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ABSTRACT OF THE DISSERTATION

Topics in QCD at Nonzero Temperature and Density

by

Kamal Pangeni

Doctor of Philosophy in Physics

Washington University in St. Louis, 2017

Professor Michael C. Ogilvie, Chair

Understanding the behavior of matter at ultra-high density such as neutron stars require

the knowledge of ground state properties of Quantum chromodynamics (QCD) at finite

chemical potential. However, this task has turned out to be very difficult because of two

main reasons: 1) QCD may still be strongly coupled at those regimes making perturbative

calculations unreliable and 2) QCD at finite density suffers from the sign problem that makes

the use of lattice simulation problematic and it even affects phenomenological models. In

the first part of this thesis, we show that the sign problem in analytical calculations of finite

density models can be solved by considering the CK -symmetric, where C is charge conjuga-

tion and K is complex conjugation, complex saddle points of the effective action. We then

explore the properties and consequences of such complex saddle points at non-zero tempera-

ture and density. Due to CK symmetry, the mass matrix eigenvalues in these models are not

xiii



always real but can be complex, which results in damped oscillation of the density-density

correlation function, a new feature of finite density models. To address the generality of such

behavior, we next consider a lattice model of QCD with static quarks at strong-coupling.

Computation of the mass spectrum confirms the existence of complex eigenvalues in much

of temperature-chemical potential plane. This provides an independent confirmation of our

results obtained using phenomenological models of QCD.

The existence of regions in parameter space where density-density correlation function

exhibit damped oscillation is one of the hallmarks of typical liquid-gas system. The formalism

developed to tackle the sign problem in QCD models actually gives a simple understanding

for the existence of such behavior in liquid-gas system. To this end, we develop a generic field

theoretic model for the treatment of liquid-gas phase transition. An effective field theory

at finite density derived from a fundamental four dimensional field theory turns out to be

complex but CK symmetric. The existence of CK symmetry results in complex mass eigen-

values, which in turn leads to damped oscillatory behavior of the density-density correlation

function.

In the last part of this thesis, we study the effect of large amplitude density oscillations

on the transport properties of superfluid nuclear matter. In nuclear matter at neutron-

star densities and temperature, Cooper pairing leads to the formations of a gap in the

nucleon excitation spectra resulting in exponentially strong Boltzmann suppression of many
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transport coefficients. Previous calculations have shown evidence that density oscillations of

sufficiently large amplitude can overcome this suppression for flavor-changing β processes via

the mechanism of “gap-bridging”. We address the simplifications made in that initial work,

and show that gap bridging can counteract Boltzmann suppression of neutrino emissivity for

the realistic case of modified Urca processes in matter with 3P2 neutron pairing.
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Chapter 1

INTRODUCTION

1.1 Introduction to Quantum Chromodynamics

The discovery of numerous new particles during the 1960’s challenged the notion that

protons and neutrons are the fundamental particles of nature and they, along with electrons,

make up all the matter in our universe. This led Murray Gell-Mann [1] and George Zweig

[2] to independently propose the idea that hadrons such as protons and neutrons are not

fundamental but are composed of elementary particles called quarks that have fractional

electric charge. However, particles with fractional electric charges were not known during

that time. This lead to the search for particles with fractional electric charge but none were

discovered in nature. However, a series of inelastic baryon scattering experiments [3–5] done

in the 1970’s provided strong support for the existence of quarks inside of protons and neu-

trons even though they were not directly observed in nature. This immediately raised the

question about the nature of the force that binds the quarks inside of protons and neutrons.

It was expected that these forces were carried by the exchange of bosons so it was natural

to assume that the force between quarks were mediated by some boson field that later came

to be known as the gluon. The existence of the gluon was later confirmed primarily by the

discovery of 3-jet events in the inelastic collision of electrons and positrons [6–8].
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The modern theory describing the interaction between quarks and gluons is known as

quantum chromodynamics(QCD). It is a gauge theory with local symmetry group SU(3)c,

the group of 3×3 unitary matrices with unit determinant, in the internal color space. The

fundamental degrees of freedom are the quark fields ψfi and gluons Aaµ. The index i in

quark field refers to the color degrees of freedom (i = red, green or blue) while f refers to

the different types of quarks commonly referred to as flavors (f = up, down, strange, top,

bottom or charm). In QCD, each quark flavor belong to the fundamental representation of

SU(3)c and they are represented by 3 dimensional column vector

ψ(x) =


ψr(x)

ψb(x)

ψg(x)

 (1.1)

where r, g and b refers to the color degrees red, green and blue respectively. The gluon

field Aaµ belongs to the adjoint representation of SU(3)c and carries color with color index

a=1,...,8. The eight different colors are associated with the eight independent generators of

SU(3)c.

The Lagrangian density of QCD is:

L =
∑
f

ψ̄fi (i/∂ −mf )
ijψfj −

1

4
F µν
a Fµνa − gsψ̄fjAµa

λaji
2
γµψ

f
i (1.2)

where mf is the mass of quark with flavor f , gs is the strong coupling constant, γµ’s are
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the Dirac matrices with Dirac index µ =1,...,4, λa’s are the Gell-Mann matrices, and F µν
a =

∂µAνa − ∂νAµa − gs[A
µ
a , A

ν
a] is the field strength. The first term in the Lagrangian density

(Eq. 1.2) represents the kinetic energy of the quarks, while the second term describes the

interaction between gluons. The last term represents the minimal coupling between quarks

and gluons. This Lagrangian, by construction, is invariant under transformation by a local

symmetry group SU(3)c. Under SU(3)c, the quark field and gluon field transform as

ψ → U(x)ψ

Aµ → U(x)AµU
−1(x) +

1

gs
(∂µU(x))U−1(x)

(1.3)

where U(x) = exp(igsθa(x)λa
2

) ∈ SU(3) for some real function θa(x).

In addition to the local symmetry associated with color, the QCD Lagrangian (Eq. 1.2)

has global symmetries such as a global U(1) symmetry associated baryon number conserva-

tion and approximate chiral symmetry, which will be discussed in section 1.1.1.

1.1.1 Chiral Symmetry

The six quark flavors can be naturally divided into two sectors: light (up, down, strange)

and heavy (top, bottom, charm). As a first order approximation the quarks in the light sector

can be taken to be massless and the heavy quarks ignored. In this limit, the QCD Lagrangian

has a much larger symmetry associated with the chiral flavor symmetry SU(3)R ⊗ SU(3)L.
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To see this we separate the quark fields according to their chirality,

ψ = ψR + ψL and ψ̄ = ψ̄R + ψ̄L (1.4)

where ψR = 1/2(1 + γ5)ψ, ψL = 1/2(1− γ5)ψ, ψ̄R = 1/2(1− γ5)ψ̄ and ψ̄L = 1/2(1 + γ5)ψ̄. If

we plug this decomposition back into the Lagrangian then it falls apart into two components,

the left handed part and right handed part:

L = L1(ψR, ψ̄R) + L2(ψL, ψ̄L). (1.5)

Each term possess symmetry under global SU(3)L/R rotation in flavor space so the overall

symmetry group is the SU(3)L ⊗ SU(3)R. This is known as chiral symmetry and is sponta-

neously broken by the QCD vacuum. An important consequence of spontaneous symmetry

breakdown is the existence of massless Goldstone bosons. In the case of chiral symmetry

breakdown, the associated Goldstone bosons are the pions and pseudoscalar mesons. If the

quarks were truly massless then the pions would also have been massless but up and down

quarks have small mass so we expect pions to have small mass, which is indeed the case. A

phenomenological model of QCD with chiral symmetry breaking effects will be introduced

in sec 1.7, and further analysis will be presented in chapter 3.
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1.2 Asymptotic freedom

Asymptotic freedom refers to the phenomenon where the interaction strength between

particles gets weaker with increasing energy. In the context of QCD, it was discovered in

1973 by D.J. Gross, F. Wilczek [9] and H.D.Politzer [10]. The change in coupling constant

(often referred as “running of the coupling constant”) with energy scale is mathematically

expressed as

µ
d

dµ
α(µ)|α0 = β(α) (1.6)

where αs = g2
s/4π and α0 refers to the fixed bare coupling . The beta function, β(α), in the

case of QCD for Nf flavor of quarks to lowest order is [11]

β(α) =
α2

π
(−33/6 +Nf/3). (1.7)

We can see that for Nf < 33/2 the beta function is negative, which implies that the coupling

(α) decreases with increasing energy scale (µ). This is important as it allows for pertuba-

tive QCD calculations and to test it against the result of high energy experiments. Major

confidence in QCD as theory of strong interaction came from the agreement of perturbative

calculations with results of experiments at high energies. In addition, asymptotic freedom

implies that the perturbation theory is valid at high temperature and density and it can use

it to explore the phase structure in that regime. At low temperature and density, where the

coupling is still large, the only first principle tool we have to study the phase structure is

lattice QCD, which will be introduced in the next section.
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1.3 Lattice QCD

At low energies where the QCD coupling is strong and perturbative approaches fail, lattice

QCD provides an ab initio tool for calculating the hadron spectrum [12, 13] and studying non-

perturbative aspects of QCD such as color confinement [14] and chiral symmetry breaking

[15, 16]. It is formulated on a discrete euclidean space-time grid that naturally provides

a cutoff and thus regularizes the ultraviolet behavior of the theory. Once formulated on a

lattice, it can be treated as a statistical mechanics system [17] which can be simulated on

computer systems using standard Monte-Carlo techniques [18]. Lattice models can also be

studied using standard statistical mechanics methods such as mean field approximation and

strong coupling expansion [19].

1.3.1 Fermionic action on lattice

Consider the fermionic part of the QCD action in the continuum

S0
F [ψ, ψ̄] =

∫
d4xψ̄(x)(γµ∂µ +m)ψ(x). (1.8)

To obtain the lattice version of this action we start by discretizing spacetime into 4-dimensional

euclidean square lattice “Λ” with lattice spacing “a”. In principle, different discretization

schemes can be used, but one needs to recover the correct continuum limit as the lattice

spacing “a” goes to zero. After discretization, we place the fermions at each lattice site and
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replace the derivative and integral in Eq. 1.8 with their discrete versions as follows

ψ(x)→ ψ(n)

ψ̄(x)→ ψ̄(n)

∂µψ →
1

2a
(ψ(n+ µ̂)− ψ(n− µ̂))∫

d4x→ a4
∑
n∈Λ

.

(1.9)

With this straightforward substitution we end up the following lattice action:

S0
F [ψ, ψ̄] = a4

∑
n∈Λ

ψ̄(n)

(
4∑

µ=1

γµ
ψ(n+ µ̂)− ψ(n− µ̂)

2a
+mψ(n)

)
. (1.10)

However, this naive discreitized form of the lattice action is not gauge invariant. Under

gauge transformation the fermion fields transform as

ψ(n)→ ψ′(n) = Ω(n)ψ(n)

ψ̄(n)→ ψ̄′(n) = ψ̄(n)Ω(n)†
(1.11)

where Ω(n) is an element of the gauge group. It is easy to see that while the mass term in

Eq. 1.10 is gauge invariant, the derivative term is not. Gauge invariance can be restored by

introducing a new field Uµ(n) and redefining the derivative in the following way:

∂µψ →
1

2a
(Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)) (1.12)
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where U−µ(n) = Uµ(n − µ̂)†. We require Uµ(n) to have following transformation property

under a gauge transformation

Uµ(n)→ U ′µ(n) = Ω(n)Uµ(n)Ω(n+ µ̂)†. (1.13)

With this new definition of derivative, we get

S0
F [ψ, ψ̄] = a4

∑
n

ψ̄(n)

(
4∑

µ=1

γµ
Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)

2a
+mψ(n)

)
(1.14)

which is now gauge invariant. Uµ acts as a connection between fermions at adjacent lattice

sites, so it is often referred to as “link variable”. The link variable is related to the continuum

gauge fields Aµ via the relation

Uµ(n) = exp(iaAµ(n)). (1.15)

Though gauge invariant, the lattice action in Eq. 1.14 has other lattice artifacts such as the

fermion doubling problem. We will not discuss these issues here but interested readers can

refer to [20] for more discussion.

1.3.2 Gauge fields on lattice

The link variable Uµ(n) was introduced in the previous section to preserve the gauge

invariance of the fermionic part of the lattice action. These link variables are the lattice

counterpart of the fields Aµ and play a fundamental role in the construction of the action for

8



the gluonic degrees of freedom in lattice. Instead of starting with the continuum action for

gluon fields and discretizing it, one can use gauge invariant objects constructed out of links

to build an action for gluon fields on the lattice. Gauge invariant objects on the lattice can

be constructed by taking the trace over the products of link variables Uµ(n) along a closed

path. The simplest non-trivial closed path contour with perimeter of four links is called a

plaquette. A plaquette in the µ− ν plane is defined as

Uµν = Uµ(n)Uν(n+ µ̂)Uµ(n+ ν̂)†Uν(n)†. (1.16)

A gauge invariant action constructed out of these plaquettes is commonly referred to as the

“plaquette action” or the Wilson action, and it has the following form:

SG[U ] =
2N

g2

∑
n

∑
µ<ν

Re tr[1− Uµν(n)]. (1.17)

The normalization factor in Eq. 1.17 is chosen so that we recover the correct continuum

limit as a → 0. It is easy to expand the link variables in power series of Aµ’s and verify

that the leading order expansion is indeed proportional to F 2
µν , the correct continuum limit

[21]. An important gauge invariant quantity that plays a crucial role in our understanding

of confinement is the trace of the Wilson loop. The Wilson loop is defined as

W [U ] =
∏

(n,µ)∈L

Uµ(n) (1.18)
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β=1/T

Figure 1.1: The Polyakov loop as the worldline of a heavy particle.

where L refers to a closed loop. The trace of a rectangular Wilson loop of spatial width

L and time length T can be associated with a particle-antiparticle pair that are created at

one time and move to a separation L and move forward in time for an interval T, and then

annihilate [22]. The expectation value of the Wilson loop is associated with the effective

potential of the heavy quark.

〈TrRW [C]〉 ∼ exp[−VR(L)T ] (1.19)

where VR(L) is the heavy quark-antiquark potential for particles in representation R.

V (L)→ σRL+O(1) (1.20)

σR is the string tension. A non-zero value of the string tension implies confinement as the

potential rises linearly with distance. For a review of quark confinement see [23].
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1.4 Pure Gauge theory at finite temperature

Finite temperature is implemented by compactifying the euclidean time direction. The

length of the compactified dimension is given by β, the inverse of the temperature T . String

tension at finite temperature can be measured using the Polyakov loop, P (~x), which is

basically the Wilson loop that is periodic in the compactified direction, as show in Fig. 1.1

[24]. Formally,

P (~x) = P exp[i

∫ β

0

dx4A4(x)] (1.21)

where P refers to path ordering. The one-point function of the Polyakov loop, 〈TrRP (~x)〉,

can be interpreted as the Boltzmann factor exp(−βFR) where FR is the free energy needed

to add static quarks in the system. Under Z(N), the center of the group SU(3), the lattice

action remains invariant but the Polyakov loop transforms as P (~x) → zP (~x). In the case

of unbroken Z(N), 〈TrRP (~x)〉 = 0, which implies FR = ∞. This implies confinement as

an infinite amount of free energy is required to introduce the new quark into the system.

However, in the case of broken Z(N), 〈TrRP (~x)〉 6= 0 implying FR 6= ∞. This signals the

deconfined phase of QCD. The string tension at finite temperature can be determined from

the two-point function of the Polyakov loop

〈TrRP (~x)TrRP (~y)〉 ∼ e−βσR|~x−~y| (1.22)
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1.5 QCD phase diagram

QCD is expected to have a rich phase structure at finite temperature and density[25, 26].

The theoretical understanding of different phases is important as they can be realized in

heavy ion experiments, in the early universe and in compact stars [27–29]. Furthermore,

the study of different phases and the transition between them can provide insight into non-

perturbative effects such as confinement and chiral symmetry breaking. These phases, in

principle, can be studied using both analytical and numerical methods. However, the strong

coupling nature of the QCD vacuum has limited the analytical study to high energy regions

where the coupling is weak. In strong coupling regions, numerical methods based on lat-

tice simulations have been the principle method to study phase structure from first principles.

Fig. 1.21 shows the conjectured phase diagram of QCD in the temperature-chemical po-

tential plane. We can see three main phases: the hadronic phase at low temperature and

density, the Quark Gluon Plasma (QGP) phase at high temperature and the density and

the color superconducting phase at high density and low temperature. The hadronic phase

is characteized by permanent confinement of quarks and the breaking of chiral symmetry

by quark-antiquark condensate, while the QGP phase is characterized by the presence of

free quarks and restoration of chiral symmetry. In the color superconducting phase, chiral

symmetry is again broken in this case by the diquark condensate.

1Figure from: http://www.jicfus.jp/en/wp-content/uploads/2012/12/QGPT.jpg
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Figure 1.2: Phase diagram of QCD

The phase structure along the temperature axis and at zero density has been extensively

studied using lattice simulations [30, 31]. These studies provided the first conclusive theo-

retical evidence for the existence of the deconfined Quark Gluon Plasma (QGP) phase which

was later confirmed by the elliptic flow measurments from heavy ion collision experiments

at LHC and RHIC [27]. Early studies on the lattice with gluons only showed a first order

transition from a low temperature hadronic phase to a high temperature QGP phase [32–34].

Improved calculations performed using physical quark masses revealed that the QCD phase

transition is a crossover [35] that happens at a temperature of around 140 MeV.

While lattice simulation of QCD at finite temperature has been very successful, the study
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of the phase structure at finite density has been severely restricted by the sign problem. As

a result, most of our understanding of this region is based on the study of phenomenological

models. Results obtained from phenomenological models [22] suggest a first order transition

from the hadronic phase to a QGP phase at a density around the scale of the hadron mass.

With increasing temperature, the first order transition weakens and the critical density at

which the first order transition occurs decreases. Eventually, the first order transition ends

at a second order critical end point as shown in Fig. 1.2. The critical end point plays a

very significant role in determining the universal properties of the theory. The QCD critical

end point is widely expected to fall in the Ising, or liquid-gas universality class [36]. There

have been experimental efforts to determine the exact location and universality calls of this

critical end point [37].

At asymptotically high density and low temperature, the weakly interacting quarks pair

up to form “Cooper pairs ”, giving rise to color superconductivity [38, 39]. The type of

pairing depends on the actual density of the matter. At the highest density, all three flavors

of quark pair symmetrically and produce a color-flavor-locked (CFL) phase [40]. At lower

densities other pairing patterns are preferred, which result in a variety of phases such as

acrystalline phase, a two-flavor pairing, or spin-locked phase. For a through review about

different phases of color superconducting matter see [26].
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1.6 Nature of the sign Problem in finite density QCD

The partition function in lattice QCD is calculated by a performing the path integral over

all field configurations weighted by the exponential of the action in Euclidean space-time.

ZLQCD =

∫
DADψDψ̄e−SLQCD (1.23)

where A represents the gluon field, ψ and ψ̄ represents the fermionic fields, and SLQCD is

the QCD action.

SLQCD =

∫
d4x

(
1

4
FµνF

µν − ψ̄M(A,m, µ)ψ

)
(1.24)

where M(A,m, µ) = /D +m+ µγ0 is the Dirac Operator. The fermionic part of the integral

can be done analytically, resulting in

ZLQCD =

∫
DA det[ /D +m+ µγ0] exp

(
−
∫
d4x

1

4
FµνF

µν

)
(1.25)

where det[ /D + m + µγ0] is the functional determinant. A popular method for calculat-

ing this type of integral numerically is Monte-Carlo simulation which works as long as the

weight function is positive. The determinant of the Dirac operator in Eq. 1.24 satisfies

det( /D +m+ µγ0) = det∗( /D +m− µ∗γ0), which constrains the determinant to be real only

when µ is zero or purely imaginary. For real non zero values of µ the determinant is com-

plex so the usual Monte-Carlo techniques do not work. This problem of complex weights is

commonly referred to as the sign problem and is found in many areas of physics [41–43].
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The sign problem in QCD has been known since the first lattice simulation at nonzero

chemical potential was carried out by Barbour et. al in 1986 [44], and no definitive solution

has been found yet. Due to the lack of lattice results, phenomenological models have been a

popular tool to explore many features of finite density QCD. However, analytical calculations

in these phenomenological models in mean field approximation are also affected by sign

problem. This thesis will present a way to solve the sign problem that appears in analytical

calculations in mean-field versions of finite density models. The next section will provide an

introduction to an effective model of QCD.

1.7 Nambu-JonaLasino model

As mentioned in previous sections, the enormous difficulties one encounters in analytical

as well as numerical treatment of QCD has motivated physicists to study simple, mathemat-

ically tractable, models that embody the symmetry of QCD and its spontaneous breakdown.

As a consequence, these models have many features similar to QCD and can be studied

analytically. One such popular model is the Nambu-JonaLasinio (NJL) model that was orig-

inally constructed as theory for the nucleon [45, 46] but later reinterpreted as a theory of

quarks. It embodies the chiral symmetry of QCD and its spontaneous breakdown at low en-

ergies which is responsible for the dynamical generation of quark masses. It also reproduces

many well known results of current-algebra that hold for QCD [47–49].
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The Lagrangian for NJL model with two flavors of quarks is

L = ψ̄(i/∂ −mq)ψ +G{(ψ̄ψ)2 + (ψ̄iγ5~τψ)2} (1.26)

where mq is the current mass of quarks, G is the four-fermion coupling and ~τ are the gen-

erators of flavor symmetry group SU(2). By construction this Lagrangian is invariant under

SUV (2)⊗SUA(2)⊗UV (1) symmetry, the symmetries of two flavor QCD. Unlike QCD, where

the fermions interact by exchange of gluons, the fermion interaction in the NJL model is

point-like. As a consequence this model is non-renormalizable, and a cutoff parameter is

needed to regulate the theory.

A mean field approximation to the thermodynamic potential is given by

VNJL =
1

4G
(M −mq)

2− 2NcNf

∫ Λ

0

d3p

(2π)3
{Ep +T log[1 + e−(Ep−µ)/T ] +T log[1 + e−(Ep+µ)/T ]}

(1.27)

where Ep =
√
p2 +M2, M = mq−2G 〈q̄q〉 and Λ is the three-momentum cut-off. Minimizing

the effective potential of NJL with respect to M results in a self consistent equation for M.

M = mq +
4GNcNf

π2

∫ Λ

0

p2M

Ep

(
1− 1

1 + e(Ep−µ)/T
− 1

1 + e(Ep+µ)/T

)
(1.28)

The solution of this self consistent equation is plotted as a function of temperature in Fig.

1.3 for mq = 5.5 MeV, G = 5.496 GeV−2 and Λ = 631.4 MeV. These parameters are chosen
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Figure 1.3: The constituent quark mass (M) as function of temperature in the two flavor
NJL model.

so that the correct pion mass and decay constant are reproduced at zero temperature [47].

As clearly seen in the plot, the constituent quark mass (M) is large for low temperatures

reflecting the spontaneous breakdown of chiral symmetry (〈q̄q〉 6= 0). However, at large

temperature the constituent masss approaches the bare mass reflecting the restoration of

chiral symmetry (〈q̄q〉=0).

1.8 Polyakov loop extended NJL model

The NJL model has had widespread success in describing the low-energy hadronic physics

that is dominated by chiral symmetry. However, this model lacks quark confinement which

is an important aspect of QCD. Conceptually the phenomena of deconfinement and chiral

symmetry restoration are entirely different, but lattice simulations with dynamical quarks

have shown that they occur around the same temperature [50, 51]. This suggests an interplay

between the order parameters of chiral dynamics and deconfinement, the chiral condensate

(〈q̄q〉) and the Polyakov loop (P ) respectively. The first successful study to reproduce both
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deconfinement and chiral-symmetry restoration was done by Gocksch and Ogilvie in the

strong coupling lattice model using an expansion for a large number of dimensions [52]. In the

context of the NJL model, the effect of Polyakov loop on chiral restoration was first studied

in [53], where the authors found that chiral restoration in quenched QCD depends crucially

on the Z3 phase of the Polyakov loop. Later, Kenji Fukushima extended the NJL model by

introducing the effective potential for Polyakov loop which is now commonly referred to as

PNJL model [54]. The details of the PNJL model is discussed in chapter 3.
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Chapter 2

COMPLEX SADDLE POINTS IN QCD AT FINITE
TEMPERATURE AND DENSITY

This chapter contains the materials published under the same title 1. This work was done
in collaboration with Dr. Hiromichi Nishimura under the supervision of my advisor, Prof.
Michael Ogilvie

As discussed in the introduction, the sign problem is a fundamental issue in the study

of QCD at finite density, manifesting as complex weights in the path integral that make

lattice simulations extremely problematic [41–43]. However, the sign problem also appears

in analytical calculations of mean-field type. Here we show that the sign problem can be

solved in such calculations provided a fundamental symmetry of finite-density models, CK

symmetry, is respected. This leads to the analytic continuation of Polyakov loop eigenvalues

into the complex plane from the unit circle. Our results are complementary to recent work on

simulations of lattice field theories at finite densities using the theory of Lefschetz thimbles

[55–60], and give an indication of how analytical and simulation results might be combined

to give a comprehensive picture of gauge theories at finite density.

Let us consider an SU(N) gauge theory coupled to fermions in the fundamental repre-

sentation. It is well known that the log of the fermion determinant, log det (µ,A), which is a

function of the quark chemical potential µ and the gauge field A, can be formally expanded as

a sum over Wilson loops with real coefficients. For a gauge theory at finite temperature, the

1Nishimura, H., Ogilvie, M.C. and Pangeni, K., 2014. Complex saddle points in QCD at finite temperature
and density. Physical Review D, 90(4), p.045039.
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sum includes Wilson loops that wind nontrivially around the Euclidean timelike direction;

Polyakov loops, also known as Wilson lines, are examples of such loops. At µ = 0, every

Wilson loop TrFW appearing in the expression for the fermion determinant is combined

with its conjugate TrFW
† to give a real contribution to path integral weighting. This can

be understood as a consequence of charge conjugation invariance C, which acts on the gauge

field as

C : Aµ → −Atµ (2.1)

and thus exchanges TrFW and TrFW
†. When µ 6= 0, Wilson loops with nontrivial winding

number n in the x4 direction receive a weight enβµ while the conjugate loop is weighted

by e−nβµ. Thus it is seen that these loops break charge conjugation invariance when µ 6=

0. However, TrFW transforms into itself under the combined action of CK, where K is

the fundamental antilinear operation of complex conjugation. Thus the theory is invariant

under CK even in the case µ 6= 0. For fermions, CK symmetry implies the well-known

relation det (−µ,Aµ) = det (µ,Aµ)∗ for Hermitian Aµ, but can be used with bosons as well

as fermions.

Given the existence of the symmetry CK at finite density, we wish to ensure that, in

the absence of spontaneous symmetry breaking, calculational methods of all types respect

the symmetry. For perturbative or mean-field type calculations, this leads naturally to the

consideration of complex but CK-symmetric saddle points for some effective potential at

finite temperature and density Veff , such that the free energy density is given by the value
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of Veff at the dominant saddle point. Such saddle points have been seen before in finite-

density calculations [61–64]. A field configuration is CK symmetric if −A†µ is equivalent to

Aµ under a gauge transformation. For such a field configuration, it is easy to see that every

Wilson loop is real and thus det (µ,Aµ) is real and positive.

Let us consider the Polyakov loop P associated with some particular field configuration

that is CK symmetric. We can transform to Polyakov gauge where A4 is diagonal and time

independent, and work with the eigenvalues θj defined by

P (~x) = diag
[
eiθ1(~x), · · · , eiθN (~x)

]
(2.2)

where the θj’s are complex but satisfy
∑

j θj = 0. Because we are primarily interested in

constant saddle points, we suppress the spatial dependence hereafter. Invariance under CK

means that the set
{
−θ∗j

}
is equivalent to the {θj} although the eigenvalues themselves may

permute. In the case of SU(3), we may write this set uniquely as

{θ − iψ,−θ − iψ, 2iψ} . (2.3)

This parametrizes the set of CK-symmetric SU(3) Polyakov loops. Notice that both

TrFP = eψ2 cos θ + e−2ψ (2.4)

22



and

TrFP
† = e−ψ2 cos θ + e2ψ (2.5)

are real, but they are equal only if ψ = 0. In the usual interpretation of the Polyakov loop

expectation value, this implies that the free energy change associated with the insertion

of a fermion is different from the free energy change associated with its antiparticle. It

is easy to check that the trace of all powers of P or P † are all real, and thus all group

characters are real as well. This parametrization represents a generalization of the Polyakov

loop parametrization used in the application of mean-field methods to confinement, e.g.,

in PNJL models [65] or in gauge theories with double-trace deformations [66, 67]. This

parametrization can be generalized to include finite-density models for arbitrary N .

The existence of complex CK-symmetric saddle points provides a fundamental approach

to non-Abelian gauge theories that is similar to the heuristic introduction of color chemical

potentials, and naturally ensures the system has zero color charge, i.e., all three charges

contribute equally [68]. In the case of SU(3), extremization of the thermodynamic potential

with respect to θ leads to the requirement 〈nr〉 − 〈ng〉 = 0 where 〈nr〉 is red color density,

including the contribution of gluons. Similarly, extremization of the thermodynamic poten-

tial with respect to ψ leads to 〈nr〉+ 〈ng〉 − 2 〈nb〉 = 0. Taken together, these two relations

imply that 〈nr〉 = 〈ng〉 = 〈nb〉.

We demand that any saddle point solution be stable to constant, real changes in the

Polyakov loop eigenvalues, corresponding for SU(3) to constant real changes in A3
4 and A8

4.
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Consider the (N − 1)× (N − 1) matrix Mab, defined in Polyakov gauge as

Mab ≡ g2 ∂
2Veff

∂Aa4∂A
b
4

. (2.6)

The stability criterion is then that the eigenvalues of M must have positive real parts. At

CK-symmetric saddle points, the eigenvalues will be either real or part of a complex conjugate

pair. In the case of SU(3), the matrix M may also be written in terms of derivatives with

respect to θ and ψ as

M =
g2

T 2

 1
4

∂2Veff
∂θ2

i
4
√

3

∂2Veff
∂θ∂ψ

i
4
√

3

∂2Veff
∂θ∂ψ

−1
12

∂2Veff
∂ψ2

 . (2.7)

This stability criterion generalizes the stability criterion used previously for color chemical

potentials, which was ∂2Veff/∂ψ
2 < 0. Crucially, the mass matrix M is invariant under

M∗ = σ3Mσ3, which is a generalized parity-time (PT ) symmetry transformation [69, 70]. It

is easy to see that this relation implies that M has either two real eigenvalues or a complex

eigenvalue pair.

We first illustrate the working of CK symmetry using the well-known one-loop expressions

for the effective potential of particles moving in a constant background Polyakov loop. The

one-loop contribution to the effective potential of Nf flavors of fundamental fermions moving

in a background gauge field A is given by

βVV f
eff = −Nf log [det (µ,A)] (2.8)
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where det again represents the functional determinant of the Dirac operator and βV is the

volume of spacetime. A compact expression for the effective potential of massless fermions

when the eigenvalues of P are complex was derived using zeta function methods in [71]. It

will be useful in what follows to repeat their derivation and check the reality of V f
eff for

CK-symmetric backgrounds. Our starting point is the finite-temperature contribution to the

effective potential of a single Dirac fermion in a U(1) background Polyakov loop characterized

by an angle θ:

vf (θ) = −2T

∫
d3k

(2π)3

{
log
[
1 + e−βωk+iθ

]
+ log

[
1 + e−βωk−iθ

]}
. (2.9)

Setting the fermion mass to zero, and expanding the logarithms, we obtain

vf (θ) = −4T 4

π2

∞∑
n=1

(−1)n+1

n4
cos (nθ) . (2.10)

After expanding the cosine and interchanging the order of summation, we get

vf (θ) = −4T 4

π2

∞∑
m=0

(−1)mθ2mη(4− 2m)

(2m)!
(2.11)

where η is the Dirichlet eta function. Only the first three terms of the expansion are nonzero,

and we arrive at

vf (θ) = −4T 4

π2

(
θ4

48
− π2θ2

24
+

7π4

720

)
. (2.12)

This expression is valid provided Re [θ] ∈ (−π, π). In general, if θ is complex, so is vf .
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However, the free energy of quarks in a CK-symmetric background Polyakov loop is always

real. For SU(3), we have

Vf (θ, ψ,T, µ) = Nf

(
vf

(
θ − iψ − iµ

T

)
+ vf

(
−θ − iψ − iµ

T

)
+ vf

(
2iψ − iµ

T

))
(2.13)

which is explicitly real. For two massless flavors, the result is

Vf (θ, ψ,T, µ) = − µ4

2π2
+ T 2

(
−µ2 +

2θ2µ2

π2
− 6µ2ψ2

π2

)
+

4T 3 (θ2µψ + µψ3)

π2

+
T 4 (−7π4 + 20π2θ2 − 10θ4 − 60π2ψ2 + 60θ2ψ2 − 90ψ4)

30π2
. (2.14)

Because we are interested in the analytic continuation of Polyakov loop eigenvalues into

the complex plane, we need expressions for the gauge bosons as well as for fermions. Our

starting point in this case is

vb(θ) = 2T

∫
d3k

(2π)3

{
log
[
1− e−βωk+iθ

]
+ log

[
1− e−βωk−iθ

]}
(2.15)

which represents the one-loop of two gauge bosons of opposite U(1) charge. A naive repetition

of the zeta-function argument that was successful for fermions fails for bosons even in the

case where θ is real. The expansion of vb (θ) around θ = 0 is invalid, because the final

result is only valid for 0 ≤ Re [θ] ≤ 2π. In contrast, the fermionic expression is valid for
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−π ≤ Re [θ] ≤ π. However, it is possible to define the bosonic analog of vf (θ) by [72]

vb (θ) = −vf (θ − π) (2.16)

and this leads to the correct expression when Re [θ] ∈ (0, 2π):

vb (θ) = −(−15θ4 + 60πθ3 − 60π2θ2 + 8π4)T 4

180π2
. (2.17)

As in the fermionic case, vb (θ) is generally complex if θ is complex. However, the one-loop

gluonic contribution for a CK-symmetric Polyakov loop background, given by

Vg(P ) = vb(0) + vb(2θ) + vb(θ + i3ψ) + vb(θ − i3ψ) (2.18)

is real. Explicitly, we have for SU(3)

Vg(P ) =
T 4
(

135 (θ2 − 3ψ2)
2

+ 180π2 (θ2 − 3ψ2) + 60πθ (27ψ2 − 5θ2)− 16π4
)

90π2
(2.19)

which is real. Note that the valid range of θ is (0, π) due to the appearance of 2θ as an

eigenvalue in the adjoint representation. The one-loop effective potential is simply the sum

of Vg(θ) and Vf (θ). As is the case when µ = 0, the dominant saddle point remains at θ = 0

when µ 6= 0.

We now consider a simple phenomenological model that combines the one-loop result with

the effects of confinement for the case of SU(3) gauge bosons and two flavors of massless
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fermions at finite temperature and density. The model is described by an effective potential

which is the sum of three terms:

Veff (P ) = Vg(P ) + Vf (P ) + Vd(P ) (2.20)

where Vg(P ) + Vf (P ) is the one-loop effective potential for gluons and quarks given above

and Vd(P ) is an additional term that favors the confined phase [24, 66, 73, 74]. There are

two different points of view that can be taken on this model. In one view, Vd(P ) represents

a deformation of the original model. In typical applications, the temperature T is taken to

be large such that perturbation theory is reliable in the chromoelectric sector because the

running coupling g2 (T ) is small. The deformation term is taken to respect center symmetry

and is used to move between the confined and deconfined phases in a controlled way. The

gauge contribution Vg(P ) favors the deconfined phase, and in the pure gauge theory (Nf =

0) the deconfinement transition arises out of the competition between Vg(P ) and Vd(P ).

The confined phase arising in models of this type is known to be analytically connected

to the usual low-temperature confined phase of SU(3) gauge theory [66]. This point of

view emphasizes analytic control at the price of deforming the original gauge theory by the

addition of Vd(P ). From the second point of view, the entire model is phenomenological in

nature, with the potential Vd(P ) models the unknown confining dynamics of the pure gauge

theory. The parameters of Vd(P ) are set to reproduce the deconfinement temperature of the

pure gauge theory, known from lattice simulations to occur at Td ≈ 270 MeV.

We will take the second point of view, using a simple expression for Vd(P ) that reproduces
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much of the thermodynamic behavior seen in lattice simulations of the pure gauge theory.

The specific form used is Model A of [73], where the two terms Vg(P )+Vd(P ) can be written

together as

VA (θ) = −
N∑

j,k=1

1

π2
(1− 1

N
δjk)

[
−2π4

3β4
B4

(
∆θjk
2π

)
− m2π2

2β2
B2

(
∆θjk
2π

)]
(2.21)

where ∆θjk = |θj − θk| are the adjoint Polyakov loop eigenvalues and Bj is the j’th Bernoulli

polynomial. This expression gives a simple quartic polynomial in the Polyakov loop eigen-

values and thus can be thought of as a form of Landau-Ginsburg potential for the Polyakov

loop eigenvalues. For the SU(3) parametrization used here, Vd(P ) takes the simple form

Vd (P ) =
m2T 2 ((2π − 3θ)2 − 27ψ2)

6π2
. (2.22)

The parameter m controls the location of the deconfinement transition in the pure gauge the-

ory, and is set to 596 MeV. At low temperatures, this term dominates the pure gauge theory

effective potential. The variable ψ is zero, and Vd (P ) is minimized when θ = 2π/3. For this

value of θ, the eigenvalues of P are uniformly spaced around the unit circle, respecting center

symmetry, and TrFP = TrFP
† = 0. As the temperature increases, Vg (P ) becomes relevant,

and gives rise to the deconfined phase where center symmetry is spontaneously broken. The

addition of light fundamental quarks via Vf (P ) explicitly breaks center symmetry. For all

nonzero temperatures, center symmetry is broken and 〈TrFP 〉 6= 0. However, a remnant of

the deconfinement transition remains in the form of a rapid crossover from smaller value of
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TrFP to larger ones as T and µ are varied. Note that this simple model neglects both chiral

symmetry breaking, relevant at low T and low µ and the formation of a color superconduc-

tor, which occurs at low T and high µ. Because the simplified model we are using does not

treat chiral symmetry breaking, it should not be expected to reproduce exactly the features

seen in lattice simulations. Nevertheless, comparison with PNJL model results, e.g., [75],

show that the model is quantitatively similar to the behavior of models with many more free

parameters that include chiral symmetry effects. In the model studied here, TrFP shows

a slightly larger initial rise in TrFP with temperature than does the model studied in Ref.

[75]. This is consistent with the role that chiral symmetry breaking plays in diminishing

the explicit breaking of Z(3) symmetry by quarks. We plan to include the effects of chiral

symmetry breaking in a PNJL-type treatment in a future work.

For a given T and µ, the free energy and other thermodynamic quantities are obtained

from the saddle point of Veff (P ). Figure 2.1 shows TrFP and TrFP
† as functions of T at

constant µ for values up to µ = 450 MeV for two flavors of massless quarks. There is a

rapid crossover in TrFP and TrFP
† for smaller values of µ that becomes less dramatic as

µ increases. There is a small difference between TrFP and TrFP
† in the crossover region

when µ 6= 0, with TrFP
† > TrFP , indicating that it is easier to insert a heavy antiquark

into the system than a heavy quark. Figure 2.2 shows TrFP and TrFP
† as functions of µ

at constant T for values up to T = 250 MeV. Similar behavior is obtained as that shown in

Fig. 2.1, but the crossover is less abrupt and almost gone at T = 250 MeV. These results

are consistent with more complicated models that include the effects of chiral symmetry and
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Figure 2.1: 1
3
TrFP (solid line) and 1

3
TrFP

† (dotted line) as functions of T at constant µ for
values up to µ = 450 MeV with Nf = 2.

color superconductivity.

As discussed above, the mass matrix associated with the fields A3
4 and A8

4 has the prop-

erty that the eigenvalues are either both real or form a complex conjugate pair. The most

physically interesting region for this model occurs when T is larger than the µ = 0 crossover

temperature. In this region, we can safely assume that chiral symmetry is approximately

restored, and the use of zero-mass quarks is a reasonable approximation. Working in this

region also excludes color superconducting phases. Useful analytic results can be obtained

in the region T, µ� m, where the saddle point is given approximately by

θ ≈ 3m2π

8π2T 2 + 6µ2
(2.23)

ψ ≈ 9m4π2Tµ

4 (4π2T 2 + 3µ2)3 . (2.24)
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TrFP (solid line) and 1
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† (dotted line) as a function of µ at constant T for
values up to T = 250 MeV with Nf = 2.
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Figure 2.3: The shaded region of the µ−T plane indicates where the mass matrix is complex.
High-T and low-T approximations to the boundary are also shown.
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The corresponding mass matrix eigenvalues are given to order m2 by

g2

(
4T 2

3
+
µ2

π2

)
+
g2m2

(
9µ2 − 12π2T 2 ± 2πT

√
9π2T 2 − 12µ2

)
4π2 (3µ2 + 4π2T 2)

, (2.25)

a formula that combines the one-loop formula for the screening masses g2 (4T 2/3 + µ2/π2)

with corrections due to the confining term Vd in Veff that are proportional to m2. If T >

2µ/
√

3π, there are two real, nondegenerate eigenvalues. However, if T < 2µ/
√

3π, the two

eigenvalues form a conjugate pair. The occurrence of such pairs is unusual in a Euclidean

field theory, and is associated with the sign problem at finite density [70]. In a d-dimensional

theory, a boson of mass mB contributes a term

1

2

∫
ddk

(2π)d
log
[
k2 +m2

B

]
(2.26)

to the effective potential. A negative value for m2
B leads to an imaginary part for the effective

potential, indicating instability, as would a complex value. However, in the case where there

are complex conjugate pairs of mass eigenvalues where m2
B = a± ib, the contribution of the

two terms is now

1

2

∫
ddk

(2π)d
log
[(
k2 + a+ ib

) (
k2 + a− ib

)]
=

1

2

∫
ddk

(2π)d
log
[(
k2 + a

)2
+ b2

]
(2.27)

which is always positive, and thus shows no instability. However, correlation functions will

in general exhibit modulated decay.
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The occurrence of complex eigenvalues indicates periodic modulation in the spatial de-

cay of color-color density correlation functions reminiscent of similar oscillations in density-

density correlation functions in liquids. Figure 2.3 shows the region where the exact mass

matrix is complex, along with high-T and low-T approximations to the boundary of the

region. This result may depend strongly on the choice of Vd, an issue we plan to address

in later work. Patel has suggested that a signal for such oscillatory behavior might appear

in baryon number correlators in heavy ion collisions at RHIC and the LHC [76, 77]. Based

on the results reported here, it would be more natural to observe this behavior in the CBM

experiment at FAIR, but much work is needed to determine a useful experimental signature.

34



Chapter 3

COMPLEX SADDLE POINTS AND DISORDER LINES IN
QCD AT FINITE TEMPERATURE AND DENSITY

This chapter contains the materials published under the same title 1. This work was done
in collaboration with Dr. Hiromichi Nishimura under the supervision of my advisor, Prof.
Michael Ogilvie

3.1 Introduction

The phase structure of QCD at finite density and temperature is of fundamental importance,

and can be studied experimentally, theoretically and via lattice simulations. Nevertheless,

progress has been slow, in part because of the sign problem, which afflicts both phenomeno-

logical models and lattice simulations. The sign problem is found in many area of physics

[41–43]. In QCD, the quark contribution to the partition function, given as a functional

determinant dependent on the gauge field, is complex for typical gauge field configurations

when the quark chemical potential µ is non-zero. It is natural to consider the analytically

continuation of the gauge field into the complex plane. Some progress has been made in

incorporating this idea into lattice simulations [55–60, 78]. Here we show that the consider-

ation of complex saddle points provides a conceptually cohesive phenomenological model of

QCD at finite T and µ. Our results can provide guidance for lattice simulations by indicating

the behavior of the dominant field configuration, within a phenomenological framework. We

1Nishimura, H., Ogilvie, M.C. and Pangeni, K., 2015. Complex Saddle Points and Disorder Lines in QCD
at finite temperature and density. Physical Review D, 91(5), p.054004.
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will show that certain features of the saddle point appear to be independent of the choice

of a particular phenomenological model. Moreover, we will identify a new property of QCD

at finite density, the occurence of a disorder line, that may have observable consequences in

experiment and/or lattice simulation. Some feature associated with the disorder line differ-

entiate strongly between different phenomenological models, and may thus have an impact

on our understanding of confinement.

The remainder of this paper is organized as follows. In section II, we provide a simple

example based on the the U(1) group that indicates the need for complex saddle points.

Section III reviews the formalism first developed in our previous work [79]. We pay particular

attention to the existence and consequences of an antilinear symmetry CK in finite density

field theories, where C is charge conjugation and K is complex conjugation; in some sense this

symmetry replaces charge conjugation symmetry when µ 6= 0. The following section, section

IV, describes the different phenomenological models we study using an effective potential

for the Polyakov loop P and chiral condensate ψ̄ψ. We do not consider other possible

condensates in this work, such as the color superconducting condensate, deferring this to

later work. A total of six different models are considered. We use two different models for

the confining part of the effective potential, Model A and Model B, taken from [73]. We

consider three cases of quarks, always with two flavors: heavy quarks, massless quarks with

no chiral dynamics and a full treatment of light quarks, with chiral dynamics included via

a bosonized four-fermion interaction. Our most realisitic models are therefore of Polyakov-

Nambu-Jona Lasinio (PNJL) type, with the major new feature the consideration of complex
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saddle points of the effective potential. Section V, VI and VII describe in detail the results

for the three different cases of quarks. A final section offers conclusions.

3.2 Simple U(1) example

As an illustration of the role of analytic continuation in field space for models with non-zero

chemical potential, we consider a single-site model, where a particle propagates in a closed

loop in Euclidean time, always returning to the same lattice site. The model has a hopping

parameter J , a dimensionless chemical potential µ and a U(1) background field θ [80]. The

partition function is

Z =

∫
dθ

2π
eS (3.1)

where

S = J
[
eµ+iθ + e−µ−iθ

]
. (3.2)

The action S is complex, so Z has a sign problem. It is easy to find Z exactly by a strong-

coupling expansion in J :

Z =
∞∑
n=0

J2n

(n!)2 = I0 (J) , (3.3)

where I0 (J) is the modified Bessel function of order 0. Similar results can be obtained for

expectation values such as
〈
eiθ
〉
, which are zero-dimensional analogs of Polyakov loops. It is

instructive to consider Z as a contour integral in the variable z = exp (iθ):

Z =

∫
|z|=1

dz

2πiz
exp

[
Jzeµ + Jz−1e−µ

]
. (3.4)
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We ask if the contour |z| = 1 can be deformed to a contour C along which S is real. The

contour C is given by the circle |z| = e−µ. Making a change of variable θ → θ + iµ, we

recover exact results such as

Z = I0 (J)〈
eiθ
〉

= e−µ
I1 (J)

I0 (J)〈
e−iθ

〉
= e+µ I1 (J)

I0 (J)
. (3.5)

We apply a saddle-point method to the original integral, looking for the saddle-point in the

complex plane. The saddle point satisfies

eµ − e−µ/z2 = 0 (3.6)

so the saddle is at iθ = −µ. Returning to the original notation, we approximate Z by

Z ≈
∫

dθ

2π
exp

[
2J − 1

2
2Jθ2

]
=

e2J

√
4πJ

(3.7)

which is the leading-order asymptotic behavior of I0 (2J). A similar evaluation for the

expectation values yields

〈
eiθ
〉
' e−µ〈

e−iθ
〉
' e+µ. (3.8)
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If we had used Re(S) = J (eµ + e−µ) cos θ as a starting point for a steepest descents calcu-

lation, the result for Z would have been

eJ(e
µ+e−µ)√

2πJ (eµ + e−µ)
(3.9)

which does not represent the correct asymptotic behavior.

It is important to emphasize that neither a deformation of the contour into the complex

plane nor the use of complex saddle points is required in an exact evaluation of Z and related

quantities. However, many methods, from perturbation theory to importance sampling in

lattice simulations, rely implicitly or explicitly on the existence of appropriate saddle points.

In this simple U(1) model, the use of complex saddle points naturally allows the expected

values of the Polyakov loops for particle and antiparticles to be different:
〈
eiθ
〉
6=
〈
e−iθ

〉
.

In an exact calculation using a real contour for θ, this result must be recovered from rapid

fluctuations in the integration. A saddle point approximation incorrectly using Re(S) for

the location of saddle points would have obtained
〈
eiθ
〉

=
〈
e−iθ

〉
at leading order.

3.3 Formalism for SU(N) gauge theories at finite density

We now consider an SU(N) gauge theory coupled to fermions in the fundamental represen-

tation. It is well-known that the Euclidean Dirac operator has complex eigenvalues when a

non-zero chemical potential is introduced [41]. This can be understood as an explicit break-

ing of charge conjugation symmetry C. The log of the fermion determinant, log det (µ,A),

which is a function of the quark chemical potential µ and the gauge field A, can be formally
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expanded as a sum over Wilson loops with real coefficients. For a gauge theory at finite

temperature, the sum includes Wilson loops that wind non-trivially around the Euclidean

timelike direction; Polyakov loops, also known as Wilson lines, are examples of such loops.

At µ = 0, every Wilson loop TrFW appearing in the expression for the fermion determinant

is combined with its conjugate TrFW
† to give a real contribution to path integral weighting.

More formally, charge conjugation acts on matrix-valued Hermitian gauge fields as

C : Aµ → −Atµ (3.10)

where the overall minus sign is familiar from QED, and the transpose interchanges particle

and antiparticle, e.g., W+ and W− in SU(2). This transformation law in turn implies that

C exchanges TrFW and TrFW
† so unbroken charge symmetry implies a real fermion deter-

minant. When µ 6= 0, Wilson loops with non-trivial winding number n in the x4 direction

receive a weight enβµ while the conjugate loop is weighted by e−nβµ and invariance under

C is explicitly broken. However, there is a related antilinear symmetry which is unbroken:

TrFW transforms into itself under the combined action of CK, where K is the fundamen-

tal antilinear operation of complex conjugation. Thus the theory is invariant under CK

even in the case µ 6= 0. This symmetry is an example of a generalized PT (parity-time)

symmetry transformation [69, 70]; theories with such symmetries form special class among

theories with sign problems. For fermions, CK symmetry implies the well-known relation

det (−µ,Aµ) = det (µ,Aµ)∗ for Hermitian Aµ, a relation which is often derived using a γ5

transformation of the Dirac operator. The advantage of using CK is that it is more general,
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leading to more insight into the sign problem and applying to bosons as well as to fermons.

For example, it is easy to see that our simple zero-dimensional U(1) model in the preceding

section is invariant under the combined action of K : i→ −i and C : θ → −θ.

For phenomenological models, the existence of CK symmetry leads naturally to the consid-

eration of complex but CK-symmetric saddle points. CK symmetry will map any saddle-point

configuration A
(1)
µ into another saddle point given by A

(2)
µ = −A(1)†

µ with a corresponding

connection between the actions of the two configurations: S(2) = S(1)∗. However, some field

configurations are themselves CK-symmetric in that −A†µ is equivalent to Aµ under a gauge

transformation. If a saddle point is CK symmetric, then its action and effective potential

are necessarily real. A quick direct proof can be given: For such a field configuration, it

is easy to prove that every Wilson loop is real and thus det (µ,Aµ) is real and positive for

a CK-symmetric field configuration. If a single CK-symmetric saddle point dominates the

effective potential, then the sign problem is solved, at least for a particular phenomenological

model. Such CK-symmetric saddle points have been seen before in finite density calculations

[61–64].

Let us consider the Polyakov loop P , a special kind of Wilson loop, associated with some

particular field configuration that is CK-symmetric. We can transform to Polyakov gauge

where A4 is diagonal and time-independent, and work with the eigenvalues θj defined by

P (~x) = diag
[
eiθ1(~x), · · · , eiθN (~x)

]
(3.11)

where the θj’s are complex but satisfy
∑

j θj = 0. Because we are primarily interested in
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constant saddle points, we suppress the spatial dependence hereafter. Invariance under CK

means that the set
{
−θ∗j

}
is equivalent to the {θj} although the eigenvalues themselves may

permute. In the case of SU(3), we may write this set uniquely as

{θ − iψ,−θ − iψ, 2iψ} . (3.12)

This parametrizes the set of CK-symmetric SU(3) Polyakov loops. Notice that both

TrFP = eψ2 cos θ + e−2ψ (3.13)

and

TrFP
† = e−ψ2 cos θ + e2ψ (3.14)

are real, but they are equal only if ψ = 0. In the usual interpretation of the Polyakov loop

expectation value, this implies that the free energy change associated with the insertion

of a fermion is different from the free energy change associated with its antiparticle. It

is easy to check that the trace of all powers of P or P † are all real, and thus all group

characters are real as well. This parametrization represents a generalization of the Polyakov

loop parametrization used in the application of mean-field methods to confinement, e.g.,

in PNJL models [65] or in gauge theories with double-trace deformations [66, 67]. This

parametrization can be generalized to include finite density models for arbitrary N .

The existence of complex CK-symmetric saddle points provides a fundamental approach

to non-Abelian gauge theories that is similar to the heuristic introduction of color chemical
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potentials, and naturally ensures the system has zero color charge, i.e., all three charges

contribute equally [68]. In the case of SU(3), extremization of the thermodynamic potential

with respect to θ leads to the requirement 〈nr〉− 〈ng〉 = 0 where 〈nr〉 is red color density, in-

cluding the contribution of gluons. Similarly, extremization of the thermodynamic potential

with respect to ψ leads 〈nr〉 + 〈ng〉 − 2 〈nb〉 = 0. Taken together, these two relations imply

that 〈nr〉 = 〈ng〉 = 〈nb〉.

We demand that any saddle point solution be stable to constant, real changes in the

Polyakov loop eigenvalues, corresponding for SU(3) to constant real changes in A3
4 and A8

4.

Consider the (N − 1)× (N − 1) matrix Mab, defined in Polyakov gauge as

Mab ≡ g2 ∂
2Veff

∂Aa4∂A
b
4

. (3.15)

At very high temperatures and densities, the eigenvalues of this mass matrix give the usual

Debye screening masses. The stability criterion is that the eigenvalues of M must have

positive real parts. At CK-symmetric saddle points, the eigenvalues will be either real or

part of a complex conjugate pair. In the case of SU(3), the matrix M may also be written

in terms of derivatives with respect to θ and ψ as

M =
g2

T 2

 1
4

∂2Veff
∂θ2

i
4
√

3

∂2Veff
∂θ∂ψ

i
4
√

3

∂2Veff
∂θ∂ψ

−1
12

∂2Veff
∂ψ2

 . (3.16)

This stability criterion generalizes the stability criterion used previously for color chemical

potentials, which was ∂2Veff/∂ψ
2 < 0. Crucially, the mass matrix Mab is invariant under
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M∗ = σ3Mσ3, which is itself a generalized PT (parity-time) symmetry transformation [69,

70]. It is easy to see that this relation implies that Mab has either two real eigenvalues or a

complex eigenvalue pair. In either case, the real part of the eigenvalues must be positive for

stability. In the case where there are two real eigenvalues, we will denote by κ1 and κ2 the

two positive numbers such that κ2
1 and κ2

2 are the eigenvalues of the mass matrix Mab. If

Mab has two complex eigenvalues, we define two positive real numbers κR and κI such that

(κR ± iκI)2 are the conjugate eigenvalues of Mab. The border separating the region κI 6= 0

from the region κI = 0 is known as the disorder line [81–83]. In this case, it separates the

region where the color density correlation function decays exponentially in the usual way

from the region where a sinusoidal modulation is imposed on that decay.

We illustrate the working of CK symmetry using the well-known one-loop expressions

for the effective potential of particles moving in a constant background Polyakov loop. The

one-loop contribution to the effective potential of Nf flavors of fundamental fermions moving

in a background gauge field A is given by

βVV f
eff = −Nf log [det (µ,A)] (3.17)

where det again represents the functional determinant of the Dirac operator and βV is the

volume of spacetime. A compact expression for the effective potential of massless fermions

when the eigenvalues of P are complex was derived using zeta function methods in [71]. The
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finite temperature contribution to the effective potential from quarks is given by

V T
f (P ) = −2TNf

∫
d3k

(2π)3 TrF
[
log
(
1 + eβµ−βωkP

)
+ log

(
1 + e−βµ−βωkP †

)]
(3.18)

where ωk = +
√
k2 +m2 with m the fermion mass. We have evaluated Vf (P ) analytically for

the case of massless quarks [79]. The result for quarks in a CK-symmetric SU(3) background

Polyakov loop is

V T
f (θ, ψ,T, µ) = Nf

(
vf

(
θ − iψ − iµ

T

)
+ vf

(
−θ − iψ − iµ

T

)
+ vf

(
2iψ − iµ

T

))
(3.19)

where

vf (θ) = −4T 4

π2

(
θ4

48
− π2θ2

24
+

7π4

720

)
. (3.20)

Explicitly, this is

V T
f (θ, ψ,T, µ) = − µ4

2π2
+ T 2

(
−µ2 +

2θ2µ2

π2
− 6µ2ψ2

π2

)
+

4T 3 (θ2µψ + µψ3)

π2

+
T 4 (−7π4 + 20π2θ2 − 10θ4 − 60π2ψ2 + 60θ2ψ2 − 90ψ4)

30π2
. (3.21)

for two flavors of massless quarks. This is manifestly real. Because we are interested in

the analytic continuation of Polyakov loop eigenvalues into the complex plane, we need

expressions for the gauge bosons as well as for fermions. In our previous work, we have

shown that for SU(3)
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Vg(P ) =
T 4
(

135 (θ2 − 3ψ2)
2

+ 180π2 (θ2 − 3ψ2) + 60πθ (27ψ2 − 5θ2)− 16π4
)

90π2
(3.22)

which is also manifestly real. Note that the valid range of θ is (0, π) due to the appearance of

2θ as an eigenvalue in the adjoint representation. The one-loop effective potential is simply

the sum of Vg(θ) and Vf (θ). As is the case when µ = 0, the dominant saddle point remains at

θ = 0 when µ 6= 0: the one-loop effective potential incorrectly predicts that QCD is always

in the extreme deconfined phase with TrFP = TrFP
† = 3 because there is no confinement

mechanism included.

3.4 Models

We now consider a class of phenomenological models that combines the one-loop result with

the effects of confinement for the case of SU(3) gauge bosons and two flavors of quarks at

finite temperature and density. The model is described by an effective potential which is the

sum of three terms:

Veff (P ) = Vg(P ) + Vf (P ) + Vd(P ). (3.23)

The potential term Vg(P ) is the one-loop effective potential for gluons given by eqn. (3.22).

The potential term Vf (P ) contains all quark effects, including the one-loop expression defined

above in eqn. (3.18). The potential term Vd (P ) represents confinement effects. We will

consider three different forms for Vf (P ) and two different forms for Vd (P ) for a total of six

different models. The formulas and parameters we use for these models are summarized in
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Tables 3.1 and 3.2.

The potential term Vd(P ) acts to favor the confined phase at low temperature and density

[24, 66, 73, 74]. There are two different points of view that can be taken on this potential.

In one view, Vd(P ) represents a deformation added to the original model, and hence the sub-

script d. In typical applications, the temperature T is taken to be large such that perturbation

theory is reliable in the chromoelectric sector because the running coupling g2 (T ) is small.

The deformation term is taken to respect center symmetry and is used to move between the

confined and deconfined phases in a controlled way. The gauge contribution Vg(P ) favors the

deconfined phase, and in the pure gauge theory (Nf = 0) the deconfinement transition arises

out of the competition between Vg(P ) and Vd(P ). The confined phase arising in models of

this type is known to be analytically connected to the usual low-temperature confined phase

of SU(3) gauge theory [66]. This point of view emphasizes analytic control at the price of

deforming the original gauge theory by the addition of Vd(P ). In the second point of view,

Vd is phenomenological in nature and models the unknown confining dynamics of the pure

gauge theory. The parameters of Vd(P ) are set to reproduce the deconfinement temperature

of the pure gauge theory, known from lattice simulations to occur at Td ≈ 270 MeV.

We will take the second point of view, using simple expressions for Vd(P ) that reproduces

much of the thermodynamic behavior seen in lattice simulations of the pure gauge theory.

The specific form used are Model A and Model B of [73]. In Model A, Vd(P ) can be written

as
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V A
d (P ) =

N∑
j,k=1

(1− 1

N
δjk)

M2
A

2β2
B2

(
∆θjk
2π

)
(3.24)

where ∆θjk = |θj − θk| are the adjoint Polyakov loop eigenvalues and B2 is the second

Bernoulli polynomial. This expression gives a simple quartic polynomial in the Polyakov

loop eigenvalues for Vg (P ) + V A
d (P ) and thus can be thought of as a form of Landau-

Ginsburg potential for the Polyakov loop eigenvalues. For the SU(3) parametrization used

here, V A
d (P ) takes the simple form

V A
d (P ) =

M2
AT

2 ((2π − 3θ)2 − 27ψ2)

6π2
. (3.25)

The parameter MA controls the location of the deconfinement transition in the pure gauge

theory, and is set to 596 MeV. At low temperatures, this term dominates the pure gauge the-

ory effective potential. The variable ψ is zero, and Vd (P ) is minimized when θ = 2π/3. For

this value of θ, the eigenvalues of P are uniformly spaced around the unit circle, respecting

center symmetry, and TrFP = TrFP
† = 0. As the temperature increases, Vg (P ) becomes

relevant, and gives rise to the deconfined phase where center symmetry is spontaneously

broken. The addition of light fundamental quarks via Vf (P ) explicitly breaks center sym-

metry. For all nonzero temperatures, center symmetry is broken and 〈TrFP 〉 6= 0. However,

a remnant of the deconfinement transition remains in the form of a rapid crossover from
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smaller value of TrFP to larger ones as T and µ are varied. We also use Model B, defined as

V B
d (P ) = − T

R3
log

[∏
j<k

sin2

(
θj − θk

2

)]
. (3.26)

This form for Vd is motivated by Haar measure, representing a determinantal term that tries

to keep a space-time volume of order βR3 confined. For the SU(3) parametrization, V B
d (P )

takes the form

V B
d (P ) = − T

R3
log

[
1

4
{cos θ − cosh (3ψ)}2 sin2 θ

]
. (3.27)

In order to reproduce the correct deconfinement temperature for the pure gauge theory, R

must be set to R = 1.0028 fm. We plot the Polyakov loop for both Model A and Model B

in Fig. 3.1.

Although V A
d and V B

d appear to be very different, and are motivated in different ways,

they are actually closely related. The deformation potential V A
d can also be written as

V A
d =

M2
AT

2

2π2

∞∑
n=1

1

n2
TrAP

n (3.28)

while V B
d can be written as

V B
d =

T

R3

∞∑
n=1

1

n
TrAP

n. (3.29)

Using TrAP = TrFP
nTrFP

†n− 1, it is easy to prove that minimizing either V A
d or V B

d yields

a confining phase where TrFP
n = 0 for all n 6= 0 mod(N).

We consider three different cases of quarks. The first is heavy quarks, with a fixed mass
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Figure 3.1: 〈TrFP 〉 as a function of T for pure SU(3) with Model A and Model B for
confinement effects.

of 2 GeV. The form of Vf (P ) is precisely that of Eq. (3.18) with the fermion mass set

to a large value. In this model, the quarks are essentially irrelevant for the deconfinement

transition, which occurs at essentially the same temperature as if no quarks were present at

all. The effect of spontaneous chiral symmetry breaking is not included, as it would only

contribute a small amount to the quark mass. This case is in some sense the simplest, and

perhaps would be the easiest for which to obtain reliable simulation results. The second case

considered is massless quarks, where the fermion mass in Eq. (3.18) is set equal to zero. This

case cannot be easily simulated using lattice methods, because it ignores chiral symmetry

breaking effects which do occur in lattice simulations. It is thus useful only for sufficiently

large values of T and µ such that chiral symmetry is essentially restored. Our most realistic

treatment of quarks uses a Nambu-Jona Lasinio four-fermion interaction to model chiral
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Model of confinement Confining potential Vd Parameter

A Eq. (3.25) MA = 596 MeV
B Eq. (3.27) R = 1.0028fm

Table 3.1: Potential term and parameters for modeling confinement effects. Parameters are
determined from the deconfinement temperature for pure SU(3) gauge theory.

Model of Nf = 2 fermions Quark potential Vf m0 gS Λ

Heavy Quarks Eq. (3.40) 2000 MeV 0 -
Massless Quarks Eq. (3.21) 0 0 -

PNJL Eq. (3.38) + Eq. (3.40) 5.5 MeV 5.496 GeV−2 631.4 MeV

Table 3.2: Potential term and parameters for quark sector. All numerical values are for
two-flavor QCD.

symmetry breaking effects, so these models are of Polyakov-Nambu-Jona Lasinio (PNJL)

type [65].

In our PNJL models, we write the fermionic part of the partition function as

Zf =

∫
Dψ̄Dψei

∫
d4xLf (3.30)

using Nf = 2 Nambu-Jona-Lasinio-type Lagrangian with the constant Polyakov loop [65]

Lf = ψ̄(iγ ·D −m0)ψ + gS

{(
ψ̄ψ
)2

+
(
ψ̄iγ5λ

aψ
)2
}

(3.31)

where m0 is the current mass of the quarks, gS is the four-fermion coupling, and λa’s are

the generators of the flavor symmetry group SU(2). The covariant derivative Dµ couples

the fermions to a background Polyakov loop via the component of the gauge field in the

51



temporal direction. Introducing auxiliary fields, a scalar field σ and triplet of pseudoscalar

fields πa,

Laux = −gS
{
σ2 + (πa)2}+ 2gSψ̄ {σ + iγ5λ

aπa}ψ, (3.32)

and integrating over the fermion fields, we can write the partition function in terms of the

boson fields (i.e. bosonization)

Zf =

∫
DσDπa exp

[
i

∫
d4x

{
tr log [iγ ·D −m0 + 2gS(σ + iπaλa)]− gS

(
σ2 + (πa)2

)}]
.

(3.33)

We use the background field method for the scalar field, σ(x) = σ0 + s(x) and write the

partition function as

Zf = exp

[
i

∫
d4x

{
tr log [iγ ·D −m]− gSσ2

0

}]∫
DsDπa exp

[
i

∫
d4xLb

]
(3.34)

where m = m0− 2gSσ0 is the constituent quark mass m , tr denotes the trace over the color,

flavor, and Dirac space, and the bosonized Lagrangian is

Lb = tr log

[
1 +

1

iγ ·D −m
2gS(s+ iπaλa)

]
− gS

(
s2 + (πa)2

)
. (3.35)

We perform a Wick rotation and consider the theory in Euclidean space from now on.

The first term in the partition function (3.34) gives the effective potential,

Vf = V T
f (P,m) + V 0

f (m,m0), (3.36)
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which consists of the finite-temperature part V T
f , which is given by Eq. (3.18) and the

vaccum part V 0
f ,

V 0
f (m,m0) =

(m−m0)2

4gS
− 2NfTrF

∫
d3k

(2π)3ωk. (3.37)

We note that the finite-temperature contribution V T
f is finite for any values of P , m, µ, and

T , while the zero-point energy, the integral in V 0
f , is divergent and needs a regularization.

We use a noncovariant three-dimensional cutoff, Λ [84] and write it as [85]

V 0
f (m,m0) =

(m−m0)2

4gS
− NcNfΛ

4

8π2

{√
1 + (m/Λ)2 [2 + (m/Λ)2]

+(m/Λ)4 log
m/Λ

1 +
√

1 + (m/Λ)2

 . (3.38)

For V T
f , it is often convenient to combine the arguments of the logarithms into a single

product that is manifestly real. Using Eq. (3.18), we can write the finite-temperature

effective potential in terms of Polyakov loop eigenvalues as

V T
f = −2TNf

Nc∑
j=1

∫
d3k

(2π)3

[
log
(
1 + e−(ωk−µ)/T+iθj

)
+ log

(
1 + e−(ωk+µ)/T−iθj

)]
= −2TNf

∫
d3k

(2π)3

{
log
[
1 + 2 cos θ e−(ωk−µ)/T+ψ + e−2(ωk−µ)/T+2ψ

]
(3.39)

+ log
[
1 + e−(ωk−µ)/T−2ψ

]
+ (z → −z)

}
(3.40)

where the last part denotes the antiparticle contribution which has the opposite sign for the

chemical potential and the Polyakov loop eigenvalues, z = µ − igAµ. From this expression,

we can see explicitly that the one-loop fermionic effective potential at the complex saddle
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point is real, independent of any approximation. We use Eqs. (3.38) and (3.40) for the

effective potential of the fermionic part of PNJL model with the T = 0 parameters taken

from [86].

In principle, the coupling of P and ψ̄ψ which is a prominent feature of PNJL models

can lead to an extended mass matrix that incorporates mixing of ψ̄ψ with excitations of the

Polyakov loop. The kinetic term of the scalar field s in the bosonized Lagrangian is needed

for a full treatment. Using the log expansion and the derivative expansion for Eq. (3.35)

[84, 87], we can obatin the kinetic term for the scalar field in the form

Lb ⊃ 4Nfg
2
STrF I

µν
s ∂µs∂νs

where Iµνs is, for example, given as the momentum integral in Eq. (7.54) of [84] but the

four-momentum kµ is replaced by kµ + gA4δµ4 for the PNJL model. Using the identity

∫
d3k

(2π)3
kikj =

∫
d3k

(2π)3

k2δij
3

and rescaling s for the physical constituent mass, we can write the spatial part of the kinetic

term as

Lb ⊃
1

2
Is [∂i (−2gSs)]

2
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with

Is = NfT

∞∑
n=−∞

∫
d3k

(2π)3
TrF

[{
2[

(ωn + iz)2 + ω2
k

]2 − 4
3
k2 + 4m2[

(ωn + iz)2 + ω2
k

]3 (3.41)

+
16
3
k2m2[

(ωn + iz)2 + ω2
k

]4
}

+ (z → −z)

]

where z = µ−igA4 and the summation is over the Matsubara frequencies, ωn = (2n+1)π. A

similar expression for Is is obtained in [88] for the PNJL model. We first use the prescription

(3.12) for the Polyakov loop and sum over the Matsubara frequencies and integrate over the

three-momentum in Eq. (3.41). However, the integral is divergent, and we use the same

non-covariant three-dimensional cutoff Λ used for the zero-point energy (3.38). With the s

kinetic term given in terms of Is, we can in principle compute the eigenvalues of an extended

mass matrix. It turns out, however, that the off-diagonal coupling of the chiral component of

the mass matrix is numerically negligible compared to the Polyakov-loop parts of the mass

matrix, and thus we ignore the chiral component in the remainder of this paper.

3.5 Heavy quarks

We consider the case of heavy quarks propagating in constant Polyakov loop background.

For such quark, the chiral symmetry effects are negligible and a first-order deconfinement

transition line is the only true critical behavior found in the phase diagram. Our study of

heavy quarks is perhaps most relevant for lattice studies of static quarks at non-zero µ; this

approximation is particularly tractable [89].

The center symmetry of pure gauge theory is exact for infinitely heavy quarks. However,
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quarks with finite mass break the center symmetry explicitly and weaken the first order

transition of pure gauge theory. At sufficiently low quark mass the first order transition

for deconfinement vanishes at a critical end point. The location of this critical end point is

model dependent and has been proposed as a useful way to differentiate between different

models of confinement [90]. In both Model A and Model B, the first order deconfinement

transition vanishes for quark mass of around 1.5 GeV or less. Therefore we set the quark

mass to be 2 GeV so that the deconfinement transition still persists. The end point of the

deconfinement transition line lies at smaller values of µ, and appears to play no direct role

in the behavior of ψ and κI . The quark mass is large compared to the confinement scale,

so asymptotic freedom applies in the region µ ' m. In this region, perturbation theory is

a reliable guide when T � Td, the pure gauge deconfinement temperature. However, below

Td, non-perturbative confinement effects cannot be neglected, hence the importance of the

potential term Vd beyond what is usually considered the confining region at low T and µ. A

useful expansion for β (m− µ)� 1 for can be generated by expanding the logarithm in Eq.

(3.18) and integrating term by term [72]. Such an expansion gives

Vf (P ) =
∞∑
n=1

(−1)nm2T 2

n2π2
K2(nβm)(e

nµ
T TrFP

n + e−
nµ
T TrFP

†n). (3.42)

At low temperature and density the effects of heavy quarks can be obtained approximately

from the n = 1 term of Eq. (3.42). However, this expansion fails in the high density region

(µ > 1.5 GeV) in case of Model A as can be seen in Fig. 3.6. In our analysis we have

therefore numerically integrated the full one loop expression for heavy quark potential.
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Figure 3.2: 〈TrFP 〉 and
〈
TrFP

†〉 as a function of T for µ = 1000, 1400 and 1800 MeV for
heavy quarks using Model A for confinement effects. The Polyakov loops are normalized to
one as the temperature becomes large.

50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

T HMeVL

Tr
P�3

&
Tr

P† �3

1800 MeV

1400 MeV

1000 MeV

50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

T HMeVL

Tr
P�3

&
Tr

P† �3

1800 MeV

1400 MeV

1000 MeV

Figure 3.3: 〈TrFP 〉 and
〈
TrFP

†〉 as a function of T for µ = 1000, 1400 and 1800 MeV for
heavy quarks using Model B for confinement effects. The Polyakov loops are normalized to
one as the temperature becomes large.
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In Fig. 3.2 we show TrFP and TrFP
† as a function of T for various values of µ when

the heavy quark has a mass of 2 GeV. In aggreement with our general argument above, the

crossover moves toward lower values of T as µ increases. The separation between TrFP and

TrFP
† is largest in the crossover region, and is negligible at higher temperatures. As shown

in the figure, the separation is largest for some intermediate value of µ less than the heavy

quark mass. The behavior of TrFP and TrFP
† for Model B is similar to Model A, as may

be seen from Fig. 3.3. The crossover happenes at higher temperature for Model B, showing

that the confining effect for Model B is smaller than Model A. Because ψ is non-zero in both

models, there is a difference between TrFP and TrFP
†.

In Fig. 3.4, we show for Model A a contour plot for ψ along with a shaded region showing

where κI 6= 0. The boundary of the shaded region is thus the disorder line. From this graph,

we see that values of ψ are very small, but peak in a region centered roughly around µ = 1500

MeV and T = 150 MeV. There is no obvious relation between the region where ψ is largest

and the region where κI 6= 0 . However, the peak in ψ is located near the point where the

disorder line abruptly changes.

Figure 3.5 again shows the region where κI 6= 0 and the associated disorder line, but

now with contour lines for κI added. As with all the contour plots of this type, we have set

the running coupling αs (T, µ) = 1. In other words, conversion to the actual one-loop values

requires multiplying these values by appropriate values for
√
αs (T, µ). The region where the

mass eigenvalues κ1 and κ2 form a complex conjugate pair has a complicated shape. The

mass matrix eigenvalues are real for µ below about 600 MeV. There is a roughly rectangular
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Figure 3.4: Contour plot of ψ in the µ − T plane for heavy quarks (m = 2000 MeV) using
Model A for confinement effects. The region where κI 6= 0 is shaded.

region for 600 MeV . µ . 1450 MeV . This is followed by a region where the boundary rises

roughly linearly with µ , similar to the behavior of Model A with massless quarks.

Figure 3.6 shows the physics associated with this behavior. The boundary using the

complete one-loop expression is compared with both the massless boundary and the boundary

obtained using the n = 1 approximation from Eqn. 3.42 to the full one-loop expression. As

may be seen, the n = 1 term accounts very well for the low-temperature behavior of the

boundary, while the massless quark result is accurate for µ above the heavy quark mass. It

is clear that the abrupt change of the shaded region represents a rapid crossover from the

behavior of a heavy quark to the behavior of a massless quark, occuring over a range of

roughly 3M/4 < µ < 5M/4 , with most of the change occuring before µ reaches M .
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Figure 3.5: Contour plot of κI in the µ − T plane for heavy quarks (m = 2000 MeV) using
Model A for confinement effects. Contours are given in MeV with αS set to one. The region
where κI 6= 0 is shaded.

The behavior of ψ for Model B, as shown in Figure 3.7, is similar to the behavior of ψ for

Model A, but the values of ψ are somewhat larger. The region where the eigenvalues of the

mass matrix are complex is shown in Fig. 3.8. The shape and size of the region is very similar

to the rectangular region found for Model A in Fig. 3.5. However, in the high-temperature

region, where µ is greater than the quark mass, the region of complex mass eigenvalues is

completely missing for Model B. This is consistent with the behavior of Model B for massless

quarks, where no complex eigenvalues of the mass matrix were found.

Figure 3.9 shows a comparison of the regions where κI is non-zero for both Model A and

Model B. Their shape is very similar for smaller values of µ, suggesting that some universal

behavior occurs in this region. However, the behavior is very different in the region where
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Figure 3.6: The shaded region indicates where κI 6= 0 for heavy quarks (m = 2000 MeV)
using Model A for confinement effects. The boundary of this region is also shown using an
approximation appropriate for very heavy quarks (βm � 1) as well as for massless quarks,
appropriate when βm� 1.

�����

����
�����

�����

��� ���� ���� ����

��

���

���

���

���

���

μ (���)

�
(�
��

)

Figure 3.7: Contour plot of ψ in the µ − T plane for heavy quarks (m = 2000 MeV) using
Model B for confinement effects. The region where κI 6= 0 is shaded.
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Figure 3.8: Contour plot of κI in the µ− T plane for heavy quarks (m = 2000 MeV) using
Model B for confinement effects. Contours are given in MeV with αS set to one. The region
where κI 6= 0 is shaded.

both T and µ are becoming large. Model A shows a continuation of the disorder line that

follows the behavior for massless quarks, while for Model B the disorder line covers a finite

region in µ− T space.

3.6 Massless quarks without chiral effects

In this section we extend the results of our previous work on massless quarks using Model

A [79], including more detail and providing a comparison with Model B. This simple model

where the quark mass m is set to zero neglects chiral symmetry breaking, relevant at low

T and low µ. It should not be expected to reproduce exactly the features seen in lattice

simulations. Nevertheless, comparison with PNJL model results, e.g., [75], show that the
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Figure 3.9: A comparison of the regions where κI 6= 0 for heavy quarks with Model A and
Model B along with the corresponding disorder lines.

model is quantitatively similar to the behavior of models with many more free parameters

that include chiral symmetry effects. For Model A, TrFP shows a slightly larger initial rise in

TrFP with temperature than does the model studied in [75]. This is consistent with the role

that chiral symmetry breaking plays in diminishing the explicit breaking of Z(3) symmetry

by quarks.

Figure 3.10 shows the region for Model A where κI is non-zero superimposed on a contour

plot of ψ, while 3.11 shows contour lines for κI . Comparison of the two figures shows that

the peak in ψ occurs at a lower value of µ than the peak in κI , with the peak in ψ occuring

near (µ = 200 MeV, T = 110 MeV). The behavior of the disorder line for large T and µ is

63



Figure 3.10: Contour plot of ψ in the µ−T plane for Model A with massless quarks, showing
where TrFP is most different from TrFP

†. The region where κI 6= 0 is shaded.

Figure 3.11: Contour plot of κI in the µ − T plane for Model A with massless quarks.
Contours are given in MeV, with αs set to one. The region where κI 6= 0 is shaded.
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Figure 3.12: Contour plot of ψ in the µ−T plane for Model B with massless quarks, showing
where TrFP is most different from TrFP

†.

known analytically [79]:

T =
2µ√
3π
. (3.43)

This behavior is generic to Model A when T, µ � m, as we have seen for heavy quarks in

the previous section.

The most interesting feature of Model B with massless quarks is that there is no region

where κI is non-zero. Nevertheless, as shown in Fig. 3.12, ψ is non-zero, with a peak value

near (µ = 250 MeV, T = 140 MeV). This is the only case we have considered where there is

no disorder line.
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3.7 PNJL models

In this section we consider our most realistic models of QCD at finite temperature and

density, PNJL models evaluated at complex saddle points. These models have a much richer

structure because the effects of chiral symmetry breaking are included. Because the effective

quark mass varies with T and µ, the behavior of the PNJL models in some sense lies between

that of the heavy quarks and m = 0 quarks considered in the previous two sections, with

a constituent quark mass that varies with T and µ. Figures 3.13 and 3.14 show the values

of 〈TrFP 〉,
〈
TrFP

†〉 and m for a PNJL model using V A
d to implement confinement. In all

figures of this type, the constituent quark mass m is normalized to its value at (µ = 0, T = 0

), while 〈TrFP 〉 and
〈
TrFP

†〉 are normalized so that they go to one as T goes to infinity. As

is typical of PNJL models with appropriately chosen parameters, only crossover behavior is

seen at µ = 0. There is a critical line starting at µ ≈ 350 MeV when T = 0 and ending at a

critical point at approximately (µ ' 320 MeV, T ' 75 MeV ). This first-order line manifests

itself in Fig. 3.13 in the discontinuous behavior of 〈TrFP 〉,
〈
TrFP

†〉 and m at T = 50 MeV.

Figures 3.15 and 3.16 show the corrsponding behavior of 〈TrFP 〉 ,
〈
TrFP

†〉 and m using

V B
d to implement confinement. In all figures of this type, m is normalized to its value

at (µ = 0, T = 0), while 〈TrFP 〉 and
〈
TrFP

†〉 are normalized so that they go to one

as T goes to infinity. As is Model A, only crossover behavior is seen at µ = 0. The

critical line starting at µ ≈ 350 MeV when T = 0 ends at a critical point at approximately

(µ = 320MeV, T = 100MeV ). The first-order line again manifests itself in Fig. 3.15 in the

discontinuous behavior of 〈TrFP 〉,
〈
TrFP

†〉 and m at T = 50 MeV.
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Figure 3.13: The constituent mass m, 〈TrFP 〉 and
〈
TrFP

†〉 as a function of µ for T =
50, 150, and 210 MeV for a PNJL model using Model A for confinement effects. The con-
stituent mass m is normalized to one at T = 0, and the Polyakov loops are normalized to
one as the temperature becomes large.

Figure 3.17 shows contour lines for ψ in the µ − T plane along with the region where

κI 6= 0 as well as the critical line. The overall shape of the disorder line is similar to that

found in the previous section for heavy quarks, but of course shifted to a much lower value

µ. The critical line lies completely within the region κI 6= 0. Figure 3.18 shows a contour

plot for κI . In both figures, a jump in ψ and κI is visible as the critical line is crossed.

As with Model A, the PNJL model using V B
d shows many of the same features found for

heavy quarks. Figure 3.19 contour lines for ψ in the µ−T plane along with the region where

κI 6= 0 as well as the critical line, and Figure 3.20 shows a contour plot for κI . A striking

difference between Model A and Model B is that the critical line now lies on the boundary of

the region κI 6= 0, and the disorder line appears to be a smooth continuation of the critical
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Figure 3.14: The constituent mass m, 〈TrFP 〉 and
〈
TrFP

†〉 as a function of T for µ = 0, 250
and 325 MeV for a PNJL model using Model A for confinement effects. The constituent
mass m is normalized to one at T = 0, and the Polyakov loops are normalized to one as the
temperature becomes large.

line out of the critical end-point.

3.8 Conclusions

As we have shown, the sign problem in QCD at finite density makes it very desirable to extend

real fields into the complex plane. This extension is certainly necessary for steepest descents

methods to yield correct results. Complex saddle points lead naturally to 〈TrP 〉 6=
〈
TrP †

〉
,

a result that is much more difficult to obtain when fields are restricted to the real axis. The

nature of these saddle points are restricted by CK symmetry. The case of a single dominant

saddle point is particularly tractable in theoretical analysis. In the class of models we have

examined, the saddle point is not far from the real axis, as indicated by the small values of ψ
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Figure 3.15: The constituent mass m, 〈TrFP 〉 and
〈
TrFP

†〉 as a function of µ for T =
50, 150, and 210 MeV for a PNJL model using Model B for confinement effects. The con-
stituent mass m is normalized to one at T = 0, and the Polyakov loops are normalized to
one in the limit as the temperature becomes large.

and corresponding small differences between 〈TrP 〉 and
〈
TrP †

〉
. This is good news for lattice

simulation efforts, as it suggests only a modest excursion into the complex plane is needed.

The small value of ψ also indicates a small difference for thermodynamic quantities such

as pressure and internal energy between our work and previous work on phenomenological

models where only real fields were used. For all six cases studied here, the maximum value

of ψ occurs in the region where quark degrees of freedom are “turning on,” as indicated by

crossover or critical behavior. In our previous work on Model A for massless quarks [79], we

were able to show analytically how ψ 6= 0 can arise from the interplay of confinement and

deconfinement when µ 6= 0, and our results here are consistent. For the two PNJL models,

it is striking that the largest values of ψ occur near the critical end point. These predictions
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Figure 3.16: The constituent mass m, 〈TrFP 〉 and
〈
TrFP

†〉 as a function of T for µ = 0, 250
and 325 MeV for a PNJL model using Model B for confinement effects. The constituent
mass m is normalized to one at T = 0, and the Polyakov loops are normalized to one in the
limit as the temperature becomes large.

Figure 3.17: Contour plot of ψ in the µ − T plane for a PNJL modle using Model A for
confinement effects. The region where κI 6= 0 is shaded. The critical line and its endpoint
are also shown.
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Figure 3.18: Contour plot of κI in the µ − T plane for a PNJL modle using Model A for
confinement effects. Contours are given in MeV, with αs set to one. The region where κI 6= 0
is shaded. The critical line and its endpoint are also shown.

Figure 3.19: Contour plot of ψ in the µ − T plane for a PNJL modle using Model B for
confinement effects. The region where κI 6= 0 is shaded. The critical line and its endpoint
are also shown.
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Figure 3.20: Contour plot of κI in the µ − T plane for a PNJL modle using Model B for
confinement effects. Contours are given in MeV, with αs set to one. The region where κI 6= 0
is shaded. The critical line and its endpoint are also shown.

can be checked in lattice simulations by the direct measurement of 〈TrP 〉 and
〈
TrP †

〉
once

sufficiently effective simulation algorithms are developed.

In all six cases studied, ψ 6= 0 leads to two different eigenvalues for the A4 mass matrix. In

five of the six cases studied, a disorder line is found. This disorder line marks the boundary

of the region where the real parts of the mass matrix eigenvalues become degenerate as

the eigenvalues form a complex conjugate pair. In the PNJL models, the disorder line is

closely associated with the critical line. Inside the region bounded by the disorder line, the

complex conjugate pairs gives rise to color charge density oscillations. Patel has developed

a scenario in which such oscillations might be observed experimentally [76, 77]. Our results

indicate that the oscillations may have too large a wavelength to be directly observable

72



in experiment, although estimates based on phenomenological models should be applied

cautiously. The mass matrix eigenvalues are in principle accessible in lattice simulations via

the measurement of Polyakov loop correlation functions. A direct determination of κI may

be difficult, but the disorder line itself could be determined from the merging of the values

of Re (κ1) with Re (κ2).

While the behavior of 〈TrP 〉,
〈
TrP †

〉
and

〈
ψ̄ψ
〉
, as determined by lattice simulations, do

not strongly differentiate between the two confining potential terms, Model A and Model B,

the corresponding two-point correlation functions do. The most physically relevant case of

PNJL models show both common features as well as clear differences in the behavior of the

disorder line between Model A and Model B. In both cases, the maximum value of κI occurs

slightly above and to the left of the critical end point in the µ − T plane, in the vicinity of

the region where the ratio TrFP
†/TrFP is largest. In Model A, the critical line is contained

within the boundary of the disorder line, but in Model B the disorder line appears to come

out of the critical end point as a continuation of the critical line, a common behavior for

disorder lines. Furthermore, in Model A the disorder line continues diagonally in the µ− T

plane for large µ and T , but for Model B, the line bends over into the critical line. With

Model A there is thus a possibility that the effects of the disorder line might be visible in

the results of the Compressed Baryonic Matter (CBM) experiment at FAIR. The disorder

line also strongly differentiates between Model A and Model B in the case of heavy quarks,

so lattice simulations of either light or heavy quarks that can locate the disorder line have

the potential to discriminate between the two models.
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Chapter 4

COMPLEX SPECTRUM OF FINITE-DENSITY LATTICE QCD
WITH STATIC QUARKS AT STRONG COUPLING

This chapter contains the materials published under the same title 1. This work was done
in collaboration with Dr. Hiromichi Nishimura under the supervision of my advisor, Prof.
Michael Ogilvie

4.1 Introduction

Although lattice simulations have given excellent first-principles results for many observables

of finite-temperature QCD, there has been less clear success when the chemical potential µ

is nonzero. Finite-density QCD is one of the class of theoretical models that has a sign

problem: the partition function is a sum over complex weights which cannot be interpreted

as relative probabilities [41–43]. Many methods have been used in attempts to overcome the

sign problem in finite-density QCD. Two methods that have received significant attention

recently are the complex Langevin technique [91–96] and the Lefschetz thimble approach

[56–59, 97–101]. We have recently explored the implications of complex saddle points in

phenomenological models of QCD at finite temperature and density [79, 102]. These models

postulate effective potentials for the Polyakov loop TrFPx and other order parameters in such

a way that the confinement-deconfinement transition of quenched QCD is incorporated. The

most realistic of these models are Polyakov-Nambu-Jona Lasinio (PNJL) models, and include

1Nishimura, H., Ogilvie, M.C. and Pangeni, K., 2016. Complex spectrum of finite-density lattice QCD
with static quarks at strong coupling. Physical Review D, 93(9), p.094501.
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the effects of chiral symmetry restoration [65]. In all the cases studied in [79, 102], a nonzero

µ resulted in a complex saddle point for the eigenvalues of the Polyakov loop. A number

of desirable results emerge from this. For example, the free energy is real at the complex

saddle point and 〈TrFP 〉 6=
〈
TrFP

†〉. The mass matrix for Polyakov loops exhibits a new

feature: the mass eigenvalues may form a complex conjugate pair, indicating the occurrence

of spatially-modulated sinusoidal decay. Such behavior is forbidden by spectral positivity

for µ = 0, but is possible when µ 6= 0. In the case of PNJL models, complex conjugate

pairs occur in regions around the first-order line that emerges from T = 0, terminating at a

critical end-point.

Here we address the generality of this phenomenon by showing similar behavior in lattice

QCD with static quarks in the strong-coupling limit. We will use a transfer matrix formalism

to determine the behavior of Polyakov loop correlation functions as a function of spatial

separation. These results are exact for any gauge coupling in 1 + 1 dimensions, but also

represent the leading-order result in the character expansion in higher dimensions. As the

chemical potential of the static quarks is varied, we will show that there are large regions

of parameter space where the eigenvalues of the transfer matrix form complex conjugate

pairs, leading to damped oscillatory behavior of Polyakov loop correlation functions. The

boundary of such a region in parameter space is referred to as a disorder line in condensed

matter physics. The method used is completely different from the saddle point technique

employed in [79, 102], applied to a very different model, illustrating the generality of the

behavior. Any reliable simulation method for finite-density lattice QCD should be able to
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reproduce our results, which thus can serve as a benchmark for the validation of algorithms.

Section II describes the strong-coupling formalism underlying our calculation. We give

a graphical demonstration of the non-hermiticity of the correlation function matrix in char-

acter space when the chemical potential is nonzero. We also discuss the symmetries of the

model, paying particular attention to particle-hole symmetry. Section III explains how the

transfer matrix for Polyakov loops can be realized in the character basis in a form suitable

for numerical diagonalization. In section IV, we present our results for the Polyakov loop

spectrum. A final section gives our conclusions.

4.2 Strong-coupling formalism

4.2.1 Setup

Strong-coupling expansions and character expansions are well-developed methods for explor-

ing the properties of lattice gauge theories [103]. Strong-coupling expansions are typically

expansions in inverse powers of some coupling g2 around 1/g2 = 0. Generally such expan-

sions have a finite radius of convergence in an 1/g2, and thus are not directly relevant for

the continuum limit of non-Abelian gauge theories at g2 = 0. Nevertheless, they have often

given important insight into mechanisms and critical behavior. Character expansions are

closely related to strong-coupling expansions, but have many advantages. Consider the case

of SU(3) lattice gauge fields in 1 + 1 dimensions at some finite temperature. In the absence

of non-gauge fields, i.e., the quenched approximation, this model is exactly solvable. The
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action Sp of a single plaquette Up can be expanded in character expansion

eSp[Up] =
∑
R

dRcRχR (Up) (4.1)

where χR is the character of an irreducible representation R of the gauge group G, dR is

the dimensionality of R, and cR is a coefficient that depends on the parameters of the gauge

action Sp. The character expansion is an expansion in the ratios cR/c0, where c0 is the

coefficient of the trivial (identity) representation. A strong-coupling expansion in 1/g2 may

be obtained by expanding these ratios. We will be using the character expansion in what

follows.

Our principle observable is the trace of the Polyakov loop operator Px in irreducible repre-

sentations of SU(3). The Polyakov loop operator Px is the time-ordered product of the time-

like links starting at a given point x and returning to that point due to the periodic boundary

conditions of finite-temperature lattice gauge theories. The trace of Px in an irreducible rep-

resentation R measures confinement for that representation: 〈TrRP 〉 = exp (−βFR) , where

FR is the free energy required to insert a static particle in a representation R into the sys-

tem and β is the inverse of the temperature T . In a pure gauge theory, the trace in the

fundamental representation, TrFP , is an order parameter for confinement.

We will begin by giving simple arguments that show that the Polyakov loop propagator

matrix is not Hermitian at finite density, indicating the possibility of complex eigenvalues.

The correlation function of Polyakov loops in a representation R,
〈
TrRPxTrRP

†
y

〉
is given to

lowest order in the character expansion by tiling space with plaquettes in the representation
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R between x and y. We now introduce static quarks into this system. Each quark carries

with it a factor of TrFP with an additional factor of exp(βµ) when the chemical potential

µ 6= 0. As shown in Fig. 4.1, this generates a new interaction not present in the quenched

case that couples TrFP to itself. Correlation functions of the form 〈TrRPxTrRPy〉 have been

measured in lattice simulation of full QCD at µ = 0 [104]. When µ 6= 0, the lowest-order

contribution to 〈TrRPxTrRPy〉 is enhanced by a weight factor exp(βµ). On the other hand,

the coupling of TrFP
† to itself, as represented in Fig. 4.2, is suppressed by a corresponding

factor of exp−βµ. The only difference between the two graphs is the factor of exp (βµ)

versus exp (−βµ) so 〈TrRPxTrRPy〉 6=
〈
TrRP

†
xTrRP

†
y

〉
. Thus when µ 6= 0 the matrix of

two-point correlation functions is no longer Hermitian. In order to find masses, that matrix

of correlation functions must be diagonalized. However, if the correlation matrix is not

Hermitian, the masses need not be real. The asymmetry between TrFP and TrFP
† is

a consequence of the explicit breaking of charge conjugation C by the chemical potential.

However, the symmetry of finite-density QCD under the combined action of C and complex

conjugation K remains intact [79, 102, 105, 106]. Thus the combined action of CK leaves

TrFP and TrFP
† invariant. For our purposes, the most important consequence of the CK

symmetry is that the masses are either real or are part of a complex conjugate pair, as we

discuss below.

A comprehensive treatment of Polyakov loop correlation functions at strong coupling

is most conveniently carried out using a version of Svetitsky-Yaffe universality [107, 108].

This fundamental result for gauge theories at finite temperature links the critical behavior
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TrP TrP

eβμ

Figure 4.1: Graphical representation of a contribution of fermions to 〈TrFP TrFP 〉

.

TrP† TrP†

e-βμ

Figure 4.2: Graphical representation of a contribution of fermions to
〈
TrFP

† TrFP
†〉.

of Polyakov loops in pure gauge theories in d dimensions with the behavior of spin systems

in d − 1 dimensions. Furthermore, the effect of introducing quarks into the gauge theory

is similar to the effect of an external magnetic field on a spin system. It is easy in strong

coupling to show that the effective action for the interaction of Polyakov loops is similar to

that found in a spin system. If we consider two adjacent Polyakov loops on a lattice, they

share a “belt” of plaquettes running up the time axis. Integrating over the spatial links of

this belt leads to an effective interaction between the Polyakov loops of the form

∑
R

cNtR χR (Px)χR
(
P †y
)

(4.2)

79



where Px and Py are Polyakov loops on adjacent spatial lattice sites x and y. The parameter

Nt is the temporal size of the lattice, so β = Nta, where a is the lattice spacing. To leading

order in a strong-coupling expansion, the exponential of the effective action is

eSeff =
∏
〈xy〉

[∑
R

cNtR χR (Px)χR
(
P †y
)]

(4.3)

where the product is taken over all nearest-neighbor spatial lattice sites. For very strong

coupling, the contribution of the fundamental representation usually dominates, and the

effective action may be written approximately as

eSeff ' exp

∑
〈xy〉

J
[
χF (Px)χF

(
P †y
)

+ χF
(
P †x
)
χF (Py)

] (4.4)

where the sum over 〈xy〉 is a sum over nearest-neighbor pairs of spatial points and

J =

(
cF
c0

)Nt
. (4.5)

This is clearly of the form of a spin system, with spins taking on values in G and the

interaction respecting global center symmetry.

In order to arrive at a simple model, we consider only the case where quarks are so heavy

that move only in time and are static in space. In this case, the effects of quarks at x can
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be represented in the partition function by a weight [89]

Dx = det
[
1 + eβµ−βMPx

]
(4.6)

while antiquarks give a weight factor

D̄x = det
[
1 + e−βµ−βMP †x

]
(4.7)

where µ is the chemical potential and M is the heavy quark mass. It will be convenient to

associate two different “activities” for quarks and antiquarks:

z1 = eβµ−βM (4.8)

z2 = e−βµ−βM . (4.9)

Although z1 and z2 may take on any non-negative values, their association with µ and M

does impose restrictions: Depending on the sign of µ, either z1 or z2 is always less than one.

However, it is sometimes convenient to ignore this restriction to display the symmetries of

the model. The complete partition function is given by

Z =

∫
[dP ]

∏
x

[
DxD̄x

]∏
〈xy〉

[∑
R

cNtR χR (Px)χR
(
P †y
)]

(4.10)

where the integral [dP ] is over Haar measure for the Polyakov loop Px on each spatial lattice

site x and the sum over 〈xy〉 is a sum over nearest-neighbor pairs.

81



4.2.2 Symmetries

The physics of SU(N) static quarks at finite density is invariant under (z1, z2) → (z2, z1)

provided we also switch our definition of particle and antiparticle operators. However, we

need not switch operators at the special points where z1 = z2. These are the points where

µ = 0 and we have particle-antiparticle symmetry. Notice however that the identity

det [1 + z1Px] = zN1 det
[
1 + z−1

1 P †x
]

(4.11)

also leads to an invariance and a symmetry. The factor of zN1 represents the Boltzmann

factor for a completely filled state at a site. Although this factor of zN1 does contribute to

the free energy, it does not affect expectation values. This operation reflects the equivalence

between particles and holes: a particle (relative to the vacuum) is equivalent to N − 1 holes

(relative to the completely filled state) at the same site. In the special case where z2 = 0,

there is an exact particle-hole symmetry under z1 → 1/z1. This extends to an approximate

particle-hole symmetry when antiparticle effects are small. If we apply the above identity to

antiparticles as well as particles, we obtain an exact symmetry of the complete theory: The

model is invariant under the transformation (z1, z2) → (1/z2, 1/z1). Note however that this

transformation takes the physical region z1, z2 < 1 into the unphysical region z1, z2 > 1.

Let us suppose we are in a low-temperature, large µ region where z2 � 1 and antiparticle

effects can be neglected. Then the fermion determinant D is real and there is no sign problem

when z1 = 1; this is precisely the absence of a sign problem at “half-filling” for static quarks.

82



See [109] for an extensive treatment of this property. These symmetries are easily extended

to any representation of the gauge group. Note that an alternative approach to including

static quarks at finite density is to add a term

∑
x

[
z1TrFPx + z2TrFP

†
x

]
(4.12)

directly to the action. However, this is an approximation to lowest order in z1 and z2 of the

effects of static fermions or bosons. It therefore misses the effects of Pauli blocking as well

as the symmetries of the fermion determinant just discussed.

In addition to the invariances associated with z1 and z2, this model inherits from finite-

density QCD invariance under the combined action of charge conjugation C and complex

conjugation K [79, 102]. Charge conjugation takes TrFPx → TrFP
†
x . It is a symmetry when

µ = 0, but not when µ 6= 0. Complex conjugation is an antilinear symmetry, changing not

only fields but also complex-conjugating ordinary numbers. Like C, K is a symmetry of the

model only when µ = 0. K acts on TrFP to give TrFP
∗ = TrFP

†. It is easy to see that

the combined effect of CK is to leave the action invariant. From this, it can be shown that

all the eigenvalues of the transfer matrix are either real or are part of a complex conjugate

pair. Due to the symmetry of the model, the transfer matrix Ts commutes with CK. If

Ts |λ〉 = λ |λ〉 it follows that

TsCK |λ〉 = CKTs |λ〉 = CKλ |λ〉 = λ∗CK |λ〉 (4.13)
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so λ∗ is an eigenvalue of Ts if λ is. Correlation functions of operators that couple to eigenstates

of Ts with complex eigenvalues will generally exhibit some amount of sinusoidally-modulated

exponential decay rather than the usual exponential decay found in models with Hermitian

actions [79, 102, 105, 106]. We will show below that this sinusoidal modulation is present in

strong-coupling QCD with a finite density of static quarks.

4.3 Strong-coupling calculation of the spectrum

In 1 + 1 dimensions, the transfer matrix connecting one Polyakov loop Px to its nearest

neighbor Py in a pure gauge theory can be written as

T0 =
∑
R

cNtR χR (Px)χR
(
P †y
)

(4.14)

in the gauge-invariant basis where states are class functions of P :

Ψ (P ) =
∑
R

bRχR(P ). (4.15)

We can regard T0 as acting on wave functions Ψ(P ) or alternately on an infinite vector of

coefficients bR. We refer to the latter representation as the group character basis. We are free

to choose the lattice action as reflected by the coefficients cR, provided they have the correct

behavior in the continuum limit. Although the Wilson action is the most common lattice

action, there is an infinite class of lattice actions that lead to the same continuum limit.

Because we are interested in tracking the behavior of Polyakov loop correlation functions in
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many representations, we will need to keep the higher-order terms in the character expansion

of the effective action. We will use the heat kernel action, for which the coefficients are

cR = exp
(
−g2CRa

2/2
)

(4.16)

where CR is the quadratic Casimir invariant for R. This has important advantages for us

over the standard Wilson action. The expression for cR is simple and easy to calculate. In

addition, it yields exactly the continuum results for string tensions for pure gauge theories

in 1 + 1 dimensions. See [108, 110, 111] for an explanation of other properties of the heat

kernel action.

Using the identification β = Nta, the transfer matrix T0 has the form

T0 =
∑
R

exp
(
−βg2aCR/2

)
χR (Px)χR

(
P †y
)
. (4.17)

In the group character basis the Casimir operator is diagonal. For SU(3), its eigenvalues are

C(p, q) =
(p+ 1)2 + (q + 1)2 + (p+ 1)(q + 1)

3
− 1 (4.18)

where (p, q) specify the particular irreducible representation of R of the gauge group. Here

p represents the number of columns of one box and q represents the number of columns of
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two boxes in Young tableau. The transfer matrix in the group character basis is

T0 = e−
g2βa

2
C(p1,q1)δp1p2δq1q2 . (4.19)

In the pure gauge theory, the eigenvalues of T0 determine the exponential decay of correlation

functions: 〈
TrRPxTrRP

†
y

〉
∼ exp

(
−C(p1, q1)

g2βa

2
|x− y|

)
. (4.20)

It is convenient to define the combination g2β/2 to be m0, so that each representation R is

associated with a mass mp,q ≡ C (p, q)m0 in the pure gauge theory. The eigenvalues of the

pure gauge theory transfer matrix T0 are given by

λp,q = e−
g2βa

2
C(p1,q1) (4.21)

so a mass mp,q can be extracted as

mp,q = −1

a
log

(
λp,q
λ0,0

)
. (4.22)

In the more general case where static quarks are present, the eigenvalues of the transfer

matrix cannot be associated with a fixed group representation, and the corresponding eigen-

vectors in character space are linear combinations of group characters. In general, we simply
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number the eigenvalues sequentially starting at zero, and define the mass by

mj = −1

a
log

(∣∣∣∣λjλ0

∣∣∣∣) (4.23)

taking into account that the eigenvalues may be complex. Note thatm0 is simply a convenient

mass scale, and not the mass of the ground state. If we consider mj/m0 in the limit where

quark effects vanish, we obtain the Casimir operator C(p, q). It is only in this sense that a

given mass can be associated with a representation in the general case. In the case where λj

is complex, Arg (λj) determines the wavenumber for the oscillations. In general, we define

exp (−mja+ ikja) =
λj
λ0

(4.24)

so that kja = Arg (λj/λ0) determines the period of oscillation for a given eigenvalue j. In

all the cases considered here, the ground state is unique and λ0 is real and positive, so

kja = Arg (λj). We will take the lattice spacing a to be 1, and treat m0 as the fundamental

parameter of the pure gauge theory.

In the group character basis, TrFP and TrFP
†act as raising and lowering operators and

can be expressed in terms of Kronecker deltas

TrFP = δp1,p2δq1,q2−1 + δp1,p2−1δq1,q2+1 + δp1,p2+1δq1,q2 (4.25)

TrFP
† = δp1,p2−1δq1,q2 + δp1,p2+1δq1,q2−1 + δp1,p2δq1,q2+1 . (4.26)
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The effect of heavy static quarks can in turn be represented in the partition function by the

fermion determinant

D (z1) = 1 + z1TrFP + z2
1TrFP

† + z3
1 (4.27)

while the effect of antiquarks is represented by

D̄ (z2) = 1 + z2TrFP
† + z2

2TrFP + z3
2 (4.28)

where z1 and z2 are the “activities” for quark and antiquark defined above. The overall

transfer matrix including the effect of quarks and antiquarks can be written as

Ts = T
1/2
0 D (z1) D̄ (z2)T

1/2
0 . (4.29)

This particular form is chosen so that Ts is Hermitian when z1 = z2. While the transfer

matrix corresponding to pure gauge fields, T0, is Hermitian, the final transfer matrix, Ts,

that includes the effect of heavy quarks and antiquarks is no longer Hermitian. TrFP and

TrFP
† connects between different representations so they introduce off diagonal elements in

the transfer matrix. Since TrFP and TrFP
†are different for µ 6= 0, the off-diagonal elements

are no longer symmetric and the transfer matrix is non-Hermitian.

In 1 + 1 dimensions, the results obtained from the transfer matrix are exact at any value

of the coupling. In the strong coupling region, the results from 1 + 1 dimensions are also

valid in higher dimensions to leading order in the character expansion. This result was noted

long ago by [112]. Consider the strong-coupling expansion for a free scalar field, as shown

88



in Fig. 4.3. For on-axis correlation functions, say 〈φ (0)φ (rx̂)〉, the leading diagram is a line

between the two points, the single path of minimal length. For off-axis correlation functions,

there are multiple minimal-length paths in the taxicab metric, e.g. |x| + |y| + |z| in 3 + 1

dimensions, but this gives rise to a prefactor that does not change the exponential decay of

the correlation function. When looked upon as a spin system, the diagrammatic expansion

here behaves similarly, so the leading-order strong-coupling result in 1 + 1 dimensions is also

the result in d + 1 dimensions. Higher-order corrections to masses do explicitly depend on

d. In any dimension, the strong-coupling expansion is a convergent expansion with a finite

radius of convergence, so there will be some region around g−2 = 0 where the lowest order

result is a good approximation.

The analogous behavior for a gauge theory at finite temperature is shown in Fig. 4.4

below. For on-axis correlation functions of widely-separated Polyakov loops, the dominant

contribution at strong coupling is a straight sheet, exactly as in 1 + 1 dimensions. For

the off-axis correlation function, there will be many minimal surfaces connecting the two

Polyakov loops, but this will not change the rate of exponential fall-off at leading order in

strong coupling. Thus we see that the strong-coupling results in 1 + 1 dimensions are also

valid in d+ 1 dimensions.

4.4 Results for the mass spectrum

We now discuss our results for the low-lying eigenvalues of Ts. We begin with the case where

z1 and z2 are set to a common value z, which corresponds to setting µ to zero so that z

can be identified with exp(−βM). In this case, the model is Hermitian so the eigenvalues
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(a) In one dimension, the only graph is a straight
line connecting the endpoints (open circles).

(b) In two or more dimensions, off-axis correlation
functions typically have many paths of minimal
length connecting the endpoints, but this degener-
acy does not change the rate of exponential fall-off
at leading order in strong coupling.

Figure 4.3: Strong-coupling diagrams for a free scalar theory.

β=1/T

Figure 4.4: A contribution to the off-axis correlation function between two-widely separated
Polyakov loops. For clarity, the intermediate staircase has been replaced by a diagonal sheet.
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are real and 〈TrFP 〉 =
〈
TrFP

†〉. Figure 4.5 shows the mass spectrum of the low-lying

eigenstates and Polyakov loop expectations values for m0 = 1 and 2. The masses shown in

the figures below are always divided by the mass scale m0; the values of mj/m0 at z = 0, on

the left-hand axis, are thus the values of the Casimir operator for low-lying representations

of SU(3). In particular, we can associate the masses shown in Fig. 4.5 with the 3, 3̄, 8, 6 and

6̄ representations of SU(3) when z = 0. As can be seen in the figure, the values on the left-

hand axis at z = 0 are precisely 4/3, 3 and 10/3. For z > 0, the corresponding eigenvectors

contain a mixture of the identity representation, the above five representations and other

higher-dimensional representations. Both the spectrum and Polyakov loop expectation values

are invariant under z → 1/z. This is reflected in the peaks achieved at z = 1 by both the

masses and the Polyakov loop expectation values. Physically, quark effects behave as an

external magnetic field, and this effect is strongest at M = 0, corresponding to z = 1.

Increasing m0 from 1 to 2 shortens the correlation length in lattice units, and decreases the

effects of the fermions on the spectrum. The peak in the Polyakov loop at z = 1 is smaller

at m0 = 2 than at m0 = 1 because the interaction between nearest-neighbor Polyakov loops

is smaller. At z = 0, pairs of complex representations like the 3 and 3̄ have degenerate

masses. Because the quark determinant breaks the Z(3) symmetry of the pure gauge theory,

the eigenstates for z > 0 do not show any degeneracy, but separate into clear, well-defined

levels.

We next consider the case where the effects of antiquarks are neglected, which corresponds

to setting z2 = 0. Figure 4.6 shows the real and imaginary parts of the mass spectrum, mj/m0
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Figure 4.5: The mass spectrum and Polyakov loop expectation values for the (1 + 1)-
dimensional SU(3) model as a function of z with m0 = 1 and m0 = 2.

and Arg [λj], for low-lying eigenstates when m0 = 1 and 2. The figure also shows Polyakov

loop expectation values. As seen in the plots, the masses start out real for z1 = 0 but quickly

take on complex values for non-zero z1. As z1 increases, the magnitude of complex part of the

mass gradually increases before dropping back to zero. The plots clearly reflect the particle-

hole symmetry under z1 → 1/z1. The real part of mass spectrum is highest when z1 = 1,

which corresponds to µ = M . The point z1 = 1 is special because the theory is Hermitian at

half-filling and the mass spectrum must be real. Furthermore, there appears to be a region

around z1 = 1 where the mass spectrum is real. The size of this region is largest for the 3

and 3̄ representations. The 8 representation does not develop an imaginary part. For z1 < 1,

〈TrFP 〉 is less than
〈
TrFP

†〉, implying that the free energy cost of inserting a fermion into
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Figure 4.6: The real and imaginary parts of the mass spectrum and Polyakov loop expectation
values for the (1 + 1)-dimensional SU(3) model as a function of z1 with m0 = 1 and m0 = 2
and z2 = 0. The Polyakov loop 〈TrFP 〉 is represented by a solid line, and

〈
TrFP

†〉 by a
dashed line.

the system is greater than that of inserting an antifermion. For z1 > 1, this behavior is

reversed in accordance with the z1 → 1/z1 symmetry. At z1 = 1, the two expectation values

are equal. As in the case z1 = z2, moving from m0 = 1 to m0 = 2 lessens the impact of

fermions on the spectrum and on Polyakov loop expectation values. As mentioned earlier,

this increase in scale of pure gauge theory lessens the effects of fermions as seen in the plots.

We next consider the effects of antiquarks as gradually “turned on” by making z2 non-
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Figure 4.7: The real part of the mass spectrum of the (1 + 1)-dimensional SU(3) model as
a function of z1 with m0 = 1 and z2 increasing.

zero. We fix the value of m0 to 1. The region where Arg [λj] = 0 can be inferred from the

non-degeneracy of the real parts. As seen from Fig. 4.7, increasing the effect of antiparticles

by making z2 bigger gradually shrinks the region of complex mass. The region of complex

mass are completely washed out for high enough value of z2 and the mass spectrum is

completely real. The value of z2 for which the eigenvalues are real is smaller for low-lying

eigenstates. For example, the 3 and 3̄ eigenstates are real even when z2 is around 0.5 but

we need z2 to be around 1 for the eigenstates corresponding to 6 and 6̄ to be completely

real. When z2 is much larger than 1, the mass spectrum will again show regions where

Arg [λj] 6= 0. This can be understood from the properties of the fermion determinants: the

antifermion determinant at large z2 is equivalent to a fermion determinant whose z1 = 1/z2

is small. The spectrum at large z2 is thus similar to that at small z2.

We now turn to a more physical analysis of the spectrum in terms of the quark mass M

and the chemical potential µ. In all cases, we set the fundamental scale-setting parameter
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m0 = 1. The ratio M/T is fixed at values between 0 to 5 and µ/T is varied from 0 to

6. As shown in Figs. 4.8 and 4.9, the behaviors of the mass spectrum and Polyakov loop

expectation values are similar to what has been seen before, but the peak in the real part of

the mass spectrum occurs near µ = M , corresponding to z1 = 1. As before, the eigenvalue

associated with the 8 remains real throughout. When M is large compared to m0 and µ, the

spectrum is essentially that of the pure gauge theory. When µ is close to M there is again

a clear region where the low-lying eigenstates are real. In this region, there are well-defined

eigenvalues associated with the 3 and 3̄, and with the 6 and 6̄. Near µ = M , there are also

clear maxima and minima in many of the mass values. This is presumably due to a relative

maximum in the overall strength of Z(3) breaking at that point. Furthermore, TrFP and

TrFP
† both peak near µ = M , and also cross near this point. We attribute much of the

observed behavior for M ' µ to an approximate particle-hole symmetry associated with the

transformation z1 ↔ 1/z1. In the cases we are considering z2 = exp (−βµ− βM) is typically

less than 1. This leads to an approximate z1 ↔ 1/z1 symmetry with small corrections

coming from z2 < 1, with the effects of the symmetry most pronounced in the region M ' µ.

For M/T large, z2 is always much less than one, leading to an approximate particle-hole

symmetry for all µ; crossing of the Polyakov loops occurs at approximately the same value

of µ/T as half-filling. For large µ, Polyakov loop expectation values go to zero, also as a

consequence of the approximate symmetry. Equivalently, one can view this as due to the

saturation of the quark number density at large µ. For M/T . 0.55, antiquark effects are

significant and cannot be neglected: the low-lying spectrum is complex at half-filling.
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Figure 4.8: The real and imaginary parts of the mass spectrum and Polyakov loop expectation
values for the (1 + 1)-dimensional SU(3) model as a function of µ/T with m0 = 1 and M/T
between 5 and 2. The Polyakov loop 〈TrFP 〉 is represented by a solid line, and

〈
TrFP

†〉 by
a dashed line.
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Figure 4.9: The real and imaginary parts of the mass spectrum and Polyakov loop expectation
values for the (1 + 1)-dimensional SU(3) model as a function of µ/T with m0 = 1 and M/T
between 1.5 and 0. The Polyakov loop 〈TrFP 〉 is represented by a solid line, and

〈
TrFP

†〉
by a dashed line.
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On either side of the region including M = µ, where the 3 and 3̄ are real, there are

regions where the value of |Arg [λj]| for the 3 and 3̄ representation reaches a maximum.

These regions also include the value of µ/T where TrFP and TrFP
† are most different. A

similar correlation of |Arg [λj]| with
∣∣〈TrF (P − P †)〉∣∣ was seen in PNJL models [102]. As

in Fig. 4.7, there is a second region where the low-lying eigenvalues are all real. This region

is separate from the region around M = µ where the eigenvalues are real, and appears here

for low µ/T . This behavior is clearly visible for M/T = 2, but is present for M/T = 4 and

even higher values.

As may be seen from Figs. 4.8 and 4.9, the magnitude of the imaginary part of any

eigenvalue is generally substantially smaller than the real part and may be difficult to observe

directly in simulations. Nevertheless, it may be possible to observe the modulated decay

directly in some circumstances. Figure 4.10 shows the 3 − 3̄ Polyakov loop correlation

function
〈
TrFP

† (r)TrFP (0)
〉

as a function of r for m0 = 0.1 and z1 = 0.08 with z2 = 0.

The clear minimum at r ' 22 is a consequence of sinusoidal modulation and reminiscent of

the behavior of density-density correlation functions in liquids. Note also that the correlation

function drops below zero, also as a consequence of the spatial modulation.

The quark number density also may be calculated. Results are shown in Fig. 4.11 for the

quark number density as a function of µ/T for M/T = 1/2 and 5/2; the parameter m0 is set

to 1. The most obvious feature is the saturation of the number density at 3 for large µ. In

the context of lattice gauge theories at finite density, saturation was first discussed in [113]

for the case of SU(2), where there is no sign problem. See [109, 114] for recent discussions
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Figure 4.10: The 3−3̄ Polyakov loop correlation function
〈
TrFP

† (r)TrFP (0)
〉

as a function
of r for m0 = 0.1 and z1 = 0.08 with z2 = 0.

of saturation effects in strong-coupling models of SU(3) at finite density. Saturation is also

observed in recent Langevin simulation with heavy quarks [95]. For the heavier quark mass

M/T = 5/2, we expect that antiquark effects are negligible for µ ' M , and the system

has an approximate particle-hole symmetry at M = µ. This in turn implies that the quark

number density reaches half-filling (1.5) at M = µ. As may be seen from the figure, that

expectation is confirmed. For the lighter quark mass, M/T = 1/2, antiquark effects are not

negligible when µ ' M , and antiquark contributions lower the number density at µ = M

below the half-filling value. In both cases, the number density saturates at some value of µ

larger than M.

4.5 Conclusions

The spatial transfer matrix associated with Polyakov loops in finite-density QCD with static

quarks have complex eigenvalues over a significant region of parameter space in strong-
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Figure 4.11: Quark number density as a function of µ/T for M/T = 1/2 and 5/2. The
parameter m0 is set to 1. For the heavier mass M/T = 5/2, the quark number density
reaches half-filling (1.5) at M = µ.

coupling limit. The appearance of complex eigenvalues is a direct consequence of the non-

hermiticity of the transfer matrix. This is a manifestation of the sign problem in finite-

density QCD. We have given a graphical explanation of the non-hermiticity in terms of the

mixing between different representations. The invariance of finite-density QCD under CK

symmetry ensures that the eigenvalues are either real or part of complex conjugate pair.

The complex conjugate pairs in turn give rise to sinusoidal modulation of Polyakov loop

correlation function. If the activities z1 and z2 are set to a common value z, i.e. µ = 0,

all the eigenvalues are real. In this case, all the low-lying eigenvalues are largest when the

static fermion mass M is zero, corresponding to z = 1. In the case where antiparticles effects

are completely suppressed by setting z2 = 0, the mass spectrum reflected the particle-hole

symmetry of the theory under z1 → 1/z1. As in the previous case, the real part of the

transfer matrix eigenvalues peak at z1 = 1, corresponding to M = µ. This is a point where
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the transfer matrix is Hermitian, and also the point of half-filling. The complete suppression

of antiquark effects obtained by setting z2 = 0 is an approximation. If z2 were exactly

zero, then we would find that: a) all mass ratios would be real at z1 = 1, a property that

would hold in a region around z1 = 1; b) mass ratios would show maxima or minima at

z1 = 1; c) TrFP and TrFP
† would cross at z1 = 1. We have confirmed that these properties

persist when z2 � 1, reflecting an approximate particle-hole symmetry. As z2 increases and

antiparticle effects become more important, the regions where complex eigenvalues occur

reduce in size and eventually disappear as z2 approaches z1.

The mass spectrum can also be analyzed in terms of the more physical parameters M/T

and µ/T . In general, the spectrum of low-lying eigenvalues shows a complicated set of

behaviors, with both real and complex pairs of eigenvalues occurring. When M/T is large

compared to m0 and µ/T , the spectrum obtained is essentially that of pure gauge theory, and

the low-lying eigenvalues are all real. The region where µ/T is close to M/T corresponds to

z1 = 1, and the behavior in this region is largely determined by the approximate particle-hole

symmetry discussed above. In all the cases studied, 〈TrFP 〉 ≤
〈
TrFP

†〉 for 0 < µ < M

reflecting the lower free energy cost associated with introducing antiparticles. The occurrence

of conjugate complex mass pairs and sinusoidal modulation of Polyakov loop correlation

functions was previously observed by us in the study of phenomenological models of QCD

using a saddle point approximations [79, 102]. The presence of similar phenomenon in lattice

models of QCD at strong coupling strongly suggests the generality of the phenomenon. It

has been suggested [76, 77] that sinusoidal modulation of this type might be observed in
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lattice simulations and heavy ion experiments. In both phenomenological models and in

lattice strong-coupling calculations, the imaginary part of the mass is significantly smaller

than the real part, suggesting that the direct observation of modulation might be difficult

because of a long wavelength. However, there is another way to observe the splitting of the

spectrum into complex pairs in lattice simulations. Suppose that the imaginary part of the

masses are too small to be directly observed and can be neglected. In the regions where there

are complex conjugate eigenvalue pairs, the real parts of the eigenvalues are degenerate, but

outside of those regions they are different. This effect should be present and observable in

lattice simulations of finite-density QCD, and may provide a strong test for finite-density

algorithms.
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Chapter 5

LIQUID-GAS PHASE TRANSITIONS AND CK SYMMETRY
IN QUANTUM FIELD THEORIES

This chapter contains the materials published under the same title 1. This work was done
in collaboration with Dr. Hiromichi Nishimura under the supervision of my advisor, Prof.
Michael Ogilvie

5.1 Introduction

The problem of determining the phase structure of interacting particles at nonzero tem-

perature and density is old and important. Modern field-theoretic approaches are typically

susceptible to the sign problem, in which basic quantities such as the action becomes com-

plex. This problem is particularly acute in the case of QCD at finite temperature and

density: Lattice simulations have given excellent first-principles results for many observables

of finite-temperature QCD, there has been less clear success when the chemical potential μ

is nonzero [41–43]. A central problem is the determination of the phase structure of QCD

at low temperature and density where a critical line with a critical end point in the Ising, or

liquid-gas, universality class is widely expected.

Here we address the generic problem of liquid-gas phase transitions from a field theory

perspective. The general class of field theories we will study is the class of CK-symmetric

models obtained from dimensional reduction of a four-dimensional field theory at finite tem-

1Nishimura, H., Ogilvie, M.C. and Pangeni, K., 2017. Liquid-gas phase transitions and C K symmetry in
quantum field theories. Physical Review D, 95(7), p.076003.
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perature and density. The simplest case of interest are models with a single type of particles,

interacting via a scalar field σ and a vector field Aµ. Both σ and Aµ will be taken to have

masses. The potential induced by σ will be attractive, while that caused by the static vec-

tor potential A4 will be repulsive between particles. The particles of the underlying theory

are integrated out, and after dimensional reduction and redefinition of fields, we obtain a

Lagrangian of the general form

L3d =
1

2
(∇φ1)2 +

1

2
m2

1φ
2
1 +

1

2
(∇φ2)2 +

1

2
m2

2φ
2
2 − F (φ1, φ2) (5.1)

where φ1 is associated with the attractive force, and φ2 with the repulsive force. The field φ1

is naturally as a four-dimensional scalar, but φ2 is obtained from the fourth component of a

vector interaction. The function F can be interpreted as βp (φ1, φ2), where β is the inverse

of the tempurature T and p is a local pressure. In particular, p (φ1, φ2) is the local pressure

of the gas of particles in the grand canonical ensemble in the presence of the background

fields φ1 and φ2.

The key feature of L3d is that it is not real, but instead satisfies the CK symmetry

condition

L3d(φ1, φ2)∗ = L3d(φ1,−φ2). (5.2)

The C transformation naturally takes φ2 → −φ2 as in the case of QED, and the φ1 field is left

invariant. A nonzero chemical potential µ explicitly breaks C symmetry, but the antilinear

symmetry CK remains [70, 79, 102, 115]. CK symmetry implies that the saddle points of L3d
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have φ2 purely imaginary; at these saddle points, L3d is real. Analytic continuation of the

fields into the complex plane leads to a resolution of the sign problem at tree level. More

generally, unbroken CK symmetry implies that the expected value of 〈φ2〉 must be zero or

purely imaginary, because 〈iφ2〉∗ = 〈iφ2〉.

The static solutions of the equations of motion take the form

m2
1φ1 =

∂F

∂φ1

(5.3)

m2
2φ2 =

∂F

∂φ2

. (5.4)

The presence of such a CK symmetry is generic in quantum field theories at finite density.

The mass matrix for φ1 and φ2 is given by

 m2
1 − ∂2F

∂φ21
− ∂2F
∂φ1∂φ2

− ∂2F
∂φ2∂φ1

m2
2 − ∂2F

∂φ22

 . (5.5)

The mass matrix is nonhermitian because the off-diagonal elements are purely imaginary at

the saddle point, where φ2 is imaginary. It does, however, inherit the CK symmetry of the

underlying model. This in turn implies that the eigenvalues of the mass matrix are either

both real or form a complex conjugate pair [70, 79, 102, 115] . The boundary of the region

where complex conjugate pairs occur is given by

(
m2

1 −
∂2F

∂φ2
1

−m2
2 +

∂2F

∂φ2
2

)2

+ 4

(
∂2F

∂φ1∂φ2

)2

= 0. (5.6)
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The occurence of complex conjugate pairs of mass eigenvalues in turn lead to the damped

sinusoidal density oscillations often associated with the presence of a liquid phase. Thus we

see that this formalism can give a simple understanding of the existence of disorder lines,

which mark a change in the behavior of the potential between particles from exponential to

damped sinusoidal behavior. This behavior cannot be obtained from field theories with real

actions.

One of the hallmarks of typical liquid-gas systems is the existence of regions in parameter

space where density-density correlation functions exhibit damped oscillatory behavior. From

the perspective of quantum field theory, the appearance of damped oscillatory behavior in

correlation functions is unusual. Such behavior is prohibited in Euclidean quantum field

theories with spectral positivity. The simpest model of the liquid-gas transition, the Ising

model in its binary alloy form, has spectral positivity and cannot exhibit damped oscillatory

behavior of its correlation functions. Damped oscillatory behavior occurs generally in the

class of models we consider whenever a first-order critical line occurs.

We will consider four different models, corresponding to four different choices for the

function F (φ1, φ2). In the next section, we will consider the case of relativistic fermions of

mass m, with F taken to be

F =

∫
d3k

(2π)3 log

[
1 + exp

(
−β
√
k2 + (m− gβ−1/2φ1)

2
+ βµ+ iβ1/2eφ2

)]
. (5.7)

The coupling constants g and e determine the strength of the attractive and repulsive forces

respectively. There is a natural nonrelativistic limit, where after redefinition of the chemical
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potential we have

F =

∫
d3k

(2π)3 log
[
1 + exp

(
−βk2/2m+ βµ+ β1/2gφ1 + iβ1/2eφ2

)]
. (5.8)

Although the case of relativistic fermions exhibits a first-order liquid-gas transition, the

nonrelativistic reduction does not. The third section considers the case of static fermions,

where

F =
1

v
log
[
1 + exp

(
−βm+ βµ+ β1/2gφ1 + iβ1/2eφ2

)]
(5.9)

where v is a parameter with dimensions of volume. This model also has a first-order liquid

gas transition. However, its low-density reduction, the classical gas with

F =
1

v
exp

(
−βm+ βµ+ β1/2gφ1 + iβ1/2eφ2

)
(5.10)

does not have a first-order transition and does not have stable ground state. On the other

hand, its partition function is exactly equivalent to that of a classical gas, as we show in an

appendix. A final section gives our conclusions.

5.2 Relativistic Fermions

In this section, we study the liquid-gas phase transition in a model of relativistic fermions.

We begin by showing how an effective three-dimensional field theory can be derived from a

fundamental field theory. This approach is general and can be applied to other models as

well, such as relativistic or nonrelativistic bosons.
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5.2.1 Derivation from fundamental field theory

We consider a relativistic fermion interacting with a scalar field σ of mass mσ and a vector

field Aµ of mass mA. These fields couple to the fermion with coupling g and e respectively.

The Lagrangian for the fermionic part is

LF = ψ̄ [iγ · (∂ − ieA− µê4)− (m− gσ)]ψ (5.11)

where m is the fermion mass. The bosonic part is given by

LB =
1

2
(∂σ)2 +

1

2
m2
σσ

2 +
1

4
F 2
µν +

1

2
m2
AA

2
µ. (5.12)

This can be considered to be a QED version of the PNJL model, that is, a PNJL model

where the gauge symmetry is U(1). We set the boson masses mσ and mA to be constant,

although in practical applications of the formalism they may be temperature dependent.

Any expected value for the boson fields σ and Aµ (actually the associated Polyakov loop)

are induced in this model by the effects of the fermions at finite temperature and density.

That said, it is completely straightforward to include potential terms for σ and A4 that can

produce a more complicated phase structure. For example, a potential for σ could give rise

to the analog of the chiral transition in NJL and PNJL models. In this model, however, the

liquid-gas transition is driven solely by the interactions between the fermions.

The finite-temperature one-loop effective potential in the presence of constant fields σ

and A4 takes the form
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Seff =

∫
ddx [Vφ + VA + VFT ] (5.13)

where the temperature-dependent part of the one-loop fermionic contribution to the effective

potential VFT is given by

VFT = − 1

β

∫
d3k

(2π)3 log

[
1 + exp

(
−β
√
k2 + (m− gσ)2 + βµ+ iβeA4

)]
(5.14)

and Vσ and VA are quadratic. Although there are also contributions from thermal excitations

of σ and Aµ, we ignore them here because they do not affect the phase structure. For

simplicity, we generally assume that µ is sufficently large that the antiparticle contribution

can be suppressed. However, in the case of relativistic fermions, antiparticle effects must be

included to obtain the correct phase structure near µ = 0 , so in this case antiparticle effects

are included. For comparison with the other models, we do no denote these effect explicitly

here. The potential VFT is nothing but the negative of the pressure of a relativistic fermion

moving in the constant background provided by σ and A4. For slowly varying fields σ and

Aµ, VFT represents the lowest order fermionic contribution in a derivative expansion of the

effective action [116]. We have also assumed that the spatial part of the vector field can be

neglected, so that only the timelike component of Aµ need be included.

We dimensionally reduce to a three-dimensional effective theory, yielding an effective

Lagrangian L3d of the form

L3d = βLB + βVFT .
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We define new variables φ1 = β1/2σ and φ2 = β1/2A4 so as to maintain the canonical kinetic

terms and also set m1 = mσ and m2 = mA, giving

L3d =
1

2
(∇φ1)2 +

1

2
m2

1φ
2
1 +

1

2
(∇φ2) +

1

2
m2

2φ
2
2

−
∫

d3k

(2π)3 log

[
1 + exp

(
−β
√
k2 + (m− gβ−1/2φ1)

2
+ βµ+ iβ1/2eφ2

)]
.(5.15)

The last term in the expression is the definition of F (φ1, φ2) for this model.

5.2.2 Phase structure and disorder lines

The phase structure of the model is obtained from the static solutions of the equations of

motion:

m2
1φ1 =

∂F

∂φ1

(5.16)

m2
2φ2 =

∂F

∂φ2

(5.17)

while the presence of disorder lines is determined from the mass matrix

 m2
1 − ∂2F

∂φ21
− ∂2F
∂φ1∂φ2

− ∂2F
∂φ2∂φ1

m2
2 − ∂2F

∂φ22

 . (5.18)

In addition to T and µ, all of the models we consider have five parameters: m, m1, m2, eand

g. This is a very large parameter space to explore. In general, the potential takes the form

F (φ1, φ2)→ F (gφ1, eφ2). In terms of the rescaled fields φ̃1 = gφ1 and φ̃2 = eφ2, we can write
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the eqution of motion as

1

κ1

φ̃1 =
∂F

∂φ̃1

(5.19)

1

κ2

φ̃2 =
∂F

∂φ̃2

(5.20)

where κ1 = g2/m2
1 and κ2 = e2/m2

2. It is then clear that in addition to T and µ, only three

parameters, κ1, κ2 and m determine the solution as well as the location of the critical line if

there is one. On the other hand, the equation for the disorder line becomes

[(
1

κ1

− ∂2F

∂φ̃2
1

)
− e2

g2

(
1

κ2

− ∂2F

∂φ̃2
2

)]2

+ 4
e2

g2

(
∂2F

∂φ̃1∂φ̃2

)2

= 0 (5.21)

so the disorder line depends on the additional parameter of e/g. Because we are interested

in conventional liquid gas transitions, we will choose the fermion mass m to be substantially

heavier than the masses m1 and m2. In all the models we consider, we set m = 20, κ1 = 1,

and e = 0.3, and we then vary the value of κ2 to see the change of phase diagramas, as well

as the value of g = m1 to observe the difference in disorder lines.

Generally speaking, the liquid-gas transition will occur for low temperatures and µ . m.

The left-hand graph of Figure 5.1 shows the phase diagram for m = 20, m1 = 1 and

m2 = 0.75. The couplings are given by e = 0.3 and g = 1. The shaded region indicates

where the mass matrix eigenvalues form complex conjugate pairs, and the contour lines

refer to the imaginary parts of the mass matrix eigenvalues. The boundary of the shaded

region defines the disorder line in the phase diagram. The thick line shows a first-order line
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Figure 5.1: Phase diagrams for relativistic fermions for m = 20 and m2 = 0.75 with e = 0.3.
In the first graph g1 = m1 = 1, while in the second g1 = m1 = 0.8. The shaded region
indicates where the mass matrix eigenvalues form complex conjugate pairs, and the contour
lines refer to the imaginary parts of the mass matrix eigenvalues. The boundary of the
shaded region defines the disorder line in the phase diagram. Note the appearance of a
second disorder line inside the first in the second graph. The thick line shows a first-order
line emerging from the T = 0 axis and terminating in a critical end point.

emerging from the T = 0 axis and terminating in a critical end point. The disorder line has

a somewhat surprising shape; we will return to this point later. The graph on the right-hand

side of the figure shows what happens if m1 and g are decreased to 0.8. The phase structure

is essentially unchanged, and the old disorder line has changed only slightly. However, a new

disorder line boundary has opened up near the critical end point, inside the region where

complex mass matrix eigenvalues were previously found.

In Figure 5.2, we show a second pair of phase diagrams. The graph on the left-hand side

has m1 = g = 1 and m2 = 0.5. As before, e = 0.3 and m = 20. The end point of the critical

line is at a lower value of T and slightly shifted to the right, but is otherwise similar to

the previous graphs. However, when we examine the eigenvalues of the mass matrix, we see
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Figure 5.2: Phase diagrams for relativistic fermions for m = 20 and m2 = 0.5 with e = 0.3.
In the first graph g1 = m1 = 1, while in the second g1 = m1 = 0.6. The shaded region
indicates where the mass matrix eigenvalues form complex conjugate pairs, and the contour
lines refer to the imaginary parts of the mass matrix eigenvalues. The boundary of the
shaded region defines the disorder line in the phase diagram. In the first graph, the dashed
line near the critical end point is the boundary of the regions where the real parts of the
mass matrix eigenvalues are negative. The thick line shows a first-order line emerging from
the T = 0 axis and terminating in a critical end point.

something new: the real part of conjugate pair of mass matrix eigenvalues becomes negative

in a region near the critical end point. This is not neccesarily unphysical behavior. The

mass matrix is the matrix of squared masses, which are in general complex. A sufficiently

large phase in the complex mass will lead to a squared mass eigenvalue with a negative real

part. The boundary of this region is denoted in the figure by a dashed line. We have checked

carefully for alternative possibilities and have concluded that this is likely to represent the

correct phase structure of the model. We will return to this point in our conclusions after

examining results from the other models. The graph on the right-hand side of the figure has

m1 = g = 0.6 and again has m2 = 0.5, e = 0.3 and m = 20. The lower values of g and m1

eliminate the region where the real part of the conjugate pair of mass matrix eigenvalues
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becomes negative. The shaded region becomes larger, but the values of the imaginary parts

become smaller.

5.2.3 Nonrelativistic Fermions

The case of nonrelativistic fermions can be obtained straightforwardly from the relativistic

case, yielding the effective Lagrangian

L3d =
1

2
(∇φ1)2 +

1

2
m2

1φ
2
1 +

1

2
(∇φ2) +

1

2
m2

2φ
2
2

−
∫

d3k

(2π)3 log
[
1 + exp

(
−βk2/2m+ βµ− βm+ β1/2gφ1 + iβ1/2eφ2

)]
. (5.22)

An important simplification occurs because the fields φ1 and φ2 appear in F only as the

combination Φ = β1/2gφ1 + iβ1/2eφ2. The equations of motion for static solutions become

φ1 =
β1/2g

m2
1

∂F

∂Φ
(5.23)

φ2 = i
β1/2e

m2
2

∂F

∂Φ
. (5.24)

Combining these equations , we obtain

Φ =

(
βg2

m2
1

− βe2

m2
2

)
∂F

∂Φ
. (5.25)

Defining

κ = κ1 − κ2 =
g2

m2
1

− e2

m2
2

(5.26)
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we see that the phase diagram is determined by the single equation

Φ = βκ
∂F

∂Φ
(5.27)

with the four parameters m1, m2, e and g collapsing into a single parameter κ. The solutions

of this equation are extrema of the synthetic potential

U =
1

2
Φ2 − βκF (Φ) . (5.28)

This simplification also holds for static and classical particles as well.

Unlike the case of relativistic fermions, we find no liquid-gas transition in the case of

nonrelativistic fermions. This can be very simply from the behavior of the potential U ,

which always has a single minimum.

5.3 Static Fermions

In this section, we study the behavior of static continuum fermions, which have no kinetic

energy. The potential is given by

Vstatic = − 1

βv
log [1 + exp (−βm+ βgσ + βµ+ iβeA4)] (5.29)

where v should be thought of as some volume associated with the particle. For lattice

models, this is a natural limit at nonzero temperature where very heavy particles are fixed

on a spatial lattice site. For continuum field theories, there is no systematic approximation
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which yields static fermions as a natural limit. Aside from the connection with lattice gauge

theory, there are nevertheless good reasons to consider this model. The lattice form of this

model was studied by Park and Fisher as a tool for demonstrating that the repulsive-core

phase transition at negative z ≡ exp β (µ−m) is in the iφ3 universality class [117]. The

continuum model plays a similar role, illustrating both a liquid-gas transition in the usual

Ising universality class and a repulsive-core transition in the iφ3 universality class for z < 0.

The model is also interesting because it has an exact particle-hole symmetry that allows

us to determine analytically the location of the critical line as well as some of the other

key features of the model. This model reduces to the classical model in the limit where

z exp Φ � 1. In that case the parameter v can be identified as λ3
T = (2π/mT )3/2, but that

identification is special to the low-density limit.

The dimensionally reduced effective Lagrangian L3d has the form

L3d =
1

2
(∇φ1)2+

1

2
m2

1φ
2
1+

1

2
(∇φ2)2+

1

2
m2

2φ
2
2−

1

v
log
[
1 + exp

(
−βm+ β1/2gφ1 + βµ+ iβ1/2eφ2

)]
.

(5.30)

As was the case with nonrelativistic fermions, the crucial simplifying feature of this model,

is that F depends on φ1 and φ2 only through Φ = β1/2gφ1 + iβ1/2eφ2 . The static equations

of motion reduce to

Φ = βκ
∂F

∂Φ
(5.31)
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which in this case can be written as

Φ =

(
βκ

v

)
∂

∂Φ
log [1 + z exp (Φ)] . (5.32)

The corresponding potential U takes the form

U =
1

2
Φ2 − κy log [1 + z exp (Φ)] (5.33)

where we have introduced for convenience y = β/v.

This model has a conventional liquid-gas transtion for κy > 0 and z > 0. We can

locate the critical point of this model analytically. The second derivative of the potential

d2U/dΦ2 has two inflection points when κy > 4; hence the potential U itself has two minima

for κy > 4. At the critical end point, the minimum of the potential coalesces with the

two inflection points and one finds the critical end point at (κy = 4, z = e−2). Note that

for κ < 0, there is a phase transition for z < 0; this transition is in the iφ3 universality

class as discussed by Park and Fisher[117]. As they show, the phase structure may also be

understood graphically. The equation ∂U/∂Φ = 0 may easily be written in the form

Φ exp (−Φ) = κyz − zΦ (5.34)

and the solutions found from the intersection of the left- and right-hand sides.
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5.3.1 Particle-Hole Duality

Analytic information about the phase structure may be obtained from an exact dualtity

argument [115] that exchanges particle and holes. We can rewrite U as

U =
1

2
Φ2 − κy log

[
1 + z−1e−Φ

]
− κyΦ− κy log z (5.35)

or

U =
1

2
(Φ− κy)2 − κy log

[
1 + z−1e−Φ

]
− κy log z − 1

2
(κy)2 . (5.36)

After shifting Φ→ Φ′ = −Φ + κy, we have

U =
1

2
Φ2 − κy log

[
1 + z−1eΦ−κy]− κy log z − 1

2
(κy)2 (5.37)

so the phase structure as revealed by Φ is invariant under

z → z′ = z−1e−κy (5.38)

Φ→ Φ′ = −Φ + κy (5.39)

These results can be extended to the potential V, where the duality transformation acts on

φ1 and φ2 as

φ1 → φ
′

1 = −φ1 +
β1/2g

vm2
1

(5.40)
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φ2 → φ
′

2 = −φ2 +
iβ1/2e

vm2
2

(5.41)

consistent with the duality transformation of Φ.

The critical line must map into itself under this transformation and thus must form part

of the curve

z = e−κy/2. (5.42)

This is

µ = m− κ

2v
= m− 1

2v

(
g2

m2
1

− e2

m2
2

)
. (5.43)

The critical end point at (κy = 4, z = e−2) lies on the critical line and maps onto itself

under duality. In more physial units, we have for the critical end point Tcep = κ/4v and

µcep = m− 2Tcep. Along the critical line, the jump in Φ is given by

∆Φ = Φ− Φ′ = 2Φ− κy. (5.44)

This is zero at the critical end point, which must occur when Φ = κy/2, consistent with the

location of the critical end point.

The disorder lines associated with the mass matrix

 m2
1 − ∂2F

∂φ21
− ∂2F
∂φ1∂φ2

− ∂2F
∂φ2∂φ1

m2
2 − ∂2F

∂φ22

 (5.45)

occur when the two eigenvalues are degenerate. Using the fact is a function of Φ, we arrive
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after some algebra at the condition

m2
1 −m2

2 − β (g ± e)2 ∂
2F

∂Φ2
= 0. (5.46)

This equation for the disorder lines holds whenever F is a function only of Φ rather than φ1

and φ2 separately; this includes the cases of the nonrelativistic fermionic gas and the classical

gas as well as the case of static fermions. For static fermions, this equation may be written

as

m2
1 −m2

2 − β (g ± e)2 1

v

z exp Φ

(1 + z exp Φ)2 = 0. (5.47)

Because the first term in the sum is always postive and the second and third terms are

always negative, we must have m1 ≥ m2 for disorder lines to appear. The appearance of

a factor (g ± e)2 in the third term makes possible the appearance of two distinct disorder

lines, defining two distinct boundaries for the region where the mass matrix eigenvalues have

imaginary parts. The negative contribution of the third term is larger in magnitude for the

combination g + e; this indicates that it is possible to have zero, one or two disorder lines.

5.3.2 Phase structure and disorder lines

As we did in the case of relativistic fermions, we will choose the fermion mass m to be

substantially heavier than the masses m1 and m2, with m = 20. The left-hand graph of

Figure 5.3 shows the phase diagram for m = 20, m1 = 1 and m2 = 0.75. The couplings are

given by e = 0.3 and g = 1. These are exactly the same values as those used for the first
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Figure 5.3: Phase diagrams for static fermions for m = 20 and m2 = 0.75 with e = 0.3. In
the first graph g1 = m1 = 1, while in the second g1 = m1 = 0.8. The shaded region indicates
where the mass matrix eigenvalues form complex conjugate pairs, and the contour lines refer
to the imaginary parts of the mass matrix eigenvalues. The boundary of the shaded region
defines the disorder line in the phase diagram. Note the appearance of a second disorder line
inside the first in the second graph. The thick line shows a first-order line emerging from the
T = 0 axis and terminating in a critical end point. The dashed vertical line emerging from
the critical end point is the line of particle-hole duality.

graph in Figure 5.1. We set v = 1 throughout. The vertical line is the line of particle-hole

self-duality; the lower portion of this line is a line of first-order phase transitions, terminated

by a critical end point. The shaded region again indicates where the mass matrix eigenvalues

form complex conjugate pairs, and the contour lines refer to the imaginary parts of the mass

matrix eigenvalues. The reflection symmetry of the diagram about the self-dual line is due to

particle-hole duality. With these parameters, we see that there is a single disorder line. The

graph on the right-hand side of the figure shows what happens if m1 and g are decreased to

0.8 while m2 is set to 0.75. As was the case with relativistic fermions, the phase structure is

essentially unchanged, but a new disorder line boundary has opened up around the critical

end point, inside the region where complex mass matrix eigenvalues were previously found.
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Figure 5.4: Phase diagrams for static fermions for m = 20 and m2 = 0.35 with e = 0.3. In
the first graph g1 = m1 = 1, while in the second g1 = m1 = 0.4. The shaded region indicates
where the mass matrix eigenvalues form complex conjugate pairs, and the contour lines refer
to the imaginary parts of the mass matrix eigenvalues. The boundary of the shaded region
defines the disorder line in the phase diagram. In the first graph, the dashed line near the
critical end point is the boundary of the regions where the real parts of the mass matrix
eigenvalues are negative. The thick line shows a first-order line emerging from the T = 0
axis and terminating in a critical end point. The dashed vertical line emerging from the
critical end point is the line of particle-hole duality.
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In Figure 5.4, we show a second pair of phase diagrams. The graph on the left-hand side

has m1 = g = 1 and m2 = 0.35. As was the case with relativistic fermions, we find a small

region around the critical end point where real parts of the eigenvalues of the mass matrix

become negative. The boundary of this region is again denoted by a dashed line. The graph

on the right-hand side of the figure has m1 = g = 0.4 and m2 = 0.35. The lower values

of g and m1 again eliminate the region where the real part of the conjugate pair of mass

matrix eigenvalues becomes negative. The shaded region becomes larger, but the values of

the imaginary parts become smaller. This behavior is again similar to what we found for

relativistic fermions.

5.3.3 Classical Particles

It is easy to obtain the effective field theory assoiciated with the classical gas as a limit of

the static fermion case. As mentioned previously, the correct behavior is obtained when

z exp Φ� 1. The potential U can be written as

U =
1

2
Φ2 − κyz exp (Φ) . (5.48)

The equation ∂U/∂Φ = 0 now becomes

Φ exp (−Φ) = κyz. (5.49)
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This equation is solved by the Lambert function W : Φ = −W (−κyz) . More intuitively, it

may be solved graphically by plotting Φe−Φ, which must be κzy. It is easy to see that there is

no real solution for κyz > e−1, two solutions for 0 < κyz < e−1 and one solution for κyz < 0.

Nowhere do we obtain the three solutions that would be expected with a standard first-order

phase transition: two local minima separated by a local maximum. We can also visualize

this result by noting that U is unbounded from below for κyz > 0, with a local maximum

and local minimum when 0 < κyz < e−1 , and no extrema for κyz > e−1. When κyz = e−1,

there is a single static solution at Φ = 1. It is easy to confirm that the mass matrix has a zero

eigenvalue at this point, but it is not a conventional critical point; because it is unstable at

cubic order, it is more like a spinodal point, where a metastable solution becomes unstable.

It has been known for some time that a straightforward application of mean field theory to

the classical liquid-gas system is insufficient to recover the critical behavior [118, 119]; it is

therefore perhaps unsurprising that tree-level in an equivalent field theoretic approach is also

insufficient.

5.4 Conclusions

We have developed a framework for deriving and analyzing field-theoretic models of liquid-

gas transtitions and applied the formalism to some important models. In this framework, it

is necessary to have two or more fields to include the effects of both attractive and repulsive

potentials. The presence of a repulsive potential at nonzero µ gives rise to a sign problem in

this class of field theories. Although charge conjugation symmetry is explicitly broken when

µ 6= 0, the symmetry CK is unbroken, with profound consequences. One consequence of the
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CK symmetry is that there are regions of the phase diagram where masses have imaginary

parts, givin rise to damped oscillatory behavior in correlation functions. The border of these

regions are disorder lines. This behavior cannot occur in conventional field theories without

sign problems, as a consequence of spectral positivity.

We have found two models, relativistic fermions and static fermions, that have conven-

tional liquid-gas transitions at tree level. In contrast, the field theories associated with

nonrelativistic fermions and classical particles do not have liquid-gas transtions at tree level.

The case of static fermions has proven to be very tractable due to the exact particle-hole

duality found there. As in our previous work on PNJL-type models of QCD [79, 102], the

critical line of the liquid-gas transition is generally found in the phase diagram near any

disorder lines present, although there does not seem to be any simple universal rule. The

occurence of zero, one or two disorder lines is easy to understand analytically in this model.

In hindsight, the phase structure of relativistic fermions is qualitatively quite similar to that

of static fermions. The absence of an exact particle-hole symmetry leads to a distortion of

the features found in phase diagrams, but the overall behavior appears to be the same. Both

models exhibit eigenvalues of the mass matrix with negative real parts for some regions of

parameter space. Because the static fermion case is tractable, we believe that this behavior

is physical, indicating regions where the phase of complex masses becomes sufficiently large.

There are, however, other possibilities. It is possible that the incorrect solution is being

used, or that the tree level approach fails when this occurs. Another possibility, discussed

below, is that we have found regions where no equilibrium thermodynamic system exits. It
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is striking that the case of relativisitic and static fermions have liquid-gas phase transitions

at tree level, while nonrelativisic fermions and classical particles do not. It is not clear if this

reflects some fundamental feature of the physical systems being modeled, or some limitation

of the method used.

Many systems can be studied within the framework we have developed. However, we are

acutely aware that not much is known about the stability of most of these systems. Sufficent

conditions for the thermodynamic stability of systems of classical particles were developed

some time ago by Fisher and Ruelle [120]. For example, the following conditions on the total

potential V = V2−V1 are sufficient for stability of a d-dimensional system: for some positive

values of a1 and a2, we have

r < a1 V (r) ≥ C/rd+ε (5.50)

a1 < r < a2 V (r) ≥ −w (5.51)

r > a2 V (r) ≥ −C ′/rd+ε′ (5.52)

where C, C ′, w, ε and ε′ are positive constants. A system with attractive and repulsive

Yukawa potentials will satisfy thes conditions if e > g. To our knowledge, there are no

similar rigorous results for other systems. On physical grounds, we expect that fermionic

systems will be stable whenever the corresponding classical system is stable. Because many

of the current approaches to the sign problem, including the one used here, rely on saddle

points in the complex plane of unknown stability, it would be very helpful to know for which
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parameter values a given system is thermodynamically stable.

Appendix

In the common case where F can be written as a function of Φ = β1/2gφ1 + iβ1/2eφ2, there

is a formal equivalence between the partition function of the effective field theory and a

generalized Liouville sine-Gordon field theory. This equivalence is a generalization of the

equivalence of the sine-Gordon model with a Coulomb gas [121, 122]. The equivalence is

proven by expanding F (Φ) in the action in a power series in z and integrating the resulting

functional integrals exactly at each order in the expansion.

L3d =
1

2
(∇φ1)2 +

1

2
m2

1φ
2
1 +

1

2
(∇φ2)2 +

1

2
m2

2φ
2
2 − F (Φ) . (5.53)

The function F has a natural expansion of the form

F =
∑
n

fne
nΦ. (5.54)

Expansion in the fn leads to the interpretation of the partition function as the grand canonical

partition function as a gas with multiple charges n and fugacities fn; some of the fugacities

may be negative.

For simplicity, consider the case where only the n = 1 term is nonzero. Writing

F =
z

λdT
eΦ (5.55)
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we can expand the partition function in powers of z:,

Z =

∫
[dφ] e−S0

∞∑
k=0

1

k!

(
z

λdT

)k ∫
ddx1...d

dxk exp

[
k∑
j=1

Φ (xj)

]
(5.56)

where

S0 =

∫
ddx

[
1

2
(∇φ1)2 +

1

2
m2

1φ
2
1 +

1

2
(∇φ2)2 +

1

2
m2

2φ
2
2

]
. (5.57)

Interchanging functional integration and summation and performing the Gaussian functional

integrals we have

Z =
∞∑
k=0

1

k!

(
z

λdT

)k ∫
ddx1...d

dxk exp

{
−β
∑
k<l

[V2 (xk − xl)− V1 (xk − xl)]

}
(5.58)

where the Yukawa (screened Coulomb) potentials are determined by their Fourier transforms

Ṽ1 (q) =
g2

1

q2 +m2
1

(5.59)

Ṽ2 (q) =
g2

2

q2 +m2
2

(5.60)

The presence of terms in the expansion of F with n = 1 correspond to higher charges in the

generalized Coulomb gas representation.
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Chapter 6

PHYSICS OF NEUTRON STARS

The remaining chapter of this dissertation focus on the effect of large amplitude

density oscillation on transport coefficients, such as the neutrino emissivity, in superfluid

nuclear matter. This extreme form of nuclear matter is known to exist in neutron stars [123]

with profound consequences for transport properties, many of which are strongly suppressed

by the superfluidity. However, there are physical events like star quakes [124] and neutron

star mergers [125] that involve high-amplitude density oscillations. It was shown in [126]

that these large amplitude density oscillations can overcome the strong suppression from

superfluidity or superconductivity via the mechanism called “gap-bridging”. However, the

calculation in [126] was an illustrative proof of principle and not directly applicable to neutron

star physics. A realistic calculation that is directly relevant to neutron star physics will be

presented in the next chapter. The remaining section of this chapter will introduce the basics

of neutron stars and different mechanism of neutrino emission in neutron stars.

Neutron stars are formed as a result of gravitational collapse of massive stars (>8×

solar mass) at the end of their lifetime [127]. Neutron stars are the smallest and densest stars

known to exist with mass on the order of 1.4 times the mass of sun and radius of around 10

km. Because of their large mass and small radius they posses enormous gravitational energy,

Egrav, on the order of 1053 erg and enormous surface gravity, g, on the order of 1014 cm s−2
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Figure 6.1: Structure of a Neutron Star.

[128]. The central density reaches about (5-10)ρ0, where ρ0 = 2.8×1014g cm−3 is the nuclear

saturation density, which makes them unique astrophysical laboratories of superdense mat-

ter. They also exhibit phenomenon such as superfluidity and superconductivity with critical

temperatures near 1010 K.

The structure of neutrons star can be subdivided into the atmosphere and four internal

layers: the outer crust, inner crust, the outer core and inner core as shown in Fig. 6.1 1. The

atmosphere is a very thin layer that varies in depth from some ten centimeters in hot stars

down to millimeters in cold stars, while the outer crust with density of around 4 ×1011 g cm−3

has depth of a few hundreds of meters. The outer crust is composed mostly of degenerate

electron gas and nuclei. The outer crust is followed by a several kilometers thick inner crust

with density that reaches about half the nuclear saturation density (ρ0). It is composed

1Figure from:http://jiaps.org/article/neutron-stars.html

130



mainly of degenerate neutron (could form 1S0 superfluid) and electron gas with proton-rich

regions. The inner crust is followed by a several kilometers deep outer core with density

ranging from half the nuclear density to twice the nuclear density. This layer is composed

mostly of neutrons with small admixture of uniformly distributed protons and electrons

[129]. The neutrons could form a 3P2 superfluid and protons a 1S0 superconductor [127].

For low mass stars this outer core can extend all the way to the center. More massive stars

may have a inner core region which may contain exotic phases such as pion condensation,

kaon condensation and strange quark matter. See [129] for further discussion about various

hypothesis on inner core composition.

The major mechanism of energy loss for a cooling neutron star is the neutrino emission.

Right from its birth to about hundred thousand years, a neutron star cools mainly via the

emission of neutrinos from its interiors. At later times, the star is cold so the neutrino

emission is suppressed and the star cools mainly from the emission of photons from its sur-

face [127]. Given the rich spectrum of physical conditions in different layers of the neutron

star, as discussed in previous section, different neutrino emission mechanisms may be impor-

tant across different crust layers for different temperature intervals. Some of the neutrino

processes that takes place in neutron stars are electron-positron pair annihilation, plasmon

decay, electron synchrotron and beta processes. The strongest of them is the baryon direct

Urca process

n→ p+ e− + ν̄e , p+ e− → n+ νe (6.1)

but it occurs only when the density reaches several times the nuclear saturation density, at
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which point the proton and neutron Fermi momenta are sufficiently similar to allow direct

conversion of one species into the other. In most if not all regions of a neutron star the

direct Urca process is forbidden by energy and momentum conservation. In the absence of

the direct Urca process, the main flavor-changing β process is the modified Urca process. The

next chapter will describe the modified Urca process and present calculations that show the

enhancement of neutrino emissivity for the case of modified Urca process in nuclear matter

with 3P2 neutron pairing.
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Chapter 7

GAP-BRIDGING ENHANCEMENT OF MODIFIED URCA
PROCESSES IN NUCLEAR MATTER

This chapter contains the materials published under the same title 1. This work was done
by me under the supervision of Prof. Mark Alford.

7.1 Introduction

Ultra-dense nuclear matter is believed to be a superfluid (via neutron Cooper pairing) and

a superconductor (via proton Cooper pairing) for at least part of the range of densities that

is relevant for neutron star physics [123, 130, 131]. This has a profound effect on transport

properties, many of which are suppressed as exp(−∆/T ) by the gap ∆ in the neutron or

proton spectrum. Since neutron star core temperatures T are of order 0.01 MeV [127] and

∆ is typically in the MeV range [123], the suppression factor can be as strong as 10−40.

It has previously been shown [126] that compression oscillations of sufficiently high am-

plitude can entirely overcome this suppression for certain transport properties, such as bulk

viscosity and neutrino emissivity, that are dominated by flavor-changing β (weak interaction)

processes. The mechanism, called “gap bridging”, is a threshold-like behavior, separate from

high-amplitude suprathermal enhancement of β processes [132–134]. Additional enhance-

ment may come from the suppression of the gap itself by high-velocity flow of the superfluid

1Alford, M.G. and Pangeni, K., 2017. Gap-bridging enhancement of modified Urca processes in nuclear
matter. Physical Review C, 95(1), p.015802.
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relative to the normal fluid [135].

The previous calculation of gap bridging [126] found that oscillations with density am-

plitude that reached ∆n/n̄ ∼ 10−4 could show gap bridging enhancement. Gap bridging is

therefore expected to be relevant to high-amplitude oscillations of neutron stars such as f-

or r-modes [136, 137], or the oscillations caused by star quakes [124] or neutron star mergers

[125]. However, the previous calculation was an illustrative proof of principle in which the

neutron pairing was assumed isotropic, in the 1S0 channel, and only direct Urca processes

were considered. In this paper we provide a more realistic calculation, obtaining the gap-

bridging enhancement of the modified Urca neutrino emissivity for nuclear matter with 3P2

neutron pairing. We find that gap bridging is just as dramatic in this realistic scenario as

the original estimates indicated.

In Sec. 7.2 we describe the modified Urca process and the quantities that we will calcu-

late to characterize the neutrino emissivity of nuclear matter. In Sec. 7.3 we calculate the

modified-Urca emissivity for matter with 1S0 pairing of neutrons. In Sec. 7.4 we calculate

the modified-Urca emissivity for matter with 3P2 pairing of neutrons. Sec. 7.5 contains our

conclusions.

7.2 Modified Urca process

Urca processes change the flavor (isospin) of nucleons and emit neutrinos. They dominate

certain physical properties such as bulk viscosity and neutrino emissivity. In this paper we

will calculate the enhancement of the neutrino emissivity by gap bridging in high amplitude

compression oscillations.
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Initial work on gap bridging studied the direct Urca process because of its simplicity, but

in β-equilibrated nuclear matter direct Urca processes occur only when the density reaches

several times the nuclear saturation density, at which point the proton and neutron Fermi

momenta are sufficiently similar to allow direct conversion of one species into the other. In

most if not all regions of a neutron star the direct Urca process n→ p e− ν̄e is forbidden by

energy and momentum conservation: a neutron near its Fermi momentum pFn cannot turn

into a proton near its Fermi momentum pFp and an electron near its Fermi momentum pFe

because pFn > pFp+pFe. In the absence of the direct Urca process, the main flavor-changing

β process is the modified Urca process in which a “spectator” neutron, interacting via pion

exchange, absorbs the extra momentum (Fig. 7.1)

n+ n→ n+ p+ e− + ν̄e

p+ n+ e− → n+ n+ νe

(7.1)

We neglect the modified Urca process that uses a spectator proton because it is suppressed

by the lower density of protons.

The neutrino emissivity (energy radiation rate per unit volume) arising from the modified

Urca process (7.1) is [129]

ε =

∫ [ 4∏
j=1

d3Pj
(2π)3

]
d3Pe
(2π)3

d3Pν
(2π)3

(2π)4δ(Ef − Ei)×

× δ3( ~Pf − ~Pi)Eνf1f2(1− f3)(1− f4)(1− fe)|Mf i|2
(7.2)
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where the index j labels the four nucleon states (two neutrons in the initial state “i” and a

proton and a neutron in the final state “f”); fj ≡ 1/{1 + exp[(Ej − µj)/T ]} are the Fermi-

Dirac occupation distributions for the nucleons, Pj are the nucleon momenta, Pe and Ee

are the electron momentum and energy, Pν and Eν are the neutrino momentum and energy,

and |Mf i|2 is the squared matrix element summed over spin states. In superfluid matter the

matrix elements acquire coherence pre-factors (Bogoliubov coefficients) because the quasi-

particles are a superposition of particles and holes. We will neglect these prefactors, which

is valid when ∆� µ [138, 139].

The matrix element, |Mf i| depends on the magnitude and relative orientation of the

particle momenta and thus cannot be taken out of the integral. However, because of the

strong degeneracy of nucleons and electrons in nuclear matter, the main contribution to the

integral in Eq.(7.2) comes from the region near the Fermi surface. Therefore, we can set

|~p| = pF in all smooth functions of energy and momenta. Furthermore, in the approximation

where we treat the nucleons as non-relativistic and ignore the neutrino momenta as well as

the electron and the proton momenta (which are all small in the region of our interest),

the matrix elements turn out to be independent of the relative orientation of the particle

momenta [129, 140]. This enables us to take the matrix element out of the integral. Since

we will be interested in calculating the ratio of the the neutrino emissivity rate with and

without superconductivity or superfluidity, the matrix element cancels out at leading order

in µ∆/pF expansion. Interested readers can find the expression for the matrix element in

Eq. 139 of [129] and Eq. 36 of [140].
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7.2.1 Effect of superfluidity

We will consider phases of nuclear matter with neutron superfluidity, with or without proton

superconductivity. The superfluidity or superconductivity arises from Cooper pairing due to

the attractive nuclear force between nucleons. Cooper pairing creates a gap in the energy

spectrum of the particles near the Fermi surface. For nuclear matter in neutron stars the

temperature is far below the Fermi energy, so only the degrees of freedom close to the Fermi

surface are relevant for transport. Their dispersion relation Ei(pi) is

(Ei − µi)2 = v2
Fi(pi − pFi)2 + ∆2

i , (7.3)

where i = n or p indexes the nucleon species, and ∆i is the gap arising from Cooper pairing.

For electrons and neutrinos we can use the free dispersion relations E2
e = p2

e+m2
e and Eν=pν .

We will write the neutrino emissivity ε as

ε = Rε ε0, (7.4)

where ε0 is the purely thermal emissivity (with no external compression oscillations) for non-

superfluid matter, and Rε is the “modification factor” that takes into account the effects of

gaps in the fermion spectra and high amplitude effects such as suprathermal enhancement

and gap bridging. As the gap rises, Rε drops below 1 because of Boltzmann suppression [141]

but in the presence of compression oscillations that drive the system out of beta equilibrium

Rε can be pushed up to very large values. The modification function Rε for the modified
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Urca process is

Rε =
945P 3

Fn

92104π13

∫ ∞
0

dxνx
3
ν

×
3∏
i=1

[∫ ∞
−∞

dxniW (xni,∆n/T )

]
×
∫ ∞
−∞

dxpW (xp,∆p/T ) A
[
f(X−) + f(X+)

]
× f(xn1)f(xn2)f(−xn3)f(−xp) ,

(7.5)

where

W (x, z) ≡ |x|Θ(x2 − z2)√
x2 − z2

, (7.6)

Θ(a) ≡ 1 if a > 0, or 0 if a < 0, (7.7)

A ≡ 4π

∫ 5∏
j=1

dΩjδ
3( ~Pf − ~Pi) , (7.8)

X± ≡ xn3 + xp + xν − xn1 − xn2 ± µ∆/T , (7.9)

µ∆ ≡ µn − µp − µe , (7.10)

f(x) ≡ 1/(1 + ex) , (7.11)

xi ≡ (Ei − µi)/T . (7.12)

The subscripts n1 and n2 refer to the incoming neutrons; n3 and p refer to the outgoing

neutron and proton. The chemical potential µ∆ arises from external compression oscillations

that drive the system out of β equilibrium. Rε is normalized so that Rε = 1 when all the

gaps are zero and µ∆ = 0.

We will calculate Rε̄, which measures how much the emissivity is affected by nonlinear
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high amplitude effects and by Cooper pairing,

Rε̄(µ̂∆) =
〈ε(µ∆)〉
〈ε0〉

=
〈
Rε(µ∆)

〉
,

µ∆(t) = µ̂∆ sin(ωt) ,

(7.13)

where 〈X〉 means the average of X over one oscillation cycle. Since ε0, the emissivity in the

absence of oscillations and with no Cooper pairing, is independent of µ∆, then 〈ε0〉 = ε0.

7.3 Singlet state (1S0) pairing for both nucleons

We first consider modified-Urca neutrino emission in matter where both the neutrons and

protons form Cooper pairs in the 1S0 state. As we will see in Sec. 7.4, the results for the

realistic case of 3P2 neutron pairing are qualitatively and quantitatively similar to this case.

For 1S0 pairing the gap is isotropic so the angular integral A and the radial integral in

Eq. (7.5) can be separated. After angular integration, the modification function is

Rε =
60480

11513π8

∫ ∞
0

dxνx
3
ν

×
3∏
i=1

∫ ∞
−∞

dxniW (xni,∆n/T )

×
∫ ∞
−∞

dxpW (xp,∆p/T )

×f(xn1)f(xn2)f(−xn3)f(−xp)
[
f(X−) + f(X+)

]
.

(7.14)

In Fig. 7.2 we show the effect of increasing the amplitude of the applied compression
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oscillations for the case where protons and neutrons have the same 1S0 gap, ∆p = ∆n.

For low amplitude oscillations the system remains in β equilibrium (µ̂∆/∆n � 1) and the

neutrino emissivity is very heavily suppressed by the gaps, roughly as exp(−2∆n/T ). As the

amplitude rises, Rε̄ rises due to suprathermal effects [a factor of (µ∆/T )8 [133]]. On the log

scale used in Fig. 7.2 this appears as a very slow, logarithmic, increase. When µ̂∆ becomes

of the same order as ∆n, gap bridging begins to occur: some β processes start to become

unsuppressed, and their rate rises exponentially (straight line on this plot). As we discuss

in more detail below, this happens in two steps, until at high amplitude of the oscillations,

µ̂∆/∆n ≈ 4, all the Boltzmann suppression due to the gap has been overcome, and Rε̄ ≈ 1,

regardless of how low the temperature may be.

To understand the staircase-like behavior of the dependence of the emissivity on the

amplitude, it is necessary to analyze the different channels that contribute to the modified

Urca process. These channels are schematically shown in Fig. 7.3 and their contribution to

the modification function Rε̄ is shown in Fig. 7.4 where we can already see how gap bridging is

manifested at different values of µ̂∆ depending on the channel, so the sum of all the channels

yields a staircase dependence on µ̂∆.

Figure 7.3 contains 16 panels showing all the channels that contribute to the modified

Urca process. Each of the two nucleons can have an initial state above or below its Fermi

energy and a final state above or below its Fermi energy, yielding 24 = 16 possibilities. For

each channel we show the three Fermi seas in β equilibrium: from left to right, neutron

(gapped), proton (gapped), electron (ungapped). We are interested in the free energy εi−µi
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of each species i, so the Fermi energies are aligned. The black arrows show the transitions of

the spectator neutron, the n↔ p conversion (arrow that goes from neutron to proton Fermi

sea), and electron. The vertical length of each arrow shows the free energy input or output,

so by energy conservation and beta equilibration (µn = µp +µe) these add up to zero in each

process. The electron line starts at the electron Fermi energy because the free energy cost of

placing an electron there is zero. The length of the electron arrow then tells us the amount

of energy yielded (or consumed) by the hadronic processes.

7.3.1 Rates at zero compression amplitude

The processes fall into five classes, labeled by the number below each panel. At µ̂∆ = 0 the

degree of suppression of the rate for each process can be estimated by keeping track of the

Boltzmann factors that arise when one tries to annihilate a fermion in a sparsely populated

part of phase space, or create a fermion in a densely occupied part of phase space, according

to the following rules:

− For each arrow starting at energy +|E| (i.e. above the Fermi surface):

a factor of exp(−|E|/T ).

− For each arrow ending at energy −|E| (i.e. below the Fermi surface): a

factor of exp(−|E|/T ).

(7.15)

The result of applying this rule to each class of channel is:
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Classes 1 and 5: exp(−4∆/T )

Classes 2 and 4: exp(−3∆/T )

Class 3: exp(−2∆/T )

(7.16)

For example, class 1 contains one channel (top left panel of Fig. 7.3). To see that this has

a suppression factor of exp(−4∆/T ), we look at each arrow in turn. The spectator neutron

transitions from an occupied state at free energy −∆n to an unoccupied state at free energy

+∆n, so it contributes no suppression factor according to the rules. The “protagonist” neu-

tron starts in an occupied state at free energy −∆n and becomes a proton in an unoccupied

state at free energy +∆p, so it also contributes no suppression factor. However, these two

processes each require an energy input of 2∆ so the electron that is created by the β process

must produce 4∆ by ending up in a state at free energy −4∆ which is deep in the occupied

electron sea, yielding a suppression factor of exp(−4∆/T ) which reflects the unlikeliness of

finding an unoccupied state there.

We can now understand the µ̂∆ = 0 part of Fig. 7.4: channels 1 and 5 are the most

suppressed, then channels 2 and 4, and finally the least suppressed is channel 3 where the

nucleon transitions are energy neutral so the electron yields or requires no energy.

7.3.2 Rates as a function of compression amplitude

We now analyze the variation of the rates in the various channels in the presence of a density

oscillation whose amplitude µ̂∆ rises to values as large as 5∆n. The external compression

drives the system out of β equilibrium. Under a relatively fast compression the proton and
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neutron Fermi energies increase by the same fraction, but because the proton fraction in

β-equilibrated matter rises with density, the proton Fermi energy is then µ∆ below its β-

equilibrated value at the higher density. This reflects the fact that the system now “wants

to make more protons”.

The rules are modified as follows,

− For channels where the electron is created with energy −|E| (i.e. below the

electron Fermi energy), its Boltzmann factor is now:

exp((−|E|+ µ∆)/T ), or (µ∆/T )8 if µ∆ > E.

− For channels where the electron is created with energy above the electron

Fermi energy, there is an additional overall factor of (µ∆/T )8 (suprathermal

enhancement).

(7.17)

In channels of class 3-5, at µ̂∆ = 0 the electron is created in a state at or above the Fermi

energy. There is therefore no gap-bridging, just suprathermal enhancement which multiplies

the µ̂∆ = 0 rate by (µ∆/T )8. On the log scale used in Fig. 7.4 this gives a very weak

growth with µ̂∆ which appears as the horizontal lines at approximately exp(−2∆/T ) (class

3 channels), exp(−3∆/T ) (class 4 channels) and exp(−4∆/T ) (class 5 channels). For class

3 channels, where the electron is created at its Fermi energy, there is a small gap-bridging

growth at very small amplitudes where µ∆ ∼ T .

In class 2 channels, at µ̂∆ = 0 the hadronic processes are suppressed in two ways. Firstly,

there is a Boltzmann factor of exp(−∆/T ) from either trying to place a final-state hadron

in the mostly occupied states below the gap, or from finding an initial-state hadron in the
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sparsely occupied states above the gap. Secondly, the hadronic processes require an energy

input of 2∆, either to move the spectator neutron up above its pairing gap, or to convert the

other neutron into a proton above its pairing gap. This leads to an additional suppression

by exp(−2∆/T ) since to deliver this amount of energy the electron must be created at

free energy −2∆, deep in its occupied Fermi sea. As µ̂∆ increases, this second factor is

canceled by gap bridging: the required energy input is reduced by µ̂∆, since the proton

Fermi sea is lowered by this amount. The electron can therefore be created in a state with

free energy µ̂∆ − 2∆, so the second Boltzmann suppression factor is reduced and eventually

when µ̂∆ ≈ 2∆ the electron has enough energy to be placed in a state above its Fermi energy

where there are plenty of unoccupied states and there is no Boltzmann suppression factor.

Any further increase in µ̂∆ only results in suprathermal enhancement, with the remaining

exp(−∆/T ) (described at the start of this paragraph) which is not affected by gap bridging.

In channel 1, all the hadrons are taken from below the gap and created above the gap, so

there are no Boltzmann factors associated with hadronic Fermi-Dirac distributions. However,

this requires a large energy input (4∆ at µ̂∆ = 0) from the electron, which leads to a

suppression factor of exp(−4∆/T ) from forcing the electron into the heavily occupied phase

space deep in its Fermi sea at a free energy of −4∆. As µ̂∆ rises, the proton energy states

drop relative to the neutron ones, and the n → p process requires less and less energy. At

µ̂∆ = 2∆ the process breaks even, and at µ̂∆ = 4∆ it can provide all the energy needed by the

spectator neutron. The electron is then relieved of the requirement to subsidize the hadrons,

and can be created above its Fermi energy. All Boltzmann suppression has been canceled
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by gap bridging, and further increase in µ̂∆ produces only suprathermal enhancement. In

conclusion, even though this channel is the most suppressed at µ̂∆ = 0 it dominates at large

µ̂∆ because all the suppression arises from the hadronic energy requirements, which can be

eliminated by gap bridging.

Up to now we have assumed that the protons and neutrons have the same pairing gap. We

now explore the effect of varying the proton gap: fixing the temperature so that ∆n/T = 60,

we plot the amplitude dependence of the emissivity for ∆p/∆n = 2, 1, 1/2,.

In Fig. 7.5 we show the results of this variation in ∆p. Not surprisingly, lower values

of the proton gap bring the point of complete gap bridging to a lower µ̂∆/∆n. This is

because at large µ̂∆/∆n the rate is dominated by channel 1 where, as explained in the

previous paragraph, all the suppression comes from the energy requirements of the hadronic

processes. For the spectator neutron to jump the gap requires 2∆n and the conversion of

a neutron below the gap to a proton above the gap requires energy ∆n + ∆p, so the total

requirement is 3∆n + ∆p. Thus when ∆p/∆n = 1/2 full gap bridging can be achieved when

µ̂∆/∆n ≈ 3.5 (top curve in Fig. 7.5) rather than 4∆n when ∆p = ∆n (middle curve in

Fig. 7.5)

When ∆p/∆n = 2, the suppression factor is exp(−5∆n/T ) so a compression oscillation

of magnitude µ̂∆/∆n ≈ 5, is necessary for complete gap bridging.

7.4 Triplet state (3P2) neutron pairing

We now calculate the modified Urca neutrino emissivity for nuclear matter in the inner

regions of a neutron star where the neutron density is high and the neutrons pair in a 3P2
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channel, while the proton density is relatively low and the protons pair in a 1S0 channel

[142]. For the neutrons there are other available triplet channels, but 3P0 is only weakly

attractive while the 3P1 state is repulsive [123, 143]. For the 3P2 channel, there is still a

choice of orientation of the condensate: Jz could be 0, ±1, ±2. Microscopic calculations

[142, 144, 145] find that Jz = 0 is very slightly energetically favored over the other values,

however this is not conclusive because of uncertainties in the microscopic theory [146]. In

the following discussion we will consider neutron condensates with Jz = 0 and ±2. We

expect these to show different dependencies of the emissivity on temperature and oscillation

amplitude because for Jz = 0 all neutron states at the Fermi surface are gapped, but for

Jz = ±2 there are ungapped nodes at the poles [129].

In our calculations we will assume ∆p = ∆n for simplicity. In real neutron star core

matter it is likely that ∆p is significantly larger than ∆n [131].

7.4.1 3P2(Jz = 0) neutron pairing

For neutrons that Cooper pair in the 3P2 state with Jz = 0, rotational symmetry is broken.

There is a preferred direction in space (we will align the z axis along it) and the gap in the

neutron spectrum becomes dependent on the angle θ between the momentum of the neutron

quasiparticle and the z axis [142],

∆n(θ) = ∆n0

√
1 + 3 cos2(θ) . (7.18)
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Note that the gap varies between a minimum of ∆n0 (around the equator) and 2∆n0 (at the

poles) but does not vanish anywhere on the Fermi surface. We therefore expect that 3P2

pairing will be qualitatively similar to 1S0 pairing, having the same parametric dependence

of the rate on temperature and oscillation amplitude.

The dependence of the 3P2 gap on θ restricts us from separating the angular and radial

part of the integral in Eq. (7.5). However, the gap has no φ dependence so we can integrate

the momentum-conserving δ function in Eq. (7.5) over the azimuthal angles analytically

[147] ∫ 2π

0

dφ1dφ2dφ3δ
3(P1 + P2 + P3) =

4πΘ
(

3
4
− c1c2 − c2

1 − c2
2

)
p3
Fn

√
3
4
− c1c2 − c2

1 − c2
2

δ(c1 + c2 + c3)

(7.19)

where cj ≡ cos(θj) and Θ is the unit step function. We then perform the remaining angular

and radial integrals numerically.

Fig. 7.6 shows how the neutrino emissivity is affected by increasing the amplitude of

compression oscillations. Since the neutrons are gapped everywhere on the Fermi surface we

expect the results to be similar to those calculated for 1S0 neutron pairing in Sec. 7.3, and

comparing Fig. 7.6 with Fig. 7.2 we see this this is indeed the case. The overall pattern of the

dependence on T and µ̂∆ is the same, the only difference is that Rε̄ for 3P2(Jz = 0) pairing

is smaller than for 1S0 pairing by a factor that varies between 400 and 20 as µ̂∆ ranges from

0 to 5∆n.
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7.4.2 3P2(Jz = ±2) neutron pairing

We now consider the case where the neutron Cooper pairs are in the 3P2 state with |Jz| = 2

while the protons pair in the 1S0 channel. The angular dependence of the neutron gap in

this channel is [142]

∆n(θ) = ∆n0 sin(θ) (7.20)

Note that the neutron gap vanishes at the poles and has a maximum value of ∆n0 around

the equator.

In Fig. 7.7, we show the effect of increasing the amplitude of the applied compression

oscillations. To explain this figure we first explain how the angular dependence of the gap

affects the modified Urca process. In Fig. 7.8 we have plotted a typical arrangement of

the neutron momenta. To understand the overall behavior we can neglect the proton and

electron Fermi momenta, which are significantly smaller than the neutron Fermi momentum.

The momenta of the incoming neutrons n1 and n2 (Fig. 7.1) then add up to the momentum

of the outgoing neutron n3. Since all three neutron momenta lie near the neutron Fermi

surface, pn1 and pn2 must be at a 60◦ angle to pn3, on opposite sides in the same plane. Only

one of the three neutrons can be at the gapless node on their Fermi surface. In Fig. 7.8 we

placed pn3 at the node. The other two neutron momenta are at θ = π/3 where the gap is

√
3∆n0/2.

We can now understand the effect of increasing the amplitude of the applied compression

oscillations, as shown in Fig. 7.7. For low amplitudes the neutrino emissivity is exponentially

suppressed by the gap, roughly as exp(−1.73∆n0/T ), as compared with exp(−2∆n/T ) for
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1S0 neutron pairing (Fig. 7.2). It is natural to expect the 3P2(Jz = ±2) pairing to be less

suppressed because there is a gapless node on the neutron Fermi surface.

To understand more fully the origin of the suppression factor, we analyze one of the

dominant channels at low µ̂∆/∆n0, shown in Fig. 7.9 (a). In the figure we show two neutron

Fermi seas, one gapless, corresponding to a neutron momentum at the gapless node on the

Fermi surface (polar angle θ = 0), and one with a gap of
√

3∆n0/2 ≈ 0.866∆n0, corresponding

to neutron momenta at θ = π/3 or 2π/3. For the process shown in Fig. 7.9 (a) there is a

suppression factor of exp(−
√

3∆n0/t) ≈ exp(−1.73∆n0/t), arising from the unlikelihood of

finding both initial state neutrons in the sparsely occupied region above the gap at θ = π/3.

The final state neutron is at the gapless node, and so experiences no Boltzmann suppression.

The electron is created above its Fermi surface (because the hadrons provide an energy

surplus to be absorbed by the electron) so it too experiences no Boltzmann suppression.

As we see in Fig. 7.7, increasing the amplitude of compression oscillation leads to gap

bridging: some of the β processes become unsuppressed which results in steady increase of

the neutrino emissivity until at µ̂∆/∆n0 ≈ 2.73 the β process rate reaches the ungapped

limit (Rε ∼ 1), regardless of how low the temperature may be.

To understand why complete gap bridging happens at µ̂∆/∆n0 ≈ 2.73, we show in Fig. 7.9

(b) the channel of class 1 (Fig. 7.3) which dominates at large µ̂∆/∆n0. As in the case of

1S0 neutron pairing, this is because all the suppression comes from the energy requirements

of the hadronic sector, none from hadronic Fermi-Dirac factors (all hadrons start below the

gap and end in the sparsely occupied region above the gap). At µ̂∆ = 0 the energy required
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for this is 0.866∆n0 for n1 → n3 and 0.866∆n0 + ∆p for n2 → p, totalling 2.73∆n0 assuming

∆p = ∆n0. This energy is supplied by the electron, which must be created deep in its Fermi

sea at a free energy of −2.73∆n0, yielding a Boltzmann suppression of exp(−2.73∆n0/T ).

As we increase µ̂∆, the proton Fermi surface is lowered by µ̂∆ relative to the neutron

Fermi surface and the n → p process requires less and less energy. At µ̂∆ = 1.866∆n0 the

n→ p process breaks even, and at µ̂∆ = 2.73∆n0 it can provide all the energy needed by the

spectator neutron. The electron can then be created above its Fermi energy. All Boltzmann

suppression has then been canceled by gap bridging, and further increase in µ∆ produces

only suprathermal enhancement.

7.5 Conclusion and discussion

We have shown that the exponential suppression of flavor-changing β processes in superfluid

and superconducting nuclear matter can be completely overcome, via the mechanism of gap

bridging, by compression oscillations of sufficiently high amplitude, regardless of how low

the temperature may be. This confirms the conjecture outlined in previous work [126], and

shows that it applies to the realistic case of modified Urca processes and 3P2 neutron pairing.

We expect gap bridging to be relevant in processes that induce density oscillations of

amplitude ∆n/n̄ ∼ 10−3 to 10−2 [126]. This is sufficient to overcome typical nucleon pairing

gaps which are of order 1 MeV. In hyperonic [148, 149] or quark [150, 151] matter, there

are processes which are only suppressed by ∆ . 0.01 MeV, and these could be bridged by

oscillations with amplitudes as small as ∆n/n̄ . 10−4. Relevant physical scenarios that are

likely to involve high-amplitude oscillations include unstable oscillations of rotating compact
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stars such as f -modes or r-modes [136], events like star quakes [124], and neutron star

mergers [125]. When such high-amplitude compression oscillations occur in superfluid or

superconducting matter, certain transport properties, such as bulk viscosity and neutrino

emissivity, will be greatly enhanced, leading to nonlinear (in amplitude) damping of the

mode itself, and enhanced cooling via neutrino emission.
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Figure 7.1: Feynman diagram for a modified Urca process. The initial state contains two
neutrons: n2, which undergoes β decay to a proton, and n1, which is a spectator, interacting
with the other neutron or proton via the strong nuclear force.
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Figure 7.2: Dependence of neutrino emissivity [via the averaged modification function Rε̄,
Eqs. (7.13) and (7.4)] on the amplitude of the applied oscillation [via the departure µ∆

from β equilibrium, Eq. (7.10)], for 1S0 neutron and proton pairing. At low amplitude the
emissivity is Boltzmann suppressed by the gaps, but for high enough amplitude gap bridging
reverses the suppression.
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Figure 7.3: The 16 channels that contribute to the modified Urca process. For each channel
we show the three Fermi seas: from left to right, neutron (gapped), proton (gapped), and
electron (ungapped) with their Fermi energies aligned. The black arrows show the transitions
of the spectator neutron (leftmost arrow), the n ↔ p conversion (arrow that goes from
neutron to proton Fermi sea) and electron (rightmost arrow). The vertical lengths of the
arrows represent the free energy input or output; by energy conservation these add up to
zero in each process. 154
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Figure 7.4: Amplitude dependence of the neutrino emissivity for different channels that
contribute to the modified Urca process. This explains the step structure in Fig. 7.2
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Figure 7.5: How the amplitude dependence of the neutrino emissivity depends on the 1S0

proton pairing gap, for 1S0 neutron pairing with ∆n/T = 60. We show curves for ∆p/∆n =
1/2, 1, 2.
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Figure 7.6: Dependence of the neutrino emissivity on the amplitude of the applied compres-
sion oscillations, for 3P2 (Jz = 0) neutron pairing and 1S0 proton pairing.
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Figure 7.7: Dependence of the neutrino emissivity on the amplitude of the applied compres-
sion oscillations, for 3P2 (Jz = 2) neutron pairing and 1S0 proton pairing.
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Figure 7.8: Momenta of the neutrons in one example of a typical Urca process in a 3Ps(Jz =
±2) neutron superfluid. The shaded region is the gap at the neutron Fermi surface. The
momenta of the two initial state neutrons n1 and n2 add up to the momentum of the final
state neutron n3 (neglecting the proton and electron momenta). Only one of the three
neutron momenta can be at a gapless node on the Fermi surface.
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