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Abstract of the Thesis

Nonparametric Estimation of Time Series Volatility Model Estimation

by

Master of Arts in Statistics,

Washington University in St. Louis, 2018.

Professor José E Figueroa-López, Chair

In this article we consider two estimation methods of a non-parametric volatility model

with autoregressive error of order two. The first estimation method based on the two-

lag difference [1]. To get a better result, we consider the second approach based on the

general quadratic forms [2]. For illustration, we provided several data sets from different

simulation models to support the procedures of both two methods, and prove that the

second approach can make a better estimation.

Keywords and phrases: autoregressive error process, two-lag difference, general quadratic

forms.
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1. Introduction

This paper considers the estimation of a time series process with a time-dependent

conditional variance function and serially dependent errors.

Considering T observations {(xt, yt)}t∈{1,...,T} generated by the following model:

yt = σtvt σt = σ(xt) (1.1)

vt =

p∑
j=1

φjvt−j + εt (1.2)

for t = 2, ..., T , where {εt : −∞ < t <∞} are independent identically distributed random

variable with mean 0 and variance 1. The autoregressive order is a fixed known integer

p > 0, in this paper, we focus more on p=2 model. We also assume that xt’s form an

increasing equally spaced sequence on the interval [0, 1]. The model (1.1)-(1.2) can be

viewed as a nonparametric regression model with the mean function identically equal to

zero and scaled autoregressive time series errors vt. It can be written as

yt = φ1σtσ
−1
t−1yt−1 + φ2σtσ

−1
t−2yt−2 + σtεt (1.3)

For the case that p=1, Dahl and Levine (2006) [3] studied a method based on the two-lag

difference statistics:

ηt =
yt − yt−2√

2
(1.4)

to do the estimation. The detail of it is explained in the Section 4 Chapter 2.
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Nonparametric regression model with time series errors has a long history. Lin et al.

(1999) [4] considered the estimation of a regression models of the form

yt = g(xt) + zt, (1.5)

where, (xt, yt)’s (1 ≤ t ≤ n) are observed data, g : Rd → R is a unknown smooth regres-

sion function, and the model has a constrain that {xt} is a covariate process independent

of the stationary error {zt}.

Hall and Keilegom (2003) [5] estimated a general nonparametric model by using

difference-based method for inference in nonparametric regression with independent er-

rors. The model they considered has the form

yt = σ(xt) + vt, (1.6)

where, (xt, yt)’s (1 ≤ t ≤ n) are observed data, σ is a smooth function and the error

process vt is the same as the error process vt mentioned in (1.2). Comparing the model

mentioned in (1.3), this model did not constrain that {xt} should be a covariate process,

instead, they consider that {xt} is an increasing sequence on the interval [0, 1]. They

used the difference operator defined as (Djy)t = yt−yt−j to estimate the model (1.5) and

then estimate the covariance structure γ(j) = cov(vt, vt−j) by the Yule-Walker equations

to link autoregressive structure to covariance.

Shao and Yang (2011) [6] considered the Yule-Walker estimator of the same model

mentioned in (1.5) by B-splines method.

Considering that the model (1.1) discussed in this paper rescales the AR(2) error

process by the conditional variance of the unobserved process σ(xt), it has a more general

correlation structure than the model (1.5).
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As mentioned above, this paper includes an account of the work of Dahl and Levine

(2006) [3] who treated the case p = 1 by the two-lag difference statistics. The model

considered in this paper which based on the Figueroa-López and Levine (2013) [1] and

Figueroa-López(2013b) [2] extend the method for considering the case for p = 2 and show

that the method can also work in this situation.

The rest of the paper is organized as follows. In Chapter 2, we present our estimation

method based on two-lag differences for AR(2) case and the simulation results are also

shown. The estimation approach based on general quadratic forms and its simulations

are also presented in Chapter 3.
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2. Estimation based on two-lag difference

The first section talks about the method of cross-validation which is used to decrease

the problem of overfitting in estimation, and the second section explains the basic idea of

Local Linear Regression which is a popular method to estimate non-parametric objects.

The third section talks about the idea of selecting the bandwidth in Local Linear Regres-

sion based on the cross-validation method. And the next section explain the estimation

of model (1.1)-(1.2) based on two-lag difference which is mentioned in Figueroa-López

and Levine (2013b) [1]. In the final section, we present our simulations based on this

estimation method, and show that their performance are good.

2.1 Cross-validation

Before talking about statistical models, we first talk about a method that help us to

do the model selection. Cross-validation is a validation technique for model evaluation.

In the model evaluation, we always want to choose a statistical learning method which

has a low test error. Unfortunately, it has a problem that we could not know what

the prediction results are for the new data we have not seen, so it is really hard for

us to calculate the test error. Cross-validation is one way to overcome this problem

by separating the data into several parts instead of using the entire dataset to do the

evaluation. In the training process, it removed some parts of the data to train the model,

when the training is done, the testing process will use the remaining parts of the data
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to evaluate the performance of the model. There are several kinds of Cross-validation

method, in this article, we used the one which called the K-fold cross validation method.

Take this case as an example: if we have some data (x1, y1), ..., (xn, yn), and want to use

this data to estimate a model using an estimator that depends on an unknown parameter

α, i.e. β̂(α). The K-fold cross-validation works as the following way: it separated this

dataset into K parts which almost have the same size. We used K − 1 parts of the data

to train the model with the parameter α. Let β̂−k(x, α) be the fitted function, and then

compute the error in predicting the kth part, which we call it testing part:

Ek(α) =

nk∑
i=1

(yi − β̂(xi, α))2, (2.1)

where xi is the ith observation in the kth part of data, yi is the response of the ith

observation in the kth part of data, nk is the number of observations in the kth part of

data. Then we repeat this step for K times and guarantee that all of these parts can be

the testing part, and then get the cross-validation error:

CVK(α) =
1

K

K∑
k=1

Ek(α). (2.2)

We do this for different values of α and the one which minimize the CV (α) is the value

we choose to estimate the parameters of the model. For further reference see [7].

2.2 Local Linear Regression

Local Linear Regression is a common method to estimate a non-parametric model.

Consider a general non-parametric model

y = f(x) + ε (2.3)
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in which x = (x1, ..., xp) ∈ Rp, y ∈ R, f(·) : Rp → R is a smooth and unknown structure,

ε ∈ R is a independent identically distributed with mean 0 and variance 1.

Since the function f(·) is smooth enough, it will look linear in small regions of input

space (which indicate all the possible inputs). Suppose that we consider points in input

space nearby x0. The model could be approximated as:

y = β0[x0] +

p∑
j=1

βj[x0] · (xj − xj0) + ε (2.4)

where xj is the j-th dimension of x = (x1, ..., xp),

for x near x0 should satisfy ||x− x0|| ≤ h, i.e. the distance between x and x0 should be

equal of less than h, the h is called the bandwidth of the model, [x0] are used to represent

the fact that the value of β will vary for different values of x0.

The local linear regression to estimate β̂0[x0], β̂[x0] is given by minimizing the following

function:

argminβ0,β

n∑
i=1

K(||xi − x0||/h) · (yi − β0 − (xi − x0)′β)2 (2.5)

In R, we can use the function [8]:

loess(formula, span, deg, loess.control(surface,trace.hat))

to do the local lineal regression.

For the parameters shown in the R function above, we have:

• formula is a formula specifying the numeric response and one to four numeric pre-

dictors,

• span is the bandwidth,

• deg is the degree of the polynomials to be used,
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• surface is a parameter indicates should the fitted surface be computed exactly

(”direct”) or via interpolation from a kd tree (”interpolate”),

• trace.hat means that compute the trace of the smoother matrix exactly(”exact”)

or approximately(”approximate”). It is recommended to use the approximation for

more than about 1000 data points.

2.3 Selection of the bandwidth

As mentioned above, the selection of the bandwidth h in the local linear regression

method is a key part to perform the regression. If we choose a large h, then the local

linear assumption is not accurate. On the other hand, if we choose a very small h, the

estimation will not be accurate because only a few data points will be considered.

In our estimation, we select the proper bandwidth h based on the 10-fold cross vali-

dation.

Firstly, we vary the bandwidth h from 0.05 to 1 by 0.05. For a particular bandwidth

hj we separate the data into ten parts, then use nine parts of the data with bandwidth

hj to train the model β̂−k(x, hj), and use the remaining one part to compute the evaluate

error (2.1). Then we repeat this for ten times and guarantee that all of these ten parts

can be the testing part, and then use (2.1) to get the cross-validation error CV (hj)for

bandwidth hj.

The last step is that we compare all the cross-validation error based on different

bandwidth h, the one which gives the smallest cross-validation error is the bandwidth we

would like to choose in our estimation.
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2.4 Estimation approach based on the two-lag difference

As mentioned above, Hall and Keilegom (2003) [3] treated the case p = 1 by the

two-lag difference statistics. and Figueroa-López and Levine (2013b) [1] showed that this

method also works for the case p = 2. Now, we exhibit more details about that paper.

Firstly, we consider the model (1.1)-(1.2) based on the AR(1) model, i.e.

yt = σtvt, σt = σ(xt),

vt = φ1vt−1 + ε

It is known that for a AR(1) model:

vt = φ1vt−1 + ε,

the covariance γ1 = cov(vt, vt−1) and γ2 = cov(vt, vt−2) have the relationship: γ2 = φ1γ1.

Combining this with the two-lag statistics ηt = yt−yt−2√
2

, we could get

Eη2t = E
σ2

2
(Ev2t + Ev2t−2 − 2Evtvt−2) = σ2(γ0 − γ2) = σ2, (2.6)

where σ2 = γ0 = var(vt).

According to this, we can think that η2t can be used to develop a consistent estimator for

a non-constant function σ2
t . For a general σt and under xt = t

T
, t = 0, ..., T , we will have

Eη2t =
1

2
(σ2

t γ0 + σ2
t−2γ0 − 2σtσt−2γ2)

When T is very large and the function σ is smooth we would have σt−2 ≈ σt, and it is

naturally to find that this expression can be accurately approximated by σ2
t . That is, we

will have:

Eη2t ≈ σ2
t = σ2(xt).
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Because of this, we can change the original problem (1.1) into a non-parametric regression

problem with the form:

η2t = σ2(xt) + ε̃t, (2.7)

where ε̃t are approximately centered random errors. Figueroa-López and Levine (2013b)

[3] porposes a weighted least square estimator (WLSE). Concretely, noting that (1.3)

with φ2 = 0 implies

σ−1t yt = φ1σ
−1
t−1yt−1 + εt, t = 2, ..., T, (2.8)

a natural estimator for φ1 is given by:

φ̂1 := argminφ1
1

T

T∑
t=2

(σ̂−1t yt − φ1σ̂
−1
t−1yt−1)

2

= (
1

T

T∑
t=2

σ̂−2t−1y
2
t−1)

−1(
1

T

T∑
t=2

σ̂−1t σ̂−1t−1ytyt−1) (2.9)

However, the method described above does not work for the case p > 1.

To simplify this problem, we consider the case where p = 2, i.e.:

yt = σtvt σt = σ(xt) (2.10)

vt = φ1vt−1 + φ2vt−2 + εt (2.11)

Therefore, we want to find that whether there exists other linear statistics

ηt :=
m∑
i=1

aiyt−i (2.12)

such that Eη2t ≈ σ2
t .

Figueroa-López and Levine (2013b) [1] shows the following proposition:

Proposition 2.1 Suppose that φ2 = 0 and σ(·) ≡ σ ∈ R+ for a unknown positive

constant. Then, if

Eη2n = σ2,

9



for any φ1 ∈ (−1, 1), there exists a 0 ≤ k ≤ m− 2 such that

ak = ± 1√
2
, ak+2 = ∓ 1√

2
,∀i 6= k, k + 2.

This result shows that when we want to get a Eη2t which is independent of φ1 based on the

linear statistics (2.12) with a0 6= 0, the only one statistics could satisfy this requirement

is the two-lag difference statistics:

ηt =
yt − yt−2√

2
.

For a general AR(2) innovation process and for σ(·) ≡ σ, the equation (2.6) can be

simplifies as:

Eη2t = σ2(γ0 − γ2) =
σ2

1 + φ2

.

What’s more, it can be deduced that

γ2 = φ1γ1 + φ2γ0 =
φ2
1 + (1− φ2)φ2)

1− φ2

γ0,

γ0 − γ2 = γ0(1−
φ2
1 + (1− φ2)φ2)

1− φ2

γ0) =
1

1 + φ2

Then, as the deduction in the case p = 1, when the function σ(·) is general enough and

T is large enough, under a fixed design xt = t
T
, t = 0, ..., T , we expect that the following

equation will hold

Eη2t ≈
σ2
t

1 + φ2

,

and similarly, we expect to estimate σ2
t up to a constant. Because of this, as in the p = 1

case, WLSE will also suffice to estimate the parameter φ1 and φ2.

Because of this, if we suppose that we know the variance function σt and let ȳt := σ−1t yt,

10



according to the relationship (1.3), we could estimate (φ1, φ2) by the WLSE:

i.e.

φ̄2 := (Ā2 − B̄2)−1(ĀC̄ − B̄2), φ̄1 = Ā−1B̄(1− φ̄2). (2.13)

where, Ā =
∑T

t=4 ȳ
2
t , B̄ :=

∑T
t=4 ȳtȳt−1, C̄ :=

∑T
t=4 ȳtȳt−2. It seemly that this estimators

will not work when σt is unknown. However, if we can notice that if we used cσt for any

constant c which is independent of t to replace σt in ȳt, these estimators will not change.

Base on this fact, we can have the following algorithm:

1. Estimate the function ν2(x) := σ2(x)
1+φ2

using a non-parametric method for the non-

parametric regression

η2t = ν2(xt) + ε̃t, t = 4, ..., T

Let ν̂t = ν̂(xt) be the resulting estimator.

2. Standardize the observations ŷt := ν̂−1t yt and then estimate (φ1, φ2) via the WLSE:

φ̂2 := (A2 −B2)−1(AC −B2), φ̂1 = A−1B(1− φ̂2) (2.14)

with A =
∑T

t=4 ŷ
2
t , B :=

∑T
t=4 ŷtŷt−1, C :=

∑T
t=4 ŷtŷt−2.

3. Estimate σ2
t := σ2(xt) by

σ̂2
t := (1 + φ̂2)ν̂

2
t (2.15)
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2.5 Simulation result

In this part, we run a simulation based on the model (1.1) and (1.2) and solve the

model by the algorithm mentioned above. In order to do this, we consider the following

variance function

(a) σ2
t = (xt + 0.1)2, (b) σ2

t = 0.3 sin(2x2t ) + 0.2.

with xt = t
T

for t = 0, ..., T .

We can use the following equation to compute the MSE to check the performance of the

estimator (2.13):

MSE(σ̂) :=
1

M

M∑
i=1

1

T

T∑
t=1

(σ̂2
t,i − σ2

t )
2,

where σ̂t,i is the estimated variance function in the ith simulation and M is the number

of simulations. And we use local linear estimators ν̂(xt) for estimating ν(xt) in the step

1 of the method outlined above.

The method of selecting the bandwidth in the local linear estimation is mentioned in

the Section 2.3: We select the bandwidth h with a sequence from 0.05 to 1 by 0.05, and

then separate the dataset into ten parts, calculate the cross-validation error of different

bandwidth h we select, then choose the bandwidth h which have the minimum cross-

validation error.

To test the estimation is good or not, we compare the results with the cases when we

assume the knowledge of the volatility function σt in (2.10), and estimate the φ1 and φ2

in(2.11) by Yule-Walker estimation. Since the function is not available in reality, we call

these estimation as oracle WLSE.

The following table shows the sampling means and standard deviations for the proposed

12



estimators (φ̂1, φ̂2) and the oracle estimators (φ̄1, φ̄2) based on the 1000 simulations with

T=2000 data points.

The performance of the proposed estimators (φ̂1, φ̂2)is close to the φ1, φ2 we assume, and

according to the MSE, the estimators are consistency. But the estimators are still under

performance compare to the oracle estimators.

What’s more, we can find that with the change of variance function, the difference between

the estimators (φ̂1, φ̂2) with the oracle estimators (φ̄1, φ̄2) would also change. In our

simulation, we can find under the variance function σ2
t = 0.3 sin(2x2t )+0.2, the estimators

(φ̂1, φ̂2) are much closer to the oracle estimators than the other one.

In addition, the standard deviations of the estimators (φ̂1, φ̂2) would also change with the

change of variance function, and we can find that the one with σ2
t = 0.3 sin(2x2t ) + 0.2

performance much better.

Because of these above points, we can find that though we can get good estimation results

by the two-lag method, however the performance of it would be influence by the variance

function we select. And the estimation results are not as good as the oracle estimators.

13



(φ1, φ2) Mn(Std) φ̂1 Mn(Std) φ̂2 Mn(Std) φ̄1 Mn(Std) φ̄2 MSE(σ̂)

(0.4,0.3) 0.3916(0.04) 0.2956(0.03682) 0.3989(0.02124) 0.2976(0.02144) 0.002539

(0.3,0.6) 0.2974(0.04081) 0.5925(0.04977) 0.3(0.0182) 0.597(0.01751) 0.00255

(0.6,0.3) 0.5869(0.09265) 0.2993(0.08453) 0.5992(0.02078) 0.2984(0.02069) 0.003595

(0.6,0.0) 0.5881(0.04827) 0.006651(0.03611) 0.5986(0.01998) -0.000128(0.01695) 0.003128

(0.6,-0.3) 0.5845(0.06191) -0.2872(0.04814) 0.5987(0.02115) -0.2994(0.02103) 0.00484

(-0.3,-0.6) -0.2953(0.03644) -0.5867(0.04624) -0.2995(0.01779) -0.5985(0.01813) 0.009885

(-0.6,-0.3) -0.5892(0.05609) -0.289(0.04687) -0.6007(0.02219) -0.3001(0.02067) 0.004757

(0.4,-0.6) 0.3944(0.03918) -0.5892(0.04546) 0.3997(0.01811) -0.6004(0.01841) 0.01041

Table 2.1
Sampling mean and standard deviations based on 1000 simulations with
T=2000 design points with variance function (a) σ2

t = (xt + 0.1)2

(φ1, φ2) Mn(Std) φ̂1 Mn(Std) φ̂2 Mn(Std) φ̄1 Mn(Std) φ̄2 MSE(σ̂)

(0.4,0.3) 0.3979(0.02162) 0.2990(0.02158) 0.398(0.02163) 0.2991(0.02159) 0.0006428

(0.3,0.6) 0.2985(0.01814) 0.5984(0.01799) 0.299(0.01816) 0.5972(0.01793) 0.000577

(0.6,0.3) 0.5986(0.0217) 0.2982(0.02109) 0.5988(0.02177) 0.2986(0.02107) 0.0006442

(0.6,0.0) 0.5873(0.02286) 0.00136(0.02258) 0.5975(0.02059) 0.00007541(0.01735) 0.0007063

(0.6,-0.3) 0.5995(0.02075) -0.2991(0.02144) 0.5997(0.02067) -0.3005(0.021144) 0.0008462

(-0.3,-0.6) -0.2996(0.01841) -0.597(0.01796) -0.2997(0.01832) -0.5983(0.01783) 0.001278

(-0.6,-0.3) -0.5988(0.02134) -0.2989(0.02174) -0.5989(0.02126) -0.2999(0.02159) 0.000888

(0.4,-0.6) 0.4003(0.01816) -0.598(0.01816) 0.4001(0.01838) -0.5991(0.01805) 0.001188

Table 2.2
Sampling mean and standard deviations based on 1000 simulations with
T=2000 design points with variance function (b) σ2

t = 0.3 sin(2x2t ) + 0.2
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3. Estimation based on general quadratic forms

The first section in this part mentioned the basic idea and the algorithm of the estimation

based on general quadratic forms, and in the second section we present our simulation

based on this method.

3.1 Basic idea and algorithm

Figueroa-López(2013a) [2] mentioned a new method to estimate this kind of the

model based on general quadratic forms. The following result is obtained in that paper.

For a quadratic form statistics

η2t = (
m∑
i=0

aiyt−i)
2 =

m∑
i,j=0

aiajyt−iyt−j (3.1)

And a more general quadratic form

ψt =
m∑

i,j=0

ci,jyt−iyt−j (3.2)

As we did in the previous section, we first need to find conditions for

Eψt = σ2 (3.3)

in the AR(1) model with constant variance function.

Proposition 3.1 Under the model

yt = σtvt, σt = σ(xt), (3.4)

vt = φ1vt−1 + εt (3.5)
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based on AR(1) error with σt ≡ σ and under a symmetric design matrix C = [ci,j], the

following are necessary and sufficient conditions for (3.2) to satisfy (3.3):

(i)
m∑
j=0

c2j,j = 1,

(ii)1 +
m−2∑
j=0

cj,j+2 = 0,

(iii)
m−i∑
j=0

cj,j+i = 0

Moreover, under the previous conditions (i)-(iii), the statistic φt is such that

Eψt =
σ2

1 + φ2

(3.6)

for the general model with (3.4)-(3.5) with σt ≡ σ.

To simplify the analysis, we then assume that the matrix C = [ci,j] has the decomposition:

C =
k∑
l=1

λlala
T
l (3.7)

where al := [a0,l, ..., am,l]
T are suitable linearly independent vectors. If we take k =

1, λ1 = 1, a1 = [a0, ..., am]T , we can get the quadratic form statistics (3.1). And the

resulting quadratic form ψ will be:

ψt =
k∑
l=1

λlη
2
t,l :=

k∑
l=1

λl(
m∑
i=0

ai,lyt−i)
2 (3.8)

The conditions (i)-(iii) under the structure (3.7) can be noted as

(i)
k∑
l=1

m∑
j=0

a2j,j = 1,

(ii)1 +
k∑
l=1

λl

m−2∑
j=0

aj,laj,j+2 = 0,

(iii)
k∑
l=1

λl

m−i∑
j=0

aj,laj,j+i = 0,∀i ∈ {1, 3, ...,m}
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Then consider the situation when m = 2, k = 2. The conditions (i)-(iii) can be written

as

(i)
2∑
l=1

2∑
j=0

a2j,j = 1,

(ii)1 +
2∑
l=1

λla0,la2,l = 0,

(iii)
2∑
l=1

λl{a0,la1,l + a1,la2,l} = 0

From (i) and (ii), we could get

2∑
l=1

{(a0,l + a2,l)
2 + a21,l} = 0.

Because of this, it is clear that there exists two cases:

(a)λ1, λ2 > 0, (b)λ1 > 0, λ2 < 0.

For the first case, we can get a0,l = −a2,l, which is exactly the two-lag difference esti-

mator(1.4). Then we come to consider the second case. We first assume without loss of

generality that λ1 = −λ2 = 1, then we have,

(i)
2∑
j=0

(a2j,1 − a2j,2) = 1,

(ii)1 + 2(a0,1a2,1 − a0,2a2,2) = 0,

(iii)a1,1(a0,1 + a2,1) = a1,2(a0,2 + a2,2)

After plug in conditions (i) and (ii) in (3.3), we can get that

ψt =
2∑
j=0

(a2j,1 − a2j,2)y2t−j − yt−1yt−2 + 2(a0,1a1,1 − a0,2a1,2)yt−1(yt − yt−2)

Then, we add a new condition

(iv)a0,1 + a1,1 + a2,1 = a0,2 + a1,2 + a2,2 = 0, (3.9)
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so that ψt will be the difference of the squares of two filters. Constraints (iii)-(iv) yield

that a21,1 = a21,2 and ψt simplifies to

ψt = (a20,1 − a20,2)(y2t − t2t−2) + y2t−2 − ytyt−2 + 2(a0,1 ± a0,2)a1,1yt−1(yt − yt−2),

which essentially is of the general form

ψt = a(y2t − y2t−2) + y2t−2 − ytyt−2 + 2byt−1(yt − yt−2) (3.10)

a and b are constants. So we can get a proposition that shown in Figueroa-López(2013a)

[2]

Proposition 3.2 Let ψt be of the form

ψt = (a0,1yt + a1,1yt−2 + a2,1yt−2)
2 − (a0,2yt + a1,2yt−2 + a2,2yt−2)

2,

under the filter constraint (3.9). Then, Eψ2
t ≡ σ2 under (3.4)-(3.5) with σt ≡ σ and

φ2 = 0 if and only if ψt is of the form (3.10) for reals a and b.

Combined Propositions 3.1 and 3.2 with the algorithm in Section 2, we can obtain the

following method:

1. Estimate ν2t := ν2(xt) := σ2(xt)
1+φ2

by

ν̃2t,1 :=
1

2
(ν̂2t,1 + ν̂2t,2),

where ν̂2t,1 := ν̂21(xt) and ν̂2t,2 := ν̂22(xt) are the local linear estimators of the following

two non-parametric regressions:

ψ2
t,1 := ν21(xt) + ε̃t,1, ψ

2
t,2 := ν22(xt) + ε̃t,2, t = 4, ..., T,

with ψ2
t,1, ψ

2
t,2 is the function defined in equation (3.10) with two different parameter

values (a1, b1) and (a2, b2).
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2. Standardize the observations ỹt := ν̃−1t yt and then estimate (φ1, φ2) via the WLSE:

φ̃2 := (Ã2 − B̃2)−1(ÃC̃ − B̃2), φ̃1 = Ã−1B̃(1− φ̃2) (3.11)

with Ã =
∑T

t=4 ỹ
2
t , B̃ :=

∑T
t=4 ỹtỹt−1, C̃ :=

∑T
t=4 ỹtỹt−2.

3. Estimate σ2
t := σ2(xt) by

σ̃2
t := (1 + φ̂2)ν̂

2
t , or σ̃2

t,1 := (1 + φ̂2)ν̂
2
t,1, (3.12)

3.2 Simulation result

In this part, we run the simulation base on the algorithm mentioned above. The

model and the dataset we used is the same as the one we used in Section 2.

We use two set of a1, a2, b1, b2, i.e.

(i)a1 = a2 =
1

2
, b1 = 0, b2 = 30,

(ii)a1 = a2 =
1

2
, b1 = −b2 = 10

And with two set of variance function, i.e.

(a) σ2
t = (xt + 0.1)2, (b) σ2

t = 0.3 sin(2x2t ) + 0.2

φ̃1,a, φ̃2,a,MSE((̃σa)) is the estimation of the case(i), φ̃1,b, φ̃2,b,MSE((̃σb)) is the estima-

tion of the case(ii).
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(φ1, φ2) Mn(Std) φ̃1,a Mn(Std) φ̃2,a MSE(σ̃a)

(0.4,0.3) 0.3983(0.02360) 0.3007(0.02302) 0.001631

(0.3,0.6) 0.2981(0.02019) 0.5995(0.02079) 0.001429

(0.6,0.3) 0.5966(0.02468) 0.3018(0.02451) 0.001637

(0.6,0.0) 0.5974(0.02456) 0.002256(0.0242) 0.01892

(0.6,-0.3) 0.5986(0.02362) -0.2973(0.02266) 0.009689

(-0.3,-0.6) -0.3007(0.02909) -0.5955(0.02879) 0.008471

(-0.6,-0.3) -0.5975(0.03073) -0.2959(0.03064) 0.007132

(0.4,-0.6) 0.3982(0.03099) -0.5955(0.0304) 0.008326

Table 3.1
Sampling mean and standard deviations based on 1000 simulations with
T=2000 design points with variance function (a) σ2

t = (xt + 0.1)2 and the
parameter (i) a1 = a2 = 1/2, b1 = 0, b2 = 30

(φ1, φ2) Mn(Std) φ̃1,a Mn(Std) φ̃2,a MSE(σ̃a)

(0.4,0.3) 0.398(0.0219) 0.2998(0.02159) 0.0005459

(0.3,0.6) 0.2991(0.0194) 0.5982(0.0185) 0.0004832

(0.6,0.3) 0.5983(0.02251) 0.2995(0.02217) 0.0005773

(0.6,0.0) 0.5991(0.02245) 0.0002004(0.02242) 0.0005773

(0.6,-0.3) 0.5985(0.02089) -0.2989(0.02112) 0.0009743

(-0.3,-0.6) -0.3002(0.01792) -0.5979(0.01835) 0.0009974

(-0.6,-0.3) -0.598(0.02187) -0.299(0.02182) 0.0006684

(0.4,-0.6) 0.3988(0.01785) -0.5972(0.01775) 0.0007159

Table 3.2
Sampling mean and standard deviations based on 1000 simulations with
T=2000 design points with variance function (b) σ2

t = 0.3 sin(2x2t ) + 0.2
and the parameter (i) a1 = a2 = 1/2, b1 = 0, b2 = 30
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(φ1, φ2) Mn(Std) φ̃1,b Mn(Std) φ̃2,b MSE(σ̃a)

(0.4,0.3) 0.3973(0.02359) 0.3013(0.02335) 0.002519

(0.3,0.6) 0.2976(0.01799) 0.5998(0.01815) 0.003423

(0.6,0.3) 0.5974(0.02234) 0.2998(0.02301) 0.003299

(0.6,0.0) 0.5981(0.0261) 0.001963(0.02694) 0.002847

(0.6,-0.3) 0.6002(0.02585) -0.2986(0.02457) 0.003795

(-0.3,-0.6) -0.2982(0.02704) -0.5946(0.02614) 0.006762

(-0.6,-0.3) -0.5976(0.02478) -0.2959(0.02581) 0.003892

(0.4,-0.6) 0.3978(0.02616) -0.5954(0.02609) 0.006681

Table 3.3
Sampling mean and standard deviations based on 1000 simulations with
T=2000 design points with variance function (a) σ2

t = (xt + 0.1)2 and the
parameter (ii) a1 = a2 = 1/2, b1 = −b2 = 10

(φ1, φ2) Mn(Std) φ̃1,b Mn(Std) φ̃2,b MSE(σ̃a)

(0.4,0.3) 0.3983(0.0204) 0.3004(0.02057) 0.0005232

(0.3,0.6) 0.2974(0.01837) 0.5989(0.01794) 0.0006572

(0.6,0.3) 0.5965(0.02121) 0.3011(0.02122) 0.0006568

(0.6,0.0) 0.5992(0.02271) 0.0002619(0.0217) 0.000587

(0.6,-0.3) 0.5976(0.02164) -0.2985(0.02079) 0.0006479

(-0.3,-0.6) -0.299(0.01811) -0.5974(0.01812) 0.0008999

(-0.6,-0.3) -0.6002(0.0207) -0.2989(0.022173) 0.0006868

(0.4,-0.6) 0.3988(0.01853) -0.5978(0.01759) 0.0008983

Table 3.4
Sampling mean and standard deviations based on 1000 simulations with
T=2000 design points with variance function (b) σ2

t = 0.3 sin(2x2t ) + 0.2
and the parameter (ii) a1 = a2 = 1/2, b1 = −b2 = 10
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Comparing these two tables with the one in section 2, we can find that this new

estimation algorithm behaves much better than the first estimation method.

We also find some interesting facts about the relationship between the choice of pa-

rameter a, b in (3.10) with the estimation of the variance σ̃2: When we use the first set

of parameter a1 = a2 = 1/2, b1 = 0, b2 = 30, we can find that the estimator φ̃1, φ̃2 perfor-

mance well. However, when we consider σ̃2 mentioned in (3.12), we can find that the one

used ν̂2t,1 performs much better than the other one, which used the combination of ν̂2t,1

and ν̂2t,2. We choose the estimation of σ̃2 based on the simulation of φ1 = 0.3, φ2 = 0.6,

variance function σ2
t = 0.3 sin(2x2t ) + 0.2 shows below:
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Figure 3.1. Estimation of variance where a1 = a2 = 1/2, b1 = 0, b2 = 30

In the graph above, the black line is the variance function σ2
t = 0.3 sin(2x2t ) + 0.2,

the red line is σ̃2
t := (1 + φ̂2)ν̂

2
t , the blue line is σ̃2

t := (1 + φ̂2)ν̂
2
t . It is clearly that the

blue line which used only ν̂2t,1 performs better. The reason to cause this problem maybe

is that the parameter b2 we choose here is too extreme.
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However, when we consider the second set of parameter a1 = a2 = 1/2, b1 = 10, b2 =

−10, for the same simulation, when we consider σ̃2 mentioned in (3.12), we can find that

the one used the combination of ν̂2t,1 and ν̂2t,2 performs much better than the other one.

The estimation of σ̃2 based on the same parameter and variance function as the former

graph shows below:
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Figure 3.2. Estimation of variance where a1 = a2 = 1/2, b1 = −b2 = 10

In the graph above, the black line is the variance function σ2
t = 0.3 sin(2x2t ) + 0.2, the

red line is σ̃2
t := (1 + φ̂2)ν̂

2
t , the blue line is σ̃2

t := (1 + φ̂2)ν̂
2
t . It is clearly that the red

line which use the combination of ν̂2t,1 and ν̂2t,2 performs better.

Based on this discussion, we can find that the choice of σ̃2 mentioned in (3.12) based

on the parameter a1, a2, b1, b2 we choose. In our further study, we could focus on the

choice of these parameters and find their relationship with the estimation consistency.
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4. Conclusion

In this thesis we do the estimation of a non-parametric volatility model with autore-

gressive error of order two based on two-lag difference and general quadratic forms.

According to the simulation based on two different variance functions:

(a) σ2
t = (xt + 0.1)2, (b) σ2

t = 0.3 sin(2x2t ) + 0.2

on 1000 simulations with T=2000 data points, we can find that both methods can do

a good estimation for the parameters φ1 and φ2, and the small MSE show that the

estimation is consistence.

Comparing this two method we can find that the one based on general quadratic forms

can get a closer estimation for the parameters, and sometimes it could even do a better

estimation than the oracle estimators.

For our further study, we can try to find some more details about the choice of parameter

a, b in (3.10) for the general quadratic forms method, to help the improvement of the

performance of the estimation consistency.
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