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Chapter 1

Introduction

A central theme in operations management is matching supply with demand.

On the supply side, in order to achieve better market coverage and higher profit,
many firms have expanded their product lines and started to offer differentiated prod-
ucts to various demand segments. However, the complexity of the supply-demand
matching problem increases dramatically as more classes of products are introduced.
To mitigate the risk of the mismatches between supply and demand, many firms use
capacity or inventory flexibility to satisfy uncertain demand from multiple classes of
consumers. In particular, consumers whose first-choice product is no longer avail-
able might be upgraded by the firm using a superior product. Such a practice takes
advantage of risk pooling and results in several immediate benefits: First, it gener-
ates additional revenue by serving more demand; second, it increases service level by
reducing lost sales; third, it may lead to a lower inventory investment by hedging
against demand uncertainty. However, for many applications, the capacity /product
allocation has to overcome two obstacles: First, firms usually assign capacity before
demand is fully known as demand arrives over time; second, firms may not be able
to replenish capacity before the end of the selling season due to a long lead time.

On the demand side, consumers are often heterogeneous in terms of product pref-
erence, taste of quality, and sophistication in decision-making. When firms offer mul-
tiple differentiated products to market, consumers will make their product selection
decisions based on their individual preferences as well as the product prices. More-

over, when firms use product upgrade as an operational strategy, different consumers



may have different perceptions of such a practice. For instance, a naive consumer
may ignore the potential upgrading opportunity, while an opportunistic consumer
may intentionally choose the product that is more likely to be sold out, hoping to
receive a free upgrade. Such a heterogeneity clearly has an impact on firms’ optimal
selling strategies, including product differentiation, pricing, and upgrading policy.
This dissertation is devoted to studying the upgrading practice in capacity man-
agement, while taking the aforementioned factors into account. There are three parts
in this dissertation: Chapter 2 studies firms’ capacity management with upgrading.
In this chapter, we focus on the firms’ capacity investment and allocation decisions
in a dynamic setting. The demand is assumed to be exogenously given. Chapter 3
examines firms’ product differentiation and pricing strategies when consumer hetero-
geneity is taken into account. In this chapter, consumer decisions are endogenized.
Chapter 4 extends the model in Chapter 3 by considering an upgrading problem where
the firm controls the product differentiation by varying the upgrading probability.
The dynamic capacity management problem in Chapter 2 is modelled as follows.
Consider a firm selling N products with differentiated quality in a fixed horizon con-
sisting of T' periods. Consumers, who randomly arrive in each period, are divided
into N classes based on their first-choice products. In case of stock-out, the consumer
could be upgraded to a higher quality product at no extra charge. Unsatisfied de-
mand is backlogged and the firm incurs a backlog penalty cost. The firm makes two
decisions: capacity investment at the beginning of the horizon and capacity allocation
in each period throughout the horizon. We characterize the structure of the optimal
allocation policy, which represents a Parallel and Sequential Rationing (PSR) policy.
Then we propose a heuristic that adapts certainty equivalence control (CEC) to ex-
ploit the PSR properties and overcomes the curse of dimensionality in this dynamic
programming model. Numerical studies demonstrate that the heuristic is efficient
and yields a close-to-optimum performance. With the help of the heuristic, we de-
rive several insights into the dynamic capacity management problem using extensive

numerical experiments.



Chapter 3 and Chapter 4 complement Chapter 2 by shifting the focus to firms’
product differentiation and pricing decisions. Specifically, these two chapters study a
firm’s optimal strategies when selling two differentiated products, the regular prod-
uct and the premium product, to heterogeneous consumers. A single-period model
is proposed where the firm is a monopolist but faces certain capacity constraints.
Consumers arrive to the market and choose which product to purchase (or not to
purchase anything). The firm may adjust product differentiation by varying the
add-on services attached to the regular product. There are two types of consumers,
naive and opportunistic, who may place different valuations on the add-on services.
For example, when the firm offers the free product upgrade as an add-on service, a
naive consumer may be unaware of or unable to evaluate such a potential benefit;
in contrast, an opportunistic consumer may change her product selection decision
after incorporating the potential upgrading opportunity. In Chapter 3, we examine
how product differentiation caused by add-on services affects firms’ pricing decisions
and profits. We find that depending on problem situations, the firm’s profit can be
improved by either reducing or increasing product differentiation. Similarly, altering
the consumer mix (the fraction of naive consumers) may influence the firm’s profit
in both directions. In addition, the firm’s optimal product differentiation and con-
sumer mix decisions hinge upon its capacity limits. In fact, the capacity constraint
on the premium product can serve as an effective device in segmenting the two types
of consumers.

Chapter 4 takes a step forward by developing a more sophisticated model to en-
dogenize the upgrading probability. In reality, an opportunistic consumer makes her
purchase decision in anticipation of the potential product upgrade, whose probability
depends on various factors including firms’ available capacities and other consumers’
decisions. In Chapter 4, we consider a random market size; in addition, we follow
the rational expectations paradigm by assuming the opportunistic consumers can ra-
tionally predict the upgrading probability. It has been found that the opportunistic

behavior can be either beneficial or detrimental to the firm depending on model pa-



rameters. For a given fraction of the opportunistic consumers, we also investigate the
firm’s optimal percentage of the leftover premium capacity to be used for upgrading.
Numerical analysis shows that the optimal percentage may vary from 0 to 100% de-
pending on the problem situations. This indicates that the firm needs to be careful

when determining the upgrading frequency.



Chapter 2

Dynamic Capacity Management with Upgrading
2.1 Introduction

Driven by intensified market competition and rapidly-changing consumer trends,
many firms have expanded their product lines to cater to different customer seg-
ments. On the one hand, by offering products with a wide range of quality, design
and characteristics, firms can reach more consumers, generate additional sales, and
extract higher profit margins. On the other hand, it has caused significant difficul-
ties in matching supply with demand because the demand is less predictable at the
individual segment level than at the aggregate level. Various operational strategies
(e.g., postponement, component commonality, modular design) have been proposed
for firms to enjoy the benefit of product differentiation while mitigating the risk of
mismatches between supply and demand. This chapter studies the influential practice
of upgrading, where products with higher ranks can be used to satisfy demand for
a lower product that is sold out. Such practice takes the advantage of risk pooling
(product substitution essentially allows product/demand pooling), which results in
several immediate benefits: first, it increases revenue by serving more demand; sec-
ond, it enhances customer service by reducing lost sales; third, it may lead to lower
inventory investment by hedging against demand uncertainty.

The practice of upgrading or substitution has been widely adopted in the business
world. In the automobile industry, firms may shift demand for a dedicated capac-

ity to a flexible capacity when the dedicated capacity is constrained (Wall 2003).



In the semiconductor industry, faster memory chips can substitute for slower chips
when the latter are no longer available (Leachman 1987). More examples in produc-
tion/inventory control settings can be found in Bassok et al. (1999) and Shumsky
and Zhang (2009). Similar practice is ubiquitous in the service industries as well.
For instance, airlines may assign business-class seats to economy-class passengers, car
rental companies may upgrade customers to more expensive cars, and hotels may use
luxury rooms to satisfy demand for standard rooms.

Both practitioners and academics surely understand the importance of the upgrad-
ing practice. Substantial research has been conducted on how to manage upgrading
in a variety of problem settings. Here we contribute to this large body of litera-
ture by studying a dynamic capacity management problem under general upgrading
structure. For convenience, we use the terms “product” and “capacity” exchangeably
throughout the chapter, and similarly for “upgrading” and “substitution” (strictly
speaking, upgrading is one-way substitution). A brief description of our problem is
as follows. Consider a firm selling N products with differentiated quality in a fixed
horizon consisting of T' periods. There are N classes of customers who arrive ran-
domly in each period. Each customer requests one unit of the product; in the case
of stock-out, the customer can be satisfied with a higher quality product at no ex-
tra charge. Unsatisfied demand is backlogged and the firm incurs a backlog penalty
cost. The firm needs to first determine the procurement quantity of each product at
the beginning of the horizon, and then decide how to distribute the products among
incoming customers. Due to long ordering lead time, the firm cannot replenish in-
ventory before the end of the horizon; as a result, the firm must dynamically allocate
the products over time, before observing future demand.

This chapter represents an extension of the recent work by Shumsky and Zhang
(2009, referred to as SZ hereafter). As one of the first studies that incorporate dynamic
allocation into substitution models, SZ make a simplifying assumption to maintain
tractability. Specifically, they consider single-step upgrading, i.e., a demand can only

be upgraded by the adjacent product. Clearly, this is a restrictive assumption because



in many practical situations firms may have incentives to use multi-step upgrading
to satisfy demand. Thus there is a need for a theoretical model that captures the
realistic upgrading structure. The purpose of this chapter is to fill such a gap in
the literature. While relaxing the single-step upgrading assumption, we attempt to
address the following questions as in SZ: What is the optimal initial capacity? How
should the products be allocated among customers over time? Are there any effective
and efficient heuristics for solving the capacity management problem? The main
findings from this chapter are summarized as follows.

We start with the dynamic capacity allocation problem. In each period, the firm
needs to use the available products to satisfy the realized demand. When a product is
depleted while there is still demand for that product, the firm may use upgrading to
satisfy the customers. How to make such upgrading decisions is a key in substitution
models. With the general upgrading structure, the optimal allocation policy is com-
plicated by the fact that the upgrading decisions within a period are interdependent.
Under the backlog assumption, we show that a Parallel and Sequential Rationing
(PSR) policy is optimal among all possible policies. The PSR policy consists of two
stages: In stage 1, the firm uses parallel allocation (i.e., demand is satisfied by the
same-class capacity) to satisfy demand as much as possible. Then in stage 2, the firm
sequentially upgrades leftover demand, starting from the highest demand class; when
upgrading a given demand class, the firm starts with the lowest capacity class. The
optimality of such a sequential rationing scheme depends on an important property.
That is, when using a particular class of capacity to upgrade demand, the upgrading
decision does not depend on the status of the portion of the system below that class.
The PSR can greatly reduce the computational complexity because the upgrading
decisions do not have to be solved simultaneously. As an extension, we also consider
the multi-horizon model with capacity replenishment and show that the PSR policy
remains optimal. Our theoretical results, though intuitive, turn out to be very chal-
lenging to prove. Indeed, our proofs rely on intricate arguments and fully exploit the

special structure of the upgrading problem.



Despite the simplified solution procedure given by the PSR, solving the problem
is challenging due to the curse of dimensionality. We search for fast heuristics that
perform well for the firm. We present a heuristic that adapts certainty equivalence
control (CEC) to exploit the PSR properties. Such a heuristic is more appealing than
the commonly used CEC heuristic, and we call it refined certainty equivalence control
(RCEC) heuristic. Through extensive numerical experiments, we find that the RCEC
heuristic delivers nearly optimal profit for the firm: the average profit gap is less than
0.8% among all the experiments and the number is 2.76% at the 90" percentile.

The RCEC heuristic enables us to solve large problems effectively. Thus we can use
numerical studies to derive several insights into the dynamic capacity management
problem. First, compared to single-step upgrading, general upgrading (multi-step
upgrading) can be highly valuable, especially when the initial capacities are severely
imbalanced. Second, given that the optimal upgrading policy is used, the firm’s
profit is not sensitive in the initial capacity. For instance, either the newsvendor
capacities (calculated assuming no upgrading) or the static capacities (calculated
assuming complete demand information) provide nearly optimal profit for the firm.
However, the negative impact of using suboptimal allocation policies could be quite
significant. These findings suggest that from the practical perspective, deriving the
optimal allocation policy should receive a higher priority than calculating the optimal
initial capacity.

The remainder of the chapter is organized as follows. Section 2.2 reviews the
related literature. Section 2.3 describes the model setting. The optimal allocation
policy is characterized by Sections 2.4 and 2.5. Section 2.6 extends the base model
to multiple horizons with capacity replenishment. Section 2.7 proposes the RCEC
heuristic and Section 2.8 presents the findings from numerical studies. The chapter

concludes with Section 2.9. All proofs are given in the Appendices.



2.2 Literature Review

This chapter falls in the vast literature on how to match supply with demand
when there are multiple classes of uncertain demand. To facilitate the review, we
may divide this literature into four major categories using the following criteria: (1)
whether there are multiple capacity types or a single capacity type; and (2) whether
the nature of capacity allocation is static or dynamic. A problem is called static
if capacity allocation can be made after observing full demand information. The
category that involves the single capacity and static allocation essentially reduces to
the newsvendor model that is less relevant. Thus, below our review focuses on the
representative studies from the other three categories.

The first category of studies involves multiple capacity types and static capacity
allocation. In these studies, firms invest in capacities before demand is realized and
then allocate capacities to customers after observing all demand. Due to the existence
of multiple capacity types, the issue of substitution naturally arises. Van Mieghem
(2003) and Yao and Zheng (2003) provide comprehensive surveys of this category of
studies, which can be further divided into two groups. One group of papers studies the
optimal capacity investment and/or allocation decisions under substitution. Parlar
and Goyal (1984) and Pasternack and Drezner (1991) are among the first to consider
the simplest substitution structure with two products. Bassok et al. (1999) extend the
problem to the general multi-product case. Hsu and Bassok (1999) introduce random
yield into the substitution problem. By assuming single-level substitution, Netessine
et al. (2002) study the impact of demand correlation on the optimal capacity levels.
Van Mieghem and Rudi (2002) propose the notion of newsvendor networks that con-
sist of multiple newsvendors and multiple periods of demand. Similar settings can be
found in the studies on multi-period inventory models with transshipment, including
Robinson (1990), Archibald et al. (1997), and Axséter (2003). Although these stud-
ies involve multiple periods, replenishment is allowed and capacity allocation in each

period is made with full demand information. The other group of studies focuses on



the value of capacity flexibility. Fine and Freund (1990) and Van Mieghem (1998)
consider two types of capacities (dedicated and flexible) and study the optimal in-
vestment in flexibility. Bish and Wang (2004) and Chod and Rudi (2005) incorporate
pricing decisions when studying the value of resource flexibility. Jordan and Graves
(1995) investigate a manufacturing flexibility design problem and discover the well-
known chaining rule: Limited capacity flexibility, configured in a chaining structure,
almost delivers the benefit of full flexibility. Their classic work on the design of flex-
ibility has inspired numerous follow-up studies. For example, recently, Chou et al.
(2010, 2011) have provided analytical evaluations of the chaining structure for both
symmetric and asymmetric problem settings with large scales.

The second category of related literature studies the allocation of a single capac-
ity to multi-class demand in a dynamic environment. This category dates back to
the early work by Topkis (1968), who characterizes the optimal rationing policy that
assigns capacity to different customer classes over time. Since then similar rationing
policies have been applied to various industry settings. For instance, many revenue
management studies focus on how to maximize firms’ revenue through capacity ra-
tioning when there are multiple fare classes for a single seat type; see Talluri and van
Ryzin (2004b) for a review of this literature. A stream of studies on production and
inventory control has also derived threshold policies when serving multiple customer
classes; see Ha (1997, 2000), de Véricourt et al. (2001, 2002), Deshpande et al. (2003),
Savin et al. (2005), Ding et al. (2006) and the references therein.

The third category of studies involves multiple capacity types and dynamic capac-
ity allocation. It differs from the first category mainly in that firms need to allocate
capacities to customers without full demand information. There are relatively few
papers in this category. Shumsky and Zhang (2009) consider a dynamic capacity
management problem with single-step upgrading. They characterize the optimal up-
grading policy and provide easy-to-compute bounds for the optimal protection limits
that can help solve large problems. Xu et al. (2011) consider a two-product dy-

namic substitution problem where customers may or may not accept the substitution
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choice offered by seller. This chapter extends Shumsky and Zhang (2009) to allow
general upgrading. We show that a sequential upgrading policy is optimal for such
a problem and provide fast heuristics that can effectively solve the optimal capac-
ity investment and allocation decisions. Our problem can be framed as a network
revenue management model with full upgrading, where the fares are fixed and the
incidence matrix is the identity matrix (see Gallego and van Ryzin 1997). Gallego
and Stefanescu (2009) introduce two continuous optimal control formulations for ca-
pacity allocation but concentrate on the analysis of deterministic cases. Steinhardt
and Gonsch (2012) study a similar network revenue management problem but al-
low at most one buying request in each period. In contrast, this chapter considers
stochastic and batch demand arrivals in each period. Our work is also related to the
studies on airline revenue management that involve multiple fare products. Talluri
and van Ryzin (2004a) study revenue management under a general customer choice
model. Zhang and Cooper (2005) consider the selling of parallel flights with dynamic
customer choice among the flights. More recent developments include Liu and van
Ryzin (2008a) and Zhang (2011). In these studies, firms need to decide the subset of
products from which a customer can choose from; while in this chapter, firms decide
how to allocate capacities to realized demand. Therefore, both the model settings

and results are quite different between these studies and this chapter.

2.3 Model

Consider a firm managing N types of products to satisfy customer demand. The
products are indexed in decreasing quality so that product 1 has the highest quality
while product N has the lowest quality. There are IV corresponding classes of customer
demand, i.e., a customer is called class j if she requests product j (1 < j < N). The
sales horizon consists of T discrete periods. The initial capacities of the products
must be determined prior to the first period and no capacity replenishment is allowed

during the sales horizon. (In Section 2.6, we extend the model to consider multiple

11



horizons and allow for replenishment.) Customers arrive over time and the demand in
each period is random. Let D! = (d,d5, - ,dy)T € RY denote the demand vector
for period t (1 <t < T'), where superscript T stands for the transpose operation.
Throughout the chapter we use bold letters for vectors and matrices, and use (Z); for
the i-th component of vector Z (or (Z);; for the corresponding element in matrix Z).
For instance, (D'); = d is the demand for product ¢ in period t. We assume demand is
independent across periods; however, demands for different products within a period
can be correlated.

Let r; be the revenue the firm collects from satisfying a class j customer. If
product j is out of stock, then a class j customer could be upgraded at no extra
charge by any product i as long as ¢ < j. If a class 7 demand cannot be satisfied
in period t, then it will be backlogged to the next period and the firm has to incur
a goodwill cost g;'. Define G = (g1, ,gn) € %f . To incorporate service settings
like the car rental industry, we include a usage cost denoted by u; for product i. We

make the following assumptions:
Assumption 2.3.1 (A1) r; >ry > -+ > ry.
Assumption 2.3.2 (A2) g3 > gy >+ > gn.

Assumption 2.3.3 (A3) u; > uy > --- > uy.

We may define o;; = r; + g; — u; (i < j) as the profit margin for satisfying a class
J customer using product 7. Based on the above assumptions, we know a;; > ag;
and oy > oy (i < j < k). In other words, for a given capacity, it is more profitable
to satisfy a higher class of demand; for a given demand, it is more profitable to
use a lower class of capacity. These assumptions are similar to but more general
than those made in SZ: we have relaxed the single step upgrading assumption in SZ

(aj > 0 only if j = ¢+ 1) and added Assumption (A2) about the backorder costs.

IThe backorder assumption is used mainly for tractability. Notice that an unmet demand could be
upgraded in any subsequent periods, so it is reasonable to assume that the customers are willing to
wait for potential upgrades, i.e., unsatisfied demands can be backlogged.

12



Note that the above assumptions do not require all a;; to be positive. Specifically, if
a;; < 0 for some ¢ and 7, then the assumptions imply that ay; < --- < ;5 < 0 and
a;y < -+ < a;; <0, which are reasonable in practice.

The firm’s objective is to maximize the expected profit over the sales horizon.
There are two major decisions for the firm. First, the firm needs to determine the
initial capacity before the start of the selling season; second, the firm needs to allocate
the available capacities to satisfy demands in each period. Let C = (¢, -+ ,cn) € %f
denote the capacity cost vector, X! = (24,25, -+, 2%)T € RY the starting capacities in
period ¢, and D' = (d},db, - - ,d%)T € RY the backordered demand at the beginning
of period t. We use Y for the capacity allocation matrix in period ¢, i.e., (Y');; = yfj
is the amount of product i offered to satisfy class j demand (y;; = 0 if ¢ > j). Define
o1 (X f)t) as the optimal revenue-to-go function in period ¢ given the state variable
(X!, D). Then the buyer’s problem can be formulated as follows:

max II(X') = max {0'(X',0) - CX'}, (2.1)

1 N 1 N
XleRy XleRy

and for each period ¢t (1 <t <T):

6'(X",D") = E {6/(X",D|D') |

Dt
) ~ (2.2)
o {“%{%X [H(Y'|D'D) + 67X, D) } |
where
H(Y'D:D)= > ayy,; — G(D'+D"), (2.3)
1<i<j<N
Xt =X"-Y"1 >0, (2.4)
D*!' = D! + D! — (Y!)"1 > 0, (2.5)

Y! >0, 1=(1,1,---,1).

We assume the leftover products have zero value at the end of the selling season,
so @7+ = 0. Note that the optimal revenue-to-go function ©*(X*, D?) is recursively

defined in (2.2). Given the allocation decision Y*, H(Y*|D* D) in (2.3) denotes
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the single period revenue, which is the difference between the upgrading revenue and
the goodwill cost. The state transition between two consecutive periods is governed
by (2.4) and (2.5), which represent two constraints for the allocation decision Y* in

period t.

2.4 Parallel and Sequential Rationing (PSR)

This section starts analyzing the upgrading problem given in (2.1). First we intro-
duce several useful definitions and qualitatively characterize the optimal allocation
policy. The formal optimality proof will be presented in the next section. As the first
step, since

1(0) = -G Z(T +1—1t)E[DY > —oo,

(2.6)
lim II(X Z E[d}] — lim CX!'= —o0,

Xl oo Xl —oco
t=1 i=1

and the fact that II(X') is continuous in X! € RY, we know there exists a finite
X* € RY that solves the optimization problem in (2.1).

From Murty (1983) and Rockafellar (1996), for any demand realization D in
period T, it is straightforward to see ©T (X7, DT|D7) is concave in the state variable
(X”, D7), which are the right-hand side variables in the linear program defined by
(2.2). Since concavity is preserved under the expectation operation on Df (1 <t < T)
and the maximization operation with respect to the allocation decision Y* (see, for
example, Simchi-Levi et al. 2014, Proposition 2.1.3 and 2.1.15), ©' is again concave

in (X*, D) in each period t. Clearly, the function
@t(Yt|Xt, f)t; Dt) _ H(Yt|f)t; Dt) + @H-l(}Ct—H7 f)t—i-l)’ (27)

representing the revenue function in period t given state (X!, D*) and demand real-
ization D!, is also concave in the allocation decision Y!. The concavity property is

summarized in the following proposition whose formal proof is omitted.
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Proposition 2.4.1 In period t, ©'(X!, D) is concave in (X', D), and
O!(Y!|X!, Dt DY) is concave in Y.

Notice that the allocation decision Y' is constrained by a bounded polyhedron
defined by (2.4-2.5) and ©' in (2.7) is continuous in Y*. Thus, there always exists
an optimal allocation to the general upgrading problem in each period t. For a
given state (Xf,D?) and demand realization D!, there are two types of decisions:
parallel allocations yj; for all i (1 <4 < N) and upgrading decisions y;; for classes
iand j (1 <4 < j < N). These are dynamic decisions because they will not only
determine the revenue H in the current period but also affect the future revenue
ottl (Xt—&-l’ f)t-‘,—l).

It is straightforward to solve the parallel allocation problem. In our model, the
maximum revenue we can get from a unit of capacity ¢ is «a;; through the parallel
allocation, i.e., capacity ¢ is used to fulfill demand class ¢. It is suboptimal to satisfy
demand from lower classes using capacity ¢ when there is still unmet demand .
Further, the expected value of carrying over capacity ¢ to the next period will not
exceed «;;, either. Hence the optimal strategy is to use the parallel allocation as much

t
%

variable (X!, D), class i (1 < i < N) cannot be positive in both X and D*. Thus,

as possible. That is, y!;, = min(d! + d’, z!). Another implication is that in the state
we can use a single variable M! = (X! — D') = (m!,mb,--- ,m4)T to represent the
state at the beginning of period ¢ (before the parallel allocation): m! > 0 means there
is positive capacity for ¢ while m! < 0 means there is backordered demand for i. In
the rest of the chapter we will use M and (X!, D') exchangeably.

The more challenging question is how to make the upgrading decisions after the
parallel allocation. The state after the parallel allocation in period ¢ is (m} —d}, mk —
dh, -+ ml; — di)T. Note that m! — d! > 0 means that there is leftover capacity 1,
while m! — d! < 0 implies that there is unsatisfied demand 7 and capacity ¢ must have
been depleted. The firm needs to decide how much demand should be upgraded using
higher capacities. This is equivalent to a rationing problem, i.e., how much capacity

should be protected to satisfy future demand. The upgrading problem in our model is
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different from the one studied in SZ. Particularly, with the single-step assumption in
SZ, when capacity i is depleted, classes above ¢ and those below ¢ become independent
of each other in future periods, and thus the upgrading problem is greatly simplified
because all the upgrading decisions can be solved independently. However, with
the general upgrading structure in our model, the upgrading decisions after parallel
allocation are no longer isolated. In this case, we may have to solve all decisions
simultaneously, which could be computationally intensive. Fortunately, close scrutiny
shows that the following two observations can greatly reduce the complexity of the
upgrading problem.

First, the upgrading decision yfj of using capacity ¢ to upgrade demand j is in-
dependent of the demands and the capacities below class j. To explain, consider the
last unit of capacity ¢ that could be used to upgrade an unmet demand j. If this unit
is used for upgrading, the immediate value obtained is ;. If such unit is carried over
to the next period, it means that there is a corresponding unsatisfied demand j left
to the next period. Notice that due to the existence of the backlogged demand j, the
specific unit of capacity ¢ will never be used to upgrade the demand below class j in
any future period. This implies that we can solve the upgrading problem sequentially
by starting from the highest class j with m} —d} < 0.

Second, for demand class j with m’ — d} < 0, the upgrading decisions y;;, i =
1,...,7 — 1 can also be solved sequentially in 7. Consider two capacity classes ¢ and
k (i < k < j) with positive capacities after the parallel allocation. Since a;; < ay;
by assumption, we should first evaluate the possibility of using capacity k to upgrade
demand j. After that, we consider using capacity ¢ to satisfy demand j. Interestingly,
we do not need to consider capacity ¢ anymore if all demand in class j is satisfied by
capacity k or we do not use full capacity k£ to upgrade demand j.

Based on these observations, the upgrading problem can be sequentially solved as
follows:

Step 1: Identify the smallest j (1 < j < N) with m} —d} < 0 (the highest class

with unmet demand);
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Step 2: For the largest i (the lowest capacity class) less than j with m! — df > 0,
determine the upgrading quantity yfj in period ¢ (or equivalently, the quantity of
capacity i to be protected for the next period). When solving yfj, we can ignore the
classes lower than j;

Step 3: Repeat Step 2 until all capacity classes available for upgrading demand j
have been considered;

Step 4: Repeat Step 1 until all unmet demand classes have been considered.

To summarize, the firm may allocate capacity using the so-called Parallel and
Sequential Rationing (PSR) policy. Under such a policy, the firm first performs the
parallel allocation on each class to satisfy new demands, and then sequentially decides
upgrading quantities for classes with unmet demand.

The most crucial decision in the sequential upgrading procedure is to determine
yfj in Step 2. Consider the decision about how much capacity ¢ should be used to
upgrade demand j. It is clear that as long as the current upgrade revenue o; is
greater than the expected marginal value in the future, capacity ¢« should be used to
upgrade demand j. Such an upgrading or rationing decision essentially specifies the
protection levels for the capacities. Let p;; be the optimal protection level of capacity
1 with respect to demand 7, i.e., the firm should stop upgrading demand j by capacity
i when the capacity level of i drops to p;;. Since ©1(X, D) is concave in (X, DY)
by Proposition 2.4.1, the expected marginal value of capacity i is monotonically in-
creasing as capacity ¢ decreases. Hence, the protection level p;; in period ¢ is the
unique lower bound above which using capacity ¢ to upgrade demand j is profitable.
Define a%@t = 3’%@’5, a}%@t as the subdifferential of ©! with respect to some vari-
able p, where a%@t and é?p%@t are the left and right derivatives, respectively. Let
N = (nt,nk,--- ,nk)T denote the state of the system immediately before the epoch

of determining yfj. The optimal protection levels can be defined as follows.

17



Definition 2.4.1 The optimal protection level p;; > 0 under state

N = (nt,nk, -+, nl)7 is defined as
: 0 Ot+1(,,t t t t
p Zf&zjea_p@ (nla"' 7ni717p707”' 707_p7nj+17”' 7nN)7
Pij = (2.8)
: o) t+1 (ot t t t
0 ZfOéij > WQ (nlu"' y i1, Ds O) 7Oa Y 2R TS P ’nN)|P:0‘

With the protection levels p;; and N*, the optimal upgrading decision y;; is simply
given by min ((n} — py;)*, (—n})*) where (2)* = max(z,0). Notice that there are
0’s between classes ¢ and j since the PSR algorithm does not consider yfj if there
exists a class s (i < s < j) with positive capacity or unmet demand. When class
s has positive capacity, it is more profitable to upgrade demand j with capacity s
instead of capacity 7, and it is unnecessary for us to consider yfj if there is capacity
s remaining after solving yfgj. When there is unmet demand for class s, capacity ¢
should upgrade demand s first, and it would be suboptimal to upgrade demand j if

class s still has unmet demand after upgrading v_,.

In the next section, we will show that

0
a_p@t+1(n§7 v 7n§,17p7 O7 Ce 70’ —p, n§,+1’ e 7n§\7)
is independent of the values of (n},,,--- ,n}). This implies that the upgrading deci-

sion yfj is independent of the demands and the capacities below class j. Later we can
see that when solving p;;, it is sufficient to use the first ¢ — 1 components of M* — D’
(i.e., the state of the system in period ¢ after the parallel allocation) instead of N*
(i.e., the state of the system prior to deciding y;;) in the PSR algorithm. This is
a unique and interesting property of the general upgrading problem, allowing us to
simultaneously and independently solve all protection levels based on M! — D*.
Before presenting the main results, we wish to further reduce the computation
in the general upgrading problem by exploring its structure. With the single-step
upgrading rule, SZ shows that whenever a capacity (say, i) is depleted, then the entire
problem decoupled into two independent subproblems, where the first subproblem

consists of products above ¢ and the second consists of products below i (see Lemma
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4 in SZ). Under the full-upgrading rule, such a property in SZ clearly does not hold.
However, it can be shown that under certain conditions, our problem can also be

separated into independent subproblems, as stated in the next lemma.

Lemma 2.4.1 Consider an N-class general upgrading problem with state
Nt = (nf,nb, -+ ,ni\)T in period t. If ', nt < 0 for all class k < i, then the
problem can be separated into two independent subproblems: an upper part consisting

of classes (1,--- i), and a lower part consisting of classes (i +1,--- , N).

For convenience, we say class ¢ is separable if it satisfies the condition stated in
Lemma 2.4.1. Notice that n} < 0 is not enough to split the N-class general upgrading
problem since there may be class k (k < i) which can upgrade demands in classes
(i4+1,---, N). However, the condition in Lemma 2.4.1 determines that none of classes
(1,---,7) has enough capacity to upgrade the demand in (i41,--- , N) when optimal
upgrading is performed. Specifically, there may exist class k < ¢ with positive capacity
which can upgrade the demand in (i+1,--- , N), but it is more profitable for capacity
k to satisfy the demand in classes (k + 1,--- ;i) first, which will consume all of class
k’s capacity. Therefore, Lemma 2.4.1 asserts that the entire upgrading problem can
be simplified by decomposition under certain conditions. That is, the profit of the N-
class problem can be written as the sum of the profits from independent subproblems
(1,---,7) and (i+1,--- , N) whenever class i is separable. The next section presents
the optimality proof and some useful properties of the PSR policy. These results
apply to all the subproblems as well as to the entire upgrading problem.

2.5 Optimality and Properties of PSR
2.5.1 Optimality

The optimality proof of the PSR policy is by induction. We begin with the last
period T'. In the last period, since leftover capacities have no salvage value, the

optimal protection levels must be zero. Specifically, for a given demand realization,
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the upgrading problem in the last period can be viewed as a standard transportation
problem. In addition, the objective function has a special cost structure, i.e., a;; >
Qiji1, Qij > ooy for i < g, and qy; + apjr = gy + g if max(i,i) < min(g, j'). The

optimal solution can be readily obtained from the following lemma.

Lemma 2.5.1 The PSR algorithm solves the general upgrading problem (2.2) in pe-
riod T" with all protection levels being 0.

The zero protection levels in the final period imply greedy upgrading. That is,
after the parallel allocation, the sequential rationing proceeds from class 1 to N and
upgrades the unmet demand by the lowest capacity classes as much as possible. Later
we will show that the PSR algorithm also solves the upgrading problem (2.2) in any
period t; however, the optimal protection levels are not necessarily zero.

To gain more understanding of the general upgrading problem, let us consider
the protection level p;; (1 < i < j < N) in period T'— 1. Since the optimal p;;
is determined by the expected marginal value of ©7 in (2.8), we focus on how the
marginal value depends on the current state N7~! in period 7 — 1. By Lemma

2.5.1, ©T can be evaluated in the following three steps. First, we solve the upgrading

decisions within classes (1,---,7 — 1); second, we satisfy the upgrading need that
arises within classes (7, -+ ,j) (note we may use capacity k < i to upgrade demand);
finally, we use upgrading to satisfy the unmet demand within classes (j +1,---, N).

Lemma 2.5.2 below characterizes the relation between the optimal protection level p;;
in period T'— 1 and the state N7~!. As a preparation, we first introduce the concept

of effective state.

Definition 2.5.1 Consider a state vector N* = (n%,nb,---  nk;) in period t (1 <

t
T). For class r (1 < r < N), the effective state N'. = (A, --- al,nt, -+, nl) is

defined as the resulting state after applying the greedy upgrading for classes (1,--- ,r).

In fact, given any state N' and its effective state Nﬁ, if weuse h (1 <h <)

to denote the highest class with 7} > 0, then class h — 1 is separable in N*. To
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see this, note that given n} > 0, there is no upgrade between classes (1,---,h — 1)
and (h,---,7) when using the greedy upgrading. Thus, for all class k < h, we have
S int < SRt < 0 since there may be upgrade between classes (1,--- ,k — 1)

and (k,--- ,h—1) when performing the greedy upgrading. Hence, h — 1 is separable,

and classes (1,--- ,h — 1) can be ignored in the subsequent allocation decisions.
Consider a state vector N* = (n! -+ nk;) in period ¢. For 1 <i < j < N, define
Af7ONN) = i@t(Nt)—i@t(Nt) ATONNY) = i@t(Nt)—iGt(Nt)
Y on; on; ’ K on; on’ '

Then we have the following lemma.

Lemma 2.5.2 Consider an N-class general upgrading problem in period T — 1 with

state vector NT=1 where (n]3',--+ ,n]') <0 andn] ' <0. Then,
ALFOT(NTH = ALOT(NTY),  ASFOT(NT Y =A T (NI, (29)
In addition, they are independent of the values of (n?’l, e ,ng’l).

Notice that the protection level p;; in (2.8) can be equivalently defined
A;;—@tJrl(N) S ij S Ai_j+@t+1(N),

where N = (nf,--- ,nj_1,p,0,---,0,—p,nb,,--- ,nfy). Thus, Lemma 2.5.2 states

that the optimal protection level p;; in period T — 1 is independent of the values of

(n?’l, e ,ng’l), while it is affected by the classes above ¢ through the effective state
(Al =t .-+ Al "), These results provide the rationale behind the sequential rationing

in the PSR algorithm. Clearly, they will significantly simplify the optimal solution
to the upgrading problem. We offer the following intuitive explanation of these re-

sults. First, we explain why Af~0"(N"~!) and A;*©T(N"™") are independent of

2
T-1

(T,

,nx 1) Before deciding Pij OF yiTj_l, without losing generality, we may label
all units of capacity 7 in an increasing order of importance, with the first unit having
the least importance (i.e., it must be used first in any subsequent period). Meanwhile,
the unsatisfied demand in class j can be treated as a waiting line, which will be sat-

isfied in the first-come first-served sequence. Note that deciding p;; is equivalent to
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comparing o;; with the expected value of capacity unit 1 in class 7. Given the back-

order assumption, capacity unit 1 can only satisfy either a future demand in classes

(¢,--+,7—1) or the first unit in the waiting line of class j. Hence, the expected value
of capacity unit 1 in class 7 is independent of states (nJT;ll, - nk ). Furthermore,

the above argument only relies on the fact that there exists unmet demand j. Thus,
the expected value of capacity unit 1 is also independent of n'f—l, the length of the
waiting line in class j.

Next, we explain the equalities in (2.9). For any class k (1 < k < i) with positive
capacity, it would not upgrade demand 7 in any optimal policy if there exists back-
ordered demand r (k < r < i), which is more valuable for capacity & than demand
7. The remaining capacity of class k after upgrading all backordered demands in
classes (k+1,--- ,i— 1) equals ﬁz_l as defined in the effective state. Therefore, the
expected future value of capacity ¢ in period T'— 1 should equivalently depend on the
effective state (A] *,---, A, '), which are non-negative when classes (1,---, N) are

not separable. Note that this argument applies to any period t.

Now we are in the position to use induction to prove the optimality of the PSR.

Proposition 2.5.1 1. The PSR algorithm solves the general upgrading problem

wm period t;

2. For a state vector N* with (nj,,--- ,nt_;) <0 and n’ <0, we have

Az;f@t+1(Nt) _ Ajj—@tH(Nz;_l)’ A;jJr@tJrl(Nt) _ A;ﬁ@tH(N;‘f—l)-
In addition, they are independent of the values of (ng, cenly).

For any given period ¢ under the PSR algorithm, the effective states of all inter-
mediate states for classes (1,2,...,i— 1) are the same before we exhaust the capacity
of class . Thus, Proposition 2.5.1 implies that when solving p;;, it is sufficient to
use the first ¢ — 1 components of M! — D, the state of the system in period ¢ af-

ter the parallel allocation. Specifically, for any classes ¢ and j (1 < i < 7 < N)
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with nf > 0 and n} < 0, the protection level p;; can be immediately determined by

a%76)1#1(77#1 _dtlv"' >m§—1 _dg—lvpvoa"' ,0,—]?,0,“' 70)

2.5.2 Properties of Protection Levels

After establishing the optimality of the PSR algorithm, we explore some important
properties related to the optimal protection levels from the PSR algorithm.
First, if both the initial capacity X! and all demands are integer valued, similar

to SZ, we can prove that there exists an integer valued optimal policy generated by

the PSR algorithm.

Proposition 2.5.2 If initial capacity X' and demand D', --- DT are integer valued,

there exists an integer valued optimal policy Y, --- , YT derived by the PSR algorithm.

To further characterize the protection level p;; defined in (2.8), we need to deal
with the marginal value of © with respect to each capacity level and unmet demand
level. Intuitively, one may think that the profit will be higher if there is an additional
unit of capacity i — 1 (1 < i < N) rather than capacity . But this is not necessarily
true. When making upgrading decisions, one more unit of capacity from the higher
class i — 1 always provides more flexibility, but such a flexibility does not necessarily
mean higher profit since a;; > ;1 (¢ < j) by our model assumption. Similarly,
one more unit of demand in a lower class, which can be upgraded by more classes
of capacities, has similar advantage but can not guarantee greater profit because
a;; < oy j+1 (i < j). However, we can provide some bounds on such profit differences.
With these bounds, we show two different monotone properties of the protection
levels. First, since lower demand has less value for any capacity, the protection level

should increase in the class index of demand.

Proposition 2.5.3 For the same (n%,--- ,nt_y) in period t (1 <t <T), pij < pij+1

when 1 < j.
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Because the general upgrading problem in period 7' is a transportation problem,

07 (X", D7) is submodular in (X7, —D7”) (see Topkis 1998). This implies the pro-
tection level p;; in period T — 1 under state N7~ is decreasing in (n] *,--- ,n! ).

In fact, the same monotonicity holds in earlier periods.

Proposition 2.5.4 The optimal protection level p;; (1 < i < j < N) in period

t (1<t<T) are decreasing in (n},--- nt_,).

For any class i (1 < i < N), this result assures that the more capacities (or less
back-ordered demands) in classes higher than i, the more upgrades can be offered
by class i. Note that larger (nf,--- n! ;) means higher probability of demand i
being upgraded in remaining periods, which decreases the expected marginal value
of capacity i and gives class i a greater incentive to upgrade lower demands in the
current period.

It is noteworthy that although the result for the last period can be proved using
lattice programming in Topkis (1998), the commonly used preservation property of
supermodularity under optimization operations, Theorem 2.7.6 in Topkis (1998), does
not apply. Therefore, our proof relies heavily on the structure of the general upgrading
problem and fully utilizes the optimality of the PSR algorithm.

One may ask whether the optimal protection levels are decreasing over time, i.e,
the protection level would be lower if there are fewer periods to go. Interestingly,
though this is true in SZ, it does not hold in our upgrading problem. This is mainly
due to the existence of the backorder cost. Note that the purpose of the protection
levels is to balance the goodwill loss of carrying backorders and the revenue loss
of losing future demand from the same class. For early periods that are still far
away from the end of the horizon, because a backorder causes the goodwill loss in
each period until it is upgraded, the protection levels may be lower to avoid high
backorder costs; in contrast, when it is close to the end of the horizon, the protection

levels may come back up because carrying backorders will be less costly.
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We may use a 2-product 3-period example to explain this counter-intuitive result.
Let (2, —2) be the state after the parallel allocation, D* = (0,0) and D3 = (1,0) with

probability 1. Working backwardly to solve the pi5 in period 2, since
0%(2,-2) — ©%(1, 1) = iy — g < a1a, ©O*(1,—1) — ©°(0,0) = 11 — go,
we have pjo = 1 in period 2 if aq; — g» > aqs. Since D? = (0,0), there is
0%(2,-2) — ©%*(1,—1) = a2 — g2 < apz, O%*(1,—1) — ©%(0,0) = a1 — 2¢».

Therefore, if ay; — g2 > 19 > aq1 — 29, the optimal protection level pis increases
from 0 in period 1 to 1 in period 2. That is, the protection level does not necessarily

decrease over time in our general upgrading problem?.

2.6 Multiple Horizons with Capacity Replenishment

Now we extend our model to multiple horizons with capacity replenishment.
Specifically, there are K (K > 1) horizons, each consisting of T" periods. Demands
across horizons are independent and identically distributed. At the beginning of each
horizon k£ (1 < k < K), the firm observes the leftover capacity X and unmet de-
mand D carried over from the previous horizon. There are two decisions for the firm
in each horizon: First, the firm decides how much capacity to replenish; second, it
allocates capacity to satisfy demand as formulated in (2.2). For completeness, we
assume unmet demand after the K-th horizon can also be satisfied by purchasing
additional capacity. There is a unit cost vector C = (¢1,- -+ ,cy) € RY for capacity
replenishment. The remaining capacity at the end of each horizon incurs a holding
cost h = (hy,--- ,hy) € RY. The leftover capacity after the K-th horizon can be
sold at the initial capacity cost, i.e., it has salvage value C. Revenues and costs are
discounted at a rate 7 (0 < v < 1) for each horizon. The rest of the model setting

remains the same as in Section 2.3.

2This counter-intuitive example remains valid for any goodwill cost g» if the length T satisfies
o] — (T — 2)92 > Qg > 11 — (T — 1)92 and D2=...=DT-1 = (0,0) and DT = (1,0).
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In the replenishment model, at the end of the last horizon, leftover capacity and

unmet demand have a positive end-value given by
O (X", D) = (C — h)X"* + y(a — C)D"H, (2.10)

where av = (a1, -+ ,any) is the revenue from parallel allocation. This end-value is
different from the single-horizon model with ©7+1(X”+! DT+!) = 0 in Section 2.3.
Let I1(X;~vC — h;v(a — C)) denote the optimal profit in the replenishment model
with initial capacity X and K = 1.

From the proof of Proposition 2.4.1, ©/(X! D), which is similarly defined as
(2.2) with ©T+! = 0 being replaced by ©7*! in (2.10), is still concave in (X*, D?). In
particular, IT (X;yC — h;y(a — C)) is concave in X from the concavity of ©!(X,0).
Furthermore, similarly as (2.6), we can show that there exists an optimizer X* for

the concave function II (X;7C — h;y(a — C)):
X* € arg maxxepy 11 (X;7C — h;v(a—C)). (2.11)

Note that X* is the optimal capacity level for the replenishment model with K = 1.

The next proposition characterizes the optimal capacity replenishment and allo-
cation policies in the multi-horizon model, given that the firm starts with an initial
capacity X < X*. It shows that the structural results from the base model in Section
2.3 remain valid in the multi-horizon model, thus we will focus on the base model in

the rest of the chapter.

Proposition 2.6.1 Suppose the firm starts with an initial capacity X < X*. The
firm’s optimal replenishment policy in the multi-horizon model is a base stock policy
with the optimal base stock level X* in (2.11). Furthermore, the PSR algorithm solves

the optimal allocation decisions within each horizon.

2.7 Heuristics and Benchmark Models

So far we have characterized the structure of the optimal allocation policy for

our dynamic capacity management problem. In this section, we propose an effective
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heuristic for solving the optimal allocation policy. For future comparison, we also
present two benchmark models that are simplified versions of the general upgrading

problem.

2.7.1 Heuristics

We have shown that the PSR algorithm yields the optimal allocation decisions
Y! for the firm in period ¢, which essentially consists of the optimal protection levels
for each capacity. These optimal protection levels are defined by (2.8) and can be
solved by backward induction. For instance, the optimal protection levels in period
t depend on the revenue-to-go function ©'!, which is determined by the protection
levels used in period t+1. To evaluate O, one needs to derive the optimal protection
levels for all possible states in period t + 1 (note that these protection levels, though
possessing the appealing properties established earlier, are still state-dependent). Due
to the curse of dimensionality, solving the exact optimal upgrading decisions is quite
difficult for large problems®. Therefore, we need to search for heuristics that can solve
the problem effectively.

Since solving the allocation decision is equivalent to solving the Bellman equation
(2.2) in period t, in order to develop efficient heuristics, we focus on the one-step
lookahead policy which hinges upon reasonable approximations to ©'*!. The basic
idea is as follows. Suppose (:)';;érox is an easy-to-compute and acceptable approxima-

tion to ©*!. Given the initial state (X!, D?) and the realized demand D? in period

t, we solve the following optimization program

max | H(Y! D% DY) + 01! (X DY || (2.12)

v approx

3To deal with the dimensionality issue, SZ propose a series of bounds to approximate the optimal
protection levels. For instance, when computing the protection level for product 4, one may consider
only the capacity for i — 1, while assuming the products above ¢ — 1 to be either oo (this gives a lower
bound of the protection level) or 0 (this gives an upper bound). It has been found that under the
single-step upgrading assumption, these bounds are very tight and yield nearly optimal revenue for
the firm. However, such bounds do not work well in our model, where general upgrading is allowed.
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and obtain the corresponding allocation decision Y (X! D!|D') in period ¢. Let

approx

o! be the revenue collected by applying the policy (Y YL ) from

approx approx’ )+ approx
period t to T'. For simplicity, we do not distinguish between the policy and the decision
(e.g., Y! and Y! (X!, D*|D?)), since the proper interpretation is usually clear

approx approx

from the context. Note that Y is a suboptimal policy in the general upgrading

approx

problem and ©f_  # ©f  in general. Moreover, ©f (N*) < ©(N’) for any
state N* in period ¢ since ©'(IN?) adopts the optimal policy from period ¢ to T

As pointed out by Bertsekas (2005b), even with readily available revenue-to-go ap-
proximations, ©: may still involve substantial computational efforts. A number

approx
of simplifications of the optimization in (2.12), including different @gérox functions,
have been considered. Here we present two of them that stand out both in terms of
computational time and in terms of revenue performance. Because of the linearity in
the upgrading problem, the first natural candidate is the traditional Certainty Equiv-
alence Control (CEC) heuristic in the literature (see Bertsekas 2005a, for example).
The CEC is a suboptimal control which treats the uncertain quantities as fixed typical
values in the stochastic dynamic programming. In our case, we use demand means as
typical values in evaluating the function (:);gérox. Thus, under the CEC, expectation
calculations are no longer relevant, which can alleviate the computational burden in

our problem. Specifically, the optimal allocation policy in period ¢ is solved together

with all future periods where the mean demand is used as approximation. That is,
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the optimal allocation decision Y in the CEC heuristic will be obtained by solving
the following linear program:
~ T ~
max {H(YtCEC|Dt§ DY)+ ) H(Y'D'; ul)} (2.13)
(Yepa Y+ ¥YT)20 I=t+1
st. D =D'+ D! — (Yhgo)T1,
]~)I+1:]~)l+ul_(Yl)T1’ l=t+1,---,T

T
(Y@EC + ) Yl) 1 <X,

I=t+1

(Yepe)1 < D'+ D,

k T k
(Y@ECJr ZYZ) 1<D'+D'+ > 4, k=t+1,--- T

I=t+1 I=t+1

where X?, f)t, and D? are the capacities, backorders, and realized demand in period
t, respectively, and (u!, u?, -+, uT) denote the mean demand vectors.

The solution to (2.13) yields the allocation decisions (Y&, Y, -+ YT) for
periods from t to T, where (Y*! ... [ 'YT) are discarded in the subsequent periods.
We implement Y as the allocation decision for period ¢ and then move on to solve
problem (2.13) in period ¢ + 1. Let ©fL,. be the revenue collected by applying the
policy (Yige, -+, Yige) in periods from ¢ to T. Define lcrc(X) = Ofpq(X, 0) as
the firm’s total revenue given initial capacity X under the CEC heuristic.

Although the above CEC heuristic can simplify our problem, its computational
time is still quite long. Consider an N-product general upgrading problem with ¢
periods remaining, the CEC heuristic solves the allocation decisions in the current
period as a transportation problem with N classes of capacities and t/N classes of
demands, whose running time is O(tN3(log(tN) + N log N)) (see Brenner 2008). In
addition, the optimal allocation is derived from the linear program in (2.13), which
does not use the PSR procedure and the marginal analysis in (2.8). This means that
the CEC might be further improved by exploiting the special properties inherited in

our upgrading problem.
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To this end, we further simplify the revenue-to-go function by applying greedy
upgrading. So the approximation to ©!*! consists of two components: certainty
equivalence control (CEC) and greedy upgrading. Under the CEC, again the mean
demand is used as an approximation in all future periods. At the same time, ©F1
is simplified by adopting greedy upgrading from periods ¢t+1 to T" rather than solving
the linear program as in the CEC heuristic. Such simplification, though suboptimal,

4 Given these characteristics of

is much easier to compute than the linear program
the approximation, we call it refined certainty equivalence control (RCEC) and write

(:)gggmx as OLIL.. In addition to the above approximation, the RCEC heuristic then

calculates the protection levels in (2.8) by replacing ©*! with (:)ErclEC, and determines

the allocation decision Yhope in period ¢ by performing the PSR algorithm to solve

the following program
mae [ (YD DY) + B e (X1, D)
Note that O%cpc (5 >t + 1) can be defined recursively as follow:
_wac(XS? f)s) = H(YZ‘DS§ 1) + @f;élEC(XSHS f)sﬂ)a (2.14)
where X**! = X*—Y21, D! = D+°—(Y3)TL, Of i = 0, and Y3 = (y5(1) o x
is the solution to the following linear program:

max{ Z aijyfj(p)‘(YZ)Tl < uf+ D, Y; 1< XS} :

Y5>0
1<i<j<N

Given the protection levels derived from O%LilLo, Yhepe is the allocation policy in
period ¢ solved by the PSR algorithm, and ©% . is the revenue collected by applying
policy (Yhere, -+ » Yiege) in period ¢ to T'. Define Ircpc(X) = Oope(X, 0) as the
firm’s total revenue given initial capacity X under the RCEC heuristic, and Xgrcgc

as the optimal capacity that maximizes IIrcrc(X).

4We have tested the heuristic without the greedy upgrading and found that the performance is
almost identical. That is, the use of greedy upgrading in this heuristic can significantly reduce the
computational complexity but has a negligible impact on the revenue performance.
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Now we analyze the running time of the RCEC. Although greedy upgrading
(rather the optimal allocation) is used in ©%, ., it can be shown that for any state

t_ (pt t
N" = (nla"' 7nN)>

9 Qt+l t t t ¢

a_p@RCEc(”la"' i1, 00,0, =pony, 0 ny) (2.15)

is decreasing in p°, so the protection levels can be solved by the binary search, and
it suffices to examine whether the protection level p;; is between max(nf 4 nj},0)
and nf. If the binary search calls the greedy upgrading more than twice, then it
implies the case that there remain both surplus capacity ¢ and unmet demand j after
performing the y;; allocation. Thus, the number of calls of the greedy upgrading is
at most two when solving each p,,. (i < s < r < j); otherwise there exists either
surplus capacity s or unmet demand r, and the upgrade quantity y;; must be zero
by the PSR. Furthermore, from the sequential procedure defined in PSR, there is no
upgrade between classes (1, -+ ,i—1) and (j,- -, V) in this case, and it is unnecessary
to compute the protection levels between these two sets. Consequently, the N classes
can be partitioned into several blocks, say K blocks, and in each block there exists at
most one pair of ¢ and j such that the greedy upgrading is called more than twice to
determine p;;. For the block £ (1 < k < K') with size ny (2 < nj, < N), the number
of greedy upgradings is no more than O(nj + log|X|), where |X| is the upper bound
of the initial capacity in each class. Since there is no upgrade between blocks, to
solve the allocation decision in each period, the total number of calls of the greedy
upgrading would be bounded by O(N? + N log| X|).

Consider an N-product general upgrading problem with ¢ periods remaining. Since
greedy upgrading can be solved in the running time of O(tN?), from the above analy-
sis, the RCEC has a running time of O(tN3(N +log|X])) in the worst scenario, which
is significantly shorter than the CEC when |X| is moderate. More appealingly, the

5Since future demands are known, there exists a period s (t+1 < s < T') in which capacity i will be
depleted. From the expression in (2.15), a marginal change of p only affects the greedy upgrading in
period s because both capacity ¢ and backorder demand j change simultaneously in p. In particular,
capacity ¢ is used to sequentially satisfy demands from class i to j in period s. As p increases, the
additional units of capacity ¢ will be used to satisfy demands from lower classes that have smaller
profit margins. Thus, the partial derivative is a decreasing step function of p.
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PSR algorithm can further reduce the computational complexity in practice. Recall
the discussion right after Proposition 2.5.1, the protection level p;; (1 <i < j < N)
in period t only depends on the effective capacities above ¢, which are decided by
M — D!, Thus, we can use parallel computing technique and solve all protection
levels independently based on M! — D?.

A common feature of the RCEC and CEC heuristics is that both use mean demand
in future periods as an approximation. However, there is a critical difference between
these two heuristics. In the RCEC, the PSR procedure is used; in particular, the
optimal protection level is determined using (2.8) (i.e., by comparing the upgrading
value to the future marginal value). By contrast, in the CEC, the optimal allocation
is derived from the linear program in (2.13), which utilizes neither the PSR procedure
nor (2.8). From our observations in the numerical study, the adoption of the PSR
algorithm in the RCEC plays an important role in both reducing the computational
complexity and improving the approximation performance, which will be discussed

in Section 2.8.1.

2.7.2 Benchmark Models

For future comparison, we introduce two benchmark models in this subsection.
The first one is called the crystal ball (CB) model. In this model, the firm has perfect
demand forecast when allocating the capacities in each period. Such a benchmark
has been widely adopted in the literature because it offers the “perfect hindsight”
upper bound of the firm’s optimal profit. For instance, it has been used in SZ but
is called static model because the firm essentially faces a static capacity allocation
problem given complete demand information. Let w represent a sample path of de-

mand (D!,... DT) over the sales horizon, and D!(w) the demand in period ¢ on
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sample path w. Then, the firm’s expected profit from period ¢ to T is defined as
E,[0!(X!, D! w)], where
~ T ~
O'(X" D" w) = max H(Y' D! DY (w))

Yt...YT
b b l:t

st. D' =D+ Dl(w) — (Yl)Tl l=t,--,T

T
> Yh1<Xx,
=t

k

k
> (Y)1<D'+) D'w), k=t-- T,

=t =t

Y! >0, l=t---,T.

The firm’s optimal profit in the crystal ball model is given by
g, Mop(X!) = i {Ig;[@l(xl, 0;w)] — cxl} , (2.16)
which can be used to benchmark the performance of our heuristic in the dynamic
upgrading problem.
The second benchmark is the model without product upgrading. In this case, the
firm’s problem reduces to N independent newsvendors (NV) with backorders. The

firm’s expected profit can be written as
N
3 00) = s { By 232 it )0 )] -
st ol = () = d)t, A = d (-2t
ol = (XY, d=D"Y, s=1,---,N, t=1,--- T
(2.17)

Note that although the two benchmark models (CB and NV) are similar to the static
and independent newsvendor models used in SZ, due to the backlog assumption, the
firm has to allocate capacity in each period in our model, rather than accumulate the

demand for the entire selling season and then allocate the capacity as in SZ.
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2.8 Numerical Studies

In this section, we conduct numerical studies to derive insights into the capacity
management problem. First, we test the performance of the RCEC heuristic proposed
in the previous section. After that, by using the heuristic and benchmark models,
we investigate the importance of the allocation mechanism and the capacity sizing

decision. For simplicity, we focus on integral demands.

2.8.1 Performance of RCEC

Due to the complexity of the problem, we use extensive numerical experiments
to test the performance of the heuristics. These experiments are conducted using
MATLAB R2013a on an Intel Core i7-2600 desktop with 12G RAM. We focus on the
RCEC heuristic because it will be used later for further numerical investigation.

The first set of experiments we consider has N = 4 and T" = 3. For this problem
size, we are able to use backward induction to evaluate the firm’s optimal profit
II(X) given in (2.1). Later we will also discuss the performance of the RCEC for
large problem sizes where it is difficult to evaluate II(X) directly. Given an initial
capacity X € ﬂ%ﬂy , define the performance measure as

~ [ HIrepe(X) — II(X)
Aoyt = RC Cn(x)

% 100%, (2.18)

i.e., the percentage of profit loss by using ITrcgc(X) rather than I1(X).

To calculate II(X) = ©'(X,0), we use the Monte Carlo method and consider
a comprehensive range of scenarios, which capture different fluctuation patterns of
demand means along the selling horizon (i.e., variation of E[D'] from t = 1 to T'), dif-
ferent correlations between classes of demands in each period (i.e., Corr(dj, d}) for all
1 <i < j < N), different demand distributions (i.e., Normal distribution and Poisson
distribution), and various economic parameters (i.e., revenue (r1,--- ,7y), goodwill

cost (g1, -+ ,gn), usage cost (uy,--- ,uy) and capacity cost (c1,---,cy)). Further-

more, to ensure the robustness of the results, we also test a number of different initial

34



capacities X used in (2.18), which consist of both realistic and extreme scenarios. In
total there are 4212 experiments in this numerical study. A full description of the
setup of the numerical study is lengthy and thus given in the appendix.

The statistics for the A, value are reported in Table 2.1. It can be seen that the

Mean Std. | Median | 90%-percentile | Max.

0.40336 | 1.13279 | 0.14540 0.77343 17.98673

Table 2.1.: The percentage profit loss (A ) of RCEC relative to the optimal solution.

RCEC performs very well in this numerical study. Among all the experiments tested,
the 90" percentile of the profit loss is 0.77%, and the average is 0.40%.

Next we test the performance of the RCEC in larger problems. Specifically, we
consider problems with N = 5 products and up to T' = 30 periods. Given such sizes, it
is extremely time-consuming to evaluate the optimal revenue function II(X). Instead,
we use IIop(X) from the crystal ball (CB) model defined in (2.16) as the benchmark
for comparison. Recall that [Icg(X) is an upper bound of the optimal revenue I1(X)
for any X, and the following relationship holds: Icg(X) > II(X) > Ircrc(X).

Define
Aoy = Hrepe(X) — Hep(X)
[Mep(X)

Then Acg is an upper bound of A, the percentage profit loss of the RCEC (i.e.,

* 100%.

[Mrcec(X)) relative to the optimal revenue (i.e., II(X)).

Similar experiment design has been used as Table 2.1 except that now we consider
5 products with several different T" values. This allows us to examine up to 4 levels of
upgrading. Also by varying T" we can study the impact of the number of periods (or
the frequency of upgrading decisions) on the problem. Specifically, T takes values from
a set {3,15,30}. For each T', there are 13260 experiments in total in this numerical
study. To save space, we provide a detailed description in the appendix.

We summarize the statistics of Agg for different 77s in Table 2.2. It shows that

the value of Acg is increasing in the number of periods, T. The RCEC ignores the
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randomness of the demand in future periods (recall that the mean demand is used).
Thus, compared to I[Igg(X), more demand information is lost as 7" increases. Table
2.2 also indicates that the value of Acp is very small in general: Even for T'= 30, Acgp
is 5.37% at the 90" percentile, and the average is about 2.37%. This observation has
two implications. First, since Acg is the upper bound of A, we know that Ay is
also very small in the tested examples. This means that for the 5-product numerical
experiments, the RCEC also performs well. Second, the observation implies that the
difference between Il (X) and II(X) is small. In other words, the value of advance
demand information is generally small. Such a result is consistent with some of the
findings reported in the literature. For instance, SZ finds from numerical study that
when the optimal upgrading policy is used, the firm’s expected revenue is consistently
within 1% of the revenue in a static model (i.e., the crystal ball model). Similarly,
Acimovic and Graves (2013) find in a dynamic order fulfillment setting that the
crystal ball model improves the performance of the proposed heuristic by 2%, i.e.,
the performance difference between the crystal ball model and the true optimum is

smaller than 2%.

T | Mean Std. | Median | 90%-percentile | Max.

3 | 0.14000 | 0.38286 | 0.00428 0.33580 6.73835
15 | 1.51822 | 2.51158 | 0.23127 4.82826 12.05775
30 | 2.37289 | 3.35659 | 0.42136 5.36783 23.37090

Table 2.2.: The percentage profit loss (Acg) of RCEC relative to the CB solution.

We now compare the performances of the RCEC and the CEC. Define the ratio

_ Irerc (X)
Hepe(X)

to measure the relative performances of the two heuristics. So a ratio higher (lower)
than 1 implies that the RCEC outperforms (underperforms) the CEC. We calculate

the ratio for the problem instances used in the numerical study underlying Table 2.2
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(i.e., N =5 and T = {3,15,30}). The statistics of the ratio values are summarized
in Table 2.3 since the results are consistent across different 7’s. Meanwhile, as we
mentioned earlier, we also compare the actual computation time of the CEC and
Specifically, we use MOSEK toolbox for
MATLAB version 7 to solve the linear program in (2.13) in the CEC heuristic, and

the RCEC heuristics in these instances.

we apply the binary search to solve the protection levels in (2.8) while replacing ©**!
by OFugc in (2.14). Similarly, we define

Time for solving Ircgc(X)

Time = T e for solving Hepc(X)

whose statistics are also reported in Table 2.3.

We observe that the CEC may outperform the RCEC in some instances (e.g., the
ratio can be as low as 30.58%); however, for the majority of the examples, the RCEC
performs better than the CEC (see, e.g., the 25 percentile column), although the
differences are insignificant. More importantly, the reduction of computation time
from CEC to RCEC is substantial: all else being equal, the average time for solving
a test instance using the RCEC is only 9.64% of that using the CEC.

Mean Std. Min. | 25%-percentile | Median | Max.
vy 1.00118 | 0.02718 | 0.30584 1.00001 1.00008 | 3.14509
Yeime | 0.09636 | 0.05614 | 0.00416 0.06084 0.08606 | 1.12851

Table 2.3.: Comparison of RCEC and CEC.

Why does the RCEC exhibit a better overall performance? We offer the following
plausible explanation. In both the CEC and RCEC heuristics, we replace the future
random demands by their means in each period. Such an approximation clearly will
change our original problem and result in suboptimal solutions. In the RCEC, the
optimal protection level is determined by comparing two values: The first is the up-
grading value from using the product in the current period; the second is the expected

marginal value of the product if it is saved to the next period. For illustration, consider
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the upgrading of demand j using capacity 7 in period t. The latter value is defined as
@tRJElEC(XtH + e, Dt + ej|#t+1’ . ’MT) _ (:)tR_ElEC(Xt+17 f)t+1|ut+17 . ’MT)’ where
es (s =1,7) is the unit vector with 1 in position s. The mean demand approximation
may introduce biases into the two revenue functions. However, since the expected
marginal revenue is defined as the difference of the two revenue functions, these biases
may be cancelled out to some degree. In other words, the inaccuracies introduced
by certainty equivalence control might be reduced in the RCEC heuristic. Note that
such a cancellation effect does not exist in the traditional CEC heuristic. Therefore,
the RCEC generally outperforms the CEC. In addition, the RCEC is more attractive
than the CEC in terms of computational time in our numerical study.

It is worth mentioning that one may also use the deflected linear decision rule
(DLDR) method proposed in Chen et al. (2008) to approximate ©' in the PSR, algo-
rithm. Let Ok, pr be the revenue collected by using Yh; pg’s in the remaining sales
horizon, and denote IIprpgr(X) = O pr(X,0) as the expected revenue under the
DLDR heuristic. We evaluate IIppr(X) in the numerical study described above and
find that IIpppr(X) and [Ircec(X) are almost identical in all the problem instances.

In summary, based on the results in Tables 2.1 and 2.2, we conclude that the RCEC
is able to deliver close-to-optimal revenues for the firm in a wide range of problem
situations. In addition, the RCEC greatly reduces the computational complexity of
the original problem. Therefore, in the rest of the chapter, we will use the RCEC to

solve the dynamic capacity management problem.

2.8.2 Value of Optimal Upgrading

Given the efficiency and effectiveness of the RCEC heuristic, we are ready to
derive more insights into the problem using numerical studies. There are a couple
of natural questions we would like to address. First, what is the value of using
multi-step upgrading? Second, what is the value of using the optimal capacity?

Both questions are important from a practical standpoint because managers need to
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know how complex an upgrading structure should be used and how to determine the
initial capacity. This subsection focuses on the first question and the second will be
addressed in the next subsection.

Let IT%qpo(X) be the revenue function given initial capacity X and k-level up-
grading (i.e., product i can be used to satisfy class j demand only if i < j < i+ k).
Note that when k& = 0, no upgrading is allowed, and 1% p(X) = Ixy(X), where

IInv(X) is the optimal revenue in the newsvendor model in (2.17). Define

% pe(X) — Mope(X
ARcrc = hogol kzl e (X) * 100%, k=123 4,
g cpe(X)
which measures the percentage profit gain from one additional level of upgrading

under the RCEC.

We evaluate the values of A¥p using the same parameters as those for Table 2.2
except the initial capacities. Intuitively, upgrade is more valuable when the capacity
is unbalanced, i.e., there is excess capacity for some products while there is shortage
for the others. Such unbalance may occur even if the initial capacities are optimally
set, because demand may fluctuate due to seasonality and trend while capacities are
determined for the long term. Thus, when choosing the initial capacity we use the
following procedure. Start with the optimal capacity under the RCEC, i.e., Xgcgc;
then set the capacity for one product (say, product j) to 0 while adding capacity
(Xgrerc); to a higher-quality product; finally, scale the entire capacity vector by
different multipliers. Mathematically, for 1 < ¢ < j < 5, we consider all initial

capacity X, whose components are given by

(X)i = AM(Xrcre)it+(Xrere);); (X); =0, (X)s = MXrcro)s, Vs € {1,--+,51\{4, j},

where A € {0.9, 1, 1.1}. There are 10 combinations of the initial capacities for each

A and parameter set; one example is

X = ((Xrcec)1 + (Xrere)2, 0, (Xrere)s, (Xrepe)a, (Xrerc)s)-

A full list of the initial capacities are given in the appendix. We believe such a

design captures the possible capacity scenarios that may happen over time as the
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firm allocates products to satisfy realized demand, especially those with unbalanced
capacities. Moreover, the mean of total demand over the selling horizon remains
the same for different 7" € {3, 15,30}, which implies that less demand information is

available within each period for larger 7. The numerical results are given in Table

24.

T | Upgrading Level k& | Mean | Median | 90%-percentile
1 29.75 | 20.64 51.63
2 5.71 2.09 15.21

’ 3 1.45 0.11 4.99
4 0.25 0.01 0.28
1 25.96 | 20.25 47.44
2 4.86 2.99 12.88

b 3 0.79 0.04 2.70
4 0.07 0 0.09
1 20.38 | 19.88 45.63
2 3.89 1.63 2.70

30
3 0.67 0.02 2.02
4 0.05 0 0.07

Table 2.4.: The value of using multi-step upgrading (A¥pc)-

There are several observations from Table 2.4. First, we can see that the value of
multi-step upgrading can be highly valuable. For instance, with 7" = 3, the benefit
of moving from one-step upgrading to two-step upgrading can be as high as 15.21%
at the 90" percentile (i.e., for at least 10% of the scenarios, the value is more than
15.21%). The number becomes 4.99% if we move from two-step upgrading to three-
step upgrading. This result implies that single-step upgrading may not capture the

full benefit of upgrading and multi-step upgrading is critically needed in many cases.
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In particular, Table 2.4 suggests that the firm’s profit increases in the upgrading level
k and the marginal value decreases in k, both of which are quite intuitive.

Second, Table 2.4 indicates that the value of multi-step upgrading decreases in 7.
That is, using more upgrading levels will be less beneficial when there are more time
periods in the selling horizon. Close scrutiny reveals that there is a key contributing
factor to this interesting observation. A large T value means there are more time
periods, which allows “chain allocation” to be more likely to happen. To see this,
first consider 7' = 1. In this case, under single-step upgrading, product 1 cannot be
used to satisfy demand 3. However, with T' = 2, it is possible that product 2 is used
to satisfy demand 3 in period 1; and then in the second period, product 1 is used
to satisfy demand 2. These two allocations essentially mean that product 1 is used
to satisfy demand 3. The chain allocation is analogous to multi-step upgrading; the
only difference is that it can be better executed when there are more time periods.
Therefore, multi-step upgrading is less valuable since it can be implemented even
under single-step upgrading, but in a different way.

Finally, the numerical experiments suggest that the multi-step upgrading is most
valuable when the initial capacity is unbalanced. For example, for 7' = 3, when
the optimal initial capacity Xgrcgc is used, the incremental value of moving from 2-
level to 3-level upgrading is 0.04% on average; however, for initial capacity X =
((Xrerc)1s (Xrere)2 + (Xrere)s, (Xrere)s, (Xrorc)s, 0), the counterpart value is
5.10%. This indicates that the multi-step upgrading is quite important because un-
balanced capacity may arise over time, even if the problem starts with the optimal
initial capacity.

What is the benefit of using more upgrading levels if the optimal initial capacities
are used? To answer this question, let Xgrcgc(k) (K =0,1,---,4) be the optimal ini-

tial capacities obtained from the RCEC heuristic with k-level upgrading, and redefine

11k X k)) — TIE-L (X E—1
AE L= reec(Xrepc (k) — Hicpe(Xrepc(k — 1)) £100%.  k—1.2.3.4

ke (Xrere(k — 1))
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which is the percentage profit gain from one additional level of upgrading under the
RCEC if the corresponding optimal initial capacities are used. Using the same set of

parameters as in Table 2.4, we obtain the numerical results given in Table 2.5.

Upgrading Level k£ | Mean | Median | 90%-percentile
1 2.80 2.67 4.37
2 0.92 0.81 1.64
3 0.55 0.49 1.35
4 0.50 0.35 1.03

Table 2.5.: The value of using multi-step upgrading (Akqpc) under optimal initial

capacity.

As one may expect, the values of using multi-step upgrading are much smaller
in Table 2.5 because the initial capacities have been accordingly adjusted, and this
lowers the benefit of using more levels of upgrading. However, the value of multi-step
upgrading should not be overlooked either: the profit gain by moving from one-step

to two-step upgrading is 0.92% on average and 1.64% at the 90" percentile®.

2.8.3 Capacity Decision vs. Allocation Mechanism

The profit of the upgrading problem hinges upon both the initial capacity and
the allocation mechanism. This raises an interesting question: which decision is more
important, capacity sizing or allocation mechanism? This is a practical question
because the firm may wish to focus limited resources on improving the decision that

has a bigger impact on profit. To shed some light on this question, we measure the

6In our numerical study, upgrade constitutes 2.78% of the total satisfied demands on average when
the optimal initial capacity is used, and 29.47% when the suboptimal initial capacities are adopted.
If the firm uses frequent upgrading to satisfy customer demand (e.g., the initial capacity is poorly
decided), customers may learn about the upgrading pattern and become opportunistic. That is, a
class 7 customer may intentionally ask for product j (i < j), hoping that she will be upgraded when
product j is out of stock. Incorporating such a behavior is out of the scope of this chapter and
therefore left for future research.
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importance of each decision using the profit loss when a suboptimal decision is applied
rather than the optimal one. Next, we describe the suboptimal decisions that will be
used.

In our problem, it is time-consuming to derive the optimal initial capacity even if
we can efficiently solve the optimal allocation decision by the RCEC heuristic. So we
consider two simple alternatives. The first alternative is to use the optimal capacity
Xp in the crystal ball model. The crystal ball model is called static model in SZ,
who find that X¢pg yields nearly optimal revenue for the firm in their single-step
upgrading model. To check whether the result carries over to our general upgrading

model, define

Hrere(Xep) — Hrepe(Xrere)

AXCB = * 100%

Mrorc(Xreee)

to measure the performance of the crystal-ball capacity X¢g. Since the true optimal
capacity is unknown, we use Xgrcgc as the benchmark for the comparison. With the
same parameters used for Tables 2.2, 2.3 and 2.4, we evaluate Ax_, for 780 examples
and summarize the results in Table 2.6 (the first row). It can be seen that Ax,, is
generally negligible in the numerical study: The average revenue difference is 0.017%

and the maximum is 1.062%.

Mean Std. Median | 90%-percentile Max.
Axp | 0.01735 | 5.62378 x 102 0 0.043287 1.06237
Axy, | 0.33278 | 2.91287 x 107! | 0.27123 0.72231 1.62893
Agreedy | 5.19543 5.69987 8.22994 12.28855 12.70996

Table 2.6.: Capacity decision vs. allocation mechanism.

An even simpler alternative is to use the newsvendor capacity Xyvy, i.e., the
optimal capacity under no upgrading. Similarly, in the same numerical study, we

define
| Hreec(Xnv) — reec(Xreec)

A - * 100%
Ko Hrepc(Xrere)
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and present the statistics of Ax,, in Table 2.6 (the second row). We can see that
Ax,, is greater than Ax,, in general, but it offers reasonably good performance
as well. The average and maximum revenue differences are 0.333% and 1.629%,
respectively. In particular, the number at the 90" percentile is 0.722%, which means
that the newsvendor capacity performs quite well for the majority of the scenarios.
From the above observations, one can see that these simple alternatives to the optimal
capacity perform reasonably well. Therefore, as long as the optimal upgrading policy
is used, the value of using the optimal capacity seems to be very small in our problem
setting.

Next, we consider the impact of using suboptimal allocation policy. We first use
greedy upgrading as the suboptimal policy, which myopically upgrades all unmet
demands by surplus capacities. It serves as a reasonable suboptimal policy because
it is intuitive and straightforward to implement in practice. Furthermore, the RCEC
heuristic incorporates greedy upgrading to simplify its computation. Specifically, let
Mgreedy (X) be the expected profit using greedy upgrading given initial capacity X.
We define

A [ Trcec(Xreee) — Hgreedy (XreEC)

ree - * 100%
greedy Hrepc(Xrere)

as the profit loss due to greedy upgrading. The same parameters for Ax ., and Ax,.,
have been used, and the statistics of Ageedqy are presented in Table 2.6 (the third
row). The average profit loss due to greedy upgrading is 5.195%, which is much
larger than those for Ax ., and Ax,,. In addition to greedy upgrading, we also test
suboptimal allocation policies that involve only k-step (kK =0,--- , N —2) upgrading.
The magnitudes of profit losses are still generally much larger than those for Ax,,
and Ax,,. To save space, the detailed results are presented in the appendix.

The above numerical results suggest that the benefit of choosing an effective al-
location mechanism outweighs that of choosing an accurate initial capacity. Based
on these observations, in practice, the firm may decide the initial capacity by using
simple approximations (e.g., either the NV or CB model) and focus on optimally

allocating the capacity during the sales horizon.

44



2.9 Conclusion

This chapter studies a firm’s capacity investment and allocation problem in a
dynamic setting with stochastic demand. There are multiple demand classes, which
can be satisfied by multiple classes of capacities. Demand arrives in discrete time
periods, and the firm needs to make capacity allocation decisions in each period
before observing future demand. A general upgrading structure is considered, which
is broad enough to cover a wide range of practical upgrading situations. One may also
view this as an inventory management problem with one-way dynamic substitution.

We first show that for any given initial capacity, a Parallel and Sequential Ra-
tioning (PSR) policy is optimal for the firm. Under the PSR policy, the firm can
make upgrading decisions in each period sequentially rather than simultaneously,
which greatly reduces the complexity of the capacity allocation problem. Despite
the well-structured PSR policy, the dynamic allocation problem is still subject to the
curse of dimensionality. Thus we propose a Refined Certainty Equivalence Control
(RCEC) heuristic that improves over the traditional CEC methodology by exploiting
the property of the PSR policy. Through extensive numerical experiments, we find
that the RCEC heuristic is highly efficient and yields nearly optimal revenue for the
firm. With the help of the RCEC heuristic, we conduct numerical studies to derive
managerial insights about the dynamic capacity management problem. Our numer-
ical studies indicate that the multi-step upgrading could be significantly valuable,
especially when the capacities are not balanced (either due to suboptimal initial in-
vestment or unexpected demand realizations over time). We find that using simple
approximations (e.g., the NV and CB models) for the initial capacities leads to neg-
ligible profit loss, while the negative impact of using a suboptimal allocation (e.g.,
greedy upgrading) could be quite significant. In this sense, the allocation mechanism

plays a more important role in our problem than the capacity sizing decision.
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Chapter 3

Upgrading, Product Differentiation, and Heterogeneous

Consumers
3.1 Introduction

In order to achieve better market segmentation and extract higher profit margins,
firms often offer more than a single product (or service) to consumers. Examples
include business class and economy class tickets in the airline industry, full-size and
compact-size cars provided by car rental companies, and deluxe and standard rooms
in the hotel industry. In many cases, consumers can choose between a regular product
and a premium product. While both products provide the basic function desired by
consumers, a premium product is bundled with additional services and features that
can yield a higher utility for a consumer. For instance, the basic function of an
air ticket is to fly a passenger to her destination; however, a business class ticket
offers more comfortness (e.g., bigger seat with more leg room) and superior services
(e.g., free checked luggage, more food and drink choices, and early boarding and
unboarding). In contrast, a regular product may only consist of a fraction of features
and services included in the premium product.

Product differentiation is clearly an important decision when firms offer multiple
products in the market. Normally the premium product should entail most, if not
all possible services and features; however, the design of the regular product requires
careful consideration. By adjusting the add-on services/features attached to the reg-

ular product, firms can influence the utility a consumer derives from the product. In
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the airline industry, companies adopt different baggage policies. Southwest Airlines
allow domestic passengers to check two pieces of luggage for free, while many other
airlines charge a fee for checked luggage!. Delta Airlines used to offer two free checked
luggage for the economy class passengers on international flights between north Amer-
ica and Asia, then they began to charge a fee for the second checked luggage, but
they changed back to the old policy recently?. In the hotel industry, some companies
provide complimentary add-on services such as parking, wireless Internet, and access
to fitness center (Shulman and Geng 2012). A particularly interesting add-on service
is upgrading in the aforementioned industries. Sometimes firms upgrade a regular-
class customer to a premium product without charging additional fees. In particular,
firms can control the probability of offering product upgrade by imposing additional
restrictions?.

Increasing consumer diversification stimulates firms’ awareness of consumer het-
erogeneity, which complicates firms’ differentiation decisions. There are several con-
tributing factors to such heterogeneity. First, there is discrepancy in consumers’
acknowledgement of the complete characteristics of the product. For instance, con-
sumers with limited time to research the product may be unaware of the add-on
services (e.g., free parking and Internet) provided by a hotel when making their
reservations (see Shulman and Geng 2012). Second, even with full knowledge of the
product, consumers may have different preferences or purchase intentions over the
same product. In the airline industry, passengers with or without checked bags may

have different valuations of the same economy class ticket with free checked baggage

!Baggage Policies: http://www.southwest.com/html/customer-service/baggage/.

2Delta  Airlines’ previous bag fees: http://www.delta.com/content/www/en_US/
traveling-with-us/baggage/before-your-trip/checked/previous-bag-fees.html. Cur-
rent baggage fee policy: http://www.delta.com/content/www/en_US/traveling-with-us/
baggage/before-your-trip/checked.html.

3Delta  Airlines’ Medallion  Upgrades: http://www.delta.com/content/wuw/en_US/
traveling-with-us/check-in/requesting-medallion-upgrades.html. American Airlines’
500-Mile Upgrades (Complimentary): http://www.aa.com/i18n/urls/aadvantageupgrades.
jsp?anchorLocation=DirectURL&title=aadvantageupgrades#500MileUpgradesComp. United
Airlines’ Complimentary Premier Upgrades: https://www.united.com/web/en-US/content/
mileageplus/premier/upgrades.aspx.
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service. Lastly, in the upgrading case, consumers may have disparate capabilities in
evaluating the value from potential upgrading. From these observations, a consumer
needs to spend time and effort to accurately assess the value from the add-on services.
In reality, it is natural that some consumers are naive (i.e., they simply ignore the
value from add-on services), while some consumers are strategic (i.e., they are fully
aware of the value from add-on services).

This chapter studies a firm’s optimal strategies when selling two differentiated
products to heterogeneous consumers. We focus on several research questions. First,
how much add-on service the firm should attach to the regular product? As mentioned
above, they may adjust the quality of the regular product by changing the add-on
services included in the product. In the presence of strategic consumers, firms may
also change the product quality by varying the frequency of offering complementary
product upgrade (i.e., the firm can adjust the probability of providing a higher quality
product to consumers who only pay the price of the low quality product). So how does
increasing the add-on service to the regular product affect the firms’ profitability?

Second, what is the impact of consumer behavior on the firm’s optimal strategy?
Consumer heterogeneity clearly affects the firm’s quality and pricing decisions. In ad-
dition, the firm may use various tools to influence consumers’ behavior. For example,
advertisement is a useful tool to improve consumers’ knowledge of the characteris-
tics of the product. Moreover, the firm may intentionally train the consumers to be
more strategic. There are many websites that provide advice to consumers on how
to improve the chance of getting upgrades*. On one hand, these methods can help
naive consumers better understand the regular product and therefore improve their
valuations of the product - this allows the firm to charge a higher price on the reg-
ular product. On the other hand, a more attractive regular product may induce a
strategic consumer to switch from the premium product to the regular one, hoping to

receive a free upgrade - such opportunistic behavior may cannibalize the sales from

‘How to get a free upgrade: http://www.cnn.com/2012/03/19/travel/
free-upgrade-strategies/. Top 10 Ways to Get Upgraded on a Flight: http:
//airtravel.about.com/od/travelindustrynews/a/upgrades.htm.
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the premium product. It is natural to explore the impact of consumer heterogeneity
on firms’ optimal strategy and profit. In particular, it is useful to know under what
circumstances the firm can benefit from efforts influencing consumer behavior.

Third, how does capacity constraint affect the firm’s optimal strategy? In most
revenue management settings (e.g., airline, hotel, and car rental settings), the firm
is often constrained by limited capacity, especially for the premium product. Thus
it would be interesting to study the role the capacity constraint plays in the firms’
optimal strategy. Specifically, we will investigate how capacity constraint may change
the insights from the previous two questions.

We propose an analytical framework to address the above questions. In particu-
lar, we study a single-period model where a monopoly firm sells two products with
distinct qualities, i.e., the regular product and the premium product. The premium
product has a limited capacity, whereas the regular product has ample capacity. Con-
sumers arrive to the market, each purchasing at most one unit of either product. All
consumers agree with the valuation of the premium product but they differ on the
valuation of the regular product: opportunistic consumers value the regular product
more than the naive consumers because they are better informed and are more ca-
pable to evaluate the add-on services. Each consumer makes the purchase decision
based on her own individual preference for quality, valuations of these products and
the product prices. The firm’s objective is to maximize its profit by setting the prices
for both products.

We obtain three major results about firms’ optimal strategies under such a model
setting. First, the quality improvement of the regular product can change the firm’s
profit in both directions. The intuition is as follows. When increasing the quality of
the regular product, the firm always decreases its price of the premium product while
increasing the price of the regular product to limit the number of consumers who
appreciate such quality improvement and purchase the regular product instead of the
premium one. However, it is possible that the profit loss from the premium product

dominates the profit gain from the regular product. We find that it happens when the
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quality difference between these two products are moderate, which is quite common
in practice. Our results suggest that firms should conduct product improvement or
upgrade with extra caution.

Second, improving consumers’ knowledge about the regular product through ad-
vertisement may actually hurt the firm when the consumer awareness is low and the
capacity of the premium product is large. The benefit of the advertisement is clear:
since more consumers are aware the true quality of the product, there are more de-
mands for the regular product and the firm may increase the corresponding price.
But in this case, as more advertisement is used, firm has to decrease the price of the
premium product to avoid undesirable capacity leftover. And the profit loss from the
premium product always dominates the additional profit from the regular product.

Finally, the capacity constraint plays an important role in the firm’s optimal
quality improvement and advertising decisions. Specifically, quality improvement of
the regular product and advertising such improvement will be more beneficial when
there is a low capacity for the premium product. Recall that the main negative effect
from quality improvement and advertising is cannibalization, i.e., the firm has to
decrease the price of the premium product to prevent opportunistic consumers from
switching to regular product. A more constrained capacity for the premium product,
which is equal to the number of consumers purchasing the premium product in the
optimal solutions, means the cannibalization effect will be weaker. Thus, the firm
will have stronger incentives to offer more add-on services and publicize such services
when the premium capacity is highly constrained.

The rest of this chapter is organized as follows. Section 3.2 reviews the related
literature. Section 3.3 describes the model setting. Section 3.4 characterized the
impact of the quality improvement and Section 3.5 investigates how the firm should
affect the consumer heterogeneity. Section 3.6 presents the findings from numerical

studies. The chapter concludes in Section 3.7. All proofs are given in the Appendices.
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3.2 Literature Review

This chapter uniquely incorporates the consumer heterogeneity and the capacity
constraint. There are two aspects of the consumer heterogeneity: First, consumers
may have different valuations about the quality of the same product; Second, con-
sumers may have different willingness to pay for the same quality.

The first type of the consumer heterogeneity can be explained by either the
bounded rationality or the strategic behavior. As we mentioned earlier, consumers
may be unable to account for all characteristics that are included in the product
or service and thus make uninformative decisions. The concept of bounded ratio-
nality is introduced by Simon (1955). Conlisk (1996) review extensive evidences for
incorporating bounded rationality in economic models and provided supports both
theoretically and empirically. In our model, the consumer heterogeneity can also be
the result of the strategic behavior. Specifically, when making a purchase decision,
consumers choose from various alternatives, including the options of avoiding the
purchase. For instance, whether or not an air passenger chooses an economy class
ticket at a specific time depends on her expectation of the probability being upgraded
to the business class, which has higher value to her. Such forward looking behavior
has been widely studied in the consumer behavior literature. For instance, Jacobson
and Obermiller (1990), Krishna et al. (1991), Ho et al. (1998) and Su and Zhang
(2008). Although our model does not explicitly incorporate the strategic behavior,
the essence is the same: there exists a difference in valuation of the same product or
service among consumers. It is clear that such difference can be the result of whether
or not the consumer is strategic. And we consider the impact of the difference on
the firm’s pricing decision and the optimal profit as the strategic consumer literature.
However, in contrast to the above literatures, this chapter considers more than one
product that introduces product cannibalization with the firm.

The second type of the consumer heterogeneity is the consumer differentiation.

This topic has been extensively studied in the literature of product line design that
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includes both quality decisions of a quality-differentiated spectrum of goods and the
corresponding pricing decisions. Mussa and Rosen (1978) consider a monopoly firm
deciding the optimal set of price-quality schedules offered to consumers with heteroge-
neous tastes of the qualities, which is modeled by a continuous distribution. Similarly,
Moorthy (1984) analyzes a monopolist serving discrete consumer segments of quality
valuations. By extending the model into duopoly setting, Moorthy (1988) shows the
equilibrium price-quality schedules for each firm facing the marginal production cost
that is quadratic with respect to the quality. As extensions, Chambers et al. (2006)
discuss the impact of variable production cost when duopoly firms decide quality and
price sequentially, Lehmann-Grube (1997) studies the impact of the convex fixed cost
of quality chosen by the firms in the first stage, Rhee (1996) considers the impact
of the consumer’s heterogeneity that is unobservable to the firms and is modeled
as a random variable in the consumer’s utility function, and Ronnen (1991) investi-
gates the consequence of imposing a minimum quality standard in the duopoly case.
When income disparities of the consumers have been privileged against taste differ-
entiation, Gabszewicz and Thisse (1979) characterize the equilibrium prices of the
duopoly firms selling two differentiated products whose qualities are predetermined.
Gabszewicz and Thisse (1980) further extend the model to study the equilibrium
prices in a competitive market with arbitrary number of firms. After incorporating
the firms’ decisions of entering the market, Shaked and Sutton (1982) and Gabszwicz
and Thisse (1986) study the equilibrium when the entry decisions are made simul-
taneously, while Donnenfeld and Weber (1992) explore the equilibrium qualities and
prices when firms sequentially make the entry decisions. Although these studies in-
volve both the optimal quality and price decisions, consumers are assumed to have
the save valuation of the qualities, and the capacity constraint is not considered.
This chapter also exhibits some similarities to the add-on pricing literature in the
sense that we consider how profit is changed when the firm improves the quality of
the regular product, and providing add-on service is clearly one of many possible

quality improvements. Ellison (2005) identified how add-on pricing can actually lead
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to improved profit for the firm by creating an adverse selection problem in the com-
petition. Gabaix and Laibson (2006) were among the first in the add-on literature
to allow for boundedly rational consumers. Shulman and Geng (2012) examine the
consequences of add-on pricing when firms are both horizontally and vertically dif-
ferentiated. This chapter differs from the add-on literature because the firm in our
model do not charge an additional fee for the improved or “add-on” quality, thus,
the firm is unable to achieve price discrimination. In addition, our model innova-
tively considers the capacity constraint, which has great impact on the firms’ optimal

pricing, quality improvement and advertisement decisions.

3.3 Model

Consider a firm selling two differentiated products, product 1 (the premium prod-
uct) and product 2 (the regular product). There is a continuum of consumers in the
market with a deterministic total size 1. Each consumer needs only one unit of the
product. Consumer utility is given by U = 6q — p, where ¢ is the product quality,
p is the product price, and # > 0 is the parameter which measures the intensity of
consumer’s taste for quality. We assume 6 is uniformly distributed on [0,1]. The
consumers unanimously agree on the quality of product 1, denoted by ¢; (g1 > 0);
however, they have different perceptions about the quality of product 2. Particularly,
the naive consumers value product 2 at ¢z (0 < g2 < ¢;) while the opportunistic con-
sumers value it at go +d (0 < 0 < ¢; — g2). The parameter ¢ represent the additional
value from add-on services (e.g., upgrading) discussed in the introduction. The naive
consumers have a lower value for product 2 because they are either uninformed about
the add-on services or they are unable to evaluate the value from the add-on services
(e.g., it is hard to evaluate the probability of receiving an upgrade). We assume there
is r (0 < r < 1) portion of opportunistic consumers in the market (and 1 — r of
naive consumers). Thus r measures how strategic the consumer population is in the

market. Although the firm understands there are two types of consumers, it can-
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not distinguish each individual consumer, and is therefore unable to charge different
prices for product 2. The firm faces exogenously given capacity constraints (e.g., a
flight has limited number of seats, a hotel has certain number of guest rooms). Let
x; (g > x1 > 0) be the capacity for product 7. For analytical tractability, in the base
model we assume x5 is large enough such that it never constrains the sales. The fact
that the premium capacity is more constrained than the regular capacity is consistent
with most practical situations (e.g., airlines and hotels). Later we will demonstrate
that the qualitative insights will remain after relaxing the assumption about x,. The
marginal usage costs of both products are normalized to zero. The firm’s objective
is to maximize its revenue 7(py, pa) by choosing prices p; (i = 1,2) for the products.
Since the capacities z; are exogenously given, we will use profit and revenue functions
exchangeably. For notational convenience, define yV z = max(y, z), y Az = min(y, z),
and (2)* = max(z,0).

To analyze the firm’s problem, we start with consumer demand functions. Define
d;(p1,p2) (i = 1,2) as the total demand for product i under prices (p1,p2). Consider
an opportunistic consumer with a taste parameter 6, he chooses between products 1
and 2 as well as choosing whether to purchase at all. The utilities of buying product
1 and 2 are 0g; — p; and 6(gz + J) — pa, respectively. The consumer purchases product
1if gy —p1 > 0(q2+6) — p2 and Og; —p; > 0 or product 2 if (g +0) — ps > Og1 —
and (g2 + ) — po > 0. Therefore, given the firm’s prices (p1,p2), an opportunistic
consumer purchases product 1 if his taste parameter 6 € [M \Y p L 1] or product 2

q2—6

if 0 € [ By s vE ] The same argument can be applied to the naive consumers

by replacing ¢, + 0 w1th ¢2. Thus, the demand for product 1 is

_ + +
d1<p1,p2):r<1—pl—pz§vfﬂ> —|—(1—r)(1 DL P ﬂ). (3.1)

q1 —q2 — q1 q1 — g2 q1

Similarly, we can derive the demand for product 2 to be
da(p1,p2) = (1/\ (MV&) - L >+
’ G—@—0 ¢ g2+ 9
+(1—7) (1 (pl P2 v 12) - ]2)+. (3.2)
i — 42 Q1 a2
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Let R = {(p1,p2): 0<p1 <q1, 0<py <@+ 0} be the feasible region for the
firm, then we only need to focus on R when searching for the firm’s optimal prices.
To see this, suppose (p1,p2) ¢ R constitute the firm’s optimal prices. Without loss
of generality, we assume p; > ¢ and 0 < py < g9 + 0, then 7(qq1, p2) = 7(p1, p2) since
dy(p1,p2) = di(q1,p2) = 0 and dy(p1, p2) = da(qr1,p2) by (3.1) and (3.2). The similar
argument can be applied to ps > ¢ + 0. Hence, we will restrict to the region R in
subsequent analysis.

Now the firm’s optimization problem can be written as follows:

max  7(p1, p2) = p1di(p1, p2) + pada(p1, pa) (3.3)

st. di(pr,p2) < o1, (p1,p2) € R
Note z1, 0, and r are the key parameters in the firm’s optimization problem. Later

we will investigate how these parameters affect the firm’s optimal revenue.

3.3.1 Analysis of Objective Function

As preparation, we first study the property of the firm’s objective function in (3.3).
Close scrutiny of the demand functions d;(p1, p2) (i = 1,2) reveals that the region R
in (3.3) can be partitioned into sub-regions based on consumers’ purchase decisions.
In particular, R can be divided into 3 regions, R; (i = 1,2, 3), where R; is the region
in which there is demand for product 1 from both types of consumers, R is the region
in which the demand for product 1 is only from the naive consumers, and Rj is the
region in which no consumer purchases product 1. Consumers’ purchase decisions
regarding product 2 further split the R;’s into sub-regions. For example, R;; is the
sub-region in which there is demand for product 2 from both types of consumers.
Table 3.1 summarizes the consumers’ purchase decisions in these different regions,
which are also illustrated by Figure 3.1. A full characterization of the sub-regions is
lengthy and therefore given in the appendix.

From (3.3) and Table 3.1, it is clear that 7(p;,ps) has different expressions in

different regions. The following lemma summarizes the properties of 7(py, p2).
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Consumer Type | Opportunistic Naive

Product 1 2 1 2

Ry v v v v
R, Ry v v v
Ry; v v

R, Ry v v v
R v v

R; R; v v

Table 3.1.: Consumer Purchase Decisions (v means positive demand).

Lemma 3.3.1 The objective function w(py, p2) is continuous in R. Moreover, w(p1, p2)
is continuously differentiable and jointly concave in (p1,p2) in R; (i =1,2,3), respec-

tively.

Now we consider the firm’s optimal pricing decisions. From Lemma 3.3.1, the
optimal solution of (3.3) is straightforward if the capacity constraint d;(p1,p2) < 24
does not exist. Let df = d;(p},p5) (i = 1,2) be the demand of product i when the
optimal prices are used, and 7 = 7(p7, p3) the firm’s optimal profit. Actually, it can
be readily shown that in the absence of the capacity constraint, the firm’s optimal

solution is given by

1
d*{zﬁ, dy =0, and =1

@ q@+o
( )7 4

27 2

(p1,05) =

That is, the firm only sells the premium product, i.e., there is d5 = 0 in the optimal
solution. Furthermore, there must be dj = %, i.e., only half of the consumers with
0> % will be served. This is consistent with the existing results in the product line
design literature (see Mussa and Rosen 1978). In the literature, it has been assumed
that all consumers have the same valuation for the regular product. So we can show
such a result still holds even when the consumers have different valuations for product

2. The intuition is that the firm wants to eliminate product competition between its
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own products when there is no usage cost. Thus, the firm’s prices make the premium
product more attractive than the regular product (or essentially removing the regular
product from the market). From this observation, we will focus on the case z; < %

in the rest of chapter.’
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Figure 3.1.: Feasible Regions.

The analysis of the optimization problem in (3.3) becomes more involved when the
capacity constraint is present, which can be highlighted in Figure 3.1. Note that the
dashed lines in Figure 3.1 are the curves of prices (p;,p2) under which the capacity
x1 is fully utilized, i.e. di(p1,p2) = x1. Intuitively, the premium product capacity is
precious to the firm, which implies that the firm should always utilize such capacity

to the fullest extent. Recall that only the premium product will be purchased when

®We have assumed the capacities are exogenously given. In reality, the capacity constraint would be
determined by the cost of the capacity. For example, a capacity would be more constrained as its
cost increases.
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the capacity is sufficiently large (i.e., z; > %) As x1 decreases from %, the firm needs
to divert part of the demand of the premium product to the regular product due
to the capacity limit. Since the opportunistic consumers have higher valuation of
the regular product, the firm would charge a price to first divert some opportunistic
consumers would change their decision and purchase the regular product. As z;
further decreases, at certain point, even though all the opportunistic consumers have
been diverted to the regular product, the limited premium capacity can not satisfy
all demand from the naive consumers. Thus, the firm has to change the prices so
that some of the naive consumers will also be diverted to the regular product. Define

parameters k7 (j = 1,...,6) that are independent of x; as follows:

pl (1—=7r)o

€11—Q27

e Ly 9 rgi (g — (g2 +0)(1 — 1))
2 @1 —¢qa—0 2(g2 + (1 —1)9) 7

(1 —7)(g2 + (1 —2r)d)

T PN Y R (3.4)
(@)1 —r)
B 2q ’
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The firm’s optimal solution can be achieved in one of the four possible regions:

Ri1, Ri2, Ro1, and Rygs. The corresponding prices, demands and profits are given as

follows:
Region Ry; :
() = ( @aetd)  (-s)a-@a-e=-9) _¢@e@t+)) )
b2 2(qg2 + (1 —1r)0) @ —q—(1—r) "2+ (1=1)0) )’
(3.5)
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R e e ] 36
(1 —=7)(q2 +90) 2
g . rqi (1 — 221) . @z (I —2) (g — g2 —0) + (g2 +6))
1 = T, d2 - , o= )
21 — (1 =7)(q2 +6)) AU — (1 =71)(g2 +9))
Region Ro; :

- (@1 — @)1 qalqa + (1 —2r)0) q2(q2 +9) )

e , , 3.7
i) = (o~ O B &1)
. . 1 . T @@ +6)
dy =1, dy = 5 z1, ™ = (¢ — @)71 (1 1—r) +4(q2—|—(1—7")(5)’

Region Ry, :

* % x g2+ 90
ot = (w0 -0 250, (3.5)
* * r * r\q +(5 xr
dy = @, d2:§7 m :—( 24 )+Q1$1(1_ 1_17_>-

Proposition 3.3.1 characterizes the firm’s optimal solutions.
Proposition 3.3.1 Consider x; < % The firm’s optimal solution is determined by
x1 and the thresholds k7 (j =1,---,6) defined in (3.4). Specifically,

Case 1. If k* < k?, then

(

R217 fol € (O7k1]a

(p1,p2) € § Ry, if xy € (K K?);

R12, fol S (l{?Q,%)
\
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Case 2. If k' > k%, k3 > k* and k® > 0: there exists a threshold k € [k*, k?], then

( N *) c R217 Zf'rl S (Oa k]a
P15, Do B
Rio, if 1 € (k, %)

Case 3. If k' > k%, k* > k* and kS < 0: there exists a threshold k € [0V k°, k%], then

(

R217 fol € (Oa k]a

(p1,p3) € 1 Ry, if z1 € (k, kY);

R12, Zf[El € (1{54, %)
\

Case 4. If k' > k? and k3 < k*: there exists a threshold k € [k°, k®], then

;

Roi, if z1 € (0,K];

(p1,p3) € Ry, ifz € (l_fak4]§

Ry, Zfl‘l € (k’4, %)
\

We may further explain the intuition behind Proposition 3.3.1. Recall that the
opportunistic consumers have higher valuation of the regular product compared to
the naive ones, which implies that there will be more opportunistic consumers buying
the regular product than naive consumers under any price scheme. On the other
hand, the premium product is less attractive to the opportunistic consumers, who
are more sensitive to the price change of the premium product. When capacity
is restrictive, the firm tends to increase the price of the premium product, which
drives the opportunistic consumers to the regular product. Thus, the number of
the opportunistic consumers buying the premium product decreases as the capacity
becomes scarce. Table 3.2 illustrates the optimal solutions in each case described by
Proposition 3.3.1. For instance, if k! < k2, the optimal solutions are described in
Case 1. As x; decreases from % to 0, the optimal solution moves from region Ris to

Ri1 to Ry, which is shown in Table 3.2a.
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Consumer Type Opportunistic Naive
Product 1 2 1
Rio v v v
Ry v v v
Ry v v
(a) Case 1.
Consumer Type Opportunistic Naive
Product 1 2 1
Rio v v v
Ry v v
(b) Case 2.
Consumer Type Opportunistic Naive
Product 1 2 1
Rio v v v
Roo v v
R v v

on the firm’s profit.

3.4 Impact of o

(c) Case 3 and Case 4.
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Table 3.2.: Evolution of the optimal solution (z; decreases from 3 to 0).

In this section, we study the impact of improving the quality of the regular product
Specifically, we want to explore the how the firm’s optimal
profit changes when it adjusts the additional quality 0. The firm can influence §
by either providing more add-on services or increasing the probability of offering

such services (e.g., free upgrades). Since quality improvement is one of the most




important objectives for most firms, it is interesting to see whether it is beneficial.
As a benchmark, we assume there is no cost in improving the quality of the regular
product. Note such quality improvement only affects the opportunistic consumers’
utilities but not the naive consumers’ utilities.

The next proposition asserts that the optimal solution in region R;; will always
occur when ¢ is sufficiently small (i.e., close to zero). That is, a small difference in the
valuation of product 2 always leads to an optimal solution in which there are both

types of consumers purchasing both products.

Proposition 3.4.1 For any capacity level x1 < 1, there exists a threshold 6" €

27
(0,q1 — q2) such that the optimal solution of (3.3) belongs to Ry if and only if § €

[0,61].

To see how the firm’s optimal profit depends on 9, we first present the following

lemma. Let 77, denote the firm’s optimal profit occured in region Rj;.

Lemma 3.4.1 The firm’s optimal profit wf; in (3.5) is concave in 6, 75y in (3.6) is
convex and increasing in &, w5, in (3.7) is concave and increasing in 0, and Wy in

(3.8) is linearly increasing in 0.

The following proposition states that the optimal value 7* is increasing in ¢ if §
is sufficiently small; However, when z; is large enough, the optimal profit may also

decrease in 9.

Proposition 3.4.2 If z; € (0,3), then

1. %ﬂ.*(5> ’5=0> 0;

2. There ezists 6* € (0,6") and a threshold k* < & such that 7(6) is decreasing
in & € [02,0Y] if and only if x1 > k*, and 7*(8) is increasing in & otherwise.

Moreover, the threshold k* does not depend on x1 and r.

Proposition 3.4.2 indicates there are two possible curves for 7%(9). First, if z; < k*

(k* < %), then 7%(d) is monotonically increasing in 0 (i.e., increasing the quality
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of add-on services or the probability of offering such services always improves the
firm’s profit). Second, if z; > k*, then 7%(0) is first increasing, then decreasing, and
finally increasing again in § (i.e., the firm’s profit does not necessarily increases in
§). The decreasing range is [62, '], which falls into region Ry; (see the definition of
§' in Proposition 3.4.1). Why does a higher quality decrease the firm’s profit? To
understand this unexpected result, from (3.5), we can write the partial derivative of
the optimal profit function m; with respect to § as follows:

orn  Opy 1 . op3
') a5

2

(3.9)

=x +
o5 a0
Since z; is a constant, the value of the derivative in (3.9) is determined by % and

ap5

55 Lemma 3.4.2 shows how the optimal prices (p}, p3) change with respect to 4.

Lemma 3.4.2 Suppose (pi,p3) is in region Ryy as (3.5), then pi is concave and

decreasing in 9, and p} is concave and increasing in 0.

With Lemma 3.4.2, we provide the following intuitive explanation for Proposition
3.4.2. When ¢ increases, product 2 becomes more valuable for the opportunistic
consumers who have already chosen product 2. Thus, the firm will increase py to
capture the additional surplus from the increased consumer valuation; this is the
direct, positive effect as measured by ( % - xl)%. Meanwhile, increasing 0 also makes
product 1 less attractive to the opportunistic consumers. So the firm has to lower
price p; in order to prevent the opportunistic consumers from switching to product 2
(eventually the total demand of product 1 remains x1). Since decreasing p; lowers the
firm’s profit from selling product 1, this is the indirect, negative effect as measured
by xl% (the negative effect is due to the firm’s effort to prevent cannibalization).
When § is small, the competition or cannibalization between the two products is
weak. Therefore, the direct, quality effect dominates the indirect, cannibalization
effect, and the profit increases in §, as shown in Part 1 of Proposition 3.4.2. As §
becomes larger, the cannibalization effect becomes stronger, and the profit decreases

in 0 if it dominates the positive direct effect. Note that a higher capacity level x;
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enhances the cannibalization effect but weakens the quality effect (a higher x; means
more demand for product 1 while less demand for product 2). Therefore, when z; is
relatively large, the latter effect can be easily dominated by the former one, which
results in the non-monotone property of the optimal profit function as illustrated by
Part 2 of Proposition 3.4.2. Figure 3.2 shows two cases of the monotonicity of 7*(9).

Note that Figure 3.2b represents the most interesting result in Proposition 3.4.2.

(x1, g1, g2, 1)=(0.1, 4, 2, 0.3) (x1. q1. g, )=(0.4, 4, 2, 0.3)

Profit Profit
| 1.005 -
0.76F
1.000 -

(a) z1 < k* =0.157 (b) &1 > k* =0.157

Figure 3.2.: The monotonicity of the firm’s optimal profit 7%(§) under different values

for x;.

Proposition 3.4.2 presents useful insights into how firms should manage quality for
a product line. The optimal quality improvement decisions may depend on a variety
of factors, such as the capacity of the premium product, the current quality, and so
on. When the premium product is scarce, i.e., xy is relatively small, improving the
quality of the regular produce will always benefit the firm. That is, offering more
free add-on services will be the optimal strategy. On the other hand, if the capacity
of the premium product is not restrictive, i.e., x; is relatively large, then the firm
needs to be more cautious when making the quality improvement decisions. In this
case, improving the quality of the regular product may significantly intensify the

competition between the two products and thus hurt the firm’s profit. For instance,
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choosing § € [0.1, 1.3] decreases the firm’s profit in Figure 3.2b, where ¢; = 4, go = 2
and x; = 0.4.

3.5 Impact of r

We proceed to examine the impact of increasing r on firm’s optimal profit. In many
practical situations, the firm can use advertisement to increase consumer awareness
of the add-on services, or provide training to influence consumer behavior (e.g., there
are websites that teach consumers how to obtain free upgrades in airlines and hotels).
That is, a firm may change the parameter value r in our model setting. To help firms
make this decision, it would be helpful to investigate how the firm’s optimal profit
depends on r. To focus on the impact of r on the firm’s optimal profit, we assume
the cost for changing r is zero.

The next lemma shows how the profit functions 7j; and 7}, depend r.

Lemma 3.5.1 7y in (3.5) is convex in r, and 7}y in (3.6) is concave and strictly

INCTeasing in 1.

Similar to Proposition 3.4.2, the following proposition shows that the firm’s opti-

mal profit may either increase or decrease in r under different conditions.

b < L There exists 7 € (0,1) and a threshold k €

Proposition 3.5.1 Suppose s <3

[ 1) such that:

a1—q2’ 2

1. If x; € <l~€, %), then the firm’s optimal profit is decreasing in r € [0,7] and

increasing in r € (7, 1].

2. If v, € [ l;:] , then the firm’s optimal profit is increasing in r € [0, 1].

_0
q—q2’

Proposition 3.5.1 indicates when capacity x; is large and the add-on quality ¢ is
small, the firm’s optimal profit is non-monotone in r. In addition, the decreasing part
occurs in region Rq; only. This result is interesting in two aspects. On one hand, it

implies more consumers know the add-on services could be detrimental to the firm
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(the decreasing part); on the other hand, it means more opportunistic consumers may
also benefit the firm (the increasing part). To help us understand this result, we can
write the partial derivative of the optimal profit function 7y in (3.5) with respect to

r as follows:

2

87'(]_1 _ apl (1 x1> apQ (310)

=z + .
or “or or
Lemma 3.5.2 states how the optimal prices (p7, p3) change with respect to r in region

Ry;.

Lemma 3.5.2 Suppose (p},p3) is in region Ryy as (3.5), then p} is non-monotone

convex in r, and pi 1S CONvVET INCreasing in r.

We provide the following intuitive explanation for the fact that optimal profit
may decrease in r as demonstrated by Proposition 3.5.1. When r increases, there is
a larger portion of consumers who are opportunistic and aware of the total value of
product 2. Consequently, the firm should increase py to capture the additional surplus
due to the larger portion of high-valuation consumers; this is the direct, positive
effect (which can be also called the advertisement effect), measured by (3 — xl)%.
Meanwhile, increasing r enlarges the size of opportunistic consumers, which view
product 1 as less attractive. So the firm has to lower price p; in order to prevent the
opportunistic consumers from switching to product 2 (eventually the total demand
of product 1 remains x1). Thus, p} decreases in r at the beginning, which lowers
the firm’s profit from selling product 1. This is the indirect, negative effect (which
can be also called the cannibalization effect), measured by xl%. Moreover, a larger
capacity x; intensifies the “cannibalization effect” and dampens the “advertisement
effect”. When r is small, the cannibalization effect dominates the advertisement effect,
and the profit will decrease in r, which corresponds to Part 1 of Proposition 3.5.1.
On the other hand, when r is relatively large, the dominance relationship reverses
and the optimal profit increases in r. Figure 3.3 illustrates these two cases using an

numerical example. Note that Figure 3.3b represents the more interesting result in

Proposition 3.5.1.
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Profit (v1: 91 42. 0)=(0-12. 10. 1. 1) (51 41, 02, 6)=(03, 10, 1, 1)
TOIN

(a) 1 < k = 0.127 (b) 1 > k = 0.127

Figure 3.3.: The monotonicity of the firm’s optimal profit 7*(r) under different values

for ;.

3.6 Numerical Studies

So far we have characterized the firm’s optimal pricing strategies and obtained
two main results. § 3.4 shows that the firm’s optimal profit may be lower when
more free add-on services are provided; and § 3.5 gives the conditions under which
advertisement may actually hurt the firm’s profit. In this section, we relax some
model assumptions to check the robustness of these results. First, we introduce a
capacity constraint for regular products as well (§ 3.6.1). Second, we drop the zero
usage cost assumption and assume that the firm incurs a positive cost for each unit of
the premium product that is consumed (§ 3.6.2). Lastly, we consider a random market
size (§ 3.6.3). An analytical investigation is challenging due to the complexity of the
problem; thus we rely on numerical experiments in this section. We have explored a
wide range of parameter settings; however, to save space, we will only present some

representative examples.
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3.6.1 Capacity Constraint for Product 2

The basic model assumes there is unlimited supply of product 2. Now we relax
this assumption by introducing a capacity limit x5 for product 2 (recall there is a
capacity constraint x; for product 1). Then the firm’s optimization problem in (3.3)

becomes

max 7T =p1d1(p1, p2) + pada(p1, p2)
(p1,p2)ER

s.t. di(p1, p2) < 21, da(p1,p2) < 13, (3.11)

R={(p1,p2)|0 <p1 <q1,0 <py <+ 0}.

Figure 3.4 illustrates how the firm’s optimal profit varies with respect to ¢ and
r when ¢ = 4, ¢o = 2 and x; = 0.3. The capacity for product 2 is zo = 0.13 on
the left-hand panel and x, = 0.18 on the right-hand panel. We can see that the
qualitative results remain unchanged with a capacity constraint for product 2: The
firm’s optimal profit may decrease in the quality level for the add-on services attached

with product 2 and more advertisement may hurt the firm’s profit.

x,=0.13, r=0.2 x,=0.18, r=0.2
T T 096 T
0.94
E E
So So
a [
091
2 0. 0. 0. 2 8 2 g0 02 06 0. 2 6 2
3 8
X,=0.13, 5=1 X,=0.18, 5=1

Profit
Profit

a

02 03 04 05 06 o7 08 09

Figure 3.4.: Firm optimal profit as a function of § and r (with capacity constraint for

product 2).
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3.6.2 Positive Usage Cost

The usage costs for both products are normalized to zero in the basic model. In
service industries such as airlines and car rental companies, normally there is a usage
cost associated with the product. To account for this fact, we assume there is a
positive usage cost denoted by ¢ for the premium product in this section. Since the
usage cost for the regular product is usually lower than that for the premium product,
we still assume there is a zero usage cost for the regular product. Given the usage
cost ¢ > 0 for product 1, the firm’s optimization problem in (3.3) becomes

max 7 =(p1 — ¢)di(p1, p2) + p2da(p1, pa)
(p1,p2)ER (3.12)

s.t. di(p1,p2) <z, R={(p1,p2)|0 <p1 <q1,0 <py <@+ 0}.

A representative numerical example is presented in Figure 3.5. Again, our main
results still hold with different usage cost ¢’s (e.g., ¢ = 0.1 and ¢ = 0.3) as shown in

Figure 3.5 (¢1 = 4, go = 2 and x; = 0.4 in this example).

cost=0.1, r=0.2 cost=0.3, r=0.2

Profit
Profit

1 12 14 16 18 2 (] 02 04 06 08 1

cost=0.1, 5=1.5

cost=0.3, 6=1.5

0.866

0862

0858

Profit
Profit

Figure 3.5.: Firm optimal profit as a function of § and r (with positive usage cost for

product 1).
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3.6.3 Random Demand Size

In the last part of the numerical study, we incorporate random demand size into
the basic model. Specifically, we assume the demand takes two possible values 1 —
2 (0 < z < 1) and 1 + z with equal probability % This two-point demand model
is sufficient to capture the nature of random market size (the qualitative results will
not change with a continuous random demand). The prices (pi, p2) are determined
before the realization of the demand. Under this assumption, the demand of product
i (1 =1,2) can be written as d; (p1, p2) = (1 — 2)d;(p1, p2) for market realization 1 —z
and d; (p1,p2) = (1+ 2)d;(p1, p2) for market realization 1+ z, where d;(p1, p2) is given

in (3.1) and (3.2). Consequently, the new optimization problem becomes
1
(pH;a;éR =3 (p1 (dy (p1,p2) A1+ df (pr,p2) A1) + p2 (ds (p1. p2) + d3 (p1,p2)))
s.t. R={(p1,p2)|0 <p1 <q1,0 < po < qo + 6}

(3.13)

Figure 3.6 presents a numerical example with parameters ¢, = 4, ¢o = 2 and
x1 = 0.4. We can see that the firm’s optimal profit can still be decreasing in both
the quality of the free add-on services and the level of the advertisement. Thus our

results are robust under random demand as well.

3.7 Conclusion

This chapter studies a monopoly firm’s product quality and price decisions in the
presence of the consumer heterogeneity and capacity constraint. The firm provides
both a regular product and a premium product, the latter of which has a higher
quality and limited capacity. Consumers are heterogeneous in two dimensions: First,
they have different tastes for quality; second, they may or may not value the add-on
services attached with the regular product. The firm needs to decide how much add-

on service to offer with the regular product and then how to price the two products.
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Figure 3.6.: Firm optimal profit as a function of § and r (with random demand size).

We first show that the firm’s optimal pricing strategy depends on the capacity
constraint. With a sufficiently large supply of the premium product, the firm will
just satisfy half of the consumers with only the premium product (i.e., the regular
product will be taken out of the market). With a very limited supply of the premium
product, the firm will always fully utilize the available capacity and prefers to sell it to
consumers whose valuation of the regular product is lower. When the firm improves
the quality of the regular product (by providing more add-on services), its profit may
decrease due to the cannibalization effect (i.e., the quality improvement intensifies the
competition between the firm’s own products and drives the consumers away from
purchasing the premium product). Furthermore, the profit decrease is more likely to
happen when the capacity level of the premium product is higher since the firm has
to lower the price of the premium product to mitigate the cannibalization effect. We
also find that it is not always beneficial to the firm when it uses advertisement to

increase the portion of consumers who value the add-on services associated with the

regular product.
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Chapter 4

Upgrading Under Opportunistic Consumers
4.1 Introduction

To cope with rapidly changing consumer trends, many firms have expanded their
product lines and provided multiple products with different qualities. In addition to
a regular product that includes basic functions desired by consumers, firms usually
offer a premium product that incorporates additional services and features. On one
hand, firms can achieve better market segmentation and extract higher profit by of-
fering both products to consumers. On the other hand, firms face a more complicated
problem in matching the supply with the demand because the demand is more pre-
dictable at the aggregated level than at the individual segment. Product upgrade as
an operational strategy has been widely adopted in practice to mitigate the risk of
mismatches between supply and demand. More details can be found in Chapter 2.

There are differences among consumers in terms of observable characteristics, such
as opportunistic behavior and naive behavior, or in terms of unobservable character-
istics, such as tastes for quality. When firms offer two products with the poten-
tial product upgrade, only the opportunistic (strategic) consumers take the upgrade
probability into account, and the regular product becomes more attractive to an
opportunistic consumer if she may receive a higher quality product with a positive
probability while only paying the price of the regular product. Moreover, for each
product offered by the firm, consumers may have different willingness to pay based

on their tastes for quality. A detailed discussion is in Chapter 3.
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A key assumption made in Chapter 3 is that consumers are heterogeneous in
their perceptions of the quality of the regular product. Recall that ¢ is the valuation
difference of the regular product between the opportunistic consumers and the naive
ones. As the opportunistic consumers make their purchase decisions in anticipation
of the potential product upgrade, § can be viewed as the product of the quality
difference between the premium product and the regular one and the probability of
the product upgrade (i.e., obtaining the quality difference). However, as the qualities
of both products are exogenously given, the probability of the product upgrade is
also exogenously decided. Yet in reality, such probability depends on several factors
including the capacity limits, the total number of consumers, and the fraction of
consumers being opportunistic. For instance, a higher capacity limit of the premium
product means there may be more potential leftover capacity that can be used as a
product upgrade. A larger number of consumers has two-fold impacts: First, there are
more consumers who may request the premium product, which results in less leftover
capacity that can be used as upgrade; second, there are also more consumers who
may purchase the regular product, which results in more consumers who are waiting
for the product upgrade. A larger fraction of consumers being opportunistic implies
that more consumers appreciate the potential product upgrade and may compete
for the limited upgrading opportunities. Therefore, the probability of the product
upgrade should be endogenously decided by both the firm and the consumers. And the
opportunistic consumers should strategically learn such a probability by incorporating
all contributing factors into their decision processes. The concept that consumers can
rationally predict the future product availability has been studied in the operations
management literature, for instance, Liu and van Ryzin (2008b), Su and Zhang (2008),
Yin et al. (2009) and Cachon and Swinney (2009).

This chapter studies a monopoly firm’s optimal pricing decisions when selling two
differentiated products to heterogeneous consumers. There are two research questions
that we would like to address: First, is consumers’ opportunistic behavior beneficial

or detrimental to the firm? As we discussed earlier, the opportunistic consumers
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choose between the premium product and the regular product based on their taste
for quality as well as the probability of the future product upgrade. The firm may lose
the sales of the premium product because some opportunistic consumers may instead
purchase the regular product that yields a higher utility. However, as the utility of
buying the regular product becomes higher, the firm may be able to increase the price
of the regular product and extract more profit from the opportunistic consumers. It
is unclear how the firm’s profit may change when combining these two effects.

Second, how should the firm control the probability of the product upgrade? In
service industries, firms may impose various restrictions on the eligibility of receiving
the product upgrade. For example, airlines usually restrict the seat upgrade among
consumers with certain booking codes and give a higher priority to consumers with
elite status when assigning the seat upgrade. Similar examples can be found in the
hotel industry as well as rental car companies. Furthermore, the firm can control
the upgrade probability by adjusting the initial capacities. With a lower capacity
level of the premium product, there may be less leftover capacities that can be used
as an upgrade. Because firms clearly have the ability to adjust the frequency of the
upgrade, we wish to understand how frequently the firm should offer the product
upgrade.

The focus of this chapter is to extend the model in Chapter 3 and capture the
opportunistic behavior. In particular, we study a specific upgrading problem where
the probability of the product upgrade is endogenously determined by the consumer
heterogeneity and the capacity limit. In a single-period model, a monopoly firm offers
two products with differentiated qualities, the regular product and the premium prod-
uct. The premium product has a limited capacity, whereas the regular product has
ample capacity. Consumers with a random size arrive at the market, and each con-
sumer prefers the premium product over the regular one at equal prices and chooses
to buy one of them or nothing. After consumers make their product selections, the
firm randomly distributes a fraction of the leftover capacity of the premium product

to consumers who request the regular product as a free product upgrade. There are
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opportunistic consumers and naive consumers in the market, the former of which
rationally predict the availability of the product upgrade and adjust their purchase
decisions accordingly. The firm decides the prices for both products to achieve profit
maximization.

Two major results about the firm’s optimal strategies are obtained in this model.
First, increasing the probability of the product upgrade has complicated impacts on
the firm’s profit. When increasing such a probability, the regular product becomes
more attractive for the opportunistic consumers, and the firm may decrease the price
of the premium product while increasing the price of the regular product, which
restricts the number of opportunistic consumers changing their purchase decisions
from the premium product to the regular one. Profit is more likely to increase if the
quality difference between the two products is large. Our result suggests that the
firm should pay extra attention when revising its upgrading policy.

Second, influencing consumers’ opportunistic behavior through advertising can
change the firm’s profit in both directions. Consumers become more opportunistic
when exposed to more advertisements or training about the product upgrade. Intu-
itively, more opportunistic consumers may increase the sales of the regular product
due to their anticipation of the product upgrade. However, the profit from the pre-
mium product is reduced at the same time because the cannibalization effect between
the two products becomes more severe. We recommend that firms use advertisements
more wisely based on the model parameters.

The rest of this chapter is organized as follows. Section 4.2 reviews the strategic
consumer behavior literature. The model setting is introduced in Section 4.3. Exten-
sive numerical tests are conducted in Section 4.4 to derive managerial insights. The

chapter concludes in Section 4.5.
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4.2 Literature Review

This chapter extends the model in Chapter 3 by explicitly considering opportunis-
tic (strategic) consumer behavior.

Consumers’ purchase decisions depend on various factors including both future
price and future product availability. Specifically, a group of papers study the scenario
where consumers may strategically delay their purchases in anticipation of future price
changes. For instance, Aviv and Pazgal (2008) study two classes of pricing strate-
gies for a seasonal good with a limited quantity in the presence of forward-looking
(strategic) customers. Elmaghraby et al. (2008) analyze the optimal markdown pric-
ing mechanism in the presence of strategic buyers who request multiple units of the
product. Su (2007) studies a dynamic pricing model with heterogeneous consumers
and shows that the optimal price path could involve either markups or markdowns,
depending on the composition of the customer pool. Another group of papers focus
on the interaction between firms’ inventory decisions and the strategic consumers’
anticipation of future product availability. Liu and van Ryzin (2008b) investigate
the firm’s understocking quantity decisions, which may stimulate early purchase in a
capacity-rationing model with strategic consumers. Liu and van Ryzin (2011) then
extend the model into repeated seasons. Su and Zhang (2008) study a newsvendor
seller facing strategic customers and find that either quantity or price commitment
may improve the seller’s profit. Su and Zhang (2009) further explore the benefit of
product availability in attracting strategic consumer demand. Yin et al. (2009) con-
sider how a fashion retailer can use two different inventory display formats (display all
and display one) to mitigate the adverse impact of the strategic consumer behavior on
the retailer’s profit. Lai et al. (2010) consider a model where the seller has a posterior
price matching policy and give the condition under which the price matching benefits
the firm by eliminating strategic consumers’ waiting incentive. Cachon and Swinney

(2009) show that the value of the seller being able to procure additional inventory
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after obtaining updated demand information is generally much greater when strategic
consumers are present.

In contrast, our model considers a different type of strategic behavior. We study
the opportunistic consumers who anticipate the potential product upgrade while the
above papers consider the anticipation of either the price change or the product avail-
ability. This chapter also extends the firm’s product line by considering two quality
differentiated products whereas the above models are limited to a single product.
Lastly, our model incorporates the consumer differentiation, i.e., consumers have dif-

ferent tastes for quality, which is absent in the models above.

4.3 Model

We consider a model that has three groups of agents. In the supply side, there is
a monopoly firm managing two types of products, product 1 with quality ¢; (¢ > 0,
the premium product) and product 2 with quality ¢ (0 < ¢2 < @1, the regular
product). The firm has fixed capacities z; (i = 1,2) for product i. In the base model,
the capacities are exogenously given, and we will use profit and revenue functions
exchangeably. Similar to Chapter 3, we assume x5 is large enough for analytical
tractability such that it never constrains the sales. The firm decides the prices p; for
product i. After consumers make their decisions, the firm allocates both capacities
to the corresponding demand. During the capacity allocation process, each consumer
has equal probability to receive the product that she requested. Furthermore, the base
model considers the complementary product upgrade, i.e., the firm may offer product
1 to consumers requesting product 2 at price p, as a courtesy. Specifically, the firm
performs the product upgrade if there remain leftover capacities of product 1 after the
capacity allocation process. However, the firm allocates at most x (0 < k < 1) fraction
of the total leftover capacities of product 1 to consumers who originally purchase
product 2. Thus, the firm uses x to control the quantity or frequency of the upgrade.

Let d; (i = 1,2) be the demand of product i before the capacity allocation, then the
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k(z1—dy)t

upgrade occurs if d; < x1, and the upgrading probability is defined as 1 A -
where (2)* = max(z,0) and y Az = min(y, z). For notational convenience, we further
define y V z = max(y, z).

In the demand side, there are two types of consumers, the opportunistic consumers
and the naive consumers. The total mass of the consumers is a random variable Y that
follows the distribution F' and is independent of prices (p;,p2). A consumer chooses
between the premium product and the regular one as well as choosing whether to
purchase at all. Each of these consumers has a utility function U = 6q — p for a
single unit of product, where ¢ is the product quality, p is the product price, and
6 > 0 is the parameter which measures the intensity of the consumer’s taste for
quality. A consumer receives zero utility if she does not purchase. The utility function
implies that all consumers prefer a higher quality product for a given price, but a
consumer with a larger # is more willing to pay to obtain the high quality product.
We assume 6 is uniformly distributed on the interval [0,1]. The consumer chooses
the option that yields the highest utility based on her taste for quality and consumer
type. The opportunistic consumers are different from the naive ones in the sense that
only they recognize the possibilities of product 1 being stock-out and the product
being upgraded during the capacity allocation process. Specifically, an opportunistic
consumer forms a private belief £, = (€1, u,) over probabilities of receiving product 1 if
requesting product 1 and receiving product 1 if requesting product 2 (i.e., the product
upgrade), respectively. For tractability, we assume that all opportunistic consumers
share the same belief £, = (£}, u,). For the opportunistic consumers, the quality of
the premium product is !¢y, which incorporates the stock-out probability. And the
quality of the regular product is gs + u,(q1 — ¢2), which considers the probability of
receiving the product upgrade. In contrast, the quality of product ¢ for the naive
consumers remains ¢;. r (0 < r < 1) and 1 — r are the probabilities of consumers

being opportunistic and naive, respectively. Note that r is observable to the firm.
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4.3.1 Sequence of Events

We now summarize the timeline in our model. The firm forms the belief §; =
(s}, uys), which is a belief over the same probabilities as the opportunistic consumers’
belief £,. Then, the firm optimally decides prices p; and p, to maximize the profit
m(p1,p2). Although the firm is informed about different types of consumers, it is
unable to differentiate individual consumers and charge different prices. Both the
opportunistic and naive consumers decide whether to buy and which product to buy.
However, the opportunistic consumers form the belief £, = (s} u,) and make their
decisions accordingly. Next, the random consumer size Y is realized. Finally, sales
occur at the prices (py, po) after the firm allocates the capacities to the corresponding
demand and performs the product upgrade. Our model follows the definition of the

rational expectation equilibrium proposed by Su and Zhang (2008) and requires that
gf = So-

4.3.2 Analysis

To analyze the firm’s profit maximization problem, we start with consumer de-
mand functions. Let d;(p1,pe,&,) (i = 1,2) be the demand for product ¢ under prices
(p1,p2) and the common belief £, = (£!,u,) among the opportunistic consumers. The
utilities of buying product 1 and 2 for an opportunistic consumer with the taste pa-
rameter 6 are 0¢1q; — p; and 6 (q2 + uo(q1 — q2)) — p2, respectively. The consumer
purchases product 1 if 0§;¢1 — p1 > 6 (g2 + uo(q1 — ¢2)) — p2 and 6E5q1 —p1 > 0 or
product 2 if 0 (gz + uo(q1 — q2)) — p2 > 0&,q1 — pr and 0 (g2 + uo(q1 — q2)) — p2 > 0.
Therefore, given the firm’s prices (p;, p2), an opportunistic consumer purchases prod-

uct 1 if her taste parameter

P1— D2 D1
b c { v 1} ,
(E —u)pn — (1 —uo)g2  Elan
or product 2 if

0c [ D2 P1— P2 Y D1 }
@+ u(gpn—q) (& —u)g— (1 —uo)g2  Eaq
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The same argument can be applied to the naive consumers by using (g1, ¢2) instead
of (& q1,q2 + uo(q1 — q2)). Therefore, the demand for product 1 is

n
d1(p1,p2,§o)zy<r<1_(£l_upl—p2 v p1) —I—(l—r)(l PL— Do

)611 - (1 - UO)Q2 5391 g1 — g2
(4.1)

And the demand for product 2 is

"
B D1 — P2 b1\ _ P2
da(p1,p2, &) =Y (T (1 A <(§g — )1 — (1 —uy)qe Y 53611) 2 + Uo(q1 — lh))

+(1—7) (1/\ @—Z %) —%>+>. (4.2)

Define R = {(p1,p2) : 0<p1 < q1, 0 <py < q1}. We can show that it is sufficient

to only examine R when searching for the firm’s optimal prices. To prove this,
suppose to the contrary that (pj,p2) ¢ R constitute the firm’s optimal prices. We
assume without loss of generality that p; > ¢ and 0 < py < ¢;. For any belief
§o, there is m(q1,p2) = m(p1,p2) since di(p1,p2,&) = di(q1,p2,6) = Y by (4.1)
and dy(p1,p2,&) = do(q1,p2,&) by (4.2). Similarly, we can show that the optimal
p2 € [0, q1]. Hence, we will restrict to the region R in subsequent analysis.

Now the firm’s optimization problem can be written as follows:

max T(p1,p2) = p1E [di(p1, p2, &) A 1] + p2 E [da(p1, p2, &) (4.3)
(p1,p2)ER
T1
s.t. ¢ =E {1 A —} , 4.4
dl (p17p27 go) ( )
—d ; +
:E|:1/\l€<£€1 1(p17p27£)) :| ’ (45)
d2(p17p27 fo)
K xl 1 1,P2,S0 + 3
where Z—5— is defined to be 1 if d;(p1, p2,&,) = 0, and dip(lljpfgj D" s defined

to be 0 if dg(pl,pg,é-()) =0.

4.4 Numerical Studies

Similar to the model in Chapter 3, the profit function (4.3) is not unimodal. Fur-

thermore, the objective is maximized subject to the rational expectation equilibrium
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constraints (4.4) and (4.5), which means that we have to solve a non-linear equa-
tions system for each pair of prices (p;,ps). Due to the complexity of this problem,
the results of this section are derived from extensive numerical tests. This numerical
study includes two parts: the impacts of the firm’s advertising decision and upgrading
decision.

First, we examine how the firm’s advertising decision affects its profit. Recall
that advertisement is a useful instrument to improve the fraction of consumers being
opportunistic. On one hand, advertising the potential product upgrade can educate
naive consumers and make them purchase strategically, which increases the number
of consumers who have a higher valuation of the regular product and allows the firm
to raise the price of the regular product. On the other hand, advertising increases the
number of opportunistic consumers who may switch from the premium product to the
regular product, hoping to get a potential free upgrade, which may cannibalize the
sales from the premium product. In terms of the probability of the product upgrade,
having more consumers purchase the regular product should decrease their individual
probability to receive the product upgrade, however, having less consumers purchase
the premium product should increase such probability. Therefore, it is unknown
how the firm’s profit changes with respect to r, which represents the fraction of the
opportunistic consumers. From Figure 4.1, it is clear that the firm’s optimal profit is
non-monotone in r. Specifically, Figure 4.1a shows that the highest profit is reached
when r = 1 if the quality difference between the two products is large. In this case,
the firm benefits from a higher price for the regular product, which is the result of
the opportunistic behavior. And such a profit gain is amplified by the large x = 1,
which encourages the opportunistic consumers by offering all leftover capacities of the
premium product as product upgrade. However, Figure 4.1b illustrates a different
scenario where the highest profit is achieved when 0 < r < 1. Note that the quality
difference between the two products is smaller in this case. We offer the following
explanation: The cannibalization effect between the two products is stronger among

the opportunistic consumers, whose valuation of the regular product is greater than
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g2, than among the naive consumers. As r increases from 0 to 1, the firm benefits
from the opportunistic behavior initially. But when r is close to 1, most consumers
are opportunistic. With a small quality difference ¢; — ¢o, the cannibalization effect

becomes dominant and lowers the firm’s profit.

q,=1,9,=0.3, x,=0.1, k=1 q,=1,9,=0.7,x,=0.1, k=0.5
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(a) g =03 and Kk = 1. (b) g2 = 0.7 and x = 0.5.

Figure 4.1.: Firm optimal profit as a function of r.

The second part of the numerical study considers the firm’s decision about the
upgrading probability. The firm only uses x fraction of the leftover capacity of the
premium product to upgrade consumers requesting the regular product. When the
firm chooses a larger k, there is a greater probability of the potential product upgrade,
and the firm may be able to charge a higher price for the regular product because the
opportunistic consumers appreciate the product upgrade. However, with a smaller
Kk, there is a bigger quality difference between the regular product and the premium
one for the opportunistic consumers, and the cannibalization effect may be reduced.
Figure 4.2 shows that the firm’s profit can either decrease or increase with respect to x
and the highest profit may occur in the interior of [0, 1]. Figure 4.2b and 4.2d represent
the most interesting cases. In particular, the highest profit is achieved when 0 < k < 1
in Figure 4.2b. To understand it, note that » = 0.1 in Figure 4.2b, which is larger than

r = 0.05 in Figure 4.2a. If ¢, is small as in Figure 4.2a and 4.2b, increasing « benefits
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the firm in general because the profit increase from the higher price of the regular
product is larger than the profit loss due to the cannibalization effect between the two
products. However, as r becomes larger, i.e., there is a larger fraction of consumers
who are opportunistic and can be directly affected by the firm’s decision &, the firm’s
profit may eventually decrease in k because the number of opportunistic consumers,
who may choose the regular product instead of the premium one in anticipation of
the potential product upgrade, becomes much larger. However, if g5 is large as in
Figure 4.2c and 4.2d, the aforementioned cannibalization effect is already strong even
without the product upgrade (i.e., Kk = 0). As r increases from Figure 4.2¢ to 4.2d,
the firm benefits from the additional profit from selling the regular product to the
opportunistic consumers at a higher price, which can be further increased by offering
a more generous product upgrade. Hence, the firm’s profit can increase in Kk when
is large.

Last, we examine the impact of changing the quality difference ¢; — ¢o and the
capacity constraint x; for the premium product. As ¢ is fixed, improving the quality
¢ of the regular product is equivalent to decreasing the quality difference ¢; —qs. From
Figures 4.3 and 4.4, we can see that the firm’s optimal profit is always increasing in
the quality of ¢o as well as the capacity ;. The intuition is straightforward: without
the cost of increasing the quality ¢o, the firm has a better product to sell, which
implies that the firm is in a better position to generate a higher profit. Even though
the cannibalization effect becomes stronger, the additional benefit from the higher
quality ¢o dominates the negative effect. Similar argument can be applied to changing
x1. Acquiring more capacity x; increases the probability of product upgrade, which
implicitly increases the quality of the regular product. Note that the profit curves
will correspondingly change if we incorporate the cost of the quality improvement or

the capacity acquisition.
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Figure 4.2.: Firm optimal profit as a function of .

4.5 Conclusion

This chapter studies a monopoly firm’s price and upgrading decisions in the pres-
ence of the consumer heterogeneity and capacity constraint. The firm offers both the
regular product and the premium product with capacity limits and uses a fraction of
the leftover capacity of the premium product to upgrade consumers purchasing the
regular product. There are two types of consumers whose total size is a random vari-
able. The opportunistic consumers rationally predict the probability of the potential

product upgrade and make their purchase decisions accordingly, whereas the naive
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Figure 4.3.: Firm optimal profit as a function of gs.

consumers ignore such a probability. The firm decides the price for each product to
maximize its profit.

We confirm that the analytical results discussed in Chapter 3 still hold in this
specific upgrading problem. Particularly, the firm’s advertising and upgrading deci-
sions can change the profit in either direction. The firm needs to pay extra attention
to these decisions whose impacts depend on the quality difference between the two

products and other model specifications.
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Chapter 5

Conclusion and Future Research

This dissertation studies the impact of upgrading on firms’ operational strategies.
Three problem settings have been considered. The main results can be summarized
as follows.

Chapter 2 studies a firm’s capacity investment and allocation decisions in a dy-
namic setting with stochastic demand. There are N classes of products, each of which
corresponds to a demand class that arrives in each period. The firm has to decide the
initial capacity for each class of product before the beginning of the selling season,
then allocate capacities to incoming consumers in each period before future demand
is realized. The model considers a general upgrading rule that covers most of the
practical applications. We show that a Parallel and Sequential Rationing (PSR) pol-
icy is the optimal allocation rule in each period for any given initial capacity. The
complexity of the allocation problem can be greatly reduced by the PSR policy, where
the firm first satisfies demand by the same-class capacity as much as possible and then
sequentially upgrades leftover demand. Chapter 2 also proposes an efficient heuristic,
Refined Certainty Equivalence Control (RCEC), that exploits the structural prop-
erties of the PSR policy and yields close-to-optimum solutions for the firm. With
the help of the RCEC heuristic, extensive numerical studies show that the multi-
step upgrading is highly valuable when the capacities are not balanced. Moreover,
it is illustrated that the allocation decision is much more important than the initial

capacity decision for the firm.
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Chapter 3 studies a monopolist firm’s optimal strategies in the presence of the
consumer heterogeneity and capacity constraint. The firm offers two differentiated
products, the regular product and the premium product, to two types of consumers,
the opportunistic consumers and the naive ones. The difference between the two con-
sumer types is that only the opportunistic consumers appreciate the add-on services
included in the regular product and thus have a higher valuation of the regular prod-
uct. The consumer’s product selection depends on his type and taste for quality. The
firm needs to decide how much add-on service to offer and then how to price the two
products. We show that the firm’s optimal pricing strategy depends on the capacity
constraint. With a limited capacity of the premium product, the firm always fully
utilizes the available capacity and prefers to sell it to naive consumers whose valua-
tion of the regular product is lower. We find that improving the quality of the add-on
services can change the firm’s profit in both directions. Similar result has been found
about influencing the fraction of opportunistic consumers, i.e., a larger fraction of
opportunistic consumers may increase or decrease the firm’s profit. Numerical results
confirm the robustness of these results in more general model settings. Chapter 4
extends Chapter 3 by endogenizing the upgrading probability. A specific upgrading
problem is introduced, where a consumer may be upgraded if there is leftover capacity
of the premium product after satisfying an uncertain demand. An opportunistic con-
sumer rationally predicts the probability of the potential product upgrade and adjusts
his product selection accordingly, while a naive consumer disregards the information
about the product upgrade. The upgrading probability is determined by the capacity
level of the premium product as well as the consumers’ strategic behavior. The main
results in Chapter 3 have been verified in this complex but more realistic setting,
which also provides insight into how firms should control the upgrading frequency.

Future research may be done in the following directions. In Chapter 2, we assume
that firms’ cost parameters are constant over time and unmet demand is backlogged.
There are several interesting extensions of this research. First, it is worthwhile explor-

ing models with general non-stationary model parameters. The PSR policy remains
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optimal if the profit margin is monotonically decreasing over time. However, with
general non-stationary model parameters, the optimal policy is still unknown. Sec-
ond, it is a challenge to analyze models with lost sales. The backorder assumption
used in this chapter is critical for the optimal PSR allocation policy. It is not clear
how the optimal policy looks under the lost-sales assumption. Third, it would be
interesting to take pricing decisions into account, i.e., the firm may adjust prices over
time depending on the evolution of demand and remaining capacity levels.

In Chapter 3, we assume that the initial qualities of both products are exogenously
given and there is only one firm in the market. There are two potential extensions of
this research. First, it would be interesting to incorporate the firm’s decisions about
the initial qualities of the products (i.e., the firm can determine the optimal qualities
of both the premium product and the regular one before deciding the qualities of
the add-on services). Second, though challenging, we may extend our model to a
competitive setting. It would be interesting to see how competition will change the

results derived from our monopoly model.
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Appendix A
Appendices: Dynamic Capacity Management with

Upgrading
Appendix A.1: Preliminary
A.1.1 Notations

The following notations are used in this appendix to simplify our exposition. Con-

sider a vector Z = (21,--+ ,zy) € RY, for 1 <i < j < N, we define
(Z); = 2
(Z)’L, N (Ziv Zi41ly Tty Z])
Zij= (21, zi-1, %+ L zign, 0 5 251,25 — L zZjen, 0 5 2N).
Notice that the above notations are still valid for Z = (z,,--- ,2;) (1 <r <i<j <

k < N) if we artificially set Z = (0,--- ,0,2,,- -+ ,2,0,---,0) € RV.
For state vector N, recall the effective state Nt of classes (1,--- ,7) defined in
Definition 2.5.1. If r = N, we use N instead of N'}V to simplify our notation.

Moreover, for class i (1 <i < N) in period ¢t (1 <t <T'), we define

9 )
“ o7 tOHZ) = —0O!(Z).
5= OB, 070(2) = 550(Z)

)

0;01(Z) =

Recall AZ" and Af™ (1 <i < j < N), we have

9 _i t +-Qt _i ¢ _i t
82._@ (Z) (32*9 (Z), AAC] (Z) = 82*6 (Z) azj_@ (Z).

7 j 7

ATeNZ) =

Using the notations above, the protection level p;; = p in period ¢ if and only if

AFTO"HN) < a;; < AjTOYN) from (2.8), where
N = (nﬁa o ang—lapaov' o 707 _pyn§’+1a e 7n§V)
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In the essence of A" and AJ;™, we define the marginal perturbation of class i and

J (veferred to as M P;; hereafter) as ©'(Z+ ¢(e; —e;)) — ©Y(Z), where € € R is a small

number and e, (s = ¢, j) is the unit vector with 1 in position s.

A.1.2 Independence Property

Consider a state vector N* = (n!, -+ n%;) and its effective state

N, = (Al,--- Al ,nt,--- nk) in period t. In Lemma 2.5.2 and A.2.1, we will
show ©' has the following independence property if (ni,,,---,n}_;) <0 and n} <O0:

1. Inperiod t (1 <t<T—1),
Agf@tH(Nt) _ Af{@t“(NLl), A;j+@t+1(Nt) _ A;j+@t+1(N§71)'

2. A;7O"H(N') and Aj;7©"!(N*) are independent of the values of (n},---,nf).

Given the independence property of ©'*! the protection levels in period t have a

similar property. Specifically, consider two different state vectors N = (ny, -+ ,ny)
and N’ = (n],--- ,nly) with the same effective state for the first i — 1 classes. If
(Mg, smj1) = (N, ,ms ) < 0 and ny = nj < 0, then the protection level

pi; under state N is the same as that under N’. Furthermore, the protection level p;;
under state N is independent of the values of (n;,--- ,ny). Hereafter, when speaking
of the independence property, we do not distinguish between ©*! and the protection

levels in period ¢, since the proper interpretation is usually clear from the context.

Remark A.1.1 Note that the independence property holds under the conditions
(nfy1, - ,n5 ) <0 and nf < 0. However, in the proofs of Lemma 2.5.2 and A.2.1,

we only need n; < 0 to prove the results of Af;~O.

A.1.3 Foundation Results

Lemma 2.4.1 gives the condition of splitting the N-class general upgrading problem

into subproblems, which reduces the complexity of the analysis.
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LEMMA 2.4.1 Consider an N-class general upgrading problem with state
N* = (nh,nb,--- ,ni\)T in period t. If St n’ < 0 for all class k < i, then the
problem can be separated into two independent subproblems: an upper part consisting

of classes (1,--- i), and a lower part consisting of classes (i +1,--- , N).

Proof. 'This result holds if none of the optimal policies would upgrade demand j
by capacity k& when there remains unmet demand i (k < ¢ < j) in the same period.
For simplicity, we only prove the latter claim in the integer case. For any demand
sample path (D?,--- D7), let (Y% ---,YT) be the optimal decisions. We assume
without loss of generality that yi ,; = (Y*);_1; > 1 (i < j) while there remains
unmet demand ¢ after period ¢.

We construct decisions Y* (s =t,---,T) that yield higher profit than the optimal
decisions, which will be a contradiction. Let Y be the same as Y except that
Ui =y, +1land g, ; =yl ,;—1. In the remaining periods s (s = t+1,--- ,T),
we apply allocation decision Y* = Y* whenever Y* is feasible. If the optimal decisions
are feasible in periods t+1 to T', the profit increase by using Y* (¢t < s < T') instead of
the optimal decisions is o;—1; — ;1 ;+ (T —t+1)(g;—g;) > 0, which is a contradiction.

Otherwise, let [ (t+1 <1 < T) be the first period that Y! is not feasible. From our
construction, it is clear that there exists yL, > 1 (k < i) in Y that is not feasible after
applying Y® (s =t,--- ., —1). Let Y be the same as Y! except that gL, = v}, — 1
and gfgj = y,lcj + 1. Since the states after applying Y* (s = t,---,[) are the same as
that for Y* (s =t,---,1), Y =Y* (s =1+1,---,T) are feasible in the remaining
periods. Thus, the profit increase by using Y* (t+ < s < T) instead of the optimal
ones is (I —t)(g; — g;) > 0, which contradicts the optimality assumption.

This concludes our proof. 0]

Lemmas A.1.1 and A.1.2 illustrate the bounds of the profit differences under dif-

ferent states.
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Lemma A.1.1 Consider a state vector N = (ny,--- ,ny) with n; > 0 and n; >

0(1<i<j<N). Then,
9f0'(N) — 970" (N) > u; — u; (A1)

and

9;70'(N) — 9;0'(N) > u; — u; if n; >0 and nj > 0. (A.2)

Proof.  We use the sample path argument to prove (A.1). For each demand sample

path, it is sufficient to prove
@t<N -+ 681') — @t(N -+ Ee]’) Z E(U,j — 'LLZ'), (A3)

where € > 0, e, (s =4, ) is the unit vector with 1 in position s. The same argument
can be applied to (A.2).

Given a demand sample path (D, --- D7), let (Y!,---,YT) be the corresponding
optimal solutions in period ¢ to T" under initial state N + ee; in period ¢. For initial
state N+ee;, we sequentially construct solutions (Y?,--- ,YT) based on (Y?,---,Y7T)
from period t to T. Specifically, Y! = Y! in period [ (t < [ < T) if Y! is feasible,
and we write ¢ = 0. Otherwise, if Y! is not feasible, from the assumption of the
initial states, the total demands which are satisfied by capacity j in Y' is greater
than the existing capacity j with initial state N 4 €e;, and we denote the difference
as € (0 < ¢ < ¢€1). To construct a feasible solution Y!, we use capacity 7 to satisfy
demands which cannot be fulfilled by capacity j. By applying such (Y?,---,YT), the
unmet demands in periods t to T" are the same for both initial states, and ZlT:t € <€

Note that ag; —a; = u;—u; < 0 for any class s (s > j), and unmet demand vectors
in period t to T are the same for both initial states. Since (Y?,---,Y7T) are feasible
solutions to the general upgrading problem with initial state N + €e;, we have

T
O'(N + ee;) — O/ (N + ce;) > (uj — ;) Y e > eu; —uy),

=t

which completes the proof. 0]
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Lemma A.1.2 Consider a state vector N = (ny,--- ,ny) with n; < 0 and n; <

0(1<i<j<N). Then,
IfO'(N) - 9fO'(N) > 7r; — ifn; <0 andn; <0
and
970 (N) — 970 (N) >r; —r;.

Proof. It is similar to the proof of Lemma A.1.1. O

Appendix A.2: Proofs of the Main Results

This section presents the proofs of the main results in the chapter. The proofs
of some intermediate results are lengthy and therefore presented in the Electronic
Companion (§A.5), including Lemmas A.5.1 to A.5.5 and Propositions A.5.1 to A.5.3.

In §A.2.1, we prove the desired properties in period T'. §A.2.2 considers a general
period t by following the similar logic for period T. §A.2.3 completes the optimality

proof. §A.2.4 proves two properties of the protection levels.

A.2.1 Final Period T

LEMMA 2.5.1 The PSR algorithm solves the general upgrading problem (2.2) in pe-
riod T" with all protection levels being 0.

Proof. Note that ©7*! = 0 and the solution Y7 generated by the PSR is a Monge

sequence which solves the general upgrading problem in period T' (see Bassok et al.

1999). O

We follow the notations in Chapter 2. Recall the state vector N* = (nf,--- , n}) in
period ¢, and N_, = (Af,--- Al | nf --- nk), where (A% ---  Al_,) is the effective
state of (nf,---,n! ;). Then, Lemma 2.5.2 shows the independence property of O7.
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LEMMA 2.5.2 Consider an N-class general upgrading problem in period T — 1 with

state vector NT=1 where (nl ', -+, ;‘F ) <0 and nT ' < 0. Then,

A;;*@T(NTA) — A;;*@T(N;r”:ll)’ Ai—j+@T(NT4) _ A;j+@T(N;_El)- (A.4)
1 T— 1)'

In addition, they are independent of the values of (n]T* ERIN O

Proof. Foranyt=1,---,T, given D' = (dy,-- - ,dy) as realized demand in period

t, we have

AN = ALTE{6' (N D"} =E {A}-0Y(N""'|D")} (A.5)
and

AFTON'TT) = AP E{O/(NTID)} —E{AFO/(NIDO} . (A)

Both the continuity of ©/(N'~!|D*) and the existence of its left and right derivatives
(see Rockafellar 1996) assure the last equality in (A.5-A.6) (see Zorich 2004, P.409).

We focus on A*-_ in (A.4) since the same method applies to Ai_j+. For any demand

realization D? = (dy,--- ,dy) in period T, we next show
+—aT /NT-1 1T +-oT(NT-1 1T
A0 (N DY) = Af7O (N D7), (A.7)
and it is independent of the values of (n; =l h.
For any DT, without loss of generality, we assume classes (1,---, N) can not be

separated based on N7~! — DT, Otherwise, from Lemma 2.4.1, we can consider
independent subproblems instead. With this assumption, classes (1,---, N) are also
not separable based on N?:ll — DT by Proposition A.5.1 given in the Supplementary
Appendix (§A.5).

To solve the N-class general upgrading problem in period 7', we first solve sub-
problems (1, - - - ,i—1) with initial state (N”~1); .. ;_; and (N5Y); . ;_; by the PSR.
Then, we use the PSR to solve the subproblem (1,--- | N), where the initial states of
classes (1,---,7—1) are the states after solving the subproblem (1,--- ,i—1) by the
PSR.
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Since the upgrading problem in period T is a transportation problem, given the
special cost structure, the optimal allocation decisions in subproblem (1,--- ,i—1) are
independent from classes (7, - -+, N). Particularly, the optimal decisions within classes
(1,---,i—1) remain unchanged with respect to M P;;. Moreover, from Proposition
A.5.2, the result of applying the PSR to subproblem (1,--- ;i — 1) with initial state
(NT=1); ... ;1 is the same as that with initial state (N7 '), .. ;_1. In other words, the
initial states in subproblem (1, -- , N) are the same for both initial states (N7~ DT)

and (N/ 7', DT). Thus, (A.7) is true. In addition, A;;~©T(NT~!|D?) is independent

T-1

AP ,njjc,_l) from Lemma A.5.2. This completes the proof. [

of the values of (n

A.2.2 Earlier Periods
Lemma A.2.1 proves the independence property of O by backward induction.

Lemma A.2.1 Consider an N-class general upgrading problem in period t with state
vector N', where (nj,,,---,n5_;) < 0 and n} < 0. If the PSR algorithm solves the
general upgrading problem in period t + 1 and the independence property holds for
©'*2 then,

A;&-j—@t+1(Nt) _ A$—@t+1(N§_1)’ Ai_j+@t+1(Nt) _ A;fr@tH(NE_O- (A8)

In addition, Af;"©" (N') and AT (N) are independent of the values of
(nh, - nly).

Proof. As discussed in the proof of Lemma 2.5.2, A;’j_ and AZ" in (A.8) are
well-defined. We prove the equality regarding A;;_ in (A.8) and the corresponding
independence property for any demand realization D' = (dy,--- ,dy) in period
t + 1. From Lemma 2.4.1, we can assume classes (1,--- , N) are not separable under
N’ — D! which is also true under N?_, — D**! by Proposition A.5.1.

Splitting the N-class general upgrading problem into subproblems: (1,---,i — 1),
(1,---,7)and (1,--- , N), we start with the subproblem (1,--- ;i —1).
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1. Because the protection levels within classes (1,---,i — 1) in period ¢ + 1 are
defined by ©*2, which satisfies the independence property by assumption, the
allocation decisions within classes (1,--- ,i—1) in period ¢+ 1 remain unchanged
with respect to M P;;. Let N_; be the outcome of applying the PSR algorithm
to subproblem (1,---,i — 1) with states ((N*);..;—1,(D"™);..;-1). Denote
k (1 <k <i—1) as the highest class such that (N/_;).. ,—1 > 0and (N}_,); > 0.
Since the PSR is optimal in period ¢+ 1 by assumption, we only need to consider
upgrading decisions among classes (k,---,N) in the rest of the subproblems.
Similarly, we can define N/_, and k for subproblem (1,--- ,i — 1) with states
(N1 io1, (D) . ;1). From Proposition A.5.3, we know that k = k
and (N/_ g ict = (N/_)pi1. In other words, after solving subproblem
(1,---,7— 1), the initial state of classes (k,---,N) are the same for both N’
and N’_|. Notice that we assume both k and k exist; otherwise, both &k and k
do not exist from Proposition A.5.3, which means that considering upgrading

decisions in classes (i,--- , N) is sufficient, which is a simpler case.

2. From the definition of the protection levels, although there is no upgrade be-
tween classes (1,--- ,k —1) and (k,---, N), the states of classes (1, -,k — 1)
can still affect the protection levels within classes (k, - - -, N) in period t+1. For-
tunately, the effective state of (N/_,);... x_1 is the same as that of (N/_,)1... s_1
by Proposition A.5.2. From the independence property assumption of ©2, the

protection levels within classes (k,--- , N) are the same for both initial states.

To summarize, for initial states N* and N’_, | the capacities of classes (k,--- ,i—1)
after solving subproblem (1,---,i — 1), which can upgrade the demands in classes
(¢,---,N), are the same. Moreover, the protection levels within classes (k,--- , N)
are also the same. Therefore, we only analyze the allocation decisions within classes
(k,---, N)under initial state N*, which can again be split into subproblems (k, - - - , j)
and (k,--- , N).

Apply the PSR to subproblem (k,---,j) with state (N, (0,---,0, (D), . ),
where Nj = ((Nj_})g,.i-1, (N);.. ;), and let N} be the resulting states of classes
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(k,---,7) after applying Y, which are the optimal allocation decisions within classes
(k,---,j). Since (N*);41.... ; < 0, the protection levels used in subproblem (k,--- , j),
which determine the upgrades from classes (k,--- ,i), only depend on (N/_)g... i1
by the independence property assumption of ©'2. We consider two cases based on

whether there is unmet demand j in N’:

1. (N%); = 0: Define h (k < h < i) as the class which satisfies the last unit of

demand j when the PSR solves subproblem (k,--- 7). In fact,

r, if r <iand Zi;er(N;—l)s < — Zgzi((Nt)s —d,) < Z;_:IT(N;A)S

i, if S ((NY), —d,) > 0.

-

In this case, N; is the same as the result of applying the greedy upgrading to
subproblem (k,---,j), i.e., N} = Nj, where Nj is the effective state of Nj.

Specifically,
(
(Ni—1 )i, ifk<l<h
(N ) Zi’;iz(N;fl)s + Zi:z’((Nt)s - ds), ifl=h<i (A 9)
g = ) .
=i (N*)s — dy), ifl=h=i
L0, otherwise,

for class [ (k <1 < j). Note that class h (kK < h < 7) must exist since classes
(1,---,N) are not separable, and h and Nj remain the same with respect to
M P;;. Furthermore, from the discussion of N;», we can see that Y, is the same
as optimal allocation decisions given initial state (N, (0,---,0, (D), . ,)) in

period T where the protection levels are zero. Hence,
@t+1(Nt|Dt+1)
=0 (N")y,.. ;o1 = NI (D)1 im1) + ©F (NG](0, - -+, 0, (D). 1))

O (N )11, NG, (N, )10, 0, (D)0 1))
(A.10)
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where the first two terms are the corresponding revenues of subproblems
(1,---,i—1) and (k,--- ,j), and the last term is the sum of the current revenue

of subproblem (k, - - - , j) and the expected value in the remaining periods. Thus,
ALTOTH(NYDHY) = AL0T (NG[(0,---,0,(D); . 1)), (A.11)

which is clearly independent of (n%,,,---,nj). Also, (A.11) is independent
of n} by Lemma A.5.2. Note that the first term in (A.10) has been omitted
from (A.11) since the allocation decisions in subproblem (1,---,7 — 1) remain
unchanged with respect to M P;;. Moreover, the last term in (A.10) has also been
dropped from (A.11) because its initial states remain the same with respect to

MP;.

~

Similarly, for initial state N!_;, we have
AjTOFHNL D) = AT (N|(0,-++ 0, (D). )

since the allocation decisions in subproblem (k,--- ,j) are the same for both

initial state N* and N_,. Therefore, we have
A?_j_@t+1(Nt‘Dt+l) — A;;_®t+l(N§—1’Dt+1)a

which is independent of the values of (nf,---,nf) by (A.11);

) (N;-)j < 0: Since the PSR is optimal in period ¢+ 1, there is no upgrade between
classes (k,---,7) and (j + 1,---,N). By the definition of the effective state,
Nj in (A.9), which remains unchanged with respect to MP;;, is the effective
state of N’;. Thus, the allocation decisions within classes (j+1,--- , N) stay the

same with respect to M P;; by the independence property assumption of ©+2
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and we denote N’ as the result of applying the PSR to classes (j +1,---, N).

Therefore, we have

O (N'|D')
=0" (N1, i1 = Nj_y (D)1 im1) +O7 (N; = NAJ(0, -+, 0, (D). 1))
+ 0" (N1, v = NIL|(0,++,0, (D) 141 v))
+ O (N]_y)1, h-1, NG, N L)
(A.12)
where the first three terms are the corresponding revenues of subproblems (1, --- | i—

1), (k,---,7), and (j,---,N), and the last term is the expected revenue-to-go

function. As we discussed earlier, we have

Az’?i @tJrl (Nt‘Dt+1)

_ 9,
=AL70T (N; = NJ|(0,---,0,(D* ). ) + aﬂ—g#” (N}_y)1, 1, NI N )
0
- %6t+2 ((N;‘_l)l,-'-,kfb N;7 N;J,-) )
J
(A.13)
where the first term is independent of (n,, - - -, njy) by construction. Moreover,

recall that the protection levels used in subproblem (k,--- ,j) only depend on
(N!_})g,.. i—1, and demand j is not fully satisfied in this case, thus the alloca-
tion decisions Y as well as N; — N7, which is the capacity used in subproblem
(k,---,7), do not depend on nf. Hence, the first term in (A.13) is also indepen-

dent of n!. Similarly, for initial state N'_,, we have

Az—';_ @t+1 (N§_1 |Dt+1)

- 0 .
=056 (N = NjJ(0, -, 0, (D). ) + 50" (NIt NJ N, )
0 -
- (N1 aen NG N ).

J

(A.14)
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To complete the proof, from (A.13) and (A.14), we use the induction assumption
of ©*2 to show

0 0

%ﬁ@t+2 (N} )1 o1, NG, NG ) — 87_@” (NG )1, 1, NY NG L)
7 J
_i@t—m (N/ ) N. N . i@t-ﬂ (N/ ) N. N
_87’L+ i—1) 1, k=15 1N 5y N5y 8n<_ i—1)1, k=15 1N 5y NG ]
7 J
(A.15)
which is independent of (n?, -+ ,nl). First of all, since there is no upgrade

between classes (1,---,k — 1) and (k,---,N) in period ¢ + 1, and the PSR
sequentially satisfies demands in each class, the marginal change of n} only affects
the state of a single class in N, which is the same for both initial states Nt

and N’_,. Denote such a class as 7, then k& < r < j. Given (N/_ )1 o1

[
A

and (IN/_;)1,... x—1 have the same effective state from the previous argument, to
apply the induction assumption, we only need to show (N),;1,..; < 0 where
(N%); < 0 by assumption. Suppose to the contrary that (N%); > 0 for class
l (r <1< j). Note that initial states (N*);41..; < 0, thus class [ < i. Since
the demands in classes (i,--- ,7) should be satisfied by class [ prior to class r
by the PSR, given (N’); > 0, there is no upgrade between classes (k,---,[ —1)
and (I,---,7), i.e., the marginal change of n} should not affect the state of class

r, which is a contradiction. Hence, by applying the induction assumption to

(A.15), we have
A;;f@t+1(Nt‘Dt+l) _ A;;f@t+1(N§71’Dt+l),

which is independent of the values of (n},---,nf;). This concludes the proof.

O

A.2.3 Optimality

PROPOSITION 2.5.1 1. The PSR algorithm solves the general upgrading problem

i period t;

108



2. For a state vector N* with (nj,,--- ,n% ;) <0 and n} <0, we have

A;;—@t+1(Nt) _ A;;—@Hl(N;;_l)’ Ai_j+®t+l(Nt) _ Ai—j+@t+1(N§_l)'
In addition, they are independent of the values of (nﬁ, cemly).

Proof. In the proof, we show the two properties in Proposition 2.5.1 can be pre-
served under backward induction. The proof of period T is given in the end of this
proof.

Suppose they are true for !, we verify the two properties for ©°.
1. Optimality of the PSR algorithm

Consider initial state X! = (zy,--- ,xy) and D' = (dy,--- ,dy), for any demand
realization D* = (dy,--- ,dy) in period ¢, we next verify Y* = (y,;)yxn derived by
the PSR are optimal in period t. First, from the discussion in Chapter 2, yi =
min(dy + d, z,) (1 <k < N) in the PSR is optimal.

For upgrading decisions y;; (¢ > j) in Y, we consider an equivalent representation
of the general upgrading problem in (2.2). Let Z = (21,--- ,2x)' = Y'1, the optimal

solution W = (w;;) nxn in the following linear program is the same as Y = (y;;)nxn

in period ¢:
B 2 e
1<i<j<N
S.t. Z’UJU S Zi, Z: 1327”. 7N’ (A16)
J

Zwijgdj—i—dj, j:1,2,,N

Since the parallel allocation is optimal, z; = z; (1 < ¢ < N) in Z is optimal if
r; <d;+ (Z Furthermore, we need to show the optimality of z; for all classes i’s with
z; > d;+d;, i.e., the classes with surplus capacities after the parallel allocation. Since

the general upgrading problem is concave, we only need to examine a%@t“(N) and

_0_Qt+1
5 —O"(N), where

k3

N=X-D'-D' - Y1+ (Y)1=X'-D'—D' - Z+ (W)"1
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is the state at the beginning of period ¢ + 1.

Without loss of generality, we assume class 1 is the highest class with z; > d; + dy

and analyze the optimality of z; by cases.

1. 21 = di + czlz We only need to prove that increasing z; is suboptimal since

21>y =di + dy. Let k (k > 1) be the highest class with (N); < 0. Note that

z1 is clearly optimal if class k£ does not exist, i.e., there is no backlogged demand

in classes (1,---,N) in N.

(a)

(N)g,... k-1 = 0: When solving the protection level py;, and the allocation
decision yy;, by the PSR, (IN);.... x are the states of classes (1,--- , k). Mean-
while, the upgrading decisions within classes (k + 1,--- , N) have not been
considered, whose states are the states after the parallel allocation, i.e.,

(Xt — ﬁt — Dt>k+1’...’N. ThllS,

0 Zalk - A;k+@t+l <(N)1,...,k, (Xt — ]NDt — Dt)k-Jrl,...,N)
9 (A.17)
:O{lk - Al_k+@t+1(N) = alk + —+@t+1(N)7
02,
where the first equality is from the independence property assumption of
©'*! and the second equality follows from the fact that N changes to N +

¢(—e; + e;) when z; marginally changes to z; + €, where € > 0. Hence,

increasing z; is suboptimal.

There exists class i (1 < ¢ < k) with (N); > 0: Without loss of generality,
we assume that ¢ is the lowest class in (2,--- ,k — 1) with (N); > 0. In
this case, the PSR considers protection level p;; and ignores the potential
upgrade from class 1 to k, and we will show it is indeed optimal to do
so. Since (N);.... x are the states of classes (1,--- , k) when considering the
protection level p;, by the PSR, and N changes to N + ¢(—e; + €;) when z;
marginally changes to z; + ¢, where € > 0. We have

. )
0> ay—A e <(N)17...7,€, (X! - D' — Dt)k+17,..7N> = aik%—@@t“(N).

(3
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Moreover, because (N); > 0 and (N); > 0,
8{@”1 (N) - 31_@t+1(N) Z U; — Uy

from Lemma A.1.1.

Notice that N changes to N + ¢(—e; + €;) when z; marginally changes to

z1 + €, then
P 9 A —ot+1 —t+1
0" (N) - 0" (N)=0;0"(N) —9; " (N). (A.18)
0z, 0z;

Thus, from a;; — aq, = uy — u;, we have

0 0 0
%@H—l(N) +a1k S %@H_l(N)"‘OKlk +U1 —U; = $9t+1(N) + Qi S 0,
(A.19)

(2 7

which means increasing z; is not optimal.

2. 21 > dy+dy: Let j (4 > 1) be the lowest class with y;; > 0 in Y. Similar to the
previous case, from the PSR, (IN); .. ; are the states after performing the last
unit of upgrade yy,. In this case, N changes to N +€(e; —e;) when z; marginally

changes to z; — €, where € > 0, then

0 < ay; —Af70™ ((N)L,..,j, (X' —D'— Dt)jH,...,N) =y + %@t“(N).
(A.20)
Thus, decreasing current z; is costly.
Furthermore, for all class ¢ (1 < i < j) with z; > d; + d;, z; = x; by the PSR
algorithm. First, we only need to show decreasing these z;’s is not optimal.
When z; marginally changes to z; — €, there is a chain reaction. From (A.16),
decreasing z; by € is equivalent to reducing the upgrade y;x, by €, where k; is the
lowest class upgraded by capacity 7. Then, unmet demand k; increases by € unit,
and demand k; will be upgraded by capacity s (1 < s < i), which is the lowest
class with 25 > ds + ds. Meanwhile, ks, the lowest class of demands upgraded
by capacity s prior to changing z;, has an additional ¢ unit unmet demand,
which can be similarly analyzed as class k;. The chain reaction continues, and

N changes to N + ¢(e; — €;), i.e., the unmet demand j is increased by e unit.
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When z; marginally changes to z; — €, only unmet demand j and capacity
changed in the aforementioned chain reaction, then the objective function in
(A.16) decreases by eq;;. Meanwhile, given (N); > 0 and (IN); = 0, similar to

(A.18), we have
9,

0z

by Lemma A.1.1. Thus, from a;; — a1; = w1 — u,,

@t—l—l(N) . ai_@t—i-l(N) S Uy — U
z.

1

9 9 9
5= (N) +ay; > E@'*“(N) g — g+ oy = %@”1(N) +ay; >0,

Hence, z; = x; is optimal for all class i (1 < i < j) with z; > d; + Jz
Next, we have to prove that increasing z; itself is also suboptimal.

(a) (IN); < 0: In this case, the protection level p;; is binding in the PSR, i.e.,
the upgrade between classes 1 and j stops when the quantity of capacity
1 reaches pi;. From the definition of p;;, and the fact that N changes to
N + e(—e; + e;) when z; marginally changes to z; + €, we have
0 >a1; = A O ((N)1,. 5, (X' = D' = D)1, v )
o (A.21)
=ay; + — O (N).
1j azr ( )

From (A.20) and (A.21), we know the optimality of z;.

(b) (N); = 0: The upgrading decision y;; is bounded because there is no un-
met demand j remaining, and we do not have (A.21) directly from solving
p1;. However, similar to the case when 2, = d; + ch, increasing z; is still
suboptimal. Particularly, if there exists k (k > j) as the highest class with
(N)r < 0, and (N); = 0 for all class s (j < s < k), then we have (A.17)
that affirms the optimality of z;. On the other hand, if there exists class
i (j <i < k) with (N); > 0, then (A.19) is valid, which also proves the

optimality of z;.

To summarize, we have proved that z; is optimal. In addition, if z; > d; + d; and

class j is the lowest class with y;; > 0 in Y*, we have also shown the optimality of
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zi (1 <i<j) with z; > d; + d;. The same argument can be sequentially applied to
the rest of z,’s since (N);... ,_1 are the states of classes (1,---,s — 1) when solving
the protection levels within classes (s,---, N) in the PSR algorithm.

Therefore, the PSR algorithm solves the general upgrading problem in period t.

2. Independence property of O°

As the PSR solves the general upgrading problem in period ¢, and the independence
property of ©*! holds by Property 2 of the induction assumption, all requirements
of Lemma A.2.1 are satisfied, thus the independence property of ©! also holds.

To conclude the proof, we now consider period 7. The PSR solves the general
upgrading problem in period 7' by Lemma 2.5.1. And Lemma 2.5.2 asserts the inde-
pendence property of ©7. Therefore, we can use the backward induction and complete

the proof. 0

A.2.4 Properties of the Protection Levels

PROPOSITION 2.5.2 If initial capacity X' and demand D*,--- ,D? are integer val-
ued, there exists an integer valued optimal policy Y',--- YT derived by the PSR

algorithm.

Proof. The proof is similar to the proof of Proposition 3 in Shumsky and Zhang
(2009). OJ

PROPOSITION 2.5.3 For the same (n',--+ nt_ ) in periodt (1 <t <T), pi;j < pij+1
when i < j.

Proof. Suppose to the contrary that p;; > p; ;1 in period ¢. Let p = %, and
denote N = (nf,--- ,nl_4,p,0,--- ,0,n§+2, --+,nk;). From the concavity in Proposi-
tion 2.4.1 and the independence property in Proposition 2.5.1, we have A;Z;l@”l (N) <

i j41 given p > p; 1. Similarly, we have A0 (N) > a;; since p < py;.
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HOWGVGI‘, since Qi — QG 41 = T5 + 9g; —Tj+1 — Gj+1 and g; > 9j+1,

AT (N) = 970" (N) - 9,0 (N)

20O (N) = 90 (N) 7y =1y = A0 (N) oy =)

2055 + i — T > Qg

where the first inequality follows from Lemma A.1.2. This is a contradiction. Hence,

Appendix A.3: Multi-Horizon Model with Replenishment

PROPOSITION 2.6.1 Suppose the firm starts with an initial capacity X < X*. The
firm’s optimal replenishment policy in the multi-horizon model is a base stock policy
with the optimal base stock level X* in (2.11). Furthermore, the PSR algorithm solves

the optimal allocation decisions within each horizon.

Proof. 'We prove this proposition by induction. Let V4(X,D) (1 < k < K) denote
the expected revenue-to-go function at the beginning of the k-th horizon with capacity
X and backlogged demand D. Where possible, the index of periods in each horizon is
denoted by superscripts while subscripts denote the index of horizons. We inductively

prove the following three properties.

1. The PSR algorithm optimally solves the capacity allocation decisions in the k-th

horizon;

2. The optimal replenishment policy in the k-th horizon is a base stock policy with
the optimal base stock level X*;

3. If X < X*, V4(X, D) is affine in X with slope C and D with slope o — C.
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Suppose all properties hold in the (k+1)-th horizon. It suffices to consider capacity
X < X*. Since Vjy1(X, D) is affine in (X, D), in horizon k we have

= 5 {oax [HOVEIDD]) — X7 43V (XD, L] |

o [OVEIDED]) — X491 (X7,0) 49 C(KE™ = X) 490 - DT |

_ {max H(YT|D; DY) + (vC — h)XT+ 4 y(a — C)DT* + 4 (Vi (X7, 0) — CX*)} }
{max [HOXEID:DE) + (00 = XI5 = 0BT |49 0 (X7,0) - €0),

(A.22)

where 7y (Vp11(X*,0) — CX*) is a constant. From the proof of Proposition 2.5.1,
the PSR algorithm optimally solves the T-th period allocation decisions in the k-
th horizon, where the protection levels are based on @7+ (XT+! DT+ in (2.10).
Moreover, it is clear that ©F(X,D) is also concave in (X, D) from the proof of
Proposition 2.4.1. Inductively, for t =T —1,--- 1, we know

OL(X,D)=E {max [H(YZ]f);DZ) + @ZH(XZH?IBZH)] }

D, L Y,
is concave in (X, f)), and we can show that the PSR algorithm solves the capacity

allocation decisions for horizon k.

From the Bellman equation, we have

Vi(X, D) = max G(Z),

Z>X

where G(Z) = ©L(Z,0) + aD — C(Z — X + D). From (A.22), we have
G(2) =T1(Z;7C ~ h,y(a = C)) + (@ = C)D + C(X — 7X") + Vi1 (X", 0).

By the definition of X*, the optimal replenishment policy in the k-th horizon is a

base stock policy with optimal base stock level X*. Furthermore, for X < X*,

Vi(X, D) = I1(X*7C — h,y(a — ©)) + (a — C)D + C(X — 4X7) +1Vira (X7, 0)
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is affine in X with slope C and D with slope oo — C.
To conclude the proof, we consider the last horizon profit, Vi (X, f)) Since
0L (X,D) = E {n%%x [H(Y}Qui; D}) — hX} M+ yCX M + y(a — C)D?l} }
K K
by definition, the optimality of the PSR algorithm can be similarly proved. Mean-
while, if X < X*,

Vie(X, D) = max [H (Z;4C —h,7(a — C)) + (o — C)D + CX] ,

Z>X
so the base stock policy is optimal and Vi (X, D) is affine in X with slope C and D
with slope a— C. Therefore, all properties hold for the K-th horizon, which completes
the proof. 0

Appendix A.4: Additional Numerical Studies
A.4.1 Numerical study with N =4 and T"'=3

In Table 2.1, we consider problems with size N = 4 and T' = 3. For such a problem
size, we can use backward induction to calculate the firm’s optimal revenue, which
serves as a benchmark to evaluate the performance of the RCEC heuristics. Below
we describe the design of the numerical study in detail. The description consists of

three parts: demand patterns, economic parameters, and initial capacity.

Demand patterns

To cover a wide range of demand scenarios, we consider 13 evolution patterns for
product demand means in Table A.1. For each evolution pattern, we define vectors
ph=(ut, - pu)T(t=1,---,T), where ! is the demand mean of product i in period
t. The demand mean patterns in Table A.1 cover some typical realistic scenarios. For
instance, in pattern 4, the expected demand for high-quality products are higher than
that for low-quality products when the period is close to the end of horizon, which

corresponds to revenue management situations.
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12. Products 2 and 4 start with positive demand, while products 1 and 3

start with zero demand.

13. Products 2 and 4 start with positive demand, where demand 4 is

smaller than demand 2 in each period, and products 1 and 3 start with zero

Pattern Description Example (T = 3)
2 4 6 6
1. Product 1 demand increases, product 2 demand is flat, product 3 and 4 44 4 4
demands decrease with the same rate.
6 4 2 2
2 4 6 4
2. Product 1 demand increases, product 2 demand is flat, product 3 demand
4 4 4 3
decreases, product 4 demand decreases in half of the rate of product 3.
6 4 2 2
4 4 4 4
3. Product 1, 2, 3 and 4 demands are flat. 4 4 4 4
4 4 4 4
2 2 6 6
4. Product 1 and 2 demands increase with the same rate, product 3 and 4 444 4
demands decrease with the same rate.
6 6 2 2
5. Product 1 demand increases, product 2 demand increases in half of the 2 2 6 4
Linear rate of product 1, product 3 demand decreases, product 4 demand decreases 4 3 4 3
in half of the rate of product 3. 6 4 2 2
2 2 4 6
6. Product 1 and 2 demands increase with the same rate, product 3
4 4 4 4
demand is flat, product 4 demand decreases.
6 6 4 2
2 2 4 6
7. Product 1 demand increases, product 2 demand increases in half of the
4 3 4 4
rate of product 1, product 3 demand is flat, product 4 demand decreases.
6 4 4 2
2 2 4 4
8. Product 1 and 2 demands increase with the same rate, product 3 and 4
4 4 4 4
demands are flat.
6 6 4 4
2 2 4 4
9. Product 1 demand increases, product 2 demand increases in half of the
4 3 4 4
rate of product 1, product 3 and 4 demands are flat.
6 4 4 4
4 0 4 0
10. Products 1 and 3 start with positive demand, while products 2 and 4 0o 4 0 4
start with zero demand.
4 0 4 0
11. Products 1 and 3 start with positive demand, where demand 3 is 6 0 2 0
smaller than demand 1 in each period, and products 2 and 4 start with zero 0 6 0 2
. demand, where demand 4 is smaller than demand 2 in each period. 6 0 2 0
Alternating
0 4 0 4
4 0 4 0
0 4 0 4
0 6 0 2
6 0 2 O
0 6 0 2

demand, where demand 3 is smaller than demand 1 in each period.

Table A.1.: Demand patterns with 4 products.
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Given an evolution pattern p' (t = 1,--- ,T) for the demand means, we generate
a sample of random demands for each product in each period. Specifically, given
the demand mean p' in period ¢, we generate demand D! by using either Poisson

distribution or multivariate normal distribution with covariance matrix

0.5 0.15 0.075 0.0375
0.15 0.5 015 0.075

* 4
0.075 0.15 0.5 0.15
0.0375 0.075 0.15 0.5
and
0.5 —-0.15 —-0.075 -0.0375
—-0.15 0.5 —-0.15 -0.075 .
* '
—-0.075 —0.15 0.5 —0.15

—0.0375 —0.075 —0.15 0.5
The first covariance matrix represents positive correlation between the products, while
the second represents negative correlation between the products. For normal distri-
bution, we truncate the demand realizations at zero and round them to the nearest
integer values. By the above construction, there are total 39 = 3 13 demand scenar-

108.

Economic parameters

We also consider a wide variety of values for the economic parameters while using
the same backorder cost (g1, g2,93,94) = (1.0,0.9,0.8,0.7). Recall the upgrading
revenue is given by ay; = r; + g; — w;; instead of specifying r; and wu,;, we choose
to specify a;;, which is sufficient for the numerical study. Four different matrices
of & = (j)axa have been considered in the numerical study. The capacity costs

(c1,ca,c3,cq) are decided by ¢; = 0.3a; (i = 1,--- ,4) for each matrix.
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1. Matrix 1: The parallel revenue decreases in product class, and the upgrading

revenues are close to the parallel revenue.

16 14 12 10
0 15 13 11
0 0 14 12
0 0 0 13

2. Matrix 2: The parallel revenue decreases in product class, and the upgrading rev-
enues are decreasing in the number of levels of upgrading (e.g., 1-step upgrading

revenue is 11 and 2-step upgrading is either 7 or 8).

16 11 7 4
0 15 11 8
0 0 14 11
0 0 0 13

3. Matrix 3: The parallel revenue decreases in product class, and a5 and as4 are

higher than awg.

16 14 5 3
0 15 6 4
0 0 14 12
0 0 0 13

4. Matrix 4: The parallel revenue is constant across products, the 2-step upgrading

revenue is constant, and asg is higher than the other 1-step upgrading revenue.

16 10 9 3
0 16 15 9
0 0 16 10
0 0 0 16
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Initial capacity

When choosing the initial capacity, we start with optimal capacity level Xgcgc
using the RCEC heuristic. To ensure the robustness of the results, we also consider a
number of variants of Xgrcgc, among which some are extreme capacity scenarios. In

RCEC _.RCEC ,.RCEC ,.RCEC
Ly ) y L3 y Ly )

particular, we use Xgrcrc = ( to construct the following

five patterns of initial capacity:

1. X = AMXRgcEc

2. For each i € {1,2,3}: (X); = A(@RFC 4 zRCFC)  (X),4; = 0, (X), = AzRCEC,
Vse{1,2,3,43\ {i,i+1}

3. For each i € {2,3,4}: (X); =0, (X), = \zREC Vv s € {1,2,3,4}\ {3}

4. X = \(oRCEC 4 pRCEC ( o RCEC 4 RCEC ()

RCEC RCEC ,.RCEC RCEC

where A = {0.75, 1, 1.25}. FEach pattern corresponds to a realistic or extreme
scenario. For instance, in Pattern 2, a certain product has extremely low inventory
level while the adjacent high-quality product is abundant; in Pattern 5, the last
two products have extremely low investment while there are plenty of higher level
products. Note that in some of the patterns (e.g., Patterns 2-5), upgrading would be
frequently performed. The parameter \ is used to adjust the capacity-demand ratio
(e.g., A = 0.75 implies that the aggregate capacity level is relatively low). For each
A, there are 9 initial capacity scenarios; so there are totally 27 capacity scenarios.
To summarize, we test 39 x4 x 27 = 4212 problem instances by the above construc-

tion. They cover a wide range of possible situations that may arise in practice.

A.4.2 Numerical study with N =5 and T € {3,15,30}

This is the major numerical study in Chapter 2; it serves several purposes. First,
we test the performance of the RCEC heuristic for problems with larger sizes in

Tables 2.2 and 2.3; second, we examine the value of multi-step upgrading in Tables
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2.4 and 2.5; third, we investigate the importance of the allocation mechanism and the
capacity sizing decision in Table 2.6. To make the results comparable across different
T values, we make a couple of assumptions: (1) For each product 7, the expected total
demand throughout the sales horizon is the same for different 7" values; that is, the
sum S, pt in each demand evolution pattern p! = (ul, -+, uky) (t =1,--- ,N) is
the same for different 7" values, which is set to be 60 for each i. (2) For each parameter
combination, the capacity cost is the same for different 7’s. Below we describe the
design of the numerical study in detail. Again the description consists of three parts:

demand patterns, economic parameters, and initial capacity.

Demand patterns

Similar to the first numerical study in Section A.4.1, we consider 13 demand evo-
lution patterns in Table A.2.

Again, given an evolution pattern u' (t = 1,---,T) for the demand means, we
generate a sample of random demands for each product in each period. Specifically,
given the demand mean y! in period ¢, we generate demand D! by using either Poisson

distribution or multivariate normal distribution with a positive covariance matrix

0.5 0.15 0.12 0.09 0.06
0.15 0.5 0.15 0.12 0.09
0.12 0.15 0.05 0.15 0.12 | * p,
0.09 0.12 0.15 0.5 0.15
0.06 0.09 0.12 0.15 0.5

and a negative covariance matrix

05 -015 -0.12 —-0.09 —0.06
-0.15 05 -0.15 —-0.12 -0.09
-0.12 -0.15 0.05 —-0.15 —-0.12 | *xp .
-0.09 -0.12 -0.15 05 —0.15
-0.06 -0.09 -0.12 -0.15 0.5
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Pattern Description Example (T = 3)
4 8 8 12 12
1. Product 1 demand increases, product 2 and 3 demands are flat,
8 8 8 8 8
product 4 and 5 demands decrease with the same rate.
12 8 8 4 4
2. Product 1 demand increases, product 2 and 3 demands are flat, 4 8 8 12 8
product 4 demand decreases, product 5 demand decreases in half of 8 8 8 6
the rate of product 4. 12 8 8 4 4
8§ 8 8 8 8
3. Product 1, 2, 3, 4 and 5 demands are flat. 8 8 &8 8 8
8 8 8 8 8
4 4 4 12 12
4. Product 1, 2 and 3 demands increase with the same rate, product
8 8 8 8
4 and 5 demands decrease with the same rate.
12 12 12 4 4
5. Product 1 demand increases, product ¢ (¢ = 2,3) demand increases 4 4 4 12 8
Linear in half of the rate of product i — 1, product 4 demand decreases, 8 6 5 8 6
product 5 demand decreases in half of the rate of product 4. 12 8 6 4 4
4 4 8 12 12
6. Product 1 and 2 demands increase with the same rate, product 3
8 8 8 8 8
demand is flat, product 4 and 5 demands decrease with the same rate.
12 12 8 4 4
7. Product 1 demand increases, product 2 demand increases in half of 4 4 8 12 8
the rate of product 1, product 3 demand is flat, product 4 demand 8 6 &8 8 6
decreases, product 5 demand decreases in half of the rate of product 4. 12 8 8 4 4
4 4 8 8 8
8. Product 1 and 2 demands increase with the same rate, product 3,
8 8 8 8 8
4 and 5 demands are flat.
12 12 8 8 8
4 4 8 8 8
9. Product 1 demand increases, product 2 demand increases in half of
8 6 8 8 8
the rate of product 1, product 3, 4 and 5 demands are flat.
12 8 8 8 8
8 0 8 0 8
10. Products 1, 3 and 5 start with positive demand, while products 2
0 8 0 8 O
and 4 start with zero demand.
8 0 8 0 8
11. Products 1, 3 and 5 start with positive demand, where demand
6 0 8 0 4
i (1 = 3,5) is smaller than demand ¢ — 2 in each period, and products
0 16 0 8 O
2 and 4 start with zero demand, where demand 4 is smaller than
. 166 0 8 0 4
Alternating demand 2 in each period.
0 8 0 8 O
12. Products 2 and 4 start with positive demand, while products 1, 3
8 0 8 0 8
and 5 start with zero demand.
0 8 0 8 O
13. Products 2 and 4 start with positive demand, where demand 4 is
0 16 0 8 O
smaller than demand 2 in each period, and products 1, 3 and 5 start
16 0 8 0 4
with zero demand, where demand 4 (¢ = 3,5) is smaller than demand
0 16 0 8 O

i — 2 in each period.

Table A.2.: Demand patterns with 5 products.
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The rest of the details are the same as in the first numerical study and therefore

omitted. There are totally 3 x 13 = 39 demand scenarios.

Economic parameters

For all problem instances, we use the same backorder cost vector (g1, -+ ,g5) =
(6.0,5.7,5.4,5.1,4.8). Four different matrices of @ = («;;)5x5 have been considered.
The capacity cost (c1,---,c5) are decided by ¢; = 0.3 % ay; (i = 1,---,5) for each

matrix.

1. Matrix 1: Upgrading revenue is close to the parallel revenue.

17 15 13 11 9
0 16 14 12 10
0 0 15 13 11
0 0 0 14 12
0O 0 0 0 13

2. Matrix 2: Revenues of 1-step upgrading are identical for different classes.

17 12 8 5 3
0 16 12 9 7
0 0 15 12 10
0 0 0 14 12
0O 0 0 0 13

3. Matrix 3: aqs is much smaller than parallel revenue aq1. However, ass, ass and

ays are close to amg, aizz and ayy, respectively.

17119 7 4
0 16 14 12 9
0 0 15 13 10
0 0 0 14 11
0O 0 0 0 13
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4. Matrix 4: aqo and ays are close to parallel revenues ay; and ayy, respectively.

However, ass and a3y are much smaller than asy and ass.

17 15 10 6 4
0 16 11 7 5
0 0 15 11 9
0 0 0 14 12
0O 0 0 0 13

Initial capacity

Similar to the first numerical study, we use Xgrcgc to construct the following five

patterns of initial capacity.

1. X = MXgpene

2. Foreachi,j € {1,2,3,4,5} withi < j: (X); = A (Xgrerce)i + (Xrere);) , (X); =
07 (X)s - )\(XRCEC)SH Vse {17 27 3747 5} \ {27‘7}

3. For each i € {2,3,4,5}: (X); =0, (X)s = A(Xrcrc)s, Vs €{1,2,3,4,5}\ {i}

4. X = A ((Xrcrc)1 + (Xrere)2; 0, (Xrere)s + (Xrero)s; 0, (Xrerc)s)

5. X = A ((Xrere)1, (Xreec)2 + (Xrere)s; 0, (Xrere)s + (Xrere)s, 0),
where A = {0.7,0.9,1.0,1.1,1.3}. Again the parameter A is used to adjust the
capacity-demand ratio (e.g., A = 0.7 implies that the aggregate capacity level is
relatively low). For each A, there are 17 initial capacity scenarios; so there are totally
85 capacity scenarios.

To summarize, we test 39 x 4 x 85 = 13260 problem instances by the above con-

struction. They cover a wide range of possible situations that may arise in practice.
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A.4.3 Impact of Allocation Mechanism: Suboptimal k-Step Upgrading

We examine the profit loss of adopting suboptimal, k-step upgrading (k = 0,--- , N—
2). Given Xgcgc as the optimal initial capacity under full-step upgrading, define the
profit loss of using only k-step upgrading as

N Hrepe(Xrere) — M cpe (Xrore) « 100% k—0.123
ep Hrepc(Xrere) ’ T

where 1% no(Xrorc) is the revenue from the k-step upgrading. The statistics are
presented in Table A.3. We can see that the magnitudes of profit losses are still
generally much larger than those for Ax,, and Ax,, (given in Table 2.6).

Mean Std. Median | 90%-percentile Max.

Ao—step | 4.28559 | 4.28222 | 2.84912 9.36076 31.80136

A _gep | 1.08141 | 1.38881 | 0.45090 3.36765 7.71787
Ao_gep | 0.33484 | 0.56076 | 0.09118 1.03939 3.53501
As_siep | 0.10276 | 0.25266 | 0.00874 0.28810 1.97719

Table A.3.: Profit loss of suboptimal allocation with k-step upgrading.

Appendix A.5: Other

~

The following lemma shows the relation between N and its effective state N.

Lemma A.5.1 Suppose N = (g, -+ ,ny) is the effective state of N = (nq,- -+ ,ny),
then Zi:z ng < Zizz ns if n; > 0, and Zizz Ng > Ziﬂ ns if Njy1 > 0. Especially,

N A N
Zs:i Ns 2 Zs:i Ns.

Proof. 'The proof follows from the definition of the effective state. For any class
k (1 < k < N), when applying the greedy upgrading to N, there is no upgrade

between classes (1,--- ,k — 1) and (k,---,N) if n, > 0, and such an upgrade may
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exist if 7, < 0. Hence, Y7 _ n, < 30 _.ngif #y > 0, and Y7_ a, > S0 n, if
Nj+1 > 0. The same argument shows that Zi\; Ng > Zivzz M. O
The next proposition shows that separation can be preserved under the effective

state operation.

Proposition A.5.1 Suppose N = (fg, -+ ,ny) is the effective state of N = (ny, -+ ,ny).
For any demand realization D, class i (i < N) is the lowest class which is separable

i N — D if and only if i is the lowest class which is separable in N - D.

Proof. Suppose class i is the lowest separable class in N — D but is not separable
in N — D. Then, there exists class a k < i such that S (g —dy) > 0. First,
we must have k£ < 1; otherwise, n; > n; > d; > 0, which means class 7 is not
separable in N — D and is a contradiction. Given k < ¢, without loss of generality,
we assume k is the lowest class with Zizk(ﬁs — ds) > 0, which also implies ny >
dy, > 0 since 3., . (Rs — d) < 0. Thus, Y\, ns > >t A, by Lemma A.5.1, and
S (ne—dy) >3, (g —ds) > 0 which contradicts the assumption of class i being
separable in N — D. Hence, class ¢+ must be separable in N — D as well.

Next, we prove that ¢ is the lowest separable class in N-D. Suppose to the contrary
that class i’ > 7 is the lowest separable class in N — D, i.e., Zi/:k(ﬁs —ds) <0 for
all classes k (1 < k <i'). Then, fiyyq — dyyq > 0; otherwise, ¢/ + 1 will be the lowest
separable class. Because class i is the lowest separable class in N —D and i’ > i, there
exists class r < ¢/ such that ZZIZT(nS —dg) > 0. Given nyyq > dyy1 > 0 and Lemma
A5.1, there is 0 Ay > S ng and 37 (A, —dy) > 20 (ny —d,) > 0, which
is a contradiction since Zif:r(ﬁs —ds) < 0. Therefore, class i is the lowest separable
class in N — D.

The necessary condition can be similarly proved. This completes the proof. 0

For any demand realization D in period ¢ (1 <t <T), let N be the effective state
of N, Proposition A.5.2 gives the relation between the outcomes of applying the PSR
algorithm to initial states (N, D) and (N, D).
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Proposition A.5.2 Suppose N = (g, -+ ,ny) is the effective state of N = (nq,--- ,ny),
and the PSR algorithm solves the general upgrading problem in period t (1 < t <
T). For any demand realization D in period t, let N’ = (n},--- ,n}y) and N’ =
(nf, - ,ny) be the effective stales of the outcomes of applying the PSR algorithm to
(N, D) and (N, D), respectively. Then, N' = N’ if classes (1,--- ,N) are not sep-
arable under N — D. FEspecially, N' and N’ are the outcomes of applying the PSR
algorithm to (N, D) and (N, D) in period T.

Proof. From Proposition A.5.1, classes (1,---,N) are also not separable under
N - D.

First, we must have N > 0. Suppose to the contrary that class k& is the highest
class with nj < 0. Since N’ is the effective state of the outcome of applying the
PSR to (N, D), there is n} = --- = nj_, = 0. Note that any allocation decision is a
transfer between two classes, which is true in both the PSR and the greedy upgrading.
Thus, we have 0 > Z];:r n, > Zf:r(ns — ds) for any class r < k, where the second
inequality is strict if there is any upgrade between classes (1,--- ,r—1) and (r,--- , k)
when applying the PSR or generating the effective state. Hence, class k is separable,
which contradicts the assumption. Similarly, we know N’ > 0.

Next, we show N’ = N’. Let class k be the lowest class such that 7} # n}.
From the above argument, we have 3. n/ = S (n, — d,) if there is no upgrade
between classes (1,---,k—1) and (k,---, N) in either solving (N, D) by the PSR or
generating the effective state N’. Furthermore, such an upgrade exists only if nj, =0
by the optimality of the PSR and the definition of the greedy upgrading, in which
case N ! > SN (n, — d,). The same argument can be applied to (N, D). With

these observations, we derive contradictions for all possible cases.

L. Zivzk s = Zivzk Ms-
(a) 7}, > 0,n) > 0: For both initial states (N,D) and (N, D), there is no

upgrade between classes (1,---,k — 1) and (k,---,N) in either applying
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the PSR or generating the effective state. Moreover, n, > nj > 0 implies

that Zi\;k N = Zivzk ns by Lemma A.5.1. Thus,

which is a contradiction;

(b) nj, > nj, = 0: Similar to the previous case, since n, > n) > 0, then

Yoiy=) (g—d)=) (n,—d) < n,

which violates the assumption of class k;

(¢) nj, >nj, =0: From Lemma A.5.1, we similarly have

which is also a contradiction;

: Zi\;k Mg > Zi\;k ns. In this case, ny = 0 by the definition of the effective state
N. Since ny, > 0 from the previous discussion, there is 1, = nj = 0. Meanwhile,

nj, # nj, by the assumption of k. From nj > 0, we must have nj > nj = 0, and

N N N N
IUED VLRTAES SURTARS 9
=* s=h s=k s=k

where the first inequality is from the fact that there might be upgrade between
classes (1,--- ,k — 1) and (k,---,N) while solving (N,D) by the PSR and
generating the effective state N’. This is a contradiction since nj, > 7 and

N r N N .

Therefore, N = N’. Note that the PSR optimally solves the general upgrading

problem with protection levels being 0 in period T" by Lemma 2.5.1. Since the greedy

upgrading is equivalent to the PSR with protection levels being 0, we know N’ and

N’ are the outcomes of applying the PSR algorithm to (N,D) and (N, D) in period

T, which completes the proof. U
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Lemma A.5.2 considers a general upgrading problem with special states in period

T, which can be used to simplify the proof of Lemma 2.5.1.

Lemma A.5.2 Consider an N-class general upgrading problem with states

N = (ny,- -+ ,ny) and demand realization D in period T'. Suppose classes (1,--- , N)
are not separable based on N=D, (nig1,- -+ ,nj-1) < 0 andn; < 0. Then, Af;~0"(N|D)
and AZ;TOT(N|D) are independent of the values of (nj,--- ,ny).

Proof. Since ©T(N|D) is piecewise linear and concave (see Murty 1983), both
AF7OT(N|D) and A;70"(N|D) exist.

_'l'_'_

We focus on the proof of AU ,

and the same argument applies to A;fr. We consider
the dual form of the general upgrading problem with initial state (N, D), and let the
dual variables be (A, -+, Ay), where \; corresponds to the constraint of class i. The
dual problem is
N
min Z|ns — dg| s (A.23)

(Alv"' 7)‘N)20

s=1

S.t. As + A > Qg

s,7€{s,7/{(N—=D)s >0,(N-D), <0, 1 <s<r <N}
1. n; > 0: By Linear Programming theory, there is

i

where \* = (A],---, AY) is optimal in the dual problem (A.23).

(a) ni > d;: Given classes (1,---,N) are not separable, we have y;; > 0 for
some class k (1 < k < i). By the complementary slackness in the linear
program, A; + A7 = ag;. Assume without loss of generality that 7 + 1 is
the highest class s (i +1 < s < j — 1) with ny — ds < 0. Since it is
optimal to first use class i’s remaining capacity n; — d; to satisfy demands

from (i + 1,---,7), there is yi;;; > 0, which implies \j + A\f,; = 41

)
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By examining constraints Af + A7 > «i;, A + Al > agi1 in the dual
problem (A.23), as well as the assumption ay; + a;i11 = @i + Qg iv1, We
have Af + A5 = ay; and A;7OT(N|D) = A} + A3 — g; = a5 — g;. Note that
yi; > 0if ng —d, = 0 for all classes s (i +1 < s < j — 1), which implies
Aj A — g5 = qij — gj

(b) m; < d;: The non-separable assumption implies that there exist classes
r (r<i)and k (k <) such that y;; > 0 and yi; > 0. Thus, \j + A} = oy
and AT +A = ;. We similarly have AT+ A7 = a,; and A\f+A] = ay; by using
the constraints in (A.23) and the assumption oy; + oy = a,; + oy, Thus,

—)\;|< + )\;< = Oérj — Oy and A;S_@T(N|D) = —)\;‘< + )\;k + (077 Sl gj = Ozij — gj‘

Since O (N|D) is piecewise linear in n; and n;, then AF~0"(N|D) = ay; — g;

when n; > 0.

2. n; < 0: In this case,
ALTOT(NID) = =X + X+ gi — g5

Note that this is similar to the case when 0 < n; < d;. Hence, —A\j + A} = a,j—ay;

and AF"OT(N|D) = r; — ;.
Hence, Af;”©"(N|D) is independent of the values of (n;, - - -, ny), which concludes
the proof. O
Suppose the PSR is optimal in period ¢. Then similar to Proposition A.5.2, the
following proposition shows the relation between the outcomes of N and its effective

state N after applying the PSR given any demand realization D.

Proposition A.5.3 Suppose N = (Ry, -+ ,ny) is the effective state of N = (nq, -+ ,ny).
If the PSR algorithm solves the general upgrading problem in period t, and the protec-
tion levels in period t have the independence property. For any demand realization D,

let N' = (n),--- ,nly) and N' = (0, --- ,@y) be the outcomes of applying the PSR
algorithm to (N, D) and (N, D), respectively.
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Let k be the highest class in N’ such that (n},---,nly) > 0 and nj, > 0, where
k= N +1 if such a class does not exist in N'. k is similarly defined in N'. Then,
k =k and (N').. v = (N)g... v if classes (1,--- | N) are not separable under N—D.

Proof. We first show (N');.. v = (N')... v. Let i (k <i < N) be the lowest class

such that n} # n, > 0. There are three cases.

1. n, > n, > 0: Since capacity ¢ may be used when applying the PSR, we have

f; > 7} > 0, which implies Zi\f:l Ng = ZN -ns by Lemma A.5.1. Because n, > 0,

S$=1

there is no upgrade from classes (1,---,i — 1) to (i,- -+, N) when applying the
PSR to (N, D), and Ziv:i(ﬁs—ds) = SN A’. On the other hand, n/ > 0 implies

that there could be upgrade from classes (1,--- ,i—1) to (¢,--- , N) when solving
(N, D), thus % n/ > SN (n, — d,). From the above, we have

N N N N
o= (ng—d) =) (A —d) =) .

This is a contradiction given the assumption of class i.

2. n; > n; and n; > 0: In this case, n; > 0 implies that there is no upgrade from
classes (1,---,i — 1) to (i,---, N) when applying the PSR to (IN,D). Thus,
SN o0l = 3N (n, — d,). However, there could be upgrade between classes

(1,---,i—1) and (4,--- ,N) when generating N as well as applying the PSR to

(N, D), thus
N N N N
donf=> (ng—d) <Y (g —d) <D A, (A.24)

which is a contradiction.

3. n, =0 >n;and i > k: From (A.24), we only need to consider the case when

P =

Zivzz n;, > fo:l(ns — ds), i.e., there is upgrade from classes (1,---,i — 1) to
(¢,--+,N) when applying the PSR to (IN,D). Without loss of generality, we
assume that ¢ — 1 is the highest class that upgrades the demands in classes

(¢,--+,N) under initial state (N,D), and [ (I > i) is the lowest class being
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upgraded by capacity i — 1. Since there is no upgrade from classes (1,--- ,7—2)

to (i —1,---, N) when solving (N, D), similar to (A.24), there is

N N N N
donp= Y (ne—d)< ) (Ae—d)< YL (A.25)
s=1—1 s=1—1 s=1—1 s=1—1

Since n}, = 0 > 7} and (N');y1.. v = (N')iy1... v > 0 by assumption of class 4,
(A.25) implies n,_; > n!_; > 0. Moreover, n;_y > 0if n;_, > 0.
Next, we show that the profit can be increased by upgrading demand ¢ by ca-
pacity ¢ — 1 under (N, D), which violates the optimality assumption of the PSR.
Since n}_; > 0 and the assumption of class ¢ — 1, there is no upgrade between
classes (1,---,i—2) and (i—1,--- , N) when generating the effective state N as
well as applying the PSR to both (N, D) and (N, D). From Proposition A.5.2,
given classes (1,---,N) are not separable under N — D, the effective states of
(N’)L...,i,z are the same as those of (IN);.... ;_a.
If | = 4, from the independence property of the protection levels, p;_;; is the
same for both (N, D) and (N,D). Because 7, , > n,_, and capacity i — 1
upgrades demand i under (N, D), it is also optimal to upgrade demand i by
capacity i — 1 under (N, D).
If I > 4, we have (N/)i—l-l,---,l = (N");41.... ; by the assumption of class i. Moreover,
(N")it1.... = 0 since capacity i — 1 upgrades demand [ under initial state (N, D),
and n;_, is the remaining capacity after such upgrading. From the PSR, there
is
a1 >A 0 (N)

=A O (N1 ima, g 1,00+, 0,(N) iy )

:A;U@m((N/)L.“ 71-_A2, ni_,0,---,0, (N’)ZH,...:N) (A.26)

>rp— 1+ 0 O (N igyml 1,0, 0, (N )i N)

— 0, O (N1 i2,ml 1,0, -+, 0, (N)iga . )
= — i+ A7 O (N iyl 50,0, (N gy ),

i—1,
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where the second equality follows from the independence property of O and
the fact that the effective states of (N'); .. ;_o and (N’)l i—2 are the same, and
the last inequality is because of Lemma A.1.2.

Since a;_1; — @1y =75+ g; — 11 — gi, where g; > g, #j_; > nj_;, and O is

concave, we have

Q1 >A+_ '@t+1((N/)1,~- =29 n;_lv Oa T 70a (N/>l+1,~'~ ,N)

i—1,1

>N O (N g ima, gy = )y, 0,0, (N, ) (A27)

i—1,8 ,

A

:A;F—E,'@t+l<<N,)l,--~ =25 ﬁ;fla ﬁ’/zu 07 T 07 (N/>l+1,'" ,N)'

2

Thus, the profit can be increased by upgrading demand ¢ with capacity :—1 under
(N, D), which contradicts the optimality assumption of the PSR algorithm.

Hence, (N')g.. x = (N')i... v. Similarly, we know NVt v = (N’),;’._,’N, which

)

concludes the proof. ([l

A.5.1 Monotonicity

To prove the monotonicity result in Proposition 2.5.4, we start with a basic prop-
erty.

Under certain conditions, the following lemma states that the marginal values,
A0 (i < j) and A;7O', remain the same if capacity k (k < 4) is used to “opti-
mally” upgrade the back-logged demand 2. Note that such an upgrade can go beyond

class k as long as there is unmet demand <.

Lemma A.5.3 Suppose (fy,--+ ,n;_1) is the effective state of (ni,---,n;_1), and
there exists class k (1 < k < 1) such that ngy > 0 and ngyy = -+ = n;_1 = 0. If
(ng,---,m;) <0,6>0, andn; +6 <0 <ny — 9, then
A;;'_@t(nla e 7nN) - A?‘;’_@t(ﬁla e 7ﬁk‘—17,ﬁ’k2 - 67(); e ,0,7’1@' + 67 ni+17 e ,TLN)
(A.28)

133



and

AGFO (nr, - yny) = DGO R, - i1, A — 6,0, -+, 0,15 + 6, miy1, - ).
(A.29)

Proof. 1t is sufficient to prove the equality in (A.28). From Proposition 2.5.1,

there is
+- ot _AT-OH 5 -
A0 (ny, - ny) = ALTO (A, - 0k, 0,000, 0,m, 0 i),

Thus, for any demand realization D in period ¢, we use induction to show

A;‘gi@t(ﬁla"' 7ﬁk707"' Joania"' 7nN|D)
(A.30)
:Azgi(at(ﬁla"' 7ﬁk717ﬁk _5707'“ 707ni +67 Nit1, ,TLN’D)

under the conditions given in Lemma A.5.3. To simplify our notations, let

N:(ﬁh... g, 0,00 ,0,my, 0 - ’nN)

N = (n1,~~ 7nk717nk_5707"' 707ni+57ni+17”' ,TLN).

In period T, let 7* (1 < r* < k) be the lowest class such that n; + Z];:T* Ng >
Zizr* ds, i.e., r* is the lowest class that satisfies the last unit of demand ¢. We analyze
(A.30) based on following cases.

1. r* does not exist: Then n; + Z’;:r ng < ZZZT ds and n; — 0 + ZI;:T ng < —0 +

S d, for all class 7 (1 < r < k). After applying the PSR, there is unmet
demand i in both (N, D) and (N, D). Thus, given (n;y, -+ ,n;) < 0, we have

Af7O(N[D) = Af"0(N|D) = g; — g;.

2. 7* does exist: For both (N,D) and (N,D), since n; — 6 + Z];:r* Ng > —0 +
Zi ds, the last unit of demand ¢ is fulfilled by capacity r*. And the states

of classes (r*,--- i) after the last unit of demand i being satisfied are (n; +
S e =Y. ds,0,---,0). Hence,

+-aT +- T (N O AT R O AT R
A 7O (N|D) = Aj;70° (N|D) = g; — oy + =507 (N|D) — ——06" (N|D),
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where N = (g, -+, i1, 13 + Z];:T* flg — Zizr* ds,0,++ 0,41, - ,ny) and
D = (D)1, ;+-1,0, -+, 0, (D)is1.. v)-
Hence, (A.30) holds in period T
In period t < T, we apply the PSR algorithm to the general upgrading problem
with initial states (N,D) and (N, D), and denote N’ and N’ as the corresponding

outcomes. We examine (A.30) based on the states of class i in N’ and N’.

1. (N); = (N'); = 0: From the above analysis, the last unit of demand i is satisfied
by class 7* in both (N,D) and (N, D), and we assume r* = k without loss of
generality. Hence,

A0 N|D) = A ©'(N|D) = g; — oui + %@t(Nuf)) — i_
on on;

J

o'(N|D),

where N = (fg, -+, fp_y, ni + My — Zizkds,o,--- .0, 7441, ,ny) and D =
((D)l,m,k—l) 07 o 707 (D)’i-‘rl,m,N)'
2. (N); < 0 and (N’); < 0: If there is no class 7* (1 < r* < k) such that

ni—l—zlzzr* Ng > Zi:T* ds, demand 7 and j will never be satisfied in the remaining

periods for both (N, D) and (N, D), which means
AfTO'(NID) = (T -t + 1)(g: — g;) = Af; ©'(N|D).

Hence, we only need to consider the case when class r* does exist. In this case,
we assume r* = k without loss of generality. From Proposition 2.5.1, since
(N'); < 0 and (N’); < 0, M P;; will not affect the optimal allocation decisions in
period ¢ under both (N, D) and (N, D). Thus,

ALTONNID) =g; — g; + %@t“( ) — ai@t“(N’),
n.
5 af (A.31)
A{rf@t N D) = ;— @t+1 _@t+1 N/ )
5 e(ND) =g a+<>an;<>
By the definition of class k, there is no upgrade between classes (1,--- ,k—1) and

(k,---,N) when applying the PSR under both (N, D) and (N, D); otherwise,

all capacity k should have been depleted before performing the aforementioned

135



upgrade, which means there is no unmet demand 7. Since the initial states of
classes (1,--- ,k — 1) are the same, the effective states of classes (1,---  k —1)
in N’ are the same as those in N’. Note that (N i1, = (N’)HL...J = (Niy1 —
diz1,-+-,n; —d;) <0 and n; +ny — Zz:k ds > 0 by assumption. Applying the
induction assumption, we have

9 S/ 9 S
aF@t+1 (N ) . an_‘_@z‘%l (N )

i J

ZA;;_@H_I ((N,)l’... k—1,M + Ny + o — Z ds, 0, cee ,0, —5, (N/)H_l’... ,N)
s=k
()

- (A.32)
:A$_6t+l Lo k=1, T + 7y + o — Z d87 07 T 707 _57 (N/)iJrl,“- ,N)
s=k
0 - 0 _
:_@t-‘rl Nl . _@t-‘rl N/

where 0 < 0 < —max ((N’ )i, (N )l) and the second equality follows from Propo-
sition 2.5.1. This is a contradiction. Hence, A}, 0/(N|D) = A} ©!(N|D) from
(A.31) and (A.32).

. (N"); = 0 and (N); < 0: In this case, there exists a class r*, which can be
assumed as r* = k without loss of generality. Moreover, the last unit of demand

i is upgraded by capacity k when the PSR solves (N, D).

Given (N'); < 0, we must have (N');, > (N); > 0 since the total unmet demand
after parallel allocation in classes (k,--- i) is the same for both (N,D) and
(N, D). When the last unit of demand i is upgraded by capacity k& in (N, D),
from the PSR, the upgrading decisions between classes (1,--- ,k — 1) and (i +
1,---,N) have not been considered yet. At that moment, the effective state
of classes (1,---,k — 1) in (N, D) is the same as that in N’ because there is
also no upgrade between classes (1,--- ,k — 1) and (k,--- ,N) in (N, D) when
applying the PSR. Hence, the protection levels between class k£ and the lower
classes are the same for both (N, D) and (N, D) from Proposition 2.5.1. Let
h (k < h <) be the highest class with (N’), < 0. Similar to (A.26) and (A.27)
in the proof of Proposition A.5.3, we can show that the profit from solving (N, D)
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can be increased by upgrading demand h with capacity k. This contradicts the

optimality of the PSR. Hence, this case cannot exist.

4. (N'); < 0 and (N’); = 0: Similar to the previous case, this would lead to a

contradiction.

Therefore, (A.30) holds for any demand realization D in period ¢, and this completes
the induction proof. O
The following lemma shows that the protection level p;; (1 <1 < j < N) in period
t — 1 is decreasing in the states of classes (1,---,,7 — 1) if the same monotonicity

holds in period t.

Lemma A.5.4 Consider an N-class upgrading problem in period t (1 <t <T') with

(nit1, -+ ,n;) <0. Let N =N+ ce,, where 1 <r < i and ¢ > 0. Then,
— A\t +—At/ N\ —+Qt - t I\
AFOUN) > A OUN),  AFOUN) 2 ATOUN)  (A33)
if the same inequality holds for O+,

Proof. To prove (A.33), it is sufficient to show

O'(N,;) — ©/(N) > ©'(N,;) — ©(N), (A.34)
where
N’Lj = (nh ey M1, Ny + ]-ani-‘rl? M1, Ny — 17nj+17 e 7TLN),
N = (nh M1, Ny + 17nr+17 to 7nN)7
Nij = (nla ey N1, Ny + 17 N1yt 3 M—1, 1y + 17ni+17 T 7nj717nj - 17 anrla e 7nN)'
In each period ¢, given any demand realization D = (dy, -+ ,dy), we next show
A = @t(Nij|D) — @t(N|D) > @t(NZﬂD) — @t(N|D) = A, (A.35)

which proves (A.34).
To compare A and A, we consider upgrading decisions in period ¢. Denote R as

the resulting states of classes (1,---, N) after applying the PSR under initial state
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(N, D), let h be the highest capacity class which upgrades the demand in classes
(7,---,N), and [ is the lowest demand class that is upgraded by classes (1,--- ,1).
By the definition of classes h and [, we have h <[, and h = [ only if h =i and [ = 1.
From the PSR algorithm, there is neither unmet demand nor remaining capacity
between classes h and [ in R, i.e. (R)ps1..,-1 = 0. R, h and [ are similarly defined
under initial state (N, D).

For any classes 1 < k < s < N in period t, the protection level py, defined in (2.8)
are decreasing in (nq,- -+ ,ng_1) since (A.33) is true for ©'"!, thus upgrade is more
likely to happen under initial state (N, D) rather than (N, D), i.e., [ <.

Switching from N (N) to N;; (N;;), we not only change the current revenues in

period ¢, but also the result R (R), which is the initial states in period ¢ 4+ 1. Denote
R’ and R’ as the outcomes after applying the PSR under (N;;, D) and (N,;, D),
respectively. Then,

A =6+ O"(R) — O"(R), A =6+ O"(R) — O"(R),
where § and & are the corresponding differences of the current period revenues in
period ¢t under (N, D) and (N, D), respectively.

When the initial states change from N to N;;, there are four cases which differ
in the allocation decisions in period ¢t. Note that the analogy applies when initial
states change form N to N;;. For simplicity, we assume without loss of generality
that (R);41 < 0.

Case 1: An extra unit of demand [ is satisfied when [ < j.
Case 2: An extra unit of capacity h is passed along to period t + 1.
Case 3: An extra unit of demand [ + 1 is satisfied when [ + 1 < j.
Case 4: An extra unit of demand j is satisfied if [ > j.
Here, we explain the above cases in detail by recalling the “chain reaction” described

in the proof of Proposition 2.5.1.

Case 1: There is unmet demand [ in R in this case. Note that capacity h is the

highest class that upgrades demand [ under (N, D). And the upgrade between
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classes h and [ is bounded because either there is no capacity h remaining or
the protection level py; is reached. When the initial state changes from N to

N;;, from the chain reaction, there is an additional unit of capacity h which will

7R
upgrade the remaining demand [.
Case 2: In this case, class [ demand has been fully satisfied in R; otherwise, the

analysis of Case 1 gives a contradiction.
Case 3: If[+1 < j, similar to Case 1, it is possible that an additional unit of demand

[ + 1 is upgraded by capacity h under (N;;, D), in which case all demand [ has
been satisfied in R.

Case 4: Suppose that k; is the highest class that upgrades demand j under (N, D).
Because increasing n; simultaneously decreases n; by the same amount, there
will be an additional unit of both capacity k; and unmet demand j from the chain
reaction. From the PSR, it is optimal to upgrade such an additional demand j

by capacity k;, and the outcome R’ = R in this case.

To compare A and A, we start with Case 4, where [ > j and R’ = R from the
above discussion.

1. n; < 0: Suppose the last unit of demand i is upgraded by class k;, then A =
9i — G5 — Qi + Qj = T5 — 143

2. 0 < n; < d;: Similar to the previous case, we have A = —g; — ag,; + ou,j =
ry =T — Gi;

3. m; > d;: Given the chain reaction, the overall effect is equivalent to upgrading
demand j with capacity ¢. Then, A = —g; + o;; = r; — ;.

To summarize, if [ > j, we have

¢

Tj — T, lf n; < O
A=Qr—ri—g, #0<n <d; (A.36)

\

Note that (A.36) also holds for A if [ > j. Therefore, A = A when j <1 <.
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Next, we compare A and A when both [ < j and [ < j. We categorize different

situations based on Case 1, Case 2 and Case 3 as follows:

1. Case 1 for both N and N: Notice that class [ here is similar to class j in (A.36)

in Case 4. Then, we have

(

Gi — G5+ — Qs = g1 — g5 — T + 1, if n;, <0
0= —gi+on—ni=—gi—gi+g—ri+r, if0<n <d (A.37)
—gj + 41, if n; Z di,
\
and
4
9i— 9+ QpT—Qpi =91 —9g; — i T if n; <0
0= —gjtopr— Qg =—9; — g +gr—ri+r, i 0<n; <d; (A.38)

—9gj + AT, if n; > dz
\

Thus, 6 =6 =71+ g — 17 — gp.

Furthermore, R’ = jo by the assumption of this case. We next show

@tJrl(R/) o @t+1 (R) — @t+1 (Rl_j> o @tJrl(R) — (__)t+1 (Nl_j) _ @tJrl (N) <A39)

From the assumption, there is no upgrade between classes (1,---,h — 1) and
(h,---,N) when applying the PSR under (N, D), whose result is R. Thus, the
effective states of classes (1,---,h — 1) in R are the same as those in N by
Proposition A.5.2. Moreover, note that h is the highest class upgrading demand
| by assumption. Without loss of generality, we assume h is also the lowest
class upgrading demand [, then the effective state of classes (h,---,l — 1) in
N is ((R); + 93,0, - ,0), where y;; is the upgrade between classes h and [
under initial state (N, D). Thus, classes h and [ correspond to classes k and i

in Lemma A.5.3, which proves (A.39).

Similarly, since R" = Ry; in this case, there is
O (R)) — 0" (R) = 0" (Ry;) — ©(R) = O (N;) — ©'TH(N). (A.40)
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Moreover,
@t—&-l (R/) . @t—H (R) _ @t—i-l(Nlj) . @t—H (N) 2 @t—H (Nlj> - @t—i—l(N) <A41)

from the induction assumption.
To complete the proof in this case, from Lemma A.1.2 and the fact that [ < [,
there is

O (Ny) — 0 (Ny;) > 1y —m,
which implies A — A = 6§ — 0 + 77— 7, by (A.39) and (A.41). Since § — =
r1 4+ g —r;— g by (A.37) and (A.38), we have A — A = g — g; > 0.
In the remaining cases, we apply similar arguments to prove (A.35). For sim-

plicity, we will omit some details and only present the primary results.

. Case 2 for both N and N: We have

;

gi—gi+m+g—ri—g)—au=—g—ri+tuy ifn; <0
0=90—gi+(n+g—ri—g)—amw=—g —gi—ritun, if0<n;<d

—g; + Qq — o = —gj — Wi + Up, if n; > d;

\

(A.42)

and

(

Gi—g;+(rr+9r—1i— gi) — apr = —g; — i + ug, if n; <0

(o0l
I

—gi+(ri+g—ri—g)—apg=—g,—g —ri+u if0<n <d;

—9j t Qur — Qpp = —gj = Ui + Up, if n; > d;.
\
(A.43)

Note that § — & = uy, — uj, in all cases.

(a) [ = I: From the assumption, all backlogged demands in classes (4, ,1),
which are the same for both initial states (N,D) and (N, D), have been
satisfied in period t. Meanwhile, D is the same for both initial states in
period t. Thus, the total demands satisfied are the same for both (N, D)
and (N,D), and we have h=h >ror h< h<r.
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By assumption, R’ = Ry,; and R/ = R,;j in this case, then

0™ (R)) -0 (R) = 0" (Ry;) — 0" (R), (A4d)
@t-i-l (Rl) . @t-i-l (R) — @t—i—l(th) _ @t-i-l (R)

Moreover, we define R as follows:

. R+e, ifr<h
R —

R+ (ST if r > h.
Note that R = R from the definition. If r < h, given (R)pt1, jo1 =

(R/)thl,---,jfl S 0, we have
O (Ry;) — O (R) > 6" (Ry;) — 0T (R) (A.45)

from the induction assumption. On the other hand, if » > h, (A.45) still
holds because of the concavity in Proposition 2.4.1.

Since R = R and h < h, there is O (Ry,;) — O (Ry;) > up — up, by
Lemma A.1.1. Therefore, from (A.44) and (A.45), we have

A—A>5-5+0""(Ry) — 0" (Ry)) >0,

where § — 0 = uy, — uy, by (A.42) and (A.43).

| < I: From the above discussion of Case 2, R’ has one more unit of capacity
h than R after the chain reaction. Note that class h would have upgraded
demand [ if there exists unmet demand [ under R/, which implies that the

expected value of such a unit of capacity h is smaller than a;;. Thus,
®t+1 (R/) - ®t+1 (R) — @t+1 (Rﬁj) . @t+1(R)
—6"1(Ry,) — O (Ry) + 07 (Ry) — O (R)  (A46)
<ap+ O (Ry;) — 07 (Ryy),

Moreover, similar to (A.39), we can apply Lemma A.5.3 to (A.46) as (R);. ...
0, then
O (Ry,) — O (Ryy) = 0 (Np;) — 07H(N)
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and

O (R/) — ©"(R) < aj; + @Hl(Ngj) — O"(N). (A.47)
For initial state (N, D), since [ < [ and (R);41 < 0, after the chain reaction,
there is an additional unit of capacity A in R’ which can be used to upgrade
demand [+1. However, upgrading demand [+ 1 by capacity h is not optimal
under R/, i.e., the expected value of such a unit of capacity A is higher than
Op14+1- Then,

@t+1 (Rl> . @t+1 (R) — @t+1 (th) o @t+1 (R)

:@H—l (th) _ @t-i—l (Rh,l—i-l) + @H—l(Rh,l—H) _ @t—‘rl(R) <A48)

>api1 + O (Ryy) — O (Ra).
From the definition of R and the induction assumption, we have

O (Ry;) — O (Riu1) > O (Ryy) — O (Ryiga)

because (R)42,.. j—1 = (R)i42,... j—1 < 0. Moreover, (R)p11,..; = (R)py1,.. 1 =
0 by the assumption of this case, from Lemma A.5.3, we similarly have
O™ (Ryy) — O (Rip1) = O (Nypy ;) — ©F(N).
Thus,
O R)) — 0" (R) > apypr + O (Niyy ) — OH(N). (A.49)

Given | < [, we have O (N4 ;) — O (Ny;) > 17 — 41 from Lemma
A.1.2. Since § — 6 = uy, — uy, by (A.42) and (A.43), (A.47) and (A.49) imply
that A > A as gi.1 > gy

. Case 3 for both N and N: Since | < [, the same proof of “Case 1 for both N
and N” can be applied.

. Case 1 for N and Case 2 for N: Note that (A.41) and (A.47) still hold, mean-
while, § and 6 are given in (A.37) and (A.43), respectively. We have

S—O+ap)=n+g—ri—g
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and
) (O (R) - 6 (R)
= (6" (Ry)) — O (R)) — (0" (Ry) — O (R))
> (0" (Nyy) — ©(N)) — (o + O (Ny) — O (N))
)

Given [ < [, ©1(Ny;) — ©(Ny;) > r; — r; by Lemma A.1.2. Then, A > A
since g; > gj.

. Case 1 for N and Case 3 for N: Note that [ <[ < [+ 1, the same proof of “Case
1 for both N and N” can be applied.

. Case 2 for N and Case 1 for N: In this case, class [ in (N, D) still has unmet
demand while demand [ is fully satisfied in (N, D) by assumption. From the in-
duction assumption, upgrade is more likely to happen under initial state (N, D),

thus [ < .
Given that (A.38, A.39, A.42, A.49) all hold, there is
(0 +apit1) — 0 =711+ g1 — 17— Gi-
Since [ +1 <,
(@H—l R/ @H—l(R)) . (@t+1(R/) o @t-{—l(R))
( t+1 @H—l( )) o (@t+1(RZj) . @t—f—l(R))
> (angpr + O (Nip ;) — 0F1(N)) — (07H(Ng;) — ©7H(N))

V

Z Q141 T 77— T4t
by Lemma A.1.2. Then, A > A since gi11 > g;.

. Case 2 for N and Case 3 for N: Note that [ <[ < [+ 1, the same proof of “Case
2 for N and Case 1 for N” can be applied.

. Case 3 for N and Case 1 for N: To apply the same proof of “Case 1 for both N
and N7, we only need to show [ + 1 < [. Suppose to the contrary that [ +1 > [,
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then [ > [. Note that upgrade is more likely to happen under initial state (N, D)
by assumption. Recall the discussions about Case 1 and Case 3, there is unmet
demand [ remaining in R/, but all demand [ has been satisfied in R. This is a

contradiction.

9. Case 3 for N and Case 2 for N: To apply the same proof of “Case 1 for N and
Case 2 for N7, we need to show [ + 1 < [. Similar to the above discussion, we
suppose [ + 1 > [. Note that all demand [ has been satisfied in R and some
of the lower class demand [ + 1 is also satisfied in R’. Meanwhile, the demand

lower than class [ is not upgraded under both R and R’. This is contradiction.

To complete this proof, we need to consider the case when [ < j and [ > j, where

[ > j means R’ = R and (A.36) is true.
1. Case 1 for N: From (A.40),
O (Ry;) — O (R) > 1; — 7y
by Lemma A.1.2. Since A is given in (A.36), we have A > A from ¢ in (A.37).
2. Case 2 for N: From (A.48) and the fact [ + 1 < j, there is
O (Ry;) — O (Ryyp1) = 15 — 11

by Lemma A.1.2. With A in (A.36) and § in (A.42), we have & + ap 41 + 75 +
gi —Ti41 — Gi+1 = A. Hence, A > A.
3. Case 3 for N: Note that [+ 1 < j in this case. Then, the same proof of “Case 1

for N” can be applied.

This completes the proof. 0
The next lemma states that the protection level p;; (1 < ¢ < j < N) in period

T — 1 decease in the states of classes (1,---,i —1).

Lemma A.5.5 Consider an N-class upgrading problem in period T with (n;4q1,- -+ ,n;)

0. Let N =N +ee,, where 1 <r < i and e > 0. Then,
-aT —aT (N —+ T 4 AT (N
A;; ©"(N) ZA;’; ©" (N), Aij+@ (N) > Aif@ (N).
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Proof. Following the notations in the proof of Lemma A.5.4, in this proof we
only need to consider Case 1, Case 3 and Case 4 for ©7 since the additional unit of
capacity h (h) will not be passed to the next period. Note that A = § and A = §
since ©T*! = (. Also, the protection levels are zero in period 7.

Recall the similarity of Case 1 and Case 3. In the proof of Lemma A.5.4, we have
shown that { +1 < [ if “Case 3 for N and Case 1 for N”. Therefore, we only have

three different cases in period T

IN

1. j <1 <1I: Since (A.36) still holds, we have A = A.
2. 1 << j: From (A.37) and (A.38), there is A — A =1+ g, — r; — g; > 0 since
r; > rrand g; > gg.
3. 1< j <I: From (A.36) and (A.37), we have A — A =r; + g, —r; — g; > 0 since
rp > r; and g > gj.
Hence, the desired result holds in period T for any demand realization, which
completes the proof. O

With the previous two lemmas, we can prove the monotonicity result.

PROPOSITION 2.5.4 The optimal protection level p;; (1 < i < j < N) in period

t (1<t<T) are decreasing in (n},--- nt_,).

Proof.  Given the definition of the protection level in (2.8), this proposition can

be inductively proved using Lemmas A.5.4 and A.5.5. U
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Appendix B
Appendices: Upgrading, Product Differentiation, and

Heterogeneous Consumers
Appendix B.1: Partition of Region R

The region R = {(p1,p2) : 0<p1 <q1, 0 <ps < g+ 6} is decomposed into sub-
regions R; (1 = 1,2, 3) as follows:
Ry ={(p1,p2) ;1 <po+@1—q@—0}NR
Ry ={(p,p2) P2+ 1 —2 =0 <p1 <pa+ @1 — @} NR (B.1)
Rz ={(p1,p2) | p1 > p2 + @1 — @} NR.

And R; and Ry are further decomposed into Ry; (i = 1,2,3), Ry; (i = 1,2), where

Ri1 ={(p1,p2) | b > ﬂ, p<pe+q¢—q-—90}NR,
P2 q2
Rz ={(p1,p2) | q2qu5 < z—: < %, P <prt+q—q—0}NR,
D1 1
Rz = , —<—m < —q—0}NR, B.2
13 {(plpz)!p2 q2+5p1_pz+ql g — 0} (B.2)
Ro1 ={(p1,p2) | % > %, Pt —q—0<p <p+q—q¢@}NR,
2 2
y4 qQ1
Raoy ={(p1,p2) | p_ < q—7p2+91 —@—0<p <p+qa—q}NR
2 2

Appendix B.2: Proofs

LEMMA 3.3.1 The objective function m(p1,p2) is continuous in R. Moreover, (p1, p2)
is continuously differentiable and jointly concave in (p1,p2) in R; (i =1,2,3), respec-

tively.
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Proof.  First, for sub-regions Ry; (i = 1,2,3), Ry; (i = 1,2) and Rg3, we define
7(p1, p2) = mij(p1, p2) if (p1,p2) € Ryj. Specifically,

p1—p —p
m11(p1, p2) =p1 <7" (1 - #> +(1—r) (1 — —2))
G —q—0 q1 — 42
D1 — D2 D2 b1 — D2 D2
+ r — +1l-r)—===]),
p2< (Q1—Q2—5 Q2+5) ( )(Q1—Q2 Q2>)
b1 — P2 p1 P1 — D2 b2
s , = r{l—-———|+(1—-—r)|(1—— +r — ,
12(p1 pQ) p1(< 611—612—5> ( >( Q1)) p2<91—Q2—5 Q2+5>
m3(p1, p2) =p1 <1 — ]2> ;

q1

P1— D2 Do D= P
s ; =(1-—r 1-— + (1 — S (l—y P |
21(p1, p2) =( )p1 ( 0 _q2) P2 < ( - +5> ( ) (ql — q2)>
m22(p1, p2) =(1 = 7)ps (1—&) +7ps <1— b2 )

q1 g2+ 0

s on (132 00 (2)

Note that all of the above functions are quadratic in (py,p2), and it is easy to ver-

(B.3)

ify that they are continuously differentiable and jointly concave in (pi, ps) in their
respective domains.

From the definition of 7 (py, ps) in (B.3), to prove the continuity of 7(p1,p2) in R,
it is straightforward to compare the values on the boundaries which separate two

different regions, and the proof is omitted.
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To conclude the proof, it is easy to show the following relations

(57T11(P17P2) _ 37?12(1?1,]?2)) —0
8p1 apl ng—;pz ’
(87r11(p17p2) _ 8712(171,172)) —0
Op2 Opa p2=g—fp1 ’

37?12(]?1,]02) 67T13(P17P2) o
o o ) a =0,

P1 P1 P1= 52

<37le(p1,p2) _ 87r13(p1,p2)> —0
Op2 Opa p2= quJlrépl ’
(37@1(]91;]92) _ 87r22(p1,p2)) —0
apl apl p1=%p2 ’
(37@1(]91;]92) _ 87r22(p1,p2)) —0
Op> Op P2=32p1 ’

which imply the continuously differentiability of 7(py, pe) with respect to (pi,p2) in
R, (i=123) 0
PrOPOSITION 3.3.1 Consider x1 < % The firm’s optimal solution is determined by
x1 and the thresholds k7 (j = 1,--- ,6) defined in (3.4). Specifically,

Case 1. If k* < k2, then

p

Ry, if z1 € (0,k');

(p1,p3) € R, if € (k' K?);

Ryo, Zfl’l € (k}27 %)

\

Case 2. If k' > k?, k3 > k* and k® > 0: there exists a threshold k € [k*, k3], then
Roi, if 21 € (0,k];

).

Case 3. If k' > k%, k* > k* and kS < 0: there exists a threshold k € [0V k®, k*], then

(

(p1,p5) € )
R127 fol S <k7

N =

R217 fol € (Oa k]a

(p1,13) € 1 Roy, if 21 € (l?;,k‘l];

ng, Zfl’l S (k’4, %)
\
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Case 4. If k' > k? and k® < k*: there exists a threshold k € [k°, k%], then
(

R217 fol € (OJ l_ﬁ]u

(p?p;) S R227 fol € (Eakﬂ?

\R127 if xy € (K, 3).

Proof. We first consider the optimal solution in each sub-regions R; (i = 1,2, 3)
without the capacity constraint z; and show that the global unconstrained optimum is
an interior point in sub-region R;. From Lemma 3.3.1, the objective function 7 (p;, p2)
is jointly concave in each sub-regions and continuous in R, the global optimum is in
R, if

1. The optimum in Rj is on the boundary between Ry and Rg;

2. The optimum in Ry is on the boundary between R; and Ry;

3. The optimum in R, is an interior solution.

Starting with sub-region R3, note that m3(p1, p2) only depends on py and d; (p1, p2) =

0 which clearly satisfies the capacity constraint. From the concavity property, the op-

q2(q2+9)

timal py = 5ot (1=175) " Without loss of generality, let p; = ¢; — 2(a2+(1221)0) o}y that

2(g2+(1-7)9)
the optimal solution is on boundary p; = ps + ¢1 — ¢2, which is between sub-regions
R, and Rs.

Next, we consider sub-region Ry by sequentially examining sub-regions Ry; and
Ry. Since the objective function e (p1,p2) is jointly concave, we consider the fol-

lowing solution

(i gord @@ +9)
2 2+ (-9 7 2@+ (1-r))

which satisfies the first-order condition in Ry;. However, plugging the above solution,

p1 =

we have
VA _7"5(Q2 —q1)

P2 @ @ep+o)
Since 1 (p1, p2) is jointly concave in (pg,ps), the optimum in sub-region Ry is on

< 0.

P = %pz. Similarly, the first-order condition in Roy gives the following solution

T Bkl
P1 27 D2 9 )
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which contradicts the assumption qfi;ff 5 > 1in Ry and implies the optimum in

sub-region Ry is on p; = pa +¢q; — g2 — 0. Since 7T21(p1,p2) = T22 (plapQ) onp; = Z—;pm

the optimum of sub-region Ry is on the boundary p; = ps + ¢1 — g2 — 9, which is
between R; and Rs.

Last, since the objective function is continuous and jointly concave in sub-region
R, we only need to show that there exists an interior solution in sub-region R; that

satisfies the first-order condition. The first-order condition of m5(p1, p2) in sub-region

@ g2t0
27 2

), which is on the boundary p; = q2qu5p2.

R;2 gives the solution (p1,p2) = (
And the above solution also satisfies the first-order condition of m3(p1, p2) in sub-

a1 ge+d

L, 922) is the optimum in

region Ry3. Therefore, the interior solution (p;,p2) = (
sub-region R.

Because the objective function m(p;,ps) is continuous in region R, the above ar-
gument implies that (pi,p2) = (%, @) is the global optimum without the capacity

constraint, where the demand d;(p1,p2) = %, dy(p1,p2) = 0 and the unconstrained

q

optimal profit is %

Now, we consider the impact of the capacity constraint x;. When z; < %, the global

a1 ge+d

L, #22) is not achievable. From the concavity of

unconstrained optimum (py, pa) = (
Lemma 3.3.1, the optimal solution in (3.3) is on the boundary where d;(p1,p2) = 2.

For each sub-region R;; ((¢,7) = (1,1), (1,2), (1,3), (2,1), (2,2)), let p1 = hy;j(p2)
satisfy dy(hij(p2),p2) = x1, we define Fj;(p2) = m;j(hij(p2),p2), each of which is
concave in py from Lemma 3.3.1. Let p; satisty hoi(ps) = Lp;, p3 satisfy o (p3) =

¢ — 2 — 0+ p3, p3 satisty hua(p3) = L5p3, and p; satisfy hii(py) = £p5. From the

definition, we have p; < p3 < p3. Furthermore, hoi(py) = hao(pz) = Lp3, hao(p3) =

hi2(p3) = @1 — g2 — 0 +p3, Tna(p3) = hua(p3) = qijr5p3, and h1(ps) = haa(ps) = Z—;pé-
In other words, the curve in which d;i(pi,ps) = x1 is continuous across adjacent

sub-regions.
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Recall that

2 Ly 0 rqi(qr — (g2 +0)(1 — 1))
2 G —q—9 (g2 + (1 —1)0) ’
1 (1 —=7)(g+ (1-2r)d)
2w+ (L—1)9)

o (ero-r)
2q, ’

5 (@—0)(1—r)
"= 2¢2 ’

kS = 411(% +6) <Q2(1 —7) (q2 +6

a2
o)+ — 2 ).
@ @ ) g2+ (1—=7)o )
Specifically, we give the definition of each k* (i =1,--- ,6):

1. k': we have F1;(0) < ¢, — g2 — ¢ if and only if z; > k!, i.e., the sub-region Ry,

is infeasible if and only if z; < k';

2. k% let pl satisfy %Fn(pg) |po=p,= 0 and pj satisfy B%ZFlg(pQ) |po=py= 0, We
have Fi;(py) > Fia(ph) if and only if z; < k%

3. k*: we have (%Fgl(pg) |papy> 0 if and only if 21 > k?;
4. k*: we have %FQQ(pQ) |papz> 0 if and only if 21 > k4

5. k5 we have =2~ Fhy(ps) |pa—py > 0 if and only if 2, > kS

0
Op2
6. kS: let pl satisfy %FQI(})Q) |po=p,= 0 and py satisfy %Fgg(pg) |po=py= 0, then

kS = (Far(ph) — Foa(ph)) |uy e -

From the definition, it can be shown that:

1. k3 > k° since

s .5 (1 —7)*(q2 +9)
g kj_Q%@r+ﬂ—rﬁ)

2. k* > k5. Otherwise, consider k* < x; < k®, we have %Fgg(m)

> 0;

\p2:p§> 0 and
%Fgg(pg) |p2:pé< 0, which is a contradiction because Fyy(p2) is concave in py

and p; < p3;
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Therefore, there is either k° < k* < k3 or k® < k3 < k* for all k! and k2. Furthermore,
we only need to consider the constrained solutions in sub-regions Ri1, Ri2, Ra1, and
Rao. This is because Fyz is fixed in py, which implies Fi3(p3) = Fi2(p3) since the
objective function 7 (pq, p2) is continuous in region R.

Next, we analyze each case as follows.
Case 1. If k' < k% we have k* < I from the definition.

(a) If 2y € [k?, 3): since 21 > k', the optimal solution lies on either Fi;(ps)
or Fia(py). Furthermore, let p) be the solution of hyy(p2) = Z—;pg, which
is the same as the solution of his(pe) = Z—;pz. There is

0 0
a_pQFll |p2:p’2< 0, a_szm ‘p2:pl2> 0,

which implies the first-order condition can be satisfied for both Fi;(ps)
and Fio(p2). From the definition of k2, the optimum is in sub-region R,

where

(p}pl) = (Ch((l 1)1 —q—0) +57(q2+0)) ¢+ 6)

¢ — (1 =r)(g+0) ©2

and
di = xq, dy = rgil = 2) = @1(4z1(1 —21)(q1 — g2 — ) + (g2 +9)).
T ) M- (- @)

(b) If z; € [k',k?): since z; < k?, similar to the previous scenario, the

optimum is in sub-region R;;, where

o ey ¢@(q2 +0) (1—21)(q1 — ¢2)(q1 — g2 — 6) q2(q2 + 9)
(pl,p2)— (2(92+(1—7“)5) * Q1—CI2—(1_7’)5 ’ 2(Q2+(1_T)5))
and
& =, &= 2—gy, 7" = q2(q2 +9) (1 —21)(q1 — @) (qn — g2 — )

2 4(qz + (1 —17)5) @ —q—(1—r)6 ’

(c) If z; € (0,kY): in this case, we have k* > k'. Moreover,

(%FH(M) |p2:pg) (%Fm(m) |p2:pg> >0,

2 have the

i.e., partial derivatives aimFlg(pg) |pa=pz and %Fgg(pg) |pa=yp2

same sign.

153



i. If k5 < k* < k% We have %Fgl lps—0> 0. And it can be shown that
k* < k', thus, we sequentially consider intervals (0, k%], (k®, k%], and
(k% kY for xy:

A If T € (0 kS]I Since iFgl |p2—p1< 0 F22 |p2—p1< 0, and

 Opa
o 9 F, |ps < 0, the optimal solution is in sub-region Ry;. The
optimal p} can be solved from a_szﬂ(p?) = 0, and the optimal
pi = ha1(p3). Specifically,

(p1,p3) = (q @ —@)n @+ (1 -2r)0) @2 +9) )

1—7r 2(ga + (1 —=7)8) " 2(q2 + (1 —1)d)

and

* * 1 *
d1 = I, dz = 5—9317 T = (C_Il—CJz)l'l (1 -

B. If 2, € (K k*): Since Fy |,—p1< 0

1 ) q2(q2 + 0) )
1—r/) 4(g+ (1—7r))
' Dpa F22 ‘pz—p1> 0 and

0 o |ps —p2< 0, we need to compare F3;, the value of the first-
order solution from Fy;(pe), with Fy,, the value of the first-order
solution from Fy(ps).

It can be shown that Fj; — F}, is convex decreasing in z;, and
Fy, — Fy, > 0 when z; = k*. Therefore, the optimal solution is
also in sub-region Reyy;

C. Ifzy € (k*,k"): Since 32 Fo |, < 0

F22 |p2 p1> 0 FQQ ’pz p2>

’ p2 ’ Bp2

0, and F12 |po=p3 < 0, we need to compare 3, the value of the
ﬁrst—order solution from Fy(py), with FY;, the value of the first-
order solution from Fis(ps).
Similarly, we can show that Fj; — FY};, is convex decreasing in 1,
and Fy; — F}, > 0 when z; = k', therefore, the optimal solution is
still in sub-region Ra;.
ii. If k¥* < k3 < k* in this case, we have k' < k* and we need to
sequentially consider intervals (0, k%] and (k°, k') for z1:
A. If z; € (0,K%]: this is similar to the case when x; € (0,k%] and

k> < k* < k?, and the optimal solution is in sub-region Rao;;
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B. If #; € (k% k'): this is similar to the case when x; € (k°, k?) and
k5 < k* < k3, and the optimal solution is in sub-region Ra;.
Therefore, the optimal solution is always in sub-region Rg; when x; €
(0, kY.
Case 2. If k' > k2, k? > k* and k% > 0: There is k* < k' when k' > k2.

(a) If z € [k, %) Since x; > k' > k2, the optimal solution is in sub-region
Ria;

(b) If 2, € (0,kY):

i. If k3 < k': We sequentially consider intervals (0, k°], (k°, k%), [k*, k3],
and (K3, k') for z1:

A. z; € (0,k%]: Similar to the case when z; € (0,k°%], k° < k* < k3
and k! < k?, we can show that the optimal solution is in sub-region
Roi;

B. z; € (k% k*): Similar to the case when x; € (k% kY], k°> < k* < k3
and k' < k%, we compare Fj;, the value of the first-order solution
from Fy(pe), with F3,, the value of the first-order solution from
Fosr(po). As Fy, — Fy, is convex decreasing in z; € (k% k*), and
k® = (Fy, — F5) |o,=14> 0, there is Fj; > Fy,, and the optimal
solution is in sub-region Raoy;

C. z; € [k*, k*]: Similarly, we need to compare Fy, with FY,, which is
the value of the first-order solution from Fis(ps).

Since Fy, — FY, is decreasing in x; € [k*, k%], and
(F51 = F52) lay=pa= (F5y — F1y) |uy—pe= ke > 0,

there exists a threshold k € [k* k] such that Fj, — F}, > 0 if
r; € [k* k%] N (—o0, k], which means the optimal solution is in
sub-region Ry, and Fy, — Fy, < 0 if 21 € [k* k%] N (k, 00), which

means the optimal solution is in sub-region Rs;

155



Case 3.

D. z; € (k3 k'): Since z; > k3, we have aimFgl |pa=p1> 0, 8%2}722 [—
0, and 8%2]722 |p2:p§> 0. This implies that the optimal solution is
in sub-region Rys.

ii. If k> > k': The result is the same as the case k* < k! since we can
still sequentially consider intervals (0,%°], (k®, k%), and [k*, k') for

xI.

Therefore, there exists a threshold k € [k*, k3], then the optimal solution is

in sub-region Ry if 21 € (0, l;:], and the optimal solution is in sub-region R9

if r1 € (]237 %)

If k' > k2, k3 > k* and k® < 0: Similar to Case 2, we sequentially consider
intervals (0, k%), [£°, k], (k*, k'], and (k', 3). Since kS = (F3,—F3,) o =1 < 0,
the analysis of intervals [k®, k%] and (k*, k'] is slightly different from that in

Case 2. Specifically,

(a)

There exists a threshold k € [0V k°, k%], the optimal solution is in sub-
region Ry, if z; € [k, k] and in sub-region Ry, if z; € (k, k%]. Specifi-
cally, the optimal solution in sub-region Ry, is

T

v % g2+ 9
ot = (w0, 257

and
X

g2+ 9) )
1—r"

r 7(
* * *
dl :x17 d2 — - mT o=

1 _
5 1 + qrq (

Since

(F3, = Fy) |oy=pr= (F3, = FYy) |oy=ps=k° <0
for all z; € (k*, k3], the optimal solution is in sub-region Ri5. Meanwhile,
for all &3, the optimal solution is in sub-region Ry, for z; € (k3 V k!, k]

from our previous analysis. Thus, the optimal solution is in sub-region

ng if X1 € (k4, k’l]

Therefore, there exists a threshold k& € [0V k°, k%], then the optimal solution

is in sub-region Ry, if z; € (0, k], in sub-region Ry, if z; € (k, k%], and in

sub-region Ry, if 7, € (K4, 3).

1
2
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Case 4. If k' > k? and k® < k*: In this case, k° < k% < k* < k', and we sequentially

consider intervals (0, k%), [k°, k%], (k*, k%], (k*, k'], and (k*, %) for ;.

(a)

(b)

(e)

If z; € (0,k%): From the analysis in z; € (0,k°], k> < k* < k? and
k' < k2, the optimal solution is in sub-region Ra;

If z; € [k, k3]: From the definition, we have B%QFgl |p2:p%< 0, aimFgg |p2:pé>

0, and 8%2]722 |po=pz< 0, We need to compare F3;, the value of the first-

order solution from Fy(ps), with F3,, the value of the first-order solution

from Fye(ps). Since,

* * (1 — 7")2(52((]2 + 5)
Fy, — F r=kb = > 0,
(Far = F52) et 4qa(qa + (1 —=17)0)
A (A =7)%*r(g2 +9)
(F51 = F3) |oy=ie = Ao + (1 —1)d)?

< 0,

and I}, — FY, is convex decreasing in [k°, k3], there exists a threshold k €
[k, k®] such that the optimal solution is in sub-region Ry, if 2, € [k°, K]
and in sub-region Ry, if 2, € (k, k%);

3 141, QG d &l d
Ifx, € (/{5 Jk ] Since 8_ng21 |p2:p%> 0, 8_p2F22 |p2:p%> 0, and 8_p2F22 |p2:p%<
0, the optimal solution is in sub-region Ras;

If z; € (k*kY: We have %Fgl |p2:p5> 0, 8%2}722 |p2:p%> 0, and

0

90m Iy ]p2:p%> 0. Moreover,

iF e ar(l —2x;)
Opz” P g — (1= 1)(g2 +0)

Thus, there exists a solution satisfying the first-order condition of Fj,,

< 0.

and the optimal solution is in sub-region Rys;
If z; € (k',1): Similar to the case when 2y € [k',3), k' > k%, k* > k*

and k® > 0, the optimal solution is in sub-region Rs.

Therefore, there exists a threshold k € [k°, k%], then the optimal solution is

in Ry; if z; € (0, k], in sub-region Ry, if z; € (k, k%], and in sub-region Ry

if x; € (kA, %)
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PROPOSITION 3.4.1 For any capacity level x; < 1, there exists a threshold 6' €

27
(0,q1 — q2) such that the optimal solution of (3.3) belongs to Ry if and only if § €

[0, 61].

Proof. First, k' is increasing in d, and k? is decreasing in § since

8_k1 — 1 -r > O
) q1 — 42 ’
ok* 2(q1)quro

<
2 S
4020(01 — g2 = 0)*(2 + (1 = 7‘)5)2\/(11 Ezqzl(qz(i(l_)(rq)%;r :

where

2q1) = ¢ (—(0+2¢5—07))+q1 (=2¢5(r — 2) + 8gs (r* — 67+ 5) + 6 (2r* = 3r + 1))

+ q2(r — 1)(0 + q2)(2g2 — 6(r — 2)).

In particular, z(q;) is concave in ¢; as

822((]1)
Since
0
_'Z(qql) lomasso= —2027 + 6aa((r — 4)r — 1)+ 2(r — 1)(2r +1) < 0
1
and

2(q2 +0) = =20r(0 + ¢2)(6 + g2 — dr) <0,

we have z(q1) < 0 for ¢; > g2 + 6 and % <0.
Next, we have
1

k' |520=0, k? |s—o= 5

From the proof of Proposition 3.3.1, the optimal solution is in sub-region Ry; if and
only if k' < 1 < k2. As § increases from 0 to ¢; — ¢, k' is increasing from 0, and &2
is decreasing from % Let 6} be the solution to k' = x; with respect to 6, and 85 the
solution to k? = x; with respect to §. Then, we can define §' = min(d},d3) such that

the optimal solution of (3.3) belongs to Ry; if and only if d € [0, }]. O
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LEMMA 3.4.1 The firm’s optimal profit 75, in (3.5) is concave in 0, wjy in (3.6) is

convex and increasing in §, wh, in (3.7) is concave and increasing in 0, and Wy in
(3.8) is linearly increasing in 0.

Proof. m%, in (3.5) is concave in ¢ since

0l 1 g1 — @)’ (1 — 2) %
96 (=) ( (1= —0+70)°  (g+(1— 7’)5)2) =Y

7y in (3.6) is convex and increasing in ¢ since

onyy rqi(1 — 2z;)? -
9 g — 1A =r)(gz+9)>~
o*r, B r(1 —r)g?(1 — 2x,)?
952 2 —(1=r)(g+9))* =

7y in (3.7) is concave and increasing in ¢ since

Om3, _ g >0
95 Algz+(1—1r)d)? ~
13 _ r(1—r)g <0
04? 2(qge+ (1 —=1r)0)® —
T3, in (3.8) is linearly increasing in 0 since 2 = 7. O

PROPOSITION 3.4.2 Ifzy € (0,3), then

1. %71'*(5) |5:0> 0,

2. There exists * € (0,0") and a threshold k* < % such that 7 () is decreasing

in & € [62,8Y] if and only if x1 > k*, and 7*(8) is increasing in 0 otherwise.

Moreover, the threshold k* does not depend on x1 and r.

2.7%(8) |s=0> 0, we only need to

Proof.  From Lemma 3.4.1, in order to prove g7

verify 7}, at 6 = 0, which can be seen from

0 ., r
%ﬂ-ll |5:0: Z<1 — 2%1)2 > 0.

Next, we define §2 as the solution of the first-order condition aggl = 0. Since 7}, is

concave in § and &}y |s—o> 0, then 62 > 0.
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Recall the definition of §', which is the minimum between §1, the solution to k' = 2,
with respect to d, and 41, the solution to k2 = z; with respect to 4. It can be shown
that there exists a threshold &* < 1 such that 6 < 4} if and only if z; > k*, in which
case the optimal solution is in sub-region R4; and the optimal value 7}, is decreasing
in 0. Note that it is possible that 0! = 83 < 62, which implies that [§2, 0'] is an empty
set.

If 71 < k*, we have 62 > 6}, which means the optimal solution is always increasing
even if the optimal solution is in sub-region Ry;.

This concludes the proof. O

LEMMA 3.4.2 Suppose (p},p3) is in region Ryy as (3.5), then p} is concave and de-

creasing in 0, and p} is concave and increasing in 9.

Proof. pj is concave and decreasing in d since

i r(l—a)(@ — @) g <0
o) (1—q@—0+710)2 2@+ 1-r)F) — 7
2, % _ 2 2
0°pi = —r(1—r) (2(1 71)(q1 — g2) 43 ) <0.
062 (h—q—0+710)>% (24 (1—r)d)3
p5 is concave and increasing in 0 since
Oops _ r >0,
20 2(qe+(1—1r)s)?* —
Op; ___r(d=1)g

= — < 0.
97 = (ot d—rp ="

U

LEMMA 3.5.1 7§y in (3.5) is conver in r, and 7iy in (3.6) is concave and strictly

INCTeasing in 1.

Proof. 7}, in (3.5) is convex in r since

T <4(Q1 — @)1 — ¢ — 8z (1 — z1) g2(q2 + 9) ) -0

orz 2 (1 — g2 — 6 +16)3 (g2 + (1 = 1))

7}, in (3.6) is concave and strictly increasing in r since

oty g+ 90)(q — g —0)(1 —2z;)?

or T dg-omiay
1y _ (e — @ —06)(e2+ 0)*(1 — 2a)* <0
2 20— (1—r)(@+0)P  —
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O

d

PrRoPOSITION 3.5.1 Suppose T

ke [qlin, %) such that:

< L. There exists ¥ € (0,1) and a threshold

1. If x; € <I~C, %), then the firm’s optimal profit is decreasing in r € [0,7] and

increasing in r € (7, 1].
2. If x1 € [ﬁ, /2], then the firm’s optimal profit is increasing in r € [0, 1].

Proof. First, we have both k' and k% are decreasing in r since

ok! )
= — < 0;
or q1 — G2
Ok = _5(Q2+5>(Q1+Q2(—1+27") - (1—7">25)\/ "h <0
or Ar(qr — (g2 + 0)) (g2 + (1 — 1)) @(g2 + (L =7)0)(qn — (1 =7) (g2 + ) =

where the second inequality is from

G+ q(=1+2r) = (1=7)?0 = q1 — qa — 6 + 2rqy + 216 — 1%6

> —Ga—0+2rga+2r0 —1rd =q1 — qa — 0 + 2rqe + 10 > 0.

Furthermore,
1 d 9 1
k |T‘:O: > 0’ k‘ |T:O: -,
B — 42 2
and
Ok 1 dqa
— |,=0< 0, ifand only if z; > = [ 1 — )
or e TERT ( \/(Q1—CJ2)(Q2+5)
5 1 (1 5 5 3 s 1
If P < 2 let k£ = min <§ (1 - (ql_q21)1%q2+5)> ) ql—q2>. Then, k € [q1—q2’ 5) More-

over, let 7; be the threshold that k%(7;) = z;, and 7, be the solution of the first-order

condition %i: = (. Since
ok' | oq1+ qalqr — g2 — 0)(1 — 211)?
- |r=1= 1 — > 0,
r Q2(CI1 C]2)

we must have 75 € (0,1). Let 7 = min(F, 7), then 7 € (0, 1).
Under the assumption in this proposition, we have z; > k' for all r € [0,1]. And
if z; € (k, 1), we have k' < a1 < k* when 7 € [0,7], which means that the optimal

solution is in sub-region R4;. Moreover, the optimal profit 7}, is decreasing in r from
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the definition of 7. When r € (7, 1], the optimal solution is in either sub-region Ry,
or Rys. However, the optimal profit function 7j; and 7}, are increasing in r € (7, 1]
from Lemma 3.5.1 and the definition of 7.

Ifz, € [ﬁ, /%] , we have either the optimal solution lies only in sub-region R, or
the optimal profit function 7§, and 7}, are increasing in r € [0, 1], thus firm’s optimal

profit is increasing in r € [0, 1]. O

LEMMA 3.5.2 Suppose (p},ps) is in region Ryy as (3.5), then pi is non-monotone

convex in r, and pi 1S CONVET INCreasing in r.

Proof. p} is convex in r since

32PI _ ¢2(q2 + 5)52 201 — )1 — 2 — ) (1 — 1’1)52 >0
or? (g2 + (1 —7)9)3 (g1 —qo— 6 +710)3 -

p5 is convex and increasing in r since
Opy _ 0qa(g2 +9)
or  2(g+(1—1)d)

0’p; _ 6°q2(q2 +9)
or? (g + (1 —1r)d)3

220’

> 0.
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