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Abstract

Algorithmic Trading with Prior Information

by

Xinyi Cai

A.M. in Statistics,

Washington University in St. Louis, 2018.

Professor Jos E. Figueroa-Lpez, Chair

Traders utilize strategies by using a mix of market and limit orders to generate profits.

There are different types of traders in the market, some have prior information and

can learn from changes in prices to tweak her trading strategy continuously(Informed

Traders), some have no prior information but can learn(Uninformed Learners), and some

have no prior information and cannot learn(Uninformed Traders). Alvaro C, Sebastian J

and Damir K [1] proposed a model for algorithmic traders to access the impact of dynamic

learning in profit and loss in 2014. The traders can employ the model to decide which

strategies to use. The model considered the distribution of the prices in the future using

prior information, the spread of the bid and ask prices and also the capital appreciation

of inventories. I implemented the model for the case when the trader can only learn

from and take positions in one asset. Compared to the uninformed traders, the informed

trader using the proposed model can change the strategies along time and make higher

profits.
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1. Introduction

1.1 Motivation

In real world, information is important in many cases. The business man who is

better informed can catch the opportunities and maximize his profits. The same thing

also happens to traders. The traders who are well informed and have the ability to learn

from the market dynamics can generate greater profits than the uninformed trader who

have no prior information and is less qualified to learn. [1]

The algorithmic trading refers to the process of using computer programs and defined

complex algorithms to place trading decisions and transactions in financial market at a

speed and frequency that is impossible for a human trader. [2] The models that the algo-

rithmic trader can use to decide how to trade in the future by using a mix of market and

limit orders are discussed nowadays. A good model can generate higher and more certain

profits. The model we will discuss later in this thesis is aimed to help the algorithmic

traders to make good trading decisions. Market orders can guarantee execution but cost

more, whereas trading with limit orders are cheaper but has uncertain time of execution.

The key problem for the traders’ strategy is to decide the choice of order types and the

timings to submit orders. It can be affected by many factors, such as the accumulated

inventory, remaining time before position has to be closed, and how good are the price
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predictions. As the time goes, the informed trader will have updated information about

the prior and become more confident about the future price, and then she will change

her trading strategies accordingly. The problem we need to solve is to determine the

good combination of market and limit orders, while also considering the uncertainty of

her prediction, the price changes and the inventory exposure.

1.2 Background Information

Before we start to talk about the model for algorithmic trading, we need to un-

derstand some basic knowledge about trading. In this section, we will learn how the

electronic markets work, types of traders, limit and market orders, limit order book and

some defined prices. [3]

Nowadays, a lot of financial contracts are traded in electronic markets, such as shares,

bonds, preferred stock, and some derivatives. Corporations sell ordinary shares(common

stock) to raise money, and the buyers own some parts of the corporations based on

the amount of shares they hold. The owners have the right to receive some shares of

the corporation’s profit and have the voting rights in annual general meeting. Large

corporations can also use bond to raise capital. The bond holders don’t have the voting

right but can receive guaranteed regular incomes. Preferred stock has both characteristics

of bond and common stock. The preferred stock holders receive period pre-arranged

incomes but have no voting rights. Compared to the bond holders, their incomes are not

guaranteed. When the company is in financial distress, the preferred holders get paid

after the debt holders but before the common stock holders.
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The traders are classified into three classes: fundamental traders, informed traders and

market makers. Fundamental (or noise or liquidity) traders are motivated by economic

fundamentals outside the exchange. Informed traders make profit by using information

not reflected in market prices and trading assets in anticipation of price change. Market

makers are professional traders who can buy or sell securities at prices posted in an ex-

change’s trading system on behalf of the customers. The market makers’ type of trading

is passive or reactive trading because they profit by using detailed and professional analy-

sis of the trading process, and also adapt to the circumstances changes. The fundamental

trader and informed traders do more active and aggressive trading.

To implement an electronic market, people signal their willingness to trade, and then

a matching engine matches those wanting to buy with those wanting to sell. In basic

setup, there are two types of orders: Market Orders (MOs) and Limit Orders (LOs).

MOs are aggressive orders that seek to execute a trade immediately. LOs are passive

orders that can wait to meet their request of certain price and quantity. Hence, MOs are

more expensive than LO because it requires higher liquidity and so the traders who post

MOs need to pay for it.

Orders are managed by a matching engine and a limit order book (LOB). The LOB

records all incoming and outgoing orders. The matching engine uses a well-defined algo-

rithm when a possible trade could occur, and then the criterion is used to select the orders

that will be executed. Most markets prioritize MOs over LOs and then use a price-time

priority. [3]

When a sell MO executes against a buy LO, it is said to hit the bid; when a buy MO

executes against a sell LO, it is said to lift the offer.
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There are also some defined prices we may use later in the model. [3]

The quoted spread is defined as P a
t - P b

t . (best ask price - best bid price).

The mid-price is defined as 1
2
(P a

t + P b
t ).

The micro-price which includes the volumes posted is defined as

V b
t

V b
t + V a

t

P a
t −

V b
t

V b
t + V a

t

P b
t (1.1)

where V b
t and V a

t are the volumes posted at the best bid and ask.
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2. Optimal Trading Strategy Model

In this section, the naive and optimal trading strategies used by traders are first intro-

duced. The optimal trading strategy model is developed based on it through solving the

optimization problem of the wealth of the traders’ assets. The model was raised by three

mathematicians in 2014, and it proves that the informed trader can perform better than

the uninformed trader. [1]

2.1 Naive Strategy VS Advanced Strategy

Traders always have the idea of making money by buying stocks when the price is low

and sell them when the price is high. The naive stratgy that traders may use is as below.

Let the asset price be St. Suppose that at time t < T , trader has a predcition ŜT

about ST , ŜT is a random variable. In high frequency trading, computer may use the

algorithms like this:

ŜT − S0 =



−0.2,p = 0.3

0,p = 0.2

0.2,p = 0.5

(2.1)

Then, if the E(ŜT ) > St, trader will make the decision to buy it at t. Since the

algorithm shows that the price is expected to increase at T, traders can make money

from the spread. Here, the above algorithm set for the future price ST is our prior

information about ST . To improve the strategy, we can incorporate the prediction ŜT in
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the asset price process St and also learn from the realized dynamics of the asset price. In

order to realize the idea, we can have a mathematical model for it.

2.2 Model Setup - Stock Price Dynamics

Let Sit be the midprice of asset i (i = 1,...,n, n ∈ N) at time t ∈ [0, T] and assume

that

SiT = Si0 +Di (2.2)

where Di is a random variable that represents the informed traders prior belief on the

future mid-price distribution of asset i. Here, Di is only required to have finite second

moment, so the IT can use any method to form the prior. By receiving new information

continuously, the IT updates her prior and change strategies accordingly in the form of

midprice.

In our set-up, the IT uses market information before t = 0 to form her prior belief

on the joint distribution of Di, and then decides how to execute a trading strategy in

one or more assets between time 0 and t ≤ T. We assume that the midprice process

is a randomized Brownian bridge (rBb) connecting the current midprice to the future

midprice, i.e.

Sit − Si0 = σiβ
i
tT +

t

T
Di (2.3)

where σ ≥ 0, βitT are independent standard Brownian bridges, independent of Di, 1 ≤ i

≤ n, which satisfy

βitT = W i
t −

t

T
W i
T (2.4)

for t ∈ [0, T], Wt are independent standard Brownian motions, and βi0T=βiTT=0.

Here, the Brownian bridge σiβ
i
tT models fluctuations in the asset’s midprice at times t.
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The informed trader can only access to the filtration Ft generated by the collection of Sit ,

so she cannot represent Sit in the form of Di and βitT only, except at T where βiTT = 0

and SiT = Si0 + Di.

Based on the assumed rBb process for the midprice, there is a proposition for Sit . The

assets midprice process Sit given by (2.2) satisfies the SDE

dSit = Ai(t, S)dt+ σidW
i
t (2.5)

where W i
t are pairwise independent Ft-Brownian motions.

Moreover,

Ai(t, S) =
ai(t, S)− (Sit − Si0)

T − t
(2.6)

where

ai(t, S) =E[Di|St = S]

=

∫
Rn xi

∏n
j=1 exp(xj

Sj−Sj
0

σ2
j (T−t) −

1
2
x2
j

t
Tσ2

j (T−t))dF (x)∫
Rn

∏n
j=1 exp(xj

Sj−Sj
0

σ2
j (T−t) −

1
2
x2
j

t
Tσ2

j (T−t))dF (x)

(2.7)

are the Ft-conditional expectations of Di’s, and F = FD is the joint cumulative distribu-

tion function of the random variables Di.

The drift part in the SDE is Ai(t, S) and it shows how IT(informed trader) employs

the prior information and how IT learns from the updated information. If the trader

doesn’t learn and believe the prices are independent arithmetic Brownian motions, the

drift part Ai(t, S) = 0. [1] We say the trader is uninformed and denote it as UT.
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2.3 Model Description

As we learnt in pervious section, market orders can guarantee immediate execution

but are more expensive because the trader needs to pay for the liquidity taking fee. Limit

orders do not have the fee and so are cheaper, but execution is not guaranteed. IT uses

innovations in midprices to update her prior and then to adjust her strategy regarding

the combination of market and limit orders to trade in and out of positions between now

and T.

When we think about the IT’s strategy, we need to consider the IT’s submitted limit

and market orders, wealth process, accumulated inventory, and also, the market orders

sent by other participants. [1]

Let l±t = {l1±t , ..., lk±t } ∈ {0, 1}
k denote her decision to post a sell (+) or a buy (-)

limit order for one unit of asset at time t with li±t = 0 meaning that there is no post.

m±t = {m1±
t , ...,mk±

t } ∈ Zk
+ counts the total number of market orders sent by the IT up

until time t.

Let N±t = {N1±
t , ..., Nk±

t } represent the total number of buy and sell market orders

other participants have sent in the assets which the IT trades. The market orders which

fill the IT’s posted limit orders are denoted as N̄t
±

= {N̄t
1±
, N̄t

k±}. It is assumed to be

independent Poisson processes with intensities λ±.

The number of the IT’s filled limit orders in asset-i up to time t is given by
∫ t

0
li±t dN̄

i±
t .

Therefore the IT’s inventory in asset-i at time t is given by

qit = −
∫ t

0

li+t dN̄
i+
t +

∫ t

0

li−t dN̄
i−
t −mi+

t +mi−
t , qi0 = 0 (2.8)
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We assume that the IT restricts her accumulated inventory position for all qit to be

between qi and q̄i.

Let εi represent the liquidity taking fees and δi be the spread, the execution prices that

IT achieves for trading one unit of the asset using market orders in asset i are Sit− ∆i

2
− εi

for a sell, and Sit + ∆i

2
+ εi for a buy.

Since there is no liquidity fee for limit orders, the price that IT trades one unit of

asset using limit orders is Sit + ∆i

2
for a sell and Sit − ∆i

2
for a buy.

dXt =
k∑
i=1

{−(Sit −
∆i

2
)li−t 1qit≤q̄idN̄

i−
t + (Sit +

∆i

2
)li+t 1qit≥q̄idN̄

i+
t

− (Sit +
∆i

2
+ εi)li−t 1qit≤q̄idN̄

i−
t + (Sit −

∆i

2
− εi)li+t 1qit≥q̄idN̄

i+
t }

(2.9)

To find the optimal strategy v that maximizes the expected wealth, we need to consider

the terminal wealth, the costs that the IT incurs at the terminal date T̄ when liquidating

qT̄ , which is captured by parameter αi, and also the running penalty for the inventory

risk.

The representation for the value function H admits the representation [1],

H(t,X, S, q) = X +
k∑
i=1

qiSi + g(t, S, q) (2.10)

9



where g satisfies the QVI

0 = max{∂tg +
k∑
i=1

{1

2
σ2
i ∂SiSi

g + Ai(t, S)(qi + ∂Si
g)− φi(qi)2}

+
n∑

i=k+1

{1

2
σ2
i ∂SiSi

g + Ai(t, S)∂Sig}

+
k∑
i=1

1qit≤q̄iλ
i−maxl∈(0,1)[

∆i

2
l + g(t, S, q + δil)− g(t, S, q)]

+
k∑
i=1

1qit≥q̄iλ
i+maxl∈(0,1)[

∆i

2
l + g(t, S, q − δil)− g(t, S, q)];

max
ε∈D(q)

{−
k∑
i=1

(
∆i

2
+ εi)|εi|+ g(t, S, q + ε)− g(t, S, q)}},

(2.11)

δi is a k-vector with δij = 0 for j 6= i and δii = 1, the set

D(q) = ⊗ki=1{−1qi>qi , 0,1qi<q̄i},

and the QVI is subject to the terminal condition

g(T̄ , S, q) = −
k∑
i=1

((
∆i

2
+ εi)|qi|+ αi(qi)2), qi ≤ qi ≤ q̄i (2.12)

In the QVI expression, the first line represents the flow of asset midprices and the

updates of the priors in the assets in which the IT trades, the second line represents the

flow of asset midprices and the updates of the priors in the other assets. the third and

fourth lines represent the changes in the value function due to execution of the agent’s

posted limit orders. The last line represents the execution of market orders, and D(q) is

the set of allowed market order executions which respect the inventory limits imposed by

the IT. [1]
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3. Simulations - Learn from and trade in one asset

In this section, I will implement the model described above for the simplest case, where

the traders learn from and trade in only one asset. I will compare the IT and UT by

looking at their midprice process, stratgies used over time and their performances. The

performances are evaluated by the value function introduced before. In order to simulate

it, I use finite difference method to get the values of g.

3.1 Finite Difference Method

To solve the QVI numerically and obtain g values, we use finite difference methods

to approximate the derivatives in the QVI equation. Finite difference methods are very

frequently used for solving differential equations. The derivatives at a point are approxi-

mated by difference quotients over a small interval. Let us consider a function F, whose

derivatives are single-values, finite and continuous functions of x, we can apply Taylor’s

theorem on F(x+h) and F(x-h), where h is a constant. [4]

F (x+ h) = F (x) + hF ′(x) +
1

2
h2F ′′(x) +

1

6
h3F ′′′(x) + ... (3.1)

and

F (x− h) = F (x)− hF ′(x) +
1

2
h2F ′′(x)− 1

6
h3F ′′′(x) + ... (3.2)
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Add (3.1) and (3.2), we can get

F (x+ h) + F (x− h) = 2F (x) + h2F ′′(x) + Θ(h4) (3.3)

where Θ denotes the terms containing fourth and higher powers of h. We assume that

these are negligible comparing to the lower power of h. We then get

F ′′(x) ' 1

h2
{F (x+ h)− 2F (x) + F (x− h)} (3.4)

Subtract (3.2) from (3.1) and neglect the terms of order h3, we get

F ′(x) ' 1

2h
{F (x+ h)− F (x− h)} (3.5)

Here, (3.5) is called a central-difference approximation. We can also use the forward-

difference formula,

F ′(x) ' 1

h
{F (x+ h)− F (x)} (3.6)

or the backward-difference formula,

F ′(x) ' 1

h
{F (x)− F (x− h)} (3.7)

In our case, g(t,S,q) is the F describe above. We set the time interval of t as δ, and

the time interval of S as ∆. Then, we can represent the following derivatives in the form

of the finite difference.

∂tg(ti, Sj, qk) =
g(ti, Sj, qk)− g(ti−1, Sj, qk)

δ
(3.8)

∂Sg(ti, Sj, qk) =
g(ti, Sj+1, qk)− g(ti, Sj, qk)

δ
(3.9)

∂SSg(ti, Sj, qk) =
g(ti, Sj+1, qk)− 2g(ti, Sj, qk) + g(ti, Sj−1, qk)

δ2
(3.10)
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3.2 Midprice process

For both IT and UT traders, we assume that the midprice process follows the market

dynamics we discussed in Section 2.1. Hence, the only difference between IT and UT relies

on D, which is the prior distribution. We assume that for IT, D can take only two values:

it can be δu with probability pu, or δd with probability pd, where 0 ≤ S0 + δd ≤ S0 + δu

and pu + pd = 1. Hence, the stock dynamics drift is given as

a(t, St) = δuπu(t, St) + δdπd(t, St) (3.11)

πu(t, St) and πd(t, St) are the posteriori probabilities of ST being equal to S0 + δu and

S0 + δd, conditional on the asset midprice at time t:

πk(t, y) = P [D = δk|St = y] =
pk exp(δ St−S0

σ2(T−t) −
1
2
δ2
k

t
Tσ2

1(T−t))∑
i=u,d pi exp(δiexp(δi

St−S0

σ2
1(T−t) −

1
2
δ2
i

t
Tσ2

1(T−t))
(3.12)

For IT, we set that δu = 0.02 and δd = −0.02, pu = 0.8 and pd = 0.2. Assume that

the trader will increase to §0 + δu at time T and also σ = 0.02. The λ± which is the

intensities for the market orders from other participants that fill the traders posted limit

orders are set to be 30 for both sell and buy. For the other parameters: T = 1, ∆ = 10−3,

ε = ∆/20, α = 5 ∗ 20−3, q = −20, q̄ = 20, and φ = 0.

We generate 10 midprice process for IT and obtain the plot in Figure 3.1. We can see

that they starts from S0 =1 and all end at 1.02 at time T.

For UT, we simply set D ∼ N(0, σ
√
T ). Also, we generate 10 midprice processes and

get the plot in Figure 3.2. The midprice processes start from 1 and end in different values

at T, which is consistent with our assumption that UTs don’t have the prior information

about the value of the asset at time T, and just assume it follows a normal distribution.
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Figure 3.1. Plot of midprice process of IT

Figure 3.2. Plot of midprice process of UT
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Figure 3.3. Strategies used by IT and UT

3.3 Strategies Used

Now, the UT and IT are assumed to follow the same midprice process as we set for

IT in the previous section. Figure 3.3 shows the strategies used by UT and IT along the

time. [1]

The balck line is the midprice process. The stars represent the arrival of other par-

ticipants’ market orders, the solid circles denote the traders’ buy market orders, and the

empty circles denote the traders’ sell market orders. The green and red lines around the

midprice path show the times when the traders post buy and sell limit orders. The green

line is 1
2
∆ above the midprice path because the best ask price for the buy limit orders is

St + 1
2
∆, and the red line is 1

2
∆ below the midprice path because the best bid price for

the sell limit orders is St − 1
2
∆.

The green and red lines for IT are disconnected somewhere, while for UT, they are

continuous all the time. This shows that the IT changes her strategies over time by
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submitting market orders instead of limit orders at some points, but the UT doesn’t

change strategies. The dark green line represents the inventory amount. In IT’s plot, the

inventory amount goes up at the begining and then goes back to zero as time proceeds

towards T. It is consistent with our assumption about the price that will increase to

1.02 at T, because the informed trader knows the information and so will build up her

inventory at low price now and then sell them at higher price in the future to make profits.

3.4 Value Funtion

3.4.1 Uninformed Trader

For an uninformed trader, she never learns from the dynamics of the asset prices and

so A(t,S)=0. Hence, the QVI can be reduced to a much simplier version as below:

0 = max{∂tg +
1

2
σ2∂SSg

+ 1qt≤q̄λ
−[

∆

2
l + g(t, S, q + δ)− g(t, S, q)]+

+ 1qt≥q̄λ
+[

∆

2
l + g(t, S, q − δ)− g(t, S, q)]+;

max
ε∈{−1q>q ,1q<q̄}

{−(
∆

2
+ ε)|ε|+ g(t, S, q + ε)− g(t, S, q)}},

(3.13)

subject to the terminal condition

g(T̄ , S, q) = −((
∆

2
+ ε)|q|+ αq2) (3.14)

Our goal is to find the value function of UT:

H(t,X, S, q) = X + qS + g(t, S, q) (3.15)

The term X and qS are easy to get and don’t change with time t; the tricky part

is the g(t,S,q). Since we can get the values of g(t,S,q) at time T by using the terminal
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condition, to get the g(t,S,q) at other times, we want to represent the g(ti−1, Sj, qk) in

terms of g(ti, Sj, qk).

The finite-difference method is used to solve g(t,S,q). I set ti = iδ′, i = 0, ..., I, and

Sj = −S + j∆′, j = 0, ..., J , qk ∈ {q, ..., q̄} = q + k, k = 0, ..., q̄ − q. Note here the δ′ and

∆′ represent the intervals, which are different from the δ and ∆ stated before. Since the

inventory number is an integer, q may increase by 1 each time.

For simplicity, the first three lines of the equation(3.13) are named as part 1 and the

last line is named as part 2. I discretize the differential operator defining g first and then

obtain g(ti−1, Sj, qk) in terms of g(ti, Sj, qk). Since the max of part 1 and part 2 should

be 0, I first set part 1 as 0, and generate the g(ti−1, Sj, qk), then, I plug it into part 2 to

test if part 2 is less than 0. If the part 2 is larger than 0, I set part 2 as 0. The basic idea

of the simulation is as below in steps:

Step 1: Let the first part of QVI equation be 0

g(ti, Sj, qk)− g(ti−1, Sj, qk)

δ′
+

1

2
σ2

g(ti, Sj+1, qk)− 2g(ti, Sj, qk) + g(ti, Sj−1, qk)

∆′2

+ 1qk<q̄λ
−[

∆

2
+ g(ti, Sj, qk + 1)− g(ti, Sj, qk)]+

+ 1qk>qλ
+[

∆

2
+ g(ti, Sj, qk − 1)− g(ti, Sj, qk)]+ = 0

∀j = 0, ..., J − 1, k = 0, ..., q̄ − q.

(3.16)
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Then we can have g(ti−1, Sj, qk) in terms of g(ti, Sj, qk):

g(ti−1, Sj, qk) =g(ti, Sj, qk)− δ′ ∗ (−1qk>qλ
+[

∆

2
+ g(ti, Sj, qk − 1)− g(ti, Sj, qk)]+

− 1qk<q̄λ
−[

∆

2
+ g(ti, Sj, qk + 1)

− g(ti, Sj, qk)]+ −
1

2
σ2 g(ti, Sj+1, qk)− 2g(ti, Sj, qk) + g(ti, Sj−1, qk)

∆′2
)

(3.17)

Step 2: Check part 2

If part 2 of QVI is larger than 0, we set part 2 as 0 and get the g(ti−1, Sj, qk + 1) and

g(ti−1, Sj, qk − 1):

If

−(
∆

2
+ ε) + g(ti−1, Sj, qk + 1)− g(tt−1, Sj, qk) > 0, (3.18)

then

g(ti−1, Sj, qk + 1) = g(tt−1, Sj, qk) + (
∆

2
+ ε). (3.19)

If

−(
∆

2
+ ε) + g(ti−1, Sj, qk − 1)− g(tt−1, Sj, qk) > 0, (3.20)

then

g(ti−1, Sj, qk − 1) = g(tt−1, Sj, qk) + (
∆

2
+ ε). (3.21)

Figure 3.4 shows the plots of the g values from time 0 to 1 when S=5, and q=-20,-

15,-10,-5,0,5,10,15,20. The red line is the g when q = 0, which is the most flat one. In

fact, the plots are similar for any choice of S from S and S̄.

We can see that when the inventory q is far from 0 and near both ends of the interval

of q, the g value decreases more rapidly.

18



Figure 3.4. Plot of g for UT

19



3.4.2 Informed Trader

The informed trader can learn from the market dynamics, and so A(t,S) follows the

(2.5) and (2.6). Hence, the QVI satisfies:

0 =max{∂tg +
1

2
σ2∂SSg

+ Ai(t, S)(q + ∂Si
g)

+ 1qt≤q̄λ
−[

∆

2
l + g(t, S, q + δ)− g(t, S, q)]+

+ 1qt≥q̄λ
+[

∆

2
l + g(t, S, q − δ)− g(t, S, q)]+;

maxε∈{−1q>q ,1q<q̄}{−(
∆

2
+ ε)|ε|+ g(t, S, q + ε)− g(t, S, q)}},

(3.22)

subject to the terminal condition

g(T̄ , S, q) = −((
∆

2
+ ε)|q|+ αq2) (3.23)

Same as the steps we used for UT, we generate g(t,S,q) first.

Step 1:

g(ti, Sj, qk)− g(ti−1, Sj, qk)

δ′
+

1

2
σ2

g(ti, Sj+1, qk)− 2g(ti, Sj, qk) + g(ti, Sj−1, qk)

∆′2

+ Ai(t, S)(qk +
g(ti, Sj, qk)− g(ti, Sj−1, qk)

∆′
)

+ 1qk<q̄λ
−[

∆

2
+ g(ti, Sj, qk + 1)− g(ti, Sj, qk)]+

+ 1qk>qλ
+[

∆

2
+ g(ti, Sj, qk − 1)− g(ti, Sj, qk)]+ = 0

∀j = 0, ..., J − 1, k = 0, ..., q̄ − q.

(3.24)

Then we can have g(ti−1, Sj, qk) in terms of g(ti, Sj, qk):
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g(ti−1, Sj, qk) =g(ti, Sj, qk)− δ′ ∗ (−1qk>qλ
+[

∆

2
+ g(ti, Sj, qk − 1)− g(ti, Sj, qk)]+

− 1qk<q̄λ
−[

∆

2
+ g(ti, Sj, qk + 1)− g(ti, Sj, qk)]+

− 1

2
σ2 g(ti, Sj+1, qk)− 2g(ti, Sj, qk) + g(ti, Sj−1, qk)

∆′2

− Ai(t, S)(qk +
g(ti, Sj, qk)− g(ti, Sj−1, qk)

∆′
))

(3.25)

Step 2: Check part 2

If

−(
∆

2
+ ε) + g(ti−1, Sj, qk + 1)− g(tt−1, Sj, qk) > 0,

then

g(ti−1, Sj, qk + 1) = g(tt−1, Sj, qk) + (
∆

2
+ ε).

If

−(
∆

2
+ ε) + g(ti−1, Sj, qk − 1)− g(tt−1, Sj, qk) > 0,

then

g(ti−1, Sj, qk − 1) = g(tt−1, Sj, qk) + (
∆

2
+ ε).

Figure 3.5 shows the plot of the values of g from time 0 to 1 for different q. As is the

case with UT, the red line is the g when q = 0, which is the most flat one. We can find

that the patterns are very similar to those for UT.
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Figure 3.5. Plot of g for IT
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Figure 3.6. Plot of means

3.4.3 Comparison

Since the value function H can represent the performance of different strategies, to

compare the performance of UT and IT, I compare their H(t,X,S,q) with the same X and

q. For the traders who only learn from and trade one asset, the value fuction is:

H(t,X, S, q) = X + qS + g(t, S, q) (3.26)

Since the X and qS are the same for IT and UT, we can compare g values instead of H

to access their performance. I plot out the means of the g values for each inventory q,

and then get the graph in Figure 3.6.

The red line represents the IT’s means and black line represents the UT’s means.

We can find that the wealth of IT is overall larger than UT for every q. It proves our

assumption for the model that the trader who has prior information and can learn from
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the market dynamics should perform better than the trader who has no prior informtion

and no ability to learn.
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4. Conclusion

In this paper, I first introduced some basic knowledge about the electronic market, e.g.

the trader types, the limit and market orders, the limit order book and different defined

prices. An algorithmic trader can use the model proposed by Alvaro C, Sebastian J and

Damir K to decide what mix of market and limit orders will generate higher profits.

The uninformed trader who has no prior information about the end price never change

her stratgies along the time. However, the informed trader changes strategies over time

because she has the prior distribution of D, incorporates it into the price process and

also learns from the price changes.

The value function is used to access the performances of the informed trader and

uninformed trader. Finite difference method is used to simulate the value function. The

simple case when the trader learns from and takes positions in only one asset is considered.

It is shown that the IT has higher wealth than UT and we can conclude that the IT can

perform better than the UT.

The prior information D that the informed trader knows in this paper is assumed to

be a correct prior. However, if the prior is not accurate, it may hurt the profitability of

the informed trader. As we can see, a good prior is essential for informed traders. In our

simulation, the D is simply set. The topic about how to find a proper and accurate prior

can be studied further in the future.
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