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Introduction 

 Episodic recognition is the judgment that a stimulus has been encountered previously. 

Although researchers have traditionally focused on elucidating the number and nature of memory 

signals that directly guide recognition, numerous other aspects of the environment may also 

provide information that should be relevant for recognition judgment; particularly under 

situations in which the memory signals are weak or ambiguous. For example, determining 

whether a face in a crowd is someone you know well enough to approach and speak to should be 

heavily influenced by whether one is in a highly familiar or unfamiliar environment such as a 

local grocery store, versus a market in a foreign country; or other factors such as the potential 

social embarrassment from making the wrong decision, and whether one has recently 

embarrassed oneself by recently and accidentally warmly greeting a stranger. Under this 

conceptualization, people do not make decisions about their memories in a vacuum and multiple 

factors should play a role in biasing memory decisions. This dissertation looks at the role of 

reinforcement histories in shaping how recognition judgments are biased towards conclusions of 

novelty or familiarity.  

 

Chapter 1 

Memory As Decision-Making 

 

The Signal Detection Model of Recognition Decisions 

 A vast majority of recognition memory models – both single and dual-process models – 

assume that some aspect of memory decisions is based on a continuous dimension of recognition 
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strength or intensity, and this dimension is most often modeled via Signal Detection Theory 

(Banks, 1970; Wixted & Mickes, 2010; Yonelinas, 2002). Under this approach, different classes 

of stimuli (e.g., novel and familiar faces) are assumed to evoke different distributions of memory 

evidence – with novel stimuli forming a distribution lower on the evidence axis than familiar 

stimuli (Figure 1). Critically, because the distributions are continuous and overlapping, and 

observers are forced to make dichotomous judgments, an observer’s task is to divide this 

evidence continuum into values diagnostic of novelty or familiarity using a cutoff known as a 

decision criterion, or decision bias. Items that evoke evidence values less than the criterion are 

judged as novel, whereas items that evoke evidence values greater than the criterion are judged 

as familiar.  

 If the observer is assumed to be statistically ideal, then the evidence axis is not one of raw 

memory strength signals, but a translation of strength into statistical likelihoods of the two 

possible judgments (Glanzer & Adams, 1990; Glanzer, Hilford, & Maloney, 2009; Pastore, 

Crawley, Berens, & Skelly, 2003; Turner, Van Zandt, & Brown, 2011). Under this conception, 

decisions are based on the likelihood a given strength would have been encountered if sampled 

from the pool of old items versus the likelihood that the same strength value would have been 

encountered if the item were instead sampled from the pool of new items. These likelihoods are 

indicated by the relative heights of the normal distributions at that point on the strength axis. The 

statistically ideal observer then selects the decision with the greater likelihood. This decision 

process is most efficiently represented by combining the two likelihoods in a ratio 

[p(old)/p(new)], with values greater than one favoring an old conclusion, and those less than one 

favoring the new conclusion; this decision rule is a statistically optimal approach to 

distinguishing between two alternative hypotheses (Neyman & Pearson, 1992). 
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Figure 1: Basic Signal Detection Model. Studied and novel items 

evoke overlapping degrees of evidence. The distance between the 

two distributions corresponds to the discriminability (d’) of the two 

item types (further spaced distributions are less confusable). The 

vertical line between the two distributions represents the decision 

criterion. 

 Such a description denotes a decision-making system that seems highly optimal and 

largely explicit. Critically, the likelihood decision rule, if feasible, enables observers to make 

statistically optimal decisions under a host of different scenarios (Criss & McClelland, 2006; 

Turner, Van Zandt, & Brown, 2011). For example, if an observer knows a recognition test 

contains an equal number of old and new items, he can set the criterion to the ideal likelihood 

ratio of 1. Alternatively, if the number of old items outnumbers the number of new items by 3:1, 

the ideal observer establishes the criterion at a likelihood ratio of 3 (Macmillan & Creelman, 

2004). Under either case, a statistically ideal observer will maximize the number of correct 

responses by modifying his responding to accommodate the relative preponderance of old and 

new items. This brief review examines some of the influences on criterion placement in 

recognition.  
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A Review of Criterion Setting 

 Under the likelihood ratio version of Signal Detection theory, observers can judiciously 

regulate their criteria in order to maximize some desired outcome. For instance, when informed 

of the target to lure ratio (i.e., the base rates of targets and lures) they should update their criteria 

accordingly to maximize the proportion of correct responses. Such a conceptualization denotes a 

decision-making mechanism that is arguably largely strategic and controlled. For instance, 

several researchers have described criterion shifting as strategically controlled or requiring 

"cognitive effort" (Benjamin & Bawa, 2004; Dobbins & Kroll, 2005; Rhodes & Jacoby, 2007; 

Stretch & Wixted, 1998). Many of the manipulations discussed below generally support the 

notion of controlled, explicit criterion-setting. However, as will be evidenced by the review 

below, the precision of these shifts is often vastly improved by performance feedback, 

suggesting that active feedback-based learning can fine-tune an initially coarse strategically 

placed criterion. 

 

Explicit Influences 

 Manipulations that fall under the banner of “explicit influences” are those that use some 

sort of explicit instruction or environmental cue to encourage participants to adopt a more liberal 

or conservative criterion than he or she would naturally employ. Critically, in these situations, 

observers are likely able to state how they should proceed in order to improve overall accuracy; 

for example, by being more stringent with respect to old materials since they form a minority of 

items in the test list. Manipulations of this sort are typically quite effective in influencing 

criterion placement. A key factor that unites many of these manipulations is the assumption that 
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observers can exert a measure of control and precision over the placement of the criterion in 

order to maximize some desired outcome. 

Task instructions are one such example of explicitly influencing the criterion (Healy & 

Jones, 1975; Hirshman, 1995; Miller, Handy, Cutler, Inati, & Wolford 2001) with researchers 

simply verbally encouraging observers to respond in a certain manner (e.g., “be very cautious 

when calling an item old”), and participants adjusting their criteria accordingly. Other 

researchers have used trial-by-trial hints (or “cues”) in order to dynamically affect criterion 

placement (Jaeger, Cox, & Dobbins, 2012; Jaeger, Lauris, Selmeczy, & Dobbins, 2011; 

O’Connor, Han, & Dobbins, 2010; Selmeczy & Dobbins, 2013). In a typical cueing experiment, 

participants are given hints on a subset of trials during a recognition memory test. Participants 

are typically informed of the validity of the cues (e.g., “cues will be correct 75% of the time”), 

and are instructed to use the cues to improve their performance. As would be predicted, 

participants are able to incorporate these cues to adjust their responding (e.g., participants are 

more likely to respond “old” when given a cue that an item is “likely old”); that is, participants 

shifted their criteria in accordance with an explicit instruction that had a known validity.  

 

Base Rates 

 One variable that has traditionally been manipulated when trying to influence observers’ 

decision criteria is the base rates of targets to lures. For example, participants in an experiment 

can be told that an upcoming test is composed of 25% targets and 75% lures, and should be able 

to adjust the decision criterion and their relative response frequencies to approximate the item 

frequencies. Indeed, base rate manipulations have been fairly successful in that observers do 

seem to incorporate base rate information when adjusting the criterion (Estes & Maddox, 1995; 
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Healy & Jones, 1975; Healy & Kubovy, 1978; Ratcliff, Sheu, & Gronlund, 1992; Van Zandt, 

2000; Van Zandt & Maldonado-Molina, 2004). 

 Van Zandt (2000) informed participants of the relative proportion of studied items and 

found that participants adjusted their criteria in accordance with the informed base rates. 

Similarly, Ratcliff, Sheu, and Gronlund (1992) informed their participants of the relative 

proportions of studied and novel items on an upcoming test, and found that decision criteria 

tended to track this information. Finally, Kantner and Lindsay (2010) manipulated base rates 

prior to a recognition test, but did not inform participants about the test make-up. However, 

participants were able to learn this information and respond accordingly when trial-wise 

performance feedback was provided at test. 

 Although the studies reviewed above seem to indicate a general effectiveness of base rate 

manipulations on the criterion, examples of extreme base rate manipulations in the recognition 

memory literature have painted a markedly different picture of how well observers can 

incorporate base rate information (Cox & Dobbins, 2011; Ley & Long, 1987, 1988; McKelvie, 

1993; Strong & Strong, 1916; Underwood, 1972; Wallace, 1978, 1982; Wallace et. al., 1978). In 

these instances, one class of items is wholly removed from the test environment, and participants 

are either correctly informed or uninformed about the exact construction of the test list. Wallace 

demonstrated remarkable similarities in the endorsement rates of studied items regardless of 

whether studied items were presented with or without novel items intermixed during testing. This 

similarity was present regardless of whether participants were aware of the manipulation 

(Wallace et. al., 1978) or not (Wallace, 1982). Likewise, Cox and Dobbins (2011) found that 

participants failed to shift the criterion optimally during these so-called “pure list” tests (tests 

composed entirely of studied or entirely of novel items). In fact, they found that participants 
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were more liberal (more likely to respond “old”) during a test composed entirely of novel items 

(a target-free test), demonstrating an unwillingness to use the criterion to compensate for wildly 

different base rates of items. Furthermore, Cox and Dobbins (2011) demonstrated that not only 

were overall target hit rates similar for pure and mixed lists, but that the distribution of 

confidence was also quite similar when participants were uninformed of the prior probabilities, 

further suggesting limited awareness of anything aberrant about the test. 

 As opposed to the base-rate literature reviewed previously, the pure-list literature 

suggests that observers are unable – or at least unwilling – to use base rate information as an 

impetus for opportunistically shifting the decision criterion, at least when making recognition 

memory decisions. Cox and Dobbins (2011) highlighted two potential key differences between 

traditional base rate and pure-list manipulations, and argued that opportunistic shifts require 

observers to both a) detect a large scale difference in base rates (if not explicitly told the 

proportions of each item type) and b) be encouraged to capitalize on this information. For 

example, Healy and Kubovy (1978) reported large criterion shifts as a function of changing base 

rates. However, in their experiments, participants were informed of the base rates prior to 

initiating a test block, and were given trial-to-trial performance feedback. Likewise, in her first 

reported experiment, Van Zandt (2000) informed participants what proportion of an upcoming 

test list would be composed of studied items and provided points and feedback to encourage an 

appropriate criterion shift. Finally, Estes and Maddox (1995) manipulated base rates and the 

presence of performance feedback, and found that participants only appreciably shifted their 

response criteria when feedback was provided at test. Cox and Dobbins (2011) argued that 

observers might “not spontaneously detect such manipulations, or if they do, they require some 
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further encouragement or impetus to opportunistically shift the decision criterion,” with this 

impetus typically tied to the provision of feedback and performance summaries. 

Supporting this, Heit, Brockdorff, and Lamberts (2003) examined how observers could 

dynamically adjust their criteria using a paradigm dubbed the “response signal technique.” The 

response signal technique requires participants to respond to a recognition stimulus at some 

varying time interval after the stimulus appears (i.e., respond after hearing a tone, and the onset 

of the tone varies pseudorandomly). The authors varied the base rates associated with the timing 

of the signal (e.g., an early signal was associated with a 9:1 ratio in favor of the item being new). 

In this case, the timing of the tone served as a cue for the item's status, but this fact was never 

stated to participants. Critically, summary feedback was provided at the end of each test. 

Response criterion appeared to track changes in the base rates across signal timing – in essence, 

participants had learned an association between response timing and the base rates, even without 

trial-by-trial feedback or specific instructions. The authors suggest that participants are able to 

strategically adjust the criterion to reflect the changes in base rates associated with response 

timing, although the authors did not specifically query participants about whether they had any 

explicit awareness of the relation between signal timing and their own response patterns. 

Critically, the summary feedback may have rendered the relationship between signal timings and 

base-rates more explicit to the participants such that they then used the former to strategically 

bias responding. 

 

Feedback 

 As discussed above, feedback often plays a role in studies of criterion placement. 

Consider the power of embarrassing social feedback from falsely recognizing someone; such a 
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situation provides salient information about the caution an observer should exercise when 

evaluating his own recognition memory. Further, this type of feedback can serve as a sort of 

"alerting tool" by providing information about the memory environment an observer encounters; 

for instance, the likelihood of an observer encountering faces he will recognize (i.e., base rate 

information). As alluded to earlier, feedback is typically most useful when some aspect of the 

task demands is initially opaque to the observer (e.g., different base rates, Kantner & Lindsay, 

2010). Indeed, it has been suggested that “feedback is a tool for optimizing or controlling bias” 

in recognition memory (Rotello & Macmillan, 2008). Thus feedback may be important in 

incrementally adjusting and fine-tuning the placement of the criterion. 

 There are a fair number of studies demonstrating how feedback can influence decision 

criterion placement (Carterette, Friedman, & Wyman, 1966; Estes & Maddox, 1995; da Silva & 

Sunderland, 2010; Han & Dobbins, 2008, 2009; Kantner & Lindsay, 2010; Rhodes & Jacoby, 

2007). Supporting this idea, da Silva and Sunderland (2010) demonstrated that trial-by-trial 

feedback reduced the variability of the recognition criterion in older adults (i.e., older adults 

demonstrated more stable criteria). Further, Kantner and Lindsay (2010) investigated whether 

feedback could improve recognition memory performance. They found that while feedback did 

not improve overall discriminability, it encouraged participants to adopt more appropriate 

decision criteria when unequal base rates were used (Experiment 2); critically, participants were 

not aware of the differences in base rates prior to the test, but were able to pick up on this 

information using the performance feedback. Likewise, Rhodes and Jacoby (2007) correlated the 

probability that a test item had been previously studied with its location on the screen during test 

presentation (e.g., items presented on the left half of the screen had a 66% chance of being 

previously studied) and provided performance feedback (Experiment 3). They found that 
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feedback moderated the effects of awareness of the manipulation on the criterion:  even when 

participants claimed to be aware of the different base rates, they were not able to capitalize on 

this information to the same degree without the presence of reinforcing feedback. 

Verde and Rotello (2007) attempted to encourage dynamic, within-test criterion shifts 

using seamless changes in the average memory strength of items within a single test context. 

When average memory strength changes (e.g., mean of the target distribution moves closer to the 

lure distribution), a statistically ideal observer should shift the criterion such that the likelihood 

ratio is still 1 (Figure 2). Verde & Rotello (2007) manipulated the average strength of targets 

seamlessly across two halves of a test list such that, for example, lures were intermixed with 

strongly encoded targets during the first half whereas lures were intermixed with weakly 

encoded targets in the second half of the subjectively same test list. That is, there was no break or 

environmental cue given to observers when transitioning from the portion with strong targets to 

the portion with weak targets. If observers could optimally utilize memory strength itself as a cue 

to update the decision criterion, they should adopt different criteria for each half of the test when 

average difficulty of discrimination changes across test halves. Although Verde and Rotello 

(2007) found that initial criterion placement differed depending upon whether subjects started 

with a strong or weak test half, they did not alter the adopted criterion when transitioning to the 

second half of the test. It was not until summary feedback was included partway through each 

test (Experiment 5) that participants were able to appreciate the changes in average memory 

strength. As Verde and Rotello (2007) point out, observers likely do not directly utilize the 

average strength of encountered materials to modulate and update recognition criteria, and may 

instead rely upon cues not directly tied to memory representations (such as information provided 

by error feedback; or expectations, McCabe & Balota, 2007). 
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Lingering Questions 

 Overall, the evidence reviewed above paints a general picture of a recognition decision 

criterion that lies under the volitional control of the observer (although the optimality of this 

control is a separate question). Observers appear to be able to generally adjust the criterion to 

account for instructions, payoffs, and base rates, all of which suggest a reasonable degree of 

volitional control over criterion placement. However, in addition to all of the evidence pointing 

toward an explicitly set and controlled criterion, several other studies suggest the criterion can be 

Figure 2: As average memory strength increases, a statistically ideal observer 

should become more conservative in order to maintain a likelihood ratio of 1.  
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influenced incrementally via trial-by-trial feedback (Han & Dobbins, 2008, 2009; Kantner & 

Lindsay, 2010; Rhodes & Jacoby, 2007). To elaborate, these studies together demonstrate 

dynamic criterion shifts that are, additionally, not always transparent to the observer; that is, 

feedback may sometimes alter the decision tendencies even though the observer has not used the 

feedback to adopt an explicit response strategy. 

Further evidence suggesting a role for feedback-based implicit learning governing 

criterion placement comes from studies that used probabilistically biased feedback procedures to 

differentially reinforce one response type over another. In one set of experiments, Han and 

Dobbins (2009) utilized a biased feedback schedule to influence the decision criterion. In 

Experiment 1, participants probabilistically received positive feedback about one class of error 

(i.e., being told an incorrect “old” response was correct; henceforth referred to as false positive 

feedback [FPF]). Across the experiment, large criterion differences were observed depending on 

which response type was differentially reinforced – for example, participants tended to respond 

“old” more often when FPF was given for incorrect “old” reports. When the tests were broken 

down into sub-blocks, it was revealed that criterion differences became larger across sub-blocks. 

Finally, criterion differences persisted across two later tests, even when feedback was removed. 

Interestingly, participants who demonstrated the effects seemed unaware of the anomalous nature 

of the feedback (Han & Dobbins, 2008). Part of what makes this design interesting is that the 

feedback manipulation only appears on error trials – trials in which observers likely have very 

little diagnostic information and are apt to be subjectively guessing. Because of this, the 

anomalous nature of the feedback often remains apparently unknown to observers, so any 

changes in decision-making is unlikely to reflect top-down strategies in response to performance 

feedback (e.g., Rhodes & Jacoby, 2007). 
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The FPF paradigm suggests that feedback can be used as more than just an alerting tool 

in recognition decision-making. In this case, feedback appears to drive a slow, incremental sort 

of reinforcement-based learning. Others have proposed that this sort of learning is responsible for 

the surface resemblance that humans and other animals bear to statistically optimal likelihood 

ratio decision-makers (Wixted & Gaitan, 2002). While it is reasonable to assume that humans 

can place and control a strategic and explicit criterion (somewhat akin to a likelihood ratio 

decision axis), it seems odd to assume the same approach on the part of animals such as pigeons. 

Nonetheless, these animals will demonstrate criterion shifts when given appropriate 

reinforcement, providing further evidence for the role of feedback in recognition criterion 

setting. Taken together, this suggests evidence for both explicitly controlled criterion setting and 

feedback-based criterion learning operating during recognition, at least for humans (c.f. Poldrack 

& Packard, 2003) with these two mechanisms potentially operating in parallel. This parallel 

operation is clear in studies where feedback amplifies some explicit response strategy (Rhodes & 

Jacoby, 2007; Verde & Rotello, 2007). While explicitly controlled criterion setting has been 

well-established by the extant literature, the notion of a feedback-based criterion learning 

mechanism remains relatively uncharacterized. For feedback-based criterion learning, it is 

evident that observers do not necessarily acquire a global strategy, it is (perhaps obviously) 

heavily feedback-dependent, and it can persist in the absence of continued reinforcement (Han & 

Dobbins, 2008, 2009; Kantner & Lindsay, 2010). These descriptions are consistent with other 

forms of feedback-based implicit learning such as habit formation or procedural learning (Dayan 

& Daw, 2008; Yin & Knowlton, 2006).  

The current dissertation proposes a framework of recognition criterion setting whereby 

feedback can influence the recognition criterion in one of two ways. The first is through alerting 
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the observer to enact some useful response strategy (e.g., capitalizing on differing base rates in a 

test; Kantner & Lindsay, 2010, Rhodes & Jacoby, 2007). The second is through incremental 

adjustment, akin to sorts of reinforcement learning commonly seen in pigeons and other animals 

(Wixted & Gaitan, 2002). This work focuses on the latter avenue of feedback-based criterion 

learning. The next chapter will present a brief introduction to implicit learning, focusing on how 

it may relate to the current proposed framework. 



xv 

Chapter 2 

Implicit Learning: Learning Without Intent 

 Implicit learning constitutes knowledge or associations acquired from the environment 

whose functional properties are held largely outside of consciousness (Reber, 1989). In other 

words, in contrast to most explicit learning, implicit learning is typically acquired without 

conscious attempt to do so, and the associations acquired are typically unavailable to conscious 

access. Observers are unlikely to be able to state what features of a task they are learning. 

Implicit learning also tends to occur gradually and automatically through multiple encounters 

with a stimulus or situation. (e.g., learning to draw an image while only viewing it in a mirror). 

The following presents a brief introduction to several implicit learning paradigms. This is by no 

means an exhaustive review; rather, these sections should serve to introduce these concepts in 

order to relate them to the current work. 

 This section will focus selectively on implicit learning paradigms; that is, paradigms that 

typically involve acquisition of some skill or habit. This is in contrast to implicit memory 

paradigms, whereby the learning is typically expressed in terms of priming (Jacoby, 1991; 

McDermott & Roediger, 1994). Although the two topics fall under the general rubric of 

nondeclarative memory, several nuances warrant separation of the two topics for the purpose of 

this discussion. One critical difference concerns the state of the knowledge being assessed. 

Implicit learning involves the incidental construction of new knowledge, whereas implicit 

memory concerns the incidental activation of existing knowledge structures (Pothos, 2007). 

Because the work discussed here presumably involves gradual learning across many trials, it falls 

more in line with the description of “implicit learning” described above. 
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Classification Learning 

 Classifying and categorizing stimuli into groups is a useful skill for navigating the world. 

For example, categorizing a pan as a sauté pan or wok determines what foods the items is best 

used to prepare. Likewise, categorizing an individual as familiar or novel determines whether 

you decide to engage or interact with them. In many cases, the rule(s) for classifying something 

are verbalizable and available to conscious knowledge. These are in contrast to other cases when 

the classification rule(s) may be difficult or impossible to verbalize or totally unavailable to 

conscious introspection. This section will focus on three major types of classification learning 

task that generally fall into the latter category: artificial grammar learning, information-

integration perceptual categorization, and probabilistic classification (e.g., the weather prediction 

task).  

 Artificial grammar learning is one of the most common paradigms used to study implicit 

learning. An artificial grammar consists of a set of rules that are used to generate sequences of 

symbols (strings). Strings are formed by iterating through the rules and generating output. 

Strings are considered grammatical if they conform to the rules of the grammar. For example, 

one could define a rule that strings that start with the letter K must always be immediately 

followed by the letter Q. Under this grammar, “KQZZF” may be considered grammatical, but 

“KZQ” would not. A typical artificial grammar task consists of a learning phase and a testing 

phase. During the learning phase, participants observe several strings generated by the grammar 

without any knowledge that the strings are arising from a finite set of rules; often they are told to 

recall letter strings to some performance criterion as an incidental learning task. During the test, 

participants are informed that the letter strings arise from a complex set of rules, and are asked to 

classify novel strings as grammatical or not. Participants are able to discriminate grammatical 
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from non-grammatical strings above chance, despite often reporting no explicit knowledge of the 

rules or task parameters (Pothos, 2007; Reber, 1968). Interestingly, learning often occurs without 

feedback; thus observers abstract implicit knowledge during the initial exposure phase 

incrementally without trial-and-error learning. 

 As stated above, one hallmark of artificial grammar learning is that observers learn the 

underlying grammar without conscious attempt to specifically do so; grammar learning is a 

byproduct of processing the stimuli in some other manner (e.g., studying and recalling specific 

strings). In fact, the abstraction acquired appears to be a construct largely outside of explicit 

memory (Knowlton, Ramus, & Squire, 1992; Knowlton & Squire, 1994). In one study by 

Knowlton, Ramus, and Squire (1992), amnesiac participants and healthy controls performed 

equally well on artificial grammar classification, but amnesiac participants performed worse than 

controls when their recognition memory for studied exemplars was tested. In a separate task, 

Knowlton, Ramus, and Squire (1992) trained participants on an artificial grammar but gave them 

instructions that encouraged an explicit recall strategy during the classification task (e.g., “say 

‘yes’ if the item seems familiar or reminds you of one of the items you saw earlier”). When the 

instructions were phrased explicitly, amnesiac participants performed worse than healthy 

controls at grammar classification, in spite of their prior equivalent performance (see also Reber, 

1976 for a similar example in healthy controls).  

 In artificial grammar tasks it appears that observers learn the featural regularities of the 

items without necessarily being explicitly aware of said regularities. In this sense, artificial 

grammar learning resembles another type of classification learning paradigm known as 

information-integration categorization. In information-integration categorization, like artificial 

grammar learning, an observer must identify stimuli as belonging to one of several (typically 
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two) distinct classes. In this case, the stimuli are composed of several orthogonal perceptual 

dimensions: for example, line segments that vary in length and orientation of tilt. In information-

integration tasks, an observer must classify stimuli into one of two classes based on the 

integration of multiple orthogonal dimensions (see Figure 3). The categorization rule is typically 

difficult or impossible to verbalize because the perceptual category is defined by a continuous 

integration of the two orthogonal attributes. This harkens back to the definition set forth by 

Reber (1989) that implicit learning contrasts with explicit learning in the level of conscious 

awareness of the regularities underlying the learning. Considering the example in Figure 3, one 

might be able to describe the category bound as, "for every unit increase in orientation, increase 

one unit in length; different classes fall on either side of this bound." Such a description would 

be exceedingly difficult to spontaneously acquire and verbalize by the casual observer. 

Nevertheless, observers can gradually learn to adequately classify stimuli such as these, but the 

learning is heavily feedback-dependent and difficult to verbalize (Ashby & Maddox, 2005).   

However, in both tasks, once learning has occurred, new exemplars are then successfully 

categorized. 

 

 



xix 

 

 

 In contrast to information-integration tasks, some forms of perceptual category learning 

can occur with the support of explicit, verbalizable strategies. For example, in rule-based 

categorization tasks (categorization tasks that typically rely on explicit knowledge systems and 

are likely NOT implicit; see Ashby & Maddox, 2005), observers can adopt and use a simple 

categorization rule if they are supplied one. Provided this rule does not significantly hamper 

performance (i.e., violations of the rule are not too egregious), observers will continue to classify 

according to this rule (Allen & Brooks, 1991). In contrast, in information-integration tasks, 

explicit knowledge does not aid in categorization performance, and learning to properly 

categorize stimuli is driven by feedback-based trial-and-error learning. For example, Ashby, 

Queller, and Berretty (1999) tried to use explicit instructions to aid observers in solving an 

Figure 3: Rule-based versus information-integration perceptual categorization 

tasks. In the rule-based task (left), stimuli are categorized based on one stimulus 

dimension (orientation). In the information-integration task, stimuli are 

categorized based on a linear combination of line length and line orientation. 
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information-integration categorization task. In the task, participants had to classify line stimuli 

into one of two arbitrary categories based on the length and orientation of the line segments (a la 

Figure 3). Participants were instructed that perfect performance was only possible if both sources 

of information were used. Nevertheless, such instructions alone were not sufficient for 

participants to optimally classify the stimuli; high classification performance was only achieved 

when error feedback was provided during training. This study underscores the dichotomy 

between explicit and implicit systems: even with conscious volition and the explicit knowledge 

of how to properly perform the task, proper learning did not occur without the aid of feedback. 

 In the case of information-integration and artificial-grammar learning, the mapping 

between features and appropriate categories is deterministic. That is, the same combination of 

features always belongs to the same category across exposures. In contrast, in so-called 

probabilistic classification tasks the outcomes are not deterministic; that is, a given stimulus will 

not always predict the same decision outcome (i.e., responding 'category A' to a given stimulus 

will be correct only 75% of the time). Because the outcomes are not deterministic, explicit 

strategies are usually not helpful; responding is driven largely by feedback probabilistically 

reinforcing a given decision. Like information-integration categorization, probabilistic 

classification is learned gradually across many trials through trial-and-error. One example of 

such a task is the so-called “weather prediction task,” a probabilistic categorization task. During 

the weather prediction task, participants are shown one or more cards with unique geometric 

designs, and are asked to decide whether the combination of cards represents a “sunny” or 

“rainy” forecast (Poldrack et. al., 1999). Each card is probabilistically associated with a given 

weather outcome, and participants gradually learn to associate the most probable weather 

outcome with each card combination throughout the course of the task. Performance often hovers 
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around chance for the first several trials and gradually increases across several blocks. Although 

it is often considered to be an exclusively implicit task, observers will often report a variety of 

generally viable strategies when approaching this task. Interestingly, observers who claim to be 

guessing perform just as well as those who are able to verbalize some kind of strategy (Gluck, 

Shohamy, & Myers, 2002), suggesting that both cognitive strategies and implicit learning can 

play a role in this type of categorization task, in contrast to information-integration 

categorization. 

This point leads to a general criticism of some of the classification learning literature. 

Although incidental encoding (e.g., artificial grammar learning) leads to tacit knowledge and 

improved performance in these tasks, explicit strategies can often lead to above chance 

performance as well. For example, memorizing stimulus-outcome pairings in the weather 

prediction task can lead to adequate classification performance (Gluck, Shohamy, & Meyers, 

2002). In artificial grammar learning, if participants are provided with a structured version of the 

grammar (e.g., presenting like grammatical strings together during training), they appear to 

explicitly learn the grammar as well as those who attempt the task in an implicit manner (Reber, 

Kassin, Lewis, & Cantor, 1980). Thus it is unclear that performance in implicit classification 

tasks is always driven by implicit learning - some observers could be using explicit knowledge 

systems to the same effect without experimenter knowledge. This would be most likely to occur 

in scenarios where stimuli are repeated often enough to lead to memorization of explicit 

examples, as in the weather prediction example described above.  

 

Motor Sequence Learning 
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 Motor sequence learning is another often-used putatively implicit learning task. In a 

typical motor sequence learning task, participants are asked to press specific keys after receiving 

seemingly random cues on screen (for example, press the '1' key when a '1' appears on screen). 

Unbeknownst to the observer, a sequence is embedded within randomly sorted cues; this 

sequence follows a complex but predictable succession. Participants demonstrate learning in this 

task via faster and more accurate responses on sequenced versus unsequenced stimuli following 

training. 

 One critical characteristic of this sort of learning is that it is heavily tied to the manner of 

responding. That is, observers learn to issue a particular motor plan to a particular cue rather than 

an underlying structure to the cues. Critically, observers are not mapping a specific motor 

response onto a particular stimulus (e.g., “index finger on left hand after seeing a blue square”) 

but rather a specific distal response location (e.g., “press blue button after seeing a blue square”). 

Thus, switching distal response locations should disrupt learning in this sort of implicit learning 

task (Willingham, 1999). This was demonstrated by Willingham, Wells, Farrell, and Stemwedel 

(2000). In their experiment (Experiment 2), participants responded to cues presented on screen 

by pressing a corresponding button on a response box. Participants first trained on a sequence of 

cues. During transfer, participants either responded using the same fingers but new response 

locations (Fingers condition) or new fingers but the same response location (Locations 

condition). Participants in the Locations condition showed significantly better transfer when 

presented with the originally learned sequence as evidenced by faster responses to sequenced 

cues as compared to participants in the Fingers condition. These findings support the notion 

outlined earlier that participants learn a fairly abstract series of response locations during this 

task rather than specific motor sequences. A given cue (or sequence of cues) is associated with 
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the specific motor plan; disrupting that motor plan serves to disrupt learning. This idea will be 

tested in the current work in Experiment 3 (see Chapter 7). 

 Because the learning appears to be an abstract series of response locations, it is 

independent of the actual stimuli. In other words, motor sequence learning transfers robustly 

when the surface features change but the underlying sequence remains intact. Willingham (1999) 

demonstrated just such a property. During training, the digits 1-4 appeared in a single box on the 

center of the screen, the given digit indicating which of four buttons to press (e.g., ‘1’ on screen, 

press first button). During transfer, four individual boxes on screen corresponded to each of the 

four buttons. The presence of an asterisk within a box indicated that corresponding button should 

be pressed.  Critically, the sequence remained the same during transfer despite the grossly 

different surface features. Participants showed faster reaction times when responding to the 

sequence than to random stimuli during transfer, despite the visual details of the stimuli changing 

vastly. This suggests, like artificial grammar learning, this form of implicit learning results in a 

fairly abstract representation of what is learned. 

 

General Trends in the Acquisition of Implicit Knowledge 

 Some general assertions can be made that are germane to the experiments presented later. 

Generally, explicit intention has either limited (Ashby, Queller, & Berretty, 1999) or sometimes 

detrimental effect on implicit learning (Knowlton, Ramus, & Squire, 1992; Reber, 1976). 

Implicit learning sometimes transfers to novel stimuli (Reber, 1967; Willingham, 1999), while 

other times the learning is confined to the particular stimuli encountered (Ashby & Waldron, 

1999; Seger, 2008; Poldrack & Packard, 2003); this likely represents the structure of the actual 

learning (e.g., abstract knowledge vs. stimulus-response associations). Finally, some forms of 
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learning tend to be particularly sensitive to contextual cues (Graybiel, 2008; Neal, Wood, 

Labrecque, & Lally, 2012). How do these general trends relate to the notion that recognition 

criteria can be implicitly influenced via feedback outlined earlier? It is clear that although the 

paradigms may differ substantially in many core aspects, all seem to suggest that implicit 

learning produces knowledge that is fairly abstract with respect to the stimuli and decisions upon 

which it operates. This sort of abstraction is important to reflect upon when considering whether 

similar learning mechanisms may regulate the mappings between memory representations and 

memory judgments. The next chapter will outline a framework for understanding how such 

mechanisms may operate within the domain of recognition decisions. 
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Chapter 3 

Implicitly Learning to Evaluate Explicit Memories 

The brief review of implicit learning above highlights several regularities that also occur 

in false positive feedback (FPF) studies discussed briefly earlier (Han & Dobbins, 2008, 2009). 

Namely, these shifts appeared to occur in an incremental fashion and largely outside of observer 

awareness. Before proceeding to the methodology underlying the FPF criterion shifting paradigm 

designed by Han and Dobbins (2009), I briefly note some of the characteristics of more formal 

math models of reinforcement learning mechanisms that will be relevant to the predictions of the 

current experiments. One family of reinforcement learning models relies on computational 

algorithms known as temporal difference algorithms (Dayan & Daw, 2008; Sutton & Barto, 

1981). Roughly speaking, these algorithms require an organism’s decision-making system to 

predict the value of an action-linked reward. If that prediction does not match the outcome, the 

prediction is adjusted to better approximate the obtained reward. Learning occurs because 

specific actions – and stimuli associated with that action – begin to be associated with more 

accurate reward predictions. 

Under the temporal difference framework, learning is driven by errors of prediction (thus, 

“prediction error”). Larger prediction errors lead to larger adjustments of expectations (and 

behavior), eventually honing in on the optimal behavior for a given situation. How does this 

relate to the proposed notion of implicit criterion learning and the procedures used to induce it? It 

is interesting to note that under the temporal difference framework described above, learning 

does not occur unless a prediction error is made – that is, a new stimulus-response contingency 

will never be formed if the system makes accurate predictions about the outcome of said 

contingency. Within the FPF paradigm, participants receive unexpected positive feedback for a 
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subset of one type of recognition error (e.g., false alarms or misses). Because these 

classifications are typically made with low confidence, it is reasonable to assume that many 

observers expect these decisions to be incorrect – in other words, observers are expecting to 

receive negative feedback for a majority of these decisions based on the quality of the memory 

evidence they have. Thus, the unexpected positive feedback results in a prediction error that 

should serve to drive an association between a given level of memory evidence and a certain 

classification tendency – the end result is a change in evidence-to-decision mappings. 

 The following experiments sought to better understand a putatively implicit learning 

process that governs how observers attribute given levels of familiarity to recognition decisions. 

The experiments use the FPF procedure designed by Han and Dobbins (2008, 2009) and are 

based on questions naturally arising from the similarity between the FPF paradigm and the 

implicit learning research and prediction error framework discussed above – namely, that 

positive feedback for errors should produce an unexpected positive outcome, akin to a prediction 

error in reinforcement learning. Using the FPF paradigm, the following experiments focused on 

several questions: can observers volitionally inhibit the influence of FPF? Does FPF produce 

subsequent memory benefits for items that received unexpectedly positive feedback? Does 

implicit criterion learning generalize across different types of stimuli? Does implicit criterion 

learning transfer across different testing contexts and response procedure? Finally, in accordance 

with a temporal difference framework of reinforcement, do unexpected positive outcomes drive 

responding in this paradigm more than expected positive outcomes? 
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Chapter 4 

Specific Aims and General Methods 

The specific aims of the three experiments are listed below. These will be repeated and 

expanded upon in the relevant chapters. 

 

1) Can observers inhibit the effects of FPF on the decision criterion, or does FPF influence the 

criterion despite an individual’s volition (Chapter 5)? 

 

2) Are items that receive FPF subsequently remembered better than items receiving veridical 

feedback (Chapter 5)?  

 

3) Would FPF-based criterion learning on one stimulus type generalize to other types of stimuli 

(Chapter 6)? 

 

4) Would a radical shift of context eliminate an implicitly acquired response bias (Chapter 7)? 

 

5) Do unexpected positive outcomes drive responding more than expected positive outcomes 

(Chapter 8)? 

 

GENERAL METHODS 
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Before turning to the specific methods used in Experiment 1, I briefly outline those that 

are general across all of the presented studies. 

 

Participants 

 Participants earned either $15 or partial credit toward fulfillment of a course assignment 

for participating. Informed consent was obtained for all participants, as required by the 

university’s institutional review board. Due to the minor deception involved in providing false 

positive feedback, participants were fully debriefed on the nature of the feedback after the study 

and given the option to withdraw their data if they desired. All participants chose to have their 

data included. 

 

Materials 

 All experiments were generated via The Psychophysics Toolbox (version 3.0.8) 

(Brainard, 1997; Pelli, 1997) implemented in Matlab using a standard keyboard and PC. Unless 

otherwise noted, stimuli were drawn from a pool of 1216 words selected from the MRC 

Psycholinguistic Database (Wilson, 1988). Words in the pool had an average of 7.09 letters, 2.35 

syllables, and an average log HAL frequency of 7.74 log. This word pool was used for all 

experiments. Target (studied test items) and lure (novel test items) lists were formed by 

randomly sampling from this word pool for each participant. All recognition tests contained an 

equal number of targets and lures. 

 

Feedback 

 When present, feedback was presented following the individual’s confidence report. 

When positive feedback was provided, the word “CORRECT” flashed in green on screen. When 
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negative feedback was provided, the word “INCORRECT” flashed in red on screen. When 

veridical feedback was provided, positive feedback followed hits and correct rejections (correct 

“old” and “new” reports, respectively), and negative feedback followed false alarms and misses 

(incorrect “old” and “new” reports, respectively). During the FPF manipulation, hits and correct 

rejections always receive correct, veridical feedback; it is the nature of the feedback given to 

errors that constitutes the manipulation. When “liberal” FPF was provided, a percentage of false 

alarms were incorrectly signaled as correct responses (70%) whereas all misses were correctly 

identified as errors. When “conservative” FPF was provided, the feedback percentages for errors 

were reversed with 70% of misses being incorrectly signaled as correct whereas all false alarms 

were veridically signaled as errors. As noted in the introduction, the purpose of restricting the 

manipulation to errors and giving it probabilistically is to increase the likelihood that the 

feedback manipulation does not become apparent to the observer. Since observers are typically 

not confident during error trials, they should ascribe occasional positive feedback as simply 

reflecting ‘lucky guessing.’   

 

Subjective Awareness Questionnaire  

The Subjective Awareness Questionnaire consisted of several questions to gauge 

participants’ subjective experiences that may correspond to bias, accuracy, and awareness of the 

purpose of feedback. Parts of this questionnaire were administered following each recognition 

test, and the full questionnaire was administered following all recognition tests (see specific 

Experiments for more detailed information). More specifically, participants were asked the 

following: 

1. The relative proportion of studied items in the test(s) taken (0% - 100%). 
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2. Personal test performance (percentage of correct responses overall) 

3. The believed purpose of the feedback (open response). 

4. Whether there was anything anomalous about the feedback (yes or no). 

a. If yes, what (open answer). 

5. Level of influence of positive feedback following an “old” response (6 point Likert 

scale). 

6. Level of influence of positive feedback following a “new” response (6 point Likert 

scale).  

7. Level of influence of negative feedback following an “old” response (6 point Likert 

scale). 

8. Level of influence of negative feedback following a “new” response (6 point Likert 

scale). 

9. Please select one of the following options regarding the feedback you received during 

the experiment: 

a. The feedback was occasionally inaccurate when I correctly responded “old.” 

b. The feedback was occasionally inaccurate when I correctly responded “new.” 

c. The feedback was occasionally inaccurate when I incorrectly responded “old.” 

d. The feedback was occasionally inaccurate when I incorrectly responded 

“new.” 

e. I don’t agree with any of the above statements. 

 

Personality Measures 
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 Several personality measures were collected during each experiment in order to evaluate 

potential individual differences in feedback influence. These measures were chosen for their 

relation to reward and punishment sensitivity: the BIS/BAS scales (Carver & White, 1994); the 

Regulatory Focus Questionnaire (RFQ; Higgins et. al., 2001); and the Generalised Reward and 

Punishment Expectancy Scales (GRAPES; Ball & Zuckerman, 1990). The BIS/BAS scales were 

also chosen specifically because prior work using the FPF paradigm showed the BIS and Reward 

Responsiveness subscales both correlated with degree of criterion change in the FPF paradigm 

(Han, 2009). Thus it was hoped to replicate and extend these findings using other measures of 

reward sensitivity. 
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Chapter 5 

Experiment 1 

1) Can observers inhibit the effects of FPF on the decision criterion, or does FPF influence the 

criterion despite an individual’s volition? 

 Evidence suggests that criterion shifts achieved through the FPF procedure are not 

apparent to participants (Han & Dobbins, 2009) and thus may rest on a largely implicit 

reinforcement learning phenomenon. If correct, observers should have little to no conscious 

control over the effects of FPF on the criterion – that is, even when instructed to ignore the 

potential influence of feedback, observers should still demonstrate robust criterion shifts in 

response to the manipulation because the effect does not rest on the formulation of an explicit 

judgment strategy (see Figure 4). 
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Figure 4: Hypothetical experimental results. The top panel (predicted results) shows 

hypothetical results if participants are unable to ignore the influence of FPF; criterion 

should not differ between Use and Ignore groups. The bottom panel shows hypothetical 

results if participants ARE able to ignore the influence of FPF; in this case, criterion 

should differ between Use and Ignore groups that receive the same feedback. 
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2) Are items that receive FPF subsequently remembered better than items receiving veridical 

feedback?  

 If the FPF effect reflects reinforcement learning it should demonstrate certain hallmarks.  

From a neurobiological perspective, reinforcement learning is often held to critically depend on 

prediction error signals generated within the dopaminergic system, with increased learning on 

trials in which outcomes and predictions surprisingly diverge (Dayan & Watkins, 2001; Schultz 

& Dayan, 1997; Schultz & Dickinson, 2000). A similar cognitive phenomenon is referred to as 

the ‘hypercorrection effect’ (Butterfield & Metcalfe, 2006) in which errors issued with high 

confidence that receive immediate corrective feedback yield durable changes in subsequent 

judgments. Error confidence tends to positively correlate with later veridical memory; in other 

words, correcting a mistake made with high confidence produces better memory for the correct 

answer than correcting a low confidence mistake. Because hypercorrection effects are linked to 

highly confident initial errors they may reflect dopaminergic modulation of episodic memories 

for large prediction error outcomes, and there is some initial fMRI evidence that reward-related 

activity within the dopaminergic system yields subsequent memory benefits for reward-related 

stimuli (e.g., Adcock et. al., 2006). If surprising mistakes are remembered well, it stands to 

reason that surprising correct responses (falsely reinforced errors) should also appreciate a 

mnemonic benefit.  

 If the effects of FPF reflect an implicit learning phenomenon that gradually alters the 

subject’s mapping of internal evidence signals onto overt outcomes, it is anticipated that subjects 

will not be able to inhibit the influences of FPF on their measured decision criterion.  

Furthermore, because the FPF effect relies on providing feedback during trials in which 

confidence is low (viz. errors) it may be the case that feedback falsely signaling to the subject 
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that he or she is correct is sufficiently surprising to yield dopaminergic modulations of memory.  

That is, subjects may find these trials, and hence the stimuli, reliably more memorable in 

subsequent testing. 

 

Participants 

103 individuals participated in return for partial course credit. Participants were excluded 

if their performance on any single test was at or below chance (i.e., if d’ ≤ 0). Using this 

criterion, two participants were removed from the analysis, making the effective sample size 101 

(26 participants in the Liberal/Use group, 25 participants in all others). 

 

Procedure 

 The experiment consisted of three study/test cycles, followed by a fourth surprise 

recognition test where subsequent memory for the prior test materials was assessed. During 

study, 100 words were serially presented and participants rated the number of syllables in each. 

Participants had two seconds to respond to each item; if this time was exceeded, the words ‘TOO 

SLOW’ appeared on screen and the computer moved onto the next trial. During test phases, 100 

targets and 100 lures were randomly intermixed and presented serially; participants first 

indicated whether each item was old or new, followed by a confidence report (“low,” “medium,” 

or “high” confidence). Test responding was self-paced. Each test was followed by questions 1-2 

of the Subjective Awareness Questionnaire. Following the final test, participants completed the 

full Subjective Awareness Questionnaire and the BIS/BAS at their testing computers. Finally, 

participants completed paper copies of the GRAPES and RFQ before finishing the experiment. 
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 Feedback was present during the first three recognition tests.  The first test was used to 

assess baseline recognition characteristics in all observers and during this test all participants 

received veridical feedback after every test response.  The second and third test examined the 

FPF effect under two different instructions conditions (Use versus Ignore) crossed with two 

different bias directions (Liberal versus Conservative FPF) manipulated between groups 

(creating a 2 × 2 between-subjects factorial design). Instructions for the Use and Ignore groups 

were identical other than a few key sentences. More specifically, participants in the Use groups 

were told: 

“We are particularly interested in how well you can incorporate this feedback. The 

feedback provided may improve your performance. Please try to incorporate the feedback 

as best you can when responding.” 

In contrast, participants in the Ignore groups were told: 

“We are particularly interested in how well you can ignore this feedback. The feedback 

provided may impair your test performance. Please try to IGNORE the feedback as best 

you can and do not let it affect your responding.” 

During test, the words “USE FEEDBACK” or “IGNORE FEEDBACK” were always present at 

the top of the screen (depending on the participant’s particular instructions).  

 Participants were given a surprise final recognition test following the third test phase. 

Target items for this test were drawn from the second recognition test phase (items were drawn 

from the same test to control for average memory strength of test items); specifically, any items 

for which the participant could have received FPF. For participants who received Liberal FPF, 

targets for the fourth test consisted of the 100 prior lures from the second test (since false alarms 

were reinforced); for participants who received Conservative FPF, targets for the fourth test 
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consisted of the 100 prior targets from the second test (since misses were reinforced).  100 novel 

items were used for lures for all groups. Participants were instructed that, “any item seen before 

in this experiment, regardless of which test and how [they] classified it, should be judged old.” 

Feedback was not provided during this final test, and participants were informed that they would 

no longer be receiving feedback (see Figure 5 for design). 

 

 

Results 

 Hit rates, FA rates, d’, criterion (c), and average number of FPF trials are presented in 

Table 1. Since the groups were not treated differently during Test 1, analyses of data from Test 1 

Figure 5: Experimental Design. Participants were divided into four groups. All groups received veridical 

feedback during Test 1. Groups received either Liberal or Conservative FPF and were told to “Use” or 

“Ignore” this feedback during Tests 2 and 3. A surprise subsequent memory test followed Test 3, testing 

over particular items drawn from Test 2. 
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are simply to confirm that the groups had similar accuracy and bias prior to the implementation 

of the key experimental manipulations in Tests 2 and 3.  The data from Tests 2 and 3 will take 

advantage of the 2 × 2 factorial design crossing Instructions and Feedback.  The Subsequent 

Memory Test will be separately analyzed to see if FPF influences subsequent memory separately 

for each group defined by the factorial design in Tests 2 and 3. 

  
Liberal/Use N = 26 

 

Test Hit Rate FA Rate d' c FPF trials 

Test 1 .74 (.088) .22 (.077) 1.47 (0.33) 0.082 (0.22) N/A 

Test 2 .81 (.081) .37 (.14) 1.28 (0.34) -0.28 (0.31) 26.42 (10.57) 

Test 3 .81 (.079) .44 (.17) 1.09 (0.31) -0.39 (0.38) 31.38 (13.36) 

Subsequent Memory .76 (.10) .43 (.12) 0.95 (0.42) -0.30 (0.30) N/A 

 

  
Conservative/Use N = 25  

Test Hit Rate FA Rate d' c FPF trials 

Test 1 .76 (.084) .21 (.099) 1.62 (0.49) 0.061 (0.23) N/A 

Test 2 .73 (.12) .19 (.096) 1.61 (0.60) 0.13 (0.27) 18.88 (8.58) 

Test 3 .67 (.15) .22 (.11) 1.34 (0.57) 0.18 (0.34) 22.32 (11.11) 

Subsequent Memory .82 (.12) .22 (.10) 1.83 (0.62) -0.079 (0.34) N/A 

 

  
Liberal/Ignore N = 26  

Test Hit Rate FA Rate d' c FPF trials 

Test 1 .71 (.091) .20 (.088) 1.44 (0.40) 0.15 (0.23) N/A 

Test 2 .73 (.093) .28 (.12) 1.25 (0.40) -0.014 (0.26) 19.48 (8.82) 

Test 3 .74 (.12) .38 (.17) 1.04 (0.52) -0.17 (0.34) 27.12 (12.36) 

Subsequent Memory .70 (.16) .35 (.16) 1.01 (0.45) -0.080 (0.41) N/A 

 

  
Conservative/Ignore N = 26  

Test Hit Rate FA Rate d' c FPF trials 

Test 1 .75 (.11) .23 (.094) 1.48 (0.44) 0.041 (0.23) N/A 

Test 2 .68 (.16) .22 (.11) 1.32 (0.38) 0.15 (0.39) 22.72 (11.29) 

Test 3 .60 (.18) .21 (.11) 1.13 (0.50) 0.31 (0.38) 28.92 (14.14) 

Subsequent Memory .72 (.18) .23 (.15) 1.54 (0.56) 0.068 (0.52) N/A 
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Accuracy 

 Because this experiment primarily focuses on criterion, it is important to first establish 

that there are no significant differences in initial accuracy among the groups because differences 

in c become difficult to interpret when accuracy also differs across comparisons (Pastore, 

Crawley, Berens, & Skelly, 2003). 

Accuracy (d’) during Test 1 was analyzed using a one-way ANOVA on the four groups 

that would constitute the 2 × 2 design of Tests 2 and 3. There were no significant differences in 

accuracy among the groups [F(3,97) < 1].  

 Next, accuracy during the second and third tests was analyzed. Test was included as a 

factor, but since it did not interact with the other two factors, I present a simplified analysis 

collapsing across this factor using a 2×2 factorial ANOVA examining between-subjects factors 

of Feedback Group (Liberal vs. Conservative) and Instructions (Use vs. Ignore). This analysis 

revealed a significant main effect of Feedback type on accuracy [F(1,97) = 4.52, MSe = 0.378,  p 

< .05, η2 = .044], which indicated that participants who received Liberal feedback performed 

worse than did participants who received Conservative feedback [ML = 1.17, SEL = 0.061; MC = 

1.35, SEC = 0.061]; this likely represents how accuracy was calculated and will be discussed in 

more detail in the Discussion section of this chapter. The main effect of Instructions was not 

significant [F(1,97) = 2.78, MSe = 0.38, p = .10, η2 = .028]. The two-way interaction did not 

Table 1: Hit rates, false alarm rates, accuracy, criterion, and number of FPF 

trials received for the four groups across all tests (Experiment 1). Standard 

deviations in parentheses. 
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approach significance [F(1,97) = 1.52, MSe = 0.38, p = .22, η2 = .015].  None of the interactions 

among the factors approached significance (all p’s > .22). 

 Performance during the final test will be covered in the "Subsequent Memory Effects" 

section. 

 

Criterion 

 The main purpose of this experiment was to investigate whether observers could 

volitionally inhibit the effects of FPF on the decision criterion. However, before examining the 

effects of FPF on the criterion, it is important to establish that the criterion was similar for all 

groups prior to the manipulation. To examine this, criterion during Test 1 was subjected to a one-

way ANOVA amongst the (future) groups. This analysis was not significant [F(3,97) = 1.03, 

MSe = 0.052, p = .38, η2 = .031]. 

Tests 2 and 3 were examined using a 2×2×2 mixed model ANOVA examining factors of 

Test (Test 2 vs. Test 3), Feedback Group (Liberal vs. Conservative), and Volition (Use vs. Ignore 

feedback). If observers were able to inhibit the influence of the FPF, this analysis should 

demonstrate an interaction with the Volition factor, such that changes in criterion are reduced (or 

eliminated) for participants told to Ignore the feedback. On the other hand, if observers are 

unable to ignore the influence of the FPF, this factor should not interact (i.e., no differences in 

criterion change as a function of instructions). 

 There was no main effect of Test [F(1,97) < 1] on overall criterion. There was a robust 

main effect of Feedback Group [F(1,97) = 44.29, p < .0001, MSe = 0.19, η2 =.35], indicating that 

participants who received Liberal FPF were more liberal than participants who received 

Conservative FPF [ML = -0.21, SEL = 0.05; MC = 0.19, SEC = 0.04]. There was also a significant 
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main effect of Volition [F(1,97) = 6.58, p < .05, MSe = 0.19, η2 = .06], indicating that 

participants in the Use groups were significantly more liberal than participants in the Ignore 

groups [MU = -0.089, SEU = 0.043; MI = 0.068, SEI = 0.044]. There was a robust Test×Feedback 

Group interaction [F(1,97) = 19.19, p < .0001, MSe = 0.039, η2 = .16] that occurred because the 

effects of FPF increased across the two tests. Across tests, participants who received Liberal FPF 

became more liberal [MT2 = -0.15, SET2 = 0.043; MT3 = -0.28, SET3 = 0.051; p < .01, Tukey’s 

HSD], whereas participants who received Conservative FPF became more conservative [MT2 = 

0.14, SET2 = 0.044; MT3 = 0.25, SET3 = 0.051; p < .05, Tukey’s HSD]. There was no Test × 

Volition interaction [F(1,97) < 1]. Critically the Feedback Group × Volition interaction was not 

significant [F(1,97) = 1.87, p = .18, MSe = 0.19, η2 = .019] which demonstrates that the biasing 

effects of the FPF manipulation are not eliminated for the groups instructed to ignore the 

feedback. The three-way interaction was not significant [F(1,97) = 2.31, p = .13, MSe = 0.039, η2 

= .023].  

Although neither the Volition × Feedback Group nor the Volition × Feedback Group × 

Test interactions were significant, I nonetheless conducted follow-up interaction analyses given 

the prediction that subjects would not be able to effectively ignore the biasing feedback. The full 

data are shown in Figure 6 and I separately consider Volition and Test factors for the Liberal 

FPF manipulation (left panel) and the Conservative FPF manipulation (right panel). Focusing 

first on the groups exposed to Liberal FPF, a Volition × Test ANOVA yielded a main effect of 

Volition [F(1,49) = 8.80, MSe = 0.17, p < .01, η2 = .15] which indicated the Use group was more 

liberal than the Ignore group [MLU = -0.34, SELU = 0.057; MLI = -0.09, SELI = 0.058]. The main 

effect of Test was also significant [F(1,49) = 10.00, MSe = 0.045, p < .01, η2 = .17] which 

indicated that both groups became more liberal across tests [MT2 = -0.15, SET2 = 0.040; MT3 = -
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0.28, SET3 = 0.051]. Thus, both groups demonstrated an increasingly liberal criterion as the 

manipulation continued across tests. However, the Use group was generally more liberal than the 

Ignore group, suggesting that the feedback had a more prominent effect on their behavior. 

Turning to the groups exposed to Conservative FPF, a second Volition × Test ANOVA yielded 

no effect of Volition [F(1,48) < 1], but a significant effect of Test [F(1,48) = 9.35, MSe = 0.032, 

p < .01, η2 = .16] which indicated that both groups became more conservative across tests [MT2 = 

0.14, SET2 = 0.048; MT3 = 0.25, SET3 = 0.051]. This asymmetry in the effects of Volition explain 

why it did not survive the omnibus ANOVA above. In this case, when feedback reinforced false 

alarms, instructions to use or ignore feedback influenced criterion placement. However, the lack 

of a Volition × Test interaction in the Liberal feedback groups suggests a gradually shifting 

criterion that shifts at the same rate for both groups.  

This is further reinforced by an analysis of Feedback Group and Test focused solely on 

the groups told to Ignore Feedback (dotted lines Figure 6). This analysis revealed a main effect 

of Feedback [F(1,48) = 13.14, MSe = 0.20, p < .001, η2 = .21] and a significant interaction 

[F(1,48) = 15.78, MSe = 0.042, p < .001, η2 = .25; see dotted lines in Figure 6]. Thus, even when 

told to ignore feedback, both groups appear to still learn from in it in a gradual manner as 

evidenced by the criterion differences between Liberal/Ignore and Conservative/Ignore groups.  
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Subsequent Memory Effects 

 It was hypothesized that participants might have better later memory for items that 

receive FPF than for items that receive negative feedback due to the unexpected positive 

outcome associated with FPF. This hypothesis was tested by examining the hit rates for the 

Subsequent Memory items (which were drawn from Test 2), separated out by their prior 

feedback status – prior errors that received negative feedback and prior errors that received 

(false) positive feedback. These hit rates were calculated as the conditional probability that an 

Figure 6: Effects of Feedback and Instructions on criterion in Tests 2 and 3 

(Experiment 1). Instructions to ignore feedback do not appear to eliminate its 

effects (vertical bars represent 95% confidence intervals). 
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item is called “old” during the Subsequent Memory Test given its prior outcome [e.g., 

p(“old”|prior FPF FA)]. Thus for example, consider subjects who were told to use the feedback 

and exposed to the Liberal FPF manipulation. For these subjects new materials from Test 2 that 

yielded false alarms were re-presented during the Subsequent Memory Test as recognition 

targets, and I contrasted the tendency to correctly recognize items that were previously correctly 

identified as false alarms versus those that were falsely identified as hits (viz. received FPF). In 

other words, if 20 false alarms had received prior positive feedback during Test 2, and an 

observer identified 10 of those items as previously encountered during this final test, his hit rate 

for prior false positive errors would be .50. Analogous contrasts were conducted for the three 

remaining groups of subjects. Table 2 shows the relevant conditional hit rates for each group. 

 Hit rates were contrasted for each of the four groups. While none of the individual 

contrasts survived (all p’s > .11), each group demonstrated a small benefit for Prior FPF Errors 

as compared to Prior Negative FP Errors (see Table 2). It should be kept in mind however that 

the analysis is necessarily restricted to prior errors, which limits the item counts available for the 

participants. Due to the more exploratory nature of this analysis and to increase power, I 

collapsed across all four groups and contrasted the two subsequent hit rates. In this case, the hit 

rate was significantly higher for prior errors that received false positive feedback as compared to 

prior errors that received veridical negative feedback [MNFE = .69, MPFE = .73; t(100) = -2.28, p < 

.05]. This finding will be discussed in more detail in the Discussion.  

 

 

 

 



xlv 

Table 2: Conditional hit rates for Subsequent Memory items. Standard deviations 

in parentheses. 

Subsequent Memory Conditional Hit Rates 

Group Prior Negative FB Error Prior FPF Error 

Liberal/Use .79 (.17) .82 (.12) 

Conservative/Use .66 (.26) .71 (.19) 

Liberal/Ignore .74 (.22) .79 (.17) 

Conservative/Ignore .56 (.32) .61 (.26) 

 

 

 

Duration of Learned Biases 

As noted in Han and Dobbins 2008 and 2009, biases acquired via FPF tend to persevere 

even when feedback is removed. Here I provide another test of this claim using data from the 

Subsequent Memory Test. Because the hit rates are comprised of items of two different classes 

(namely prior errors to old items for Conservative Groups and prior errors to new items for 

Liberal Groups) I did not use c to examine whether biases instilled in the prior tests carried over 

into the Subsequent Memory Test. Instead, I used the false alarm rates, which are perfectly 

matched for all four groups in terms of prior exposure, consisting of novel items shown for the 

first time in the experiment (See Table 1). The false alarm rates were analyzed using a 2 × 2 

factorial ANOVA, which examined factors of Prior Feedback Group (Liberal vs. Conservative) 

and Prior Volition (Use vs. Ignore). There was a robust effect of Prior Feedback [F(1,97) = 

38.10, MSe = 0.018, p < .0001, η2 =  .28], which indicated that participants who previously 

received Liberal feedback were more liberal (i.e., false alarmed more often) than those who 

previously received Conservative feedback [ML =  .39, SEL = .019; MC = .22, SEC = .019]. The 

effect of Volition was not significant, but the interaction approached significance [F(1,97) = 

2.91, MSe = 0.018, p = .09, η2 = .029]; this reflected the fact that the Liberal/Use participants 

were more liberal than the Liberal/Ignore participants (see Table 1), as in Tests 2 and 3. These 
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findings confirm that FPF effects persevere once feedback is removed and indeed this savings is 

even evident for observers who were instructed to ignore the previous feedback. 

 

Confidence 

Analysis of confidence was restricted to correct reports. Confidence during Test 1 was 

analyzed using a 4×2 mixed model ANOVA examining a between-subjects factor of Group, and 

a within-subjects factor of Response Type (Hit vs. Correct Rejection). The effect of Group was 

not significant [F(3,97) < 1]. There was a robust main effect of Response Type on confidence 

[F(1,97) = 40.77, MSe = 0.040, p < .0001, η2 = .30], which indicated that hits were rendered with 

more confidence than correct rejections [MH = 2.44, SEH = 0.032; MCR = 2.26, SECR = 0.041]. 

The Group × Response Type interaction was not significant [F(3,97) < 1]. 

Confidence during Tests 2 and 3 was analyzed using two separate 2×2×2 mixed model 

ANOVAs examining a between-subjects factor of Volition (Use vs. Ignore), and within-subjects 

factors of Response Type (Hit vs. Correct Rejection) and Test (Test 2 vs. Test 3). Liberal and 

Conservative groups were analyzed separately in order to simplify the resulting analyses. 

Looking first to the Liberal groups, the only main effect was Response Type [F(1,49) = 36.71, 

MSe = 0.076, p < .0001, η2 = .43] indicating that hits were more confident than correct rejections 

[MH = 2.52, SEH = 0.046; MCR = 2.28, SECR = 0.064]. No other main effects or interactions were 

significant (all p's > .50).  

Turning to the Conservative groups, there was a significant main effect of Volition 

[F(1,48) = 5.28, MSe = 0.58, p < .05, η2 = .10], indicating that participants told to Use the 

feedback were more confident than participants told to Ignore the feedback [MU = 2.48, SEU = 

0.076; MI = 2.23, SEI = 0.076]. There was also a main effect of Response Type [F(1,48) = 4.99 
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MSe = 0.11, p < .05, η2 = .094] which indicated that hits were more confident than correct 

rejections [MH = 2.41, SEH = 0.061; MCR = 2.30, SECR = 0.056]. Turning to the interactions, the 

only significant interaction was the Response Type × Test interaction [F(1,48) = 4.05, MSe = 

0.020, p < .05, η2 = .078]. This interaction indicated that the difference between hit and correct 

rejection confidence was larger for Test 2 [MH = 2.42, SEH = 0.062; MCR = 2.28, SECR = 0.058; p 

< .001, Tukey's HSD] than for Test 3 [MH = 2.39, SEH = 0.062; MCR = 2.32, SECR = 0.059; p = 

.11, Tukey's HSD]. No other main effects or interactions were significant (all p's > .31). 

Confidence during the Subsequent Memory Test was analyzed using a 2×2×2 mixed 

model ANOVA examining between-subjects factors of Prior Feedback Group (Liberal vs. 

Conservative) and Prior Volition (Use vs. Ignore), and a single within-subjects factor of 

Response Type (Hit vs. Correct Rejection). The only significant effect was a main effect of 

Response Type [F(1,97) = 64.75, MSe = 0.083, p < .001, η2 = .40], which indicated that hits 

were more confident than correct rejections. The effect of Prior Volition trended toward 

significance [F(1,97) = 3.42, MSe = 0.28, p = .067, η2 = .034], which indicated that participants 

previously told to Use the feedback were still generally more confident than those previously 

told to Ignore the feedback [MU = 2.38, SEU = 0.052; MI = 2.24, SEI = 0.053]. No interactions 

approached significance (all p’s > .16). 

 

 

Subjective Awareness Questionnaire 

 This next section concerns the questions that participants answered following each test. 

These data are presented in Table 3. 
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Table 3: Subjective Awareness Questionnaire data, Experiment 1. 

    
Believed Bias 

    

Group Test 1 Test 2 Test 3 Subsequent Memory 

Liberal/Use 55.30 (11.98) 68.68 (15.84) 65.15 (16.26) 54.64 (13.77) 

Conservative/Use 52.00 (8.60) 48.88 (14.60) 46.44 (12.69) 51.88 (8.05) 

Liberal/Ignore 51.83 (11.26) 60.60 (12.69) 61.32 (14.15) 51.92 (18.63) 

Conservative/Ignore 50.11 (10.20) 45.50 (15.19) 37.29 (13.36) 51.48 (13.14) 

 

    
Believed Accuracy 

    

Group Test 1 Test 2 Test 3 Subsequent Memory 

Liberal/Use 66.80 (9.94) 76.58 (7.77) 74.23 (9.76) 46.31 (12.16) 

Conservative/Use 69.64 (10.27) 74.52 (14.91) 63.84 (15.05) 54.60 (16.56) 

Liberal/Ignore 64.12 (11.61) 66.40 (11.57) 64.20 (16.56) 44.12 (17.18) 

Conservative/Ignore 66.29 (13.90) 68.20 (17.19) 66.52 (17.44) 55.60 (18.68) 

 

Believed Feedback Manipulation 

Group Hits CRs FAs Misses None 

Liberal/Use 3 3 5 1 14 

Conservative/Use 5 5 2 3 11 

Liberal/Ignore 4 4 4 3 11 

Conservative/Ignore 5 1 1 7 11 

 

  
Feedback Influence   

Group Positive|"Old" Positive|"New" Negative|"Old" Negative|"New" 

Liberal/Use 4.08 (1.26) 3.77 (1.36) 4.46 (1.14) 4.15 (1.40) 

Conservative/Use 3.48 (1.45) 3.60 (1.55) 4.08 (1.50) 3.72 (1.54) 

Liberal/Ignore 4.04 (1.02) 3.84 (1.14) 4.40 (1.04) 3.96 (1.24) 

Conservative/Ignore 4.20 (1.08) 3.96 (1.34) 4.04 (1.14) 4.20 (1.22) 

 

 Believed Bias 

 Participants indicated the proportion of test items they believed were old following each 

test, and this value ranged from 0-100. These were analyzed to determine if the consequences of 

FPF are apparent to the subjects when they are subsequently questioned. For this and future 
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sections, this 0-100 value will be referred to as the “believed bias” as it reflects the degree to 

which the subject believed that that prior test contained different proportions of old relative to 

new items. Occasionally participants would skip this question (likely by accidently pressing 

enter too quickly). Thus, degrees of freedom may not match the actual number of participants in 

the groups. 

 Believed bias was examined for the first test alone, then the second and third tests 

together, and the final subsequent memory test alone. This provides a baseline measure, a 

measure potentially sensitive to the FPF influences, and a measure reflecting whether believed 

bias persists even when feedback is removed. Believed bias for Test 1 was analyzed using a one-

way ANOVA examining differences among the groups. This analysis was not significant 

[F(3,81) < 1]. However, examining how the mean believed bias differed from 50/50, participants 

were slightly liberal (i.e., thought there were more than 50% old items) in their assessment of the 

first test’s makeup (M = 52.45, SE = 1.15; p < .05).  

 Next, believed bias during Tests 2 and 3 were analyzed using a 2×2×2 mixed model 

ANOVA examining between-subjects factors of Feedback Group (Liberal vs. Conservative) and 

Instructions (Use vs. Ignore), and a within-subjects factor of Test (Test 2 vs. Test 3). This 

analysis revealed a robust main effect of Feedback [F(1,94) = 64.41, MSe = 292.1, p < .0001, η2 

= .41], indicating that participants who received Liberal feedback thought there were more old 

items than did those who received Conservative feedback [ML = 64.14, SEL = 1.71; MC = 44.54, 

SEC = 1.74]. This mirrors the differences in actual criterion among the two feedback groups. 

There was also a significant main effect of Instructions [F(1,94) = 6.71, MSe = 292.1, p < .05, η2 

= .067], indicating that participants told to Use feedback thought there were more old items than 

did participants told to Ignore feedback [MU = 57.50, SEU = 1.73; MI = 51.18, SEI = 1.73]. 
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Finally, the main effect of Test was marginally significant [F(1,94) = 3.92, MSe = 123.5, p = .05, 

η
2 = .040], indicating that participants thought there were more old items in Test 2 than in Test 3 

[MT2 = 55.91, SET2 = 1.48; MT2 = 52.77, SET3 = 1.43]. No interactions among the factors were 

significant (all p’s > .14). Turning to mean estimates of believed bias, both Liberal/Use and 

Liberal/Ignore participants overestimated the proportion of old items in Test 2 (p’s < .001) and 

Test 3 (p’s < .001; see Table 3). Among the Conservative groups, the only estimate differing 

from 50/50 was the Conservative/Ignore’s estimate of Test 3 items (MCIT3 = 37.29, SECIT3 = 

2.72, p < .01). 

 Finally, believed bias from the Subsequent Memory Test was analyzed using a 2×2 

factorial ANOVA, examining factors of Prior Feedback (Liberal vs. Conservative) and Prior 

Instructions (Use vs. Ignore feedback). This analysis did not reveal any main effects or 

interactions between the factors (all p’s > .56). Turning to the mean estimates of bias, none of the 

groups differed from 50/50 (all p’s > .10). Thus, although objective measures of response bias 

showed a significant degree of carryover during this final test, subjective measures of response 

bias did not. 

 

Believed Accuracy 

 Participants also indicated the proportion of test items they believed they identified 

correctly following each test, and this value also ranged from 0-100. FPF appeared to affect 

participants’ subjective beliefs about the relative preponderance of old and new items; did it also 

alter their subjective senses of their own performance? For this and future sections, this 0-100 

value will be referred to as the “believed accuracy.” As with believed bias, occasionally 
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participants would skip this question (likely by accidently pressing enter too quickly). Thus, 

degrees of freedom may not always match the actual number of participants in the groups. 

 As with believed bias I separately considered Test 1, Tests 2 and 3 together, and the 

Subsequent Memory test.  There was no reliable difference among the four groups during Test 1 

[F(3,95)<1]; thus all the groups began with a similar estimation of their own performance. These 

values were converted to proportions (i.e., 0 to 1) and were compared to actual accuracy (percent 

correct ranging from 0 to 1). Participants actually underestimated their own performance on 

average (whether believed accuracy – actual accuracy was different from 0; M = -.10, SE = .013, 

p < .0001). 

 Next, believed accuracy during Tests 2 and 3 were analyzed using a 2×2×2 mixed model 

ANOVA examining between-subjects factors of Feedback (Liberal vs. Conservative) and 

Instructions (Use vs. Ignore), and a within-subjects factor of Test (Test 2 vs. Test 3). The main 

effect of Feedback Group was not significant [F(1,97) <1]. The main effect of Instructions was 

significant [F(1,97) = 5.31, MSe = 337.9, p < .05, η2 = .051], with participants told to Use the 

feedback believing they were more accurate than those told to Ignore it [MU = 72.29, SEU = 1.82; 

MI = 66.33, SEI = 1.84]. There was also a significant main effect of Test [F(1,97) = 14.41, MSe 

= 62.6, p < .001, η2 = .13], which indicated that participants thought their accuracy declined 

across tests [MT2 = 71.42, SET2 = 1.32; MT3 = 67.20, SET3 = 1.49]. Among the interactions, the 

only significant two-way interaction was the Instructions × Test interaction [F(1,97) = 4.22, MSe 

= 62.6, p < .05, η2 = .041]. While the group told to Use feedback thought they performed better 

than the group told to Ignore feedback, this difference diminished across tests (see Table 3), 

although neither group difference survived post hoc comparisons (both p's > .11, Tukey's HSD). 

Finally, there was a significant three-way interaction among the factors [F(1,97) = 3.95, MSe = 
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62.6, p < .05, η2 = .039]. This interaction is shown in Supplementary Figure 1. As with Test 1, 

participants underestimated their own performance numerically, but in this case, not significantly 

(MT2 = -.021, SET2 = .014, t(100) = -1.52, p = .13; MT3 = -.025, SET3 = .016, t(100) =-1.57, p = 

.12) 

 Finally, believed accuracy from the Subsequent Memory Test was analyzed using a series 

of between-group t-tests among the two Prior Volition groups within each type of Prior Feedback 

received (i.e., Liberal/Use vs. Liberal/Ignore) due to the differences in test makeup between 

Feedback Groups. Prior Volition did not affect believed accuracy during the Subsequent 

Memory Test (both p’s > .60). As with previous tests, participants underestimated their own 

performance during the Subsequent Memory test. This was true for both Prior Liberal (M = -.22, 

SE = .021, t(50) = -10.43, p < .0001) and Prior Conservative (M = -.22, SE = .021, t(49) = -

10.43, p < .0001) participants. 

 

Feedback Influence 

Recall that participants ranked how they thought different feedback outcomes influenced 

their responding on a 6 point Likert scale. A first pass analysis examined whether there were any 

mean differences in the level of influence participants felt the feedback possessed. Influence 

ratings were subjected to two 2 × 2 × 2 mixed model ANOVAs examining a between-subjects 

factor of Prior Instructions (Use vs. Ignore), and within-subjects factors of Response Type (Old 

vs. New) and Feedback Valence (Positive vs. Negative). Prior Liberal and Prior Conservative 

participants were analyzed separately in order to simplify the resulting analyses. Looking first at 

the Prior Liberal participants, there was a significant main effect of Feedback Valence [F(1,49) = 

4.15, MSe = 1.20, p < .05, η2 = .078] which indicated that participants felt negative outcomes 
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were more influential than positive feedback [MPos = 3.93, SEPos = 0.16; MNeg = 4.24, SENeg = 

0.15]. There was also a significant main effect of Response Type [F(1,49) = 5.02, MSe = 0.49, p 

< .01, η2 = .17] which indicated that influence ratings were higher for hits than for correct 

rejections [MH = 4.24, SEH = 0.13; MCR = 3.93, SECR = 0.15]. No other main effects or 

interactions approached significance (all p's > .54). Turning to the Prior Conservative 

participants, the only significant effect was the three-way interaction amongst the factors 

[F(1,48) = 6.26, MSe = 0.39, p < .05, η2 = .12]. This interaction indicated several things. First, 

those told to Ignore feedback generally ranked it as more influential than those told to Use the 

feedback, irrespective of the Response Type or Feedback Valence. Second, those told to Use the 

feedback generally felt negative feedback was more influential, particularly following false 

alarms. No other main effects or interactions from this analysis approached significance (all p's > 

.21). 

 

Effects of Awareness 

 It is important to consider how these results might be affected by awareness of the nature 

of the feedback. That is, if a participant could pick out what was wrong with the feedback, might 

he or she show a different pattern of behavior than one who was ignorant about the feedback’s 

nature? At the end of the experiment, participants made a forced-choice decision about how the 

computer was manipulating the feedback. The distribution of these responses is displayed in 

Table 3. A total of 19 participants selected the response option reflecting the actual manipulation 

in place for their group (see Table 3). One can approximate the 95% confidence intervals around 

these values using the normal approximation to determine if they differ significantly from chance 

(in this case, 20%). Neither proportion was different than one would expect from chance within 



liv 

either Feedback Group (Liberal: .196 ± .109; Conservative: .173 ± .103) or either Volition Group 

(Use: .154 ± .098; Ignore: .216 ± .113). Additionally, a large proportion of participants 

(significantly above chance) in each group selected the “I don’t agree with any of the above 

options” response (Liberal: .431 ± .136; Conservative: .481 ±.136), suggesting that an 

overwhelming majority of participants were unaware of the specific nature of the FPF 

manipulation. These data suggest that the manipulation is not very salient with the vast majority 

of the subjects failing to identify it on a forced choice question. Additionally, the instruction to 

ignore the feedback did not increase awareness of the manipulation as demonstrated by Fisher’s 

exact test (p > .45, two-sided). 

The analysis of criterion on Tests 2 and 3 was rerun, with participants who correctly 

identified the manipulation removed. None of the main effects or interactions were affected by 

this exclusion. This procedure was repeated, this time only examining the participants who chose 

“I don’t agree with any of the above options.” In this case, the Volition × Feedback Group × Test 

interaction in the omnibus ANOVA was significant [F(1,43) = 5.20, MSe = 0.027, p < .05, η2 = 

.11]; in this case, this interaction indicated that participants told to Ignore the feedback were 

generally MORE influenced by it (as evidenced by slightly larger changes in criterion across 

Tests for those told to Ignore feedback). Regardless, the interpretation of the effect remained as 

above (i.e., participants appear unable to ignore the feedback as evidenced by Feedback Group 

differences in criterion). A similar analysis of just the “aware” participants could not be 

conducted due to the small sample sizes.  

 

Personality Measures 
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The BIS/BAS, RFQ, and GRAPES questionnaires did not correlate with any of the 

measures described above.  

 

Discussion 

 This experiment replicated and extended previous work using the FPF paradigm. 

Critically, the main hypothesis of this experiment was confirmed: observers are unable to inhibit 

the effects of FPF on their decision criterion. These results lend further support to the notion that 

implicit learning mechanisms may influence recognition memory criteria.  

 This experiment also replicated the stability of FPF-induced criterion shifts in the absence 

of further reinforcement (Han & Dobbins, 2008, 2009). Specifically, group differences in 

criterion persisted during the Subsequent Memory Test even though participants were no longer 

receiving any feedback. Interestingly, subjective senses of bias (i.e., the Believed Bias) were not 

different among the groups despite differences in criterion during this final test. Even 

participants who correctly identified their feedback manipulation showed this pattern (although 

this analysis does suffer from low statistical power). This harkens back to a main tenant of 

implicit versus explicit learning - namely, that learner should show little to no explicit 

knowledge that learning has occurred (Reber, 1989). In this case, even though FPF affected the 

Believed Bias estimates during the two FPF tests, participants likely ascribed the lopsided 

feedback they received to the construction of the test list rather than anything abnormal about the 

feedback procedure itself. Thus awareness of the actual feedback-based learning in this 

experiment was fairly minimal.  

 These results are consistent with other results demonstrating the limited influence of 

explicit control over implicit learning tasks (Reber, 1966, 1976). For instance, certain 
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categorization tasks require integration of two orthogonal dimensions to categorize stimuli, and 

learning to categorize in this manner presumably relies on procedural learning (information 

integration tasks; Ashby & Maddox, 2005). In these tasks, simply informing observers of the 

number of categories and encouraging them to base their categorization decisions on all the 

stimulus dimensions does not result in learning the categorization rule when it requires 

procedural learning; only when feedback is provided can participants learn to accurately 

categorize these sorts of stimuli (Ashby, Queller, & Berretty, 1999). Similarly, Reber (1976) 

encouraged participants to determine the rules underlying stimulus generation in an artificial 

grammar task. Those participants actually did WORSE when encouraged to look for structure. 

Essentially, participants were looking for rules and structure that were incorrect instead of letting 

feedback guide their learning. In this case, explicit strategies actually interfered with implicit 

learning. Indeed, when the underlying structure is relatively straightforward or when participants 

are given more useful strategies to follow, explicit control can aid in implicit learning (Reber, 

Kassin, Lewis, & Cantor, 1980). 

 There was modest evidence indicating that surprising feedback outcomes affected later 

item memory. Specifically, false positive feedback, compared to true negative feedback during 

Test 2 produced small but reliable benefits in later item memory during the Subsequent Memory 

Test. This pattern of performance is consistent with the hypothesis that unexpected positive 

outcomes lead to better memory. These results are also in line with prior research concerning 

positive mnemonic benefits associated with reward-related dopaminergic activity (Adcock et. al., 

2006). Future work involving functional neuroimaging should be conducted to investigate 

whether regions involved with processing FPF overlap with striatal regions implicated by 

Adcock and colleagues (2006). However it should be noted that this experiment did not include a 
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true baseline with which to compare performance for prior error trials. In other words, since all 

trials received feedback of some kind, it is admittedly a bit odd to say that surprising feedback 

outcomes led to a mnemonic benefit since it is not entirely clear where baseline lies. It is entirely 

possible that errors that receive no feedback would be remembered as well as errors that received 

positive feedback, especially if “no feedback” was considered a surprising outcome. Further, 

estimates of memorability were noisy due to the small number of error trials that ended up being 

sampled for the Subsequent Memory test. Future studies should be designed to replicate this 

effect and include a more adequate set of baseline error trials. 

One novel aspect of this experiment lies in the instructions to the participants to ignore 

the feedback. It seems counterintuitive to examine how observers can inhibit feedback as 

feedback-based learning paradigms focus exclusively on how this learning proceeds. It is not 

clear that any research has been done in examining how individuals might inhibit feedback 

during an implicit learning task. Lampinen and colleagues (2007) did examine how instructions 

to ignore feedback influenced performance during an eyewitness identification task. Feedback 

following eyewitness identification tends to influence subjective ratings about the identification 

without influencing the accuracy of the identification. For example, positive feedback increases 

subjective confidence in the veracity of the identification and the quality of the witnessing 

conditions (e.g., how well-lit the suspect was), while negative feedback decreases these 

subjective feelings. Lampinen and colleagues (2007) demonstrated mixed results when asking 

participants to ignore prior feedback outcomes during an eyewitness identification task. When 

warned they had received random feedback, participants were able to discount its effects on their 

metacognitive ratings. However, when simply asked to disregard the feedback they had seen 

previously (and not told of its erroneous nature), feedback valence still influenced metacognitive 
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ratings. Thus, in an explicit memory paradigm, observers can have some success inhibiting the 

effects of feedback on their own responding. Other than the current study, however, the literature 

offers no insight into how observers can successfully ignore feedback designed to implicitly 

influence their behavior. Presumably animals cannot be asked to "ignore" potential learning cues, 

so this sort of paradigm is not feasible for a large portion of the learning literature. In humans, it 

seems reasonable to assert that feedback learning that proceeds despite the observer’s intentions 

is in some critical sense “implicit.” 

 It was noted that there were significant differences in accuracy as measured by d’ 

amongst the feedback groups. This is likely due to using the equal variance calculation of 

accuracy, which is technically incorrect. Under most situations, equal and unequal variance 

calculations of accuracy converge on the same answer. However, when criteria become extreme, 

equal variance estimates of accuracy are no longer independent of estimates of bias (Macmillan 

& Creelman, 2005). In other words, observers who become extremely liberal show a lower d’ 

than those who become extremely conservative. In these cases, da could be calculated as it more 

accurately reflects the unequal variance of the two distributions. Reevaluating accuracy this way 

shows no difference amongst the feedback groups [Test 2: t(99) = -1.60, p = .11; Test 3: t(95) = -

0.89, p = .38]. Regardless, such nuances in how accuracy is calculated do not affect the 

interpretation of the criterion data – that is, that FPF shifts criteria, and instructions to ignore it 

do not seem altogether effective. 

 Despite the clear influence of the feedback in this experiment, participants did not rate 

the feedback as remarkably influential to their responding as evidenced by the feedback 

influence questions of the Subjective Awareness Questionnaire. This is in contrast with the 

believed bias questions which demonstrated clear differences between the Liberal and 
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Conservative feedback groups. If the feedback manipulation is supposed to be relatively opaque 

to observers, then how does one explain this discrepancy? As mentioned above, it is likely the 

estimates of test construction reflect a response to receiving largely positive feedback for one 

type of response. That is, participants may recognize that they are saying “old” or “new” fairly 

often but believe that this is due to test construction rather than aberrant feedback. In fact, the 

biased feedback may be confirming any suspicions they may have about an unbalanced test 

makeup. 
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Chapter 6 

Experiment 2 

3) Would criterion learning on one stimulus type generalize to other types of stimuli? 

 Across some incremental reinforcement learning paradigms, learning tends to be very 

feature specific – in many cases, learning occurs at the level of the individual stimulus or cue 

(Ashby & Waldron, 1999; Seger, 2008; Poldrack & Packard, 2003) whereas other forms of 

learning are independent of the actual stimuli (Willingham, 1999). In typical incremental 

reinforcement learning paradigms, participants view the same stimuli multiple times across an 

experiment. The type of learning that develops depends on the type of task. In information 

integration tasks, participants tend to build associations between particular regions of perceptual 

space and particular responses (Ashby & Maddox, 2005), whereas learning in motor sequence 

and artificial grammar tasks is decidedly independent from the stimuli (in that surface features of 

the stimuli can change grossly without disrupting learning; Reber, 1969; Willingham, 1999). 

The typical incremental reinforcement procedure lies in contrast with typical memory 

experiments, as specific stimuli are rarely repeated during a single test in standard memory 

experiments. Indeed during the FPF manipulation in Experiment 1, biases are effectively induced 

during test lists in which each item is shown exactly once. Thus this effect appears to rely on 

reinforcement learning, but which does not require any reinforced stimulus to actually repeat 

(Han & Dobbins, 2008, 2009). In other words, given the setup of the FPF paradigm, it is 

impossible for observers to learn a particular stimulus-response association (e.g., "APPLE - 

respond old"). Rather, participants are likely learning the mapping between abstracted levels of 

generalized memory evidence and recognition judgments, and generalizing this across 

perceptually distinct stimuli with the same levels of memory evidence. Thus, two stimuli with 
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vastly different perceptual features (such as words and faces) may show similar response patterns 

due to similar levels of abstracted memory evidence. In other words, provided both types of 

stimuli evoke signals of general memory evidence, one should show transfer of this learned 

mapping across fundamentally different stimulus classes (Figure 7). 
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Figure 7: Hypothetical results. The top panel (predicted results) shows hypothetical results if the 

FPF effect transfers to stimuli that do not receive reinforcement (faces); criterion should not differ 

for words and faces. The bottom panel shows hypothetical results if the FPF effect does not 

transfer to stimuli that never receive reinforcement; criterion for faces should not change 

appreciably from baseline. 
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Participants 

56 (28 per group) individuals participated in Experiment 2 in return for payment ($15). 

 

Face Stimuli 

 Face stimuli were drawn from a database obtained from Endl and colleagues (1998). 

Stimuli consisted of black and white photographs of young Caucasian adults without distinctive 

facial features. The black and white photographs were carefully edited to maintain a standard 

brightness and contrast (Endl et. al., 1998). Examples of face stimuli are shown in Figure 8. 

These cropped faces were chosen in order to minimize the contribution of feature recollection to 

recognition. 

 

Procedure 

Pilot studies were conducted in order to match accuracy (d') across words and faces. As 

discussed in the results section of the previous chapter, when d' differs, differences in c become 

difficult to interpret, as c is calculated relative to the intersection of the target and lure 

distributions (see Macmillan & Creelman, 2004, Verde & Rotello, 2007). It was important for 

Figure 8: Examples of face stimuli for Experiment 2 
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this particular experiment to match accuracy across stimulus types to interpret any potential 

differences in c between words and faces within a given test. For example, consider the scenario 

in Figure 9. In this case, an observer may require just as much evidence to identify either a word 

or face as old, but the calculation for c would show a more conservative criterion for faces 

(roughly zero) as compared to words (less than zero). Thus, pilot studies were conducted to 

titrate face contrast and encoding conditions to match word and face accuracy. At first word 

performance (d') far exceeded face performance, even with no facial blur. Thus the encoding 

tasks were designed to boost face encoding and impoverish word encoding.  

The experiment consisted of four study/test cycles. Participants first studied 80 serially 

presented words and then studied 20 serially presented faces. For words, participants were asked 

to determine if the first and last letter of each word were in alphabetical order. For faces, 

participants were asked to rate how comfortable the person appeared with being photographed 

(on a 4 point scale ranging from "Very Uncomfortable" to "Very Comfortable"). Study was self-

paced. These encoding tasks proved to match recognition performance for both stimulus types.  

Following study, 160 (80 studied and 80 novel) word and 40 (20 studied and 20 novel) 

face stimuli were randomly intermixed during test. For each item type, participants first indicated 

whether the item was old or new, then indicated confidence in their old/new decision ("low," 

"medium," or "high" confidence). Participants were split into two groups during test phases: one 

group received conservative FPF, and the other received liberal FPF; FPF was provided for both 

groups for all four tests. Participants only received feedback following word stimuli (participants 

were simply informed that they would not receive feedback on every trial). This was designed to 

determine whether a bias instilled for words would transfer to faces that never received 

reinforcement. Participants answered the first two questions of the Subjective Awareness 
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Questionnaire following the first three tests, although they were modified slightly: instead of 

judging the proportion of old and new items, participants separately judged the proportions of 

old words and old faces and separately judged their performance for words and faces. Following 

the final test, participants completed the full (again, slightly modified) Subjective Awareness 

Questionnaire, BIS/BAS, GRAPES, and the RFQ before completing the experiment. 

 

 

 

Results 

 Hit rates, FA rates, d’, and c for words and faces are presented in Table 4.  

 

Figure 9: Differences in c become difficult to interpret when d' differs. 

What appears to be the same criterion on the memory evidence axis would 

result in a different value of c for the two stimulus types.  
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Liberal   

 

Stimulus Test Hit Rate FA Rate d' c FPF trials 

Words Test 1 .68 (.12) .33 (.16) 1.01 (0.43) -0.0087 (0.39) 17.77 (8.96) 

 
Test 2 .74 (.12) .46 (.16) 0.84 (0.61) -0.29 (0.41) 26.23 (10.02) 

 
Test 3 .78 (.13) .52 (.18) 0.81 (0.54) -0.46 (0.43) 28.15 (10.79) 

  
Test 4 .77 (.14) .57 (.20) 0.64 (0.57) -0.50 (0.47) 31.15 (10.57) 

Faces Test 1 .64 (.16) .29 (.13) 0.94 (0.53) 0.10 (0.30) N/A 

 
Test 2 .71 (.16) .35 (.16) 1.07 (0.71) -0.10 (0.35) N/A 

 
Test 3 .68 (.21) .36 (.15) 0.94 (0.56) -0.065 (0.50) N/A 

 
Test 4 .69 (.21) .42 (.21) 0.73 (0.64) -0.17 (0.52) N/A 

 

 
            Conservative    

Stimulus Test Hit Rate FA Rate d' c FPF trials 

Words Test 1 .55 (.15) .22 (.10) 0.94 (0.36) 0.35 (0.34) 25.27 (7.74) 

 
Test 2 .51 (.20) .23 (.16) 0.86 (0.35) 0.41 (0.53) 27.12 (11.74) 

 
Test 3 .48 (.24) .22 (.15) 0.81 (0.43) 0.50 (0.61) 29.50 (13.32) 

  
Test 4 .44 (.26) .19 (.17) 0.81 (0.46) 0.64 (0.71) 31.96 (15.60) 

Faces Test 1 .59 (.12) .25 (.16) 1.00 (0.59) 0.25 (0.32) N/A 

 
Test 2 .56 (.21) .29 (.16) 0.79 (0.69) 0.23 (0.45) N/A 

 
Test 3 .53 (.23) .26 (.15) 0.74 (0.57) 0.34 (0.47) N/A 

 
Test 4 .52 (.24) .29 (.15) 0.69 (0.57) 0.28 (0.53) N/A 

 

Accuracy 

 Accuracy (d’) was analyzed using a 2 × 2 × 4 mixed ANOVA examining a between-

subjects factor of Feedback (Liberal vs. Conservative) and within-subjects factors of Stimulus 

(Word vs. Face) and Test (Test 1 vs. Test 2 vs. Test 3 vs. Test 4). The only significant effect on 

accuracy came from Test [F(3,135) = 5.52, p < .01, η2 = .11], indicating that accuracy declined 

across tests for both groups. No other main effects or interactions were significant (all p’s > .33). 

Table 4: Hit rates, false alarm rates, accuracy, criterion, and number of FPF trials for 

both words and faces during Tests 1, 2, 3, and 4 (Experiment 2). Standard deviations 

in parentheses. 
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Importantly, because accuracy did not differ between the stimuli, comparisons of c for both 

stimuli and both groups within a given test can be made without issue.  

 

Criterion 

 The purpose of this experiment was to determine whether a criterion reinforced for one 

set of stimuli (words) would generalize to a starkly different class of stimuli (faces) that were not 

reinforced, but which presumably evoked a similar range of memory evidence. Feedback group 

differences in criterion for faces would support this hypothesis. It should be noted that 15 

participants (7 Liberal, 8 Conservative) had at least one instance of chance or slightly below 

chance accuracy (for either words or faces) for a given test. In a control analysis, any participant 

with any instances of chance performance were initially excluded. Excluding these participants 

did not change the conclusions of the analyses presented below. Thus the primary results are 

presented with all participants included.  

To investigate the main hypothesis, criterion was analyzed using a 2 × 2 × 4 mixed 

ANOVA examining a between-subjects factor of Feedback Group (Liberal vs. Conservative) and 

within-subjects factors of Stimulus (Word vs. Face) and Test (Tests 1-4 ). This analysis revealed 

a main effect of Feedback Group [F(1,45) = 32.19, MSe = 0.95, p < .0001, η2 = .42], with the 

Liberal group being more liberal than the Conservative group. The main effect of Stimulus was 

not significant [F(1,45) < 1], which indicated that bias did not differ between words and faces 

(although this is collapsed across Feedback Group). There was a marginal effect of Test 

[F(3,135) = 2.67, p = .05, η2 = .056] on criterion, indicating a slight liberal trend across tests. 

There was a significant Feedback × Stimulus interaction [F(1,45) = 14.01, MSe = 0.10 p < .001, 

η
2 = .24]. This interaction indicated that the difference in criterion between Feedback Groups 
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was more extreme for words than for faces; post-hoc tests confirmed this for both groups [LW = -

0.31 < LF = -.053, p < .05; CW = 0.49 > CF = 0.28, p < .001]. There was a significant interaction 

between Feedback Group and Test [F(3,135) = 14.60, MSe = 0.10, p < .001, η2 = .24], indicating 

that criterion differences diverged across tests. The Stimulus × Test interaction was not 

significant [F(3,135) = 1.24, MSe = 0.063, p = .30, η2 = .027]. Finally, there was a significant 

three-way interaction among the factors [F(3,135) = 4.41, MSe = 0.063, p < .01, η2 = .089], 

graphed in Figure 10. This interaction indicates that criterion for words diverged further and 

more quickly than did criterion for faces. This is unsurprising considering responses to faces 

were never directly reinforced. Importantly however, there were group differences in criterion 

for faces; that is, criterion for faces was more liberal for participants given Liberal feedback than 

for participants given Conservative feedback, and this effect increased across testing, as 

demonstrated by a significant Feedback Group × Test interaction when looking only at the face 

stimuli  [F(3,135) = 2.74, p = .046, η2 = .057] (dashed lines Figure 10); in summary, response 

bias toward faces mirrored bias toward words, despite the former never receiving direct 

reinforcement during the experiment.1 

                                                 
1 It should be noted that since d’ differed across tests, comparisons of c across tests should be interpreted with 

caution, as c represents the midpoint of the distributions, which is changing locations. Critically however, both 

feedback groups shift in the predicted direction, lending support to the interpretations described here. 
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Confidence 

Confidence for correct reports was examined using a 2 × 2 × 2 × 4 mixed ANOVA 

examining between-subjects factors of Feedback Group (Liberal vs. Conservative) and within-

subjects factors of Stimulus (Word vs. Face), Response (Hit vs. CR), and Test (Test 1 vs. Test 2 

vs. Test 3 vs. Test 4). The only significant effect from this analysis was a significant effect of 

Stimulus [F(1,50) = 9.69, p < .01, η2 = .16], indicating that confidence was generally higher for 

faces than for words. No other main effects or interactions were significant (all p's > .11). 

 

Subjective Awareness Questionnaire 

Figure 10: Criterion diverges across tests based on feedback delivered 

(Experiment 2). Importantly, criterion appears to generalize between words 

and faces (vertical bars represent 95% confidence intervals). 
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Table 5: Subjective Awareness Questionnaire data, Experiment 2. 

 Due to an error in the experimental script, Feedback Influence and Awareness ratings 

were missing for 15 participants (8 Liberal, 7 Conservative). Those data are reported for the 

remaining 37 participants and all data from the Subjective Awareness Questionnaire are 

presented in Table 5. 

    
Believed Bias 

  

Group Stimulus Test 1 Test 2 Test 3 Test 4 

Liberal Word 59.23 (12.86) 63.58 (13.78) 66.19 (13.79) 66.76 (15.82) 

  Face 51.60 (19.67) 23.88 (18.47) 54.15 (17.29) 55.38 (15.74) 

Conservative Word 42.88 (15.28) 37.71 (12.24) 39.84 (15.04) 39.80 (18.40) 

 Face 45.73 (16.11) 51.32 (15.98) 40.12 (17.94) 45.31 (18.23) 

 

    
Believed Accuracy 

  

Group Stimulus Test 1 Test 2 Test 3 Test 4 

Liberal Word 66.88 (15.76) 66.85 (18.25) 64.88 (18.89) 61.38 (17.47) 

  Face 55.12 (23.24) 47.62 (19.44) 51.62 (19.98) 49.96 (20.28) 

Conservative Word 75.19 (11.44) 71.04 (11.39) 65.77 (15.34) 70.31 (15.40) 

 Face 52.77 (13.63) 50.15 (14.70) 47.12 (15.97) 48.35 (15.46) 

 

Believed Feedback Manipulation 

Group Hits CRs FAs Misses None 

Liberal 5 0 2 0 11 

Conservative 2 5 1 5 6 

 

  
Feedback Influence   

Group Positive|"Old" Positive|"New" Negative|"Old" Negative|"New" 

Liberal 4.17 (1.25) 3.72 (1.32) 4.56 (1.15) 4.22 (1.22) 

Conservative 4.10 (1.32) 4.32 (1.33) 4.05 (1.39) 4.05 (1.35) 
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 Believed Bias 

 Participants reported their believed proportion of old item judgments separately for both 

words and faces for each test and these values are listed in Table 5. As with Experiment 1, this 

measure was used to examine whether their subjective beliefs tracked the influence of the 

feedback manipulation. These values were subjected to a 2 × 2 × 4 mixed ANOVA examining a 

between-subjects factor of Feedback Group (Liberal vs. Conservative) and within-subjects 

factors of Stimulus (Word vs. Face) and Test (Tests 1 - 4). There was a main effect of Feedback 

Group [F(1,46) = 42.09, p < .0001, η2 = .48] indicating that participants who received Liberal 

FPF reported subjectively more old items than did participants who received Conservative FPF 

[SOL = 58.80, SOC = 42.56]. There was no effect of Stimulus [F(1,46) < 1] nor of Test [F(3,138) 

< 1] on believed bias. There was an interaction between Feedback Group and Stimulus on 

believed bias [F(1,46) = 13.22, p < .001, η2 = .22]. This interaction indicated that, like the actual 

criterion, bias reports were more extreme in each group for words than for faces, although this 

difference only survived post-hoc comparisons in the Liberal feedback group [LW = 63.81, LF = 

53.78, p < .05; CW = 39.46, CF = 45.67, p = .22]. Finally, there was a significant interaction 

between Feedback Group and Test on subjective proportion of old items [F(3,138) = 2.75, p < 

.05, η2 = .056]. Like the criterion results above, this interaction indicated that differences in 

believed bias for the two Feedback groups increased across subsequent tests. 

 

 Believed Accuracy 

 As with believed bias for this experiment, participants rated their believed accuracy 

separately for words and faces. These ratings were subjected to a similar 2 × 2 × 4 mixed 

ANOVA as above, again examining a between-subjects factor of Feedback Group (Liberal vs. 
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Conservative) and within-subjects factors of Stimulus (Word vs. Face) and Test (Tests 1-4). 

There was a robust effect of Stimulus on subjective performance estimates [F(1,49) = 91.05, p < 

.0001, η2 = .65] indicating that participants thought they identified far more words correctly than 

they did faces [MW = 68.01, SEW = 1.88; MF = 50.46, SEF = 2.23] even though actual 

performance was equivalent for the two stimulus types. No other main effects or interactions 

were significant (all p’s > .08). Next, believed accuracy was contrasted with actual performance 

(percent correct) for both words and faces, collapsed across Feedback Group in order to improve 

power. In contrast with Experiment 1, participants overestimated their recognition performance 

for words across all tests, but only significantly so in Test 2 [Test 1 diff: 3.92, t(51) = 1.97, p = 

.054; Test 2 diff: 5.10, t(51) = 2.61, p < .05; Test 3 diff: 2.29, t(51) = 1.02, p = .31; Test 4 diff: 

4.52, t(51) = 1.98, p = .054]. Participants significantly underestimated their own recognition 

performance for faces across all tests [Test 1 diff: -13.82; Test 2 diff: -16.93; Test 3 diff: -15.35; 

Test 4 diff: -13.39]. 

 

 Feedback Influence 

 Participants ranked how they thought different feedback outcomes influenced their 

responding on a 6 point Likert scale ranging from "not at all influenced" to "very influenced." 

Separate influence ratings were made for all possible feedback outcomes. A first pass analysis 

examined whether there were mean differences in the subjective influence of the feedback 

among the feedback groups. Mean influence ratings were analyzed using a 2 × 2 × 2 mixed 

ANOVA examining a between-subjects factor of Feedback Group (Liberal vs. Conservative) and 

within-subjects factors of Response Type (Old vs. New) and Feedback Valence (Positive vs. 

Negative). There were no main effects or interactions among the factors (all p’s > .11). 
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 Effects of Awareness 

 As with Experiment 1, participants were loosely classified as “aware” if they correctly 

indicated the nature of their feedback manipulation when given five different options. By this 

criterion, 7 participants were deemed aware (Liberal = 2, Conservative = 5). The proportion of 

aware subjects did not differ from chance within each Feedback Group (Liberal: .111 ± .095; 

Conservative: .263 ± .121). Additionally, a large proportion of participants in both groups 

(Liberal: .611 ± .132; Conservative .316 ± .128) selected "I don't agree with any of the 

[feedback] options" (Table 5), suggesting many participants were unfazed by the manipulation. 

Fisher’s exact test indicated no relationship between group membership and awareness of the 

feedback manipulation (p > .40, two-sided). As with Experiment 1, none of the main effects or 

interactions were affected when aware participants were excluded from the analyses.  

 

Personality Measures 

 The BIS/BAS, RFQ, and GRAPES questionnaires did not correlate with any of the 

measures described above. 

 

Discussion 

 The purpose of this experiment was to test the hypothesis that a criterion learned for one 

class of stimuli would transfer to another class of stimuli with starkly different surface features. 

More specifically, FPF was provided for words but no form of feedback was ever provided for 

faces. Both words and faces demonstrated more liberal responding for the Liberal than the 

Conservative feedback group overall. Further, within each stimulus class there was a Feedback 
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Group × Test interaction, demonstrating that criterion differences increased across repeated 

testing and exposure to biasing feedback.  

As noted, response bias for faces was not as extreme as response bias for words. That is, 

participants who received Liberal feedback were more liberal for words than faces; participants 

who received Conservative feedback were more conservative for words than for faces. This is 

likely due to faces never being directly reinforced. Both stimulus classes presumably overlap to 

some degree on some underlying memory evidence variable. To the degree that these stimulus 

classes share some abstracted memory evidence, the stimulus that is never directly reinforced 

should show some effect of feedback. If the reinforcement schedule were flipped such that faces 

received feedback and words did not, one would expect the opposite pattern: a more extreme 

criterion for faces instead of words. 

 These results are consistent with some implicit learning tasks showing transfer across 

seemingly disparate stimuli. For example, Reber (1968) demonstrated intact learning of an 

artificial grammar when symbols were changed but the underlying syntactic rules remained 

intact. In his task, participants were first trained on an artificial grammar via memorizing several 

example strings. Following study, groups of participants were tested with strings from a 

grammar that either: used the same symbols (letters) and syntax as the training grammar; used 

the same symbols but different underlying syntax; used different symbols but the same 

underlying syntax as the training grammar; or used different symbols and underlying syntax. 

Reber (1969) found that groups who encountered the same underlying syntax at test correctly 

identified grammatical strings equally often, even when the symbols representing the grammar 

had changed. In contrast, participants who encountered a new syntactic structure performed 

worse, regardless of the identity of the symbols. In this case, implicit knowledge was not bound 
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to the surface features of the item; rather, observers learned a deeper representation of the 

grammar (see also Mathews et. al., 1989; Posner & Keele, 1968). 

 Why would a criterion for one set of materials transfer to another set of materials with 

starkly different surface features? One explanation postulates that, at some level, both stimulus 

types evoke a domain-general memory strength signal, akin to perceptual intensity. Basic Signal 

Detection models of recognition assume this – that is, observers make recognition decisions 

based on signals along a “memory evidence” or “familiarity” axis (Macmillan & Creelman, 

2005; Yonelinas, 2002). The results of this experiment support the idea that, despite vastly 

different surface features, these two stimulus types are broken down into a raw memory evidence 

signal at some level. It may not be much of a stretch to claim that ALL types of stimuli evoke 

some basic memory evidence signal to be evaluated. Under this framework, FPF alters the 

mapping between this underlying evidence and corresponding judgments; hence the transfer 

across stimuli from different domains. The degree of overlap between two types of stimuli with 

regards to how much general memory evidence they evoke may relate to the degree of transfer. 

In other words, stimuli that share more features with words (e.g., nonwords) should show better 

transfer, as they would likely overlap more considerably in their levels of generalized memory 

evidence. This remains an intriguing area for future study. 

 It is clear that implicit criterion learning acts on some general memory evidence signal 

common across different types of stimuli. How might such a signal be characterized? 

Hippocampal and medial temporal lobe (MTL) models of recognition memory postulate that 

recognitions occur via pattern matching in the hippocampus and the surrounding cortex (Norman 

& O’Reilly, 2003). In Norman and O’Reilly’s (2003) model, MTL outputs a scalar value based 

on the degree of overlap between a given stimulus and the contents in memory. This value could 
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easily read into a system that evaluates it against a criterion value and issues an old/new 

response. The difference between this scalar and the criterion could serve as a proxy for the 

prediction error; larger values should result in larger adjustments of behavior following 

unexpected outcomes (positive or negative). The system aims for a prediction error of zero. In 

the presence of veridical feedback, observers should hold generally neutral criteria (Benjamin, 

Diaz, & Wee, 2009; Kantner & Lindsay, 2010). In the case of biased feedback, however, positive 

prediction errors bias the observer toward one response over another. Finally, in the absence of 

continued biased feedback, observers would generally hold the same criteria they had previously 

learned, as demonstrated in Experiment 1 and prior work (Han & Dobbins, 2008, 2009). 

 However, it is relevant to speculate why this transfer is not perfect. One potential 

explanation is that familiarity is not simply a unitary process, but an amalgamation of multiple 

sources of information (Rugg & Curran, 2007). In other words, only one aspect of the familiarity 

process represents the actual contribution of memory evidence. The memory decision could also 

be influenced by factors such as conceptual or perceptual fluency. Words and faces could differ 

in levels of fluency; not surprising since they were encoded differently. If these sorts of 

extraneous sources of information are independent of the abstracted memory strength, then one 

might expect criterion transfer across stimulus types to be limited.  
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Chapter 7 

4) Would a shift of context eliminate an implicitly acquired response bias? 

 Experiment 2 demonstrated that FPF learning generalizes across stimuli with grossly 

different perceptual features. This suggests a fairly abstract form of learning in which the 

mapping between general memory evidence and overt recognition judgments is altered. 

However, as noted earlier, some forms of incremental reinforcement learning tend to be highly 

context specific, with learning most strongly expressed within the acquisition context; this is 

particularly true for habits (Bouton, 2002; Yin & Knowlton, 2006). For example, rodents 

extinguish a learned stimulus-response habit more effectively in a different physical context from 

where it was learned as opposed to the same context (McDonald, King, & Hong, 2001), and 

recovery of an extinguished association is improved when attempted in the original learning 

context (Bouton & Moody, 2004; LaBar & Phelps, 2004). Concerning the current work, although 

the first two experiments suggest that FPF induces a shifted mapping between given levels of 

abstracted memory evidence and certain overt memory classifications, it remains unclear 

whether this could simply represent a motor preference for a given response key in a given 

context; a basic form of motor reinforcement learning. In other words, when memory for a given 

item was low, context cues might trigger a motor preference, yielding several responses that 

were not based on the memory decision process. Thus, two related questions remain open: is 

FPF-based learning context sensitive? Further, can it be explained as a simple motor preference? 

 FPF-based learning likely operates on general memory evidence abstracted from the 

stimuli, as evidenced by Experiment 2. Presumably this memory evidence is a signal generated 

via the medial temporal lobe (Squire, 1992), and there is evidence that the MTL projects directly 

onto the dopaminergic midbrain and striatum (Cohen, Schoene-Bake, Elger, & Weber, 2009; Di 



lxxvii 

Martino et. al., 2008; Haber & Knutson, 2010; Rose, Haider, Weiller, & Büchel, 2002), regions 

that support various forms of reinforcement learning. However, parts of the medial temporal lobe 

– specifically the hippocampal formation – are also important for recording spatial location 

(Devan, Goad, & Petri, 1996; Eichenbaum, 2000; Nadel, 1991; Nadel, Hoscheidt, & Ryan, 2013; 

Squire, 1992; Stella et. al., 2012). Further, basic forms of implicit association learning in which 

observers gradually learn to attend to different spatial locations during visual search tasks based 

on contextual cues have been shown to be MTL dependent (Chun & Jiang, 2003; Chun & 

Phelps, 1999). Rapid stimulus-response learning that sometimes occurs during repeated semantic 

classification tasks has also been shown to depend on the MTL (Schnyer, Dobbins, Nicholls, 

Schacter, & Verfaellie, 2006). As a collection, these works suggest that even basic forms of 

learning that appear implicit in nature (as the FPF effect appears to be) may nonetheless be 

linked to MTL processes, and thus may be highly contextually-specific. 

 The context-specificity of some explicit memory judgments is well-established, (Godden 

& Baddeley, 1975, 1980; though c.f. Smith, Glenberg, & Bjork, 1980, Smith & Vela, 2001 for 

further discussion on controversy), but the above research suggests that a variety of implicit 

learning phenomena may also be bound tightly to the learning context. This type of sensitivity 

might constrain the FPF effect, which Experiments 1 and 2 converge in suggesting is an 

implicitly acquired remapping of underlying memory evidence to overt memory judgments. If 

this effect were highly context specific, or simply reflected the repeated reinforcement of a given 

behavioral action, one would not expect it to generalize outside of this specific laboratory 

paradigm. On the other hand, if the learning were more context-general it would suggest that 

FPF engenders a genuine change in how memory evidence is considered. Thus, Experiment 3 

was designed to test the context-specificity of the FPF effect by manipulating both A) the spatial 



lxxviii 

Figure 11: Hypothetical results. The top panel (predicted results) shows hypothetical 

results if the FPF effect is context-sensitive (i.e., does not transfer to a new context); 

criterion should return to baseline during the final test for the Shift Context groups. The 

bottom panel shows hypothetical results if the FPF effect is NOT context-sensitive; the 

FPF effect should remain in the new testing context for the Shift Context groups. 

context of testing, and B) the motor response used to issue recognition judgments (i.e., computer 

versus writing). Figure 11 shows predicted results. 
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Experiment 3 

Participants 

114 individuals participated in Experiment 3 in return for either $15 or partial course 

credit.  

 

Procedure 

 For this experiment, the BIS/BAS was presented before any study or test phases so 

participants could complete it before the experimental context manipulation. The experiment 

consisted of four study/test cycles, although the fourth test format differed for some participants 

(see below). The study and test phases were similar to Experiment 1. During study phases, 100 

words were serially presented and participants rated the number of syllables in each word. 

Participants had two seconds to respond to each item; if this time was exceeded, the words ‘TOO 

SLOW’ appeared on screen and the computer moved onto the next trial. During test phases, 100 

targets and 100 lures were randomly intermixed and presented serially; participants first 

indicated whether each item is old or new, followed by a confidence report (“low,” “medium,” or 

“high” confidence). Test phases were self-paced, and participants received FPF during the first 

three recognition tests. Each test was followed by questions 1-2 of the Subjective Awareness 

Questionnaire.  

 Following the fourth study cycle, participants were instructed to return to the 

experimenter. All participants were then taken to a separate conference room down the hall from 

the experimental space. This conference room was smaller than the original testing context and 

lacked any computers. The conference room also had one wall with a brick veneer, further 
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differentiating the contexts. All participants then completed paper copies of the GRAPES and 

RFQ in this separate room. Upon completing these two questionnaires, participants in the No 

Shift groups were taken back to the experimental space and completed the fourth recognition test 

at their original testing computer; this was designed to reinstate the original testing context and 

the original motor mappings (although no computer feedback was provided during this test). 

Participants in the Shift groups were given a paper copy of their fourth test (new testing context 

which also required a new motor response) and were read the following instructions before 

beginning: 

“You will now complete a pen and paper memory test. It will contain words you just 

studied intermixed with new words not previously shown in the experiment. Your task 

will be to determine whether each item is an old item from the most recent syllable-

counting list or is a word that is new to the experiment by circling the appropriate answer 

in the “old/new” column. Following your old/new judgment, you’ll indicate your 

confidence in that judgment by circling the corresponding confidence level in the 

“confidence column.” For this test, it is very important that you answer each item in order 

and do not return to any previously answered items. Try to focus on each item 

individually when making your old/new and confidence assessments. If you have any 

questions, feel free to ask me.” 

  

Participants in the Shift groups did not receive feedback for their responses during the final test. 

 Participants in the Shift groups were taken back to their original testing computers 

following completion of the paper test. All participants completed the full Subjective Awareness 
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Questionnaire following the fourth recognition test. A final open-ended question was added to 

the Subjective Awareness Questionnaire for this experiment: 

 “Briefly explain what you felt was the purpose of leaving the room during the 

experiment.” 

 

Results 

 Hits, false alarms, d', and c are presented in Table 6. Analyses in this section will initially 

examine performance during the first three tests as a function of Feedback (i.e., Liberal vs. 

Conservative FPF) in order to establish that FPF had an effect, then examine performance during 

the final test as a function of both Feedback and Context (i.e., No Shift vs. Shift) to investigate 

how context affected expression of the learned bias. 

  
  Liberal/No Shift 

  
N = 29 

Test Hit Rate FA Rate d' c FPF trials 

Test 1 .79 (.10) .22 (.11) 1.67 (0.36) -0.034 (0.31) 15.43 (8.04) 

Test 2 .80 (.11) .35 (.18) 1.34 (0.47) -0.25 (0.40) 25.07 (13.61) 

Test 3 .81 (.12) .42 (.21) 1.18 (0.49) -0.39 (0.49) 29.45 (14.84) 

Test 4 .75 (.15) .48 (.17) 0.81 (0.48) -0.37 (0.46) N/A 

 

  
  Conservative/No Shift 

  
N = 29 

Test Hit Rate FA Rate d' c FPF trials 

Test 1 .69 (.14) .18 (.099) 1.52 (0.48) 0.23 (0.33) 20.69 (9.75) 

Test 2 .63 (.19) .19 (.10) 1.27 (0.55) 0.30 (0.42) 25.31 (13.17) 

Test 3 .57 (.17) .18 (.084) 1.12 (0.44) 0.39 (0.37) 30.07 (12.34) 

Test 4 .50 (.20) .24 (.12) 0.78 (0.56) 0.40 (0.45) N/A 
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Table 6: Hit rates, false alarm rates, accuracy, criterion, and number of FPF 

trials for Tests 1, 2, 3, and 4 (Experiment 3). Standard deviations in 

parentheses. 

  
  Liberal/Shift N = 27 

Test Hit Rate FA Rate d' c FPF trials 

Test 1 .76 (.10) .25 (.11) 1.48 (0.54) -0.0088 (0.25) 17.89 (7.82) 

Test 2 .81 (.096) .37 (.20) 1.30 (0.57) -0.29 (0.37) 27.81 (14.16) 

Test 3 .83 (.11) .50 (.24) 1.01 (0.62) -0.52 (0.49) 35.59 (17.90) 

Test 4 .70 (.11) .44 (.13) 0.72 (0.39) -0.20 (0.28) N/A 

 

  
  Conservative/Shift N = 28 

Test Hit Rate FA Rate d' c FPF trials 

Test 1 .71 (.13) .15 (.096) 1.67 (0.43) 0.24 (0.31) 20.68 (10.32) 

Test 2 .69 (.16) .18 (.10) 1.51 (0.52) 0.22 (0.35) 22.36 (13.19) 

Test 3 .60 (.19) .16 (.092) 1.35 (0.57) 0.40 (0.38) 27.75 (14.06) 

Test 4 .55 (.18) .21 (.14) 0.98 (0.46) 0.37 (0.41) N/A 

 

 

 

Accuracy 

  Accuracy during the first three tests was analyzed using a 2 × 3 mixed ANOVA 

examining a between-subjects factor of Feedback Group (Liberal vs. Conservative) and a within-

subjects factor of Test (Test 1 vs. Test 2 vs. Test 3). The only significant effect on accuracy came 

from Test [F(2,220) = 73.49, MSe = 0.069, p < .0001, η2 = .40], which indicated that accuracy 

declined across tests [MT1 = 1.59, SET1 = 0.043; MT2 = 1.34, SET2 = 0.049; MT3 = 1.16, SET3 = 

0.051]. Neither the effect of Feedback [F(1,110) < 1] nor the interaction [F(2,220) = 1.55, MSe = 

0.069, p = .21, η2 = .014] were significant. 

 Next, accuracy during the fourth test was analyzed using a 2 × 2 factorial ANOVA, 

examining factors of Prior Feedback (Liberal vs. Conservative) and Context (No Shift vs. Shift). 

There were no main effects or interactions (all p's > .11), indicating no accuracy differences 

among the four groups during the final test. 
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Criterion 

 Criterion during the first three tests was analyzed using a 2 × 3 mixed ANOVA 

examining a between-subjects factor of Feedback Group (Liberal vs. Conservative) and a within-

subjects factor of Test (Tests 1-3). This analysis revealed a main effect of Feedback Group 

[F(1,110) = 77.13, MSe = 0.33, p < .0001, η2 = .41], which indicated that participants in the 

Liberal group were more liberal than participants in the Conservative group [ML = -0.25, SEL = 

0.045; MC = 0.30, SEC = 0.044]. There was also a main effect of Test [F(2,220) = 12.67, MSe = 

0.049, p < .0001, η2 = .10] which indicated a liberal trend in criterion across tests [MT1 = 0.11, 

SET1 = 0.028; MT2 = -0.009, SET2 = 0.036; MT3 = -0.032, SET3 = 0.041]. These main effects were 

qualified by a robust Feedback Group × Test interaction [F(2,220) = 49.81, MSe = 0.049; p < 

.0001, η2 = .31], which indicated that the two groups tended to increasingly diverge across tests 

(see Table 6 and Figure 12). 

 Before moving on to the next section, it was important to establish that there were no 

differences between the Context groups prior to the context manipulation. Future Context Group 

was added to the above ANOVA as a manipulation check. As would be expected, there was no 

main effect of Context Group and it did not interact with any other factors (all p’s > .28).  

 The purpose of this experiment was to test the context-dependence of an implicitly 

learned criterion - that is, whether a criterion developed in one context would transfer to a vastly 

different testing context. To test this, criterion during Test 4 was examined using a 2 × 2 factorial 

ANOVA, examining factors of Prior Feedback Group (Liberal vs. Conservative) and Context 

Group (No Shift vs. Shift). There was a significant effect of Prior Feedback Group [F(1,109) = 

75.52, MSe = 0.17, p < .0001, η2 = .41], which indicated that participants who previously 

received Liberal feedback remained more liberal than participants who previously received 
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Conservative feedback [ML = -0.29, SEL = 0.055; MC = 0.38, SEC = 0.054], despite the absence 

of any feedback on the final test. The main effect of Context Group was not significant [F(1,109) 

= 1.00, MSe = 0.17, p = .32, η2 = .009]. Surprisingly, the interaction among the factors was not 

significant [F(1,109) = 1.64, MSe = 0.17, p = .20, η2 = .015], suggesting that context did not 

influence the effects of prior feedback learning (Figure 12).  

 The above analysis suggests that shifting context did not have any effect on criterion. In 

other words, differences in criterion as a result of FPF persisted despite a robust change in testing 

context, involving both a change in spatial location and response format. This notion can be 

tested more directly by contrasting criterion for the Liberal/Shift and Conservative/Shift groups. 

A significant difference between these two groups would provide yet further evidence that an 

implicitly learned criterion was insensitive to changes in context. Supporting this idea, criterion 

for the two groups was robustly different [t(53) = -6.00, p < .0001], which indicated that the 

Liberal/Shift group was more liberal than the Conservative/Shift group (see Table 6). In addition, 

criterion did not differ between the two Liberal groups [t(54) = -1.70, p = .095] nor the two 

Conservative groups [t(55) < 1]. These results all point to the conclusion that whatever is learned 

via FPF is not highly context-dependent. Further, the learning is not a simple motor preference as 

participants in the Shift groups completed a pen and paper version of the final test instead of a 

computerized version. 
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Figure 12: Effects of context change on criterion (Experiment 3). Dotted line indicates 

when all groups left the original testing room. No Shift participants returned to the 

original testing room to complete Test 4, while Shift participants remained in the new 

context and completed Test 4. Changing context did not appear to eliminate the effects of 

FPF (vertical bars represent 95% confidence intervals). 

 

 

Confidence 

 Analysis of confidence was restricted to correct reports. Confidence across the first three 

tests was examined using a 2 × 2 × 3 mixed ANOVA examining a single between-subjects factor 

of Feedback Group (Liberal vs. Conservative) and two within-subjects factors, Response Type 

(Hit vs. CR) and Test (Test 1 vs. Test 2 vs. Test 3). There was no effect of Feedback Group on 

overall confidence [F(1,110) < 1]. There was a significant effect of Response Type on 

confidence [F(1,110) = 64.25, MSe = 0.11, p < .0001, η2 = .37] which indicated that hits were 
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more confident than CRs [MH = 2.47, SEH = 0.032; MCR = 2.26, SECR = 0.042]. The main effect 

of Test was not significant [F(2,220) < 1]. Turning to the interactions, the only significant two-

way interaction was the Feedback Group × Response Type interaction [F(1,110) = 14.36, MSe = 

0.11, p < .001, η2 = .12]. This interaction indicated that the difference in confidence between hits 

and CRs was larger in the Liberal groups [MLH = 2.52, SELH = 0.045; MLCR = 2.22, SELCR = 

0.061; p < .05, Tukey's] than in the Conservative groups [MCH = 2.41, SEH = 0.044; MCCR = 

2.30, SECCR = 0.060; p < .05, Tukey's]. Finally, the three-way interaction was significant 

[F(2,220) = 8.89, MSe = 0.021, p < .001, η2 = .075]. This interaction indicated that hit and CR 

confidence tended to diverge in the Liberal feedback group, and tended to converge in the 

Conservative feedback group. 

 Confidence during the final test was examined using a 2 × 2 × 2 mixed ANOVA 

examining between-subjects factors of Prior Feedback Group (Liberal vs. Conservative) and 

Context (No Shift vs. Shift), and a single within-subjects factors of Response Type (Hit vs. CR). 

The only significant main effect was a main effect of Response Type [F(1,109) = 22.74, MSe = 

0.074, p < .0001, η2 = .17], which indicated that hits were more confident than CRs [MH = 2.24, 

SEH = 0.034; MCR = 2.07, SECR = 0.044]. The only significant interaction was the Prior Feedback 

Group × Response Type interaction [F(1,109) = 19.88, MSe = 0.074, p < .0001, η2 = .15]. This 

interaction indicated that while hits were more confident than CRs for the Prior Liberal feedback 

groups [MLH = 2.29, SELH = 0.048; MLCR = 1.96, SELCR = 0.062; p < .001, Tukey's HSD], there 

was no difference in response confidence for the Prior Conservative feedback groups [MCH = 

2.20, SECH = 0.048; MCCR = 2.18, SECCR = 0.061; p = .996, Tukey's HSD]. 

 

Subjective Awareness Questionnaire 
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Table 7: Subjective Awareness Questionnaire data, Experiment 3. 

These data are shown in Table 7. 

    
Believed Bias 

    

Group Test 1 Test 2 Test 3 Test 4 

Liberal/No Shift 60.07 (10.86) 59.54 (12.39) 64.11 (13.80) 53.57 (13.53) 

Conservative/No Shift 45.07 (14.62) 40.14 (12.24) 39.34 (11.62) 42.86 (15.30) 

Liberal/Shift 62.48 (9.50) 67.22 (10.95) 64.85 (14.81) 58.27 (13.69) 

Conservative/Shift 39.92 (15.89) 45.00 (14.08) 44.11 (16.12) 37.81 (16.28) 

 

    
Believed Accuracy 

    

Group Test 1 Test 2 Test 3 Test 4 

Liberal/No Shift 74.33 (9.68) 66.64 (13.59) 61.21 (14.97) 46.04 (15.76) 

Conservative/No Shift 76.66 (8.20) 68.96 (10.60) 66.59 (11.80) 49.21 (14.92) 

Liberal/Shift 75.63 (10.35) 71.48 (12.75) 67.07 (12.98) 53.81 (18.37) 

Conservative/Shift 82.15 (7.40) 73.85 (12.08) 71.67 (13.69) 56.67 (20.70) 

 

Believed Feedback Manipulation 

Group Hits CRs FAs Misses None 

Liberal/No Shift 2 5 4 1 17 

Conservative/No Shift 3 2 3 5 16 

Liberal/Shift 3 0 5 1 18 

Conservative/Shift 4 5 4 3 12 

 

  
Feedback Influence   

Group Positive|"Old" Positive|"New" Negative|"Old" Negative|"New" 

Liberal/No Shift 4.59 (0.73) 4.59 (0.94) 4.45 (1.12) 4.62 (1.08) 

Conservative/No Shift 4.38 (0.86) 4.03 (1.08) 4.72 (1.31) 4.52 (1.24) 

Liberal/Shift 4.30 (0.95) 4.18 (1.08) 4.33 (1.21) 4.37 (1.18) 

Conservative/Shift 3.67 (1.22) 3.68 (1.44) 4.46 (1.37) 4.14 (1.43) 
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Believed Bias 

 Believed bias ratings were subjected to a 2 × 3 mixed ANOVA examining a between-

subjects factor of Feedback Group (Liberal vs. Conservative) and a within-subjects factor of Test 

(Tests 1 - 3). This analysis revealed a main effect of Feedback Group [F(1,102) = 117.76, MSe = 

276.3, p < .0001, ç2 = .54] which mirrored the differences in criterion noted above [ML = 63.35, 

SEL = 1.33; MC = 42.92, SEC = 1.33]. Neither the effect of Test nor the two-way interaction were 

significant (both p's > .34). 

 Believed Bias during the final test was examined using a 2 × 2 factorial ANOVA, which 

examined factors of Prior Feedback Group (Liberal vs. Conservative) and Context Group (No 

Shift vs. Shift). Again, there was a main effect of Prior Feedback Group [F(1,106) = 30.63, MSe 

= 217.7, p < .0001, η2 = .22] replicating the pattern noted above [ML = 55.92, SEL = 2.01; MC = 

40.34, SEC = 1.97]. The main effect of Context Group was not significant [F(1,106) < 1]. The 

two-way interaction approached significance [F(1,106) = 2.99, MSe = 217.7, p = .086, η2 = 

.027]. The nature of this interaction indicated that the Feedback Group difference between 

Believed Bias estimates was smaller for No Shift participants [MLNS = 53.67, SELNS = 2.79; 

MCNS = 42.86, SECNS = 2.74; p < .05, Tukey's] than for Shift participants [MLS = 58.27, SELS = 

2.89; MCS = 37.81, SECS = 2.84; p < .01, Tukey's].   

 

Believed Accuracy 

 Mean believed accuracy ratings for Tests 1, 2, and 3 were analyzed using a 2 × 3 mixed 

ANOVA examining a between-subjects factor of Feedback Group (Liberal vs. Conservative) and 

a within-subjects factor of Test (Test 1 vs. Test 2 vs. Test 3). There was a significant main effect 

of Feedback Group [F(1,108) = 4.59, MSe = 291, p < .05, η2 = .041] which indicated that the 
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Liberal Feedback participants rated their performance lower than did Conservative Feedback 

participants [ML = 69.20, SEL = 1.34; MC = 73.22, SEC = 1.32]. The main effect of Test was 

highly significant [F(2,216) = 50.15, MSe = 64, p < .0001, η2 = .32], which indicated that 

believed accuracy ratings declined across tests [MT1 = 77.14, SET1 = 0.87; MT2 = 69.98, SET2 = 

1.17; MT3 = 66.51, SET3 = 1.30]. Post-hoc tests indicated all three test means were significantly 

different from each other (all p’s < .005). Finally, the two-way interaction was not significant 

[F(2,216) < 1]. The perceived accuracy difference between the Feedback Groups likely reflects 

the slight numerical accuracy advantage possessed by Conservative participants in this 

experiment (see Table 6).  

 Subjective performance during Test 4 was analyzed using a 2 x 2 factorial ANOVA, 

examining between-subjects factors of Prior Feedback (Liberal vs. Conservative) and Context 

(No Shift vs. Shift). The main effect of Prior Feedback was not significant [F(1,107) < 1]. The 

main effect of Context Group was significant [F(1,107) = 5.24, MSe = 307.1, p < .05, η2 = .047], 

which indicated that No Shift participants rated their performance during Test 4 lower than did 

Shift participants [MNS = 47.62, SENS = 2.32; MS = 55.24, SES = 2.38], despite there being no 

significant differences in performance during Test 4 between these two groups. This may reflect 

the No Shift participants being used to receiving feedback in the original testing context; this 

surprising change from the original context may have altered how they perceived their own 

performance. The two-way interaction among the factors did not approach significance [F(1,107) 

< 1]. 

 As in the previous two experiments, believed accuracy was contrasted with actual 

(percent correct out of 100) and the result was compared to 0 (i.e., perfect postdiction) for each 

test. This analysis collapsed across Feedback Group in order to increase power. Participants 
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postdicted their own performance relatively accurately during Test 1 [M = -0.32, SE = 0.89, 

t(109) = -0.36]. Participants underestimated their own performance during Test 2 [M = -2.69, SE 

= 1.11, t(110) = -2.42, p < .05] and Test 3 [M = -2.84, SE = 1.30, t(110) = -2.18, p < .05]. 

Believed minus actual accuracy during Test 4 was evaluated separately for the Context Groups. 

No Shift participants underestimated their own performance during Test 4 [M = -5.38, SE = 1.77, 

t(56) = -3.03, p < .01], whereas Shift participants postdicted their own performance relatively 

accurately [M = -0.16, SE = 1.86, t(53) = -0.084, p = .93]. The Context Group difference 

between these estimation differences approached, but was not significant [t(109) = 1.72, p = .09].  

 

Feedback Influence 

 Participants rated their perceived influence of the various feedback outcomes 

(positive/negative following “old,” and positive/negative following “new”) on 6 point Likert 

scales. Feedback influence ratings were analyzed using two separate 2 × 2 × 2  mixed ANOVAs 

examining a between-subjects factor of Feedback Group (Liberal vs. Conservative), and within-

subjects factors of Feedback Valence (Positive vs. Negative) and Response Type ("old" vs. 

"new"); separate ANOVAs were run for the two Context Groups in order to simplify the 

resulting analyses. First examining the No Shift participants, the only significant effect was an 

interaction between Feedback Group and Response Type [F(1,56) = 4.38, MSe = 0.43, p < .05, 

η
2 = .072]. This interaction indicated that while the Liberal participants thought feedback 

following either response type equally influential [MO = 4.52, SEO = 0.16; MN = 4.60, SEO = 

0.15] while Conservative participants thought feedback following “old” reports was more 

influential [MO = 4.55, SEO = 0.16; MN = 4.28, SEN = 0.15], although none of the post-hoc 
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comparisons among these values were significant (all p’s > .12, Tukey’s HSD). No other main 

effects or interactions were significant for the No Shift participants (all p’s > .12). 

 Turning to the Shift participants, there was a significant main effect of Feedback Valence 

[F(1,53) = 6.99, MSe = 1.07, p < .05, η2 = .12] which indicated that these participants rated 

negative feedback as more influential than positive feedback [MPos = 3.96, SEPos = 0.14; MNeg = 

4.33, SENeg = 0.15]. The Feedback Group × Feedback Valence interaction approached 

significance [F(1,53) = 3.41, MSe = 1.07, p = .07, η2 = .06]. This interaction indicated that while 

Liberal participants rated positive and negative feedback as equally influential [MPos = 4.24, 

SEPos = 0.21; MNeg = 4.35, SENeg = 0.22], Conservative participants felt that negative feedback 

was more influential than positive feedback [MPos = 3.68, SEPos = 0.20; MNeg = 4.30, SENeg = 

0.21]; this latter difference was significant according to Tukey’s (p < .05). 

 

 Effects of Awareness 

 As with previous experiments, awareness was coarsely classified based on whether 

participants correctly guess how their feedback was manipulated. By this criterion, only 17 out of 

114 participants qualified as aware (Liberal/No Shift = 4, Conservative/No Shift = 5, 

Liberal/Shift = 5, Conservative/Shift = 3). The number of participants selecting the correct 

feedback manipulation did not differ significantly from chance for either Feedback Group 

(Liberal: .140 ± .0944; Conservative: .158 ± .100). Additionally, the number of participants 

selecting "I don't agree with any of the [feedback] options" was greater than chance for both 

Feedback Groups (Liberal: .632 ± .131; Conservative: .491 ± .137).  Fisher’s exact test 

demonstrated no substantive differences in the distribution of aware vs. unaware participants 
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between the Shift and No Shift groups (p > .99, two-sided) or the Liberal and Conservative 

groups (p > .99, two-tailed).  

 As with previous experiments, the criterion analyses were re-run with the aware subjects 

excluded. None of the reported findings were affected. 

 

Personality Measures 

 The BIS/BAS, RFQ, and GRAPES questionnaires did not correlate with any of the 

measures described above. 

 

Discussion 

 This experiment was designed to test the hypothesis that FPF-induced criterion shifts are 

sensitive to the context in which they are learned. In other words, a response bias learned in one 

location should not show transfer to an entirely different testing context. Surprisingly, this was 

not the case; criterion learning was robust whether tested in the same context as the learning or a 

new context. 

 Further, FPF-based criterion learning does not reflect the reinforcement of a particular 

motor response tendency. This hypothesis was tested indirectly by the Shift Context groups. In 

many forms of implicit learning, what is learned is a binding of a given stimulus with a given 

distal response location (Ashby & Maddox, 2005; Willingham, Wells, Farrell, & Stemwedel, 

2000). In these types of learning tasks, inconsistency in the response mappings (e.g., changing 

the locations of the responses) disrupts the expression of implicit knowledge (Ashby, Ell, & 

Waldron, 2003; Maddox, Bohil, & Ing, 2004). In the current experiment, participants in the Shift 

Context groups completed a pen and paper version of the final recognition test. If FPF induced a 
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more habitual or procedural-based style of learning, this switch alone should have disrupted the 

response bias that was learned. Since this experiment showed intact response bias despite 

changes in response format, it would seem that whatever is learned is not necessarily bound to a 

particular motor mapping or distal response location. 

 It is also interesting to note that participants in the Shift context group did not update 

their behavior despite being able to view their own response tendencies. Consider how a student 

might react when answering ‘C’ several times in a row on a multiple choice test – this would 

normally produce a feeling that something must be aberrant with either the test or the answers 

being reported. In this experiment, participants did not seem perturbed by runs of responses due 

to overly lax or strict criteria. Observers likely evaluate each item individually and do not 

aggregate across their response histories – even when those histories are sitting in front of them. 

Observers would likely have to be cued to pay attention to this sort of responding for it to be 

salient enough to advocate modifying their decision strategies (see Cox & Dobbins, 2011). 

 Whatever is learned via FPF appears insensitive to the context in which it was learned. 

However, caution should be expressed as this assertion relies on the null outcome. One could 

argue that the context manipulation wasn't powerful enough to disrupt learning; in this case, 

context could be more than just location and test format. However, prior work has shown that a 

new testing room can serve as an adequate-enough context shift to disrupt recall (Godden & 

Baddeley, 1975, 1980; Smith, Glenberg, & Bjork, 1980; Smith & Vela, 2001). Indeed, as 

described above, the shifted context was quite different from the original testing context, at least 

visually.  

 There were some interesting group differences in the Subjective Awareness 

Questionnaire, particularly in the Believed Accuracy question during Test 4. Participants who 
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returned to the original testing context believed themselves to have identified items more poorly 

than participants who tested in the new context. This is likely due to a variety of reasons. It could 

be that participants had begun to rely on the biased feedback during the prior tests, and the 

sudden removal of the feedback reduced their confidence in their own abilities. However, 

participants had generally underestimated their own performance on the previous tests as well, so 

underestimation may have been normal behavior. It may be more likely that the new testing 

context and format boosted confidence for the Shift Context participants. That is, participants 

may have felt more comfortable with the paper and pencil testing format, or they felt more 

comfortable with the new testing environment. Regardless, further research would have to be 

conducted to narrow down the list of possibilities. 

 Turning to the Believed Bias question, this experiment demonstrated that Feedback 

Group differences in Believed Bias persisted during the final test along with Feedback Group 

differences in criterion. This is in contrast with Experiment 1 where Feedback Group differences 

in Believed Bias disappeared despite persistent differences in criterion. This may be due to how 

participants were told the test list would be constructed. During the Subsequent Memory test in 

Experiment 1, participants were told that some of the items were coming from prior encounters, 

and some were new; participants in Experiment 3 just encountered a fourth version of the same 

procedure they'd been experiencing. The subsequent memory instructions may have served as a 

cue to more participants that the test was likely to be closer to 50/50 old and new items. For 

Experiment 3 participants, the similar test format likely reinforced prior beliefs about previous 

test makeup. This may be especially true for the Shift Context participants: because they took a 

written version of their final test, they could see their runs of responses. This is reflected in the 

Prior Feedback Group × Context Group interaction on Believed Bias (see Believed Bias section). 
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Participants who shifted to a new context made more extreme estimates of the test makeup than 

did participants who returned to the original testing context. Actually seeing a long run of "old" 

responses likely reinforced any prior beliefs about the test's perceived uneven construction rather 

than any beliefs about the feedback's nature. 
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Chapter 8 

Evaluating a Temporal Difference Framework Prediction about Feedback Influence 

 

5) Do unexpected positive outcomes drive learning more than do expected positive outcomes? 

Under the temporal difference framework described in Chapter 3, learning is driven by 

errors of prediction. In other words, learning occurs when an organism mispredicts (either 

positively or negatively) the outcome of an action. This is germane to the FPF paradigm because 

the biased feedback is only presented during error trials. Presumably these are trials wherein the 

participant is expecting a low likelihood of success, thus a positive outcome should come as a 

surprise. These unexpected positive outcomes to a given type of low confidence error response 

(e.g., 'old'/false alarms) should drive learning – particularly, more so than a positive outcome to 

the analogous high confidence correct response (e.g., 'old', hits). In both of these cases the 

observer has responded old, and yet in the case of erroneous  reinforced 'old' responses the 

outcome should be considerably more surprising that correct reinforced 'old' responses. There 

was some support for this notion in the Subsequent Memory test from Experiment 1 - errors that 

received FPF were subsequently remembered better than errors that received negative feedback. 

However, this is somewhat indirect since the core hypothesis of the FPF approach is that 

'learning' in the paradigm reflects the acquisition of a judgment bias, not the memory of 

individual events that are linked to the development of the bias. Thus a more direct test of this 

would be a demonstration that trials in which false positive feedback occurs are more powerful 

in inducing subsequent biases than trials in which the same response is correctly reinforced. To 

answer this, trial-level data from Experiments 1 and 3 were analyzed using logistic regression.  
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Procedure 

 Trial-level data were collected from Experiments 1 and 3. These experiments were 

chosen due to the similarity in their design, as well as the fact that all trials received feedback 

during these experiments (i.e., not all trials received feedback during Experiment 2; thus it would 

require a different model). Trial-level data from Tests 2 and 3 were chosen from Experiment 1, 

and trial-level data from Tests 1 through 3 were chosen from Experiment 3; participants were 

separated by experiment for this analysis. Liberal and Conservative participants were analyzed 

separately using slightly different regression models (see below). 

 The analysis used what is sometimes referred to as a summary statistics approach and 

also referred to as random coefficients regression (Gumpertz & Pantula, 1989), in which each 

subject is modeled individually at level 1, and inferences about the reliability of any effects are 

determined at a second level (level 2) by considering the distributions of regression coefficients 

obtained at level 1 across the participants. As a simple example, one could assess whether 

subjects demonstrated above chance accuracy by modeling each separate individual's responses 

(1='old' and 0 = 'new') as a function of the presented stimulus type (1='old' and 0 = 'new'). The 

regression coefficient of each subject modeled thusly would indicate the degree of 

correspondence between his or her responses and the actual stimulus class, and hence accuracy. 

If these coefficients reliably diverged from a null value, then the group as a whole would be 

deemed more accurate than chance. This latter inference treats the subjects as a random effect, 

allowing a population inference. Of course, this two step approach is unnecessary when a 

summary accuracy statistic, such as d', can be calculated; however, in random coefficients 

regression one can model the separate contributions of multiple factors (other than stimulus type) 
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that may impinge on the subjects' response tendencies. Indeed, as shown below, one can even 

model the influence of prior outcomes on current response tendencies. 

 For the current paradigm, each participant’s trial-wise data were dummy coded into several 

regressors. The outcome variable was the response on trial N, coded as 0 for “new” and 1 for 

“old.” The first regressor (Item Type) represented the item type on trial N, coded 0 for a lure and 

1 for a target. The second regressor was a set of four dummy coded variables representing the 

feedback outcome on trial N-1. The reference condition for the set of dummy variables was the 

correct, positive feedback outcome for the type of response for that group was exposed to FPF; 

these variables differed for Liberal and Conservative participants. For example, the reference 

condition for the Liberal Feedback group was hits, whereas the reference condition for the 

Conservative Feedback group was correct rejections. In this way, the remaining dummy coded 

feedback regressors reflect the influence of the remaining types of feedback outcomes on trial N-

1 on the subjects responses on trial N, relative to a reference feedback condition of correctly 

reinforced hits or correctly reinforced correct rejections (again on trial N-1).  Critically, these 

prior feedback influences are measured with subject accuracy statistically controlled, as this 

effect is modeled by the Item Type regressor for each subject.    

 The Liberal subjects' responses were modeled as: 

 Response(Trial N) = Item Type(Trial N) + PosFB CR(Trial N-1) +  

NegFB M (Trial N-1) + PosFB FA(Trial N-1) + NegFB FA(Trial N-1) 

 

The Conservative subjects’ responses were modeled as: 

Response(Trial N) = Item Type(Trial N) + PosFB H(Trial N-1) +  

NegFB FA(Trial N-1) + PosFB M(Trial N-1) + NegFB M(Trial N-1) 
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For both groups, the first term in the model represents the contribution of the current item type to 

the response on the current trial. The remaining four terms are categorical dummy variables 

reflecting four potential feedback outcomes on the prior trial. The bolded variable represents FPF 

on the previous trial. The fifth potential feedback outcome (e.g., positive feedback for a hit for 

the Liberal subjects) serves as the reference condition for the dummy variables. Thus the 

theoretical question becomes “do prior responses that receive FPF drive subsequent responding 

over and above the same response that received true positive feedback?”  

 “Confidence on Trial N-1” was added as a regressor in a secondary analysis. The 

confidence parameter was not significant; thus the simplified model is presented below.  

  

Results 

A logistic regression model was fit to each individual using the glmfit function in Matlab. 

Parameter estimates obtained from this procedure were analyzed at the second level using a 

boostrapping procedure. Specifically, the logistic regression coefficients from a given group, for 

a particular variable, were repeatedly sampled with replacement and a mean was calculated for 

each sample. This procedure was repeated 10,000 times for the coefficient under consideration to 

construct a sampling distribution of the mean of that coefficient. The 95% confidence interval 

was constructed by determining where the middle 95% of the empirical sampling distribution 

fell. If this range excluded 0, the coefficient was deemed reliably different from the null. 

Parameter estimates are shown in Figures 13 and 14. Of particular interest was whether 

the false feedback parameter (FA+ and M+) was significantly different from 0 for any group. 

Such a result would suggest that unexpected positive outcomes influenced subsequent 
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responding over and above expected positive outcomes (i.e., a correct response), that is, whether 

false positive feedback reliably biases individuals more than true positive feedback following the 

same response. Indeed, such was the case for three out of the four groups analyzed. This analysis 

was not significant for the Liberal FPF participants from Experiment 1 [M = 0.104, CI95% = -

0.014 : 0.23] although it approached significance as evidenced by the confidence interval. This 

parameter was significant for the Liberal participants from Experiment 3 [M = 0.239, CI95% = 

0.13 : 0.34], which indicated that FPF false alarms increased the odds of a subsequent “old” 

report over and above the influence of a hit. Turning to the Conservative participants, this 

parameter was significant for Conservative participants from Experiment 1 [M = -0.156, CI95% = 

-0.296 : -0.017]. This parameter was also significant for the Conservative participants from 

Experiment 3 [M = -0.243, CI95% = -0.35 : -0.14]. 



ci 

 

 

 

Figure 13: Logistic regression betas for Liberal participants. FA+ indicates 

false alarms that received FPF, while FA- indicates false alarms that 

received negative feedback.  
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Discussion 

 The modeling results all converge on the same idea: namely, that unexpected positive 

outcomes lead to larger changes in subsequent behavior than do expected positive outcomes. 

This is consistent with the reinforcement learning idea that learning increases with the size of 

prediction error (Dayan & Daw, 2008; Sutton & Barto, 1981), in this case, positive prediction 

error. The idea is that misses and false alarms are made with low confidence under the 

assumption that they may likely be incorrect. The unexpected (false) positive feedback elicits a 

Figure 14: Logistic regression betas for Conservative participants. M+ 

indicates misses that received FPF, while M- indicates misses that received 

negative feedback.  
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large prediction error, shifting behavior to respond in accordance with the feedback leading to 

the inducement of a subsequent bias more so than the receipt of positive feedback for the same 

response when correct. This yields a robust change in responding, even when FPF is only 

delivered on a very small minority of trials (see experimental tables for values). 

 As mentioned in the Procedure section, a secondary analysis added response confidence 

to the model. From a prediction error standpoint, low confidence errors that receive FPF should 

drive responding more so than high confidence errors. In other words, one would expect to find 

an interaction between “Confidence on Trial N-1” and “FA+/M+ on Trial N-1.” This was not the 

case. Upon further consideration, confidence is in fact already represented in the simplified 

model in the reference condition for both Liberal and Conservative participants (i.e., hits and 

correct rejections, respectively). Hits are more confident than false alarms, and correct rejections 

are more confident than misses. Because the observer has no knowledge of whether he is 

committing an error, these responses simply differ in their overall feeling of confidence. In this 

way, the reference condition represents “high confidence old” and “high confidence new” reports 

to Liberal and Conservative participants. The corresponding FPF errors represent “low 

confidence old” and “low confidence new” reports to the Liberal and Conservative participants. 

This explains why there was no interaction between confidence and prior feedback in the 

secondary version of the model – the effect of confidence was essentially already captured in the 

various response types. 
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Chapter 9 

General Discussion and Conclusions 

 Three experiments were conducted examining the potential influence of an implicit 

learning mechanism in governing the placement of the episodic recognition criterion. The topic 

is important because with very few exceptions (Han & Dobbins, 2008, 2009) demonstrations that 

implicit learning processes may directly influence the way explicit memories are reported are 

rare and could have implications in applied areas such as eyewitness identification. The current 

thesis examined this topic by addressing three basic questions applied to a FPF manipulation, 

namely, a) can observers ignore FPF, b) does the FPF effect transfer across vastly different 

perceptual domains, and c) is the FPF effect sensitive to shifts in testing context and motor 

response requirements.  As discussed below, the answers to these questions buttress the idea that 

the FPF effect relies on implicit learning and further, they refine the operating characteristics of 

this learning.  

 Experiment 1 demonstrated that, even when explicitly asked to do so, observers could not 

block the biasing influence of FPF by attempting to ignore the feedback information.  When 

coupled with the awareness questionnaire data demonstrating chance levels of identifying the 

actual manipulation in place (and the similar rates of detection across ignore and use groups) the 

data are consistent with an implicit phenomenon. Critically, this appears to be the first study that 

examines the ability of observers to volitionally ignore feedback during learning and it appears 

that observers are largely unable to do so in this case. Aside from the fact that they appear 

unaware of the biasing nature of the feedback there are other aspects of the FPF manipulation 

that may potentiate its influence even when observers are attempting to ignore it.  First and 

foremost, the vast majority of feedback in the paradigm is correct and hence frequently will 
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conform to the participants' trial-wise beliefs about their own performance. More specifically, 

hits and correct rejections always received valid feedback indicating a correct response, and 

these are also the response types that tend to yield the greatest subjective confidence. Because 

the computer provides positive feedback on the trials in which the subjects most strongly believe 

they are correct, faith in the accuracy of feedback is likely quite strong; this point is further 

buttressed by the Subjective Awareness data indicating a strong preference for saying nothing 

was aberrant with the feedback. Additionally for each subject, one class of errors was always 

correctly signaled as incorrect, which would also conform to the low confidence subjects tend to 

exhibit during errors. Finally, the small subset of trials receiving the FPF manipulation was 

selected probabilistically, and hence one class of error receives probabilistic positive 

reinforcement; yet this appears sufficient to generate prominent shifts of decision criteria.  

Speculatively, the ability of a small number of FPF trials (see Table 1) to evoke gross 

criterion shifts during IGNORE instruction probably reflects the fact that surprisingly positive 

outcomes may be particularly hard for subjects to ignore. This idea is supported by the modeling 

results discussed in Chapter 8, in that unexpected positive outcomes drove learning over 

expected positive outcomes. Additionally, Experiment 1 indicated the stimuli triggering FPF 

events were subsequently recognized better than those triggering correct error feedback.  

Although these findings point to an implicit learning phenomenon it is important to more fully 

outline what is meant by ‘implicit’ in the context of the FPF manipulation and the results of 

Experiment 1. The concepts of "expectation" and "surprise" are really explicit phenomena 

despite the learning in this paradigm presumably being implicit. What is "implicit" in this 

paradigm is the effect of FPF on criterion as it satisfies the key criteria of implicit learning in 

that: it occurs automatically, seemingly without conscious attempt to do so; the representations 
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that are learned appear to be outside of conscious access; and the learning is built up gradually 

across time (Frensch & Rünger, 2003). Further, to the extent that participants in the Ignore 

condition are actually attempting to suppress the feedback, the fact that it still demonstrates an 

effect further supports the notion that the learning is implicit (otherwise the induced criterion 

shift would be corrected by the observer). 

The fact that observers could not ignore the feedback is in keeping with several findings 

from the implicit learning literature showing the limited utility of explicit control during an 

implicit learning process. This experiment provided an interesting contrast to the implicit 

learning literature. When observers are cued to try and seek meaning in an implicit learning task, 

the goal is to improve their overall performance. In general, this is not useful as the rules and 

structure that govern an implicit learning task are typically too complex to overtly discern 

(Ashby & Maddox, 2005; Reber, 1976). When rules are simpler, or observers are given more 

useful information, explicit strategies can actually aid in implicit learning performance (Reber, 

Kassin, Lewis, & Cantor, 1980). Although this is apparently the first study to examine how 

observers can ignore feedback designed to influence their behavior, the results are consistent 

with the idea that explicit control has little power over implicit learning. 

Having established that observers cannot reliably ignore FPF, Experiment 2 examined the 

degree to which this learned phenomenon transferred across recognition test stimuli with grossly 

different features (words versus faces). This experiment confirmed the hypothesis that an 

implicitly learned criterion would transfer to a set of perceptually distinct stimuli to which 

recognition judgments were never reinforced. This suggests that, at some level, recognition 

stimuli, regardless of perceptual domain, are translated into an abstracted memory evidence 

signal. Despite the fact that the bias induced in word recognition reliably transferred to face 
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recognition judgment, the transfer was not perfect as the induced biases in the latter were less 

extreme. It was argued that this was due to an incomplete overlap in the type of evidence being 

evaluated – although both words and faces share some level of underlying familiarity, 

presumably faces also carry idiosyncratic details independent from words. This begs the question 

as to whether one can fashion stimulus categories that are so perceptually disparate that transfer 

would fail to occur.  However, in thinking about this possibility it is important to note a 

limitation of Experiment 2 in that there was no control for potential differences in the relative 

levels of familiarity and recollection processes across the two classes. This may be critical 

because reinforcement-induced decision biases may not transfer or express on trials in which the 

memoranda evoke vivid recollections, as these are presumably impervious to altered mappings 

of familiarity-based judgments. A strong test of this notion of shared abstract memory evidence 

would be to make the two stimuli even more distinct (e.g., use real-world scenes instead of faces) 

until the learning did not transfer. 

Because Experiment 2 demonstrated considerable transfer learning and bolstered the 

notion that subjects are using an abstracted strength of evidence variable, it begs the question of 

whether subjects can adopt fundamentally different biases for intermixed stimulus classes. For 

example, could FPF be used to induce a liberal criterion for words and a conservative criterion 

for faces within the same subject during an intermixed test list? This represents an interesting 

avenue for further generalization research; based on the current characterization of this learning, 

such a manipulation should fail, with the resultant net criterion being relatively unbiased. This 

follows based on the notion that what is reinforced through the procedure is a particular mapping 

between an abstract evidence variable and decision process. If correct, then liberal and 

conservative FPF trials would tend to cancel or offset one another and this would represent an 
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important limitation of this form of learning.  In contrast, it would presumably be easy to provide 

explicit instructions to the observers asking them to use different strategies for responding on the 

basis of stimulus class. For example, one could emphasize that observers “should be particularly 

cautious in endorsing faces as recognized since even new faces will often strike one as familiar,” 

while noting that, “it is important that you identify as many studied words as possible such that 

even if a word only strikes you as mildly familiar you should endorse it.” Alternatively, two 

different payoff matrices could be used that differentially penalized the type of error depending 

upon stimulus class. Regardless, this would serve as a useful contrast if, as anticipated, FPF was 

ineffective in inducing qualitatively different biases across stimulus classes within a recognition 

test list. 

 Finally, the third experiment demonstrated a somewhat surprising result - an implicitly 

learned criterion will easily transfer across vastly different spatial and testing contexts. The 

experiment was designed anticipating a potentially large disruption by manipulating both the 

spatial context (testing room) and testing context (test type). If disruption were observed then 

follow-up experiments would separately manipulate these two variables to isolate whichever lead 

to the disruption of the criterion learning. However, neither variable appeared to adversely affect 

the learning that occurred in the original testing context, and indeed, the learned bias perfectly 

transferred in the context shift condition. This lies in contrast with the procedural and habit 

learning literature whereby learning is strongly tied to the contextual cues associated with it 

(Graybiel, 2008; LaBar & Phelps, 2005) and suggests that the learning during FPF is even more 

abstracted than implied by Experiments 1 and 2. That said, there are several caveats regarding 

Experiment 3 to consider.  First, it may be that the context shift of the rooms was too subtle to 

reliably interfere with the expression of the learning.  Although prior reports have suggested that 
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room alterations can be effective (Godden & Baddeley, 1975, 1980; Smith, Glenberg, & Bjork, 

1980; Smith & Vela, 2001), we did not go to great lengths to alter features such as lighting, 

color, temperature or ambient noise in an attempt to maximize the differences in the two rooms, 

although the rooms were of a different size and also differed with respect the presence of 

computers and the texture of one wall. Regardless, Experiment 3 clearly demonstrated that the 

FPF phenomenon does not rest on a learned motor preference and it is not hyperspecific with 

respect to the context of acquisition, although further work is required on this point. 

 In the current paradigm, we only manipulated positive outcomes, using these during 

presumably low confidence errors to induce biases.  Another potentially interesting extension of 

the current work concerns the valence of the manipulated feedback. FPF increases the average 

proportion of positive outcomes for one decision. How would the results of this procedure 

change, if at all, if instead biased negative feedback were used? In other words, instead of errors 

being selectively reinforced, what if correct responses (namely low confidence correct responses) 

were selectively punished? From a temporal difference reinforcement perspective, there is no 

difference between a positive and negative prediction error in what they forecast to the subject 

(Dayan & Daw, 2008); from this perspective, one would not expect any differences in learning. 

However, an abundant amount of research shows negative feedback is processed differently from 

positive feedback, both behaviorally and neurally (Atallah, Frank, & O'Reilly, 2004; Shen, 

Flajolet, Greengard, & Surmeri, 2008). For instance, patients with unmedicated Parkinson's 

disease learn to avoid negative outcomes more effectively than they learn to pursue positive 

outcomes; medication reverses this behavior (Frank, Seeberger, & O'Reilly, 2004). Patients with 

severe depression tend to show a hypersensitivity to negative outcomes (e.g., fixation on 

negative feedback which disrupts further task performance; Eshel & Roiser, 2010). These 
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findings all suggest that a false negative feedback paradigm may yield different results from the 

FPF paradigm used here. Critically however, this would require constraining any false negative 

feedback to low confidence trials so as to not raise the subjects' suspicions. Nonetheless, a direct 

comparison of false negative and false positive feedback may yield interesting differences. 

 One issue that bears examination is the relationship between discriminability and the 

opportunity for learning. It seems reasonable that participants with lower discriminability should 

be more susceptible to the influence of FPF. In other words, lower discriminability should lead to 

larger shifts in criterion. This can be tested by examining the relationship between absolute 

amount of criterion learning (absolute amount of criterion change due to exposure to FPF) and 

accuracy on the initial FPF test. Collapsed across experiments, there was a strong negative 

relationship between initial FPF test accuracy (Test 2 for Experiment 1, Test 1 for Experiments 2 

and 3) and absolute criterion change (absolute value of Test 3 minus Test 1 c; r = -.32, p < 

.0001). Thus, lower initial accuracy was associated with larger criterion shifts across tests. This 

is likely due to lower levels of discriminability increasing the likelihood of erring, yielding more 

opportunities for FPF to drive behavior. 

In general, the confidence findings are consistent with the criterion findings in each 

experiment. However, hits were universally more confident than correct rejections, even in the 

Conservative groups when “new” reports were being disproportionally reinforced. This likely 

reflects the fact that when recollections occur, they are assigned the highest confidence level (see 

Jaeger, Cox, & Dobbins, 2012 for a discussion and simulation). Thus hits will generally always 

be assigned greater confidence than correct rejections. 

 The strong claim laid out here is that implicit criterion learning involves a fundamental 

remapping of a strength of memory evidence continuum onto a recognition decision process. As 
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a collection, Experiments 1 through 3 suggest not only an abstract evidence representation but 

also a fair degree of context flexibility. Nonetheless, the judgments were always ones of 

recognition, and so even when reinforcement was removed, the transfer was tested for a criterion 

induced during simple yes-no recognition to a transfer test (without reinforcement) examining 

simple yes-no recognition. Although Experiment 3 ruled out the notion that peripheral learned 

motor preferences contribute to the FPF effect, and Experiment 2 demonstrated flexible transfer 

of the learning across test stimulus categories, it could nonetheless be the case that what is 

learned is specific to judgments of recognizing. If however, the FPF does not induce an explicit 

response strategy and actually leads observers to subjectively feel that probes are less or more 

familiar then it could even generalize to memory domains outside of recognition judgment. For 

example, what would be the consequences of inducing a liberal bias using FPF, then having the 

observer engage in a source memory test where studied materials have been encoded under two 

prior sources (“Source A”, “Source B,” or “New”)? Here the observer's retrieval orientation is 

presumably heavily focused on recovering prior contextual specifics, not on making simple 

judgments of recognition. Thus, a key question for future research would be whether the 

tendency to make source endorsements would be influenced by the FPF procedure administered 

during prior recognition tests.  

 

The Basal Ganglia and Memory Decisions 

 An obvious future extension of the current work lies in the realm of functional 

neuroimaging. Prior to any actual study, it is possible to speculate on potential candidate brain 

systems involved in this task. The basal ganglia are a set of midbrain structures implicated in 

many different implicit learning tasks. For instance, more implicit styles of learning (as opposed 
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to explicit memorization strategies) in the weather prediction task are associated with activity in 

the striatum, a region of the basal ganglia targeted by dopamine neurons thought to be associated 

with reinforcement learning and reward prediction (Poldrack et. al., 1999). Although typically 

thought to be primarily motor structures, it is becoming clear that the basal ganglia play a role in 

higher order cognition as well (Koziol, Budding, & Suth, 2009). Presumably, the basal ganglia 

play at least a partial role in building associations between specific classifications and specific 

sets of cards. Indeed, several studies have demonstrated that patients with striatal damage have 

difficulty with the weather prediction task (Shohamy et. al., 2004; Shohamy, Kalanithi, & Gluck, 

2008), whereas patients with hippocampal damage generally perform no differently than controls 

during the early half of testing (Knowlton, Squire, & Gluck, 1994).  

 Interestingly, the basal ganglia are often implicated in studies of recognition memory, 

particularly those that also involve feedback (Han, Heuttel, Raposo, Adcock, & Dobbins, 2010; 

McDermott, Szpunar, & Christ, 2009; Scimeca & Badre, 2012; Spaniol et. al., 2009). 

Computational models of basal ganglia function typically ascribe it a role in modulating 

representations of cognitive and motor actions in cortex (Atallah, Frank, & O'Reilly, 2004). In 

other words, the role of the basal ganglia in implicit learning tasks is to aggregate across 

feedback outcomes (i.e., prediction errors) and select the potential actions in cortex via distinct 

corticostriatal loops (Alexander & Crutcher, 1990; Atallah, Frank, & O'Reilly, 2004; Di Martino 

et. al., 2008; Wimmer & Shohamy, 2011). A similar model could easily be in place here; future 

work could be designed to model this effect using a neuroanatomically computational model.  

 Generalizing outside of the laboratory, it is possible that the basal ganglia mold everyday 

recognition decision-making. Wixted and Gaitain (2002) proposed a model whereby pigeons 

learn via feedback to approximate statistically optimal (i.e., likelihood ratio) decision making in 
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a delayed match to sample task, a simpler variant of human recognition memory tasks. They 

speculated that humans may rely on a similar mechanism to train their own recognition memory 

systems via a lifetime of reinforcement such that they develop response tendencies given 

particular levels of recognition evidence analogous to probability matching behavior. The 

Wixted and Gaitain (2002) learning account may explain why observers enter the lab with an 

established or habitual memory evidence-to-judgment mapping. However, it is clearly 

speculative since the proposed long term learning has never been documented. Furthermore, it 

faces hurdles in that it doesn’t explain why there is considerable variance in the biases observers 

bring to the lab, nor does it explain how observers select the appropriate mapping from among 

the infinite range of situations they might encounter in the lab.  For example, Benjamin (2003) 

demonstrated that observers are typically unaware that low frequency words are easier to 

recognize than high frequency words and will in fact often explicitly claim the reverse; yet they 

nonetheless show better recognition of, and more conservative responding to, low frequency 

versus high frequency words. Of course frequency is just one of a myriad of factors that 

influence recognition discrimination, and so this begs the question as to how the observer can 

appropriately alter mappings across these different manipulations without often explicitly 

understanding their implications for retrieval accuracy or having been previously been trained on 

comparable tasks outside the lab.  

If implicit criterion learning is dependent on the basal ganglia, it stands to reason that 

patients with basal ganglia dysfunction should show little, if any criterion learning. For example, 

patients with Parkinson’s disease demonstrate difficulty with a variety of implicit learning tasks 

(Frank, Seeberger, & O’Reilly, 2004; Knowlton, Mangels, & Squire, 1996; Packard & 

Knowlton, 2002; Shohamy, Myers, Onlaor, & Gluck, 2004). For example, Shohamy and 
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colleagues (2004) showed that Parkinson’s patients performed worse on the weather prediction 

than matched controls. Further, they showed that patients tended to use sub-optimal explicit 

strategies (such as memorizing the most common outcome associated with a single card). This 

would suggest that Parkinson’s patients might show resistance to the effects of FPF. An 

interesting future experiment would be to compare Parkinson’s patients with age-matched 

controls in the FPF paradigm. 

 

Conclusions 

 Three experiments were conducted examining how biased feedback influences judgments 

of recognition. It is clear from this work that FPF leads to a remapping of memory evidence to 

decision outcomes. The learning that is developed appears difficult to ignore, transfers between 

stimuli with vastly different perceptual features, and transfers between different spatiotemporal 

contexts. This work presented a brief first step in what is hoped to be an exciting new leg of 

research, and the great deal of overlap that exists between two seemingly disparate literatures. 

Several questions were answered, but like most research, several more were opened up; from 

basic questions about paradigm specificities to grand questions about the fundamental workings 

of recognition memory. Several potential areas of new research include further behavioral work, 

functional neuroimaging, and potentially neuropsychological work. Regardless, the current work 

solidifies the notion that implicit learning mechanisms influence the way we evaluate and make 

decisions about explicit memories.  
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Appendix A – Supplemental Material 

 

Experiment 1 

Reaction Time 

As with confidence, analysis of mean reaction times (RTs) was restricted to correct 

reports. RTs were first converted to z-scores for each individual, then sorted by response type 

(e.g., hits and correct rejections). As with prior sections, RT during Test 1 was analyzed 

separately using a 4×2 mixed model ANOVA examining a between-subjects factor of Group, 

and a within-subjects factor of Response Type (Hit vs. Correct Rejection). This analysis revealed 

a main effect of Response Type [F(1,92) = 14.90, MSe = 0.024, p < .001, η2 = .14] which 

indicated that hits were faster than correct rejections [MH = 0.15, SEH = 0.023; MCR = 0.24, SECR 

= 0.027]. No other effects were significant (all p’s > .30). 

Next, RTs during Tests 2 and 3 were analyzed using a separate 2×2×2×2 mixed model 

ANOVA examining between-subjects factors of Feedback Group (Liberal vs. Conservative) and 

Volition (Use vs. Ignore), and within-subjects factors of Response Type (Hit vs. Correct 

Rejection) and Test (Test 2 vs. Test 3). This analysis revealed a main effect of Response Type 

[F(1,92) = 26.24, MSe = 0.036, p < .0001, η2 = .22] which indicated that hits were faster than 

correct rejections [MH = -0.19, SEH = 0.014; MCR = -0.092, SECR = 0.016]. There was also a 

significant main effect of Test [F(1,92) = 48.93, MSe = 0.056, p < .0001, η2 = .35] which 

indicated that RTs decreased across tests [MT2 = -0.058, SET2 = 0.015; MT3 = -0.23, SET3 = 

0.018]. No other main effects or interactions were significant (all p’s > .11). 

Finally, RT during the Subsequent Memory Test was analyzed using a 2×2×2 mixed 

model ANOVA examining between-subjects factors of Prior Feedback Group (Liberal vs. 

Conservative) and Prior Volition (Use vs. Ignore), and a single within-subjects factor of 
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Response Type (Hit vs. Correct Rejection). This analysis revealed a main effect of Prior 

Feedback Group [F(1,92) = 7.03, MSe = 0.060, p < .01, η2 = 0.071] which indicated that the 

Prior Liberal feedback groups were significantly slower than the Prior Conservative feedback 

groups [MPL = -0.026, SEPL = 0.026; MPC = -0.12, SEPC = 0.024]; this likely reflects differences 

in the test construction between the groups (i.e., the Prior Liberal groups were rating prior lures 

from Test 2, whereas the Prior Conservative groups were rating prior targets from Test 2). There 

was also a main effect of Response Type [F(1,92) = 8.82, MSe = 0.044, p < .01, η2 = .087] which 

indicated that hits were faster than correct rejections [MH = -0.12, SEH = 0.023; MCR = -0.028, 

SECR = 0.023]. No other main effects or interactions were significant (all p’s > .12). 

 

Experiment 2 

Reaction Time 

As with Experiment 1, RTs were first converted to z-scores for each individual, then 

sorted by test and response type. Reaction time for correct reports was examined using a similar 

2 × 2 × 2 × 4 mixed ANOVA, again examining between-subjects factors of Feedback Group 

(Liberal vs. Conservative) and within-subjects factors of Stimulus (Word vs. Face), Response 

(Hit vs. CR), and Test (Test 1 vs. Test 2 vs. Test 3 vs. Test 4). This analysis revealed a robust 

main effect of Stimulus [F(1,50) = 192.54, MSe = 0.52, p < .0001, η2 = .79] which indicated that 

responses to words were faster than responses to faces [MW = -0.14, SEW = 0.012; MF = 0.56, 

SEF = 0.043], despite similar levels of accuracy. There was also a robust main effect of Test 

[F(3,150) = 67.91, MSe = 0.23, p < .0001, η2 = .58] which indicated that RT decreased across 

tests [MT1 = 0.57, SET1 = 0.044; MT2 = 0.24, SET2 = 0.027; MT3 = 0.086, SET3 = 0.034; MT4 = -

0.060, SET4 = 0.031]. The effect of Response Type trended toward significance [F(1,50) = 3.62, 
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MSe = 0.21, p = .063, η2 = .067] which indicated that hits were generally faster than correct 

rejections [MH = 0.24, SEH = 0.026; MCR = 0.18, SECR = 0.024]. Turning to the interactions, there 

was a significant Feedback Group × Response Type interaction [F(1,50) = 13.07, MSe = 0.21, p 

< .001, η2 = .21]. This interaction indicated that while hits and correct rejections were equally as 

fast for the Liberal group [MH = 0.18, SEH = 0.038; MCR = 0.23, SECR = 0.034; p = .62, Tukey’s 

HSD], correct rejections were actually faster than hits for the Conservative group [MH = 0.31, 

SEH = 0.038; MCR = 0.13, SECR = 0.034; p < .01, Tukey’s HSD]. Finally, there was a significant 

Stimulus × Response Type interaction [F(1,50) = 7.68, MSe = 0.094, p < .01, η2 = .13]. This 

interaction indicated that while hits and correct rejections were equally as fast for word stimuli 

[MH = -0.14, SEH = 0.018; MCR = -0.14, SECR = 0.018], hits were slower than correct rejections 

for face stimuli [MH = 0.62, SEH = 0.051; MCR = 0.50, SECR = 0.047], suggesting that these face 

stimuli were easier to correctly reject as new than to correctly endorse as familiar. No other main 

effects or interactions were significant (all p’s > .09). 

 

Experiment 3 

Reaction Time 

 As with confidence, analyses of reaction times were restricted to correct reports. RTs 

were first converted to z-scores for each individual, then sorted by test and response type (e.g., 

hits and correct rejections). RT across the first three tests was examined using a 2 × 2 × 3 mixed 

ANOVA examining a single between-subjects factor of Feedback Group (Liberal vs. 

Conservative) and two within-subjects factors, Response Type (Hit vs. CR) and Test (Test 1 vs. 

Test 2 vs. Test 3). This analysis revealed a significant main effect of Response Type [F(1,111) = 

13.32, MSe = 0.076, p < .001, η2 = .11] which indicated that hits were generally faster than 

correct rejections [MH = -0.067, SEH = 0.013; MCR = 0.010, SECR = 0.012]. There was also a 
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significant main effect of Test [F(2,222) = 103.37, MSe = 0.088, p < .0001, η2 = .48] which 

indicated that RT generally decreased across tests [MT1 = 0.19, SET1 = 0.021; MT2 = -0.088, SET2 

= 0.012; MT3 = -0.19, SET3 = 0.018]. There was a robust Feedback Group × Response Type 

interaction [F(1,111) = 32.86, MSe = 0.076, p < .0001, η2 = .23] This crossover interaction 

indicated that hits were significantly faster than correct rejections for the Liberal group [MH = -

0.12, SEH = 0.019; MCR = 0.079, SECR = 0.018; p < .001, Tukey’s HSD], while hits were 

numerically slower than correct rejections for the Conservative group [MH = -0.014, SEH = 

0.018; MCR = -0.058, SECR = 0.017; p = .45, Tukey’s HSD]. There was a significant Response 

Type × Test interaction [F(2,222) = 6.54, MSe = 0.020, p < .01, η2 = .056] This interaction 

indicated that while both hits and correct rejections tended to get faster across tests, the RT 

advantage for hits increased across tests [MHT1 = 0.18, SEHT1 = 0.026; MCRT1 = 0.21, SECRT1 = 

0.022; MHT2 = -0.14, SEHT2 = 0.018; MCRT2 = -0.035, SECRT2 = 0.018; MHT3 = -0.25, SEHT3 = 

0.022; MCRT3 = -0.14, SECRT3 = 0.025]. Finally, the three-way interaction amongst the factors 

was significant [F(2,222) = 10.74, MSe = 0.020, p < .0001, η2 = .088]. This three-way interaction 

indicated that while hits were always faster than correct rejections for the Liberal group, correct 

rejections were equally as fast as hits across all three tests for the Conservative group. 

 Only the reaction times for the No Shift groups from Test 4 were analyzed as RTs were 

not collected from the participants completing a paper version of the final test. RTs from the No 

Shift groups were analyzed using a 2 × 2 mixed ANOVA examining a between-subjects factor of 

Prior Feedback (Liberal vs. Conservative) and a within-subjects factor of Response Type (Hit vs. 

CR). The effect of Prior Feedback approached significance [F(1,55) = 3.36, MSe = 0.033, p = 

.072, η2 = .057] which indicated that the Prior Liberal group was slightly faster than the Prior 

Conservative group [MPL = -0.0098, SEPL = 0.024; MPC = 0.052, SEPC = 0.024]. The two-way 
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interaction was significant [F(1,55) = 8.76, MSe = 0.073, p < .01, η2 = .14]. This interaction 

indicated that while hits were numerically faster than correct rejections for the Prior Liberal 

group [MH = -0.055, SEH = 0.053; MCR = 0.035, SECR = 0.031; p = .60, Tukey’s HSD], correct 

rejections were significantly faster than hits for the Prior Conservative group [MH = 0.16, SEH = 

0.052; MCR = -0.052, SECR = 0.030; p < .05, Tukey’s HSD]. 

 

Discussion of RT Effects 

 In general, the RT findings are consistent with the criterion findings in each experiment. 

That is, participants respond more quickly to the response that is consistent with their bias. This 

led to large differences in hit and correct rejection RT in the Liberal groups, and small 

differences in the Conservative groups since hits were typically faster than correct rejections 

initially. Only in experiment 2 were correct rejections faster than hits, and this effect may have 

been driven largely by reaction times to face stimuli. Given enough opportunities for 

reinforcement, it appears that correct rejections eventually overtake the initial response time 

advantage afforded to hits.  

Interestingly, confidence and reaction time results for Experiment 2 diverged for faces. 

Specifically, confidence for faces was higher than confidence for words, but reaction times to 

faces were slower than reaction times to words; these effects occurred despite equivalent 

accuracy between the two stimulus types. This may reflect that faces led to more deliberative 

retrieval attempts than did words. The additional processing time afforded to faces likely 

produced a more confident report when issued.  
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Supplementary Figure 1: Three-way interaction between Test, Feedback Group, 

and Volition on Believed Accuracy (vertical bars denote 95% confidence 

intervals).  
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BIS/BAS 

BAS Drive 6.72 (2.17) 

BAS Fun-Seeking 7.88 (2.42) 

BAS Reward Responsiveness 12.24 (1.88) 

BIS 16.88 (3.63) 

 

RFQ 

Promotion Focus 21.99 (3.38) 

Prevention Focus 17.37 (3.70) 

 

GRAPES 

Reward Expectancy 9.08 (2.84) 

Punishment Expectancy 7.88 (2.84) 

 

 

 

 

 

 

 

 

 

Supplementary Table 1: Individual difference measures. Standard deviations in 

parentheses. 
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Supplementary Table 2 

 

BIS/BAS (Han, 2009) 

BAS Drive 10.50 (2.03) 

BAS Fun-Seeking 9.13 (1.67) 

BAS Reward Responsiveness 17.50 (2.03) 

BIS 21.13 (4.27) 

 

 
Supplementary Table 2: BIS/BAS scores from Han, 2009 (standard deviations in 

parentheses). Presented for comparison. 
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