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Abstract 

Development of a New LC-MS Method for the Identification of anti Cyclobutane 

Pyrimidine Dimers Formed in G-quadruplex Forming Sequences 

by 

Claudia Posadas 

Master’s Degree in Chemistry 

Washington University in St. Louis, 2018 

Dr. John-Stephen A. Taylor, Chair 

 

Ultraviolet light is well known to induce cyclobutane pyrimidine dimers (CPD) and 

pyrimidine (6–4) pyrimidone photoproducts in duplex DNA, which interfere with 

DNA replication and transcription. Recently, a new class of DNA photoproducts 

known as anti cyclobutanepyrimidine dimers have been discovered, which form in 

G-quadruplex forming sequences in solution.  G-quadruplex structures have been 

proposed to form in human DNA telomeres and certain promoters in vivo but 

evidence for their existence has been lacking.  Since anti-cyclobutante pyrimidine 

dimers have been shown to form in G-quadruplex forming sequences, their 

formation in irradiated human cells could be used to confirm the existence of G-
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quadruplexes in vivo.   Methods have been developed for assaying these DNA 

modifications, but it hasn’t always been easy to confirm their identity or characterize 

their structures. 

The goal of this thesis was to further investigate the formation of anti-thymine 

dimers in human telomeric sequences under various conditions known to favor or 

disfavor G quadruplex formation.  Central to this goal was the development of a 

high resolution LC MS/MS method for separating and identifying all the 

photoproducts.  Part one of this thesis, describes the development of a new LC 

method to better separate the CPD-containing nuclease P1 (NP1) digestion products 

of DNA and the utilization of the new method to analyze the NP1 products of UV 

irradiated telomeric DNA isolated with the previous HPLC method.  The second part 

of this thesis focused on directly coupling the LC method to MS/MS mass 

spectrometry to simultaneously separate and identify the nuclease P1 digestion 

products of UV irradiated telomeric DNA in Li+.  These products were then 

compared against the products formed in the presence of K+.  In the course of these 

studies new hexameric digestion products corresponding to (pTTA)2 were also 

identified which could contain two CPDs dimers.



1 

Chapter One: Introduction 

1. DNA structures 

DNA is the core of genetic information in all living cells.  It was in April 1953, 

when Watson and Crick published the Nature paper in which they illustrated the 

base pairing of DNA double helix (21).  B-form DNA is the dominant right-handed 

helix in the biological state.  DNA can also adopt a variety of unconventional non-B-

form structures under a variety of conditions as well as non-helical secondary 

structures such as cruciform, hairpin structures and G-quadruplexes (19, 20).  The 

DNA double-helical family members include A-DNA, B-DNA and Z-DNA, while 

other secondary structures such as cruciform retain the AT and GC base pairing 

between complementary strands, G-quadruplexes do not involve GC base pairs and 

their formation requires base pair disruption to allow the free G-rich strand to fold 

back upon themselves to form the four-stranded structure. The structures of G-

quadruplex DNA are influence by several factors such as sequence, topology, 

temperature and protein binding (19). Extensive studies have been carried out to 

monitor the existence of these secondary structures using a wide variety of 

biochemical and biophysical techniques.  The A-DNA structure is adopted by both 

double-stranded DNA and RNA or hybrid DNA-RNA duplex structures (19). The 
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chemical synthesis of defined oligonucleotide sequences, allowed the determination 

of high resolution crystal structure, the first of which showed the unexpected 

occurrence of a left-handed helical structure with alternating glycosidic bonds in anti 

and syn conformations. This was termed Z-DNA, which can be generated in regions 

of alternating GC at high ionic strength (31). Later, it has been proposed that Z-DNA 

could be involved in gene regulation. 

1.1 The history of G-quadruplexes 

The self-assembly of guanylic acid was first noted in the early twentieth century by 

the German chemist Bang who observed the gel formation at high guanosine 5’-

monophosphate (GMP) concentrations and defined pH conditions (22).  Later 

studies by Gellert of 5’-GMP fibers by X-ray diffraction showed that tetrameric 

guanine residues were arranged in a co-planar hydrogen-bonded array (Figure 1) 

(23).  In 1978, Miles and Fraser showed that the stability of G-quartets depends on 

the positive ion that interacts with the central oxygen atom.  Blackburn affirmed that 

repetitive guanine rich tracts related to the telomeric DNA sequence can form a G-

quadruplex structure (24, 26). These studies suggested that certain G-rich DNA 

sequence may form in living cells. Strong evidence for the existence of G-

quadruplex structures in vivo was shown by staining Stylonichia lemnae 

macronucleo with high affinity quadruplex specific antibodies Sty49 (47).  To date 
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extensive studies have been carried out to explore the native state of unusual DNA 

secondary structures concerning their configuration, thermodynamic and kinetic 

stability under physiological conditions.   

 

Figure 1:  G quadruplex Structure A) chemical Structure of a G-quartet with a central metal ion B) 

G-quartet as a basic building block of a G-quadruplex C) Topology of intermolecular G-

quadruplex consisting of three G-quartets 

1.2 G-quadruplex Structures 

As discussed above, guanine-rich DNA sequences can self-assemble to form four-

stranded structures known as a G-quadruplexes under physiological conditions.  

These structures are composed of stacks of two or more guanosine quartets; a set of 

four guanine nucleotides associated with each other in a square Hoogsteen 

hydrogen-bonded array.  Each guanine acts as donor and acceptor of two hydrogen 

bonds (N1 to O6 and N2 to N7).  The association of N7 of guanine bases in the 

Hoogsteen paired G-quartet assembly protects them from methylation by dimethyl 
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sulfate (DMS); allowing a chemical discrimination of G-quadruplex formations and 

other DNA secondary structures. 

The four strands constituting an inter- or intramolecular G-quadruplex 

structure can have four different arrangements.  The four strands oriented in the 

same direction are designated parallel (Figure 2A); three strands oriented in the same 

direction and one strand oriented in the opposite direction designated (3+1) also 

known as Hybrid 1 (Figure 2B); two strands oriented in the same direction and two 

strands oriented in the opposite direction designated anti-parallel (Figure 2C); Two 

strands oriented opposite of each other and the other two strands oriented in the 

opposite direction (up-down-up-down) also designated anti-parallel (Figure 2D). 

 

Figure 2: Four types of G-tetrad foundations: A) Parallel G-tetrad, B) (3+1) G-tetrad, C) 

antiparallel G-tetrad; D) Antiparallel G-tetrad. 

   Monovalent cations such as K
+
 and Na

+
 stabilize the structures by interacting 

with the central electronegative carbonyl O6 atoms of the G-quartet. The most 

stabilized G-quadruplex structure is generated by intercalating K
+
 between two 

adjacent G-quartets (25). These stacked G-quartets overlap along the four stranded 

helical structure and the stacks are joined together by the sugar phosphate backbone 

(48).  It is important to state that this configuration does not usually form in the 
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absence of metal cations (36).  G quadruplex structures can be formed by the folding 

of G-rich single stranded DNA or association of two or four independent G-rich 

sequences. 

1.3 Intramolecular G-quadruplex topology 

G-Rich sequences with the potential to adopt intramolecular quadruplexes are 

comprised of four consecutive runs of guanines that are separated by three loop 

regions with different lengths and sequences. The non-participant bases in the 

intramolecular assembly of G-quadruplexes form loops at different lengths and 

sequences.  All the G-quadruplexes have a set of core G-quartet structural features 

and the differences in these structures are the loops which differ in size and 

composition.  These loops can connect two parallel or anti-parallel adjacent strands 

creating four possible loop arrangements. A number of studies have shown how loop 

sequence and length can regulate the structural conformation and stability of G-

quadruplex structures (27, 28).  These loops can connect two parallel or anti-parallel 

adjacent strands creating four possible loop arrangements (29, 30).  

 The type of G-quadruplex structure adopted by a sequence can have different 

topologies depending on the orientation of the strands and the glycosidic bond 

angles of the guanines that participate in the assembly of the G-quartet which may 

have a syn or anti-conformation. Among them the basket type, which is an 
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antiparallel-stranded intramolecular structure having one central diagonal loop and 

two edgewise loops. Hybrid types are a mixture of antiparallel/parallel stranded 

structures which are formed by different combination of loop arrangements. The 

hybrid structures have two lateral loops and one propeller loop (Figure 3). 

 

 

Figure 3: G-Quadruplexes are formed of stacks of square G-quartets, with guanines at each corner 

surrounding a positive ion. 

  

G-quadruplex forming sequences can adopt many different structures under different 

ionic conditions. The nature of the monovalent cations can regulate the topology of 

unimolecular DNA quadruplexes, but usually does not affect the topology of 

bimolecular DNA quadruplexes (49). For G-quadruplexes it’s been shown that an 
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anti-parallel arrangement appears to be favored in Na
+
 solution while a parallel 

arrangement is generated in K
+
 (31, 32).  

1.4  G-quadruplex Polymorphism  

The classical DNA double helix has two grooves; major and minor.  G-quadruplexes 

have four grooves.  The variability of quadruplex structures is related to the 

flexibility of the glycosidic bond. Attraction or repulsion between the sugar and the 

base of the nucleoside generates syn- and anti-conformations respectively (Figure 4). 

 

Figure 4: Orientation around the glycosidic bond, where the guanine bases adopt both syn and anti-

conformations. 

 

DNA exists as a double helix and the two strands are held together by Watson and 

Crick base pairing.  G-quartet contains eight Hoogsteen hydrogen bonds in a cyclical 

arrangement, so there are on average two hydrogen bonds per base.  Monovalent 
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cations especially K
+
 and Na

+
 but not Li

+
 (34) are required for the G-quadruplex 

conformation and stability.  The K
+
 ion has a large molecular size which is stacked 

between two adjacent guanine quartets, holding them together and forming a 

stronger quartet than when Na
+
 ion is used due to the smaller molecular size (35).  

Monovalent cations stabilize G-quadruplexes in the following order: K
+
> Na

+
> Rb

+
> 

NH4
+
>Cs

+
>Li

+
 (36). The oligodeoxynucleotide, d[AGGG(TTAGGG)3] (Tel22), 

adopts a basket structure in solutions containing Na
+
, and in the presence of K

+
, the 

predominant intracellular cation, the hybrid-type structures are favored over the 

basket (Figure 5). 
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Figure 5: A) The building blocks of G-quadruplexes are G-quartets that arise from the association 

of four guanines into a cyclic arrangement stabilized by Hoogsten hydrogen bonding (N1–N6 and 

N2–N7). B) The planar G-quartets stack on top of one another, forming four-stranded helical 

structures. G-quadruplex formation is driven by monovalent cations such as Na+ and K+.  

1.5 G-quadruplex forming sequences in vivo 

Studies have revealed repetitive guanine sequences, with the potential to form G-

quadruplexes within biologically important regions of the eukaryotic genome 

including telomeric DNA, oncogenic promoter sequences (38) and nuclease 

hypersensitive regions (33).  The accumulation of these potential quadruplex-

forming sequences throughout the genome raised the prospect that quadruplex 

structures may play an important role in cellular processes which include replication, 

transcription, translation and impeding telomerase activity (50) leading to the 

conclusion that these promoter regions can regulate gene expression at the 

A B 

C 
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transcription levels.  This implies that there may be a correlation between potential 

G-quadruplex structure sequences and specific gene function.    

The telomere is a specialized nucleoprotein complex at the extreme ends of all 

eukaryotic chromosomes (24). The telomeres of eukaryotic chromosomes have 

unique structures that include short nucleotide sequences present as tandem repeats. 

The telomeric repeat sequence varies between different organisms but all have the 

general G-rich sequence d[T1-3-(T/A)-G 3-4 ]4 . Telomeres stabilize the termini of 

linear chromosomes and protect them from exonuclease degradation and 

recombination and stop them from being recognized and processed as DNA breaks. 

In normal (non-cancerous) human somatic cells, telomeric DNA is composed of 

approximately 10 kilobase pairs of ds DNA sequences that contain tandem repeats of 

the sequence (TTAGGGG)n (26). These sequence repeats can form G-quadruplex 

structures through Hogsten hydrogen bonds in the presence of monovalent cations 

such as K
+
 and Na

+
.  

  In mammals the ends of linear chromosomes can form a protective cap-like 

structure to maintain chromosome integrity from damage by fragmentation and 

fusion.  Telomeres make it possible for cells to divide and acts as a cellular marker 

for apoptosis when the sequence has been shortened to a critical length (Figure 6). 

Several capping proteins have been characterized involving DNA binding proteins 

(39, 40).  Strong evidence for the existence of G-quadruplex in vivo comes from the 
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observations made of telomeres in the macronuclei of ciliated protozoa Stylonychia 

lemmae specifically bound to quadruplex-specific antibodies (47).  The study 

demonstrated that antiparallel four stranded DNA structures were presented in the 

macronuclei (51).  

 

Figure 6: Telomere: Protective cap at the end of the chromosome strands. 
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A great deal of research has been focused on understanding the structural 

diversity in the human telomere G-quadruplex structure.  Early studies show that the 

single repeat d(TTAGGGT) human telomere sequence can form a propeller parallel-

stranded G-quadruplex in K
+ 

(Hybrid I) (41). The oligodeoxynucleotide, 

d[AGGG(TTAGGG)3] (Tel22), adopts a basket structure in solutions containing 

Na
+
, and in the presence of K

+
 the hybrid-type structures are favored over the basket 

and chair structures (5).  Tel26, d[AAA(GGGTTA)3GGGAA] was found by NMR to 

adopt a mixture of Hybrid 1 and Hybrid 2 structures in K
+
. 

 

Other extensive studies have been done to characterize DNA secondary 

structures in the promoters of genes. Studies have identified the presence of G-

quadruplex forming sequences in the promoter and gene regulatory regions of 

several proto-oncogenes (42). These proto-oncogenes are involved in growth and 

proliferation and proximal promoter regions are TATA-less and contain several G/C 

rich regions.   

1.6 DNA Photoproduct Formation in Human G-

quadruplexes Forming Sequences. 

 UVB irradiation overlaps the upper end of the DNA absorption spectra and is 

the range mainly responsible for skin cancer through direct photochemical damage 
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to DNA. The majority of the photoproducts arise from a photoreaction between two 

pyrimidines, the structure and stereochemistry of which depend on the conformation 

of the two bases at the time of irradiation.  Irradiation of double stranded B form 

DNA under physiological conditions mainly produces cys-syn cyclobutane pyridine 

dimers (CPDs), pyrimidine (6-4) pyrimidone photoproducts, and their Dewar 

valance isomers (2, 52).  Other rare UV photoproducts, including the spore 

photoproduct, TA*, A=A are also well known. If not repaired, the photoproducts 

may interfere with DNA replication or transcription (Figure 7).  If bypassed by a 

DNA polymerase, they may lead to mutations. Non-adjacent photodimers of both 

intra-strand and inter-strand types are much rarer.  Intra-strand-type non-adjacent 

dimer form when one or more nucleotides between two pyrimidines become 

extrahelical, owing to the formation of single strand DNA or a slipped structure 

allowing the two pyrimidines to photodimerize in a colinear arrangement to form 

non-adjacent CPDs.  These types of non-adjacent dimers effectively shorten the 

DNA template, and have been implicated in the formation of UV-induced deletion 

mutations (17).   

Anti CPDs are expected to form between two separate strands, or loops in 

DNA and were first detected under non-physiologic conditions of desiccated or 

ethanolic DNA.  Later a cis-anti TT CPD was found to form from a short single 

stranded oligodeoxynucleotides under acidic conditions. The product was identified 
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by mass spectrometry by first digesting the DNA with Nuclease P1 to produce a 

tetrameric product comprised of the CPD attached at the 3’-ends to the flanking 

nucleotide.  The observation of non-adjacent CPD formation suggested that it might 

be possible that these anti CPDs could form between the loops of G-quartet 

structures in telomeres and promoters (18, 19).  Indeed irradiation of human 

telomeric DNA sequences was found to produce a variety of anti CPDs by a 

combined enzymatic LC-MS/MS assay (52).   Most surprisingly, anti CPD 

formation was found to occur in the presence of K
+
 which favors hybrid G-

quadruplexes that would appear to be incapable of forming anti-CPDs because they 

do not contain any adajacent lateral loops (49).  In contrast, anti CPDs were not 

detected in Na
+
, which would have appeared to favor formation of anti-CPDs 

because of the presence of two lateral loops.  A proposal suggesting that a form 1 

two tetrad G quadruplex was the photoreactive conformation was later shown 

unlikely (45), and a more recent paper has suggested that a reverse Hoogsteen 

hairpin may be involved (19,20, 10).  
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Figure 7: Photochemistry of DNA.  A) Structures of the major type of photoproducts. B) Intra- and 

C) interstrand-type photoreactions, both of which lead to non-adjacent photoproducts, except when 

n=0 for B, which results in an adjacent photoproduct. 
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1.7 Thesis 

The goal of this thesis was to further investigate the formation of anti-CPD forming 

in human telomeric sequences under various conditions known to favor or disfavor 

G quadruplex formation.  Central to this goal was the development of a high 

resolution LC MS/MS method for separating and identifying all the photoproducts. 

Part one of this thesis, describes the development of a new LC method to better 

separate the CPD-containing nuclease P1 (NP1) digestion products and utilize it to 

analyze the NP1 products of UV irradiated telomeric DNA isolated with the 

previous HPLC method. The second part of this thesis focused on directly coupling 

the LC method to MS/MS mass spectrometry to simultaneously separate and 

identify the nuclease P1 digestion products of UV irradiated telomeric DNA in Li+. 

These products were then compared against the products formed in the presence of 

K+. In the course of these studies a new hexameric digestion product was 

corresponding to (pTTA)2 was also identified and consistent with the presence of 

two anti-CPDs.  
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Chapter Two 

Our interest in the photochemistry of the G-quadruplex forming 26-mer sequence 

d(AAAGGGTTAGGGTTAGGGTTAGGGAA)  was because previous irradiation of 

Tel26 with 312 nm UV light, appeared to produce two major photoproduct-

containing products following NP1 degradation, the cis, syn T=TA CPD from 

adjacent thymines, and the trans, anti T(A)=T(A) CPD formed between two non-

adjacent thymines.   We also wanted to investigate what products formed in Li
+
 

solution which does not support quadruplex formations. 

Nuclease P1 coupled LC-MS/MS assay. 

The photoproducts that are formed in human telomeric sequences are characterized 

by enzymatic digestion with nuclease P1. NP1 has both endonuclease activity and 

3’-phosphatase activity.  It has a binding pocket that is specific for the bases in DNA 

and, upon binding to the 5’-base, catalyzes hydrolysis of the phosphodiester bond to 

the 3’-side to yield deoxynucleotide with a 3’-hydroxyl group.  Because the bases in 

dypyrimidine photoproducts are covalently linked together, NP1 cannot bind to 

either base of the photoproduct and consequently cannot cut on the 3’-side of either 

nucleotide of the photoproduct. As a result Py=PyN trinucleotides are produced from 

adjacent CPD photoproducts, and Py(N)=Py(N) tetranucleotides are produced from 
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non-adjacent anti CPDs (Figure 8).  The NP1 digestion products of the DNA 

containing the tri and tetranucleotides are separated from mononucleotides by 

reverse phase HPLC, and either subsequently or simultaneously analyzed by MS/MS 

mass spectrometry.  To optimize the separation, various solvent systems, ramps, and 

chromatography columns were tested.  The separated products were identified by 

their mass and fragmentation patterns. 
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Figure 8: NP1 digestion of photoproducts containing DNA.  NP1 is unable to hydrolyze the 3’ side 

of a photodimerize base. 
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Irradiation and NP1 Digestion of the G-quadruplexes. 

The G-quadruplexes were irradiated and digested by Chen Lu at the Department of 

Chemistry at Washington University.  A 50 uM solution of Tel26 G-quadruplex in 

150 mM LiCl was irradiated with UVB light for 2.5 h on ice. The sample was then 

subjected to NP1 enzymatic digestion for at least 36 h at 37°C.  The photoproduct 

containing digestion fragments were separated via reverse phase HPLC and 

monitored by UV absorption at 260 nm under the conditions shown in Figure 9. The 

following was summarized from published data of the original HPLC method that 

was developed at Dr. Taylor’s lab: the mononucleotides elute during the first 20 

minutes followed by the elution of trinucleotides around 30 minutes and the 

tetranucleotides around 40-43 minutes.  The 260 nm UV absorbance of the T=TA 

trinucleotide digestion photoproduct results from the presence of 3’-adenine, while 

the absorbance of the T(A)=T(A) or T(T)=T(A) tetranucleotide digestion 

photoproducts are the result of two 3’ adenines or a 3’-adenine and a 3’-thymidine. 

The CPDs have very little absorption at 260 nm.   

. 
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Figure 9: Original RP-HPLC method settings, Dr.Taylor’s lab. 

 

Three fractions containing the photoproduct tri- and tetranucleotides were collected 

by Chen Lu at Washington University using the method as shown in Figure 9.  

Fraction 1 was collected around 29.1 minutes, Fraction 2 was collected at 41.7 

minutes and Fraction 3 was collected at 42.8 minutes respectively.   
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Figure 10: HPLC Chromatograph trace provided by Dr. Taylor’s lab displaying fractions collected 

A) Zoom in B) Zoom out. 
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Analysis of Samples Obtained by the Original RP-HPLC 

Method with an New Method 

My primary aim was to establish a new LC method with which I could 

separate and identify the NP1 degradation products with good separation and 

resolution.  RP HPLC was carried out on a 2.1x150 mm Waters Acquity UPLC High 

Strength Silica (HSS) T3 column, with particle 1.8 µm particle size on a 1260 

Infinity Quaternary LC System from Agilent Technologies. I started the 

development investigating a number of buffer systems and gradients and settled on 

the buffer and gradient system shown in Figure 11.  Np1 digestion for the parent 

ODN afforded major products corresponding to monomers eluting at 3.95 (pG), 4.18 

(pT), 6.63 (pA) and 30.71 (dA) minutes when using the HPLC method.  The analysis 

of fraction 1 that was collected at 29.1 minutes with the original LC method; eluted 

between 6-8 minutes with the new LC method.  Interestingly, this fraction was 

resolved into two peaks; one of which eluted around 6.57 minutes and second peak 

eluted around 7.82 minutes as shown in Figure 12.    
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Figure 11: Reverse phase HPLC gradient. MPA: 10 mM aqueous ammonium formate; MPB 

50%/50% 10 mM aqueous ammonium formate and acetonitrile. 
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Figure 12: Analysis of Fraction 1 collected by Chen Lu at Washington University in Dr. Taylor’s 

lab. 
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The analysis of fraction 2 with elution time of 41.7 minutes in the original method 

resulted in one peak by the new LC method with an elution time of 33.4 minutes as 

shown in Figure 13. 

 

Figure 13: Analysis of fraction 2 collected by Chen Lu at Washington University in Dr. Taylor’s 

lab. 

 

The analysis of fraction 3 that had been collected around 42.8 minutes was resolved 

into three peaks with the new method. One of the peaks eluted around 33.41 

minutes, a second peak eluted around 36.76 minutes and a third and major peak 

eluted at 38.98 minutes as shown in Figure 14. 
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Figure 14: Analysis of fraction 3 collected by Chen Lu at Washington University in Dr. Taylor’s 

lab. 

 

Further analysis of the first fraction by LC-MS is shown in Figure 15.  The LC-MS 

of both of the peaks at 6.65 and 7.90 minutes showed an m/z for of 938.164  

corresponding to the (M-H)
- 

ion of the trinucleotide pT=pTpA, which must 

correspond to either cis-syn, trans-syn cyclobutane pyrimidine dimers between the 

two T’s or the (6-4) or Dewar photoproducts. 
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A) 

 

B) 

 

C) 

 

Figure 15: Analysis of fraction 1 by A) LC-MS zoom out B) Full LC-MS extracted and processed 

data of peak one C) Full LC-MS extracted and processed data of peak 2 in fraction 1. 
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The analysis of fraction 2 showed which gave a single peak at 33.4 minutes in the 

new method, as shown in Figure 16.  The LC- MS showed the presence of an ion of 

m/z 1260.209 corresponding to the (M-H)
-
 ion of a tetranucleotide pT(pA)=pT(pA).   

A) 

 

B) 

 

Figure 16: Analysis of fraction 2 by A) LC-MS analysis of peak one in fraction 2. B) Full LC-MS 

extracted and processed data of peak one in fraction 2.  
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Three peaks eluted from the analysis of fraction 3 by the new LC-MS method.  One 

of the peaks eluted around 33.4 minutes, the second peak eluted around 36.8 and the 

third peak eluted around 38.98 minutes. Analysis of the first two peaks by LC-MS 

(Figure 17), gave an m/z of 1269.235 corresponding to the (M-H)
-
 ion of 

pT(pA)=pT(pA) or a molecule of mass 1270.235.  The analysis of the third peak 

gave anm/z of 1260.209 corresponding to the (M-H)
-
 ion of the tetramer 

pT(pA)=pT(pT) or a molecule of mass 1261. 

 

Figure 17: Analysis of fraction 3 by LC-MS. 
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Comparison of the original with the new RP-HPLC Method 

There were some significant differences between the elution times of the nucleotides 

and the photoproduct digestion products using the original and new RP-HPLC 

methods.  For example, mononucleotides eluted within the first  20 minutes in the 

original method, wereas the eluted between 3-30 minutes with the new method.  

Another difference between the two methods is that trinucleotides eluted from at 

29.1  minutes in the original method, whereas in the new method the same fraction 

eluted between 6-8 minutes. Also tetranucleotides that appeared to eluted as a single 

peak at 41 minutes appeared as three peaks between 31-40 minutes.   

 

Direct LC-MS Analysis of NP1 Digestion Mixtures by the New Method 

After the analysis of the mononucleotides and fractions that were provided by 

Dr. Taylors Lab, we continued with the study of Tel26 in Li
+
 and other metal ions.   
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Figure 18: LC-MS and MS/MS system, column and mobile phase settings. 

 

 

Oligodeoxynucleotides (ODN) were purchase from Integrated DNA Technologies, 

Inc. (IDT).   Tel26 was prepared in 100 mM Li
+
 and heated at 95°C for 5-10 minutes 

and then was rapidly cooled down in ice. UVB irradiation was performed at 270-400 

nm with peak intensity at 312nm on ice with UVB light for about 2-2.5 hours at 

Washington University by Chen Lu. The analysis of the degradation products was 

performed by LC using a waters Acquity UPLC HSS T3 silica based column in a 
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1260 infinity quaternary LC system by Agilent Technologies using the settings 

shown in Figure 18.  The peaks that appeared to correspond to previously identified 

peaks from the original study were labeled as A, B, C, D, E, F. Other peaks that 

were not previously identified in the original studies are labeled 1, 2 and 3 

respectively as shown in Figure 19.  The LC-ESI-MS experiments were carried out 

in the negative ion mode with the orbitrap mass spectrometer (Q Exactive-Plus).  A 

solution of 10 mM ammonium formate in water and acetonitrile was used as the 

spray solvent. Each labeled peak in the HPLC trace in Figure 19 was analyzed by 

LC-MS and MS-MS and compared to previously identified products based on their 

m/z and fragment ions. 
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A) 

 

B) 

 

Figure 19: A) Analysis of irradiated and NP1 degraded Tel26 in Li+ at 260 nm (zoom out). B) 

Analysis of irradiated and NP1 degraded Tel26 in Li+ at 260 nm (zoom in). 
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Analysis of Unknown Peak A.  

Analysis of unknown peak A which eluted at 7.94 minutes (Figure 20A) gave an m/z 

of 938.16 corresponding to the [M-H]
-
 of the trimer (T=TA).  The [M-H]

-
 ion gave 

product ions at m/z 330.06 corresponding to [pdA-H]
-
 as shown in Figure 20B. 

A) 

 

B) 

 

Figure 20: A) Analysis of unknown Peak A by LC-MS and B) MS/MS results for unknown Peak A 

and product ion analysis. 
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Analysis of Unknown Peak B. 

During early development of the new LC and MS/MS method an unknown peak 

(unknown B, Figure 19) was observed eluting at 29.83 minutes from in Tel26 

irradiated in Li
+
 (Figure 21A) which could not be detected by MS in negative ion 

mode.  When the dA at the 5’-terminus of Tel26 was replaced with pdA and 

irradiated and digested with NP1, the shoulder in unknown peak B was no longer 

detected as shown in Figure 21B. 
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A) Analysis of shoulder in peak B 

 

B) LC-MS of Tel26 in Li+ no shoulder in peak B 

 

Figure 21: Analysis of unknown B peak by LC-MS ATel26 in Li+ with dA and B) LC-MS without 

shoulder in peak B. 
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Analysis of Unknown Peak C. 

The analysis of unknown peak C eluting at 33.59 minutes, gave an m/z peak at 

1260.224 (Figure 22A) corresponding to the [M-H]
-
 for the tetranucleotide 

pTp(A)=pTp(T). For the MS/MS analysis the [M-2H]
2-

 at 629.6 was trapped and 

fragmented (Figure 22B). Product ions were observed at m/z 321 corresponding to 

[pdT-H]; a product ion was observed at m/z 330.06 corresponding to [pdA-H]
-
; 

another product ion was observed at m/z 527.12 corresponding to [pT=pT –HPO3-

2H2O –H]
-
 ; another product ion was observed at m/z 545.13 corresponding to 

[pT=pT-HPO3-H2O-H]
-
; an product ion was observed at m/z 607 corresponding to 

[pT=pT -2H2O–H]
-
; another product ion was observed at m/z 625.09 corresponding 

to [pT=pT-H2O-H]
-
; a product ion was observed at 929.14 [pT=pT(pT) –H2O-H]

-
 and a 

product ion was observed at m/z 938.16 corresponding to [pT=pT(pA) –H2O –H]
-
. 
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A) LC analysis of unknown peak C 

 

B) MS/MS analysis and product ions 

 

Figure 22: Analysis of Peak C by A) LC-MS and B) MS/MS results and product ions.  
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Analysis of Unknown Peak D. 

The analysis of unknown peak D eluting at 36.8 minutes gave an m/z at 1269.235 as 

shown in Figure 23A corresponding to pT(pA)=pT(pA).  The MS/MS experiments 

were then carried out on [M-2H]
2-

 at 634.11 which was trapped and fragmented 

(Figure 23B). Product ions were observed at m/z 330.06 corresponding to [pdA-H]
-
; 

m/z 527 corresponding to [pT=pT –HPO3-2H2O –H]
-
; m/z 545.13 corresponding to 

[pT=pT-HPO3-H2O-H]
-
; m/z 607 corresponding to [pT=pT -2H2O –H ]

-
;  at m/z 625.09 

corresponding to [pT=pT-H2O-H]
-
; at m/z 858.19 corresponding to [pT=pT(pA) –HPO3-

H2O –H]
- and m/z 938.16 corresponding to [pT=pT(pA) –H2O –H]

- 
. 
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A)LC-MS analysis of unknown peak D 

 

B) MS/MS Analysis and Product ions. 

 

Figure 23: Analysis of Peak D by A) LC-MS and B) MS/MS results and product ions. 
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Analysis of Unknown Peak E. 

The analysis of unknown peak E eluting at 37 minutes gave an ion of m/z at 1260.22 

as shown in Figure 24A corresponding to  [M-H]
-
 ion of pT(pA)=T(pT).  The peak 

at 37 minutes was then ionized by negative electrospray to give [M-2H]
2-

 of 629.6 

which was trapped and fragmented. Product ions were observed at m/z 321.05 

corresponding to [pdT-H]
-
; at m/z 330.06 corresponding to [pdA-H]

-
; at m/z 607.06 

corresponding to [pT=pT -2H2O –H]; at m/z 849.19 corresponding to [pT=pT(pT) – 

H2O-HPO3-H]
-
; at m/z 929.14 corresponding to [pT=pT(pT) –H2O-H]

-
 and m/z 

1180.23 corresponding to [pT(pA)=pT(pT) – HPO3– H]
-
. 
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A) LC-MS analysis of peak E 

 

B) MS/MS analysis and product ions. 

 

Figure 24: Analysis of unknown Peak E by A) LC-MS and B) MS/MS results and product ions. 
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Analysis of Unknown Peak F. 

The analysis of peak F eluting at 39 minutes gave an m/z ion at 1269.235 as shown 

in Figure 25A corresponding to the [M-H]
-
 ion of pT(pA)=pT(pA). The peak at 39 

minutes was then ionized by negative electrospray to give [M-2H]
2-

 of 634.11 as 

shown in Figure 25B which was trapped and fragmented. Product ions were 

observed at m/z 330.06 corresponding to [pdA-H]
-
; m/z 527.12 corresponding to 

[pT=pT –HPO3-2H2O –H]
-
 ; at m/z 607.06 corresponding to [pT=pT -2H2O –H]

-
 and 

m/z 938.158 corresponding to [pT=pT(pA) –H2O –H]
-
. 

. 
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A) LC analysis of unknown peak F 

 

B)  Ionization of unknown peak F 
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C) MS/MS analysis and ion fragments of unknown peak F 

 

Figure 25: Analysis of unknown Peak F by A) LC-MS and B) and C) MS/MS results and product 

ions. 

 

Analysis of Peak 1. 

The analysis of unknown peak 1 (as seen in Figure 19) eluting between 12 to 15 

minutes with a peak at around 13 minutes gave an m/z 266.09746 (Figure 26A) 

corresponding to the [M-H]
-
 ion of dG. The m/z ion of of 266.09 was trapped and 

fragmented to give an ion of m/z 150.04 corresponding to the [M-H]
- 
ion of guanine 

(Figure 26B).  It is not clear where this digestion product could have come from, 

since nuclease P1 only produces nucleotide monophosphates, except if a 

deoxynucleoside is present at the 5’-end, as was the case for the 

oligodeoxynucleotides having dA at the end.  There should not have been any dG at 

the 5’-end, unless it came from incomplete DNA synthesis. 
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A) LC-MS of unknown peak 1 

 

 

B) MS/MS of unknown peak 1 

 

Figure 26: Analysis of peak unknown 1 by LC-MS and B) MS/MS. 
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Analysis of Unknown Peak 2. 

The analysis of unknown peak 2 eluting between 42.42 minutes gave a m/z ion of 

1877.331 as shown in Figure 27A corresponding to a hexamer pTpT(A)=pTpT(A)).  

The peak at 42 minutes also gave a peak a m/z of 625.1 corresponding to the triply 

charged ion [M-3H]
3-

 (Figure 27B) and m/z of 938.1524 corresponding to the doubly 

charged ion [M-2H]
2-

 (Figure 27C) which was trapped and fragmented. Product ions 

were observed at m/z 330.06 corresponding to [pdA-H]
-
; and m/z 607.1 

corresponding to [pT=pT -2H2O –H]
-
; at m/z 1135.22 corresponding to 

[pTpT==pTpT-HPO3-2H2O-H]
-
; m/z 1215.17 corresponding to [pTpT==pTpT-

2H2O-H]
-
; m/z 1386.31 corresponding to [pTpT(pA)==pTpT-H2O-2HPO3-H]

-
 and 

m/z 1466.28 corresponding to [pTpT(pA)==pTpT-H2O-HPO3-H]
-
.  For nuclease P1 

to give such a product would require that both T’s are forming anti photoproducts, 

and could result from the photodimerization of the two T’s flanking the 5’-side of 

the anti-photoproduct leading to the double dimer pT(pA)==pT(pA) photoproduct.  

Subsequent hydrogen fluoride (HF) degradation studies by Innocent Harelimana of 

the Taylor group have provided evidence for the presence of both trans, anti and cis, 

anti CPDs of thymine in the product, a propose structure of the hexamer is shown in 

Figure 28. 
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D) MS/MS data analysis. 

 

Figure 27: Analysis of unknown peak 2 by A) LC extracted and processed data for unknown peak 

2 B) ionization of peak 2 by  negative electrospray to give [M-3H]
3-

  triple charge C) Ionization of 

peak two  by negative electrospray to also give [M-2H]
2-

 Doubly Charge D) MS/MS data analysis 

of unknown peak 2. 

 

Figure 28: Suggested structure of the double dimer corresponding to a hexamer 

pTpT(A)==pTpT(A)). 

  



51 

Analysis of Unknown Peak 3. 

The analysis of unknown peak 3 eluting between 39 to 43 minutes gave a m/z of 

1989.6496 as shown in Figure 29A and does not correspond to any expected 

hexamer. The peak at 43 minutes also gave a peak a m/z of 994 corresponding to the 

doubly charged ion [M-2H]
2-

 as shown in Figure 29B which was trapped and 

fragmented. Product ions were observed at m/z 330.06 corresponding to [pdA-H]
-
 as 

shown in Figure 29C. 
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A) LC-MS data extracted and processed 

 

B) Double charge: ionization by negative electrospray to give (M-2H)
2-

 of 994 

.  
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C) MS/MS data 

 
Figure 29: Analysis of unknown peak 3 by A) LC-MS and B) Ionization of unknown peak 3 by 

negative electrospray to give [M-2H]
2-

 doubly charge C) MS/MS spectrum of unknown peak 3. 

 

Summary of identified peaks: 

The summary of the peaks identified in the new LC/MS method are shown in Table 

1 below and as they appear in a chromatogram in Figure 30. 
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TEL26 Li
+
 

Unknown Elution 

Time 

m/z 

observed 
Name 

    

 3.95 346.0565 pG 

 4.18 322.0573 pT 

 6.63 331.06846 pA 

A 
7.94 938.1641 pT=pT(pA) 

1 13.01 267.097 dG 

B 30 297.108 dA 

C 33.59 1260.224 pT(pA)=pT(pT) 

D 36.88 1269.236 pT(pA)=pT(pA) 

E 37.3 1260.224 pT(pA)=pT(pT) 

F 39.28 1269.236 pT(pA)=pT(pA) 

2 42.42 1877.3306 pTpT(pA)=pTpT(pA) 

3 43 1989.65 possible hexamer 

Table 1 Summary of identified unknown peaks by LC-MS 

 

All of the nuclease P1 digestion products A, C-F had been previously identified.  As 

mentioned, peak B the front shoulder was remove and B was identified to be dA.  

Peak 1 was identified as dG, but its source is unknown.  The unknown peak 2 m/z of 

1877.331 at 42 (Figure 30) corresponding to TT(A)=TT(A) had been previously 

identified by MALDI analysis of an isolate peak, but no MS/MS data had been 

obtained.  The MS/MS data supports the assignment of a double dimer, since no 

fragments corresponding to pT were observed. The unknown peak 3 m/z 1989 at 43 

minutes will need to be further investigated because does not correspond to any 

expected hexamer. The peak at 43 minutes also gave a peak a m/z of 994 
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corresponding to the doubly charged ion [M-2H]
2-

 as shown in Figure 29B which 

was trapped and fragmented.  

 

Figure 30: Summary of Photoproduct formation of Tel26 in Li
+
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Comparison of photoproduct formation in Li+ with K
+
. 

Photoproduct formation in Tel26 in Li
+
 were compared against the products formed 

in the presence of K
+
. It was observed that there were more photoproducts produced 

in Tel26 in Li
+
 (Figure 31A) than in K

+
 as shown in Figure 31B, most notably a 

greater amount to TA=TT product, and the TTA=TTA photoproduct. 

A) Tel26 in Li
+
 UV Trace 
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B) Tel26 in K+ UV Trace 

 

Figure 31: Peak analysis of A) Tel26 in Li+ and B) Tel 26 in K+ UV trace zoom in. 

 

Experimental Section. 

2.1 Materials and Methods 

Oligodeoxynucleotides were purchase from Integrated DNA Technologies, Inc., 

(IDT, Coralville, Iowa) and Lifetechnologies.  

Nuclease P1 (NP1) from penicillium citrinum, 10 mM ammonium formate and 

acetonitrile were purchased from Sigma (St. Louis, MO).  

Acquity UPLC High Strength Silica (HSS) T3, particle size 1.8 µm 2.1x150 mm 

from Waters. Milli-Q (18.2 mΩ/cm) water obtained from Milli-Q water purification 

system. 



58 

2.2 Preparation of the Guanine-Quadruplexes 

Oligodeoxynucleotides from Integrated DNA Technologies (IDT) were used without 

further purification. Typically, 50 uM ODN (IDT) in 10 mM Tris-HCl, pH7.5, with 

150 mM KCl or LiCl; were heated at 95°C for 10minutes and then rapidly cooled 

down in ice.  

2.3 UV Irradiation of Oligodeoxynucleotides (ODNs) 

UVB irradiation was carried out immediately after sample preparation.  G-

quadruplex samples were irradiated on a bed of ice for 2-2.5 h at a distance of ~ 1 

cm from the UVB lamp.  

2.4 Digestion of the Oligodeoxynucleotides (ODN) by 

Nuclease P1 

Typically, 1 ul of 1U/uL aqueous NP1 from Penicillium citrinum (Sigma) and 1 uL 

of 10 mM ZnCl2 were added to 100 uL of 50 µM UVB irradiated sample and 

digested at 37°C for ≥36 h. 

2.5 HPLC separation 

HPLC separation and analysis were carried out on 1260 Infinity Quaternary LC 

System by Agilent Technologies. An Acquity UPLC High Strength Silica (HSS) T3, 
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particle size 1.8 µm 2.1 x 150 mm from Waters was used for reverse-phase HPLC.  

A gradient was used at a flow rate of 0.200 mL/min. Method: Mobile phase A 

(MPA) 10 mM aqueous ammonium formate; Mobile phase B (MPB) 50/50 (v/v) 10  

mM aqueous ammonium formate and acetonitrile as shown in Figure 32. 

 

Figure 32: Reverse phase HPLC gradient. MPA: 10 mM aqueous ammonium formate; MPB 

50%/50% 10 mM aqueous ammonium formate and acetonitrile. Reverse phase HPLC gradient. 

MPA: 10 mM aqueous ammonium formate; MPB 50%/50% 10 mM aqueous ammonium formate 

and acetonitrile. 
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2.6 ESI-Mass Spectrometry (LC-MS) and MS/MS 

ESI-MS and MS/MS experiments were carried out in the negative ion mode with the 

orbitrap mass spectrometer (Q Exactive-Plus) by ThermoScientific.  A solution of 10 

mM ammonium formate in water and acetonitrile was used as the spray solvent.  

The spray voltage was 2.5 kV. The capillary voltage and temperature were 25 

Voltage and 250°C, respectively. MS/MS experiments were done by using 

normalize collision energy (NCE). The Mass window for precursor-ion selection 

was 3.0 m/z units.  Approximately 2 scans were averaged for each spectrum.  Each 

scan consisted of 100 microscans with a maximum injection time of 300 microscans. 

For MS/MS each scan consisted of 60 microscans for full scans with a maximum 

injection time of 300 microscans. 
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Chapter 3.  Conclusion 

Guanine-rich nucleic acids can form G-quadruplexes. These four-stranded 

complexes repeatedly occur in the human genome, playing an important role in gene 

regulation and serving as targets of drugs for cancer treatment.  Crystallographic and 

nuclear magnetic resonance studies show the core of a G-quadruplex to be the G-

tetrad, a planar assembly of four guanine bases networked via hydrogen bonds. G-

tetrads stack one on another, with a cation located between adjacent tetrads in 

coordinating eight carbonyls of guanine bases for stabilization.  Previous studies 

using biophysical approaches, such as CD, UV spectroscopy have outlined the 

thermodynamic profiles of the folding and unfolding of quadruplexes.  The 

quadruplex and photoproducts formation varies with the cation species as is shown 

in this report.  UV light is well known to cause adjacent pyrimidine base pairs next 

to each other in duplex DNA to covalently bond together to form cis, syn 

cyclobutane pyrimidine dimers (CPDs). More recently, thymines in G quartet 

structures associated with human telomeres, the sequence at the end of 

chromosomes, were found to form anti CPDs upon UV irradiation in the presence of 

K
+
 and Li

+
, but not Na

+
. In part one of this thesis I described the development of a 

new LC method that better separates the CPD-containing nuclease P1 (NP1) 

digestion products of UV irradiated telomeric DNA.  In the second part I focused on 
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directly coupling the LC method to MS/MS mass spectrometry and separated and 

identified the nuclease P1 digestion products of UV irradiated telomeric DNA in Li
+
.  

The separated products were identified by their mass and fragmentation patterns. 

The photoproduct distribution in the presence of Li
+
 was then compared against the 

products formed in the presence of K
+
. Also, in the course of this thesis I have 

further characterized a new tandem photoproduct of Tel26 in Li
+ 

that appears to be a 

double dimer formed between the two flanking TTA segments of the quadruplex 

corresponding to pTpT(pA)=pTpT(A).  This product likely forms from further 

photodimerization of the anti dimer of pT(pA)=pT(pA).  In Figure 30 and Table 1 

summarizes all the unknown peaks that were separated and identified by LC and 

MS/MS during this study. Also there is a summary of all fragment ions identified 

during this study in Table 2.  I was able to observe that Tel26 in Li+ has more 

photoproducts and isomer formations when compared to Tel26 in K
+
 as shown in 

Figure 31.  

Further calculation of the mass accuracy was performed by subtracting the observed 

mass minus the theoretical mass divided by the observed mass times 1 million (ppm) 

for m/z accuracy (Table 3) to confirm. 
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Table 2: Assignments of negative fragment ions from tri (A: T=TA), tetra- (C & E: T(A)=T(T), D 

& F: T(A)=T(A)) and hexanucleotide (2: TT(A)==TT(A)). 

m/z (negative 

ion) 

Ion Observed for unknown 

125.03 Thy-H  

134.05 Ade-H  

150.042 Gua-H 1 

241.08 dT-H  

250.094 dA-H  

266.09 dG-H 1 

321.05 pdT-H C, E 

330.06 pdA-H A, C, D, E, F, 2 

346.06 pdG-H  

527.12 pT=pT –HPO3-2H2O –H C, D, F 

545.13 pT=pT-HPO3-H2O-H C, D 

607.06 pT=pT -2H2O –H C, D, E, F, 2 

625.09 pT=pT-H2O-H C, D 

849.19 pT=pT(pT) – H2O-HPO3-H E 

858.19 pT=pT(pA) –HPO3-H2O –H D 

929.14 pT=pT(pT) –H2O-H C, E 

938.16 pT=pT(pA) –H2O –H C, D, F 

1180.23 pT(pA)=pT(pT) – HPO3– H E 

1135.22 pTpT==pTpT-HPO3-2H2O-H 2* 

1215.17 pTpT==pTpT-2H2O-H 2* 

1386.31 pTpT(pA)==pTpT-H2O-2HPO3-H 2* 

1466.28 pTpT(pA)==pTpT-H2O-HPO3-H 2* 

* These peaks were also observed in the MS/MS of the m/z 634 ion of unknown peak F (T(A)=T(A). 
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Table 3: Summary of the identified peaks mass accuracy. 

  

Peak Name Theoretical m/z Observed m/z Mass Accuracy ppm

pA 331.0682 331.06846 1

dA 251.1018 297.11 154852

pG 347.06 347.1 115

pT 322.0566 322.1 135

TA-T 938.2 938.2 0

TA-TA 1269 1269.22 173

TA-TT 1260.209 1260.224 12

TT-TT 1252.20578 1252.21109 4

Unknown 1 1877.313 1877.331 10

Unknown 2 1990.08 1990.65 286

Unknown 3 266 266.09 338
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Appendix 

Previous studies have discovered that photocrosslinking of T’s can occur in 

structures other than quadruplexes providing evidence that implicates antiparallel 

reverse-Hoogsteen base-paired hairpins as the photoreactive conformation leading to 

the trans, anti T(A)=T(A) CPD.  These results suggested that reverse Hoogsteen 

hairpin structures co-exist with G-quadruplexes. 

The following sequences of Tel21 (Cl-4-98, 19Apr2015) were prepared in potassium 

solution.  Tel21 GGA; Tel21GAG; Tel21AAG and Tel21_3’ were prepared in Dr. 

Taylor’s lab at Washington University by Chen Lu.  The sequences were then 

analyzed and processed by Claudia Posadas using the new LC and MS-MS methods. 
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Figure 1. Tel21 sequences provided by Dr. Taylor’s Lab at Washington University 

in St. Louis. 
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1. LC-MS Trace of GAG, AAG, GGA 

 

  

GAG 

AAG 

GGA 
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2. LC-MS and MS/MS Trace of GAG, AAG, GGA looking at peak with 

retention times at 30.78 and 30.86 minutes  

938.16, R=71106 z=2     

966.00, R=72206 z=1 

 

 

 

GGA 

AAG 

GAG 
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3. LC-MS and MS/MS Trace of GGA, AAG, GAG looking at peak with 

retention times at 34.28 minutes 

629.60, R=90107 z=2  (tetramer)    

  

  

GGA 

AAG 

GAG 
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4. LC-MS and MS/MS Trace of GGA, AAG, GAG looking at peak with 

retention times at 35.88 minutes. 

634.11, R=90007 z=2   

 

  

GAG 

GGA 

AAG 
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5. LC-MS and MS/MS Trace of GGA, AAG, GAG looking at peak with 

retention times at 36.14 minutes. 

629.60 R= 90607 z=2 

 

  

GAG 

AAG 

GGA 
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6. LC-MS and MS/MS Trace of GGA, AAG, and GAG looking at peak with 

retention times at 37.95 minutes. 

634.10931 R= 10931 z=2 

 

 

 

 

 

 

  

GAG 

AAG 

GGA 
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7. LC-MS and MS/MS Trace of GGA, AAG, and GAG looking at peak with 

retention times at 35.75 minutes.  
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8. LC-MS and MS/MS Trace of GGA, AAG, and GAG looking at peak with 

retention times at 36.27 minutes.  
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9. LC-MS and MS/MS Trace of GGA, AAG, and GAG looking at peak with 

retention times at 50.27 minutes. 
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10. LC-MS and MS/MS Trace of GGA, AAG, and GAG looking at peak with 

retention times at 60.78 minutes. 
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11. LC-MS and MS/MS Trace of GGA, AAG, and GAG looking at peak with 

retention times at 65.49 minutes. 
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Sequence and image provided by Washington University-St. Louis from Dr. 

Taylor’s lab. 
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12. MS/MS Trace of pTel26 Li+ of 938 m/z peak at 41 minutes (isomer) 

 

13. MS/MS Trace of p Tel26 Li+ of 966Da no real UV peak, right after peak at 

31min (trace of 938 present at 31 min but too low for MSMS). 

 

14. MS/MS Trace of p Tel26 Li+ of 1990Da peak at 39.83 minutes. 
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