


From Figure 7.4, we find there are seven gas phase species involved in CO2 hydrogenation

reactions: CO2, H2, CO, HCOOH, CH2O, CH3OH, H2O. As the main product and important

side products, the CH3OH, HCOOH and CH2O structures are shown in Figure 7.5

Figure 7.5: Stable adsorption configuration of HCOOH,CH2O,CH3OH on ceria vacancy

We further calculate the energy barrier of each elementary step in the two pathways to

methanol for detailed understanding of mechanism. The energy profiles are shown in Figure

7.6.

The HCOO route (Formate route) initiates by the direct hydrogenation of CO2 to yield

HCOO∗. At the first transition state (TS), the formed C-H bond distance is 1.62 Å and the

calculated barrier height Ea is 0.26 eV. The low barrier is also noted in the first hydrogenation

step of the COOH route (carbonate route) with an energy barrier of 0.35 eV. Next, one more

H can be sequentially added to form H2COO∗. The internal C-O bond is weakened by the

addition of H and it can break at the stage of H2COOH∗, leading to the formation of H2CO∗

and OH∗. H2CO∗ can further be hydrogenated to H3CO∗ and finally H3COH∗. It should

be mentioned that a H2CO∗ gas molecule can be obtained in this process, but it adsorbs

strongly at the surface vacancy with a relatively strong O-Ce bonding and 0.64 eV adsorption

energy. Considering that its hydrogenation barrier is 0.49 eV, H2CO∗ formed at the surface

would prefer to undergo hydrogenation rather than desorption or diffusion to Ce sites. This

process is exothermic (0.2 eV). It implies that once CO2 is captured via hydrogenation to

form H3CO∗, the reverse reaction is unlikely to occur. It is worth mentioning that the

cleavage of the C-O bond of H3CO to yield CH3 and O is very difficult, with a barrier of

1.78 eV, which is much higher than the direct hydrogenation of H3CO∗. This means that
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Figure 7.6: Hydrogenation Energy Profile (To improve legibility, H* and OH* was omitted
from the labels)

the production of the byproduct methane (CH4) is kinetically inhibited. This indicates that

CO2 hydrogenation hardly has any selectivity to CH4 over a reduced ceria catalyst.

7.2 Thermodynamic Properties of CO2 Hydrogenation

7.2.1 Thermodynamic model and validation on gas-phase species

Next, we investigate the thermodynamic properties of CO2 hydrogenation. A vibrational

analysis was carried out in order to validate the optimized geometry of the adsorbed species

and to determine vibrational frequencies of transition states. All atoms of ceria were rigidly

constrained during these calculations. The Hessian dynamical matrix is obtained by nu-

merical differentiation of the forces and diagonalized, which yields the harmonic molecular

frequencies and the normal modes. These calculations make it possible to compute zero-point

energy (ZPE) corrected energies and partition functions [219].
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For gas phase species, the translational, rotational, and vibrational entropies are well defined,

in particular the vibrational entropy, Svib, can be directly obtained from the vibrational

partition function, using the DFT-estimated frequencies, vi:

Svib (T ) =
N∑
n=1

[
hvi
T

Xi

1−Xi

− kB ln(1−Xi)] (7.1)

where Xi = e−hvi/kBT

The heat capacity, Cp = T
(
∂S
∂T

)
P

, can then be computed numerically by differentiating the

entropy. The calculated gas phase entropy and heat capacity of formic acid, formaldehyde

and methanol are shown in Figure 7.7 and 7.8. Also, the tabulated values from Yaw’s

handbook as computed from the Shomate equation for entropy and a polynomial for heat

capacity for these species, are given for comparison. From Figure 7.7 and 7.8, we can see the

relative errors for entropy are less than 10%, while the relative errors for heat capacity are

less than 15%. Thus, based on DFT-estimated vibrational frequencies, we can obtain good

agreement with experimental values for the gas phase species.

To obtain enthalpy, H, estimates at finite temperature, T , for all adsorbed species and

products, we correct the electronic energy for the zero point energy (ZPE) contribution and

temperature variation using Cp. The equation is shown as below:

H (T ) = H (0 K) +

∫ T

0

Cp (T ′) dT ′ (7.2)

Numerically, T = 0 K results in an undefined value during the evaluation of Cp, as the

temperature appears in the denominator. We can approximate H (0 K) ≈ H (1 K), and

obtain its value by H (1 K) = U (0 K) + ZPE, where U is the total energy. Thus, we can

obtain the reaction enthalpy, ∆Hrxn for every elementary reaction at finite temperatures.
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Figure 7.7: Comparison of calculated DFT entropies with tabulated entropies in Yaw’s
handbook for gas phase formic acid(black), formaldehyde(blue) and methanol(red)

Figure 7.8: Comparison of calculated DFT heat capacities with tabulated heat capacities in
Yaw’s handbook for gas phase formic acid(black), formaldehyde(blue) and methanol(red).
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7.2.2 Extension to surface-adsorbed species

Within the framework of our thermodynamics model, we now develop a related equation

to calculate the reaction enthalpy from first principles, with calculations of dissociation

energy, adsorption energy and desorption energy that are included in a free thermodynamic

cycle(Figure 7.9).

Figure 7.9: Thermodynamic cycle for surface-mediated reactions, include energies of adsorp-
tion and desorption when computing ∆Hrxn (T )

∆Hrxn (T ) = ∆Hrxn,DFT (T ) +
N∑
n=1

Ead + Ediss +
M∑
m=1

Ede (7.3)

where Ead and Ede correspond to the adsorption and desorption energy, respectively, which

are obtained from DFT calculations for the most stable adsorption configurations. The

reaction enthalpy at finite temperature, ∆Hrxn,DFT (T ), is calculated from the individual

enthalpies of the reactants and products on our ceria catalyst. ∆Hrxn is the difference

between the energies of the final state and initial state at a given temperature. Similarly

∆Srxn can be calculated.

The main reaction and side reactions are shown below:

CO2 + 3H2 → CH3OH + H2O (7.4)
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CO2 + H2 → CO + H2O (7.5)

CO2 + H2 → HCOOH (7.6)

CO + 2H2 → CH3OH (7.7)

CO2 + 2H2 → CH2O + H2O (7.8)

CH2O + H2 → CH3OH (7.9)

We calculate changes of entropy and reaction enthalpies of all of these reactions in both the

gas and adsorbed phases, and show the results in Table 7.1. We again compare our results to

the only available experimental values in the NIST database, which are for the corresponding

gas–phase reactions. The differences in the calculated entropies of reaction show absolute

errors of less than 15 J/mol/K (relative errors less than 10 % )

Table 7.1: Entropy changes ∆Srxn for main reactions related to CO2 hydrogenation at 298
K.

Reaction
∆Srxn (298 K) J/mol/K

DFT DFT NIST
gas phase on catalyst database

CO2+ 3H2 → CH3OH + H2O -191.95 -182.75 -176.87
CO2+ H2 → CO + H2O 38.23 37.56 42.03
CO2+ H2 → HCOOH -102.98 -104.27 -95.77
CO+ 2H2 → CH3OH -229.23 -223.67 -218.91

CO2+ 2H2 → CH2O+ H2O -78.91 -74.89 -67.36
CH2O+ H2 → CH3OH -157.93 -159.24 -151.85

The main error in the DFT-calculated entropies of reaction can be almost entirely attributed

to the enthalpy of H2O desorption from the surface. When H2O is destabilized by 0.3 eV
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Table 7.2: Enthalpy changes ∆Hrxn for main reactions related to CO2 hydrogenation at 298
K.

Reaction
∆Hrxn (298 K) kJ/mol

DFT DFT DFT NIST
gas phase on catalyst corrected database

CO2+ 3H2 → CH3OH + H2O -102.31 -87.91 -58.96 -53.31
CO2+ H2 → CO + H2O -12.73 6.62 35.57 41.17
CO2+ H2 → HCOOH 39.45 23.85 23.85 14.92
CO+ 2H2 → CH3OH -129.78 -105.29 -105.29 -94.47

CO2+ 2H2 → CH2O+ H2O -8.06 14.13 43.08 35.81
CH2O+ H2 → CH3OH -138.45 -97.23 -97.23 -89.12

(28.95 kJ/mol) on the surface, it can result in ∆HDFT,corrected values that are in better

agreement with the values from the NIST database.

We applied this method to calculate surface phase reaction enthalpies at higher temperatures.

The reference values were obtained from the Shomate equation. The results are shown in

Table 7.3

Table 7.3: Enthalpy changes ∆Hrxn for main surface-phase reactions related to CO2 hydro-
genation at finite temperatures (400 K-1000 K).

Reaction
∆Hrxn kJ/mol

400K 500K 600K 700K 800K 900K 1000K

CO2+ 3H2 → CH3OH + H2O -47.27 -44.15 -42.29 -41.73 -41.62 -40.85 -40.11
CO2+ H2 → CO + H2O 43.59 45.71 47.70 49.63 51.54 53.95 55.78
CO2+ H2 → HCOOH 15.10 13.42 10.67 7.19 3.16 2.33 1.98
CO+ 2H2 → CH3OH -90.87 -89.87 -90.20 -91.37 -93.16 -92.89 -95.33

CO2+ 2H2 → CH2O+ H2O 39.04 42.35 45.93 49.80 -53.98 -56.21 -59.56
CH2O+ H2 → CH3OH -86.31 -86.53 -88.54 -91.61 -95.23 -97.31 -99.31

For these reactions where H2O is not involved, the enthalpy changes show absolute errors of

less than 15 kJ/mol when the reaction temperature is between 298 K-800 K. For reactions

where H2O involved, enthalpy changes show absolute errors of less than 15 kJ/mol when the

reaction temperature is 400 K-800 K. However, the deviation is large when the temperature

119



Figure 7.10: Deviation between ∆Hrxn and ∆HDFT,corrected for reaction not involving H2O

is below 400 K; this may be because H2O has a higher boiling point than other species in

this reaction network.

These results show the thermodynamics of CO2 hydrogenation, and provide evidences that

our temperature-dependent model can accurately predict the reaction enthalpy at normal

operating temperatures. It is quantitatively accurate for calculations on small hydrocar-

bon compounds reacting at 298 K-800 K (no water), and at 400 K-800 K (with water),

with relative errors of less than 10%. Therefore, this method is generally applicable to the

thermodynamics of surface-phase reactions.

7.3 Rate constants for CO2 hydrogenation

Within the framework of a microkinetic model, the experimental activation energy cannot be

fitted independently, due to the thermodynamic constraint that ∆Hrxn equals the difference

between the forward activation energy barrier, Ea,f , and reverse activation energy barrier,

120



Figure 7.11: Deviation between ∆Href and ∆HDFT,corrected, H2O involved

Ea,r. Hence, we develop a related equation to calculate the activation energy for elementary

reaction:

Ea,f (T ) = Ea,f,DFT + β (∆Hrxn (T )−∆Erxn,DFT ) (7.10)

where Ea,f,DFT corresponds to the forward activation energy barrier at 0 K, which is obtained

from DFT calculations. The reverse activation energy barrier from DFT can be obtained

from Figure 7.6. The reaction enthalpy at finite temperature, ∆Hrxn (T ), is calculated

from the individual enthalpies of the initial state and the final state for the constituent

elementary reactions, since we have already shown that it is quantitatively comparable to

the experimental value. ∆Erxn,DFT is the difference between the energies of final state and

initial state at 0 K. The variable β denotes the relative position of the transition state

compared to the initial (i.e., β = 0) or final (i.e., β = 1) state of the relevant elementary

reaction. It can be obtained by considering which image in the CI-NEB calculations (out

of four) corresponds to the transition state. When the value of β is close to 0, it describes
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to an initial-like transition state; thus, the forward activation energy may be kept at the

DFT value, while the reverse activation energy is temperature dependent and needs to be

thermodynamically calculated by analogy to Equation 7.10. When the value of β is close

to 1, it corresponds a final-like transition state; thus, the reverse activation energy may be

kept at the DFT value, while the forward activation energy is corrected using Equation 7.10.

Otherwise, for intermediate values of β, the difference between ∆Hrxn (T )−∆Erxn,DFT affects

both the forward activation energy and reverse activation energy. This calculation technique

is based on the Brønsted-Evans-Polanyi relationship, which states that the difference in

activation energy between two reactions of the same family is proportional to the difference

of their enthalpies of reaction [220, 221, 222].

The energies of activation at the transition states are also corrected in a similar manner

using ZPE and Cp. The pre-exponential factor, A, is calculated from the entropy differences

between the initial and transition states of the respective elementary step as below,

A (T ) =

(
kBT

h

)(
QTS

Q0

)
(7.11)

where QTS and Q0 are the vibrational partition functions of transition states and initial

states, respectively. kB is Boltzmann’s constant, and h is Planck’s constant.

The mathematical and thermodynamical expressions above enable us to obtain the relation-

ship between reaction rate coefficients and temperature by the Arrhenius equation, using the

calculated Ea,f (T ) and A (T ).

k (T ) = A (T ) exp

(
−Ea,f (T )

kBT

)
(7.12)

From this non-equilibrium thermodynamics approach, we can obtain the reaction enthalpy

and the activation energy of every elementary step of CO2 hydrogenation by the modifica-

tion above. Industrially, CO2 hydrogenation to CH3OH is conducted at 493-573 K [223].

Therefore, we choose 500 K to provide a first estimate of the rate constants, as shown in

Table 7.4.
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Table 7.4: Rate constants for elementary steps of CO2 hydrogenation on reduced ceria (110)
at 500 K.

no. Elementary reaction (T=500 K, P=1 atm) kforward(s
−1) kbackward(s

−1

r1 CO2(g) + ∗ → CO2
∗ 1.95e+04 3.23e+01

r2 CO2
∗ + H∗ → COOH∗ + ∗ 2.67e+04 5.19e+04

r3 COOH∗ + ∗ → CO∗ + OH∗ 6.31e+03 3.13e+05
r4 COOH∗ + H∗ → HCOOH∗ + ∗ 3.11e+01 1.78e+02
r5 HCOOH∗ → HCOOH(g) + ∗ 2.17e+03 4.21e+03
r6 CO∗ → CO(g) + ∗ 1.02e+01 3.57e+03
r7 CO∗ + H∗ → HCO∗ + ∗ 4.24e+06 3.82e+06
r8 HCO∗ + H∗ → HCOH∗ + ∗ 3.82e-03 1.31e-02
r9 HCOH∗ + H∗ → H2COH∗ + ∗ 7.33e-04 5.41e-05
r10 H2COH∗ + H∗ → H3COH∗ + ∗ 6.55e-02 8.21e-04
r11 CO2

∗ + H∗ → HCOO∗ + ∗ 3.91e+04 3.55e+02
r12 HCOO∗ + H∗ → H2COO∗ + ∗ 5.11e+03 8.26e+05
r13 H2COO∗ + H∗ → H2COOH∗ + ∗ 7.63e+03 5.19e+02
r14 H2COOH∗ + ∗ → H2CO∗ + OH∗ 4.55e-04 1.98e-02
r15 H2CO∗ → H2CO(g) + ∗ 1.02e+01 2.82e+03
r16 H2CO∗ + H∗ → H3CO∗ + ∗ 3.76e+01 5.43e-01
r17 H3CO∗ + H∗ → H3COH∗ + ∗ 9.21e+00 2.13e-01
r18 H3COH∗ → H3COH(g) + ∗ 8.33e+01 4.08e+02
r19 H∗ + OH∗ → H2O∗ + ∗ 5.91e-03 3.41e-05
r20 H2O∗ → H2O(g) + ∗ 7.32e+02 2.45e+02
r21 H2(g) + 2∗ → 2H∗ 5.89e+01 2.87e+01
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By comparing all elementary reaction rate constants at 500 K, we found that the disso-

ciation of H2COH∗ to HCOH∗ and H∗ is the slowest step for the COOH route, while the

hydrogenation of H2COOH∗ is the slowest one for the HCOO route.

The dissociation of adsorbed COOH∗ to produce CO∗ and OH∗ is an endothermic process,

and the reverse rate constant of 3.13 × 105s−1 is not only about two orders of magnitude

larger than the forward one, but also four orders of magnitude larger than COOH∗ hydro-

genation. Such a significant rate demonstrates that the consumption of the surface COOH∗

by hydrogenation is not sufficient enough to prevent the reverse direction of the dissociation

reaction from occurring. In other words, the formed CO∗ and OH∗ would quickly react back

to the original COOH∗ groups. Besides, we can see the formation and dissociation of H2O

both are slow, though the formation rate constant is about two orders of magnitude larger

than the reverse one. Thus, the formate (HCOO∗ ) route appears more likely to result in

methanol production.

7.4 Conclusion

We studied the conversion of CO2 to methanol by hydrogenation on reduced ceria (110).

We gained mechanistic, thermodynamic, and kinetic insight into the elementary steps that

comprise larger reaction networks of interest to the broader catalysis community. We used

density functional theory calculations and a microkinetics technique to elucidate the nature of

the small carbon-containing species formed during this reaction, and determined how catalyst

structure dictates activity and selectivity. In all possible intermediates, our calculation

results show that HOCOH∗, HCOOH∗ and COH∗ are not feasible due to the high formation

energy. Also, direct formyl hydrogenation to formaldehyde (H2CO), the key intermediate for

methanol synthesis, is not feasible due to the high activation barrier. Instead, we find that

H-formalin to formaldehyde is kinetically more favorable. The formaldehyde then converts

into methoxy, H3CO∗, rather than H2COH∗, followed by a consecutive hydrogenation step to

form methanol. Thus, two reaction channels to methanol are identified (i) COOH pathway

via a carboxyl intermediate and (ii) HCOO pathway via a formate intermediate. The rate-

limiting step of each pathway and the theoretical selectivity is determined.
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We developed a non-equilibrium thermodynamics method to calculate energies of activation

and rate constants of CO2 hydrogenation at finite temperatures, based on DFT barriers and

the modified Bronsted-Evans-Polanyi principle. Also, we applied a numerical approach to

compute heat capacities and reaction enthalpy based on the vibrational frequency results

from DFT and partition function, and found it is comparable in accuracy and precision to

traditional methods for gas-phase molecules. This provides a new approach to solve the

thermodynamics and kinetics questions in real catalytic systems.
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Chapter 8

Summary and Future Direction

Converting carbon-containing compounds to valuable chemicals and fuels in an efficient and

environmentally friendly manner, is one of the great challenges of the 21st century. Propene

is the one of the most valuable chemicals and fuel in the petrochemical industry, being

the raw material for a wide variety of commodity chemicals ranging from plastic products

to gasoline components. Traditionally, the propene can be produced by steam cracking of

hydrocarbons, refinery fluid catalytic cracking (FCC) or propane dehydrogenation. However,

these processes either require much energy or produce propene with low yield and much

waste. Considering these drawbacks of traditional processing routes, we focused on two

promising catalytic conversion routes for propene production: 1) Metathesis of ethene and

2-butene, which is solvent-free, generates little waste, and requires low catalyst loads; 2)

Methane dehydrogenation and CO2 hydrogenation to methanol for use in the MTO process,

where greenhouse gases are utilized to close the carbon cycle.

For metathesis of ethene and 2-butene, we investigated the initiation of olefin metathesis

on tungsten trioxide (WO3) catalysts, by showing that 2-butene more readily forms W-

carbene active sites on the surface, compared to ethylene. We presented our analysis of the

propagation steps at these active sites. The computed optimized structures and energetics

of the reaction intermediates and products of propagation were obtained.

For CH4 dehydrogenation, we modeled both (hemi)spherical and tetrahedral platinum nan-

oclusters. We showed that hydrogen production from methane would proceed at a higher

rate and conversion on tetrahedral clusters than on hemispherical clusters. We further study
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the support effect on reactivity of cluster for methane dehydrogenation. Both stoichiometric

and reduced ceria do facilitate methane adsorption and dehydrogenation, as compared to

unsupported clusters; an analogous β-silica support does not significantly enhance methane

adsorption. We propose that the low-coordinated Pt sites and oxygen vacancies at the

metal-support interface, along with lower activation strain on the supported catalysts, all

contribute cooperatively to the enhanced catalytic activity. Our results confirm the critical

role of support structure and composition for catalytic methane activation and dehydrogena-

tion on noble metal clusters.

For CO2 adsorption, we showed that it is thermodynamically favorable on reduced ceria

(110) surfaces over the corresponding adsorption on stoichiometric ceria (110). Structural

changes in the CO2 molecule are also observed upon adsorption. At the split vacancy on

reduced ceria, the molecule bends out of plane to form a unidentate carbonate with the

remaining oxygen anion at the surface. For CO2 hydrogenation to methanol, we built the

reaction network including all possible intermediates, then simplified the network by stability

and barrier analysis. Our results showed that carbine diol, formic acid and methynol are not

feasible due to the high formation energy. Also, direct formyl hydrogenation to formaldehyde

(H2CO), the key intermediate for methanol synthesis, is not feasible due to the high activation

barrier. Instead, we find that H-formalin to formaldehyde is kinetically more favorable.

The formaldehyde then converts into methoxy H3CO rather than H2COH, followed by a

consecutive hydrogenation step to form methanol. Thus, two reaction channels to methanol

are identified (i) COOH pathway via a carboxyl intermediate and (ii) HCOO pathway via a

formate intermediate.

In addition, we developed three computational methodologies to study the two promising

catalytic routes for propene production across a range of length and time scales. First,

we investigated the effect of electronic structure on the properties and reactivity of these

catalyst systems by computed the partial electronic density of states, electronic localization

function and excess spin density. We applied this computational methodology to the study of

methane activation and found faceted particles with more electrons in edge and vertex sites

may facilitate CH4 dehydrogenation. We also applied this method to the study of carbon

dioxide activation and found that redox supports (e.g., reduced ceria with oxygen vacancy)

can promote electron transfer reactions to activate the adsorbed CO2. Second, we developed

a non-equilibrium thermodynamics approach to calculate energies of activation at finite
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temperatures and rate constants, based on DFT barriers and the modified Bronsted-Evans-

Polanyi principle. We applied this computational methodology to the study of metathesis

propagation on WO3 catalysts and CO2 hydrogenation on reduced ceria. Third, we developed

an approach to numerically compute heat capacities and other thermodynamic properties

on extended catalytic systems based on the vibrational frequency results from DFT and the

partition function. We applied this approach to the study of carbon dioxide hydrogenation

and found it is comparable in accuracy and precision to traditional methods that have been

well-developed for gas-phase molecules.

To summarize, in this thesis, we investigated the catalytic conversion of carbon-containing

compounds into valuable chemicals and fuels by computational approaches based on den-

sity functional theory, and gained mechanistic, thermodynamic and kinetic insight into the

elementary steps that comprise larger reaction networks. Ultimately, these theoretical find-

ings and computational predictions can be used to guide experimental design, synthesis, and

characterization of new catalyst systems.

A future direction for this work is to develop a complete microkinetic model for CO2 hy-

drogenation at different operating condition. The microkinetic approach is attractive and

appealing since it is not based on any arbitrary assumption on rate-determining step, and

thus it is not restricted to a particular set of conditions. We have derived a complete set

of elementary reactions (Table 7.4) and reaction routes with a known set of species (Figure

7.4), coupled with a reliable estimation of the elementary reaction energetics on reduced

ceria catalyst based on DFT barriers and the modified Bronsted-Evans-Polanyi principle.

The complete set of elementary reactions can be reduced using quasi-equilibrium and quasi-

steady state approximations. The mathematical description of the reduced reaction network

can generate a set of ordinary differential equations (ODE). Then the system becomes a set of

differential algebraic equations that can be solved numerically using commercially available

packages (e.g., MATLAB). Hence, a complete microkinetic model can show the temporal

evolution of each species as a function of temperature and the partial pressures of molecules,

such as CO2 and CO, which would be of great significance in predicting the selectivity and

yield of this process and guide experimental design of new catalysts.
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