class in N′ such that (n′k, · · · , n′N) ≥ 0 and n′k > 0, where

k = N + 1 if such a class does not exist in N′. k̂ is similarly defined in N̂′. Then,

k = k̂ and (N′)k,··· ,N = (N̂′)k,··· ,N if classes (1, · · · , N) are not separable under N−D.

Proof. We first show (N̂′)k,··· ,N = (N′)k,··· ,N . Let i (k ≤ i ≤ N) be the lowest class

such that n̂′i 6= n′i ≥ 0. There are three cases.

1. n̂′i > n′i ≥ 0: Since capacity i may be used when applying the PSR, we have

n̂i ≥ n̂′i > 0, which implies
∑N

s=i n̂s =
∑N

s=i ns by Lemma A.5.1. Because n̂′i > 0,

there is no upgrade from classes (1, · · · , i− 1) to (i, · · · , N) when applying the

PSR to (N̂,D), and
∑N

s=i(n̂s−ds) =
∑N

s=i n̂
′
s. On the other hand, n′i ≥ 0 implies

that there could be upgrade from classes (1, · · · , i−1) to (i, · · · , N) when solving

(N,D), thus
∑N

s=i n
′
s ≥

∑N
s=i(ns − ds). From the above, we have

N∑
s=i

n′s ≥
N∑
s=i

(ns − ds) =
N∑
s=i

(n̂s − ds) =
N∑
s=i

n̂′s.

This is a contradiction given the assumption of class i.

2. n′i > n̂′i and n′i > 0: In this case, n′i > 0 implies that there is no upgrade from

classes (1, · · · , i − 1) to (i, · · · , N) when applying the PSR to (N,D). Thus,∑N
s=i n

′
s =

∑N
s=i(ns − ds). However, there could be upgrade between classes

(1, · · · , i− 1) and (i, · · · , N) when generating N̂ as well as applying the PSR to

(N̂,D), thus

N∑
s=i

n′i =
N∑
s=i

(ns − ds) ≤
N∑
s=i

(n̂s − ds) ≤
N∑
s=i

n̂′s, (A.24)

which is a contradiction.

3. n′i = 0 > n̂′i and i > k: From (A.24), we only need to consider the case when∑N
s=i n

′
i >

∑N
s=i(ns − ds), i.e., there is upgrade from classes (1, · · · , i − 1) to

(i, · · · , N) when applying the PSR to (N,D). Without loss of generality, we

assume that i − 1 is the highest class that upgrades the demands in classes

(i, · · · , N) under initial state (N,D), and l (l ≥ i) is the lowest class being
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upgraded by capacity i− 1. Since there is no upgrade from classes (1, · · · , i− 2)

to (i− 1, · · · , N) when solving (N,D), similar to (A.24), there is

N∑
s=i−1

n′i =
N∑

s=i−1

(ns − ds) ≤
N∑

s=i−1

(n̂s − ds) ≤
N∑

s=i−1

n̂′s. (A.25)

Since n′i = 0 > n̂′i and (N̂′)i+1,··· ,N = (N′)i+1,··· ,N ≥ 0 by assumption of class i,

(A.25) implies n̂′i−1 > n′i−1 ≥ 0. Moreover, n̂i−1 > 0 if n̂′i−1 > 0.

Next, we show that the profit can be increased by upgrading demand i by ca-

pacity i−1 under (N̂,D), which violates the optimality assumption of the PSR.

Since n̂′i−1 > 0 and the assumption of class i − 1, there is no upgrade between

classes (1, · · · , i−2) and (i−1, · · · , N) when generating the effective state N̂ as

well as applying the PSR to both (N̂,D) and (N,D). From Proposition A.5.2,

given classes (1, · · · , N) are not separable under N −D, the effective states of

(N̂′)1,··· ,i−2 are the same as those of (N′)1,··· ,i−2.

If l = i, from the independence property of the protection levels, pi−1,i is the

same for both (N̂,D) and (N,D). Because n̂′i−1 > n′i−1 and capacity i − 1

upgrades demand i under (N,D), it is also optimal to upgrade demand i by

capacity i− 1 under (N̂,D).

If l > i, we have (N̂′)i+1,··· ,l = (N′)i+1,··· ,l by the assumption of class i. Moreover,

(N′)i+1,··· ,l = 0 since capacity i−1 upgrades demand l under initial state (N,D),

and n′i−1 is the remaining capacity after such upgrading. From the PSR, there

is

αi−1,l ≥∆+−
i−1,lΘ

t+1(N′)

=∆+−
i−1,lΘ

t+1
(
(N′)1,··· ,i−2, n

′
i−1, 0, · · · , 0, (N′)l+1,··· ,N

)
=∆+−

i−1,lΘ
t+1((N̂′)1,··· ,i−2, n

′
i−1, 0, · · · , 0, (N̂′)l+1,··· ,N)

≥rl − ri + ∂+
i−1Θt+1((N̂′)1,··· ,i−2, n

′
i−1, 0, · · · , 0, (N̂′)l+1,··· ,N)

− ∂−i Θt+1((N̂′)1,··· ,i−2, n
′
i−1, 0, · · · , 0, (N̂′)l+1,··· ,N)

=rl − ri + ∆+−
i−1,iΘ

t+1((N̂′)1,··· ,i−2, n
′
i−1, 0, · · · , 0, (N̂′)l+1,··· ,N),

(A.26)
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where the second equality follows from the independence property of Θt+1 and

the fact that the effective states of (N′)1,··· ,i−2 and (N̂′)1,··· ,i−2 are the same, and

the last inequality is because of Lemma A.1.2.

Since αi−1,i − αi−1,l = ri + gi − rl − gl, where gi > gl, n̂
′
i−1 > n′i−1, and Θt+1 is

concave, we have

αi−1,i >∆+−
i−1,iΘ

t+1((N̂′)1,··· ,i−2, n
′
i−1, 0, · · · , 0, (N̂′)l+1,··· ,N)

≥∆+−
i−1,iΘ

t+1((N̂′)1,··· ,i−2, n̂
′
i−1, n

′
i−1 − n̂′i−1, 0, · · · , 0, (N̂′)l+1,··· ,N)

=∆+−
i−1,iΘ

t+1((N̂′)1,··· ,i−2, n̂
′
i−1, n̂

′
i, 0, · · · , 0, (N̂′)l+1,··· ,N).

(A.27)

Thus, the profit can be increased by upgrading demand i with capacity i−1 under

(N̂,D), which contradicts the optimality assumption of the PSR algorithm.

Hence, (N̂′)k,··· ,N = (N′)k,··· ,N . Similarly, we know (N′)k̂,··· ,N = (N̂′)k̂,··· ,N , which

concludes the proof. �

A.5.1 Monotonicity

To prove the monotonicity result in Proposition 2.5.4, we start with a basic prop-

erty.

Under certain conditions, the following lemma states that the marginal values,

∆+−
ij Θt (i < j) and ∆−+

ij Θt, remain the same if capacity k (k < i) is used to “opti-

mally” upgrade the back-logged demand i. Note that such an upgrade can go beyond

class k as long as there is unmet demand i.

Lemma A.5.3 Suppose (n̂1, · · · , n̂i−1) is the effective state of (n1, · · · , ni−1), and

there exists class k (1 ≤ k < i) such that n̂k > 0 and n̂k+1 = · · · = n̂i−1 = 0. If

(ni, · · · , nj) ≤ 0, δ > 0, and ni + δ ≤ 0 ≤ n̂k − δ, then

∆+−
ij Θt(n1, · · · , nN) = ∆+−

ij Θt(n̂1, · · · , n̂k−1, n̂k − δ, 0, · · · , 0, ni + δ, ni+1, · · · , nN)

(A.28)
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and

∆−+
ij Θt(n1, · · · , nN) = ∆−+

ij Θt(n̂1, · · · , n̂k−1, n̂k − δ, 0, · · · , 0, ni + δ, ni+1, · · · , nN).

(A.29)

Proof. It is sufficient to prove the equality in (A.28). From Proposition 2.5.1,

there is

∆+−
ij Θt(n1, · · · , nN) = ∆+−

ij Θt(n̂1, · · · , n̂k, 0, · · · , 0, ni, · · · , nN).

Thus, for any demand realization D in period t, we use induction to show

∆+−
ij Θt(n̂1, · · · , n̂k, 0, · · · , 0, ni, · · · , nN |D)

=∆+−
ij Θt(n̂1, · · · , n̂k−1, n̂k − δ, 0, · · · , 0, ni + δ, ni+1, · · · , nN |D)

(A.30)

under the conditions given in Lemma A.5.3. To simplify our notations, let

N = (n̂1, · · · , n̂k, 0, · · · , 0, ni, · · · , nN)

N̄ = (n̂1, · · · , n̂k−1, n̂k − δ, 0, · · · , 0, ni + δ, ni+1, · · · , nN).

In period T , let r∗ (1 ≤ r∗ ≤ k) be the lowest class such that ni +
∑k

s=r∗ n̂s ≥∑i
s=r∗ ds, i.e., r∗ is the lowest class that satisfies the last unit of demand i. We analyze

(A.30) based on following cases.

1. r∗ does not exist: Then ni +
∑k

s=r n̂s <
∑i

s=r ds and ni − δ +
∑k

s=r n̂s < −δ +∑i
s=r ds for all class r (1 ≤ r ≤ k). After applying the PSR, there is unmet

demand i in both (N,D) and (N̄,D). Thus, given (ni+1, · · · , nj) ≤ 0, we have

∆+−
ij ΘT (N|D) = ∆+−

ij ΘT (N̄|D) = gi − gj.

2. r∗ does exist: For both (N,D) and (N̄,D), since ni − δ +
∑k

s=r∗ n̂s ≥ −δ +∑i
s=r∗ ds, the last unit of demand i is fulfilled by capacity r∗. And the states

of classes (r∗, · · · , i) after the last unit of demand i being satisfied are (ni +∑k
s=r∗ n̂s −

∑i
s=r∗ ds, 0, · · · , 0). Hence,

∆+−
ij ΘT (N|D) = ∆+−

ij ΘT (N̄|D) = gi − αr∗i +
∂

∂n+
i

ΘT (Ñ|D̃)− ∂

∂n−j
ΘT (Ñ|D̃),
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where Ñ = (n̂1, · · · , n̂r∗−1, ni +
∑k

s=r∗ n̂s−
∑i

s=r∗ ds, 0, · · · , 0, ni+1, · · · , nN) and

D̃ = ((D)1,··· ,r∗−1, 0, · · · , 0, (D)i+1,··· ,N).

Hence, (A.30) holds in period T .

In period t < T , we apply the PSR algorithm to the general upgrading problem

with initial states (N,D) and (N̄,D), and denote N′ and N̄′ as the corresponding

outcomes. We examine (A.30) based on the states of class i in N′ and N̄′.

1. (N′)i = (N̄′)i = 0: From the above analysis, the last unit of demand i is satisfied

by class r∗ in both (N,D) and (N̄,D), and we assume r∗ = k without loss of

generality. Hence,

∆+−
ij Θt(N|D) = ∆+−

ij Θt(N̄|D) = gi − αki +
∂

∂n+
i

Θt(Ñ|D̃)− ∂

∂n−j
Θt(Ñ|D̃),

where Ñ = (n̂1, · · · , n̂k−1, ni + n̂k −
∑i

s=k ds, 0, · · · , 0, ni+1, · · · , nN) and D̃ =

((D)1,··· ,k−1, 0, · · · , 0, (D)i+1,··· ,N).

2. (N′)i < 0 and (N̄′)i < 0: If there is no class r∗ (1 ≤ r∗ ≤ k) such that

ni+
∑k

s=r∗ n̂s ≥
∑i

s=r∗ ds, demand i and j will never be satisfied in the remaining

periods for both (N,D) and (N̄,D), which means

∆+−
ij Θt(N|D) = (T − t+ 1)(gi − gj) = ∆+−

ij Θt(N̄|D).

Hence, we only need to consider the case when class r∗ does exist. In this case,

we assume r∗ = k without loss of generality. From Proposition 2.5.1, since

(N′)i < 0 and (N̄′)i < 0, MPij will not affect the optimal allocation decisions in

period t under both (N,D) and (N̄,D). Thus,

∆+−
ij Θt(N|D) = gi − gj +

∂

∂n+
i

Θt+1(N′)− ∂

∂n−j
Θt+1(N′),

∆+−
ij Θt(N̄|D) = gi − gj +

∂

∂n+
i

Θt+1(N̄′)− ∂

∂n−j
Θt+1(N̄′).

(A.31)

By the definition of class k, there is no upgrade between classes (1, · · · , k−1) and

(k, · · · , N) when applying the PSR under both (N,D) and (N̄,D); otherwise,

all capacity k should have been depleted before performing the aforementioned
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upgrade, which means there is no unmet demand i. Since the initial states of

classes (1, · · · , k − 1) are the same, the effective states of classes (1, · · · , k − 1)

in N′ are the same as those in N̄′. Note that (N′)i+1,··· ,j = (N̄′)i+1,··· ,j = (ni+1−

di+1, · · · , nj − dj) ≤ 0 and ni + n̂k −
∑i

s=k ds > 0 by assumption. Applying the

induction assumption, we have

∂

∂n+
i

Θt+1(N̄′)− ∂

∂n−j
Θt+1(N̄′)

=∆+−
ij Θt+1

(
(N′)1,··· ,k−1, ni + n̂k + δ −

i∑
s=k

ds, 0, · · · , 0,−δ, (N′)i+1,··· ,N

)
=∆+−

ij Θt+1
(

(N̄′)1,··· ,k−1, ni + n̂k + δ −
i∑

s=k

ds, 0, · · · , 0,−δ, (N̄′)i+1,··· ,N

)
=

∂

∂n+
i

Θt+1(N̄′)− ∂

∂n−j
Θt+1(N̄′),

(A.32)

where 0 < δ < −max
(
(N′)i, (N̄′)i

)
and the second equality follows from Propo-

sition 2.5.1. This is a contradiction. Hence, ∆+−
ij Θt(N|D) = ∆+−

ij Θt(N̄|D) from

(A.31) and (A.32).

3. (N′)i = 0 and (N̄′)i < 0: In this case, there exists a class r∗, which can be

assumed as r∗ = k without loss of generality. Moreover, the last unit of demand

i is upgraded by capacity k when the PSR solves (N,D).

Given (N̄′)i < 0, we must have (N̄′)k > (N′)k ≥ 0 since the total unmet demand

after parallel allocation in classes (k, · · · , i) is the same for both (N,D) and

(N̄,D). When the last unit of demand i is upgraded by capacity k in (N,D),

from the PSR, the upgrading decisions between classes (1, · · · , k − 1) and (i +

1, · · · , N) have not been considered yet. At that moment, the effective state

of classes (1, · · · , k − 1) in (N,D) is the same as that in N̄′ because there is

also no upgrade between classes (1, · · · , k − 1) and (k, · · · , N) in (N̄,D) when

applying the PSR. Hence, the protection levels between class k and the lower

classes are the same for both (N,D) and (N̄,D) from Proposition 2.5.1. Let

h (k < h ≤ i) be the highest class with (N̄′)h < 0. Similar to (A.26) and (A.27)

in the proof of Proposition A.5.3, we can show that the profit from solving (N̄,D)
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can be increased by upgrading demand h with capacity k. This contradicts the

optimality of the PSR. Hence, this case cannot exist.

4. (N′)i < 0 and (N̄′)i = 0: Similar to the previous case, this would lead to a

contradiction.

Therefore, (A.30) holds for any demand realization D in period t, and this completes

the induction proof. �

The following lemma shows that the protection level pij (1 ≤ i < j ≤ N) in period

t − 1 is decreasing in the states of classes (1, · · · , , i − 1) if the same monotonicity

holds in period t.

Lemma A.5.4 Consider an N-class upgrading problem in period t (1 ≤ t < T ) with

(ni+1, · · · , nj) ≤ 0. Let N̄ = N + εer, where 1 ≤ r < i and ε > 0. Then,

∆+−
ij Θt(N) ≥ ∆+−

ij Θt(N̄), ∆−+
ij Θt(N) ≥ ∆−+

ij Θt(N̄) (A.33)

if the same inequality holds for Θt+1.

Proof. To prove (A.33), it is sufficient to show

Θt(Nij)−Θt(N) ≥ Θt(N̄ij)−Θt(N̄), (A.34)

where

Nij = (n1, · · · , ni−1, ni + 1, ni+1, · · · , nj−1, nj − 1, nj+1, · · · , nN),

N̄ = (n1, · · · , nr−1, nr + 1, nr+1, · · · , nN),

N̄ij = (n1, · · · , nr−1, nr + 1, nr+1, · · · , ni−1, ni + 1, ni+1, · · · , nj−1, nj − 1, nj+1, · · · , nN).

In each period t, given any demand realization D = (d1, · · · , dN), we next show

∆ = Θt(Nij|D)−Θt(N|D) ≥ Θt(N̄ij|D)−Θt(N̄|D) = ∆̄, (A.35)

which proves (A.34).

To compare ∆ and ∆̄, we consider upgrading decisions in period t. Denote R as

the resulting states of classes (1, · · · , N) after applying the PSR under initial state
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(N,D), let h be the highest capacity class which upgrades the demand in classes

(i, · · · , N), and l is the lowest demand class that is upgraded by classes (1, · · · , i).

By the definition of classes h and l, we have h ≤ l, and h = l only if h = i and l = i.

From the PSR algorithm, there is neither unmet demand nor remaining capacity

between classes h and l in R, i.e. (R)h+1,··· ,l−1 = 0. R̄, h̄ and l̄ are similarly defined

under initial state (N̄,D).

For any classes 1 ≤ k < s ≤ N in period t, the protection level pks defined in (2.8)

are decreasing in (n1, · · · , nk−1) since (A.33) is true for Θt+1, thus upgrade is more

likely to happen under initial state (N̄,D) rather than (N,D), i.e., l ≤ l̄.

Switching from N (N̄) to Nij (N̄ij), we not only change the current revenues in

period t, but also the result R (R̄), which is the initial states in period t+ 1. Denote

R′ and R̄′ as the outcomes after applying the PSR under (Nij,D) and (N̄ij,D),

respectively. Then,

∆ = δ + Θt+1(R′)−Θt+1(R), ∆̄ = δ̄ + Θt+1(R̄′)−Θt+1(R̄),

where δ and δ̄ are the corresponding differences of the current period revenues in

period t under (N,D) and (N̄,D), respectively.

When the initial states change from N to Nij, there are four cases which differ

in the allocation decisions in period t. Note that the analogy applies when initial

states change form N̄ to N̄ij. For simplicity, we assume without loss of generality

that (R)l+1 < 0.

Case 1: An extra unit of demand l is satisfied when l < j.

Case 2: An extra unit of capacity h is passed along to period t+ 1.

Case 3: An extra unit of demand l + 1 is satisfied when l + 1 < j.

Case 4: An extra unit of demand j is satisfied if l ≥ j.

Here, we explain the above cases in detail by recalling the “chain reaction” described

in the proof of Proposition 2.5.1.

Case 1: There is unmet demand l in R in this case. Note that capacity h is the

highest class that upgrades demand l under (N,D). And the upgrade between
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classes h and l is bounded because either there is no capacity h remaining or

the protection level phl is reached. When the initial state changes from N to

Nij, from the chain reaction, there is an additional unit of capacity h which will

upgrade the remaining demand l.

Case 2: In this case, class l demand has been fully satisfied in R; otherwise, the

analysis of Case 1 gives a contradiction.

Case 3: If l+1 < j, similar to Case 1, it is possible that an additional unit of demand

l + 1 is upgraded by capacity h under (Nij,D), in which case all demand l has

been satisfied in R.

Case 4: Suppose that kj is the highest class that upgrades demand j under (N,D).

Because increasing ni simultaneously decreases nj by the same amount, there

will be an additional unit of both capacity kj and unmet demand j from the chain

reaction. From the PSR, it is optimal to upgrade such an additional demand j

by capacity kj, and the outcome R′ = R in this case.

To compare ∆ and ∆̄, we start with Case 4, where l ≥ j and R′ = R from the

above discussion.

1. ni < 0: Suppose the last unit of demand i is upgraded by class ki, then ∆ =

gi − gj − αkii + αkij = rj − ri;

2. 0 ≤ ni < di: Similar to the previous case, we have ∆ = −gj − αkii + αkij =

rj − ri − gi;

3. ni ≥ di: Given the chain reaction, the overall effect is equivalent to upgrading

demand j with capacity i. Then, ∆ = −gj + αij = rj − ui.

To summarize, if l ≥ j, we have

∆ =


rj − ri, if ni < 0

rj − ri − gi, if 0 ≤ ni < di

rj − ui, if ni ≥ di.

(A.36)

Note that (A.36) also holds for ∆̄ if l̄ ≥ j. Therefore, ∆ = ∆̄ when j ≤ l ≤ l̄.
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Next, we compare ∆ and ∆̄ when both l < j and l̄ < j. We categorize different

situations based on Case 1, Case 2 and Case 3 as follows:

1. Case 1 for both N and N̄: Notice that class l here is similar to class j in (A.36)

in Case 4. Then, we have

δ =


gi − gj + αkil − αkii = gl − gj − ri + rl, if ni < 0

−gj + αkil − αkii = −gj − gi + gl − ri + rl, if 0 ≤ ni < di

−gj + αil, if ni ≥ di,

(A.37)

and

δ̄ =


gi − gj + αk̄i l̄ − αk̄ii = gl̄ − gj − ri + rl̄, if ni < 0

−gj + αk̄i l̄ − αk̄ii = −gj − gi + gl̄ − ri + rl̄, if 0 ≤ ni < di

−gj + αil̄, if ni ≥ di.

(A.38)

Thus, δ − δ̄ = rl + gl − rl̄ − gl̄.

Furthermore, R̄′ = R̄l̄j by the assumption of this case. We next show

Θt+1(R̄′)−Θt+1(R̄) = Θt+1(R̄l̄j)−Θt+1(R̄) = Θt+1(N̄l̄j)−Θt+1(N̄). (A.39)

From the assumption, there is no upgrade between classes (1, · · · , h̄ − 1) and

(h̄, · · · , N) when applying the PSR under (N̄,D), whose result is R̄. Thus, the

effective states of classes (1, · · · , h̄ − 1) in R̄ are the same as those in N̄ by

Proposition A.5.2. Moreover, note that h̄ is the highest class upgrading demand

l̄ by assumption. Without loss of generality, we assume h̄ is also the lowest

class upgrading demand l̄, then the effective state of classes (h̄, · · · , l̄ − 1) in

N̄ is ((R̄)h̄ + yh̄l̄, 0, · · · , 0), where yh̄l̄ is the upgrade between classes h̄ and l̄

under initial state (N̄,D). Thus, classes h̄ and l̄ correspond to classes k and i

in Lemma A.5.3, which proves (A.39).

Similarly, since R′ = Rlj in this case, there is

Θt+1(R′)−Θt+1(R) = Θt+1(Rlj)−Θt+1(R) = Θt+1(Nlj)−Θt+1(N). (A.40)
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Moreover,

Θt+1(R′)−Θt+1(R) = Θt+1(Nlj)−Θt+1(N) ≥ Θt+1(N̄lj)−Θt+1(N̄) (A.41)

from the induction assumption.

To complete the proof in this case, from Lemma A.1.2 and the fact that l ≤ l̄,

there is

Θt+1(N̄lj)−Θt+1(N̄l̄j) ≥ rl̄ − rl,

which implies ∆ − ∆̄ = δ − δ̄ + rl̄ − rl by (A.39) and (A.41). Since δ − δ̄ =

rl + gl − rl̄ − gl̄ by (A.37) and (A.38), we have ∆− ∆̄ = gl − gl̄ ≥ 0.

In the remaining cases, we apply similar arguments to prove (A.35). For sim-

plicity, we will omit some details and only present the primary results.

2. Case 2 for both N and N̄: We have

δ =


gi − gj + (rl + gl − ri − gi)− αhl = −gj − ri + uh, if ni < 0

−gj + (rl + gl − ri − gi)− αhl = −gj − gi − ri + uh, if 0 ≤ ni < di

−gj + αil − αhl = −gj − ui + uh, if ni ≥ di

(A.42)

and

δ̄ =


gi − gj + (rl̄ + gl̄ − ri − gi)− αh̄l̄ = −gj − ri + uh̄, if ni < 0

−gj + (rl̄ + gl̄ − ri − gi)− αh̄l̄ = −gj − gi − ri + uh̄, if 0 ≤ ni < di

−gj + αil̄ − αh̄l̄ = −gj − ui + uh̄, if ni ≥ di.

(A.43)

Note that δ − δ̄ = uh − uh̄ in all cases.

(a) l̄ = l: From the assumption, all backlogged demands in classes (i, · · · , l),

which are the same for both initial states (N,D) and (N̄,D), have been

satisfied in period t. Meanwhile, D is the same for both initial states in

period t. Thus, the total demands satisfied are the same for both (N,D)

and (N̄,D), and we have h̄ = h ≥ r or h ≤ h̄ ≤ r.
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By assumption, R′ = Rhj and R̄′ = R̄h̄j in this case, then

Θt+1(R̄′)−Θt+1(R̄) = Θt+1(R̄h̄j)−Θt+1(R̄),

Θt+1(R′)−Θt+1(R) = Θt+1(Rhj)−Θt+1(R).
(A.44)

Moreover, we define R̃ as follows:

R̃ =

R + er, if r < h

R + eh, if r ≥ h.

Note that R̃ = R̄ from the definition. If r < h, given (R)h+1,··· ,j−1 =

(R′)h+1,··· ,j−1 ≤ 0, we have

Θt+1(Rhj)−Θt+1(R) ≥ Θt+1(R̃hj)−Θt+1(R̃) (A.45)

from the induction assumption. On the other hand, if r ≥ h, (A.45) still

holds because of the concavity in Proposition 2.4.1.

Since R̃ = R̄ and h ≤ h̄, there is Θt+1(R̃hj) − Θt+1(R̄h̄j) ≥ uh̄ − uh by

Lemma A.1.1. Therefore, from (A.44) and (A.45), we have

∆− ∆̄ ≥ δ − δ̄ + Θt+1(R̃hj)−Θt+1(R̄h̄j) ≥ 0,

where δ − δ̄ = uh − uh̄ by (A.42) and (A.43).

(b) l < l̄: From the above discussion of Case 2, R̄′ has one more unit of capacity

h̄ than R̄ after the chain reaction. Note that class h̄ would have upgraded

demand l̄ if there exists unmet demand l̄ under R̄′, which implies that the

expected value of such a unit of capacity h̄ is smaller than αh̄l̄. Thus,

Θt+1(R̄′)−Θt+1(R̄) = Θt+1(R̄h̄j)−Θt+1(R̄)

=Θt+1(R̄h̄j)−Θt+1(R̄h̄l̄) + Θt+1(R̄h̄l̄)−Θt+1(R̄)

≤αh̄l̄ + Θt+1(R̄h̄j)−Θt+1(R̄h̄l̄),

(A.46)

Moreover, similar to (A.39), we can apply Lemma A.5.3 to (A.46) as (R̄)h̄+1,··· ,l̄ =

0, then

Θt+1(R̄h̄j)−Θt+1(R̄h̄l̄) = Θt+1(N̄l̄j)−Θt+1(N̄)
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and

Θt+1(R̄′)−Θt+1(R̄) ≤ αh̄l̄ + Θt+1(N̄l̄j)−Θt+1(N̄). (A.47)

For initial state (N,D), since l < l̄ and (R)l+1 < 0, after the chain reaction,

there is an additional unit of capacity h in R′ which can be used to upgrade

demand l+1. However, upgrading demand l+1 by capacity h is not optimal

under R′, i.e., the expected value of such a unit of capacity h is higher than

αh,l+1. Then,

Θt+1(R′)−Θt+1(R) = Θt+1(Rhj)−Θt+1(R)

=Θt+1(Rhj)−Θt+1(Rh,l+1) + Θt+1(Rh,l+1)−Θt+1(R)

≥αh,l+1 + Θt+1(Rhj)−Θt+1(Rh,l+1).

(A.48)

From the definition of R̃ and the induction assumption, we have

Θt+1(Rhj)−Θt+1(Rh,l+1) ≥ Θt+1(R̃hj)−Θt+1(R̃h,l+1)

because (R)l+2,··· ,j−1 = (R̃)l+2,··· ,j−1 ≤ 0. Moreover, (R̃)h+1,··· ,l = (R)h+1,··· ,l =

0 by the assumption of this case, from Lemma A.5.3, we similarly have

Θt+1(R̃hj)−Θt+1(R̃h,l+1) = Θt+1(N̄l+1,j)−Θt+1(N̄).

Thus,

Θt+1(R′)−Θt+1(R) ≥ αh,l+1 + Θt+1(N̄l+1,j)−Θt+1(N̄). (A.49)

Given l < l̄, we have Θt+1(N̄l+1,j) − Θt+1(N̄l̄j) ≥ rl̄ − rl+1 from Lemma

A.1.2. Since δ− δ̄ = uh−uh̄ by (A.42) and (A.43), (A.47) and (A.49) imply

that ∆ ≥ ∆̄ as gl+1 ≥ gl̄.

3. Case 3 for both N and N̄: Since l ≤ l̄, the same proof of “Case 1 for both N

and N̄” can be applied.

4. Case 1 for N and Case 2 for N̄: Note that (A.41) and (A.47) still hold, mean-

while, δ and δ̄ are given in (A.37) and (A.43), respectively. We have

δ − (δ̄ + αh̄l̄) = rl + gl − rl̄ − gl̄
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and (
Θt+1(R′)−Θt+1(R)

)
−
(
Θt+1(R̄′)−Θt+1(R̄)

)
=
(
Θt+1(Rlj)−Θt+1(R)

)
−
(
Θt+1(R̄h̄j)−Θt+1(R̄)

)
≥
(
Θt+1(N̄lj)−Θt+1(N̄)

)
−
(
αh̄l̄ + Θt+1(N̄l̄j)−Θt+1(N̄)

)
=Θt+1(N̄lj)−Θt+1(N̄l̄j)− αh̄l̄.

Given l ≤ l̄, Θt+1(N̄lj) − Θt+1(N̄l̄j) ≥ rl̄ − rl by Lemma A.1.2. Then, ∆ ≥ ∆̄

since gl ≥ gl̄.

5. Case 1 for N and Case 3 for N̄: Note that l ≤ l̄ < l̄+ 1, the same proof of “Case

1 for both N and N̄” can be applied.

6. Case 2 for N and Case 1 for N̄: In this case, class l̄ in (N̄,D) still has unmet

demand while demand l is fully satisfied in (N,D) by assumption. From the in-

duction assumption, upgrade is more likely to happen under initial state (N̄,D),

thus l < l̄.

Given that (A.38, A.39, A.42, A.49) all hold, there is

(δ + αh,l+1)− δ̄ = rl+1 + gl+1 − rl̄ − gl̄.

Since l + 1 ≤ l̄,(
Θt+1(R′)−Θt+1(R)

)
−
(
Θt+1(R̄′)−Θt+1(R̄)

)
=
(
Θt+1(Rhj)−Θt+1(R)

)
−
(
Θt+1(R̄l̄j)−Θt+1(R̄)

)
≥
(
αh,l+1 + Θt+1(N̄l+1,j)−Θt+1(N̄)

)
−
(
Θt+1(N̄l̄j)−Θt+1(N̄)

)
≥αh,l+1 + rl̄ − rl+1

by Lemma A.1.2. Then, ∆ ≥ ∆̄ since gl+1 ≥ gl̄.

7. Case 2 for N and Case 3 for N̄: Note that l ≤ l̄ < l̄+ 1, the same proof of “Case

2 for N and Case 1 for N̄” can be applied.

8. Case 3 for N and Case 1 for N̄: To apply the same proof of “Case 1 for both N

and N̄”, we only need to show l+ 1 ≤ l̄. Suppose to the contrary that l+ 1 > l̄,
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then l ≥ l̄. Note that upgrade is more likely to happen under initial state (N̄,D)

by assumption. Recall the discussions about Case 1 and Case 3, there is unmet

demand l̄ remaining in R̄′, but all demand l has been satisfied in R. This is a

contradiction.

9. Case 3 for N and Case 2 for N̄: To apply the same proof of “Case 1 for N and

Case 2 for N̄”, we need to show l + 1 ≤ l̄. Similar to the above discussion, we

suppose l + 1 > l̄. Note that all demand l has been satisfied in R and some

of the lower class demand l + 1 is also satisfied in R′. Meanwhile, the demand

lower than class l̄ is not upgraded under both R̄ and R̄′. This is contradiction.

To complete this proof, we need to consider the case when l < j and l̄ ≥ j, where

l̄ ≥ j means R′ = R and (A.36) is true.

1. Case 1 for N: From (A.40),

Θt+1(Rlj)−Θt+1(R) ≥ rj − rl

by Lemma A.1.2. Since ∆̄ is given in (A.36), we have ∆ ≥ ∆̄ from δ in (A.37).

2. Case 2 for N: From (A.48) and the fact l + 1 ≤ j, there is

Θt+1(Rhj)−Θt+1(Rh,l+1) ≥ rj − rl+1

by Lemma A.1.2. With ∆̄ in (A.36) and δ in (A.42), we have δ + αh,l+1 + rj +

gj − rl+1 − gl+1 = ∆̄. Hence, ∆ ≥ ∆̄.

3. Case 3 for N: Note that l+ 1 < j in this case. Then, the same proof of “Case 1

for N” can be applied.

This completes the proof. �

The next lemma states that the protection level pij (1 ≤ i < j ≤ N) in period

T − 1 decease in the states of classes (1, · · · , i− 1).

Lemma A.5.5 Consider an N-class upgrading problem in period T with (ni+1, · · · , nj) ≤

0. Let N̄ = N + εer, where 1 ≤ r < i and ε > 0. Then,

∆+−
ij ΘT (N) ≥ ∆+−

ij ΘT (N̄), ∆−+
ij ΘT (N) ≥ ∆−+

ij ΘT (N̄).
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Proof. Following the notations in the proof of Lemma A.5.4, in this proof we

only need to consider Case 1, Case 3 and Case 4 for ΘT since the additional unit of

capacity h (h̄) will not be passed to the next period. Note that ∆ = δ and ∆̄ = δ̄

since ΘT+1 ≡ 0. Also, the protection levels are zero in period T .

Recall the similarity of Case 1 and Case 3. In the proof of Lemma A.5.4, we have

shown that l + 1 ≤ l̄ if “Case 3 for N and Case 1 for N̄”. Therefore, we only have

three different cases in period T .

1. j ≤ l ≤ l̄: Since (A.36) still holds, we have ∆ = ∆̄.

2. l ≤ l̄ < j: From (A.37) and (A.38), there is ∆− ∆̄ = rl + gl − rl̄ − gl̄ ≥ 0 since

rl ≥ rl̄ and gl ≥ gl̄.

3. l < j ≤ l̄: From (A.36) and (A.37), we have ∆− ∆̄ = rl + gl − rj − gj > 0 since

rl > rj and gl > gj.

Hence, the desired result holds in period T for any demand realization, which

completes the proof. �

With the previous two lemmas, we can prove the monotonicity result.

Proposition 2.5.4 The optimal protection level pij (1 ≤ i < j ≤ N) in period

t (1 ≤ t ≤ T ) are decreasing in (nt1, · · · , nti−1).

Proof. Given the definition of the protection level in (2.8), this proposition can

be inductively proved using Lemmas A.5.4 and A.5.5. �
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Appendix B

Appendices: Upgrading, Product Differentiation, and

Heterogeneous Consumers

Appendix B.1: Partition of Region R

The region R = {(p1, p2) : 0 ≤ p1 ≤ q1, 0 ≤ p2 ≤ q2 + δ} is decomposed into sub-

regions Ri (i = 1, 2, 3) as follows:

R1 ={(p1, p2) | p1 ≤ p2 + q1 − q2 − δ} ∩R

R2 ={(p1, p2) | p2 + q1 − q2 − δ < p1 ≤ p2 + q1 − q2} ∩R

R3 ={(p1, p2) | p1 > p2 + q1 − q2} ∩R.

(B.1)

And R1 and R2 are further decomposed into R1i (i = 1, 2, 3), R2i (i = 1, 2), where

R11 ={(p1, p2) | p1

p2

≥ q1

q2

, p1 ≤ p2 + q1 − q2 − δ} ∩R,

R12 ={(p1, p2) | q1

q2 + δ
≤ p1

p2

<
q1

q2

, p1 ≤ p2 + q1 − q2 − δ} ∩R,

R13 ={(p1, p2) | p1

p2

<
q1

q2 + δ
, p1 ≤ p2 + q1 − q2 − δ} ∩R,

R21 ={(p1, p2) | p1

p2

≥ q1

q2

, p2 + q1 − q2 − δ < p1 ≤ p2 + q1 − q2} ∩R,

R22 ={(p1, p2) | p1

p2

<
q1

q2

, p2 + q1 − q2 − δ < p1 ≤ p2 + q1 − q2} ∩R.

(B.2)

Appendix B.2: Proofs

Lemma 3.3.1 The objective function π(p1, p2) is continuous in R. Moreover, π(p1, p2)

is continuously differentiable and jointly concave in (p1, p2) in Ri (i = 1, 2, 3), respec-

tively.
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Proof. First, for sub-regions R1i (i = 1, 2, 3), R2i (i = 1, 2) and R3, we define

π(p1, p2) = πij(p1, p2) if (p1, p2) ∈ Rij. Specifically,

π11(p1, p2) =p1

(
r

(
1− p1 − p2

q1 − q2 − δ

)
+ (1− r)

(
1− p1 − p2

q1 − q2

))
+ p2

(
r

(
p1 − p2

q1 − q2 − δ
− p2

q2 + δ

)
+ (1− r)

(
p1 − p2

q1 − q2

− p2

q2

))
,

π12(p1, p2) =p1

(
r

(
1− p1 − p2

q1 − q2 − δ

)
+ (1− r)

(
1− p1

q1

))
+ rp2

(
p1 − p2

q1 − q2 − δ
− p2

q2 + δ

)
,

π13(p1, p2) =p1

(
1− p1

q1

)
,

π21(p1, p2) =(1− r)p1

(
1− p1 − p2

q1 − q2

)
+ p2

(
r

(
1− p2

q2 + δ

)
+ (1− r)

(
p1 − p2

q1 − q2

− p2

q2

))
,

π22(p1, p2) =(1− r)p1

(
1− p1

q1

)
+ rp2

(
1− p2

q2 + δ

)
,

π3(p1, p2) =p2

(
r

(
1− p2

q2 + δ

)
+ (1− r)

(
1− p2

q2

))
.

(B.3)

Note that all of the above functions are quadratic in (p1, p2), and it is easy to ver-

ify that they are continuously differentiable and jointly concave in (p1, p2) in their

respective domains.

From the definition of π(p1, p2) in (B.3), to prove the continuity of π(p1, p2) in R,

it is straightforward to compare the values on the boundaries which separate two

different regions, and the proof is omitted.
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To conclude the proof, it is easy to show the following relations(
∂π11(p1, p2)

∂p1

− ∂π12(p1, p2)

∂p1

) ∣∣∣
p1=

q1
q2
p2

= 0,(
∂π11(p1, p2)

∂p2

− ∂π12(p1, p2)

∂p2

) ∣∣∣
p2=

q2
q1
p1

= 0,(
∂π12(p1, p2)

∂p1

− ∂π13(p1, p2)

∂p1

) ∣∣∣
p1=

q1
q2+δ

p2
= 0,(

∂π12(p1, p2)

∂p2

− ∂π13(p1, p2)

∂p2

) ∣∣∣
p2=

q2+δ
q1

p1
= 0,(

∂π21(p1, p2)

∂p1

− ∂π22(p1, p2)

∂p1

) ∣∣∣
p1=

q1
q2
p2

= 0,(
∂π21(p1, p2)

∂p2

− ∂π22(p1, p2)

∂p2

) ∣∣∣
p2=

q2
q1
p1

= 0,

which imply the continuously differentiability of π(p1, p2) with respect to (p1, p2) in

Ri (i = 1, 2, 3). �

Proposition 3.3.1 Consider x1 ≤ 1
2
. The firm’s optimal solution is determined by

x1 and the thresholds kj (j = 1, · · · , 6) defined in (3.4). Specifically,

Case 1. If k1 < k2, then

(p∗1, p
∗
2) ∈


R21, if x1 ∈ (0, k1];

R11, if x1 ∈ (k1, k2];

R12, if x1 ∈ (k2, 1
2
).

Case 2. If k1 ≥ k2, k3 > k4 and k6 ≥ 0: there exists a threshold k̄ ∈ [k4, k3], then

(p∗1, p
∗
2) ∈

R21, if x1 ∈ (0, k̄];

R12, if x1 ∈ (k̄, 1
2
).

Case 3. If k1 ≥ k2, k3 > k4 and k6 < 0: there exists a threshold k̄ ∈ [0∨ k5, k4], then

(p∗1, p
∗
2) ∈


R21, if x1 ∈ (0, k̄];

R22, if x1 ∈ (k̄, k4];

R12, if x1 ∈ (k4, 1
2
).
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Case 4. If k1 ≥ k2 and k3 ≤ k4: there exists a threshold k̄ ∈ [k5, k3], then

(p∗1, p
∗
2) ∈


R21, if x1 ∈ (0, k̄];

R22, if x1 ∈ (k̄, k4];

R12, if x1 ∈ (k4, 1
2
).

Proof. We first consider the optimal solution in each sub-regions Ri (i = 1, 2, 3)

without the capacity constraint x1 and show that the global unconstrained optimum is

an interior point in sub-region R1. From Lemma 3.3.1, the objective function π(p1, p2)

is jointly concave in each sub-regions and continuous in R1, the global optimum is in

R1 if

1. The optimum in R3 is on the boundary between R2 and R3;

2. The optimum in R2 is on the boundary between R1 and R2;

3. The optimum in R1 is an interior solution.

Starting with sub-region R3, note that π3(p1, p2) only depends on p2 and d1(p1, p2) =

0 which clearly satisfies the capacity constraint. From the concavity property, the op-

timal p2 = q2(q2+δ)
2(q2+(1−r)δ) . Without loss of generality, let p1 = q1− q2(q2+(1−2r)δ)

2(q2+(1−r)δ) such that

the optimal solution is on boundary p1 = p2 + q1 − q2, which is between sub-regions

R2 and R3.

Next, we consider sub-region R2 by sequentially examining sub-regions R21 and

R22. Since the objective function π21(p1, p2) is jointly concave, we consider the fol-

lowing solution

p1 =
q1

2
+

q2rδ

2(q2 + (1− r)δ)
, p2 =

q2(q2 + δ)

2(q2 + (1− r)δ)
,

which satisfies the first-order condition in R21. However, plugging the above solution,

we have
p1

p2

− q1

q2

= −rδ(q2 − q1)

q2(q2 + δ)
< 0.

Since π21(p1, p2) is jointly concave in (p1, p2), the optimum in sub-region R21 is on

p1 = q1
q2
p2. Similarly, the first-order condition in R22 gives the following solution

p1 =
q1

2
, p2 =

q2 + δ

2
,
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which contradicts the assumption p1−p2
q1−q2−δ ≥ 1 in R21 and implies the optimum in

sub-region R22 is on p1 = p2 + q1− q2− δ. Since π21(p1, p2) = π22(p1, p2) on p1 = q1
q2
p2,

the optimum of sub-region R2 is on the boundary p1 = p2 + q1 − q2 − δ, which is

between R1 and R2.

Last, since the objective function is continuous and jointly concave in sub-region

R1, we only need to show that there exists an interior solution in sub-region R1 that

satisfies the first-order condition. The first-order condition of π12(p1, p2) in sub-region

R12 gives the solution (p1, p2) = ( q1
2
, q2+δ

2
), which is on the boundary p1 = q1

q2+δ
p2.

And the above solution also satisfies the first-order condition of π13(p1, p2) in sub-

region R13. Therefore, the interior solution (p1, p2) = ( q1
2
, q2+δ

2
) is the optimum in

sub-region R1.

Because the objective function π(p1, p2) is continuous in region R, the above ar-

gument implies that (p1, p2) = ( q1
2
, q2+δ

2
) is the global optimum without the capacity

constraint, where the demand d1(p1, p2) = 1
2
, d2(p1, p2) = 0 and the unconstrained

optimal profit is q1
4

.

Now, we consider the impact of the capacity constraint x1. When x1 <
1
2
, the global

unconstrained optimum (p1, p2) = ( q1
2
, q2+δ

2
) is not achievable. From the concavity of

Lemma 3.3.1, the optimal solution in (3.3) is on the boundary where d1(p1, p2) = x1.

For each sub-region Rij ((i, j) = (1, 1), (1, 2), (1, 3), (2, 1), (2, 2)), let p1 = hij(p2)

satisfy d1(hij(p2), p2) = x1, we define Fij(p2) = πij(hij(p2), p2), each of which is

concave in p2 from Lemma 3.3.1. Let p1
2 satisfy h21(p1

2) = q1
q2
p1

2, p2
2 satisfy h22(p2

2) =

q1 − q2 − δ + p2
2, p3

2 satisfy h12(p3
2) = q1

q2+δ
p3

2, and p4
2 satisfy h11(p4

2) = q1
q2
p4

2. From the

definition, we have p1
2 < p2

2 < p3
2. Furthermore, h21(p1

2) = h22(p1
2) = q1

q2
p1

2, h22(p2
2) =

h12(p2
2) = q1 − q2 − δ + p2

2, h12(p3
2) = h13(p3

2) = q1
q2+δ

p3
2, and h11(p4

2) = h12(p4
2) = q1

q2
p4

2.

In other words, the curve in which d1(p1, p2) = x1 is continuous across adjacent

sub-regions.
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Recall that

k1 =
(1− r)δ
q1 − q2

,

k2 =
1

2

(
1− δ

q1 − q2 − δ

√
rq1(q1 − (q2 + δ)(1− r))

q2(q2 + (1− r)δ)

)
,

k3 =
(1− r)(q2 + (1− 2r)δ)

2(q2 + (1− r)δ)
,

k4 =
(q2 + δ)(1− r)

2q1

,

k5 =
(q2 − δ)(1− r)

2q2

,

k6 =
1

4
(q2 + δ)

(
q2(1− r)

q1

(
q2 + δ

q1

− 2

)
+

q2

q2 + (1− r)δ
− r
)
.

Specifically, we give the definition of each ki (i = 1, · · · , 6):

1. k1: we have F11(0) < q1 − q2 − δ if and only if x1 > k1, i.e., the sub-region R11

is infeasible if and only if x1 < k1;

2. k2: let p′2 satisfy ∂
∂p2
F11(p2) |p2=p′2

= 0 and p′′2 satisfy ∂
∂p2
F12(p2) |p2=p′′2

= 0, we

have F11(p′2) > F12(p′′2) if and only if x1 < k2;

3. k3: we have ∂
∂p2
F21(p2) |p2=p12

> 0 if and only if x1 > k3;

4. k4: we have ∂
∂p2
F22(p2) |p2=p22

> 0 if and only if x1 > k4;

5. k5: we have ∂
∂p2
F22(p2) |p2=p12

> 0 if and only if x1 > k5;

6. k6: let p′2 satisfy ∂
∂p2
F21(p2) |p2=p′2

= 0 and p′′2 satisfy ∂
∂p2
F22(p2) |p2=p′′2

= 0, then

k6 = (F21(p′2)− F22(p′′2)) |x1=k4 .

From the definition, it can be shown that:

1. k3 > k5 since

k3 − k5 =
(1− r)2δ(q2 + δ)

2q2(q2 + (1− r)δ)
> 0;

2. k4 > k5. Otherwise, consider k4 < x1 ≤ k5, we have ∂
∂p2
F22(p2) |p2=p22

> 0 and

∂
∂p2
F22(p2) |p2=p12

< 0, which is a contradiction because F22(p2) is concave in p2

and p1
2 < p2

2;
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Therefore, there is either k5 < k4 < k3 or k5 < k3 < k4 for all k1 and k2. Furthermore,

we only need to consider the constrained solutions in sub-regions R11, R12, R21, and

R22. This is because F13 is fixed in p2, which implies F13(p3
2) = F12(p3

2) since the

objective function π(p1, p2) is continuous in region R.

Next, we analyze each case as follows.

Case 1. If k1 < k2: we have k2 < 1
2

from the definition.

(a) If x1 ∈ [k2, 1
2
): since x1 > k1, the optimal solution lies on either F11(p2)

or F12(p2). Furthermore, let p′2 be the solution of h11(p2) = q1
q2
p2, which

is the same as the solution of h12(p2) = q1
q2
p2. There is

∂

∂p2

F11 |p2=p′2
< 0,

∂

∂p2

F12 |p2=p′2
> 0,

which implies the first-order condition can be satisfied for both F11(p2)

and F12(p2). From the definition of k2, the optimum is in sub-region R12,

where

(p∗1, p
∗
2) =

(
q1((1− x1)(q1 − q2 − δ) + 1

2
r(q2 + δ))

q1 − (1− r)(q2 + δ)
,
q2 + δ

2

)
and

d∗1 = x1, d
∗
2 =

rq1(1− 2x1)

2(q1 − (1− r)(q2 + δ))
, π∗ =

q1(4x1(1− x1)(q1 − q2 − δ) + r(q2 + δ))

4(q1 − (1− r)(q2 + δ))
;

(b) If x1 ∈ [k1, k2): since x1 < k2, similar to the previous scenario, the

optimum is in sub-region R11, where

(p∗1, p
∗
2) =

(
q2(q2 + δ)

2(q2 + (1− r)δ)
+

(1− x1)(q1 − q2)(q1 − q2 − δ)
q1 − q2 − (1− r)δ

,
q2(q2 + δ)

2(q2 + (1− r)δ)

)
and

d∗1 = x1, d
∗
2 =

1

2
−x1, π

∗ =
q2(q2 + δ)

4(q2 + (1− r)δ)
+
x1(1− x1)(q1 − q2)(q1 − q2 − δ)

q1 − q2 − (1− r)δ
;

(c) If x1 ∈ (0, k1): in this case, we have k3 > k1. Moreover,(
∂
∂p2
F12(p2) |p2=p22

)(
∂
∂p2
F22(p2) |p2=p22

)
> 0,

i.e., partial derivatives ∂
∂p2
F12(p2) |p2=p22

and ∂
∂p2
F22(p2) |p2=p22

have the

same sign.
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i. If k5 < k4 < k3: We have ∂
∂p2
F21 |p2=0> 0. And it can be shown that

k4 < k1, thus, we sequentially consider intervals (0, k5], (k5, k4], and

(k4, k1) for x1:

A. If x1 ∈ (0, k5]: Since ∂
∂p2
F21 |p2=p12

< 0, ∂
∂p2
F22 |p2=p12

< 0, and

∂
∂p2
F22 |p2=p22

< 0, the optimal solution is in sub-region R21. The

optimal p∗2 can be solved from ∂
∂p2
F21(p2) = 0, and the optimal

p∗1 = h21(p∗2). Specifically,

(p∗1, p
∗
2) =

(
q1 −

(q1 − q2)x1

1− r
− q2(q2 + (1− 2r)δ)

2(q2 + (1− r)δ)
,

q2(q2 + δ)

2(q2 + (1− r)δ)

)
and

d∗1 = x1, d
∗
2 =

1

2
−x1, π

∗ = (q1−q2)x1

(
1− x1

1− r

)
+

q2(q2 + δ)

4 (q2 + (1− r)δ)
;

B. If x1 ∈ (k5, k4]: Since ∂
∂p2
F21 |p2=p12

< 0, ∂
∂p2
F22 |p2=p12

> 0, and

∂
∂p2
F22 |p2=p22

< 0, we need to compare F ∗21, the value of the first-

order solution from F21(p2), with F ∗22, the value of the first-order

solution from F22(p2).

It can be shown that F ∗21 − F ∗22 is convex decreasing in x1, and

F ∗21 − F ∗22 > 0 when x1 = k4. Therefore, the optimal solution is

also in sub-region R21;

C. If x1 ∈ (k4, k1): Since ∂
∂p2
F21 |p2=p12

< 0, ∂
∂p2
F22 |p2=p12

> 0, ∂
∂p2
F22 |p2=p22

>

0, and ∂
∂p2
F12 |p2=p32

< 0, we need to compare F ∗21, the value of the

first-order solution from F21(p2), with F ∗12, the value of the first-

order solution from F12(p2).

Similarly, we can show that F ∗21 − F ∗12 is convex decreasing in x1,

and F ∗21−F ∗12 > 0 when x1 = k1, therefore, the optimal solution is

still in sub-region R21.

ii. If k5 < k3 < k4: in this case, we have k1 < k4, and we need to

sequentially consider intervals (0, k5] and (k5, k1) for x1:

A. If x1 ∈ (0, k5]: this is similar to the case when x1 ∈ (0, k5] and

k5 < k4 < k3, and the optimal solution is in sub-region R21;
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B. If x1 ∈ (k5, k1): this is similar to the case when x1 ∈ (k5, k4) and

k5 < k4 < k3, and the optimal solution is in sub-region R21.

Therefore, the optimal solution is always in sub-region R21 when x1 ∈

(0, k1).

Case 2. If k1 ≥ k2, k3 > k4 and k6 ≥ 0: There is k4 < k1 when k1 > k2.

(a) If x1 ∈ [k1, 1
2
): Since x1 ≥ k1 ≥ k2, the optimal solution is in sub-region

R12;

(b) If x1 ∈ (0, k1):

i. If k3 < k1: We sequentially consider intervals (0, k5], (k5, k4), [k4, k3],

and (k3, k1) for x1:

A. x1 ∈ (0, k5]: Similar to the case when x1 ∈ (0, k5], k5 < k4 < k3

and k1 < k2, we can show that the optimal solution is in sub-region

R21;

B. x1 ∈ (k5, k4): Similar to the case when x1 ∈ (k5, k4], k5 < k4 < k3

and k1 < k2, we compare F ∗21, the value of the first-order solution

from F21(p2), with F ∗22, the value of the first-order solution from

F22(p2). As F ∗21 − F ∗22 is convex decreasing in x1 ∈ (k5, k4), and

k6 = (F ∗21 − F ∗22) |x1=k4≥ 0, there is F ∗21 ≥ F ∗22, and the optimal

solution is in sub-region R21;

C. x1 ∈ [k4, k3]: Similarly, we need to compare F ∗21 with F ∗12, which is

the value of the first-order solution from F12(p2).

Since F ∗21 − F ∗12 is decreasing in x1 ∈ [k4, k3], and

(F ∗21 − F ∗22) |x1=k4= (F ∗21 − F ∗12) |x1=k4= k6 ≥ 0,

there exists a threshold k̄ ∈ [k4, k3] such that F ∗21 − F ∗12 ≥ 0 if

x1 ∈ [k4, k3] ∩ (−∞, k̄], which means the optimal solution is in

sub-region R21, and F ∗21 − F ∗12 < 0 if x1 ∈ [k4, k3] ∩ (k̄,∞), which

means the optimal solution is in sub-region R12;
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D. x1 ∈ (k3, k1): Since x1 > k3, we have ∂
∂p2
F21 |p2=p12

> 0, ∂
∂p2
F22 |p2=p12

>

0, and ∂
∂p2
F22 |p2=p22

> 0. This implies that the optimal solution is

in sub-region R12.

ii. If k3 ≥ k1: The result is the same as the case k3 < k1 since we can

still sequentially consider intervals (0, k5], (k5, k4), and [k4, k1) for

x1.

Therefore, there exists a threshold k̄ ∈ [k4, k3], then the optimal solution is

in sub-region R21 if x1 ∈ (0, k̄], and the optimal solution is in sub-region R12

if x1 ∈ (k̄, 1
2
).

Case 3. If k1 ≥ k2, k3 > k4 and k6 < 0: Similar to Case 2, we sequentially consider

intervals (0, k5), [k5, k4], (k4, k1], and (k1, 1
2
). Since k6 = (F ∗21−F ∗22) |x1=k4< 0,

the analysis of intervals [k5, k4] and (k4, k1] is slightly different from that in

Case 2. Specifically,

(a) There exists a threshold k̄ ∈ [0 ∨ k5, k4], the optimal solution is in sub-

region R21 if x1 ∈ [k5, k̄] and in sub-region R22 if x1 ∈ (k̄, k4]. Specifi-

cally, the optimal solution in sub-region R22 is

(p∗1, p
∗
2) =

(
q1(1− x1

1− r
),
q2 + δ

2

)
and

d∗1 = x1, d
∗
2 =

r

2
, π∗ =

r(q2 + δ)

4
+ q1x1(1− x1

1− r
);

(b) Since

(F ∗21 − F ∗22) |x1=k4= (F ∗21 − F ∗12) |x1=k4= k6 < 0

for all x1 ∈ (k4, k3], the optimal solution is in sub-region R12. Meanwhile,

for all k3, the optimal solution is in sub-region R12 for x1 ∈ (k3 ∨ k1, k1]

from our previous analysis. Thus, the optimal solution is in sub-region

R12 if x1 ∈ (k4, k1].

Therefore, there exists a threshold k̄ ∈ [0∨ k5, k4], then the optimal solution

is in sub-region R21 if x1 ∈ (0, k̄], in sub-region R22 if x1 ∈ (k̄, k4], and in

sub-region R12 if x1 ∈ (k4, 1
2
).
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Case 4. If k1 ≥ k2 and k3 ≤ k4: In this case, k5 < k3 < k4 < k1, and we sequentially

consider intervals (0, k5), [k5, k3], (k3, k4], (k4, k1], and (k1, 1
2
) for x1.

(a) If x1 ∈ (0, k5): From the analysis in x1 ∈ (0, k5], k5 < k4 < k3 and

k1 < k2, the optimal solution is in sub-region R21;

(b) If x1 ∈ [k5, k3]: From the definition, we have ∂
∂p2
F21 |p2=p12

< 0, ∂
∂p2
F22 |p2=p12

>

0, and ∂
∂p2
F22 |p2=p22

< 0, we need to compare F ∗21, the value of the first-

order solution from F21(p2), with F ∗22, the value of the first-order solution

from F22(p2). Since,

(F ∗21 − F ∗22) |x1=k5 =
(1− r)2δ2(q2 + δ)

4q2(q2 + (1− r)δ)
> 0,

(F ∗21 − F ∗22) |x1=k3 = −(1− r)2δ2r(q2 + δ)

4(q2 + (1− r)δ)2
< 0,

and F ∗21−F ∗22 is convex decreasing in [k5, k3], there exists a threshold k̄ ∈

[k5, k3] such that the optimal solution is in sub-region R21 if x1 ∈ [k5, k̄]

and in sub-region R22 if x1 ∈ (k̄, k3];

(c) If x1 ∈ (k3, k4]: Since ∂
∂p2
F21 |p2=p12

> 0, ∂
∂p2
F22 |p2=p12

> 0, and ∂
∂p2
F22 |p2=p22

<

0, the optimal solution is in sub-region R22;

(d) If x1 ∈ (k4, k1]: We have ∂
∂p2
F21 |p2=p12

> 0, ∂
∂p2
F22 |p2=p12

> 0, and

∂
∂p2
F22 |p2=p22

> 0. Moreover,

∂

∂p2

F12 |p2=p32
= − q1r(1− 2x1)

q1 − (1− r)(q2 + δ)
< 0.

Thus, there exists a solution satisfying the first-order condition of F12,

and the optimal solution is in sub-region R12;

(e) If x1 ∈ (k1, 1
2
): Similar to the case when x1 ∈ [k1, 1

2
), k1 ≥ k2, k3 > k4

and k6 ≥ 0, the optimal solution is in sub-region R12.

Therefore, there exists a threshold k̄ ∈ [k5, k3], then the optimal solution is

in R21 if x1 ∈ (0, k̄], in sub-region R22 if x1 ∈ (k̄, k4], and in sub-region R12

if x1 ∈ (k4, 1
2
).

�
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Proposition 3.4.1 For any capacity level x1 ≤ 1
2
, there exists a threshold δ̄1 ∈

(0, q1 − q2) such that the optimal solution of (3.3) belongs to R11 if and only if δ ∈

[0, δ̄1].

Proof. First, k1 is increasing in δ, and k2 is decreasing in δ since

∂k1

∂δ
=

1− r
q1 − q2

> 0,

∂k2

∂δ
=

z(q1)q1rδ

4q2δ(q1 − q2 − δ)2(q2 + (1− r)δ)2

√
q1r(q1−(1−r)(q2+δ))

q2(q2+(1−r)δ)

< 0,

where

z(q1) = q2
1(−(δ+2q2−δr))+q1

(
−2q2

2(r − 2) + δq2

(
r2 − 6r + 5

)
+ δ2

(
2r2 − 3r + 1

))
+ q2(r − 1)(δ + q2)(2q2 − δ(r − 2)).

In particular, z(q1) is concave in q1 as

∂2z(q1)

∂q2
1

= −4q2 + 2(−1 + r)δ < 0.

Since

∂z(q1)

∂q1

|q1=q2+δ= −2q2
2r + δq2((r − 4)r − 1) + δ2(r − 1)(2r + 1) ≤ 0

and

z(q2 + δ) = −2δr(δ + q2)(δ + q2 − δr) < 0,

we have z(q1) < 0 for q1 > q2 + δ and ∂k2

∂δ
≤ 0.

Next, we have

k1 |δ=0= 0, k2 |δ=0=
1

2
.

From the proof of Proposition 3.3.1, the optimal solution is in sub-region R11 if and

only if k1 ≤ x1 ≤ k2. As δ increases from 0 to q1− q2, k1 is increasing from 0, and k2

is decreasing from 1
2
. Let δ̄1

1 be the solution to k1 = x1 with respect to δ, and δ̄1
2 the

solution to k2 = x1 with respect to δ. Then, we can define δ̄1 = min(δ̄1
1, δ̄

1
2) such that

the optimal solution of (3.3) belongs to R11 if and only if δ ∈ [0, δ̄1]. �
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Lemma 3.4.1 The firm’s optimal profit π∗11 in (3.5) is concave in δ, π∗12 in (3.6) is

convex and increasing in δ, π∗21 in (3.7) is concave and increasing in δ, and π∗22 in

(3.8) is linearly increasing in δ.

Proof. π∗11 in (3.5) is concave in δ since

∂2π∗11

∂δ2
= −1

2
r(1− r)

(
4(q1 − q2)2x1(1− x1)

(q1 − q2 − δ + rδ)3
+

q2
2

(q2 + (1− r)δ)2

)
≤ 0.

π∗12 in (3.6) is convex and increasing in δ since

∂π∗12

∂δ
=

rq2
1(1− 2x1)2

4(q1 − (1− r)(q2 + δ))2
≥ 0

∂2π∗12

∂δ2
=

r(1− r)q2
1(1− 2x1)2

2(q1 − (1− r)(q2 + δ))3
≥ 0.

π∗21 in (3.7) is concave and increasing in δ since

∂π∗21

∂δ
=

rq2
2

4(q2 + (1− r)δ)2
≥ 0

∂2π∗21

∂δ2
= − r(1− r)q2

2

2(q2 + (1− r)δ)3
≤ 0.

π∗22 in (3.8) is linearly increasing in δ since
∂π∗22
∂δ

= r
4
. �

Proposition 3.4.2 If x1 ∈ (0, 1
2
), then

1. ∂
∂δ
π∗(δ) |δ=0> 0;

2. There exists δ̄2 ∈ (0, δ̄1) and a threshold k∗ < 1
5

such that π∗(δ) is decreasing

in δ ∈ [δ̄2, δ̄1] if and only if x1 > k∗, and π∗(δ) is increasing in δ otherwise.

Moreover, the threshold k∗ does not depend on x1 and r.

Proof. From Lemma 3.4.1, in order to prove ∂
∂δ
π∗(δ) |δ=0> 0, we only need to

verify π∗11 at δ = 0, which can be seen from

∂

∂δ
π∗11 |δ=0=

r

4
(1− 2x1)2 > 0.

Next, we define δ̄2 as the solution of the first-order condition
∂π∗11
∂δ

= 0. Since π∗11 is

concave in δ and ∂
∂δ
π∗11 |δ=0> 0, then δ̄2 > 0.
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Recall the definition of δ̄1, which is the minimum between δ̄1
1, the solution to k1 = x1

with respect to δ, and δ̄1
2, the solution to k2 = x1 with respect to δ. It can be shown

that there exists a threshold k∗ < 1
5

such that δ̄2 < δ̄1
1 if and only if x1 > k∗, in which

case the optimal solution is in sub-region R11 and the optimal value π∗11 is decreasing

in δ. Note that it is possible that δ̄1 = δ̄1
2 < δ̄2, which implies that [δ̄2, δ̄1] is an empty

set.

If x1 < k∗, we have δ̄2 > δ̄1
1, which means the optimal solution is always increasing

even if the optimal solution is in sub-region R11.

This concludes the proof. �

Lemma 3.4.2 Suppose (p∗1, p
∗
2) is in region R11 as (3.5), then p∗1 is concave and de-

creasing in δ, and p∗2 is concave and increasing in δ.

Proof. p∗1 is concave and decreasing in δ since

∂p∗1
∂δ

= −r(1− x1)(q1 − q2)2

(q1 − q2 − δ + rδ)2
+

rq2
2

2(q2 + (1− r)δ)
≤ 0,

∂2p∗1
∂δ2

= −r(1− r)
(

2(1− x1)(q1 − q2)2

(q1 − q2 − δ + rδ)3
+

q2
2

(q2 + (1− r)δ)3

)
≤ 0.

p∗2 is concave and increasing in δ since

∂p∗2
∂δ

=
rq2

2

2(q2 + (1− r)δ)2
≥ 0,

∂2p∗2
∂δ2

= − r(1− r)q2
2

(q2 + (1− r)δ)3
≤ 0.

�

Lemma 3.5.1 π∗11 in (3.5) is convex in r, and π∗12 in (3.6) is concave and strictly

increasing in r.

Proof. π∗11 in (3.5) is convex in r since

∂2π∗11

∂r2
=
δ2

2

(
4(q1 − q2)(q1 − q2 − δ)x1(1− x1)

(q1 − q2 − δ + rδ)3
+

q2(q2 + δ)

(q2 + (1− r)δ)2

)
≥ 0.

π∗12 in (3.6) is concave and strictly increasing in r since

∂π∗12

∂r
=
q1(q2 + δ)(q1 − q2 − δ)(1− 2x1)2

4(q1 − (1− r)(q2 + δ))2
> 0

∂2π∗12

∂r2
= −q1(q1 − q2 − δ)(q2 + δ)2(1− 2x1)2

2(q1 − (1− r)(q2 + δ))3
≤ 0.
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Proposition 3.5.1 Suppose δ
q1−q2 < 1

2
. There exists r̄ ∈ (0, 1) and a threshold

k̃ ∈ [ δ
q1−q2 ,

1
2
) such that:

1. If x1 ∈
(
k̃, 1

2

)
, then the firm’s optimal profit is decreasing in r ∈ [0, r̄] and

increasing in r ∈ (r̄, 1].

2. If x1 ∈
[

δ
q1−q2 , k̃

]
, then the firm’s optimal profit is increasing in r ∈ [0, 1].

Proof. First, we have both k1 and k2 are decreasing in r since

∂k1

∂r
= − δ

q1 − q2

< 0;

∂k2

∂r
= −δ(q2 + δ)(q1 + q2(−1 + 2r)− (1− r)2δ)

4r(q1 − (q2 + δ))(q2 + (1− r)δ)

√
rq1

q2(q2 + (1− r)δ)(q1 − (1− r)(q2 + δ))
≤ 0,

where the second inequality is from

q1 + q2(−1 + 2r)− (1− r)2δ = q1 − q2 − δ + 2rq2 + 2rδ − r2δ

≥ q1 − q2 − δ + 2rq2 + 2rδ − rδ = q1 − q2 − δ + 2rq2 + rδ ≥ 0.

Furthermore,

k1 |r=0=
δ

q1 − q2

> 0, k2 |r=0=
1

2
,

and

∂k1

∂r
|r=0< 0, if and only if x1 >

1

2

(
1−

√
δq1

(q1 − q2)(q2 + δ)

)
.

If δ
q1−q2 <

1
2
, let k̃ = min

(
1
2

(
1−

√
δq1

(q1−q2)(q2+δ)

)
, δ
q1−q2

)
. Then, k̃ ∈ [ δ

q1−q2 ,
1
2
). More-

over, let r̄1 be the threshold that k2(r̄1) = x1, and r̄2 be the solution of the first-order

condition ∂k1

∂r
= 0. Since

∂k1

∂r
|r=1=

δq1 + q2(q1 − q2 − δ)(1− 2x1)2

4q2(q1 − q2)
> 0,

we must have r̄2 ∈ (0, 1). Let r̄ = min(r̄1, r̄2), then r̄ ∈ (0, 1).

Under the assumption in this proposition, we have x1 ≥ k1 for all r ∈ [0, 1]. And

if x1 ∈ (k̃, 1
2
), we have k1 ≤ x1 ≤ k2 when r ∈ [0, r̄], which means that the optimal

solution is in sub-region R11. Moreover, the optimal profit π∗11 is decreasing in r from
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the definition of r̄. When r ∈ (r̄, 1], the optimal solution is in either sub-region R11

or R12. However, the optimal profit function π∗11 and π∗12 are increasing in r ∈ (r̄, 1]

from Lemma 3.5.1 and the definition of r̄.

If x1 ∈
[

δ
q1−q2 , k̃

]
, we have either the optimal solution lies only in sub-region R12 or

the optimal profit function π∗11 and π∗12 are increasing in r ∈ [0, 1], thus firm’s optimal

profit is increasing in r ∈ [0, 1]. �

Lemma 3.5.2 Suppose (p∗1, p
∗
2) is in region R11 as (3.5), then p∗1 is non-monotone

convex in r, and p∗2 is convex increasing in r.

Proof. p∗1 is convex in r since

∂2p∗1
∂r2

=
q2(q2 + δ)δ2

(q2 + (1− r)δ)3
+

2(q1 − q2)(q1 − q2 − δ)(1− x1)δ2

(q1 − q2 − δ + rδ)3
≥ 0.

p∗2 is convex and increasing in r since

∂p∗2
∂r

=
δq2(q2 + δ)

2(q2 + (1− r)δ)2
≥ 0,

∂2p∗2
∂r2

=
δ2q2(q2 + δ)

(q2 + (1− r)δ)3
≥ 0.

�
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