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Photoacoustic computed tomography (PACT), also known as optoacoustic or thermoacous-

tic tomography, is a rapidly emerging hybrid imaging modality that combines optical image

contrast with ultrasound detection. The majority of currently available PACT image re-

construction algorithms are based on idealized imaging models that assume a lossless and

acoustically homogeneous medium. However, in many applications of PACT these assump-

tions are violated and the induced photoacoustic (PA) wavefields are scattered and absorbed

as they propagate to the receiving transducers. In those applications of PACT, the re-

constructed images can contain significant distortions and artifacts if the inhomogeneous

acoustic properties of the object are not accounted for in the reconstruction algorithm. In

this dissertation, we develop and investigate a full-wave approach to iterative image recon-

struction in PACT with acoustically heterogeneous lossy media. A key contribution of this

work is the establishment of a discrete imaging model that is based on the exact PA wave

xi



equation and a procedure to implement an associated matched discrete forward and back-

projection operator pair, which permits application of a variety of modern iterative image 

reconstruction algorithms that can mitigate the effects of noise, data incompleteness and 

model errors. Another key contribution is the development of an optimization approach 

to joint reconstruction (JR) of absorbed optical energy density and speed of sound in 

PACT, which is utilized to investigate the numerical properties of the JR problem and its 

feasibil-ity in practice. We also develop a TR-based methodology to compensate for 

heterogeneous acoustic attenuation that obeys a frequency power law. In addition, we 

propose a image reconstruction methodology for transcranial PACT that employs 

detailed subject-specific descriptions of the acoustic properties of the skull to mitigate 

skull-induced distortions in the reconstructed image.
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Chapter 1

Introduction

1.1 Motivation of the Dissertation

Photoacoustic computed tomography (PACT), also known as optoacoustic or thermoacous-

tic tomography, is a rapidly emerging hybrid imaging modality that combines optical image

contrast with ultrasound detection. [83,155,160,169] In PACT, the to-be-imaged object is il-

luminated with a pulsed optical wavefield. Under conditions of thermal confinement [42,83],

the absorption of the optical energy results in the generation of acoustic wavefields via the

thermoacoustic effect. These wavefields propagate out of the object and are measured by use

of wide-band ultrasonic transducers. From these measurements, a tomographic reconstruc-

tion algorithm is employed to obtain an image that depicts the spatially variant absorbed

optical energy density distribution within the object, which will be denoted by the func-

tion A(r) in this dissertation. Because the optical absorption properties of tissue are highly

related to its hemoglobin concentration and molecular constitution, PACT holds great po-

tential for a wide-range of anatomical, functional, and molecular imaging tasks in preclinical

and clinical medicine [25, 44, 70, 160,170].

The majority of currently available PACT reconstruction algorithms are based on idealized

imaging models that assume a lossless and acoustically homogeneous medium. However, in

many applications of PACT these assumptions are violated and the induced photoacoustic

(PA) wavefields are scattered and absorbed as they propagate to the receiving transducers.

In small animal imaging applications of PACT, for example, the presence of bone and/or

gas pockets can strongly perturb the PA wavefield. Another example is transcranial PACT

brain imaging of primates [52], in which the PA wavefields can be strongly aberrated and
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attenuated [37,53,59] by the skull. In these and other biomedical applications of PACT, the

reconstructed images can contain significant distortions and artifacts if the inhomogeneous

acoustic properties of the object are not accounted for in the reconstruction algorithm.

Several PACT image reconstruction methods have been developed to compensate for the

effects of acoustic heterogeneities. Those methods can be categorized into two approaches:

ray-based approaches and full-wave approaches. The ray-based approaches are based on

a geometrical acoustics (GA) approximation, which utilizes the Eikonal equation to model

acoustic wave front propagation. However, the GA approximation is based on the assumption

that the length scale of the speed of sound, c(r), variation is much greater than the acoustic

wavelength, which can be violated when the media process strong acoustic heterogeneities.

The full-wave approaches are based on solutions to the exact wave equation, which permits a

broader domain of applicability, they also possess certain practical limitations. For example,

finite element methods (FEMs) have intensive computational burden, which is especially

problematic for three-dimensional (3D) applications of PACT. Although time-reversal (TR)

methods are mathematically exact in their continuous forms in 3D homogeneous media, they

are predicated on the assumption that the measurement surface encloses the object, which

is often impractical in biomedical applications of PACT. In addition, transducer impulse

responses are not readily incorporated into those methods.

In this dissertation, we develop and investigate a full-wave approach to iterative image re-

construction in PACT with acoustically heterogeneous lossy media. A key contribution of

this work are the establishment of a discrete imaging model that is based on the exact PA

wave equation and a procedure to implement an associated matched discrete forward and

backprojection operator pair, which permits application of a variety of modern iterative

image reconstruction algorithms that can mitigate the effects of noise, data incompleteness

and model errors. Another key contribution is the deveopment of an optimization approach

to joint reconstruction (JR) of A(r) and c(r) in PACT, which is utilized to investigate the

numerical properties of the JR problem and its feasibility in practice. We also develop a

TR-based methodology to compensate for heterogeneous acoustic attenuation that obeys a

frequency power law. In addition, we propose a image reconstruction methodology for tran-

scranial PACT that employs detailed subject-specific descriptions of the acoustic properties

of the skull to mitigate skull-induced distortions in the reconstructed image.
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1.2 Outline of the Dissertation

In Chapter 2, we provide the background knowledge of PACT and lay foundations for later

chapters. We review the imaging physics of PACT in its continuous and discrete formulations.

We also briefly describe the PACT image reconstruction based on the discrete imaging model

and the time-reversal principle.

In Chapter 3, we present an investigation of image reconstruction in PACT with acoustically

heterogeneous lossy media. A TR-based reconstrution algorithm is utilized to compensate

for acoustic heterogeneity and attenuation that is described by a frequency power law.

In Chapter 4, we develop a subject-specific image reconstruction methodology for transcra-

nial PACT to compensate for aberrations in the measured PA data induced by the skull.

Adjunct x-ray CT data are employed to infer the spatially variant SOS and density distribu-

tions of the skull, which are subsequently utizlied by the TR image reconstruction algorithm

to mitigate skull-induced distortions in the reconstructed image.

In Chapter 5, we develop and investigate a discrete imaging model for PACT that is based on

the exact PA wave equation. The k-space pseudospectral method is adopted for implementing

the forward and backprojection operators associated with the discrete imaging model. By use

of the projection operators, an iterative image reconstruction algorithm is implemented and

investigated in computer-simulation and experimental studies of PACT in inhomogeneous

acoustic media.

In Chapter 6, we develop an optimization-based reconstruction approach to JR of A(r) and

c(r) that is based on the wave equation. The developed reconstruction method is utilized to

investigate the numerical properties of the JR problem and its feasibility in practice.

The dissertation concludes with a summary in Chapter 7.
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Chapter 2

Background

In this chapter, we review descriptions of photoacoustic wavefield generation and propagation

in their continuous and discrete forms. The discrete description is based on the k-space

pseudospectral method [24, 82, 144]. We present the pseudospectral k-space method by use

of matrix notation, which facilitates the establishment of a discrete PACT imaging model in

Chapter 5. We also summarize a discrete formulation of the image reconstruction problem

for PACT in acoustically inhomogeneous media. The time-reversal image reconstruction

algorithm is reviewed at the end of this chapter. Unless otherwise indicated, lowercase and

uppercase symbols in bold font will denote vectors and matrices, respectively.

2.1 Photoacoustic wavefield propagation: Continuous

formulation

Let p(r, t) denote the thermoacoustically-induced pressure wavefield at location r ∈ R
3 and

time t ≥ 0. Additionally, let A(r) denote the absorbed optical energy density within the ob-

ject, Γ(r) denote the dimensionless Grueneisen parameter, u(r, t) ≡ (u1(r, t), u2(r, t), u3(r, t))

denote the vector-valued acoustic particle velocity, c0(r) denote the medium’s SOS distribu-

tion, and ρ(r, t) and ρ0(r) denote the distributions of the medium’s acoustic and ambient

densities, respectively. The object function A(r) and all quantities that describe properties

of the medium are assumed to be represented by bounded functions possessing compact

support.
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In many applications, acoustic absorption is not negligible [16, 29, 86, 118, 144]. For a wide

variety of lossy materials, including biological tissues, the acoustic attenuation coefficient α

can be described by a frequency power law of the form [138]

α(r, f) = α0(r)f
y, (2.1)

where f is the temporal frequency in MHz, α0 is the frequency-independent attenuation

coefficient in dB MHz−y cm−1, and y is the power law exponent which is typically in the

range of 0.9-2.0 in tissues [139].

In a heterogeneous lossy fluid medium in which the acoustic absorption is described by the

frequency power law, the propagation of p(r, t) can be modeled by the following three coupled

equations [87, 144]
∂

∂t
u(r, t) = − 1

ρ0(r)
∇p(r, t), (2.2)

∂

∂t
ρ(r, t) = −ρ0(r)∇ · u(r, t), (2.3)

p(r, t) = c0(r)
2
{

1− µ(r)
∂

∂t
(−∇2)y/2−1 − η(r)(−∇2)(y−1)/2

}

ρ(r, t), (2.4)

subject to the initial conditions:

p0(r) ≡ p(r, t)|t=0 = Γ(r)A(r), u(r, t)|t=0 = 0, (2.5)

where the quantities µ(r) and η(r) describe the acoustic absorption and dispersion propor-

tionality coefficients that are defined as

µ(r) = −2α0c0(r)
y−1, η(r) = 2α0c0(r)

ytan(πy/2). (2.6)

Note that acoustic absorption and dispersion are modeled by the second and third terms in

the bracket, which employ two lossy derivative operators based on the fractional Laplacian

to separately account for the acoustic absorption and dispersion in a way that is consistent

with Eqn. (2.1). When acoustic attenuation can be neglected, µ(r) = 0 and η(r) = 0, and

Eqn. (2.4) reduces to

p(r, t) = c0(r)
2ρ(r, t). (2.7)
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2.2 Photoacoustic wavefield propagation: Discrete

formulation

The k-space pseudospectral method can be employed to propagate a photoacoustic wave-

field forward in space and time by computing numerical solutions to the coupled equations

described by Eqn. (2.2), (2.3), (2.4), and (2.5). This method can be significantly more

computationally efficient than real space finite-element and finite-difference methods be-

cause it employs the fast Fourier transform (FFT) algorithm to compute the spatial par-

tial derivatives and possesses less restrictive spatial and temporal sampling requirements.

Applications of the k-space pseudospectral method in studies of PACT can be found in

references [24, 52, 53, 144].

The salient features of the k-space pseudospectral method that will underlie the discrete

PACT imaging model are described below. Additional details regarding the application of

this method to PACT have been published by Treeby and Cox in references [24, 144]. Let

r1, · · · , rN ∈ R
3 specify the locations of the N = N1N2N3 vertices of a 3D Cartesian grid,

where Ni denotes the number of vertices along the i-th dimension. Additionally, let m∆t,

m ∈ Z
∗, ∆t ∈ R

+, denote discretized values of the temporal coordinate t, where Z∗ and R
+

denote the sets of non-negative integers and positive real numbers. The sampled values of

p(r, t = m∆t) and ui(r, t = m∆t), i = 1, 2 or 3, corresponding to spatial locations on the

3D Cartesian grid will be described by the 3D matrices Pm and Ui
m, respectively, where the

subscript m indicates that these quantities depend on the temporal sample index. Unless

otherwise indicated, the dimensions of all 3D matrices will be N1×N2×N3. Lexicographically

ordered vector representations of these matrices will be denoted as

ui
m ≡ (ui(r1, m∆t), · · · , ui(rN , m∆t))T, (2.8)

and

pm ≡ (p(r1, m∆t), · · · , p(rN , m∆t))T. (2.9)

The sampled values of the ambient density ρ0(r) and squared SOS distribution c2
0(r) will be

represented as

Q ≡ diag(ρ0(r1), · · · , ρ0(rN)), (2.10)
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and

C ≡ diag(c2
0(r1), · · · , c2

0(rN)), (2.11)

where diag(a1, ..., aN) defines a diagonal 2D matrix whose diagonal entries starting in the

upper left corner are a1, ..., aN .

In the k-space pseudospectral method, the 1D discrete spatial derivatives of the sampled

fields with respect to the i-th dimension (i = 1, 2, or 3) are computed in the Fourier domain

as

∇
Mat
i Pm ≡ F−1{jKi ◦ κ ◦ F{Pm}}, (2.12)

and

∇
Mat
i Ui

m ≡ F−1{jKi ◦ κ ◦ F{Ui
m}}, (2.13)

where j ≡
√
−1, the superscript ‘Mat’ indicates that the 1D discrete derivative operator

∇
Mat
i acts on a 3D matrix, F and F−1 denote the 3D forward and inverse discrete Fourier

transforms (DFTs), and ◦ denotes Hadamard product. The elements of the 3D matrix Ki

(i = 1, 2, 3) are given by

K1
n1n2n3

= 2π
n1 − 1

L1

,

K2
n1n2n3

= 2π
n2 − 1

L2

,

K3
n1n2n3

= 2π
n3 − 1

L3

,

(2.14)

where ni = 1, · · · , Ni (i = 1, 2, 3), and Li denotes the length of the spatial grid in the i-th

dimension.

The 3D matrix κ = sinc(1
2
∆tcminK) is the k-space operator, where sinc(x) = sin(x)

x
, cmin is

the minimum of c0(r), K is a 3D matrix defined as

K ≡

√

√

√

√

3
∑

i=1

Ki ◦Ki, (2.15)

and the sinc function and square root function are both element-wise operations.
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Consider the operators ΦMat
i and ΨMat

i that are defined as

ΦMat
i Pm ≡ −∆t Q−1

∇
Mat
i Pm, (2.16)

and

ΨMat
i Um ≡ −∆t Q∇

Mat
i Ui

m. (2.17)

It will prove convenient to introduce the N ×N matrices Φi and Ψi that act on the vector

representations of the matrices Pm and Ui
m, respectively. Specifically, Φi and Ψi are defined

such that Φipm and Ψiu
i
m are lexicographically ordered vector representations of the matri-

ces ΦMat
i Pm and ΨMat

i Ui
m, respectively. In terms of these quantities, the discretized forms

of Eqn. (2.2), (2.3), and (2.4) can be expressed as

ui
m+1 = ui

m + Φipm, (2.18)

ρ
i
m+1 = ρ

i
m + Ψiu

i
m+1, (2.19)

where ρ
i
m is an N × 1 vector whose elements are defined to be zero for m = 0, and

pm+1 = C
3

∑

i=1

{ρi
m+1 + Buu

i
m+1 + Bρρ

i
m+1}. (2.20)

The quantities Buu
i
m+1 and Bρρ

i
m+1 in Eqn. (2.20) represent the absorption and disper-

sion terms in the equation of state. They are defined as lexicographically ordered vector

representations of BMat
u Ui

m+1 and BMat
ρ Ni

m+1, which are defined in analogy to Eqn. (2.4) as

BMat
u Ui

m+1 ≡ µF−1

{

Ky−2F
{

Q

3
∑

i=1

∇
Mat
i Ui

m+1

}

}

, (2.21)

BMat
ρ Ni

m+1 ≡ ηF−1

{

Ky−1F
{

3
∑

i=1

Ni
m+1

}

}

, (2.22)

where Ni
m+1 is the 3D matrix form of ρ

i
m, and µ and η are defined as

µ ≡ diag(µ0(r1), · · · , µ0(rN)), (2.23)
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η ≡ diag(η0(r1), · · · , η0(rN)), (2.24)

and Ky−2 and Ky−1 are powers of K that are computed on an element-wise basis.

2.3 The image reconstruction problem

Here, for simplicity, we neglect the acousto-electrical impulse response (EIR) of the ultrasonic

transducers and assume each transducer is point-like. However, a description of how to take

into account the transducer responses in PACT image reconstrution will be provided in later

chapters. With these assumptions, we can define p̂m ≡ (p(rd
1, m∆t), · · · , p(rd

L, m∆t))T as the

measured pressure wavefield data at time t = m∆t (m = 0, · · · , M−1), where M is the total

number of time steps and rd
l ∈ R

3 (l = 1, · · · , L) denotes the positions of the L ultrasonic

transducers that reside outside the support of the object. The PACT image reconstruction

problem we address is to obtain an estimate of p0(r) or, equivalently, A(r), from knowledge of

p̂m, m = 0, · · · , M − 1, c0(r), ρ0(r), α0(r), and y. The development of image reconstruction

methods for addressing this problem is an active area of research [24, 50, 52, 54, 133].

2.3.1 Image reconstruction based on discrete formulation

The discrete form of the imaging model for PACT can be expressed generally as

p̂ = HA, (2.25)

where the LM × 1 vector

p̂ ≡













p̂0

p̂1

...

p̂M−1













, (2.26)

represents the measured pressure data corresponding to all transducer locations and temporal

samples, and the N × 1 vector A is the discrete representation of the sought-after absorbed

optical energy density distribution A(r) within the object. The LM×N matrix H represents

the discrete imaging operator, also referred to as the system matrix.
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The image reconstruction task is to determine an estimate of A from knowledge of the

measured data p̂. This can be accomplished by computing an appropriately regularized

inversion of Eqn. (2.25). When iterative methods are employed to achieve this by minimizing

a penalized least squares cost function [35], the action of the operators H and its adjoint H†

must be computed. Methods for implementing these operators are described in Chapter 5.

2.3.2 Image reconstruction based on time-reversal

Alternatively, when the measured PA signals are densely sampled on a measurement surface

that encloses the object, the time-reversal algorithm can be employed to reconstruct images

in PACT [50,143]. The reconstruction algorithm operates by iteratively solving Eqn. (2.18)

- (2.20) backward in time with initial and boundary conditions specified as:

ui
M = 0N×1, pM = p̂M , ρ

i
M =

1

3
C−1pM , pm = p̂m, (2.27)

where i = 1, 2, 3, 0N×1 is N × 1 zero vector.

The time-reversal reconstruction algorithm is based on a full-wave solution to the acoustic

wave equation for heterogeneous lossy media, and can therefore compensate for scattering

due to variations in SOS and mass density. It can also compensate for acoustic absorption

and dispersion by reversing the absorption proportionality coefficient µ in sign but leaving

the equivalent dispersion parameter η unchanged during reconstruction [143].
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Chapter 3

Photoacoustic Computed Tomography

Correcting for Heterogeneity and

Attenuation

3.1 Introduction

The thermoacoustically-induced pressure signals measured in PACT are broadband and

acoustic attenuation is frequency-dependent. It has been demonstrated [118] that the fi-

delity of reconstructed images can degrade if acoustic attenuation is not compensated for

in the PACT reconstruction algorithm. However, relatively few tomographic reconstruction

algorithms are available for such compensation for acoustic attenuation [16,29,86,118,144].

Moreover, all of the previously investigated methods have assumed that the acoustic at-

tenuation properties of the object are homogeneous. An important biomedical application

in which that assumption will be grossly violated is transcranial PACT [90], in which the

models of acoustic attenuation in soft-tissue and skull bone have distinct forms.

In this chapter, we report an investigation of PACT reconstruction of optical absorbers em-

bedded in a heterogeneous, lossy medium. A time-reversal-based reconstruction algorithm

described in Section 2.3.2, which was previously demonstrated for media possessing homo-

geneous acoustic absorption properties, is modified for acoustically heterogeneous and lossy

acoustic media obeying a power law attenuation model. As described below, in general

the attenuation coefficient component of the power law is permitted to be spatially variant,
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while the power law exponent is required to be constant. When the object contains materi-

als, such as bone and soft-tissue, that are modeled using power law attenuation models with

distinct exponents, we demonstrate that the effects of acoustic attenuation due to the most

strongly attenuating material (e.g., bone) can be compensated for if the attenuation due

to the other less attenuating material(s) (e.g., soft-tissue) is neglected. Experiments with

phantom objects are conducted to corrorborate our findings.

3.2 Compensation for Heterogeneous Absorption

We employed the time-reversal image reconstruction algorithm described in Section 2.3.2 to

compensate for acoustic attenuation corresponding to the power law model. However, the

original implementation of the time-reversal algorithm can only compensate for homogeneous

acoustic attenuation [143]; i.e. the acoustic attenuation is described by a fixed power law

with a constant attenuation coefficient α0 and power law exponent y.

We modified the original implementation of the k-space model for use with heterogeneous

lossy media. Specifically, two modifications were implemented: (1) The k-space adjustment

parameter κ in Eq. (15) in Ref. [144] was removed. This parameter is not required because the

equation of state [Eq. (2.4)] does not involve temporal derivatives, and k-space adjustment is

only used to improve the stability and accuracy of the computation of temporal derivatives

in the k-space method; and (2) The implementation was modified to permit α0 in Eq. (2.6)

to be a spatially varying quantity α0(r)
1.

Note that although α0(r) can be spatially variant, the power law exponent y is required to be

a constant in the k-space time-reversal method. When the object is composed of soft tissues,

the assumption of a constant power law exponent is justified. However, when the object

contains regions corresponding to distinct power law exponents, which occurs, for example,

in the presence of both bone and soft-tissue, the reconstruction method must be modified

to avoid image blurring and distortions due to use of a fixed power law exponent. When

acoustic attenuation of a single power law exponenet is dominant, e.g., the skull attenuation

in transcranial PACT, we propose a simple strategy for circumventing this problem. Namely,

1Those modifications have been incorporated into the latest version of k-Wave.
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the acoustic attenuation effects due to the most strongly attenuating component (e.g., bone)

can be compensated for by use of the correct power law parameters, while the less important

attenuation effects due to the other components(s) are neglected. Let Vs denote the region

of support of the most strongly attenuating object component and let α0,s(r) and ys denote

the quantities that specify the power law in Eq. (2.1) for this component. If one specifies

y = ys and α0(r) = α0,s(r) for r ∈ Vs and α0(r) = 0 otherwise, the k-space time-reversal

reconstruction method described above will compensate for acoustic attenuation resulting

from the most strongly attenuating component.

3.3 Computer Simulations

To corroborate the correctness of the modified wave solver code for use with acoustically

heterogeneous, lossy media, a computer-simulation study was conducted. The modified wave

solver was employed to simulate the propagation of a monopolar pulsed acoustic plane-wave

through a one-dimensional heterogeneous lossy medium. The assumed propagation medium

consisted of an acoustically absorbing structure of length L = 10 mm that was embedded in

an infinite homogeneous lossless medium with a SOS and density corresponding to water at

room temperature. The SOS and density of the absorbing structure were 3000 m s−1 and

2000 kg m−3, and its acoustic attenuation was assumed to be described by the power law

αs(f) = α0,sf
ys with α0,s = 1 dB MHz−ys cm−1 and ys = 1.5. When solving Eqs. (2.2)-(??)

the k-space wave solver employed a computational grid of dimension 1 × 512 pixels (51.2

mm), a time step of 1 ns, and a total simulation time of 40 µs.

The pressure wavefield that was propagated through the acoustically inhomogeneous medium

was computed as a function of time at the edge of the computational grid. Samples of the

magnitude of its 1D Fourier transform As(f) were computed by use of the discrete Fourier

transform. The pressure wavefield was also computed at the same location for the case when

the acoustic heterogeniety was absent, with the corresponding Fourier magnitude spectrum

being denoted as Aw(f). The frequency-dependent attenuation coefficient was estimated

from the simulated measurements as [47]:

u(f) = αs(f)− αs(f0) =
1

L
ln

[

Aw(f)As(f0)

As(f)Aw(f0)

]

, (3.1)
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Figure 3.2: (Color online) A photograph of the pencil leads held in agar and surrounded by
an acrylic cylindrical shell.

The photoacoustic (PA) signals were detected by use of a single ultrasound transducer that

was scanned along a circular trajectory of radius 9.5 cm. The transducer was cylindrically

focused and therefore the reconstruction problem was treated as a two-dimensional (2D)

one. The photoacoustic signals were recorded with 20 MHz sampling rate at 1000 equally

spaced locations on the scanning circle and were amplified by a 50-dB amplifier (5072 PR,

Panametrics, Waltham, MA). It has been demonstrated that the 2D time reversal algorithm

can yield accurate reconstructed images if the maximum time of signal recording time T is

sufficiently large [50]. Therefore, 20,000 temporal samples were acquired at each recording

location to ensure that the magnitudes of the PA signals at the cut-off time T were sufficient

small (approximately at the noise level).

In the image reconstruction procedure we sought to compensate for acoustic attenuation

of the PA signals due to the the acrylic cylinder, which represented the dominant acoustic

absorber in the object. To determine the absorption parameters α0 and y of acrylic, a trans-

mission experiment was conducted by use of a modified broadband through-transmission

technique proposed by He [47]. A flat acrylic specimen of thickness 11 mm was employed,

whose composition was identical to the acrylic cylinder. The transmitting and receiving

transducers employed were both Panametrics V306, having a central frequency of 2.25 MHz

with a bandwidth of 70%. From transmission measurements with and without the acrylic

specimen present, the corresponding amplitude spectra Aw(f) and As(f) were computed and

used to calculate the measured values u(f) in Eq. (3.1). A nonlinear least squares method
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was used to fit the measured data to the frequency power law. Figure 3.1(b) displays the

measured values u(f) (blue circles) and the fitted curve u∗(f) (solid line). The estimated

absorption parameters were found to be α0 = 1.3 dB MHz−y cm−1 and y = 0.9.

For use in the time-reversal reconstruction code, the 2D SOS map c0(r), density map ρ0(r),

and attenuation coefficient α0(r) were constructed. The maps c0(r) and ρ0(r) were assigned

the values for acrylic within the annular region occupied by that material and assigned the

values 1480 m s−1 and 1000 kg m−3 elsewhere. Similarly, the map α0(r) was assigned the

value α0 = 1.3 dB MHz−y cm−1 within the annular region occupied by the acrylic and was

set to zero elsewhere, reflecting that we neglected the relatively weak acoustic attenuation

due to the water bath and agar. The power law exponent was set at y = 0.9, as determined

above.

The measured PA signals were pre-processed by a curvelet denoising technique prior to

application of the image reconstruction algorithm. The images were reconstructed on a grid

of 500×500 pixels of dimension 0.5 mm. To mitigate noise amplification in the reconstructed

images, the time-reversed pressure signals were subjected to a low-pass filter specified by a

tapered cosine window. The filter cutoff frequency corresponded to the frequency at which

the value of average power spectrum of PA signals matched the noise level.

Two additional images were reconstructed to demonstrate the relative importance of com-

pensating for the SOS and density heterogeneities vs. acoustic attenuation. One image was

reconstructed by employing a constant SOS value of 1520 m s−1 and constant density value of

1000 kg m−3 in the reconstruction algorithm, but propertly compensated for the attenuation

in the acrylic cylinder. The second image was reconstructed by properly incorporating the

spatially variant SOS and density distributions in the reconstruction algorithm, but ignored

acoustic attenuation.

The reconstructed images are displayed in Fig. 3.3. Figure 3.3(a) displays the reference

image corresponding to the case where the acrylic cylinder was absent. Figures 3.3(b)-(d)

display images of the phantom when the acrylic cylinder was present: Fig. 3.3(b) displays

the image obtained by assuming the constant SOS and mass density values described above

but compensating for the acoustic attenuation due to the acrylic; Fig. 3.3(c) displays the

image reconstructed by properly compensating for the spatially variant SOS and density

distributions but neglecting acoustic attenuation; The image in Fig. 3.3(d) was reconstructed
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Figure 3.4: Profiles through the centers of the reconstructed images. The profiles depicted
as solid red, solid green, dotted black, and dashed blue lines correspond to the images in
Fig. 3.3(a)-(d), respectively.

reduced by 40% over the FWHM corresponding to Fig. 3.3(c). This can be explained by the

fact that the average acoustic path length through the acrylic cylinder for PA waves gener-

ated from the optical absorber closest to the cylinder is longer than for PA waves generated

from the other optical absorbers.

Profiles through the centers of the reconstructed images are displayed in in Fig. 3.4. The

profiles denoted by solid red, solid green, dotted black, and dashed blue lines correspond to

the images in Fig. 3.3(a)-(d), respectively. The averaged peak magnitude of the six optical

absorbers in the reconstructed image with compensation of both SOS and density hetero-

geneities along with acoustic attenuation (dashed blue line) is 92% of that corresponding

to the reference image (solid red line). The averaged peak magnitude in the reconstructed

image that compensated only for SOS and density heterogeneities and neglected acoustic

attenuation (dotted black line) was 64% of the averaged peak magnitude in the reference

image (solid red line), while the reconstructed image that only compensated for acoustic

attenuation (solid green) was 57% of that corresponding to the reference image. One notes

that in the reconstructed image that only compensates for attenuation (solid green), not only

is the peak magnitude underestimated, but the peak positions are also shifted as compared

to the reference image. These shifts are larger for the optical absorbers closer to the acrylic

cylinder. This demonstrates that, even for relatively simple heterogenous SOS distributions,
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using a constant effective SOS value in the reconstruction algorithm can result in image

distortions.

3.5 Summary

In this chapter, we investigated the use of a time-reversal algorithm for PACT image recon-

struction that can compensate for acoustic attenuation in heterogeneous lossy acoustic me-

dia. For applications in which acoustic attenuation in a multi-component object is described

by frequency power laws having distinct exponents, we demonstrated that the acoustic at-

tenuation due to the most strongly attenuating component can be effectively compensated

for. The transmission experiment outlined in this chapter to estimate the acoustic atten-

uation properties of the cylinder is impractical for in-vivo imaging applications. In that

case, adjunct imaging data, such as a CT image of the skull [9, 108], may provide a means

of estimating α(r, f), as well as information about the skull geometry, for use with the

time-reversal algorithm. Our findings will facilitate the further development of PACT for

important applications including transcranial brain imaging, which will be described in the

next chapter.
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Chapter 4

Aberration Correction for

Transcranial PACT of Primates

4.1 Introduction

Transcranial brain imaging represents an important application that may benefit significantly

by the development of PACT methods. Existing high-resolution human brain imaging modal-

ities such as X-ray computed tomography (CT) and magnetic resonance imaging (MRI) are

expensive and employ bulky and generally non-portable imaging equipment. Moreover, X-

ray CT employs ionizing radiation and is therefore undesirable for use with patients who

require frequent monitoring of brain diseases or injuries. Ultrasonography is an established

portable pediatric brain imaging modality, but its image quality degrades severely when

employed after the closure of the fontanels. The photoacoustic (PA) signals recorded in a

PACT experiment experience only a one-way transmission through the skull. Accordingly,

they are generally less attenuated and aberrated than the echo data recorded in transcranial

ultrasound imaging, which are contaminated by the the effects of a two-way transmission

through the skull. Moreover, a majority of the broadband PA signal energy resides at fre-

quencies less than 1 MHz, and these relatively low-frequencies interact less strongly with

skull bone [37] than do higher frequency ultrasound beams that are typically employed in

pure ultrasound imaging.

Transcranial PACT studies have revealed structure and hemodynamic responses in small

animals [156, 170] and anatomical structure in human infant brains have been conducted

[59, 90, 167, 170, 172]. Because the skulls in those studies were relatively thin (∼1 mm),
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they did not significantly aberrate the PA signals and conventional backprojection methods

were employed for image reconstruction. However, PA signals can be significantly aberrated

by thicker skulls present in adolescent and adult primates. To render PACT an effective

modality for use with transcranial imaging in large primates, including humans, it is nec-

essary to develop image reconstruction methodologies that can accurately compensate for

skull-induced aberrations of the recorded PA signals.

Towards this goal, Xing et al. [59] proposed an image reconstruction method that sought

to compensate for PA signal aberration associated with acoustic wave reflection and refrac-

tion within the skull. In that method, the skull was assumed to be acoustically homoge-

neous. Accordingly, the method could not explicitly account for scattering effects that arise

from heterogeneities in the skull. As a result of the simplified skull model employed, only

modest improvements in image quality were observed as compared to use of a standard

backprojection-based reconstruction algorithm. Therefore, there remains an important need

for the development of improved image reconstruction methodologies for transcranial PACT

that are based upon more accurate models of the skull’s heterogeneous acoustic properties.

In this chapter, we propose and investigate a reconstruction methodology for transcranial

PACT that employs detailed subject-specific descriptions of the acoustic properties of the

skull to mitigate skull-induced blurring and distortions in the reconstructed image. The

reconstruction methodology is comprised of two primary steps. In the first step, the spatially

varying speed-of-sound (SOS) and mass density distributions of the to-be-imaged subject’s

skull are determined by use of adjunct X-ray CT data. This is accomplished by use of a

method that was developed previously to facilitate transcranial adaptive acoustic focusing

for minimally invasive brain surgery [9]. In the second step, the subject-specific SOS and

density distributions are employed with a time-reversal image reconstruction method [144]

for estimation of the spatially variant initial amplitude of the thermoacoustically-induced

pressure signals within the brain.

The chapter is organized as follows. In Section 4.2, the image reconstruction methodology is

given, which includes a description of how the SOS and density maps of a skull are computed

from adjunct X-ray CT data. Section 4.3 gives the description of the image reconstruction

studies that employ a well-characterized phantom and a primate brain, both enclosed in
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a skull. Section 4.4 describes the results of the image reconstruction studies The chapter

concludes with a summary and discussion of future work in Section 4.5.

4.2 Image reconstruction methodology

Our methodology for aberration correction in transcranial PACT image reconstruction is

comprised of two primary steps. First, the spatially varying SOS and density distributions

of the to-be-imaged subject’s skull are determined by use of adjunct X-ray CT data. These

distributions are subsequently employed with the time-reversal image reconstruction method

[144] described in Section 2.3.2 for estimation of absorbed optical energy density distribution

within the brain tissue from knowledge of the measured data.

4.2.1 Estimation of the skull’s SOS and mass density distributions

from CT data

The wavefront aberration problem encountered in transcranial PACT is conjugate to one

encountered in transcranial focusing of high-intensity ultrasound [22, 137, 142] for therapy

applications. Both problems involve a one-way propagation of ultrasound energy through

the skull and both require that the wavefront aberrations induced by the skull be corrected.

The problems differ in the direction of the propagating acoustic wavefields. The feasibility of

utilizing skull information derived from adjunct X-ray CT image data to correct for wavefield

aberrations in transcranial focusing applications has been demonstrated [9]. As described

below, we adopted this method for determining estimates of c0(r) and ρ0(r), characterizing

the acoustic properties of subject’s skull, from adjunct X-ray CT data.

Theory: As described by Aubry, et al. [9], the SOS and density maps of the skull can

be estimated from a porosity map using mixture laws in a biphasic medium (bone/water).

Let Hk denote the value of the k-th voxel in the X-ray CT image, which is measured in

Hounsfield Units. A voxel-based representation of the porosity map, denoted as Φk, can be
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established from knowledge of Hk as [9, 107]

Φk = 1− Hk

HMax
k

, (4.1)

where HMax
k is the maximum value of H in the CT image.

Let ρk and ck denote voxel-based representations of the skull’s mass density and SOS distri-

butions. The density map ρk can be estimated from the porosity map as

ρk = Φkρ
w + (1− Φk)ρ

s, (4.2)

where ρw = 1000 kg/m3 is the density of water, and ρs = 2100 kg/m3 is the density of

skull as determined by ultrasound experiments [9, 37]. According to Carter and Hayes [17],

the elastic modulus of bone is proportional to the apparent density cubed as a first order

approximation. This suggests a linear relationship between the speed of sound and the

porosity:

ck = Φkc
w + (1− Φk)c

s, (4.3)

where cw = 1480 m/s is the speed of sound in water, and cs = 2900 m/s is the speed of

sound of skull bone as determined by previous ultrasound experiments [9, 37].

Experimental methods: The monkey skull phantom described in Section 4.3.1 was im-

aged using an X-ray CT scanner (Philips Healthcare, Eindhoven, The Netherlands) located

at Washington University in St. Louis. Details regarding this system can be found in refer-

ence [121]. Prior to imaging, three fiducial markers were attached to the skull to facilitate

co-registration of the determined SOS and density maps with the reference frame of the

PACT imaging system. The three fiducial markers (see Fig. 4.1-(a)) were iron balls of di-

ameter of 1.5 mm, and were carefully attached to the outer surface of the skull. The fiducial

markers were located in a transverse plane that corresponded to the to-be-imaged 2D slice

in the PACT imaging studies described below. In the X-ray CT studies, the tube voltage

was set at 130 kV and a tube current of 60 µA was employed. Images were reconstructed

on a grid of 700 by 700 pixels of dimension d = 0.1 mm. This pixel size is much less than

the smallest wavelength (0.5 mm) detected by the ultrasound transducer used in the PACT

imaging studies described below. This precision is sufficient to to accurately model acoustic
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Figure 4.1: (a) A two dimensional slice through the PA imaging plane of the CT of the skull
with fiducial markers labeled. (b & c)Speed of sound and density maps derived from the CT
data using Eqs. (4.3) and (4.2) in the PA imaging plane. (d) The PACT image of monkey
head phantom (with brain present) reconstructed by use of the half-time algorithm

wave propagation in the skull by using the k-space pseudospectral methods [24, 144]. The

reconstructed CT image is displayed in Fig. 4.1(a).

From knowledge of the CT image, the porosity map Φk was computed according to Eqn.

(4.1). Subsequently, the density and SOS maps ρk and ck were computed according to Eqns.

(4.2) and (4.3). Images of the estimated ck and ρk maps are displayed in Figs. 4.1-(b) and

(c). To corroborate the accuracy of the adopted method for estimating the skull’s SOS and

density distributions from X-ray CT data (i.e., Eqns. (4.2) and (4.3)), direct measurements,

of the skull’s average SOS along ray-paths perpendicular to the skull surface at five locations

were acquired. This was accomplished by use of a photoacoustic measurement technique

depicted in Fig. 4.2-(a). Additionally, the average density of the skull was computed and

compared to the average computed from the values estimated from the X-ray CT data. The

results show that the directly measured average SOS and density are very close (about 1-6%)

to the estimated values from CT data. These results corrorborate the adopted method for

estimating the skull’s SOS and density distributions from adjunct X-ray CT data. Details

regarding these studies are contained in the Appendix A.
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4.2.2 Image reconstruction

Image reconstruction was accomplished in two steps: (1) Registration of the SOS and density

maps of the skull to the PACT coordinate system; and (2) Utilization of a time-reversal

method for PACT image reconstruction in the corresponding acoustically heterogeneous

medium.

The estimated SOS and density maps ck and ρk were registered to the frame-of-reference of

the PACT imaging as follows. From knowledge of the PACT measurement data, a scout im-

age was reconstructed by use of a half-time reconstruction algorithm [7]. This reconstruction

algorithm can mitigate certain image artifacts due to acoustic aberrations, but the resulting

images will, in general, still contain significant distortions. The PACT image of monkey head

phantom (with brain present) reconstructed by use of the half-time algorithm is displayed in

Fig. 4.1(d). Although the image contains distortions, the three fiducial markers are clearly

visible. As shown in Fig. 4.1(a), the fiducial markers were also clearly visible in the X-ray

CT image that was employed to estimate the SOS and density maps of the skull. The centers

of the fiducial markers in the X-ray CT and PACT images were determined manually. From

this information, the angular offset of the X-ray CT image relative to the PACT image was

computed. The SOS and density maps were downsampled by a factor of two, to match the

pixel size of the PACT images, and rotated by this angle to register them with the PACT

images.

The re-orientated SOS and density maps were employed with the k-space time-reversal PACT

image reconstruction algorithm described in Section 2.3.2. The numerical implementation of

this algorithm provided in the Matlab k-Wave Toolbox [143] was employed. The measured

PA signals were pre-processed by a curvelet denoising technique prior to application of the

image reconstruction algorithm [132]. The absorbed optical energy density distribution A

was reconstructed on a grid of 1000 × 1000 pixels of dimension 0.2 mm. For comparison,

images were also reconstructed on the same grid by use of the back-projection reconstruction

algorithm. This procedure was repeated to reconstruct images of both phantoms and the

corresponding control phantoms (phantoms with skulls removed).
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4.3 Image reconstruction studies

4.3.1 Description of biological phantoms

Two biological phantoms that employed a monkey skull were employed in the experimental

studies. The first phantom was the head of an 8 month old rhesus monkey that was obtained

from the Wisconsin National Primate Research Center. The hair and scalp were removed

from the skull. A second, more simple, phantom was constructed by removing the brain of

the monkey and replacing it by a pair of iron needles of diameter 1 mm that were embedded

in agar. This was accomplished by cutting off the calvaria to gain access to the brain cavity.

4.3.2 PACT imaging studies: Data acquisition

After the skull’s SOS and density distributions were estimated from the adjunct X-ray CT

data, the two phantoms (that included the skulls) were imaged by use of a PACT imaging

system in the Optical Imaging Laboratory, as shown in Fig. 4.2(b). Images of the two

phantoms with the skull removed, i.e., images of the extracted monkey brain and crossed

needles embedded in agar, were also acquired, which will serve as control images. The

imaging system employed a 2D scanning geometry and has been employed in previous studies

of PACT imaging of monkey brains. [90] The imaging plane and fiducial markers were chosen

to be about 2 cm below the top of the skull, such that the imaging plane was approximately

normal to the skull surface at that plane. The phantoms (crossed needles and the primate

cortex) were moved to the imaging plane,so that the amount of acoustic energy refracted

out of the imaging plane was minimized. Additionally, the system was aligned to ensure the

scanning plane and the imaging plane coincided.

The phantoms were immersed in a water bath and irradiated by use of a tunable dye laser

from the top (through the skull for the cases when it was present) to generate PA signals.

The laser (NS, Sirah), was pumped by a Q-switched Nd:YAG laser (PRO-350-10, Newport),

operating at a wavelength of 630 nm with a pulse repetition rate of 10 Hz, was employed

as the energy source. The laser beam was expanded by use of a piece of concave lens and

homogenized by a piece of ground glass before illuminating the target. The energy density
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Figure 4.2: (a) Schematic of the transcranial PACT system. (b) Schematic of the PA system
for validating the SOS map of the skull.

of the laser beam on the skull was controlled to 8 mJ/cm2 (within the ANSI standard),

which was further attenuated and homogenized by the skull before the laser beam reaching

the object.

As shown in Fig. 4.2, a circular scanning geometry with a radius of 9 cm was employed to

record the PA signals. A custom-built virtual point ultrasonic transducer was employed that

had a central frequency of 2.25 MHz and a one-way bandwidth of 70% at -6 dB. Additional

details regarding this transducer have been published elsewhere. [90] The position of the

transducer was varied on the circular scan trajectory by use of a computer-controlled step

motor. The angular step size was 0.9 degrees, resulting in measurement at 400 locations on

the scanning circle.

The PA signals received by the transducer were amplified by a 50-dB amplifier (5072 PR,

Panametrics, Waltham, MA), then directed to a data-acquisition (DAQ) card (Compuscope

14200; Gage Applied, Lockport, IL). The DAQ card was triggered by the Q-switch signal

from the laser to acquire the photoacoustic signals simultaneously. The DAQ card features

a high-speed 14-bit analog-to-digital converter with a sampling rate of 50 MS/s. The raw

data transferred by the DAQ card was then stored in the PC for imaging reconstruction.

27



4.4 Image reconstruction results

4.4.1 Images of needle phantom

The reconstructed images corresponding to the head phantom containing the needles are

displayed in Fig. 4.3. Figure 4.3(a) displays the control image of the needles, without the

skull present, reconstructed by use of the back-projection algorithm. Figures 4.3(b) and (c)

display reconstructed images of the phantom when the skull was present, corresponding to

use of back-projection and time-reversal reconstruction algorithms, respectively. All images

have been normalized to their maximum pixel value, and are displayed in the same grey-

scale window. Due to the skull-induced attenuation of the high-frequency components of

the PA signals, which was not compensated for in the reconstruction process, the spatial

resolution of the control image in Fig. 4.3(a) appears higher than the images in Figs. 4.3(b)

and (c). However, the image reconstructed by use of the time-reversal algorithm in Fig.

4.3(c) contains lower artifact levels and has an appearance closer to the control image than the

image reconstructed by use of the back-projection algorithm in Fig. 4.3(b). This is expected,

since the time-reversal algorithm compensates for variations in the SOS and density of the

skull while the back-projection algorithm does not.

These observations are corrorborated by examination of profiles through the three images

shown in Fig. 4.3(d), which correspond to the rows indicated by the superimposed dashed

lines on the images. The solid black, dotted blue, and dashed red lines correspond to the

reconstructed control image, and images reconstructed by use of the back-projection and

time-reversal algorithms, respectively. The average full-width-at-half-maximum of the two

needles in the images reconstructed by use of the time-reversal algorithm is reduced by 8%

compared to the corresponding value computed from the images obtained via the back-

projection algorithm.

4.4.2 Images of monkey brain phantom

The reconstructed images corresponding to the head phantom containing the brain are dis-

played in Fig. 4.4. Figure 4.4(a) displays photographs of the cortex and outer surface of
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Figure 4.3: (a) The pin-phantom image reconstructed by use of the back- projection algo-
rithm with no skull present. (b & c) The skull-present images reconstructed by use of the
back-projection and time-reversal algorithms. (d) Profiles along the white dashed line in
each of the three images are shown.

the skull. Figure 4.4(b) displays the control image (skull absent) reconstructed by use of

the back-projection algorithm. The images of the complete phantom (skull present) recon-

structed by use of the back-projection and time-reversal algorithms are shown in Figs. 4.4(c)

and (d), respectively. All images have been normalized to their maximum pixel value, and

are displayed in the same grey-scale window. As observed above for the needle phantom, the

brain image reconstructed by use of the time-reversal algorithm in Fig. 4.4(d) contains lower

artifact levels and has an appearance closer to the control image than the image reconstructed

by use of the back-projection algorithm in Fig. 4.4(c).

This observation was quantified by computing error maps that represented the pixel-wise

squared difference between the control and reconstructed images with the skull present.

Figures 4.5(a) and (b) display the error maps between the control image and the images

reconstructed by use of the back-projection and time-reversal algorithms, respectively. The

error maps were computed within the region interior to the skull, which is depicted by the red

contours superimposed on Figs. 4.4(b)-(d). Additionally, the root mean-squared difference

(RMSD) was computed by computing the average values of the difference images. The
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Figure 4.4: (a) A photograph of the brain specimen and skull. (b) The image reconstructed
by use of the back-projection algorithm with no skull present. (c & d) The skull-present
images reconstructed by use of the back-projection and time-reversal algorithms.

Figure 4.5: Difference images for the brain specimen for reconstructions using back-projection
and time-reversal are shown in panel (a) and (b). In both cases, the reference image is
the back-projection PACT reconstruction of the brain specimen with skull removed(see
Fig. 4.4(b)).
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RMSD corresponding to the back-projection and time-reversal results were 0.085 and 0.038.

These results confirm that the image reconstructed by use of the time-reversal method, which

compensated for the acoustic properties of the skull, was closer to the control image than

the image produced by use of the back-projection algorithm.

4.5 Summary and discussion

In this chapter, we investigated a reconstruction methodology for transcranial PACT that

employs detailed subject-specific descriptions of the acoustic properties of the skull to mit-

igate skull-induced distortions in the reconstructed image. Adjunct X-ray CT image data

were employed to infer the spatially variant SOS and density distributions of the skull.

Knowledge of these quantities was employed in a time-reversal image reconstruction algo-

rithm to mitigate skull-induced aberrations of the measured PA signals. Our preliminary

experimental results show that employed a primate skull demonstrated that the reconstruc-

tion methodology can produce images with improved fidelity and reduced artifact levels as

compared to a previously employed back-projection algorithm. This is an important step

towards the application of PACT for brain imaging in human subjects.

The use of X-ray CT image data for estimating the skull’s SOS and density distributions

was motivated by previous studies of transcranial ultrasound focusing [9]. Assuming that the

skull size and shape does not change, only a single CT scan is required to estimate the SOS

and density maps, and does not need to be repeated for subsequent PACT imaging studies of

that patient. Because of this, it may be possible to safely monitor brain injuries or conduct

other longitudinal studies without repeated exposure to ionizing radiation. Moreover, it may

be possible to use adjunct image data produced by alternative modalities such as magnetic

resonance imaging [49] or ultrasound tomography [175] to estimate the required SOS and

density maps.

There remain several important topics for future study that may further improve image

quality in transcranial PACT. In this preliminary study, to accommodate the 2D PACT

imaging system and 2D image reconstruction algorithm, the phantoms were moved to the

image plane, approximately 2 cm below the top of the skull. Note that this is not the

plane in which the cortical vessels are normally found; the primate brain was moved to align
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the cortical vessels with the imaging plane. For in-vivo transcranial PACT applications

in which the cortical structure is of interest, the geometry of the skull necessitates a full

3D treatment of the image reconstruction problem. The development of a robust image

reconstruction algorithm for this task will be described in the next chapter. Additionally,

accurate measurement of the transducer’s electrical impulse response (EIR) and subsequent

deconvolution of its effect on the measured data [149] would improve image reconstruction

accuracy. Alternatives to the time-reversal image reconstruction algorithm employed in this

study can also yield improvements in image quality, which will be described in the next

chapter [51, 133].

In terms of the imaging physics, it is expected that development and utilization of image

reconstruction algorithms that can compensate for the effects of acoustic attenuation and

shear wave mode-conversion will further improve image resolution, particularly for thicker

skulls. To date, the manner in which shear waves propagating in the skull affect PACT

has only been investigated quantitatively for stratified planar media and planar detection

surfaces [122] via computer-simulation studies. In that case, the effects were observed only

in certain high-spatial resolution components of the imaged object. The effects of shear wave

propagation and attenuation are both strongly dependent on the thickness of the skull. In

this work, the average thickness of the skull was 3 mm and the distortions to the PA signal

due to absorption and propagating shear waves were expected [122] to be of second-order

effect as compared to the distortions due to the variations in the SOS and density. For adult

human skulls, where the skull can be ∼7 mm thick, the relative importance of these effects

in transcranial PACT remains to be investigated.
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Chapter 5

Full-Wave Iterative Image

Reconstruction in PACT

5.1 Introduction

Several image reconstruction methods have been proposed to compensate for weak variations

in a medium’s speed-of-sound (SOS) distribution [63, 85, 168]. These methods are based on

geometrical acoustic approximations to the PA wave equation, which stipulate that the PA

wavefields propagate along well-defined rays. For these ray-based propagation models to be

valid, variations in the SOS distribution must occur on length scales that are large compared

to the effective acoustic wavelength. These assumptions can be violated in preclinical and

clinical applications of PACT. To compensate for strong SOS variations, a statistical ap-

proach has been proposed [28] to mitigate the artifacts in the reconstructed images caused

by the wavefront distortions by use of a priori information regarding the acoustic hetero-

geneities. However, this method neglected variations in the medium’s mass density and the

effects of acoustic attenuation.

A few works have reported the development of full-wave PACT reconstruction algorithms

that are based on solutions to the exact PA wave equation [50,113,133,144,173,176]. While

these methods are grounded in accurate models of the imaging physics and therefore have

a broader domain of applicability than ray-based methods, they also possess certain prac-

tical limitations. Finite element methods (FEMs) have been applied for inverting the PA

wave equation in both the time and temporal frequency domains [173, 176]. However, a
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very large computational burden accompanies these methods, which is especially problem-

atic for three-dimensional (3D) applications of PACT. Image reconstruction methods based

on time-reversal (TR) are mathematically exact in their continuous forms in homogeneous

media for the 3D case [50]. While these methods possess significantly lower computational

burdens then FEM-based approaches, they possess other limitations for use with practical

PACT applications. For example, TR methods are predicated upon the assumption that the

measured PA signals are densely sampled on a measurement surface that encloses the object,

which is seldom achievable in biomedical applications of PACT. More recently, a Neumann

series-based reconstruction method has been reported [113, 133] for media containing SOS

variations that is based on a discretization of a mathematically exact inversion formula. The

robustness of the method to practical sparse sampling of PA signals, however, has not been

established.

In this chapter, we develop and investigate a full-wave approach to iterative image reconstruc-

tion in PACT with media possessing inhomogeneous SOS and mass density distributions as

well as acoustic attenuation described by a frequency power law. The primary contributions

of the work are the establishment of a discrete imaging model that is based on the exact PA

wave equation and a procedure to implement an associated matched discrete forward and

backprojection operator pair. The availability of efficient numerical procedures to implement

these operators permits a variety of modern iterative reconstruction methods to be employed

that can effectively mitigate image artifacts due to data incompleteness, noise, finite sam-

pling , and modeling errors. Specifically, the k-space pseudospectral method is adopted [144]

for implementing the forward operator and a numerical procedure for implementing the exact

adjoint of this operator is provided. The k-space pseudospectral method possesses significant

computational advantages over real space finite-difference and finite-element methods, as it

allows fewer mesh points per wavelength and allows larger time steps without reducing accu-

racy or introducing instability [24]. An iterative image reconstruction algorithm that seeks

to minimize a total variation (TV)-regularized penalized least squares (PLS) cost function

is implemented by use of the developed projection operators and investigated in computer-

simulation and experimental studies of PACT in inhomogeneous acoustic media. Also, the

performance of this algorithm is compared to that of an existing TR method.

This chapter is organized as follows. In Section 5.2, an explicit formulation of the discrete

imaging model is described. Section 5.3 gives a description of the numerical and experimental
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studies, which includes the implementation of the forward and backprojection operators, and

the iterative reconstruction algorithm. The numerical and experimental results are given in

Section 5.4. This chapter concludes with a summary and discussion in Section 5.5.

5.2 Explicit formulation of discrete imaging model

The k-space pseudospectral method for numerically solving the photoacoustic wave equation

described in Section 2.2 will be employed to implement the action of the system matrix H.

In this section, we provide an explicit matrix representation of H that will subsequently be

employed to determine H†.

Equations (2.18) - (2.20) can be described by a single matrix equation to determine the

updated wavefield variables after a time step ∆t as

vm+1 = Wvm, (5.1)

where vm = (u1
m,u2

m,u3
m, ρ1

m, ρ2
m, ρ3

m,pm)T is a 7N × 1 vector containing all the wavefield

variables at the time step m∆t. The 7N × 7N propagator matrix W is defined as

W ≡



























IN×N 0N×N 0N×N 0N×N 0N×N 0N×N Φ1

0N×N IN×N 0N×N 0N×N 0N×N 0N×N Φ2

0N×N 0N×N IN×N 0N×N 0N×N 0N×N Φ3

Ψ1 0N×N 0N×N IN×N 0N×N 0N×N Ψ1Φ1

0N×N Ψ2 0N×N 0N×N IN×N 0N×N Ψ2Φ2

0N×N 0N×N Ψ3 0N×N 0N×N IN×N Ψ3Φ3

D1 D2 D3 E E E G



























, (5.2)

where Di ≡ C(Bu+Ψi +BρΨi) (i = 1, 2, 3), E ≡ C+CBρ, G ≡ C
3

∑

i=1

BuΦi+(I+Bρ)ΨiΦi,

IN×N is the N × N identity matrix, and 0N×N is the N × N zero matrix. Recall that Φi

and Ψi were defined below Eqn. (2.17).
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The wavefield quantities can be propagated forward in time from t = 0 to t = (M − 1)∆t as
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, (5.3)

where the 7NM × 7NM matrices Tm (m = 1, · · · , M − 1) are defined in terms of W as

Tm =



















I7N×7N · · · 07N×7N

...
. . .

...

07N×7N · · · I7N×7N

07N×7N · · · W

0(m+1)·7N×(M−m)·7N

0(M−m−1)·7N×m·7N 0(M−m−1)·7N×(M−m)·7N



















, (5.4)

with W residing between the (7N(m− 1) + 1)-th to 7Nm-th rows and the (7Nm + 1)-th to

7N(m + 1)-th columns of Tm.

From the equation of state in Eqn. (2.7) and initial conditions Eqn. (2.5), the vector

(v0, 0, · · · , 0)T can be computed from the initial pressure distribution p0 as













v0

07N×1

...

07N×1













= T0p0, (5.5)

where

T0 ≡ (τ , 07N×N , · · · , 07N×N)T, (5.6)

τ ≡ (0N×N , 0N×N , 0N×N ,
1

3
C−1,

1

3
C−1,

1

3
C−1, IN×N)T, (5.7)

and p0 is the initial pressure distribution defined as

p0 ≡ ΓA, (5.8)

36



where

Γ ≡ diag(Γ(r1), · · · , Γ(rN)), (5.9)

and

A ≡ (A(r1), · · · , A(rN))T, (5.10)

represent the discrete representations of the Grueneisen parameter Γ(r) and the sought-after

absorbed optical energy density distribution A(r) within the object, respectively.

In general, the transducer locations rd
l at which the PA data p̂ are recorded will not coincide

with the vertices of the Cartesian grid at which the values of the propagated field quantities

are computed. The measured PA data p̂ can be related to the computed field quantities via

an interpolation operation as

p̂ = S













v0

v1

...

vM−1













, (5.11)

where

S ≡













Θ 0L×7N · · · 0L×7N

0L×7N Θ · · · 0L×7N

...
...

. . .
...

0L×7N 0L×7N · · · Θ













. (5.12)

Here, Θ ≡ [s1, · · · , sL]T, where sl (l = 1, · · · , L) is a 1×7N row vector in which all elements

are zeros except the 4 corresponding to acoustic pressure at 4 grid nodes rl,1, rl,2, rl,3, rl,4 that

are nearest to the transducer location rd
l . In other words, these 4 entries are interpolation

coefficients to compute the acoustic pressure at the l-th transducer, and their values are given

by the barycentric coordinates of rd
l with respect to rl,1, rl,2, rl,3, rl,4, which are determined

by Delaunay triangulation [76].

By use of Eqns. (5.3), (5.5), (5.8), and (5.11), one obtains

p̂ = HA (5.13)
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where the sought-after explicit form of the system matrix is identified as

H ≡ STM−1 · · ·T1T0Γ. (5.14)

Here, for simplicity, we neglect the acousto-electrical impulse response (EIR) of the ultrasonic

transducers and assume each transducer is point-like. However, a description of how to

incorporate the transducer responses in the developed imaging model is provided in Appendix

B.

Commonly employed iterative image reconstruction methods involve use of a backprojection

matrix H† that corresponds to the adjoint of the system matrix. Since H contains real-

valued elements in our case, H† is equivalent to the transpose HT. According to Eqn. (??),

the explicit form of HT is given by

HT = ΓTTT
0 TT

1 · · ·TT
M−1S

T. (5.15)

The implementations of H and HT are described in Section 5.3.1. Note that, although the

descriptions of H and HT above are based on the 3D PA wave equation, the two-dimensional

formulation is contained as a special case.

5.3 Descriptions of numerical and experimental

studies

Numerical studies were conducted to demonstrate the effectiveness and robustness of the

proposed discrete imaging model in studies of iterative image reconstruction from incomplete

data sets in 2D and 3D PACT. Specifically, the system matrix and its adjoint, as formulated

in Section 5.2, were employed with an iterative image reconstruction algorithm that was

designed to minimize a PLS cost function that contained a total variation (TV) penalty

term. The performance of the reconstruction algorithm was compared to an existing TR-

based reconstruction algorithm.
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5.3.1 Implementation of the forward and backprojection

operators

The k-space pseudospectral method for numerically solving the photoacoustic wave equation

has been implemented in the MATLAB k-Wave toolbox [143]. This toolbox was employed to

compute the action of H. To prevent acoustic waves from leaving one side of the grid and re-

entering on the opposite side, an anisotropic absorbing boundary condition called a perfectly

matched layer (PML) was employed to enclose the computational grids. The performance

of the PML was dependent on both the size and attenuation of the layer. A PML thickness

of 10 grid points, together with a PML absorption coefficient of 2 nepers per meter, were

found to be sufficient to reduce boundary reflection and transmission for normally incident

waves [67, 140] and were employed in this study. To accurately and stably model wave

propagation, the temporal and spatial steps were related by the Courant-Friedrichs-Lewy

(CFL) number as [82, 143]

∆t ≤ CFL∆rmin

cmax
, (5.16)

where the ∆rmin is the minimum grid spacing, and a CFL number of 0.3 typically provides

a good compromise between computation accuracy and speed [140, 143]. A more detailed

description of the implementation of the k-space pseudospectral method can be found in

Refs. [140, 143].

The action of the backprojection matrix on the measured pressure data p̂ was implemented

according to Eqn. (5.15). It can be verified that pbp = HTp̂ can be computed as

vM−1 = ΘTp̂M−1, (5.17)

vm−1 = ΘTp̂m−1 + WTvm, m = M − 1, · · · , 1 (5.18)

pbp = Γτ
Tv0. (5.19)

Since Θ and τ are both sparse matrices that can be stored and transposed, ΘTp̂m and τ
Tv1

can be readily computed. Most of block matrices in the propagator matrix W are zero or

identity matrices. Therefore, to compute WTvm, we only need to compute the actions of

transposed non-trivial block matrices in W. To incorporate the PML boundary condition,

both W and WT should be modified as described in Ref. [140].
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5.3.2 Reconstruction algorithms

By use of the proposed discrete imaging model and methods for implementing H and HT,

a wide variety of iterative image reconstruction algorithms can be employed for determin-

ing estimates of A. In this work, we utilized an algorithm that sought solutions of the

optimization problem

Â = arg min
A≥0

‖p̂−HA‖2 + λ|A|TV, (5.20)

where λ is the regularization parameter, and a non-negativity constraint was employed. For

the 3D case, the TV-norm is defined as

|A|TV =

N
∑

n=1

{

([A]n − [A]n−

1
)2 + ([A]n − [A]n−

2
)2 + ([A]n − [A]n−

3
)2

}
1

2 , (5.21)

where [A]n denotes the n-th grid node, and [A]n−

1
, [A]n−

2
, [A]n−

3
are neighboring nodes before

the n-th node along the first, second and third dimension, respectively. The fast iterative

shrinkage/thresholding algorithm (FISTA) [11,150] was employed to solve Eqn. (5.20), and

its implementation is given in Appendix C. The regularization parameter λ was empirically

selected to have a value of 0.001 and was fixed for all studies.

A TR image reconstruction algorithm based on the k-space pseudospectral [144] method

was also utilized in the studies described below. The TR reconstruction algorithm solves the

discretized acoustic Eqns. (2.18) - (2.20) backward in time subject to initial and boundary

conditions as described in reference [144]. The parameters of the PML boundary condition

were the same with the ones employed in our system matrix construction.

For both algorithms, images were reconstructed on a uniform grid of 512× 512 pixels with a

pitch of 0.2 mm for the 2D simulation studies and on a 256× 256× 128 grid with a pitch of

0.4 mm for the 3D studies. All simulations were computed in the MATLAB environment on

a workstation that contained dual hexa-core Intel(R) Xeon(R) E5645 CPUs and a NVIDIA

Tesla C2075 GPU. The GPU was equiped with 448 1.15 GHz CUDA Cores and 5 GB global

memory. The Jacket toolbox [178] was employed to perform the computation of Eqns. (2.18)

- (2.20) and (40) - (42) on the GPU.
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5.3.3 Computer-simulation studies of 2D PACT

Scanning geometries: Three different 2D scanning geometries were considered to inves-

tigate the robustness of the reconstruction methods to different types and degrees of data

incompleteness. A ‘full-view’ scanning geometry utilized 180 transducers that were evenly

distributed on a circle of radius 40 mm. A ‘few-view’ scanning geometry utilized 60 transduc-

ers that were equally distributed on the circle. Finally, a ‘limited-view’ scanning geometry

utilized 90 transducers that were evenly located on a semi-circle of radius 40 mm.

Numerical phantoms: The two numerical phantoms shown in Fig. 5.1-(a) and (b) were

chosen to represent the absorbed optical energy density distribution A in the 2D computer-

simulation studies. The blood vessel phantom shown in Fig. 5.1(a) was employed to in-

vestigate the robustness of the reconstruction methods with respect to different types and

degrees of data incompleteness mentioned above. The low contrast disc phantom displayed

in Fig. 5.1-(b) was employed to investigate the robustness of the reconstruction methods

with respect to errors in the SOS and density maps introduced below.
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Figure 5.1: The (a) blood vessel and (b) disc numerical phantoms employed to represent A
in the 2D computer-simulation studies. Panel (c) is the overlapped image with 3D vessel
phantom and skull, which is only used to show the relative position of the phantom to the
skull.

Measurement data: Assuming ideal point-like transducer and neglecting the transducer

EIR and acoustic attenuation, simulated pressure data corresponding to the numerical phan-

toms were computed at the transducer locations by use of the k-space pseudospectral method
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for the 3 measurement geometries. To avoid committing an ‘inverse crime’ [66], a 1024×1024

grid with a pitch of 0.1 mm was employed in this computation. A total of 20,000 temporal

samples were computed at each transducer location with time step ∆t = 30 ns, all of which

were employed by the TR image reconstruction method. However, only the first 1,500 tem-

poral samples were employed by the iterative reconstruction method. The same procedure

was repeated for noisy pressure data, where 3% (with respect to maximum value of noiseless

data) additive white Gaussian noise (AWGN) was added to the simulated pressure data.

Investigation of systematic errors: The SOS and density maps employed in the simu-

lation studies were representative of a monkey skull [52]. The dimensions of the skull were

approximately 7 cm × 6 cm, and its thickness ranges from 2 to 4 mm. Figure 5.2(a) and (b)

show a transverse slice of the SOS and density maps, which were used in the 2D simulations.
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Figure 5.2: A slice of the SOS (a) and density (b) map deduced from the X-ray CT data of
a monkey skull. Panel (c) and (d) display profiles of the SOS and density maps along the
‘X’-axis indicated in Fig. 5.2, respectively. Red dashed lines are the profiles of the assumed
maps, whereas the blue solid lines are the profiles of maps with errors.
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Since errors in the estimated SOS and density maps are inevitable regardless in how they

are determined, we investigated the robustness of the reconstruction methods with respect

to the SOS and density map errors, which were generated in two steps. First, 1.3% (with

respect to maximum value) uncorrelated Gaussian noise with mean value of 1.7% of the

maximum value was added to the SOS and density maps to simulate inaccuracy of the SOS

and density values. Subsequently, the maps were shifted by 7 pixels (1.4 mm) to simulate

a registration error. Figure 5.2-(c) and (d) show profiles of the SOS and density maps with

those errors along the ‘X’-axis indicated by the arrows in Fig. 5.2(a) and (b), respectively.

5.3.4 Computer-simulation studies of 3D PACT

Because PACT is inherently a 3D method, we also conducted 3D simulation studies to

evaluate and compare the iterative reconstruction method and the TR method. As in the

2D studies described above, the 3D SOS and density maps were representative of a monkey

skull. A 3D blood vessel phantom was positioned underneath the skull to mimic the blood

vessels on the cortex surface. To demonstrate this configuration, Figure 5.1(c) shows the

overlapped images of the 3D phantom and the skull. The assumed scanning geometry was

a hemispherical cap with radius of 46 mm, and 484 transducers were evenly distributed on

the hemispherical cap by use of the golden section spiral method. The pressure data were

computed on a 512×512×256 grid with a pitch of 0.2 mm and a time step ∆t = 30 ns. The

simulated pressure data were then contaminated with 3% AWGN. The TR reconstruction

method employed 2,000 temporal samples at each transducer location, whereas the iterative

method employed 1,000 samples.

5.3.5 Studies utilizing experimental data

Since the acoustic absorption and dispersion were modeled by the system matrix, the iterative

method can naturally compensate for absorption and dispersion effects during reconstruction.

To demonstrate the compensation for those effects, images were reconstructed by use of the

iterative method with experimental data obtained from a well-characterized phantom object

that is displayed in Fig. 3.2. The phantom contained 6 optically absorbing structures

(pencil leads with diameter 1 mm) embedded in agar. These structures were surrounded
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by an acrylic cylinder, which represents the acoustic heterogeneities and absorption in the

experiments. The cylinder had inner and outer radii of 7.1 and 7.6 cm, respectively, and a

height of 3 cm. The density and SOS of the acrylic were measured and found to be 1200 kg

m−3 and 3100 m s−1, and the estimated acoustic absorption parameters were found to be

α0 = 1.3 dB MHz−y cm−1 and y = 0.9 [53]. These values were assigned to the the annular

region occupied by the acrylic in the 2D SOS maps c0(r), density map ρ0(r) and attenuation

coefficient α0(r), respectively. The SOS value 1480 m s−1 and density value 1000 kg m−3 of

water were assigned elsewhere. Since we neglected the relatively weak acoustic attenuation

due to the water bath and agar, α0(r) was also set to zero elsewhere.

The experimental data were acquired from a cylindrically focused ultrasound transducer

that had a central frequency of 2.25 MHz with a bandwidth of 70% [90]. The transducer

was scanned along a circular trajectory of radius 95 mm, and 20,000 temporal samples were

measured at each transducer location at a sampling rate of 20 MHz. More details about the

data acquisition can be found in Ref. [53]. In this study, images were reconstructed by use of

PA signals recorded at 200, 100 (over 180 degrees), and 50 transducer locations, which corre-

spond to the full-view, limited-view, and few-view scanning geometry, respectively. The TR

reconstruction method employed 20,000 temporal samples at each transducer location, while

the iterative method employed 2,000 samples. The reference images were also reconstructed

by use of the data obtained at 200 transducer locations when the acrylic cylinder was absent.

Since the pencil lead phantom is expected to generate quasi-cylindrical waves and the mor-

phology of the acoustic heterogeneity (the acrylic shell) was a cylinder, the cylindrical wave

propagation can be approximated by the 2D PA wave equation. Accordingly, we employed

a 2D imaging model in the experimental study, and all the reconstructions were performed

on a grid of 512× 512 pixels with a pitch of 0.5 mm. The effects of shear wave propagation

in the acrylic cylinder were neglected, which we expected to be of second-order importance

compared to wavefield perturbations that arise from inhomogeneties in the SOS and density

distributions [122].
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5.4 Simulation and experimental results

5.4.1 Computer-simulations corresponding to different scanning

geometries

The reconstructed images corresponding to the three scanning geometries are displayed in

Figs. 5.3 - 5.6. In each figure, the results in the top row correspond to use of the TR

reconstruction method, while the bottom row shows the corresponding results obtained by

use of the iterative method. The profiles shown in each figure are along the ‘Y’-axis indicated

by the arrow in Fig. 5.3(a). The red solid lines and blue dashed lines correspond to profiles

through the phantom and reconstructed images, respectively. With the full-view scanning

geometry, the TR method and the iterative method both produce accurate reconstructed

images. However, with the few-view and the limited-view scanning geometries, the images

reconstructed from the iterative method contain fewer artifacts and less noise than the TR

results Also, the values of the images reconstructed from the iterative method are much

closer to the values of the phantom than those produced by the TR method. The root

mean square error (RMSE) between the phantom and the reconstructed images were also

computed. The RMSE of images reconstructed by use of the TR method and the iterative

method corresponding to noisy pressure data with the full-view, few-view, and limited-

view scanning geometries are 0.011, 0.042, 0.081 and 0.003, 0.007, 0.008, respectively. The

computational time of the TR method was 1.7 minutes, while the iterative method took

approximately 10 minutes to finish 20 iterations.

5.4.2 Simulation results with errors in SOS and density maps

Figure 5.7 shows the images reconstructed from noisy pressure data corresponding to the

low contrast disc phantom in the case where SOS and density maps have no error. The

results corresponding to TR and iterative image reconstruction algorithms are shown in the

top and bottom row, respectively. The RMSE corresponding to the time-reversal and the

iterative results are 0.026 and 0.007, respectively. These results suggest that the iterative

algorithm can more effectively reduce the noise level in the reconstructed images than the

time-reversal algorithm.
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Figure 5.3: (a) and (c) are reconstructed images from noiseless data with full-view scanning
geometry by use of the TR method and iterative method, respectively. (b) and (d) are the
corresponding profiles along the ‘Y’-axis indicated in panel (a).

The images reconstructed by use of the SOS and density maps with errors are shown in

Fig. 5.8. The image produced by the iterative method has cleaner background than the

TR result, and the RMSE corresponding to the TR and the iterative results are 0.086 and

0.034, respectively. The boundaries of the disc phantoms also appear sharper in the image

reconstructed by the iterative method as compared to the TR result. This can be attributed

to the TV regularization employed in the iterative method. These results suggest that

appropriately regularized iterative reconstruction methods can be more robust to the errors

in the SOS and density maps than the TR method.

5.4.3 3D simulation results

The 3D blood vessel phantom and the reconstructed images were visualized by the maximum

intensity projection (MIP) method. Figure 5.9(a) shows the phantom image, and Fig. 5.9(b)

and (c) display the images reconstructed by use of the TR method and the iterative method,
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Figure 5.4: (a) and (c) are reconstructed images from the noisy pressure data with 3%
AWGN corresponding to the full-view scanning geometry by use of the TR method and
iterative method, respectively. (b) and (d) are the corresponding profiles.

respectively. They are all displayed in the same grey scale window. The RMSE corresponding

to the TR and the iterative results are 0.018 and 0.003, respectively. These results suggest

that the iterative method is robust to the data incompleteness and the noise in the pressure

data. The computational time of the TR method was approximately 6 minutes, while the

iterative method with 10 iterations required 110 minutes.

5.4.4 Experimental results

The images reconstructed from the experimental data are shown in Figs. 5.10 - 5.13. Figure

5.10 shows the image reconstructed with the full-view scanning geometry by use of the TR

method (top row) and the iterative method (bottom row). Figure 5.10(a) and (c) display

the reference images produced by each of the methods when the acrylic shell was absent.

Figure 5.10(b) and (e) show the reconstructed images for the case when the acrylic shell

was present. The RMSE between Fig. 5.10(b), (d) and the reference images 5.10(a), (c) are
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Figure 5.5: (a) and (c) are reconstructed images from the noisy pressure data with 3%
AWGN corresponding to the few-view scanning geometry by use of the TR method and
iterative method, respectively. (b) and (d) are the corresponding profiles.

0.003 and 0.002, respectively. Figure 5.11(a) and (c) show the images reconstructed with the

few-view scanning geometry when the acrylic shell was present. The corresponding image

profiles are displayed in Figure 5.11(b) and (d). The profiles of Fig. 5.11(a) and (c) along

the ‘Y’-axis were shown in Fig. 5.12, which shows that the iterative method produced higher

resolution images than the TR method. This can be attritubed to the TV regularization

that mitigates model errors that arise, for example, by neglecting the shear wave and finite

transducer aperture effects. The RMSE between Fig. 5.11(b), (d) and their reference images

are 0.005 and 0.002, respectively. Figure 5.13 displays the images reconstructed with the

limited-view scanning geometry when the acrylic shell was present. The RMSE between

Fig. 5.13(a), (c) and their reference images are 0.007 and 0.003, respectively. These results

show that the iterative algorithm can effectively compensate for the acoustic attenuation

and mitigate artifacts and distortions due to incomplete measurement data.
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Figure 5.6: (a) and (c) are reconstructed images from the noisy pressure data with 3%
AWGN corresponding to the limited-view scanning geometry by use of the TR method and
iterative method, respectively. (b) and (d) are the corresponding profiles.

5.5 Conclusion and discussion

In this chapter, we proposed and investigated a full-wave approach to iterative image recon-

struction in PACT with acoustically inhomogeneous lossy media. An explicit formulation

of the discrete imaging model based on the k-space pseudospectral method was described

and the details of implementing the forward and backprojection operators were provided.

The matched operator pair was employed in an iterative image reconstruction algorithm

that sought to minimize a TV-regularized PLS cost function. The developed reconstruction

methodology was investigated by use of both computer-simulated and experimental PACT

measurement data, and the results demonstrated that the reconstruction methodology can

effectively mitigate image artifacts due to data incompleteness, noise, finite sampling, and

modeling errors. This suggests that the proposed image reconstruction method has the

potential to be adopted in preclinical and clinical PACT applications.
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Figure 5.7: (a) and (c) are reconstructed images with actual SOS and density maps by use
of the TR method and iterative method, respectively. (b) and (d) are the corresponding
profiles along the ‘Y’-axis indicated in panel (a).

There remain several important topics to further investigate and validate the proposed it-

erative reconstruction method. It has been shown [50, 113] that the performance of recon-

struction methods can be degraded when the SOS distribution satisfies a trapping condi-

tion [50,113]. Therefore, future studies may include the investigation of numerical properties

of the proposed image reconstruction method for cases in which the SOS distribution satisfies

the trapping condition. Also, because the signal detectability is affected by the noise proper-

ties of an image reconstruction method, investigation of statistical properties of the iterative

image reconstruction method is another important topic for future studies. Moreover, the

proposed image reconstruction method can be further validated through additional experi-

mental studies, and the quality of the produced images will be assessed by use of objective

and quantitative measures.
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Figure 5.8: (a) and (c) are reconstructed images with SOS and density maps with errors by
use of the TR method and iterative method, respectively. (b) and (d) are the corresponding
profiles along the ‘Y’-axis indicated in panel (a).
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Figure 5.9: Maximum intensity projection renderings of the 3D phantom (a), and the recon-
structed 3D images by use of the TR method (b) and the iterative method (c).
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Figure 5.10: (a) and (b) are reconstructed images by use of the TR method from 200 views
with acrylic shell absent and present, respectively. (c) and (d) are reconstructed images by
use of the iterative method from 200 views with acrylic shell absent and present, respectively.
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Figure 5.11: (a) and (c) are reconstructed images with data from 50 view angles over 360
degrees (acrylic shell present) by use of the TR method and iterative method, respectively.
(b) and (d) are their corresponding profiles (dashed blue lines), where red solid lines are the
profiles of the reference images in Fig. 5.10 (a) and (c).
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Figure 5.12: The profiles of the reconstructed images in Fig. 5.11 along the ‘Y’-axis indicated
in Fig. 5.11(a).

53



 

 

0

0.05

0.1

0.15

0.2

0.25

(a)

10 20 30 40 50 60

0

0.2

0.4

0.6

Position X (mm)

A
(r

) 
(A

U
)

(b)

 

 

0

0.1

0.2

0.3

0.4

0.5

(c)

10 20 30 40 50 60

0

0.2

0.4

0.6

Position X (mm)

A
(r

) 
(A

U
)

(d)

Figure 5.13: (a) and (c) are reconstructed images with data from 100 view angles over 180
degrees (acrylic shell present) by use of the TR method and iterative method, respectively.
(b) and (d) are their corresponding profiles (dashed blue lines), where red solid lines are the
profiles of the reference images in Fig. 5.10 (a) and (c).
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Chapter 6

Joint Reconstruction of A(r) and c(r)

in PACT

6.1 Introduction

Because variations in the SOS distribution induce the PA wavefield aberrations, certain

information regarding an object’s SOS distribution is encoded in the PACT measurement

data. Based on this observation, it is natural to question whether A(r) and c(r) can both be

accurately determined from the PACT measurement data alone [18, 58, 177, 179]. This will

be referred to as the joint reconstruction (JR) problem and is the topic of this chapter.

Theoretical and computational studies of the JR problem have been conducted, but all

are limited currently in scope. Theoretical work on the JR problem that neglects discrete

sampling effects has established that A(r) and c(r) can be uniquely determined from the

measured data for certain special cases [48,50]. However, the uniqueness of the JR problem

for more general cases has not been established. Another study established that the linearized

JR problem, in which a geometrical acoustics propagation model was employed, is generally

unstable [135] and suggested that the same conclusion would hold for the general case where

wavefield propagation modeling was based on the full wave equation.

Other works have addressed the development of computational methods for solving the

JR problem by use of discretely sampled measurement data [58, 177, 179]. In [179], an

iterative reconstruction method was proposed to jointly estimate both A(r) and c(r). That

study employed a geometrical acoustics propagation model and assumed a priori information
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regarding the singular support of c(r). In [58, 177], a JR method based on the Helmholtz

equation was proposed, which was solved by the finite element method (FEM). While this

method is grounded in a accurate model of the imaging physics, it suffers from an intensive

computational burden. A similar JR approach was proposed [18] that employed a time-

reversal (TR) adjoint method. All of these works were preliminary in nature in the sense

that they did not systematically explore the numerical properties of the JR problem. This

fact coupled with the scarcity of theoretical works suggests that there remains an important

need to elucidate the practical feasibility of JR.

The primary objective of this chapter is to demonstrate and investigate practical limitations

of JR that are caused by the ill-conditioned nature of the problem. An optimization-based

approach to the JR of A(r) and c(r) is developed for this purpose. The developed reconstruc-

tion method is based on an alternating optimization scheme, where A(r) is reconstructed

by use of a previously-developed full-wave iterative method [51], while c(r) is reconstructed

by use of a nonlinear optimization algorithm based on the Fréchet derivative of an objective

function with respect to c(r) [15, 96]. Computer-simulation studies are conducted to reveal

insights into how the relative spatial frquency contents of A(r) and c(r), along with their

geometric configurations, influence the ability to accomplish accurate JR. We also investigate

the effects of model errors, including neglecting acoustic attenuation and transducer impulse

reponses, on the accuracy of JR.

This chapter is organized as follows. In Section 6.2, the imaging physics of PACT in het-

erogeneous media is reviewed briefly. The derivation of the Fréchet derivative of a pertinent

objective function with respect to c(r) is also provided. Section 6.3 contains the formulation

of the alternating optimization approach to the JR of A(r) and c(r) in PACT. The numerical

studies and results are given in Section 6.4. This chapter concludes with a summary and

discussion in Section 6.5.
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6.2 Background

6.2.1 Photoacoustic wavefield propagation in heterogeneous

media

We consider PA wavefield propagation in lossless fluid media where the variation of mass

density can be neglected. Let p(r, t) denote the photoacoustically-induced pressure wavefield

at location r ∈ R
3 and time t ≥ 0. The photoacoustic wavefield p(r, t) satisfies [155]:

∇2p(r, t)− 1

c(r)2

∂2p(r, t)

∂t2
= 0, (6.1)

subject to initial conditions

p(r, 0) = Γ(r)A(r),
∂p(r, t)

∂t

∣

∣

∣

∣

t=0

= 0, (6.2)

where Γ(r) is the Grueneisen parameter that is assumed to be known.

6.2.2 Fréchet derivative with respect to c(r)

Here, for simplicity, we neglect the acousto-electrical impulse response (EIR) and the spatial

impulse response (SIR) of the ultrasonic transducers. However, we will investigate the impact

of EIR and SIR on the JR results in Secion 6.4.5. The quantity p̃(rm, t) represents the PA

data recorded by the m-th transducer at location rm (m = 1, · · · , M). For the sake of

notational clarity, we represent the measured PA data as continuous functions of t, but the

continuous results that follow can be readily discretized as described in Section 6.3.

For a given A(r), the inverse problem of reconstructing c(r) can be formulated as an opti-

mization problem in which the following objective functional is minimized with respect to

c(r):

E [c(r)] =

M
∑

m=1

∫ T

0

dt[p(rm, t)− p̃(rm, t)]2, (6.3)
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subject to the constraint that p(rm, t) satisfies (6.1), where T denotes the maximum time at

which the PA data were recorded.

Gradient-based iterative algorithms can be utilized to minimize the nonlinear functional

(6.3). Such methods require the functional gradient, or Fréchet derivative, of E with respect

to c(r), which can be calculated by use of the adjoint method [15,96]. In the adjoint method,

the adjoint wave equation is defined as

∇2q(r, t)− 1

c(r)2

∂2q(r, t)

∂t2
= −s(r, t), (6.4)

subject to terminal conditions

q(r, T ) = 0,
∂q(r, t)

∂t

∣

∣

∣

∣

t=T

= 0. (6.5)

The source term s(r, t) is defined as

s(r, t) =

M
∑

m=1

[p(rm, t)− p̃(rm, t)]δ(r− rm). (6.6)

Upon solving (6.1) and (6.4), the Fréchet derivative of E with respect to c(r) can be deter-

mined as [15, 96],

∇cE = − 4

c(r)3

∫ T

0

dt
∂p(r, t)

∂t

∂q(r, t)

∂t
. (6.7)

Once the Fréchet derivative is obtained, it can be utilized by any gradient method as the

search direction to iteratively reduce the functional value of (6.3). The numerical implemen-

tation of the Fréchet derivative is described below.

6.3 Optimization-based joint image reconstruction

Based on the discrete imaging model (5.13), the JR problem can be formulated as

Â, ĉ = arg min
A≥0,c>0

‖H(c)A− p̃‖2 + λ1R(A) + λ2R(c), (6.8)
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where R(A) and R(c) are penalty functions that impose regularity on the estimates of A

and c, respectively, and λ1, λ2 are the corresponding regularization parameters. To the

authors’ best knowledge, the convexity of the objective function in (6.8) is still unknown.

Although the data fidelity term is convex with respect to A, the convexity with respect to

c is unknow. Even if it is convex with respect to c, the biconvex data fidelity term is not

convex in general [39]. A heuristic alternating optimization approach can be employed to

find solutions that approximately satisify (6.8). This approach consists of two sub-problems:

reconstruction of A given c and reconstruction of c given A.

Reconstruction of A(r) given c(r): The inverse problem of reconstructing A for a given c

can be formulated as the penalized least squares problem

Â = arg min
A≥0

‖H(c)A− p̃‖2 + λAR(A), (6.9)

where λA is the regularization parameter, which is different from λ1 in (6.8) in general.

Several reconstruction methods have been proposed for solving problems of this form [51,144].

Reconstruction of c(r) given A(r): For a given A, an estimate of c can be formed as

ĉ = arg min
c>0

‖H(c)A− p̃‖2 + λcR(c), (6.10)

where λc is the regularization parameter, which is different from λ2 in (6.8) in general.

Equation (6.10) can be solved by use of gradient-based methods, which require computation

of the gradient of the objective function in (6.10) with respect to c. Details regarding this

gradient computation are provided in the Appendix D.

Alternating optimization algorithm: Based on (6.9) and (6.10), JR of A and c can be accom-

plished by alternately solving (6.9) and (6.10), which is described in Algorithm 1. A(0) and

c(0) are the initial guesses of A and c, respectively, and ǫA and ǫc are convergence tolerances.

The functions ‘FA’ and ‘Fc’ compute the solutions of (6.9) and (6.10), respectively, and are

described below in Section 6.4.1. The function ‘Dist’ measures the metric (e.g. Euclidean

metric) between A(i) and A(i+1) (or between c(i) and c(i+1)).
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Algorithm 1 Alternating optimization approach to JR of A and c

Input: p̃, A(0), c(0), ǫA, ǫc, λA, λc

Output: Â, ĉ

1: i = 0

2: while ǫ1 < ǫA and ǫ2 < ǫc do

3: c(i+1) ← Fc

(

c(i),A(i), p̃, λc

)

4: A(i+1) ← FA

(

A(i), c(i+1), p̃, λA

)

5: ǫ1 ← Dist(A(i),A(i+1))

6: ǫ2 ← Dist(c(i), c(i+1))

7: i← i + 1

8: end while

9: Â← A(i)

10: ĉ← c(i)

6.4 Numerical studies and results

Computer simulations were conducted to investigate the numerical properties of the JR

problem. Although the optimization approach to JR described above is based on the 3D

wave equation, the 2D formulation is contained as a special case and is investigated in this

section.

6.4.1 Descriptions of numerical studies

The implementation of the alternating optimization method shown in Algorithm 1 is de-

scribed below. The function ‘Fc’ that computes the solution of (6.10) was implemented

based on the MATLAB k-Wave toolbox [143]. Specifically, the wave equation (6.1) and the

adjoint wave equation (6.4) were solved numerically by use of the k-space pseudospectral

method. The computed PA wavefield and the adjoint wavefield were employed to compute

the gradient of the objective function in (6.10) (see Appendix D). The gradient was subse-

quently utilized by the limited-memory BFGS (L-BFGS) algorithm to solve (6.10) [31,65,91].

The implementation of the function ‘FA’ that solves (6.9) can be found in [51]. In this study,
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a total variation (TV) penalty was adopted. The ‘Dist’ function measured the difference in

terms of root mean square error (RMSE), and the convergence tolerances ǫA and ǫc were

empirically chosen to have a value of 10−2 throughout the studies. In all studies, the initial

guesses of A and c were set to be A(0) = 0 and c(0) = 1480 m/s, which is the background

SOS.

Both A and c were reconstructed on a uniform grid of 256× 256 pixels with a pitch of 0.5

mm. A total of 800 transducers were evenly distributed on the sides of a square with side

length 100 mm. The PA data were computed at transducer locations on a 512 × 512 grid

with a pitch 0.25 mm. At each transducer location, 6000 temporal samples were recorded

with time step ∆t = 50 ns.

All simulations were computed in the MATLAB environment on a workstation that contained

dual hexa-core Intel(R) Xeon(R) E5645 CPUs and a NVIDIA Tesla C2075 GPU. The GPU

was equiped with 448 1.15 GHz CUDA Cores and 5 GB global memory. The Jacket toolbox

[178] was employed to accelerate the computation of (6.1) and (6.4) on the GPU.

6.4.2 Conditions for accurate reconstruction of c given A

(sub-problem (6.10))

In this study, we propose two heuristic conditions that, when satisified, suggest that c can

be accurately estimated from PACT measurement data given known A. One condition is

with respect to to the support of A, which will be referred as the support condition and

described in Appendix-B. Another condition is related to the spatial frequency contents of

A, which will be referred as the k-space condition and discussed in Section ??. The A

satisfying the support condition will be called ‘adequate’ in this paper, otherwise it will

be called ‘defective’; the A satisfying both heuristic conditions will be called ‘sufficient’,

otherwise it will be called ‘deficient’. When A is sufficient, we will show that it is possible

to achieve accurate JR in Section 6.4.4.

Note that the support condition is based on two assumptions and is only verified by computer

simulations instead of rigorous mathematical proofs, so the condition is more an observation

than a necessary/sufficient condition in mathematical sense; i.e. when the support condition
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is satisfied, it is more likely to achieve accurate reconstrution of c or accurate JR. Therefore,

we call the support condion a heuristic condition. This also applies to the heuristic k-space

condition described below.

Support condition: Numerical phantoms representing ‘adequate’ A (left column of Fig.

6.2) and ‘defective’ A (left column of Fig. 6.3) were chosen to verify the support condition

given above. Figure 6.2(a) shows the ‘adequate’ A that corresponds to the case where

supp(c) is enclosed by supp(A), and Fig. 6.2(c) corresponds the case where supp(c) ⊆
supp(A). ‘Defective’ A in the left column of Fig. 6.3 correspond to different degrees of

defectiveness of supp(A). In order to exclude the effect of the spatial frequency contents

of A, both ‘adequate’ and ‘defective’ A employed here have sharp boundaries so that the

k-space condition discussed below is satisfied. Figure 6.1 shows the numerical phantom that

represents the SOS distribution, c, in a breast.

The reconstructed estimates of c corresponding to ‘adequate’ and ‘defective’ A are shown in

the middle columns of Fig. 6.2 and 6.3, respectively. The profiles shown in both figures are

along the ‘X’-axis indicated by the arrow in Fig. 6.2(b). The images were reconstructed from

noiseless data without regularization. The results in Fig. 6.2 corroborate that it is possible

to accurately reconstruct c given an ‘adequate’ A, as suggested by the support condition

given above. The results in Fig. 6.3 show that the reconstructed c could be either accurate

(first and second rows) or inaccurate (third and fourth rows), which suggest that the support

condition may not be a necessary condition for accurate image reconstruction.

K-space condition: The condition on supp(A) is not the only factor affecting the recon-

struction of c. In this section, we use a series of computer simulations to show that the

spatial frequency contents of A will also affect the accuracy of the reconstructed c.

Figure 6.4 shows the numerical phantoms that are employed to represent A and c. To

exclude the effects of supp(A), the phantom of A was chosen such that supp(c) ⊆ supp(A),

i.e. the support condition was satisfied. The phantom depicting A was then convolved with

different Gaussian kernels to generate additional phantoms that possessed different relative

spatial bandwidth, which is defined as the full width at half maximum of the blurring kernel

in k-space.
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The reconstructed estimates of c obtained when A was given and possessed different degrees

of relative spatial bandwidth are shown in Fig. 6.5. The images from the top to the bottom

row correspond to the bandwidth ratio of A to c being 0.25, 0.44, and 1.0, respectively. Both

noiseless and noisy data were employed to reconstruct c. The RMSE of the reconstructed

c with respect to the bandwidth ratio of A to c for both noiseless and noisy cases were

plotted in Fig. 6.6. These results show that the spatial frequency contents of A will affect

the accuracy of reconstruction of c. To be specific, in order to accurately reconstruct c, these

results suggest that spatial bandwidth of A should be larger than the spatial bandwidth of

c, which is referred as the k-space condition.

6.4.3 Relative numerical instability of the sub-problems in (6.9)

and (6.10)

Below, we investigate the relative numerical stability of the problems of reconstructing A

given c (sub-problem (6.9)) and the problem of reconstructing c given A (sub-problem

(6.10)). The phantoms of A and c used here are the same as the ones in Fig. 6.4. To

investigate the numerical instability, A (resp. c) was perturbed by additive white Gaussian

noise (AWGN) when reconstructing c (resp. A). The perturbation is measured by the

relative error, which is defined as the ratio of the l2 norm of the AWGN to the l2 norm of A

(or c). Figure 6.7 shows the reconstructed A (first and second columns) and c (third and

fourth columns) corresponding to the perturbed c and A, respectively. The results from the

top to the bottom row correspond to relative error of 0.2%, 1.0% and 5.0%, respectively.

These results are summarized in Fig. 6.8, which shows that, for a fixed relative error, the

reconstructed estimate of c has larger RMSE than does the reconstructed estimate of A.

This demonstrates that the problem of of reconstructing c given A is more ill-conditioned

than the problem of reconstructing A given c.

Figure 6.9 gives another example showing the numerical instability of reconstruction of c.

Figure 6.9(a) and (c) are two similar numerical phantoms depicting A. The RMSE between

these phantoms is 0.004. Figures 6.9(b) and (d) display the reconstructed estimates of

c when the A specified in Fig. 6.9(a) and (c) was assumed, respectively. These results

demonstrate that the problem of reconstructing c for a given A is ill-posed in the sense
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that small changes in A can produce large changes in the reconstructed estimate of c. This

observation is consistent with the theoretical results in Ref. [135].

In fact, the (A, c) pair in the top row of Fig. 6.9 produces nearly identical PA data at all

transducer locations considered (RMSE = 3.2× 10−4) as the (A, c) pair in the bottom row,

as shown in Fig. 6.10. These results suggest the solutions of the JR problem in PACT might

not be unique. Consequently, it indicates that accurate JR of A and c, in general, may not

be possible.

6.4.4 Joint reconstruction in idealized scenarios

The numerical instability of sub-problem (6.10) implies the general JR problem is also unsta-

ble, which can be seen from the JR results in first row of Fig. 6.11. These results correspond

to the unsmoothed phantoms of A and c in Fig. 6.4, which satisfy both the support condi-

tion and the k-space condition. By use of those phantoms, noiseless PA data were generated

for JR, which was conducted without regularization. To exclude the effects of representation

error on the JR results, the data generation and JR were performed on the same grid with

pixel size 0.5 mm. However, even in this idealized case where A was sufficient and inverse

crime was committed, neither A nor c was accurately reconstructed. These results indicate

the numerical instability of the JR problem.

In order to accurately reconstruct both A nor c, it is necessary to incorporate regularization

into the reconstruction. The regularized JR results were generated without inverse crime and

are displayed in the 2-4 row of Fig. 6.11, where the corresponding regularization parameters

λA and λc are both 10−5, 10−4, 10−3, respectively. Those results show that the numerical

instability of the JR problem can be mitigated by incorporating appropriate regularization

into the reconstruction.

Joint reconstruction was also performed with noisy data, where the simulated PA data were

contaminated by 3% AWGN. The first and second rows of Fig. 6.12 show the noisy results

obtained with regularization parameters λA = 10−3 and λc = 10−2. There results show

that, by incorporating appropriate regularization, the proposed JR method is robust to the

measurement noise. To compare with the JR results, A was also reconstructed by use of a
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full-wave iterative reconstruction method developed in a previous paper [51], and the results

are displayed in the third row of Fig 6.12. The iterative method assumed a constant SOS of

1600 m/s in the medium, which was selected such that the RMSE of the reconstructed image

was minimized compared to other choices for the SOS. The RMSE of the reconstructed A by

use of the JR method and the iterative method are 0.01 and 0.21, respectively. These results

also show that the jointly reconstructed A is more accurate than the one reconstructed with

a constant SOS.

6.4.5 Joint reconstruction in practice

The above JR results show that, in an idealized scenario where A is sufficient and model

errors can be neglected, it is possible to achieve accurate JR of A and c when appropri-

ate regularization is employed. However, in practice, A may not be sufficient, and there

always exist model errors. In this section, we will investigate the feasibility of accurate JR

in practice. First, we consider the impact of different model errors on JR results, including

neglecting acoustic attenuation, point-like transducer assumption and imperfect EIR decon-

volution. We then show the impact of deficient A on the JR results. Finally, we will show

the combining effects of model errors and deficient A on the JR results. In this section, all

the JRs were conducted with noisy data, where 3% AWGN were added to the simulated PA

data.

Effects of acoustic attenuation: In many applications, acoustic attenuation is not negli-

gible [29,118,144]. To investigate the effects of model error of neglecting acoustic attenuation,

the simulated PA data were generated in a lossy medium, where the the acoustic attenuation

coefficient α can be described by a frequency power law of the form α(r, f) = α0(r)f
y [138].

The frequency-independent attenuation coefficient α0 = 10 dB MHz and the power law expo-

nent y = 2.0 were employed in the data generation, which correspond to the values of α0 and

y in human kidneys that have the strongest acoustic attenuation among typical biological

tissues [139]. To exclude the effects of defecive A, we employed the same phantoms of A

and c as in Section 6.4.4 to generate simulated data. Those phantoms will also be employed

below when we investigate the effects of other model errors on the JR results. Figure 6.13

shows the attenuated data from one transducer compared to the unattenuated data. By
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use of the attenuated data, JR was conducted with regularization parameters λA = 10−3

and λc = 10−2 but without compensation for the acoustic attenuation, and the results are

displayed in Fig. 6.14. Those results show that the amplitude of the reconstructed A was

reduced due to the model error of neglecting acoustic attenuation, which had little impact

on the reconstruction of c. This can be explained by the fact that acoustic attenuation has

larger impact on the amplitude of the measured pressure data than the phase of the data [68],

as shown in Fig. 6.13. Therefore, the reconstuction of c, which is mainly dependent on the

phase of the data, is less affectd by the acoustic attenuation than the reconstruction of A,

which depends on both the phase and amplitude of the measured data.

Effects of SIR: In reality, ultrasonic transducers always have finite aperture size, and

the finite size effects can be described by the SIR of the transducer, which accounts for the

averaging effect over the transducer surface [45,149]. To investigate the effects of neglecting

SIR, simulated PA data were first generated on a grid with a pitch of 0.1 mm and recorded

by 4000 transducers that were evenly distributed on the sides of a square with side length

100 mm. The recorded data from every 20 consecutive transducers were then averaged to

emulate the SIR effects of a 2 mm line transducer. By use of the averaged data, JR was

conducted with regularization parameters λA = 10−3 and λc = 10−2. Figure 6.15 displays

the JR results, which show that, when the transducer aperture size is small, the proposed

JR method is robust to the model error of neglecting SIR.

Effects of EIR: In addition to the SIRs, ultrasonic transducers also have EIRs in practice,

which model the the electrical responses of the piezoelectric transducers. Before performing

JR, EIR needs to deconvolved from the measured voltage signals to recover the detected

pressure data. However, the EIR of a transducer usually cannot be accurately measured.

To investigate the effects of inaccurate EIR deconvolution, the simulated PA data were

first convolved with an EIR of an actual transducer [23,149]. The convolved data were then

deconvolved by use of a curvelet deconvolution technique [151] with an inaccurate EIR, which

was produced by adding 2% Gaussian noise into the spectrum of the original EIR. Figure

6.16(a) and (b) show the inaccurate EIR compared to the original EIR and the deconvolved

pressure data from one transducer compared to original pressure data, respectively. By

use of the deconvolved data, JR was conducted with regularization parameters λA = 10−2
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and λc = 10−1. Figure 6.17 displays the JR results, which show that the model error of

inaccurate EIR deconvolution has larger impact on the JR results than acoustic attenuation

or SIR effects. This can be explained by the fact that both the JR and EIR deconvolution

are ill-conditioned problems, so small errors in the EIR measurment could be significantly

amplified in the final JR results.

Effects of combined model errors: Usually, the model errors of neglecting acoustic

attenuation, neglecting SIR and inaccurate EIR deconvolution all exist in practice. To

investigate the effects of the combined model errors, the above procedures were repeated to

first generate attenuated data, which were then averaged to emulate the SIR effects. The

averaged, attenuated data were used to generate the inaccurately deconvolved data, which

were employed for JR with regularization parameters λA = 10−2 and λc = 10−1. The JR

results are displayed in the top and middle rows of Fig. 6.18. These results suggest that,

even with sufficient A, accurate JR may not be feasible in practice due to its instability and

the inevitable model errors. However, the jointly reconstructed A has smaller RMSE = 0.12

compared to the iterative results (the bottom row of Fig. 6.18) that was reconstructed with

constant SOS of 1600 m/s and has RSME = 0.22. This shows that, even though accurate

JR may not be feasible in practice, the accuracy of the reconstructed A can be improved by

the JR method compared to the images reconstructed with a constant SOS.

Effects of deficient A : The accuracy of JR is not only affected by the model errors, but

also the spatial properties of A and c. As we have seen in Section ?? and ??, even with

A assumed to be known exactly, the reconstructed c may not be accurate if A is deficient.

Consequently, the JR may not be accurate if the heuristic conditions are not satisfied, which

will be shown in this section. Figure 6.19 display a phantom of deficient A, which satisfies

neither heuristic conditions. By use of this phantom, simulated PA data were generated,

which were subsequently employed for JR with regularization parameters λA = 10−3 and

λc = 10−2. No model error was considered here. Figure 6.20 displays the JR results, which

show that, even though there are no model errors, accurate JR may not be feasible if the

heuristic conditions are not satisfied.
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Effects of combining model errors and deficient A : In practice, A could be deficient

and model errors do exist. To investigate the effects of the model errors combined with

deficient A, the above procedures were repeated to generate simulated PA data corresponding

to combined model errors and deficient A in Fig. 6.20. By use of the simulated data, JR

was conducted with regularization parameters λA = 10−2 and λc = 10−1. The JR results

are displayed in the top and middle rows of Fig. 6.21. These JR results, again, suggest that

accurate JR may not be feasible in practice due to the model errors and deficiency of A.

The bottom row of Fig. 6.21 shows the iterative results, which were reconstructed with a

constant SOS of 1600 m/s. The RMSE of the reconstructed A by use of the JR method and

the iterative method are 0.01 and 0.02, respectively. Again, these results indicate that, even

though accurate JR may not be feasible in practice, A can be more accurately reconstructed

by the JR method than when SOS is assumed homogeneous.

6.5 Conclusion and discussion

In this chapter, we developed an optimization approach to JR of A and c in PACT that is

based on the wave equation. This method was utilized to investigate the numerical prop-

erties of the JR problem and its feasibility in practice. The computer simulation results

demonstrated numerical instability of the JR problem. Due to the instability, the accuracy

of the JR results was strongly affected by the inevitable model errors, particularly by the

inaccurate EIR deconvolution, which is also an ill-conditioned inverse problem. We also

showed that the accuracy of JR results was affected by the the spatial properties of A and c

as well; i.e. if A was deficient, the JR results might not be accurate even there was no model

error. These results indicate that accurate JR in PACT may not be feasible in practice

due to the model errors and deficiency of A. However, we also showed that the accuracy

of the reconstructed A can still be improved by the JR method compared to the image

reconstructed with a constant SOS.

Note that, although our observations and conclusions were drawn from the numerical results

that were obtained by use of an alternating optimization algorithm to solve a wave-equation-

based optimization problem, their validity may be independent of the apporaches employed

to solve the JR problem. In previous theoretical work on the JR problem, Stefanov et al

68



proved the instability of the linearized JR problem, which suggested instability of the JR

problem as well [135]. This result corroborates our conclusion of the instability of the JR

problem. In [134], they gave an uniqueness condition of reconstruction of c(r) given A(r),

which is consistent with our support condition (see Therorem 3.3 therein). In previous work

regarding the development of JR algorithms, Chen et al proposed a similar optimization-

base approach to JR [18]. They solved the optimization problem by use of an optimiztion

algorithm called time-reversal (TR) adjoint method. Although their algorithm was different

from ours, they obtained similar results; accurate JR images were not produced when A is

deficient, but the jointly reconstructed A is more accurate than the one reconstructed by

use of the TR method with a constant SOS.

More similar and coherent results can be found in the works by Jiang et al [58, 177], in

which the authors proposed an optimization approach to JR that is based on the Helmholtz

equation instead of the wave equation. By use of that method, the authors observed that the

accuracy of JR results was affected by the frequency band employed in the reconstruction.

Specifically, the frequency ranges covering lower frequencies gave more accurate JR results

than higher frequencies. This observation is implicitly contained in our heuristic k-space

condition, where only low-pass filtered A is considered. Their observations and our k-space

condition could be explained by the fact that band-pass or high-pass filted A is not physical

because the non-negativity of A does not hold in those cases. Both results showed that the

accuracy of JR is impacted by the spatial spectrum of A. By employing phantoms of A and

c that had the same structures and sharp boundaries (sufficient A), the authors also showed

that qualitatively accurate images of A and c can by jointly reconstructed by incorporating

Marquardt and Tikhonov regularizions into reconstruction. By use of regularizations, the

authors showed their algorithm was insensitive to random noise in the measurement, which is

congruous with our observations. Although the reconstructed images were only qualitatively

accurate, the authors showed that the jointly reconstructed A was more accurate than the

image reconstructed with a homogeneous SOS, which is consistent with our results. In

addition, they also observed that the jointly reconstructed A was more accurate than the

jointly reconstructed c, which, again, indicated the inverse problem of reconstructing c is

more unstable compared to reconstruction of A.

However, in the works mentioned above, the authors only showed the JR results produced

by their proposed methods; they did not investigate how the numerical properties of the JR
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problem. Specifically, how the accuracy of JR results were affected by deficiency of A was

not studied in those works. In this work, we showed that, even if there are no model errors,

the accurate JR may not be achievable if A is deficient. Furthermore, those works did not

investigate the numerical instability of the JR problem and its implication of the feasibility

of accurate JR in practice. In this work, we demonstrated the numerical instability of the

JR problem, and systematically studied the practical limitations of JR due to its instability

and inevitable model errors.

There remain several important topics to further evaluate the proposed JR method and

investigate the JR problem. In addition to computer simulations, the proposed method can

be further evaluated through experimental studies, in which the JR method could be based

on 3D wave equation instead of 2D wave equation. Since line search is inevitable in any

nonlinear optimization algorithm that is employed to reconstruct c given A, the intensive

computational burden is a challenge for 3D JR. Also, in this study, the proposed JR method

is based on the wave equation in lossless fluid media where the mass density is assumed to be

homogenous. However, in many applications, density variation and/or acoustic absorption

is not negligible [52, 53]. In some cases, for example transcranial PACT brain imaging

of primates, shear wave mode conversion needs to be taken into account as well. The

development of the JR method, which is based on the wave equation that describes density

variation, acoustic absorption and/or shear wave mode conversion, is another important

topic for future studies. Finally, due to the instability of the JR problem, additional priori

information besides the regularization terms needs to be incorporated into reconstruction

in order to achieve accurate JR. Ultrasound computed tomography (USCT) is a natural

candidate to provide such information since the USCT signals can be acquired by the same

system used in PACT. The investigation of the JR problem by combining PACT and USCT

is underway.
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Figure 6.1: The numerical phantom representing the SOS distribution c in a breast.
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Figure 6.2: Given ‘adequate’ A in the left column, the reconstructed c are shown in the
middle column. Right column are the corresponding profiles.
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Figure 6.3: Given ‘defective’ A in the left column, the reconstructed c are shown in the
middle column. Right column are the corresponding profiles.
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Figure 6.4: Numerical phantom of A (panel (a)) and c (panel (c)) used to investigate the
effects of spatial frequency contents of A on the reconstruction of c.
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Figure 6.5: Each row is reconstructed c and their profiles corresponds to different bandwidth
ratios of A to c. From top to bottom, the ratios are 0.25, 0.44, and 1.0, respectively. The
first and second columns are the noiseless results and the third and fourth columns are noisy
results.

74



0 0.5 1 1.5 2
0

2

4

6

8

10

bandwidth(A)/bandwidth(c)

R
M

S
E

 o
f r

ec
on

st
ru

ct
ed

 c

(a)

0 0.5 1 1.5 2
0

50

100

150

200

250

300

bandwidth(A)/bandwidth(c)

R
M

S
E

 o
f r

ec
on

st
ru

ct
ed

 c

(b)

Figure 6.6: RMSE of reconstructed c versus bandwidth ratio of A to c curves. Panel (a)
and (b) correspond to the noiseless and noisy results, repectively.
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Figure 6.7: The first and second columns are reconstructed A corresponding to perturbed c,
and the third and fourth columns are reconstructed c corresponding to perturbed A. From
the top to the bottom row, the perturbation, which is measured as relative error, is 0.2%,
1.0% and 5.0%, respectively.
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Figure 6.9: Numerical phantoms of A, A1 in panel (a) and A2 in panel (c), are used to
reconstruct c, c1 in panel (b) and c2 panel (d), from identical measured data. While A1 and
A2 are similar, the reconstructed c1 and c2 are quite different.
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Figure 6.10: Identical pressure data (from one transducer) generated from the phanatoms
in Fig. 6.9. Panel (b) is the zoomed-in detail of panel (a).
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Figure 6.11: Jointly reconstructed images corresponding to noiseless data. Each row corre-
sponds to different regularization parameters λA and λc. From top to bottom, λA and λc are
0, 10−5, 10−4, 10−3, and 0, 10−4, 10−3, 10−2, respectively. The first and second columns are
reconstructed A and the third and fourth columns are reconstructed c.
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Figure 6.12: Reconstructed images corresponding to noisy data. The top and middle rows
are the jointly reconstructed A and c, respectively. The bottom row is the A reconstructed
by an iterative method assuming a constant SOS.
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Figure 6.13: Attenuated pressure data from one transducer compared to the unattenuated
data.
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Figure 6.14: Jointly reconstructed images corresponding to model error of neglecting acoustic
attenuation. The top and bottom rows are the reconstructed A and c, respectively.
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Figure 6.15: Jointly reconstructed images corresponding to model error of neglecting SIR.
The top and bottom rows are the reconstructed A and c, respectively.
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Figure 6.16: Panel (a): inaccurate EIR compared to the original EIR. Panel (b): deconvolved
pressure data by use of the inaccurate EIR compared to original pressure data.

85



 

 

0

0.2

0.4

0.6

0.8

(a)

−50 −25 0 25 50
0

0.2

0.4

0.6

0.8

1

X (mm)

A

 

 
Joint recon. A
Phantom

(b)

 

 

1400

1600

1800

2000

2200

(c)

−50 −25 0 25 50
1400

1600

1800

2000

2200

2400

2600

X (mm)

S
pe

ed
 o

f s
ou

nd
 (

m
/s

)

 

 
Joint recon. SOS
SOS Phantom

(d)

Figure 6.17: Jointly reconstructed images corresponding to model error of inaccurate EIR
deconvolution. The top and bottom rows are the reconstructed A and c, respectively.
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Figure 6.18: Jointly reconstructed images corresponding to combined model errors of ne-
glecting acoustic attenuation, SIR and inaccurate EIR deconvolution. The top and bottom
rows are the reconstructed A and c, respectively.
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Figure 6.19: The numerical phantom representing a deficient A.
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Figure 6.20: Jointly reconstructed images corresponding to deficient A in Fig. 6.19. The
top and bottom rows are the reconstructed A and c, respectively.
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Figure 6.21: Reconstructed images corresponding to A in Fig. 6.19. The top and middle rows
are the jointly reconstructed c and A, respectively. The bottom row is the A reconstructed
by an iterative method assuming a constant SOS.
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Chapter 7

Summary

In the dissertation, we have developed and investigated image reconstruction methods for

photoacoustic computed tomography (PACT) with acoustically heterogeneous media. The

contributions are summarized as following.

1. We have investigated the use of a time-reversal algorithm for PACT image recon-

struction that can compensate for acoustic attenuation in heterogeneous lossy acoustic

media [53].

2. We have developed a subject-specific image reconstruction methodology for transcra-

nial PACT to compensate for aberrations in the measured PA data induced by the skull.

Adjunct x-ray CT data are employed to infer the spatially variant SOS and density dis-

tributions of the skull, which are subsequently utizlied by the TR image reconstruction

algorithm to mitigate skull-induced distortions in the reconstructed image. Our prelim-

inary experimental results show that employed a primate skull demonstrated that the

reconstruction methodology can produce images with improved fidelity and reduced

artifact levels as compared to a previously employed back-projection algorithm [52].

3. We have developed and investigated a discrete imaging model for PACT that is based

on the exact PA wave equation. The k-space pseudospectral method is adopted for

implementing the forward and backprojection operators associated with the discrete

imaging model. By use of the projection operators, an iterative image reconstruction

algorithm is implemented and investigated in computer-simulation and experimental

studies of PACT in inhomogeneous acoustic media. The results demonstrated that
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the reconstruction methodology can effectively mitigate image artifacts due to data

incompleteness, noise, finite sampling, and modeling errors [51].

4. We have developed an optimization-based reconstruction approach to JR of A(r) and

c(r) that is based on the wave equation. The developed reconstruction method was

utilized to investigate the numerical properties of the JR problem and its feasibility in

practice. The computer simulation results demonstrated numerical instability of the

JR problem. Due to the instability, the accuracy of the JR results was strongly affected

by the inevitable model errors. We also showed that the accuracy of JR results was

affected by the the spatial properties of A(r) and c(r) as well. These results indicate

that accurate JR in PACT may not be feasible in practice However, we also showed

that the accuracy of the reconstructed A can still be improved by the JR method

compared to the image reconstructed with a constant SOS.
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Appendix A

Validation of Speed-of-Sound and

Density Maps

The density and speed of sound of the skull were also directly measured to corrorborate the

accuracy of the adopted method for estimating the skull’s SOS and density distributions from

X-ray CT data. By using the water displacement method, the measured average density of

the monkey skull ρ̄wd is 1890 kg/m3. The average denisty of the skull ρ̄ct can also be estimated

from CT data:

ρ̄ct =

∑

k Φkρ
w + (1− Φk)ρ

s

N
, (A.1)

where ρw = 1000 kg/m3 is the density of water, ρs = 2100 kg/m3 is the density of skull [9,37],

Φk is the porosity of the kth pixel of the skull, and N is the total number of pixels of the

skull in the CT image. The estimated average denisty of the skull ρ̄ct = 1910 kg/m3, which

is very close (about 1%) to the measured value ρ̄wd = 1890 kg/m3.

The SOS in the skull was measured using a photoacoustic approach, as shown in Fig. 4.2-

(b). A laser beam was split by use of a beam splitter and directed by mirrors to two convex

lenses. The two convex lenses (NA≈0.04, depth of focus ∼300 mm) focused the laser beam

on the inner and outer surface of the skull, and the line connecting the two focused beam

spots (∼80 microns) was perpendicular to the skull surface. The ultrasonic transducer was

placed coaxially with the laser spots; therefore, the average SOS c̄pa between the two laser

spots was calculated by:

c̄pa =
h

h
cw − td

, (A.2)
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Table A.1: The measured average SOS c̄pa via the PA experiment (column 2) and the
estimated average SOS c̄ct from the CT measurements (column 3) for the five measurement
locations (see Fig. 4.1-(a)).

Position SOS (PA) in m/s SOS (CT) in m/s
1 2790 ± 90 2720
2 2740 ± 80 2830
3 2780 ± 60 2860
4 2620 ± 100 2720
5 2590 ± 160 2430

where td is the time delay between the PA signals from the inner and outer surfaces of the

skull, cw = 1480 m/s is the speed of sound in water, and h is the thickness of the skull at the

laser spots. We measured c̄pa at the 5 locations on the skull that are indicated in Fig. 4.1-(a).

The measured SOS values are displayed in the second column of Table 1.

The corresponding average SOS values were also computed by use of the X-ray CT image

data and compared to the measured values. In order to determine the 5 locations on the

CT image that correspond the measurement locations described above, we measured the arc

lengths between the fiducial markers and the measured locations. Then the average SOS c̄ct

at these locations can be estimated from CT data (derived from Eq. (4.3)):

c̄ct =
h

∑

i
d

Φicw+(1−Φi)cs

, (A.3)

where Φi is the porosity of the ith pixels on the line connecting the two laser spots, and is

calculated from bilinear interpolation of the neighbor pixel values in the CT image; cs = 2900

m/s is the speed of sound of skull bone [9, 37], and d = 0.1 mm is the resolution of the CT

image. The estimated SOS at these locations are shown in the last column of Table 1. The

root mean square difference between the SOS inferred from the PA experiment and the SOS

inferred from the CT data is 105 m/s.
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Appendix B

Modeling transducer impulse

responses

An important feature of the proposed discrete PACT imaging model is that the transducer’s

impulse responses, including the spatial impulse response (SIR) and the acousto-electrical

impulse response (EIR), can be readily incorporated into the system matrix.

The SIR accounts for the averaging effect over the transducer surface [8,45,149], which can

be described as

p̂SIR(rd
l , m∆t) =

∫

S(rd
l
)
dS(r′l)p(r′l, m∆t)

S(rd
l )

, (B.1)

where p̂SIR(rd
l , m∆t) is the averaged pressure at time t = m∆t over the surface of the l-th

transducer, S(rd
l ) is the surface area of the l-th transducer centered at rd

l .

In order to incorporate the SIR into the system matrix, we can divide the transducer surface

into K small patches with equal area ∆S that is much less than the acoustic wavelength, so

the integral in Eqn. B.1 can be approximated by summation as

p̂SIR(rd
l , m∆t) ≃

K
∑

k=1

p(rk
l , m∆t)

∆S

S(rd
l )

, (B.2)

or in the equivalent matrix form

p̂SIR(rd
l , m∆t) ≃ γ

SIRp̂l
m (B.3)
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where rk
l denotes the center of the k-th patch of the l-th transducer, ∆S is the patch area,

γ
SIR ≡ ∆S

S(rd
l
)
(1, · · · , 1) is a 1 × K vector, p̂l

m = (p(r1
l , m∆t), · · · , p(rK

l , m∆t))T denotes the

acoustic pressure at patches of l-th transducer at time m∆t. Here for simplicity, we assume

all the transducers are divided into K patches with equal area ∆S, and it is readily to extend

to general cases where l-th transducer is divided into Kl patches with area of ∆Slk.

Recalling the measured pressure data p̂m and p̂ defined for point-like transducer, we can

redefine p̂m as a KL×1 vector that represents the acoustic pressure at patches of transducers

with finite area at time t = m∆t as

p̂m ≡









p̂1
m
...

p̂L
m









. (B.4)

The corresponding p̂ can be redefine as a KLM × 1 vector denoting the measured pressure

data corresponding to all transducer and temporal samples as

p̂ ≡









p̂0

...

p̂M−1









. (B.5)

The averaged pressure measured by all transducer and temporal samples can be defined as

the LM × 1 vector

p̂SIR ≡









p̂SIR
0
...

p̂SIR
M−1









. (B.6)

where the L× 1 vector

p̂SIR
m ≡









p̂SIR(rd
1, m∆t)
...

p̂SIR(rd
L, m∆t)









. (B.7)

According to Eqn. B.3, p̂ and p̂SIR can be related as

p̂SIR = ΓSIRp̂ (B.8)
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where the KLM × LM matrix

ΓSIR ≡













γ
SIR 01×K · · · 01×K

01×K γ
SIR · · · 01×K

...
...

. . .
...

01×K 01×K · · · γ
SIR













. (B.9)

The EIR models the electrical response of the piezoelectric transducer. With the assumption

that the transducer is a linear shift invariant system with respect to the input averaged

pressure time sequence, the output voltage signal is the convolution result of the input and

the EIR.

For simplicity, the transducers are assumed to process identical EIR, and let he = (he
1, · · · , he

J)T

be the discrete samples of the EIR. The input averaged pressure time sequence of the l-th

transducer can be defined as a L× 1 vector p̂l
SIR ≡ (p̂SIR(rd

l , 0), · · · , p̂SIR(rd
l , (M − 1)∆t))T.

Then the output voltage signal p̂IR
l of the l-th transducer can be expressed as a (J+M−1)×1

vector

p̂IR
l = he ∗ p̂l

SIR, (B.10)

where ∗ denotes discrete linear convolution operation, which can be constructed as a matrix

multiplication by converting one of the operands into the corresponding Toeplitz matrix.

The output voltage signals of all transducers p̂IR ≡ (p̂IR
1 , · · · , p̂IR

L )T can then be computed

as

p̂IR = ΓEIRp̂SIR (B.11)

where the L(J + M − 1)× LM matrix

ΓEIR ≡









γ
EIR

...

γ
EIR









(B.12)
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and γ
EIR is a (J + M − 1)× LM Toeplitz-like matrix defined as

γ
EIR ≡































he
1 01×(L−1) 0 · · · 0 01×(L−1) 0
...

... he
1

...
...

...
...

he
J

...
...

... 0 01×(L−1) 0

0 01×(L−1) he
J · · · he

1 01×(L−1) 0

0 01×(L−1) 0 · · · ...
... he

1
...

...
...

... he
J

...
...

0 01×(L−1) 0 · · · 0 01×(L−1) he
J































(B.13)

By use of Eqns. (??), (B.8), and (B.11), it is readily found that

p̂IR = ΓEIRΓSIRSTM−1 · · ·T1T0ΓA, (B.14)

and the corresponding system matrix that incorporates the transducer impulse responses is

found to be

HIR ≡ ΓEIRΓSIRSTM−1 · · ·T1T0Γ. (B.15)
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Appendix C

Implementation of the FISTA

algorithm for PACT

Equation (5.20) was solved iteratively whose pseudocodes are provided in Alg. 2, where ‘Lip’

is the Lipschitz constant of the operator 2HTH [11].

Algorithm 2 Solver of the optimization problem defined by Eqn. (5.20)

Input: p̂, p
(0)
0 , λ, Lip

Output: p̂0

1: t(0) ← 1; σ
(1)
0 ← p

(0)
0 {Set the initial guess (The zero initial guess was employed in all

the studies in this article)}
2: for ζ = 1 to Z do

3: p
(ζ)
0 ← F Dnoise

(

σ
(ζ)
0 − 2

Lip
HT(Hσ

(ζ)
0 − p̂), 2λ/Lip

)

4: t(ζ+1) ← 0.5 + 0.5
√

1 + 4(t(ζ))2

5: σ
(ζ+1)
0 ← p

(ζ)
0 + (t(ζ) − 1)(p

(ζ)
0 − p

(ζ−1)
0 )/t(ζ+1)

6: end for

7: p̂0 ← p
(Z)
0

Note that we extended the FISTA algorithm described in Ref. [?] to 3D. The function

‘F Dnoise’ in Alg. 2-Line 3 solves a de-noising problem defined as:

x̂ = arg min
x≥0
‖y − x‖2 + β|x|TV, (C.1)
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where β = 2λ/Lip and

y = p̂− 2

Lip
HT(Hσ

(ζ)
0 − p̂). (C.2)

It has been demonstrated that Eqn. (C.1) can be solved efficiently [?], and the pseudocodes

are provided in Alg. 3.

Algorithm 3 Solver of the de-noising problem defined by Eqn. (C.1)

Input: y, β

Output: x̂

1:
[

a(1),b(1), c(1)
]

←
[

0(N1−1)×N2×N3
, 0N1×(N2−1)×N3

, 0N1×N2×(N3−1)

]

[

d(0), e(0), f (0)
]

←
[

0(N1−1)×N2×N3
, 0N1×(N2−1)×N3

, 0N1×N2×(N3−1)

]

t(1) = 1

2: for ζ = 1 to Z do

3:
[

d(ζ), e(ζ), f (ζ)
]

← Pp

{

[a(ζ),b(ζ), c(ζ)] + (6β)−1PT
l

{

Pc{y − 0.5βPl{a(ζ),b(ζ), c(ζ)}}
}

}

4: t(ζ+1) ← 1 + 0.5
√

1 + 4(t(ζ))2

5:
[

a(ζ+1),b(ζ+1), c(ζ+1)
]

← (t(ζ) − 1)/t(ζ+1)
[

d(ζ) − d(ζ−1), e(ζ) − e(ζ−1), f (ζ) − f (ζ−1)
]

6: end for

7: x̂← Pc

{

y − λPl{d(Z), e(Z), f (Z)}
}

The four operators Pl Pc, PT
l and Pp in Alg. 3 are defined as follows:

Pl : R
(N1−1)×N2×N3 ×R

N1×(N2−1)×N3 × R
N1×N2×(N3−1) → R

N1×N2×N3.

[

Pl{a,b, c}
]

n1,n2,n3
=

[a]n1,n2,n3
+ [b]n1,n2,n3

+ [c]n1,n2,n3
−

[a]n1−1,n2,n3
− [b]n1,n2−1,n3

− [c]n1,n2,n3−1

for n1 = 1, · · · , N1, n2 = 1, · · · , N2, n3 = 1, · · · , N3,

(C.3)

where we assume [a]0,n2,n3
= [a]N1,n2,n3

= [b]n1,0,n3
= [b]n1,N2,n3

= [c]n1,n2,0 = [c]n1,n2,N3
≡ 0.
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Pc : R
N1×N2×N3 → R

N1×N2×N3 .

[

Pc{x}
]

n1,n2,n3
= max

{

0, [x]n1,n2,n3
.
}

(C.4)

PT
l : R

N1×N2×N3 → R
(N1−1)×N2×N3 × R

N1×(N2−1)×N3 ×R
N1×N2×(N3−1). If we denote the input

and output matrices by y and (a,b, c) respectively, we have

[a]n1,n2,n3
= [y]n1,n2,n3

− [y]n1+1,n2,n3
,

for n1 = 1, · · · , N1 − 1, n2 = 1, · · · , N2, n3 = 1, · · · , N3

[b]n1,n2,n3
= [y]n1,n2,n3

− [y]n1,n2+1,n3
,

for n1 = 1, · · · , N1, n2 = 1, · · · , N2 − 1, n3 = 1, · · · , N3

[c]n1,n2,n3
= [y]n1,n2,n3

− [y]n1,n2,n3+1,

for n1 = 1, · · · , N1, n2 = 1, · · · , N2, n3 = 1, · · · , N3 − 1.

(C.5)

Pp : R
(N1−1)×N2×N3 × R

N1×(N2−1)×N3 × R
N1×N2×(N3−1) → R

(N1−1)×N2×N3 × R
N1×(N2−1)×N3 ×

R
N1×N2×(N3−1). If we denote the input and output matrices by (a,b, c) and (d, e, f) respec-

tively, we have

[d]n1,n2,n3
=

[a]n1,n2,n3

max
{

1,
√

[a]2n1,n2,n3
+ [b]2n1,n2,n3

+ [c]2n1,n2,n3

}

[e]n1,n2,n3
=

[b]n1,n2,n3

max
{

1,
√

[a]2n1,n2,n3
+ [b]2n1,n2,n3

+ [c]2n1,n2,n3

}

[f ]n1,n2,n3
=

[c]n1,n2,n3

max
{

1,
√

[a]2n1,n2,n3
+ [b]2n1,n2,n3

+ [c]2n1,n2,n3

}

,

(C.6)

where n1 = 1, · · · , N1, n2 = 1, · · · , N2, n3 = 1, · · · , N3, and we assume [a]0,n2,n3
= [a]N1,n2,n3

=

[b]n1,0,n3
= [b]n1,N2,n3

= [c]n1,n2,0 = [c]n1,n2,N3
≡ 0.
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Appendix D

Calculating the Gradient of (6.10)

The gradient of the first term in (6.10) can be calculated by discretizing the the Fréchet

derivative (6.7)

∂‖H(c)A− p̃‖2
∂c

= −4C−3 ◦
{

L−2
∑

l=1

pl+1 − pl−1

2
◦ ql+1 − ql−1

2

+ (p1 − p0) ◦ (q1 − q0) + (pL−1 − pL−2) ◦ (qL−1 − qL−2)
}

(D.1)

where ◦ denotes Hadamard product, C−3 is defined as

C−3 ≡ [c(r1)
−3, · · · , c(rN)−3]T, (D.2)

pl and ql (l = 0, · · · , L− 1) are defined as

pl ≡ [p(r1, l∆t), · · · , p(rN , l∆t)]T, (D.3)

and

ql ≡ [q(r1, l∆t), · · · , q(rN , l∆t)]T, (D.4)

representing the PA wavefield and the adjoint wavefield sampled at the 3D Cartesian grid

vertices rn (n = 1, · · · , N) and at time t = l∆t, respectively.

If TV-penalty is adopted, the gradient of the second term in (6.10) is given by [125]

∂λc|c|TV

∂c
= λc[ċ1, · · · , ċn, · · · , ċN ]T, (D.5)
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and

ċn ≡
([c]n − [c]n−

1
) + ([c]n − [c]n−

2
) + ([c]n − [c]n−

3
)

ǫ + {([c]n − [c]n−

1
)2 + ([c]n − [c]n−

2
)2 + ([c]n − [c]n−

3
)2} 1

2

−
[c]n+

1
− [c]n

ǫ + {([c]n+

1
− [c]n)2 + ([c]n+

1
− [c]

(n+

1
)
−

2

)2 + ([c]n+

1
− [c]

(n+

1
)
−

3

)2} 1

2

−
[c]n+

2
− [c]n

ǫ + {([c]n+

2
− [c]

(n+

2
)
−

1

)2 + ([c]n+

2
− [c]n)2 + ([c]n+

2
− [c]

(n+

2
)
−

3

)2} 1

2

−
[c]n+

3
− [c]n

ǫ + {([c]n+

3
− [c]

(n+

3
)
−

1

)2 + ([c]n+

3
− [c]

(n+

3
)
−

2

)2 + ([c]n+

3
− [c]n)2} 1

2

,

(D.6)

where ǫ is a small positive number to prevent the denominators being zeros, and [c]n denotes

the n-th grid node of c, and [c]n−

i
and [c]n+

i
are neighboring nodes before and after the

n-th node along the i-th dimension (i = 1, 2, 3), respectively. Likewise, [c]
(n+

i
)
−

j

denotes the

neighboring node that is after the n-th node along the i-th dimension and before the n-th

node along the j-th dimension.

The gradient of the objective function in (6.10) is then given by the sum of (D.1) and (D.5).
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Appendix E

Support Condition for Accurate

Reconstruction of c(r)

First, we define the supports of A(r) and c(r) being the regions where A(r) 6= 0 and c(r)−c0 6=
0, respectively. Here c0 is the known SOS in the background (e.g. in water). We then

assume both A(r) and c(r) possess compact supports, which is denoted as supp(A) and

supp(c), respectively. Second, we assume weak variation in a medium’s SOS distribution.

Specifically, variations in the SOS distribution must occur on length scales that are large

compared to the effective acoustic wavelength. Under this assumption, a straight ray model

is utilized to approximate the wave equation. Third, we further assume that the PA signal

generated at each point of supp(A) can be recorded independently by transducers, which are

densely distributed on a measurement surface that encloses supp(A) and supp(c).

Under the above assumptions, the reconstruction of the slowness s(r) ≡ 1
c(r)

, which is equiv-

alent to reconstructing c(r), is analogous to the reconstruction of attenuation coefficients

in X-ray computed tomography (CT). The 2D analogy is shown in Fig. E.1 and described

below. First, consider the case where supp(c) ⊆ supp(A). Without loss of generality, the

measurement surface is assumed to be a circle with radius R that encloses supp(A).

Consider the projection of s(r) (r ∈ supp(A)) in direction α, as shown in Fig. E.1. Since

we assume that the PA signal generated at each point of supp(A) can be independently

recorded, we can compute the time of flight (TOF), which is denoted as tf (β, r), of the signal

traveling from the point r ∈ supp(A) to the transducer located at rβ ≡ [R cos(β), R sin(β)]T
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(β ∈ [α− π
2
, α + π

2
]). We then define

t0(α, β) = inf{tf (β, r) : r · n̂ = d, r ∈ supp(A)} (E.1)

and

t1(α, β) = sup{tf (β, r) : r · n̂ = d, r ∈ supp(A)}, (E.2)

where n̂ = [cos(α− π
2
), sin(α− π

2
)]T is the unit vector in direction α− π

2
, and d = R sin(β−α),

as shown in Fig. E.1. Geometrically, t0(α, β) (resp. t1(α, β)) is the TOF of the signal

traveling from point r0 (resp. point r1) to rβ, where the line segment r0r1 is the intersection

of the line r · n̂ = d and supp(A). If the line r · n̂ = d does not intersect with supp(A), we

define t0(α, β) = t1(α, β) = 0 (β ∈ [α− π
2
, α + π

2
]).

Since the straight ray model is assumed, we then have

τ(α, β) ≡ t1(α, β)− t0(α, β) =

∫

L(r0,r1)

s(r)dr, (E.3)

where the integral is along the line segment r0r1.

Therefore, the set τ(α, β) for a fixed α and all β ∈ [α− π
2
, α+ π

2
] is the 1D projection of s(r)

(r ∈ supp(A)) in direction α, and the set τ(α, β) for all α (α ∈ [0, 2π)) and β ∈ [α− π
2
, α+ π

2
]

is the 2D Radon transform of s(r) (r ∈ supp(A)). Since the Radon transform is invertible,

s(r) (r ∈ supp(A)) can be accurately reconstructed from τ(α, β), where α ∈ [0, 2π) and

β ∈ [α − π
2
, α + π

2
]. Consequently, c(r) (r ∈ supp(c)) can be accurately reconstructed as

supp(c) ⊆ supp(A) is considered here. It follows that c(r) can be accurately reconstructed

because the background SOS is assumed to be known. In fact, the requirement supp(c) ⊆
supp(A) can be relaxed to supp(c) being enclosed by supp(A), as shown in Fig. E.2(a). This

is because we only need the tf(β, r) (r ∈ ∂ supp(A)), where ∂ supp(A) is the boundary of

supp(A), to compute τ(α, β) according to (E.3).

Consider the case where supp(c) is not enclosed by supp(A), as shown in Fig. E.2(b). We can

see that, for each projection angle α, the projections of a subset of supp(c) in this direction

(indicated by Cα) are not measured because A(r) = 0 in that subset. This is analogous to

the interior problem in X-ray CT, which does not have a unique solution [89]. Therefore,

c(r) cannot be accurately reconstructed if supp(c) is not enclosed by supp(A).
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Finally, the support condition for accurate reconstruction of c(r) is supp(c) being enclosed

by supp(A).
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Figure E.1: Projection of the slowness in direction α and supp(c) ⊆ supp(A). As an example,
supp(A) can be seen as the area occupied by a breast, where the SOS is approximately the
same as the background SOS in water, and supp(c) can be seen as the area occupied by a
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