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The brain contains an enormous number of neurons with diverse gene expression,

morphology, and connectivity. These neurons exhibit distinct activity in the course of

behaviors. The study of neural coding of a specific behavior necessitates recording activ-

ity from multifarious neurons in the circuit.One appealing approach is to simultaneously

image the activity of a very large neuronal population at cellular resolution. However,

recording calcium signals from tens of thousands of neurons at one time is not trivial.

The gold standard technique, two-photon laser-scanning microscopy, typically permits

recording from hundreds of neurons. Recently, we developed objective-coupled planar

illumination (OCPI) microscopy, which uses thin sheets of light to image whole volumes

of ∼ 10, 000 neurons within 2 seconds. My dissertation includes an application and a

further methodological development of such a fast large-scale imaging technique:

xi



1) Large-scale functional imaging reveals individuality, dimorphism, and plas-

ticity of mouse pheromone-sensing neurons. Different individuals exhibit dis-

tinctive behaviors, which is presumably attributed to the neuronal differences between

brains. However, studying neural individuality, especially at the level of the function of

single neurons, requires an effective approach to measure cellular activity of a diverse

neuronal population in a circuit. Here using OCPI microscopy, I performed calcium

imaging of pheromone-sensing neurons in the intact mouse vomeronasal organ. Ex-

haustive recording enabled robust detection of 17 functionally-defined neuronal types

in each animal. Inter-animal differences were much larger than expected from random

sampling, and different cell types showed distinct degrees of variability. One prominent

difference was a neuronal type present in males and virtually absent in females, and

animals exhibited a corresponding dimorphism in investigatory behavior. Surprisingly,

this dimorphism was not innate but generated by plasticity, as exposure to female scents

led to both the elimination of this cell type and alterations in behavior. The finding

that an all-or-none dimorphism in neuronal types is controlled by experience—even in

a sensory system devoted to “innate” responses—highlights the extraordinary role of

“nurture” in neural individuality.

2) A new generation of OCPI microscopy enables unprecedented large-scale in vivo

imaging of mouse brain activity by light-sheet microscopy. I have built a new

variant of OCPI microscope, horizontal scanning objective-coupled planar illumination

(hsOCPI) microscope, with enhanced imaging volume and speed by ∼ 15 fold compared

to OCPI, thereby capable of recording ∼ 100, 000 neurons simultaneously. Using this

technique, I imaged the entire nervous system of the larval zebrafish (including the

xii



spinal cord) and a square-millimeter patch of mouse cortex ex vivo. The miniaturized

optics around the specimen allowed in vivo imaging through a cranial window of a head-

fixed mouse. This technique is the first application of light-sheet microscopy in calcium

imaging of mouse cortex in vivo. The exceptional large-scale sampling of cortical activity

with cellular resolution should usher new insights into the functions of brain circuits.
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Chapter 1

Introduction

1.1 The motivation to record large-scale neural activity with cellular reso-

lution

We are fascinated by the brain because it is the physical basis of our mind. It pro-

cesses information we receive to form perceptions, sends commands to generate move-

ment, stores our memories, harbors intelligence and emotion, etc. In order to understand

how these neural events are created and unfold, a straightforward approach is looking

into the brain to see what is there (structure) and what happens (activity).

1.1.1 An ongoing but urgent mission: recording neuronal activity

Knowing the brain structures provides the prerequisite to investigate brain activity.

From the legendary Cajal drawings of brain cells with delicate arborizations, to the

modern synaptic connectome of C. elegans [1, 2] and more recently of mouse miniature

circuits [3, 4], our comprehension of the static brain structure promises to be accom-

plished in only a matter of time. On the other hand, for each neuron in the brain, it

1



is the precise pattern of electricity coursing through it at a given time that determines

what it is actually doing. Since the birth of the Hodgkin and Huxley model [5], electro-

physiologists 1 have made marvelous findings regarding neuronal activity, complemented

with the growing imaging-based techniques. However, a major challenge still exists for

the study of dynamic brain activity. It has been highlighted as a new Presidential focus,

namely the BRAIN (Brain Research through Advancing Innovative Neurotechnologies)

Initiative by the Obama government in February 2013.

1.1.2 Why we need recordings from large numbers of cells

The brain contains an enormous number of neurons. In the human brain, that

number is at the level of a hundred billion. To examine the activities of those neurons,

one can look at one neuron at a time or a population of neurons simultaneously. Now

we are driven towards the latter direction, for several plausible reasons as listed below.

• Neurons do not operate individually. They are wired together — sequentially or

laterally connecting to each other to form circuitry. During the course of a neural

event, from the input to the output of the circuitry, there is a sequential neuronal

activation pattern. Ideally, if one knows the precise timing, duration and amplitude

of each individual neuron’s responses throughout the event, one can delineate the

circuit design, understand the computation, and thereby ultimately decipher the

“biological intelligence.” It is noteworthy to mention that a pure map of the static

structure of the circuit is not sufficient to predict how the signal is flowing among

1To be precise, electrophysiology predates the birth Hodgkin-Huxley (HH) model. Galvani discovered
the neural electrical activity in the 1790s [6]. Another typical example is that Hartline performed the
extracellular recording of individual retinal ganglion cells in the 1930s, which is still 20 years earlier
than the HH. Yet the mathematical HH model is a theoretical pillar of modern neurophysiology.
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the neurons. The structure of synaptic/electrical connection does provide insight

about the signal transmission locally at the connection, but not necessarily over

multiple relay stages. In fact, the nonlinearity of the neural circuit introduced by

the inhibitory connections makes that task almost impossible. A typical example

is that after the C. elegans connectomic structure became available [2], there was

still a need for functional connectomic study to map the activity pattern in order

to understand how those 302 neurons work together.

To obtain the sequential activation pattern, in theory, one can record individual

neurons one by one by repeating the same event multiple times, and then pool all

the responsive neurons together and recapitulate the information flow according

to the distinctive time delayed. However, even if one dared to set off that time-

consuming adventure, there is another immediate challenge — the activation delays

are at the level of millisecond or even smaller, and the variation of timing system in

each recording will inevitably introduce inconsistency for the pooled neurons. The

advantage of recording simultaneously is that systematic timing deviation will be

consistent for all the neurons, and one-time recording of a large number of neurons

is a much more efficient approach.

• Empirical evidence suggests that neuronal activities are not that “reproducible”.

Although the trial-to-trial variation has been treated as “noise” for decades, emerg-

ing awareness of the existence of waves, synchrony, and oscillation in circuits has

changed the view. On the one hand, one can not deduce these features by examin-

ing the activity of individual neurons; on the other hand, one-by-one measurement

of many individual neurons will not detect these holistic phenomena that only

3



happen at particular times. Therefore, one has to gain the dynamic activity pat-

terns of a sufficient number of neurons simultaneously to evaluate the population

features.

• Neurons in the circuit are heterogeneous. The “type” of a given neuron can be

defined by the genetic identity (gene expression), wiring identity (connection),

and functional identity (response). It turns out that, no matter how the type is

defined, diverse types, easily more than one hundred, co-exist in a local circuit,

normally spatially distributed without an explicable pattern. All theses neurons

are typically co-activated in the circuit, requiring cellular resolution to extract

activity patterns of individually distinctive neurons. For a particular neural type,

the initial discovery of the type necessitates a sufficient number of those particular

neurons, which must come from an exhaustive sampling.

1.1.3 Potential recording approaches

During the past half century, the most feasible approach is recording the activity

from a single neuron at a time, like whole cell recording, or up to tens of neurons using

multi-electrode single unit recording. The recent imaging-based approaches like calcium

imaging allow investigators to sample hundreds to thousands of neurons simultaneously.

Other approaches like fMRI, as well as optical imaging based on slow, intrinsic signals,

such as haemodynamic or light-scattering signals [7], are able to record large-scale pop-

ulation signals, but they lack cellular resolution. Nowadays, electrode recording and

fluorescent imaging approaches represent the most practical methods for cellular record-

ing of neural activity. Focusing on the theme “how many cells they can record,” each

4



technique will be introduced, and the strengths and limits of each technique regarding

temporal/spatial resolution and potential for improvement will be also covered.

Electrode-based methods

The nature of the neuronal activity is the change of membrane potential, which gen-

erates electrical signals capable of transmitting among cells in a circuit. This electrical

activity was first discovered by Galvani over 200 years ago [6]. Since then, the natural

way to record activity of neurons is by instruments capable of measuring the electric

changes. Since the electrophysiologists were able to obtain reliable signals from each sin-

gle neuron, they have been working in different ways to increase the number of neurons

in a recording. Here are the two most commonly used techniques:

Whole-cell recording Whole-cell patch-clamp recording is currently the most pre-

cise away to query intracellular ion activity of a neuron. The unprecedented sensitivity

and temporal resolution allow one to study the “smallest” changes associated with neu-

ronal activity, like the single ion channel action, quantal events of synaptic transmission

(“minis”), etc. In patch-clamp experiments, each glass electrode is controlled by an

individual manipulator, so the space around the tissue limits the number of electrodes

that can be placed there. It is said that a 12-electrode setup can be managed, and

the reported maximum number of successful simultaneous whole-cell recordings is 7-8

neurons [8]. Although robotic patch-clamping is being developed, due to the spatial

constrains, it will be hard to increase that record further.

5



Single unit recording Extracellular recording of neurons normally detects the “com-

pound” electrical activity of multiple neurons around the electrode 2. However, the

mixed signal can be “separated” to extract signals from individual neurons. Basically,

the more electrode probes, the more cells one can detect. To increase the number of

probes, a multi-electrode array that arranges up to 256 electrodes laterally can be used

for flat neural tissues. For deep neurons that require insertion of the shank-shaped elec-

trode, one can increase the number of probes arranged in a single shank or even increase

the number of shanks in the assembly. The most recent silicon electrode assembly con-

tains 512 probes, which covered ∼ 1000 neurons within a radius of 140µm area in the

rat cortex, and successfully recorded 163 neurons simultaneously [9]. One can infer the

rough spatial distribution of all these neurons according to the probes’ position in the

recording. One of the major limits is that the signals from adjacent neurons are normally

impossible to obtain in this recording, because they are most likely “mixed” together in

the same probes. On the other hand, the challenge to compact thousands of electrodes

in a miniature device also restrains the further increase of the electrode number.

Temporal resolution of the electrode-based approaches is simply determined by the

readout rate of electronics that can be easily achieved at 10KHz level. This sampling

rate can sufficiently capture the dynamics of action potential that normally lasts for

milliseconds. The merit of high temporal resolution makes electrode-based techniques

the most favorable tool when timing information is of most concern, such as dynamic

rhythm or noise analyses. However, the intrinsic limits on the cell number and lack of

spatial information limit its potential in large-scale recording.

2The purity of signals is related to the size of the electrode tip.
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Fluorescence imaging-based methods

The nature of electrical activity has driven generations of neuroscientists to invest

immense effort to build electric instruments to record changes in membrane potential. In

the meantime, a minority of investigators also took advantage of voltage-sensitive dyes

(optical membrane-voltage probes) to detect membrane potential changes by means of

imaging. Similarly, the discovery of calcium fluctuation during the action potential

and the availability of calcium fluorescent indicators, drove the rapid advancement of

imaging approaches for recording neuronal activity. Nowadays many laboratories use

fluorescence imaging-based methods to routinely measure the activity from tens and

hundreds of neurons [10]. Combining the most state-of-the-art fluorescent probes with

optical instruments with high speed and large field-of-view, a recent study achieved

whole-brain imaging of neural activity of an organism [11–13].

Besides the remarkable advantages regarding the number of neurons, compared with

electrode-based approaches, optical recording is minimally invasive. It avoids physical

contact to neurons, though the potential for interference with cellular function due to

calcium buffering. It is noteworthy to mention that the superior temporal resolution of

electrode-based techniques is generally hard to beat. Although current functional indi-

cators are fast and sufficiently sensitive to single action potentials, and fast optics allow

sampling at millisecond resolution, yet that is attained with considerably compromised

spatial capacity. In a typical population calcium imaging experiment, tens to hundreds

of neurons are sampled every 2-3 seconds to follow the calcium fluctuation.

The detail of using fluorescent imaging approaches to measure neural activity will be

introduced in the next section.
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1.2 Large-scale fast fluorescent imaging

The implementation of fluorescent imaging of neuronal activity necessitates two ele-

ments: a fluorescent indicator that reports activity of the cells, and a microscope that

detects the fluorescence change. With the aim to record many neurons in a circuit at

high speed over periods of minutes to hours, I will focus on the most advanced indicators

and imaging technologies that meet, or have promise to meet the goal. Additionally,

as the enormous growth of imaging volume (cell number) as well as recording time, the

imaging data size has reached a level that greatly challenges our capability to handle

big data, as briefly touched on at the end of this section.

1.2.1 Fluorescent indicators of neuronal activity

Back in the 1970s, two categories of chemical dyes were introduced to neuroscientists

for monitoring neuronal activity. One is merocyanine dye that senses voltage changes

[14]; the other one is a synthetic compound based on the well-known chelator EGTA,

capable of detecting free calcium, namely BAPTA (1,2-bis(o-aminophenoxy)ethane-

N,N,N’,N’-tetraacetic acid) [15]. Upon voltage change or calcium bindings, both dyes

increase their quantum yield of fluorescence, thereby allowing quantitative 3 imaging of

neuronal activity.

Inspired by the chemical-based indicators, with the idea of fusing a voltage/calcium

sensor with a fluorescence reporter, a series of protein-based indicators have been de-

veloped, namely genetically encoded voltage indicator (GEVI) and genetically encoded

3For quantitative measurement, one would prefer sensors with a linear relationship between fluorescence
response and firing activity [16]. Nonlinearity in sensor can prevent precise spike quantification during
action potential bursts [17].
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calcium indicator (GECI). Many different calcium or voltage sensors have been dis-

covered and used in designing new probes. As for the reporter, most of the GEVIs

and GECIs adopt on of two strategies — either based on the single GFP’s fluorescence

change, or through fluorescence resonance energy transfer (FRET) between two fluo-

rescent molecules. One exception in the recently developed voltage indicator Arch, a

microbial rhodopsine protein derivative, that itself is responsible for both voltage sensing

and fluorescent emission.

For population cellular recording, currently the most commonly used probes are the

calcium indicator GCaMP series. The GCaMP protein consists of a calcium-binding

domain from calmodulin (CaM), a short linking region called M13, and a circularly per-

muted enhanced GFP (cpEGFP). On calcium binding, the conformational changes in the

calmodulin-M13 4 complex induce the fluorescence changes of GFP. Based on this same

general structure, in the past decade, mutations at certain amino acids that changed the

protein properties 5, especially those that remarkably enhanced the extent of fluorescence

change, produced different generations of GCaMPs. While larger fluorescence change

normally means higher signal-to-noise ratio, a definite merit in physiological recording,

along with that regard, there are multiple factors that need to be considered to choose

the right indicators 6 for imaging neuronal activity at large-scale and cellular resolution.

4M13 is the conformational actuator that is fused between CaM and GFP to enhance the conformational
change and induced fluorescent signal.
5Properties like calcium binding affinity and kinetics, the extent of binding induced protein confor-
mational change thereby fluorescence change, baseline GFP fluorescence level, dynamic range of the
fluorescence etc..
6A detailed guide for GECI selection in different application has been reviewed by Hires et al. [18] and
Tian et al. [19].
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Delivery A chemical-based indicator has to be experimentally delivered into the neu-

rons right before the imaging, either by bulk loading (“multi-cell bolus loading”) [20],

or facilitated by electroporation [21] or “gene-gun” [22]. It is technically challenging

to get a large population of neurons effectively and relatively equally labeled in those

procedures 7. On the contrary, a protein-based indicator can be introduced into the

cells by transgenesis or viral constructs, so the labeling is much more efficient. Another

advantage of genetic labeling is that it can target to specific neurons in the circuit that

normally contain multifarious cells. At present, the Cre-dependent GCaMP transgenic

mice and virus have been widely used in combination with existing Cre-lines [23], al-

lowing specific recording from a variety of neuronal populations, and even within the

specific subcellular compartments. It is worth noting that there are also studies that are

beginning to look for strategy that allows facile targeting of dyes and drugs into specific

cell classes [24,25]. One of the ideas is screening fluorogenic ester resistant to endogeous

esterases but hydrolysed by genetically controlled exogenous esterase [25].

Brightness In practice, in order to visualize responsive cells in the tissue, one needs

a fluorescent probe that is sufficiently bright, which is related to the fluorescent quan-

tum yield 8 of the indicator. The canonic fluorescent proteins GFP and its derivatives

9 normally have high quantum yield ∼ 0.7, so those GECIs/GEVIs based on these flu-

7Despite quite a few successes [20–22], more empirical data suggest that many cell types or tissues do
not take these dyes well, regarding penetration into the tissue as well as permeability across the cell
membrane (even with the membrane permeable version).

8The definition of quantum yield is Φ =
# photons emitted
# photons absorbed

. The actual brightness is determined by

extinction coefficient× quantum yield.
9GFP derivatives are engineered GFP mutants that have different excitation/emission spectrums, such
as the yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP) that are often employed
for FRET-based GECI and GEVI. Red fluorescent proteins (RFP) like mCherry, is based on DsRed, a
fruit fluorescent protein belonging to a different family to GFP. However, RFPs are erroneously referred
to as GFP derivatives due to nomenclature convenience.
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orescent proteins normally appear bright in the image. However, a recently developed

GEVI, Arch [26], that is based on a microbial rhodopsin, has extremely low the fluores-

cence quantum yield (∼ 10−3), therefore it is very challenging to detect its fluorescence

signal.

Sensitivity In an imaging experiment, the neuronal activity is quantified as ∆F/F0,

where ∆F = Fobs − F0. Fobs is the probe fluorescence at a given time (normally peak

value during activation), and F0 is fluorescence at baseline. The signal-to-noise ratio

(SNR) is defined as the ratio of the fluorescence signal change 10∆F to the shot noise

on the baseline fluorescence, F0N
−1/2, where N is the number of photons detected [16].

Among the currently available indicators, calcium-dependent indicators generally have

higher SNR than voltage-dependent indicators. Because of this, they are more commonly

used in a variety of studies, especially in in vivo imaging in which animal movements

introduce additional noises thereby decreasing the SNR.

Among GECIs, GCaMPs generally produce a larger fluorescence change than FRET-

based indicators do, therefore they have higher SNR. GCaMP2 was developed in 2001,

already able to robustly report spike trains. GCaMP3, developed in 2009, enhanced the

fluorescence increase 4-6 fold [27], thereby further increased the SNR and the dynamic

range. However, for a long time, GCaMPs could not beat the superior SNR of the

chemical-based calcium indicators, such as OGB-1 AM, but that situation has been

changed by the most recent GCaMP6. Nowadays, the fast version of GCaMP6 has been

10An equivalent calculation for FRET sensors takes the difference in donor-acceptor ratio divided by
the combined shot noise on the baseline fluorescence of both FPs.

11



used in in vivo recording to detect single action potentials in the neuronal somata, as

well as synaptic calcium-transient in individual dendritic spines [28].

Photostability Continuously monitoring the activity requires an indicator that re-

mains stable during repeated excitation. However, most indicators suffer from low

photostability. Chemical-based voltage indicators are normally photobleached within

seconds, while the recently developed GEVIs, including ArcLight [29,30] and Arch [26],

have improved lifetime. Compared to voltage indicators, calcium indicators generally

exhibit much better photostability. Both the chemical version and GCaMPs (GCaMP2

and the higher versions) can be repeatedly imaged for hours without dramatic pho-

tobleaching 11. Yet, GCaMPs are “chronically” expressed in the cells, which provides

long-time window for imaging. One can repeatedly record the same cells over days and

weeks to study the dynamic circuit during development or the process of learning.

Potential perturbation Both chemical- and protein-based indicators could poten-

tially add calcium buffering or perturb the membrane electrical property, thereby affect-

ing the functional integrity of the neurons [18, 31] and even the behavioral phenotypes

[27]. At low probe concentration, it is difficult to visualize positive cells because of

dim fluorescence; in contrast, highly-concentrated probes give increased baseline bright-

ness and SNR, but can alter calcium homeostasis and compromise the signal. Thus,

in both chemical loading and genetic expression, the abundance of the indicator needs

to be controlled. Empirical evidence showed that genetically expressed indicator did

11It also depends on the imaging technique, for example confocal microscopy causes more serious pho-
tobleaching compared to two-photon or light sheet microscopy. See details in the next section.
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not cause detectable abnormality [27,32], which is probably because, in most cases, the

genetically-expressed indicators present in cells with a relatively low concentration [33].

Voltage-sensitive dye is able to detect synaptic input and subthreshold activity, but

its low signal-to-noise ratio and vulnerability to photobleaching make it less practical for

repeated cellular recording. Most of the fluorescent protein-based voltage probes have

been limited by small response magnitudes and slow kinetics. The rhodopsin-based new

GEVI, Arch [26], is potentially attractive if its brightness can be increased. Currently,

the start-of-the-art calcium indicators, specifically GCaMPs, are the preferred choices

for large-scale cellular recording in the study of neural activity.

1.2.2 Fluorescence microscopy techniques for neural activity recording

To monitor the activity of a large population of neurons, the first two requirements

on the optical instrument are: 1) large field of view to cover many neurons in the tissue,

2) high speed to follow fast biological processes such as Ca2+ or voltage dynamics. A

wide-field fluorescence microscope may immediately comes to mind that directly takes

full advantage of the advanced camera 12 with a large sensor and high speed. However, it

only works well for imaging the surface of a tissue. When it focuses down to the interior,

the signal normally deteriorates rapidly, mostly due to the emission light from out-of-

focus region of the tissue. Therefore, the first key for volumetric imaging is to remove

the out-of-focus light, and two general approaches have been used to do that. One

12It mainly includes two categories of cameras: charge-coupled device (CCD) and complementary metal-
oxide semi- conductor (CMOS) cameras.
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is computationally subtracting the extraneous signals, and the other is instrumentally

avoiding out-of-focus light by restricting the illumination, the so-called optical sectioning.

The computational approach, known as deconvolution, is based on information about

the process of image formation and recording to remove the out-of-focus light from each

spot on the raw image. A different approach to drop the out-of-focus signal by com-

putational procedure is structured illumination microscopy (SIM) [34, 35]. One of the

properties of the out-of-focus signals is that they are insensitive to certain changes of

illumination, for example, the three phase-shifted sinusoidal pattern [34]. After pair-

wise subtraction of raw images obtained at different phases, common signals, mostly

out-of-focus light, will be to some extent canceled out, but in-focus information that is

modulated by the sinusoidal illumination pattern remains. This method achieves “op-

tical sectioning” by taking multiple images with a conventional wide-field microscope,

and has been successfully applied in three dimensions [35]. Alternatively, out-of-focus

light can be assigned back to “non-focus” voxels in the three-dimensional space accord-

ing to the angular information collected by additional microlenses [36]. Although these

approaches can help remove/correct out-of-focus light computationally, they still leave

behind the associated shot noise with wide-field illumination, as well as limited depth

of penetration. For very thick samples with a large amount of out-of-focus light, they

cannot produce images with sufficient contrast.

Classic optical sectioning aims to deliver excitation light only to the focusing regions,

that, in theory, can be a point, a line, a plane, or even an irregular pattern. Accord-

ingly, a volumetric image in the three-dimensional space will be acquired one voxel, one

line or one plane, at a time. In practice, the most popular optical sectioning technique
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over past decades is point scanning microscopy, including confocal and two-photon mi-

croscopy. However, the series point scanning is time-consuming, and many efforts have

been made to improve their imaging speed. To date, for fast large-scale imaging, one

may consider spinning-disk confocal microscopy and planar illumination-based so-called

light sheet microscopy. Additionally, two-photon microscopy, as the most commonly

used optical approach for recording neuronal activity, with exceptional advantage of

beating scattering 13, and therefore is capable of penetrating deep into the brain, will

also be introduced in this section.

Two-photon microscopy

Before explaining the imaging technique, I would first introduce the two-photon ef-

fect. When using the standard green fluorescent fluorophore GFP for example, while

one-photon effect describes the fluorophore molecule absorbing a single photon with

wavelength of ∼ 488 nm and emit a photon of 515 nm, “two-photon excitation” is the

quasi-simultaneous absorption of two near-infrared photons 14 and gives out a 515 nm

photon. The probability for such a two-photon absorption event is low, and therefore

requires high photon density, which is usually achieved using a high-energy pulsed laser

and spatially focusing the laser beam through a high-numerical aperture (NA) micro-

scope objective. Because that probability is in a quadratic relationship to the excitation

13Scattering, is an essential optical property of most biological tissues, especially brain tissues [37]. Due
to the heterogeneity of refractive index of substances inside the tissue, light will not simply take the
direct path but be diffracted, reflected and refracted by the tissue. This applies to both excitation and
emission light in fluorescence imaging. Scattering causes the light redistribution to undesired regions,
thereby resulting in out-of-focus illumination as well as lost of in-focus emission light (emission light
from the in-focus regions appears to have been emitted from the last point of scattering but not from
the actual location). This phenomenon gets worse as one images deeper into the tissue, substantially
challenges the imaging technique.
14The common two-photon light sources are Ti:sapphire lasers with 720-1050 nm tunable output.
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intensity, successful excitation only takes place locally at the focal point, but not any

non-focal regions. This is called “intrinsic optical sectioning”. Despite the light that is

scattered inside the tissue, since all the emitted light is coming from the exact focus locus,

one can collect as much as possible that is coming out of the tissue and assign all of them

to the respective scanning point (origin). It doesn’t require a pinhole to eliminate the

scattered light, and therefore has much higher photon budget compared with confocal

microscopy. Along with the insusceptibility to scattering, longer excitation wavelength

also allows better depth penetration. The attainable in vivo imaging depth has been

reached to ∼ 800− 1000µm below mouse pia, the typical layer 5 neocortex [10,38]. The

insusceptibility to scattering also enhances the spatial resolution and signal contrast of

the image. In addition, “intrinsic optical sectioning” confines effective illumination only

to the vicinity of the focal plane, thereby largely reducing photobleaching/photoxicity

of out-of-focus regions of the sample.

Due to the point laser-scanning nature of two-photon microscopy, collecting a vol-

umetric image requires serially scanning the excitation point in the three-dimensional

space, which is typically achieved by a pair of galvanometric mirrors for lateral scanning

and a piezoelectric actuator for continuous axial movement 15 [40, 41]. While the speed

of the scanning is somewhat limited by the attainable oscillation frequency of mechan-

ics, the bottleneck of the imaging speed is the minimal dwell time required for each

pixel. During the scanning, the laser has to dwell on each voxel for a period of at least

10−6 s 16 to collect sufficient photons thereby achieving reasonable signal-to-noise ratio

15Novel approaches for fast z-scanning include remote mechanical z-scanning, temporal focusing, and
variable focus lenses, as reviewed by Lutcke et al. (2011) in “Two-photon imaging and analysis of neural
network dynamics” [39].
16For detail mathematical reasoning, please refer to the supplementary information “Fundamental speed
limits of optical microscopy” in “Fast three-Dimensional fluorescence imaging of activity in neural

16



17. According to this minimal dwell time per pixel, and within a maximum of 2-3 s time

window in calcium imaging, the conventional point scanning two-photon microscopy

can scan 2− 3× 106 pixels. In a typical experiment, these pixels constitute a volume of

256 pixels× 256 pixels× 40 frames, containing several hundred cells.

One way to overcome that speed/spatial limit is parallel illumination, where instead

of focusing the laser into a single voxel, it splits the light into multiple “beamlets”

(an array of beams) to illuminate multiple spots and image them with a camera at

one time [44]. With a similar multi-focal strategy, combined with targeted path 18

approaches, several advanced two-photon microscopy techniques have been invented to

increase imaging speed, in which a diffractive spatial light modulator (SLM) [45] or

nonmechanical acousto-optic deflectors (AODs) [46] is used.

The multi-focal imaging strategy is to some extent going back to the “wide-field”

fashion. The inevitable emission cross talk among multiple focal points would compro-

mise the merit for overcoming scattering - the initial attraction of two-photon microscopy

for deep brain imaging. However, it is always a balance among the three key criteria

mentioned at the beginning of this section — imaging volume, speed and scattering. Dif-

ferent from two-photon microscopy, spinning-disk confocal microscopy and the recently

emerging light sheet technique balance the three criteria yet lean towards higher speed

and larger volume.

populations by objective-coupled planar illumination microscopy” by Holekamp et al. (2008) [42].
Similar discussions can be found in chapter “Fluorophores for confocal microscopy” by Tsien et al. in
“Handbook of biological confocal microscopy” by Pawley (2010) [43].
17See “signal-to-noise ratio” in page 12.
18With pre-defined lines or discrete regions of interest, one can move the the laser focus only to the
selected pixels. Such targeted scanning avoids wasting time on background regions and maximizes signal
integration time on the selected pixels (useful structures in images). With an acousto-optic deflector
(AOD), the laser focus can be moved within microseconds between any two positions in a field of view.
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Spinning-disk confocal microscopy

Similar to two-photon microscopy, conventional confocal microscopy is also a tech-

nique based on point laser scanning. Except for the difference in wavelength, both

deliver illumination light by the imaging objective that focuses the laser light into a

point. However, without the two-photon effect, the excitation not only occurs at the

desired in-focus point, but also extends to the non-focusing area that conforms to the

point spread function of illumination light – a double cone excitation shape. In order

to prevent out-of-focus emission light from non-focus planes, a pinhole is placed in the

optically conjugated focal plane before the detector, and then the only signal collected

is from the in-focus spot in each point scanning.

With the similar “multiplex” idea as mentioned for two-photon microscopy, in order

to enhance scanning speed, different strategies have been used to illuminate multiple

pixels simultaneously while collecting emission light from them at the same time. In

practice, the most popular technique is spinning-disk confocal microscopy. It uses a

disc with arrays of pinhole apertures that illuminate hundreds of spots simultaneously.

During rapid rotation of the disc, the emitted fluorescence light from these spots is then

focused onto either the same or different pinholes before forming images on a camera [47].

The arrangement and size of the pinholes on the disc allow scanning of the entire field

of view during rotation. In addition, the same spots can even be illuminated several

times within a frame time, thereby accumulating dwell time with reduced excitation

energy. In fact, spinning-disk confocal normally uses an arc-discharge lamp for wide-field

illumination, and the low excitation energy reduces photo-toxicity and photo-bleaching

compared to the conventional confocal, making it the preferred system for live imaging.
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However, the lower power illumination per pixel mentioned above on the other hand

restricts the penetration depth. In addition, one major disadvantage of the spinning-disk

confocal is its inefficient use of light. If pinholes occupy 1% of the disk area, 99% of the

light is wasted. In order to increase the amount of light into each pinhole, a second disk

containing an array of microlenses can be placed on top of the pinholes [48]. In such a

design, a collimated laser beam is focused by those microlenses into the corresponding

pinholes, which greatly increases the illumination efficiency.

In spinning-disk confocal, the pinhole aperture size, type and spacing affect the imag-

ing speed; these parameters also determine the brightness of the out-of-focus excitation,

thereby influencing the image quality. One would carefully choose these parameters to

balance the image speed and quality according to specific needs. However, the configu-

ration is normally fixed during manufacturing and cannot be adjusted by users.

Light sheet microscopy

In light sheet microscopy, all the pixels on the focal plane of the objective are illumi-

nated and imaged at one time, so this technique possesses high speed and a large field

of view, equivalent to that of wide-field microscopy. However, it limits the sheet illumi-

nation to the vicinity of the focal plane, thereby minimizing out-of-focus light. The idea

of planar illumination was first described by Siedentopf and Zsigmondy in 1903 [49], but

it had not been used to image the interior of a biological tissue until ninety years later

when it was implemented as a fluorescence light sheet microscopy [50].

19



How to create planar illumination? Planar illumination is not as widely under-

stood as the single point illumination, which is normally produced by a regular objective

lens in confocal or two-photon microscopy. In fact, in the latter techniques, it is the same

objective lens that functions for both delivering point illumination as well as collecting

emission light for imaging. In light sheet microscopy, a light sheet needs to be intro-

duced from the side of the tissue to the focal plane of the imaging objective lens, so it

requires a separate lens 19. A light sheet can be generated by focusing the expanded laser

beam in only one direction by a convex cylindrical lens or a uniaxial gradient-index lens

[54, 55]. Alternatively, it can also be formed by a combination of a spherical lens and a

concave cylindrical lens that spreads the light only in one direction. The latter combi-

nation design allows the use of a conventional microscope objective lens as the spherical

lens, therefore provides the flexibility to choose between different commercially avail-

able objective lenses, and the convenience to change lenses through standard adapters.

However, the low cost cylindrical/spherical lenses can be used to make miniaturized

illumination assembly, the advantage of which will be discussed later.

Light sheet thickness Most light sheets are generated from Gaussian beams, the

typical laser output. Because Gaussian beams undergo widening at increasing distances

from the beam waist, the thickness of the sheet along the light propagation axis is

uneven. The thinnest beam waist with thickness w0 is positioned at the center of the

field of view. The regions extended to the two sides of the beam waist where thickness

19Unconventional objectives incorporate the two parts in a single lens has been developed [51,52]. The
designs make the illumination and even the detection on an oblique plane with a shallow angle to the
focal plane of the objective lens, and therefore provide a very limited filed of view at the intersection
of the two planes. Wolleschensky (2008) proposed a novel lens with an add-on cap to the existing
microscope lens to achieve planar illumination [53], which has not been realized yet.
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goes up to
√

2×w0 are defined as Rayleigh range, which is normally used as a reference

to determine the size of an acceptable field of view. The thickness of the sheet defines

the axial resolution of a microscope, and the Rayleigh range affects the size of the field

of view. Both the thickness w0 and the Rayleigh range are determined by the objective

numerical aperture (NA), and they counteract each other 20 Therefore, the larger the

field of view, the worse (thicker) the axial resolution (light sheet thickness). In order to

obtain a Rayleigh range of 100− 500µm, a low NA ∼ 0.1 lens is required, and the light

sheet thickness will be approximately 4− 10µm [42].

One way to generate light sheet with relatively even thickness is using a Bessel beam

[56] instead of a Gaussian beam for illumination. This has been successfully implemented

with a high NA lens to obtain a small-area ultra-thin sheet with 3D isotropic resolution

down to ∼ 0.3µm [57]. However, such a resolution improvement comes at a cost because

the Bessel beams introduce “side lobes” of extraneous illumination outside the focal

plane, thereby compromising the image quality and subjecting the sample to much more

photobleaching and photodamage. Two practical approaches to relieve the consequences

of the side lobes are structured illumination and two-photon excitation [57].

Microscope design and sample preparation As mentioned above, light sheet mi-

croscopy uses two separate lenses, one for delivering excitation light sheet, and the other

for collecting emission light. These two are orthogonally arranged in space. At the

cross of the illumination and detection lens is the specimen. Sticking to this geometry

20For the planar gaussian beam, under the condition with an optimal NA for minimizing light sheet
thickness throughout the filed of view, there will be w{`} = 2λ`

πn , where λ is the light excitation wave-
length, n is the refractive index of the immersion medium. For details, please refer to the supplementary
information “Upper limits on thickness of planar illumination” in “Fast Three-Dimensional Fluorescence
Imaging of Activity in Neural Populations by Objective-Coupled Planar Illumination Microscopy” by
Holekamp et al. (2007) [42].
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arrangement, one can flexibly design a microscope with a preferred way to mount par-

ticular samples. For example, light sheet can be delivered horizontally from the side of

the sample, and the imaging objective is vertically mounted above the specimen. This

example is a typical upright microscope, and many groups adopt it because of the conve-

nience to build it in the context of a traditional wide-field epifluorescence microscope by

adding extra components for light sheet illumination. There is another similar design,

normally seen in a completely homemade version. In that design, the whole upright

microscopy is laid down horizontally, and therefore everything can be mounted on the

surface of an optical table. In both designs, a small specimen is normally placed in an

imaging chamber with side “windows” allowing access of illumination/imaging lenses.

However, for large samples like a head-fixed mouse with a cranial window on the top,

neither design previously mentioned will work. In order to handle this most typical sam-

ple preparation in the research of mammalian brains, Holy group invented a 45-degree

vertically tilt design that allows both illumination and imaging from above [42]. The

large tilt angle of light at the fluid/tissue interface normally introduces aberration 21

that to some extent can be alleviated by tuning the angle of the light sheet [54] as well

as the adaptive imaging approach [60].

Scanning modality In high-speed neural imaging, 3D scanning is normally achieved

by moving the rigid optics instead of the biological sample 22. During the scanning, the

21It happens when the reflective indices of the immersion medium and sample are not precisely matched.
In a typical experiment with brain tissues, the tissue reflective index is normally 1.36 − 1.41 [58, 59],
while the medium keeping the brain alive is normally aCSF with a refractive index of 1.34 [59].
22For in vivo imaging, organism needs to be kept static to avoid undesired stimulation. Even for ex
vivo preparation, high-frequency movement may induce tissue deformation due to inertial forth. In the
study of developmental process in zebrafish or drosophila embryos, some investigators chose to move
the specimen directly, probably because these specimens are not sensitive to movement.
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light sheet and the imaging objective need to move in synchrony, which can be attained

by synchronizing signals in the two separate actuators controlling the movement of the

two parts, or physically coupling the two parts together [42] and moving them together

with a single actuator. The latter design requires a special coupler to hold illumination

optics together with the imaging objective, and this original invention is particularly

named as objective-coupled planar illumination microscopy (OCPI).

Current constrains In light sheet microscopy, the large area parallel illumination

allows one to take full advantage of the advanced high-speed megapixel camera (charge-

coupled device (CCD) or complementary metal-oxide semi- conductor (CMOS) cameras)

for fast volumetric imaging. Recently, the speed and image size has grown rapidly with

the birth of high quantum efficiency, low-noise fast sCMOS camera. The state-of-the-art

sCMOS with 2560 × 2160 pixels and 100Hz frame rate allows one gigapixel recording

every 2 seconds, a calcium imaging time window. One recent application using such a fast

camera was able to perform light sheet calcium imaging of 100,000 neurons of the entire

larval zebrafish brain every 1.4 seconds [11]. With the anticipation of new generation

higher speed cameras, it is crucial employ facile spatial scanning of a large area of the

specimen. This is already starting to become a problem for large neural tissues like

mouse brains, for which long travel of light delivery/collection optics is restricted due

to the limited open space around the tissue. In addition, the travel speed and precision

of the mechanics are also challenged in long-distance scanning. Recently the “scanless”

electrically tunable lens has been adopted to achieve flexible volumetric imaging without

moving the specimen or the objective, yet the light delivery optics still need to be moved

during scanning. Another inherent limitation is the penetration depth. The two-photon
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technique can improve the penetration, but the current light source cannot form a light

sheet with high-density photons sufficient for two-photon excitation of the entire focal

plane. While two-photon line scanning microscopy is achievable and yields images up

to twice the depth of one-photon light sheet microscopy [61], it largely compromises the

scanning speed. Either the microendoscopy approach that adds a microprism to relay

the deep tissue imaging, or an in vivo tissue clearing technique that directly alleviates

scattering could be the potential direction to improve the imaging penetration of light

sheet microscopy.

1.2.3 Managing big data for large-scale imaging

Repetitive large-scale imaging generates large data sets. This is especially true for

imaging awake behaving animals, in which wealth of stimuli can be presented to the

animal while monitoring the activity of neurons in the brain. This type of experiment

may last for hours, resulting in terabytes of data. Both online digital acquisition as well

as offline processing and analysis of these data require considerable effort in the initial

development of the platform. Without going deep into computer science and mathematic

algorithms, here is a brief introduction of those basic aspects involved in practice.

Image acquisition software During a real time recording, big data poses challenges

on continuous data transfer and storage. In order to attain high temporal resolution,

high-performance imaging acquisition software must coordinate all the hardware and

continuously write the data to hard drives with minimal overhead time. It is easier to

employ the commercialized software coming along with the camera and incorporate it
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into the framework, yet when one increases the imaging speed to the highest as claimed

by the manufacture, poor performance my lead to “drop frames”. In this situation,

customized optimization of the software pipeline may be required.

Image registration For hour-long recording, biological tissues may undergo morpho-

logical changes like shifting, warping, swelling, etc.. In in vivo recording, there are

motions caused by respiration or movements of restrained animals. In order to track

the same neurons throughout the recording, imaging registration is needed to correct

those mismatches of raw images. Algorithms that allow two-dimensional or three di-

mensional, rigid or non-rigid corrections have been developed and utilized by different

scientists. Which algorithms to choose depends on the nature of the data. Generally,

a three-dimensional non-rigid correction is needed for warping tissues, such as ex vivo

preparation immersed in the medium. When the data set is so large that a single image

volume reaches reaches one gigabyte, the optimization becomes a challenge for both the

efficiency of the algorithm and the performance of the computer.

Image segmentation In order to extract the information of individual cells in the

imaging volume, one needs to first determine which pixels are regions of interest (ROI),

such as pixels representing cell bodies or neuronal processes. While manual image seg-

mentation is possible for small size images, large images necessitate automatic algo-

rithms for ROI recognition. There are two basic ideas to design the algorithm. The

first one is based on anatomical criteria, which relies on the contrast of ROIs to the

background. However, this approach becomes less practical as the new functional indi-

cator like GCaMPs normally doesn’t provide sufficient contrast at baseline. Nowadays

25



the segmentation of ROI heavily relies on the functional criteria [62], as pixels that be-

long to the same cells change intensity together, so temporal information will provide

a useful basis for imaging segmentation. Different algorithms based on this idea have

been developed and are still being improved upon [63]. It is worth pointing out that

a good signal-to-noise ratio of individual neurons is required for robust ROI detection,

as weakly responsive cells are normally difficult to recognize by algorithms. Addition-

ally, for a heavily labeled, dense neuronal population, adjacent neurons that largely

share similar response patterns normally require extra care to differentiate, for example

by adding prior knowledge about the contour of ROIs, either by algorithm or manually.

The latter strategy is called semi-automatic approach, which represents the main stream

of the current status of the field.

1.3 Scope of the thesis

In the previous sections, I have reviewed approaches for recording activity from large

number of neurons. Particularly, Light sheet fluorescence microscopy technique, with

a relatively short history in neural imaging, is raising with potent momentum for fast

large-scale neuronal recording. Focusing on this technique, specifically the objective-

coupled planar illumination microscopy (OCPI) that was originally invented here by

Holy group, my dissertation will further elaborate two directions of study.

A major body of this dissertation is an application of this technique in the research

of neural individuality. This part of study was performed in the context of mouse

pheromone-sensing neurons, which consist hundreds of distinct neuronal types. In or-

der to investigate whether individual animals possess distinctive types of pheromone-
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sensing neurons, I took advantage of OCPI imaging to exhaustively record activity from

mice with different sexes and experiences to study potential sexual dimorphism and

experience-dependent plasticity.

The second goal of this dissertation is to develop a new variant of OCPI microscopy to

extend its application into in vivo imaging of mouse brain activity. The new technique,

through a particularly designed horizontal scanning, combined with the advanced high-

speed camera, also further enhances the imaging speed and scanning volume.

1.4 An application: neural individuality

What factors make individuals unique? Variability stems in part from genes and epi-

genetics, and recent advances have permitted the study of such differences on a genome-

wide scale [64]. However, much of what distinguishes individual persons or animals lies

within the nervous system [65]. At a macroscopic level, inter-individual variability of the

brain, for example in terms of cortical thickness/surface area [66] and grey/white matter

structure [67], are correlated with performance in basic and higher cognitive functions

[68,69]. The emerging connectome [3] as well as single neuron innervation pattern anal-

ysis [70] also suggest diverse neural wiring across individual organisms. Therefore, it is

intriguing to study the individual differences in the nervous system as well as how the

differences arise.

However, it is difficult to investigate individuality of neural structure and function.

In a neuronal circuit, there are normally over 100,000 neurons of diverse types, intricate

wirings, and synaptic/electrical connections. In order to make a comprehensive compar-

ison between individuals, one has to sample a representative neuronal population from
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each subject at the single-neuron level. As a result, there are extreme challenges on the

resolution, scale as well as the efficiency of the research approaches. Large-scale cellu-

lar imaging that simultaneously records activity from a very large neuronal population

provides the opportunity to tackle this task. By exhaustive calcium imaging of a whole

organism [11–13] or a local circuit [71,72], one can examine individual differences in the

functions of neurons.

1.4.1 Mouse pheromone-sensing neurons

We focused on the mouse vomeronasal epithelium, a component of the olfactory sys-

tem devoted to social cues, often called pheromones. Pheromones mediate a variety of in-

nate social behaviors, including sexual behavior [73–82], male aggression [74–76,83–86],

interspecies defensive behaviors [87], maternal aggression [76–78, 80, 88] and lactating

behavior [77]. These behaviors are specific to animals of particular sex, species, ages,

experiences, etc.; it is very likely that neural circuitry for pheromone signaling con-

tains information of animal identities. Pheromone-sensing neurons that directly detect

pheromone chemicals and initiate the downstream signaling may be the fundamental

source of individuality.

Mouse pheromone-sensing neurons, also called vomeronasal sensory neurons (VSNs),

are packed in the vomeronasal epithelium(Fig. 1.1). Each sensory neuron sends an api-

cal dendrite to the surface of the epithelium, where a receptor protein expressed at the

dendritic tip can detect chemical cues from the nasal cavity. There are approximately

300 different vomeronsal receptor genes [91], and each sensory neuron mainly expresses a

28



Figure 1.1. Schematic of the structure of pheromone-sensing neurons. This
represents a coronal section of the vomeronasal neuroepithelium. Each sensory neurons
sends a dendrite to the surface of the epithelium to detect chemical cues. Apical neurons
colored in magenta hues express receptor genes in the V1R family, while basal neurons in
green hues express receptors in the V2R family. There is a small subset of basal neurons
expressing formyl peptide receptor genes [89, 90] instead of V2R receptors. Courtesy of
Timothy E. Holy.
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single receptor type 23. Due to the extensive receptor-type diversity and large number of

neurons (over 100, 000) in the vomeronasal epithelium, it is not trivial to compare these

neurons between animals. Since the cloning of VSN receptors [89, 90, 93–96], molecu-

lar approaches including in situ hybridization and microarray, as well as physiological

recording with electrodes [97], have been used to study different types of VSNs. How-

ever, these studies have been inconclusive [98], perhaps because the rarity of expression

of each receptor gene (∼300 genes, each expressed by just 0.1–1% of the ∼100,000 VSNs

in each epithelium) [91] requires exhaustive sampling by methods sensitive to individual

neurons. In this dissertation, I took advantage of the large-scale functional imaging

approach to examine whether these VSN types vary by individual, by sex, and by expe-

rience.

1.4.2 Sexual dimorphism

Neuronal individuality is generated by stochastic gene expression, biological factors

(“nature”), and experience (“nurture”) [99, 100]. In wild-type mice, one prominent

example of “nature”-induced individual variability is sexual dimorphism. Previous work

has identified both sexually-dimorphic behaviors [92] and a small number of dimorphic

nuclei or neuronal populations [101–109]. However, at present little is known about the

physiological properties and circuit function of these neurons.

It is worth noting that in the mouse most dimorphic nuclei are downstream of mouse

pheromone sensory neurons(Fig. 1.2) [92, 110, 111]. While the dimorphisms are well-

established in “central” nuclei, it is unclear whether the dimorphism arises from the

23Exceptions exist in basal layer neurons expressing V2R receptor genes. These neurons express two
V2Rs, with a V2R2 subfamily gene as the most common co-receptor [92].
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Figure 1.2. Schematic of the accessory olfactory system. Pheromone-sensing
neurons situating in the vomeronasal organ (VNO) project to the accessory olfactory
bulb (AOB), where the mitral cells send information to the deep brain nuclei (in purple),
that are the previously identified sexually dimorphic brain regions: medial amygdala (A),
ventromedial hypothalamus (Hyp), and bed nucleus stria terminalis (BNST). Redrawn
and modified based on courtesy of Timothy E. Holy.
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upstream sensory neurons. In several species, the male and female vomeronasal organs

(VNOs), which house the pheromone-sensing neurons, are of different sizes [110,112,113].

However, none of the vomeronasal receptor genes have yet been found to be expressed

differentially in male and female animals [94, 95, 114]. The closest known example is a

difference, for cells expressing a particular V2R gene, of the mean soma depth within

the VNO epithelium between the sexes [95]. However, because all VSNs receive sensory

exposure through their dendritic knobs at the surface of the VNO, there is no known

functional consequence of a shift in the location of the soma; moreover, this receptor gene

is thought to be a pseudogene [98]. In addition, natural investigation of scents produces

different amounts of c-fos activation in VSNs of males and females [81,115,116]; however,

because the amount of voluntary investigation time also differs by sex [117], it is unclear

whether differences in c-fos activation reflect an underlying sex difference at the level of

sensory neuron types and function.

1.4.3 Experience-dependent plasticity

Individual differences may result from differential experiences. It’s difficult to study

the the contribution of experience in determining individual neural differences in humans

due to the limited experimental approaches. Mice, which also display numerous plasticity

in behaviors, offer the opportunity to pursue such questions at the level of neuronal

circuitry. An extensive literature on cellular plasticity [118–123] provides a backdrop

for individuality based on “nurture,” but how plasticity is organized on the scale of cell

types, circuits, and systems remains largely mysterious.
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In the case of mouse pheromone-sensing neurons, it has been shown that experience

can change the VSN gene expression [114, 124]. These studies used pooled VSNs in

the epithelium, therefore it is unclear that whether the reported changes corresponded

to different numbers of cells or changes of expression level within cells. In addition,

Hagendorf et al. discovered an activity-dependent expression of an ether-á-go-go-related

gene (ERG)—a potassium channel—in the basal layer VNO [125]. They showed that

mice with reduced sensory exposure had reduced ERG expression, while mice exposed to

an odor-rich environment expressed higher levels of ERG. To what extent the plasticity

would lead to the changes in individual VSN functions and even the overall VSN type

compositions remains an open question. Therefore, it would be interesting to compare

cell types from animals with different olfactory experiences.

1.5 Methodological exploration: light sheet microscopy for in vivo imaging

of mouse brain

Light sheet fluorescence microscopy has emerged as a powerful tool for fast volumetric

imaging in biological sciences. Through focusing a thin light sheet to the objective

focal plane, light sheet microscopy acquires a whole frame image at one time, thereby

achieving efficient frame-based optical sectioning. With the merit of high speed, large

field of view, high signal-to-noise ratio, and low photobleaching and phototoxicity, light

sheet microscopy is an ideal tool for live imaging over a long time [126]. In recent years,

the light sheet technique has been successfully applied to image small size organisms,

such as the zebrafish [11,127], fruit fly [61], C. elegans [128], as well as ex vivo preparation

of mouse tissue [42,71,72]. Most of these applications aimed for imaging developmental
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processes rather than neurophysiology. As for larger preparations, especially the head-

fixed awake behaving mouse, the appropriate configuration is still lacking.

1.5.1 Challenges of using light sheet microscopy in mouse imaging

Applying light sheet technique to in vivo mouse imaging presents several challenges.

In light sheet microscopy, illumination and detection are attained through two separate

lenses arranged orthogonally in space, and the specimen is positioned at the intersection

of the two lenses. Typical custom [61,127,129,130] and the commercially available light

sheet microscopes are all designed in a way that both illumination and detection lenses

are mounted horizontally. Accordingly, a small specimen is placed in a liquid medium-

filled imaging chamber with side “windows” for accessing the two lenses. However, this

design cannot work for imaging an awake mouse. First, it is impossible to immerse

an awake mouse in a small liquid-filled chamber. In addition, in an in vivo mouse

experiment, brain imaging is normally conducted through a cranial window on the top

of the mouse head, therefore necessitating an upright instead of a horizontal setup. Even

with a classical upright imaging system, it is difficult to deliver the light sheet into a

mouse brain. There was an effort to introduce the light sheet into the live mouse brain

by implanting a miniature microprism to attain side illumination of target brain regions

[55]. However, that invasive approach with surgical excision of nearby brain tissues has

not managed to record neural activity from live animals yet. Therefore, a non-invasive

upright light sheet microscope will be more suitable for imaging mouse brain activity in

vivo.
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1.5.2 OCPI microscopy

With the aim to custom build a non-invasive light sheet microscope suitable for

in vivo imaging of the mouse brain, we previously developed objective-coupled planar

illumination (OCPI) microscopy [42]. In OCPI, a light sheet is generated by a cylindrical

lens placed in a custom-machined optics tube. This tube is orthogonally arranged to an

objective lens, and the two parts are held together by an illuminator/objective coupler.

The entire coupler is placed above the specimen with a tilt angle so that both the

illumination arm and imaging arm are 45 degrees to the specimen surface. In this way,

we only need a window on the top of the specimen to attain both light sheet illumination

as well as imaging. By moving up and down the entire illuminator/objective coupler

along the axis of the objective lens (45 degrees vertically tilted), OCPI can achieve

volumetric scanning of the specimen. OCPI images up to ∼ 10, 000 neurons in a volume

of 710µm×125µm×282µm tissue by scanning a distance of 200µm.

1.5.3 OCPI microscopy and mouse brain imaging

This first generation of OCPI microscopy used the high performance EMCCD camera

at the time when it was built, and attained calcium imaging of ∼ 10, 000 neurons every

2 seconds. It has been successfully applied to ex vivo imaging of the mouse vomeronasal

organ [42,71,131] and accessory olfactory bulb [72,132], as well as the brains of drosophila

and laval zebrafish (unpublished data). All of these applications and an initial attempt

to apply OCPI microscopy to imaging the mouse cortex in vivo (unpublished data, col-

laboration with Burkhalter Lab) also motivated the development of a second generation

of OCPI microscopy with following improvements and new features:
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Eliminate restrictions on scanning distance In OCPI microscopy, the size of the

imaging volume is restricted by the scanning modality. Similar to most of the axial

scanning, the maximum scanning distance is limited to the working distance of the

objective lens. Because large biological samples, such as the mouse cortex, have extensive

surface areas, if OCPI microscopy can scan them horizontally (Fig. 1.3), then the imaging

volume will be greatly increased. With this consideration, a second generation of OCPI

named horizontal-scanning OCPI (hsOCPI) microscopy was conceived.

Miniaturize illumination optics With the aim to perform in vivo imaging through

the cranial window of a mouse, especially to scan horizontally along the opening, a

compact optical assembly is required. Because the standard imaging objective lens is

normally bulky, it is desirable to minimize the size of the illumination arm on the coupler

as much as possible.

Another benefit of using more miniaturized illumination optics is that one can further

rotate the entire coupler to decrease the tilt angle of the objective lens in order to make

it closer to the vertical line. A smaller tilt angle will alleviate the aberration resulting

from light refraction at the medium and tissue interface.

One challenge for custom illumination optics is dealing with multi-color imaging. As

more fluorescent probes become available, it is beneficial to implement multiple laser

lines into the system. Accordingly, chromatic lenses will be chosen to build the system.
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Figure 1.3. A, axial scanning in OCPI with limited traveling range. B, horizontal
scanning in hsOCPI without restriction on scanning distance. s: scanning axis, `: light
sheet propagation direction, X − Y − Z: coordinates of the sample.
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1.6 Summary

The scale and complexity of neural circuits drives neuroscientists to look for tech-

niques for recording a large numbers of neurons with cellular and even subcelluar res-

olution. Volumetric imaging that harnesses fluorescence functional indicators and fast

optical microscopy emerges as effective approach for that purpose. Among the existing

optical techniques, light sheet-based OCPI microscopy exhibits potentials for further

increasing the scanning volume while imaging at high speed. In the next chapters, I will

first demonstrate an application of OCPI microscopy in large-scale neural recording, with

the aim to unravel individual differences by exhaustively sampling pheromone-sensing

neurons from individual mice. After that, I will describe a methodological study to im-

prove the current OCPI microscopy in several aspects in order to use it in live imaging

of mouse brain.
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Chapter 2

Methods

2.1 Animals

GCaMP2-expressing vomeronasal organs (VNOs) were obtained from the F1 gener-

ation of tetO-GCaMP2 and OMP-IRES-tTA cross (on a C57BL/6 background) [133].

GCaMP3 VNOs were obtained from a cross between Ai38 [23] and OMP-Cre [134]. Male

and female mice were singly housed from weaning on postnatal day 21, unless otherwise

specified. At 12–16 weeks, male and female littermates were recorded on the same ex-

perimental day for strict parallel control. For male mice with unilateral naris occlusion,

right external nares were sutured and irreversibly closed at the beginning of the exposure

period, which ranged from postnatal week 3 to week 7. All experimental protocols were

in compliance with NIH guidelines and were approved by the Washington University

Animal Care and Use Committee.
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2.2 Reagents and stimuli

The VNO tissue was dissected and maintained in carboxygenated Ringer’s solu-

tion (115 mM NaCl, 5 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 25 mM NaHCO3, 10 mM

HEPES, and 10 mM freshly added D-(+)-glucose) throughout the experiment. The

Ringer’s solution was carboxygenated by bubbling with 95% O2/5% CO2 in a 37 ◦C

water bath for at least 30 min. VNO stimuli, the sulfated steroids (Steraloids Inc.,

RI, USA) were dissolved in methanol, 1 : 1 methanol / H2O, or H2O to 20 mM as

stock concentration (kept at 4 ◦C), and were diluted to a final concentration 10µM with

freshly prepared carboxygenated Ringer’s solution. 12 sulfated steroids were used in this

study: A3500, 5β-androstan-3α-ol-11, 17-dione sulfate (ketoetiocholanolone sulfate);

A6940, 4-androsten-17α-ol-3-one sulfate (epitestosterone sulfate); A7010, 4-androsten-

17β-ol-3-one sulfate (testosterone sulfate); A7864, 5-androsten-3β,17β-diol disulfate;

E0893, 1,3,5(10)-estratrien-3,17α-diol 3-sulfate (17α-estradiol sulfate); E1050, 1,3,5(10)-

estratrien-3,17β-diol disulfate (17-estradiol disulfate); E4105, 4-estren-17β-ol-3-one sul-

fate (nandrolone sulfate); P3817, 5α-pregnan-3α-ol-20-one sulfate (allopregnanolone sul-

fate); P3865, 5α-pregnan-3β-ol-20-one sulfate (epiallopregnanolone sulfate); P8200, 5β-

pregnan-3β-ol-20-one sulfate (epipregnanolone sulfate); Q1570, 4-pregnen-11β, 21-diol-

3,20-dione 21-sulfate (corticosterone 21-sulfate); Q3910, 4-pregnen-11β, 17,21-triol-3,20-

dione 21-sulfate (hydrocortisone 21-sulfate). The two negative control stimuli were

Ringer’s solution with 0.05% methanol as a vehicle control. For behavioral tests, A6940

and A7010 were further purified with silica gel thin layer chromatography (TLC) (Sigma-

Aldrich Co., MO, USA), dissolved in ddH2O to stock concentration 20 mM and kept at

-80 ◦C before use. Urine from male and female mice (2- to 5-month-old) of C57BL/6
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background were collected over periods of 2 weeks with liquid nitrogen [97] (CeeKay Sup-

ply) and pooled by sex. Solid-phase extracts were prepared with Strata-X 33u polymeric

reversed phase column [97] (Phenomenex Inc., CA, USA).

2.3 Calcium imaging of whole-mount VNO by OCPI microscopy

Mice were euthanized with CO2 and decapitated, and the VNO was quickly removed

into ice-cold carboxygenated Ringer’s solution. Under a stereomicroscope, the two VNO

tissues were removed from the bony capsule, and each intact neuroepithelium was sep-

arated from the blood vessel [135]. The flatted VNO epithelium was then adhered to

a nitrocellulose membrane (0.45µm, Millipore Co., MA, USA), with the dendritic layer

facing up. This whole-mount VNO preparation could be kept in ice-cold carboxygenated

Ringer’s solution for up to 3 hrs before physiological imaging as described [131].

Imaging was performed on a custom objective-coupled planar illumination (OCPI)

microscope [42] with 488 nm light sheet (thickness: 5µm) illumination. To reduce pho-

totoxicity, laser power was minimized to a level corresponding to ∼10,000 photons per

cell in each stack to achieve a shot noise-limited sensitivity to ∆F/F ∼1%. Typi-

cally, this resulted in < 0.05 mW laser power when imaging GCaMP2 VNO tissue. The

VNO preparation was placed in a custom imaging chamber with continuous superfu-

sion of carboxygenated Ringer’s solution (temperature: 35 ◦C; flow rate: 2.2 ml/min)

alternating with stimuli. The stimuli and Ringer’s flush were delivered through a

16-channel superfusion system (Automate Scientific Inc., CA, USA) pressurized with

helium-balanced 40% O2 and 3% CO2. The superfusion system was computer con-

trolled by custom software to synchronize with the imaging acquisition system (Imag-
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ine, http://holylab.wustl.edu/software.htm). Before recording, the VNO was superfused

with Ringer’s for at least 30 min to acclimate. We found that stimuli resident in the

superfusion system’s PTFE/silicone tubing for several tens of minutes induced a global

increase in fluorescence intensity of the VNO tissue, presumably due to loss of gases and

the accompanying pH changes; to reduce this artifact, we expelled a small amount of

each solution right before recording. During recording, each stimulus was applied to the

tissue for 25 s, following by Ringer’s flush for 50 s. The order of 12 stimuli together with

2 Ringer’s controls were randomized within a cycle (“trial”). All stimuli were repeated

in 4 cycles, together amounting to ∼ 75 min of recording on each VNO imaging volume.

The dimension of one tissue volume was 710µm×125µm×282µm, and OCPI scanned

the volume every 2 s, with a 3 s pause to save the data.

2.4 Image registration and segmentation

VNO tissue normally exhibited small but detectable shifting and deformity (swelling,

shrinking, warping, etc.) during long hours of recording. Such tissue movement was cor-

rected by custom three-dimensional nonrigid registration software written in Matlab,

C++, and Julia [136]. Manual image segmentation was performed in a custom GUI in

Matlab to identify individual cells. Briefly, cells exhibiting induced and/or sponta-

neous activity were highlighted in images showing the change in fluorescence (∆F/F ).

Each highlighted region in the VNO cell body layer, but not the dendritic knob layer,

was circled as a region of interest (ROI) representing one cell, avoiding double-counting

in adjacent optical sections. Adjacent cells normally were clearly differentiated from
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each other by their distinctive responses to different stimuli. For a typical VNO sensory

neuron, the ROI size was 4µm in diameter.

2.5 Cellular responses

Fluorescence intensity of a particular cell in a particular stack was measured as

mean intensity of all pixels within its ROI. Cellular ∆F/F responses were calculated

as the time-weighted fluorescence change upon stimulation [71], using the average of

the 20 s pre-stimulus period as the background. The component of the response due

to Ringer’s artifact was subtracted on each trial by performing robust regression of all

neurons’ responses to the response caused by one of the two Ringer’s control tubes. The

second Ringer’s control (shown as “Ringer’s” in all figures) was treated identically to

the other stimuli, and thus served as an independent negative control. To distinguish

spontaneous activity, we tested reproducibility over all 4 trials by the one-tail Student’s

t-test against the second Ringer’s control. Only cells responding to at least one stimulus

with 1) p-value < 0.05, and 2) ∆F/F > 0.03 were counted as responsive cells and kept

for further analysis.

2.6 Clustering of physiological cell types

Physiological cell types were identified by clustering all responsive cells pooled from

GCaMP2 imaging volumes collected in this study. Each cell was a data point in the 13-

dimensional space with the value of responses to 12 stimuli and a Ringer’s control. All

the data points were clustered by a variant of the mean shift clustering algorithm [137],

a method with sensitivity high enough to reliably detect clusters with size of no less than
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10 data points. Statistical significance of clusters was assessed by performing clustering

in 10,000 bootstrapped datasets, and mean shift peaks that fell into the same cluster

with frequency >= 0.05 were merged. The above strategy robustly detected clusters

with fine in-cluster homogeneity and clear between-cluster separation. After clustering,

the pooled cells were split back into their individual imaging volumes. Clusters showed

substantial consistency across datasets, with the main source of variability being the

absolute intensity of responses.

Cells recorded from GCaMP3 VNOs were classified by reference to the much larger

GCaMP2 dataset, assigning each to the GCaMP2 cell with the smallest Euclidean dis-

tance in the space of normalized responses. This approach was not effective for any new

cell types, but it identified GCaMP3 cells belonging to the known types, like type-8 in

Fig. 3.9B. GCaMP3 cells were also analyzed without prior classification (Fig. 3.9).

2.7 Variability analysis

For any particular cell type and set of experiments, the variability of each cell type

was defined as

Variability(n) = 2σ(
√
n), (2.1)

where σ is the standard deviation, and n is the observed number of cells of a particular

type in a particular experiment (imaging volume); the standard deviation was calcu-

lated across experiments. This
√
n scaling transformation is “variance stabilizing” for

a Poisson sampling model, and for such a model Equation. 2.1 has a value very near

1 independent of the mean value of n [138]. This
√
n scaling transformation was used,

where appropriate, throughout our analyses of variability.
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For each cell type, random sampling was simulated by Poisson process with λ as

the mean observed cell count, with a number of samples matching the number of ex-

perimental points. To obtain the distribution of the variability, each simulation was

repeated by 1,000 times and the 95% quantile used to estimate the uncertainty of

the variability (Fig. 3.2f). The normalized variability (Fig. 3.11g) was defined as

(V arobs − 1)/(V arran97.5% − 1), in which V arobs is the observed variability (from Equa-

tion. 2.1), and V arran97.5% is the two-tailed 95% quantile upper bound variability from

Poisson random sampling. In this way, the normalized variability of any random sam-

pling has a 97.5% chance to be at or below 1.

Inter/intra- animal differences were analyzed using non-overlapping pairs of imaging

volumes from the same mice. For each animal, the pair of volumes (data sets) contained

one from the anterior VNO and the other from the posterior VNO. The observed intra-

animal difference was calculated by sum of absolute differences in
√
n for each type across

all the true pairs. In the permutation test, to obtain the distribution of inter-animal

differences, VNO data sets from the pairwise data sets were shuffled. Shuffling was

conducted across pairs but within anterior and posterior data sets, respectively. This

controlled for hypothetical differences between anterior and posterior VNO (no obvious

location-dependent differences were noted). Only permutations lacking any true pairs

were accepted, resulting in 43 permutations using 5 true pairs. In Fig. 3.2i, each data

point represents the sum of inter-animal pairwise differences for a particular permutation.

The rank of the observed intra-animal difference in the 43 permuted values was reported

as the p value.
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2.8 Cell depth analysis

The VNO surface of each imaging volume was identified using an automated al-

gorithm [71]. For each ROI, the distance of ROI centroid to the tissue surface was

calculated, and further corrected for the imaging tilt (45 ◦).

2.9 Long-term chemical exposure

Custom double-layer stacking cages, modified from conventional mouse cages (Max

75, dimensions: 18.4 cm W ×29.2 cm D×12.7 cm H), were used to provide persistent

exposure to natural chemical cues from other animals. Briefly, a conventional mouse

cage with the bottom replaced by a stainless wire mesh (diameter: 1.6 mm; grid size:

1 cm×1 cm) was stacked on another cage with the normal wire bar lid filled with feed

and water gel pack. The two layers were locked together by a pair of screws on the mesh

and bar lid, and were easily disassembled for refilling food/water and twice-weekly cage

changes. The wire mesh and bar lid forming the inter-layer divider provided sufficient

open area to allow urine, feces and other discharge from the upper cage fall into the

lower cage, as verified by direct inspection. However, this inter-layer divider with small

grid size and ∼ 2 cm spacing largely restricted physical contact between animals housed

in the two layers. We housed the test animal in the lower layer with another animal

of the same or opposite sex in the upper layer. The exposure started from weaning on

postnatal day 21 and lasted 9–13 weeks unless otherwise specified. A few experiments in

which dirty bedding from male/female mice was supplied manually were also conducted;

there were no obvious differences between this procedure and housing in stacking cages.

Mice from both paradigms are reported in Fig. 3.11.
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Long-term application of female urine or sulfated steroids to mice were conducted

with nestlets (standard size 2 cm × 2 cm, 1/3 of normal thickness). For each animal

housed in the normal cage, a piece of nestlet was first soaked in 1 ml of raw female

urine or sulfated steroid solution (200µM in ddH2O), and then placed into a 35-mm

petri dish lid inside the cage. Animals normally vigorously chewed the nestlets, which

delivered the chemicals into their VNOs, as verified by fluorescent dye tracing after a

2-hour presentation (data not shown). A fresh nestlet with stimulus was presented to

each animal on a daily basis for 2–3 months.

2.10 Behavioral assay

Sniffing episodes were recorded as described [139,140]. Individually housed C57BL/6

males and females (3- to 4-months old), and female-exposed males in the stacking-cages

were kept on a 12h/12h light/dark cycle. Animals were acclimatized to the testing

environment with a 15 min/day episode in the testing chamber for 3 consecutive days

before the first trial. Trials were conducted after lights-out under red illumination.

In order to promote initial contact to the cotton swab when mice freely explored the

enclosed testing chamber, a neutral volatile cue, vanilla diluted 1:1000 in water, was

freshly prepared as a vehicle solution. TLC purified A6940 and A7010 stock solutions

were diluted with vehicle solution to a final concentration 100µM. A day’s test consisted

of 15 min of acclimatization followed by three 210-s trials, using a ∼20 min gap between

trials. The three trials were (1) presentation of a cotton swab with a sulfated steroid

(20µl solution), (2) a swab with vehicle solution, and (3) the other sulfated steroid.

The order of the two sulfated steroids was randomized. Swabs, mounted in a custom
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beam-break sensor [140], were introduced through a hole in the lid of the chamber at the

beginning of the recording. An animal approaching the cotton swab broke the infrared

beam and triggered a voltage drop of the TTL signal, which was captured at 1 kHz with

a custom software [140]. Bouts of investigation lasting less than 10 ms—previously found

to be false optical triggers, for example, by detector movement or changes in lighting

[140]—were discarded in data analysis. Bouts of chewing, tugging, and climbing the

detector, when present, tended to occur later in the trial and were not typical within

the first 20 s after initial contact.

2.11 Statistics

Student’s t-tests or multiple independent comparisons were used for specified ex-

periments. Multiple independent comparisons were performed by individual Student’s

t-tests followed by multiple comparison correction to control for type I errors. A conser-

vative method, Šidák correction was used. For n independent comparisons, the corrected

threshold α∗ for statistical significance was calculated as α∗ = 1 − (1 − α)1/n, where α

is the näıve (isolated) threshold for significance. Here, α = 0.05; for n = 17, this results

in α∗ = 0.003.
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Chapter 3

Individuality, dimorphism and plas-

ticity in mouse pheromone-sensing neu-

rons

3.1 Results and conclusions

3.1.1 Imaging 10, 000 neurons simultaneously from whole-mount VNO by

OCPI

We imaged the whole-mount vomeronasal organ (VNO) at single cell resolution using

a light sheet-based imaging technique, Objective-Coupled Planar Illumination (OCPI)

microscopy [42]. OCPI microscopy works by illuminating the objective’s focal plane with

a thin sheet of light; the objective together with the light sheet moves up and down at a

titled angle to repeatedly scan the tissue along the objective’s z-axis (Fig. 3.1A). Using

OCPI microscopy, we scanned a VNO volume 710µm×125µm×282µm, accounting for

approximately one seventh of the total volume of an intact VNO tissue (Fig. 3.1B). In the
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cell body layer, the cell density of sensory neurons in a 4-month-old VNO was previously

[141] measured to be ∼ 1.01 × 106 /mm3 (averaged across sexes) [142]. We estimated

the total number of vomeronasal sensory neurons (VSNs) contained in a single OCPI

imaging volume as 1.01× 106 /mm3 × 710µm×125µm×282µm×0.9 = 18, 200 (a factor

of 0.9 came from the exclusion of edges of imaging volumes during image registration).

Because 1) there is a 43% increase in sensory cell number between 1 and 4 months of

age, [142], and 2) males have a larger VNO volume and number of sensory neurons than

females [112], we estimated that our single imaging volumes on average provided over

10, 000 VSNs for analysis.

3.1.2 Functional classification of cell types

We performed calcium imaging of VNOs while interrogating neuronal responses to 12

sulfated steroids (supplementary video 1, Fig. 3.2a, Fig. 3.5), spanning the androgens,

estrogens, pregnanolones, and glucocorticoids, a class of social cues originally isolated

from mouse urine [97]. Using OCPI microscopy [42, 71, 131], we collected image stacks

(volumes) with frame size 710µm×710µm, scanning 282µm along the s axis (Fig. 3.1).

Of an approximate 10,000 neurons whose activity was monitored in each volume, we typ-

ically observed 700–1000 neurons responsive to at least one of the stimuli (Fig. 3.2b).

The numbers of responsive neurons in each volume varied by stimulus and individual

(Fig. 3.2c), ranging from an average minimum of 19 neurons (for the androgen ketoetio-

cholanolone sulfate, A3500) to a maximum of 552 neurons (for the estrogen 17β-estradiol
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Figure 3.1. A, schematic of OCPI volumetric scanning. The objective’s focal
plane is illuminated by a thin sheet of light generated by cylindrical lens (not shown
here). Illumination optics are physically coupled to the objective lens such that moving
them up and down achieves three-dimensional scanning of the tissue. `: lightsheet
propagation direction, s: scan axis. B, geometry of the imaging volume within
the whole-mount VNO preparation. In a subset of experiments, two OCPI imaging
volumes were collected from a single VNO preparation. Those volumes cover the full
tissue depth (125µm), and two intact regions (710µm×282µm rectangles in green) of
the tissue when viewed from the top. In a typical intact VNO tissue of 1, 400µm long
and 832µm wide (measurement from a 3-month-old female mouse), each imaging volume
covers approximately one-seventh of the whole tissue volume.
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disulfate, E1050). These cell numbers correspond to ∼0.2% to 5.5% of the VSNs in the

imaging volume.

Consistent with previous reports [71, 97, 132], VSNs activated by single compounds

were functionally heterogeneous and could be classified into different types on the ba-

sis of stimulus responsiveness [71, 132] (Fig. 3.3). We reasoned that a much larger

dataset might offer greater statistical power to detect rare types. By combining 26 VNO

imaging volumes—comprising over 250,000 vomeronasal neurons—we identified 20,853

reproducibly steroid-responsive cells, nearly 10% of the total population and sufficient to

expect many instances of each distinct receptor type expressed by these neurons. Based

on the similarities of cell physiological responses, we clustered all steroid-responsive

VSNs into 17 different types reproducible across multiple preparations (Fig. 3.2d &e,

type-18 and-19 cells were detected in only a small subset of preparations). Among these

17 types, 9 types matched previously reported physiological types of VSNs studied by

multi-electrode array and/or calcium imaging [71, 132], and many are also reflected in

the responses of downstream neurons such as accessory olfactory bulb mitral cells [132].

Here we also discovered 8 new VSN physiological types. Most of the newly identified

types were narrowly tuned to single sulfated steroids: type 3 to allopregnanolone sul-

fate (P3817), type 8 to epitestosterone sulfate (Fig. 3.3), type 10 to testosterone sulfate

(Fig. 3.3), type 11 to ketoetiocholanolone sulfate, and type 17 to 17α-estradiol sulfate

(E0893). These narrowly tuned cell types, typically with a cell count as low as 10 per

imaging volume, each accounted for∼0.1% of the neuronal population, 10-fold lower than

that of the previously reported cell types. Such rare cell types could be reproducibly
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identified due to the exhaustive sampling and large numbers of neurons assembled in 26

imaging volumes.

3.1.3 Cell-type specific individual variability

We first asked whether the variability in each cell type from one imaging volume

to the next was consistent with expectations from random sampling. Random sam-

pling predicts an essentially Poisson distribution for the counts of each cell type. We

compared the observed variability to that of a Poisson distribution, and found that the

Figure 3.2. (preceding page) Large-scale recording of vomeronasal sensory re-
sponses revealed non-stochastic variability between individual mice. a, three-
dimensional rendering from an imaging volume of the whole-mount VNO. Gray scale
is the raw fluorescence intensity of GCaMP2, and red/blue color scale represents the
GCaMP2 fluorescence intensity change (∆F/F ) caused by stimuli, here exemplified by
the androgen ketoetiocholanolone sulfate (A3500). Cells responded to A3500 are vi-
sualized by the red cell bodies inside the tissue and the red dendritic knobs on the
tissue surface (see comparison in Fig. 3.5). Scale bar, 50µm. b &c, cell counts in each
VNOimaging volume, in terms of total number of steroid-responsive cells (b) and number
of cells responding to each stimulus (c). d, cluster organization of cells (from 26 imaging
volumes) revealed at least 17 reproducibly-identified physiological types of VSN. Types
marked by ? correspond to previously-reported VSN physiological types [71,132]; ?? rep-
resents types corresponding to observed mitral cell responses in the accessory olfactory
bulb [132]; bold indicates newly-discovered types. Each column represents a single cell.
For each stimulus, gray intensity represents the average induced fluorescence change
∆F/F across 4 trials. e, cell counts of each VSN physiological type in each imaging
volume. f, cell count variability (see Methods) of each type in all imaging volumes.
Green represents the 95% confidence interval if cell numbers are drawn from a Poisson
distribution. g, variability was not correlated with cell abundance, r: Pearson’s corre-
lation coefficient (p = 0.1408). h &i, PCA analysis of cell counts in all types. Principal
components are color coded, and scaled by the corresponding λ (i). j, Pairs of imaging
volumes recorded from the same animals. Each color represents one animal, and the two
lines with the same color are the two non-overlapping imaging volumes from the same
animal. k, difference of intra-animal pairs (•) was smaller than that of any combina-
tion of inter-animal pairs (•) from shuffling across the pairs in h. Error bars represent
standard deviation in b and 95% confidence interval in k.
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Figure 3.3. Classifying specific VSN functional types using multiple stimulus
responses: an example of two steroid enantiomers. A, a two-dimensional slice
showing responses to two stereoisomers, epitestosterone sulfate (A6940, left) and testos-
terone sulfate (A7010, middle). Red color scale represents the GCaMP2 fluorescence
intensity increase (∆F/F ). Right, merged image with responses to the two stimuli en-
coded in different color channels. Cell 14 responded to A6940, cell 178 responded to
A7010, and cell 176 responded to both. Scale bar, 50µm. B, ∆F/F as a function
of time for the example cells in A. Delivery of different sulfated steroids and Ringer’s
control is represented by colored bars, with red for A6940 and green for A7010. These
cells were specifically activated by A6940 and/or A7010 in all 4 trials. A small fluo-
rescence increase triggered by stimulus delivery, independent of the particular contents
of the stimulus, was present in essentially every cell in the recording (uncorrected trace
shown; see Methods). C, column representation of the example cells in A and B. For
each stimulus, gray intensity is the average of ∆F/F across 4 trials. D, the subset of all
neurons showing selectivity for either (or both) of these androgens. E, linear discrim-
inant analysis (LDA) for all the cells in D reveals three largely-separated groupings of
cells. Each dot represents a single cell (color indicates cluster identity in D); the original
13-dimensional response vectors in D are projected to the first two LDA dimensions.
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observed variability exceeded expectations by as much as 5-fold (Fig. 3.2f) with striking

differences among the different types. For all 17 cell types, the excess variability was

statistically significant (above the 95% confidence interval of random sampling). The

degree of excess variability did not obviously correlate with factors such as abundance

(Fig. 3.2g): the four most variable were types 6, 8 and 14 (among the rarest types) and

13 (the most common type). Neither did the variability obviously correlate with tuning

width, as the more variable types included those sensitive to a single ligand as well as

types responding to multiple ligands (Fig. 3.2d).

To determine whether variability in one type might be correlated with variability in

another, we performed a Principal Component Analysis (PCA) of the scaled cell counts

(see Methods). We found that 58.11% of the variance was explained by the first two

components (Fig. 3.2h &i). The second-largest component was approximately flat, and

therefore approximately represented the variability in the total number of responsive

cells from one preparation to the next. However, The largest component showed a

strong positive correlation among type 6, 8 and 14, and anticorrelation with type 13

(and more mildly with types 5 and 16). This “axis” of variation was therefore extremely

selective for particular cell types.

To determine whether the observed variability reflected features specific to individ-

ual animals, in 5 preparations we imaged two non-overlapping volumes (Fig. 3.2j) and

compared the intra-individual differences in cell-type counts against the inter-individual

differences. We found that, on average, the intra-individual difference was dramatically

lower than the inter-individual difference (Fig. 3.2k). In aggregate, no arrangement of

cross-animal pairwise comparison among these 10 recordings had lower pairwise discrep-
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ancy than the pairing based on individual identity (p = 0.022, permutation test, see

Methods).

We conclude that cell-type variability is significantly greater than expected by chance,

is much larger for certain cell types than others, and is a signature of the individual

animal.

3.1.4 Mechanisms of individuality: sexual dimorphism

The animals used in Fig. 3.2 had identical autosomal genotypes, but included both

males and females. To determine whether cell type abundance was influenced by sex,

we analyzed cell counts separately for 6 male and 5 female datasets. Both males and

females possessed neurons responding to each ligand (Fig. 3.4A–D). Neither the total

number (Fig. 3.7a) nor number of neurons responding to each ligand (Fig. 3.4E) varied

significantly between males and females, although males had a non-significant tendency

towards more cells responding to epitestosterone sulfate (A6940, p = 0.1033), testos-

terone sulfate (A7010, p = 0.2318), and epipregnanolone sulfate (P8200, p = 0.0197,

not significant in the test with Ŝidák correction for multiple independent comparisons,

see Methods). This indicates that males and females can detect all of these sulfated

steroids, and that even the numbers of cells responsive to each ligand do not show dra-

matic dimorphism. Likewise, at the level of cell types, we found that the large majority

of VSN types existed in both sexes (Fig. 3.7a, Fig. 3.6): for 15 out of 17 types, we found

that the cell counts were comparable between males and females, indicating that the

majority of steroid-responsive VSN types were equally expressed in vomeronasal organs

from mice of either sex.
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Figure 3.4. Large-scale recording of sensory responses to sulfated steroids
in male and female mouse vomeronasal organs. Three-dimensional rendering
of whole-mount VNOs from male (A) and female (B) mice. Gray scale is the raw
fluorescence intensity of GCaMP2, and red/blue color scale represents the GCaMP2 flu-
orescence intensity change (∆F/F ) caused by the androgen ketoetiocholanolone sulfate
(A3500). Both male and female VNOs responded to A3500 as visualized by the red cell
bodies inside the tissue and the red dendritic knobs on the tissue surface (see compar-
ison in Fig. 3.5). C &D, two-dimensional slices from male (C) and female (D) VNO
imaging volumes show cellular responses to the other 11 sulfated steroids. Both male
and female possessed VSNs responding to the tested steroids, but not Ringer’s control.
VSNs responsive to single steroids (illustrated by epipregnanolone sulfate (P8200)) were
heterogeneous: arrowhead indicates a cell responding exclusively to P8200; diamonds
indicate a cell responding to P8200 and three androgens (A6940, A7010 and A7864);
and arrows indicate a cell responding to all pregnanolones (P8200, P3865 and P3817)
and two androgens. E, number of cells responding to each stimulus in each male (×)
and female (◦) VNO imaging volume. Each marked point represents one entire imaging
volume. There were no significant differences between male and female VNO imag-
ing volumes (Students’ t-test with Ŝidák correction for multiple comparison, familywise
significance level α = 0.05). Scale bar, 50µm.
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Figure 3.5. Calcium signals at the dendritic knobs and the cell bodies were
consistent when whole-mount VNO was stimulated by sulfated steroids. A,
a side view of a VNO imaging volume with surface facing up. In this view, the dendritic
knob and cell body of each VSN were aligned vertically. x-`-s represent the coordi-
nate axis related to image acquisition, with ` representing the lightsheet propagation
direction and s along the scanning axes (refer to Fig. 3.1). x-y-z are coordinate axes
for tissue, in which z is along the tissue depth. Rectangles encompass the regions of
dendritic layer and cell body layer analyzed in B-D. Haze below the cell body layer is
a consequence of scattering. B &C, maximum intensity projection of cell responses to
A3500 at the dendritic layer and cell body layer defined in A. Red color scale represents
the GCaMP2 fluorescence intensity increase (∆F/F ). D, maximum intensity projec-
tion of cell responses of the whole VNO depth. Colors code the depth from which each
maximum intensity originated, with magenta for the superficial layers (the knobs) and
blue for the deep layers (the cell body layer). This representation is independent on any
manual segmentation, yet note the consistency of magenta signals with that from manu-
ally assigned dendritic layer in B, and the consistency of blue signals with that from cell
body layer in C. The 1:1 correspondence between magenta and blue signals (equivalent
to red signals in B and C) indicated that most cells showed consistent calcium signals
at both layers. While the calcium signals at the dendritic knobs were occasionally more
intense, the relatively larger size and more regular shape of cell bodies made the image
registration and cell segmentation more reliable. In this study, all the cell responses
were measured at the somata. Scale bar, 50µm.
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Figure 3.6. Physiological types of VSNs in single male (upper) and female
(lower) imaging volume. Each thin column of the heatmap represents a single cell;
gray intensity is the average induced fluorescence change ∆F/F across 4 trials. For the
17 main physiological types, all but type 8 were present in both and female mice. Type-8
VSNs were only detected in the male VNO.
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However, this analysis also revealed a dramatic example of sexual dimorphism. VSN

type 8, responding selectively to epitestosterone sulfate (supplementary video 2), was

found almost exclusively in male mice (Fig. 3.7b–e, supplementary video 3 &4). In all

6 male VNO imaging volumes, an average of 23 (23.2 ± 4.8, mean±s.e.m.) type-8 cells

were found in each male imaging volume, yielding a total of 139 type-8 cells across

all 6 imaging volumes (Fig. 3.7b &d). In contrast, only one clear example of a type-

8 cell was found in 5 imaging volumes from females (Fig. 3.8). Across preparations,

this male/female difference, at least one-hundred fold, was highly significant even when

corrected for multiple independent comparisons (p = 0.0014). In addition to type 8,

we found that type-6 neurons, responding strongly to epipregnanolone sulfate and more

weakly to certain androgen sulfates, also differed significantly (p = 0.0016) between

males and females, by a ratio of approximately two-fold (male 49.0 ± 3.8, and female

20.2± 5.4, mean±s.e.m.)(Fig. 3.7b).

To test whether the apparent absence of type-8 neurons from females might be an ar-

tifact of clustering, we performed a second analysis in which neurons most similar to type

8 were examined regardless of their clustering classification. This analysis did not reveal

any additional type-8 candidates among the female imaging volumes (Fig. 3.8). We also

wondered whether females might have type-8 neurons that were less sensitive than those

in males. We therefore performed a subset of experiments using mice expressing the more

sensitive GCaMP3 [27] in VSNs, and interrogated the neuronal responses to a range of

concentrations, up to 100µM, of sulfated steroids (Fig. 3.9). This approach detected

1–2 fold more total epitestosterone sulfated-responsive cells (GCaMP3 vs. GCaMP2:

200.0 vs. 162.8 for males, and 268.0 vs. 104.4 for females); in males, type-8 neurons were
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Figure 3.7. Physiological neuronal types in VNOs from male and female mice.
a &b, cell counts in each male (×) and female (◦) VNO imaging volume, in terms of
total number of steroid-responsive cells (a) and number of cells of each VSN physio-
logical type (b). Type 6 and type 8 were more abundant in male than in female mice
(∗, p = 0.0016 and p = 0.0014, respectively, Students’ t-test, significance tested with
Ŝidák correction for multiple comparisons). Note logarithmic scale. Three-dimensional
images (c) and two-dimensional slices (d) of male and female VNOs. Red indicates the
fluorescence change caused by epitestosterone sulfate (A6940) (∆F/FA6940), and green
colorizes max(∆F/FA7010,∆F/FP8200). Type-8 cells, exclusively responsive to A6940,
are therefore red; note these were present only in the male VNO but not in the fe-
male VNO. Responses induced by P8200 (green) were particularly intense and spread
to neighboring pixels, producing a green halo around the yellow cells. Scale bar, 50µm.
e, type-8 VSNs were found in all 6 male VNO imaging volumes (from 4 individual male
mice). Dashed lines separate cells from different imaging volumes. Each imaging volume
is labeled with the animal’s identity; multiple imaging volumes collected from the same
animal are differentiated by letters.
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Figure 3.8. A clustering-free analysis shows that epitestosterone sulfate
(A6940)-selective VSNs were specific to male mice. A, upper Left: a template
“artificial cell” responding exclusively to A6940; this template was used to “fish out” the
30 cells with most similar response pattern (smallest Euclidean distance between nor-
malized responses) from each imaging volume. Within each imaging volume (separated
by dashed lines), cells were arranged in decreasing order of similarity to the template.
Each column represents a single cell; gray intensity is the average ∆F/F across 4 trials.
Each imaging volume is labeled with the animal’s identity; multiple imaging volumes
collected from the same animal are differentiated by letters. Top, all 6 experiments from
male mice (N = 4 animals) contain cells that responded selectively to A6940. Bottom,
in females only a single neuron, indicated by the arrow, showed a similar response profile
from all the 5 female VNO volumes (N = 3 animals). Note that Fig. 3.7a shows 3 female
type-8 cells, but 2 of them were suggested to be false positives upon inspection (∆F/F
“spillover” from adjacent cells with strong responses). B, the ∆F/F traces of the top
three cells from each imaging volume. Color bars represent different stimuli, red for
epitestosterone sulfate (A6940). Cells “fished” from male imaging volumes responded
to A6940 exclusively, reproducibly in all 4 trials. Spontaneous activity was detected as
small peaks that were not typically coincident with stimulus onset.
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present at levels comparable to the GCaMP2 experiments (21.0 ± 4.0 vs. 23.7 ± 4.8,

mean±s.e.m)(Fig. 3.9A &B), while in females no clear examples of type-8 neurons were

found (Fig. 3.9E &F).

The hundred-fold sex difference of type-8 neurons represents the largest sexual di-

morphism reported for the mammalian nervous system, and to our knowledge the first

difference observed at the level of neurophysiology [102–104, 109]. In addition to this

difference in mean cell counts between males and females, we noted that males were

substantially more variable than females: in females, the variability of 11/17 types was

not distinguishable from random sampling, but this was true for only 3/17 in males

(Fig. 3.10); the rest were more variable than one would expect by chance.

3.1.5 Mechanism of sexual dimorphism: experience

To explain sexual dimorphism in animals and humans, three mechanisms are typi-

cally invoked: a difference of genes (X and Y chromosomes), a difference of hormones

(androgens and estrogens), and a difference of experience (e.g., expectations and condi-

tions of rearing) [104,143,144]. For vomeronasal sensory neurons, the first two biological

explanations might initially appear to be most plausible [112,116,145–147]. However, the

corresponding biological manipulation would change the animal’s hormones and metabo-

lites thereof [78,148,149]. Because vomeronasal neurons detect steroid metabolites [97],

such manipulations would also substantially change the animal’s sensory experience of

its own scent. Thus, we decided to first test whether a mouse’s long-term olfactory

experience affects the composition of sensory neuronal types in males and females.
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In total, we examined six different categories of individuals: isolation-housed males

and females (as shown in Fig. 3.7), females exposed to either a male or a female, and

males exposed to either a male or a female. To provide long-term exposure to chemical

cues from other animals without allowing sexual behavior or intense social contact, we

designed two-layer stacking cages to house mice (Fig. 3.11a) that permit chemical cues

from the upper animal to fall down to the animal in the lower cage. After 9–13 weeks

(matching the duration of isolation-housing in the previous experiments), we removed the

Figure 3.9. (preceding page) VSN responsiveness to concentration series of sul-
fated steroids and female urine tested by GCaMP3 VNOs. Type-8 VSNs
recorded from a male GCaMP2 VNO (A) and GCaMP3 VNO (B). The shown GCaMP2
VSNs came from clustering result in Fig. 3.2d. The shown GCaMP3 VSNs were classi-
fied as type 8 according to their responsiveness to 10µM A6940, A7010 and P8200. The
colorized stimulus bars including the unit (for 10µM) in B highlights the same stim-
uli as used in A. C, for all A6940-responsive cells from GCaMP3 male (×) and female
(◦) VNOs, sensitivity (S, sum of normalized responses across concentrations for each
chemical) for A6940, A7010 and female urine were plotted in three-dimensional space.
Type-8 cells were marked by •. The nearby cells that were not computationally (see
Methods) identified as type-8 were colorized for each sex (male ×, female ◦). Putative
type-8 cells with lower sensitivity, if present, would be located close to the blue line
that goes through the center of type-8 cluster and the origin. The distance of each cell
(unless otherwise colorized) to the blue axis is coded by the darkness of the marker.
D, two-dimensional projection of all cells along the blue axis in C. The concentric blue
circles defined by the type-8 center (center of all •) encompass potential type 8-like cells.
The full responsiveness of all potential type 8-like cells in the blue circles were shown
in E, sorted by ascending distance to the type-8 center. Note this approach detected a
cohort of cells (mostly within r1 distance) as the top candidates of type 8-like cells in
females. Note that these neurons showed similar sensitivity to male type-8 neurons to
A7010, but were of approximately ten-fold lower sensitivity to A6940 and female mouse
urine, indicating that they likely represented a different cell type. F, linear discriminant
analysis (LDA) of type-8 cells (•) and female neurons within r1 in pannel E. The two
LDA components were obtained after an unbiased k-means clustering (k = 3) of cells.
Note the almost perfect separation between male type-8 neurons and the nearest can-
didates in females. The three numbered cells in the overlap region are also indicated
in B&E; cells 2 and 3, from females, were not type-8 cells as they responded to P8200
(panel E), a difference that was not well-captured by these two LDA components.
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vomeronasal organ from the lower animal and imaged responses to these same sulfated

steroids.

For vomeronasal organs from female mice, exposure to male chemical cues caused the

total number of steroid-responsive neurons to decrease slightly (Fig. 3.12A; p = 0.0357).

While it appeared that some cell types responding to sulfated androgens and estrogens

(type 9, 12, and 13) were somewhat rarer (Fig. 3.12B &C), no individual case was sig-

nificant when corrected for multiple comparisons (p = 0.0470, 0.0320, 0.0133). Crucially,

for these females exposed to the males, we still did not detect evident type-8 VSNs: only

a single clear type-8 cell was found in all 5 image volumes. Consequently, females with

long-term exposure to male cues were virtually indistinguishable from isolation-housed

females. Likewise, we found that females exposed to the chemical cues of other females

were similarly unchanged (Fig. 3.12).

For vomeronasal organs from male mice, exposure to female chemical cues did not

change the total number of steroid-responsive VSNs (Fig. 3.11b). Such exposure also

did not change the number responsive to each individual steroid (Fig. 3.13). Such males

were therefore able to detect the same cues as isolation-housed animals.

However, in males exposed to females, the sexually-dimorphic type 8 (selective to

epitestosterone sulfate A6940) was virtually absent (Fig. 3.11c–e, Fig. 3.14, and sup-

plementary video 5 ). In 4 imaging volumes, we did not observe any type-8 VSN, a

marked contrast with isolation-housed males (139 such neurons in 6 imaging volumes,

p = 0.0017). This difference was not due to generic social experience, as males exposed

to the secretions of other males had type-8 neurons present in numbers not significantly
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Figure 3.11. Exposure to female scents triggers the disappearance of a male-
specific VSN type. a, stacked cages provide chronic exposure to chemical social
cues without permitting aggressive encounters or mating. b &c, number of cells in
each male VNO imaging volume: (×) isolation-housed male, (×) male housed below
another male mouse, and (×) male housed below a female mouse. b, total number of
cells responding to sulfated steroids; c, number of cells in each specific VSN physiological
type. Type-8 cells showed a dramatic decrease in abundance in males exposed to females
(∗, p = 0.0017, Students’ t-test, significance tested with Ŝidák correction for multiple
comparison). d &e, three-dimensional rendering and two-dimensional slice of a VNO
imaging volume from a male mouse exposed to a female. Coloration is identical to
Fig. 3.7c &d. The absence of red cells indicates the absence of type-8 VSNs in males
exposed to female, in contrast with isolation-housed males in Fig. 3.7c &d, and male-
exposed males in Fig. 3.14. Scale bar, 50µm. f, whole-animal view of VNO cell-type
composition from different groups of mice. A linear-discriminant projection onto the
two components with largest eigenvalues are shown. Isolation-housed males (×) and
females (◦) were well separated; males exposed to female cues (×) would be grouped
with females (note overlap with circles). g, normalized variability for each group of mice
with the same sex and experience. For the 6 groups of animals, the numbers of cell types
with variability consistent with random sampling (below the green line) were 3 (×), 11
(◦), 5 (◦), 8 (◦), 12 (×) and 9 (×) out of 17 types.
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Figure 3.12. Social exposure does not dramatically change the steroid response
profiles of VSNs in female mice. Isolation-housed female (◦), female exposed to an-
other female (◦), and female exposed to a male (◦). A, total number of steroid-responsive
cells; B, number of cells responding to each stimulus; C, number of cells in each specific
VSN physiological type. The total number of steroid-responsive cells decreased after
male exposure (∗, p < 0.05, Students’ t-test), but neither the number of cells responsive
to any of the individual steroids nor the number of individual physiological types inde-
pendently reached significance (familywise significance level α = 0.05, Students’ t-test
with Ŝidák correction for multiple comparisons).
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Ŝidák correction for multiple comparison). Differences shown in Fig. 3.11c emerge only
when responses are broken down by VSN physiological type.
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different from isolation-housed animals (p = 0.1020, Fig. 3.11c, and supplementary

video 6).

To provide an unbiased view of the distribution of VSN types at the level of whole an-

imals, we performed a linear discriminant analysis of the features that best distinguished

among animals with different sexes and history of sensory experience. Consistent with

the result for types 8 and 6, we found that exposure to female cues “converted” male

VNOs into a pattern of responsiveness indistinguishable from that of females (Fig. 3.11f),

suggesting that experience, not sex, determines the composition of VSN types. We also

examined the individual variability within these six groups, and found that animals with

the same sex and experience exhibited variability consistent with random sampling in

approximately half of the type/experience conditions (48/102, Fig. 3.11g), remarkably

different from the result of 0/17 cases when combining animals from different groups

(Fig. 3.2f). Thus, much (but not all) of the individual variability we observed stems

from the different explicit sensory experiences we provided to these animals.

3.1.6 Experience-dependent plasticity: use it and lose it

Exposure specifically to female cues led to the near-absence of the particular VSN

type — type-8 neurons — from the vomeronasal organ. To determine whether the disap-

pearance of type-8 neurons from males was due to direct exposure of VSNs or an altered

hormonal milieu triggered by the scent of females [150, 151], we occluded one naris in

each male throughout the exposure period, thereby giving both sides the same exposure

to circulating hormones but differing sensory experience. Dye-tracing demonstrated the

effectiveness of unilateral naris occlusion in limiting exposure of the VNO to chemical
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Figure 3.14. A clustering-free analysis shows that male mice exposed to female
lost epitestosterone sulfate (A6940)-selective VSNs. A, upper Left: a template
artificial cell, as described Fig. 3.8. In contrast with isolation-housed males (Fig. 3.8)
and male-exposed males (upper, 2 animals, 3 imaging volumes), males that had been
exposed to females (lower, 3 animals, 4 imaging volumes) did not show A6940-selective
VSNs (type-8 VSNs). B, the ∆F/F fluorescence traces of the top three cells from each
imaging volume. Color bars represent different stimuli, red for epitestosterone sulfate
(A6940). Top cells from imaging volumes of male-exposed males exclusively responded to
A6940 (similar to males in Fig. 3.8), but top cells from female-exposed males responded
to more than just A6940 (as with females in Fig. 3.8).
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cues (Fig. 3.15a). When the two sides were isolated and tested physiologically, VNOs

from the open side had no type-8 neurons. In contrast, VNOs from the closed side

possessed type-8 neurons as observed in unexposed males (Fig. 3.15b). This indicates

that sensory experience, rather than circulating hormones, is the determining factor in

this form of plasticity.

In addition to type-8 neurons, we also found that the more modestly-dimorphic

type-6 neurons, primarily responsive to P8200 and A6940, tended to be suppressed in

males exposed to females (p = 0.0156, Fig. 3.11c). To learn more about why these two

types, and not others, showed evident experience-dependent plasticity, we tested how

the different neuronal classes responded to female mouse urine, a dominant source of

chemosensory cues during the exposure period. Urine perceptibly activated just 3 of the

17 types, which were type 8, type 6, and (most weakly) type 11 (Fig. 3.15c &d). This

result provides a natural explanation for selective plasticity: neuronal types responding

most strongly to the stimulus were those that exhibited the greatest reduction in number.

Type-8 neurons, the type exhibiting strongest plasticity, were also absent in isolation-

housed males presented with nestlets soaked with female urine or epitestosterone sulfate

solution (Fig. 3.15f), further demonstrating that activation of these particular neurons

led to the observed plasticity. Moreover, this use-dependent loss is not restricted to these

particular cell types, but instead represents a general mechanism regulating VSNs, as

the total female urine-responsive cells (including non-steroid-responsive cells) showed a

three-fold reduction after female cue exposure(Fig. 3.15e)(see supplementary discussion).

Finally, we identified the developmental factors controlling this plasticity. To de-

termine whether this plasticity was confined to the early post-weaning period, instead
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Figure 3.15. Plasticity is a consequence of sensory activation. a, two VNO
tissues dissected from the same male mouse. The right naris was closed during the
entire exposure period to the female. Chemical access was limited to the open side, as
shown by Rhodamine 6G uptake. b, type-8 neurons were detected on the closed side, but
not the open side (N = 2 male mice). c, overlap of type-8 and 6 neurons with responses
to female mouse urine (1:50 dilution). A two-dimensional slice is shown; arrowheads
represent examples of type-8 and type-6 cells that responded to female urine. Scale bar,
50µm. d, female urine activated type-8, 6 and 11 VSNs, with decreasing strength. All
urine-responsive neurons that also responded to at least one sulfated steroid are shown.
e, the total number of cells responding to female urine (1:50 dilution) in isolation-housed
females (◦) and males (×), female-exposed males (×), and males exposed to nestlets with
raw female urine (×). f, the number of type-8 neurons in isolation-housed males (×),
males exposed to nestlets with raw female urine (×) or epitestosterone sulfate solution
(A6940, 200µM) (×), and males recovered from female exposure (after being exposed to
females for 2 months, singly housed for another 3 months) (×). Each marker represents
an individual mouse.
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of beginning exposure around the weaning age (P21), we began with isolation-housed

mature males (7-week-old) and commenced a two-month exposure to females; this ex-

perience led to the disappearance of type 8 neurons (Fig. 3.16). We also found that a

two-week exposure did not suffice (Fig. 3.16). Finally, female-exposed males that were

then re-isolated from females for an additional two months exhibited a partial return of

type-8 neurons (Fig. 3.15f). These results demonstrate that this plasticity requires long-

term exposure, is not restricted to an early-life critical period, and is at least partially

reversible.

3.1.7 Dimorphism and plasticity of behavior

Because type-8 neurons were exclusively activated by epitestosterone sulfate (A6940),

we next tested whether males and females responded differently to epitestosterone sulfate

at the behavioral level. We presented epitestosterone sulfate on a cotton swab, and used

an optical beam-break detector [140] to measure the timing and duration of investigation

periods of freely-behaving animals (Fig. 3.18a &b). From initial contact, male mice

investigated epitestosterone sulfate ∼25% longer than females (Fig. 3.17A). In terms of

the difference from baseline investigation time of a vehicle control (Fig. 3.17B &C), males

preferred epitestosterone sulfate (positive effective investigation time, e.g. 1.02± 0.53 s,

mean±s.e.m. over 15 s), but females avoided it (negative effective investigation time,

e.g. −1.22± 0.38 s, females vs. males p = 0.0016) (Fig. 3.18c). This difference between

the two sexes was not observed in the trpc2−/− mice (Fig. 3.17E) for which VSNs are

stimulus-nonresponsive [75, 76, 152], indicating that the behavioral differences required

functional VSNs. Consistent with the changes in receptor types, female-exposed males
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Figure 3.16. The time window for experience-dependent plasticity of type-8
VSNs. Male mice were exposed to females at different developmental stages for varying
exposure durations. Long-term exposure (∼ 2 months), starting from either postnatal
day 21 or week 7, caused type-8 VSNs to disappear (4 imaging volumes from 3 male
mice, and 2 VNO imaging volumes from one male, respectively); short-term exposure
(2 weeks) during adulthood did not affect type-8 VSNs (2 VNO imaging volumes from
one male).
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did not behave like males but rather, like females, exhibited a relative avoidance (effective

investigation time −1.56 ± 0.58 s, female-exposed males vs. males p = 0.0026, female-

exposed males vs. females p = 0.6176) (Fig. 3.18c, Fig. 3.17D). The investigation time

for testosterone sulfate (A7010), an enantiomer of A6940 (Fig. 3.3), was not statistically

significant between males and females over any time interval (e.g. females vs. males

p = 0.5991 over 15 s) (Fig. 3.18c, Fig. 3.17C), consistent with the lack of dimorphism

or plasticity in A7010-responsive neurons. The differences in behavioral responses to

epitestosterone sulfate were consistent with the distinctive dimorphism and plasticity

observed in type-8 neurons.

3.2 Discussion

3.2.1 A clean system for studying the effect of environment on sexual di-

morphism

It is widely recognized that the environment has far-reaching influence on self-concept

and gendered behavior of humans, yet empirically testing the effects of nature vs. nurture

in humans is a formidable challenge because of the number of variables to control. Such

control is easier to achieve in rodent models, yet the effect of environment on sexual di-

morphism is poorly studied in rodents [143,144]. The mouse accessory olfactory pathway

exhibits dimorphism at multiple circuit levels [110], which from hormonal manipulations

like gonadectomy combined with implantation of sex steroids [112,116,145,153–155] has

been thought to be a consequence of circulating gonadal hormones [112,146,156]. A sex-

ually dimorphic AOS circuit organized by preprogrammed genetic and hormonal factors

is seductive, as this very system is documented in the control of innate social behavior,
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including sexual behavior [73–82], male aggression [74–76,83–86], interspecies defensive

behaviors [87], maternal aggression [76–78,80,88] and lactating behavior [77]. However,

one potential confound is that studies employing hormonal manipulation could substan-

tially change the metabolites in the animal’s urine, saliva, tears, etc. [78, 148, 149, 157],

thereby altering the olfactory environment for the animal. Therefore, the relative roles

of internal hormones and/or sensory experience in generating AOS circuit dimorphism

has not been addressed.

This study found that isolation-housed male and female mice developed functionally

different sensory cells, but the differences were diminished if they were housed in the

same chemical environment. To directly differentiate hormonal and sensory effects, we

exploited the bilaterality of the VNO, with both sides experiencing the same levels of

circulating hormones but with just one side receiving sensory exposure. This study pro-

vided the first direct evidence that differences in the environment could shape a sexually

Figure 3.17. (preceding page) Investigation time of isolation-housed males(×),
females(◦), and female-exposed males (×) to sulfated steroids at different
time intervals since the initial contact. All trials were aligned to the onset of
the initial contact to the cotton swab (time 0 sec). A &B, raw investigation time to
epitestosterone sulfate (A6940), testosterone sulfate (A7010) and vehicle (1:1000 vanilla).
The raw investigation time revealed that males and females exhibited differential pref-
erence towards epitestosterone sulfate, as controlled by testosterone sulfate and baseline
investigation to vehicle for each sex. C &D, effective investigation time, calculated by
subtracting baseline investigation time measured with vehicle solution. Males (×, N
= 10, 3 trials) spent more time sniffing A6940 than females (◦, N = 10, 3 trials) (∗,
p < 0.01, Students’ t-test), but there was no significant difference for A7010 (p > 0.05
for any interval). D, effective investigation time of female-exposed males were not sig-
nificantly different from that of females in C. E, trpc2−/− mice did not show significant
sexual difference to neither A6940 (except at a single time interval, over 4 sec after initial
contact) nor A7010.
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Figure 3.18. Olfactory investigation of epitestosterone was sexually dimorphic
and determined by experience. a, schematic of apparatus used to record episodes of
olfactory exploration in freely-behaving animals. The infrared beam was broken (see the
blue voltage trace) when the mouse contacted the cotton swab. b, investigatory episodes
of 10 male mice to epitestosterone sulfate. Each animal participated in 3 trials, each of
which was aligned (t = 0) to the time of first contact. Black blocks represent continuous
periods of investigation. Blank trails were “failure trails” in which the animals never
investigated the cotton swab. c, investigation time relative to control (see methods, Fig.
3.17) was higher for males (×, N = 10) investigating A6940 than females (◦, N = 10)
(∗, p = 0.0016, Students’ t-test), but did not differ for A7010 (p = 0.6176). In contrast,
female-exposed males (×, N = 12) were indistinguishable from females (p = 0.5991).
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dimorphic neural structure. The remarkable role of environment in forming sexually

dimorphic circuitry may have far-reaching consequences, with interesting implications

even for the discussion of human activities such as school performance and the workplace

[158].

3.2.2 Mechanism of experience-dependent plasticity of VSNs

We observed that responsive male-specific type-8 and type-6 neurons disappeared, or

diminished in number, after chronic exposure to females, and further demonstrated that

female urine, the major source of female secreted chemicals, activated these neurons. In

contrast, cell types unaffected by female exposure were not activated by female urine,

with the exception of type-11 neurons which exhibited much lower responsive strength

compared to type 8 and type 6 (Fig. 3.15d). We also directly stimulated type-8 neurons

by presenting nestlets soaked with female urine, or soaked with epitestosterone sulfate

(A6940) solution, on a daily basis for 3 months. In both experiments, type-8 neurons

completely disappeared (Fig. 3.15f).

“Adaptation” has been proposed to explain the lack of c-fos activation in the BALB/c

male VNO after ESP-1 exposure [81] as well as down-regulation of pup pheromone-

induced c-fos activation [86]; however, the decrease in c-fos signals may alternatively

reflect reduced investigation of familiar chemicals [117] instead of a change in sensory

capacity. The existing physiological evidence—a more direct measure than c-fos of

neuronal function—is quite limited in terms of the number of responsive neurons: one

multielectrode array study of 320 single-units observed ESP1 responses in 3 neurons from

females and 2 neurons from males [77], while a second data set observed 3/166 responsive
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neurons in females and 0/66 responsive neurons in males [97]. These results indicate

the presence of at least some ESP1 responses in males, and are therefore consistent

with the possibility that the decrease in fos-positive cells was a consequence of reduced

investigation rather than innate VSN functional differences.

One possible mechanism for changes in cellular function is altered gene expression,

particularly of the vomeronasal receptors themselves. To date, no vomeronasal receptor

genes have been mapped to the Y chromosome [159]. Studies of the influence of ex-

perience on gene expression in VSNs (vomeronasal receptors and otherwise) [114, 124]

showed maximal changes of approximately 2-fold, insufficient to account for the size

of phenomenon we observed in type-8 neurons. It is not known whether the reported

changes corresponded to different numbers of cells or changes of expression level within

cells. Likewise, none of the vomeronasal receptor genes have yet been found to be ex-

pressed differentially in male and female animals [94,95,114]. The closest known example

is a difference, for cells expressing a particular V2R gene, of the mean soma depth within

the VNO epithelium between the sexes [95]. However, because all VSNs receive sensory

exposure through their dendritic knobs at the surface of the VNO, there is no known

functional consequence of a shift in the location of the soma; moreover, this receptor

gene is thought to be a pseudogene [98].

Hagendorf et al. discovered an activity-dependent expression of an ether-á-go-go-

related gene (ERG)—a potassium channel—in the basal layer VNO [125]. They showed

that mice with reduced sensory exposure had reduced ERG expression, while mice ex-

posed to an odor-rich environment expressed higher levels of ERG. For several reasons,

this form of plasticity seems unrelated to that observed here. First, ERG is expressed by
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the basal V2R neurons, whereas type-8 VSNs reside mostly in the apical zone of VNO

(Fig. 3.19). Second, ERG is widely-expressed and does not appear to be restricted to

particular functional types. Finally, the specific form of plasticity in the current study

is opposite in sign: odor-exposure triggered a loss of type-8 neurons, but ERG expres-

sion increased in response to stimulus exposure with a suspected role in repolarizing the

membrane to support sustained firing [125].

We tested the time window for expression of this plasticity, and found it required

approximately 2 months—a period long enough for sensory neuron turnover in VNO

epithelium [142] (Fig. 3.16). The plasticity of type-8 VSNs existed at both developmental

stages and in adulthood. Moreover, we found this plasticity was bidirectional, as re-

isolating male mice from females led to the reappearing of type-8 neurons (Fig. 3.15f).

These results are consistent with possibility that the observed plasticity of type-8 cell

responsiveness may involve type-8 cell death and regeneration. Odor-mediated changes

in neuronal survival in the main olfactory epithelium have been documented previously

[122, 123]. However, these studies examined sensory neurons in the aggregate, and did

not attribute the effect to specific sensory neuron types or patterns of responsiveness. As

with Hagendorf [125], the direction of the effect—with stimulation prolonging survival

of sensory neurons—appears to be inconsistent with the more selective form of plasticity

identified in this study.

3.2.3 Sulfated steroids & behavior

Sulfated steroids, as active ligands for VSNs, were purified from female mouse urine;

at present they constitute by far the most active class of known ligands for VSNs
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Figure 3.19. A, the depth of cells from a single imaging volume of a male VNO tissue.
Each gray dot represents a single cell. Depth was calculated as the distance of cell
body centroid to the tissue surface. A majority of the types situated in the apical zone
of the epithelium, except that pregnanolones-responsive type 3 &4 were more basally
distributed [71]. Male specific type 8 were close to the apical zone, yet more basal than
other apical types. B, depth distribution of cells from singly-housed females (◦) and
males (×), and female-exposed males (×); each group was a pool of cells from 3 individual
VNO imaging volumes. To correct for the variation of tissue thickness, all depths were
normalized by the average depth of all responsive cells within each tissue. Besides
male-specific type-8 cells (with only a single cell found in one of the female VNOs),
the other two female-urine responsive types, type-6 and type-11, exhibited significant
depth differences between males and females (∗ ∗ ∗, p = 6.0× 10−7 and p = 4.7× 10−5,
respectively. Students’ t-test), with male cells more basal. Type-1 cells showed a much
milder difference (∗, p = 0.0030). After female exposure, the depth of remaining male
cells of type-1, 6 and 11 were not distinguishable from that of females. Error bars,
standard deviation.
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[71, 97]. The overlap of epitestosterone sulfate with urine responses in type-8 neurons

(Fig. 3.15c &d) might reflect the presence of epitestosterone sulfate in female urine; alter-

natively, the fact that many VSN types respond to multiple ligands (Fig. 3.2d, Fig. 3.4D)

makes it plausible that another, perhaps closely-related, ligand in C57/6 female mouse

urine activates type-8 neurons.

While the chemistry and neuroscience of sulfated steroids for the VNO has been

the subject of several studies and reviews [71, 97, 160–164], the behavioral role of sul-

fated steroids has received less attention. It was shown that their concentrations in

urine changed according to the physiological status of animals, increasing several-fold

in stressed animals [97]. Besides information regarding sex and stress level, the strain

identity, social and reproductive status are also potentially encoded by sulfated steroids.

However, prior to this study, no direct behavioral impact of vomeronasal detection of

sulfated steroids had been demonstrated; this constitutes a further form of novelty for

this study. We focused on investigation time, which has been shown to be a sensitive

and quantitative indicator of vomeronasal function [165], perhaps because of the slow

pumping of stimuli into the VNO [166].

3.2.4 Using imaging technique to study neural individuality at single cell

resolution

Individual differences in neuronal circuitry underlie individuality in behavior, but

studying these differences at a cellular level in neural assemblies remains a major chal-

lenge: circuits contain tens or hundreds of different cell types—and many thousand in-

dividual neurons—distributed throughout cubic millimeters (or more) of tissue. Large-
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scale recording by light sheet/OCPI microscopy [42] provides one of the few viable

strategies for studying systematic functional differences between individuals. Here, by

recording from approximately 10,000 neurons per preparation, OCPI microscopy enabled

detection of striking individual differences confined to a previously-unrecognized ∼0.2%

of the total neuronal population.

3.2.5 A new form of neural plasticity: “use it and lose it”

In the nervous system, many known mechanisms of plasticity contribute to the main-

tenance and strengthening of oft-excited connections; this positive contribution of activ-

ity to circuit development and stabilization is often summarized as “use it or lose it.” In

contrast, the plasticity we discovered in the vomeronasal organ can be better summa-

rized as “use it and lose it,” because the most strongly-activated neuronal types were

most dramatically reduced. We suspect that the strength of this phenomenon is partly

due to the controlled sensory environment of the laboratory, and that under natural

circumstances with diverse stimuli, all neuronal types may be under a certain amount

of sensory-induced competitive pressure. This plasticity might therefore be a reflection

of cell-survival or receptor-choice mechanisms that ensure balance in the expression of

neuronal types and the ability of organisms to detect a wide variety of scents. This

proposed role is consistent with the decreased animal-to-animal variability of females

compared to males (Fig. 3.10) and the fact that females produce a substantially-larger

number and intensity of vomeronasal cues than males [75, 97, 133, 167]. However, this

may not fully explain why isolation-housed males are more variable than males with
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access to other males (Fig. 3.11g). It seems likely that additional experience-dependent

phenomena contribute to the individual differences among these animals.

3.2.6 A plasticity-caused sexual dimorphism

The vomeronasal system is widely believed to drive “innate” responses to social

odors. Many of these behaviors are strongly dimorphic—aggression or mating—and

consequently males and females are expected to differ in their underlying neuronal cir-

cuitry [111,168]. Here, we showed that isolation-housed males have at least one type of

sensory neuron that is nearly absent in females. It would seem reasonable to expect this

difference to have a biological origin, determined by the genes or hormones specific to

each sex. Instead, we find that this extreme example of apparent dimorphism is entirely

due to sensory experience: exposing males to female cues converts their vomeronasal

organs to a female-like pattern. Our finding that neuronal dimorphism is a consequence

of plasticity, in a sensory system long held to subserve the innate differences between

males and females, brings new mechanistic appreciation of the extraordinary importance

of experience and individuality in the development of neuronal circuits and behavior.

3.3 Summary and future directions

Here using large-scale recording by light sheet-based OCPI microscopy we detected

striking variability in neuronal functions among mice with difference sexes and expe-

riences. In the context of pheromone sensing neurons, by which mice recognize mates

and conspecifics [133,167,169], strain difference could be another natural contributor to

individual variabilities in a population. According to the experience-dependent plastic-
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ity discovered in the current study, the strain-specific social cues per se could result in

distinctive functional sensory neurons in each strain thereby causing inter-strain differ-

ences. Therefore, testing the individual differences with mice of different strains is one

natural extension for the study of individual differences.

Experience-dependent plasticity of pheromone-sensing neurons is one of the key dis-

coveries in this study. At present the cellular mechanism of this plasticity is unclear. The

observed “use it and lose it” phenomenon is not reminiscent of the previously reported

plasticity (see section 3.2.2), indicating that a novel mechanism for neuronal plasticity

exists in those sensory neurons. In order to explain the cellular mechanism, the most

straightforward approach is tracking the cell fate during the expression of the plasticity,

by which several key questions can be answered:

• whether neurons that no longer respond to stimuli still exist in the vomeronasal

epithelium? A pre-labeling of the target cells before chemical exposure will reveal

the cell fate.

• If the cells still exist, do they become silenced or switch to a different receptor type?

The switch of type can be validated functionally by new stimuli and molecularly

by in situ hybridization or more efficiently by single-cell sequencing.

• if the cells disappear, we may wonder why normal cell turnover in the epithelium

do not replenish this very type. This case will suggest that neuronal activity can

biased the receptor choice during neuronal regeneration.

All the above experiments necessitate chronic labeling of specific functional cell types

in live animals, which can be achieved by transgenic labeled mouse line. We can either
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focus on the type-8 neurons identified in this study, and therefore find the receptor

gene(s) to generate the mouse line, or we can consider choose other receptor-ligand pair

if the type expresses the same plasticity.

To find the receptor gene for the type-8 VSNs, besides the traditional in situ hy-

bridization approaches [160], a new strategy that combines photoactivatable fluorescence

labeling and single-cell transcriptomes [170] is another option with much higher effi-

ciency. Currently we do not know any existing receptor-ligand pair that can facilitate

the mechanistic study of this plasticity. However, we do know that BALB/c female urine

contains corticosterone 21-sulfate [97] that activates type-1 and 2 VSNs (Fig. 3.2d). In

a pilot experiment, we exposed mice to BALB/c female cues and observed a decrease

in the number of type-1 VSNs and a concomitant increase of type 2 (data not shown),

which suggests a potential mechanism of receptor type switching. We still need to fur-

ther check whether type 1 conforms to the the same plasticity as type 8, yet type 1/2

are potential candidate types for the future mechanistic study.

92



Chapter 4

In vivo imaging of mouse brain ac-

tivity with light-sheet microscopy

4.1 Results and conclusions

4.1.1 Horizontal scanning OCPI microscopy (hsOCPI)

In order to refer axes without ambiguity, we first defined five axes as follows: X −

Y −Z denote regular coordinates of a sample with Z on the depth axis (vertically when

the sample is placed on a horizontal platform); ` points in the light sheet propagation

direction; and s represents the scanning axis that can vary in different designs (Fig. 1.3).

In the first generation OCPI, the scanning axis s is along the axial axis of the objective

lens with a 45 tilt angle to the vertical axis. Here, we invented a new scanning modality

with s on the horizontal axis overlapping with Y along the surface of the tissue. The

new horizontal scanning completely relieves the restriction on the 3D scanning volume

of the first generation OCPI. It allows unlimited scanning of tissues with a large surface

area. We name it horizontal scanning OCPI (hsOCPI).
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In hsOCPI, scanning was achieved by moving the the entire illumination/objective

assembly back-and-forth on the horizontal axis through a vertically mounted translating

stage(Fig. 4.1). This high performance stage has 19mm travel range with nanometer

precision, enabling large-scale scanning with sufficient resolution for most biological

studies. The illumination/objective assembly was mounted onto a custom-machined

triangular frame that was directly loaded onto the translating stage. In order to direct

collect light from the axis of objective lens to the horizontal axis, we added a mirror

between the back aperture of the objective lens and the emission filter. Therefore,

a broadband reflective mirror with a size of 2 inch in diameter was mounted with a

tilt angle at the top of the triangle frame(Fig. 4.1A). During the scanning, the whole

triangle frame assembly is driven by the translation stage and moves back-and-forth

along the surface of the tissue. The infinity-focused light coming from the scanning

assembly is then focused by a large diameter camera lens and forms images on the

sCMOS camera(Fig. 4.1B).

In theory, this design allows completely unrestricted 3D scanning of tissues with a

large surface area. The scanning capacity merely depends on the range of the stage.

Due to the unconventional vertical mounting of the translating stage, overloading may

compromise its mechanical performance. In this design, we minimized the weight of

the whole triangle assembly to ∼ 320 g to ensure smooth travels with at least 0.1µm

precision at a speed up to 2 mm/second.

Without restriction on the mechanical scanning volume, for functional imaging, the

imaging capacity completely depends on the camera speed. With an up-to-date fast

sCMOS camera (pco.edge 4.2) that allows 100 Hz imaging with a whole frame size of
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2160 pixels×2560 pixels, we managed to increase the calcium imaging volume by 15 fold

compared to the first generation OCPI.

By imaging subdiffraction fluorescent beads (with a diameter of 0.2µm), we measured

the light sheet thickness throughout the field of view (700µm× 832µm). At the beam

waist, light sheet thickness is ∼ 5µm (Fig. 4.2A), which was positioned at the center

of the field of view. At the two edges of the field of view, the thickness increased to

∼ 10µm (Fig. 4.2B). Thus, while the xy resolution is 0.325µm, the z resolution is

between 5− 10µm in the whole two-dimensional field of view. The maximum scanning

volume of hsOCPI is a three-dimensional stripe with the size of 350µm×832µm×19 mm.

Because a Gaussian beam is used as the light source, the light intensity along the

beam waist exhibits Gaussian distribution. The light intensity dropped by 30% on the

two side edge in the filed of view. We correct this intensity drop in any three-dimensional

rendered image. In analysis of neuronal activity, this intensity drop to some extent

affects the signal-to-noise ratio, but not the neuronal responses since we calculate the

fluorescence change ∆F/F as the response strength.

Besides the highlighted feature on the scanning design for large field of view and high

speed, we also implemented five other new features compared with the first generation

OCPI:

• Compared to all the other previously reported light sheet microscopy designs, the

configuration of hsOCPI is more suitable for in vivo imaging of mice. The illumi-

nation optics was assembled within a 12 mm long, 8mm outer diameter compact

cylinder carrier, which left spacious room around the objective lens to position

large samples like a head-fixed mouse.
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Figure 4.1. Schematic of hsOCPI setup. A, side view of the assembly of illumination
and detection optics in three-dimensional perspective. B, front view of the whole optical
design of hsOCPI.
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half maximum. B, the distribution of light sheet thickness along the light propagating
axis ` in the whole filed of view.
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• The miniaturized illumination arm allows unsymmetrical tilt of the illumination/objective

coupler. We then changed the tilt angle of the objective lens from 45 degree to

30 degree to the vertical Z axis [60], which helps reduce aberration induced by

non-perpendicular incident to the tissue surface.

• We implemented a bi-directional scanning modality, and therefore we can imag-

ing the tissue twice during a back-and-forth scanning. This further enhances the

temporal resolution of such a large-scale imaging.

• In order to perform multi-color fluorescence imaging, we used an achromatic spher-

ical lens back to back with a concave cylindrical lens to form the light sheet

from collimated laser light from four different laser lines: 465 nm /491 nm /515 nm

/561 nm. This allows imaging of almost all of the regularly used fluorescent probes

CFP /GFP /YFP /RFPs.

• With the same ∼ 20× magnification, the higher pixel density of sCMOS camera

result in better lateral resolution in hsOCPI. The lateral resolution enhanced from

0.71µm in OCPI to 0.325µm in hsOCPI, thereby generating better lateral resolved

images. This improvement will benefit the imaging of sub-cellular structures, such

as dendrites and axons in the neural tissues, despite the fact that axial resolution

still leaves behind the light sheet thickness. Additionally, a telephoto zoom lens

(AF Nikkor, 180mm, f/2.8D) in the system provides variable magnification.

• In order to handle ∼ 700megabyte per second high rate of data transfer and storage

over hour-long recording, we upgraded the self-developed data acquisition software
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Imagine [42] by implementing a spooling algorithm to write data directly the hard

drive.

4.1.2 Large-scale volumetric imaging

Because hsOCPI has 19mm long travel range along the tissue surface, we first used it

to image the entire nervous system of a laval zebrafish including the ∼ 5mm long spinal

cord (Fig. 4.3A). While the large-scale scanning covers the entire fish, the superior spatial

resolution also allows discerning single cells as well as the peripheral nerves (Fig. 4.3B).

To perform the mouse cortical imaging, we started with a brain with sparse GFP la-

beling of interneurons (Fig. 4.4). With hsOCPI, we successfully scanned a 800µm×5.6 mm

rectangular area across the two hemispheres of parietal cortex. Here the limits of the

scanning distance came from the curvature of the brain. Regarding the penetration

depth, we were able recognize sparsely labeled interneurons at depth of ∼ 200µm. Neu-

rons beyond that depth were no longer discernible due to the scattering of brain tissue.

4.2 Future plans

With miniaturized optics and a novel horizontal scanning design, we have achieved

an unprecedentedly large-scale scanning of biological tissues with extensive surface area.

The initial success of an ex vivo cortical imaging of the mouse brain encourages us move

to the next step to imaging neural activity from head-fixed mice. Specifically, mice

with GCaMP6 labeled cortical neurons will be used to perform calcium imaging with

hsOCPI. Aiming for large population imaging, we will use the GCaMP6 viral vector and

Emx-1 cre line to obtain a dense labeling of ∼ 80% of cortical neurons [171]. As the
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A

B

Figure 4.3. Scanning the entire nervous system in the laval zebrafish. 6-day-old
laval of HuC:GFP transgenic line. A, three-dimensional rendering of the whole fish. B,
an insection image showing the cross section of the spinal cord. Note the cell bodies in
the spinal cord as well as the peripheral nerves around it.
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Figure 4.4. Scanning a ∼ 6 mm long stripe of mouse cortex. A, a schematic shows
a highlighted regions (in green) across the two hemispheres of cortex in an ex vivo whole
mouse brain preparation. This long stripe coverages a 800µm×5.6 mm surface area in
the parietal cortex with GAD65-expressing interneurons labeled by GFP. B, an example
two-dimensional frame shows sparely labeled interneurons in the layer2/3 cortex. Note
the dendrites of these interneurons in layer 1. C, a three-dimensional rendering of a
stack consists of 5600 frames exemplified in B. It clearly visualizes the brain landscape,
including the blood vessels shown as the dark lines on the surface.
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first demonstration of this imaging technique, we will start by monitoring spontaneous

neuronal activity in the mouse visual cortex in anesthetized animals. It will establish an

experimental platform as well as data analysis pipeline for future application in head-

fixed behaving mice.
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Boccara, and Laurent Bourdieu. Brain refractive index measured in vivo with high-

na defocus-corrected full-field oct and consequences for two-photon microscopy.

Optics express, 19(6):4833–4847, 2011.

[59] Jingjing Sun, Sung Jin Lee, Lei Wu, Malisa Sarntinoranont, and Huikai Xie. Re-

fractive index measurement of acute rat brain tissue slices using optical coherence

tomography. Optics express, 20(2):1084–1095, 2012.

[60] Diwakar Turaga and Timothy E Holy. Aberrations and their correction in light-

sheet microscopy: a low-dimensional parametrization. Biomed Opt Express,

4(9):1654–61, 2013.

[61] Thai V Truong, Willy Supatto, David S Koos, John M Choi, and Scott E Fraser.

Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat

Methods, 8(9):757–60, Sep 2011.

[62] Eran A Mukamel, Axel Nimmerjahn, and Mark J Schnitzer. Automated analysis

of cellular signals from large-scale calcium imaging data. Neuron, 63(6):747–60,

Sep 2009.

111



[63] Daniel A Dombeck, Christopher D Harvey, Lin Tian, Loren L Looger, and David W

Tank. Functional imaging of hippocampal place cells at cellular resolution during

virtual navigation. Nat Neurosci, 13(11):1433–40, Nov 2010.

[64] Elizabeth Pennisi. Breakthrough of the year. human genetic variation. Science,

318(5858):1842–3, Dec 2007.

[65] Greg Miller. Mysteries of the brain. why are you and your brain unique? Science,

338(6103):35–6, Oct 2012.

[66] D Samuel Schwarzkopf, Chen Song, and Geraint Rees. The surface area of human

v1 predicts the subjective experience of object size. Nat Neurosci, 14(1):28–30,

Jan 2011.

[67] Ryota Kanai and Geraint Rees. The structural basis of inter-individual differences

in human behaviour and cognition. Nat Rev Neurosci, 12(4):231–42, Apr 2011.

[68] Raja Parasuraman and Yang Jiang. Individual differences in cognition, affect,

and performance: behavioral, neuroimaging, and molecular genetic approaches.

Neuroimage, 59(1):70–82, Jan 2012.

[69] Sophia Mueller, Danhong Wang, Michael D Fox, B T Thomas Yeo, Jorge Sepulcre,

Mert R Sabuncu, Rebecca Shafee, Jie Lu, and Hesheng Liu. Individual variability

in functional connectivity architecture of the human brain. Neuron, 77(3):586–95,

Feb 2013.

112



[70] Ya-Hui Chou, Maria L Spletter, Emre Yaksi, Jonathan C S Leong, Rachel I Wilson,

and Liqun Luo. Diversity and wiring variability of olfactory local interneurons in

the drosophila antennal lobe. Nat Neurosci, 13(4):439–49, Apr 2010.

[71] Diwakar Turaga and Timothy E Holy. Organization of vomeronasal sensory coding

revealed by fast volumetric calcium imaging. J Neurosci, 32(5):1612–21, Feb 2012.

[72] Gary F Hammen, Diwakar Turaga, Timothy E Holy, and Julian P Meeks. Func-

tional organization of glomerular maps in the mouse accessory olfactory bulb. Nat

Neurosci, Jun 2014.

[73] J B Powers and S S Winans. Vomeronasal organ: critical role in mediating sexual

behavior of the male hamster. Science, 187(4180):961–3, Mar 1975.

[74] A N Clancy, A Coquelin, F Macrides, R A Gorski, and E P Noble. Sexual behavior

and aggression in male mice: involvement of the vomeronasal system. J Neurosci,

4(9):2222–9, Sep 1984.

[75] Lisa Stowers, Timothy E Holy, Markus Meister, Catherine Dulac, and Georgy

Koentges. Loss of sex discrimination and male-male aggression in mice deficient

for trp2. Science, 295(5559):1493–500, Feb 2002.

[76] Bradley G Leypold, C Ron Yu, Trese Leinders-Zufall, Michelle M Kim, Frank

Zufall, and Richard Axel. Altered sexual and social behaviors in trp2 mutant

mice. Proc Natl Acad Sci U S A, 99(9):6376–81, Apr 2002.

113



[77] Tali Kimchi, Jennings Xu, and Catherine Dulac. A functional circuit underlying

male sexual behaviour in the female mouse brain. Nature, 448(7157):1009–14, Aug

2007.

[78] Karina Del Punta, Trese Leinders-Zufall, Ivan Rodriguez, David Jukam, Charles J

Wysocki, Sonoko Ogawa, Frank Zufall, and Peter Mombaerts. Deficient pheromone

responses in mice lacking a cluster of vomeronasal receptor genes. Nature,

419(6902):70–4, Sep 2002.

[79] Matthieu Keller, Sylvie Pierman, Quentin Douhard, Michael J Baum, and Julie

Bakker. The vomeronasal organ is required for the expression of lordosis behaviour,

but not sex discrimination in female mice. Eur J Neurosci, 23(2):521–30, Jan 2006.

[80] E Marianne Norlin, Fredrik Gussing, and Anna Berghard. Vomeronasal phenotype

and behavioral alterations in g alpha i2 mutant mice. Curr Biol, 13(14):1214–9,

Jul 2003.

[81] Sachiko Haga, Tatsuya Hattori, Toru Sato, Koji Sato, Soichiro Matsuda, Reiko

Kobayakawa, Hitoshi Sakano, Yoshihiro Yoshihara, Takefumi Kikusui, and

Kazushige Touhara. The male mouse pheromone esp1 enhances female sexual re-

ceptive behaviour through a specific vomeronasal receptor. Nature, 466(7302):118–

22, Jul 2010.

[82] David M Ferrero, Lisa M Moeller, Takuya Osakada, Nao Horio, Qian Li, Dheeraj S

Roy, Annika Cichy, Marc Spehr, Kazushige Touhara, and Stephen D Liberles.

A juvenile mouse pheromone inhibits sexual behaviour through the vomeronasal

system. Nature, Oct 2013.

114



[83] J A Maruniak, C J Wysocki, and J A Taylor. Mediation of male mouse urine

marking and aggression by the vomeronasal organ. Physiol Behav, 37(4):655–7,

1986.

[84] C J Wysocki and J J Lepri. Consequences of removing the vomeronasal organ. J

Steroid Biochem Mol Biol, 39(4B):661–9, Oct 1991.

[85] Pablo Chamero, Tobias F Marton, Darren W Logan, Kelly Flanagan, Jason R

Cruz, Alan Saghatelian, Benjamin F Cravatt, and Lisa Stowers. Identification of

protein pheromones that promote aggressive behaviour. Nature, 450(7171):899–

902, Dec 2007.

[86] Kashiko S Tachikawa, Yoshihiro Yoshihara, and Kumi O Kuroda. Behavioral

transition from attack to parenting in male mice: a crucial role of the vomeronasal

system. J Neurosci, 33(12):5120–6, Mar 2013.

[87] Fabio Papes, Darren W Logan, and Lisa Stowers. The vomeronasal organ mediates

interspecies defensive behaviors through detection of protein pheromone homologs.

Cell, 141(4):692–703, May 2010.

[88] N J Bean and C J Wysocki. Vomeronasal organ removal and female mouse ag-

gression: the role of experience. Physiol Behav, 45(5):875–82, May 1989.
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