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ABSTRACT OF THE DISSERTATION

Weak Measurement and Quantum Smoothing of a Superconducting Qubit

by

Dian Tan

Doctor of Philosophy in Physics

Washington University in St. Louis, 2017

Professor Kater Murch, Chair

In quantum mechanics, the measurement outcome of an observable in a quantum

system is intrinsically random, yielding a probability distribution. The state of the

quantum system can be described by a density matrix ρ(t), which depends on the

information accumulated until time t, and represents our knowledge about the sys-

tem. The density matrix ρ(t) gives probabilities for the outcomes of measurements

at time t. Further probing of the quantum system allows us to refine our prediction

in hindsight. In this thesis, we experimentally examine a quantum smoothing theory

in a superconducting qubit by introducing an auxiliary matrix E(t) which is condi-

tioned on information obtained from time t to a final time T . With the complete

information before and after time t, the pair of matrices [ρ(t), E(t)] can be used to

make smoothed predictions for the measurement outcome at time t. We apply the

quantum smoothing theory in the case of continuous weak measurement unveiling

the retrodicted quantum trajectories and weak values. In the case of strong projec-

tive measurement, while the density matrix ρ(t) with only diagonal elements in a

given basis |n〉 may be treated as a classical mixture, we demonstrate a failure of

this classical mixture description in determining the smoothed probabilities for the

measurement outcome at time t with both diagonal ρ(t) and diagonal E(t). We study

the correlations between quantum states and weak measurement signals and examine

aspects of the time symmetry of continuous quantum measurement. We also extend

x



our study of quantum smoothing theory to the case of resonance fluorescence of a

superconducting qubit with homodyne measurement and observe some interesting

effects such as the modification of the excited state probabilities, weak values, and

evolution of the predicted and retrodicted trajectories.
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Chapter 1

Introduction

The past decade has seen remarkable experimental progress in the field of quantum

information and quantum foundations using superconducting quantum circuits [1, 2].

One of the main components in this field is the superconducting quantum bit which

is essentially an anharmonic oscillator, comprised of Josephson junctions shunted by

a large capacitor, providing the lowest two energy levels as the qubit. Superconduc-

tivity and the Josephson effect are the key elements to the successful application of

the quantum circuits. Superconductivity, which is the frictionless flow of electrical

fluid through the metal below a critical temperature, ensures that the qubit will show

its quantum properties without loss, and the Josephson effect provides nonlinearity

without introducing dissipation or dephasing which is crucial for manipulation and

state control of the qubit [3]. Nowadays, superconducting transmon qubits have been

demonstrated with coherence times exceeding 100 µs [4, 5], a four-order-of-magnitude

increase in coherence compared with the first Cooper-pair box qubit [6]. With such

long coherence times superconducting qubits are becoming an ideal platform to per-

form quantum computing and to investigate the foundations of quantum mechanics

in an unprecedented way [7, 8].

Superconducting qubits are typically operated with characteristic frequencies, ω

in the gigahertz frequency range and are compatible with microwave techniques. Gi-

gahertz frequencies mean microwave photons which are three orders of magnitude

below thermal energy at room temperature, and thus require very low temperature
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which is achievable with a dilution refrigerator. Moreover, because the dipole moment

of the qubit is sufficiently large, strong coupling to microwave modes and microwave

photons is possible. Thus we can use microwave photons to manipulate and readout

the state of the qubit [9].

The circuit quantum electrodynamics formalism allows us to describe this inter-

action and utilize it for quantum information purposes. Using a commercial dilution

refrigerator with the capability of cooling to temperatures of a few milikelvin, we can

utilize microwave techniques to explore the quantum properties of superconducting

qubits when the temperature T is cold enough such that the thermal energy is much

less than the qubit transition energy, kBT � ~ωq, where ωq is the qubit frequency,

and kB is Boltzmann’s constant.

The quantum properties we wish to observe have a much smaller energy scale

than that of the classical measurement instruments. For example, if the mean photon

number in a driven cavity is around 1, then the output power from the cavity with its

resonant frequency ωr/2π = 6 GHz and bandwidth κ = 10 MHz is on the order of -140

dBm (10−17 watts) while the typical powers used in the microwave signal processing at

room temperature are on the order of -30 dBm, thus large amplifications are required

in order to detect such tiny signals at room temperature. Note that minimum cell

phone signal is -113 dBm. For example, a typical cell phone signal strength is between

-100 dBm and -50 dBm (LTE Network “5 bars” is about -50 dBm). Amplifiers

typically add noise to the signals that are amplified. This can be expressed in terms

of a noise temperature TN or in terms of added photonsN = kB×TN/~ω. Fortunately,

much progress has been made on detecting such minuscule signals. The first important

improvement making the detection possible is the development of cryogenic High-

Electron-Mobility Transistors (HEMT) amplifiers which work at the temperature 4

K and reduce the added noise significantly by approximately two orders of magnitude

compared to room-temperature amplifiers [10]. The typical HEMT amplifiers can be

operated in the range of 1 to 12 GHz with more than 30 dB gain and their added

noise is at the level of 20 photons. Thus by only using the HEMT amplifier, the

quantum efficiency, which is the ratio of vacuum noise to total noise (1/2)/(N+1/2)

2



is limited to around 1%.

Despite the excellent performance of the HEMT amplifiers at 4 K stage, the noise

level still remains much higher than zero-point fluctuations, kBTN � ~ω/2. Such a

low quantum efficiency prevents the use of quantum measurement back-action as a

resource for quantum control. The quantum efficiency η basically indicates how close

a measurement comes to ideal Heisenberg-limited back-action (how much information

that we collect).

The technological advance that enables the research described in this thesis is the

quantum-limited Josephson parametric amplifier. Using these, it is possible to dra-

matically improve the quantum efficiency thereby enabling a number of experiments

that probe the physics of quantum measurement. The first Josephson parametric am-

plifier was demonstrated by Yurke in the 1980’s by employing microwave and nanofab-

rication techniques [11, 12]. These parametric amplifiers were further investigated by

several groups [13–19]. Nowadays, the use of Josephson parametric amplifiers has

reduced the noise level of microwave measurements by one more order of magnitude

with quantum-limited performance. Josephson parametric amplifiers can in principle

operate noiselessly, adding zero photons of noise [20]. Significant research has been

invested in studying this limit while many experiments have demonstrated 70-80 %

efficiency [21], others have placed limits on the intrinsic inefficiency of the amplifier

as high as 99% [22]. Once all the other losses in the measurement chain are taken

into account, the overall quantum efficiency we typically achieve is between 30% and

50%.

Due to the remarkable recent progress in the fabrication of quantum circuits in-

cluding superconducting qubits and parametric amplifiers, it is possible for us study

the problems in quantum information and quantum foundations in a marriage of

quantum mechanics, parameter estimation theory and nanoscale engineering in the

context of quantum measurements.

3



1.1 Superconducting quantum circuits

Richard Feynman said “We are really getting control of nature on a very delicate and

beautiful level” [23]. Indeed, progress in fabricating and understanding supercon-

ducting circuits has enabled us to conduct experiments to test quantum mechanics in

a way that only existed in thought experiments before. Moreover, such control would

eventually lead to the success of quantum computers based on superconducting cir-

cuits with potential applications in quantum simulation, optimization, factorization,

and finding eigenvalues of large Hamiltonians [24–31].

|0

|1

|0

|1

Superconducting qubit(a) (b)

(c) (d)

LC resonator

Circuit quantum dynamics A transmon in a 3D Cavity

H=hωra a H=  hωqσz
1
2

H=hωra a +  hωqσz
1
2 +  hgσx(a + a)

ωr

ωr

ωq

Figure 1.1: Lumped element model for quantum circuits. (a) A microwave LC res-
onator. (b) A qubit. (c) Qubit-cavity hybrid system. (d) A transmon qubit in a 3D
Al cavity.

1.1.1 Superconducting qubits

Superconducting qubits exhibit quantized energy states of electronic charge, magnetic

flux or junction phase, corresponding to different types of superconducting qubits
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[32, 33]: charge qubit [34], flux qubit [35] and phase qubit [36, 37]. The type of the

qubit depends on the design parameters of the constituent circuit elements such as

capacitors, inductors and Josephson junctions. In this thesis, as illustrated in Fig.

1.1(b, d) we only focus on the transmon qubit which is typically a charge qubit but

with large capacitance in order to suppress the charge noise in this device [38]. Be-

sides superconducting qubits, there are also other realizations of quantum two state

systems: atoms [39] or ions [40], nitrogen vacancy centers [41, 42], polarizations of

a photon [43], and quantum dots [44]. However, compared to other two level sys-

tems, superconducting qubits have many advantages. Thus, they are considered as

one of the most likely candidate for the applications of quantum information science

and technology. First, the Hamiltonian of the quantum system can be particularly

adjusted since parameters of the devices can be engineered in design. Second, su-

perconducting circuits are compatible with microwave control and can be operated

at nanosecond time scales thus we can take the advantage of the well developed mi-

crowave tools. Moreover, the superconducting qubits can be easily scaled up in a chip

using lithographic techniques.

Spectacular improvement has been made over the past decade in the field of

superconducting circuits which brought these devices from a scientific curiosity to

technological reality. In the year of 1999, the first superconducting qubit was made

by NEC group and coherent oscillations were observed in this qubit [6]. Therefore it

has proven possible that we can put these qubits into coherent superposition states so

that they can act as quantum bits. 18 years later, IBM just announced that it has built

two new universal quantum computers which have 16 and 17 superconducting qubits

respectively, and Google is testing a 20-qubit quantum computer and aims to make

a 49-qubit computer that can solve problems far beyond the capacity of ordinary

computers (Quantum supremacy) by the end of 2017. While the goal of creating

future quantum computers that can be used to solve some hard problems far beyond

the capability of classical computers, has driven the development of superconducting

qubits, these devices can be also employed as a testbed to study fundamental physics

such as quantum control, quantum measurement, and quantum feedback.
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1.1.2 Josephson parametric amplifiers

R
ef

le
ct

ed
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 δ

Pump power P
P
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Figure 1.2: Josephson parametric amplifier. (a) The resonance response is linear
at low pump power. As the pump power increases, the nonlinear response of JPA
appears and the JPA goes into a regime labeled as paramp and shaded in blue. After
a critical point, (ωc, Pc), the JPA goes into a bifurcated regime. (b) The paramp
transfer function shows that the small input sinusoidal signal can be mapped to the
phase of the reflected pump, indicating the amplication of the input signal.

In this thesis, the parametric amplifier that we use is called a lumped element

Josephson Parametric amplifier (LJPA) [45, 46]. The term parametric implies that

some parameter of the Josephson parametric amplifiers can be periodically modulated

by a pump signal in order to achieve gain by transferring power from the pump to a

signal at some frequency. If we consider that the amplifier is driven at a frequency

with some power at which the reflected phase δ is very sensitive to power (the region

displayed in Fig. 1.2(b)), and then the system will show strong response to small

perturbations which are caused by the tiny signal field thus we can have gain. A sim-

ilar process in quantum optics modulates the refractive index of a nonlinear medium

with a pump to affect the modes which are detuned from the pump thus stimulate

population of the mode with photons provided by the pump [47]. As illustrated in

Fig. 1.2(a) inset, the LJPA is a nonlinear resonator comprised of a SQUID loop of two

large Josephson junctions and a capacitor. By adding a Josephson inductance inside

a resonator, we can achieve parametric amplification in a well-controlled frequency

band while suppressing it for frequencies outside. Fig. 1.2(a) displays the resonance

response of the amplifier to the pump power. At low pump power, the response is

linear meaning that the resonance frequency does not depend on the pump power. As
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the power increases, the resonance bends to low frequencies and we go into a region

where the non-linearity from the Josephson junction comes into play. This is the

region labeled paramp where we operate the LJPA. As we further increase the pump

power, the system goes into a bistable region where two stable solutions exist for the

pumping frequency [48].

1.2 Introduction to quantum smoothing

Figure 1.3: Four classes of estimation problems. Adapted from Tsang [49].

Estimation exists almost everywhere in our daily life. There are a lot of examples

of estimation happening to us everyday. You may apply the estimation in cooking

such as how much sauce, oil, salt, and other seasonings you like to use. You may

estimate the temperature of hot water before you dip a tea bag to make a cup of tea.

You may estimate what time you have to leave in the morning in order to be in the lab

at 9 am. For making ends meet, you may have to estimate how much money you can

spend this month in your bank account so you don’t go over the limit. Moreover, if you
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still have enough savings, this can help improving your estimation next month. Often

we need to make an estimation if we don’t know an exact answer in a guess of what

would happen in our daily life. In science, estimation theory is used to determine the

state of a system with the information obtained with observations. The information

that is obtained before a measurement M on a system at time τ can be represented

by a density matrix ρ which represents a state of knowledge. In this thesis we will

anote “effect matrix”, E, which is similiar to ρ, but encodes information obtained

after the measurement from time τ to a final time T [50]. Thus the combination of ρ

and E gives us complete information about the the state of the system. As illustrated

in Fig. 1.3, estimation problems are usually classified into four classes: prediction,

filtering, retrodiction, and smoothing. Prediction is the estimation of measurement

outcome at time τ given observations before that time (ρ(t), t < τ). Filtering is

the estimation given observations before and up to τ (ρ(t), t ≤ τ). Retrodiction is

obtained given observations after τ (E(t), τ < t ≤ T ) and smoothing is based on the

observation before and after time τ (ρ(t), t ≤ τ, E(t), τ < t ≤ T ) [49]. Prediction and

filtering have been studied extensively due to their real-time applications. Here we

are focusing on the application of smoothing to make better parameter estimations

in a quantum system. Moreover, we have the access to study some interesting pre-

and post-selection effects with quantum trajectory theory.

Aharonov et al. [51–54] proposed and applied the concept of pre- and post-selected

states to generate some fundamental questions and counter-intuitive phenomena in

quantum physics such as weak values. Tsang in 2009 [49, 55] derived the probability

conditioned on the complete measurement record and made a smoothed prediction for

classical parameters that affect the evolution of a quantum system with the measure-

ment results on the quantum system. He first applied the concept of smoothing from

the classical system to the quantum system and enabled the application of quantum

smoothing in quantum systems. Mølmer et. al. [50] generalized the quantum smooth-

ing theory and proposed the past quantum state theory which can be used to better

estimate an unknown result for a measurement performed on a quantum system at

a time t with information both before and after time t. Wiseman et. al. defined a
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smoothed quantum state which can enable better state estimation [56]. This thesis is

devoted to the experimental tests of these quantum smoothing theories, in particular

the Past Quantum State theory developed by Mølmer et al..

Quantum smoothing can be applied to the field of quantum sensing or commu-

nication which can give more accurate estimation of the signal at some time in the

past. Quantum smoothing theory also offers us a way to formally make probability

statements about what happen in the past given the later data. By taking the ad-

vantage of more accurate estimation with quantum smoothing, we are able to detect

error occurrences in quantum measurements with quantum state tracking. With the

capability of correcting the errors, we might apply feedback which is very important

in quantum control [57–59].

1.3 Overview of the thesis

Chapter 2 presents some theoretical background relevant to experimental realizations

of quantum measurement. In Particular, Section 2.5 describes the theoretical basis

of Quantum Smoothing which is the basis of the experimental tests in this thesis.

Chapter 3 discusses the application of quantum smoothing theory in the case of clas-

sical mixtures. This simplest application of smoothing reveals fundamental quantum

features of measurement. In chapter 4, we describe experiments where we performed

weak continuous measurement on a superconducting qubit. We study the predicted

and retrodicted trajectories in continuous weak measurement using the quantum tra-

jectory formalism. In chapter 5, with the technique of pre- and post-selection, we

examine aspects of time-symmetry in a superconducting qubit by showing that the

pre-selected average signal is the time reversal of the post-selected average signal in

quantum measurement. We also study the correlations between the weak signal and

the qubit state. Chapter 6 discusses the application of the Past Quantum State in

homodyne detection for a quantum emitter which is comprised of a superconducting

qubit resonant with a 3D aluminum cavity. We see several interesting pre- and post-

selection effects in this system. In chapter 7, we conclude by giving future application
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of the theory of Past Quantum State, e.g. tomography for the effect matrix E.

1.4 Summary of key results

The key results of the work presented in this thesis are in the following:

In our first experiment, we test Past Quantum State theory in the case of strong

projective measurements where the density matrix ρ and the effect matrix E are both

diagonal. We show that diagonal ρ can be treated as classical mixtures. However,

the more complete description of the system involving E in addition to diagonal ρ is

not equivalent to a classical mixture. Our experimental and theoretical results are in

good agreement to support our conclusion [60].

In the second experiment, we have demonstrated the use of the quantum trajec-

tory formalism to infer the quantum state of a superconducting qubit conditioned on

the outcome of continuous measurement. The density matrix ρ, can be used to make

predictions about the outcome of a measurement conducted at time t, if more infor-

mation is available in the future, an effect matrix E which represents the information

after time t can be used to make retrodictions about the measurements conducted at

time t when t is in the past. Together, ρ and E, can be used to make a smoothed

prediction for events in the past and give more confident predictions. This is the first

time that these matrices have been calculated and applied to a fully quantum system

in the context of continuous weak measurement [61].

In the third experiment, we study correlations between the weak signal and the

state of a continuously monitored superconducting qubit with pre- and post-selection

[62].

We have also applied the Past Quantum State formalism to a quantum emit-

ter that was continuously monitored by homodyne detection in the last experiment

of this thesis. We have experimentally confirmed these predictions for the average

homodyne signal and furthermore observed anomalous weak values using the Past

Quantum State theory. By employing quantum trajectory theory, we have studied

the evolution of the emitter state by employing quantum trajectory theory, showing
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that the evolution of these trajectories is stochastic, but are confined to deterministic

regions at some time t in the Bloch sphere [63].
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Chapter 2

Quantum mechanics and quantum

measurement

In this Chapter, we introduce the basics of quantum measurement and superconduct-

ing qubits with a focus on the transmon qubit. We also provide a brief introduction

to the basic principles of the circuit quantum electrodynamics. At the end of the

chapter, we describe how we use such knowledge in a realistic experiment and how

we apply quantum smoothing theory.

2.1 Measurement in quantum mechanics

It is well known that quantum mechanics has an inherently probabilistic nature re-

garding measurement outcomes of observables and that quantum measurement plays

an essential role in the interpretation of quantum mechanics. This thesis is about

measurement, and how recent experimental advances are helping reshape our un-

derstanding of measurement in quantum mechanics. Thus, before describing the

experimental and theoretical work of this thesis, we briefly review the basic textbook

descriptions of quantum measurement and develop the tools necessary for the work

in this thesis.
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Figure 2.1: Energy levels for a spin 1/2 particle in a uniform magnetic field. (a) The
the z component of the spin can be aligned either up or down, its energy level is
going to split into two levels in the magnetic field due to the interaction between the
magnetic dipole moment and the magnetic field. (b) A qubit being in its ground and
excited state can realize a pseudo-spin 1/2 system.

2.1.1 Pseudo-spin 1/2

Let’s first consider a spin 1/2 particle in a uniform magnetic field [64]. Its magnetic

dipole moment µ is given by µ = γS, here γ is the gyromagnetic ratio and S is the

spin angular momentum. We can also calculate the energy in the magnetic field,

E = −µB = −γSB. For a spin 1/2 particle in a magnetic field along z axis, we have

Sz = ±~/2 for spin up and spin down, thus its energy E will split into two levels as

illustrated in Fig. 2.1. In this thesis, we borrow the concept of spin 1/2 and realize

a pseudo-spin 1/2 system (qubit). The ground state |0〉 and the excited states |1〉,
similar to the spin up and spin down respectively, realize a pseudo-spin 1/2 system

which can be well described by the 2×2 density matrix ρ(t). Furthermore, with this

connection to the spin, we can use common known Pauli operator to describe the

quantum state.

2.1.2 Stern-Gerlach experiment

A paradigm of quantum measurement is the Stern-Gerlach experiment which moti-

vated major developments in modern physics and sheds light on quantum measure-

ment [65]. The Stern-Gerlach experiment showed that a beam of rapidly moving

neutral silver atoms, which were evaporated from an oven, traveled through an in-
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Figure 2.2: Stern-Gerlach experiment. The spins are initially in eigenstate of the
Sx operator (aligned along x) and sent through the above Stern-Gerlach apparatus
which measures z component of the spins. (a) If the magnetic field gradient is strong
enough, then the spins would be deflected into two separated distributions after the
Stern-Gerlach apparatus. (b) If the the magnetic field gradient is very weak, the
distributions would have some overlap with each other.
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homogeneous magnetic field and were deflected into two parts — some of the silver

atoms are deflected up and some deflected down. As illustrated in Fig. 2.2(a), if we

have some spins along the x axis, an eigenstate of σx, after the the Stern-Gerlach appa-

ratus with large enough magnetic field gradient, dB/dz, we can obtain two separated

distributions along the z axis which are associated with eigenvalues of σz. We assume

that the distributions arise because the atoms are in Gaussian minimum uncertainty

states. Therefore, we can distinguish whether the spins are up or down after the

measurement and this is called strong projective measurement. Here σu(u = x, y, z)

are the Pauli spin operators that acts on the spin state. But if the magnetic field

gradient is very weak, the distributions are overlapped thus we cannot distinguish

whether the spins are up or down. This is known as weak measurement where only

partial information about the spin state is extracted. The Stern-Gerlach experiment

indicated that there must be an intrinsic property which is now known as spin angular

momentum leading to these quantized results of measurement outcome. The Stern-

Gerlach experiment is in agreement with the predictions for measurement outcomes

in spin 1
2

systems which paves ways for later developments in quantum measurement

thus in the field of quantum information.

2.1.3 Born’s rule

Born’s rule gives us the probability of getting the outcomes of a measurement for

a given observable. Let’s give an example of a two level system. If a qubit is in

the superposition state |ψ〉 = α|0〉 + β|1〉, and a measurement is performed on this

state in its energy eigenbasis (σz), then Born’s rule tells us that the outcome of the

measurement of the z component of the spin is +1, an eigenvalue of σz|0〉 = +1|0〉
with probability |α|2 and −1 with probability |β|2 [66]. This measurement is called

von Neumann measurement which says that if we measure an observable A with

a set of projection operators P̂a = |a〉〈a| for a system in a state |Ψ〉 and obtain a

measurement result a then the state of the system is immediately in the state |a〉
after the measurement [67],

|Ψ〉 P̂a−→ |a〉. (2.1)
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The von Neumann measurements performed on the system are instantaneous and

non-unitary (irreversible), causing the wave function collapse to one of its eigen-

states. For example, if we have a two level system which is initially prepared in its

superposition state,

|ψi〉 =
(|0〉+ |1〉)√

2
. (2.2)

A projective measurement performed on this system will collapse the system in one

of its eigenstate |0〉 (|1〉) with eigenvalue +1 (-1) in σz basis. Moreover, we know

that the measurement causes z-component of the spin to change from 0 to +1 or

-1 and x-component of the spin from 1 to 0. After the measurement, we know the

z-component of the spin for sure but we know “nothing” about the x-component of

the spin. This is due to the back-action from the quantum measurement. Why does

this happen? Because of the Heisenberg uncertainty principle, two non-commuting

observables cannot be measured to a infinite precision simultaneously, if the measure-

ment has been performed in σz basis, then the information about σx is lost due to

the strong projective measurement in this basis [68].

2.1.4 Aharonov-Bergmann-Lebowitz rule

In this section, we discuss measurement probability conditioned on both the initial

state |ψi〉 and final state |ψf〉 which is given by Aharonov-Bergmann-Lebowitz rule

(ABL rule) [69, 70]. Based on Born’s rule we know that the probability for the

measurement outcome a of an observable Â at time t is P (a) = |〈a|ψi〉|2, yet after this

measurement, the system can be subjected to further probing, and the probability

that the system will be found in state |ψf〉 conditioned on the system which has

already been observed in the state |a〉 is P (f |a) = |〈ψf |a〉|2. So the probability that

system yields outcome a and is subsequently detected in a final state |ψf〉 is given by

the product of the above two probabilities: P (f, a) = P (f |a)P (a) = |〈ψf |a〉|2|〈a|ψi〉|2.

The probability that the system will be observed in state |ψf〉, given a measurement of

Â has been performed with all possible measurement results a (not necessary known to

us) is P (f) =
∑

a′ P (f, a′) =
∑

a′ |〈ψf |a′〉〈a′|ψi〉|2. With the above probabilities and
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by applying Bayes’ theorem, we have the probability PABL(a) for the measurement

of Â is a, if we consider only the selected measurement events where the initial state

was |ψi〉 and the final state was |ψf〉,

PABL(a) = P (a|f) =
|〈ψf |a〉|2|〈a|ψi〉|2∑
a′ |〈ψf |a′〉〈a′|ψi〉|2

. (2.3)

ABL rule is in essence a conditional probability which provides a time-symmetric

description of quantum mechanics, leading to a series of interesting pre- and post-

selected effects such as anomalous weak values [51–53, 71], that we will return to later

in this thesis.

2.2 Superconducting qubits

The two level quantum system being used in this thesis is the superconducting trans-

mon qubit. We first show that how to quantize a classical electrical circuit. After

that, we examine the basics of the transmon qubit.

2.2.1 Quantization of an electrical circuit

In this section, we will give an example to briefly show the method of quantizing

an LC resonator in order to understand how we make an electric circuit behave as

a qubit. There are more thorough derivations regarding the details of the circuit

quantization in the references [3, 72, 73].

Let’s consider a simple electronic circuit which consists of a capacitor, C, in par-

allel with an inductor, L. We have the following relations for the current across the

capacitor, IC = C dVc
dt

, and the voltage drop across the inductor, VL = LdIL
dt

. We know

that IC = IL = I and VC = −VL = V based on Kirchoff’s rule. Therefore, we have

d2I

dt2
= − 1

LC
I, (2.4)

then we have the solution I(t) = A cos(ωt) +B sin(ωt), where ω = 1√
LC

, A and B are

constants determined by initial conditions. Apparently, the LC circuit behaves as a
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simple harmonic oscillator. The total energy of the oscillator E is given by

E =
1

2
LI2 +

1

2
CV 2, (2.5)

thus the Hamiltonian of the LC circuit can be expressed as

H =
Φ2

2L
+
Q2

2C
, (2.6)

where we use the relation for magnetic flux in the inductor, Φ = LI, and the charge

on the capacitor, Q = CV .

Moreover, we can have the following relations [74],

∂H

∂Φ
= Φ/L = I = Q̇,

∂H

∂Q
= Q/C = −LI = −Φ̇. (2.7)

Hence we know the pair Φ and Q are canonical variables and can be written as

operators. This pair satisfies the commutation relation [Φ̂, Q̂] = i.

2.2.2 Superconducting transmon qubit

A harmonic oscillator can not be used as a qubit since its energy levels are equally

separated. Fortunately, we have the Josephson junction which is crucial for realizing

a superconducting qubit due to its non-linearity and lack of dissipation. In order to

build a circuit which provides this harmonic oscillator potential we need an inductor

and a capacitor. Josephson junctions are microwave circuit elements which act as

dissipationless, non-linear inductors. They are formed by a sandwich structure con-

sisting of two superconducting leads connected by a thin insulating barrier. In this

section, we will first give a description of the Josephson junction and then briefly

introduce the superconducting transmon qubit.

It is well know that the dissipationless supercurrent through the junction and the

voltage across the junction are described by the following relations [75]

I = I0 sinφ, V =
Φ0

2π
φ̇. (2.8)
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Here I0 is the critical current, φ is the phase difference between the two leads and Φ0

is the magnetic flux quantum h/2e. The Junction inductance can be expressed using

the definition L = V/İ,

LJ = LJ0/ cosφ = LJ0/
√
I − (I/I0)2, (2.9)

where we define LJ0 ≡ Φ0/2πI0. Therefore, the inductance of Josephson junction is

related to the current flowing through the junction. This nonlinear response of the

inductance to the current can be used to make an anharmonic oscillator. Thus by

taking advantage of the anharmonicity in this oscillator, we now are able to distinguish

individual transition and choose the lowest two levels as the qubit.

In addition, if the junction is biased with a voltage V , we can see that the current

will oscillate in the following way based on the Eq. (2.8) [76],

I = I0 sin(φ0 + 2πV t/Φ0). (2.10)

We can also make a tunable Josephson inductance with SQUID (Superconducting

QUantum Interference Device) loop which consists of two Josephson junctions [77].

The critical current Ic of the SQUID can be expressed as a function of the magnetic

flux Φext from the external magnetic field

Ic = 2I0| cos(πΦext/Φ0)|. (2.11)

Next, we give a quantum description of an isolated Josephson junction in terms

of Cooper pair number, N , in order to better understand the behavior of Josephson

junction in a microscopic way. This description follows references [65, 78, 79]. We

define the Cooper pair number operator N̂ with its eigenstate |N〉 which represents

the number of Cooper pairs on one side of superconducting lead of the junction. We

can also have the conjugate operator φ̂ with its eigenstate |φ〉 which represents the

phase difference between the two leads.
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Here we define

|φ〉 =
∞∑

N=−∞

eiNφ|N〉, (2.12)

and its inverse relation

|N〉 =
1

2π

∫ 2π

0

e−iNφ|φ〉dφ. (2.13)

We can easily verify that 〈N |M〉 = δNM and 〈φ|φ′〉 = 2πδ(φ − φ′), where δNM =

1
2π

∫ 2π

0
e−i(N−M)φdφ and δ(φ− φ′) = 1

2π

∞∑
N=−∞

e−iN(φ−φ′).

We can use the identity relation I = 1
2π

∫ 2π

0
|φ′〉〈φ′|dφ′ and then define,

eiφ̂ =
1

2π

∫ 2π

0

eiφ
′|φ′〉〈φ′|dφ′. (2.14)

Therefore, we have eiφ̂|φ〉 = eiφ|φ〉 and eiφ̂|N〉 = |N − 1〉 [65, 78, 79]. From the

above equation we can express the operator eiφ̂ in terms of the Cooper pair number

state |N〉,

eiφ̂ =
∞∑

N=−∞

|N − 1〉〈N |, e−iφ̂ =
∞∑

N=−∞

|N〉〈N − 1|. (2.15)

Next, we should obtain the Hamiltonian of the isolated Josephson junction which

is determined by the Cooper pair tunneling. For example, if there is one Cooper

pair tunneling through the barrier from one superconducting lead to the other, then

the number of Cooper pairs will decrease by one on one side while increase by one

on the other side correspondingly. This tunneling can be described by the operator

|N〉〈N + 1|, and we may have HJ v
∞∑

N=−∞
|N〉〈N + 1| by considering all the possible

number states. Since the Hamiltonian has to be Hermitian in this case, we may write

the Hamiltonian for the isolated Josephson junction in the following from,

HJ = −EJ
2

∞∑

N=−∞

|N〉〈N + 1|+ |N + 1〉〈N |. (2.16)

If we use the phase operator in Eq (2.15), the above Hamiltonian can be rewritten

20



EJ

E

0
1

EC

Vrf

Vg

ng

φ Ν

φ

(a) (b)

|ψn(φ)|2

Figure 2.3: The transmon qubit. (a) Circuit schematic for a transmon qubit which
is comprised of a Josephson junction characterized by the Josephson energy EJ and
a shunted capaciter with energy EC . It is coupled to an eternal voltage Vg and a RF
source Vrf . (b) Energy levels and wavefunctions of a cosinusoidal potential.

as

HJ = −EJ
2

[eiφ̂ + e−iφ̂] = −EJ cos φ̂. (2.17)

Therefore, the Josephson junction has a sinusoidal potential energy which provides

the non-linearity for the superconducting qubits which we will describe below.

The circuit of a superconducting transmon qubit is comprised of a Josephson

junction shunted by a capacitor as displayed in Fig. 2.3, and its Hamiltonian can be

written as [80]

Ĥq = 4Ec(N̂ − ng)2 − EJ cos φ̂, (2.18)

where EJ = ~Ic/2e and Ec = e2/2C are the Josephson energy and charging energy,

Ic is the critical current of the Josephson junction and C is the total shunting capac-

itance. N̂ and φ̂ satify the commutation relation, [φ̂, N̂ ] = i. The above Hamiltonian

can be solved exactly in phase representation,

[−4EC(
∂

∂φ
− ng)2 − EJ cos(φ̂)]ψ(φ) = Eψ(φ), (2.19)

We use N̂ = −i ∂
∂φ

and obtain the eigenenergies and eigenwavefunctions characterized
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Figure 2.4: Energy structure of superconducting qubits. When EJ
EC

is small, the
transition energies are very sensitive to the charge noise which degrades the coherence
times. As EJ

EC
increases, we go into a regime where the energy levels are insensitive to

the charge noise. Adapted from ref. [82].

by EJ and EC in terms of Mathieu functions [81–83],

En = ECMA(µn,−
EJ

2EC
), (2.20)

ψn(φ) =
1√
2π

[MC(
En
EC

,− EJ
2EC

,
φ

2
)− i2n+1MS(

En
EC

,− EJ
2EC

,
φ

2
)], (2.21)

whereMA,MC ,MS are the Mathieu characteristic value, the even Mathieu function,

odd Mathieu function respectively and µn = (−1)n+1 + [n mod 2] are the indexes for

the eigenenergies.

As we can see from the Eq. (2.20), the eigenvalues of the qubit depend on the

ratio of EJ
EC

thus this value determines which type of qubit the circuit represents. For

example, when EJ
EC
≈ 1, the circuit can represent a Cooper pair box qubit which is

very sensitive to the charge noise since the energy levels depend on charge which tends

to fluctuate (Fig. 2.4(a) [82]). As EJ
EC

increases, the energy levels are less dependent

on the charge noise. But if EJ
EC
≈ 50 we reach in a region where the charge noise is

greatly suppressed such that the qubit is insensitive to the charge noise as illustrated

22



in Fig. 2.4. In the region, the qubit is the so-called transmon qubit. The frequency of

the transmon qubit is determined by the value of EJ and EC , ωq/2π =
√

8EJEC−EC .

The anharmonicity of the transmon qubit α ≈ −EC which is the energy difference

between the lowest two energy levels. With such anharmonicity, we can realize a

qubit with the lowest two energy levels and perform fast gate operations. For a

transmon qubit, typically, we have ωq ≈ 5 GHz and EJ
EC
≈ 50 which would require

EJ ≈ 12.5 GHz and EC ≈ 250 MHz. It is worth mentioning that we sacrifice the

anharmonicity in order to suppress the charge noise to get decent relaxation times in

transmon qubit which to some extent limits the readout fidelity from the high level

transitions and degrade fast gate operations [84]. Recently, the MIT group led by

W. Oliver fabricated flux qubits with much larger anharmonicity but have similar

relaxation times compared to transmon qubit, which might be a better candidate for

the purpose of quantum computing [85].

2.3 Circuit QED

In 2012, Serge Haroche and David Wineland won the Nobel prize “for ground breaking

experimental methods that enable measuring and manipulation of individual quantum

systems”. One challenge for measuring a quantum system is that the state of a

quantum system is very sensitive to its surrounding noise which makes it very fragile,

and thus hard to observe experimentally. On the one hand, we desire a quantum

system that is highly isolated from the surrounding noise. One the other hand, we

have to be able to control the quantum system and measure it which effectively makes

it open to the environment [86–90]. Therefore, we need to develop a method which can

eliminate the noise channels that we don’t want and keep the channels that are used

for controlling and measuring the quantum system. Cavity quantum electrodynamics

(QED) or circuit QED satisfies the requirement above and provides us the method to

study the interaction between light and matter [91–94]. The cavity or circuit QED

system generally consists of three components as illustrated in Fig 2.5: a quantum

system whose properties are to be measured, the pointer system (probe) which is the
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Figure 2.5: Schematic of cavity QED. A qubit interacts with the electromagnetic field
in a cavity with a strength g. The qubit relaxes at a rate γ and the cavity decays at
a rate κ.

measuring apparatus coupled with the quantum system, and the environment which

causes the decoherence of the quantum system. The purpose of this section is to given

an overview on the measuring principles in circuit QED.

2.3.1 The Jaynes-Cummings Hamiltonian

The Hamiltonian of the circuit QED system is comprised of three terms: a qubit

term, Hq, a cavity term, Hc and an interaction term, Hint. We can write the total

Hamiltonian for the qubit-cavity system [95],

H = Hq +Hc +Hint

= 1
2
~ωqσ̂z + ~ωc(â†â+ 1

2
) + ~g(â+ â†)(σ̂+ + σ̂−),

(2.22)

where ωq is the qubit frequency, g is the coupling strength between the qubit and the

cavity, σ̂+ and σ̂− are the qubit raising and lowering operators given by 1
2
(σ̂x ± iσ̂y).

We can simplify the above Hamiltonian by ignoring the terms in the interaction part

that don’t conserve energy using the rotating wave approximation, we then obtain
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the Jaynes-Cummings Hamiltonian [96],

HJC =
1

2
~ωqσ̂z + ~ωc(â†â+

1

2
) + ~g(âσ̂+ + â†σ̂−). (2.23)

We can diagonalize the JC Hamiltonian to obtain its eigenvalues [97],

E±,n = ~nωc ±
~
2

√
4ng2 + ∆2, (2.24)

and eigenstates,

ψn(+) = sin θn|g, n〉+ cos θn|e, n− 1〉,
ψn(−) = cos θn|g, n〉 − sin θn|e, n− 1〉,

θn = 1
2

arctan(2g
√
n

∆
),

(2.25)

where n is the total number of excitations in the qubit-cavity system and ± represent

the higher energy and lower energy state in the n excitation mode, ∆ = ωq − ωc is

the detuning between the qubit and the cavity.

2.3.2 Dispersive measurement

In this section, we will discuss the situation when the qubit is far detuned from

the cavity compared to the coupling strength, ∆ � g, such that there is no energy

exchange but still an interaction between the qubit and cavity. In such a situation,

the fact that the cavity’s resonance depends on the state of the qubit can be used as

an indirect measurement to probe the state of the qubit via a measurement of the

cavity field.

Here we define a small parameter λ = g
∆

and apply a unitary transformation,

D = eλX and X = (âσ̂+ + â†σ̂−), to the Eq. (2.22). Then we use the Baker-Hausdorf

expansion [65, 98],

D†HJCD = HJC+λ[X,HJC ]+
1

2
λ2[X, [X,HJC ]]+ ...+

1

n!
λn[X, [X, [X, ...[X,HJC ]]]...],

(2.26)
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Figure 2.6: Qubit state-dependent phase shift. The cavity resonance shifts an amount
2χ when the qubit jumps from |1〉 to |0〉 or vice versa in the dispersive regime. The
cavity phase responds differently when the qubit is in the ground state |0〉 (Blue
curve) and excited state |1〉 (red curve). If the cavity is probed at a frequency ωc, the
phase difference for |0〉 and |1〉 is ∆θ = 4χ/κ.

to expand the Jaynes-Cummings Hamiltonian HJC to the second order in λ and

obtain [99, 100],

Hdisp =
1

2
~ωqσ̂z + ~ωc(â†â+

1

2
) + ~

g2

∆
â†âσ̂z +

1

2
~
g2

∆
σ̂z. (2.27)

The above Hamiltonian allows us to perform a QND measurement of the qubit state

in the energy basis (σ̂z) using the cavity as a probe since [Hdis, σ̂z] = 0 [68, 101, 102].

We can also rewrite the Hamilton Hdisp in the following form

Hdisp =
1

2
~ωqσ̂z + ~(ωc +

g2

∆
σ̂z)(â

†â+
1

2
), (2.28)

then we can find that the cavity resonance frequency depends on the state of the

qubit (σ̂z) which will enable us to probe the cavity frequency to infer the state of the

qubit as illustrated in Fig. 2.6. The cavity resonance shifts an amount 2χ when the

qubit switches from the |0〉 to |1〉 which is given by

χ =
g2

∆
=

1

2
(ωc(|0〉)− ωc(|1〉)) =

1

2~
[(En+1,|1〉 − En,|1〉)− (En+1,|0〉 − En,|0〉)] (2.29)

Please note that the above expression is true in the pure qubit case (two levels) but
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is only an approximation for the transmon, where higher energy levels come to play

[103–105].

If we rearrange the terms in Eq. (2.22) in another way and obtain

Hdisp =
1

2
~(ωq +

g2

∆
+

2g2

∆
â†â)σ̂z + ~ωc(â†â+

1

2
). (2.30)

The above equation shows that the qubit frequency is shifted by the photons in the

cavity. This is the ac Stark effect which can be used to calibrate the average photon

number n̄ = 〈â†â〉 in the cavity for a given readout power. In experiments, χ is

determined by measuring ac Stark shift.

2.3.3 Phase sensitive amplification

In this section, we briefly discuss the working principle of phase sensitive amplifiers

in which the output signal depends on the phase of the pump. The description in

this section follows reference [106]. For more rigorous and detailed description, please

refer to the Refs. [45, 105–107].

As we introduced in the Chapter 1, the JPA is a weakly nonlinear resonator and

its schematic is similar to the transmon qubit but with much smaller nonlinearity.

The Hamiltonian that describes the JPA can be given by

HJPA = ~ωrÂ†Â+ ~
K

2
(Â†)2(Â)2, (2.31)

where A is the annihilation operator for the resonator field with resonant frequency

ωr and K is the Kerr nonlinearity.

Based on the input-output model which is illustrated in Fig. 2.7 and the above

Hamiltonian, we obtain the equation of motion for the resonator field [106],

˙̂
A = −iωrÂ− iKA†ÂÂ−

κ+ γ

2
Â+
√
κÂin(t) +

√
γb̂in(t), (2.32)

The field modes can be written as the sum of a classical part associated with

paramp pump (α, αin, αout) and a quantum part of quantum signal of our interest
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Figure 2.7: Input and output model for Josephson parametric amplifier. The JPA is
capacitively coupled to the transmission through a microwave hybrid with a rate κ.
The loss of JPA to the environment, b̂in, is characterized by a rate γ.

(a, ain, aout),

Âin(t) = (ain(t) + αin)e−iωpt, (2.33)

Âout(t) = (aout(t) + αout)e
−iωpt, (2.34)

Â(t) = (a(t) + α)e−iωpt. (2.35)

Here we assume that the pump power is much larger than the signal, 〈a†inain〉 � |α|2,

thus we only consider the linear terms in a. With that we obtain the following

equation after plugging the Eq. (2.33) into Eq. (2.32) [106],

ȧ = i(ωp − ωr − 2K|α|2 + i
κ+ γ

2
)a(t)− iKα2a†(t) +

√
κain(t) +

√
γbin(t). (2.36)

Since the above equation is linear, we can express the solution in its Fourier trans-

formation such as a(t) = κ+γ√
2π

∫∞
−∞ d∆e−i∆(κ+γ)ta∆, ain(t) = κ+γ√

2π

∫∞
−∞ d∆e−i∆(κ+γ)tain,∆

and bin(t) = κ+γ√
2π

∫∞
−∞ d∆e−i∆(κ+γ)tbin,∆, here ∆ is the detuning between the signal fre-

quency and the pump frequency. After plugging these into the Eq. (2.32) and using

the input and output formalism, Aout(t) =
√
κA(t)− Ain(t) [108], we have,

aout,∆ ≈
√
Gain,∆ + eiδ

√
G− 1a†in,−∆, (2.37)
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Figure 2.8: Dispersive measurement. (a) The cavity is probed with a coherent input
microwave tone at a frequency ωr. (b) After reflecting off the cavity, the output tone
acquires a qubit-state-dependent phase shift. (c) A specific quadrature is amplified
by operating the JPA in a phase sensitive mode.

where G is the power gain which mainly depends on the detuning between the pump

and resonance of JPA and drive power of the pump. If G is large enough and ∆ = 0,

we might have aout,∆ ≈
√
G(ain + eiδa†in), here δ is relative phase between the signal

and the pump. Thus it is apparent that the amplified quadrature is related to the

phase δ and this process is called phase sensitive amplification.

In this thesis, homodyne detection is employed to measure only one single mode

quadrature through mixing the output signal with a strong tone at the same frequency,

referred to as the local oscillator (LO). In the microwave domain, we use a commercial

mixer that modulates our signal A sin(ωrt + φ) by a strong carrier A cos(ωrt + δ)

provided by the LO at the same frequency. We obtain the measurement outcome

I cos δ + Q sin δ (here we define I = A cosφ and Q = A sinφ) by averaging out the

fast oscillating component at frequency 2ωr. We can adjust the phase δ to determine

which quadrature we want to detect after phase sensitive amplification. As displayed

in Fig. 2.8, the cavity tone is only amplified along one specific quadrature while de-

amplified along the other quadrature before mixing by the LO. This is the so-called

squeezing which doesn’t add any noise into the measurement signal [20]. For more

details for how the parametric amplifier works, there are more detailed discussions in

these references [106, 107, 109].
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2.4 Realistic measurement

In this section, we will first briefly introduce the theory of positive operator-valued

measures (POVMs), which are used to describe a general quantum measurement

throughout the whole thesis. We then use the stochastic master equation to describe

how we update the state of the quantum system with the measurement signal.

2.4.1 POVMs

A quantum measurement can be described by a set of operators {Ωm,m ∈ M},
which satisfy

∑
m Ω†mΩm = I. Here M is the ensemble of all the possible measure-

ment outcomes. If the system is in the state |ψ〉, the probability of obtaining the

measurement outcome m is P (m) = 〈ψ|Ω†mΩm|ψ〉, leaving the system in the state

ψf = Ωm|ψ〉/
√
P (m). Equivalently, if the system is described by a density matrix ρ,

then the probability for this measurement outcome is P (m) = Tr(Ω†mρΩm) and the

state of the system after the measurement is ρf = Ω†mρΩm/Tr[Ω†mρΩm].

In the work of this thesis, we can define a set of POVMs, ΩV , to describe

the continuous weak measurement with the continuous outcome V . Similarly, the

probability for obtaining the outcome V in this weak measurement is expressed

by P (V ) = Tr(Ω†V ρΩV ), which is typically the sum of two Gaussian distributions

weighted by the state populations for the ground and excited states. We will give

detailed discussions in Chapter 5 and Chapter 6.

2.4.2 Measurement of the environment

In real experiments, the measurement process occurs over some finite time scale τ

which is determined by the interaction between the quantum system and the probe

system. This is characterized by the measurement strength S which can be obtained

from the separation of the measurement probability distributions for the ground and

excited states (∆V ) and their Gaussian variance (σ2), S = ∆V 2

σ2 [110]. If the quantum

system is weakly coupled to the probe system such that the uncertainty in a single

measurement is very large compared with the separation between the eigenvalues
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Figure 2.9: Signal distributions for weak and strong measurement. Red: signal prob-
ability distribution for excited state, blue: signal probability distribution for ground
state.

of the observable, e.g. as illustrated in Fig. 2.9(a). If the probability distributions

for the ground and excited state overlap, given a measurements result, it is hard

to determine whether it’s in the ground or excited state, this result is a so-called

weak measurement [111]. The weaker the measurement, the smaller the separation

between these two distributions. Hence, only partial information about the quantum

system is extracted in weak measurements without collapsing the state of the quantum

system, and we can observe how the system evolves under measurement [112]. If we

integrate a series of these quantum measurements over time T � τ , in this case

the two probability distributions for the ground and excited state will be completely

separated and it is easy to tell whether the measurement result clearly indicates the

ground or excited state as shown in Fig. 2.9(b). If we perform such a measurement, the

qubit instantaneously collapses to the ground or excited state (our state of knowledge

changes abruptly). This situation corresponds to a strong projective measurement

(von Neumann measurements) as we have discussed before. In the following, we shall

discuss how we infer the evolution of quantum state with the weak measurement

signals by employing quantum trajectory theory in continuous weak measurement.
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2.4.3 Stochastic master equation

The effect of the environment is to intermingle states. Thus, in in order to describe

the evolution of a system interacting with its environment we must first describe

statistical mixture states rather than pure states. The evolution of a quantum system

in the pure state ψ(t) at time t is governed by Schödinger’s equation. Equivalently,

the system can be also described by a density matrix ρ if it is in a mixed state which

corresponds to a quantum statistical ensemble. The density matrix ρ at time t0 can

be expressed as:

ρ(t0) =
∑

n

P (n)|ψn〉〈ψn|, (2.38)

where P (n) is the weight and |ψn〉 is the wave function that evolves in time based on

the Schödinger’s equation, i~ d
dt
|ψn(t)〉 = H(t)|ψn(t)〉. For example, the state |ψi〉 in

equation (2.2) is equivalent to the density matrix ρi(t0) =
(

1
2

1
2

1
2

1
2

)
.

The state of the system at time t is given by,

ρ(t) = U(t, t0)ρ(t0)U+(t, t0), (2.39)

where U(t, t0) is the time-evolution operator which is determined by the Hamiltonian

of the quantum system. If we differentiate this equation with respect to time and

then plug into the Schödinger’s equation, we can have the equation of motion for the

density matrix ρ(t),
d

dt
ρ(t) = −i[H(t), ρ(t)]. (2.40)

The evolution of a closed or isolated quantum system can be described by the above

equation which is known as the Liouville-von Neumann equation.

A quantum system only undergoing unitary evolution is a closed system which

does not interact with the environment, while manipulation or control of the quantum

system makes it an open system. The dynamics of an open quantum system is well
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described by the Lindblad master equation [113, 114],

d

dt
ρ(t) = Lρ = −i[H, ρ(t)] +

K∑

k=1

D[Lk]ρ(t), (2.41)

where H is the Hamiltonian, Lk is Lindblad operator describing the dissipative cou-

pling to the evironment and D[Lk] = {LkρtL†k − 1
2
L†kLk, ρt} is the dissipation super-

operator.
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Figure 2.10: How to calculate the density matrix ρ. (a) The measured quantum noise
V (t) as a function of time t using homodyne measurement. (b) The inferred density
matrix components from V (t) by employing the Eq. (2.41).

If the system is subject to a continuous measurement, the evolution of the density

matrix ρ(t) conditioned on the measurement outcomes before time t is given by the

stochastic master equation in Itô form [113]:

d

dt
ρ(t) = Lρ = −i[H, ρ(t)] +

K∑

k=1

D[Lk]ρ(t) +
√
η(cρ(t) + ρ(t)c†)V (t), (2.42)

where c is the measurement observable, η is the measurement quantum efficiency and

V (t) is the random noisy measurement signal at time t with mean value
√
ηTr((c +

c†)ρ(t))dt and variance σ2 = dt. As displayed in Fig. 2.10(a), the measurement signal

V (t) reflects the quantum fluctuations of the measured electromagnetic mode which

contain qubit state information. By plugging the measurement signal into the above

equation, we can obtain the components of the density matrix as illustrated in Fig.

33



2.10(b) with the initial state | + x〉. Therefore, we can use the above stochastic

master equation with the continuous weak measurement signal to obtain quantum

trajectories and explore interesting problems in quantum foundations. Note that by

averaging many runs of the trajectories inferred from the Eq. (2.42), we can recover

the deterministic trajectory calculated from the Eq. (2.41).

2.5 Quantum smoothing

In this section, we discuss how we apply quantum smoothing to a monitored quantum

system with quantum measurement. We first illustrate the idea of how the further

probing after time t affects the probability for the outcome of the measurement Ωm at

time t. A more rigorous description of the Past Quantum State formalism is presented

in reference [50].
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Figure 2.11: Schematic of the quantum measurement on the system-probe state char-
acterized by a a unitary interaction U . The density matrix ρ depends on the mea-
surement signal before time t and the effect matrix E depends on the measurement
signal after time t.

As illustrated in the Fig. 2.11, we have a quantum system which is prepared

in state |ψ0〉, we then perform a first measurement M1 which gives the outcome

of m1. We have a new state M1|ψ0〉 after the measurement. The probability of

getting the outcome m1 is P (m1) = 〈ψ0|M †
1M1|ψ0〉 = ||M1|ψ0〉||2 which is simply

Born’s rule. If we do a second measurement M2 with the measurement outcome

m2, we have to apply the corresponding operator M2 acting on the state M1|ψ0〉
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after the first measurement to get the state M2M1|ψ0〉. We then obtain the joint

probability of getting these two measurement outcomes m1 and m2, P (m1,m2) =

||M2M1|ψ0〉||2. This probability is the square of the norm of the state M2M1|ψ0〉
which is obtained by acting on the initial state with the first measurement operator

M1 and then M2. In experiments, we can measure the system continuously in time

thus we can do a series of the measurements. We can perform n measurements on

the quantum system and will obtain a series of outcomes from m1 to mn, the state

evolution goes from the initial state |ψ0〉 to a final state Mn...Mt...M2M1|ψ0〉 which

is obtained by applying the operators M1, M2 ..., Mt, Mn to the initial state |ψ0〉.
Thus the state evolves as function of time which is a random trajectory conditioned

on the measurement outcomes. The joint probability of these outcomes is given

by this formula, P (m1,m2, ...,mt, ...,mn) = ||Mn...Mt...M2M1|ψ0〉||2. Up to now,

we know how to obtain the probability of getting the measurement outcomes at

time t, simply by acting on the measurement operators from M1 up to Mt which is

P (m1,m2, ...,mt) = ||Mt...M2M1|ψ0〉||2 as discussed above. But in this thesis, we are

interested to keep measuring the quantum system after time t and want to ask how

the further probing affects this probability for the measurement outcome at time t?

At time t, we use a measurement Ωm to replace the Mt for clarity. The conditioned

probability of getting the measurement outcome m with measurements before and

after time t can be expressed in the following way, PC(m) ∼ ||Mn...Ωm...M2M1|ψ0〉||2.

Therefore, we can obtain the probability of getting result m from Ωm at time t and

then an ensuring set of measurements Mt+1...Mn from further probing after time t.

PC(m) = ||Mn...Ωm...M2M1|ψ0〉||2/
∑

m

||Mn...Ωm...M2M1|ψ0〉||2 (2.43)

However, the quantum state is generally not pure, thus it has to be described by a

density matrix ρ0. The state evolves after the first measurement M1 with outcome m1

in such way, ρ0 → M1ρ0M
†
1 . The probability of getting the outcome m1 is P (m1) =

Tr(M1ρ0M
†
1). If we do a series of these measurements, the conditioned probability of
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getting the measurement outcome m at time t is given by

PC(m) ∼ Tr(Mn...Mt+1ΩmMt−1...M2M1ρ0M
†
1M

†
2 ...M

†
t−1Ω†mM

†
t+1...M

†
n). (2.44)

Due to the cyclic property of the trace, we can remove the Mn...Mt+1 from the left

to the right and then we have

PC(m) ∼ Tr(ΩmMt−1...M2M1ρ0M
†
1M

†
2 ...M

†
t−1︸ ︷︷ ︸

ρ

Ω†mM
†
t+1...M

†
nIMn...Mt+1︸ ︷︷ ︸
E

). (2.45)

We can denote this part Mt−1...M2M1ρ0M
†
1M

†
2 ...M

†
t−1 in PC(m) as ρ which is a

normal quantum trajectory conditioned on the measurement outcomes. This piece

M †
t+1...M

†
nIM

†
n...M

†
t+1 is from the further probing and called E which is a backwards

trajectory that starting with the identity matrix I. Thus we obtained the formalism

for the smoothed probability of getting the measurement outcome m at time t which

is conditioned on both ρ and E,

PP (m) =
Tr(ΩmρΩ†mE)∑
m Tr(ΩmρΩ†mE)

. (2.46)

This is the retrodicted probability conditioned on the density matrix ρ and the

effect matrix E which can make a better prediction for measurement outcome m of a

general quantum measurement with further information obtained after the measure-

ment at time t. Therefore it is reasonable that Ξ = (ρ, E) plays the role of a quantum

state and hence we call it “Past Quantum State”. In this thesis, we consider the

quantum state as our knowledge — a tool which is used to make predictions for mea-

surement outcomes. Note that the density matrix ρ makes the best prediction for any

measurement that could be performed at time t. Here we ask how these predictions

change when conditioned on further probing results? We have shown that the mea-

surement probability can be calculated by including another matrix E and will find

that the combination of ρ and E makes more confident but still correct predictions.

Also note that ρ and E are still independent of the measurement at time t.
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Chapter 3

Quantum smoothing for classical

mixtures

Quantum states can be usually described by a density matrix ρ(t) rather than a

wavefunction |ψ〉 because the state is not generally pure. If the density matrix ρ(t)

evolves without any coherence, it is always diagonal in a definite eigenbasis {|n〉}, thus

the system described by the diagonal density matrix can be considered as a classical

mixture since it can only be in an incoherent mixture of the eigenstates. Predictions

about the outcome of a projective measurement of the system in the eigenstate are

given by P (n) = ρnn. This prediction is the same as if the system was actually

prepared in one of the eigenstates with these probabilities, which can be explained by

a simple hidden variable model. Moreover, for any general measurement M described

by a positive-operator-valued measure (POVM) [67, 113, 116] with operators Ωm that

satisfy the identity relation
∑

m Ω†mΩm = I, the probabilities of the measurement M

with outcome m are given by P (m) =Tr(ΩmρΩ†m) which equal the weighted mean of

the probabilities over a classical mixture of states |n〉,

P cm(m) =
∑

n

P (n)Tr
(
ΩmρnΩ†m

)
, (3.1)

where ρn = |n〉〈n|, and the P cm(m) superscript means “classical mixtures ”. If the

quantum system is continuously monitored after the measurement M then we have
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access to further information which can be represented by the effect matrix E(t) as

discussed in the previous chapter [50]. We can constrain the diagonality of this effect

matrix by taking advantage of the evolution dynamics and measurement, just like

with the density operator. We then have the opportunity to ask (at a later time T )

what was the probability of obtaining outcome m in the earlier measurement at time

t? When applied to such incoherent mixtures, the Past Quantum State (PQS) theory

has been overlooked because it seems to give the same result as the classical mixture

interpretation that the system merely populated one of its corresponding eigenstates

with a certain probability. The goal of this project is to experimentally test the PQS

theory to see if the result is the same as the classical mixture interpretation when it is

applied to such classical mixtures. Surprisingly, with further probing on a quantum

system, we will see that the predictions for the outcome of some measurement made by

the PQS theory is clearly in disagreement with the predictions made by the classical

mixture interpretation. This chapter describes the work published in D. Tan et al.

Phys. Rev. A 94, 050102(R)(2016).

3.1 A quantum smoothing example

In the following section, it is helpful to start with a simplified picture to introduce

our experiment. Illustrated in Fig. 3.1, we consider a cluster of electron spins at time

t0 = 0 which is prepared in a mixed state described by a diagonal density matrix

ρ(t0) =
(
ρ00 0
0 ρ11

)
, where spins are either up or down. At time t, we performed a test

measurement M after the preparation. The measurement M can be described by the

POVM operator Ω↑ or Ω↓. Here ↑ or ↓ is the outcome of the measurement M . The

prediction for the outcome of the measurement described by Ω↑ or Ω↓ on the system

is P↑ = Tr(Ω↑ρ(t0)Ω†↑) = ρ00 (P↓ = Tr(Ω↓ρ(t0)Ω†↓) = ρ11) which is the same as if

the system were actually prepared in one of the eigenstates |n〉(n =↑, ↓) with these

probabilities P↑(↓). It looks like the n had an unknown “true value ”which could be

revealed by the experiment.

Moreover, we can also measure whether the system is up or down along some axis
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Mixed state

is subject to further probing. In other words, once the system collapses to one of its

eigen-state, the further repeated measurements would yield the same measurement

outcome. In this thesis, we have both QND measurement (Z measurement in Pre-

diction and retrodiction project and diagonal project) and non - QND measurement

(Spontaneous emission).

In real quantum experiments, measurement process occurs over some finite time

scale ⌧ which is determined by the interaction between the quantum system and the

probe system. If we integrate a series of these quantum measurements over time

T � ⌧ , this corresponding to a strong projective measurement. Hence, If the quan-

tum system is weekly coupled to the probe system, and partial information about

the quantum system is extracted, then we can observe the wave function collapse

in a continuous manner. In the following, we shall discuss how we infer the evolu-

tion of quantum state by employing quantum trajectory theory in continuous weak

measurement.

As we have known the evolution of a quantum system is in the pure state  (t)

at time t is governed by Schödinger’s equation (??). Equivalently, the system can

be also described by a density matrix ⇢ if it is in a mixed state which corresponds a

quantum statistical ensemble. The density matrix ⇢ at time t0 can be express as:

⇢(t0) =
X

n

P (n)| nih n|, (1.3)

where P(n) is the weights and | ni are the wave function which evolves in time based

on the Schödinger’s equation (??). For example, the state | ii in equation (??) is

equivalent to the density matrix ⇢i(t0) =
⇣

1
2

1
2

1
2

1
2

⌘
.

⇢ =
�
⇢00 0
0 ⇢11

�

E =
�

E00 0
0 E11

�
Using the time-evolution operator U(t, t0), the state of the system

at time t is given by:

⇢(t) = U(t, t0)⇢(t0)U
+(t, t0), (1.4)

If we di↵erentiate this equation with respect to time and then plug the Schödinger’s
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Figure 3.1: A test measurement example to show how we use further probing after the
measurement M at time t to refine the prediction for the outcome of the measurement
on the system initially prepared in a mixed state at time t0 = 0 in the case of diagonal
matrices ρ(t) and E(t). (a) A classical mixture state described by a diagonal density
matrix ρ. (b) A measurement is performed at time t. (c) The system is subject to
further probing to determine the effect matrix E, e.g. a Stern-Gerlach apparatus.

θ shown in Fig. 3.1 which can be described by the POVM operator Π±θ corresponding

to finding the spin up or down along axis θ. Then the prediction for the outcome

of the measurement P (θ,±) = Tr(Π±θρ(t0)Π†±θ) which is equivalent to the weighted

probabilities P cm(θ,±) =
∑

n P (n)Tr(Π±θ|n〉〈n|Π†±θ) since ρ(t0) is diagonal in this

case, where n is the measurement outcome in the eigenbasis {|n〉}. The prediction

P (θ,±) made by the POVM theory is always true while the weighted probability

P cm(θ,±) is only true when ρ(t0) is diagonal. Therefore, we can treat the diagonal

ρ(t0) as a classical mixture. Up to now, we have shown that we cannot rule out a

hidden variable model — that the state described by some unknown true state n —

based on a diagonal density matrix ρ(t0) since the predictions made by the quantum

mechanics and the hidden variable model (P cm) are the same.

The purpose of this project is to look at further probing to see how it refines

the prediction and changes the story of the classical mixture interpretation. After
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some measurement M is made at time t, we are able to continuously measure the

quantum system to obtain the probability that the spin is up or down which allows

us to refine our prediction in hindsight. Where the density matrix ρ(t) records the

initial probability of the system, the effect matrix E(t) tells us the probability of

the outcome in further probing. The effect matrix E(t) can also be diagonal in this

case. The question is whether we we can still treat both diagonal ρ(t) and diagonal

E(t) as classical mixtures just like the way we treat a diagonal ρ(t). The answer is

“no, we cannot.” In the following sections, we will first discuss the theory of the Past

Quantum State(PQS) and then show our experimental results.

3.2 The theory predictions made by the PQS the-

ory and the classical mixture interpretation

If the system is subject to further monitoring after the measurement M at time t,

in addition to the density matrix ρ(t) which presents the information before time

t and predicts the outcome probabilities for the measurement at time t, we also

have further information which is represented by the effect matrix E(t). The pair of

matrices (ρ(t), E(t)) is the so-called Past Quantum State which makes more confident

predictions for any such measurement performed at the earlier time t [50]. This

prediction based on the PQS is given by,

PP (m) =
Tr(Ωmρ(t)Ω†mE(t))∑
m′ Tr(Ωm′ρ(t)Ω†m′E(t))

. (3.2)

The subscript P for Past in Eq.(3.2) reflects that we are (at time T or later) retro-

dicting the probability for the outcome of a measurement at the past time t. The

name quantum smoothing has been proposed for the retrodiction of properties of the

quantum systems [49, 55, 56, 117], derived from the similar term smoothing used for

classical stochastic processes.

In this chapter, we describe experimental tests of the PQS theory Eq. (3.2) in

the context of of projective measurements. We specifically focus on the case where
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the dynamics and the probing of the quantum system, as shown in Fig. 3.2, confine

the density matrix ρ(t) and the matrix E(t) to be diagonal in a definite basis {|n〉}.
In that case, Eq.(3.2) yields the probability that a measurement at time t found the

system in state |n〉 (Ωn = |n〉〈n|),

PP (n) =
ρnn(t)Enn(t)∑
n′ ρn′n′(t)En′n′(t)

(3.3)

which is equivalent to the expression obtained in the classical forward-backward anal-

ysis [118, 119]. In analogy with the classical mixture interpretation in Eq. (3.1) given

by the diagonal density matrix ρ, we might expect that smoothed probabilities PP (n)

would also permit a classical mixture interpretation as if the system did occupy the

quantum states |n〉 with probabilities PP (n) at time t (the hidden variable model).

But the prediction based on such a classical mixture interpretation of the state defined

by the pair of diagonal matrices ρ(t) and E(t),

P cm
P (m) =

∑

n

PP (n)Tr
(
Ωm|n〉〈n|Ω†m

)
, (3.4)

generally disagrees with Eq.(3.2) for operators Ωm which are not diagonal in the same

basis as ρ(t) and E(t).

Next we will do a simple calculation with the operators Π±,θ using the Eq. (3.2)

and Eq. (3.4) for the diagonal density matrices ρ(t) and E(t). For a projective mea-

surement in the σz basis in which θ = 0 at time t, the diagonal ρ(t) leads to the

prediction Pρ(0) = ρ00(t), while the pair of diagonal matrices
(
ρ(t), E(t)

)
implies

PP (0) ≡ PP (+, 0) =
ρ00(t)E00(t)

ρ00(t)E00(t) + ρ11(t)E11(t)
. (3.5)

If the values of PP (0) and PP (1) (PP (1) ≡ PP (−, 0) = 1−PP (0)) could be interpreted

as refined populations of a classical mixture of the two qubit states at time t then

the projective measurement with the POVM operator Π+,θ would have the weighted
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probability based on the Eq. (3.4),

P cm
P (+, θ) = PP (0) cos2

(
θ

2

)
+ PP (1) sin2

(
θ

2

)
, (3.6)

However, if we plug the projection operators Π±θ for Ωm into the PQS formalism

Eq. (3.2), we have

PP (+, θ) =
Pρ(+, θ)PE(+, θ)

Pρ(+, θ)PE(+, θ) + Pρ(−, θ)PE(−, θ) , (3.7)

where Pρ(+, θ) is given in (3.8), and we have introduced the formally similar PE(+, θ) =

E00 cos2
(
θ
2

)
+ E11 sin2

(
θ
2

)
and Pρ(−, θ) = 1− Pρ(+, θ), PE(−, θ) = 1− PE(+, θ).

In the following sections, we will describe experiments on a superconducting qubit

as illustrated in Fig. 3.2. We first prepare the qubit in a mixed state followed by

a test measurement. After the test measurement, the system is subject to further

probing to obtain the information for E(t). Thus the experiment gives us access to

both diagonal matrices ρ(t) and E(t), furthermore, by predicting the outcomes of

the test measurement we can get P (+, θ) and compare Eq. (3.7) and Eq. (3.6). In

the next section, we will show that projective test measurements in bases different

from the density matrix eigenbasis will confirm Eq. (3.2) while ruling out the classical

mixture interpretation leading to Eq. (3.4).

Ωm

Time t

Preparation of ρ
ρ(t)

Probing to 
determine E

E(t)

T

Test 
measurement

Figure 3.2: Experiment sequence. (1) the system is first prepared in state given by
density matrix ρ(t), (2) a test measurement, described by a POVM Ωm, is conducted
at time t, and (3) subsequent probing measurements of the system from time t to
T are used to collect further information about the system which is encoded in the
matrix E(t).
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3.3 Experimental set-up

In this experiment, as illustrated in Fig. 3.3, we employ a superconducting qubit,

which is embedded in a three dimensional aluminum cavity [92]. The transmon

qubit was fabricated by double angle evaporation of aluminum on high resistivity

silicon substrate and is characterized by charging energy EC/h = 340 MHz and

Josephson energy EJ/h = 11.3 GHz. The charging energy, EC , is obtained from the

anharmonicity of the lowest two qubit levels, and EJ is calculated from the relation

~ωq =
√

8EJEC − EC . The qubit transition frequency is ωq/2π = 5.44888 GHz.

We have obtained the energy decay time T1 = 8 µs and the Ramsy decay time

T ∗2 = 9.5 µs using standard measurement techniques [104]. In the experiment, due

to the anharmonicity of the transmon qubit, we are able to use the two lowest levels

of the transmon to realize a pseudo-spin half system described by a 2 × 2 density

matrix ρ. The cavity is machined from 6061 bulk aluminum with resonant frequency

is ωc/2π = 6.76208 GHz, linewidth κ/2π = 6.3 MHz and dispersive coupling rate

χ/2π = −0.8 MHz. The interaction between the qubit and the cavity is described

by an interaction Hamiltonian Hint. = −~χσza†a, where σz (and σx, σy) are Pauli

operators, a†(a) are the creation (annihilation) operators for a photon in the cavity

mode. This interaction allows quantum non-demolition (QND) measurements of the

qubit in the σz basis through probing of the qubit-state-dependent cavity resonance

[68]. A microwave tone, which probes the cavity, acquires a qubit-state-dependent

phase shift. The signal reflected off the cavity is amplified by a near-quantum-limited

Josephson parametric amplifier (JPA) which consists of a 1.5 pF capacitor shunted

by a SQUID composed of two Josephson junctions with critical current I0 = 1 µA.

The JPA is operated with small flux threading the SQUID loop and pumped by two

sidebands that are equally separated from the carrier by 250 MHz which produces 15

dB gain with an instantaneous 3-dB-bandwidth of 80 MHz.

With the experimental set-up as shown in Fig. 3.3 (more detail can be found in

Fig. 3.9), we can perform experiments with variable strength measurements on the

qubit state characterized by a measurement timescale τ . We use time steps δt � τ
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Figure 3.3: Experimental implementation. The dispersive interaction between a su-
perconducting qubit and a cavity results in a qubit-state-dependent phase shift on a
weak coherent drive on the cavity. Sufficient drive strength and narrow integration
bandwidth result in disjoint measurement distributions for one of the field quadra-
tures, allowing single shot, quantum non-demolition measurements of the qubit in the
energy eigenbasis.

in order to execute weak measurements of the qubit state. However, by integrating

the weak measurement signal for a time T � τ we can effectively accumulate weak

measurements in a projective measurement of the qubit in the σz basis. Hence,

this measurement architecture can be used for projective measurements in the energy

basis, represented by the projection operators Ωm : Π±,z. These measurements achieve

fidelities in excess of 95%, with the predominant sources of infidelity arising from

qubit transitions [84, 120] that occur during the finite duration of the measurement

[121–125].

We shall study quantum smoothing in the context of projective measurements

with the experiment set-up described above. Whereas the density matrix ρ(t), which

depends on the evolution dynamics and measurements performed prior to time t

makes predictions about the outcomes of measurements performed at time t, further

probing of the qubit allows us to refine our prediction in hindsight.

3.4 Experimental results

In this section, we will first show the experimentally verified predictions made by the

diagonal density matrix ρ(t) which means our system is well calibrated and ready for

further test experiment. We then describe the experiments with further information

represented by the diagonal effect matrix E(t). Finally, with our experimental results,
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Figure 3.4: Prediction based on diagonal ρ. (a) By combining projective measure-
ments in the energy basis (along z) with rotations about the y axis of the qubit state,
projective measurements along an axis that forms an angle θ with the z axis can be
realized. (b) Different initial states ρ that are diagonal in the energy basis are pre-
pared by performing an initial rotation and projective measurement. The results of
the projective measurement are ignored. We verify that the probability of a positive
projective measurement outcome P̃ (+, θ) is in agreement with the predictions of the
initial density matrix Pρ(+, θ) for three different initial mixed states characterized by
(ρ00(t) = 0.91, 0.535, 0.075). Over 5×104 experimental repetitions are used for each
measured P̃ (+, θ) leading to a statistical uncertainty of order 4× 10−3.

we will compare the predictions made by the Past Quantum State theory with the

predictions made by the classical mixture interpretation.

3.4.1 The prediction based on diagonal ρ

We have shown the experiment sequence to test our idea on quantum smoothing

for the classical mixtures in Figure 3.2. In the following section, we will discuss the

experiments in the context of projective measurement in more detail. In experiments,

we can make more general projective measurements by combining measurements in

the σz basis with arbitrary rotations (Rθ
x, R

θ
y) about the x and y axes of the qubit,

where θ is the rotation angle. Our first step is to prepare the qubit initially in a

mixed state. To implement this, we apply a qubit rotation pulse Rϕ
y followed by a

projective measurement Π±,z. The projective measurement collapses the qubit state,
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decoheres the system, and effectively prepares the qubit in a diagonal mixed state in

the qubit basis eigenstates |0(1)〉 ≡ |+(−)z〉. We obtain the value of ρ00(t) and ρ11(t)

for an ensemble of experiments. The qubit’s initially mixed state described by the

density matrix ρ(t) is basically determined by the initial rotation angle ϕ. In our case,

it is also related to the T1 decay process during the first projective measurement to

prepare ρ(t) because the projective measurement time t = 400 ns cannot be ignored

due to the relatively short T1 time in this experiment. By considering the T1 decay

process, we can prepare the mixed state with exquisite accuracy using the rotation

pulse Rϕ
y followed by the projective measurement. Furthermore, we can test our

experiment in the |θ〉 basis immediately after the preparation by using another strong

projective measurement (θ measurement) and comparing our experimental results

with the theory predictions.

The θ measurement, which is simply a projective measurement along the axis that

forms an angle θ with the z axis and azimuthal angle φ = 0, can be realized by the

following operations, Π±,θ = R−θy Π±,z R
θ
y as shown in Figure 3.4(b). The system

is first rotated by an angle θ followed by a projective measurement, and then we

apply a −θ pulse to rotate it back. Of course, these θ measurements Π±,θ satisfy the

properties of the POVMs operators, and we have Ω±,θ = Ω†±,θ ≡ Π±,θ. After plugging

the Π±,θ into P (m) =Tr(ΩmρΩ†m) for a diagonal density matrix ρ(t), the probability

of obtaining the eigenvalue +1 (associated with the state |0〉) from θ measurement is

given by,

Pρ(+, θ) = ρ00(t) cos2

(
θ

2

)
+ ρ11(t) sin2

(
θ

2

)
. (3.8)

In the following paragraph, we test the predictions in Eq. (3.8) in our experiment.

The experiment sequence is shown in Figure 3.4(b). After the preparation of

the diagonal density matrix ρ(t), we perform a θ measurement for different angles

θ to determine P̃ (+, θ) ≡ N+/(N+ + N−) from the number of positive (negative)

eigenvalue results N+ (N−). In experiments, as we mentioned in the previous section,

the projective measurements Π±,θ are subject to infidelities originating predominantly
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Figure 3.5: Determination of E. (a) Experimental sequence to prepare the qubit in
the ground or excited state. (b). Histograms of the integrated 30 ns weak signals ξ for
the qubit prepared in the ground (blue) and excited (red) state which are obtained by
averaging 30 ns of weak signal immediately after the preparation as shown in (a). (c)
The distributions are used to create the map between ξ and E00(t). The finite width
of the post-selection window for determination of E(t), shown as the blue vertical
line, gives rise to a range of values for the theory predictions.

from T1 decay during the projective measurement with tm = 400 ns. This results in a

θ-dependent measurement fidelity that is given by the overlap of the Π±,θ eigenstates

and the qubit excited state, Fθ = 0.99− sin2(θ/2)(1− e−tm/T1) and ranges from 0.945

when θ = π to 0.99 when θ = 0. The maximum readout fidelity of 0.99 arises from

residual overlap of the measurement distributions. As shown in Figure 3.4(b), the

black curve is the theory prediction made by ρ(t) in Eq. (3.8). The green dashed lines

represent the experimental data P̃ (+, θ) which agree well with the theory predictions

after taking the measurement fidelity Fθ into account. Therefore, we have verified

the predictions made by the diagonal density matrix ρ(t), which also means that the

system is well calibrated and ready for the next experiment to test the smoothed

predictions made by both diagonal ρ(t) and E(t).

3.4.2 The method of determining E(t)

The next crucial step of this experiment is to determine the effect matrix E(t) in

further probing. After the dispersive interaction, the phase of the coherent probe

field depends on the qubit state, and the time-integrated value of the measured Q-

47



quadrature is Gaussian-distributed with opposite mean values for the states |0〉 or

|1〉. In the experiment, as illustrated in Figure 3.5(b), we first prepare the qubit in

the excited or ground state to obtain the corresponding distributions of the 30 ns of

the average weak signal. These distributions can be used to create a map between

the effect matrix E(t) and the post-selected signal ξ. In Figure 3.5b, we show the

experimentally obtained distributions P (ξ|0) and P (ξ|1), where we have normalized

the integrated signal to have mean values ±1 for the two qubit states. The Gaus-

sian widths are larger for short probing times and become much narrower when the

system is probed for longer. This Gaussian width reveals the measurement strength

in the experiment. For a given measured signal ξ, we can extract the probabilities

P (ξ|0) and P (ξ|1) based on the distributions, i.e., the probability of the measured

signal conditioned on the state. Through Bayes’ rule, these are precisely the factors

multiplying the prior probabilities ρnn(t) to yield the classical smoothing theory. In

this case, we may disregard the effect of qubit decay during the probing since the

time for the post-selection is only 30 ns which is much shorter than the decay time

T1. These distributions yield the values of E00(t) and E11(t) in Eqs.(3.2, 3.4),

E00(t) =
P (ξ|0)

P (ξ|1) + P (ξ|0)
, E11(t) =

P (ξ|1)

P (ξ|1) + P (ξ|0)
, (3.9)

where we have applied a common normalization factor, leading to Tr(E)= 1. Figure

3.5(c) shows how the inferred normalized value of E00(t) (E11 = 1 − E00) depends

on the measured signal ξ. In our experiment, we post-select 30 ns of weak signal

after the θ measurement Π±,θ, and then we can infer the E(t) using the map in

Figure 3.5(c) with the post-selected average weak signal. The continuous probing

constitutes a QND measurement of the qubit state, and the accumulated back-action

on the qubit’s state populations in the forward propagation of ρ(t) [126] amounts to

the same factors—which confirms that the evolution of E(t) is indeed equivalent to

the evolution of ρ(t).
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Figure 3.6: Smoothed prediction based on diagonal ρ and E. (a) Experimental se-
quence and comparison of experiments with the predictions of projective qubit mea-
surement outcomes along θ using both ρ and E for three different mixed states. After
the Π±,θ measurement, a 30 ns integration of a readout signal is used to determine
E(t). (b) The solid lines are the measured probability based on over 5 × 104 ex-
perimental iterations for each value of θ, and the dashed lines are the theoretical
prediction from Eq. (3.7).

3.4.3 Smoothed prediction based on diagonal ρ(t) and E(t)

from the experiment

For the rest of this section, we are going to perform experiments to show how the

subsequent continuous probing of the qubit in the σz basis yields our smoothed pre-

dictions for the outcomes of the projective measurements Π±,θ. Then we will compare

experimental results to the predictions of the PQS and of the classical mixture in-

terpretation. We perform the experiment as shown in in Fig. 3.6(a) to test the

predictions made by the Eqs. (3.7, 3.6). In order to obtain the E(t), we subject the

system to further probing and then use 30 ns of the post-selected readout signal to

extract the corresponding E(t) from the map in the Figure 3.5(c). Therefore E is

determined by the averaged signals that were post-selected in a bin based on the Eq.

(3.9). We sort these signals into bins of width 0.19 which results an uncertainty of

the smoothed probability shown by the faint green curves.

In Figure 3.6(b), we display our experimental results that test the PQS prediction

of Eq. (3.7) for three different combinations of ρ(t) and E(t). The black curves are the

experimental data, which is the ratio of the number of positive eigenvalues to the total

49



0.0 0.5 1.0

E
00

(t
)

θ
ππ/20 ππ/20 ππ/20

~ P(+, θ)
ρ00(t)= 0.91 ρ00(t)= 0.535 ρ00(t)= 0.075

0.1

0.3
0.5
0.7

0.9

-3
-2

-1
0

1
2

ξ

(radians) θ(radians) θ(radians)

Figure 3.7: The experimentally determined P̃ (+, θ) as function of θ and E00(t) is
shown for three different initial states with ρ00(t) = {0.91, 0.535, 0.075} (left to
right).

number of the post-selected experiments with certain E(t). The experimental data

and theoretical predictions (green dashed curves) made by the PQS theory show nice

agreement and highlight how information before and after the projective measurement

contribute to the smoothed prediction. As we can see from Figure 3.6(b), when ρ(t)

and E(t) are similar (ρ00 = 0.91, E00 = 0.94), the prediction is more accurate than

the prediction based on ρ alone, taking values close to 1 or 0 for some values of θ

(compare to Fig. 3.4b). The later probing “confirms”the prediction by ρ(t), and thus

enhances the probability of the most likely outcome of the projective measurement.

In contrast, if the two disagree (ρ00 = 0.91, E00 = 0.25), the smoothed prediction

is less biased which is due to later probing that disagrees with the prior state ρ(t).

The experimental data have verified the predictions made by the PQS theory, thus

showing the correctness of the Eq. (3.2).

Figure 3.7 summarizes our experimental results, showing the measured P̃ (+, θ)

as a function of the angle θ and the post-selected value of E00(t) (the corresponding

values of the integrated signal ξ are given on the right hand axis in the figure).

Results are shown for three different density matrices ρ(t) prior to the projective

measurement along the direction θ. For θ = π/2 the smoothed predictions assign
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Figure 3.8: Comparison of the P̃ (+, θ) (solid lines, based on over 5×104 experimental
iterations with statistical errors of order 10−3) to the smoothed prediction PP (+, θ)
(green dashed with green bands indicating the theory uncertainty which comes from
the finite post-select window for E) and to the prediction based on a classical mixture
with the smoothed state occupations, P cm

P (+, θ) (blue dashed).

unbiased probabilities 0.5 to the outcomes ±, θ. For any θ and for all three values of

ρ(t), a certain value of the probing signal after the projective measurements results

in an unbiased smoothed prediction PP (+, θ) = 0.5. This amounts to an increased

uncertainty about the outcome and it happens because the subsequent probing of the

system is in disagreement with the prior state ρ(t).

3.4.4 Comparison between the classical mixture interpreta-

tion and the PQS theory

In Figure 3.8, we compare the experimental data with the prediction made by the PQS

theory and the classical mixture interpretation. The black curves are the experimental

data with three different (ρ00(t), E00(t)). The green dashed lines are the predictions

made by the PQS theory (Eq. (3.2)) which agree well with the experimental data.

The blue dashed lines are the predictions made the classical mixture interpretation

(Eq. (3.2)), which clearly disagree with the experimental data.
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Figure 3.9: Experimental set-up. The qubit drive pulse is generated by standard
single side-band (SSB) modulation of microwave tones. Qubit readout, the ampli-
fier pump and the local oscillator for the demodulation are generated by another
microwave frequency generator.

52



3.5 Conclusion

It’s interesting to mention that in the classical world a measurement Ωm at time t has

no effect on the state of the system. Further information after the measurement at

time t merely assures the measurement outcomes at time t and refines the prediction

for the measurement outcomes at that time. However, in quantum mechanics, the

quantum system is entangled with the probe and any measurement performed on

the quantum system causes back-action on the state of the quantum system. This

back-action may populate states that are not diagonal in the eigenbasis {|n〉} of ρ(t).

In this case, The diagonal matrices ρ(t) and E(t) are independent of the specific

measurement at time t.

In this chapter, we have presented a description of a quantum system, evolving

without developing coherences, and hence, both prior and posterior information about

the system are represented by diagonal matrices. While the theory of smoothing yields

probabilities in better agreement with predictions for the outcome of measurements in

the eigenstate basis, we have shown that these probabilities do not permit a classical

mixture interpretation of the (past) quantum state. Our work rules out simple “hid-

den variable theories” that equate eigenstates of incoherent ensembles with hidden

“true” states of the system. Instead of demonstrating an explicit statistical viola-

tion of the Bell [127], CSCH [128], or Leggett-Garg [129–133] inequalities, we have

simply shown the failure of the simplest preconceived probabilistic classical mixture

interpretation of the quantum description [134].
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Chapter 4

Predicting the future and

retrodicting the past with a

superconducting qubit

In quantum measurement, the state of a quantum system, represented by the density

matrix ρ(t), undergoes unitary evolution and can be continuously monitored. The

evolution of the quantum state in its phase space, which is known as a quantum

trajectory, is inferred from the weak measurement signal by employing a stochastic

master equation (SME) or a Bayesian update, and can be tomographically verified

using strong projective measurements. Thus the density matrix ρ(t) evolves in a

stochastic way and can be propagated forward to make predictions for the outcome

of some measurement based on the past evolution [113]. The outcomes of the mea-

surement affect the quantum state ρ(t) in the form of small perturbation on the state

or even collapse of state which is called measurement back-action. The question is

whether there is any effect that the measurement performed at time t′ ∈ (t, T ] has

on the “state” of the system at time t? The answer is “yes ”, since we have more

knowledge about the state of the system which also depends on the outcome of the

measurement after time t due to the measurement back-action. Furthermore, with

this further information which is represented by the effect matrix E(t), we want to

ask the questions: what happened regarding the evolution of the system? Does the
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future affect the past in the quantum world. That is, can we more accurately describe

the state with the past quantum state Ξ = [ρ(t), E(t)] which encapsulates both ρ(t)

and E(t)?

With these questions in mind, I will first give you a simple classical example with

laundry keys to get you into what we are going to discuss. Here is what I will call

the the laundry-key finding example: as a graduate student, it is common to share

an apartment with a roommate. I personally live with a roommate (Weijian) in an

apartment with four rooms. We do laundry every week but we only have one key to

the resident laundry room. Quite often, we don’t do laundry together and need to

run around to look for the key every time. The probability for finding the key in one

of the four rooms is 1
4

which can be considered as the initial state of the key, that is,

if asked to guess the location of the key, my roommate, Weijian could assign equal

probability to each room. Let’s assume that I used the key last week and put it on

the table in my bedroom after finishing my laundry. Now my roommate needs the

key and so starts to search for it. The probability for finding the key will change

conditioned on what he sees since he has more information which can be used to

update the state of the key (his state of knowledge about the key). Finally, he will

exclude the other three rooms and find the key on the table in my bedroom with

unity probability at final time T . Now if asked by me: where do you think I left the

key? The point is that the roommate is guessing about things in the past and the

purpose of this chapter is to explore questions like this in quantum measurement. Of

course, Weijian can always check with me to test where the key is. In this example,

this process of update is very common (joint probability) which is very similar to

the quantum mechanical measurement back-action. In quantum measurement, the

back-action changes the state of the system that we are interested in. With further

information, we have more knowledge about the system and learn something later

which is so-called hindsight effect. Having found the key at final time T , meaning

that he know where it is at this time and it also tells that where it was at time

t, which is the past. He could then confidently guess where I left the key at some

earlier time. But what if this was a quantum key which existed in a superposition
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of several different locations. How would this example of hindsight change? This is

the question we would like to answer in this chapter. The following sections describe

an experiment to test the idea of a Past Quantum State theory in the context of

continuous measurement. The work presented in this chapter is published in D. Tan

et al. Phys. Rev. Lett. 114, 090403 (2015).

4.1 Experimental set-up

The experimental set-up as shown in Figure 4.1 is similar to the experiment in the

last chapter but uses a different qubit with transition frequency ωq/2π = 4.0033 GHz

and coherence properties, T1 = 30 µs, T ∗2 = 16 µs. The qubit is dispersively cou-

pled to a wave-guide cavity with resonance frequency ωc/2π = 6.9914 GHz, linewidth

κ/2π = 9.88 MHz, and dispersive coupling χ/2π = −0.425 MHz. Compared to the

previous chapter’s experiment, this set-up has smaller χ and larger κ for the purpose

of performing weak measurement. A microwave tone that probes the cavity with an

average intracavity photon number n̄ = 〈a†a〉 thus acquires a qubit-state-dependent

phase shift. Since 2|χ| � κ, qubit state information is encoded in one quadrature

of the reflected microwave signal. We amplify this quadrature of the signal with a

near-quantum-limited Josephson parametric amplifier [45]. After further amplifica-

tion, the measurement signal is demodulated and digitized. In the experiment, the

superconducting qubit is subject to continuous monitoring and driven unitary evo-

lution. We can collect data over time and make use of the full measurement record

to illustrate the laundry-key finding example in the quantum world. In the follow-

ing sections, after introducing the method of state update, we will then show how

measurements before time t can be used to make predictions about measurements

at time t, while measurements after time t can be used to make predictions about

past events — retrodictions about— performed before time t. With the capability of

tracking single trajectories [110, 135], we will then describe three applications of our

experiment using continuous weak measurement. Finally, we will give the conclusion

of the project.
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Figure 4.1: Schematic of experimental set-up. (a) Simplified experimental setup con-
sisting of a transmon circuit coupled to a waveguide cavity. The signal transmitting
through the cavity acquires a qubit-state-dependent phase shift. (b) By employing
the quantum trajectory theory, we can predict the outcome of a measurement based
on the information in the past (red curve), and we can also retrodict the measure-
ment outcome using the information in the future (blue curve). With the whole
measurement record, we use the PQS theory to make more confident prediction for
the outcome of the measurement.

4.2 State update

In this section, we apply Stochastic Master Equation (SME) and Bayesian update

methods to the quantum system to show how we update the state conditioned on

experimental measurement signal with these techniques.

4.2.1 Stochastic master equation

The dynamics of an open quantum system are well described by the Lindblad master

equation (2.41). If the system is subject to a continuous measurement, the evolution

of the density matrix ρ(t) conditioned on the measurement outcomes before time t is

given by the stochastic master equation [113, 114]:

d

dt
ρ(t) = Lρ = − i

~
[Ĥ, ρ(t)] +

K∑

k=1

D[L̂k]ρ(t) +
√
η(ĉρ(t) + ρ(t)ĉ†)V (t), (4.1)

where η is the quantum efficiency and V (t) is the random measurement signal at time

t with mean value
√
ηTr((ĉ + ĉ†)ρ(t))dt and variance σ2 = dt. Note this is just the
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Lindblad master equation with an additional term incorporating information from

measurement.

Next, we are going to apply this equation in our experiment. In our case, the qubit

is subject to unitary rotations given by HR = ~ΩRσy/2, and continuous probing given

by the measurement operator ĉ =
√
kσz, where σz is the Pauli spin operator, and

k = 4χ2n̄/κ = 1/(4ητ) parametrizes the measurement strength. Since the system

is open, it is subject to dephasing due to the coupling to the environment which

can be described by the Lindblad operator L =
√

γ
2
σz. At the same time, the

measurement process, which is sensitive to the σz also dephases the qubit described

by L = ĉ =
√
kσz and can be included in the above Lindblad master equation.

By plugging these operators in Eq. (4.1), we can get the following explicit equation

for our experiment:

dρ(t)

dt
= −i

ΩR

2
[σy, ρ(t)] + (k +

γ

2
)(σzρ(t)σz − ρ(t))

+ 2ηk(σzρ(t) + ρ(t)σz − 2Tr(σzρ(t))ρ(t))V (t), (4.2)

where ΩR is the Rabi frequency and V (t) is the measurement signal in our experiment

which is Gaussian distributed and scaled such that the distributions are centered at

+1 and −1 for the |0〉 and |1〉 state. The first two terms are the standard master

equation in Lindblad form, and the third term is the stochastic term that is used to

update the qubit state based on the measurement result.

By expanding the Eq. (4.2), we can write the following equations for all the density

matrix components:

dρ11(t) = ΩRρ01(t)dt+ 2kηdt(−2ρ11(t)− 2(1− ρ11(t))ρ11(t))V (t)− ρ11(t), (4.3)

dρ01(t) = −ΩR

2
(ρ11(t)−ρ00(t))dt−2(k+γ/2)ρ01(t)−2kηdtρ01(t)(2−4ρ11(t))V (t)−ρ01(t).

(4.4)

Therefore, we can use the above stochastic master equation with the continuous weak

measurement signal to obtain quantum trajectories and make prediction for the state
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Figure 4.2: Comparison of the quantum trajectory given by (〈σx〉, 〈σz〉) calculated
with Eq. (4.2) (solid) and the Bayesian update procedure Eq. (4.8) and Eq. (4.7)
(dashed). The two techniques give very similar results.

of qubit.

4.2.2 Bayesian update

In this subsection, we show that we can also use the Bayesian update method to

update the trajectories based on the measurement signal V (t) [113, 126]. In Bayes’

theorem, we know that the probability of getting event A given that we know the

event B can be express in the following: P (A|B) = P (B|A)P (A)/P (B). In our ex-

periment, the probability of the measurement record V (t) conditioned on the ground

|0〉 or excited state |1〉 is P (V (t)|z = ±1) which can be given by distribution of the

measurement signal for the ground and excited state respectively:

P (V (t)|z = −1) =
1√
2πa

exp−(V (t) + 1)2

2a2
, (4.5)

P (V (t)|z = +1) =
1√
2πa

exp−(V (t)− 1)2

2a2
. (4.6)

The measurement signals are Gaussian distributed and we scale the signal such

that the distributions are centered at +1 and −1 for the |0〉 and |1〉 states respectively.

The variance, a2 = 1/4kη∆t, is related to the measurement strength k, the quantum

efficiency η, and the integration time ∆t. Therefore, we can apply Baye’s rule to

calculate the updated density matrix based on the measurement signal V (t). The
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following are the components of the density matrix:

dρ11(t) = ΩRρ01(t)dt+
ρ11(t)P (V (t)|z = −1)

ρ00(t)P (V (t)|z = 1) + ρ11(t)P (V (t)|z = −1)
− ρ11(t), (4.7)

dρ01(t) = −ΩR

2
(ρ11(t)− ρ00(t))dt+ ρ01(t)

√
ρ00(t+ δt)ρ11(t+ δt)√

ρ00(t)ρ11(t)
e−γ∆t − ρ01(t),

(4.8)

where γ is the decay rate. In our calculation, we have use the relation 〈σu〉 = Tr(ρσu),

where u = x, y, z. We can use either Bayesian update method or SME to update the

qubit state conditioned on the measurement signal. We find that the two methods

are almost the same when the continuous measurement is very weak, and give very

similar results for the parameters used in this experiment as displayed in Figure 4.2.

Figure 4.2 gives a comparison of a single trajectory using the Bayesian update and

SME and shows a nice agreement between these two methods. In this project, we

choose to use the SME equation to update the state in consistence with the theory

of POVMs.

4.2.3 The SME for E(t)

The effect matrix E(t) solves a corresponding adjoint equation with a final condition

ET = Î/2 at final time T : [50],

dE

dt
= i

ΩR

2
[σy, E]+(k+

γ

2
)(σzEσz−E)+2ηk(σzE+Eσz−2Tr(σzE)E)V (t−dt), (4.9)

where dEt = Et−dt − Et, and we can propagate the above equation backward from

the final time T to t using the same measurement record V (t) as used for propagating

the density matrix ρ(t) in Eq. 4.2. We add a term −4ηkTr(σzE)EV (t − dt) in the

third part of the above equation in order to confine the trace of E(t) to be unity.
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4.2.4 Measurement calibration

We use the histograms of the measurement signal for the |0〉 and |1〉 states to calibrate

the measurement strength which is related to the variance a2 = 1/4kη∆t of the

histograoms. In this experiment, we have the quantum efficiency η = 0.35 which

is typically limited by losses induced by the microwave components, added noise

from the amplifiers, and from environmental decoherence of the qubit. The quantum

efficiency can be calculated from the relation η = 1/(2τΓ), where τ is the measurement

rate and Γ is the decay rate. For the parameters of our experiment, we have τ = 1.2 µs

and Γ/2π = 0.19 MHz.

The quantum efficiency η was measured by fitting the distributions P (Vt|z = +1)

and P (Vt|z = −1) to determine a2 = 1/4kη∆t. The dispersive coupling rate χ/2π =

−0.43 MHz was determined by using a Ramsey measurement to measure both the

ac Stark shift (2χn̄) and the measurement induced dephasing rate (Γm = 8χ2n̄/κ for

intracavity photon numbers ranging between n̄ = 0 and n̄ = 1.3).

4.3 Experimental results

4.3.1 Prediction

In this section, we describe an experiment to show how we make predictions for

the outcome of some measurement which is described by the POVM operator Ω+x =

(σx+1)/2. As illustrated in the experimental sequence in Figure 4.3, after preparation

of an initial state, the system is subject to continuous weak measurement and Rabi

drive followed by a rotation pulse and a projective measurement. For a single run of

the experiment, we use the SME for ρ(t) to propagate the density matrix forward in

time from initial state |+x〉. The probability that the qubit is in |+x〉 state is given by

P (+x) = Tr(Ω+xρtΩ
†
+x). Thus we can calculate this probability as a function of the

propagating time using Eq. (4.2) to update the state based on the measurement signal,

which is shown as the black dashed line in Figure 4.3. We call this trajectory “the

target trajectory”, ρtarget(t). In order to verify that we have tracked the qubit state
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Figure 4.3: Prediction. Our experiment sequence starts with a herald measurement,
followed by a rotation to prepare the qubit in the |+x〉 state. After this preparation, it
is subject to continuous measurement and Rabi drive. We can propagate ρ(t) forward
in time, which makes accurate predictions about a final measurement M : Ωx. The
dashed line is the prediction based on a single quantum trajectory, and the solid line
is the result from projective measurements on an ensemble of experiments that have
similar values of ρ(t).

correctly, we perform projective measurements of Ω±x at time t on an ensemble of

3000 experiments that have similar values of ρtarget(t) at time t (the target trajectory).

Conditioned on this target value of ρ(t), we obtain the corresponding experimental

result P̃ (+x) based on the corresponding subset of measurements [110, 135]. We

perform this analysis at different times and we observe close agreement between the

single quantum trajectory prediction P (+x) and the observed P̃ (+x).

4.3.2 Retrodiction

Using the information in the future to predict what happened in the past is called

retrodiction. The experimental sequence is exactly the same as in the prediction

section as shown in Figure 4.4, but we now use measurement data to retrodict the

outcome of a previously performed measurement. As discussed in Chapter 2, the best

prediction for the outcome of a previous measurement Ω+x is given by PP (+x) =
Tr(Ω+xρ0Ω†+xE(t))∑
m=±x Tr(Ωmρ0Ω†mE(t))

based on the PQS theory. We assume that no measurements
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Figure 4.4: Retrodiction for a herald measurement. We propagate E(t) backwards
from the final state ET = Î/2 using Eq.(4.9). For a single measurement record,
this yields a retrodiction (shown as a dashed line) for the outcome of the herald
measurement. The solid line, which is based on the heralded states that yielded similar
values of E0 confirms the retrodictions based on the single measurement record.

take place beyond the time T , leading to the final condition ET = Î/2 [50]. If no

measurements take place at all before T , for example because η = 0, Eq.(4.9) yields

a solution for E(t) that remains proportional to the identity operator for all times,

and PP (+x) leads to the conventional expression that depends only on ρ0.

To study retrodictions, we ignore the results of the herald measurements and use

ρ0 = (P0 − 1/2)σx + 1/2 for the initial state which prepared by the thermal ground

state fraction P0 = 0.85. We calculate the retrodicted probability PP (+x) (Black

dashed line in Fig. 4.4) for the outcome of the each herald measurement at t = 0 by

propagating Eq. (4.9) backward with ET = Î/2 from time T to t = 0. This yields the

dashed line in Figure 4.4. To test the retrodictions, we then compare to the results of

the measurement that are conditioned on PP (+x). The solid blue curve is obtained by

averaging the outcomes of many herald measurements at time t = 0. The retrodiction

is tomographically verified by an ensemble of herald experiments at t = 0 (Blue solid

line in Fig. 4.4) which show nice agreement with the target retrodicted trajectory.

Furthermore, we test the retrodictions for the outcome Ωz of the measurement M
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Figure 4.5: Retrodicted trajectories and tomography. (a) To test retrodictions made
by E(t) we prepare different states ρi and conduct a subsequent projective measure-
ment M . We propagate E(t) backwards from the final state ET = Î/2 to E0 for
variable periods of time T . This yields a retrodiction (shown as dashed lines for two
different experiments) for the outcome of M . The solid line, which is based on an
ensemble of experiments that yielded similar values of E0 confirms the retrodictions
based on the single measurement record. (b) We prepare three different initial states
(+x in red, +y in blue, mixed state in black), and compare the retrodictions, PP (+z),
based on 5 µs of probing, to the outcomes of measurements M that yielded similar
values of E0.
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Figure 4.6: Histograms of PP (+z) for different propagation times. As more of the
record is included, the retrodictions become more confident, taking values that are
more often near 0 or 1. The arrow shows the E propagation time from 20 ns to 5µs.

performed at time t = 0 with the backward propagating E(t) for variable period of

time from time T which is illustrated in Figure 4.5. We first prepare the initial state

|+x〉 to test the retrodictions. In this case, PP (+z) =
Tr(Ω+zρ0Ω†+zE(t))∑
m=±z Tr(Ωmρ0Ω†mE(t))

= E00(t)/2.

Note that the initial states ρ0 make ambiguous predictions about the outcome of M ,

P (+z) = 1/2, yet information is available after M and by propagating E(t) for longer

times, the retrodiction for the outcome of M becomes more confident. We verify that

the retrodictions are correct by averaging the outcomes of 3 × 105 runs of measure-

ments M that corresponded to similar values of E(t) to obtain an experimentally

derived probability, P̃ (+z). Figure 4.5(a) displays two sample trajectories for the

retrodiction Pp(+z) along with P̃ (+z). These two are in a good agreement which

means we have experimentally verified the retrodictions in a single retrodicted tra-

jectories. As more of the further probing is included in the propagation of E, the

retrodiction evolves and eventually settles on a fixed value. Figure 4.5(b) displays the

results of 2 × 105 experimental tests for three different initial states ρ0 which shows

that the retrodiction Pp(+z) and the tomography validation P̃ (+z) agree with each

other for the whole ensemble of the trajectories. The slope of the line is close to unity

which means that we tomographically verified all the trajectories. In Figure 4.6, we
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Figure 4.7: The occurrence of different values of P (+z) and Pp(+z) obtained from
many iterations of the experiment shown in grey and black respectively. Panel (a)
shows the case where ΩR = 0 and (b) shows the case where ΩR/2π = 0.7 MHz.
In both cases, we have shown that the PQS makes more confident predictions with
further information for the outcomes of projective measurements since it is more
biased to 0 and 1.

also display histograms of the different values Pp(+z) for different propagation times

of E(t). As more and more information is included, the retrodiction is more biased

towards 0 or 1 in the histogram. These show that as information is included in the

propagation of E the retrodictions become more confident.

4.3.3 Smoothed prediction of projective measurements

In this section, we show how we make more confident prediction for a projective

measurement with further information represented by E(t) using the PQS theory

compared the prediction only made by ρ(t). In Figure 4.7, we display histograms of

P (+z) and PP (+z), representing the predicted and smoothed probability for finding

the qubit in its ground state. We observe more occurrences of values of PP (+z) than

of P (+z) near 0 and 1 indicating that the past quantum state makes more confident

predictions about the outcome of a projective measurement. When ΩR = 0 the

more confident predictions given by the past quantum state are a consequence of the

quantum non-demolition (QND) character of the measurement. Because the effects of

the measurements commute and the past quantum state analysis merely accumulates

measurements in the intervals (0, t) and (t + ∆t, T ). However, by setting ΩR 6= 0,
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we break the QND character of the measurement, and it is necessary to propagate ρ

and E using their associated stochastic master equations.

4.4 Applications of our experiment

In this section, I will give three applications of our experiment in the context of con-

tinuous weak measurement by employing the PQS theory and the quantum trajectory

theory. First, the PQS theory can be used to retrodict the measurement outcome in

the past using the future information which might be useful for state preparation and

readout. Second, we observe weak values in the continuous weak measurement in our

experiment. Third, our experiment is a good platform to study time symmetry.

4.4.1 State preparation and readout fidelity

The first application of our experiment is to improve the state preparation and read-

out fidelity. The experimental sequence is shown in Figure 4.8: we first use a herald

measurement to prepare the initial state, and then immediately perform a strong

projective measurement M . After the measurement, the qubit is subject to contin-

uous weak measurement and Rabi drive. Due to the thermal population, spurious

transitions or other reasons, the preparation fidelity is finite. In our case, we have a

preparation fidelity of 96% for −z and 97% for +z, resulting in imperfect state prepa-

ration. Here we use Eq.(4.9) to propagate E(t) backward from T with the continuous

measurement record to make retrodiction for the measurement M to test the state

preparation. In Figure 4.8 we show the retrodictions that are made for initial states

that are prepared in +z and −z. The majority of the retrodictions give values PP (+z)

near 0 or 1, yet some give retrodictions for the initial state between 0 and 1 and these

retrodictions are verified by examining the outcomes of measurements M that yielded

similar values of E0. In Figure 4.8, we can see that the PQS “knows” when the error

occurs. Therefore, we might use the PQS theory to improve the fidelity for the state

preparation and readout.
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Figure 4.8: Retrodiction for initial states ρ0. We prepare different initial states
Tr(ρσz) = ±1 with a herald measurement, however the finite measurement fidelity
96% for −z and 97% for +z results in imperfect state preparation. These fidelities
are incorporated into ρ0, and thus the retrodiction for measurement M . The blue and
red markers represent the retrodictions for the ground and excited state respectively.
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4.4.2 Weak values

In previous sections, we have shown that we can make predictions for the measure-

ment outcome based on ρ, and the retrodictions based on E. We now illustrate the

application of ρ and E to create a smoothed prediction based on both ρ and E for

the outcome of a POVM measurement. The POVM measurement that we consider

here is associated with the measurement signal between t and t+ ∆t is given by the

measurement operators [113, 114],

ΩV =
(
2πa2

)−1/4
e(−(V−σz)2/4a2) (4.10)

where 1/4a2 = kη∆t. The POVM operators ΩV satisfy
∫

Ω†V ΩV dV = I. The prob-

ability of the measurement yielding a value V can be given by P (V ) = Tr(ΩV ρtΩ
†
V )

if we treat ρt as a constant during the short time ∆t. The probability is the sum of

two Gaussian distributions with variance a2 centered at +1 and −1 and weighted by

the populations ρ00 and ρ11 of the two qubit states. In this experiment, the system is

also subject to probing and Rabi drive after t. We now test the smoothed predictions

for the outcome of the measurement ΩV based on the information before and after

the measurement ΩV . The probability for the measurement ΩV conditioned on the

density matrix ρt and the matrix Et using the PQS theory can be expressed in terms

of their matrix elements,

Pp(V ) ∝ρ00E00e
(−(V−1)2/2a2) + ρ11E11e

(−(V+1)2/2a2)

+ (ρ10E01 + ρ01E10)e(−(V 2+1)/2a2). (4.11)

The predicted mean value is simply 〈V 〉p =
∫
Pp(V )V dV . After plugging Pp(V )

(Eq. (4.11)) into 〈V 〉p and normalizing it, we have:

〈V 〉p =
(ρ00E00 − ρ11E11)

(ρ00E00 + ρ11E11 + exp(− 1
8a2

)(ρ10E01 + ρ01E10)
. (4.12)

Here we note that if the measurement is strong, a is small, and the coherence con-
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Figure 4.9: Conventional and past quantum state predictions for the measurement
ΩV conducted at time t. (a) The qubit is first initialized along +x and then subject to
continuous measurement and Rabi drive. Each experiment yields a value V resulting
from the ΩV measurement. (b,c) The results are dominated by noise, but their
conditional average (open circles) is in agreement with the expected mean value given
by the dashed line. Panel (b) show the conventional predictions based on ρ while panel
(c) shows the PQS predictions based on ρ and E. Note that the prediction based on
ρ and E, 〈V 〉p makes predictions for the mean value that fall outside of the spectral
range of the qubit observable (in the pink region).
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tribution proportional to the off-diagonal elements of ρ and E is cancelled in the

denominator. The populations of ρ are then effectively modified by the populations

of E as suggested by the Aharonov-Bergmann-Lebowitz rule and in agreement with

a classical Bayesian argument. In contrast, when the measurement is weak, a single

measurement is dominated by noise and reveals only little information (and causes

infinitesimal back action). This is the situation that leads to so-called weak values.

Weak values occur in situations with post-selections, if the measurement signal is

proportional to an observable Â, and the system is initialized in |ψi〉 and post-selected

in state |ψf〉, the mean signal is given by [54, 136],

〈Âw〉 = Re[
〈ψf |Â|ψi〉
〈ψf |ψi〉

], (4.13)

this expectation value conditioned on both initial and final states may differ dramat-

ically from the usual expectation value 〈ψi|Â|ψi〉.
In Figure 4.9, we display results of our experiments that test the predictions of

Eq. (4.12). For many iterations of the experiment we choose a measurement time

interval, ∆t = 180 ns that is short enough that the effect of the continuous Rabi

drive is nearly negligible in the time interval (t, t + ∆t). Based on 800 ns of probing

before, and before and after the measurement interval, we calculate P (V ) and Pp(V )

for the result of the measurement. In Fig. 4.9, we show that both the conventional

and the past quantum state formalism yield agrement between the predicted mean

value and the measured values. The measured results are noisy, and we plot the

data with the predicted average value along the horizontal axes, and the measured

values along the vertical axes. The mean value of the measurement results are in

good agreement with both the conventional and the past quantum state prediction.

Conventionlly, we have 〈V 〉 = 〈σz〉 which never exceeds 1, however, a fraction of

the experiments based on both ρ(t) and E lead to the smoothed predictions which

sometimes go outside of the boundary and given values |〈V 〉p| > 1 [135]. Such anoma-

lous weak values in connection with Eq.(4.13) have been typically identified with the

intentional post selection of final states with a very small overlap with the initial state.
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Figure 4.10: Bloch vector representation of the matrix elements of ρ and E. (a)
The matrix elements, {Tr(ρσx),Tr(ρσz)} (closed circles) and 1

Tr(E)
{Tr(Eσx),Tr(Eσz)}

(open circles), are obtained from single trajectories by propagating ρ forward in time
and E backward in time. For each iteration of the experiment, a line joins the
coordinates. The closed circles represent the state of the system at time t based on
ρt, and the open circles represent the corresponding quantity based on Et+∆t. (b)
Matrix elements that yield anomalous (|〈V 〉p| > 1) predictions. The color indicates
the value of 〈V 〉p for each pair of states. (c) displays some of the the matrix elements
that yield normal predictions (|〈V 〉p| ≤ 1).

Surprisingly, continuous probing leads to similar effects [135]. In Figure 4.10 we ex-

amine the states that lead to different weak value predictions. We represent pairs of

ρ and E as connected points on the Bloch sphere, given by {Tr(ρσx),Tr(ρσz)}, and

1
Tr(E)
{Tr(Eσx),Tr(Eσz)}. Indeed, predictions outside the spectral range of the op-

erator are accompanied by near orthogonality of states associated with the matrices

ρt and Et. In agreement with the pure state case, large weak values of σz do not

occur when ρt or Et are close to the σz eigenstates, but rather when they are close to

opposite σx eigenstates, which have near vanishing 〈σz〉.

4.5 Conclusion

In this chapter, we have introduced the quantum trajectory theory to calculate the

quantum state of a superconducting qubit based on the measurement record of con-

tinuous measurements. We showed how we propagate the density matrix ρ(t) forward
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in time to make prediction for the outcome of measurements. We have also demon-

strated a quantum hindsight effect, where probing of a quantum system modifies

and improves the predictions about measurements already performed in the past in

the both the continuous weak measurement and projective measurement. When the

quantum system is subject to continuous probing and unitary rotations, these pre-

dictions are non-trivial, but they can be accounted for by the density matrix and an

effect matrix, which assign probabilities to general measurements at any time based

on the earlier and later acquisiton of information about the system. These advances

may be used to improve the state preparation and readout fidelity for quantum sys-

tems and increase their potential for use as probes of time-dependent interactions and

parameter estimation [49, 55, 117, 137–140]. With our experimental techniques, we

also have access to study weak values and time symmetry problems which might be

crucial to understanding foundations in quantum mechanics [130, 141].
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Chapter 5

Signal-state correlations in a

superconducting qubit

In this chapter, we employ the same dispersive experimental set-up as in Chapter 4 in

order to again use weak, continuous measurement to only obtain partial information

about the state of the qubit without collapsing it (please refer to the Chapter 4

section 1 to see the details of the experiment which includes the experiment set-up

and other experiment parameters). We further explore the evolution of the system

due to the back-action, e.g. studying some of the characteristic properties of this

system such as time symmetry of the pre- and post-selected average measurement

signals, and correlation between the qubit state and measurement signals. It is well

known that projective measurements collapse the qubit to one of its eigenstates,

suggesting the direction of time. However, in the weak continuous measurement,

the process of measurement does not necessarily clearly indicate an arrow of time.

In this experiment, we use continuous weak measurement to examine the aspect of

time symmetry in a superconducting qubit without collapsing the qubit state during

the measurement. Moreover, we observed the temporal correlation between qubit

state and measurement signals in this system which is crucial in developing quantum

optics and revealing quantum effects [130, 131, 134, 142–144]. Some of the results

seem surprising but we will give our careful explanation on them in the following

sections. The results discussed in this chapter have been published in N. Foroozani

74



et al. Phys. Rev. Lett. 116, 110401 (2016).

5.1 Pre-selected average of the measurement sig-

nals and trajectories

In this section, we are going to first briefly revisit the theory of POVMs and then

present the experiment’s result showing that the damped Rabi oscillation of the pre-

selected average signal is due to the dephasing of the qubit state.
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Figure 5.1: Preselected average signals and trajectories. (a) Experimental setup: A
transmon qubit is dispersively coupled to a 3D cavity, and the signal reflected from the cavity
is amplified by a quantum-limited Josephson Amplifier. (b) Experimental sequences and
parameters: the qubit is subjected to continuous measurement and Rabi driven with a Rabi
frequency ΩR/2π = 1.16 MHz after its heralded preparation in +z or −z. The probe is given
by the measurement operator

√
kσz, where k = 4χ2n̄/κ, parametrizes the measurement

strength (k/2π = 95 kHz) and η = 0.35 is the quantum measurement efficiency. (c) Pre-
selected average measurement signals are caculated by averaging many run of the experiment
trace V (t) with the same initial state +z. (d) Quantum trajectories starting in the +z state
(gray lines) and their mean value (blue line), which is in agreement with the mean signal
shown in the upper panel.

The weak and strong measurements of this experiment can both be described

by the POVM operator ΩV which satisfies
∫

Ω†V ΩV dV = I, as discussed in the last
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chapter [61, 113, 114].

ΩV = (2πa2)−1/4e−(V−σz)2/4a2 . (5.1)

Based on the theory of POVMs, the probability for the measurement outcome at

time t associated with a homodyne voltage V is given by P (Vt) = Tr(ΩV ρtΩ
†
V ). After

plugging the density matrix into the above expression, we obtain the probability for

the measurement outcome which is the sum of two Gaussians centered at V = ±1

and weighted by the density matrix components ρ00
t and ρ11

t . From the Eq. (5.1), we

know that the variance a2 determines the strength of the measurements. For exam-

ple, we can perform a strong projective measurement by decreasing a2 to the extent

that the measurement outcome unambiguously belongs to one of the two disjoint

Gaussian distributions. On the other hand, if we have large variance a2, P (V ) can

be approximated by a single Gaussian distribution centered at the expectation value

of σz, P (V ) ' (2πa2)−1/2e−(V−〈σz〉)2/2a2 . Therefore, for the weak measurement, the

measurement signal V provides a noisy estimate of 〈σz〉.
Next, we describe an experiment which is illustrated by the experimental sequence

in Fig. 5.1(b), to obtain the pre-selected average homodyne signals. We first prepare

the qubit in a superposition | + x〉 state by applying a π/2 pulse along the y axis

and then perforn a projective measurement Ω±z to herald the qubit in the ground

state +z as initial state (We can also prepare other initial states simply by applying

a rotation pulse following with or without projective measurement). After the initial

state preparation, the qubit is subject to Rabi drive given by HR = ~ΩRσy/2, where

ΩR/2π = 1.16 MHz is the Rabi frequency, and continuous weak measurements given

by the operators ΩV .

In Fig. 5.1(c), we display the pre-selected average signal which is obtained by

averaging many runs of the signal trace V (t) with the same initial state +z. We can

see that the average signal V (t) undergoes damped Rabi oscillations which correspond

to the gradual dephasing of the qubit due to the measurement interaction.

We can also calculate single trajectories by solving the stochastic master equation
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for the density matrix ρ(t) (in Chapter 4, Section 2) with the measurement signal V (t)

and then obtain the qubit expectation value, zi(t) = Tr(ρi(t)σz) [61, 113]. Note that

these trajectories start at the same initial state +z for the purpose of comparison with

the pre-selected average signals. In Fig. 5.1(d), we show an ensemble of trajectories

with the same initial state but dephasing in this ensemble. If we average many runs

of these trajectories, we also get the damped Rabi oscillations. This confirms that

the damping of the pre-selected average measurement signal is due to dephasing of

the ensemble trajectories (the qubit state).

5.2 Post-selected and weighted average of the mea-

surement signals

In this section, we first show the post-selected average signal exhibits an oscillatory

signal that is damped backwards in time [145]. Then we will show the post-selected

average signal agrees well with the weighted average signal based on the density matrix

ρ(t) at final time T . At the end of this section, we will give a simple explanation on

why these two agree with each other.

Here we perform an experiment illustrated by the experimental sequence in Fig.

5.2. We simply use a projective measurement to readout the qubit state at the end

of the experiment and select the +z state. In Fig. 5.2(a), the black curve is the post-

selected average of the measurement signals conditioned on the post-selected state +z

at the final time t = T , which exhibits an oscillatory signal that is damped backwards

in time [146]. At this point, you may find that the post-selected average signal is the

time reverse of the pre-selected average signal shown in Fig. 5.1(c), which exhibits

the same full contrast at the final time t = T as the pre-selected average signal at

t = 0.

In the previous section, we learned that the the pre-selected average signal can

be recovered by average many runs of the trajectories starting from the same pre-

selected state. For the post-selected average signal, we also want to see if it can

be recovered from the trajectories. We consider a sample of the trajectories zi(t),
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which are propagated forward by employing the stochastic master equation of the

last chapter. In this case, we consider the ensemble that has a roughly equal number

of the trajectories which are initially detected in the +z and −z states since the post-

selected signal V PS(t) = 0 at time t = 0. As shown in Fig. 5.2(b) immediately prior

to the post-selection, the trajectories end in different values of zi(T ) in a range from

+1 to −1 , and thus it may be hard to understand why the post-selected average

measurement signal (black curve in Fig. 5.2(a)) exhibits full contrast oscillations at

the end of the sequence because we cannot recover the black curve by averaging this

ensemble of trajectories. However, we will show that the same behavior can be also

obtained by weighting the measurement signal with ρi(T ) at the final time T .
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Figure 5.2: Weighted and post-selected average signals. (a) The post-selected average
measurement signals (black curve) and the weighted average measurement signal (red curve)
show the Rabi oscillations damp backward in time from the final time T . (b) The quantum
trajectories that are used to recover the weighted averages in (a) are shown as zi(t) which
are obtained by propagating the stochastic master equation forward in time from the initial
states +z and −z with the same quantities. (c) The magnified view of the last time segment
shows that the trajectories populate the qubit eigenstates very differently. Trajectories that
are post-selected in the +z state are indicated with the open circles. The measurement
signals Vi corresponding to this sub-ensemble form the average V PS. (d) The vertical bars
indicate the relative weighting factor that used to calculate V WP.

We have shown that we can propagate the density matrix ρ(t) forward by using the

stochastic master equation with the measurement signals to obtain single trajectories

which are display in Fig. 5.2(b). For every run of the experiment, we have one signal

trace which can be used to infer the ρi(t) of the time dependent conditioned density
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matrix of the qubit. Therefore, we can use the the probability P (i,+z) = ρ00
i (T )

of being in the ground state at final time T to weight its corresponding signal trace

Vi(t). We have the following formula for calculating the weighted signals,

V WP =

∑
i ρ

00
i (T )Vi(t)∑
i ρ

00
i (T )

. (5.2)

In Fig. 5.2(d), we display the weighting factors using the vertical bars which provides

the information on the relative contribution of each of the signals to the average. The

weighted average is the red curve shown in Fig. 5.2(a) which agrees well with the

post-selected average signals (Black curve in Fig. 5.2(a)).

In order to carefully explain the equivalence between the post-selected and the

weighted average signals, we note that the post-selected average value can be written

in the following formula,

V PS =

∑
i niVi(t)∑

i ni
, (5.3)

where ni = 0, 1 represents the state of the post-selection being excited and ground

respectively for the ith measurement signal trace of the ensemble. By comparing the

Eq. (5.2) and Eq. (5.3), we can learn that the equivalence can be achieved for large

numbers of the measurement signal traces in the ensemble since
∑

i niVi(t) and
∑

i ni

approaches
∑

i ρ
00
i (T )Vi(t) and

∑
i ρ

00
i (T ) respectively for this large limit. There-

fore, we have V WP = V PS which can be understood by the fact that the individual

trajectories can faithfully predict the probability of the post-selected state.

5.3 Symmetry between pre- and post-selected av-

erage of the measurement signals

The symmetry between pre- and post-selected averaging is interesting because the

continuous measurement and the projective measurement should substantially alter

the dynamics. To explain this symmetry, we need to consider the joint probability

P (Vt,±zT ) for the measurement outcome with signal Vt at time t and a projective
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measurement on ±zT at final time T since the pre- and post-selected average signal

can be obtained from the integration
∫
V P (Vt,±zT )dV . This joint probability can be

expressed as the product of the probability for the first measurement outcome P (Vt)

and the conditional probability P (±zT |Vt),

P (Vt,±zT ) = P (Vt)·Tr{eL(T−t)[
ΩV ρΩ†V
P (Vt)

]| ± z〉〈±z|}, (5.4)

where ρ represents the state prior to the weak measurement of Vt, ΩV ρΩ†V /P (Vt)

yields the normalized state conditioned on the outcome Vt, and eL(T−t) denotes the

linear propagator from time t to T of the density matrix according to the determinstic

master equation for ρ.
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Figure 5.3: Time symmetry in quantum measurement. (a, b) The pre- and post-selected
average measurement signals initially in the ground state (black curves). (c, d) Trajectories
that are pre- and post-selected in the +z and −z states.

In this case, we can express the evolution from time t to T given by deterministic

master equation as a Kraus map, eL(T−t)[ρ] =
∑

αKαρK
†
α, with operators satisfying

∑
αK

†
αKα = I [147, 148]. Using the cyclic properties of the trace, we can move the
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Kraus operators Kα to the right hand side of the expression (5.4), and obtain this

expression,

P (Vt,±zT ) = Tr{ΩV ρ(t)Ω†V
∑

α

K†α| ± z〉〈±z|Kα} = Tr[ΩV ρ(t)Ω†VE(t)], (5.5)

where we define E(t) =
∑

αK
†
α| ± z〉〈±z|Kα}. In our calculation, we do not need

the explicit form for the Kraus operators since E(t) can be obtained by solving the

following master equation backwards in time with a final state E(T ) = | ± z〉〈±z|
from T to t.

dE

d(−t) =
−1

i~
[HR, E] + k(σzEσz − E), (5.6)

To obtain the pre- or post-selected average signal, we can set E(t) = I or ρ(t) = I

in the Eq. (5.5) and then plug the P (Vt,±zT ) into the integration
∫
V P (Vt,±zT )dV .

For example, to calculate the pre-selected average signal, if we do not condition on

the final projective measurement then we simply set E(t) = I in the Eq. (5.5), and

obtain the usual prediction, V = 〈σz〉 = ρ00(t) − ρ11(t). On the other hand, if we

post-select the state in the ground state and set ρ(t) = I the Eq. (5.5) then we obtain

the predicted measurement signal for post-selection V PS = E00(t)− E11(t).

In Fig. 5.3, the sequence shows how the qubit is prepared in the ground state

+z and then followed by continuous weak measurement and Rabi drive. We simply

average the weak signal from many runs of the experiment. As expected, we can

see the damped Rabi oscillation. We can track the evolution of the quantum state

by calculating the trajectory for a density matrix. For separate iterations of the

experiment, the trajectories behave differently. If we post-select the qubit state in

ground +z state and average the weak signal, then we see the Rabi oscillations decay

backwards in time. We can also consider the evolution of backwards propagated

trajectories, given by the matrix E. Thus from the pre- and post-selected average

signal or the forward and backward trajectories, these results give identical heralded

predictions for the average measurement signal explain the time symmetry of the pre-

and post-selected average signal.
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5.4 The temporal correlation between the mea-

surement signal and qubit state

π/2

herald readout

ρ(t’)

V(t)

t (μs)

t (μs)

t’ 
(μ

s)

V W
P

V W
P

VWP

V W
P

0 0.5 1.0-0.5

t’=0

t’=1.0

t’=2.0

Figure 5.4: Two-time correlation function between the measurement signal Vi(t) and
the inferred qubit density matrix element ρ00

i (t′). The top show the experiment se-
quence we run to obtain the measurement signal Vi(t). The red curves in the side
panels show the correlations as function of t for t′ = 0, 1µs, 2µs which are the cuts
indicated in the 2D graph.

In the previous section, we showed that the predictions for the post-selected or

weighted averages can reflect the correlation between the qubit observables at different

times and believe such correlations are important in the quantum physics [149–152].

To further study the temporal correlations between the measurement signals and the

inferred qubit density matrix, we modify the Eq. (5.2) by incorporating a dummy

time t′ to get the two time correlation function,

V WP (t, t′) =

∑
i ρ

00
i (t′)Vi(t)∑
i ρ

00
i (t′)

. (5.7)
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The above expression is an average over all the runs of the experimental measurement

signal Vi(t) at time t which is weighted by the qubit state ρ00
i (t′) at time t′ . In

Fig. 5.4, we display the temporal correlation function between the measured signal

and the qubit state for both t and t′. The 2D graph shows V WP (t, t′) as a function

of t between 0 and T for values of t′ (t′ ∈ [0, 2µs]). In this graph, we can see the

weighted average signals show very different behavior in two regions. This difference

in the two regions suggests a different correlation regime before and after t′. The

reason for these different behaviors is that Vi(t) is the sum of a term proportional to

〈σz〉 and a white noise term W (t). When t < t′, the noise term W (t) contributes the

state update based on the SME thus it affects all later values of ρ00
i (t′). For t > t′,

W (t) is uncorrelated with the earlier state ρ00
i (t′) due to its stochastic nature, and

hence it averages to zero in the sum over i in Eq. (5.7).

For t < t′, we can obtain V WP (t, t′) by averaging many runs of the signal trace by

post-selecting the final state for the corresponding ensemble of different post-selection

times T = t′. Since V PS = V WP for large number of the measurement signal trace with

post-selection in the ensemble, using the Eq. (5.5), we can also calculate this average

signal even without any post-selection performed at time t′ simply by propagating

E(t) backwards from the state |+ z〉〈+z| at time t′.

We may utilize a different method to calculate V WP (t, t′) by using the equalities:

ρ00
i (t′) = (〈σz(t′)〉i+1)/2, and V (t′) = 〈σz(t′)〉+W (t′), where W (t′) has zero mean and

is uncorrelated with all previous quantities due to its stochastic property. Therefore,

we can write an alternative expression for V WP (t, t′) for t < t′,

V WP(t, t′) =
Vi(t)Vi(t′) + Vi(t)

V (t′) + 1
. (5.8)

Note that the different expressions for V WP are not identical but for large ensembles

of measurement records they are the same.

For t > t′, the correlation function may be written V WP (t, t′) =
∑
i ρ

00
i (t′)(2ρ00i (t)−1)∑

i ρ
00
i (t′)

by plugging the equalities V (t′) = 〈σz(t′)〉 + W (t′) = (2ρ00
i (t) − 1) which is correct

for large ensembles of experiments. These correlations do not obey any simple deter-
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ministic equation, and we have to use the stochastic master equation to calculate the

density matrix ρ00(t) and to determine ρ00(t′)ρ00(t).

5.5 Conclusion

In summary, we observe the time symmetry between the pre- and post-selected aver-

age signal and show that this symmetry is due to the forward and backward evolution

for ρ(t) and E(t) without time direction in quantum measurement. We study the cor-

relation between the signal and the qubit state and observe two different correlation

region where different correlations owing to how noise is incorporated into state up-

date. Our analysis may have application in the precision metrology and parameter

estimation with weak measurement and continuous probing [153–155].
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Chapter 6

Homodyne detection of

post-selected decay

If we excite a quantum system, it will decay to a lower energy state. The process by

which a quantum system in an excited state undergoes a transition to a lower energy

state is called spontaneous emission [156, 157]. In this process, the probability that

the quantum system stays in the excited state at time t is represented by exponential

behavior P (e) = exp(−γt), where γ is the decay rate. Evolution in quantum dynam-

ics is a remarkable phenomena because the mere act of observing changes how the

system evolves [158, 159]. For example, if the decay is detected using a photo detector

which is sensitive to the energy quanta of the system, the evolution of the quantum

system conditioned on the detected photons takes the form of quantum jumps [160].

The exponential behavior can be recovered by averaging the quantum jumps from

many runs of the experiment as shown in dashed curve in Figure 6.1(b). If the de-

cay is measured using a detector (Josephson Parametric Amplifier) which is sensitive

to the amplitude of the emission field, the state of the quantum system will evolve

stochastically in a continuous manner and will diffuse from the excited state to the

ground state as shown in Figure 6.1(c) [158]. The state of the emitter is described

by stochastic quantum trajectories which are inferred from the random measurement

outcome of the detection. In this case we can also recover the exponential behavior

by averaging over an ensemble of the stochastic trajectories which is the dashed curve
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Figure 6.1: Conditional dynamics of radiative decay. (a) The florescence from a
two-level emitter radiating at frequency ω0 can be detected using either photo or
quadrature (homodyne) detection. (b) The exponential decay is obtained by averag-
ing detected quantum jumps to the ground state. (c) The exponential decay can be
also recovered by averaging many diffusive quantum trajectories.

in Figure 6.1(c). In our experiment, we use homodyne detection by employing the

Josephson parametric amplifier (JPA) to monitor the radiative decay of a supercon-

ducting qubit which diffuses to the ground state when prepared in an excited state.

Using the quantum trajectory theory and PQS theory we can study pre- and post-

selected effects. In the following, a simple classical example will illustrate the purpose

of this project (how the post-selection affects the decay), and then show we map this

example to the quantum world. The results in the chapter are published in D. Tan

et. al. Phys. Rev. A 96. 022104 (2017).

Let’s assume that you walked into a room and turned on the light on Monday.

The light of the room was working well and you went home at the end of the day,

leaving the light on. On Friday, you go into the room and find the light is burned out.

The question is what is the probability that the light was burned out on Tuesday (or

Wednesday or Thursday) given that you knew that light was working on Monday and

on Friday you know it’s not working? At this point, you may see that the state of the

light (ON or OFF) on Friday matters a lot. If the light is burning, you know the light

was working the whole time, but when it is burned out you don’t know for sure which
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Figure 6.2: Modification of exponential decay with known final states. (a) We
consider a two-level system decaying with a rate γ. (b), If the system is initialized in
the excited state |e〉 at t = 0, the probability to find the system in the excited state
independent of any later information is given by P (e, t|e, 0) = exp(−γt). However,
later knowledge of the state at a final time T alters the excited state probability. The
red curve shows P (e, t|e, T ) and the blue curve shows P (e, t|g, T ) for T = 1/γ.

day it burned out. This example illustrates how the further knowledge (the state of

the light on Friday) affects your knowledge about the state of the system in the past

(the state of light between Tuesday and Thursday). This is the kind of guessing game

we want to play on the quantum system undergoing radiative decay. The quantum

system in this case is called quantum emitter. The question is if we have an emitter

in the excited state at time t = 0 and we find it in the ground state at later time T ,

what is the probability that we would find in the excited state previously? How does

this depend on the final condition and on the initial condition?

We can answer the questions by employing conditional probabilities [161]. Let’s

write P (α, t; g, T ) as the joint probability that the initially excited system is in state

|α〉 = |e〉 or |g〉 at time t and in the ground state at a final time T . We can also

write these joint probabilities in terms of the conditional probabilities [161], which

are given by P (e, t; g, T ) = P (e, t)P (g, T |e, t) = e−γt(1− e−γ(T−t)), and P (g, t; g, T ) =

P (g, t)P (g, T |g, t) = (1− e−γt)× 1. Based on these joint probabilities, we can obtain

the excited state probability at time t which is conditioned on the initial excited state

at time t = 0 and final ground state at time T from the ratio of the above two joint

probabilities,

P (e, t|g, T ) =
e−γt(1− e−γ(T−t))

e−γt(1− e−γ(T−t)) + (1− e−γt) . (6.1)
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This expression answers the question that we asked in previous paragraphs: how we

can make a better guess as to when the light-bulb burned out. The results of the

Eq. (6.1) are shown in Figure 6.2(b): the red curve represents the probability that

the emitter is in the excited state at time t when found in the excited state at a

final time T . In this case the probability is always 1 which makes sense because the

emitter should be always in the excited state given that it is still in the excited at

later time T . This is the case when the light bulb is still burning on Friday so we

know it was always burning on Tuesday through Thursday. The green curve shows

the normal exponential decay without any knowledge about the emitter state at time

T . The blue curve shows the probability that the emitter is in the excited state at

time t when found in the ground state at a final time T which interpolates smoothly

between unity at t = 0 and zero at t = T . Figure 6.2 shows that the probability at

time t is significantly modified with further knowledge after time t. Note that the

excited state survival probability (6.1) reflects the retrodictions we can make about

the system state, i.e., the measurement at time T does not impose the effect of a

physical interaction with the system at time t; it updates our present knowledge

about it.

In the following sections, we first describe the experimental toolkit. We then

present our experimental and theoretical results. Finally, we will present our experi-

mental and theoretical results before discussing its implications.

6.1 Experimental toolkit

In this section, we introduce the experimental set-up, and then show how we calibrate

the measurement signals. We also give a detailed description of how this experiment

makes particular use of high fidelity post-selection measurements.

6.1.1 Experimental set-up

Our experiment is comprised of an effective two level system which is realized by

employing a transmon superconducting qubit in resonance with a 3D aluminum cavity

88



hω0

e

g

Homodyne detectionTwo level emitter
JPA LO

Digitized signal

Pump

Digitizer

Figure 6.3: Experimental set-up. The florescence from a two-level emitter radiating
at frequency ω0 can be detected using homodyne detection.

[82]. We use the lowest transition as the effective two level system with resonant

frequency ω0/2π = 6.541GHz. The effective two level system behaves as a quantum

emitter when it is initially prepared in the excited state |e〉. The emitter is directly

connected to a 50 Ω transmission line which results in a Purcell-enhanced radiative

decay rate γ = 1.628 µs−1 [156]. We measure the coherence properties of the emitter

using standard techniques and find T1 = 614 ns, T ∗2 = 800 ns. The interaction

Hamiltonian is Hint ∝ (a†σ− + aσ+) which describes the interaction between the

emitter and the transmission line, where a†(a) is the creation (annihilation) operator

for a photon in the transmission line, and σ+(σ−) is the pseudo-spin raising (lowering)

operator. The outgoing signal which contains the qubit decay information through

the transmission line is further amplified by a near-quantum-limited JPA. We use the

JPA to perform homodyne detection of the resonance fluorescence from the excited

|e〉 to ground state |g〉 transition. The homodyne signal is then demodulated and

digitized as shown in Figure 6.3. In this experiment, the homodyne measurement

signal is proportional to the amplitude of a specific field quadrature, a†eiφ + ae−iφ,

and due to the interaction Hamiltonian, the measurement results correspond to the

emitter dipole σ−e
iφ + σ+e

−iφ. By setting the homodyne phase φ = 0, the resulting

homodyne signal is proportional to the Re[σ−] = σx [158].

If we prepare the emitter in the ground |g〉 or excited state |e〉 and then average

20 ns of the homodyne signal after preparation, the distribution of these homodyne
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signals for the ground |g〉 or excited state |e〉 overlap with each other and thus cannot

be distinguished. This is expected since the homodyne signal is only proportional

to σx. However, we can calibrate our measurement homodyne signal by applying

Preparation of   +x

(a) (b)

Ry
π/2

Preparation of    −x

Ry
-π/2

Average homodyne
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Figure 6.4: Calibration of homodyne signal. (a) Experimental sequences to prepare
the emitter in the |+ x〉 and | − x〉 state. (b) Histograms of the homodyne signal for
the |+ x〉 state (red) and | − x〉 state (blue).

a R
π
2
y (R

−π
2

y ) pulse to prepare the emitter in | + x〉 or | − x〉 which is illustrated in

Figure 6.4(a). We then average 20 ns of homodyne signal immediately after the state

preparation and repeat the experiment 5 × 105 times. This allows us to obtain the

distributions for the | + x〉 and | − x〉 states. We scale the measurement homodyne

signal such that the variance σ2 = γdt, where the time step dt = 20 ns. Note that

this scaling yields a dimensionless signal V , whereas under other conventions have

units of
√

time [58, 162]. In Figure 6.4(b), we show two histograms with Gaussian

distribution centered at ±√ηγdt and separated by ∆V = 2
√
ηγdt. Hence we can

obtain the quantum efficiency of this experiment set-up η = 0.3 from the above

histograms.

6.1.2 High fidelity post-selection measurements

In our typical experiment setup, we can achieve readout out fidelity up to 99% for

the ground state and 95% for the excited state. But in this experiment, we would like

to obtain the post-selection fidelity as high as possible and have as many successful
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Figure 6.5: Post-selection fidelity. (a) Histogram of the readout when the emitter is
in the ground state. The blue region indicates the number of error detections. (b)
When the emitter is prepared in the excited state, more post-selections are successful.
The histograms in (a) and (b) can be used to determine the post-selection error in
our experiment. (c) Histogram of readout when the emitter is prepared in the excited
state and post-selected in the |+x〉 state. (d) The post-selection fidelity for each pair
of pre- and post-states (|θ〉, |θ − π

2
〉).

runs of post-selection as possible. Because the successful post-selection experiments

happen rarely, the data from error post-selection experimental runs can contaminate

the measurement results which will give the wrong results. We introduce our method

of obtaining high fidelity post-selections by adjusting the readout power to the extent

that minimizes the error occurrence while maintaining a modest success rate (ensur-

ing we have modest number of successful post-selection runs). Here we define the

post-selection fidelity as the fraction of correct post-selections from the total num-

ber of the post-selection experiment runs. In the calibration experiments, we first

test the post-selection error rate by preparing the qubit in the ground state followed

by a readout measurement. We choose an appropriate threshold with optimal read-
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out power (shown as the arrows in Fig. 6.5), to maximize the post-selection fidelity

while maintaining a reasonable number of post-selection occurrences. As shown in

the histogram of Fig. 6.5(a), we found 2 error occurrences out of 5000 runs of the

experiment for the ground state preparation. If we prepare the qubit in the excited

state, we have 314 occurrences from the same number of runs with the same thresh-

old. At this point, from these numbers we know the post-selection error rate is below

1% (2/314). Similarly, we can use this post-selection technique for other states by

applying a qubit rotation before the readout pulse.

Although the post-selection error rate is below 1% as discussed above, when the

post-selection success rate is in the order of 10−6, these relatively low post-selection er-

rors will contaminate the experimental results. This limits our capability to choose the

combination of the pre- and post-selected states for our experiments. Here we make

our experimental result reliable by choosing certain pre- and post-selected states: (|θ〉,
|θ− π

2
〉). In this situation, we have achieve the kind of post-selections where the suc-

cess rate (the ratio of successful runs to total experiment runs), greatly outweighs the

error rate. As illustrated in Fig. 6.5(d), the post-selection fidelity for different pre-

and post-selected states varies for different θ (mainly due to T1 decay and calibration

of the preparation pulses). In order to obtain the post-selection fidelity as a function

of θ, we conduct the experimental sequence showing in Fig. 6.5(d); we first apply a θ

pulse to prepare the qubit in the |θ〉 state in the x-z plane of the Bloch sphere, after

0.5 µs probing of the qubit evolution we then post-select the |θ− π
2
〉 state by applying

a corresponding rotation Rφ
y and a projective measurement Π±,z. The post-selection

fidelity is calculated from the ratio of the correct occurrences to the total trials (which

is the difference between the total post-selection occurrence and the error rate × the

number of trials).

6.2 Experimental results

In this section, we show the main experimental results. We first show the probabilities

for the excited state are significantly altered with post-selection. We then observe
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the anomalous weak values from pre- and post-selection during spontaneous emission.

Finally, we will present the evolution of the emitter by employing the Stochastic

Master Equation (SME) and the analysis of the deterministic decay curves.

6.2.1 Retrodiction of excited state population

In this section, let’s first revisit the PQS theory and SMEs in the case of spontaneous

emission, and then we will show how the post-selections alter the probability for the

qubit being in the excited state at time t.

As we have already learned in previous chapters, the probabilities for the outcomes

of a general measurement Mm conditioned on both ρt and Et, is given by [50]:

Pp(m, t) =
Tr(MmρtM

†
mEt)∑

n Tr(MnρtM
†
nEt)

. (6.2)

Therefore, it is obvious that we need to know ρt and Et to calculate the probabili-

ties Pp(m, t). We can obtain ρt and Et in two cases: when the quantum system is

monitored or un-monitored.

The evolution of the density matrix of an un-observed, decaying two-level quantum

system is governed by the deterministic Lindbald master equation,

dρt = γD[σ−]ρtdt, (6.3)

where dρt = ρt− ρt−dt, and D[σ−]ρt = σ−ρtσ+− 1
2
{σ+σ−, ρt} is the superoperator for

σ− = (σx + iσy)/2 which describes the decay of the emitter by transferring energy to

its surroundings.

The solution of the Eq. (6.3) is given by

ρeet = ρee0 e
−γt

ρget = ρge0 e
− γ

2
t

ρggt = 1− ρee0 e−γt,
(6.4)

where ρ0 = |ψi〉〈ψi| is the initial state at t = 0.
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If the emitter is monitored by Homodyne detection with efficiency η, the mea-

surement signal V =
√
ηγTr[σxρt]dt+

√
γdWt varies according to the σx expectation

value of the current state ρt of the system. The evolution of the monitored quan-

tum emitter is conditioned on the measurement signal and can be described by the

stochastic master equation (SME) [113],

dρt = γdtD[σ−]ρt +
√
η (V −√ηγTr[σxρt]dt)H[σ−]ρt, (6.5)

where H[σ−]ρt = σ−ρt + ρtσ+ − Tr[(σ− + σ+)ρt]ρt is the jump superoperator. The

second term in the above master equation counts for the stochastic measurement

back-action. Similarly, for the effect matrix Et, when the system is un-monitored, we

have the deterministic master equation which describes the backward evolution of Et

from a final time T to t,

dEt = γdtD†[σ−]Et, (6.6)

where dEt = Et−dt − Et. The solution of the Eq. (6.6) is given by

Egg
t = Egg

T ,

Ege
t = Ege

T e
− γ

2
(T−t),

Eee
t = Egg

T + (Eee
T − Egg

T )e−γ(T−t),

(6.7)

where ET = |ψf〉〈ψf | is the final state at time T .

If the system is monitored, the effect matrix Et at time t conditioned on the

homodyne signal collected after t can be described by an adjoint counterpart of the

Eq. (6.5). The SME for Et is given by,

dEt = γdtD†[σ−]Et +
√
η (V −√ηγTr[σxEt]dt)H[σ+]Et, (6.8)

where D†[σ−]Et = σ+Etσ− − 1
2
{σ+σ−, Et}. Therefore, we can propagate the above

equation backwards from a final time T . Note that Eq. (6.8) does not conserve trace,

but this won’t affect the value of Pp(m, t) when we use its solution in Eq. (6.8) since

Eq. (6.2) itself is normalized.
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After obtaining ρt and Et in the un-monitored or monitored case, we show how we

calculate the probabilities for the excited state Pp(e, t) at single quantum trajectory

level in these cases.
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Figure 6.6: Modification of the probability for the excited state by post-selection. (a)
Experimental sequence prepares the emitter in the excited state and the homodyne
signal is record for a time T followed by a post-selection of the ground state. (b) Bloch
representation of the pre-selection of the qubit state |ψi〉 = |e〉 and post-selection in
|ψf〉 = |g〉. (c, d), The probability of the emitter in the excited state as a function
of time for different ground state post-selection times T . The curves in (c, d) are the
probability post-selected at time T = 0.88 µs and 1.68 µs respectively. The red curves
display the probability P (e, t) based only on the density matrix ρt calculated from
Eq. (6.5) without post-selection. The black curves assume no monitoring after time
t by using the deterministic Et of Eq. (6.13) in Eq. (6.2) to include post-selection.
The green curves are the the results without any monitoring. The blue curves are
calculated from Eqn. (6.2) where by using the stochastic effect matrix Et which is
determined by Eq. (6.8) we include monitoring for the full duration and post-selection.

In Fig. 6.6(a), we examine the predictions for measuring the qubit in the excited

state at a time t given by Eq. (6.2) if the ground state is post-selected at a time

T . We first apply a π rotation to prepare the qubit in the excited state and then

continuously monitor the evolution for a period of time T . Finally, as described in

the last section we apply a high fidelity projective measurement to post-select the

ground state using a rotation pulse Rπ
y followed by a strong projective measurement.

The quantum trajectories, conditioned on the pre- and post-selection as well as on
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the homodyne measurement signal, are inferred via Eqs. (6.5, 6.8) by propagating ρt

forward and Et backwards to the time t with ρ0 = |e〉〈e| and ET = |g〉〈g|. We can

also calculate the un-monitored, deterministic trajectories with Eqs. (6.4, 6.6). The

probability for finding the qubit in the excited state by a projective measurement

at time t is Pp(e, t) = ρeet E
ee
t /(ρ

gg
t E

gg
t + ρeet E

ee
t ), which is based on Eq. (6.2) with

the POVMs M±z = (σz ± 1)/2. In Fig. 6.6c,d, we display Pp(e, t) for two different

post-selection times T = {0.88, 1.68} µs. We present several different decay curves

that incorporate successively more information in the excited state probability. The

red curves show how the probability evolves given only the stochastic evolution of

ρt and neglecting the result of the post-selection, and the green curves indicate the

excited state probability based only on the initial preparation and final post-selection

without monitoring (as indicated in Fig. 6.2). The black curve indicates the prob-

ability based on the stochastic evolution of ρt and the final post-selection. Finally,

the blue curve represents the most complete prediction for the excited state proba-

bility, incorporating both the stochastic evolution of ρt and Et both conditioned on

the measurement signal. By including further probing results we get a clearer picture

of how spontaneous emission causes a qubit to decay from the excited state to the

ground state and we see that the probabilities for an excited state detection in the

past is significantly altered when further probing results are incorporated into the

prediction.

6.2.2 Retrodiction of the homodyne signal with pre- and

post-selection

In this section, we first introduce the theory-predicted average homodye signal using

the theory of POVM. Then we describe an experiment to get the average homodyne

signal with pre- and post-selections. We find that the theory and experimental results

are in good agreement.
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The POVM operator associated with the homodyne signal V is given by [113, 114]

MV =

(
1

2πγdt

) 1
4

e
−V 2

4γdt

(
1− γdt

2
σ+σ− +

√
ηγσ−V

)
, (6.9)

which satisfies
∫
M †

VMV dV = I. The probability for the measurement MV is

P (V ) = Tr(MV ρtM
†
V )

=
1√

2πγdt
exp (

−V 2

2γdt
)(1 +

√
ηγ〈σx〉V )

' 1√
2πγdt

exp(−(V −√ηγ〈σx〉dt)2

2γdt
),

(6.10)

which can be used to calculate the average value, V =
∫
V P (V )dV =

√
ηγ〈σx〉dt

conditioned only on ρt.

Based on the Eq. (6.2), the probability for the measurement signal V conditioned

on both ρt and Et can be expressed by

Pp(V, t) =
Tr(MV ρtM

†
VEt)∫

dV ′Tr(MV ′ρtM
†
V ′Et)

. (6.11)

From this equation we can express the retrodicted mean value V p(t) =
∫
V Pp(V, t)dV

of the homodyne signal by the matrix elements of ρt and Et with pre- and post-

selection,

V p(t) =
2
√
ηγdt(Egg

t ρ
eg
t + ρeet E

ge
t )

Tr(ρtEt)
(6.12)

Given these theoretical predictions V (t) and V p(t), we now describe experiments

to verify the theory. We first verify the theoretical average homodyne signal V (t)

without post-selection. The experimental sequence is illustrated in Figure 6.7a. We

use a rotation pulse Rθ
y to prepare the emitter in a state |θ〉 = cos θ

2
|g〉 + sin θ

2
|e〉,

and then obtain the average homodyne signal, Ṽ , right after the preparation pulse

by integrating 60 ns of homodyne signal. The solid lines and dots in Figure 6.7(b)

show our experimental results for Ṽ as a function of the preparation pulse rotation

angle θ. We can see that the Ṽ oscillates as a function of θ and reaches a maximum
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Figure 6.7: Average homodyne signal. (a) The experimental sequence prepares the

emitter in a state |θ〉 and 60 ns of homodyne signal is integrated to obtain Ṽ . (b)
Average homodyne signal based on only ρ. The solid line with solid dots is the
measured mean homodyne signal without post-selection. The dashed line with hollow
dots is the theory-predicted mean value V . More than 5×106 experimental repetitions
are used for each Ṽ , leading to a statistical uncertainty of order 4 × 10−4. (c) The
experimental sequence prepares the emitter in the state |θ〉 and post-selects it in the
state |θ− π

2
〉. (d) Average homodyne signal based on ρ and E. The solid line with solid

dots is the measured mean homodyne signal for each pair of pre- and post-selected
states (|θ〉, |θ − π

2
〉 ). The dashed line with hollow dots is the theory predicted mean

value V p as calculated in Eq. (6.12). More than 3× 104 experimental repetitions are

used for each Ṽp, leading to a statistical uncertainty of order 5.7 × 10−3. The error
bars indicate the standard deviation associated with the drift in the experimental
setup from three repetitions of the experiment.

(minimum) at θ = π
2

(θ = −π
2

) as expected [158]. The dashed line with hollow dots

is the theoretical predicted average signal V which is in good agreement with the

experimental results Ṽ which means the experiment is well calibrated. The average

homodyne signals Ṽ without post-selection are confined in the region between the

dashed horizontal lines ±√ηγdt and never exceed this broundary.

Second, we test the theory prediction for the mean signal with post-selection,

V p. We performed the experimental sequence illustrated in Figure 6.7(c). At time

t = 0 we prepare the qubit in state |θ〉, then collect 0.5 µs of homodyne signal and

finally perform a rotation Rφ
y followed by a projective measurement to post-select
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the state |θ − π
2
〉. We choose these pre- and post-selected states in order to have as

many successful post-selected events as possible. The average, post-selected signal

Ṽp is obtained by averaging 60 ns of homodyne signal right after the initial state

preparation pulse from the experimental runs which successfully pre-select state |θ〉
and post-select state |θ− π

2
〉. Note that ideally we could obtain the average Ṽp by post-

selecting state |θ − π
2
〉 immediately after the 60 ns signal integration, but transient

behavior associated with the rotations and readout can contaminate the result. This

is the reason that we continuously monitor the emitter and record the homodyne

signal for 0.5 µs. In this experiment, we consider the average homodyne signal over

many experimental runs with the same pre- and post-selected states. Thus we can

consider the master equations for ρt and Et without monitoring as shown in Eqs. (6.4,

6.6) and propagate the these equation for Et backwards to obtain the Ṽp using the

Eq. (6.12).

In this experiment, we prepare the emitter in the state |θ〉 = cos( θ
2
)|g〉+ sin( θ

2
)|e〉

at t = 0 and post-select it in the state |θ − π
2
〉 = cos(

θ−π
2

2
)|g〉+ sin(

θ−π
2

2
)|e〉 at t = T .

Ideally, we have the density matrix ρt=0(θ) = |θ〉〈θ| and the effect matrix Et=T (θ) =

|θ − π
2
〉〈θ − π

2
|. However, due to the finite post-selection fidelity ηp as shown in

Figure 6.5(d), the effect matrix ET at time T for calculating Vp needs to be corrected

as follows,





Egg
T (θ) = (1− ηp) cos2

(
θ−π

2
−π

2

)
+ ηp cos2

(
θ−π

2

2

)

Ege
T (θ) = 1

2
(1− ηp) sin

(
θ − π

2
− π

)
+ 1

2
ηp sin

(
θ − π

2

)

Eee
T (θ) = (1− ηp) sin2

(
θ−π

2
−π

2

)
+ ηp sin2

(
θ−π

2

2

)
,

(6.13)

In Figure 6.7(d), after correcting for the post-selection fidelity, it is shown that

the experimental results Ṽp (solid line with solid dots) agree well with the theory

prediction V p (dashed line with hollow dots), which is calculated from Eqs. (6.12, 6.4,

6.6). Moreover, at these places θ = {−π, π
2
, 3π

4
, π} we oberve the average homodyne

signal |Ṽp| exceeds the traditionally allowed maximal value
√
ηγdt which are the so-

called weak values due to the low overlap between the pre- and post-selected states.
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6.3 Quantum trajectories

In this section, we use homodyne detection to continuously monitor the emitter.

Since the emitter interacts with the noise environment, the outcome of the detection

is random and follows a Gaussian distribution. The state of the emitter, which is

conditioned on the noise detection signal, evolves stochastically. In this section, we

use the SME method to infer the quantum trajectories of the emitter with pre- and

post-selection.

6.3.1 Quantum trajectories based on ρt

With these relations xρ = Tr(σxρt) and zρ = Tr(σzρt), the SME for the density

matrix ρt (Eq. (6.5)) can be written to the following equations for the Bloch vector

components [163],

dxρ = −γ
2
xρdt+

√
η(1− zρ − x2

ρ)(V −
√
ηγxρdt)

dzρ = γ(1− zρ)dt−
√
η(1− zρ)xρ(V −

√
ηγxρdt).

(6.14)

We describe the following experiment to obtain the quantum trajectories conditioned

on the homodyne signal V which are given by the Eq. (6.14). The experimental

sequence is illustrated in Fig. 6.8(a), we prepare the emitter in the initial state |ψi〉
(pre-selection), then record homodyne signal for 1.68 µs and finally use a rotation

pulse and projective measurement to post-select the emitter in a final state |ψf〉
(post-selection) using a high fidelity projective measurement as discussed in section

6.1.2. We show trajectories based on ρt as (〈σx〉, 〈σz〉) on the x-z plane of the Bloch

sphere for different initial states. We use red, green, cyan, and blue colors to represent

different evolution time intervals [0.42n, 0.42(n+1)] µs, (n = 0, 1, 2, 3) of the quantum

trajectories. As in the Fig. 6.8, the trajectories diffuse through the Bloch sphere from

a pre-selected state to ground state, confined within the Bloch sphere due to finite

quantum efficiency. The black solid line is a single quantum trajectory which evolves

in the Bloch sphere. The blue dashed lines show that the trajectories fall into different
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Figure 6.8: Quantum trajectories for pre-selected states. (a), We prepare the qubit
in state |ψi〉, and allow the qubit to evolve for 1.68 µs. With the pre-selected state,
we propagate the SME forward in time to obtain the quantum trajectories. (b, c, d),
Quantum trajectories for different pre-selected states. Note that the Bloch sphere is
upside down to put the excited state on top which is slightly more intuitive for our
discussion of decay. The black dashed lines show how the unmonitored emitter would
evolve deterministically from state |ψi〉 to ground state. The black solid lines represent
a single trajectory of the emitter which diffuses stochastically in the Bloch sphere.
The blue dashed ellipses illustrate that all the stochastically evolving trajectories are
confined to a deterministic region in the Bloch sphere at any given time.

deterministic curves for different evolution times [58, 158].

6.3.2 Quantum trajectories based on Et

In the previous section, we introduced the SME (6.8) for the effect matrix Et. Here we

also introduce a Bloch sphere representation to illustrate the conditional evolution of

the effect matrix E. Since the term D†[σ−]Et in the SME (6.8) is not trace-preserving,

an extra term γdtTr(D†[σ−]Et) = γdtTr(σzEt) is added to get the normalized SME
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for Et,

dEt = γdtD†[σ−]Et − γdtTr[σzEt]Et +
√
η (V −√ηγTr[σxEt]dt)H[σ+]Et. (6.15)

With the above SME and relations xE = Tr(σxEt) and zE = Tr(σzEt), we obtain

stochastic master equations of Et in the form of Bloch components,

dxE = −γ
2
xE
[
1 + 2zE + η(1 + zE − x2

E)
]
dt+

√
η(1 + zE − x2

E)V

dzE = −γ(zE + z2
E − η(1 + zE)x2

E)dt−√η(zE + 1)xEV,

(6.16)

We conduct experiments with the same sequence in Fig. 6.9a to infer the back-

wards trajectories based on the above Eq. (6.16). As displayed in the Fig. 6.9(a), we

post-select a final state |ψf〉 at the end of the experiment and then we propagate the

Eqs (6.16) backwards for 1.68 µs starting with ET = |ψf〉〈ψf |. The backwards trajec-

tories — which we call retrodicted trajectories — are displayed in the Fig. 6.9, which

diffuse backwards in time through the Bloch sphere from the post-selected state. In-

terestingly, these backwards trajectories are also confined to different determinisitic

curves at different times.

6.3.3 Quantum trajectories based on ρt and Et

In previous sections, we have calculated the Bloch components based on ρt or Et

which are just the expectation values of the Pauli operators, uv(t) = Tr(σuv) for

u = x, y, z; v = ρt, Et. These expectation values equal the weighted mean value of

their eigenvalues, e.g., 〈σu〉v = vgg · 1 + vee · (−1) = Pv(σu = +1, t)− Pv(σu = −1, t).

Here we want to know how to calculate the Bloch components based on both ρt

and Et. The probability for the measurement outcome Mu conditioned on both ρt

and Et is given by the Past Quantum State formalism — Eq. (6.2). Similarly, we

can obtain the Bloch vector components conditioned on both ρt and Et by adapting

the expression of the weighted mean values of the corresponding eigenvalues of the

observables,

〈σu〉p = Pp(σu = +1, t)− Pp(σu = −1, t), (6.17)
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Figure 6.9: Retrodicted trajectories for different post-selected states. (a) The qubit
evolves for 1.68 µs and then is post-selected in a final state |ψf〉. (b, c, d) These
quantum trajectories are calculated by propagating the stochastic master equations
for Et backwards in time. The trajectories diffuse to the post-selected states and are
also confined to a deterministic region in the Bloch sphere at any given time.

here p stands for the Past Quantum state which means the expectation values are

conditioned on both ρ and E in this case. We obtain all the Bloch components using

Eq. (6.2) and Eq. (6.17) conditioned on the Past Quantum State,

〈σx〉p =
xρ + xE
1 + xρxE

,

〈σy〉p =
yρ + yE
1 + yρyE

,

〈σz〉p =
zρ + zE
1 + zρzE

.

(6.18)

We call the above time-dependent Bloch components smoothed trajectories in connec-

tion with our discussion of smoothing in Fig. 1.3. In order to calculate the smoothed

trajectories, we propagate the Eq. 6.14 forward in time to obtain the solutions for

uρ, and propagate the Eq. (6.16) backwards in time to get the solutions for uE. We

use the equation Eq. (6.18) with these solutions from the Eq. (6.14) and Eq. (6.16)
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Figure 6.10: Smoothed trajectories for pre- and post-selected states. (a) The qubit is
pre-selected the qubit in state |ψi〉, and then evolves for 1.68 µs, finally post-selected
in the state |ψf〉. (b, c, d) Smoothed trajectories calculated by the stochastic master
equations for different pre- and post-selected states.

to obtain the smoothed trajectories with pre- and post-selected states.

The smoothed trajectories, which are displayed in in Fig. 6.10(b-d), diffuse through

the state space. Unlike the trajectories conditioned only on ρt or Et, the retrodiction

trajectories clearly have values that are outside of the Bloch sphere instead of in the

Bloch sphere. We can understand the results in the following way: in our experiment,

the qubit decays almost to the ground state after 1.68 µs. So the probability for the

ground state at the end of the sequence with the post-selection is close to unity. If

we post-select the qubit in the +x state, the outcome of a final measurement of σx

would be +1 but still need to yield the same results of the prediction for the ground

state at that time with σz = 1. In this case, we can have σx = 1 and σz = 1 at the

same time. The result seems surprising since the reader may think that it violates

the Heisenberg’s uncertainty since we cannot measure accurately both σx and σz at

the same time. The fact is that the Heisenberg’s uncertainty applies to the prediction

for the future measurements, while in these smoothed trajectories we consider the
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combination of the prediction and retrodiction of observables and then plug σx and

σz into Eq. (6.18) after calculating σx and σz conditioned on ρt or Et separately. The

Eq. (6.18) is non-linear, so the smoothed predictions are different from the prediction

of some spin measurement along an axis between the x and z axes which simply follow

from the projection of the Bloch vector along those directions.

6.3.4 Deterministic ellipses for ρt and Et

The theory work in this section was done in close collaboration with our collaborators

in Aarhus University. In this section, we show the analysis of how we obtain the

deterministic curves. In the following, we first derive the expression of ellipses for

the density matrix ρt, and then we derive a similar expression of ellipses for the Et.

Finally, we combine the deterministic curves for ρt and Et to obtain the restricted

regions for the retrodiction trajectories.

For the density matrix ρt, we want to obtain a function α(xρ, zρ) of the stochas-

tically evolving Bloch components. Moreover, the equation of motion is expected

to be deterministic for the Bloch components. Next, we will derive such a function

and show that the equation describes an ellipse (deterministic curve) in x− z plane.

For a generic function, the equation of motion is derived from the stochastic Bloch

equations (6.14),

dα =
∂α

∂xρ
dxρ +

∂α

∂zρ
dzρ+

+
1

2

[
∂2α

∂x2
ρ

(dxρ)
2 +

∂2α

∂z2
ρ

(dzρ)
2 + 2

∂2α

∂xρ∂zρ
dxρdzρ

]
,

(6.19)

where the second derivatives are due to Itô’s formula and accounts for the fact that

formally the Wiener increment is defined by the properties E[dWt] = 0 and dW 2
t = dt

[164], such that when squared the noise terms in Eq. (6.14) yield contributions of the

same order in dt as the deterministic terms. The deterministic evolution of α(xρ, zρ)

at different times requires that all terms proportional to dWt in dα cancel with each

other. Therefore, after plugging the Eq. (6.14) in Eq. (6.19) we obtain the following
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(a) (b)

Figure 6.11: Time evolution of functions parametrizing determinstic ellipses. (a) Time
evolution given by Eqn. (6.22) of the function α(xρ, zρ) parametrizing the determin-
istic ellipse (6.21) in the Bloch sphere on which a decaying spin subject to homodyne
detection is confined. (b) Time evolution Eqn. (6.26) of the function β(xE, zE) for a
similar ellipse (6.24) pertaining to the effect matrix and assuming post-selection at
time T = 4γ−1 in a pure state.

form of α(xρ, zρ),

α(xρ, zρ) =
2

1− zρ
− x2

ρ

(1− zρ)2
, (6.20)

which can be also expressed in the following form by recombining terms

α2(1− zρ − 1/α)2 + αx2
ρ = 1. (6.21)

The above expression has the form of the equation for the ellipse which is centred at

(x, z) = (0, 1−1/α) and with major axis 1/
√
α (xρ-direction) and minor axis 1/α (zρ-

direction). The ellipse equation tells us that the Bloch components fall into different

ellipses curve at different times for all the trajectories conditioned on ρt. These ellipse

curves are the blue dashed lines which are shown in Fig. 6.8, Fig. 6.9, and Fig. 6.10.

To calculate the deterministic curves at different times, we can plug Eq. (6.20) into

the right hand side of (6.19) and get the function α(xρ, zρ) as a function of time which
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characterizes the time evolution of the deterministic curves,

α(t) = η + [α(t = 0)− η]eγt, (6.22)

where η is the quantum efficiency, γ is the decay rate and α(t = 0) follows from (6.20)

with the initial Bloch components at time t = 0. Eq. (6.20) shows that in the case of

pure states α0 = 1 at t = 0 so that the ellipses become circles — the full Bloch sphere.

In Fig. 6.11(a), we plot the time evolution of α(t) for different values of the quantum

efficiency η. The parameter α(t) increases as the increasing t, and hence the center

z-coordinate of ellipse increases with a rate γ which is in agreement with the decay of

the qubit. In this figure, we can also see that the α(t) at some specific time decreases

with increasing quantum efficiency η which means the axes of the ellipse (inverse to

α(t) ) reduces faster for smaller values of the quantum efficiency. Therefore, the qubit

is more likely in a variety of mixed states which clearly means the loss of information

associated with the non-perfect monitoring. As time increases, the axes of the ellipse

reduce and the qubit decays to the ground state.

Similarly, for the effect matrix Et, we first define a generic function β(xE, zE) of the

Bloch components in (6.16), and then we want to obtain a form of this function which

can describe the deterministic evolution for the backwards trajectories conditioned

on Et. The equation of motion for β(xE, zE) can be obtained after plugging the

stochastic Bloch equations (6.16) into Eq. (6.19) just like we did for α(xρ, zρ), and

again requiring all terms proportional to dWt cancel with each other,

β(xE, zE) = − 2

zE + 1
+

x2
E

(zE + 1)2
. (6.23)

Rewriting the above equation we have,

1 = β2(zE + 1 + 1/β)2 − β(x2
E + y2

E), (6.24)

Similar to the Eq. (6.21), this is again an ellipse equation which is centred at (x, z) =

(0,−(1 + 1/β)) and with major axis 1/
√−β (xE-direction) and minor axis 1/β (zE-
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direction). The time evolution of β(xE, zE) also satisfies the following differential

equation,

dβ

dt
= γ(−β + η − 2). (6.25)

The above equation must be solved backwards in time from the post-selected value at

a final time T with β(t = T ). The solution of the above equation β(xE, zE) is given

by

β(t) = η − 2 + [β(T )− η + 2]eγ(t−T ). (6.26)

From the Eq. (6.23), we know that for any pure post-selected state we have β(t =

T ) = −1 and the ellipse is also the full Bloch sphere. In Fig. 6.11(b), we plot the

time evolution of β for a final post-selection in a pure state at time T = 4γ−1 for

different quantum efficiency η. The results is similar to what we have in the case of

the density matrix: lower quantum efficiency results a faster backwards decay of the

ellipse towards a fully mixed effect matrix.

With both deterministic ellipses for ρ and E, we can obtain the restricted area

for the retrodicted expectation values of the Bloch components by combining the

two ellipses which gives an area in the ((σx)p, (σz)p)-plane (Blue dashed curves in

Fig. 6.10) from all possible combinations of the points on the two ellipses.

6.3.5 Distribution of Bloch components

In Fig. 6.12, we plot the distributions of the Bloch components x and z for quantum

trajectories at different times in order to further study the evolution dynamics of the

trajectories. The figure shows histograms of the x and z Bloch components for the

trajectories based on ρ, E and (ρ and E) for different pre and post-selections (the

three columns in Fig. 6.12) that were studied. The feature from the distribution

agrees very well with evolutions of the trajectories in Fig. 6.8, Fig. 6.9, and Fig. 6.10,

e.g., for the trajectories based on the density matrix ρt, the distributions are getting
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close to the x = 0, z = 1 (ground state) as the increasing decay time. For the effect

matrix Et, the distributions of the components go towards to the post-selected states

x = 0, 1,−1, z = 1, 0, 0 respectively. Moreover, we can see that the distributions

for the retrodiction trajectories based on both ρ and E are more biased toward the

x, z = ±1 compared to the distributions only based on ρt or Et. This result means

that we can make more confident predictions for the outcome of spin component

measurements in the past with more information after the measurement.

6.4 Conclusion

In this chapter, we use homodyne detection to continuously monitor the state of a

quantum emitter. We first give an analysis showing that the probability for the excited

state is modified by the post-selection by applying the Past Quantum State formalism.

In the case of spontaneous emission, we experimentally observe the emergence of the

weak values by pre- and post-selection and theoretically verify the experiment results.

The weak values are due to the small overlap between the pre- and post-selected

states and have been shown to offer metrological advantages [165–167]. We study

the evolution of the emitter state by employing the stochastic master equation. We

find that the the evolution of these trajectories based on ρt, Et and (ρt and Et) is

stochastic, but are restricted to deterministic regions in the Bloch sphere.
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Figure 6.12: Distribution of Bloch components at different times. (a) Time axis
showing that at times t = {0.42, 0.84, 1.26, 1.68}µs, we calculate the distributions
of x and z components. (b, c, d) Distribution of Bloch components x and z on a
logarithmic scale based on ρ, E and (ρ and E) respectively for pre- and post- selected
states (|ψi〉, |ψf〉) at different times depicted by corresponding colors in Fig. 6.12(a).
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Chapter 7

Conclusions and outlook

7.1 Conclusions

In the work of this thesis, we have verified the past quantum state theory in the

context of strong projective measurement and weak measurement by employing a

superconducting qubit. With the technique of quantum state tracking, we have

demonstrated that the Past Quantum State can make more confident predictions for

measurement results, which would be useful for parameter estimations. By applying

the Past Quantum State theory, we observed some interesting pre- and post-selected

effects of a quantum system such as weak values which is definitely helpful in under-

standing the foundations of quantum mechanics.

7.2 Tomography for E

One possible future work to do is to tomographically reconstruct the past quantum

state using experimental data. Let’s first briefly review the Past Quantum State

theory to refresh our mind. The state of a quantum system at time t can be described

by the density matrix ρ(t) which represents our knowledge of the system at that

time. The probability for the outcome m of some measurement Ωm can be given by

the expression P (m) = Tr(ΩmρΩ†m) as we have discussed before. In our experiment,

we can experimentally reconstruct the density matrix ρ(t) from the measurement
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data using the method of quantum state tomography which can be simply realized

by rotation pulses followed by a projective measurement. Depending on how much

knowledge we have about a quantum system, we can give a more complete description

of a quantum system by a past quantum state (ρ, E) using both information before

and after the measurement at time t, where E represents our knowledge of the system

after time t. Then the probability for the measurement outcome is expressed by

Pp(m) = Tr(ΩmρΩ†mE)∑
n Tr(ΩnρΩ†nE)

. As we demonstrated in Chapter 4, the past quantum state can

even make more confident predictions for the measurement outcomes. The question

thereby is how can we tomographically reconstruct the past quantum state from the

measurements carried out at time t?

If we want to reconstruct both ρ and E, we have to determine what is the pre-

selected state ρ at time t, and what is the post-selected state E that is used to

post-select the experimental runs in which the measurement data are obtained. If

we use a Hermitian Ωm, the probability Pp(m) are invariant under the exchange of

ρ and E. Thus even if we can obtain the density matrix ρ and effect matrix E with

large set of experimental operators Ωm, we still cannot distinguish these ρ and E. To

solve this issue, we may have to borrow the non-Hermitian measurement operators

and make composite, consecutive measurement at time t.

Our theory collaborator Professor Klaus Mølmer in Aarhus University proposed

that we can realize such measurement operators in mutually unbiased bases (MUB).

Two orthonormal bases of a Hilbert space are said to be mutually unbiased (MU) if

the transition probabilities from each state in one basis to all states of the other basis

are the same irrespective of which pair of states is chosen. That means we need two

orthogonal bases |m(j)〉 (j = 1, 2) for an N −dimensional Hilbert space which safisfy

|〈n(1)|m(2)〉| = 1/
√
N for all n, m. We can construct a two-parameter set of general

POVM measurement with the expression Ω
(j)
m,n = (|n(j+1)〉〈n(j+1)|)(|m(j)〉〈m(j)|) =

|n(j+1)〉〈m(j)|/
√
N which satisfies

∑
m,n(Ω

(j)
m,n)†(Ω

(j)
m,n) = I. The probability for a

measurement outcome (m, n) based on the past quantum state is given by

Pp(m,n; j) =
〈m(j)|ρ|m(j)〉〈n(j+1)|E|n(j+1)〉∑

m′,n′〈m′(j)|ρ|m′(j)〉〈n′(j+1)|E|n′(j+1)〉 (7.1)
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From the above equation, if E is normalized to have unit trace, we have the

following relations:

αj(m) ≡∑n Pp(m,n; j) = 〈m(j)|ρ|m(j)〉,
βj+1(n) ≡∑m Pp(m,n; j) = 〈n(j+1)|E|n(j+1)〉.

(7.2)

Based on the derivations above, we know that the MUB property ensures that the

effect matrix E from post-selection is not correlated with the density matrix ρ. There-

fore, we can use the above two separate sets of probabilities αj(m) and βj+1(n) to

tomographically reconstruct the density matrix ρ and the effect matrix E in the

normal tomography as we did before.
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Figure 7.1: Experimental sequences for Past Quantum state tomography. (a, b, c)
Different experiment sequences for different basis j. The qubit is first prepared in a
initial state ρ0. Then we apply a unitary rotation Rθ

y and weakly measure it which
causes the qubit dephasing. Later on, the qubit is subject sequential measurements
(X, Y), (Y, Z) and (Z, X) to realize the MUB. After these measurements, the qubit
is again subjected to weak measurement for some amount of time. Finally, the qubit
is rotated by a π/2 pulse along y followed by a projective measurement to determine
ET .

In the experiment, we can first prepare initial state to be either ground or excited

state by a π/2 rotation pulse along the y axis followed by a strong projective mea-
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surement. We then apply a unitary rotation Rθ
y to the qubit . After that, the qubit is

subject to probing which causes the qubit to dephase. Second, we then perform some

sequential measurements as illustrated in Fig. 7.1 and we can get the measurement

outcomes m,n for different j. Finally, we determine the value of the effect matrix ET

simply by a rotation pulse followed by a projective measurement. E can be propa-

gated backwards in time as we did in Chapter 4. We run the experiment many times

and then calculate αj(m) and βj+1(n) based on the occurrence of different value of

m and n for different j. Thus we can construct ρ and E from the data and compare

with the matrices we calculate by propagating the ρ forward and E backward with

different initial ρ0 and ET .
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[101] A. Lupaşcu, C. J. M. Verwijs, R. N. Schouten, C. J. P. M. Harmans, and J. E.
Mooij. Nondestructive Readout for a Superconducting Flux Qubit. Phys. Rev.
Lett., 93:177006, Oct 2004.

[102] I. Siddiqi, R. Vijay, M. Metcalfe, E. Boaknin, L. Frunzio, R. J. Schoelkopf, and
M. H. Devoret. Dispersive measurements of superconducting qubit coherence
with a fast latching readout. Phys. Rev. B, 73:054510, Feb 2006.

122



[103] S. J. Weber. Quantum Trajectories of a Superconducting Qubit. University of
California, Berkeley, 2014.

[104] D. H. Slichter. Quantum Jumps and Measurement Backaction in a Supercon-
ducting Qubit. University of California, Berkeley, 2014.

[105] Philippe Campagne-Ibarcq. Circuit Quantum electrodynamics. LPA-ENS Paris,
2015.

[106] Christopher Eichler and Andreas Wallraff. Controlling the dynamic range of a
Josephson parametric amplifier. EPJ Quantum Technology, 1(1):2, Jan 2014.

[107] R. Vijay. Josephson bifurcation amplifier: Amplifying quantum signals using a
dynamical bifurcation. University of California, Berkeley, 2008.

[108] C. W. Gardiner and M. J. Collett. Input and output in damped quantum
systems: Quantum stochastic differential equations and the master equation.
Phys. Rev. A, 31:3761–3774, Jun 1985.

[109] Carlton M. Caves, Joshua Combes, Zhang Jiang, and Shashank Pandey. Quan-
tum limits on phase-preserving linear amplifiers. Phys. Rev. A, 86:063802, Dec
2012.

[110] K. W. Murch, S. J. Weber, C. Macklin, and I. Siddiqi. Observing single quantum
trajectories of a superconducting qubit. Nature, 502:211, 2013.

[111] Nadav Katz, Matthew Neeley, M. Ansmann, Radoslaw C. Bialczak,
M. Hofheinz, Erik Lucero, A. O’Connell, H. Wang, A. N. Cleland, John M.
Martinis, and Alexander N. Korotkov. Reversal of the Weak Measurement
of a Quantum State in a Superconducting Phase Qubit. Phys. Rev. Lett.,
101:200401, Nov 2008.

[112] E. Il’ichev, N. Oukhanski, A. Izmalkov, Th. Wagner, M. Grajcar, H.-G. Meyer,
A. Yu. Smirnov, Alec Maassen van den Brink, M. H. S. Amin, and A. M.
Zagoskin. Continuous Monitoring of Rabi Oscillations in a Josephson Flux
Qubit. Phys. Rev. Lett., 91:097906, Aug 2003.

[113] H. Wiseman and G. Milburn. Quantum Measurement and Control. Cambridge
University Press, 2010.

[114] K. Jacobs and D. A. Steck. A straightforward introduction to continuous quan-
tum measurement. Contemp. Phys., 47:279, 2006.

[115] Søren. Gammelmark. Efficient parametric inference, estimation and simulation
of open quantum systems. aarhus, 2013.

[116] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Infor-
mation. Cambridge University Press, Cambridge, England, 2000.

123



[117] Michael A. Armen, Anthony E. Miller, and Hideo Mabuchi. Spontaneous
Dressed-State Polarization in the Strong Driving Regime of Cavity QED. Phys.
Rev. Lett., 103:173601, Oct 2009.

[118] S. A. Vetterling W. T. Press, W. H. Teukolsky and B. P. Flannery. Numerical
Recipes: The Art of Scientific Computing. Cambridge University Press, New
York, 2007.

[119] R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. Proc. IEEE, 77:257, Aug 1989.

[120] D. H. Slichter, R. Vijay, S. J. Weber, S. Boutin, M. Boissonneault, J. M. Gam-
betta, A. Blais, and I. Siddiqi. Measurement-Induced Qubit State Mixing in Cir-
cuit QED from Up-Converted Dephasing Noise. Phys. Rev. Lett., 109:153601,
Oct 2012.

[121] Zijun Chen, Julian Kelly, Chris Quintana, R. Barends, B. Campbell, Yu Chen,
B. Chiaro, A. Dunsworth, A. G. Fowler, E. Lucero, E. Jeffrey, A. Megrant,
J. Mutus, M. Neeley, C. Neill, P. J. J. O’Malley, P. Roushan, D. Sank,
A. Vainsencher, J. Wenner, T. C. White, A. N. Korotkov, and John M. Marti-
nis. Measuring and Suppressing Quantum State Leakage in a Superconducting
Qubit. Phys. Rev. Lett., 116:020501, Jan 2016.

[122] Evan Jeffrey, Daniel Sank, J. Y. Mutus, T. C. White, J. Kelly, R. Barends,
Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. Megrant, P. J. J. O’Malley,
C. Neill, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and John M.
Martinis. Fast Accurate State Measurement with Superconducting Qubits.
Phys. Rev. Lett., 112:190504, May 2014.

[123] J. E. Johnson, C. Macklin, D. H. Slichter, R. Vijay, E. B. Weingarten, John
Clarke, and I. Siddiqi. Heralded State Preparation in a Superconducting Qubit.
Phys. Rev. Lett., 109:050506, Aug 2012.
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