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Abstract

Development of a New LC-MS Method for the Identification of anti Cyclobutane
Pyrimidine Dimers Formed in G-quadruplex Forming Sequences
by
Claudia Posadas
Master’s Degree in Chemistry
Washington University in St. Louis, 2018

Dr. John-Stephen A. Taylor, Chair

Ultraviolet light is well known to induce cyclobutane pyrimidine dimers (CPD) and
pyrimidine (6-4) pyrimidone photoproducts in duplex DNA, which interfere with
DNA replication and transcription. Recently, a new class of DNA photoproducts
known as anti cyclobutanepyrimidine dimers have been discovered, which form in
G-quadruplex forming sequences in solution. G-quadruplex structures have been
proposed to form in human DNA telomeres and certain promoters in vivo but
evidence for their existence has been lacking. Since anti-cyclobutante pyrimidine
dimers have been shown to form in G-quadruplex forming sequences, their

formation in irradiated human cells could be used to confirm the existence of G-

Xiv



quadruplexes in vivo.  Methods have been developed for assaying these DNA
modifications, but it hasn’t always been easy to confirm their identity or characterize
their structures.

The goal of this thesis was to further investigate the formation of anti-thymine
dimers in human telomeric sequences under various conditions known to favor or
disfavor G quadruplex formation. Central to this goal was the development of a

high resolution LC MS/MS method for separating and identifying all the
photoproducts. Part one of this thesis, describes the development of a new LC
method to better separate the CPD-containing nuclease P1 (NP1) digestion products
of DNA and the utilization of the new method to analyze the NP1 products of UV
irradiated telomeric DNA isolated with the previous HPLC method. The second part
of this thesis focused on directly coupling the LC method to MS/MS mass
spectrometry to simultaneously separate and identify the nuclease P1 digestion
products of UV irradiated telomeric DNA in Li+. These products were then
compared against the products formed in the presence of K+. In the course of these
studies new hexameric digestion products corresponding to (pTTA), were also

identified which could contain two CPDs dimers.
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Chapter One: Introduction

1. DNA structures

DNA is the core of genetic information in all living cells. It was in April 1953,
when Watson and Crick published the Nature paper in which they illustrated the
base pairing of DNA double helix (21). B-form DNA is the dominant right-handed
helix in the biological state. DNA can also adopt a variety of unconventional non-B-
form structures under a variety of conditions as well as non-helical secondary
structures such as cruciform, hairpin structures and G-quadruplexes (19, 20). The
DNA double-helical family members include A-DNA, B-DNA and Z-DNA, while
other secondary structures such as cruciform retain the AT and GC base pairing
between complementary strands, G-quadruplexes do not involve GC base pairs and
their formation requires base pair disruption to allow the free G-rich strand to fold
back upon themselves to form the four-stranded structure. The structures of G-
guadruplex DNA are influence by several factors such as sequence, topology,
temperature and protein binding (19). Extensive studies have been carried out to
monitor the existence of these secondary structures using a wide variety of
biochemical and biophysical techniques. The A-DNA structure is adopted by both

double-stranded DNA and RNA or hybrid DNA-RNA duplex structures (19). The
1



chemical synthesis of defined oligonucleotide sequences, allowed the determination
of high resolution crystal structure, the first of which showed the unexpected
occurrence of a left-handed helical structure with alternating glycosidic bonds in anti
and syn conformations. This was termed Z-DNA, which can be generated in regions
of alternating GC at high ionic strength (31). Later, it has been proposed that Z-DNA

could be involved in gene regulation.

1.1 The history of G-quadruplexes

The self-assembly of guanylic acid was first noted in the early twentieth century by
the German chemist Bang who observed the gel formation at high guanosine 5’-
monophosphate (GMP) concentrations and defined pH conditions (22). Later
studies by Gellert of 5’-GMP fibers by X-ray diffraction showed that tetrameric
guanine residues were arranged in a co-planar hydrogen-bonded array (Figure 1)
(23). In 1978, Miles and Fraser showed that the stability of G-quartets depends on
the positive ion that interacts with the central oxygen atom. Blackburn affirmed that
repetitive guanine rich tracts related to the telomeric DNA sequence can form a G-
quadruplex structure (24, 26). These studies suggested that certain G-rich DNA
sequence may form in living cells. Strong evidence for the existence of G-
quadruplex structures in vivo was shown by staining Stylonichia lemnae

macronucleo with high affinity quadruplex specific antibodies Sty49 (47). To date



extensive studies have been carried out to explore the native state of unusual DNA
secondary structures concerning their configuration, thermodynamic and Kinetic

stability under physiological conditions.

Figure 1: G quadruplex Structure A) chemical Structure of a G-quartet with a central metal ion B)
G-quartet as a basic building block of a G-quadruplex C) Topology of intermolecular G-
quadruplex consisting of three G-quartets

1.2 G-quadruplex Structures

As discussed above, guanine-rich DNA sequences can self-assemble to form four-
stranded structures known as a G-quadruplexes under physiological conditions.
These structures are composed of stacks of two or more guanosine quartets; a set of
four guanine nucleotides associated with each other in a square Hoogsteen
hydrogen-bonded array. Each guanine acts as donor and acceptor of two hydrogen
bonds (N1 to O6 and N2 to N7). The association of N7 of guanine bases in the

Hoogsteen paired G-quartet assembly protects them from methylation by dimethyl



sulfate (DMS); allowing a chemical discrimination of G-quadruplex formations and
other DNA secondary structures.

The four strands constituting an inter- or intramolecular G-quadruplex
structure can have four different arrangements. The four strands oriented in the
same direction are designated parallel (Figure 2A); three strands oriented in the same
direction and one strand oriented in the opposite direction designated (3+1) also
known as Hybrid 1 (Figure 2B); two strands oriented in the same direction and two
strands oriented in the opposite direction designated anti-parallel (Figure 2C); Two
strands oriented opposite of each other and the other two strands oriented in the

opposite direction (up-down-up-down) also designated anti-parallel (Figure 2D).

A B C D
Figure 2: Four types of G-tetrad foundations: A) Parallel G-tetrad, B) (3+1) G-tetrad, C)
antiparallel G-tetrad; D) Antiparallel G-tetrad.

Monovalent cations such as K™ and Na" stabilize the structures by interacting
with the central electronegative carbonyl O6 atoms of the G-quartet. The most
stabilized G-quadruplex structure is generated by intercalating K* between two
adjacent G-quartets (25). These stacked G-quartets overlap along the four stranded
helical structure and the stacks are joined together by the sugar phosphate backbone

(48). It is important to state that this configuration does not usually form in the
4



absence of metal cations (36). G quadruplex structures can be formed by the folding
of G-rich single stranded DNA or association of two or four independent G-rich

sequences.

1.3 Intramolecular G-quadruplex topology

G-Rich sequences with the potential to adopt intramolecular quadruplexes are
comprised of four consecutive runs of guanines that are separated by three loop
regions with different lengths and sequences. The non-participant bases in the
intramolecular assembly of G-quadruplexes form loops at different lengths and
sequences. All the G-quadruplexes have a set of core G-quartet structural features
and the differences in these structures are the loops which differ in size and
composition. These loops can connect two parallel or anti-parallel adjacent strands
creating four possible loop arrangements. A number of studies have shown how loop
sequence and length can regulate the structural conformation and stability of G-
guadruplex structures (27, 28). These loops can connect two parallel or anti-parallel
adjacent strands creating four possible loop arrangements (29, 30).

The type of G-quadruplex structure adopted by a sequence can have different
topologies depending on the orientation of the strands and the glycosidic bond
angles of the guanines that participate in the assembly of the G-quartet which may

have a syn or anti-conformation. Among them the basket type, which is an



antiparallel-stranded intramolecular structure having one central diagonal loop and
two edgewise loops. Hybrid types are a mixture of antiparallel/parallel stranded
structures which are formed by different combination of loop arrangements. The

hybrid structures have two lateral loops and one propeller loop (Figure 3).

Basket Hybrid-1 Hybrid-2

Sodium form Potassium forms

Figure 3: G-Quadruplexes are formed of stacks of square G-quartets, with guanines at each corner
surrounding a positive ion.

G-quadruplex forming sequences can adopt many different structures under different
ionic conditions. The nature of the monovalent cations can regulate the topology of
unimolecular DNA quadruplexes, but usually does not affect the topology of

bimolecular DNA quadruplexes (49). For G-quadruplexes it’s been shown that an



anti-parallel arrangement appears to be favored in Na® solution while a parallel

arrangement is generated in K* (31, 32).

1.4 G-quadruplex Polymorphism

The classical DNA double helix has two grooves; major and minor. G-quadruplexes
have four grooves. The variability of quadruplex structures is related to the
flexibility of the glycosidic bond. Attraction or repulsion between the sugar and the

base of the nucleoside generates syn- and anti-conformations respectively (Figure 4).

4\1}) {1

HO

G-syn G-anti

Figure 4: Orientation around the glycosidic bond, where the guanine bases adopt both syn and anti-
conformations.

DNA exists as a double helix and the two strands are held together by Watson and
Crick base pairing. G-quartet contains eight Hoogsteen hydrogen bonds in a cyclical

arrangement, so there are on average two hydrogen bonds per base. Monovalent

7



cations especially K* and Na* but not Li* (34) are required for the G-quadruplex
conformation and stability. The K* ion has a large molecular size which is stacked
between two adjacent guanine quartets, holding them together and forming a
stronger quartet than when Na™ ion is used due to the smaller molecular size (35).
Monovalent cations stabilize G-quadruplexes in the following order: K™> Na™> Rb*>
NH4">Cs™>Li* (36). The oligodeoxynucleotide, d[AGGG(TTAGGG)3] (Tel22),
adopts a basket structure in solutions containing Na*, and in the presence of K”, the
predominant intracellular cation, the hybrid-type structures are favored over the

basket (Figure 5).
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Figure 5: A) The building blocks of G-quadruplexes are G-quartets that arise from the association
of four guanines into a cyclic arrangement stabilized by Hoogsten hydrogen bonding (N1-N6 and
N2-N7). B) The planar G-quartets stack on top of one another, forming four-stranded helical
structures. G-quadruplex formation is driven by monovalent cations such as Na+ and K+.

1.5 G-quadruplex forming sequences in vivo

Studies have revealed repetitive guanine sequences, with the potential to form G-
quadruplexes within biologically important regions of the eukaryotic genome
including telomeric DNA, oncogenic promoter sequences (38) and nuclease
hypersensitive regions (33). The accumulation of these potential quadruplex-
forming sequences throughout the genome raised the prospect that quadruplex
structures may play an important role in cellular processes which include replication,
transcription, translation and impeding telomerase activity (50) leading to the

conclusion that these promoter regions can regulate gene expression at the



transcription levels. This implies that there may be a correlation between potential
G-quadruplex structure sequences and specific gene function.

The telomere is a specialized nucleoprotein complex at the extreme ends of all
eukaryotic chromosomes (24). The telomeres of eukaryotic chromosomes have
unique structures that include short nucleotide sequences present as tandem repeats.
The telomeric repeat sequence varies between different organisms but all have the
general G-rich sequence d[T,3-(T/A)-G 34 ]4 . Telomeres stabilize the termini of
linear chromosomes and protect them from exonuclease degradation and
recombination and stop them from being recognized and processed as DNA breaks.
In normal (non-cancerous) human somatic cells, telomeric DNA is composed of
approximately 10 kilobase pairs of ds DNA sequences that contain tandem repeats of
the sequence (TTAGGGG), (26). These sequence repeats can form G-quadruplex
structures through Hogsten hydrogen bonds in the presence of monovalent cations
such as K" and Na".

In mammals the ends of linear chromosomes can form a protective cap-like
structure to maintain chromosome integrity from damage by fragmentation and
fusion. Telomeres make it possible for cells to divide and acts as a cellular marker
for apoptosis when the sequence has been shortened to a critical length (Figure 6).
Several capping proteins have been characterized involving DNA binding proteins

(39, 40). Strong evidence for the existence of G-quadruplex in vivo comes from the

10



observations made of telomeres in the macronuclei of ciliated protozoa Stylonychia
lemmae specifically bound to quadruplex-specific antibodies (47). The study
demonstrated that antiparallel four stranded DNA structures were presented in the

macronuclei (51).

Telomeres Telomeres
Chromosome _--~"" T

TTAGGG'I'TAGGGTTAGGG(WAGGG) TTAGGG —a
AATCCCAATCCCAATCCC- 5’

Figure 6: Telomere: Protective cap at the end of the chromosome strands.

11



A great deal of research has been focused on understanding the structural
diversity in the human telomere G-quadruplex structure. Early studies show that the
single repeat d(TTAGGGT) human telomere sequence can form a propeller parallel-
stranded G-quadruplex in K* (Hybrid 1) (41). The oligodeoxynucleotide,
d[AGGG(TTAGGG);3] (Tel22), adopts a basket structure in solutions containing
Na®, and in the presence of K* the hybrid-type structures are favored over the basket
and chair structures (5). Tel26, dJAAA(GGGTTA);GGGAA] was found by NMR to

adopt a mixture of Hybrid 1 and Hybrid 2 structures in K.

Other extensive studies have been done to characterize DNA secondary
structures in the promoters of genes. Studies have identified the presence of G-
quadruplex forming sequences in the promoter and gene regulatory regions of
several proto-oncogenes (42). These proto-oncogenes are involved in growth and
proliferation and proximal promoter regions are TATA-less and contain several G/C

rich regions.

1.6 DNA Photoproduct Formation in Human G-

guadruplexes Forming Sequences.

UVB irradiation overlaps the upper end of the DNA absorption spectra and is

the range mainly responsible for skin cancer through direct photochemical damage

12



to DNA. The majority of the photoproducts arise from a photoreaction between two
pyrimidines, the structure and stereochemistry of which depend on the conformation
of the two bases at the time of irradiation. Irradiation of double stranded B form
DNA under physiological conditions mainly produces cys-syn cyclobutane pyridine
dimers (CPDs), pyrimidine (6-4) pyrimidone photoproducts, and their Dewar
valance isomers (2, 52). Other rare UV photoproducts, including the spore
photoproduct, TA*, A=A are also well known. If not repaired, the photoproducts
may interfere with DNA replication or transcription (Figure 7). If bypassed by a
DNA polymerase, they may lead to mutations. Non-adjacent photodimers of both
intra-strand and inter-strand types are much rarer. Intra-strand-type non-adjacent
dimer form when one or more nucleotides between two pyrimidines become
extrahelical, owing to the formation of single strand DNA or a slipped structure
allowing the two pyrimidines to photodimerize in a colinear arrangement to form
non-adjacent CPDs. These types of non-adjacent dimers effectively shorten the
DNA template, and have been implicated in the formation of UV-induced deletion
mutations (17).

Anti CPDs are expected to form between two separate strands, or loops in
DNA and were first detected under non-physiologic conditions of desiccated or
ethanolic DNA. Later a cis-anti TT CPD was found to form from a short single

stranded oligodeoxynucleotides under acidic conditions. The product was identified
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by mass spectrometry by first digesting the DNA with Nuclease P1 to produce a
tetrameric product comprised of the CPD attached at the 3°-ends to the flanking
nucleotide. The observation of non-adjacent CPD formation suggested that it might
be possible that these anti CPDs could form between the loops of G-quartet
structures in telomeres and promoters (18, 19). Indeed irradiation of human
telomeric DNA sequences was found to produce a variety of anti CPDs by a
combined enzymatic LC-MS/MS assay (52). Most surprisingly, anti CPD
formation was found to occur in the presence of K* which favors hybrid G-
guadruplexes that would appear to be incapable of forming anti-CPDs because they
do not contain any adajacent lateral loops (49). In contrast, anti CPDs were not
detected in Na’, which would have appeared to favor formation of anti-CPDs
because of the presence of two lateral loops. A proposal suggesting that a form 1
two tetrad G quadruplex was the photoreactive conformation was later shown
unlikely (45), and a more recent paper has suggested that a reverse Hoogsteen

hairpin may be involved (19,20, 10).
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Figure 7: Photochemistry of DNA. A) Structures of the major type of photoproducts. B) Intra- and
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n=0 for B, which results in an adjacent photoproduct.
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1.7 Thesis

The goal of this thesis was to further investigate the formation of anti-CPD forming
in human telomeric sequences under various conditions known to favor or disfavor
G quadruplex formation. Central to this goal was the development of a high
resolution LC MS/MS method for separating and identifying all the photoproducts.
Part one of this thesis, describes the development of a new LC method to better
separate the CPD-containing nuclease P1 (NP1) digestion products and utilize it to
analyze the NP1 products of UV irradiated telomeric DNA isolated with the
previous HPLC method. The second part of this thesis focused on directly coupling
the LC method to MS/MS mass spectrometry to simultaneously separate and
identify the nuclease P1 digestion products of UV irradiated telomeric DNA in Li+.
These products were then compared against the products formed in the presence of
K+. In the course of these studies a new hexameric digestion product was
corresponding to (pTTA), was also identified and consistent with the presence of

two anti-CPDs.
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Chapter Two

Our interest in the photochemistry of the G-quadruplex forming 26-mer sequence
d(AAAGGGTTAGGGTTAGGGTTAGGGAA) was because previous irradiation of
Tel26 with 312 nm UV light, appeared to produce two major photoproduct-
containing products following NP1 degradation, the cis, syn T=TA CPD from
adjacent thymines, and the trans, anti T(A)=T(A) CPD formed between two non-
adjacent thymines. We also wanted to investigate what products formed in Li”

solution which does not support quadruplex formations.

Nuclease P1 coupled LC-MS/MS assay.

The photoproducts that are formed in human telomeric sequences are characterized
by enzymatic digestion with nuclease P1. NP1 has both endonuclease activity and
3’-phosphatase activity. It has a binding pocket that is specific for the bases in DNA
and, upon binding to the 5’-base, catalyzes hydrolysis of the phosphodiester bond to
the 3’-side to yield deoxynucleotide with a 3’-hydroxyl group. Because the bases in
dypyrimidine photoproducts are covalently linked together, NP1 cannot bind to
either base of the photoproduct and consequently cannot cut on the 3’-side of either
nucleotide of the photoproduct. As a result Py=PyN trinucleotides are produced from

adjacent CPD photoproducts, and Py(N)=Py(N) tetranucleotides are produced from
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non-adjacent anti CPDs (Figure 8). The NP1 digestion products of the DNA
containing the tri and tetranucleotides are separated from mononucleotides by
reverse phase HPLC, and either subsequently or simultaneously analyzed by MS/MS
mass spectrometry. To optimize the separation, various solvent systems, ramps, and
chromatography columns were tested. The separated products were identified by

their mass and fragmentation patterns.

18



—dip— U o-pdil—

2 Ry Rz
HIN NH
GJ\ N/KG NH:.;(
H H /]
D_,-f""“-n -\.
- 5 0 pdN—
—dNp—0 “0-pdN——
syn adjacent dimer anti nonadjacent dimer
lNP1 0o
dNp—o0, 0P -OH
5.’ E 3.’ 3 D
R Rs 0
HN MH 0 R, H
i H. N_ .0
N g Will not ' -
H H hydrolyze A N
0% "N H
Q ° H Ra
HD—I%: -0 0 “0—pdN . Q
oe o= HO—P -0 "0 pdN
oo |
0o
timer, pd(Py=PyN) tetramer, pd[Py(N)]=pd[Py(N)]
' |
lHFnyn‘dinE
0 0 0 0 0 H 0
Fy B2 H. H1 B2 Ry H I'-.II

-

/,J\,g;\ /g” Tk

- ll-EIRn
|-I|HR‘D H ‘0

cis,syn trans.syn cis,anti trans,anti

Py =Pyr

Figure 8: NP1 digestion of photoproducts containing DNA. NP1 is unable to hydrolyze the 3’ side
of a photodimerize base.

19



Irradiation and NP1 Digestion of the G-quadruplexes.
The G-quadruplexes were irradiated and digested by Chen Lu at the Department of

Chemistry at Washington University. A 50 uM solution of Tel26 G-quadruplex in
150 mM LiCl was irradiated with UVB light for 2.5 h on ice. The sample was then
subjected to NP1 enzymatic digestion for at least 36 h at 37°C. The photoproduct
containing digestion fragments were separated via reverse phase HPLC and
monitored by UV absorption at 260 nm under the conditions shown in Figure 9. The
following was summarized from published data of the original HPLC method that
was developed at Dr. Taylor’s lab: the mononucleotides elute during the first 20
minutes followed by the elution of trinucleotides around 30 minutes and the
tetranucleotides around 40-43 minutes. The 260 nm UV absorbance of the T=TA
trinucleotide digestion photoproduct results from the presence of 3’-adenine, while
the absorbance of the T(A)=T(A) or T(T)=T(A) tetranucleotide digestion
photoproducts are the result of two 3” adenines or a 3’-adenine and a 3’-thymidine.

The CPDs have very little absorption at 260 nm.
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HPLC settings

Time %MPA %MPB oW
Rate
o 100 o 1 ml/min
3 8o 20
53 8o 20
Run
time 53

Gold BioEssential HPLC with a model 125
binary gradient pump and a Model 168
System Diode array detector by Beckman Coulter
MPA.: 100% (50 mM Trietylammonium acetate,
" pH7s
MPB: 50% acetonitrile in 5o mM
" triethylammonium acetate pH 7.5

Waters X-Bridge column (18, 4.6x 75

Column: :
mm, 2.5 um, 135-A pore size

Figure 9: Original RP-HPLC method settings, Dr.Taylor’s lab.
Three fractions containing the photoproduct tri- and tetranucleotides were collected
by Chen Lu at Washington University using the method as shown in Figure 9.

Fraction 1 was collected around 29.1 minutes, Fraction 2 was collected at 41.7

minutes and Fraction 3 was collected at 42.8 minutes respectively.
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Analysis of Samples Obtained by the Original RP-HPLC

Method with an New Method

My primary aim was to establish a new LC method with which I could
separate and identify the NP1 degradation products with good separation and
resolution. RP HPLC was carried out on a 2.1x150 mm Waters Acquity UPLC High
Strength Silica (HSS) T3 column, with particle 1.8 um particle size on a 1260
Infinity Quaternary LC System from Agilent Technologies. | started the
development investigating a number of buffer systems and gradients and settled on
the buffer and gradient system shown in Figure 11. Np1l digestion for the parent
ODN afforded major products corresponding to monomers eluting at 3.95 (pG), 4.18
(pT), 6.63 (pA) and 30.71 (dA) minutes when using the HPLC method. The analysis
of fraction 1 that was collected at 29.1 minutes with the original LC method; eluted
between 6-8 minutes with the new LC method. Interestingly, this fraction was
resolved into two peaks; one of which eluted around 6.57 minutes and second peak

eluted around 7.82 minutes as shown in Figure 12.
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HPLC settings

Time % Mobil Phase A %Mob]131 e Flow Rate
0 100 0 0.2
14 100 0
80 78 22
82 0 100
84 0 100
86 100 0
Total
Run 105
time

MPA: 100% Ammonium Formate
MPB: 50/50 (v/v) Ammonium Formate + Acetonitrile

Waters Acquity UPLC HSS T3, 1.8 um 2.1 x
Column: 150 nm Silica Based bonded
Pore size 100 A

Part# 186003540

Figure 11: Reverse phase HPLC gradient. MPA: 10 mM agueous ammonium formate; MPB
50%/50% 10 mM aqueous ammonium formate and acetonitrile.

24



6.57

600000 Lz

377 827

9.59
- : 12.97 77 20.48
u‘_}Ml-K.L_’W \J L . 19. et

[ B B S N N R N A (N NN BN B B NN A |

T
0] S 10 15 20

Figure 12: Analysis of Fraction 1 collected by Chen Lu at Washington University in Dr. Taylor’s
lab.
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The analysis of fraction 2 with elution time of 41.7 minutes in the original method
resulted in one peak by the new LC method with an elution time of 33.4 minutes as

shown in Figure 13.
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Figure 13: Analysis of fraction 2 collected by Chen Lu at Washington University in Dr. Taylor’s
lab.

The analysis of fraction 3 that had been collected around 42.8 minutes was resolved
into three peaks with the new method. One of the peaks eluted around 33.41
minutes, a second peak eluted around 36.76 minutes and a third and major peak

eluted at 38.98 minutes as shown in Figure 14.
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Figure 14: Analysis of fraction 3 collected by Chen Lu at Washington University in Dr. Taylor’s
lab.

Further analysis of the first fraction by LC-MS is shown in Figure 15. The LC-MS
of both of the peaks at 6.65 and 7.90 minutes showed an m/z for of 938.164
corresponding to the (M-H) ion of the trinucleotide pT=pTpA, which must
correspond to either cis-syn, trans-syn cyclobutane pyrimidine dimers between the

two T’s or the (6-4) or Dewar photoproducts.
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Figure 15: Analysis of fraction 1 by A) LC-MS zoom out B) Full LC-MS extracted and processed
data of peak one C) Full LC-MS extracted and processed data of peak 2 in fraction 1.
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The analysis of fraction 2 showed which gave a single peak at 33.4 minutes in the
new method, as shown in Figure 16. The LC- MS showed the presence of an ion of

m/z 1260.209 corresponding to the (M-H) ion of a tetranucleotide pT(pA)=pT(pA).
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Figure 16: Analysis of fraction 2 by A) LC-MS analysis of peak one in fraction 2. B) Full LC-MS
extracted and processed data of peak one in fraction 2.
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Three peaks eluted from the analysis of fraction 3 by the new LC-MS method. One
of the peaks eluted around 33.4 minutes, the second peak eluted around 36.8 and the
third peak eluted around 38.98 minutes. Analysis of the first two peaks by LC-MS
(Figure 17), gave an m/z of 1269.235 corresponding to the (M-H) ion of
pT(pA)=pT(pA) or a molecule of mass 1270.235. The analysis of the third peak
gave anm/z of 1260.209 corresponding to the (M-H) ion of the tetramer

pPT(pA)=pT(pT) or a molecule of mass 1261.
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Figure 17: Analysis of fraction 3 by LC-MS.
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Comparison of the original with the new RP-HPLC Method

There were some significant differences between the elution times of the nucleotides
and the photoproduct digestion products using the original and new RP-HPLC
methods. For example, mononucleotides eluted within the first 20 minutes in the
original method, wereas the eluted between 3-30 minutes with the new method.
Another difference between the two methods is that trinucleotides eluted from at
29.1 minutes in the original method, whereas in the new method the same fraction
eluted between 6-8 minutes. Also tetranucleotides that appeared to eluted as a single

peak at 41 minutes appeared as three peaks between 31-40 minutes.
Direct LC-MS Analysis of NP1 Digestion Mixtures by the New Method

After the analysis of the mononucleotides and fractions that were provided by

Dr. Taylors Lab, we continued with the study of Tel26 in Li" and other metal ions.
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Run
time

HPLC settings

Time % MPA %MPB Flow Rate
0.2
o 100 o .
ml/ min

14 100 o

8o 78 22

82 o 100

84 o 100

86 100 o

105

1260 Infinity Quaternary LC System by Agilent
System Technologies

MPA: 100% Amonium Formate
MPB: 50% Amonium Formate + 50% Acetonitrile

Col Waters Acquity UPLC HSS T3, 1.8 um 2.1 x 150 nm
© um Silica Based bonded
*  Poresize 100 A

Part# 186003540

Figure 18: LC-MS and MS/MS system, column and mobile phase settings.

Oligodeoxynucleotides (ODN) were purchase from Integrated DNA Technologies,
Inc. (IDT). Tel26 was prepared in 100 mM Li* and heated at 95°C for 5-10 minutes
and then was rapidly cooled down in ice. UVB irradiation was performed at 270-400
nm with peak intensity at 312nm on ice with UVB light for about 2-2.5 hours at
Washington University by Chen Lu. The analysis of the degradation products was

performed by LC using a waters Acquity UPLC HSS T3 silica based column in a
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1260 infinity quaternary LC system by Agilent Technologies using the settings
shown in Figure 18. The peaks that appeared to correspond to previously identified
peaks from the original study were labeled as A, B, C, D, E, F. Other peaks that
were not previously identified in the original studies are labeled 1, 2 and 3
respectively as shown in Figure 19. The LC-ESI-MS experiments were carried out
In the negative ion mode with the orbitrap mass spectrometer (Q Exactive-Plus). A
solution of 10 mM ammonium formate in water and acetonitrile was used as the
spray solvent. Each labeled peak in the HPLC trace in Figure 19 was analyzed by
LC-MS and MS-MS and compared to previously identified products based on their

m/z and fragment ions.
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Analysis of Unknown Peak A.

Analysis of unknown peak A which eluted at 7.94 minutes (Figure 20A) gave an m/z
of 938.16 corresponding to the [M-H] of the trimer (T=TA). The [M-H] ion gave
product ions at m/z 330.06 corresponding to [pdA-H] as shown in Figure 20B.
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Figure 20: A) Analysis of unknown Peak A by LC-MS and B) MS/MS results for unknown Peak A
and product ion analysis.
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Analysis of Unknown Peak B.

During early development of the new LC and MS/MS method an unknown peak
(unknown B, Figure 19) was observed eluting at 29.83 minutes from in Tel26
irradiated in Li* (Figure 21A) which could not be detected by MS in negative ion
mode. When the dA at the 5’-terminus of Tel26 was replaced with pdA and
irradiated and digested with NP1, the shoulder in unknown peak B was no longer

detected as shown in Figure 21B.
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A) Analysis of shoulder in peak B

B)
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Figure 21: Analysis of unknown B peak by LC-MS ATel26 in Li+ with dA and B) LC-MS without
shoulder in peak B.
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Analysis of Unknown Peak C.

The analysis of unknown peak C eluting at 33.59 minutes, gave an m/z peak at
1260.224 (Figure 22A) corresponding to the [M-H] for the tetranucleotide
pTp(A)=pTp(T). For the MS/MS analysis the [M-2H]* at 629.6 was trapped and
fragmented (Figure 22B). Product ions were observed at m/z 321 corresponding to
[pdT-H]; a product ion was observed at m/z 330.06 corresponding to [pdA-HJ;
another product ion was observed at m/z 527.12 corresponding to [pT=pT —HPO3-
2H20 —H] ; another product ion was observed at m/z 545.13 corresponding to
[pT=pT-HPO3-H20-H]’; an product ion was observed at m/z 607 corresponding to
[pT=pT -2H,0-H]’; another product ion was observed at m/z 625.09 corresponding
to [pT=pT-H,O-H]’; a product ion was observed at 929.14 [pT=pT(pT) -H,0-H]" and a

product ion was observed at m/z 938.16 corresponding to [pT=pT(pA) -H,0 -H]".
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A) LC analysis of unknown peak C
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Figure 22: Analysis of Peak C by A) LC-MS and B) MS/MS results and product ions.
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Analysis of Unknown Peak D.

The analysis of unknown peak D eluting at 36.8 minutes gave an m/z at 1269.235 as
shown in Figure 23A corresponding to pT(pA)=pT(pA). The MS/MS experiments
were then carried out on [M-2H]* at 634.11 which was trapped and fragmented
(Figure 23B). Product ions were observed at m/z 330.06 corresponding to [pdA-H];
m/z 527 corresponding to [pT=pT -HPO3z-2H,0 -H]’; m/z 545.13 corresponding to
[pT=pT-HPOs-H,0-H]; m/z 607 corresponding to [pT=pT -2H,0 -H ]’; at m/z 625.09
corresponding to [pT=pT-H,O-H]’; at m/z 858.19 corresponding to [pT=pT(pA) ~HPOs-

H20 —H]  and m/z 938.16 corresponding to [pT=pT(pA) -H,0 -H] .
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A)LC-MS analysis of unknown peak D
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B) MS/MS Analysis and Product ions.

20160508KD15msms 85679 RT. 3642 AV 1 NU 9 M4ES
T: FTMS - p ESId Full ms2 634 11@hcd30.00 (87 331310 00)

| Bl R A A R Wik b b b b Wi b LA M bk bkd M bkh bk bk R By M M M Lk M R A R LA M) L b R R b

800 900 1000 1100 1200 1300 1400 1500

wrew  [[pT=pT-2HO-H]

100+
%04 /
804 [pT=pT —HPO3-2H;0 -HJ
[pT=pT-H.O-H}
7] T-pT-HPO,-H.0-H"
s paasr  \ 7
§ o] [pT=pT(pA) ~HPO,-H.O -H}
J
PR
o
§‘0— 330068201 T=pT(pA) -H.O -H
¢ 5211202 625 1231422 [pT-pT(p4) -H.O -HF
T s43¥se 05 12700 | T 14365 osteser
0 e I 878 10482 118925108
82117615 1054 20496
4100295
10 m 78508083 05821780
| 5 [ e 1l l |
0 'I'|'I"‘I' rert Tttt |I~I!" xl' ™7 T T
) 50 600 ) o0 1100 1200 120
~m2

Figure 23: Analysis of Peak D by A) LC-MS and B) MS/MS results and product ions.
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Analysis of Unknown Peak E.

The analysis of unknown peak E eluting at 37 minutes gave an ion of m/z at 1260.22
as shown in Figure 24A corresponding to [M-H] ion of pT(pA)=T(pT). The peak
at 37 minutes was then ionized by negative electrospray to give [M-2H]* of 629.6
which was trapped and fragmented. Product ions were observed at m/z 321.05
corresponding to [pdT-H]; at m/z 330.06 corresponding to [pdA-H]’; at m/z 607.06
corresponding to [pT=pT -2H,0 —H]; at m/z 849.19 corresponding to [pT=pT(pT) —
H,O-HPOs-H]'; at m/z 929.14 corresponding to [pT=pT(pT) —H,O-H] and m/z

1180.23 corresponding to [pT(pA)=pT(pT) — HPOs— HJ'.
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A) LC-MS analysis of peak E

B) MS/MS analysis and product ions.
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Figure 24: Analysis of unknown Peak E by A) LC-MS and B) MS/MS results and product ions.
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Analysis of Unknown Peak F.

The analysis of peak F eluting at 39 minutes gave an m/z ion at 1269.235 as shown
in Figure 25A corresponding to the [M-H] ion of pT(pA)=pT(pA). The peak at 39
minutes was then ionized by negative electrospray to give [M-2H]* of 634.11 as
shown in Figure 25B which was trapped and fragmented. Product ions were
observed at m/z 330.06 corresponding to [pdA-H]; m/z 527.12 corresponding to
[pT=pT -HPO3-2H,0 —H] ; at m/z 607.06 corresponding to [pT=pT -2H,0 —H] and

m/z 938.158 corresponding to [pT=pT(pA) -H,O —H].
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A) LC analysis of unknown peak F
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B) lonization of unknown peak F
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C) MS/MS analysis and ion fragments of unknown peak F
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Figure 25: Analysis of unknown Peak F by A) LC-MS and B) and C) MS/MS results and product
ions.

Analysis of Peak 1.

The analysis of unknown peak 1 (as seen in Figure 19) eluting between 12 to 15
minutes with a peak at around 13 minutes gave an m/z 266.09746 (Figure 26A)
corresponding to the [M-H] ion of dG. The m/z ion of of 266.09 was trapped and
fragmented to give an ion of m/z 150.04 corresponding to the [M-H] ion of guanine
(Figure 26B). It is not clear where this digestion product could have come from,
since nuclease P1 only produces nucleotide monophosphates, except if a
deoxynucleoside is present at the 5’-end, as was the case for the
oligodeoxynucleotides having dA at the end. There should not have been any dG at

the 5’-end, unless it came from incomplete DNA synthesis.
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A) LC-MS of unknown peak 1
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Figure 26: Analysis of peak unknown 1 by LC-MS and B) MS/MS.
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Analysis of Unknown Peak 2,

The analysis of unknown peak 2 eluting between 42.42 minutes gave a m/z ion of
1877.331 as shown in Figure 27A corresponding to a hexamer pTpT(A)=pTpT(A)).
The peak at 42 minutes also gave a peak a m/z of 625.1 corresponding to the triply
charged ion [M-3H]* (Figure 27B) and m/z of 938.1524 corresponding to the doubly
charged ion [M-2H]* (Figure 27C) which was trapped and fragmented. Product ions
were observed at m/z 330.06 corresponding to [pdA-H]; and m/z 607.1
corresponding to [pT=pT -2H,O -H]; at m/z 1135.22 corresponding to
[pTpT==pTpT-HPO;-2H,0O-H]; m/z 1215.17 corresponding to [pTpT==pTpT-
2H,0-H]’; m/z 1386.31 corresponding to [pTpT(pA)==pTpT-H,0-2HPO;-H]" and
m/z 1466.28 corresponding to [pTpT(pA)==pTpT-H,O-HPOs-H]. For nuclease P1
to give such a product would require that both T’s are forming anti photoproducts,
and could result from the photodimerization of the two T’s flanking the 5’-side of
the anti-photoproduct leading to the double dimer pT(pA)==pT(pA) photoproduct.
Subsequent hydrogen fluoride (HF) degradation studies by Innocent Harelimana of
the Taylor group have provided evidence for the presence of both trans, anti and cis,
anti CPDs of thymine in the product, a propose structure of the hexamer is shown in

Figure 28.
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A) LC extracted and processed data for unknown peak 2.
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D) MS/MS data analysis.
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Figure 27: Analysis of unknown peak 2 by A) LC extracted and processed data for unknown peak
2 B) ionization of peak 2 by negative electrospray to give [M-3H]*" triple charge C) lonization of

peak two by negative electrospray to also give [M-2H]* Doubly Charge D) MS/MS data analysis
of unknown peak 2.
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Figure 28: Suggested structure of the double dimer corresponding to a hexamer
PTPT(A)==pTpT(A)).
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Analysis of Unknown Peak 3.

The analysis of unknown peak 3 eluting between 39 to 43 minutes gave a m/z of
1989.6496 as shown in Figure 29A and does not correspond to any expected
hexamer. The peak at 43 minutes also gave a peak a m/z of 994 corresponding to the
doubly charged ion [M-2H]* as shown in Figure 29B which was trapped and
fragmented. Product ions were observed at m/z 330.06 corresponding to [pdA-H] as

shown in Figure 29C.

o1



A) LC-MS data extracted and processed
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C) MS/MS data
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Figure 29: Analysis of unknown peak 3 by A) LC-MS and B) lonization of unknown peak 3 by
negative electrospray to give [M-2H]* doubly charge C) MS/MS spectrum of unknown peak 3.

Summary of identified peaks:

The summary of the peaks identified in the new LC/MS method are shown in Table

1 below and as they appear in a chromatogram in Figure 30.
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TEL26 Li*
Unknown | Ejytion m/z Name

Time observed

3.95 346.0565 pG

418 | 322.0573 pT

6.63 331.06846 pA
A

7.94 938.1641 pT=pT(pA)
1 13.01 267.097 dG
B 30 297.108 dA
C 33.59 1260.224 pT(pA)=pT(pT)
D 36.88 1269.236 PT(pA)=pT(pA)
E 37.3 1260.224 pT(pA)=pT(pT)
F 39.28 1269.236 PT(pA)=pT(pA)
2 42.42 | 1877.3306 pTPT(pA)=pTpT(pA)
3 43 1989.65 possible hexamer

Table 1 Summary of identified unknown peaks by LC-MS

All of the nuclease P1 digestion products A, C-F had been previously identified. As
mentioned, peak B the front shoulder was remove and B was identified to be dA.
Peak 1 was identified as dG, but its source is unknown. The unknown peak 2 m/z of
1877.331 at 42 (Figure 30) corresponding to TT(A)=TT(A) had been previously
identified by MALDI analysis of an isolate peak, but no MS/MS data had been
obtained. The MS/MS data supports the assignment of a double dimer, since no
fragments corresponding to pT were observed. The unknown peak 3 m/z 1989 at 43
minutes will need to be further investigated because does not correspond to any

expected hexamer. The peak at 43 minutes also gave a peak a m/z of 994
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corresponding to the doubly charged ion [M-2H]* as shown in Figure 29B which

was trapped and fragmented.
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Figure 30: Summary of Photoproduct formation of Tel26 in Li*
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Comparison of photoproduct formation in Li+ with K.

Photoproduct formation in Tel26 in Li* were compared against the products formed
in the presence of K*. It was observed that there were more photoproducts produced
in Tel26 in Li* (Figure 31A) than in K* as shown in Figure 31B, most notably a

greater amount to TA=TT product, and the TTA=TTA photoproduct.

A) Tel26 in Li* UV Trace
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B) Tel26 in K+ UV Trace
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Flgure 31: Peak analysis of A) Tel26 in Li+ and B) Tel 26 in K+ UV trace zoom in.

Experimental Section.

2.1 Materials and Methods

Oligodeoxynucleotides were purchase from Integrated DNA Technologies, Inc.,
(IDT, Coralville, lowa) and Lifetechnologies.

Nuclease P1 (NP1) from penicillium citrinum, 10 mM ammonium formate and
acetonitrile were purchased from Sigma (St. Louis, MO).

Acquity UPLC High Strength Silica (HSS) T3, particle size 1.8 um 2.1x150 mm
from Waters. Milli-Q (18.2 mQ/cm) water obtained from Milli-Q water purification

system.
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2.2 Preparation of the Guanine-Quadruplexes

Oligodeoxynucleotides from Integrated DNA Technologies (IDT) were used without
further purification. Typically, 50 uM ODN (IDT) in 10 mM Tris-HCI, pH7.5, with
150 mM KCI or LiCl; were heated at 95°C for 10minutes and then rapidly cooled

down in ice.

2.3 UV Irradiation of Oligodeoxynucleotides (ODNSs)

UVB irradiation was carried out immediately after sample preparation. G-
quadruplex samples were irradiated on a bed of ice for 2-2.5 h at a distance of ~ 1

cm from the UVB lamp.

2.4 Digestion of the Oligodeoxynucleotides (ODN) by

Nuclease P1

Typically, 1 ul of 1U/uL aqueous NP1 from Penicillium citrinum (Sigma) and 1 uL
of 10 mM ZnCl, were added to 100 uL of 50 uM UVB irradiated sample and

digested at 37°C for >36 h.

2.5 HPLC separation

HPLC separation and analysis were carried out on 1260 Infinity Quaternary LC

System by Agilent Technologies. An Acquity UPLC High Strength Silica (HSS) T3,
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particle size 1.8 um 2.1 x 150 mm from Waters was used for reverse-phase HPLC.
A gradient was used at a flow rate of 0.200 mL/min. Method: Mobile phase A
(MPA) 10 mM aqueous ammonium formate; Mobile phase B (MPB) 50/50 (v/v) 10
mM aqueous ammonium formate and acetonitrile as shown in Figure 32.

HPLC settings

Time % Mobil Phase A %MOb]lgl Hipe Flow Rate
0 100 0 0.2
14 100 0
80 78 22
82 0 100
84 0 100
86 100 0
Total
Run 105
time

MPA: 100% Ammonium Formate
MPB: 50/50 (v/v) Ammonium Formate + Acetonitrile

Waters Acquity UPLC HSS T3, 1.8 um 2.1 x
Column: 150 nm Silica Based bonded
Pore size 100 A

Part# 186003540

Figure 32: Reverse phase HPLC gradient. MPA: 10 mM agueous ammonium formate; MPB
50%/50% 10 mM aqueous ammonium formate and acetonitrile. Reverse phase HPLC gradient.
MPA: 10 mM aqueous ammonium formate; MPB 50%/50% 10 mM aqueous ammonium formate

and acetonitrile.
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2.6 ESI-Mass Spectrometry (LC-MS) and MS/MS

ESI-MS and MS/MS experiments were carried out in the negative ion mode with the
orbitrap mass spectrometer (Q Exactive-Plus) by ThermoScientific. A solution of 10
mM ammonium formate in water and acetonitrile was used as the spray solvent.
The spray voltage was 2.5 kV. The capillary voltage and temperature were 25
Voltage and 250°C, respectively. MS/MS experiments were done by using
normalize collision energy (NCE). The Mass window for precursor-ion selection
was 3.0 m/z units. Approximately 2 scans were averaged for each spectrum. Each
scan consisted of 100 microscans with a maximum injection time of 300 microscans.
For MS/MS each scan consisted of 60 microscans for full scans with a maximum

injection time of 300 microscans.
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Chapter 3. Conclusion

Guanine-rich nucleic acids can form G-quadruplexes. These four-stranded
complexes repeatedly occur in the human genome, playing an important role in gene
regulation and serving as targets of drugs for cancer treatment. Crystallographic and
nuclear magnetic resonance studies show the core of a G-quadruplex to be the G-
tetrad, a planar assembly of four guanine bases networked via hydrogen bonds. G-
tetrads stack one on another, with a cation located between adjacent tetrads in
coordinating eight carbonyls of guanine bases for stabilization. Previous studies
using biophysical approaches, such as CD, UV spectroscopy have outlined the
thermodynamic profiles of the folding and unfolding of quadruplexes. The
quadruplex and photoproducts formation varies with the cation species as is shown
in this report. UV light is well known to cause adjacent pyrimidine base pairs next
to each other in duplex DNA to covalently bond together to form cis, syn
cyclobutane pyrimidine dimers (CPDs). More recently, thymines in G quartet
structures associated with human telomeres, the sequence at the end of
chromosomes, were found to form anti CPDs upon UV irradiation in the presence of
K" and Li", but not Na*. In part one of this thesis I described the development of a
new LC method that better separates the CPD-containing nuclease P1 (NP1)

digestion products of UV irradiated telomeric DNA. In the second part | focused on
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directly coupling the LC method to MS/MS mass spectrometry and separated and
identified the nuclease P1 digestion products of UV irradiated telomeric DNA in Li".
The separated products were identified by their mass and fragmentation patterns.
The photoproduct distribution in the presence of Li* was then compared against the
products formed in the presence of K*. Also, in the course of this thesis | have
further characterized a new tandem photoproduct of Tel26 in Li* that appears to be a
double dimer formed between the two flanking TTA segments of the quadruplex
corresponding to pTpT(pA)=pTpT(A). This product likely forms from further
photodimerization of the anti dimer of pT(pA)=pT(pA). In Figure 30 and Table 1
summarizes all the unknown peaks that were separated and identified by LC and
MS/MS during this study. Also there is a summary of all fragment ions identified
during this study in Table 2. | was able to observe that Tel26 in Li+ has more
photoproducts and isomer formations when compared to Tel26 in K™ as shown in
Figure 31.

Further calculation of the mass accuracy was performed by subtracting the observed
mass minus the theoretical mass divided by the observed mass times 1 million (ppm)

for m/z accuracy (Table 3) to confirm.
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Table 2: Assignments of negative fragment ions from tri (A: T=TA), tetra- (C & E: T(A)=T(T), D
& F: T(A)=T(A)) and hexanucleotide (2: TT(A)==TT(A)).

m/z (negative lon Observed for unknown

ion)

125.03 Thy-H

134.05 Ade-H

150.042 Gua-H 1
241.08 dT-H

250.094 dA-H

266.09 dG-H 1
321.05 pdT-H C,E
330.06 pdA-H A C,D,EF2
346.06 pdG-H

527.12 pT=pT -HPO3-2H,0 —H C,D,F
545.13 pT=pT-HPO3-H,0-H C,D
607.06 pT=pT -2H,0 —H C,D,E,F,2
625.09 pT=pT-H,O-H C,D
849.19 pT=pT(pT) — H,O-HPOs-H E
858.19 pT=pT(pA) -HPO3z-H,0 —-H D
929.14 pT=pT(pT) —H,O-H C,E
938.16 pT=pT(pA) —H,0 -H C,D,F
1180.23 pT(pA)=pT(pT) — HPO3- H E
1135.22 pTpT==pTpT-HPO;-2H,0-H 2%
1215.17 pTpT==pTpT-2H,0-H 2%
1386.31 pTpT(pA)==pTpT-H,0-2HPO3-H 2%
1466.28 pTpT(pA)==pTpT-H,O-HPO3z-H %

* These peaks were also observed in the MS/MS of the m/z 634 ion of unknown peak F (T(A)=T(A).
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Peak Name| Theoretical m/z | Observed m/z | Mass Accuracy ppm
PA 331.0682 331.06846 1
dA 251.1018 297.11 154852
pG 347.06 347.1 115
pT 322.0566 322.1 135
TA-T 938.2 938.2 0
TA-TA 1269 1269.22 173
TA-TT 1260.209 1260.224 12
TT-TT 1252.20578 1252.21109 4
Unknown 1 1877.313 1877.331 10
Unknown 2 1990.08 1990.65 286
Unknown 3 266 266.09 338

Table 3: Summary of the identified peaks mass accuracy.
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Appendix

Previous studies have discovered that photocrosslinking of T’s can occur in
structures other than quadruplexes providing evidence that implicates antiparallel
reverse-Hoogsteen base-paired hairpins as the photoreactive conformation leading to
the trans, anti T(A)=T(A) CPD. These results suggested that reverse Hoogsteen
hairpin structures co-exist with G-quadruplexes.

The following sequences of Tel21 (CI-4-98, 19Apr2015) were prepared in potassium
solution. Tel21 GGA; Tel21GAG; Tel21AAG and Tel21 3’ were prepared in Dr.
Taylor’s lab at Washington University by Chen Lu. The sequences were then

analyzed and processed by Claudia Posadas using the new LC and MS-MS methods.
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C X Loop 1 Loop2 Loop3 Y
1 4 7 10 13 1e 19 22

Tel26 AAA GGG TTA GGG TTA GGG TTA GGG AA
Tel22 A GGG TTA GGG TTA GGG TTA GGG
NF3 GGG TTA GGG TTA GGG TTA GGG T
Tell5 TTA GGG TTA GGG TTA
Tel15U2 TTA GGG TUA GGG TTA
HP15WC TTA CGG TTA GCG TTA
Tel21_3’alt GGG TTA III TTA GGG TTA III
Tel21_3’con GGG TTA GGG TTA III TTA III
Tel21_5'alt III TTA GGG TTA III TTA GGG
Tel21_5’con III TTA III TTA GGG TTA GGG
Tel21_mix IGI TTA GIG TTA IGI TTA GIG
HP21GGA GGA TTA GGA TTA AGG TTA AGG
HP21GAG GAG TTA GAG TTA GAG TTA GAG
HP21AAG AAG TTA AAG TTA GAA TTA GAA
HP21WC GCG TTA GGG TTA GGG TTA CGC

Figure 1. Tel21 sequences provided by Dr. Taylor’s Lab at Washington University
in St. Louis.
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1. LC-MS Trace of GAG, AAG, GGA
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2. LC-MS and MS/MS Trace of GAG, AAG, GGA looking at peak with
retention times at 30.78 and 30.86 minutes
938.16, R=71106 z=2
966.00, R=72206 z=1
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3. LC-MS and MS/MS Trace of GGA, AAG, GAG looking at peak w

retention times at 34.28 minutes
629.60, R=90107 z=2 (tetramer)
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4. LC-MS and MS/MS Trace of GGA, AAG, GAG looking at peak with

retention times at 35.88 minutes.
634.11, R=90007 z=2
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5. LC-MS and MS/MS Trace of GGA, AAG, GAG looking at peak with
retention times at 36.14 minutes.
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6. LC-MS and MS/MS Trace of GGA, AAG, and GAG looking at peak with
retention times at 37.95 minutes.
634.10931 R= 10931 z=2
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7. LC-MS and MS/MS Trace of GGA, AAG, and GAG looking at peak with
retention times at 35.75 minutes.
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8. LC-MS and MS/MS Trace of GGA, AAG, and GAG looking at peak with
retention times at 36.27 minutes.
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9. LC-MS and MS/MS Trace of GGA, AAG, and GAG look
retention times at 50.27 minutes.

Q:\ARD.\...\06-Dinuc-KAD\20160506KD06 05/07/16 01:23:36
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10.LC-MS and MS/MS Trace of GGA, AAG, and GAG looking at peak with
retention times at 60.78 minutes.
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11.LC-MS and MS/MS Trace of GGA, AAG, and GAG looking at peak with
retention times at 65.49 minutes.
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A. cs-T=TA ta-T(A)=TA

TGAGATTGAG-5'

Tel21GAG | 74% “agacrypcac-a-

708

-

|

TAAGATTAAG-5'

Tel21GGA | 8% a0l 22 a6-3:

Fe

11%
K_M . 15=ﬁuL K+
L Na*

I
TGAARATTGAA-5'
Tel21AAG 104% T oo (e
AGAATTAGAA-3/
96°%
7%
9% K*
: | Na*

Sequence and image provided by Washington University-St. Louis from Dr.
Taylor’s lab.
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12.MS/MS Trace of pTel26 Li+ of 938 m/z peak at 41 minutes (isomer)
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13.MS/MS Trace of p Tel26 Li+ of 966Da no real UV peak, right after peak at
31min (trace of 938 present at 31 min but too low for MSMS).
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14.MS/MS Trace of p Tel26 Li+ of 1990Da peak at 39.83 minutes.
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